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Abstract

Blind source separation methods such as independent component analysis (ICA) and

second order blind identification (SOBI) have shown considerable potential in the area of

ambient vibration system identification. The objective of these methods is to separate the

modal responses, or sources, from the measured output responses, without the knowledge

of excitation. Several frequency domain and time domain methods have been proposed

and successfully implemented in the literature. Whereas frequency-domain methods pose

several challenges typical of dealing with signals in the frequency-domain, popular time-

domain methods such as NExT/ERA and SSI pose limitations in dealing with noise, low

sensor density, modes having low energy content, or in dealing with systems having closely-

spaced modes, such as those found in structures with passive energy dissipation devices, for

example, tuned mass dampers.Motivated by these challenges, the current research focuses

on developing methods to address the problem of separability of sources with low energy

content, closely-spaced modes, and under-determined blind identification, that is, when

the number of response measurements is less than the number of sources. These meth-

ods, requiring the time and frequency diversities of the measured outputs, are referred to

as hybrid time and time-frequency source separation methods. The hybrid methods are

classified into two categories. In the first one, the basic principles of modified SOBI are

extended using the stationary wavelet transform (SWT) in order to improve the separa-

bility of sources, thereby improving the quality of identification. In the second category,

empirical mode decomposition is employed to extract the intrinsic mode functions from

measurements, followed by an estimation of the mode shape matrix using iterative and/or

non iterative procedures within the framework of modified-SOBI. Both experimental and

large-scale structural simulation results are included to demonstrate the applicability of

these hybrid approaches to structural system identification problems.
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Chapter 1

Introduction

In the era of high performance flexible structures like Taipei 101, Burj Dubai, CN tower,

and Guangzhou tower, estimation of dynamic properties of flexible structures, i.e., nat-

ural frequencies and damping, is of paramount importance. Its significance stems from

the fact that such structures are liable to undergo changes over time, sustain damage,

and/or get augmented by supplemental energy dissipation devices aimed at controlling

their motions against wind or other disturbances. Extracting system information often

needs to be accomplished without the knowledge of inputs, and is referred to as ambient

system identification. The presence of measurement noise or supplemental energy dissi-

pation devices like tuned mass dampers renders ambient system identification difficult.

These difficulties are further compounded in situations where practically achievable sensor

densities are governed by economics, and installation efforts. The aim of this research is to

develop sophisticated system identification techniques that address these practical issues

in an expedient manner.

Exclusive of the knowledge of inputs, extraction of system information from output

measurements is known as ambient system identification. It differs from the traditional

system identification in the sense that the latter requires the knowledge of both the input
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and the output for complete identification. The system responses are assumed to be in-

fluenced by ambient conditions like wind, environmental conditions, traffic load etc. The

importance of ambient system identification is evident because in many practical situations

the excitation input is not easily observable. Civil engineering systems, typically, are very

large and complicated, and the measurement of the input forces can be an arduous task (e.

g., wind load). Outputs on the other hand can be measured relatively easily. Furthermore,

for many structures, using forced vibration to induce response for system identification

may be forbidden (due to concern of the owner(s) or structural damage likely to result).

On the other hand, responses due to ambient vibration may be sufficient to perform system

identification.

In view of the absence of unique solutions, extracting the parameters of an unknown

system with no knowledge of inputs is a difficult mathematical problem. The mathematical

statement of ambient system identification can be expressed as :

x = As (1.1)

In the Eq. 1.1, x represents the output, or the system response, which is the only known

quantity. A contains the system properties, and s contains the inputs or the sources, both

of which are unknown. Such an equation yields infinite combinations of A and s that

could result in the observed x. Thus, unique determination of the system parameters, i.e.,

matrix A based on Eq. 1.1 is a formidable challenge.

Traditional ambient system identification methods are a wide class of methods operat-

ing in either the time or frequency domains. Time domain methods [45, 47, 46, 83] involve

collection of impulse responses of finite chosen length and arranging them in matrix form,

and then performing singular value decomposition to extract the system matrices. Fre-

quency domain decomposition methods involve singular value decomposition (SVD) of the

spectral density matrices evaluated at the PSD peaks. This reduces the matrix into a set of
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auto-spectral density functions; each corresponding to a single degree of freedom system.

A key feature of these methods is the pre-selection of model order that depicts the size

of the state matrices or the number of identified modes. Application of these methods

for accurate identification of modal parameters becomes difficult in situations when the

input excitation is non-stationary, the structure is highly damped, and the measurements

are noisy. Identification of modal parameters also becomes difficult in presence of closely

spaced modes with high levels of damping in structures having supplemental devices such

as those found with supplemental devices like tuned mass dampers.

Recent research in statistical signal processing has resulted in methods utilizing the

concepts of information theory known as blind source separation (BSS). Unlike traditional

methods, these methods do not require pre-selection of model order and have shown con-

siderable potential in the area of structural system identification. BSS methods seek to

determine the un-mixing matrix (i.e. the inverse of A matrix in Eq. 1.1) using the sta-

tistical information contained in the outputs. Two main tools to perform BSS have been

studied in the literature: independent component analysis (ICA) [44], and second order

blind identification (SOBI) [10]. Of these methods, those employing eigenvalue decomposi-

tion of the second order statistics of the output, known as second order blind identification,

have shown significant promise in ambient system identification.

Ambient system identification with the aid of blind source separation techniques poses

two major challenges. The first one is encountered if the energy content of some of the

high-frequency modes is not large enough to facilitate their successful extraction. Such

conditions are likely to arise in large real life structures, in which the higher modes of

vibration may not have sufficient energy content. This issue is addressed in the proposed

research by extending the basic principles of SOBI for static mixtures using the stationary

wavelet transform (SWT) in order to enhance the separability of sources with low energy,

thereby improving the quality of identification. The second issue is encountered when the
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number of sensors is less than the number of identifiable modes. Physically, such situations

arise in flexible structures that are instrumented with a relatively small number of sensors

due to cost or other reasons. This problem is approached by combining the BSS techniques

with a time-frequency decomposition known as empirical mode decomposition(EMD) in a

hybrid manner. Finally, the hybrid approach is extended to the case of identification of

structures with relatively large amount of damping, such as the case of structures equipped

with tuned mass dampers.

1.1 Aims and Objectives

Having introduced the basic ideas of ambient system identification, blind source separation,

and hybrid time and time-frequency domain methods, the broad-based objectives of the

current research are summarized as follows:

1. Extend the concepts of SOBI to develop a new time-domain blind source separa-

tion method, geared towards the system identification of structures under ambient

excitations.

2. Extend the above time domain method, to improve the separability of sources with

low energy content, using a time-frequency approach.

3. Extend the time domain method for blind identification of full-scale structures for the

under-determined case, that is, when the number of response measurements is less

than the number of desired modes. The key idea is to develop a hybrid approach,

where the output is first decomposed into mono harmonic components by utiliz-

ing empirical mode decomposition, and use these components as initial estimates of

sources within the framework of BSS.
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4. Application of a hybrid approach to identify structures with large amount of damping

in the primary modes. Specifically, structures equipped with tuned mass dampers

will be studied within the context of re-tuning in-service TMDs.

1.2 Organization of the thesis

This thesis contains 7 chapters. The second chapter presents a background on the methods

of system identification, specifically related to modal identification. First, the traditional

modal identification methods are reviewed, followed by the more recent ones which belong

to the family of blind source separation (BSS) methods. During the course of relevant

literature review, the basic demerits of the traditional modal identification methods are

highlighted to illustrate the objectives of the proposed study.

The third chapter presents the theoretical development of a new method called modified

cross-correlation method (MCC). This method extends the concept of SOBI to identify full-

scale structures subjected to ambient excitations. Issues related to estimating damping and

accounting for the measurement noise are addressed in the MCC method. The problem

statement is presented first wherein the general problem of structural system identification

is cast in a BSS framework. The formulation of SOBI and MCC methods is presented

next, followed by the results of the numerical simulation of a simple three degree-of-freedom

mass, spring, and dashpot system. Experimental results for a two-storey building model are

presented next. Finally, the results of identification using the MCC method are presented

for the case of a full-scale tower structure excited by both wind and earthquake forces.

The theoretical development of a new hybrid time and time-frequency source separation

method called wavelet-based modified cross correlation method (WMCC) is introduced in

the fourth chapter. WMCC extends the concept of MCC to improve the separability

of sources with low energy content to identify full-scale structures subjected to ambient
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excitations. The formulation of WMCC method is presented next, followed by the results of

numerical simulation of a simple three degree-of-freedom mass, spring, and dashpot system.

Finally, the results of identification are presented for the case of a real life structure, the

UCLA Factor Building, using ambient vibration data, and also for recorded responses from

the Parkfield earthquake.

A newly developed hybrid time and time-frequency domain blind identification method,

to handle the under-determined blind identification of building structures, is introduced in

the fifth chapter. The under-determined case is encountered when the number of sensors

is less than the number of desired modes. This method is applied to a full-scale structure

example to demonstrate its effectiveness. Key results and discussions are presented next.

The sixth chapter considers an application of the hybrid blind identification methods

to retune an in-service TMD. Tuned mass dampers (TMD) are the oldest and most com-

monly used passive vibration control devices in flexible structures that work primarily by

dissipating the vibrational energy through heat. De-tuning, resulting from several sources

such as the alteration of the structural properties of the primary structure, deterioration of

the TMD, in-correct design forecasts, etc., may lead to a significant deterioration in their

performance. In order to re-tune the TMD, system identification of the primary structure

while the TMD is in-service is often required. Retuning a TMD poses two major diffi-

culties. The first major difficulty arises in the identification of the structure with TMD

and due to relatively large amount of damping and the second one being the identification

of the primary structure from the results of the identified structure with TMD. In this

chapter, a brief idea of re-tuning is first introduced, followed by the details of the newly

proposed identification method, MCC-EMD. The re-tuning algorithms are presented next,

while the details of implementation, key results, and discussion are presented thereafter.

Experimental results for a two-story bench-scale model with a TMD are presented, followed

by important observations.

6



The main conclusions of the thesis are summarized in the seventh chapter along with

the key accomplishments of the current research. Finally, recommendations for future

research that could be possible extensions to this work are presented.
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Chapter 2

Background and Literature Review

In this chapter a brief background of the literature in the area of structural modal iden-

tification is reviewed. First, the traditional methods are presented including the popular

output-only modal identification methods, followed by the more recent ones belonging to

the family of blind source separation (BSS) methods. Relevant literatures are reviewed

and discussed, and the basic demerits of the traditional modal identification methods are

highlighted to illustrate the need for the proposed study.

2.1 A Literature Review of the Traditional Methods

of System Identification

The traditional methods of system identification are a wide class of methods, which were

developed in early 1980′s to address the problem of modal identification. These meth-

ods were mostly used for the identification of structural and mechanical systems with low

damping. Initially, these methods were directed towards identification in noise free envi-

ronments, later on, noise was also incorporated. There is a wealth of literature that exists
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in this area [65]. Many researchers popularly referred system identification for structural

and mechanical systems in 1970s and 1980s by names like modal analysis, modal identi-

fication, experimental modal analysis, operational modal analysis etc. A few extensively

used methods are reviewed next.

Complex exponential (CE) algorithm based on Prony’s method [65] is the first impor-

tant single-input single-output (SISO) parametric modal identification method. Prony’s

method extracts periodic information from a uniformly sampled signal by building a series

of damped complex exponentials, or sinusoids. This allows the estimation of frequency,

amplitude, phase, and damping components of a signal. Extending the concept of Prony’s

method, ibrahim time domain (ITD) method [45] was the first modal identification method

formulated for SISO systems. This method solved for eigenvalues and eigenvectors in one-

step. The first multiple-input multiple-output modal identification method [75], polyref-

erence complex exponential, was developed as an extension of the least squares complex

exponential algorithm. The eigen system realization algorithm (ERA) [47] was developed

based on the general state-space description for linear dynamic systems. A well-known

unified matrix polynomial approach was proposed [3] covering a large number of major al-

gorithms developed in the first two decades of modal identification in a common framework

based on multiple-dimension auto-regression exogenous (ARX) model. Two important

methods, natural excitation (NExT) [46] and stochastic sub-space iteration (SSI) [83, 84]

which are the most popular methods in output only identification, are reviewed in detail

in the following sections.

In the frequency domain, classical methods such as power spectral density peak picking

were developed. However, PSD peak picking technique was found to be inaccurate, espe-

cially in mode shape and damping estimation. A new frequency domain modal identifica-

tion operational technique, called frequency domain decomposition (FDD), was developed

to resolve the difficulties encountered in peak picking, while retaining the advantages of

9



the classical pick picking method [90]. The classical FDD was extended [13] to identify

symmetrical structures with closely-spaced modes. This method was based on singular

value decomposition of spectral density matrix at the PSD peaks to yield auto-spectral

density functions, each of which represents a single degree of freedom system. A method

to estimate damping using the extended frequency domain decomposition was proposed

subsequently [12]. There are a number of other frequency-domain methods in the litera-

ture, and a complete review of these methods is available in standard texts for this purpose

[65].

Recent trends in system identification has witnessed a shift towards time-domain iden-

tification techniques. Time domain methods do not suffer from resolution issues as the

frequency domain methods do. In this context, three most popular methods in structural

identification literature, ERA, SSI and ITD, are reviewed here followed by a brief review

of the FDD.

2.1.1 Eigen-System Realization Algorithm

The eigensystem realization algorithm [ERA] is a time domain technique [47] for modal pa-

rameter identification and model reduction for dynamical systems from input-output data.

The algorithm is a basic extension of the system realization theory. ERA estimates the

system information contained in the mathematical model of the dynamic system expressed

in discrete state space form (see APPENDIX A). The starting point of the ERA is the

collection of impulse response functions. Impulse response is defined as the response of a

structure subjected to unit impulse input. The response of the structure in discrete time

domain to a unit pulse is called pulse response, or markov parameters [48]. The markov

parameters contain system information, and is a function system matrices (APPENDIX

B). The ERA uses the discretized pulse response h to form a matrix known as the Hankel

matrix:
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H (k − 1) =


h (k) h (k + 1) : h (k + c)

h (k + 1) h (k + 2) : h (k + c+ 1)

.. .. : ..

h (k + r) h (k + r + 1) : h (k + c+ r)

 (2.1)

Substituting k = 1 in Eq. 2.1 and replacing the markov parameters (see APPENDIX

A) yields,

H (0) =


CB̄ CĀB̄ .. CĀ

c−1
B̄

CĀB̄ CĀ
2
B̄ .. CĀ

c
B̄

: : : :

CĀ
r−1

B̄ CĀ
r
B̄ .. CĀ

r+c−2
B̄

 = PQ (2.2)

where the matrices P and Q are given by :

P =
[

C CĀ CĀ
2

... ... CĀ
r−1

]T
Q =

[
B̄ ĀB̄ Ā2B̄ ... ... Ac−1B̄

] (2.3)

Performing singular value decomposition of H (0) yields,

H (0) = RΨST (2.4)

Where Ψ is a diagonal matrix with the singular values in the diagonal, and the matrices

R and S are square and unitary. The matrices ΨN ,RN and SN are obtained eliminating

the rows and columns corresponding to small singular values produced by computational

modes. Since Ψ is a diagonal matrix, Eq. 2.4 can be expressed as:

H (0) =
(
RNΨ

1
2
N

)(
Ψ

1
2
NSTN

)
(2.5)
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Using the discrete-time state space form (see APPENDIX A) of the equation and the

Markov parameters, Eq. 2.1 becomes:

H (k − 1) = PĀ
k−1

Q =


C

CĀ

:

CĀ
P−1

 Āk−1
[

Āx(0) Ā2x(0) ....... Ārx(0)
]

(2.6)

Where Ā and C are, respectively, the system and output matrices of a discrete state

space realization of the linear system, and x (0) is the vector of initial conditions of the

structure. From Eq. 2.5:

P = RNΨ
1/2
N

Q = Ψ
1/2
N STN

(2.7)

For k = 2

H (1) = PĀQ (2.8)

Combining Eqs. 2.6, 2.7, and 2.8, the system and the output matrices can be found :

Ā = Ψ
−1/2
N RT

N H (1) SNΨ
−1/2
N

C =
[

I 0
]

RNΨ
−1/2
N

(2.9)

Where I is an identity matrix and 0 is a zero matrix, both of proper dimensions for

the necessary matrix products. The natural frequencies and the mode shapes are obtained

from the Ā and C matrices. The natural frequencies Ω and ζ are obtained obtained from

the eigenvalues Λ of the state matrix Ā, according to [48]:
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Ω = |Λ′|
2π

ζ = −100×real(Λ′)
|Λ′|

(2.10)

where Λ′ = log(Λ)
ts

and Λ′ is the eigenvalue of the continuous time state space matrix A

and ts the sampling rate.

2.1.2 Natural Excitation Technique (NExT)

ERA is a well-established method for lightly damped systems, and is extensively used for

advanced control and identification of civil structures. The method, however, is limited

by the need to obtain free or impulse responses (experimentally, or otherwise) from the

structures, which is not always feasible in civil engineering applications due to size, safety

concerns, and the constant presence of ambient vibration. To overcome this limitation,

a new method [46] demonstrated that, when forced vibration data is available from tests

conducted with certain types of excitation, the cross-correlation functions between the

response measurements and a single reference measurement satisfies the homogeneous dif-

ferential equation of motion of the linear system and, therefore, can be treated as free

responses (h). NExT has been used extensively for numerical and experimental analysis

showing that, even in the case of band-limited ambient vibrations with questionable sta-

tionarity, free responses can be obtained reliably with sufficient frequency content to detect

the dominant modes of vibration.

The equations of motion for an n degree of freedom, time invariant, linear system

described by :

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (2.11)

where M, C, and K matrices are n×n matrices defining the mass, damping, and stiffness

of the structure, x(t) and F(t) are n × 1 stochastic vectors describing the displacement
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and excitation, respectively. Post multiplying Eq. 2.11 by the displacement of any of the

degrees of freedom measured Xi (s) (referred to as the reference signal), and taking the

expected value of each side yields:

MRẍxi
(t, s) + CRẋxi

(t, s) + KRxxi
(t, s) = RFxi

(t, s) (2.12)

Where R (.) denotes the vector of correlation functions and s denotes a different time

instant. For weakly stationary processes, it can be shown that [11]:

Ṙxxi
(τ) = Rẋxi

(τ) = −Rxẋi
(τ) (2.13)

where (τ) = t− s .Assuming that the displacement, velocity and acceleration processes

are weakly stationary and uncorrelated with future disturbances (i.e., RFX (t, s) = 0),and

taking the fourth derivative of Eq. 2.11 we obtain [11]:

MR̈ẍẍi
(τ) + CṘẍẍi

(τ) + KRẍẍi
(τ) = 0 (2.14)

Eq. 2.14 shows that the cross-correlation function of the responses of the structure

with a reference signal satisfies the homogeneous equation of motion and can be treated

as free responses. Once the free responses are obtained, the identification proceeds using

ERA exactly in the same manner described in the previous section.

2.1.3 Stochastic Subspace Iteration Technique

Stochastic Subspace Identification method, developed in the early to mid 1990′s [83, 84],

provided a powerful means of output only system Identification. The two general assump-

tions made in output-only modal analysis are that the underlying physical system behaves

linearly, and is time-invariant. One of the typical parametric model structures to use in
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output-only modal analysis of linear and time-invariant physical systems is the stochastic

state space system.

xt+1 = Axt + wt

yt = Cxt + vt (2.15)

The first part of this model structure is the state equation depicting the model of the

dynamic behavior of the physical system. The second equation is the observation or output

equation, as this equation controls the part of the dynamic system that can be observed in

the output. The measured system response yt is generated by two stochastic processes wt

and vt .These are called the process noise and the measurement noise, respectively. The

process noise is the input that drives the system dynamics whereas the measurement noise

is the direct disturbance added to the system response.

The dynamics of the physical system is modeled by the n × n state matrix A. Given

an n× 1 input vector wt, this matrix transforms the state of the system, described by the

n× 1 state vector xt, to a new state xt+1. The dimension n of the state vector xt is called

the state space dimension. The observable part of the system dynamics is extracted from

the state vector by forward multiplication of the p × n observation matrix C. The p × 1

system response vector yt is a mixture of the observable part of the state and some noise

modeled by the measurement noise vt.

Properties of stochastic state space systems

The state space model according to Eq. 2.15 is only applicable for linear systems that are

not time-varying. However, this is not the only restriction. The only way to obtain an

optimal estimate of a state space model based on measured system response is to ensure

that the system response is a realization of a Gaussian distributed stochastic process with
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zero mean. In other words, in the applied stochastic framework, the system response is

modeled by a stochastic process yt defined as:

E [yt] = 0

E
[
yt+i y

T
i

]
= Λi (2.16)

Since the system response of the linear state space model is a Gaussian stochastic

process it implies that xt,wt and vt all are Gaussian stochastic processes as well. wt and

vt are assumed to be correlated zero-mean Gaussian white noise processes, defined by their

covariance matrices as :

E =

 wt

vt

 [
wT
i+k vTi+k

]]
=

 Q S

ST R

 δ (k) (2.17)

The Gaussian stochastic process describing the state xt is also zero-mean and is com-

pletely described by its covariance function.

E
⌊
xt+ix

T
i

⌋
=
∑
i

(2.18)

The cross covariance matrix between input and output is defined by the relation:

E
⌊
xt+iy

T
i

⌋
= G (2.19)

At this stage, it is useful to define an extended observability matrix Γi, which is exten-

sively used in the linear prediction, and expressed as:
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Γi =



C

CA

−

−

CAi−2

CAi−1


(2.20)

In a similar manner, a reverse extended controllability matrix ∆i is defined as:

∆i =
[

Ai−1G Ai−2G ...... AG G
]

(2.21)

Optimal prediction

One of the most important parts of estimation is the ability to predict the measurements

optimally. An optimal predictor is defined as a predictor that results in a minimum mean

square error between the predicted and measured system response. If the system response

can be predicted optimally, it implies that a model can be estimated in an optimal sense.

The state vector xt completely describes the system dynamics at time t. It is assumed

that the measurements yt are available from some initial time k = 0 to k = t−1. Vectorially,

it can be written as:

yt−1
0 =



y0

y1

−

−

yt−2

yt−1


(2.22)
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In the Gaussian case, the optimal predictor of xt is then given by the conditional mean

according as:

x̂t = E
⌊
xt|yt−1

0

⌋
(2.23)

The difference between x̂t and xt is called the state prediction error γt and is defined

as

γt = x̂t − xt (2.24)

In order to predict the system response a similar conditional mean can be formulated

for yt .

ŷt = E
⌊
xt|yt−1

0

⌋
= Cx̂t (2.25)

The two predictors according to Eq. 2.23 and Eq. 2.25 are related through the so-called

Kalman filter for linear and time-invariant systems [79].

x̂t+1 = Ax̂t + Ktet

et = yt −Cx̂t
(2.26)

The matrix Kt is called the non-steady state Kalman gain and et is called the inno-

vation which is a zero-mean Gaussian white noise process. Defining the non-steady-state

covariance matrix of the predicted state vector x̂t as Pt, the Kalman gain Kt is calculated

from

Kt =
(
G−APTCT

) (
Λ0 −CPTCT

)−1

Pt+1 = APtA
T +

(
G−APtC

T
) (

Λ0 −CPtC
T
)−1 (

G−APtC
T
) (2.27)
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The last of these equations is called the Ricatti equation. The Kalman filter predicts the

state x̂t+1 based on the previous predicated state x̂t and the measurement yt .

The Identification Framework

The fundamental problem to solve in the stochastic subspace identification technique is to

extract the predicted state from the measured data. The state space system in Eq. 2.15 is

considered and conditional expectation on both sides of the equations is taken to yield:

E bxt+1|yt0c = AE
⌊
xt|yt−1

0

⌋
+ E

⌊
wt+1|yt−1

0

⌋
E
⌊
yt|yt−1

0

⌋
= CE

⌊
xt|yt−1

0

⌋
+ E

⌊
vt|yt−1

0

⌋ (2.28)

Assuming that a recursion is started at time step q, and substituting Eq. 2.28 recur-

sively into itself i times, followed by the insertion of Eq. 2.15 in Eq. 2.28, the following set

of equations are obtained :



ŷq

ŷq+1

...

...

ŷq+i−1


=



C

CA
...
...

CAi−1


x̂q ⇔ ôq = Γi x̂q (2.29)

Denoting the left hand side of the Eq. 2.29 as ôq, it can be inferred from the equation

that if Γi and oq can be estimated for several values of q, then the predicted states can be

estimated for several values of q as well.
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At this stage let the following two matrices Oi and Yp be defined as under:

Oi =



ŷi ŷi+1 .. .. ŷi+j−1

ŷi+1 ŷi+2 .. .. ŷi+j

.. .. .. .. ..

.. .. .. .. ..

ŷ2i−1 ŷ2i .. .. ŷ2i+j−2


, Yp =



y0 y1 .. .. yj−1

y1 y2 .. .. yj

.. .. .. .. ..

.. .. .. .. ..

yi−1 y1 .. .. yi+j−2


(2.30)

The index p in Eq. 2.30 signifies that the matrix contains system response of the past

compared to the system response to be predicted. Since the system response is assumed

stationary, Eq. 2.29 can easily be extended to yield

X̂i = Γ−1
i Ôi (2.31)

Where X̂i is a bank of predicted states, defined as: X̂i = [x̂i, x̂i+1, .........., x̂i+j−1]

The matrix Ôi only depends on system response and system response covariance, and

can therefore be estimated directly from the measured system response. In order to es-

timate A and C, it is necessary to estimate the extended observability matrix Γi . The

only input is the matrix Oi, i.e., only information related to the system response. The

underlying system that generates the measured response is unknown, which means that

we do not know the state space dimension of underlying system. The outer dimension of

Oi and therefore also of ΓiX̂i is, ip × j. The inner dimension is exactly the state space

dimension of the underlying system.

Therefore, to find Γi first task is to determine this dimension. This is done by using

singular value decomposition of Oi, pre and post multiplied by the weight matrices W1

and W2, which are user-defined. Taking the SVD of the resulting product yields :
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W1OiW2 =
[

U1 U2

] S1 0

0 0

 VT
1

VT
2


= U1S1V

T
1

= W1ΓiX̂iW2

(2.32)

Assuming that W1 has full rank and that the rank of W2 is equal to the rank of YPW2

the dimension of the inner product ΓiX̂i is equal to the number of non-zero singular values,

i.e. number of diagonal elements of S1 From Eq. 2.32 Γi is given by :

Γi = W−1
1 U1S

1/2
1 T (2.33)

The non singular n × n matrix T represents an arbitrary similarity transform. This

means that the extended observability matrix has been determined, except for an arbitrary

similarity transformation.

2.1.4 Ibrahim Time Domain method (ITD)

The ITD algorithm [45] uses the time response of several outputs in order to find model

parameters. In the standard ITD method, at least 2N response locations need to be

measured to identify a model of order N .

The starting point of this method is the premise that the cross correlation function

of the responses at the ith and jth locations can be represented by the response of the

structure at a location i due to an impulse at location j. This can be expressed as the

product of a constant term modulated by an exponential time function. Expressing the

cross correlation function xij at time k∆t as xk, one can write:

xk = x (k∆t) =
2N∑
r=1

are
Sr(k∆t) (2.34)
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Where Sr = ωrςr + iωr
√

(1− ς2
r )and ωr , ςr are the rth modal natural frequency and

damping ratio respectively. Denoting L+ 2N − 1 as L∗ and 2N − 1 as N∗ and re-writing

Eq. 2.34 for different starting time samples (i.e. shifted for different starting times), gives:

X = AΛ (2.35)

where X, A and Λ are given by the following Equations :

X =


x1 x2 : xL

x2 x3 : xL+1

: : : :

x2N x2N+1 : xL∗

 ; A =


a1 a2 : a2N

a1e
S

1∆t a2e
S

2∆t : a2Ne
S

2N ∆t

: : : :

a1e
S

1(N∗)∆t a2e
S

2(N∗)∆t : a2Ne
S

2N(N∗)∆t

 ;

(2.36)

Λ =


eS1t1 eS1t2 : eS1t

L

eS2t1 eS2t2 : eS2t
L

: : : :

eS2N t1 eS2N t2 : eS2N tL

 (2.37)

Where tk = k∆t, N is the total number of modes considered to be identification and

L is the number of correlation values per row. The model order N is usually not known a

priori but can be increased until the identified parameters converge.

A similar equation can be written by shifting all the discrete response values by ∆t as

follows:

X̂ = ÂΛ (2.38)

Now let us define a system matrix S2N×2N so that

SA = Â (2.39)
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Pre-multiplying Eq. 2.35 by S, gives

SX = SAΛ (2.40)

And inserting definition Eq. 2.39, gives

SX = ÂΛ (2.41)

Finally, taking account of Eq. 2.38 gives :

S2N×2NX2N×2N = X̂2N×2N (2.42)

Eq. 2.42 uses a single-output signal due to a single input (correlation between i and

j ). In order to find a SIMO variant of ITD, it can be noted that the system matrix S is

independent of the location of measurements and thus that equation remains valid for any

SISO combination. Hence, the value of S can be obtained by considering several responses

due to an input and satisfying Eq. 2.42 in a least-square sense. Eq. 2.42 for n responses

due to a single impulse (SIMO) can be written as:

S2N×2N

[
X1 X2 ... Xn

]
=
[

X̂1 X̂2 ... X̂n

]
(2N × Ln) (2N × Ln)

(2.43)

Where Xj is a matrix of correlation expressed between the reference i and an output

j. In more compact form, it can be expressed as:

S(2N×2N) Y(2N×1N) = Ŷ(2N×1N) (2.44)

A least-squares solution of S in Eq. 2.44 can be computed using a singular value

decomposition of S.
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Observing that Eq. 2.39 can be decomposed as:

S
2N×2N



are
Sr0∆t

:

:

are
Sr0∆t


=



are
Sr0∆t

:

:

are
Sr(2N−1)∆t


eSr∆t , r − 1, 2, .....2N (2.45)

the eigenvalues of S can be subtracted from the matrix S itself, to arrive at the standard

eigenvalue problem according to:

[
S− eSr∆tI

]


are
Sr0∆t

:

:

are
Sr(2N−1)∆t

 = 0 (2.46)

Sr can be estimated using Eq. 2.46 from which modal frequencies and damping can be

computed.

2.1.5 Frequency Domain Decomposition method

The underlying concept of the frequency domain decomposition technique is the observa-

tion that the singular value decomposition(SVD) of the spectral density matrix evaluated

at each of the PSD peaks reduces the matrix into a set of auto-spectral density functions;

each corresponding to a single degree of freedom system.

The starting point of this algorithm is the relationship between the unknown inputs

x(t) and the measured responses y(t) in frequency domain, which can be expressed as [11]:

Gyy (jω) = H̄ (jω) Gxx (jω) H (jω)T (2.47)
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where Gxx (jω) is the r × r power spectral density (PSD) matrix of the input, r is the

number of inputs, Gyy (jω) is the m ×m PSD matrix of the responses, m is the number

of responses, H (jω) is the frequency response function of size m × r and H̄ (jω) is the

complex conjugate of the frequency response function.

Using partial expansion technique and by assuming that the structure is lightly damped

Eq. 2.47 can be expressed as [13]:

Gyy (jω) =
∑
k∈ω

dkφkφ
T
k

jω − λk
+
d̄kφ̄kφ̄

T
k

jω − λ̄k
(2.48)

where φk and λk represents the mode shape and the modal participation constants and

dk is another scalar constant.

In the frequency domain decomposition technique, the basic step is the estimation of

the PSD Gyy (jω) observed at discrete frequencies ω = ωi and then decomposing the PSD

matrix using singular value decomposition:

Gyy (jω) = UiSiU
H
i (2.49)

where the matrix Ui is the unitary matrix of singular vectors and Si is a diagonal

matrix of singular values. The mode shapes are estimated from the singular vectors stored

in the Ui matrix and the corresponding singular value is the auto power spectral density

function of the corresponding single degree of freedom system.

This power spectral density function is identified around the peaks by comparing the

mode shape estimate φ̂ with the singular vectors for the frequencies around the peak. If

the singular vector found has a high MAC value then it corresponds to a mode. On other

hand, if none of the singular vectors has a MAC larger than a threshold Ω, the search

for matching parts of the auto spectral density is terminated. For the fully or partially

identified SDOF auto spectral density function, the natural frequency and damping are
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obtained by converting the spectral density function back in the time domain by inverse

FFT.

2.2 Drawbacks of the Traditional methods

• All the time domain modal identification algorithms discussed earlier have a serious

problem in model-order determination. The identification requires pre-selection of

model order, and frequently over determination of model order becomes a problem

in itself to deal with. Spurious modes are generated while extracting the structural

or physical modes. For random response data, the problem becomes more acute.

Use of stability charts and modal assurance criteria to distinguish pure modes from

the noisy ones is an effective measure, but they have shown limited success over the

years.

• The SSI method assumes a zero mean Gaussian white noise input. If the input

contains dominant frequency components in addition to the white noise, then those

frequency components cannot be separated from the eigen frequencies of the system.

• In many cases of identification, it has been observed that almost all of the time

domain modal identification methods fail to identify structures with moderate to high

damping [80]. Literature is replete with instances where most of the aforementioned

methods have consistently failed to identify structures in moderate to high damping

environments with sufficient degree of confidence.

• Most modal identification procedures can be reduced to a set of linear equations,

which are solved using least-squares techniques. Therefore, bias error or variance

error could occur due to noise effects, including measurement noise, leakage, residues,

etc. Engineering practice has shown that very little improvement can be done to
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reduce the error at the expense of heavy computational penalty. Accuracy issues

would be significant where there are many measurements in noisy media, or where

the structures are complex in nature, e.g., structures with supplemental damping

devices like active and tuned mass dampers, and structures containing closely spaced

modes in highly damped environments.

2.3 Newer Trends in System Identification

Recently, research in information theory and signal processing has witnessed tremendous ef-

forts towards developing the theories of blind source separation (BSS) and time-frequency

signal decomposition known as empirical mode decomposition (EMD). BSS involves ex-

tracting individual but physically different sources from output measurements where only

a mixture of the sources is observed. Two main approaches have been explored here in

detail, namely, the independent component analysis (ICA) and second order blind identi-

fication (SOBI).

EMD [43], on the other hand, is a powerful signal processing algorithm, that can de-

compose any given signal into mono-harmonic components even in the presence of non-

stationary environments in an adaptive manner. It has shown significant promise in the

area of output only system identification of structures.

2.3.1 Empirical Mode Decomposition

Empirical mode decomposition [43] is a recently developed signal processing algorithm that

has shown significant promise in the area of output only system identification of structures

in the time-frequency [88, 87] domain.

EMD reduces a signal into intrinsic mode functions (IMFs) that admit a well-behaved
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Hilbert transform [43] (see APPENDIX G). The power of EMD lies in its ability to de-

compose any given signal into IMFs, even in non-stationary environments, in an adaptive

manner, without the need of choosing a predetermined basis. For multi-degree-of-freedom

structures, the IMFs extracted from the free-vibration responses can be regarded as the

modes of vibration [88]. An IMF is defined as a function that satisfies the following condi-

tions: (i) it is mono-component, and (ii) the mean values of the envelopes defined by the

local maxima and the local minima are zero. The procedure of extracting an IMF is called

sifting. Suppose x(t) is the signal to be decomposed. The sifting process is implemented

by identifying local extremum in the data between successive pairs of zero crossings and

connecting all the local maxima by a cubic spline line to create the upper envelope. Local

minima are connected in the same fashion to produce the lower envelope. If their mean is

m1, the difference x(t)−m1 = h1 is the first IMF. Ideally, h1 should satisfy the conditions

necessary to be called an IMF. If it does not satisfy the necessary conditions, then the sift-

ing process is repeated by treating h1 as the original data until the requirements for an IMF

are fulfilled. The original signal is then subtracted from the IMF and the sifting process

is repeated to decompose the data into n IMFs. Although one could extract the natural

frequencies and the corresponding damping estimates directly using this sifting technique

[88], measurements at all the degrees of freedom are required to extract the corresponding

modes.

Mathematically, the procedure can be expressed as:

r̈p(t) =
m∑
j=1

cpj(t) + εp(t) (2.50)

in which cpj(t) for j = 1, 2, ....,m are the m IMFs of the free acceleration response r̈p(t) of

any n−DOF system and εp(t) is the residue.

The sifting process sometimes causes the IMFs to contain more than one frequency

components leading to mode-mixing ([88]; [76]). Mode mixing is avoided by applying
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suitable band pass filters to the signal in the approximate frequency range ωjL < ωj < ωjH

for each natural frequency, determined from the Fourier spectrum of the free acceleration

response r̈p(t). The signal obtained from the jth band-pass filter is then processed through

EMD, to obtain the jth modal response. Repeating the procedure for j = 1, 2, 3......., n, n

modal responses are obtained according to,

r̈p(t) ≈
n∑
j=1

rpj(t) + εp(t) (2.51)

EMD, when used in combination with the HT method, also known as Hilbert-Huang

Transform (HHT), can be used to identify linear Multi-degree-of-freedom (MDOF) struc-

tures under free vibration [88], as well as white noise forced excitation [88]. For free

vibration case, the modal parameters of a structure can be identified by the application

of Hilbert transform to the IMFs to obtain the instantaneous amplitude and phase angle

time histories, followed by a linear least-square procedure to identify the natural frequency

and damping ratio from the instantaneous amplitude and phase angle for each modal re-

sponse. For white noise excitation case, the cross-correlation functions of the structural

responses are calculated, which by virtue of NExT [46] resembles free responses. Once the

cross-correlations are estimated, the natural frequencies and modes are identified by the

application of Hilbert transform as mentioned earlier.

Although estimating natural frequencies and damping is relatively straightforward using

the HHT method, estimating the natural modes is involved. The coordinates of the mode

shapes φpj and φqj of the jth mode, at the floor levels p and q are estimated according to:

|φpj|
|φqj|

= exp
[
A′pj (t0)− A′qj (t0)

]
(2.52)

where A′pj (t0) and A′qj (t0) are, respectively, the magnitudes at the time t = t0 of the

average least-square straight lines for the decaying amplitudes lnApj (t) and lnAqj (t) [88].

A key drawback of this approach is the requirement of measured responses at all floor
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levels. Furthermore, the selection of intermittency criteria poses challenges in estimating

higher modes of vibration.

2.4 Blind Source Separation

The separation of original source waveforms from the sensor signals, without the knowledge

of the system characteristics and the sources, is known as blind source separation (BSS).

BSS is formulated as an inverse problem, where, based on the observed records of sensor

signals in discrete time, from an unknown MIMO (multiple-input/multiple-output) mixing

system, an inverse system is identified in order to estimate the primary source signals.

This estimation is performed based on the output signals only. Instead of estimating the

source signals directly, it is sometimes more convenient to identify the mixing system first

(e.g., especially when system is over complete with the number of observations is less than

the number of source signals) and then estimate source signals implicitly by exploiting

some apriori information about the mixing system and applying a suitable optimization

procedure. The problem of source separation can be expressed briefly as a number of

related BSS problems, which are known in the literature as independent component anal-

ysis (ICA) and its extensions, multidimensional ICA, subband decomposition-ICA, sparse

component analysis, sparse PCA, smooth component analysis, and multichannel blind de-

convolution. For the details of the aforesaid classifications and explanations, readers are

referred elsewhere [49, 22, 19, 44].

For most applications, the sources are related to the outputs by simple linear mixing

models. The principle is illustrated in Fig. 2.1. Depending on the specific applications

[19], the mixing processes of the unknown input sources may have different mathematical

or physical models. One of the main applications of the linear mixing models is the modal

identification of structural systems from ambient vibration data.
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Figure 2.1: Illustration of blind source separation

There are two ways to represent the mixing of sources, expressed by two different mixing

models: the instantaneous mixing model, and the convolved mixing model. The first one

can be expressed by the simple matrix factorization problem in which given the observation

(often called sensor data) matrix, one can write

x (k) = As (k)

ŝ (k) = y (k) = Wx (k)

 (2.53)

A = [aij]n×n is the instantaneous mixing matrix

Wn×n = A−1
n×n

is the un-mixing matrix, which is the pseudo inverse of A

s (k) = {sj (k)} j = 1, 2, ......N sources input to the system

x (k) = {xi (k)} i = 1, 2, ......N sensor signals system output

y (k) = {yj (k)} j = 1, 2, ......N estimated Sources

For convolutive mixtures, Eq. 2.53 becomes,

x (k) =
∑
p

Hp (k)s (k − p)

= [H (z)] s (k)

 k = 1, 2....T (2.54)

Where Hp (k) = bhijp (k)cN×M is the mixing matrix at pthdelay

hijp (k) is the impulse response at time instant k

Eq. 2.53 represents the static mixing problem, which does not explicitly use time

properties. That is, it is not necessary for the sources and the outputs to be a function
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of time. Eq. 2.54 explicitly represents a dynamic problem where the sources and the

outputs have well defined time properties and the co-efficients of the un-mixing system

are essentially the co-efficients of a deconvolution filter (e.g., FIR filter). Some important

acronyms relevant to the subsequent discussions are provided in Table. 2.1.

Table 2.1: Important Acronyms

BSS Blind Source Separation

MCC Modified Cross-Correlation

WMCC Wavelet based modified Cross-Correlation

SOBI Second-Order Blind Identification

ICA Independent Component Analysis

MDOF Multi-Degrees-of-Freedom

MAC Modal Assurance Criterion

PGA Peak Ground Acceleration

ARMA Auto-Regressive-Moving-Average

Modal Identification using Blind Source Separation

Although there is a lot of literature on the blind source separation algorithms, modal iden-

tification using BSS appears to be a relatively less explored area. The modal identification

problem consists of extracting a set of natural frequencies, damping factors, and mode

shapes of a structure based on only the information extracted from the output data. Among

these parameters, mode shapes provide mathematical description of deflection patterns of

vibration when the system vibrates at one of the natural frequencies. From another view-

point, the mode shapes describe the participation of each independent, oscillation in the

output response. The dynamic structural system defined by Eq. 2.11 can be approached
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from both the static and the convolutive viewpoints. The static approach considers the

output as product of the modal state vectors and the exponential decay expressed as under:

x(t) =
n∑
i=1

Ψi exp ((−ξi + jωi) t) (2.55)

This, in matrix form, lends itself into the following statement:

X = ΨQ (2.56)

Figure 2.2: Modal Identification using BSS

Where X ∈ <m×N the trajectory matrix is composed of the sampled components of

x, and Q ∈ <m×N is a matrix of the corresponding modal coordinates and Ψ, the modal

transformation matrix. From the convolutive viewpoint, the system can also be viewed as

a dynamic mixture of the sources, since the output can be expressed as the convolution

product of the external force vector and the impulse response according to Eq. 2.54.

Whereas, there is explicit appearance of the sources in the convolutive approach, the same

for the static counterpart seems conjectural.

Under certain special circumstances [54], the normal modes or the modal coordinates

can be regarded as the most independent sources (termed as virtual sources), thus rendering

the presence or the absence of the external force inconsequential. Thus the modal coordi-

nates Q(t) are a special case of general sources s with time structure, and Ψ the mixing
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matrix H. Furthermore, distinct modal coordinates automatically meet the requirement

of independence as well as uncorrelation of sources in BSS. Most BSS algorithms focus on

finding the demixing matrix W. These algorithms could also be implemented to extract

mode shape information of a vibration system in noisy environments.

Fig. 2.2 shows the schematic illustration of mode extraction process based on BSS. The

signals on the left-hand side are output vibration signals and the signals on the right-hand

side are the separated modes. Thus, the key idea is to appreciate the normal coordinates

of a dynamic system as virtual sources with different spectral contents. Under certain as-

sumptions [54], BSS techniques provide a one-to-one mapping between the mixing matrix

and the vibration modes of the structure, which forms the basis of the modal identification

procedure. The system identification can be carried out by performing experimental mea-

surements on the tested system to obtain time response data at different observable sensor

positions, or by the use of the ambient data and subsequent application of the BSS tech-

niques to the measured time series x(t) to estimate the mixing matrix H and the sources

s(t). The mode shapes are contained in the mixing matrix H. It is then straightforward to

identify the natural frequencies and damping ratios of the corresponding vibration modes

[92]. The natural frequency can be identified either by observation of the cycles in the time

series, or by observing the Fourier spectrum, and the damping can be estimated using the

logarithmic decrement method, or the half-power bandwidth method.

2.4.1 Independent Component Analysis (ICA)

Independent Component Analysis is one of the most popular methods for performing BSS

[49, 22]. ICA assumes that the observed data are linear combinations of statistically inde-

pendent (or as independent as possible) sources. The sources are termed as independent

components, and the ICA basis vectors (i.e., the columns of the mixing matrix A) are the

ICA modes in the present study, which are linearly independent.
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The ICA of a random vector x (k) ∈ <m is obtained by finding a n × m full rank

separating (transformation) matrix W with m ≥ n such that the output signal vector

y (k) = [y1 (k) , ...., ..., ym (k)]T (components) estimated by:

y (k) = Wx (k) (2.57)

are as independent as possible. The independence is measured by an information-

theoretic cost function such as maximization of cumulants [22].

Principles of ICA

ICA is based on the premise of three main principles: statistical independence, non-

Gaussianity, and whitening

• Statistical Independence

For ICA to be implemented, the sources should be physically independent. Physi-

cal independence implies several degrees of statistical independence. For example,

if two sources s1 (t) and s2 (t) are considered then the first implication is that s1 (t)

and s2 (t) are temporally uncorrelated, i.e. 〈s1 (t) s2 (t)〉 = 〈s1 (t)〉 〈s2 (t)〉 where 〈•〉

denotes the time averaging operator. Generally, this is not a strong enough require-

ment to yield a unique solution. For instance, it is easy to check that combinations

{s1 (t) + s2 (t)} and {s1 (t)− s2 (t)} are also uncorrelated while obviously not being

the expected solution. A popular criterion is to additionally force the nullity of the

fourth-order statistics
〈
|s1 (t)|2 |s2 (t)|2

〉
−
〈
|s1 (t)|2

〉 〈
|s2 (t)|2

〉
, an operation which

may be physically understood as searching for sources with uncorrelated variations

of energy. The most important representation of statistical independence of 2 random

variables s1 (t) and s2 (t) is given by the relationship

p (s1 (t) , s2 (t)) = p (s1 (t)) p (s2 (t)) (2.58)
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where p (s1 (t)) denotes the probability density function of the random variable s1 (t).

In other words, signals are independent if their joint density function can be factor-

ized.

• Non-Gaussianity

Independent component analysis prohibits the sources to be Gaussian. This is at-

tributed to the fact that the higher order cumulants are zero for Gaussian distribu-

tions, and this seriously hinders the possibility of using higher order statistics, which

are deemed very essential for the estimation of the independent components. The

central limit theorem is exploited in creating contrast functions e.g., kurtosis and

negentropy. The basic idea of central limit theorem is illustrated in Fig. 2.3. In this

figure it can be observed that if different random variables mutually independent of

each other characterized by different magnitudes of kurtosis are linearly combined,

the outcome is a random variable that tends to be more gaussian than the individual

components. As seen in Fig. 2.3, the random variable produced out of the compo-

nents s1, s2 and s3 has a kurtosis value of 2.83 which is close to the kurtosis of a

Gaussian random variable of value 3. The outcome of using central limit theorem is

that the distribution of a sum of independent random variables tends toward Gaus-

sian. Thus, to extract a source, the key step is to maximize the non-gaussianity of a

linear combination of sensor signals which ensures that an individual source is further

away from a Gaussian distribution compared to the mixture of sources.

• Whitening

As a preprocessing step, it is necessary to whiten the data. Whitening de-correlates

the sensor signals. It is essentially a transformation that renders the covariance

matrix of the signals an identity matrix. Whitening plays an important role in fulfill-

ing the statistical independence condition. Since uncorrelated Gaussian signals are

also independent, satisfying non-Gaussianity and whitening automatically satisfies
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statistical independence.

Ambiguities of ICA

Solving the ICA problem uniquely is possible within two fundamental indeterminacies

relating to the scaling factor, and the labelling of the sources:

• Can’t determine the variances (energies) of the IC’s

Since both s and A are unknowns, any scalar factor of s in the equation x (k) = As (k)

can always be canceled by multiplying the corresponding column of A by it. Hence,
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Figure 2.3: Illustration of Central Limit theorem and Gaussianity
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the only possibility of taking care of this ambiguity is by fixing the magnitudes of

IC’s assuming unit variance: E {s2
i } = 1.The ambiguity of sign however still remains.

• Can’t determine the order of the IC’s

The order of the ICs can be freely changed, because both s and A are unknown. So

any independent component can be labeled as the first one.

The ICs of the vector of sensor signals x (k) ∈ <m is obtained by estimating the

demixing matrix W and estimated sources y (k) ∈ <m.

A wide class of algorithms for ICA can be expressed in general form [19]:

W (l + 1)−W (l) = ηF (y) W (l) (2.59)

where y (k) = W (l) x (k) and the matrix F (y) take different forms, for example F (y) =

Λn−f (y) gT (y) with suitably chosen nonlinearities f (y) = [f (y1) , .., .., f (yn)] and g (y) =

[g (y1) , .., .., g (yn)] [24, 25, 21, 20]. Assuming a prior knowledge of the source distributions

pi (yi), W can be estimated by using the principle of maximum likelihood, where the

likelihood function is given by :

J (y,W) = −1

2
log
(∣∣det

(
WWT

)∣∣)− n∑
i=1

E {log (pi (yi))} (2.60)

The traditional maximum likelihood ICA method [44] uses stochastic gradient methods

of optimization in which the term E {log (pi (yi))} is replaced by E
{
f (y) yT

}
.

Using natural gradient descent to increase likelihood, one obtains:

W(l + 1) = η
⌊
I− E

{
f (y) yT

}⌋
W(l) (2.61)

Where f (y) = [f (y1) , ..., ....., f (yn)] is an entry-wise non-linear score function [24, 20,

44, 16]defined by:
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Fi (yi) =
pi (yi)

pi (yi)
= −d log (pi (yi))

d (yi)
(2.62)

For signals corrupted by additive Gaussian noise, higher order matrix cumulants can

be used [24]. Cichocki and Amari [4] suggested the use of the following cost function in

which the term E {log (pi (yi))} is replaced by the term 1
1+q

N∑
i=1

|C1+q (yi)|

J (y,W) = −1

2
log
(∣∣det

(
WWT

)∣∣)− 1

1 + q

N∑
i=1

|C1+q (yi)| (2.63)

Where Cq (yi) denotes the q-order cumulants of the signal yi. The readers are referred

to [24, 16] and [4] for the details. The first term in Eq. 2.63 ensures that the determinant

of the global matrix will not approach zero. The second term forces the output signals

to be as far as possible from Gaussianity, since the higher order cumulants are a natural

measure of Non-Gaussianity. It can be shown that for such a cost function, one can derive

the following equivariant and robust with respect to Gaussian noise [19, 20, 21]:

W (l + 1)−W (l) = η bI−C1,q (y,y) S1+q (y)cW (l) (2.64)

Where S1+q (y) = sign (diag (C1,q (y,y))) and F (y) = I−C1,q (y,y) S1+q (y).

2.4.2 Second Order Blind Identification (SOBI)

SOBI [10] family of methods use the time information contained in the signals as opposed

to treating them as mere random variables as ICA does. If the ICs are time signals,

they usually contain much better defined structure than ordinary random variables. For

example, the auto-covariances for several time lags have well-defined statistics. The SOBI

family of methods do not make any prior assumptions of statistical independence or non-

gaussianity of sources. They rely purely on second-order temporal statistics. The basic
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assumptions include full rank of the matrix A, existence of autocorrelation function of the

sources, spatial non-correlation of the sources, stationarity of the sources, and the presence

of independent noises. SOBI is based on the premise of simultaneous diagonalization of

two covariance matrices R̂x (0) and R̂x (p), defined by the relations as under:

Rs (p) = E
{
s (k) sT (k − p)

}
Rx (0) = E

{
x (k) xT (k)

}
= ARs (0) AT

Rx (p) = E
{
x (k) xT (k − p)

}
 (2.65)

for some non-zero time-lag p. The simultaneous diagonalization is performed in three

basic steps: whitening, orthogonalization, unitary transformation. Whitening is a linear

transformation in which R̂x (0) =
(

1/N

)( N∑
K=1

x (k) xT (k)

)
is first diagonalized using sin-

gular value decomposition that is accomplished as R̂x (0) = VxΛxVT
x . Then, the standard

whitening is realized by a linear transformation expressed as under:

x̄ (k) = Qx (k) = Λ
− 1

2
x VT

x x (k) (2.66)

Because of whitening, Rx (p) becomes Rx̄ (p) which is given by the equation underneath:

Rx̄ (p) =
1

N

(
N∑
k=1

x̄(k)x̄T (k)

)
= QRx (p) QT (2.67)

The second step, called orthogonal transformation, is applied to diagonalize the matrix

R̂x (p). The eigen value decomposition of R̂x̄ (p) has the form R̂x̄ (p) = Vx̄Λx̄VT
x̄ . Using

Eqs. 2.65 and 2.67, one obtains:

R̂x̄ (p) = QHR̂s (p) HTQT (2.68)

If the diagonal matrix Λx̄ has distinct eigen values then the mixing matrix can be

estimated uniquely by the following equation:
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Ĥ = Q−1Vx̄ = Vx̄Λ
1/2
x̄ Vx̄ (2.69)

Simultaneous diagonalization of two symmetric matrices can be carried out without

going through the last two steps of the procedure, by converting the problem to the gen-

eralized eigenvalue decomposition.

Problems with Modal Identification using Blind Source Separation

It has been observed that ICA, one of the potential methods to perform BSS, fails to

perform adequately in the presence of even relatively small amounts of damping [54]. In

the present context, a value of structural damping in the range of 0.5%− 2% is considered

low damping. Damping in the range 2.0% − 5.0% is considered moderate and values

greater than 5% is considered high. SOBI holds lot of promise in modal identification in

presence of moderate to high damping. The performance of SOBI to identify small systems

has been clearly demonstrated [54, 92]. However, even the traditional SOBI method has

performance issues related to ambient system identification of structures. The aim of the

present research is to address these shortcomings of SOBI in a systematic manner, and

expand the range of applicability of the second order blind source separation methods.

The key shortcomings of SOBI addressed in this dissertation can be summarized as under:

1. The state of the art ambient system identification methods involving the use of SOBI

utilize the response measurements directly. Hence, damping cannot be estimated

using the SOBI method as it is. This is due to the fact that the responses under

random excitation grow and decay in the same manner as the input and thus free

decay cannot be observed unlike impulse responses. This issue is addressed through

MCC method in chapter 3, by considering the correlation of response measurements

using the concept of NExT [46], and utilizing the correlation of responses to perform

blind source separation in the subsequent step.

41



2. A key shortcoming of SOBI appears when the response measurements contain spa-

tially un-correlated noise which is usually modeled as gaussian and white . The

measurement noise needs to be treated separately using prior knowledge of noise co-

variances. If response covariances are used instead of the noisy measurements directly,

this problem is solved automatically. This issue is addressed within the framework

of the MCC method discussed in detail in chapter 3.

3. The current form of the SOBI method works well in simulation studies where all the

modes have sufficient energy content. This condition is hardly satisfied in large scale

real life structures, in which the higher modes of vibration may not have sufficiently

high energy contents. The issue is addressed in chapter 4 by extending the basic

principles of SOBI for the static mixtures using the stationary wavelet transform

(SWT) in order to enhance the separability of sources with low energy, thereby

improving the quality of identification by making them more sparse [56].

4. Presently, SOBI is not equipped to handle ambient system identification of structures

when the number of sensors is less than the number of identifiable modes. Physically,

such situations arise in flexible structures that are instrumented with a relatively

small number of sensors due to cost or other reasons. This problem is addressed

in chapter 5 by developing a hybrid time and time-frequency approach, where the

output is first decomposed into IMFs by utilizing EMD, and using the IMFs as initial

estimates of sources to form an iterative approach within the framework of the MCC

method.

5. Due to the response of closely spaced modes and relatively high damping, SOBI

methods are not able to handle ambient system identification of structures equipped

with tuned mass damper (TMDs). Chapter 6 presents the development of a novel

hybrid time and time-frequency domain blind source separation algorithm, utilizing

EMD, to identify structures equipped with tuned mass dampers(TMDs). The ob-
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jective here is to extend the identification method to re-tune TMDs under ambient

excitations, a problem that has important practical significance.

2.5 Summary

This chapter presents a survey of key methods of system identification, the traditional

ones followed by the more recent ones. The literature on traditional modal identification

described the detailed development of the subject and many limitations associated with it.

The main problems are: i) Distinguishing pure modes from spurious modes arising due to

arbitrary choice of model orders ii) lack of robustness in the presence of noise iii) difficulty

in estimating modes accurately in high damping environments. SOBI methods addresses

these basic drawbacks and appears to address the problem of modal identification in noisy

and highly damped environments in a robust manner. However, SOBI suffers from short-

comings that don’t allow accurate ambient system identification of structures under a wide

spectrum of practical situations like presence of measurement noise, insufficiency in energy

content of higher vibrating modes of large flexible structures, unavailability of complete

measurements, presence of supplemental damping devices, etc. With this, the focus of the

present work is firmly established. The present work concentrates on the reformulation of

BSS methods in the time and time-frequency domains in order to identify realistic full-scale

structures under ambient excitations using full and partial response measurements.
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Chapter 3

Modified Cross Correlation Method

This chapter presents the theoretical development of a new method called the modified

cross-correlation method (MCC). MCC method extends the concept of SOBI to identify

full-scale structures subjected to ambient excitations. The chapter is organized as follows.

The problem statement is presented first wherein the general problem of structural system

identification is cast in a BSS framework. The formulation of SOBI and MCC methods

is presented next, followed by the results of the numerical simulation of a simple three

degree-of-freedom mass, spring, and dashpot system. Experimental results for a two-

storey building model are presented next. Finally, the results of identification using the

MCC method are presented for the case of a full-scale tower structure excited by both

wind and earthquake forces, followed by a summary.

3.1 Motivation

The performance of SOBI to identify small systems in the presence of moderate to high

damping has been clearly demonstrated [54, 92]. But, SOBI suffers from performance

issues related to ambient system identification of full-scale structures.
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Modal identification with the aid of SOBI requires the use of response measurements

directly. Hence, damping cannot be estimated from the recovered sources directly. Once the

sources are recovered, damping is estimated aposteriori, utilizing the concepts of NExT [46]

to obtain the free responses, and fitting single degree of freedom systems using least squares

procedures. Estimation of damping in the aforementioned manner, is prone to errors for

noisy measured responses. Furthermore, the measurement noise is not accounted within the

framework of the method. Noisy responses are prone to source separability issues, and the

recovered sources do not represent structural modes when the signal to noise ratio is low.

Even an extension of SOBI method to accommodate noise requires the prior knowledge

of noise covariances, a condition difficult to fulfill for practical structures. Moreover, the

problem of structural system identification under general wind or seismic loadings has not

been examined in the literature so that it can be solved within the framework of SOBI.

The aforementioned practical problems motivates the need for a method which extends

the concepts of SOBI to identify damping directly from the recovered sources, and also to

address the problem of noisy measurements. This is accomplished by treating the auto and

cross-correlation of the measurements as the outputs of the system, rather than the actual

measurements, using the concepts of the NExT algorithm presented in the literature [46].

This method is termed as the modified cross-correlation method (MCC).

3.2 Problem Formulation

In order to perform modal identification for structural systems under general excitation

cases, the dynamic equations of motion first needs to be cast in the form of Eq. 2.53. In

this context, it is necessary to relate the term source to the characteristic modes of the

system. Consider again, the equation of motion for a multi-degrees-of-freedom structure

under the action of an excitation force vector F(t) given by Eq. 2.11, where x(t) is a vector
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of displacement coordinates at the degrees of freedom. Under special cases of the excitation

vector F(t), such as when F(t) = 0, which corresponds to the case of free vibration, the

solution to Eq. 2.11 can be written in terms of an expansion of vibration modes. In matrix

form,

x = Ψq (3.1)

where x ∈ <n×N is the trajectory matrix composed of the sampled components of x, q ∈

<n×N is a matrix of the corresponding modal coordinates, and Ψ the modal transformation

matrix. Note the similarity between Eq. 3.1 and Eq. 2.53. Under special circumstances

[54], the normal modes or the modal coordinates can be regarded as the most independent

sources (termed as virtual sources), thus rendering the presence or the absence of the

external force inconsequential. Thus, the modal coordinates q are a special case of general

sources s with time structure. Furthermore, distinct modal coordinates automatically meet

the requirement of independence as well as non-correlation of sources in BSS, and form the

basis of the modal identification procedure.

For the case of excitations, when F(t) corresponds to uncorrelated white noise, it is

possible to write the correlation of responses in Eq. 2.11 in the form of Eq. 3.1 [46]. This

is accomplished as follows. The cross-correlation between the locations denoted by i and

j due to an input at k is given by

Rijk(T ) = E[xik(t+ T )xjk(t)] (3.2)

Assuming that the disturbance is a white noise process,

E[ fk(τ1)fk(τ2)] = αkδ(τ1 − τ2) (3.3)

where αk is a constant and δ is the Dirac delta function. Under these conditions,

46



Rijk(T ) =
s∑
r=1

Are
−ζrωnrT [αr cosωdrT + βr sinωdrT ] (3.4)

where

Ar =
αkφriφkr
mrωdr

αr =
n∑
s=1

φsjφks
msωds

∞∫
0

e−(ζrωnr+ζsωns)λ sinωdrλ sinωdsλ dλ

βr =
n∑
s=1

φsjφks
msωds

∞∫
0

e−(ζrωnr+ζsωns)λ cosωdrλ sinωdsλ dλ (3.5)

The quantity λ = t − τ and ωd represents the damped natural frequency. For the

rth mode, ωdr = ωnr
√

1− ζ2
r where ωnr, ζr are the undamped natural frequency and the

critical damping of the rth mode, respectively. Making the substitution

sr = e−ζrωnrT [αr cosωdrT + βr sinωdrT ] (3.6)

In matrix form, Eq. 3.4 becomes

r(t) = R(T ) = Arsr(t) (3.7)

In the above form, it is easy to recognize the similarity between Eq. 3.1 and Eq. 3.7,

provided the correlation of the responses contained in R is used in lieu of x. Therefore,

under the cases of free vibration and broadband white excitations, the problem of modal

identification can be cast into the framework of BSS, wherein the modes represent the

independent sources and the modal coordinates are contained in the mixing matrix. An

example of the auto and cross correlations of the floor accelerations for 3−DOF numerical

model (see section 3.4 for relevant details) is shown in Fig. 3.1.
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Figure 3.1: Auto and cross-correlation of the floor accelerations

3.3 Solution using Modified Cross-Correlation Method

Most popular BSS tools (perhaps, the only available class of methods for performing BSS),

are ICA and SOBI. The details of ICA are discussed in chapter 2 and hence not repeated

here. Since the MCC method is based on SOBI class of methods, the formulation is

developed only for the MCC method, and key differences between SOBI and MCC methods

are discussed within.
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3.3.1 General Principles of MCC Method

SOBI methods utilize the time structure of the signals as opposed to treating them as mere

random variables. For example, the auto-covariances for several time lags have well defined

statistics. The SOBI family of methods do not make any prior assumptions of statistical

independence or non-Gaussianity of sources; they rely purely on second order temporal

statistics. The basic assumptions include full rank of the matrix A, existence and spatial

non-correlation of the stationary sources, and the presence of independent random noise.

The proposed MCC method deviates from SOBI in two key respects: (i) whereas SOBI

method operates directly on the responses (measurements) x(t), the proposed MCC method

operates on the correlation of the responses (vector, r(t)) calculated at all time lags; (ii)

whereas the diagonalization procedure in SOBI involves several time-lagged covariance

matrices of the responses, covariance matrices obtained from multiple non-overlapping

windows are used in the MCC method. This process is further illustrated in the numerical

example following the formulation section.

In the presence of noise, the correlation of the measurements in Eq. 2.11 can be written

as:

Rijk(T ) = E[(xik(t+ T ) + ni) (xjk(t) + nj)] (3.8)

where, ni, nj represent noise at the ith and jth locations. Assuming that the noise is

white, and the noise and responses are uncorrelated, then Eq. 3.8 is mathematically the

same as Eq. 3.2. Hence, the problem of BSS can be treated as one of linear mixtures in Eq.

2.53 without the presence of additive noise. This means that the noise variance need not

be known a priori, which is an advantage in using the MCC method. In contrast, the noise

statistics are required in the traditional SOBI method (For details refer to APPENDIX

C).
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The next step is the simultaneous diagonalization of two covariance matrices R̂r(0) and

R̂r(p) evaluated at the time-lag zero and p, defined as,

R̂r(0) = E
{
r(k)rT (k)

}
= ArRs(0)AT

r (3.9)

R̂r(p) = E
{
r(k)rT (k − p)

}
= ArRs(p)A

T
r

where,

Rs(p) = E
{
sr(k)sTr (k − p)

}
(3.10)

The simultaneous diagonalization is performed using the following three basic steps:

whitening, orthogonalization and unitary transformation. Whitening is a linear transfor-

mation in which, R̂r(0) = (1/N)(
N∑
K=1

r(k)rT (k)) is first diagonalized using singular value

decomposition, R̂r(0) = VrΛrV
T
r where Vr are the eigenvectors of the co-variance matrix

of r. Then, the standard whitening is realized by a linear transformation expressed as,

r̄(k) = Qr(k) = Λ
− 1

2
r VT

r r(k) (3.11)

Because of whitening, R̂r(p) becomes Rr̄(p), which is given by the equation,

Rr̄(p) = (1/N)(
N∑
K=1

r̄(k)r̄T (k − p)) = QRr(p)Q
T (3.12)

The second step, called orthogonalization, is applied to diagonalize the matrix R̂r̄(p)

whose eigen-value decomposition is of the form, R̂r̄(p) = Vr̄Λr̄V
T
r̄ . Using the Eq. 3.12

and Eq. 3.9,

R̂r̄(p) = QArRs(p)A
T
r QT (3.13)

If the diagonal matrix Λr̄ has distinct eigen-values, then the mixing matrix can be

estimated uniquely by the equation,
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Ĥ = Q−1Vr̄ = VrΛ
1/2
r Vr̄ (3.14)

where, Ĥ is the estimated mixing matrix, Ar. It is easy to see that the product QAr

is a unitary matrix since the sources are assumed to be uncorrelated and scaled to have a

unit variance. The problem now becomes one of unitary diagonalization of the correlation

matrix R̂r̄(p) at one or several non-zero time lags.

Eq. 3.13 is a key result, which states that the whitened matrix R̂r̄(p) at any non-zero

time lag p is diagonalized by the unitary matrix QAr. Since Rs(p) is a diagonal matrix

(the sources are assumed to be mutually uncorrelated), the problem now becomes one of

diagonalizing the matrix R̂r̄(p) resulting in the unitary matrix, QAr. The existence of the

unitary matrix for any time lag p is guaranteed by Eq. 3.13, and the determination of the

unitary matrix is carried out using a numerical procedure.

3.3.2 Joint Diagonalization for p Lags and L Time Windows

As seen in Eq. 3.13, the problem of finding Ar is solved by unitarily diagonalizing R̂r̄(p).

Due to estimation errors, finding an exact diagonalizing unitary matrix may not be possible

and estimating QAr is possible only in an approximate sense. Another issue is that the

information of the proper choice of the lag parameter p is not available a priori. Hence, in

this study, several values of time lags, p = 1, 2, · · · , l are chosen, and the matrices R̂r̄(p)

are diagonalized for L non-overlapping windows such that after h iterations the sum of the

off-diagonal terms for all the time lags are minimum in a norm sense. In other words, the

set of L co-variance matrices to be jointly diagonalized (APPENDIX E) appear as:
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〈
R̂r̄(p)

〉
=




. · · ·
...

. . .

. . .


1


. · · ·
...

. . .

. . .


2

. . . . . .


. · · ·
...

. . .

. . .


L


Denoting V = QAr, Dp = VT R̂r̄(p)V, we can write the problem statement mathe-

matically as finding the minimum of the performance index J given by,

J(V, p) =
∑
L

∑
1≤i 6=j≤m

∣∣Dp
ij

∣∣2 (3.15)

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said

to be an approximate joint diagonalizer. The joint-approximate diagonalization technique

[10] is utilized to approximately diagonalize the L windowed non-overlapping matrices.

Prior to the diagonalization process, the covariance matrices are symmetrized according to

R̂r̄(p) = 1
2

(
R̂r̄(p) + R̂T

r̄ (p)
)

[7].

The diagonalization is performed for several time lags p, and the non-stationary aspect

of the sources is addressed by partitioning the pre-whitened data into L non-overlapping

blocks. The partitioning procedure is illustrated in Fig. 3.2 by considering the responses of

the 3−DOF system (see Section 3.4 for details). The shifted covariance matrices are then

estimated in each window and the covariance matrices are stacked column-wise for each

lag and jointly diagonalized for i = 1, 2, ...., p lags. The selection of p and L is problem

dependent, the details of which are discussed in the next section, and the computations

are performed in MATLAB (The MathWorksR©).

A summary of the key steps involved in the MCC method are summarized below.

1. Calculate the correlations of the responses to obtain the vector r
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Figure 3.2: Windowing procedure for the whitened responses

2. Obtain the whitened vector r̄(k) = Qr(k)

3. Divide r̄(k) into L non-overlapping blocks ( Fig. 3.2) and estimate the set of covari-

ance matrices R̂r̄(Ti, p) for i = 1, · · · , L∀p

4. Find an unitary matrix that approximately diagonalizes the set of L matrices at each

lag, p, V∀
〈
R̂r̄(p)

〉
using the criterion shown in Eq. 3.15
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5. The mixing matrix is computed as Ĥ = Q−1V

The above procedure can be extended to take multiple lags into account by first calcu-

lating the average co-variance matrix R̂r̄ for several non-zero lags p, and then utilize this

averaged covariance matrix for L non-overlapping windows to perform the approximate

diagonalization. The resulting matrix can be viewed as an averaged covariance matrix and

the process of diagonalization then proceeds exactly as outlined earlier. A summary of the

results is explained next.

3.4 Numerical Study

3.4.1 Structural model and simulation parameters

Numerical simulations are carried out on a simple three degree-of-freedom (3DOF) mass,

spring, and dashpot system, shown in Fig. 3.3. For convenience in studying the effect

of damping, the damping is assumed to be mass proportional. The state equations (see

APPENDIX A for details) for this system subjected to an external excitation vector w

can be written as:

ẋ = Ax + E w

y = C̃x (3.16)
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Figure 3.3: 3−DOF model

Here, the vector x is a vector of states, and the vector y represents the output vector,

which is governed by the C̃ matrix. The system matrix A, and the excitation matrix E

are given by :

A =

 [0]3×3 [I]3×3

−M−1K −M−1C


E =

[
0 0 0 − 1

m
− 1
m
− 1
m

]T
(3.17)

The system matrices M, C, K, are written as under :

M =


m 0 0

0 m 0

0 0 m

 ; C =


c 0 0

0 c 0

0 0 c

 ; K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 (3.18)

where, m represents the mass at each floor level which is 10 kg, c is the damping

coefficient, and k1, k2, and k3 correspond to the linear stiffness at each degree of freedom.
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Constant stiffness of 2 kN/m is used for the springs, and the mass-proportional form

for damping coefficient, c = αm is used, where, α = 0.01η. The system is simulated

using stationary and non-stationary gaussian white noise excitation of zero mean and

unit variance sampled at 100 Hz. The responses are obtained by solving the Eq. 3.16

in time domain by numerical integration at each time step using runge-kutta 4th order

solver ODE−45 in MATLAB. The natural frequencies of the system are 1, 2.8 and 4.05 Hz

respectively. The variable η is used to vary the level of damping to study the performance

of the BSS methods. The correlation between the vibration modes and BSS modes is

performed using the modal assurance criterion (MAC) [65]. MAC values range between 0

and 1, a value of 1 meaning a perfect correlation. MAC is defined as:

MACi =
(ψTi ψ̄i)

2

(ψTi ψi)(ψ̄
T
i ψ̄i)

(3.19)

Here, ψi and ψ̄i represent the ith theoretical and the estimated mode shape vectors

respectively. The effect of increasing the damping parameter η is studied first, and the

results are presented in Table 3.1. The results of ICA, SOBI and MCC methods are

presented along with the Stochastic Sub-space Iteration [83] method. SSI is included in

this study as a point of reference for other BSS methods, as SSI has been used extensively

in the structural system identification literature. The details of SSI have been documented

in the previous chapter, and not repeated here for the sake of brevity.

3.4.2 Results

The effect of damping is achieved by gradually increasing the value of η from 10 to 165

which corresponds to a range of 0.8 %-13% critical damping in the first mode. From the

results in Table 3.1, it is clear that ICA can identify structures only for small levels of

damping. MAC values begin to deteriorate beyond η = 18, which corresponds to 1.4 %

56



critical damping in the first mode. SOBI identifies the structural model relatively well

compared to ICA and outperforms both ICA and SSI in terms of MAC values. The effect

of damping on the deterioration of the performance of ICA has also been observed by other

researchers [54]. The MCC method performs relatively better, especially at higher values

of damping. These results are clearly evident in Fig. 3.4, where the lowest MAC value

(MAC3, which is the least amongst the three MACs) is shown for all the methods as a

function of η.

The results in Table 3.2 correspond to the case when an amplitude modulating function

of the type e−λt(λ = 0.5 is used in this study) is applied to a Gaussian white noise.

The effect of non-stationarity is clearly evident in the results of the SOBI method, which

performs poorly at higher values of η compared to MCC. The results of SSI and SOBI

methods are comparable. From these results, it is clear that considering several time-

lagged windows has a significant effect on the identification results, especially for the case

of non-stationary sources.

3.4.3 Effect of p and L

In order to study the effect of the time lag p and the number of time-windows L, simulations

are carried out for p ranging from 1-100 for the 3DOF system described in the previous

section. The effect of non-stationarity of the sources is analyzed by dividing r̄(k) into

several time blocks, ranging from a single window (L = 1) to L = 50. The correlations

of the floor acceleration responses are shown in Fig. 3.1. The corresponding whitened

quantities are partitioned into L non-overlapping windows for an arbitrary value of lag p

(whitened responses are shown in Fig. 3.2) and the covariance matrices are calculated.
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Table 3.1: Comparison of ICA, SOBI and SSI methods for various η

η Mac1 Mac2 Mac3 Mac1 Mac2 Mac3 Mac1 Mac2 Mac3 Mac1 Mac2 Mac3

− − ICA − − SOBI − − SSI − − MCC −

10 1 1 1 1 1 1 1 1 1 1 1 1

15 1 1 0.99 1 1 1 1 1 1 1 1 1

18 0.99 0.77 0.64 1 1 1 1 1 0.99 1 1 1

20 0.99 0.99 0.99 0.99 0.98 0.98 1 1 1

30 0.99 0.99 0.99 0.99 0.97 0.97 1 1 1

50 0.99 0.99 0.99 0.94 0.92 0.91 1 1 1

100 0.99 0.99 0.99 0.9 0.82 0.8 1 1 1

150 0.98 0.98 0.97 0.86 0.74 0.72 1 0.99 0.99

165 0.97 0.96 0.95 0.81 0.7 0.67 0.99 0.99 0.98
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Figure 3.4: Effect of damping on identification
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Table 3.2: Comparison of MCC, SOBI and SSI methods for the case of non-stationary

white noise

η Mac1 Mac2 Mac3 Mac1 Mac2 Mac3 Mac1 Mac2 Mac3

− − SOBI − − SSI − − MCC −

10 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1

18 1 1 0.98 0.99 0.98 0.99 1 1 1

20 0.99 0.96 0.94 0.96 0.94 0.97 1 1 1

30 0.98 0.92 0.89 0.91 0.89 0.90 1 1 1

50 0.98 0.89 0.81 0.87 0.82 0.83 0.99 0.99 1

100 0.91 0.86 0.76 0.83 0.78 0.72 0.99 0.99 1

150 0.89 0.81 0.71 0.8 0.7 0.62 0.99 0.99 1

165 0.86 0.75 0.65 0.7 0.57 0.6 0.99 0.99 1

The results of the effect of the time lag p and the number of time-windows L are displayed

in Fig. 3.5. From the results in Fig. 3.5 it is clear that accounting for the non-stationary

characteristics of the sources by using multiple windows achieves better performance, as

indicated by the square root of the sum of squares of the off-diagonal terms, than the

case when a single window is used to calculate the covariance matrix for several time lags.

However, from the results presented here, it is safe to conclude that the optimal values of

p and L are problem dependent. Specifically, since the total length of the signal was fixed,

the performance of the algorithm is dependent not only on the number of windows, but

also on the sample length in each window. For the ensuing experimental study, and for

the numerical simulations on a full-scale tower structure (discussed after the experimental

results), p = 50 and L = 20 are used. It is worth noting that the averaged co-variance
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matrices within each window yielded similar results to the case when a single lag was used.
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Figure 3.5: Effect of window and number of lags on the joint diagonalization for non-
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3.5 Experimental Study

3.5.1 Experimental Model

In order to demonstrate the practical application of this method, an experiment is con-

ducted to identify the translational frequencies and modes of a two-story model shown in

Fig. 3.6. The model consists of two steel plates of dimensions 30× 30× 1.9 cm to serve as

floor masses, four 1.25 cm aluminum equal angles to serve as columns with a total height

140 cm and 0.16 cm thick and continuous between both the floors. The top story is braced

in one direction using aluminum bars of dimensions 0.3 × 0.95 × 1.25 cm. The model is

instrumented at both the floor levels, in both the directions, using four accelerometers.
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The structure is subjected to impact excitation using a rubber mallet, and the acceleration

data is collected using DSPACE1104 DAQ and control board. The sampling frequency is

set at 100 Hz.

Floor Mass

Aluminum
Columns (4)

Figure 3.6: Experimental model

3.5.2 Results

The power spectral density plot of the recorded response of the second floor is shown in

Fig. 3.7. The recorded acceleration responses are processed using both MCC method and

SSI method without performing any post-processing on the data (such as de-noising, etc.).

The results of the identification are presented in Table 3.3. The MAC numbers comparing

SSI and MCC methods show that the quality of identification is comparable in both these
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methods, and the identified frequencies correspond well with the peaks in the PSD estimate

shown in Fig. 3.7. This shows that the MCC method is well equipped to handle practical

measurement data as well, at least for the case of impact excitation considered in this

paper. A detailed simulation study is performed next using a realistic structural model

excited by synthetic wind and earthquake time histories.

Table 3.3: System-identification of the experimental model

Mode # Identified Identified Modal MAC

Frequency(Hz) Frequency(Hz) Amplitude (SSI-MCC)

MCC SSI Coherence (SSI)

1 1.37 1.41 0.96 0.96

2 1.46 1.41 0.98 0.97

3 4.74 4.75 0.99 0.99

4 32.16 32.17 1 0.99

3.6 Full-Scale Simulation Study

3.6.1 The Tower model

A full-scale tower structure is considered next. The model of this structure is based on

an actual structure (name withheld) located in Toronto, Canada, and consists of 13 floors

plus the roof, with a total height of 40 m. The structural system comprises of steel frames,

composite steel decks, concrete floor and roof system. The model was produced using

the commercially available finite-element program, SAP2000 (CSI, Berkeley 2008). The

geometry, materials, and sections are determined from the structural and architectural

design drawings. The model (Fig. 3.8) comprises of 1208 joints and 2386 stiffness degrees
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of freedom (DOF). 1% critical damping is assumed for the first two modes, and the form

of the damping matrix is assumed to be of Rayleigh type.

In order to conduct the identification study, the number of DOF is limited to the

DOF corresponding to the center of mass of all the floor levels, using the rigid diaphragm

assumption, resulting in a total of 42 DOF. This model was further reduced to 18 DOF

using the system equivalent reduction expansion process [73]. In order to satisfy the full

rank condition for the mixing matrix, the number of sensors need to be equal to, or greater

than the number of sources. For this study, all the 18 DOF are assumed to be measured,

resulting in a square mixing matrix. It is observed that utilizing either the displacements

or the accelerations result in nearly identical identification results.
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Figure 3.7: PSD estimate of the top floor response

63



13 Floors

1208 Nodes
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        of freedom

Figure 3.8: Schematic of the full-scale tower structure

Two types of excitations are considered, stationary wind and non-stationary earth-

quake. Before the results for both these cases are discussed, the method used to generate

the wind time histories is briefly reviewed. Synthetic time-histories for the turbulent fluctu-

ations in the longitudinal and transverse directions, and vortex shedding in the transverse

direction are simulated. For this purpose, an auto-regressive moving average (ARMA)

model [77, 17] to simulate a stationary correlated Gaussian source with zero mean and

unit variance is utilized. Scaled time histories corresponding to various heights of the

tower are generated using this procedure and used to excite the state-space model in two

directions, simultaneously. Brief details of this procedure are given in the APPENDIX

D, and the readers are referred to other references on this topic [77, 17] for details. In

order to simulate earthquake response of the structure, scaled El Centro ground motion

(scaled to peak 0.1g) is used. A short note on the types of excitations considered in this

study: Synthetic wind excitations generated from stationary gaussian white noise process

are quasi-stationary with respect to the structure in the sense that the excitation depends
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on the height of the structure. Earthquake excitations on other hand are non-stationary

in nature since the variance changes with time. Unlike wind and white noise, they are not

necessarily broad band. Impact loads on other hand are of transient type whose responses

don’t sustain but decay with time.

3.6.2 Results

From the results presented in Tables 3.4 and Table 3.5, it is clear that the MCC method

is capable of identifying the eigen properties of the structure with a good degree of confi-

dence as reflected in the MAC values nearly equal to 1. Sample identification results for

the sources in the time-domain are shown in Fig. 3.9. The results show that the MCC

method is capable of handling non-stationary sources equally well, which is promising from

a structural modal identification standpoint.

3.7 Summary

In this chapter, BSS methods have been studied in the context of structural system iden-

tification. Clearly, ICA, one of the potential candidates to perform BSS, fails to perform

adequately in the presence of even relatively small amounts of damping. In this regard,

SOBI performs much better. The MCC method, which is an extension of the traditional

SOBI technique, was developed and shown to perform well under both stationary and

non-stationary excitations. The ability to identify modal information even at higher lev-

els of damping demonstrates that the MCC method holds significant promise in the area

of structural system identification. Preliminary experimental results show that the MCC

method is capable of performing satisfactorily under practical situations.
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Table 3.4: Results for the case of the tower subjected to wind excitation

Mode # Model f(Hz) Identified f(Hz) MAC Error f(%) Error ζ(%)

1 0.66 0.66 1.00 0.00 0.1

2 0.92 0.91 0.99 1.10 0.1

3 1.40 1.39 0.99 0.72 0.2

4 2.73 2.70 0.98 1.25 0.85

5 3.01 2.97 0.97 1.43 0.95

6 3.36 3.35 0.99 0.30 0.35

7 4.59 4.59 0.99 0.00 0.45

8 6.08 5.97 0.96 1.89 1.3

9 6.71 6.52 0.94 2.91 1.85

10 9.01 9.00 0.99 0.11 0.45

11 9.43 9.29 0.98 1.51 0.93

12 10.09 10.06 0.99 0.30 0.40

13 11.20 11.09 0.98 0.99 0.40

14 12.02 11.96 0.98 0.50 0.90

15 13.83 13.82 0.99 0.10 0.51

16 14.41 14.29 0.98 0.84 0.92

17 15.72 15.71 0.99 0.06 0.75

18 16.84 16.69 0.98 0.89 1.2

Even though MCC performs well for the cases studied, it requires complete response

measurements to perform satisfactorily. As well, the method does not account for situations

where the separability of sources is not adequate due to their insufficient energy content.

This issue is addressed in detail in the forthcoming chapter.
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Table 3.5: Results for the tower subjected to El-centro(0.1g) ground motion

Mode # Model f(Hz) Identified f(Hz) MAC Error f(%) Error ζ(%)

1 0.66 0.66 1.00 0.00 0.25

2 0.92 0.92 1.00 0.55 0.35

3 1.40 1.39 1.00 0.57 0.47

4 2.73 2.71 1.00 0.88 1.00

5 3.01 2.98 0.97 1.09 0.65

6 3.36 3.35 1.00 0.30 0.55

7 4.59 4.59 1.00 0.00 0.45

8 6.08 5.98 0.96 1.66 1.86

9 6.71 6.62 0.94 1.36 1.94

10 9.01 9.00 1.00 0.11 0.52

11 9.43 9.30 0.99 1.40 1.45

12 10.09 10.04 1.00 0.50 0.71

13 11.20 11.01 0.98 1.73 1.52

14 12.02 11.97 1.00 0.42 0.52

15 13.83 13.81 1.00 0.17 0.62

16 14.41 14.39 1.00 0.14 0.73

17 15.72 15.70 1.00 0.13 0.83

18 16.84 16.80 1.00 0.23 0.81
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Figure 3.9: Comparison of the modal responses and the identified sources for the tower

structure subjected to wind excitation
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Chapter 4

Wavelet-Based Modified Cross

Correlation Method

This chapter presents the theoretical development of a new hybrid time and time-frequency

source separation method called the wavelet based modified cross correlation method(WMCC).

The WMCC method extends the concept of MCC to improve the separability of sources

with low energy content, and to identify full-scale structures subjected to ambient excita-

tions. The chapter is organized as follows. The fundamental concepts of discrete wavelet

transform (DWT) and stationary wavelet transform (SWT), central to the development

of the proposed methodology, are reviewed first. The formulation of WMCC method

is presented next, followed by the results of the numerical simulation of a simple three

degree-of-freedom mass, spring, and dashpot system. Finally, the results of identification

are presented for the UCLA Factor Building, using recorded ambient vibration data, and

also for recorded responses from the Parkfield earthquake, followed by the main summary

of this study.
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4.1 Motivation

In the previous chapter, the concepts of SOBI were extended to develop MCC method

which clearly showed improved results for the case of nonstationary input using all the

available response measurements. In the previous case, the energy content in all the modes

was sufficient to facilitate successful extraction. These conditions, however, are difficult to

be fulfilled in large real life structures, whose higher modes are likely to have lower energy

contents. Achieving accurate identification of such structures with many vibrating modes,

operating on time-domain alone, is a not an easy task. Moreover, when the number of

instrumented sensors are constrained to be fewer than the possible degrees of freedom (due

to cost or other considerations), the separability of sources becomes even more challenging.

Motivated by these practical performance issues the basic principles of SOBI for the static

mixtures case are extended using the stationary wavelet transform (SWT) in order to

improve the quality of identification. The wavelet basis provides a sparse representation

of the sensors and sources. The basic idea of sparsity is that owing to the smoothness,

compactness, rapid decaying characteristics and vanishing higher order moments of the

wavelet basis, the wavelet coefficients of sensors and sources retain all the useful information

content of the signal and throw away the unnecessary contributions from noise. This

improves the spectral characteristics of the signals: make them more localized, compact,

smooth and noise free. This is the first hybrid time and time-frequency method explored

in this thesis.

4.2 Background on Wavelet Transforms

Wavelet transforms have gained significant attention in the literature for the purposes of

structural identification and health monitoring [32, 59, 55, 41, 8]. The wavelet transforms

provide a useful way of representing signals by the use of basis functions that satisfy certain
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properties of linear vector spaces in <3. The use of sinusoidal basis in fourier transforms

hinders the non-stationary properties of system response to be captured, which seriously

limits its application in ambient system identification. As the fourier basis functions are

localized in frequency but not in time, an alternative to accommodate the time informa-

tion by the use of short time fourier transform (STFT)was introduced [66]. However, due

to fixed nature of the window function used in STFT, the obtainable time and frequency

resolutions are considerably constrained by virtue of the Hiesenberg’s uncertainty princi-

ple, according to which it is impossible to achieve good time and frequency resolutions

simultaneously. This motivated the development of another alternative approach to time-

frequency representation of signals, featuring basis functions that have compact support

both in frequency and time to yield a multiresolution analysis of signals termed as wavelet

transform [66].

The wavelet transform of a signal x(t) is a linear transform, defined as :

wjk(x) =
1√
j

∞∫
−∞

x(t)ψj∗k (t) dt (4.1)

where the function ψ is commonly known as the mother wavelet and ∗ stands for com-

plex conjugation. j and k denotes scale and translation parameters respectively. Thus,

wavelet transform decomposes a signal x(t) via basis functions, that are simply scaled and

translated versions of the mother wavelet. Wavelet transforms can be broadly classified

under two categories: (i) Non redundant wavelet transforms (ii) Redundant wavelet trans-

forms. Discrete wavelet transform (DWT) belongs to the former category, and continuous

wavelet transforms (CWT) and stationary wavelet transforms (SWT) belong to the later.

Due to numerical integration procedures, estimation of CWT requires lot of computational

effort and is not pursued here. On other hand, implementation of DWT and SWT with

the aid of filter banks make them more robust and amenable for BSS applications. In this

section, a brief background on DWT and SWT are presented with special emphasis on
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their time-invariant properties.

4.2.1 Discrete Wavelet Transform (DWT)

In the context of multi-resolution analysis [66], an orthogonal wavelet decomposition of a

signal, x(t) ∈ L2(<) leads to wavelet co-efficients given by the inner product

wjk(x) =< x(t),
1

2j/2
ψ(

t

2j
− k) >=

1

2j/2

∞∫
−∞

x(t)ψ∗(
t

2j
− k) dt =

1

2j/2

∞∫
−∞

x(t)ψj∗k (t) dt (4.2)

where the function ψ is commonly known as the mother wavelet and ∗ stands for

complex conjugation. The transform is computed at discrete values on a grid corresponding

to dyadic values of scales (2j) and translations (k), where k, j ∈ Z2 i.e., integers. This is

commonly known as the discrete wavelet transform (DWT). A signal x(t) can be expressed

in terms of wavelet coefficients wkj as

x(t) =
∑
j

∑
k

wjkψ
j
k (4.3)

The basis function ψ and its integer translates ψ(t−k) satisfy the condition of orthogo-

nality [66]. For fast implementation, the integration procedures are replaced by successive

application of filter banks [66].

Implementation of DWT to a signal x involves low-pass filtering followed by high pass

filtering using appropriate filters, known as quadrature mirror filters. The co-efficients

resulting from these filtering operations are known as approximation and detail coefficients.

However, since half of the frequencies of the signal have now been removed, half of the

samples can be discarded according to Nyquists rule. Thus, the filter outputs are then

sub-sampled by a factor 2 [66] as shown in the Fig. 4.1. Details of DWT implementation
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Figure 4.1: Filter bank implementation of DWT

are beyond the scope of this work and the readers are referred to seminal works [66] on the

topic for details.

Of interest here is the issue of time non-invariance that arises due to the DWT proce-

dure. This means that the wavelet coefficients of a time shifted signal, say x(t − τ), are

not delayed versions of the transform of the original signal. That is:

wjk(x(t− τ)) 6= wjk−τ (x(t)) (4.4)

The invariance issue shown above can be addressed through a redundant version of the

DWT, which is called SWT as explained in the following.

4.2.2 Stationary Wavelet Transform (SWT)

Consider the following transform, known as the stationary wavelet transform (SWT), of

x(t) [70, 28].

djk
∆
=

〈
x(t)

∣∣∣∣ 2
−j/2ψ

(
t− k

2j

)〉
=

1

2
j/2

∫ ∞
−∞

x(t)ψ∗
(
t− k

2j

)
dt (4.5)
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The basic idea of SWT is similar to DWT, where the time sequence whose transform

is to be carried out is applied through appropriate high and low pass quadrature mirror

filters to produce two sequences at the next level. But unlike DWT, the coefficients are

not decimated, but up-sampled, and hence the filtered sequences have the same length as

the original sequence. The implementation of SWT is illustrated in Fig. 4.2.

Decomposition

2

2X j

Xa    j   +1

Xd    j   +1

F j

G j

Level ( j ) Level ( j+1)
Figure 4.2: Filter bank implementation of SWT

If the original time signal is shifted by an amount τ , then the wavelet coefficients at

any scale are also shifted by the same amount, τ . This an important property of the SWT

(see APPENDIX F for proof) and this can observed if we consider the shifted version of

the signal x(t− τ) and substituting dkj{x(t− τ)} in Eq. 4.5. That is,

djk(x(t− τ)) = djk−τ (x(t)) (4.6)

which means that the coefficients of a delayed signal are a time shifted version of those of

the original signal as illustrated in Fig. 4.3. This invariance property of SWT is crucial to

constructing the covariance matrices in WMCC method.
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Figure 4.3: Illustration of time-invariance of Stationary Wavelet Transform

4.3 Modal Identification using WMCC method

The traditional MCC method works in three steps: (i)The correlation of output measure-

ments (r) is first substituted for the physical responses as described in Eq. 3.7 by virtue of

NExT/ERA [46, 47], (ii) A whitening transformation of the correlation of measurements(r),

obtained from the co-variance the physical responses (r) that converts the problem of de-

termining the mixture matrix A to one of a unitary matrix, and (iii) determination of the

unitary matrix by jointly diagonalizing the covariance matrices of the whitened measure-

ments for several non-zero time lags.

The current study extends the concepts MCC in two ways. First, the wavelet coef-

ficients obtained through the stationary wavelet transform (SWT) of the correlation of
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measurements are used instead of the measurements directly. Estimating the mixing ma-

trix and sources then proceeds similar to the traditional MCC method. Secondly, the

non-stationary nature of the sources is handled through the use of several time-lagged

non-overlapping windows. This method is known as the wavelet-based modified cross-

correlation method (WMCC) and the details are presented in the following. Symlet is

used as the basis function due to its orthogonality property, compact support, and the

ability to perform DWT.

4.3.1 Details of the Algorithm

Considering the orthogonal wavelet decomposition of the sources, we can express each

source signal in terms of its decomposition coefficients:

sjm (t) =
∑
k

cjkmψk
j (t) m = 1, 2, ..., N (4.7)

Where, j represents the scale, m represents source index, and k represents the shift

index. ψ (t) is the chosen wavelet and cjkm are the decomposition coefficients. Along the

same lines, each component of the measurements x can be expressed as:

xjm (t) =
∑
k

f jkmψk
j (t) m = 1, 2, ..., N (4.8)

Where, m represents sensor index, and and f jkm are the decomposition coefficients. Con-

sidering the wavelet coefficients at the lth shift of sensor responses and sources, inserting

Eq. 4.7 and Eq. 4.8 in Eq. 2.53 and finally applying the orthogonality conditions for

wavelets, we get [56]:

fl = Acl (4.9)

where A = [Aij]N×N is the instantaneous mixing matrix for the case N sensor responses

and N sources, and the vectors constructed from the lth coefficients of the mixtures and

sources are given by fl and cl, respectively.
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The next step of the formulation is to derive the autocorrelation matrices of the wavelet

coefficients of the sources cjkl, and the responses f jkl, respectively, which requires the use of

SWT. Define the covariances of the signals and sources R̂s(p) and R̂x(p) respectively, for

some non-zero time lag p, as : Rs(p) = E
{
s(k)sT (k − p)

}
and Rx(p) = E

{
x(k)xT (k − p)

}
.

Inserting Eq.4.7 and Eq.4.8 into the expression for the two covariance matrices and making

use of Eq. 4.6, we get:

Rs(τ) = E

[∑
l

cjlψ
j
l (t)

∑
m

cjm+τψ
j
m(t+ τ)

]
τ 6= 0

Rx(τ) = E

[∑
l

f jl ψ
j
l (t)

∑
m

f jm+τψ
j
m(t+ τ)

]
τ 6= 0 (4.10)

Using orthogonal properties of the wavelet basis,

Rs(τ) = Rws(τ) = E
[
cjl c

j
l+τ

]
Rx(τ) = Rwx(τ) = E

[
f jl f

j
l+τ

]
(4.11)

Now consider Eq. 4.9 (for N sources and measurements). Multiplying both sides by

fl+p (where, p is an index that has the same meaning as τ) and taking the mathematical

expectation on both the sides, we obtain:

E{flfTl+p} = AE{clcTl+p}AT (4.12)

Using Eq. 4.11 and Eq. 4.12, we have :

Rwx(p) = ARws(p)A
T (4.13)

From here on, the procedure follows similar to SOBI. The key step is the simultaneous

diagonalization of the two covariance matrices R̂x(0) and R̂wx(p) evaluated at 0 time-lag

and non-zero time lag p. The procedure is accomplished in three basic steps: whitening,

orthogonalization and unitary transformation. Whitening is a linear transformation in
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which R̂x(0) = (1/N)(
N∑
K=1

x(k)xT (k)) is first diagonalized using singular value decompo-

sition, R̂x(0) = VxΛxVT
x , where Vx are the eigenvectors of the co-variance matrix of x.

Then, the standard whitening is realized by a linear transformation expressed as under:

x̄(k) = Qx(k) = Λ
− 1

2
x VT

x x(k) (4.14)

The second step, called orthogonalization, is applied to diagonalize the matrix R̂wx̄(p)

whose eigen-value decomposition is of the form R̂wx̄(p) = Vf j
l (x̄)Λf j

l (x̄)V
T
f j
l (x̄)

. Substituting

x̄(k) = Qx(k) from Eq. 4.14 into R̂x(p) = (1/N)(
N∑
K=1

x(k)xT (k − p)) and making use of

the relationship that Rx(p) = Rwx(p), we get :

R̂wx̄(p) = QARws(p)A
TQT (4.15)

If the diagonal matrix Λf j
l (x̄) has distinct eigen-values, then the mixing matrix can be

estimated by the equation,

Â = Q−1Vf j
l (x̄) = VxΛ

1/2
x Vf j

l (x̄) (4.16)

If the sources are assumed to be uncorrelated and scaled to have a unit variance, the

product QA is a unitary matrix , say,Vf j
l (x̄), and the problem now becomes one of unitary

diagonalization of the correlation matrix R̂wx̄(p) at one or several non-zero time lags.

Eq. 4.15 is a key result, which states that the whitened matrix R̂wx̄(p) at any non-zero

time lag p and scale level j is diagonalized by the unitary matrix, QA. Since Rws(p) is a

diagonal matrix (since the sources are assumed to be mutually uncorrelated), the problem

now becomes one of diagonalizing the matrix R̂wx̄(p) resulting in the unitary matrix, QA.

Though the existence of the unitary matrices for any time lag p is implied by Eq. 4.15,

the determination of such unitary matrices is a numerical procedure.
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4.3.2 Joint Diagonalization for sth Scale, p Lags and L Time Win-

dows

As seen from Eq. 4.15, the problem of finding A is solved by unitarily diagonalizing

R̂wx̄(p). Due to estimation errors, finding an exact diagonalizing unitary matrix may not

be possible, and estimating QA may be possible only in an approximate sense. There are

two major issues that influence the diagonalization. First issue is the proper choice of the

lag parameter p, which is not available a priori. Secondly, the scale level of the stationary

wavelet decomposition that will diagonalize R̂wx̄(p) is not known. However, selecting the

scale level is not an issue provided there is information regarding the dominant modes of

interest of the system. In this study, the scale level of wavelet decomposition s is fixed,

and then several values of time lags, p = 1, 2, · · · , l is chosen, and the matrices R̂wx̄(p) are

diagonalized such that after h iterations, the sum of the off-diagonal terms for all the time

lags is minimum in a norm sense. Denoting V = QA, Dp = VT R̂wx̄(p)V, we can write

this statement mathematically as finding the minimum of the performance index J given

by,

J(V, s) =
∑
p=1,l

∑
i 6=j,m

∣∣Dp
ij

∣∣2
s

(4.17)
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Figure 4.4: Flowchart for WMCC method

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said

to be an approximate joint diagonalizer. The Jacobi technique[33] for diagonalizing a real,

symmetric matrix is utilized for this purpose. In addition to considering several time lags

p for the diagonalization purposes, the non-stationary aspect of the sources is addressed by

partitioning the pre-whitened data into L non-overlapping blocks (time windows Ti) and

the time-delayed covariance matrices are estimated in each window. The key steps in the

WMCC method are summarized in the form of a flow-chart in Fig. 4.4.

In order to demonstrate the effect of the simultaneous diagonalization, a mass-spring-

dashpot system with three degrees-of-freedom is considered, with a lumped mass m =10kg

and a constant stiffness of 2 kN/m at each degree of freedom. The damping is considered
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to be of Rayleigh type with 2% critical in the first mode. The effect of the non-stationarity

of the sources is analyzed by dividing x̄(k) into several time blocks, ranging from L = 1

to L = 50. The results are displayed in Fig. 4.5. Though there appears to be no direct

relationship between the efficiency of diagonalization and the parameters, it is safe to

conclude that accounting for the non-stationary characteristics of the sources by using

multiple windows achieves better performance, as indicated by the square root of the sum

of squares of the off-diagonal terms, than the case when a single window (or, no window)

is used to calculate the covariance matrix for several time lags. For the simple system

considered for the parametric study L = 20 yields the best result and is used for all

the ensuing simulations. The time required for such computations is less due to reduced

numerical complexity of the algorithm. A detailed analysis of the running times when

compared to all of the existing methods, is beyond the purview of the present study.
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Figure 4.5: Effect of window size and the number of lags on the joint diagonalization
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4.4 Case Study: Identification Results for the UCLA

Factor Building

4.4.1 Description of the UCLA Factor Building

In order to demonstrate the application of the WMCC method developed in the previous

sections, the earthquake and ambient responses from the UCLA Doris and Louis Factor

building, called UCLA Factor Building (UCLAFB), are utilized. A general layout of this

building is shown in Fig. 4.6, which houses several centers for the health sciences and other

biomedical facilities of UCLA. This building is one of the most heavily, permanently instru-

mented buildings in North America, whose vibration data in real-time is made available

for researchers world-wide through a remote data-base server. Designed and constructed

in the late 1970s, the 17-story, 216.5 ft high building consists of a Special Moment resisting

(steel) frames (SMFs) supported by concrete bell caissons and spread footings. Following

the 1994 Northridge earthquake, the building was instrumented with an array of 72 Kine-

metrics FB-11 uniaxial-accelerometers at the floor levels including the basement and the

sub-basement levels. Each level has two pairs of orthogonal sensors parallel to the NS and

EW directions as shown in the figure 4.6. The building’s sensor network was upgraded

in 2003 to a 24-bit network that continuously records data that includes numerous small

earthquakes to date. Details of this building along with significant seismic events recorded

by this network has been extensively documented elsewhere [57, 71, 80].

For the current identification study, floor accelerations recorded during the event that

occurred on September 28, 2004, 10:15 AM PDT, due to ground shaking originating (with

Mw = 6.0 on the moment magnitude scale) from Parkfield, CA, epicentered 163 miles from

the UCLAFB are selected. The peak acceleration recorded at the roof of UCLAFB was

0.0025g. In addition to the earthquake vibration data, 3 sets of wind excited acceleration

responses were used. The first data set (DS1) consists of the acceleration records collected
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Figure 4.6: Sketch of the UCLA Factor building with the sensor Locations

on September 28, Thursday, 2004. The second data set (DS2) consists of acceleration

responses collected on September 29, Thursday, 2004 and the third data set (DS3) consists

of acceleration responses collected on January 2, 2008. A total of 80 sets of ambient

vibration data resulted from the recordings were used for further analysis. The sensor

responses at each floor level Fig. 4.6 are converted to a triad of 3 responses at the center

of mass using co-ordinate transformations [71, 80]. Thus, using a total of 48 transformed

channels of measurements, blind identification was carried out and the results are reported

in the following discussion.
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Table 4.1: Identified natural frequencies and damping statistics of the UCLA Factor build-

ing using ambient data

Mode Shapes Natural Frequencies (Hz) Damping % Critical

Mean (COV(%)) Mean (COV(%))

No Dir SOBI MCC WMCC SOBI MCC WMCC

1 EW 0.54(1.50) 0.54(1.30) 0.55(1.00) 3.8(35.0) 3.5(33.0) 3.5(27.0)

2 NS 0.56(1.30) 0.57(1.20) 0.58(1.20) 4.8(42.0) 4.1(39.0) 4.1(37.5)

3 Tor 0.76(3.90) 0.77(2.90) 0.79(2.20) 5.0(27.5) 4.5(26.0) 4.2(25.4)

4 EW 1.60(2.15) 1.61(2.10) 1.65(1.50) 2.7(15.2) 2.6(15.0) 2.3(14.8)

5 NS 1.74(2.25) 1.77(2.20 1.80(1.15) 1.8(16.3) 1.7(15.0) 1.7(14.4)

6 Tor 2.37(1.85) 2.42(1.75) 2.47(1.70) 3.4(25.4) 3.2(23.6) 3.0(22.0)

7 EW 2.74(1.00) 2.76(0.97) 2.80(0.95) 2.7(16.0) 2.6(15.2) 2.5(13.4)

8 NS 2.97(1.25) 2.99(1.25) 3.09(1.25) 2.2(23.0) 2.0(21.2) 1.9(18.3)

9 Tor 3.94(2.35) 3.98(2.25) 4.01(2.20) 3.6(26.5) 3.4(24.1) 3.2(19.3)

10 EW 4.31(1.50) 4.28(1.41) 4.27(1.35) 2.5(27.0) 2.4(23.3) 2.2(21.0)

11 NS 4.77(1.93) 4.73(1.89) 4.75(1.83) 3.0(28.0) 2.8(22.1) 2.9(21.2)

12 Tor 5.06(2.56) 5.04(2.49) 5.09(2.43) 3.9(29.2) 3.5(24.2) 3.3(21.2)

13 EW 5.31(2.63) 5.36(2.46) 5.39(2.41) 4.0(30.0) 3.6(26.5) 3.4(24.7)

14 NS 5.69(3.13) 5.72(3.09) 5.81(3.03) 3.3(27.0) 3.1(21.2) 2.9(17.5)

15 Tor 6.21(3.67) 6.25(3.53) 6.28(3.47) 3.7(28.2) 3.4(22.3) 3.1(17.6)

4.4.2 Results

The identification results for the 15 dominant modes for the ambient vibration cases are

reported in terms of their first and second-order statistics, namely mean and coefficient

of variation (CV), in Table 4.1. It is worth mentioning that although only 15 modes are
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reported with the full-sensor data, over 20 modes were identified. Results of identifica-

tion using three methods, SOBI, MCC and WMCC are presented alongside each other in

columns. It can be seen that the estimated natural frequencies and damping ratios are

quite close to each other for the three methods presented. The normalized mode-shapes

for the first six modes are shown in Fig. 4.7. The results from a statistical analysis of the

natural frequencies is reported in Fig. 4.8. The results of identification are obtained by

conducting approximately 100 trials of identification using the WMCC method described

earlier using the three ambient data sets.

It is clear from Fig. 4.8 that the statistics follow nearly a normal distribution and

the variability in the results in the natural frequency estimates is relatively small. Addi-

tionally, the natural frequencies are consistent with the reported values (12 modes have

been reported) for this building [57, 80, 71]. A comforting feature of the results is that

the estimation statistics reported here follow closely to the results presented recently [71]

using a much larger data-set of ambient records. For example, the mean value for the first

two lateral modes and the torsional mode obtained using WMCC method are 0.55, 0.58

and 0.79 Hz compared to 0.55, 0.60 and 0.81 reported in in the aforementioned study [71].

The CV’s are also very close to those that have been reported in the same study [71]. The

results of identification estimated from the data during the ground shaking that occurred

due to the Parkfield earthquake is reported in Table 4.2. As before, the results of identi-

fication using the three methods, SOBI, MCC and WMCC, are presented alongside each

other in columns. As reported in an earlier studies [57, 80], the natural frequencies for the

earthquake case are generally lower than those that have been estimated using ambient

responses.

Upon examination of the results from ambient case in Table 4.1 and for the earthquake

case in Table 4.2, the frequencies for the ambient vibrations are consistently higher for all

modes. This result has also been reported in earlier studies [57], which can be attributed
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Table 4.2: Identified natural frequencies of the UCLA Factor building using earthquake

data

Mode Shapes Natural Frequencies (Hz) Damping % Critical

No Dir SOBI MCC WMCC SOBI MCC WMCC

1 EW 0.50 0.48 0.47 4.3 3.8 3.4

2 NS 0.53 0.52 0.51 4.1 3.6 3.2

3 Torsion 0.69 0.69 0.68 4.5 3.9 3.4

4 EW 1.55 1.52 1.48 4.3 3.8 3.3

5 NS 1.52 1.57 1.64 4.0 3.6 3.4

6 Torsion 2.47 2.46 2.37 5.4 5.0 4.3

7 EW 2.73 2.69 2.67 3.4 3.1 2.8

8 NS 3.00 2.94 2.88 3.9 3.7 3.3

9 Torsion 3.99 3.92 3.83 3.7 3.4 3.0

10 EW 4.74 4.36 4.20 3.0 2.8 2.3

11 NS 4.79 4.67 4.55 3.5 3.3 2.9

12 Torsion 5.27 5.19 5.00 3.7 3.4 3.1

13 EW 5.65 5.56 5.31 2.7 2.3 2.1

14 NS 6.39 6.03 5.69 2.6 2.4 2.2

15 Torsion 6.56 6.44 6.19 3.0 2.7 2.5
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Figure 4.7: Identified mode shapes

to the effects of soil-structure interaction and nonlinearity. The mean value of the damp-

ing for the first few dominant modes is generally in the range of reasonable values for

structures of this construction type, around 3-5% for the first few modes, and is similar to

the results reported in independent studies [71]. However, given the rather large variation

reported here and in other studies (as high as 69% in some studies) drawing definite con-

clusions regarding damping is difficult. Similarly, making definitive statements regarding

the magnitude of damping for the earthquake case based on point estimates is likely to be

misleading. Nonetheless, it is safe to say that the damping estimates for the earthquake

case appear to be what one would expect for structures of this type, of the order of 2%−4%

critical, and the variation is expected to be large.

In order to study the effects of reducing the number of sensors on identification, the

number of sensors used to estimate the modal information are gradually reduced from the
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Figure 4.8: Normal probability paper plot for ambient data

complete set of 48 channels. The channels at the basement and subbasement levels are

not considered as their RMS response levels are very low. The transformed data from the

sensors are used for description purposes noting the fact that four sensors at each floor level

are used to produce 3 channels of measurements. Starting with the roof and proceeding

towards the first floor (basement channels excluded), the channels corresponding to the

center-of-mass in the E-W, N-S and rotation are named R1, R2, R3, · · · respectively.
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Table 4.3: Performance of WMCC method with reduced sensor density

MAC values for Ambient Data MAC values for Earthquake Data

Number of Sensors Number of Channels

No Dir 26 24 18 17 26 24 18 17

1 EW 0.99 0.99 0.99 0.94 0.98 0.98 0.98 0.94

2 NS 0.99 0.99 0.98 0.94 0.98 0.98 0.98 0.95

3 Tor 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97

4 EW 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

5 NS 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97

6 Tor 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.96

7 EW 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98

8 NS 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98

9 Tor 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98

10 EW 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.97

11 NS 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.97

12 Tor 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.97

13 EW 0.99 0.98 0.96 0.97 0.99 0.95 0.92 0.96

14 NS 0.99 0.95 0.95 0.93 0.99 0.94 0.93 0.92

15 Tor 0.99 0.98 0.97 0.94 0.98 0.98 0.95 0.93

With this naming convention, four cases cases are considered with 26, 24, 18 and 17

channels. These cases are as shown below:

26 channels: [R1, · · · , R17, R19, R22, R25, R28, R31, R34, R37, R40, R43]

24 channels: [R1, · · · , R17, R19, R22, R25, R28, R31, R37, R43]

18 channels: [R1, · · · , R11, R13, R17, R21, R22, R28, R35, R39]
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17 channels: [R1, · · · , R11, R13, R17, R19, R23, R25, R29]

The correlation between the vibration modes obtained using full-sensor density and

reduced density is performed using the modal assurance criterion (MAC). MAC values

range between 0 and 1, a value of 1 meaning a perfect correlation. MAC is defined as:

MACi =
(ψTi ψ̄i)

2

(ψTi ψi)(ψ̄
T
i ψ̄i)

(4.18)

Here, ψi and ψ̄i represent the ith mode shape vectors for the full sensor and reduced

sensor densities, respectively. The results are presented in Table 4.3 and also in Fig. 4.9

for the cases of 26 and 17 channels only due to space limitations. Table 4.3 and Fig. 4.9

contains the MAC values obtained by comparing the results obtained using the complete

sensor data (48 transformed channels) with the reduced cases. It can be seen that by

reducing the number of channels to 26, the quality of identification is as good as those

obtained by using the full set. If the number of sensors are further reduced, to yield 17

channels, there is a significant reduction in the accuracy. This is reflected by the decreasing

MAC values. WMCC still provides reasonable estimates for 17 sensor case, where as SOBI

and MCC fail to do so. Whereas SOBI fails to identify the first 2 modes, MCC is unable

to identify the 1st mode.

To assess the variability in the results of identification with respect to ambient data,

approximately 80 subsets of data are considered and the mean and standard-deviation

results for the first few modes are reported in Table 4.4 for the reduced channel cases. It

can be seen from the results that although the dispersion increases with the reduction in

the number of sensors, its magnitude still remains relatively small indicating a good degree

of confidence in the estimation.
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Table 4.4: Identification results for reduced sensor cases

Mean of Frequencies (Hz) Co-efficient of Variation(%)

Mode Number of Channels Number of Channels

No

26 24 18 17 26 24 18 17

1(E-W) 0.55 0.54 0.54 0.53 1.7 1.7 1.7 1.8

1(N-S) 0.57 0.55 0.55 0.54 1.5 1.5 1.5 1.6

1(TOR) 0.79 0.78 0.76 0.75 2.2 2.5 2.6 2.7

2(E-W) 1.64 1.60 1.59 1.56 1.5 1.6 1.7 1.8

2(N-S) 1.80 1.78 1.76 1.74 1.2 1.6 2.0 2.3

2(TOR) 2.48 2.43 2.40 2.39 1.7 2.1 2.3 3.0

4.5 Summary

A second-order blind identification method based on SWT, called WMCC, has been pre-

sented in this chapter. An important property of SWT is its time invariance, which has

been exploited to construct the covariance matrices of the transformed data. Modal identi-

fication results for the UCLA Factor building show good correlation with published results

for both the ambient and earthquake excitation cases. There is no need to pre-select the

model order and multiple reference sensor locations, which is the main advantage of the

proposed method over the ambient modal identification discussed earlier. Identification re-

sults show that the dispersion of the results for the natural frequencies is relatively small,

indicating a good degree of confidence in the estimation procedure. The method is also

shown to perform well under reduced number of sensors, which is clearly advantageous in

dealing with practical economics of health monitoring and modal identification.
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Even though WMCC method addresses many practical shortcomings of available meth-

ods, it does not address the case when the mixing matrix is rank deficient. This issue is

dealt in detail in the next chapter where it is shown how the rank deficiency can be ad-

dressed in a hybrid approach, combining time and time-frequency domain representations

of the responses and the sources.
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Chapter 5

Under-Determined Blind

Identification of Structures

In this chapter, a new hybrid time and time frequency domain blind identification method

is developed to extend the MCC method to the under-determined blind identification

of building structures. The under-determined case is encountered when the number of

sensors is less than the number of identifiable modes. Such situations commonly arise in

flexible structures containing several dominant modes, but instrumented with a relatively

fewer number of sensors. This chapter begins with the description of the key steps of the

hybrid method, followed by a full-scale demonstration of this method on the Apron Tower,

located at the Pearson International Airport in Missisauga, Ontario. The key results and

discussions are presented next, followed by some important conclusions.

5.1 Motivation

The problem of modal identification of a structure when the number of available mea-

surements is less than the number of identifiable modes, is called under-determined blind
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identification. In all of the previous studies involving SOBI, MCC and WMCC, the number

of measurements is considered equal to the number of identifiable sources. In other words,

the mixing matrix is square and of full rank.

The underdetermined BSS, for the static mixtures case, can be restated as:

x(k) = As(k)

ŝ(k) = y(k) = Wx(k) (5.1)

where,

A = [aij]m×n ⇒ Instantaneous mixing matrix

Wn×m = A−1
m×n
⇒ Un-mixing matrix, which is the pseudo inverse of A

s (k) = {sj (k)} j = 1, 2, ......m sources input to the system

x (k) = {xi (k)} i = 1, 2, ......n sensor signals system output

y (k) = {yj (k)} j = 1, 2, ......m estimated Sources

The key point to note here is that whereas earlier the mixing matrix A is constrained

to have full rank, the mixing matrix in Eq. 5.1 does not have such a constraint.

Identifying n sources or less when the matrix A is of rank n, is well-known [54, 6, 92].

However, for the under-determined case, i.e., when the number of sources of interest is

larger than the size of outputs, the blind identification methods referred to earlier fail to

identify all the sources (modes) of interest. Physically, such situations arise in flexible

structures that are instrumented with a relatively small number of sensors due to cost

or other reasons. In signal processing literature, the problem of underdetermined mix-

tures have been addressed through sparse time-frequency representations and by invoking

external optimization or clustering [56, 93].
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Approaching the under-determined source separation problem from time domain alone

is difficult, since the mixing matrix is non-square and doesn’t have a full column rank. To

alleviate the rank deficiency problem, the available measurements are first decomposed into

mono-harmonic components, referred to as intrinsic mode functions (IMFs), by utilizing

a time-frequency decomposition called empirical mode decomposition (EMD) [43, 88, 87].

Once the IMFs are obtained, they are subsequently used as initial estimates for the sources

and are operated upon by the standard time domain source separation technique, MCC, in

an iterative framework. Initial estimates for the mixing matrix necessary to start the iter-

ative process is selected using assumed shape functions that satisfy the essential boundary

conditions. The need for sensor measurements at all the relevant degrees of freedom in

order to identify the mode shapes is alleviated in this approach. This is the main advantage

of the proposed method. Pre-processing of the measurements using EMD and the need

for an initial estimate of the mixing matrix are the primary difficulties in the proposed

method. These difficulties are easily overcome for the case of structure mode identification

as explained in detail in this chapter.

The proposed method is applied to extract the vibration modes from measurement data

collected from the Apron Control Tower in Mississauga, Canada. This data was a part of

a larger experimental program to assess the condition of the TMD on the Apron Tower.

During the fall of 2009, the structural dynamics and control group of the department

of Civil and Environmental Engineering, University of Waterloo, conducted an extensive

measurement program, where-in the structure was instrumented with a total of 12 seismic

accelerometers along the height of the structure. The structure vibration measurements

were obtained under wind and ambient excitations over a period of 3 months. The data

utilized here was obtained by arresting the motion of the TMD. Furthermore, two signifi-

cant wind events occurred during the measurement period, which resulted in high-fidelity

measurements containing energies in several dominant modes. Key results using the newly

proposed method are summarized and compared with the MCC method.
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5.2 Modal Identification using EMD-MCC method

The key assumption in the MCC method is that the matrix, A in Eq. 5.1 is square, i.e.,

the number of outputs (or, measurements) is equal to the number of identifiable modes.

The presence of noise in the measurements introduces difficulty in the estimation process

due to the introduction of spurious modes. Specifically, the practically obtainable modes

is only a sub-set of the rank of A. The MCC method described earlier is extended to

the case when the number of sensors is less than the modes to be identified in two stages

: (i) by extracting the intrinsic mode functions (IMFs) using EMD and, (ii) by treating

the IMFs as pseudo-sources in an iterative procedure within the framework of the MCC

method. EMD enables the size of the matrix of sources to be augmented as required,

while the basic framework of the MCC method remains intact. Initial estimates for the

mixing matrix are assumed using shape functions that satisfy the prescribed boundary

conditions for the problem, and adjusted iteratively based on an energy criterion. For easy

comprehension of the subsequent discussions, some useful acronyms are provided in Table.

5.1.

Table 5.1: Important Acronyms

EMD Empirical Mode Decomposition

IMF Intrinsic Mode Function

MCC Modified Cross-Correlation

MAC Modal Assurance Criterion

The EMD method reduces a signal into intrinsic IMFs that admit a well-behaved Hilbert

transform [43]. For multi-degree-of-freedom structures, the IMFs extracted from the free-

vibration responses can be regarded as the modes of vibration [88]. An IMF is defined
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as a function that satisfies the following conditions: (i) it is mono-component and (ii) the

mean values of the envelopes defined by the local maxima and the local minima are zero.

The procedure of extracting an IMF is called sifting. Suppose x(t) is the signal to be

decomposed. The sifting process is implemented by identifying local extremum in the data

between successive pairs of zero crossings and connecting all the local maxima by a cubic

spline line to create the upper envelope. Local minima are connected in the same fashion

to produce the lower envelope. If their mean is m1, the difference x(t) −m1 = h1 is the

first IMF. Ideally, h1 should satisfy the conditions necessary to be called an IMF. If it does

not satisfy the necessary conditions, then the sifting process is repeated by treating h1 as

the original data until the requirements for an IMF are fulfilled. The original signal is then

subtracted from the IMF and the sifting process is repeated to decompose the data into n

IMFs. Although one could extract the natural frequencies and the corresponding damping

estimates directly using this sifting technique [88], measurements at all the degrees of

freedom are required to extract the corresponding modes. This restriction is removed by

using EMD in conjunction with the MCC method as described next.

Suitable band-pass filters are applied to the data to extract n IMFs, where n represents

the number of desired modes [88]. In many cases, the availability of a FE model alleviates

the difficulty in selecting appropriate filters. Alternatively, in the absence of such prior

knowledge regarding the appropriate frequency bands, the uncertainty associated with the

estimated values in contiguous frequency bands provides a measure to delineate real from

spurious modes. This issue is discussed in detail in the next section. Once the IMFs are

extracted, the pseudo-responses are then estimated using the relation x̃e ≈ AaΓ, where Γ

and Aa represents the matrix of pseudo-sources (IMFs) and the mixing matrix, respectively.

To begin the iterative process, a mixing matrix of shape functions [68] that satisfy the

prescribed boundary conditions is assumed. The pseudo responses x̃e thus obtained are

then scaled by the absolute maximum value of each response vector, followed by an update
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of the assumed mode shape matrix Aa and an estimate for the pseudo-source s̃e according

to:

Âu = Q−1V¯̃re

s̃e = Â−1
u x̃e (5.2)

where, r̃e(T ) = E[x̃e(t+ T )x̃e(t)] and Âu is the updated mixing matrix.

The whitening factor, Q, is obtained by diagonalizing:

R̂r̃e(0) =
1

N

(
N∑
k=1

r̃e(k)r̃Te (k)

)
= Vr̃eΛr̃eV

T
r̃e

(5.3)

where, Vr̃e are the eigenvectors of the co-variance matrix of r̃e, which yields:

Q = Λ
− 1

2
r̃e

VT
r̃e

(5.4)

The unitary factor V¯̃re
(where, ¯̃re = Qr̃e) is obtained by diagonalizing the matrix,

R¯̃re
(p) =

1

N

(
N∑
k=1

¯̃re(k)¯̃rTe (k − p)

)
= V¯̃re

Λ¯̃re
VT

¯̃re
. (5.5)
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Figure 5.1: Flowchart for EMD-MCC method

From the estimated pseudo-sources s̃e, the natural frequency estimates are obtained

using Hilbert transform. The permutation ambiguity in the estimates of Âu and the

pseudo-source matrices are corrected in each iteration. The mixing matrix is then updated

in each step using the pseudo-sources obtained from the previous step. The update is

terminated when the magnitude of the energy content in sources reaches a pre-defined
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tolerance, ε, expressed by the following equation:

∥∥∥∥ s̃je(ω)− s̃j−1
e (ω)

s̃j−1
e (ω)

∥∥∥∥ = ‖γ‖ ≤ ε (5.6)

where s̃e(ω) is the magnitude of the Fourier transform of s̃e(t) vector, j represents the

iteration step and ‖·‖ represents the 2-norm of the vector. For j = 1, s̃e(ω) = Γ(ω), where

Γ(ω) is the Fourier transform of individual IMFs, Γ(t). The keys steps of the EMD-MCC

algorithm are summarized in the flowchart shown in Fig. 5.1.

5.3 Identification Results

5.3.1 Structure Description and Measurement Program

Wind-induced vibration measurements from the Apron Control Tower located at the

Toronto Pearson Airport, Missisauga, Canada, are used to demonstrate the application

of the proposed EMD-MCC method. The Apron Tower at Toronto Pearson International

Airport (Fig. 5.2) is a 49 m tall structure rising above the fourth level of Terminal 1. The

total height of the structure above grade is 68.5 m. Constructed in 2000, the tower is a

steel structure with composite steel deck and concrete floors providing a rigid diaphragm

at each level. The tower has 10 core levels, consisting mainly of a scissor stairwell, elevator

and service shafts. The structure is supported by six main steel columns resting on large

transfer girders at the terminal roof level. Lateral loads is resisted by a combination of

braced and moment frames.
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Figure 5.2: Apron Control Tower at the Pearson International Airport, Toronto

During the fall of 2009, the structure was instrumented with PCB Piezotronics high

sensitivity seismic ceramic flexural ICP accelerometers. The accelerometers have a fre-

quency range of 0.07 to 300 Hz, sensitivity of 10.0 V/g, and a measurement range of 0.5 g

(g ≈ 9.8m/s2). The sensor’s signal output was continuously recorded at a sampling rate

of 500 Hz. Vibration data was recorded using a 12 channel simultaneous data acquisition

system with 16-bit resolution. A total of twelve sensors were installed horizontally on

three of the upper floors of the apron tower, including Level 2, 3, and 4, as well as in the

upper chord of the roof truss structure, as shown in Fig. 5.3. Two sensors were installed

in the north-south direction on each floor. A third sensor was installed in the east-west

direction. The responses for three degrees of freedom (DOF) were considered at each level.

In the east-west direction (x-DOF), one sensor was sufficient to provide this information

at it was installed along the selected reference line corresponding to the center of mass in
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north-south direction. In order to capture both the north-south direction (y-DOF) and

torsion (θ -DOF), two sensors were mounted on each floor along the selected reference line

away from the center of mass in the east-west direction. The tuned mass damper located

on the roof of the tower was restrained during the measurement study.

An finite-element model (Fig. 5.4) of the Apron Tower was developed in the commer-

cially available FE program, SAP2000. The model was made available to the author to

validate the estimated frequencies and mode shapes. Brief description of the model is pre-

sented here; however, the details of the model are not considered author’s work and hence

excluded from the thesis. Only the liner roof of the terminal structure below the apron

tower was modeled. Transfer girders are used to transfer the loads from the tower into

the lower terminal structure. The liner roof was modeled and the joints translations and

rotations were restrained (fixed support condition). The geometry, materials, and sections

were determined using as-recorded drawings. The model contains 1208 joints, 2387 frame

elements, and 2387 stiffness DOF. A rigid diaphragm assumption was made for the floor

levels, and all the 3 degrees of freedom were retained at each level resulting in 42 DOF

finite-element representation. A modal analysis was performed in order to estimate the

frequencies and mode shapes of the structure.

Data collected on September 28 and October 7, 2009 are utilized for this study. These

dates correspond to strong wind events with reported gusts in excess of 90 km/hr. The

sensor responses at each floor level are converted to a triad of 3 responses at the center

of mass using co-ordinate transformation. The correlation between the FE modes and

identified modes is performed using the modal assurance criterion (MAC) defined by,

MACi =
(ψTi ψ̄i)

2

(ψTi ψi)(ψ̄
T
i ψ̄i)

. (5.7)

In Eq. 5.7, ψi and ψ̄i represent the ith mode shape vectors for the FE model and those

obtained from the field data, respectively. MAC values range between 0 and 1, a value of
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Figure 5.3: Sensor locations

1 meaning a perfect correlation.

5.3.2 Results and Discussion

Typical recorded accelerations at the roof of the structure are shown in Fig. 5.5. The

presence of the dominant lateral modes in both the directions is clearly evident in the

responses. The mean and the coefficient of variation (cov(%)) of the natural frequency

and damping estimates for 100 trials using the MCC method are reported in Table 5.2.

Nine dominant modes from a total of twelve sensor measurements were successfully iden-

tified using the MCC method. The MAC values between the FE estimates and the MCC
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Figure 5.4: Finite-element Model of the Apron Control Tower

estimates for the nine modes are greater than 0.95. Furthermore, the covs for the natural

frequency estimates are relatively small. These indicate good confidence in the estimation

results, and the fidelity of the FE model. The mean values of modal damping are generally

in the range of reasonable values for structures of this construction type, between 1-3% for

the translational modes, and slightly higher for the torsional modes. A greater variation,

characterized by larger cov, in the estimates of damping is also expected and consistent

with the results from other studies [72]. The normalized mode-shapes for the first six

modes is shown in Fig. 5.6. Statistical analysis of the natural frequencies obtained by
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Figure 5.5: Roof acceleration responses for three sensors
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conducting approximately 100 trials of identification is reported in the form of a normal

probability plot in Fig. 5.7. It is clear from Fig. 5.7 that the identified frequencies follow

a normal distribution and the statistical variability of the natural frequency estimates is

relatively small.

Table 5.2: Identified frequencies and MAC values using the MCC method

Mode(#) ω (Hz) ω (Hz) ζ(%) MAC

FEA Mean cov (%) Mean cov(%)

1 0.66 0.68 1.30 0.84 23.0 0.98

2 0.92 0.86 3.50 1.98 19.0 0.96

3 1.40 1.50 1.90 2.91 21.0 0.97

4 2.70 2.66 1.80 1.20 15.0 0.99

5 3.01 2.92 1.80 2.81 15.0 0.98

6 3.36 3.47 2.00 4.30 22.6 0.97

7 4.59 4.65 2.10 2.65 15.2 0.98

8 6.08 6.11 1.80 2.96 21.2 0.99

9 6.71 6.62 2.20 4.56 24.1 0.98

Proceeding to the underdetermined case, only a sub-set of the sensor measurements,

ranging from two sensors to six sensors, are assumed to be available for identification.

Trigonometric shape functions are assumed for the initial estimate for the mixing matrix

to start the iterative process. The n modes are discretely sampled from shape functions

given by,

f i
(x
l

)
= sin

(
βi
π

2

x

l

)
; i = 1, 2, · · · , n (5.8)

where, x represents the location along the height of the structure and l the overall height.

107



0 0.5 1
0

1

2

3

4

1st Mode =>0.68 Hz 

0 0.5 1
0

1

2

3

4

4th Mode =>2.66 Hz

Y
 a

xi
s 

: F
lo

or
 le

ve
ls

0 0.5 1
0

1

2

3

4

5th Mode =>2.92 Hz
0 0.5 1

0

1

2

3

4

6th Mode =>3.47 Hz

0 0.5 1
0

1

2

3

4

2nd Mode =>0.87 Hz
0 0.5 1

0

1

2

3

4

3rd Mode =>1.59 Hz

X axis : Normalized floor displacements

Figure 5.6: Mode shapes identified using MCC

The coefficients, β are normally distributed with mean values (µ) of 1, 3, 5 and 7 and

standard deviations (σ) of 0.1, 0.25, 0.3 and 0.3 respectively. The reduced confidence in

estimating higher modes is reflected in the larger values of standard deviations. Sensitivity

study demonstrating the effect of β on the estimates, or lack thereof, is conducted by

assuming distributions for β rather than point values. Initial estimates for n modes are

generated by sampling n values from the distribution for each identification trial.

The results for the modes assuming mean values for β, µ + σ and an average for 50

trials by assuming samples from their respective distributions for β are shown in Fig. 5.8.

The results are shown after the modes converge to the final estimate for the corresponding

cases. The key conclusion is that the converged modes are relatively insensitive to the
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Figure 5.7: Normal probability paper plot of the identified natural frequencies

initial value for β, within the range considered, and all the initial estimates converge to

their mean values. In order to study the effect of the number of sensors considered for

identification, mean values are assumed for β and the identification is carried out on 100

data-sets. The average MAC values (with respect to FEA-modes) for the resulting modes

are reported in Table 5.3 as a function of the number of sensors considered in each case.

It is clear that the experiment results in identifying twelve modes for cases of 3 sensors or

more. For the case where only 2 sensors are considered, the EMD-MCC method fails to

identify the highest three modes. Typical IMFs for a sample case are shown in Fig. 5.9.

To assess the variability in the results amongst non-overlapping data-sets, 100 sub-sets
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of data are considered and the mean and cov for the 12 identified modes are reported in

Table. 5.4. The results assume measurements from 3 sensors (on the roof) and mean values

for β. The dispersion in the identified frequencies and damping improve substantially for

most of the modes when compared to the MCC method (Table 5.2). The convergence of

the method, as evident from the steady-state average 2-norm of the error in Eq. 5.6, is

shown in Fig. 5.10.

The availability of a high-fidelity FE model in this study allows a relatively straight-

forward means to select the appropriate frequency bands for processing the measurement

data using EMD. It is likely that such accurate FE models or prior knowledge may not

be available in many practical situations. A method to overcome this issue is proposed

here. Contiguous frequency bands are selected from measurements from three sensors

and the estimation is carried out using EMD-MCC for 100 non-overlapping data sets.

The variation in the estimated frequencies and the average error in each contiguous band

(given by elements of the vector γ in Eq.5.6) with a bandwidth of 0.5 Hz is shown in Fig.

5.11. It is clear that the average error is less corresponding to certain modal frequencies

which correlate well to the presence of physical modes whereas, for frequency bands that

do not contain physical modes, the average error is relatively large. Similar trends in the

dispersion for the natural frequency estimates are also observed, but the results are not

reported here for the sake of brevity. EMD allowed good delineation of closely-spaced

modes in some frequency bands, which is an important result.

A short note on the main limitation of the proposed method. Motivated by the physical

nature of the problem at hand, the issue of initial modal matrix estimate is overcome using

shape functions that satisfy the essential boundary conditions, namely zero-displacement

at the base of the structure. It is conceivable that such assumptions may not be possible

for a large class of problems in the area of source separation, and hence no claims as to

the efficacy of the proposed method are made in that regard. However, the results using
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real-life measurement data do demonstrate the strength and usefulness of the proposed

method in dealing with underdetermined problems in modal identification.

5.4 Summary

The MCC method is extended to handle the problem of underdetermined modal iden-

tification of structures. The underdetermined blind identification problem is solved by

first using empirical mode decomposition (EMD) to generate the intrinsic mode functions

(IMFs) and subsequently treating the IMFs as pseudo-sources in an iterative procedure

within the framework of the MCC method. The capability of the method is demonstrated

using actual measurements recently collected from the Apron Control Tower, located at

the Pearson International airport in Mississauga, Canada. Results show that it is possi-

ble to estimate twelve dominant modes with the data obtained from as few as 3 sensors.

Identification results show that the dispersion of the results for the natural frequencies is

relatively small, indicating a good degree of confidence in the estimation procedure. The

method is also shown to perform well under reduced number of sensors, which is clearly

advantageous in dealing with situations involving limited sensors. The need for sensor

measurements at the relevant degrees of freedom in order to identify the mode shapes is

alleviated, which the main advantage of this method.

Although the proposed method is expected to perform well for a large class of ambient

system identification problems, selecting the initial mixing matrix efficiently for general

source separation problems still remains a challenge which is one of the shortcomings of

the approach. Furthermore, this method fails to overcome the issue of identification due

to the presence of very closely spaced modes with energy coupling, such as those found

in structures equipped with TMDs. This issue is addressed in the next chapter in an

alternate hybrid approach of combining EMD and MCC, which also exhibits the capability
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Table 5.3: Performance of EMD-MCC method with reduced sensor density

Average MAC values

Mode No. of sensors

# 1 2 3 4 5 6

1 0.99 0.99 0.99 0.99 0.99 0.99

2 0.98 0.98 0.98 0.98 0.98 0.98

3 0.97 0.98 0.98 0.98 0.98 0.98

4 0.98 0.98 0.98 0.98 0.98 0.98

5 0.97 0.98 0.98 0.97 0.97 0.98

6 - 0.97 0.98 0.97 0.97 0.98

7 0.97 0.98 0.98 0.98 0.98 0.98

8 0.99 0.98 0.98 0.98 0.98 0.98

9 0.97 0.98 0.98 0.98 0.98 0.98

10 - 0.95 0.97 0.98 0.98 0.98

11 - - 0.98 0.98 0.98 0.98

12 - - 0.98 0.97 0.98 0.98
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Table 5.4: Statistics of identified frequencies (ω) and damping (ζ%) of the Apron Tower

using EMD-MCC methods

Mode # Model f(Hz) ω (Hz) ζ(%) MAC

Mean Cov(%) Mean Cov(%)

1 0.66 0.67 1.0 0.85 10.2 1

2 0.92 0.89 1.8 1.95 12.6 0.98

3 1.40 1.47 1.6 2.80 15.1 0.97

4 2.73 2.68 1.6 1.2 16.1 0.98

5 3.01 3.06 1.5 2.85 15.3 0.97

6 3.36 3.38 1.7 4.10 18.5 0.98

7 4.59 4.57 1.7 2.60 16.4 0.97

8 6.08 6.01 1.6 2.89 14.6 0.99

9 6.71 6.81 1.8 4.48 19.3 0.97

10 9.01 8.72 1.5 3.05 14.2 0.96

11 9.43 9.38 2.0 2.65 15.4 0.99

12 10.09 9.95 1.9 5.00 26.5 0.98
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Chapter 6

Identification and Retuning of

Inservice Tuned Mass Dampers

One of the main limitations of most time and frequency domain methods reviewed in

chapter 2 is their inability to identify structures with relatively large damping and closely-

spaced modes. Such instances occur, for example, in structures equipped with TMDs,

which have become increasingly common [82, 51, 58, 53, 1]. To the knowledge of the

knowledge of the author, this issue has not been addressed in the literature.

In this chapter, a novel hybrid time and time-frequency identification method, MCC-

EMD, is introduced to address the problem of identification of structures with a TMD. The

motivation to the identification of structures with TMD is provided first, followed by the

description of the methodology. The re-tuning algorithms are presented next. The details

of implementation, key results, and discussion are presented next. Experimental results

for a two-story bench-scale model with a TMD are presented, followed by some important

conclusions.
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Figure 6.1: Multi-degree of freedom system with TMD

6.1 Motivation

Tuned mass dampers (TMD), are one of the most popularly deployed passive vibration

energy dissipation devices in flexible structures [82, 51, 58, 53, 1]. Their performance is

well documented in the literature, e.g., [26, 86, 74, 31]. Fig. 6.1 shows the two common

types of TMD used in structures.

When tuned to the resonant mode of vibration of the primary structure, an optimally

designed TMD adds significant damping in the dominant vibration modes, thereby re-

ducing the overall vibration response of the structure. De-tuning, resulting from several
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sources such as the alteration of the structural properties of the primary structure, deteri-

oration of the TMD, in-correct design forecasts, etc., may lead to a significant loss in their

performance. In order to re-tune the TMD, system identification of the primary structure

while the TMD is in operation is often required, followed by an estimation of the modal

properties of the bare-structure. In this chapter, a novel identification and re-tuning algo-

rithm based on hybrid MCC and EMD method, is proposed. Using the proposed method,

the system identification procedure and the steps necessary to re-tune a sub-optimal TMD

using in-situ ambient vibration measurements are demonstrated.

Semi-active TMDs and multiple TMDs (MTMDs) are some examples of devices de-

signed to overcome the problem of de-tuning in TMDs [69, 78, 52, 1, 18, 42]. These devices

are fundamentally robust due to the nature of their design. For example, MTMDs feature

several individual TMDs, each tuned to a distinct mode of vibration, while semi-active

TMDs employ adaptive elements to respond to the changes in the operating environment.

Many existing applications of TMDs feature a single TMD, either of translational or sus-

pended type, with no provisions to adapt their intrinsic properties. Current practice to

overcome the de-tuning problem in such traditional TMDs involves the determination of

the modal properties of the primary structure while arresting the motion of the TMD [30].

Despite its simplicity, such an approach is both manually intensive and expensive. Alter-

natively, using the hybrid proposed here, the ambient vibrations measurements are used

directly in the estimation and re-tuning process, without manual intervention.

There are two main difficulties that are overcome using the method proposed here.

The first one is the difficulty introduced in the identification process due to the presence of

closely spaced modes in the TMD-controlled structure, along with a relatively high damping

in the fundamental mode(s) due to the TMD. The second difficulty is in the re-tuning

procedure, wherein it is necessary to extract the modal properties of the bare-structure

(without the effect of TMD) from the identified results of the structure with the TMD.
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Extracting the modal properties of the bare structure is necessary because the optimal

tuning parameters of the TMD are a function of the bare-structure modal properties. The

application of time-domain methods such as NeXT-ERA, SSI, SOBI and MCC failed to

identify the modal properties for a structure equipped with a TMD. Motivated by this, a

new hybrid approach integrating the MCC and EMD procedures within the framework of

blind identification is proposed.

Upon completion of the system identification procedure, there are two main tasks in the

process of re-tuning the TMD. First, the fundamental frequency and the primary mode are

estimated first using the measurement data obtained from the structure with a TMD. These

estimates are then processed using a newly developed procedure to obtain the estimates

for the optimal stiffness and the damping coefficients of the TMD. The methodology is

validated using both numerical simulations and experimental tests. Although not pursued

here, for the case of multiple TMDs tuned to different modes of the structure, more than

one mode is required for re-tuning. Since the complete modal information is obtained

from the system identification step, the extension of the proposed method to this case is

expected to be straight-forward.

6.2 Modal Identification using MCC-EMD Method

The MCC method is unable to resolve sources with close spectral content, which is one its

main drawbacks. This issue is of significance in the current study involving TMDs, as the

presence of a TMD introduces an additional mode with relatively little separation from the

structural mode of interest. In order to overcome this issue, the EMD method is integrated

within the framework of the MCC method, called MCC-EMD method. The basic elements

of the EMD signal processing technique has already been introduced in chapter 2. For the

sake of completeness a brief description of EMD is presented first followed by the details of
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the MCC-EMD method. To facilitate easy understanding of the material in the subsequent

discussions a list of acronyms is provided in Table. 6.1.

Table 6.1: Important Acronyms

TMD Tuned Mass Damper

EMD Empirical Mode Decomposition

MCC Modified Cross-Correlation

MTMD Multiple Tuned Mass Damper

MDOF Multi-Degrees-of-Freedom

SNR Signal-to-Noise Ratio

MAC Modal Assurance Criterion

RMS Root-Mean-Square

PGA Peak Ground Acceleration

The main purpose of EMD is to decompose a signal into intrinsic mode functions (IMF)

that admit a well-behaved Hilbert transform [43]. For MDOF systems, the IMFs extracted

from the free-vibration responses can be regarded as the modes of vibration [88]. An IMF

is defined as a function that satisfies the following conditions: (i) it is mono-component and

(ii) the mean values of the envelopes defined by the local maxima and the local minima are

zero. The procedure of extracting an IMF is called sifting. Details of the shifting procedure

have been explained in section 2.3.1 and are not repeated here.

Suitable band-pass filters need to be applied to the data to extract n IMFs, where n

represents the number of desired modes [88]. For example, an acceleration response ẍ(t)

can be decomposed into n IMFs according to:

ẍ(t) ≈
n∑
j=1

xj(t) + ε(t) (6.1)
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where ε(t) represents the residual error.

Delineating modes containing high energy content in the spectrum is relatively straight-

forward. However, this exercise is difficult for modes with low energy content, reflected

by their inconspicuous presence in the spectrum. This difficulty is overcome using the

MCC-EMD method as explained next. In the proposed method, the first 2 closely spaced

IMFs (Γi, i = 1, 2) of the structure (tuned to the first mode) are extracted using EMD

according to:

ẍ ≈
2∑
i=1

Γi(t) + ε̂(t) (6.2)

Then, the auto-correlation of Γ1 and Γ2 for all time-lags is calculated and represented

in a vector Γ̃. Subsequently, the next (n− 2) modes are extracted from correlation of the

responses (r) using MCC according to:

Âr = Q−1Vr̄

s̃ = Â−1
r r (6.3)

Then, an augmented matrix se is constructed, expressed as:

se =

[
Γ̃

... s̃

]
(6.4)

The modal transformation matrix or the mixing matrix Âe is estimated using the

following least square estimator:

Âe =
(
sTe se

)−1
sTe r (6.5)

The natural frequencies and the corresponding damping estimates are calculated di-

rectly by applying Hilbert transform to the recovered sources, se.
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The MCC-EMD method is extended to the case when the number of sensors is less than

the modes to be identified as follows. First, it is assumed that the mode-shapes of a flexural

structure follows the deflected profile of the form φ̂i(
x
l
) satisfying the zero displacement

boundary condition at x = 0. These functions are used to approximate the mode shape

coordinates at the degrees of freedom that are not instrumented (φ̂i(
x
l
)), and are given by:

φ̂i(
x

l
) = αi sin

(
([2i− 1] + βi)

πx

2l

)
; i = 1, 2, ...., n (6.6)

where, x represents the sensor locations along the height of the structure having the

overall height of l, and φ̂i is the estimated ith mode of the mixing matrix Âe. The un-

known coefficients α and β are estimated by minimizing the least-square error between the

observed and the estimated values (using Eq. 6.6) of the mode-shape coordinates at the

instrumented floor levels. Once αi and βi are estimated, the mode shape co-ordinates at

the un-instrumented floor levels are obtained using Eq. 6.6.

6.3 Re-tuning

In order to derive the re-tuning algorithms, it is instructive to observe the equations of

motion for a two-degree-of-freedom representation for the system shown below.

The equations of motion for the system in Fig. 6.2 can be written as:

MẌ + CẊ +KX −
[
k(x−X) + c(ẋ− Ẋ)

]
= w

mẍ+
[
k(x−X) + c(ẋ− Ẋ)

]
= 0 (6.7)

where, M, C, K are the mass, damping, and stiffness coefficients of the primary structure,

and m, c, k are the mass, damping, and stiffness coefficients of the TMD. w is the external

excitation source, which is assumed to be Gaussian and white for the purposes of this study.

Of particular interest is the case of TMD for a general N -degree primary structure. The
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Figure 6.2: Two-degree of freedom model

equations of motion for the ith mode when the TMD is present in the jth floor level can be

written as (assuming a proportionally damped system):

Miÿi + Ciẏi +Kiyi − φij
[
k(x−Xj) + c(ẋ− Ẋj)

]
= wi

mẍ+
[
k(x−Xj) + c(ẋ− Ẋj)

]
= 0 (6.8)

where, the quantities Mi, Ci, Ki, wi should be interpreted as corresponding to the ith

mode. From Eq. 6.7 and Eq. 6.8 one can readily observe that as long as φij is normalized

such that its value is 1 for the jth location, the TMD design quantities obtained using Eq.

6.7 can be used directly to design a TMD corresponding to the ith mode [74].

With this background, the optimal design TMD parameters are calculated for the

system described in Fig. 6.2. The optimal TMD parameters are specified by its optimum

mass ratio (µopt), optimum frequency ratio (fopt), and optimum damping ratio (ξopt). These

quantities represent the ratio of the TMD parameters to the corresponding primary struc-

ture parameters. Since it is the issue of re-tuning that is dealt with here, µopt is assumed to

be according to the as-built system, i.e., µopt = µ, the mass ratio of the existing structure.

Hence, fopt and ξopt are determined as a function of the mass ratio and primary structure
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damping ratio (ζp) using the procedure described next.

There are two main approaches to calculate the optimal tuning parameters of the

TMD. In the first method, analytical formulae are developed by minimizing the Root-

Mean-Square (RMS) acceleration (displacement) response of the primary mass. Such

formulae have been well-documented in the literature for various types of excitations

[86, 74, 31, 62, 60, 61]. The second approach is a numerical search, where the optimal

values are determined using simulations. In this approach, many limitations that exist in

the analytical methods such as the nature of disturbance, type of damping, etc., do not

exist. The main idea here is to simulate the response quantity of interest, say the acceler-

ation of the main mass, for various values of the frequency ratio (f) and TMD damping

ratio (ζs) with a given mass ratio. This procedure is repeated for several mass ratios for

a given ζp. The optimal values of frequency ratio and TMD damping ratio, fopt and ζopt

respectively, are obtained by minimizing the mean-square maximum floor acceleration di-

vided by the mean-square of the excitation. This is repeated for different levels of ζp and

the combination of fopt and ζopt in each case are used to develop regression relationships

for the optimal tuning parameters.

Fig. 6.3 shows the plots of fopt and ζopt with respect to µ, for ζp = 2% and 5%

respectively. The results obtained using the procedure described above are processed using

standard curve-fitting techniques. It is seen that the ζopt is insensitive to the value of ζp,

whereas fopt depends on ζp and thus, fopt is further regressed over ζp. The final relationships

so obtained (Fig. 6.9) are as follows:

ξopt = 2.5µ (1.0− 3.25µ)

fopt = βµ2 − 1.8µ+ 1.0 (6.9)

where, β = 16.7e−60ζp and 0% ≤ ζp ≤ 5%. The optimal parameters valid for mass ratios

in the range 0 − 0.15 as described in Eq. 6.9, are illustrated in Fig. 6.4. An important

observation to be noted from Fig. 6.4 is that for mass ratios less than 5%, the effect
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Figure 6.3: Optimal TMD parameters for various values of ζp

of primary structure damping ζp on the optimal frequency ratio fopt is not significant.

Similarly, the effect of ζp on ξopt is minimal for the range of values considered here. For

the current study, ζp is assumed to be 2% in the fundamental mode.

The main issue in extending the expressions in Eq. 6.9 to a general N −DOF system,

whose ith mode is described by Eq. 6.8, is the calculation of the modal mass ratio µi =

m
φT

i Mφi
, and the corresponding frequency in the ith mode. This means that the ith mode

and frequency of the N − DOF primary structure is to be estimated-assuming the mass

distribution of the structure is known-using the measurements obtained from the structure

with the TMD. The procedure to determine φi is described next. Once φi is estimated,

the optimal parameters of the TMD can be calculated using:

kopt = f 2
optΩ

2m

copt = 2ξoptfoptΩm (6.10)

where Ω is the natural frequency of the primary system to which the TMD is tuned.
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Figure 6.4: Regression models for optimal parameters of the TMD

6.3.1 Modal estimation of the primary structure and re-tuning

For the ensuing discussions and results, the TMD is assumed to be connected to the roof,

i.e., the DOF represented by N . The estimates for the modal properties (size, N + 1)

using the MCC-EMD method for the structure with the TMD cannot be directly utilized

for re-tuning, since they represent the TMD-controlled structure, not the bare structure.

The estimates are updated to estimate the modal matrix of the bare structure as follows.

To begin the re-tuning process, Ω, which is the fundamental frequency of the primary

structure, is approximated by the arithmetic mean of the two lowest frequencies (ω1 and

ω2) of the structure with the TMD according to:

Ω̂ ≈ ω1 + ω2

2
(6.11)

The modal parameters including ω1 and ω2 are determined using the MCC-EMD

method described earlier. The columns of the estimated modal matrix Φ̃N+1×N+1 cor-

responding to the two frequencies ω1 and ω2 are averaged, followed by an elimination of

the row corresponding to N+1 DOF, resulting in the estimate, Φ̂N×N . This is motivated by

the observation that the amplitude of the TMD motion is maximum in the neighborhood
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of the tuned frequency, and minimum in the remaining ones. Once Φ̂ and Ω̂ are estimated,

the optimal parameters of the TMD are calculated according to Eq. 6.9 and Eq. 6.10. The

TMD is re-tuned using Φ̂ and Ω̂. The process is repeated until the difference in magnitude

of the energy content in the frequencies ω1 and ω2 of the controlled structure reaches a

specified tolerance, ε. This is given by:

s̃ke(ω1)− s̃ke(ω2)

s̃ke(ω2)
≤ ε (6.12)

where s̃e(ω) is the magnitude of the Fourier transform of s̃e(t), and k represents the iteration

step.

The re-tuning method proposed above requires that the TMD be successively re-tuned

at the end of each iteration step. Where this is not possible (due to practical or other

limitations), two methods for re-tuning the TMD which do not involve iterative procedures

are proposed. In the first method, the optimal frequency ratio, damping ratio, and the

fundamental frequency are calculated according to:

Ω̃ = E[Ω]

f̃opt = E[fopt]

ξ̃opt = E[ξopt] (6.13)

where E[·] denotes the expectation operator, which is the sample mean for the purposes

of this study. These values are then used to calculate the TMD parameters according to

Eq. 6.10. This method is referred to as mean-level re-tuning. In the second method,

the optimal frequency ratio, damping ratio, and the fundamental frequency are calculated

according to:
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Ω̃ = E[Ω] + σΩ

f̃opt = E[fopt] + σfopt

ξ̃opt = E[ξopt] + σξopt (6.14)

where, σ denotes the standard deviation of the corresponding quantity. Re-tuning

according to Eq. 6.14 is referred to as mean + σ level re-tuning. In both these methods,

the only requirement is the availability of multiple observations to allow for a statistically

meaningful analysis. This could be, for example, in the form of a relatively long observation

period to allow for segmentation of the data into several non-overlapping windows of data.

6.4 Numerical Simulation

6.4.1 Numerical Model

A 5−storey structure model with a TMD at the top floor [62] is simulated to demonstrate

the methodology, and to present the key results for the proposed algorithm. The state-

space model for this system system subjected to an external disturbance vector, w is given

by:

ẋ = Ax + E w

y = C̃x (6.15)

Here, the vector x is a vector of states, and the vector y represents the output vector, which

is governed by the C̃ matrix. The matrix, E governs the location of the excitation on the

structure. The system matrix, A is constructed using the mass, stiffness and damping

properties, whose structure are shown below:
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M =

 M [I]5×5 [0]5×1

[0]1×5 m



K =

 [Ks]5×5 [0]5×1

[0]1×5 [0]1×1

+


[0]4×4 [0]4×2

[0]2×4 k

 1 −1

−1 1




C =

 [Cs]5×5 [0]5×1

[0]1×5 [0]1×1

+


[0]4×4 [0]4×2

[0]2×4 c

 1 −1

−1 1




(6.16)

where, Ks, Cs, k, c stands for superstructure, and TMD stiffness and damping coefficients,

respectively. For the bare structure, the weight of each floor is assumed to be 19.2 kN, and

the natural frequencies are 0.91, 3.37, 7.11, 10.66, and 12.73 Hz. The damping is assumed

to be 2% critical in all modes. The weight of the TMD is 2.74 kN, k = 77.8 N/cm, and

c = 3.72 N.s/cm. The mode shape matrix for the bare structure is given by [62]:



1.00 1.00 1.00 1.00 1.00

3.02 2.12 0.92 −0.33 −1.21

5.27 1.89 −0.64 −0.63 1.12

7.31 0.18 −0.96 0.88 −0.70

8.96 −2.09 0.74 −0.35 0.21


(6.17)

Two kinds of excitations are considered for this study: stationary un-correlated white

noise generated from a Gaussian distribution, and earthquake (El Centro ground motion,

PGA of 0.3g) excitation. Results for the case of availability of measurements at all the

degrees of freedom, and partial availability of measurements (accelerations at the 1st, 3rd,
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the roof, and the TMD level) are studied. To investigate the sensitivity of noise on the

performance of the proposed method, limiting cases of 0% and 20% Signal-to-Noise Ratio

(SNR) are considered. The correlation between the theoretical structural modes and the

identified modes is performed using the Modal Assurance Criterion (MAC)[65].

6.4.2 Identification Results

The results of identification of the structure with the TMD using the MCC-EMD method is

presented in this section. In this approach, the first two closely spaced modes are extracted

by decomposing the acceleration signal obtained from the higher floors using EMD, followed

by the application of suitable intermittency criteria. Then, the remaining 4 well-spaced

modes are separated by first eliminating the 2 modes extracted using EMD through suitable

high pass filters, followed by the application of MCC method to the residual signal.

The identification results from traditional SOBI and MCC methods are relatively poor

in the presence of a well-tuned TMD. This is evident from the simulation results presented

in Table 6.2. Table 6.2 shows the correlation of the predicted and theoretical modes as a

function of tuning ratio (α), defined as:

α =
f

fopt
(6.18)

where f stands for tuning frequency. α = 1, implies an optimally designed TMD, whereas

other values correspond to de-tuned cases. It is evident from the results that as α ap-

proaches 1, SOBI and MCC methods are unable to provide reliable estimates for the two

dominant modes. The performance deteriorates further in the presence of measurement

noise (results not shown).

The results presented next are for the case of the structure with TMD using the MCC-

EMD method. The process of sifting to delineate the two closely-spaced modes using
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Table 6.2: Results from the SOBI and MCC methods in terms of MAC as a function of

the tuning ratio (α)

SOBI MCC

α Mode Mode

1 2 3 4 5 6 1 2 3 4 5 6

4.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

3.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2.5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2.0 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

1.5 0.95 0.97 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99

1.2 0.92 0.96 0.98 0.98 0.98 0.99 0.95 0.96 0.99 0.99 0.99 0.99

1.1 0.89 0.93 0.98 0.98 0.98 0.99 0.91 0.94 0.99 0.99 0.99 0.99

EMD is shown in Fig. 6.5. The effect of adding noise is studied next, and the results are

presented in Table 6.3. When the accelerations at all the floor locations are available, the

MCC-EMD method is able to identify the modes of the structure well. The results hold

true for the case of SNR=20% as well, and the mode shapes are presented in fig. 6.6. The

average frequencies and damping ratios for 50 trials using monte-carlo simulation, and the

absolute values of percentage errors with respect to their theoretical values are presented

in Tables 6.4 and 6.5. From these results, it can be seen that the results of identification

are accurate for all the modes, for both stationary and earthquake cases. The error in

the damping estimates is within 5%, which is slightly more than the frequency estimates
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Figure 6.5: Delineation of closely spaced modes using EMD

(within 2.6%). The presence of the TMD results in relatively large values of damping-more

than 7% critical-for the two lowest modes.

The MCC-EMD method is then used to identify the TMD controlled system when

only partial floor acceleration measurements are available, and the results are presented

in Tables 6.3, 6.4 and 6.5 alongside the full response cases. To obtain the mode shapes, a

least square error minimization procedure between the observed and the estimated mode

shape coordinates is adopted as explained previously. The unknown coefficients αi and βi

are estimated by minimizing the least square error between the observed and the estimated

values (using Eq. 6.6) of the mode-shape coordinates at the 1st, 3rd, 5th floor levels. Once

αi and βi are estimated, obtaining the mode shape co-ordinates at the 2nd and 4th floor

levels for the four modes becomes a relatively straightforward task. Estimating the 6th

mode by the application of Eq. 6.6 is difficult due to a large change in the curvature. The
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Figure 6.6: Identified Mode-shapes

identified values of frequencies and damping ratios are reasonably accurate for the first

5 modes. Compared to the frequency estimates, the absolute values of percentage errors

in the damping estimates is slightly higher. The normalized mode shapes for the first 5

modes are shown in Fig. 6.6. It can be observed from Fig. 6.6 that the method fails to

estimate the 6th mode shape for the reason stated earlier. However, the frequencies and

damping for all the 6 modes are identified with sufficient accuracy, even in the presence of

measurement noise, which is an important result.
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Table 6.3: Results of identification for two values of signal-to-noise ratio (SNR)

Mode No White Noise Earthquake

SNR=0% SNR=20% SNR=0% SNR=20%

Full Partial Full Partial Full Partial Full Partial

1 0.97 0.96 0.97 0.95 0.97 0.95 0.96 0.95

2 0.99 0.99 0.98 0.98 0.99 0.97 0.98 0.97

3 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.98

4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

5 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.97

6 0.99 - 0.99 - 0.99 - 0.98 -

6.4.3 Re-tuning Results

The mode-shape and the fundamental frequency estimates for a single iteration cycle for

the 6-DOF structure (given in Eq. 6.15 and Eq. 6.16), for various levels of de-tuning, are

presented in Table 6.6. A parameter λ is used to vary the TMD stiffness of the controlled

system (i.e, ktmd = λkopt). From the results it can be concluded that the mode-shapes of

the 5-DOF system can be identified with a high degree of confidence, as reflected by their

MAC values, using the procedure outlined earlier. However, a single iteration consistently

under-estimates the fundamental frequency Ω. Furthermore, the accuracy tends to decrease

as λ is in the neighborhood of 1.0, which is the optimal value.

To assess the effectiveness of the mean-level and the mean+σ level re-tuning algorithms,

50 trials of simulations are performed, and the identification is carried out using the proce-
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Table 6.4: Identified frequencies, modal damping ratio, and the error (in parentheses) of

the structure with the TMD for the broad-band excitation case with SNR = 20%

Mode No ω (Hz) ζ(%)

True Full Partial True Full Partial

1 0.78 0.79 0.79 7.67 7.93 7.99

(1.28%) (1.28%) (3.12%) (3.9%)

2 0.99 1.00 1.01 7.20 7.00 6.96

(1%) (2%) (2.78%) (3.33%)

3 3.38 3.40 3.41 2.16 2.10 2.08

(0.59%) (0.89%) (2.78%) (3.70%)

4 7.10 7.08 7.07 2.032 1.98 1.96

(0.28%) (0.42%) (2.56%) (3.54%)

5 10.66 10.67 10.68 2.007 1.96 1.94

(0.09%) (0.19%) (2.34%) (3.34%)

6 12.73 12.50 12.48 2.001 1.99 1.96

(1.81%) (1.96%) (0.55%) (2.05%)

dures described in the previous section. A parameter λ is used to vary the TMD stiffness of

the controlled system (i.e, ktmd = λkopt). The values of λ are considered between 0.75-1.25,

to reflect various levels of de-tuning. The cases where λ varies between 0.75-0.9 refer to an

under-tuned system, whereas the same between 1.00 - 1.25 refers to an over-tuned system.

To verify the accuracy of the iterative re-tuning method, the algorithm is implemented on

a single set of data, unlike the multiple sets necessary for the mean-level and the mean+σ

level re-tuning algorithms. These are shown in Figs. 6.7 to 6.9.
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Table 6.5: Identified frequencies and MAC values of 5 storey TMD system using El −

Centro ground motion response with SNR = 20%

Mode No ω (Hz) ζ(%)

True Full Partial True Full Partial

1 0.78 0.79 0.80 7.67 7.97 8.00

(1.28%) (2.56%) (3.64%) (4.03%)

2 0.99 1.00 1.01 7.20 6.99 6.95

(1%) (2%) (2.92%) (3.47%)

3 3.38 3.40 3.42 2.16 2.09 2.07

(0.59%) (1.18%) (3.24%) (4.17%)

4 7.10 7.06 7.03 2.032 1.96 1.94

(0.56%) (0.99%) (3.54%) (4.53%)

5 10.66 10.70 10.74 2.007 1.95 1.92

(0.38%) (0.75%) (2.84%) (4.33%)

6 12.73 12.49 12.47 2.001 1.97 1.95

(1.89%) (2.04%) (1.55%) (2.55%)

From Fig. 6.7, it is evident that as λ approaches 0.9, the performance of mean-level

re-tuning deteriorates compared to the other three methods. This observation is consistent

with the results in Table 6.6, where the error in the estimate of Ω increases as λ approaches

1. The mean+σ-level re-tuning provides more reliable estimates of the optimal TMD

parameters, which is clear from the Fourier amplitudes corresponding to the closely-spaced

modes. The results of re-tuning using the iterative method is comparable to mean+σ-level

re-tuning. Observations along similar lines can be drawn for the case of an over-tuned

system as evidenced by Fig. 6.8.
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Table 6.6: Identification of the primary structure from the controlled structure

λ MAC values Ω Ω̂ %error

1 2 3 4 5 true est

0.75 0.99 0.99 0.99 0.99 0.99 0.91 0.88 3.30

0.90 0.99 0.99 0.99 0.99 0.99 0.91 0.86 5.49

1.00 0.99 0.99 0.99 0.99 0.99 0.91 0.87 4.40

1.10 0.98 0.99 0.99 0.99 0.99 0.91 0.89 2.20

1.25 0.98 0.99 0.98 0.99 0.99 0.91 0.88 3.30

The average of the error given by Eq. 6.12, for 50 simulation trials is shown in Fig. 6.9

as a function of the p, which is the ratio of the TMD mass to the total structure mass,

for the under-tuned case. It can be seen that the iterative method of re-tuning converges

close to the optimally tuned condition rapidly (i.e., within 2 iterations). Similar results

are observed for the over-tuning case as well, but they are not included here due to space

limitations.

6.5 Experimental Study

In order to demonstrate the practical applicability of the proposed identification and re-

tuning methods, the algorithms are implemented using acceleration data acquired from a

bench-scale two-story model with a pendulum TMD as shown in Fig. 6.10. The structural

model consists of two floor weights, 140 N each. Flexural stiffness is provided by four

1.30 cm aluminum equal angles, 130 cm tall and 0.17 cm thick. The identified lateral
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Figure 6.7: Results for re-tuning for an under-tuned system

frequencies of this system are approximately 2.65 Hz. The identified structural damping

in both the lateral directions is approximately 2% critical. The suspended mass is 1.5 kg,

which corresponds to a mass ratio of approximately 5%. The position of a tuning frame

as it slides inside a rail provides a simple means to adjust the natural frequency of the

pendulum. An air-damper is connected between the suspended mass and the rail assembly

to provide a small amount of damping to the pendulum TMD. A broad-band excitation is

commanded to an actuator (shaker shown in Fig. 6.11)connected to the first floor level,

and the accelerations are recorded using low-frequency accelerometers at both the floor

levels, in both directions. The theoretically calculated optimal length of the pendulum
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for the set-up in Fig. 6.10 (and Fig. 6.11) using the expressions given in Eq. 6.10 is

44 mm, which will serve as a base-line to compare the re-tuned length. The mode shape

and frequency for this purpose was obtained by constructing a finite-element model of the

model, and conducting an eigen-value analysis of the system.

The tuning frame is adjusted first to a de-tuned configuration with an effective length

of 35 mm, and the acceleration response data are collected for the broad-band excitation

case. The sampling frequency is set to 100 Hz throughout the experiment. The excitation is

connected to the lower floor. The MCC-EMD method, along with the re-tuning algorithms

are implemented on the measured data. The optimal length as calculated using mean-level

and mean+σ level algorithms are 41.1 mm and 44.6 mm, respectively. A total of 20

time-segments were used for the calculations, and the structure was excited for a total

of 5 minutes. The magnitude of the transfer function between the roof acceleration and

the command force is shown in Fig. 6.12, for three cases: de-tuned, mean and mean+σ-

level re-tuning. The advantage of re-tuning is clearly evident from the transfer function

plot. As was previously observed from the simulation results, the mean+σ level re-tuning

provides good estimates for the optimal length, and the mean-level re-tuning results in

lower estimates. The iterative re-tuning provided identical values of the optimal length as

the mean+σ-level re-tuning, and are hence not shown.

6.6 Summary

A novel hybrid time and time-frequency identification algorithm based on blind source

separation principles, called the MCC-EMD method, is proposed for structures equipped

with TMDs. This method is then extended to re-tune TMDs using ambient vibration

measurements. The proposed algorithm uses empirical mode decomposition (EMD) to

separate the closely spaced modes, followed by the application of the MCC method to
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resolve the remaining well-separated modes. It is shown that the identification method is

robust to relative high levels of noise, of the order of 20%, and can be extended to the case

of partial measurements as well. Furthermore, it is shown that the new method to re-tune

TMDs is effective for a range of conditions, and is capable of handling practical situations

as evidenced from the experimental results involving ambient measurements.
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Figure 6.8: Results for re-tuning for an over-tuned system
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Figure 6.9: Convergence of the iterative re-tuning method, under-tuned case
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Figure 6.10: Schematic of the experiment to validate the identification and re-tuning algo-

rithms
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Figure 6.11: Experimental set-up and instrumentation details
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Chapter 7

Conclusions and Recommendations

An extensive study of blind identification techniques has been undertaken in this disserta-

tion, with special emphasis on amalgamating the time domain and time frequency domain

techniques, to develop a set of new hybrid time and time-frequency source separation meth-

ods. En-route, several milestones have been achieved in the context of blind identification

of structures. The key contributions of this research are briefly summarized as follows:

1. A new blind identification has been developed in time domain called modified cross

correlation method (MCC). This method extends the ideas of SOBI to address modal

identification of full-scale structures subjected to ambient vibrations. Specifically, the

issue of estimating damping and the presence of noise is addressed in this framework.

2. A hybrid time and time-frequency method extending the concepts of MCC to the

wavelet domain utilizing stationary wavelet transforms has been introduced.

3. A novel hybrid algorithm, called EMD-MCC to address the case of under-determined

blind identification of full-scale structures has been developed. This method utilizes

the concepts of a time-frequency decomposition, known as empirical mode decompo-

sition, and forms a hybrid approach within the framework of BSS.
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4. The concept of hybrid time and time-frequency integration is extended to address

the issue of identification of structures with large amount of damping in the primary

modes, specifically for the case of structures equipped with TMDs. The methodology

is then extended to re-tune in-service TMDs.

5. Contributions listed in items 1 and 2 have already been accepted in reputed inter-

national journals [37, 35]. Contribution listed in item 2 was selected as a featured

article by the Journal Smart Materials and Structures. Contributions listed in items

3 and 4 are currently under review in reputed international journals [39, 38].

7.1 Conclusions

Having highlighted the significant contributions of this dissertation, the central conclusions

in this dissertation are summarized as follows:

1. Most existing methods to perform BSS such as ICA and SOBI, fail to perform ade-

quately in the presence of even relatively small amounts of damping. In this regard,

the MCC method, which is an extension of the traditional SOBI technique, per-

forms better than SOBI under non-stationary excitations and moderate amount of

damping. MCC outperforms SOBI for very high levels of damping under stationary

excitations .

2. WMCC performs better than its time domain counterparts, MCC and SOBI, in

identifying full-scale structures under both ambient and earthquake excitation cases.

Case studies have shown that the method is more equipped compared to SOBI and

MCC methods when the number of sensors used to acquire data is reduced, which

is clearly an advantage while dealing with practical economics of health monitoring

and modal identification of real full-scale structures.
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3. EMD-MCC is shown to identify real full-scale structures with several degrees of free-

dom using a relatively few sensor measurements. The need for sensor measurements

at all relevant degrees of freedom in order to identify the mode shapes is alleviated,

which is the main advantage of this method. The method is expected to perform well

for a large class of structural and mechanical system identification problems, provided

the initial mixing matrix is selected efficiently based on the dynamic behavior of the

given structure.

4. A novel identification algorithm based on hybrid time and time frequency blind source

separation principles, called the MCC-EMD method has been developed to identify

structures equipped with TMDs. The method is then extended to re-tune TMDs

using ambient vibration measurements. It is shown that the identification method

is robust to relative high levels of noise, of the order of 20%, and can be extended

to the case of partial measurements as well. Furthermore, it is shown that the new

method is effective to re-tune TMDs for a range of conditions, and is capable of

handling practical situations as evidenced from the experimental results involving

ambient measurements.

7.2 Recommendations for future study

In course of the dissertation work, many facets of blind identification using the principles

of BSS have been unraveled. Some of the possible extensions of the current work can be

summarized as under:

1. Extension of the current algorithms to handle systems whose dynamic properties

(eg., stiffness) change with time, or track abrupt changes in stiffness that may occur

when a structure sustains damage. Presently all the algorithms operate in a batch
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mode. These algorithms could potentially be equipped to operate in an adaptive

framework.

2. The present hybrid methods could also be made more robust to investigate the prob-

lem of blind identification of structures under wide variety of non-stationary excita-

tions.

3. The problem of under-determined BSS could be generalized for a wide class of struc-

tures by relaxing the requirement of initial mode shape.

4. Presently none of the BSS methods are equipped to identify structures with complex

modes, a case commonly encountered in structures with non-proportional damping.

The current methods could be extended to identify complex modes.

5. The hybrid algorithms could be replaced by a set of algorithms utilizing the principles

of sub-band decomposition, operating completely under the framework of BSS. Such

algorithms have the potential to address the issue of under-determined source sepa-

ration as well as to tackle identification under extremely narrow-band excitations.

6. Extension of the MCC-EMD method, to identify structures equipped with TMDs, in

an adaptive manner. Re-tuning of TMDs could also be accomplished in an adaptive

manner, implemented real-time.

151



APPENDICES

152



Appendix A

State Space Models

State space models are a way of representing the second order dynamic system models, in

the form of first order differential equations. Consider the equation of motion of a n degree

of freedom linear, time invariant system, in the second order form :

Mẍ(t) + C̃ẋ(t) + Kx(t) = u(t) (A.1)

where M, C̃ and K are n × n matrices defining the mass, damping, and stiffness of

the structure, x(t) and u(t) are n× 1 vectors describing the displacement and excitation,

respectively. Denoting the displacements and the velocities at various degrees of freedom

by x1(t), x2(t), .............., xn(t) and ẋ1(t), ẋ2(t), .............., ẋn(t) respectively, the state

vector x(t) is defined as:

x(t) = [x1(t), x2(t), .............., xn(t), ẋ1(t), ẋ2(t), .............., ẋn(t)]T (A.2)

The second order equation can now be replaced by the state-space form according to :
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ẋ(t) = Ax(t) + B u(t)

y(t) = Cx(t) (A.3)

Here, the vector y represents the output vector, which is governed by the C matrix.

The system matrix, A, and the excitation matrix B are given by :

A =

 [0]n×n [I]n×n

−M−1K −M−1C̃


B =

[
[0, 0, 0, ......., 0]1×n ,

[
− 1

m
,− 1

m
,− 1

m
, .......,− 1

m

]
1×n

]T
(A.4)

where m is the mass lumped at each floor level (i. e. M = diag(m)). For sampled data

systems with discrete sampling intervals 0, ∆t, 2∆t, ............., (k+1) ∆t, ..........., n∆t, Eq.

A.3 can be expressed as:

x(k + 1) = Āx(k) + B̄ u(k)

y(k) = Cx(k) (A.5)

Eq. A.5 is called discrete state space form. The matrices Ā and B̄ are related to the

continuous time state matrices A and B according to :

Ā = eA (k∆t), B̄ =

∆t∫
0

eA τ B dτ (A.6)
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Appendix B

Markov Parameters

The response of a linear system in discrete time (Eq. A.5), to unit pulse input is often

referred to as markov parameters. The unit pulse input to the system given by Eq. A.5

can be represented as :

u(k) = 1

u(k − 1) = u(k − 2) = u(k − 3) =, ............ = u(k − p) = 0

u(k + 1) = u(k + 2) = u(k + 3) =, ............. = u(k + s− 1) = 0

(B.1)

Solving for the output y(k), by substituting the Eq. B.1 into the Eq. A.5 with zero

initial condition yields:

x(k) = 0 ⇒ y(k) = 0

x(k + 1) = B̄ ⇒ y(k + 1) = CB̄

x(k + 2) = ĀB̄ ⇒ y(k + 2) = CĀB̄

: :

: :

x(k + s− 1) = Ās−2B̄⇒ y(k + s− 1) = CĀ
s−2

B̄

(B.2)
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The constant matrices:

CB̄, CĀB̄, .........,CĀ
s−2

B̄ (B.3)

are called system markov parameters or, in short, markov parameters. The markov

parameters are commonly used as the basis for identifying mathematical models for linear

dynamical systems.
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Appendix C

SOBI in the presence of additive

measurement noise

Consider the static mixture of sources mixed with noise below:

x(k) = As(k) + ν(k) (C.1)

Under the assumption that the sources, s are uncorrelated with unit variance, and the

noise is uncorrelated white with a variance σ2, the main steps in SOBI are as follows. The

covariance matrices for zero and non-zero time-lags are given by:

R̂x(0) = ARs(0)AT + σ2I (C.2)

R̂x(p) = ARs(p)A
T (C.3)

The standard whitening is realized by a linear transformation expressed as under:

x̄(k) = Qx(k) = Λ
− 1

2
x VT

x x(k) (C.4)
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The whitened correlation matrix is given by

Rx̄(p) = QARs(p)A
TQT (C.5)

If the diagonal matrix Λx̄ has distinct eigen-values, then the mixing matrix can be

estimated uniquely by the following equation:

Â = Q−1Vx̄ = VxΛ
1/2
x Vx̄ (C.6)
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Appendix D

ARMA model for wind Excitation

The longitudinal and lateral components of the turbulent wind is modeled using an ARMA

model representing a Gaussian stochastic process [77, 17] at each spatial location, V (t),

where V (t) has zero mean, unit variance and is stationary over time. Assuming the order

of the moving average and the autoregressive parts as (q), the vector ARMA process is

then given by

V (t) =

q∑
i=1

AiV (t− i∆t) +

q∑
i=0

BiΨ (t− i∆t) (D.1)

where Ψ(t) is the vector of white noise at time t. The first step is to choose a model for

the cross correlation matrix CV (t) between V (s) and V (s + t). The resulting correlation

matrix is then used to determine the coefficient matrices in Eq. D.1 [77, 17]. The compo-

nents of the cross-correlation matrix CV (t) is given by Pij(t)which is the cross-correlation

between the ith and jth locations at times s and s + t, respectively. If (yi, zi) denotes the

ith spatial location, then Pij(t) is assumed to be:

Pij(t) =

∞∫
0

√
Si(n)Sj(n)coh(yi, zi, yj, zj, n) cos(2πnt)dn (D.2)

where Si(n) is the power spectral density function at location i and coh(yi, zi, yj, zj, n) is
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the coherence at frequency n. The Kaimal spectrum [50] is used as the basis for generating

the turbulent fluctuations and is given by the following equation:

nSi(n)

u2
∗

=
105f

(1 + 33f)5/3
(D.3)

where u∗ is the friction velocity, and f(n, z) = nzi

U(zi)
is the reduced frequency. Spatial

coherence is modeled using Davenport’s approximation:

coh(yi, zi, yj, zj, n) = exp

−n [c2
z (zi − zj)2 + c2

y (yi − yj)
]1/2

1
2

[U (zi) + U (zj)]

 (D.4)

where the constants cy and cz describe the relative effect of separation in the y (lateral) and

z (height) directions respectively and U being the mean wind velocity. The cross-correlation

matrices for each time are then combined to form a complete correlation matrix C for the

process V (t). In the next step the matrix C is used to calculate the coefficient matrices of

the ARMA process (Ai and Bi).

For the lateral component of turbulence, the following (kaimal) spectrum is used:

nSi(n)

u2
∗

=
17f

(1 + 9.5f)5/3
(D.5)

The component due to vortex shedding is developed in a similar manner with the

underlying spectrum given by [85] :

S(n) =
C2
s

2Bπ3/2fs
exp

−(1− n/2πfs
B

)2
 (D.6)

where fs =shedding frequency; B =spectral bandwidth and Cs = is the fluctuating

wake coefficient.
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Appendix E

Joint Diagonalization

In order to derive the expression of the jacobi angle for joint diagonalization, it is instructive

to consider the ordinary diagonalization of a simple 2× 2 real symmetric matrix.

Consider a 2× 2 real symmetric matrix of the form,

M =

 ak bk

bk dk

 (E.1)

The transformation matrix parameterized by θ is of the form:

V =

 cos θ − sin θ

sin θ cos θ

 (E.2)

The diagonalizing transformation is given by the quadratic:

Λ = ΦTMΦ (E.3)

where, the angle,

tan 2θ =
2bk

ak − dk
(E.4)
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and Λ, Φ are the diagonal matrix of eigenvalues and orthonormal eigenvectors respec-

tively [33, 68].

Consider, the case of multiple matrices which are stacked one after another as for

example:

R =

 ak bk

bk dk

 ek fk

fk gk

 mk nk

nk pk

 ..................
 xk yk

yk zk

 (E.5)

Such matrices can be jointly diagonalized by first forming a 2 × 2 matrix G and then

calculating the rotation angle θ which depends on the on and off diagonal terms of the

matrix G . The matrix G is given by [81]:

G =

 ak − dk ek − gk mk − pk ... ...

2bk 2fk 2nk ... ...

 ak − dk ek − gk mk − pk ... ...

2bk 2fk 2nk ... ...

T
(E.6)

The diagonalizing transformation is given by the quadratic form according to Eq. E.3.

The angle tan 2θ is given by:

tan 2θ =
toff

ton + (t2on + t2off )
1/2

(E.7)

where ton = G(1, 1)−G(2, 2) and toff = G(1, 2) + G(2, 1)
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Appendix F

Time Invariance of SWT

To observe this important property of the SWT, if we consider the shifted version of the

signal x(t− τ) and substitute it in Eq. 4.5 the following expressions are obtained :

djk{x(t− τ)} = 2−j/2
∞∫

−∞

x(t− τ) ψ(2−jt−2−jk) dt

= 2−j/2
∞∫

−∞

x(t′) ψ(2−jt′ + 2−jτ−2−jk) dt′ ; where t′ = t− τ ;

= 2−j/2
∞∫

−∞

x(t′) ψ

(
t′ − {k − τ}

2j

)
dt′

= 2−j/2
∞∫

−∞

x(t) ψ

(
t− {k − τ}

2j

)
dt

= djk−τ{x(t)} (F.1)

This equation shows that the coefficients of a delayed signal are a time shifted version

of those of the original signal.
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Appendix G

Hilbert Transform

Hilbert Transform (HT) plays a significant role in time-frequency analysis of non-stationary

signals. The HT (ỹ(t)) of a real-valued function, y(t) in the range −∞ < t <∞, is defined

as :

ỹ(t) = H[y(t)] =

∫ ∞
−∞

y(u)

π(t− u)
du (G.1)

Where H denotes the HT operator. HT can be used to identify the natural frequency

and damping of freely vibrating single-degree-of-freedom (SDOF) systems [27] by first

applying the transform to the decaying response to form an analytic signal z(t), and then

determining the amplitude envelop and the time dependent phase according to,

z(t) = y(t) + iỹ(t) = A(t)eiθ(t)

A(t) = |z(t)| =
√
y2(t) + ỹ2(t)

θ(t) = arg(z(t)) = tan−1[
ỹ(t)

y(t)
] (G.2)

(G.3)
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where, A(t) and θ(t) are defined as the amplitude envelop and instantaneous phase angle

of y(t) respectively. The natural frequency ω can be determined by the simple relation:

ω(t) =
dθ(t)

dt
(G.4)

The damping can be determined by observing the slope of lnA(t) versus time.

For example, let us consider a single degree of freedom system according to,

x(t) = Ae−ζωt sin (ωdt+ φ) (G.5)

where ωd = ω
√

1− ζ2 is the damped natural frequency. The analytic signal can be

approximated as :

z(t) = A(t)ejφ(t) ≈
(
Ae−ζωt

)
e
−j
(
ωdt+φ−π/2

)
(G.6)

Since lnA(t) ≈ lnA− ζωt, the damping ratio ζ can be estimated from the slope of the

plot of lnA(t) versus time, once ω is estimated according to Eq. G.4.
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