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Abstract

Gerber and Shiu (1998) first introduced the Gerber-Shiu expected discounted penalty function

(or Gerber-Shiu function) which can be used to analyze the traditional quantities of interest in

classical ruin theory, namely the time of ruin, the deficit at ruin, and the surplus immediately

prior to ruin. Interestingly, the motivation of results therein was originally related to the problem

of pricing American options, e.g, Gerber and Shiu (1997a, 1998). Subsequently this Gerber-Shiu

function has been studied extensively in recent years in various risk models as a unified tool for the

analysis of various risk models. In particular, Sparre Andersen risk models are often candidates for

modeling the insurer’s surplus process. For instance, Willmot (2007) and Landriault and Willmot

(2008) assumed arbitrary interclaim times distribution. Li and Garrido (2005) considered the Kn

family distribution for the interclaim times which includes the generalized Erlang renewal risk

model studied by Gerber and Shiu (2005), the Erlang(n) renewal risk model considered by Li

and Garrido (2004), and the well-known classical compound Poisson model (e.g. Gerber and Shiu

(1998)) as a special case.

However, in the usual Sparre Andersen risk model, the assumption that the claim sizes and

the interclaim times are independent is not reasonable to reflect some situations precisely (e.g.

catastrophic insurance). Therefore, one approach is to consider time-dependent claim sizes rather

than the traditional independent assumption between the interclaim times and the subsequent

claim sizes. Indeed, there have been some papers analyzing ruin related quantities under cer-

tain dependent structures including Albrecher and Boxma (2004), Albrecher and Teugels (2006),

Badescu et al. (2009), Boudreault et al. (2006), Cossette et al. (2008), and Marceau (2009). In

this thesis, the insurer’s process is analyzed by using the Gerber-Shiu function in the dependent

(ordinary and delayed) Sparre Andersen risk models assuming an arbitrary dependence structure

between the claim sizes and the interclaim times, and structural results are derived which provide

some insights and qualitative aspects of the dependent nature of the surplus process.
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As for the Gerber-Shiu function itself, we focus on the analysis of the generalized version of

the Gerber-Shiu function by adding two more new variables in the traditional penalty function.

These two variables, namely the surplus level immediately after the second last claim before ruin

and the minimum surplus level before ruin, together with the other variables defined previously

in the penalty function can provide more information regarding the surplus process before ruin

occurs.

In Chapter 2, it is shown that that the generalized Gerber-Shiu function satisfies a defective

renewal equation. In particular, an alternative expression for the Gerber-Shiu function obtained in

Section 2.2.1 enables us to readily derive various discounted joint and marginal densities associated

with the four variables in a penalty function. As a consequence, application of these general

results from Chapter 2 is useful to obtain the explicit form of the densities in Sparre Andersen

risk models in the subsequent chapters. In Chapter 3, we consider the large class of Coxian

distribution for the interclaim times and identify the components of the defective renewal equation

for the generalized Gerber-Shiu function. For reference, a more general class of distributions was

considered by Dufresne (2001). The classical compound Poisson risk model is considered in detail

in order to study the proper deficit distribution under the certain dependent structure introduced

by Boudreault et al. (2006) in Section 3.2. Also, the analysis of the joint densities involving the

time of ruin as in Dickson and Willmot (2005), and Landriault and Willmot (2009) is the subject

matter of Section 3.3. In Chapter 4, the Gerber-Shiu function is analyzed in the delayed renewal

risk model, where it is shown that many properties of the ordinary renewal risk process discussed

in the previous chapters are carried over to these more general models. This modified ordinary

process may enhance appropriateness of the modeling in the case where the first event has a

significant impact on the subsequent events, its size is strongly dependent on the interclaim times,

or this event is not observed at time 0. To illustrate such circumstances, a numerical example

for earthquake insurance is provided in Section 4.4.1. The analysis of the classical Gerber-Shiu

function with the traditional assumption (time-independent claim sizes) is done byWillmot (2004),
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Kim (2007), and Kim and Willmot (2010). As a special case, the stationary renewal risk model is

considered by Willmot and Dickson (2003). This process is important in some cases because the

limiting form of the recurrence time in the renewal process follows an equilibrium distribution,

(e.g. Karlin and Taylor (1975)).

Furthermore, in Chapter 5 we consider the discrete risk model and provide a similar analysis for

the generalized Gerber-Shiu function, analogous to the ordinary continuous time Sparre Andersen

risk models. Also, in these models, numerous studies regarding the classical Gerber-Shiu function

have been performed. For example, Li (2005a,b) considered a discrete Kn class distribution for

the interclaim times. As a special case, the compound binomial model, a discrete analogue of the

classical compound Poisson risk model, was first proposed by Gerber (1988) and further studied

by Cheng et al. (2000), Cossette et al. (2003), Dickson (1994), Shiu (1989), Willmot (1993), Yeun

and Guo (2001). Corresponding to the stationary renewal risk models in continuous time, the

discrete stationary renewal risk models was studied by Pavlova and Willmot (2004). A recursive

formula and a general expression for the generalized Gerber-Shiu function are provided in Section

5.2. As an application, a discrete Coxian interclaim time distribution is considered in Section 5.3.

In addition, discrete delayed risk models are covered in Section 5.4.

Finally, in Chapter 6 some two-sided bounds for the renewal equation are obtained in terms of

the tail of an arbitrary distribution, and to do so, it is convenient to apply reliability classifications

as in Willmot and Lin (2001) and Willmot et al. (2001). Most of the bounds provided in this

chapter improve some results of Willmot et al. (2001) and their application for ruin quantities

and stochastic process are included here as well.
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Chapter 1

Introduction and preliminaries

1.1 Risk models of interest

To begin, we introduce three risk models considered in the following chapters.

1.1.1 Dependent (ordinary) Sparre Andersen risk models

Let us consider the insurer’s surplus process at time t defined as {Ut; t ≥ 0} with the initial surplus

u ≥ 0,

Ut = u+ ct−
Nt∑
i=1

Yi.

The number of claims process {Nt; t ≥ 0} is assumed to be a renewal process, with V1 the time

of the first claim and Vi the time between the (i − 1)th and the ith claim for i = 2, 3, 4, . . .. It

is assumed that {Vi}∞i=1 is an independent and identically distributed (iid) sequence of positive

random variables with common probability density function (pdf) k(t) and distribution function

(df) K(t) = 1−K(t). The claim sizes {Yi}∞i=1 are iid random variables with common pdf p(y) and

df P (y) = 1 − P (y). With these general modelling assumptions including independence between
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{Vi}∞i=1 and {Yi}∞i=1, the above surplus process {Ut; t ≥ 0} is referred as the Sparre Andersen

risk model. As a special case of this model, we know the classical Poisson risk model when any

arbitrary Vi is exponentially distributed. For the references, see Cramèr (1955), Gerber (1979),

Grandell (1991), Seal (1969) and Sparre Andersen (1957). In the context of queueing theory, this

model may be interpreted in terms of the equilibrium waiting time distribution in the G/G/1

queue (e.g. Cohen (1982), Prabhu (1998)).

In this thesis, we generalize the Sparre Andersen risk model as follows. We assume that the

pairs {(Vi, Yi) ; i = 1, 2, ...} are iid, so that {cVi − Yi; i = 1, 2, ...} is also an iid sequence which

implies that the surplus process {Ut, t ≥ 0} retains the Sparre Andersen random walk struc-

ture (i.e. discrete time random walks, e.g. Asmussen (2000, p.33)). As for notation, it is

convenient to specify the joint distribution of (Vi, Yi) by the product of the marginal density

k (t) and the conditional density of Yi given Vi. With (V, Y ) being an arbitrary (Vi, Yi), we

let Pt (y) = Pr (Y ≤ y |V = t) = 1 − P t (y) for y > 0. The usual Sparre Andersen model as-

sumes independence between V and Y , and may be recovered with Pt (y) = P (y) for all t ≥ 0.

Let pt (y) = P ′
t (y) be the conditional density, so that the joint density of (V, Y ) is given by

pt (y) k (t). In what follows, it is also convenient to introduce the conditional Laplace transform

p̃t (s) =
∫∞
0
e−sypt (y) dy. It is instructive to note that the assumptions of absolute continuity are

not necessary and are simply made for ease of exposition. To complete the definition of {Ut, t ≥ 0},

we define c (c > 0) to be the premium rate per unit time which is assumed to satisfy the positive

security loading condition (PSLC), namely E [cV − Y ] > 0.

1.1.2 Dependent delayed Sparre Andersen risk models

In the traditional delayed renewal risk model, the assumption of the traditional ordinary model

regarding the first interclaim time V1 is slightly modified. It is assumed that the distribution of

the time (from 0) to the first event V1 is different from that of Vi for i = 2, 3, 4, . . ., and we assume
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that V1 has pdf k1(t), df K1(t) = 1 −K1(t) and Laplace transform k̃1(s) =
∫∞
0
e−stk1(t)dt. The

motivation of this modified model is that in some cases an event occurred some time in the past

rather than at time 0 as implicitly assumed in the traditional ordinary renewal risk model. In other

words, a business (or a system) might have been operating for some time before we start observing

the process at time 0, and an event does not necessarily occur at time 0. Therefore, to enhance

and improve the model to reflect these circumstances, we use different modelling assumption on

the distribution of the time until the first claim V1. In particular, if a process started in the past

long time ago before it is first observed, then the time to the first claim has an equilibrium pdf

given by K(t)/E[V ]. This special case of the traditional delayed renewal process is called the

stationary (equilibrium) renewal process. It is emphasized that the limiting form of the forward

recurrence time in the traditional ordinary renewal process follows an equilibrium distribution,

and thus this model is important in some applications. Certainly, these modified processes revert

to the traditional ordinary model upon the occurrence of the first claim. For further details of

the traditional delayed and stationary renewal processes, see Cox (1962, Section 2.2), Grandell

(1991), Rolski et al. (1999), Ross (1996, Section 3.5), and Willmot and Lin (2001, Section 11.4).

In a similar fashion to how a traditional delayed model extends a traditional ordinary model,

the dependent delayed model can also be defined accordingly. Under the premise that a delayed

model is characterized by modelling a different interclaim time distribution on the first event, we

assume that a dependent delayed model is simply a dependent ordinary model except that the first

pair (V1, Y1) has a different joint distribution from the other pairs (Vi, Yi) for i = 2, 3, 4, . . .. Thus,

we let the conditional distribution of Y1|V1 be P1,t(y) = 1 − P 1,t(y) and conditional density be

p1,t(y) = P ′
1,t(y). Except for the first pair, the same notations defined for the dependent ordinary

model are used for the remaining pairs. An application of this model, for instance, is to earthquake

insurance. Since larger earthquakes occur less frequently, and also the last observed earthquake

may be occurred in the past rather than in the present, specific time-dependent structure for the

claim sizes as well as the occurrence of the last main shock before time 0 are necessarily considered
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for modelling. For example, assume that the last claim before time 0 is known to have occurred at

time −t∗. In such case, we simply let k1(t) = k(t+ t∗)/K(t∗) be the residual lifetime distribution

corresponding to k(t) and p1,t(y) = pt+t∗(y).

1.1.3 Dependent discrete-time Sparre Andersen risk models

In risk theory, research regarding the insurer’s surplus process in different Sparre Andersen renewal

risk models has been done extensively by analyzing the Gerber-Shiu function first introduced by

Gerber and Shiu (1998). Along with the continuous-time Sparre Andersen renewal risk model,

some interesting results have also been derived in discrete-time Sparre Andersen renewal risk

models which give us insights and approximation ideas for the continuous-time models.

First, let us consider the insurer’s business {U(t); t ≥ 0} in the discrete renewal risk process

as is now described. The surplus at time t defined as

U(t) = u+ t−
N(t)∑
i=1

Yi,

with the initial capital of the insurer being u ≥ 0. Time is measured in discrete units 0, 1, 2, . . .,

and premiums are payable at the rate of 1 per unit time. The claim number process {N(t); t ≥ 0}

is assumed to be a renewal process, with independent and identically distributed (iid) positive

interclaim times {Wi}∞i=1 having common distribution function (df) K(t) = 1−K(t) and proba-

bility function (pf) k(t) = K(t− 1)−K(t) for t = 1, 2, . . .. The claim sizes {Yi}∞i=1 are iid positive

random variables with common df P (y) = 1−P (y) and pf p(y) = P (y−1)−P (y) for y = 1, 2, . . ..

We denote an arbitrary pair of (Wi, Yi) by (W,Y ). If W and Y are assumed independent, the

surplus process {Ut; t ≥ 0} is referred as the discrete time Sparre Andersen renewal risk model

(e.g. Wu and Li (2008)).
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As mentioned earlier, we shall generalize the above model by relaxing the independence as-

sumption between the claim sizes and the interclaim times as follows. We only assume that the

pairs {(Wi, Yi); i = 1, 2, . . .} are iid, so that the increments {(Wi − Yi); i = 1, 2, . . .} are also iid

which implies the surplus process still possesses a discrete-time Sparre Andersen random walk

property. Let us define the conditional pf of Y given W by pt(y) = Pr(Y = y|W = t) and also its

df by Pt(y) = 1 − P t(y) for y = 1, 2, . . . . Obviously, the joint distribution of (W,Y ) is retrieved

by the product of the marginal pf k(t) and this conditional pf pt(y). It is convenient to introduce

the conditional pgf p̂t(s) =
∑∞

y=1 s
ypt(y). Lastly, PSLC is assumed, namely E[W − Y ] > 0.

1.2 Generalized Gerber-Shiu penalty function

The classical Gerber-Shiu expected discounted penalty function (or Gerber-Shiu function) first

studied by Gerber and Shiu (1998) is defined as

mδ,12 (u) = E
[
e−δTw12 (UT− , |UT |) I (T <∞)

∣∣U0 = u
]
, u ≥ 0, (1.1)

where T = inf {t ≥ 0 : Ut < 0} with T = ∞ if Ut ≥ 0 for all t ≥ 0, i.e. T is the time of ruin.

Also, UT− is the surplus immediately prior to ruin, |UT | is the deficit at ruin, w12 (x, y) satisfies

mild integrability conditions, I (A) is the usual indicator function of the event A, and δ (often

interpreted as a force of interest) is assumed to be nonnegative.

The Gerber-Shiu function (1.1) has been studied extensively in recent years in models of

dependent nature. Cossette et al. (2008) used K(t) = 1 − e−λt, but with Pr(Y ≤ y|V ≤ t) =

C(P (y), 1 − e−λt)/(1 − e−λt), where C(u, v) is a generalized Farlie-Gumbel-Morgenstern copula.

Also, in the classical compound Poisson risk model, Zhao (2008) considered the Block and Basu’s

bivariate exponential distribution (e.g. Block and Basu (1974)) for joint density function of

(V, Y ). More generally, Badescu et al. (2009) assumed a bivariate phase-type distribution for
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(V, Y ). Albrecher and Teugels (2006) examined asymptotics for ruin probabilities for the present

model, and a similar dependency structure is also examined by Albrecher and Boxma (2004).

Boudreault et al. (2006) considered the dependent Poisson risk model with K(t) = 1− e−λt and

Pt(y) = e−βtF1(y) + (1 − e−βt)F2(y) where F1(y) and F2(y) are “usual” and “severe” claim size

distribution functions, respectively. In particular, this dependent structure with Coxian interclaim

times distribution is considered to illustrate how to obtain some joint and marginal distributions

of ruin related quantities in Chapter 3. Recently, Marceau (2009) assumed a dependency structure

via a bivariate geometric distribution in a discrete-time renewal risk process.

In the following, two new quantities regarding the above penalty function generalizes (1.1) are

introduced by Cheung et al. (2010b). First define Xt = inf0≤s<t Us to be the minimum surplus

before time t. Therefore, XT is the minimum surplus before ruin. Second, let

Rn = u+
n∑
i=1

(cVi − Yi) , n = 1, 2, ...,

and define R0 = u. Clearly, Rn is the surplus immediately following the n-th claim if n ≥ 1,

and RNT−1 is the surplus immediately after the second last claim before ruin occurs if NT > 1,

and RNT
= u if ruin occurs on the first claim (i.e. NT = 1). Note that RNT−1 may or may not

equal XT . Analysis involving XT has been considered in a Lévy process setting by Doney and

Kyprianou (2006). Also, we remark that the minimum surplus level variable added in the penalty

function was also studied by Biffis and Kyprianou (2010), and by Biffis and Morales (2010) in the

context of Lévy insurance risk processes. For reference, Cheung and Landriault (2010) consider an

additional variable, namely the maximum surplus level before ruin, in the classical Gerber-Shiu

penalty function, to analyze a taxation model (e.g. Albrecher and Hipp (2007)).

Three graphs below depicts the four variables in the generalized penalty function and some

associated quantities under the ordinary (and delayed) Sparre Andersen renewal risk models as

well as the discrete-time cases.
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Figure 1.1: Ruin related quantities in the ordinary renewal risk models

Figure 1.2: Ruin related quantities in the delayed renewal risk models
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Figure 1.3: Ruin related quantities in discrete-time renewal risk models

Then we generalize (1.1) to

m∗
δ (u) = E

[
e−δTw∗ (UT− , |UT | , XT , RNT−1) I (T <∞)

∣∣U0 = u
]
, u ≥ 0. (1.2)

Remark that the introduction of these new quantities allows us to analyze the last ladder height

before ruin XT + |UT |, and the last interclaim time before ruin VNT
= (UT− − RNT−1)/c. In

addition, VNT
has been studied by Cheung et al. (2010a) in the classical compound Poisson risk

model (with K(t) = 1− e−λt) via the Gerber-Shiu function

mδ (u) = E
[
e−δTw (UT− , |UT | , RNT−1) I (T <∞)

∣∣U0 = u
]
, u ≥ 0, (1.3)

a special case of (1.2) with w∗(x, y, z, v) = w(x, y, v). Thus (1.3) allows for the analysis of the last

pair (VNT
, YNT

) before ruin, and we remark that the claim causing ruin YNT
= UT− + |UT | has

been studied on numerous occasions, beginning with Dufresne and Gerber (1988). Also, we will
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show that the analysis of this Gerber-Shiu function is essential to obtain the general case (1.2) in

the following chapter.

In Chapter 2, we examine the mathematical structure of the above Gerber-Shiu functions as

well as the particular special cases

mδ,123 (u) = E
[
e−δTw123 (UT− , |UT | , XT ) I (T <∞)

∣∣U0 = u
]
, (1.4)

mδ,23 (u) = E
[
e−δTw23 (|UT | , XT ) I (T <∞)

∣∣U0 = u
]
, (1.5)

mδ,2 (u) = E
[
e−δTw2 (|UT |) I (T <∞)

∣∣U0 = u
]
, (1.6)

and

Gδ (u) = E
[
e−δT I (T <∞)

∣∣U0 = u
]
, (1.7)

which correspond to the successively simplified penalty functions given by w(x, y, z, v) = w123(x, y, z),

w(x, y, z, v) = w23(y, z), w(x, y, z, v) = w2(y), and w(x, y, z, v) = 1, respectively. Certainly, with

δ = 0, (1.7) reduces to the ruin probability ψ(u) given by ψ (u) = Pr (T <∞|U0 = u). Under

PSLC, it is known that ψ(u) < 1 for u ≥ 0 (e.g. Asmussen (2000), Dufresne (2001), Feller (1971),

Prabhu (1988)).
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1.3 Mathematical preliminaries

We adopt the notational convention that the empty product is 1, and the empty sum is 0. Here

are some mathematical preliminaries used later in this thesis.

(1) Dickson-Hipp operator and its property

An operator known as the Dickson-Hipp operator Tr (with Re(r) ≥ 0) defined as

Trf (y) =

∫ ∞

y

e−r(x−y)f (x) dx =

∫ ∞

0

e−rxf(x+ y)dx,

for an integrable function f (e.g. Dickson and Hipp (2001)) plays a role in the analysis of the

expected discounted penalty function m (u). Properties of the Dickson-Hipp operator Tr which

notably include

Tr1Tr2f (y) =
Tr1f (y)− Tr2f (y)

r2 − r1
, r1 ̸= r2,

for Re (ri) ≥ 0 for i = 1, 2 are discussed in Li and Garrido (2004). If h̃(s) =
∫∞
0
e−syh(y)dy is the

Laplace transform of h(x), the Laplace transform of Trh(x) is given by

∫ ∞

0

e−sx{Trh(x)}dx = TsTrh(0) =
h̃(r)− h̃(s)

s− r
.

Also, for the use in Chapter 4, a discrete version of Dickson-Hipp operation is defined as

follows. For a function h(y) defined on y ∈ N , the discrete Dickson-Hipp operator denoted by Tr

with |r| ≤ 1 is defined as

Trh(y) =
∞∑
x=y

rx−yh(x) =
∞∑
x=0

rxh(x+ y), y ∈ N .

Clearly, Trh(0) =
∑∞

x=0 r
xh(x) = ĥ(r) is the generating function of h(x), and if s and r are distinct

10



then

ĥ(s)− ĥ(r)

s− r
=

∑∞
x=0 s

xh(x)−
∑∞

x=0 r
xh(x)

s− r
=

∑∞
x=1 s

xh(x) + h(0)−
∑∞

x=1 r
xh(x)− h(0)

s− r

=
s
∑∞

x=1 s
x−1h(x)− r

∑∞
x=1 r

x−1h(x)

s− r
,

that is,

ĥ(s)− ĥ(r)

s− r
=
sTsh(1)− rTrh(1)

s− r
= TsTrh(1) =

∞∑
x=0

sx {Trh(x+ 1)} . (1.8)

For details regarding several nice properties of this operator, see Section 3 in Li (2005a) but the

operator defined therein is for a function h(x) on x ∈ N+.

(2) Laplace transform

The Laplace transform of a function f(t), defined all real numbers t ≥ 0, is the function f̃(s),

defined by

f̃(s) =

∫ ∞

0

e−stf(t)dt.

In this thesis, we will use Laplace transforms, denoted by ‘∼’ above the letter. See Spiegel (1965a)

for further details. Obviously, it is a special case of Dickson-Hipp operator introduced in (1),

namely, Tsf(0) = f̃(s).

(3) Initial value theorem (e.g. Spiegel (1965a, p.5))

If the indicated limits exists, then

lim
t→0

f(t) = lim
s→∞

sf̃(s).

Note that in order to apply this result, the function f(t) is differentiable and the Laplace transform

of f ′(t) is given by
∫∞
0
e−stf ′(t)dt = sf̃(s)− f(0).

(4) Dominated convergence theorem (e.g. Spiegel (1965b, p.74))
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Let {fn(x)} be a sequence of functions measurable on set E such that limn→∞ fn(x) = f(x). Then

if there exists a function M(x) integrable on E such that |fn(x)| ≤M(x) for all n, we have

lim
n→∞

∫
E

fn(x)dx =

∫
E

lim
n→∞

fn(x)dx =

∫
E

f(x)dx.

The remainder of the present section contains a brief review of reliability properties and clas-

sifications for the analysis in Chapter 6. See Barlow and Proschan (1981), Fagiuoli and Pellerey

(1993, 1994) and references therein for details. In particular, more applications of classifications

of claim sizes and the number of claims distributions can be founded in Gerber (1979), Grandell

(1997), Kalashnikov (1999), Lin (1996), Lin and Willmot (1999, 2000), and Willmot (1994).

(5) Reliability

Let F1(y) = 1 − F (y) be the equilibrium df of F (y) defined by F1(y) =
∫ y
0
F (x)dx/

∫∞
0
F (x)dx.

The df F (y) is said to be decreasing (increasing) failure rate or DFR (IFR) if F (x + y)/F (y) is

nondecreasing (nonincreasing) in y for fixed x ≥ 0.

Let the mean residual lifetime (MRL) be r(y) given by

r(y) =

∫ ∞

y

(t− y)dF (t)

F (y)
=

∫ ∞

0

F (y + t)

F (y)
dt, y ≥ 0.

The df F (y) is said to be increasing (decreasing) mean residual life time or IMRL (DMRL) if r(y)

is nondecreasing (nonincreasing) in y. We then know that DFR (IFR) implies IMRL (DMRL).

Namely, IMRL (DMRL) class is larger than DFR (IFR) class. For reference, a related class of

distribution is the used worse (better) than aged or UWA (UBA) class (e.g. Alzaid (1994), Willmot

and Cai (2000)).

Another class larger than the DFR (IFR) class is the new worse (better) than used or NWU

(NBU) for which

F (x+ y) ≥ (≤)F (x)F (y), x ≥ 0, y ≥ 0.
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Similarly, a larger class than the IMRL (DMRL) class is the 2-NWU (2-NBU) for which F1(y) is

NWU (NBU).

Moreover, the df F (y) is said to be the new worse (better) than used in convex ordering or

NWUC (NBUC) if

F 1(x+ y) ≥ (≤)F 1(x)F (y), x ≥ 0, y ≥ 0.

The 2-NWU (2-NBU) and NWU (NBU) classes are contained in the NWUC (NBUC) class.

Finally, the df F (y) is said to be the new worse (better) than used in expectation or NWUE

(NBUE) if

F 1(y) ≥ (≤)F (y).

Thus, the NWUC (NBUC) is a subclass of NWUE (NBUE).

This thesis is organized as follows. In the next chapter we examine the structure of various

Gerber-Shiu functions in dependent Sparre Andersen risk models. In Section 2.1, it is shown that

the generalized Gerber-Shiu function (1.2) satisfies the defective renewal equation whose solution

can be expressed in terms of a compound geometric tail (e.g. Lin and Willmot (1999), Resnick

(1992)). As a result, defective joint and marginal distributions involving the quantities in the

generalized penalty function are derived in Section 2.2. In particular, the case that the claim

sizes are independent of the interclaim times is covered with an example of the exponential claim

sizes and arbitrary interclaim times in Section 2.3. For the identification of the components in

the defective renewal equation obtained in the previous chapter, we assume certain interclaim

times distributions in Chapter 3. First, in Section 3.1 a Coxian interclaim times distribution is

considered to analyze the generalized Gerber-Shiu function. In particular, the time-dependent

claim size case is studied in Section 3.1.5. As a special case for a class of Coxian interclaim

distributions, the classical compound Poisson risk models are assumed to obtain the proper deficit

distribution given that ruin occurs for the time-dependent claims, which is the subject matter of
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Section 3.2. Also, the joint defective density of the variables in the penalty function involving

the time to ruin is derived in Section 3.3. While Chapter 2 and Chapter 3 are concerned with

the ordinary Sparre Andersen risk models with some dependency examples, the modification of

these models, namely the delayed Sparre Andersen risk models with dependency are considered in

Chapter 4. Similar analysis related to the ordinary processes is considered in Chapter 4, whereas

Chapter 5 is devoted to the discrete analog of the all previous models. That is, the general

structural results under the discrete renewal risk models including the delayed case are derived

followed by assuming some specific interclaim times distribution, for instance, a discrete Kn class

distribution and a compound binomial distribution. Finally, the two-sides bounds for a renewal

equation and their application are provided in Chapter 6.
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Chapter 2

Structural properties

In the following section, we demonstrate that all Gerber-Shiu functions introduced in Chapter 1

satisfy defective renewal equations, each of which has associated compound geometric tail (in the

sense of Willmot and Lin (2001, Section 9.1)) given by (1.7). In Section 2.2, the results of Section

2.1 are used to derive various joint and marginal distributions, and in particular an alternative

expression for mδ(u) in (1.3) is obtained as well. Finally, in Section 2.3, some further remarks

concerning the independent case are made, and the case with exponential claims is considered

in some detail. In particular, the joint Laplace transform of (T, UT− , |UT | , XT , RNT−1) is derived

with exponential claim sizes, and the last interclaim time VNT
before ruin is shown to have an

Esscher transformed distribution which is stochastically dominated by a generic interclaim time

distribution.

2.1 Defective renewal equations

To begin with, we first examine the nature of the joint distribution of the time of ruin T , the

surplus prior to ruin UT− , the deficit at ruin |UT |, and the surplus immediately after the second
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last claim before ruin RNT−1. If ruin occurs on the first claim, then the surplus (x) and the time

(t) are related by x = u+ ct, or equivalently t = (x− u) /c. Once the surplus x has been reached,

a claim of size x+ y results in a deficit of y. The density is thus k(t)pt(x+ y) where t = (x−u)/c.

Therefore, a change of variables from t to x implies that the joint defective density of the surplus

prior to ruin (x) and the deficit at ruin (y) for ruin occurring on the first claim is (e.g. Landriault

and Willmot (2009) for the time-independent claims) given by

h1 (x, y |u) =
1

c
k

(
x− u

c

)
px−u

c
(x+ y) , (2.1)

and in this case the time of ruin T is (x − u)/c and RNT−1 equals u. If ruin occurs on claims

subsequent to the first, T and RNT−1 are no longer simple functions of UT− and |UT |, and we

denote the joint defective density of the time of ruin (t), the surplus before ruin (x), the deficit at

ruin (y), and the surplus after the second last claim (v), by h2(t, x, y, v|u) for v < x. See Cheung

et al. (2010a) for further discussion of this density in the classical compound Poisson risk model.

We now employ the argument of Gerber and Shiu (1998) to obtain an integral equation for

m∗
δ(u). We will thus condition on the first drop in the surplus to a value below its initial level of

u. The density of this first drop for a drop on the first claim is h1(x, y|0), where x represents the

surplus level above u just before the drop (i.e. the surplus becomes x+u), and y is the drop below

u, so that the surplus level after the drop is u−y. The time of this drop is x/c. If y > u, then ruin

occurs on the first drop, and in this case UT− = x+ u, |UT | = y − u, XT = u, and RNT−1 = u. If

y < u then ruin does not occur, and the process begins anew (probabilistically) beginning at the

surplus level u−y. If the drop in surplus below u does not occur on the first claim, then the density

is h2(t, x, y, v|0). Again, ruin occurs if y > u, and in this case UT− = x+u, |UT | = y−u, XT = u,

and RNT−1 = v + u. Similarly, if y < u then ruin does not occur, and the process continues from

the new surplus level of u − y. Summing (integrating) over all values of t, x, y, and v results in
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the integral equation satisfied by (1.2), namely

m∗
δ(u) =

∫ u

0

m∗
δ(u− y)

{∫ ∞

0

h1,δ (x, y |0) dx+
∫ ∞

0

∫ x

0

h2,δ(x, y, v|0)dvdx
}
dy + v∗δ (u), (2.2)

where

h1,δ (x, y |u) = e−
δ(x−u)

c h1(x, y|u) (2.3)

and

h2,δ(x, y, v|u) =
∫ ∞

0

e−δth2(t, x, y, v|u)dt (2.4)

are “discounted” densities. In this case, v∗δ (u) is the contribution due to ruin on the first drop and

is given by

v∗δ (u) =

{∫ ∞

u

∫ ∞

0

w∗(x+u, y−u, u, u)h1,δ(x, y|0)+
∫ x

0

w∗(x+u, y−u, u, v+u)h2,δ(x, y, v|0)dv
}
dxdy.

(2.5)

Using (2.1), (2.5) may also be written as

v∗δ (u) =

∫ ∞

0

e−δt
{∫ ∞

0

w∗(u+ ct, y, u, u)pt(y + ct+ u)dy

}
k(t)dt

+

∫ ∞

u

∫ ∞

0

∫ x

0

w∗(x+ u, y − u, u, v + u)h∗2,δ(x, y, v|0)dvdxdy. (2.6)

In the following theorem, we now examine the structure of (2.2) in more detail.

Theorem 1 The Gerber-Shiu function with the generalized penalty function in (1.2) satisfies the

defective renewal equation given by

m∗
δ(u) = ϕδ

∫ u

0

m∗
δ(u− y)fδ(y)dy + v∗δ (u), u ≥ 0, (2.7)

where ϕδ , fδ(y) and v
∗
δ (u) are given by (2.11), (2.12) and (2.6) respectively.
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Proof. First, note that the discounted (marginal if δ = 0) density of UT− and |UT | is obtained by

summing and integrating over all values of t and v, yielding

hδ (x, y |u) = h1,δ (x, y |u) +
∫ x

0

h2,δ(x, y, v|u)dv. (2.8)

Using (2.8) with u = 0, (2.2) may be re-expressed as

m∗
δ(u) =

∫ u

0

m∗
δ(u− y)

{∫ ∞

0

hδ(x, y|0)dx
}
dy + v∗δ (u). (2.9)

It is not hard to see from (2.8) that (1.1) may be written as

mδ,12(u) =

∫ ∞

0

∫ ∞

0

w12(x, y)hδ(x, y|u)dxdy. (2.10)

Thus, letting

ϕδ =

∫ ∞

0

∫ ∞

0

hδ(x, y|0)dxdy, (2.11)

it is clear from (2.10) with w12(x, y) = 1 and (1.1) that ϕδ = E
[
e−δT I (T <∞)

∣∣U0 = 0
]
< 1. Also,

define the ladder height density

fδ(y) =
1

ϕδ

∫ ∞

0

hδ(x, y|0)dx, (2.12)

which is clearly the same as the marginal discounted proper density of the deficit |UT | when u = 0.

Thus, (2.9) may be written as (2.7). �

It is clear from (2.7) that the generalized Gerber-Shiu function (1.2) satisfying a defective

renewal equation only depends on the joint distribution of UT− , |UT |, and RNT−1 with zero ini-

tial surplus. Therefore, the analysis of mδ(u) in (1.3) is essential to obtain various informa-

tion regarding all variables in the generalized penalty function including the time to ruin. If
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w∗(x, y, z, v) = w(x, y, v), (2.5) and (2.7) reduces to

mδ(u) = ϕδ

∫ u

0

mδ(u− y)fδ(y)dy + vδ(u), (2.13)

where

vδ(u)=

∫ ∞

u

∫ ∞

0

{
w(x+u, y−u, u)h1,δ(x, y|0)+

∫ x

0

w(x+u, y−u, v+u)h2,δ(x, y, v|0)dv
}
dxdy.

Changing variables of integration yields

vδ(u)=

∫ ∞

0

∫ ∞

u

{
w(x, y, u)h1,δ(x, y|u)+

∫ x

u

w(x, y, v)h2,δ(x−u, y+u, v−u|0)dv
}
dxdy, (2.14)

since h1,δ(x−u, y+u|0) = h1,δ(x, y|u). In Chapter 3, (2.13) is studied with identifications of ϕδ,

fδ(u), and hδ(x, y|0) under the specific assumptions of the interclaim times.

Furthermore, the form of v∗δ (u) and hence also (2.7) simplifies in some special cases. First, if

w∗(x, y, z, v) = w123(x, y, z) so that (1.2) does not involve RNT−1, then the right-hand side of (2.5)

simplifies to

∫ ∞

u

∫ ∞

0

w123(x+ u, y − u, u)

{
h1,δ(x, y|0) +

∫ x

0

h2,δ(x, y, v|0)dv
}
dxdy.

Thus, using (2.8), (1.4) satisfies the simpler defective renewal equation

mδ,123(u) = ϕδ

∫ u

0

mδ,123(u− y)fδ(y)dy + vδ,123(u), (2.15)

where

vδ,123(u) =

∫ ∞

u

∫ ∞

0

w123(x+ u, y − u, u)hδ(x, y|0)dxdy. (2.16)

The special case (2.15) of (2.7) is analytically simpler due to the fact that it only involves hδ(x, y|0).

Further simplification of (2.16) and hence (2.15) occurs if w(x, y, z, v) = w23(y, z), so that only
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|UT | and XT are involved. Clearly from (2.12) and (2.16), (1.5) satisfies the simpler defective

renewal equation

mδ,23(u) = ϕδ

∫ u

0

mδ,23(u− y)fδ(y)dy + vδ,23(u), (2.17)

where

vδ,23(u) = ϕδ

∫ ∞

u

w23(y − u, u)fδ(y)dy, (2.18)

and it is clear from (2.18) that mδ,23(u) depends only on the ladder height density fδ(y). Inter-

estingly, the distribution of the last ladder height XT + |UT | may be determined from that of the

generic ladder height distribution.

Next, we note that if w∗ (x, y, z, v) = w2 (y), then from (2.17) and (2.18), (1.6) satisfies the

simpler defective renewal equation

mδ,2 (u) = ϕδ

∫ u

0

mδ,2 (u− y) fδ (y) dy + ϕδ

∫ ∞

u

w2 (y − u) fδ (y) dy. (2.19)

Equation (2.19) is the same defective renewal equation as in the independence case (see Willmot

(2007, equation 2.11)), but with ϕδ and fδ (y) defined by (2.11) and (2.12) respectively. Further-

more, with w (x, y, z, v) = w2 (y) = 1, (1.7) satisfies

Gδ (u) = ϕδ

∫ u

0+

Gδ (u− y) fδ (y) dy + ϕδF δ (u) , (2.20)

and therefore Gδ (u) = 1 − Gδ (u) is (as the solution to (2.20) is well-known to be) a compound

geometric tail, i.e.

Gδ (u) =
∞∑
n=1

(1− ϕδ) (ϕδ)
n F

∗n
δ (u) , u ≥ 0,

where Fδ (u) = 1− F δ (u) =
∫ u
0
fδ (y) dy and 1− F

∗n
δ (u) is the distribution function of the n-fold

convolution. Of course, ϕδ = Gδ(0), and the ruin probability is given by ψ(u) = Pr (T <∞|U0 = u)

equivalent to G0(u).
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The general solution to (2.7) (or the special cases (2.13), (2.15), (2.17) or (2.19)) is expressible

in terms of the compound geometric density gδ(u) = −G′
δ(u) given by

gδ (u) =
∞∑
n=1

(1− ϕδ) (ϕδ)
n f ∗n

δ (u) , u ≥ 0, (2.21)

where f∗n
δ (u) = − d

du
F

∗n
δ (u) is the density of the n-fold convolution of fδ(u). It is well-known (e.g.

Resnick (1992, Section 3.5)) that

mδ(u) = vδ(u) +
1

1− ϕδ

∫ u

0

gδ(u− y)vδ(y)dy. (2.22)

An alternative form of the solution which is convenient if vδ(u) is differentiable is (e.g. Willmot

and Lin (2001, p.154))

mδ(u) =
1

1− ϕδ

[
vδ(u)− vδ(0)Gδ(u)−

∫ u

0

Gδ(u− y)v′δ(y)dy

]
. (2.23)

As for the deficit itself, we remark that because (2.19) is functionally of the same form as in

the more well-known independent case, it follows that any properties of the distribution of the

deficit |UT | are formally the same as in the independent case, but with the present definitions of

ϕδ and fδ (y). In particular, it follows directly from Willmot (2002) that

Pr
(
|UT | > y

∣∣T <∞
)
=

∫ u
0−

{
F 0(y+u−t)
F 0(u−t)

}
F 0 (u− t) dG0 (t)∫ u

0−
F 0 (u− t) dG0 (t)

,

so that the conditional distribution of |UT | given T <∞ remains a mixture of the residual lifetime

distribution associated with F0. In Section 3.2, this conditional distribution is derived under the

certain dependent structure of Pt(y) studied by Boudreault et al. (2006).
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2.2 Associated defective distributions

As pointed out in Section 2.1, Theorem 1, trivariate “discounted” defective distribution of UT− , |UT |

and RNT−1 is sufficient to determine that of UT− , |UT | , RNT−1, and XT . Therefore, in the following

we first derive this distribution by analyzing mδ(u) in (1.3) with an alternative form of this. In

turn, we study various joint and marginal distributions associated with these four variables. All

results presented in this section are obtained with no specific assumptions on the claim sizes or

the interclaim times.

2.2.1 Alternative expression for the generalized Gerber-Shiu function

Theorem 2 If h2,δ(x− u, y + u, v − u|0) may be expressed as

h2,δ(x, y, v|0) = h1,δ(x, y|v)νδ(v), (2.24)

where νδ(v − u) for v > u is a nonnegative function representing the discounted transition in the

surplus from 0 to v − u, then we may find the Gerber-Shiu function (1.3) in the form as

mδ(u) = βδ(u) +

∫ ∞

0

βδ(v)τδ(u, v)dv, (2.25)

where

τδ (u, v) =


1

1−ϕδ

{
gδ (u− v) +

∫ v
0
νδ(v − t)gδ(u− t)dt

}
, v < u

νδ(v − u) + 1
1−ϕδ

∫ u
0
νδ(v − t)gδ (u− t) dt, v > u

, (2.26)

and νδ(v) = τδ (0, v) is given by (2.24). In particular, for δ = 0,

τ0(u, v) =


1

1−ψ(0)

{
−ψ′(u− v)−

∫ v
0
ν0(v − t)ψ′(u− t)dt

}
, v < u

ν0(v − u)− 1
1−ψ(0)

∫ u
0
ν0(v − t)ψ′ (u− t) dt, v > u

,
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since ϕ0 = ψ(0) and g0(u) = −ψ′(u).

Proof. For notational convenience, let

βδ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h1,δ(x, y|u)dxdy, (2.27)

and

ξδ(u) =

∫ ∞

u

∫ ∞

0

∫ ∞

v

w(x, y, v)h2,δ(x− u, y + u, v − u|0)dxdydv, (2.28)

so that (2.14) can be expressed as vδ(u) = βδ(u) + ξδ(u). Then, using (2.22) we get the solution

to mδ(u) given by

mδ(u) = vδ(u) +
1

1− ϕδ

∫ u

0

gδ(u− t)vδ(t)dt

= βδ(u) + ξδ(u) +
1

1− ϕδ

∫ u

0

gδ(u− t) {βδ(t) + ξδ(t)} dt. (2.29)

Hence, (2.28) becomes, using (2.24) we obtain ξδ(u) =
∫∞
u
βδ(v)νδ(v − u)dv, and with the above

expression, the right-hand side of (2.29) except for the first term may be re-expressed as

ξδ(u) +
1

1− ϕδ

∫ u

0

gδ(u− t) {βδ(t) + ξδ(t)} dt

=

∫ ∞

u

βδ(v)νδ(v − u)dv +
1

1− ϕδ

∫ u

0

gδ(u− t)

{
βδ(t) +

∫ ∞

t

βδ(v)νδ(v − t)dv

}
dt.

Interchanging the order of integration yields

ξδ(u) +
1

1− ϕδ

∫ u

0

gδ(u− t) {βδ(t) + ξδ(t)} dt

=

∫ ∞

u

βδ(v)νδ(v − u)dv +
1

1− ϕδ

∫ u

0

βδ(v)gδ(u− v)dv

+
1

1−ϕδ

{∫ u

0

βδ(v)

∫ v

0

νδ(v−t)gδ(u− t)dtdv+

∫ ∞

u

βδ(v)

∫ u

0

νδ(v−t)gδ(u−t)dtdv
}
.(2.30)

Therefore, substituting (2.30) into (2.29) leads (2.25). Note that with u = 0 in (2.26), it is easily

seen that τδ(0, v) = νδ(v). Also the right-hand side of (2.24) is interpreted as: after the surplus

reaches at level v − u, the next drop causes ruin explained by h1,δ function with the surplus prior
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to ruin x− u and the deficit at ruin y + u. �

Remark 1 It is clear from (2.24), (2.25) and (2.26) that the discounted joint density h2,δ with

zero initial surplus is sufficient to identify τδ(u, v) in (2.26) which is essential to analyze the

generalized Gerber-Shiu function mδ(u) in (1.3), certainly further m∗
δ(u) in (1.2). τδ(u, v) is

obtained in the classical Poisson risk model by Cheung et al. (2010a), Kn-class interclaim time

process by Willmot and Woo (2010). Also, in the semi-Markovian model, a matrix form of τδ(u, v)

is derived by Cheung and Landriault (2009). Further analysis regarding (2.26) with the surplus

dependent premium rate (i.e. general premium rate) in various risk models is studied by Cheung

(2010).

Furthermore using (2.25), it is readily to obtain h2,δ(x, y, v|u) as follows.

Corollary 1 When ruin occurs not on the first claim, the joint density of the surplus prior to

ruin UT−, the deficit at ruin |U(T )|, and the surplus after the second last claim before ruin RN(T )−1

at (x, y, v) is given by

h2,δ(x, y, v|u) = h1,δ(x, y|v)τδ(u, v), x > v, (2.31)

where τδ(u, v) is given by (2.26).

Proof. (1.3) may be viewed as an expectation so that it may be expressed as

mδ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h1,δ(x, y|u)dxdy+
∫ ∞

0

∫ ∞

0

∫ ∞

v

w(x, y, v)h2,δ(x, y, v|u)dxdydv. (2.32)

Thus, using (2.27) and comparing the above expression for mδ(u) to (2.25) results in

∫ ∞

0

∫ ∞

0

∫ ∞

v

w(x, y, v)h2,δ(x, y, v|u)dxdydv =

∫ ∞

0

∫ ∞

0

∫ ∞

v

w(x, y, v)h1,δ(x, y|v)τδ(u, v)dxdydv.

and the proof is completed. �
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Also, (2.25) may be interpreted probabilistically by regarding βδ(u) as the contribution from

ruin occurring on the first claim and the rest of term as the contribution for ruin on the other

claims. See Cheung et al. (2010a, Section 3) for further details.

Integrating out y in (2.31) yields the marginal bivariate discounted defective density of (x, v),

h
(2)
δ (x, v|u) = h

(1)
1,δ(x|v)τδ(u, v), x > v, (2.33)

where
∫∞
0
h1,δ(x, y|v)dy = h

(1)
1,δ(x|v).

Next, we remark that the Lundberg’s fundamental equation (Lundberg (1932, p.144)) is given

by

E
[
e−sY−(δ−cs)V ] = 1, (2.34)

which is important to analyze the Gerber-Shiu function in the present model, as we now demon-

strate. First, Cheung et al. (2010b) considered the function

η(u) =

∫ ∞

0

e−δtωt(u+ ct) dK(t) (2.35)

for some function ωt. The Laplace transform is

η̃(s) =

∫ ∞

0

e−su
∫ ∞

0

e−δtωt(u+ ct) dK(t) du

=

∫ ∞

0

e−(δ−cs)t
{∫ ∞

0

e−s(u+ct)ωt(u+ ct) du

}
dK(t)

=

∫ ∞

0

e−(δ−cs)t
{
ω̃t(s)−

∫ ct

0

e−sxωt(x) dx

}
dK(t)

=

∫ ∞

0

e−(δ−cs)tω̃t(s) dK(t)−
∫ ∞

0

∫ ct

0

e−
1
c
{δx+(δ−cs)(ct−x)}ωt(x) dx dK(t).

That is,

η̃(s) =

∫ ∞

0

e−(δ−cs)tω̃t(s) dK(t)− ω̃∗(δ − cs), (2.36)
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where

ω̃∗(s) =

∫ ∞

0

∫ ct

0

e−
1
c
{δx+s(ct−x)}ωt(x) dx dK(t).

In order to express ϕδ, fδ(y), and hδ(x, y|0) in (2.7) in terms of quantities related to the claim

size distribution Pt(y) and/or the interclaim time distribution K(t), a common approach is to

condition on the time and the amount of the first claim. By applying this approach to obtain the

integral equation for mδ(u) in (1.3), it follows that

mδ(u) = βδ(u) +

∫ ∞

0

e−δtσt,δ(u+ ct)dK(t), (2.37)

where

βδ(u) =

∫ ∞

0

e−δtαt(u+ ct, u)dK(t) (2.38)

with

αt(x, u) =

∫ ∞

x

w(x, y − x, u)dPt(y), (2.39)

and

σt,δ(x) =

∫ x

0

mδ(x− y)dPt(y), (2.40)

Note that βδ(u) is the contribution to the penalty function due to ruin on the first claim, as is

clear from the alternative representation given by (2.27).

The term on the right-hand side of (2.37) is of the form (2.35), and thus taking Laplace

transforms of (2.37) yields, using (2.36)

m̃δ(s) = β̃δ(s) +

∫ ∞

0

e−(δ−cs)tσ̃t,δ(s) dK(t)− σ̃w(δ − cs), (2.41)

where

σ̃w(s) =

∫ ∞

0

∫ ct

0

e−
1
c
{δx+s(ct−x)}σt,δ(x) dx dK(t). (2.42)
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With an interchange of order of the integration, (2.42) becomes

σ̃w(s) =

∫ ∞

0

e−
x
c
(δ−s)

∫ ∞

x
c

e−stσt,δ(x) dK(t) dx. (2.43)

But σ̃t,δ(s) = m̃δ(s)p̃t(s) from (2.40), and thus (2.41) may be expressed as

m̃δ(s) = β̃δ(s) + m̃δ(s)

∫ ∞

0

e−(δ−cs)tp̃t(s) dK(t)− σ̃w(δ − cs),

and because E[e−sY−(δ−cs)V ] =
∫∞
0
e−(δ−cs)tp̃t(s) dK(t), it follows that

{
1− E[e−sY−(δ−cs)V ]

}
m̃δ(s) = β̃δ(s)− σ̃w(δ − cs). (2.44)

Note that the left side of (2.44) is 0 if s is replaced by a root (with non-negative real part)

of Lundberg’s equation (2.34). This allows for identification of unknown quantities in the term

σ̃w(δ−cs) on the right side of (2.44), a step generally needed to ultimately invert (either numerically

or analytically under some additional conditions on the distributions of the interclaim time V

and/or claim size Y ) the Laplace transform m̃δ(s). We will revisit this expressions with specific

assumptions on distributions of the claim sizes or the interclaim times in Section 2.3.1 and Chapter

3. In the next section we derive various joint and marginal densities involving UT− , |UT | , XT , and

RNT−1.

2.2.2 Discounted joint and marginal densities

We will now express the joint discounted distribution of (UT− , |UT | , XT , RNT−1) in terms of the

discounted densities h1,δ(x, y|u) and h2,δ(x, y, v|u) defined in (2.3) and (2.4) respectively. We first

consider the penalty function w∗(x, y, z, v) = w(x, y, v) = e−s1x−s2y−s4v as in (1.3), and note that
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in this case (2.14) becomes

vδ(u) =

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s4uh1,δ(x− u, y + u|0)dxdy

+

∫ ∞

0

∫ ∞

u

∫ x

u

e−s1x−s2y−s4vh2,δ(x− u, y + u, v − u|0)dvdxdy. (2.45)

Next consider the more general penalty function w(x, y, z, v) = e−s1x−s2y−s3z−s4v. With this choice

of penalty function, (2.5) becomes v∗δ (u) = e−s3uvδ(u) with vδ(u) given by (2.45). Thus the

Gerber-Shiu function

m∗
δ (u) = E

[
e−δT−s1UT−−s2|UT |−s3XT−s4RNT−1I (T <∞)

∣∣U0 = u
]

satisfies, from (2.22)

m∗
δ (u) = e−s3uvδ(u) +

∫ u

0

e−s3zvδ(z)
gδ(u− z)

1− ϕδ
dz

which may be expressed using (2.45) as

m∗
δ(u) =

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s3u−s4uh1,δ(x− u, y + u|0)dxdy

+

∫ ∞

0

∫ ∞

u

∫ x

u

e−s1x−s2y−s3u−s4vh2,δ(x− u, y + u, v − u|0)dvdxdy

+

∫ u

0

∫ ∞

0

∫ ∞

z

e−s1x−s2y−s3z−s4z
{
h1,δ(x− z, y + z|0)gδ(u− z)

1− ϕδ

}
dxdydz

+

∫ u

0

∫ ∞

0

∫ ∞

z

∫ x

z

e−s1x−s2y−s3z−s4v
{
h2,δ(x− z, y + z, v − z|0)gδ(u− z)

1− ϕδ

}
dvdxdydz.

(2.46)

Therefore, by the uniqueness of the Laplace-Stieltjes transform, (UT− , |UT | , XT , RNT−1) has dis-

counted defective densities on subspaces of R4 in the following corollary.

Corollary 2 The discounted defective density of (UT− , |UT | , XT , RNT−1) at (x, y, z, v) is defined

as
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1. h∗12,δ(x, y|u) = h1,δ(x−u, y+u|0) on {(x, y, z, v)| x>u, y > 0, z= u, v= u} corresponding to

ruin on the first claim,

2. h∗124,δ(x, y, v|u) = h2,δ(x−u, y+u, v−u|0) on {(x, y, z, v)| x > u, y > 0, z = u, u < v < x}

corresponding to ruin on the first drop in surplus due to ruin on other than the first claim,

3. h∗123,δ(x, y, z|u) = h1,δ(x−z, y+z|0)gδ(u−z)/(1−ϕδ) on {(x, y, z, v)| x>z, y>0, 0<z<u, v=z}

corresponding to a drop in surplus not causing ruin followed by ruin on the next claim, and

4. h∗δ(x, y, z, v|u) = h2,δ(x−z, y+z, v−z|0)gδ(u−z)/(1−ϕδ) on {(x, y, z, v)| z<v<x, y>0, 0<z<u}

corresponding to a drop in surplus not causing ruin, followed by ruin occurring but not on

the next claim after the drop.

While it is possible to give probabilistic interpretations for the above four cases, we would like

to comment on the quantity h∗123,δ(x, y, z|u) in detail. Note that from (2.21), gδ(u−z)/(1−ϕδ)

can be expressed as
∑∞

n=1 (ϕδ)
n f ∗n

δ (u− z), and this can indeed be interpreted as the density for

the surplus process, beginning with initial surplus u, being at level z after an arbitrary number

of drops. Since the level z has to be the minimum level before ruin, the next drop (starting with

level z) has to cause ruin and this is represented by the term h1,δ(x, y|z). A similar interpretation

can also be made for the quantity h∗δ(x, y, z, v|u).

We now turn to the joint discounted defective density of (UT− , |UT | , XT ) in the following

corollary.

Corollary 3 The discounted defective density of (UT− , |UT | , XT ) is defined as

1. h∗∗12,δ(x, y|u) = hδ(x− u, y+ u|0) on {(x, y, z)| x > u, y > 0, z = u} corresponding to ruin on

a first drop in surplus below u, and

2. h∗∗123,δ(x, y, z|u) = hδ(x− z, y + z|0)gδ(u− z)/(1− ϕδ) on {(x, y, z)| x > z, y > 0, 0 < z < u}

corresponding to ruin occurring but not on the first drop in surplus.
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Proof. Using the same approach with the penalty function w123(x, y, z) = e−s1x−s2y−s3z, (2.16)

becomes

vδ,123(u) =

∫ ∞

u

∫ ∞

0

e−s1(x+u)−s2(y−u)−s3uhδ(x, y|0)dxdy =

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s3uhδ(x−u, y+u|0)dxdy,

and then from (2.15) and (2.22)

mδ,123(u) = E
[
e−δT−s1UT−−s2|UT |−s3XT I (T <∞)

∣∣U0 = u
]

= vδ,123(u) +
1

1− ϕδ

∫ u

0

gδ(u− z)vδ,123(z)dz

=

∫ ∞

0

∫ ∞

u

e−s1x−s2y−s3uhδ(x−u, y+u|0)dxdy

+

∫ u

0

∫ ∞

0

∫ ∞

z

e−s1x−s2y−s3z
{
hδ(x−z, y+z|0)

gδ(u−z)
1−ϕδ

}
dxdydz.

Thus, by the uniqueness of the Laplace transform, we may obtain the discounted defective densities

of (UT− , |UT | , XT ) on subspaces of R3. �

Corollary 4 For the time-independent claim sizes, the discounted joint density of (UT− , |UT |) at

(x, y) is given by

hδ(x, y|u) =
1

c
p(x+ y)γδ(u, x), u ≥ 0, (2.47)

where

γδ (u, x) =


∫ x
0
e−δ(

x−v
c )k

(
x−v
c

)
τδ(u, v)dv, x < u

e−δ(
x−u
c )k

(
x−u
c

)
+
∫ x
0
e−δ(

x−v
c )k

(
x−v
c

)
τδ(u, v)dv, x > u

. (2.48)

Proof. Using (2.31), hδ(x, y|u) in (2.8) may be rewritten as

hδ(x, y|u) = I(x > u)h1,δ(x, y|u) +
∫ x

0

h1,δ(x, y|v)τδ(u, v)dv.
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Thus, from (2.1) and (2.3), it follows that

hδ(x, y|u) =
1

c
e−

δ(x−u)
c k

(
x−u
c

)
px−u

c
(x+y) I(x > u)+

∫ x

0

1

c
e−

δ(x−v)
c k

(
x−v
c

)
px−v

c
(x+y) τδ(u, v)dv,

which is the result in the case of the time-dependent claim sizes. If the claim sizes are independent

of the interclaim times, pt(y) simply reduces to p(y) so that we may obtain (2.47) with (2.48). �

In particular, in the classical compound Poisson risk model we shall show that hδ(x, y|u) in

(2.47) is reduced to the result derived by Landriault and Willmot (2009).

Corollary 5 In the classical compound Poisson risk model with k(t) = λe−λt, the discounted joint

density of (UT− , |UT |) at (x, y) is given by

hδ(x, y|u) =
λ

c
p(x+ y)γ∗δ (u, x), u ≥ 0,

where

γ∗δ (u, x) =


∫ x
0
e−ρ(x−t) gδ(u−t)

1−ϕδ
dt, x < u

e−ρ(x−u) +
∫ u
0
e−ρ(x−t) gδ(u−t)

1−ϕδ
dt, x > u

,

which is agreed with the result of Landriault and Willmot (2009).

Proof. First, for x < u, (2.48) becomes

λ

∫ x

0

e−
λ+δ
c

(x−v)τδ(u, v)dv

=
λ

1− ϕδ

{∫ x

0

e−
λ+δ
c

(x−v)gδ(u−v)dv+
(
λ+δ

c
−ρ
)∫ x

0

∫ v

0

e−
λ+δ
c

(x−v)e−ρ(v−t)gδ(u−t)dtdv
}
.

(2.49)
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Interchanging the order of integration of the second term on the right hand side of (2.49) yields

(
λ+ δ

c
− ρ

)∫ x

0

∫ v

0

e−
λ+δ
c

(x−v)e−ρ(v−t)gδ(u− t)dtdv

=

(
λ+ δ

c
− ρ

)∫ x

0

e−ρ(x−t)gδ(u− t)

{∫ x

t

e−(
λ+δ
c

−ρ)(x−v)dv

}
dt

=

∫ x

0

e−ρ(x−t)gδ(u− t)
{
1− e−(

λ+δ
c

−ρ)(x−t)
}
dt, (2.50)

and substituting (2.50) into (2.49) results in

λ

∫ x

0

e−
λ+δ
c

(x−v)τδ(u, v)dv = λ

∫ x

0

e−ρ(x−t)
gδ(u− t)

1− ϕδ
dt.

Next, for x > u it follows that (2.48) is

λ

{
e−

λ+δ
c

(x−u) +

∫ u

0

e−
λ+δ
c

(x−v)τδ(u, v)dv +

∫ x

u

e−
λ+δ
c

(x−v)τδ(u, v)dv

}
. (2.51)

Using (2.49) and (2.50), the second integral on the above may be rewritten as

∫ u

0

e−
λ+δ
c

(x−v)τδ(u, v)dv

=
1

1− ϕδ

[∫ u

0

e−
λ+δ
c

(x−v)gδ(u− v)dv +

∫ u

0

e−ρ(x−t)gδ(u− t)
{
e−(

λ+δ
c

−ρ)(x−u) − e−(
λ+δ
c

−ρ)(x−t)
}
dt

]
= e−(

λ+δ
c

−ρ)(x−u)
∫ u

0

e−ρ(x−t)
gδ(u− t)

1− ϕδ
dt. (2.52)

Also, ∫ x

u

e−
λ+δ
c

(x−v)τδ(u, v)dv

=

(
λ+ δ

c
− ρ

)[∫ x

u

e−
λ+δ
c

(x−v)e−ρ(v−u)dv +
1

1− ϕδ

∫ x

u

e−
λ+δ
c

(x−v)
∫ u

0

e−ρ(v−t)gδ(u− t)dtdv

]
=

(
λ+ δ

c
− ρ

)∫ x

u

e−(
λ+δ
c

−ρ)(x−v)
{
e−ρ(x−u) +

∫ u

0

e−ρ(x−t)
gδ(u− t)

1− ϕδ
dt

}
dv,
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that is,

∫ x

u

e−
λ+δ
c

(x−v)τδ(u, v)dv =
{
1− e−(

λ+δ
c

−ρ)(x−u)
}{

e−ρ(x−u) +

∫ u

0

e−ρ(x−t)
gδ(u− t)

1− ϕδ
dt

}
. (2.53)

Substituting (2.52) and (2.53) into (2.51), we have (2.48) for x > u given by

λ

{
e−ρ(x−u) +

∫ u

0

e−ρ(x−t)
gδ(u− t)

1− ϕδ
dt

}
.

Thus, the proof is completed. �

We next turn our attention to the discounted density of the last ladder height before ruin,

joint distribution of the last interclaim time before ruin and the claim causing ruin, and also their

marginal distributions. In the classical compound Poisson risk model, these results were studied

by Cheung et al. (2010a) and are thus generalized here.

Corollary 6 The discounted defective density of the last ladder height before ruin is

fδ(u, y) =


ϕδ

1−ϕδ

[
Gδ(u− y)−Gδ(u)

]
fδ(y), y < u

ϕδ
1−ϕδ

[
1−Gδ(u)

]
fδ(y), y > u

. (2.54)

Proof. For the last ladder height XT + |UT |, the function

mδ,5 (u) = E
[
e−δTw5 (XT + |UT |) I (T <∞)

∣∣U0 = u
]

satisfies, using (2.18)

mδ,5(u) = ϕδ

∫ u

0

mδ,5(u− y)fδ(y)dy + ϕδ

∫ ∞

u

w5(y)fδ(y)dy

with solution, using (2.23)

mδ,5(u) =
ϕδ

1−ϕδ

[(
1−Gδ(u)

) ∫ ∞

u

w5(y)fδ(y)dy +

∫ u

0

(
Gδ(u−y)−Gδ(u)

)
w5(y)fδ(y)dy

]
. (2.55)
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The Laplace transform of the discounted density is given by (2.55) with w5(y) = e−s5y and therefore

XT + |UT | has defective discounted density (given U0 = u) in (2.54) by inverting (2.55). �

Note that with δ = 0 in the classical compound Poisson model without dependency (i.e.

k(t) = λe−λt and pt(y) = p(y)), h0(x, y|0) in (2.8) equals (λ/c)p(x + y) (e.g. Gerber and Shiu

(1997b)). Thus, v0,123(u) in (2.16) becomes the same function with a different choice of the penalty

function, namely, w123(x, y, z) = w1(x) = e−sx and w123(x, y, z) = w23(y, z) = e−s(y+z). Therefore,

in this case the defective density of the last ladder height before ruin given by (2.54) is equivalent

to the defective density of the surplus prior to ruin.

Corollary 7 The bivariate Laplace transform of the last interclaim time before ruin VNT
and the

claim causing ruin

E
[
e−δT−s1VNT

−s2YNT I (T <∞)
∣∣U0 = u

]
=

∫ ∞

0

∫ ∞

0

e−s1t−s2yh4,δ(t, y|u)dydt,

where the joint density of VNT
and YNT

is given by

h4,δ (t, y |u) = e−δtk(t)pt(y)

{
I(y > u+ ct) + I(y > ct)

∫ y−ct

0

τδ(u, v)dv

}
. (2.56)

Proof. Since VNT
= (UT−−RNT−1)/c and YNT

= UT−+|UT |, we get the bivariate Laplace transform

of VNT
and YNT

with w(x, y, v) = e−s1((x−v)/c)−s2(x+y) in (1.2). In this case, from (2.27), we have

βδ(u) =

∫ ∞

0

∫ ∞

u

e−s1(
x−u
c )−s2(x+y)

{
e−δ(

x−u
c ) 1

c
k

(
x− u

c

)
px−u

c
(x+ y)

}
dxdy.

Changing a variable from (x− u)/c to (t) yields

βδ(u) =

∫ ∞

0

∫ ∞

u+ct

e−s1t−s2y
{
e−δtk(t)pt(y)

}
dydt. (2.57)
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Thus from (2.25) and (2.57) we could get the bivariate Laplace transform of the last interclaim

time before ruin VNT
and the claim causing ruin YNT

and thus we have the joint density of these

by inverting the transform with respect to s1 and s2. �

Corollary 8 The Laplace transform of the last interclaim time VNT
is given by

E
[
e−δT−s1VNT I (T <∞)

∣∣U0 = u
]
=

∫ ∞

0

e−s1th5,δ(t|u)dt,

where its density is given by

h5,δ(t|u) = e−δtk(t)

{
P t(u+ ct) +

∫ ∞

0

P t(v + ct)τδ(u, v)dv

}
, t > 0. (2.58)

Proof. The marginal Laplace transform of VNT
is obtainable with s2 = 0, in which case (2.57)

becomes

βδ(u) =

∫ ∞

0

e−s1t
{
e−δtk(t)P t(u+ ct)

}
dt,

and substituting the above result into (2.25) followed by inverting with respect to s1 yields the

marginal density of the last interclaim time VNT
given by (2.58). �

Corollary 9 The Laplace transform of the claim causing ruin YNT
is given by

E
[
e−δT−s2YNT I (T <∞)

∣∣U0 = u
]
=

∫ ∞

0

e−s2yh6,δ(y|u)dy,

where its density is given by

h6,δ(y|u) =
∫ y−u

c

0

pt(y)k(t)dt+

∫ y

0

τδ(u, z)

∫ y−z
c

0

pt(y)k(t)dtdz.

In particular, for the time-independent claim sizes it simplifies to

h6,δ(y|u) = p(y)

[
Kδ

(
y − u

c

)
I(y > u) +

∫ y

0

Kδ

(
y − v

c

)
τδ(u, v)dv

]
. (2.59)
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Proof. Similarly, for YNT
with s1 = 0, interchanging the order of integration in (2.57) yields

βδ(u) =

∫ ∞

u

e−s2y

{∫ y−u
c

0

e−δtk(t)pt(y)dt

}
dy,

in particular, if claim sizes are time-independent the above expression may be simplified as

βδ(u) =

∫ ∞

0

e−s2yKδ

(
y − u

c

)
I(y > u)p(y)dy

where Kδ(t) =
∫ t
0
e−δxk(x)dx is a discounted df. Thus in this case from (2.25) we have the Laplace

transform of the claim causing ruin and obtain its density given by (2.59) after an inversion of

this transform. �

2.3 Arbitrary interclaim times without dependency

Here we assume that the claim sizes are independent, namely, P t (y) = P (y) and pt (y) = p (y).

As in Gerber and Shiu (1998), the conditional density of |UT | given UT− = x,RNT−1 = v,NT ≥ 2,

and T = t is given by p (x+ y) /P (x), so that one may write

h∗2(t, x, y, v|u) =
p(x+ y)

P (x)
h(2)(t, x, v|u) (2.60)

where h(2)(t, x, v|u) represents the joint defective density of T , UT− and RNT−1 for ruin occurring

on claims subsequent to the first. Therefore, from (2.60)

h∗2,δ(x, y, v|u) =
p(x+ y)

P (x)
h
(2)
δ (x, v|u) (2.61)

where h
(2)
δ (x, v|u) =

∫∞
0
e−δth(2)(t, x, v|u)dt. Thus, using (2.1), (2.3), and (2.61), the discounted

density (2.8) may be expressed as

hδ(x, y|u) =
p(x+ y)

P (x)
hδ(x|u), (2.62)
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where

hδ(x|u) =
1

c
e−δ(

x−u
c )k

(
x− u

c

)
P (x) +

∫ x

0

h
(2)
δ (x, v|u)dv

is the discounted (marginal if δ = 0) density of the surplus prior to ruin UT− .

Hence, (2.11) becomes, using (2.62),

ϕδ =

∫ ∞

0

hδ(x|0)
{∫ ∞

0

p(x+ y)

P (x)
dy

}
dx =

∫ ∞

0

hδ(x|0)dx,

and (2.12) may be expressed as the mixed density

fδ(y) =

∫ ∞

0

{
hδ(x|0)
ϕδ

}
p(x+ y)

P (x)
dx. (2.63)

The defective renewal equation may also be simplified. If w(x, y, z, v) = w134(x, z, v)w2(y),

then (2.6) may be expressed using (2.61) as

vδ,134,2(u) =

∫ ∞

0

e−δtw134(u+ct, u, u)

{∫ ∞

0

w2(y)p(y+ct+u)dy

}
k(t)dt+

∫ ∞

0

1

P (x)

×
{∫ ∞

0

w2(y)p(x+y+u)dy

}∫ x

0

w134(x+u, u, v+u)h
(2)
δ (x, v|0)dvdx. (2.64)

We now illustrate some of these ideas by deriving the joint Laplace transform of all these quantities

in the case with exponential claim sizes.

37



2.3.1 Exponential claim sizes

We consider the joint Laplace transform of (T, UT− , |UT | , XT , RNT−1) when p(y) = βe−βy. Letting

w(x, y, z, v) = e−s1x−s2y−s3z−s4v, (2.64) yields

v∗δ (u) =

∫ ∞

0

e−δt−s1(u+ct)−s3u−s4u
{∫ ∞

0

e−s2yβe−β(y+ct+u)dy

}
k(t)dt

+

∫ ∞

0

{∫ ∞

0

e−s2yβe−β(y+u)dy

}∫ x

0

e−s1(x+u)−s3u−s4(v+u)h
(2)
δ (x, v|0)dvdx

= e−(β+s1+s3+s4)u

∫ ∞

0

e−(δ+cs1+cβ)t

{∫ ∞

0

βe−(β+s2)ydy

}
k(t)dt

+ e−(β+s1+s3+s4)u

{∫ ∞

0

βe−(β+s2)ydy

}∫ ∞

0

∫ x

0

e−s1x−s4vh
(2)
δ (x, v|0)dvdx

=
βe−(β+s1+s3+s4)u

β + s2

{
k̃(δ + cs1 + cβ) + h̃

(2)
δ (s1, s4|0)

}
,

where k̃(s) =
∫∞
0
e−stk(t)dt and h̃

(2)
δ (s1, s4|0) =

∫∞
0

∫ x
0
e−s1x−s4vh

(2)
δ (x, v|0)dvdx are the Laplace

transforms of k(t) and h
(2)
δ (x, v|0) respectively. For notational convenience, let γδ(s1, s4) = k̃(δ +

cs1 + cβ) + h̃
(2)
δ (s1, s4|0), so that

v∗δ (u) =
βγδ(s1, s4)

β + s2
e−(β+s1+s3+s4)u. (2.65)

It is clear from (2.63) that fδ(y) = βe−βy = p(y) in this case. Thus, from (2.7), the Gerber-Shiu

function

m∗
δ (u) = E

[
e−δT−s1UT−−s2|UT |−s3XT−s4RNT−1I (T <∞)

∣∣U0 = u
]

satisfies

m∗
δ (u) = ϕδ

∫ u

0

m∗
δ(u− y)βe−βydy + v∗δ (u)

where v∗δ (u) is given by (2.65). To solve this equation directly we will use Laplace transforms.

Thus,

m̃∗
δ(z) = ϕδm̃

∗
δ(z)

β

β + z
+
βγδ(s1, s4)

β + s2
(β + s1 + s3 + s4 + z)−1,
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and hence solving for m̃δ(z) yields

m̃∗
δ(z) =

βγδ(s1, s4)

β + s2

(β + s1 + s3 + s4 + z)−1

1− ϕδβ(β + z)−1

=
βγδ(s1, s4)

(β + s2)(ϕδβ + s1 + s3 + s4)

{
s1 + s3 + s4

β + s1 + s3 + s4 + z
+

ϕδβ

β(1− ϕδ) + z

}

after a little algebra. Thus inversion with respect to z yields

m∗
δ(u) =

βγδ(s1, s4)

(β + s2)(ϕδβ + s1 + s3 + s4)

{
(s1 + s3 + s4)e

−(β+s1+s3+s4)u + βGδ(u)
}
, (2.66)

where Gδ(u) = ϕδe
−β(1−ϕδ)u with ϕδ the solution to ϕδ = k̃(δ + cβ − ϕδcβ) (e.g. Willmot (2007)).

It is useful to be able to express h̃
(2)
δ (s1, s4|0) or equivalently γδ(s1, s4) in terms of the interclaim

time Laplace transform k̃(s). To do this, we will examine m∗
δ(u) by conditioning on the time and

amount of the first claim, which simplifies if we ignore XT by letting s3 = 0 (and for simplicity

we will also set s2 = 0). Thus, let

mδ,14(u) =
γδ(s1, s4)

ϕδβ + s1 + s4

{
(s1 + s4)e

−(β+s1+s4)u + βGδ(u)
}
, (2.67)

which corresponds to the choice of the penalty function w(x, y, z, v) = w14(x, v) = e−s1x−s4v. Thus,

in this case, mδ,14(u) satisfies the integral equation (from (2.37))

mδ,14(u) =

∫ ∞

0

e−δtτδ(u+ ct, u)k(t)dt (2.68)

where

τδ(t, u) =

∫ t

0

mδ,14(t− y)βe−βydy +

∫ ∞

t

e−s1t−s4uβe−βydy.

Clearly, ∫ ∞

t

e−s1t−s4uβe−βydy = e−(β+s1)t−s4u,
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and using (2.67)

∫ t

0

mδ,14(t− y)βe−βydy

=
γδ(s1, s4)

ϕδβ + s1 + s4

{
(s1 + s4)

∫ t

0

e−(β+s1+s4)(t−y)βe−βydy + β

∫ t

0

Gδ(t− y)fδ(y)dy

}
=

βγδ(s1, s4)

ϕδβ + s1 + s4

{
e−βt[1− e−(s1+s4)t] +

[
Gδ(t)

ϕδ
− e−βt

]}
=

βγδ(s1, s4)

ϕδβ + s1 + s4

{
Gδ(t)

ϕδ
− e−(β+s1+s4)t

}
.

Thus,

τδ(t, u) =
βγδ(s1, s4)

ϕδβ + s1 + s4

{
Gδ(t)

ϕδ
− e−(β+s1+s4)t

}
+ e−(β+s1)t−s4u,

and therefore

∫ ∞

0

e−δtτδ(u+ ct, u)k(t)dt =

∫ ∞

0

e−δt−(β+s1)(u+ct)−s4uk(t)dt

+
βγδ(s1, s4)

ϕδβ + s1 + s4

{
1

ϕδ

∫ ∞

0

e−δtGδ(u+ ct)k(t)dt−
∫ ∞

0

e−δt−(β+s1+s4)(u+ct)k(t)dt

}
.

That is

∫ ∞

0

e−δtτδ(u+ ct, u)k(t)dt = e−(β+s1+s4)uk̃(δ + cβ + cs1)

+
βγδ(s1, s4)

ϕδβ + s1 + s4

{∫ ∞

0

e−δt−β(1−ϕδ)(u+ct)k(t)dt− e−(β+s1+s4)uk̃(δ + cβ + cs1 + cs4)

}
.

But
∫∞
0
e−δt−cβ(1−ϕδ)tk(t)dt = ϕδ, and thus∫ ∞

0

e−δtτδ(u+ ct, u)k(t)dt = e−(β+s1+s4)uk̃(δ + cβ + cs1)

+
βγδ(s1, s4)

ϕδβ + s1 + s4

{
Gδ(u)− e−(β+s1+s4)uk̃(δ + cβ + cs1 + cs4)

}
, (2.69)

which (by (2.68)) equals mδ,14(u). Thus, equating (2.67) and (2.69), the terms involving Gδ(u)
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cancel, and division by e−(β+s1+s4)u results in

γδ(s1, s4)

ϕδβ + s1 + s4
(s1 + s4) = k̃(δ + cβ + cs1)−

γδ(s1, s4)

ϕδβ + s1 + s4
βk̃(δ + cβ + cs1 + cs4),

which in turn implies that

γδ(s1, s4) =
(ϕδβ + s1 + s4)k̃(δ + cβ + cs1)

s1 + s4 + βk̃(δ + cβ + cs1 + cs4)
. (2.70)

Finally, substitution of (2.70) into (2.66) yields

m∗
δ(u) = Cδ(s1, s2, s3, s4)

{
(s1 + s3 + s4)e

−(β+s1+s3+s4)u + ϕδβe
−β(1−ϕδ)u

}
, (2.71)

where

Cδ(s1, s2, s3, s4) =
β(ϕδβ + s1 + s4)k̃(δ + cβ + cs1)

(β + s2)(ϕδβ + s1 + s3 + s4){s1 + s4 + βk̃(δ + cβ + cs1 + cs4)}
. (2.72)

The last interclaim time before ruin VNT
= (UT− − RNT−1)/c was analyzed in the classical

compound Poisson risk model by Cheung et al. (2010a). For the present Sparre Andersen model

with exponential claims, the Laplace transform of the defective distribution of VNT
is given by

(2.71) with δ = 0, s1 = s/c, s2 = s3 = 0, and s4 = −s/c. Thus, using (2.72) also, it follows that

E
[
e−sVNT I (T <∞)

∣∣U0 = u
]
=
k̃(cβ + s)

k̃(cβ)
ψ(u),

and the proper distribution of VNT
|T <∞ is functionally independent of u with Laplace transform

E
[
e−sVNT

∣∣T <∞
]
=
k̃(cβ + s)

k̃(cβ)
. (2.73)

Clearly, (2.73) is the Laplace transform of an Esscher transformed distribution of K(t), so that if

K1(t) = 1 − K1(t) = Pr
(
VNT

∣∣T <∞
)
is the distribution function, the density k1(t) = K ′

1(t) is
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given by

k1(t) =
e−cβtk(t)

k̃(cβ)
. (2.74)

Evaluation of k1(t) is straightforward for many choices of k(t). In particular, if k(t) is from the

mixed Erlang, combination of exponentials, or phase-type classes, the same is easily seen to be

true of k1(t).

Also, VNT

∣∣T < ∞ is stochastically dominated by the generic interclaim time random variable

V , a result which agrees with intuition. For further details regarding the ordering result of the ruin

related quantities including VNT

∣∣T <∞, see Cheung et al. (2010b) and Cheung et al. (2010c).

For more general claim size distributions, a similar approach may be used to determine the

joint Laplace transform as in Landriault and Willmot (2008).
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Chapter 3

Sparre Andersen risk models

In this chapter, we study the generalized Gerber-Shiu function mδ(u) in (1.3) in the Sparre An-

dersen risk model with certain distributions for the interclaim time. In Section 3.1, a Kn family

distribution considered by Li and Garrido (2005) is assumed. As a special case of this model, the

classical compound Poisson risk model is considered in Section 3.2 and Section 3.3.

3.1 Coxian interclaim time distributions

3.1.1 Introduction

In this section, we consider the model of Li and Garrido (2005), whereby k(t) is a pdf from the

Kn class of densities, whose Laplace-Stieltjes transform is the ratio of a polynomial of k < n to a

polynomial of degree n (see Cohen (1982), Tijms (1994), and Willmot (1999)) given by

k̃(s) =
ω(s)∏m

i=1(λi + s)ni
(3.1)
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where λi > 0 for i = 1, 2, . . . ,m with λi ̸= λj for i ̸= j. Also, ni is a nonnegative integer for

i = 1, 2, . . . ,m, and n = n1 + · · ·+ nm > 0, while ω(s) is a polynomial of degree n− 1 or less (the

denominator of (3.1) is a polynomial of degree n). The classical compound Poisson risk model

(e.g. Gerber and Shiu (1998)) is recovered in the exponential case with m = n = 1, the Erlang(n)

renewal risk model (e.g. Li and Garrido (2004)) with m = 1, and nm = n, and the generalized

Erlang renewal risk model (e.g. Gerber and Shiu (2005)) with ni = 1 for i = 1, 2, . . . , n, and

ω(s) =
∏m

i=1 λ
ni
i in all these cases. For reference, a wide class of distributions including (3.1),

called the class Rf of distributions, was studied by Dufresne (2001). These have finite rational

Laplace transforms includes the so-called phase-type distributions (e.g. Asmussen (1987, pp.74-

76)).

As pointed out by Li and Garrido (2005), a partial fraction expression of (3.1) results in

k̃(s) =
m∑
i=1

ni∑
j=1

ai,j
(λi + s)j

(3.2)

where

ai,j =
1

(ni − j)!

dni−j

dsni−j

{
m∏

k=1,k ̸=i

ω(s)

(λk + s)nk

}∣∣∣∣∣
s=−λi

.

Inversion of (3.2) results in

k(t) =
m∑
i=1

ni∑
j=1

ai,j
tj−1e−λit

(j − 1)!
, (3.3)

and the Kn class may be viewed in terms of finite combinations of Erlangs. Also, it is assumed

that the claim sizes {Yi}∞i=1 with Yi the size of the ith claim are iid positive random variables

which implies that pt(y) = p(y), P t(y) = P (y), and Laplace transform p̃(s) =
∫∞
0
e−syp(y)dy.

Also, Lundberg’s (generalized) fundamental equation (2.34), that is,

p̃(s)k̃(δ − cs) = 1 (3.4)

is of central importance in the ensuing analysis, and Li and Garrido (2005) showed that (3.4) has
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exactly n roots ρ1, ρ2, · · · , ρn with nonnegative real part Re(ρj) ≥ 0 in the complex plane. We

shall henceforth assume (as did Li and Garrido (2005)) that these roots are distinct, i.e. ρi ̸= ρj

for i ̸= j.

It follows from (3.1) and (3.2) that

ω(δ − cs) =

{
m∏
k=1

(λk + δ − cs)nk

}
m∑
i=1

ni∑
j=1

ai,j

(λi + δ − cs)j
,

is still a polynomial in s of degree n − 1 or less. More generally, if θi,j are constants, then as

pointed out by Li and Garrido (2005),

q(s) =

{
m∏
k=1

(λk + δ − cs)nk

}
m∑
i=1

ni∑
j=1

θi,j

(λi + δ − cs)j
, (3.5)

is a polynomial in s of degree n− 1 or less. Therefore, from the theory of Lagrange polynomials,

(3.5) may be re-expressed as

q(s) =
n∑
i=1

q(ρi)

{
n∏

j=1,j ̸=i

s− ρj
ρi − ρj

}
. (3.6)

The Laplace transform relationship in (2.44) is used in Section 3.1.2 to derive a defective

renewal equation for (1.3), and to show that this is a generalization of that obtained by Li and

Garrido (2005) for its special case (1.3). In Section 3.1.3, the results of Sections 2.2.1, 2.2.2 and

3.1.2 are used to obtained the trivariate “discounted” defective distribution of UT− , |UT |, and

RNT−1. Joint and marginal distributions of the claim causing ruin (e.g. Dufresne and Gerber

(1988)) given by YNT
= UT− + |UT |, and the last interclaim time before ruin are also obtained.

The asymptotic result for these densities are considered in Section 3.1.4. Up to Section 3.1.4, we

assume that the claim sizes are independent on the interclaim times whereas this assumption is

relaxed to allowance of the dependency between these two random variables in Section 3.1.5. In

particular, the model studied by Boudreault et al. (2006) is considered.
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3.1.2 Defective renewal equations

In this section we identify the components in the defective renewal equation (2.13) under the

present model. More precisely, the function vδ(u) will be identified. Much information can be

obtained from (2.13), including solutions for mδ(u) which are discussed further in subsequent

sections of the paper.

In this case, in order to express (2.37) in the form (2.13), consider σt,δ(x) = σδ(x) in (2.40)

(i.e. Pt(y) = P (y)), then in this case (2.43) is

σ̃w(δ − cs) =

∫ ∞

0

e−sx

{∫ ∞

x
c

e−(δ−cs)tk(t)dt

}
σδ(x)dx. (3.7)

Using (3.3),

∫ ∞

x
c

e−(δ−cs)tk(t)dt =
m∑
i=1

ni∑
j=1

ai,j

∫ ∞

x
c

tj−1e−(λi+δ−cs)t

(j − 1)!
dt

=
m∑
i=1

ni∑
j=1

ai,j
cj(j − 1)!

∫ ∞

x

tj−1e−(
λi+δ

c
−s)tdt

=
m∑
i=1

ni∑
j=1

j−1∑
k=0

ai,jx
ke−(

λi+δ

c
−s)x

cjk!

∫ ∞

0

tj−k−1e−(
λi+δ

c
−s)t

(j − k − 1)!
dt =

m∑
i=1

ni∑
j=1

j−1∑
k=0

ai,jx
ke−(

λi+δ

c
−s)x

ckk!(λi + δ − cs)j−k
.

(3.8)

Substitution of the above expression into (3.7) followed by an interchange of order of the summa-

tion yields

σ̃w(δ − cs) =
m∑
i=1

ni∑
j=1

j−1∑
k=0

ai,j
ckk!(λi + δ − cs)j−k

∫ ∞

0

xke−(
λi+δ

c )xσδ(x)dx

=
m∑
i=1

ni∑
j=1

j−1∑
k=0

(−1)kai,jσ̃
(k)
δ

(
λi+δ
c

)
ckk!(λi + δ − cs)j−k

=
m∑
i=1

ni−1∑
k=0

ni∑
j=k+1

(−1)kai,jσ̃
(k)
δ

(
λi+δ
c

)
ckk!(λi + δ − cs)j−k

=
m∑
i=1

ni−1∑
k=0

ni−k∑
j=1

(−1)kai,j+kσ̃
(k)
δ

(
λi+δ
c

)
ckk!(λi + δ − cs)j

=
m∑
i=1

ni∑
j=1

ni−j∑
k=0

(−1)kai,j+kσ̃
(k)
δ

(
λi+δ
c

)
ckk!(λi + δ − cs)j

.
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Thus, we get

σ̃w(δ − cs) =
m∑
i=1

ni∑
j=1

θ∗i,j

(λi + δ − cs)j
, (3.9)

where

θ∗i,j =

ni∑
k=j

(−1)k−jai,kσ̃
(k−j)
δ

(
λi+δ
c

)
(k − j)!ck−j

. (3.10)

With the above σ̃w(δ − cs), (2.44) becomes

m̃δ(s)
{
1− p̃(s)k̃(δ − cs)

}
= β̃δ(s)−

m∑
i=1

ni∑
j=1

θ∗i,j

(λi + δ − cs)j
,

where θ∗i,j are constants given by (3.9). And we may rewrite the above equation as

m̃δ(s)
{
1− p̃(s)k̃(δ − cs)

}
= β̃δ(s)−

q∗(s)∏m
k=1(λk + δ − cs)nk

, (3.11)

where

q∗(s) =

{
m∏
k=1

(λk + δ − cs)nk

}
m∑
i=1

ni∑
j=1

θ∗i,j

(λi + δ − cs)j

is of the form (3.5) and is a polynomial of degree n − 1 or less. Therefore, from (3.4) and (3.6),

q∗(s) may be expressed as

q∗(s) =
n∑
i=1

{
β̃δ(ρi)

m∏
k=1

(λk + δ − cρi)
nk

}
n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
, (3.12)

where it is tacitly assumed that m̃δ(ρi) < ∞ for i = 1, 2, . . . , n, to ensure that the left side of

(3.11) vanishes when s = ρi.
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Multiplication of (3.11) by
∏m

k=1(λk + δ − cs)nk and using (3.12) results in

m̃δ(s)

{
m∏
k=1

(λk + δ − cs)nk

}{
1− p̃(s)k̃(δ − cs)

}
= β̃δ(s)

{
m∏
k=1

(λk + δ − cs)nk

}
−

n∑
i=1

{
β̃δ(ρi)

m∏
k=1

(λk + δ − cρi)
nk

}
n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
.(3.13)

But from Li and Garrido (2005, equations 19 and 22), the defective density ϕδfδ(y) has Laplace

transform

ϕδf̃δ(s) = 1−
∏m

k=1(λk + δ − cs)nk

cn
∏n

j=1(ρj − s)

{
1− p̃(s)k̃(δ − cs)

}
,

which may be rearranged as

{
m∏
k=1

(λk + δ − cs)nk

}{
1− p̃(s)k̃(δ − cs)

}
=
{
1− ϕδf̃δ(s)

}
(−c)n

n∏
j=1

(s− ρj).

Substitution of this expression into the left side of (3.13) followed by division of both sides of

(3.13) by (−c)n
∏n

j=1(s− ρj) results in

m̃δ(s)
{
1− ϕδf̃δ(s)

}
= ṽδ(s) (3.14)

where

ṽδ(s) = β̃δ(s)

∏m
k=1(s−

λk+δ
c

)nk∏n
j=1(s− ρj)

−
n∑
i=1

β̃δ(ρi)
∏m

k=1(ρi −
λk+δ
c

)nk

(s− ρi)
∏n

j=1,j ̸=i(ρi − ρj)
. (3.15)

Inversion of (3.14) yields (2.13), and it remains to identify vδ(u) by inverting (3.15).

As
∏m

k=1(s−(λk+δ)/c)
nk and

∏n
j=1(s−ρj) are polynomials of degree n with leading coefficient

equal to unity, the polynomial

q0(s) =

{
m∏
k=1

(
s− λk + δ

c

)nk

}
−

n∏
j=1

(s− ρj)
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is of degree n− 1. Because q0(ρi) =
∏m

k=1(ρi − (λk + δ)/c)nk , (3.6) yields

q0(s) =
n∑
i=1

{
m∏
k=1

(
ρi −

λk + δ

c

)nk

}
n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
.

Therefore, equating these two expressions for q0(s) and rearranging yields the identity

∏m
k=1

(
s− λk+δ

c

)nk∏n
j=1(s− ρj)

= 1 +
n∑
i=1

∏m
k=1

(
ρi − λk+δ

c

)nk

(s− ρi)
∏n

j=1,j ̸=i(ρi − ρj)
.

Replacement of the coefficient of β̃δ(s) in (3.15) by the right hand side of this expression yields

ṽδ(s) = β̃δ(s) +
n∑
i=1

∏m
k=1

(
ρi − λk+δ

c

)nk∏n
j=1,j ̸=i(ρi − ρj)

{
β̃δ(s)− β̃δ(ρi)

s− ρi

}
,

i.e.,

ṽδ(s) = β̃δ(s) +
n∑
i=1

a∗i

{
β̃δ(ρi)− β̃δ(s)

s− ρi

}
(3.16)

where

a∗i =

∏m
k=1

(
λk+δ
c

− ρi
)nk∏n

j=1,j ̸=i(ρj − ρi)
. (3.17)

Inversion of (3.16) yields

vδ(u) = βδ(u) +
n∑
i=1

a∗iTρiβδ(u). (3.18)

Moreover, an alternative approach to obtain (3.18) by the initial value theorem as did Li and

Garrido (2005) is available. In order to identify mδ(0), we need to consider differentiability of

mδ(u). In this case, from (2.37) it is sufficient that βδ(u) in (2.38), namely w(x, y, v) in (2.39) is

differentiable. From (3.3) k(t) is shown to be differentiable. Hence, let us assume that the form

of penalty function is differentiable. Now, from (3.11), we have

m̃δ(s) =
β̃δ(s)− q∗(s)

∏m
k=1(λk + δ − cs)−nk

1− p̃(s)k̃(δ − cs)
. (3.19)
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Because q∗(s) is a polynomial of degree n− 1 or less, let q∗(s) =
∑n−1

j=0 qjs
j then

lim
s→∞

sq∗(s)∏m
k=1(λk + δ − cs)nk

= lim
s→∞

∑n
j=1 qj−1s

j∏m
k=1 (λk + δ − cs)nk

= lim
s→∞

∑n
j=1 qj−1s

j−n∏m
k=1

(
λk+δ
s

− c
)nk

=
qn−1

(−c)n
.

Therefore, using the above result and (3.19) we may obtain mδ(0) by the initial value theorem,

lim
s→∞

sm̃δ(s) = lim
s→∞

sβ̃δ(s)− sq∗(s)
∏m

k=1(λk + δ − cs)−nk

1− p̃(s)k̃(δ − cs)

=
lims→∞ sβ̃δ(s)− qn−1

(−c)n

1−
{
lims→∞

p̃(s)
s

}{
lims→∞ sk̃(δ − cs)

} = βδ(0)−
qn−1

(−c)n
,

namely,

mδ(0) = βδ(0)−
qn−1

(−c)n
. (3.20)

Then, we need to identify qn−1 which is the coefficient of sn−1 in q∗(s). From (3.12),

q∗(s) = −(−c)n
n∑
i=1

{
β̃δ(ρi)

∏m
k=1

(
λk+δ
c

− ρi
)nk∏n

j=1,j ̸=i(ρj − ρi)

}
n∏

j=1,j ̸=i

(s− ρj),

thus we get qn−1 given by

qn−1 = −(−c)n
n∑
i=1

a∗i β̃δ(ρi), (3.21)

where

a∗i =

∏m
k=1

(
λk+δ
c

− ρi
)nk∏n

j=1,j ̸=i(ρj − ρi)

which is equivalent to (3.17). Substitution of (3.21) into (3.20) yields

mδ(0) = βδ(0) +
n∑
i=1

a∗i β̃δ(ρi). (3.22)
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Using (2.27), (3.22) becomes

mδ(0) = βδ(0) +
n∑
i=1

a∗i

∫ ∞

0

∫ ∞

0

∫ ∞

v

e−ρivw(x, y, v)h1,δ(x, y|v)dxdydv. (3.23)

Clearly, from (2.13), (3.22) is equal to vδ(0). Using (2.27), (2.14) may be rewritten as

vδ(0) = βδ(0) +

∫ ∞

0

∫ ∞

0

∫ ∞

v

w(x, y, v)h2,δ(x, y, v|0)dxdydv,

and comparing the above equation to (3.23) we may obtain

h2,δ(x, y, v|0) =
n∑
i=1

a∗i e
−ρivh1,δ(x, y|v), x > v, y > 0. (3.24)

Therefore, combining (2.27) and (3.24) it is easy to find vδ(u) in (2.14) given by

vδ(u) = βδ(u) +
n∑
i=1

a∗iTρiβδ(u),

which is agreed with (3.18).

For the special case with the penalty function given by w12(x, y), Willmot and Woo (2010)

recovered the defective renewal equation of Li and Garrido (2005) for (1.1). In this case, mδ,12(u)

satisfies the defective renewal equation (2.7) with v∗δ (u) = vδ,12(u), where

vδ,12(u) =
n∑
i=1

biTρiα12(u), (3.25)

where

α12(x) =

∫ ∞

x

w12(x, y − x)p(y)dy, (3.26)

and

bi =
ω(δ − cρi)

cn
∏n

j=1,j ̸=i(ρj − ρi)
. (3.27)

See Willmot and Woo (2010) for further details.

51



We remark that in the special case of (3.1) with ω(s) =
∏m

k=1 λ
nk
k , (3.27) simplifies to

bi =

∏m
k=1(λk/c)

nk∏n
j=1,j ̸=i(ρj − ρi)

,

and using Equation 4 of Li and Garrido (2004), (3.25) may be expressed as

vδ,12(u) =

{
m∏
k=1

(
λk
c

)nk

}
Tρ1Tρ2 · · ·Tρnα12(u).

Also, when w12(x, y) = 1, (3.26) becomes P (x), andmδ,12(u) reduces to (2.20). But this implies

that vδ,12(y) = ϕδ
∫∞
y
fδ(x)dx, which from (3.25) yields immediately that

ϕδ

∫ ∞

y

fδ(x)dx =
n∑
i=1

biTρiP (y) =
n∑
i=1

bi

∫ ∞

0

e−ρixP (x+ y)dx.

This implies in turn for y = 0 that

ϕδ =
n∑
i=1

bi

∫ ∞

0

e−ρixP (x)dx,

and also (by differentiating with respect to y) that

fδ(y) =
1

ϕδ

n∑
i=1

bi

∫ ∞

0

e−ρixp(x+ y)dx =
1

ϕδ

n∑
i=1

biTρip(y).

Furthermore using (3.1), (3.27) may be expressed as

bi =
k̃(δ − cρi)

∏m
k=1

(
λk+δ
c

− ρi
)nk∏n

j=1,j ̸=i(ρj − ρi)
= k̃(δ − cρi)a

∗
i

where a∗i is given by (3.17).
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3.1.3 Associated densities

From (2.24) in Section 2.2.1, note that once we get νδ(v−u) from h2,δ(x, y, v|0) which is obtained by

vδ(0) (basically, from mδ(0)), we readily find the various joint and marginal distribution involving

UT− , |UT | , XT , and RNT−1.

In this case, it is clear that from (3.24), νδ(v − u) is given by

νδ(v − u) =
n∑
i=1

a∗i e
−ρi(v−u),

and thus we may express mδ(u) as the form of (2.25) where τδ(u, v) in (2.26) is given by

τδ (u, v) =


1

1−ϕδ

{
gδ (u− v) +

∑n
i=1 a

∗
i

∫ v
0
e−ρi(v−t)gδ (u− t) dt

}
, v < u∑n

i=1 a
∗
i

{
e−ρi(v−u) + 1

1−ϕδ

∫ u
0
e−ρi(v−t)gδ (u− t) dt

}
, v > u

. (3.28)

Also, for δ = 0,

τ0(u, v) =


1

1−ψ(0)

{
−ψ′(u− v)−

∑n
i=1 a

∗
i

∫ v
0
e−ρi(v−t)ψ′(u− t)dt

}
, v < u∑n

i=1 a
∗
i

{
e−ρi(v−u) − 1

1−ψ(0)

∫ u
0
e−ρi(v−t)ψ′ (u− t) dt

}
, v > u,

(3.29)

since ϕ0 = ψ(0) and g0(u) = −ψ′(u). In (3.29), the ρi are the roots of (3.4) when δ = 0. Clearly,

the classical compound Poisson risk model with K(t) = 1− e−λt is the special case of the present

model with m = n = 1 in (3.1), and (3.28) and (3.29) easily simplify to the result given by Cheung

et al. (2010a).

From (2.31), the joint density of (UT− , |UT | , RNT−1) at (x, y, v) for NT ≥ 2 is obtained by

h2,δ(x, y, v|u) = h1,δ(x, y|v)τδ(u, v), x > v,
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where from (2.3) with (3.3),

h1,δ (x, y |u) =
1

c
p(x+ y)

m∑
i=1

ni∑
j=1

ai,j

(
x−u
c

)j−1
e−(λi+δ)(x−u

c )

(j − 1)!
, x > u, (3.30)

and τδ(u, v) is given by (3.28).

Furthermore, by applying the general results provided in Section 2.2.2, we may easily obtain the

joint discounted densities of (UT− , |UT | , XT , RNT−1), joint discounted density of (UT− , |UT |) (also

studied by Li and Garrido (2005)), the joint discounted density of the last interclaim time before

ruin VNT
and the claim causing ruin YNT

, and also their marginal distributions. In particular,

from (2.59) the marginal density of the claim causing ruin YNT
is given by

h6,δ(y|u) = p(y)

[
Kδ

(
y − u

c

)
I(y > u) +

∫ y

0

Kδ

(
y − v

c

)
τδ(u, v)dv

]
, (3.31)

where Kδ(t) =
∫ t
0
e−δxk(x)dx.

To evaluate Kδ(t), if follows from (3.1) and (3.3) that

Kδ(t) = k̃(δ)−
∫ ∞

t

e−δxk(x)dx

=
ω(δ)∏m

i=1(λi + δ)ni
−

m∑
i=1

ni∑
j=1

ai,j

∫ ∞

t

xj−1e−(λi+δ)x

(j − 1)!
dx

=
ω(δ)∏m

i=1(λi + δ)ni
−

m∑
i=1

e−(λi+δ)t

ni∑
j=1

ai,j

j−1∑
k=0

tk

k!(λi + δ)j−k
,

i.e.,

Kδ(t) =
ω(δ)∏m

i=1(λi + δ)ni
−

m∑
i=1

e−(λi+δ)t

ni−1∑
k=0

tk

k!

ni∑
j=k+1

ai,j
(λi + δ)j−k

. (3.32)

Thus, (3.32) may be substituted into (3.31). We note that the proper pdfs corresponding to (2.56),

(2.58), and (3.31) may be obtained by appropriate normalization.

In the next section we consider the asymptotic forms of τδ(u, v) and associated densities.
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3.1.4 Asymptotic results

Evaluation of the defective joint and marginal densities for a large u essentially requires specifi-

cation of the asymptotic behavior of τδ(u, v) in (3.28). First, we may reexpress a form of (3.28)

for v < u as follows (ignore the other case, i.e. for v > u since we analyze (3.28) when u → ∞).

Using a integration by parts, (3.28) for v < u becomes

τδ(u, v) =
1

1−ϕδ

{
gδ (u−v)+

n∑
i=1

a∗i

∫ v

0

e−ρi(v−t)gδ (u−t) dt

}

=
1

1−ϕδ

[
gδ (u−v)+

n∑
i=1

a∗i

{
Gδ(u−v)−e−ρivGδ(u)−ρi

∫ v

0

e−ρi(v−t)Gδ (u−t) dt
}]

. (3.33)

Because the form of τδ(u, v) contains the compound geometric density gδ(u) and the compound

geometric tail Gδ(u), recall the asymptotic results for those functions. From Willmot et al. (2001),

we know that the compound geometric density satisfies the defective renewal equation

gδ(u) = ϕδ

∫ u

0

gδ(u− y)fδ(y)dy + ϕδ(1− ϕδ)fδ(u).

If eκδyfδ(y) is directly Riemann integrable on (0,∞) (one of the sufficient condition provided by

Willmot and Lin (2001, p.157) is that we can show whether f̃δ(−κδ−ϵ) =
∫∞
0
e(κδ+ϵ)ydFδ(y)<∞

for some ϵ > 0, see also Feller (1971, pp.362-263) and Resnick (1992, Section 3.10)), then using

the famous Cramér-Lundberg result yields (using the notation a(x) ∼ b(x) for x → ∞, to mean

limx→∞ a(x)/b(x) = 1)

gδ(u) ∼ C∗
δ e

−κδu, u→ ∞, (3.34)

where κδ > 0 satisfies
∫∞
0
eκδydFδ(y) = ϕ−1

δ and

C∗
δ =

1− ϕδ
ϕδ
∫∞
0
yeκδyfδ(y)dy

. (3.35)
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Also, if F is non-arithmetic (and thus not a discrete counting) then it is well-known that (e.g.

Willmot and Lin (2001, p.158))

Gδ(u) ∼
C∗
δ

κδ
e−κδu, u→ ∞, (3.36)

where C∗
δ is given by (3.35). Then, using (3.33) one finds

lim
u→∞

eκδuτδ(u, v)

= lim
u→∞

eκδu

1− ϕδ

[
gδ (u− v) +

n∑
i=1

a∗i

{
Gδ(u− v)− e−ρivGδ(u)− ρi

∫ v

0

e−ρi(v−t)Gδ (u− t) dt

}]
.

We know that Gδ(u) ≤ e−κδu for u ≥ 0, by dominated convergence it follows that

lim
u→∞

eκδuτδ(u, v)

= Cδe
κδv +

n∑
i=1

a∗i

[
Cδ
κδ

(
eκδv − e−ρiv

)
− ρi

∫ v

0

{
lim
u→∞

eκδ(u−t)Gδ(u− t)

1− ϕδ

}
eκδte−ρi(v−t)dt

]

= Cδ

{
eκδv +

n∑
i=1

a∗i
κδ

(
eκδv − e−ρiv − ρi

∫ v

0

eκδte−ρi(v−t)dt

)}

where Cδ = C∗
δ (1− ϕδ)

−1 with (3.35).

Therefore,

τδ(u, v) ∼ Cδlδ(v)e
−κδu, u→ ∞, (3.37)

where

lδ(v) = eκδv +
n∑
i=1

a∗i

(
eκδv − e−ρiv

ρi + κδ

)
. (3.38)

In particular, for the compound Poisson risk model with K(t) = 1 − e−λt, only one root ρ exists

and thus lδ(v) in (3.38) reduces to

l∗δ(v) = eκδv +

(
λ+ δ

c
− ρ

)
eκδv − e−ρv

ρ+ κδ
.

For the joint density of (UT− , |UT |, RNT−1), from (2.31) and (3.37) with (3.30) the discounted
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joint density of (UT− , |UT |, RNT−1) for x > v is asymptotically distributed as

h2,δ(x, y, v|u) ∼ Cδlδ(v)h1,δ(x, y|v)e−κδu, u→ ∞,

where Cδ and lδ(v) are given by (3.35) and (3.38) respectively.

3.1.5 Time-dependent claim sizes case

Similar to the Section 3.1.2 but with time-dependent claim sizes, we shall demonstrate that (1.3)

satisfies the defective renewal equation (2.7) with the identification of vδ(u) To illustrate that, in

the following we shall assume the dependency model structure introduced by Boudreault et al.

(2006). The (conditional) density of Y |V with an exponential mixing weight function with rate β

is assumed by

pt(y) = e−βtf1(y) + (1− e−βt)f2(y), y ≥ 0, (3.39)

where f1(y) = −F ′
1(y) and f2(y) = −F ′

2(y) are claim sizes distributions with mean µ1 and µ2

respectively. In this case, we have the PSLC as

E[cV − Y ] = cE[V ]−
{
k̃(β)µ1 + (1− k̃(β))µ2

}
> 0. (3.40)

This model is more appropriate to reflect natural catastrophes (e.g. earthquakes). Numerical

example assuming (3.39) in the delayed risk models is provided in Section 4.4.1.

Letting σδ,i(u) =
∫ u
0
mδ(u− y)fi(y)dy for i = 1, 2, it follows that (2.40) may be expressed as

σt,δ(u) = e−βt{σδ,1(u)− σδ,2(u)}+ σδ,2(u).

With the above σt,δ(u), (2.43) is
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σ̃w(δ − cs) =

∫ ∞

0

e−sx
∫ ∞

x
c

e−(δ−cs)tσt,δ(x) dK(t) dx.

=

∫ ∞

0

e−sx

[
{σδ,1(x)− σδ,2(x)}

{∫ ∞

x
c

e−(δ+β−cs)tdK(t)

}
− σδ,2(x)

∫ ∞

x
c

e−(δ+β−cs)tdK(t)

]
dx.

Thus, again the distribution of intereclaim times is given by (3.3), using (3.9) and (3.10) yields

σ̃w(δ − cs) =
m∑
i=1

ni∑
j=1

{
q1,i,j

(λi + β + δ − cs)j
+

q2,i,j
(λi + δ − cs)j

}
, (3.41)

where

q1,i,j =

ni∑
k=j

(−1)k−jai,k
(k − j)!ck−j

{
σ̃
(k−j)
δ,1

(
λi + β + δ

c

)
− σ̃

(k−j)
δ,2

(
λi + β + δ

c

)}
, (3.42)

q2,i,j =

ni∑
k=j

(−1)k−jai,k
(k − j)!ck−j

{
σ̃
(k−j)
δ,2

(
λi + δ

c

)}
, (3.43)

and ã(j)(s) =
∫∞
0
(−x)je−sxa(x)dx.

Hence, we obtain (2.44) with (3.41) as

m̃δ(s)
(
1− E

[
e−sY−(δ−cs)V ]) = β̃δ(s)−

m∑
i=1

ni∑
j=1

{
q1,i,j

(λi + β + δ − cs)j
+

q2,i,j
(λi + δ − cs)j

}
,

where q1,i,j and q2,i,j are constants. Also, it may be expressed as

m̃δ(s)
(
1− E

[
e−sY−(δ−cs)V ]) = β̃δ(s)−

q∗(s)

l(s)
, (3.44)

where

l(s) =
m∏
k=1

{(λk + β + δ − cs)(λk + δ − cs)}nk (3.45)

is a polynomial of degree 2n for β ̸= 0, and

q∗(s) = l(s)
m∑
i=1

ni∑
j=1

{
q1,i,j

(λi + β + δ − cs)j
+

q2,i,j
(λi + δ − cs)j

}
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is again of the form (3.5) and is a polynomial of degree 2n − 1 or less. Division of both sides of

(3.44) by
(
1− E

[
e−sY−(δ−cs)V ]) and then multiplication of the numerator and the denominator

on the right hand side of (3.44) by l(s) results in

m̃δ(s) =
β̃δ(s)− q∗(s)l(s)−1

1− r(s)l(s)−1
(3.46)

where q∗(s) and l(s) are respectively given by (3.48), (3.45), and

r(s) = l(s)
[{
f̃1(s)− f̃2(s)

}
k̃(δ + β − cs) + f̃2(s)k̃(δ − cs)

]
. (3.47)

Now let us discuss the roots of the generalized Lundberg equation (2.34) in this case. With

(3.39) we have

E
[
e−sY−(δ−cs)V ] = {f̃1(s)− f̃2(s)

}
k̃(δ + β − cs) + f̃2(s)k̃(δ − cs) = 1.

Note that the roots of the denominator on the right-hand side in (3.46) solve the above equation.

Proposition 1 For δ > 0, l(s)− r(s) has exactly 2n roots denoted by ρ1, ρ2, . . . , ρ2n, which have

a positive real part Re(ρj) > 0 for j = 1, 2, . . . , 2n. In particular, for δ = 0, l(s)− r(s) has exactly

2n− 1 roots with a positive real part and one zero root.

Proof. By using the Rouche’s theorem and applying the result in Klimenok (2001) (e.g. Boudreault

et al. (2006, Proposition 1.2)) we can determine the number of roots of the equation 1−r(s)/l(s) =

0. The details are ommitted here. �

Then, q∗(s) in (3.46) may be expressed as

q∗(s) =
2n∑
i=1

β̃δ(ρi)l(ρi)
2n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
. (3.48)
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Now, again by the initial value theorem, we may identify mδ(0). To do so, we assume that the

penalty function w(x, y, v) in (1.3) is differentiable. Since q∗(s) is a polynomial of degree 2n − 1

or less, assuming q∗(s) =
∑2n−1

j=0 q∗j s
j then from (3.45), we get

lim
s→∞

sq∗(s)

l(s)
= lim

s→∞

∑2n
j=1 q

∗
j−1s

j∏m
k=1 {(λk + β + δ − cs)(λk + δ − cs)}nk

= lim
s→∞

∑2n
j=1 q

∗
j−1s

j−2n∏m
k=1

{(
λk+β+δ

s
− c
) (

λk+δ
s

− c
)}nk

=
q∗2n−1

(−c)2n
,

and, from (3.47)

lim
s→∞

r(s)

l(s)
= lim

s→∞

[{
f̃1(s)− f̃2(s)

}
k̃(δ + β − cs) + f̃2(s)k̃(δ − cs)

]
=

{
lim
s→∞

f̃1(s)− f̃2(s)

s

}{
lim
s→∞

sk̃(δ + β − cs)
}
+

{
lim
s→∞

f̃2(s)

s

}{
lim
s→∞

sk̃(δ − cs)
}
= 0.

Therefore, from the above results by taking the limit on (3.46), it follows that

lim
s→∞

sm̃δ(s) = lim
s→∞

sβ̃δ(s)− sq∗(s)l(s)−1

1− r(s)l(s)−1

= lim
s→∞

sβ̃δ(s)−
q∗2n−1

(−c)2n
= βδ(0)−

q∗2n−1

(−c)2n
,

namely,

mδ(0) = βδ(0)−
q∗2n−1

(−c)2n
. (3.49)

Then, we need to identify q∗2n−1 which is the coefficient of s2n−1 in q∗(s). From (3.48),

q∗(s) = (−1)2n−1

2n∑
i=1

{
β̃δ(ρi)l(ρi)∏2n

j=1,j ̸=i(ρj − ρi)

}
2n∏

j=1,j ̸=i

(s− ρj),

thus we get qn−1 given by

q∗2n−1 = −(−c)2n
2n∑
i=1

a∗∗i β̃δ(ρi), (3.50)
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where

a∗∗i =

∏m
k=1

(
λk+δ
c

− ρi
)nk
(
λk+β+δ

c
− ρi

)nk∏2n
j=1,j ̸=i(ρj − ρi)

.

Substitution of (3.50) into (3.49) yields

mδ(0) = βδ(0) +
2n∑
i=1

a∗∗i β̃δ(ρi). (3.51)

Similar to Section 3.1.2, we may obtain

h2,δ(x, y, v|0) =
2n∑
i=1

a∗∗i e
−ρivh1,δ(x, y|v).

Thus, we may easily find vδ(u) in (2.14) from βδ(u) and h2,δ(x, y, v|0)

vδ(u) = βδ(u) +
2n∑
i=1

a∗∗i Tρiβδ(u).

In particular, if w(x, y, v) = w12(x, y) as a classical Gerber-Shiu penalty function, βδ(u) in

(2.38) becomes a form of (2.35), Thus, using (2.36) and (3.41) followed by substituting (2.39) and

(3.39), we get β̃δ(s) as

β̃δ,12(s) =

∫ ∞

0

e−(δ−cs)tα̃t(s)dK(t)−
m∑
i=1

ni∑
j=1

{
q∗1,i,j

(λi + β + δ − cs)j
+

q∗2,i,j
(λi + δ − cs)j

}
= {α̃1(s)− α̃2(s)} k̃(δ + β − cs) + α̃2(s)k̃(δ − cs)

−
m∑
i=1

ni∑
j=1

{
q∗1,i,j

(λi + β + δ − cs)j
+

q∗2,i,j
(λi + δ − cs)j

}

where

α̃i(s) =

∫ ∞

0

∫ ∞

0

e−sxw12(x, y)fi(x+ y)dydx, (3.52)

for i = 1, 2, and constants q∗1,i,j and q∗2,i,j are respectively given by (3.42) and (3.43) but σ̃δ,i

replaced by α̃i.
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Therefore, with the above expression for β̃δ,12(s), (3.44) becomes

m̃δ,12(s)
(
1− E

[
e−sY−(δ−cs)V ]) = γδ(s)−

q∗∗(s)

l(s)
, (3.53)

where

γδ(s) = {α̃1(s)− α̃2(s)} k̃(δ + β − cs) + α̃2(s)k̃(δ − cs), (3.54)

l(s) is given by (3.45), a polynomial of degree 2n for β ̸= 0, and

q∗∗(s) = l(s)
m∑
i=1

ni∑
j=1

{
q1,i,j + q∗1,i,j

(λi + β + δ − cs)j
+

q2,i,j + q∗2,i,j
(λi + δ − cs)j

}

is again of the form (3.5) and is a polynomial of degree 2n − 1 or less. Again, q∗∗(s) may be

expressed as

q∗∗(s) =
2n∑
i=1

γδ(ρi)l(ρi)
2n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
, (3.55)

and thus, from (3.53) it follows

m̃δ,12(s) =
γδ(s)− q∗∗(s)l(s)−1

1− r(s)l(s)−1

where r(s) is given by (3.47). Similar to the previous case, we know that

lim
s→∞

sq∗∗(s)

l(s)
=

q∗∗2n−1

(−c)2n
,

where q∗∗2n−1 is the coefficient of q∗∗(s) in (3.55). Also, from (3.52) and (3.54), lims→∞ sγδ(s) = 0

since lims→∞ α̃i(s) = 0. Hence, again by the initial value theorem we may obtain mδ,12(0) as

follows:

lim
s→∞

sm̃δ,12(s) =
sγδ(s)− sq∗∗(s)l(s)−1

1− r(s)l(s)−1
= −

q∗∗2n−1

(−c)2n
.
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From (3.55) we may find

q∗∗2n−1 = −(−c)2n
2n∑
i=1

{b1,iα̃1(ρi) + b2,iα̃2(ρi)} , (3.56)

where

b1,i =

∏m
k=1

(
λk+δ
c

− ρi
)nk

ω(δ + β − cρi)

cn
∏2n

j=1,j ̸=i(ρj − ρi)

and

b2,i =

∏m
k=1

(
λk+β+δ

c
− ρi

)nk
ω(δ − cρi)

cn
∏2n

j=1,j ̸=i(ρj − ρi)
− b1,i.

Therefore,

mδ,12(0) =
2n∑
i=1

{b1,iα̃1(ρi) + b2,iα̃2(ρi)} . (3.57)

In addition, by comparing (2.10) and (3.57) with (3.52) we immediately obtain

hδ(x, y|0) =
2n∑
i=1

{
b1,ie

−ρixf1(x+ y) + b2,ie
−ρixf2(x+ y)

}
,

consequently we find (2.11) and (2.12) respectively in this case,

ϕδ =

∫ ∞

0

∫ ∞

0

hδ(x, y|0)dxdy =
2n∑
i=1

{
b1,i

1− f̃1(ρi)

ρi
+ b2,i

1− f̃2(ρi)

ρi

}
, (3.58)

and

fδ(y) =
1

ϕδ

∫ ∞

0

hδ(x, y|0)dx =
1

ϕδ

2n∑
i=1

{b1,iTρif1(y) + +b2,iTρif2(y)} . (3.59)

In particular, for the classical compound Poisson risk model with m = n = 1 and ω(s) = λ,

(3.57) reduces to

mδ,12(0) =
λ

c

2∑
i=1

(
λ+δ
c

− ρi
)
α̃1(ρi) +

β
c
α̃2(ρi)∏2

j=1,j ̸=i(ρj − ρi)
,
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namely

mδ,12(0) =
λ

c

(
λ+δ
c

− ρ2
)
{α̃1(ρ1)− α̃1(ρ2)}+ β

c
{α̃2(ρ1)− α̃2(ρ2)}+ (ρ2 − ρ1)α̃1(ρ1)

ρ2 − ρ1
,

which is equivalent to the result by Boudreault et al. (2006, Equation 37),

mδ,12(0) =
λ

c

[(
λ+ δ

c
− ρ2

)
Tρ2Tρ1α1(0) +

β

c
Tρ2Tρ1α2(0) + Tρ1α(0)

]
.

3.2 Deficit at ruin with time-dependent claims

As mentioned earlier in Chapter 2, it follows that any properties of the distribution of the deficit

|UT | are formally the same as in the independent case, but with the present definitions of ϕδ in

(2.11) and fδ (y) in (2.12). Therefore, now we illustrate how to obtain proper distribution of deficit

under the dependency model studied by Boudreault et al. (2006).

3.2.1 Introduction

Boudreault et al. (2006) consider a dependence structure given by (3.39). For this model with

K(t) = e−λt, the PSLC is

c

λ
− λµ1 + βµ2

β + λ
> 0. (3.60)

In addition, we need the solutions to the generalized Lundberg equation to analyze the Gerber-Shiu

function. In this case, (2.34) is given by

λ(λ+ δ − cs)f̃1(s) + λβf̃2(s)

(λ+ δ + β − cs)(λ+ δ − cs)
= 1,

and two roots exist denoted by ρ1 and ρ2.
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For δ = 0 (assumed ρ1 = ρ and ρ2 = 0), letting ϕ0 = ϕ and f0(y) = f(y) be respectively, from

Theorem 5 in Boudreault et al. (2006) we have

ϕ =
λ

c

(
λ

c
T0TρF 1(0) +

β

c
T0TρF 2(0) + TρF 1(0)

)
, (3.61)

and

f(y) = q1
TρF 1(y)

T0TρF 1(0)
+ q2

TρF 2(y)

T0TρF 2(0)
+ (1− q1 − q2)

Tρf1(y)

TρF 1(0)
, (3.62)

with

q1 =
λ
c
λ
c
T0TρF 1(0)

κ0
, q2 =

λ
c
β
c
T0TρF 2(0)

κ0
, (3.63)

and 0 ≤ q1, q2 ≤ 1 with 0 ≤ q1 + q2 ≤ 1. Also, the defective renewal equation for mδ,12(u) in (1.1)

is given by

m0,12(u) = ϕ

∫ u

0

m0,12(u− y)f(y)dy + ξ(u), (3.64)

where

ξ(u) =
λ

c

(
λ

c
T0Tργ1(u) +

β

c
T0Tργ2(u) + Tργ1(u)

)
, (3.65)

and γi(t) =
∫∞
t
w12(t, y − t)fi(y)dy.

In order to rewrite a form of f(y) which is a mixture of three distributions, introduce the tail

of ladder height distribution of fi(y) denoted by H i(y) and defined by

H i(y) =

∫∞
0
e−ρtF i(y + t)dt∫∞
0
e−ρtF i(t)dt

=
TρFi(y)

TρF i(0)
, i = 1, 2, (3.66)

which may viewed as a mixture over t of the df 1−F i(y+t)/F i(t) with mixing density proportional

to e−ρtF i(t). Also, with ρ = 0 in (3.66) we get the equilibrium distribution of fi(y) denoted by

fi,1(y) for i = 1, 2, then

TρF i(y)

T0TρF i(0)
=

µ1 Tρfi,1(y)

µ1T0Tρfi,1(0)
=

∫∞
0
e−ρtfi,1(y + t)dt∫∞

0
e−ρtF i,1(t)dt

= hi,1(y), (3.67)

where hi,1(y) is the equilibrium pdf of 1 − H i(y) and F i,1(t) =
∫∞
t
fi,1(y)dy for i = 1, 2. Note

that the equilibrium distribution of the residual life time distribution is the residual lifetime of

the equilibrium distribution. See Willmot and Lin (2001, p.22) for further details.
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Therefore, by using (3.66) and (3.67) f(y) in (3.62) may be re-expressed as a mixture of three

ladder height given by

f(y) = q1h1,1(y) + q2h2,1(y) + (1− q1 − q2)h1(y), (3.68)

where hi,1(y) is given by (3.67), hi(y) = −H ′
i(y) and q1, q2 are given by (3.63).

We remark that f(y) is a DFR if claim sizes distributions f1 and f2 are DFR since the ladder

height distribution hi and hi,1 of fi and fi,1 respectively for i = 1, 2 hold the reliability class

implications and mixing preserves the DFR property (i.e. generating heavy tailed distributions).

See Willmot and Lin (2001) and Barlow and Proschan (1975). Thus, we may apply the existing

result to obtain bounds for the defective renewal equation based on the reliability property of the

ladder height distribution f(y) as in Willmot (2002).

3.2.2 Proper distribution of the deficit at ruin

First, we know that if w12(x, y) = 1, then m0,12(u) in (1.1) is the ruin probability ψ(u). In this

case, (3.64) becomes

ψ(u) = ϕ

∫ u

0

ψ(u− y)f(y)dy + ϕF (u), (3.69)

where F (y) =
∫∞
y
f(t)dt and ϕF (u) is equivalent to ξ(u) = λ

c

(
λ
c
T0TρF 1(u) +

β
c
T0TρF 2(u) + TρF 1(u)

)
.

Also, From Willmot (2000, equation 2.3) ψ(u) is given by

ψ(u) =
ϕ

1− ϕ

∫ u

0−
F (u− t)dG0(t). (3.70)

Now, let us consider w12(x1, x2) = I(x2 ≥ y) in (1.6), then we may obtain the tail of the deficit at

ruin distribution denoted by G(u, y) as

G(u, y) = E [I(|UT | ≥ y)I(T <∞)|U0 = u] = Pr (|UT | ≥ y, T <∞|U0 = u) . (3.71)
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In this case, we also find (3.65) is

ξ(u) =
λ

c

(
λ

c
T0TρF 1(u+ y) +

β

c
T0TρF 2(u+ y) + TρF 1(u+ y)

)
, (3.72)

which is equivalent to the product of ϕ and the tail of f(y) given by (3.61) and (3.62) respectively.

Therefore, we may find the defective renewal equation forG(u, y) from (3.64) given by (see Willmot

(2002, equation 1.3))

G(u, y) = ϕ

∫ u

0

G(u− t, y)f(t)dt+ ϕF (u+ y). (3.73)

Furthermore, let us consider the (proper) conditional distribution of the deficit given that ruin

occurs denoted by Gu(y) = 1−Gu(y). From Theorem 2.1 in Willmot (2002),

Gu(y) =
G(u, y)

ψ(u)
=

∫ u
0−
F (u+ y − t)dG0(t)∫ u
0−
F (u− t)dG0(t)

=

∫ u
0−
F u−t(y)F (u− t)dG0(t)∫ u
0−
F (u− t)dG0(t)

, y ≥ 0, (3.74)

where F 0,x(y) is a residual lifetime (excess loss) tail df associated with a mixture of ladder height

df f0 given by F x(y) =
F (x+y)

F (x)
= 1− Fx(y). Then we can interpret Gu(y) as a mixture of residual

tails F u(y), mixed over u. Differentiation of −Gu(y) in (3.74) with respect to y yields

gu(y) =

∫ u
0−
fu−t(y)F (u− t)dG0(t)∫ u
0−
F (u− t)dG0(t)

, y ≥ 0. (3.75)

See Gerber et al. (1987) and Willmot (2000) for further details.

But G0(0) = ϕ, using (3.70), (3.75) may be rewritten as

gu(y) =
ϕfu(y)F (u)

ψ(u)
+

ϕ

(1− ϕ)ψ(u)

∫ u

0+
fu−t(y)F (u− t)G′

0(t)dt, y ≥ 0.

For u = 0, it follows that

g0(y) =
ϕf(y)

ϕ
=

−ξ′(y)
ϕ

,

where ϕ and ξ(y) are given by (3.61) and (3.72) respectively. This is equivalent to the result for
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the ladder height distribution g2,0(y|0)/ψ(0) derived by Boudreault et al. (2006, Section 5).

Now we consider the simpler representation the deficit distribution given that ruin occurs gu(y)

which is the associated density as a mixture of the densities fx(y) if the claim size distribution

has a certain form. From Theorem 1 in Willmot (2000), it follows that suppose

fx(y) =
r∑

k=1

αk(x)ϕk(y), y ≥ 0, (3.76)

where weight functions {αk(x); k = 1, 2, . . . , r} and density functions {ϕk(y); k = 1, 2, . . . , r} for

some positive integer r for x ≥ 0, then

gu(y) =
r∑

k=1

αk(u)ϕk(y), y ≥ 0, (3.77)

where

αk(u) =
ϕ
∫ u
0
αk(u− t)F (u− t)dG(t)

(1− ϕ)ψ(u)
. (3.78)

So we know that gu(y) is a mixture of the same functions ϕk(y) as fx(y), but with different mixing

weight functions given by (3.78). Then we consider some examples to illustrate how to obtain

explicit form of gu(y) by using this result.

3.2.3 Examples

Example 1 (Exponential claim sizes)

Let us assume that both claim size are exponentially distributed with mean 1/α1 and 1/α2,

namely F 1(y) = e−α1y and F 2(y) = e−α2y, then the tail of the marginal distribution of the

claim sizes is F (y) = pF 1(y) + (1 − p)F 2(y), y ≥ 0 where p = λ
λ+β

. In this case, note that

Fi(y) = F i,1(y) = Hi(y) = H i,1(y) for i = 1, 2 so F (y) becomes a mixture of two exponentials
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which are the same as the claim size distribution with different mixing weights, namely

F (y) = q1F 1(y) + q2F 2(y) + (1− q1 − q2)F 1(y) = (1− q2)F 1(y) + q2F 2(y), y ≥ 0,

where q2 is given by (3.63), and

F x(y) =
F (x+ y)

F (x)
= {1− q2(x)}F 1(y) + q2(x)F 2(y), y ≥ 0,

where q2(x) =
q2F 2(x)

(1−q2)F 1(x)+q2F 2(x)
. Then gu(y) in (3.75) becomes

gu(y) =

∫ u
0
[{1− q2(u− t)}f1(y) + q2(u− t)f2(y)]F (u− t)dG0(t)∫ u

0
F (u− t)dG0(t)

,

that is

gu(y) = q(u)f1(y) + (1− q(u))f2(y), y ≥ 0, (3.79)

where

q(u) =

∫ u
0
{1− q2(u− t)}F (u− t)dG0(t)∫ u

0
F (u− t)dG0(t)

, (3.80)

which implies that gu(y) is also a mixture of the same two exponentials as for the claim size

distribution F (y), but with p replaced by q(u) given by (3.80). To evaluate q(u), we may use

(3.70) and re-express q(u) as

q(u) =
ϕ(1− q2)

(1− ϕ)ψ(u)

{
e−α1u(1− ϕ) + e−α1u

∫ u

0+

eα1tdG0(t)

}
, (3.81)

since (1− q2(x))F (x) = (1− q2)F 1(x) and G0(0) = 1− ϕ. In this case, we know that

ψ(u) = C1e
−R1u + C2e

−R2u, u ≥ 0, (3.82)

where R1 and R2 are the distinct roots of the equation,

∫ ∞

0

eRjyf(y)dy = (1− q2)
α1

α1 −Rj

+ q2
α2

α2 −Rj

=
1

ϕ
,
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and C1 , C2 are constants given by Gerber et al. (1987). Otherwise it might be easier way to use

the Tijms approximation method to find out constants C1 , C2 since Tijms approximation returns

the exact value of the ultimate ruin probability in this case, namely

C1 =
ϕ

1− ϕ

{
R1

∫ ∞

0

yeR1ydF (y)

}−1

, C2 = ϕ− C1.

So we may easily calculate q(u) in (3.81) using (3.82),

q(u) =
ϕ(1− q2)

(C1e−R1u + C2e−R2u)

{
e−α1u +

C1R1(e
−R1u − e−α1u)

(1− ϕ)(α1 −R1)
+
C2R2(e

−α1u − e−R2u)

(1− ϕ)(R2 − α1)

}
. (3.83)

Next, we calculate the conditional probabilities of the deficit given that ruin occurs for simple

forms of the claim size distributions including exponentials and combinations of exponentials. In

the following numerical examples, we shall assume λ = 1 and β = 1/3 and choose appropriate

values of c with satisfying the positive security loading condition given by (3.60). Assume that

F 1(y) = e−2.5y and F 2(y) = e−0.5y for y ≥ 0. Then we may obtain the ruin probabilities from

(3.82),

ψ(u) = 0.690472e−0.166667u + 0.0847093e−1.68614u, u ≥ 0,

and we may readily get gu(y) for the initial surplus u = 0.25, 0.5, 1, 2, 4 and the deficit amount

y = 0.25, 0.5, 1, 2, 4, 8.

gu(y) y=0.25 0.5 1 2 4 8
u=0.25 0.78411 0.51435 0.26578 0.12006 0.04184 0.00566
0.50 0.71398 0.48879 0.27345 0.13313 0.04713 0.00637
1 0.62872 0.45772 0.28277 0.14901 0.05355 0.00724
2 0.56718 0.43529 0.28950 0.16048 0.05818 0.00787
4 0.55033 0.42915 0.29134 0.16362 0.05945 0.00804

Table 3.1: Exponential claim sizes

Example 2 (Combination of exponentials claim sizes)
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Here, we consider more general distribution class, which is a combination of exponentials (e.g.

Willmot (2000), Dufresne (2007)) given by

F1(y) =

r1∑
k=1

p1,ke
−β1,ky, F2(y) =

r2∑
k=1

p2,ke
−β2,ky, y ≥ 0,

where
∑r1

k=1 p1,k = 1 and
∑r2

k=1 p2,k = 1. Then, the tail of the marginal distributions of F1 and F2

are P (y) = αF 1(y) + (1− α)F 2(y) =
∑r1

k=1 αp1,ke
−β1,ky +

∑r2
k=1(1− α)p2,ke

−β2,ky for y ≥ 0, where

α = λ
λ+β

. The means of each distribution are given by µ1 =
∑r1

k=1 p1,k/β1,k,µ2 =
∑r2

k=1 p2,k/β2,k

respectively. The equilibrium distributions (also tails) of F1 and F2 are given by

f1,1(y) =
1

µ1

r1∑
k=1

p1,ke
−β1,ky, F 1,1(y) =

1

µ1

r1∑
k=1

p1,k
β1,k

e−β1,ky,

and

f2,1(y) =
1

µ2

r2∑
k=1

p2,ke
−β2,ky, F 2,1(y) =

1

µ2

r2∑
k=1

p2,k
β2,k

e−β2,ky.

Then, f(y) given by (3.68) is composed of the three ladder height distributions h1,1(y), h2,1(y) and

h1(y) which are

h1(y) =

r1∑
k=1

p∗1,kβ1,ke
−β1,ky, hi,1(y) =

ri∑
k=1

p∗∗i,kβi,ke
−βi,ky, i = 1, 2, (3.84)

where

p∗1,k =

p1,k
s1+β1,k∑r1
j=1

p1,j
s1+β1,j

, p∗∗i,k =

pi,k
βi,k(s1+βi,k)∑ri
j=1

pi,j
βi,j(s1+βi,j)

, i = 1, 2, (3.85)

and
∑r1

k=1 p
∗
1,k = 1,

∑ri
k=1 p

∗∗
i,k = 1. Thus combining (3.84) and (3.85) yields

f(y) =
2∑
i=1

ri∑
k=1

qi,kβi,ke
−βi,ky, y ≥ 0, (3.86)

where

q1,k = q1p
∗∗
1,k + (1− q1 − q2)p

∗
1,k, q2,k = q2p

∗∗
2,k, (3.87)
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with q1 and q2 are given by (3.63) and p∗∗1,k, p
∗∗
2,k, p

∗
1,k are given by (3.85). Then the residual lifetime

distribution of f(y) becomes also a combination of exponentials as

fx(y) =
f(x+ y)

F (x)
=

2∑
i=1

ri∑
k=1

qi,k(x)βi,ke
−βi,ky, (3.88)

where

q1,k(x) =
q1,ke

−β1,kx∑2
i=1

∑ri
j=1 qi,je

−βi,jx
, q2,k(x) = 1− q1,k(x), (3.89)

and q1,k and q2,k are given by (3.87). Obviously, fx(y) in (3.88) is of the same form as (3.76),

namely

fx(y) =
2∑
i=1

ri∑
k=1

qi,k(x)βi,ke
−βi,ky =

r∑
k=1

qk(x)fk(y), y ≥ 0, x ≥ 0, (3.90)

where r = r1 + r2, qk(x) = I(k ≤ r1)q1,k(x) + I(k > r1)q2,k(x), and fk(y) = I(k ≤ r1)β1,ke
−β1,ky +

I(k > r1)β2,ke
−β2,ky.

Hence, we may obtain gu(y) from (3.90) with applying the results in (3.76),(3.77) and (3.78),

it is a mixture of the same distributions fk(y) with different weight functions,

gu(y) =
r∑

k=1

qk(u)fk(y), y ≥ 0, u ≥ 0, (3.91)

where

qk(u) =
ϕ
∫ u
0
qk(u− t)F (u− t)dG0(t)

(1− ϕ)ψ(u)
. (3.92)

To evaluate the weights qk(u), first we may obtain ψ(u) in this case which is similar to (3.82) for

exponential example but with more roots (e.g. Willmot (2000, example 1)),

ψ(u) =
r∑

k=1

Cke
−Rku, u ≥ 0, (3.93)

where {Ri; i = 1, 2, . . . , r} are the r(= r1 + r2) distinct roots of the equation,

∫ ∞

0

eRjyf(y)dy =

r1∑
k=1

q1,k
β1,k

β1,k −Rj

+

r2∑
k=1

q2,k
β2,k

β2,k −Rj

=
1

ϕ
, (3.94)
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and {Ck; k = 1, 2, . . . , r} are constants (see Gerber et al. (1987) for further details). We know

the tail of f(y) from (3.86),

F (y) =
2∑
i=1

ri∑
k=1

qi,ke
−βi,ky =

r∑
k=1

qke
−βky, y ≥ 0, (3.95)

where qk = I(k ≤ r1)q1,k + I(k > r1)q2,k and βk = I(k ≤ r1)β1,k + I(k > r1)β2,k.

Then, by using (3.70), (3.93), (3.95) and g0(t) = −ψ′(t), the denominator in (3.92) becomes

1− ϕ

ϕ

r∑
j=1

Cje
−Rju = (1− ϕ)

r∑
k=1

qke
−βku +

r∑
j=1

CjRj

r∑
k=1

qke
−βku

∫ u

0+

e−(Rj−βk)tdt

= (1− ϕ)
r∑

k=1

qke
−βku +

r∑
j=1

CjRj

r∑
k=1

qk
Rj − βk

(e−βku − e−Rju).

Rearranging this equation, it follows that

r∑
j=1

Cje
−Rju

{
1− ϕ

ϕ
−Rj

r∑
k=1

qk
βk −Rj

}
=

r∑
k=1

qke
−βku

{
(1− ϕ)−

r∑
j=1

CjRj

βk −Rj

}
. (3.96)

From (3.94), (3.95) note that
∑r

k=1 qk
βk

βk−Rj
= ϕ−1 and it may expressed as

r∑
k=1

qk

(
βk

βk −Rj

− 1

)
=

1− ϕ

ϕ
,

since
∑r

k=1 qk = 1. The right-hand side of (3.96) also become

r∑
k=1

qk

{
(1− ϕ)−

r∑
j=1

CjRj

βk −Rj

}
e−βku = 0,

so the coefficients must be 0 since this is an identity for all distinct u and the βk, namely

(1− ϕ)−
r∑
j=1

CjRj

βk −Rj

= 0. (3.97)
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Next consider the numerator in (3.92), it follows from (3.89),(3.90),(3.95) and (3.97),

∫ u

0

qk(u− t)F (u− t)dG0(t) = qke
−βku

{
(1− ϕ) +

r∑
j=1

CjRj

∫ u

0

e(βk−Rj)tdt

}

= qk

{(
(1− ϕ)−

r∑
j=1

CjRj

βk −Rj

)
e−βku +

r∑
j=1

CjRj

βk −Rj

e−Rju

}
= qk

r∑
j=1

CjRj

βk −Rj

e−Rju.

Therefore, we may obtain the closed form of the weights qk(u) given by

qk(u) =
qk
∑r

j=1
CjRj

βk−Rj
e−Rju

1−ϕ
ϕ

∑r
j=1Cje

−Rju
, k = 1, 2, . . . , r,

where qk and βk are given by (3.95), which is the exactly same result as (2.21) in Willmot (2000).

Let us consider that the claim sizes distributions are combination of two exponentials given by

F 1(y) = 2e−2y − e−4y and F 2(y) = 2e−0.25y − e−0.5y for y ≥ 0, with mean 0.75 and 6 respectively,

and assume c = 3 with satisfying the condition given by (3.60). Then the ruin probabilities from

(3.93) become

ψ(u)=0.583962e−0.105429u−0.0325012e−0.545127u+0.154227e−1.25257u−0.0181871e−4.34103u,

for u ≥ 0, and gu(y) is also easily obtained in Table 3.2.

gu(y) y=0.25 0.5 1 2 4 8
u=0.25 0.59849 0.43239 0.22983 0.10241 0.05669 0.02265
0.50 0.53560 0.38692 0.21646 0.10924 0.06344 0.02526
1 0.42943 0.32294 0.20258 0.12127 0.07392 0.02925
2 0.32336 0.26420 0.19293 0.13419 0.08402 0.03285
4 0.28418 0.24428 0.19193 0.14047 0.08761 0.03371

Table 3.2: Combination of exponentials claim sizes

Example 3 (Mixtures of Erlangs with the same scale parameter)

We shall derive gu(y) which has the same form as the claim sizes distributions which densities are
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mixtures of Erlangs with the same scale parameter, that is

f1(y) =

r1∑
k=1

p1,k
βk1y

k−1e−β1y

(k − 1)!
, f2(y) =

r2∑
k=1

p2,k
βk2y

k−1e−β2y

(k − 1)!
, y ≥ 0, (3.98)

where {p1,1, p1,2, . . . , p1,r1} and {p2,1, p2,2, . . . , p2,r2} are probability measures, and the tail of f1 and

f2 are

F1(y) = e−β1y
r1−1∑
k=0

P 1,k
(β1y)

k

k!
, F2(y) = e−β2y

r2−1∑
k=0

P 2,k
(β2y)

k

k!
, y ≥ 0, (3.99)

where P i,k =
∑ri

j=k+1 pi,j for i = 1, 2 and k = 0, 1, . . . , ri − 1. Then the tail of the marginal

distributions of the claim sizes are

P (y) = e−β1y
r1−1∑
k=0

αP 1,k
(β1y)

k

k!
+ e−β2y

r2−1∑
k=0

(1− α)P 2,k
(β2y)

k

k!
, y ≥ 0,

where α = λ/(λ + β). In this case, the means of each claim sizes are µi = d
ds
f̃i(−s)|s=0 =∑ri

j=1 jpi,j/βi for i = 1, 2. Letting P
∗
i,k =

∑ri
j=k+1 pi,j for i = 1, 2 and k = 0, 1, . . . , ri − 1, the

equilibrium distributions (also tails) corresponding to F1 and F2 are respectively given by

fi,1(y) =

ri∑
k=1

p∗i,k
βki y

k−1e−βiy

(k − 1)!
, F i,1(y) = e−βiy

ri−1∑
k=0

P
∗
i,k

(βiy)
k

k!
, i = 1, 2, (3.100)

where {p∗i,1, p∗i,2, . . . , p∗i,ri} is a probability measure with

p∗i,k =

∑ri
j=k pi,j∑ri
j=1 jpi,j

, k = 1, 2, . . . , ri.

In order to obtain the ladder height distributions f(y) given by (3.68), we need to know h1,1(y), h2,1(y)
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and h1(y). Using (3.98),(3.99) and (3.100), it follows

h1(y) =

∫∞
0
e−s1tf1(y + t)dt∫∞

0
e−s1tF 1(t)dt

=
e−β1y

∑r1
k=1 p1,k

βk
1

(k−1)!

∫∞
0
(y + t)k−1e−(s1+β1)tdt∑r1−1

j=0 P 1,j
(β1)j

j!

∫∞
0
tje−(s1+β1)tdt

=
e−β1y

∑r1
k=1 p1,k

βk
1

(k−1)!

∑k−1
j=0

(
k−1
j

)
yk−1−j ∫∞

0
tje−(s1+β1)tdt

1
s1+β1

∑r1−1
j=0 P 1,j

(
β1

s1+β1

)j
=

e−β1y
∑r1

k=1 p1,k
βk
1

(k−1)!

∑k
j=1

(
k−1
j−1

)
yk−j (j−1)!

(s1+β1)j

1
s1+β1

∑r1−1
j=0 P 1,j

(
β1

s1+β1

)j .

After changing the order of summations in the numerator, one yields

e−β1y
r1∑
j=1

βj−1
1

(s1 + β1)j

r1∑
k=j

p1,k
βk−j+1
1 yk−j

(k − j)!
= e−β1y

r1∑
j=1

βj−1
1

(s1 + β1)j

r1−j+1∑
k=1

p1,k+j−1
βk1y

k−1

(k − 1)!

=
e−β1y

s1+β1

r1∑
k=1

βk1y
k−1

(k−1)!

{
r1−k+1∑
j=1

p1,k+j−1

(
β1

s1+β1

)j−1
}

=
e−β1y

s1+β1

r1∑
k=1

βk1y
k−1

(k−1)!

{
r1−k∑
j=0

p1,k+j

(
β1

s1+β1

)j}
.

Then,

h1(y) =

r1∑
k=1

q∗1,k
βk1y

k−1e−β1y

(k − 1)!
, (3.101)

where {q∗1,1, q∗1,2, . . . , q∗1,r1} is a probability measure with

q∗1,k =

∑r1
j=k p1,j

(
β1

s1+β1

)j−k
∑r1−1

j=0 P 1,j

(
β1

s1+β1

)j =

∑r1
j=k p1,j

(
β1

s1+β1

)j−k
∑r1

j=1 p1,j
∑j−1

i=0

(
β1

s1+β1

)i . (3.102)

In the above equation, the second expression for q∗1,k is agreed with the result in Willmot and Lin

(2001, p.163). It is easy to obtain hi,1 for i = 1, 2 since fi,1 and F i,1 are same as the fi and F i

with different weights,

hi,1(y) =

ri∑
k=1

q∗∗i,k
βki y

k−1e−βiy

(k − 1)!
, i = 1, 2, (3.103)
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where {q∗∗i,1, q∗∗i,2, . . . , q∗∗i,r1} is a probability measure with

q∗∗i,k =

∑ri
j=k p

∗
i,j

(
βi

s1+βi

)j−k
∑ri−1

j=0 P
∗
i,j

(
βi

s1+βi

)j , i = 1, 2. (3.104)

From (3.101) and (3.103), the ladder height distribution f(y) in (3.68) becomes

f(y) =
2∑
i=1

ri∑
k=1

qi,k
βki y

k−1e−βiy

(k − 1)!
, y ≥ 0, (3.105)

where q1,k = q1q
∗∗
1,k + (1 − q1 − q2)q

∗
1,k and q2,k = q2q

∗∗
2,k with q1 and q2 are given by (3.63), q∗1,k is

given by (3.102) and q∗∗i,k for i = 1, 2 are given by (3.104).

In order to make it available to apply the result in Theorem 2 in Willmot (2000), we shall

re-express the form of f(y) to be a mixture distribution but with the same scale parameter. First,

assuming β1 < β2 and using the results provided by Willmot and Woo (2007, Section 2.2), the

Laplace transform of f(y) in (3.105) may be expressed as

Q(z) =
2∑
i=1

ri∑
k=1

qi,kz
k

{
βi/β2

1− (1− βi/β2)z

}k
, (3.106)

where Q(z) =
∑∞

j=1 qjz
j and z = β2

β2+s
. Then we may find out qj the coefficient of zj in the pgf

(3.106) given by

qj =
2∑
i=1

min (j, ri)∑
k=1

qi,k

(
j − 1

k − 1

)(
βi
β2

)k (
1− βi

β2

)j−k
, j = 1, 2, . . . . (3.107)

Thus, with (3.107) we may rewrite (3.105) as

f(y) =
∞∑
j=1

qj
βj2y

j−1e−β2y

(j − 1)!
, y ≥ 0,
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and the residual lifetime distribution of f(y) becomes

fx(y) =
f(x+ y)

F (x)
=

∑∞
j=1 qj

βj
2(x+y)

j−1e−β2(x+y)

(j−1)!

e−β2x
∑∞

j=0Qj
(β2x)j

j!

=
e−β2y

∑∞
j=1 qj

βj
2

(j−1)!

∑j
k=1

(
j−1
k−1

)
yk−1xj−k∑∞

j=0Qj
(β2x)j

j!

=
e−β2y

∑∞
k=1

βk
2 y

k−1

(k−1)!

∑∞
j=k qj

(β2x)j−k

(j−k)!∑∞
j=0Qj

(β2x)j

j!

,

where qj is given by (3.107) and Qk =
∑∞

j=k+1 qi,j for k = 0, 1, . . .. Therefore,

fx(y) =
∞∑
k=1

qk(x)
βk2y

k−1e−β2y

(k − 1)!
,

where {q1(x), q2(x), . . .} is a probability measure satisfying

qk(x) =
∞∑
j=k

qj
(β2x)

j−k

(j − k)!

{
∞∑
j=0

Qj

(β2x)
j

j!

}−1

.

It is the same result as Lemma 1 in Willmot (2000) when the claim size distribution is a mixture of

Erlangs with same scale parameter. Clearly, fx(y) is of the same form as (3.76) with αk(x) = qk(x)

and ϕk(y) = fk(y) which is the Erlang-k densities, namely

pk(y) =
βk2y

k−1e−β2y

(k − 1)!
,

and from (3.76),(3.77) and (3.78), we may readily have gu(y) which is also a mixture of the same

pk(y) with different weight functions,

gu(y) =
∞∑
k=1

qk(u)pk(y), y ≥ 0, u ≥ 0,

where

qk(u) =
ϕ
∫ u
0
qk(u− t)F (u− t)dG0(t)

(1− ϕ)ψ(u)
. (3.108)

Similar to the previous examples, in order to evaluate the coefficient qk(u), we first need to find

out the function ψ(u). The ultimate ruin probabilities in this case are provided by (e.g. Klugman,
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Panjer and Willmot (2008, pp.294-295))

ψ(u) = e−β2u
∞∑
k=0

Ck
(β2u)

k

k!
, u ≥ 0,

where Ck =
∑∞

j=k+1 cj and the distribution {cj; j = 0, 1, . . .} may be obtained with c0 = 1− ϕ,

ck = ϕ
k∑
j=1

qjck−j, k = 1, 2, . . . , (3.109)

where qj is given by (3.107). Also, we may calculate Ck using the following equation with C0 = ϕ,

Ck = ϕ
k∑
j=1

qjCk−j + ϕ
∞∑

j=k+1

qj, k = 1, 2, . . . .

Then, using Theorem 2 in Willmot (2000), we may obtain qk(u) in (3.108) as follows.

qk(u) =

∑∞
j=k qjτj−k(β2u)∑∞

j=1 qj
∑j−1

m=0 τm(β2u)
, k = 1, 2, . . . ,

with τm(x) =
∑∞

i=0 cix
i+m/(i + m)! for m = 0, 1, . . . , where qj and ci are given by (3.107) and

(3.109) respectively.

Example 4 (Mixtures of Erlangs with the different scale parameter)

Furthermore, we may follow the similar approach as shown previously to obtain the distribution

of the deficit ar ruin when the claim sizes distributions are mixtures of Erlang with different scale

parameter, that is

f1(y) =

n1∑
i=1

r1∑
k=1

p1,i,k
βk1,iy

k−1e−β1,iy

(k − 1)!
, f2(y) =

n2∑
i=1

r2∑
k=1

p2,i,k
βk2,iy

k−1e−β2,iy

(k − 1)!
, y ≥ 0, (3.110)

where {pm,i,k; i = 1, 2, ..., n1, k = 1, 2, ..., r1} for m = 1, 2 are probability measures. We shall

assume β1,i < βn1 for i = 1, 2, ..., n1 − 1 and β2,i < βn2 for i = 1, 2, ..., n2 − 1. Then, again using

the results provided by Willmot and Woo (2007), we may rewrite f1 and f2 as mixtures of Erlangs
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with the same scale parameter βn1 and βn2 respectively. The Laplace transform of f1 is

f̃1(s) =

n1∑
i=1

r1∑
k=1

p1,i,k

(
β1,i

β1,i + s

)k
,

and it may be expressed in the form (3.106) with z =
(

β1,n1

β1,n1+s

)
given by

Q(z) =

n1∑
i=1

r1∑
k=1

p1,i,kz
k

{
β1,i/β1,n1

1− (1− β1,i/β1,n1)z

}k
=

n1∑
i=1

r1∑
k=1

p1,i,k

∞∑
m=0

hm

(
k,

β1,i
β1,n1

)
zm+k =

n1∑
i=1

r1∑
k=1

p1,i,k

∞∑
j=k

hj−k

(
k,

β1,i
β1,n1

)
zj

=

n1∑
i=1

∞∑
j=1

zj
min(j, r1)∑

k=1

p1,i,khj−k

(
k,

β1,i
β1,n1

)
=

∞∑
j=1

q1,jz
j,

where hm(k, φ) =
Γ(k+m)
Γ(k)m!

φk(1− φ)m for m = 0, 1, ... and
∑∞

m=0 hm(k, φ)z
m =

{
φ

1−(1−φ)z

}k
. Thus,

we may obtain the coefficient of zj in Q(z),

q1,j =

n1∑
i=1

min(j, r1)∑
k=1

p1,i,khj−k

(
k,

β1,i
β1,n1

)
=

n1∑
i=1

min(j, r1)∑
k=1

p1,i,k

(
j − 1

k − 1

)(
β1,i
β1,n1

)k (
1− β1,i

β1,n1

)j−k
,

(3.111)

for j = 1, 2, ..., then f1 in (3.110) becomes

f1(y) =
∞∑
j=1

q1,j
βj1,n1

yj−1e−β1,n1y

(j − 1)!
, y ≥ 0,

where q1,j is given by (3.111). Similarly, f2 in (3.110) is also expressed as

f2(y) =
∞∑
j=1

q2,j
βj2,n2

yj−1e−β2,n2y

(j − 1)!
, y ≥ 0,

where q2,j is given by

q2,j =

n2∑
i=1

min(j, r2)∑
k=1

p2,i,k

(
j − 1

k − 1

)(
β2,i
β2,n2

)k (
1− β2,i

β2,n2

)j−k
, j = 1, 2, . . . .
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And the tail distributions of f1 and f2 becomes

F i(y) = e−βi,ni
y

∞∑
k=0

Qi,k

(βi,ni
y)k

k!
, y ≥ 0,

where Qi,k =
∑∞

j=k+1 qi,j for i = 1, 2. Therefore, we may apply the same approach to obtain the

deficit at ruin gu(y) when the f1 and f2 are in the form of (3.98) but with infinite mixtures case.

3.3 Joint defective densities involving the time to ruin

In this section, we derive the joint defective distribution of four variables in the generalized penalty

function involving the time of ruin in the classical compound Poisson risk model.

3.3.1 Joint defective densities of (T, UT−, |U(T )|, XT , RN(T )−1)

In Section 2.2, we have already obtained the discounted joint densities of (UT− , |U(T )|, XT , RN(T )−1).

Here, by inverting these results with respect to δ we derive the joint defective densities of the pre-

vious four quantities including the time to ruin as well. To do so, Lagrange’s implicit function

theorem is applied (see Dickson and Willmot (2005), Landriault and Willmot (2009)).

To begin with, we derive an expression for the compound geometric density in order to invert

with respect to δ. From equations (2.19) and (2.20) in Landriault and Willmot (2009) which are

f ∗n
δ (u) =

(
λ

cϕδ

)n ∫ ∞

0

e−ρtξn(u, t)dt, (3.112)

where

ξn(u, t) =
un−1

Γ(n)
p∗n(t+ u) +

n−1∑
j=1

(
n

j

)
(−1)j

Γ(n)

∫ u

0

xn−1p∗j(u− x)p∗(n−j)(t+ x)dx. (3.113)
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Using these expression for the n-fold convolution f ∗n
δ (u), from (2.21) we have now

∞∑
n=1

(ϕδ)
n f ∗n

δ (u) =
gδ(u)

1− ϕδ
=

∫ ∞

0

e−ρtχ(u, t)dt,

where

χ(u, t) =
∞∑
n=1

(
λ

c

)n
ξn(u, t). (3.114)

Now, we need to find g(u, t) satisfying

gδ(u)

1− ϕδ
=

∫ ∞

0

e−ρtχ(u, t)dt =

∫ ∞

0

e−δtg(u, t)dt. (3.115)

From equation 4 in Dickson and Willmot (2005), we may obtain

g(u, t) = ce−λt

{
χ(u, ct) +

∞∑
n=1

(λt)n

n!

∫ ct

0

y

ct
p∗n(ct− y)χ(u, y)dy

}
. (3.116)

Then, inversion of the results in Corollary 2 with respect to δ, we may obtain the joint defective

density of (T, UT− , |U(T )|, XT , RN(T )−1) as follows.

Corollary 10 In the classical compound Poisson model, the joint defective density of

(T, UT− , |U(T )|, XT , RN(T )−1) is defined as

1. h∗12(t, x, y|u) = h1(x, y|u) on {(t, x, y, z, v)| t = (x−u)/c, x>u, y>0, z=u, v=u} correspond-

ing to ruin on the first claim,

2. h∗124(t, x, y, v|u) = h2(t, x−u, y+u, v−u|0) on {(t, x, y, z, v)| t>0, x>u, y>0, z=u, u<v<x}

corresponding to ruin on the first drop in surplus due to ruin on other than the first claim,

3. h∗123(t, x, y, z|u) = h1(x, y|z)g(u−z, t−(x−z)/c) on {(t, x, y, z, v)| t>(x−z)/c, x>z, y>0, 0<

z<u, v=z} corresponding to a drop in surplus not causing ruin followed by ruin on the next

claim, and

4. h∗(t, x, y, z, v|u) =
∫ t
0
g(u−z, t−r)h2(r, x−z, y+z, v−z|0)dr on {(t, x, y, z, v)| t> 0, z < v <
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x, y > 0, 0 < z < u} corresponding to a drop in surplus not causing ruin, followed by ruin

occurring but not on the next claim after the drop,

where g(u, t) is given by (3.116).

Proof: From Corollary 2, the first and the second densities above are easily inverted with respect

to δ by using (2.3) and (2.4). For the third case, the discounted density is given by

∫ ∞

0

e−δth∗123(t, x, y, z|u)dt =
{
e−

δ(x−z)
c

gδ(u− z)

1− ϕδ

}
h1(x, y|z).

Using (3.115) and changing a variable (t + (x − z)/c) to (t), the right-hand side of the above

equation becomes

∫ ∞

0

e−δ(t+
x−z
c )g(u− z, t)h1(x, y|z)dt =

∫ ∞

x−z
c

e−δtg

(
u− z, t− x− z

c

)
h1(x, y|z)dt.

Thus, inversion of the above expression with respect to δ is equivalent to h∗123(t, x, y, z|u). For the

last case, we have the discounted density given by

∫ ∞

0

e−δth∗(t, x, y, z, v|u)dt =
∫ ∞

0

e−δt
gδ(u− z)

1− ϕδ
h2(t, x− z, y + z, v − z|0)dt.

Again, with the aid of (3.115) followed by interchanging the order of integration the we rearrange

the right-hand side of the above equation as

∫ ∞

0

e−δr
gδ(u− z)

1− ϕδ
h2(r, x− z, y + z, v − z|0)dr

=

∫ ∞

0

e−δr
{∫ ∞

0

e−δtg(u− z, t)dt

}
h2(r, x− z, y + z, v − z|0)dr

=

∫ ∞

0

{∫ ∞

r

e−δtg(u− z, t− r)dt

}
h2(r, x− z, y + z, v − z|0)dr

=

∫ ∞

0

e−δt
{∫ t

0

g(u− z, t− r)h2(r, x− z, y + z, v − z|0)dr
}
dt.
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Therefore the joint density in the last case is recovered. �

Next, we derive h∗2(t, x, y, v|u), the joint defective densities of (T, UT− , |U(T )|, RN(T )−1).

3.3.2 Joint defective densities of (T, UT−, |U(T )|, RN(T )−1)

In this section, we derive the explicit form of the joint distribution of T, UT− , |U(T )|, and RN(T )−1

(denoted by h2(t, x, y, v|u)) for ruin on more than one claim. We shall use the approach as in

Landriault and Willmot (2009) which studied the joint distribution of T, UT− and |U(T )| in the

classical compound Poisson risk model.

To begin, recall τδ(u, v) in the classical compound Poisson risk model given by (Cheung et al.

(2010a))

τδ (u, v) =


1

1−ϕδ

{
gδ (u− v) +

(
λ+δ
c

− ρ
) ∫ v

0
e−ρ(v−y)gδ (u− y) dy

}
, v < u(

λ+δ
c

− ρ
){

e−ρ(v−u) + 1
1−ϕδ

∫ u
0
e−ρ(v−y)gδ (u− y) dy

}
, v > u

.

Since
(
λ+δ
c

− ρ
)
= λ

c
p̃(ρ),

τδ (u, v) =


1

1−ϕδ

{
gδ (u− v) + λ

c

∫∞
0

∫ v
0
e−ρ(x+v−y)gδ (u− y) p(x)dydx

}
, v < u

λ
c

{∫∞
0
e−ρ(x+v−u)p(x)dx+ 1

1−ϕδ

∫∞
0

∫ u
0
e−ρ(x+v−y)gδ (u− y) p(x)dydx

}
, v > u

.

Also using the form of gδ(u) given by (2.21) it follows that

τδ (u, v) =


∑∞

n=1(ϕδ)
n
{
f ∗n
δ (u− v) + λ

c

∫∞
0

∫ v
0
e−ρ(x+v−y)f ∗n

δ (u− y) p(x)dydx
}
, v < u

λ
c

{∫∞
0
e−ρ(x+v−u)p(x)dx+

∑∞
n=1(ϕδ)

n
∫∞
0

∫ u
0
e−ρ(x+v−y)f ∗n

δ (u− y) p(x)dydx
}
, v > u

.

Then using (3.112) and (3.113), we may rewrite the above expression of τδ(u, v) as

84



τδ (u, v) =


∑∞

n=1

(
λ
c

)n {∫∞
0
e−ρtξn(u− v, t)dt+ λ

c

∫∞
0

∫ v
0

∫∞
0
e−ρ(t+x+v−y)ξn(u− y, t)p(x)dtdydx

}
,

λ
c

{∫∞
0
e−ρ(t+v−u)p(t)dt+

∑∞
n=1

(
λ
c

)n ∫∞
0

∫ u
0

∫∞
0
e−ρ(t+x+v−y)ξn(u− y, t)p(x)dtdydx

} .

(3.117)

From (3.114), it is clear that (3.117) reduces to

τδ (u, v) =


∫∞
0
e−ρtχ(u− v, t)dt+ λ

c

∫ v
0

∫∞
0

∫∞
0
e−ρ(t+x+v−y)χ(u− y, t)p(x)dtdxdy, v < u

λ
c

{∫∞
0
e−ρ(t+v−u)p(t)dt+

∫ u
0

∫∞
0

∫∞
0
e−ρ(t+x+v−y)χ(u− y, t)p(x)dtdxdy

}
, v > u

.

(3.118)

In order to apply Lagrange’s implicit function theorem on the analytic function e−ρt as Landriault

and Willmot (2009) did, we first need to rearrange (3.118) in the form of
∫
e−ρt · dt as follows.

For v < u in (3.118), changing a variable from (t+ x+ v − y) to (t) on the second integral on

the right hand side yields∫ v

0

∫ ∞

0

∫ ∞

0

e−ρ(t+x+v−y)χ(u−y, t)p(x)dtdxdy =

∫ v

0

∫ ∞

0

∫ ∞

x+v−y
e−ρtχ(u−y, t−x−v+y)p(x)dtdxdy,

and interchanging the order of integration two times results in∫ v

0

∫ ∞

0

∫ ∞

x+v−y
e−ρtχ(u− y, t− x− v + y)p(x)dtdxdy∫ v

0

∫ ∞

v−y

∫ t−v+y

0

e−ρtχ(u− y, t− x− v + y)p(x)dxdtdy

=

(∫ v

0

∫ v

v−t
+

∫ ∞

v

∫ v

0

){∫ t−v+y

0

e−ρtχ(u− y, t− v + y − x)p(x)dxdydt

}
.

That is, ∫ ∞

0

e−ρt
(∫ v

max(v−t,0)

∫ t−v+y

0

χ(u− y, x)p(t− v + y − x)dxdy

)
dt. (3.119)

Similarly, for v > u in (3.118) by a change of a variable from (t + x + v − y) to (t) followed by

interchanging the order of integration,
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∫ u

0

∫ ∞

0

∫ ∞

x+v−y
e−ρtχ(u− y, t− x− v + y)p(x)dtdxdy∫ u

0

∫ ∞

v−y

∫ t−v+y

0

e−ρtχ(u− y, t− x− v + y)p(x)dxdtdy

=

(∫ v

v−u

∫ u

v−t
+

∫ ∞

v

∫ u

0

){∫ t−v+y

0

e−ρtχ(u− y, t− v + y − x)p(x)dxdydt

}
.

Also, it may be rewritten as∫ ∞

v−u
e−ρt

(∫ u

max(v−t,0)

∫ t−v+y

0

χ(u− y, x)p(t− v + y − x)dxdy

)
dt. (3.120)

Therefore, combining the expressions (3.119) and (3.120) leads (3.118) to

τδ(u, v) =

∫ ∞

max(v−u,0)
e−ρtβ(u, t, v)dt, (3.121)

where

β(u, t, v) =

 χ(u− v, t) + λ
c

∫ v
max(v−t,0) r(u, t, v, y)dy, v < u, t > 0,

λ
c

{
p(t− v + u) +

∫ u
max(v−t,0) r(u, t, v, y)dy

}
, v > u, t > v − u

, (3.122)

and r(u, t, v, y) =
∫ t−v+y
0

χ(u− y, x)p(t− v + y − x)dx.

Now, we would like to apply the result of Lagrange’s implicit function theorem on the analytic

function e−ρt (Landriault and Willmot (2009, equation 33)), that is

e−ρt = e−
λ+δ
c
t +

∞∑
n=1

(
λ
c

)n
n!

t

∫ ∞

t

an−1e−
λ+δ
c
ap∗n(a− t)da. (3.123)

Replacement of the expression for e−ρt in (3.123) by the right hand side of (3.121) yields

τδ(u, v) =

∫ ∞

max(v−u,0)
e−

λ+δ
c
tβ(u, t, v)dt+

∞∑
n=1

(
λ
c

)n
n!

∫ ∞

max(v−u,0)

∫ ∞

t

tan−1e−
λ+δ
c
ap∗n(a−t)β(u, t, v)dadt.

(3.124)

For v < u, interchanging the order of integration and variables between t and a in the second term

on the right hand side of (3.124), one finds
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e−
λ+δ
c

(x−v)τδ(u, v)

=

∫ ∞

0

e−
λ+δ
c

(t+x−v)β(u, t, v)dt+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

0

∫ a

0

tan−1e−
λ+δ
c

(a+x−v)p∗n(a− t)β(u, t, v)dtda

=

∫ ∞

0

e−
λ+δ
c

(t+x−v)β(u, t, v)dt+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

0

∫ t

0

atn−1e−
λ+δ
c

(t+x−v)p∗n(t− a)β(u, a, v)dadt.

Changing a variable from (t/c) to (t) yields∫ ∞

0

e−δ(t+
x−v
c )
{
ce−λ(t+

x−v
c )β(u, ct, v)

}
dt

+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

0

e−δ(t+
x−v
c )
{
ce−λ(t+

x−v
c )
∫ ct

0

a(ct)n−1p∗n(ct− a)β(u, a, v)da

}
dt

=

∫ ∞

x−v
c

e−δt
{
ce−λtβ(u, ct− x+ v, v)

}
dt

+

∫ ∞

x−v
c

e−δt

{
ce−λt

∞∑
n=1

{
λ(t− x−v

c
)
}n

n!

∫ ct−x+v

0

a

ct− x+ v
p∗n(ct− x+ v − a)β(u, a, v)da

}
dt.

(3.125)

Thus substituting (3.125) into the right hand side of (2.4) and comparing the coefficient of e−δt

results in

h2(t, x, y, v|u) = λe−λt

{
β(u, ct− x+ v, v) +

∞∑
n=1

{
λ(t− x−v

c
)
}n

n!

×
∫ ct−x+v

0

a

ct− x+ v
p∗n(ct− x+ v − a)β(u, a, v)da

}
p(x+ y), (3.126)

for v < u and t > (x− v)/c.

Similarly, for v > u, by interchanging the order of integration and changing variables (3.124)

becomes
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e−
λ+δ
c

(x−v)τδ(u, v)

=

∫ ∞

v−u
e−

λ+δ
c

(t+x−v)β(u, t, v)dt+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

v−u

∫ a

v−u
tan−1e−

λ+δ
c

(a+x−v)p∗n(a− t)β(u, t, v)dtda

=

∫ ∞

v−u
e−

λ+δ
c

(t+x−v)β(u, t, v)dt+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

v−u

∫ t

v−u
atn−1e−

λ+δ
c

(t+x−v)p∗n(t− a)β(u, a, v)dadt.

By changing variables from (t/c) to (t) and then {t+ (x− v)/c} to (t), it follows that∫ ∞

v−u
c

e−δ(t+
x−v
c )
{
ce−λ(t+

x−v
c )β(u, ct, v)

}
dt

+
∞∑
n=1

(
λ
c

)n
n!

∫ ∞

v−u
c

e−δ(t+
x−v
c )
{
ce−λ(t+

x−v
c )
∫ ct

v−u
a(ct)n−1p∗n(ct− a)β(u, a, v)da

}
dt

=

∫ ∞

x−u
c

e−δt
{
ce−λtβ(u, ct− x+ v, v)

}
dt

+

∫ ∞

x−u
c

e−δt

{
ce−λt

∞∑
n=1

{
λ(t− x−v

c
)
}n

n!

∫ ct−x+v

v−u

a

ct− x+ v
p∗n(ct− x+ v − a)β(u, a, v)da

}
dt.

Therefore,

h2(t, x, y, v|u) = λe−λt

{
β(u, ct− x+ v, v) +

∞∑
n=1

{
λ(t− x−v

c
)
}n

n!

×
∫ ct−x+v

v−u

a

ct− x+ v
p∗n(ct− x+ v − a)β(u, a, v)da

}
p(x+ y), (3.127)

for v > u and t > (x − u)/c. Combining (3.126) and (3.127) summarizes the explicit form of

h2(u, t, x, y, v) in the following corollary.

Corollary 11 In the classical compound Poisson model, the joint defective density of

(T, UT− , |U(T )|, RN(T )−1) is defined as

h2(t, x, y, v|u) = λe−λtp(x+ y)η(u, t, x, v), x > v,

where

η(u, t, x, v) = β(u, ct−x+v, v)+
∞∑
n=1

{
λ(t− x−v

c
)
}n

n!

∫ ct−x+v

max(v−u,0)

a

ct− x+ v
p∗n(ct−x+v−a)β(u, a, v)da,

for t > {x−min(v, u)}/c.

88



Chapter 4

Delayed renewal risk models

In this chapter, we analyze the delayed risk model which is similar to the Sparre Andersen model

except for the assumption on the first interclaim time distribution.

4.1 Introduction

For the dependent delayed renewal risk process the two Gerber-Shiu functions in (1.2) and (1.3)

are respectively replaced by

m∗
d,δ(u) = E[e−δTdw∗(UT−

d
, |UTd |, XTd , RNTd

−1)I(Td <∞)
∣∣U0 = u], (4.1)

and

md,δ(u) = E[e−δTdw(UT−
d
, |UTd |, RNTd

−1)I(Td <∞)
∣∣U0 = u], (4.2)

where Td is the time to ruin in the delayed model. If w∗ ≡ 1 or w ≡ 1 in (4.1) or (4.2) respectively,

the Gerber-Shiu funtion is reduced to

Gd,δ(u) = E[e−δTd I(Td <∞)
∣∣U0 = u], (4.3)
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and again (4.3) with δ = 0 is equivalent to the ruin probability in the delayed model denoted by

ψd(u) = Pr (Td <∞|U0 = u).

In the following section, it is demonstrated that the Gerber-Shiu functions in (4.1), (4.2) and

(4.3) may be expressed in terms of the (1.2), (1.3) and (1.7). Given these results, in Section

4.3, the discounted joint densities of (UT−
d
, |UTd |, XTd , RNTd

−1) are derived using the results in the

ordinary risk model. Interestingly, it is sufficient to examine the discounted joint densities of

(UT−
d
, |UTd |, RNTd

−1) with U0 = 0 to obtain any other quantities of interest involving those four

variables in the penalty function. Therefore, the general form of these joint densities are studied

subsequently. In Section 4.4, we consider some examples assuming specific claim sizes. For the

case of time-dependent claims we assume earthquake insurance and compare the last ladder height

under the present model to the ordinary renewal risk model. In addition, we also consider the

usual delayed model with time-independent claim sizes including exponentially distributed claim

sizes with arbitrary interclaim times. Finally, some asymptotic results with regard to (4.3) are

the subject matter of Section 4.5.

4.2 General structure

To begin the analysis, we first define the joint distribution of the time of ruin (t), the surplus prior

to ruin (x), the deficit at ruin (y), and the surplus immediately after the second last claim before

ruin occurs (v) in the delayed model, given U0 = u. If ruin occurs on the first claim, then the

surplus (x) and the time (t) are related by x = u + ct, or equivalently t = (x− u) /c. Therefore,

the joint defective pdf of the surplus (x) and the deficit (y) is given by

hd1(x, y|u) =
1

c
k1

(
x− u

c

)
p1,x−u

c
(x+ y), x > u, y > 0, (4.4)
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and in this case RNTd
−1 equals u. If ruin occurs on the second or subsequent claims, there is no

such linear relationship between the time of ruin and the surplus prior to ruin, and we simply let

hd2(t, x, y, v|u) be the joint defective pdf of (Td, UT−
d
, |UTd |, RNTd

−1) for ruin on subsequent claims.

From Cheung et al. (2010b), these joint defective densities in the ordinary renewal risk model

with dependent structure are respectively h1(x, y|u) and h2(t, x, y, v|u) given by (2.1).

We now employ the arguments of Gerber and Shiu (1998) to obtain an expression for m∗
d,δ(u)

in (4.1). By conditioning on the first drop in surplus below u, get the following equation for

m∗
d,δ(u) is obtained (e.g. Gerber and Shiu (1998, 2005), Li and Garrido (2005), Kim (2007), Kim

and Willmot (2010), Willmot (2007)):

m∗
d,δ(u) =

∫ u

0

m∗
δ(u− y)

{∫ ∞

0

hd1,δ (x, y |0) dx+
∫ ∞

0

∫ x

0

hd2,δ(x, y, v|0)dvdx
}
dy + v∗d,δ(u), (4.5)

where

hd1,δ (x, y |u) = e−
δ(x−u)

c hd1(x, y|u), (4.6)

and

hd2,δ(x, y, v|u) =
∫ ∞

0

e−δthd2(t, x, y, v|u)dt (4.7)

are “discounted” joint densities. In this case, v∗d,δ(u) is the contribution due to ruin on the first

drop and is given by

v∗d,δ(u) =

∫ ∞

u

∫ ∞

0

w∗(x+ u, y − u, u, u)hd1,δ(x, y|0)dxdy

+

∫ ∞

u

∫ ∞

0

∫ x

0

w∗(x+ u, y − u, u, v + u)hd2,δ(x, y, v|0)dvdxdy. (4.8)

Let us introduce the discounted joint density of the surplus and the deficit

hdδ(x, y|u) = hd1,δ (x, y |u) +
∫ x

0

hd2,δ(x, y, v|u)dv, (4.9)

ϕd,δ =

∫ ∞

0

∫ ∞

0

hdδ(x, y|0)dxdy, (4.10)
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and

fd,δ(y) =
1

ϕd,δ

∫ ∞

0

hdδ(x, y|0)dx, (4.11)

which allows m∗
d,δ(u) in (4.5) to be expressed as

m∗
d,δ(u) = ϕd,δ

∫ u

0

m∗
δ(u− y)fd,δ(y)dy + v∗d,δ(u). (4.12)

In particular, for w∗(x, y, z, v) = w(x, y, v), (4.12) becomes

md,δ(u) = ϕd,δ

∫ u

0

mδ(u− y)fd,δ(y)dy + vd,δ(u), (4.13)

where

vd,δ(u)=

∫ ∞

u

∫ ∞

0

{
w(x+u, y−u, u)hd1,δ(x, y|0)+

∫ x

0

w(x+u, y−u, v+u)hd2,δ(x, y, v|0)dv
}
dxdy.

(4.14)

Furthermore, if w(x, y, v) = 1, (4.3) satisfies

Gd,δ(u) = ϕd,δ

∫ u

0

Gδ(u− y)fd,δ(y)dy + ϕd,δF d,δ(u), (4.15)

where F d,δ(u) =
∫∞
u
fd,δ(y)dy.

4.3 Associated defective densities

In this section, we study, using the integral relationship result of m∗
d,δ(u) given by (4.12), the

discounted joint densities of various variables in the penalty function. We begin with a discussion

of the discounted joint density of (UT−
d
, |UTd |, XTd , RNTd

−1).

Corollary 12 In the delayed renewal risk model, the discounted joint density of the surplus prior

to ruin UT−
d
, the deficit at ruin |UTd|, the minimum surplus before ruin XTd, and the surplus

immediately after second last claim before ruin RNTd
−1 at (x, y, z, v) is defined as follows:

1. If ruin occurs on the first drop caused by
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(a) the first claim : hd1,δ(x−u, y+u|0) for x > u, y > 0, z = u, v = u, and

(b) claims other than the first : hd2,δ(x−u, y+u, v−u|0) for x > u, y > 0, z = u, u < v < x.

2. If ruin occurs on the second drop caused by

(a) the next claim after the first drop : ϕd,δfd,δ(u−z)h1,δ(x−z, y+z|0) for x > z, y > 0, 0 <

z < u, v = z, and

(b) subsequent claims after the first drop : ϕd,δfd,δ(u−z)h2,δ(x−z, y+z, v−z|0) for x >

z, y > 0, 0 < z < u, z < v < x.

3. If ruin occurs on drops (other than the first two drops) caused by

(a) the next claim after the drop :
{∫ u

z
ϕd,δfd,δ(u− l)gδ(l−z)/(1−ϕδ)dl

}
h1,δ(x−z, y+z|0)

for x>z, y>0, 0<z<u, v=z, and

(b) subsequent claims after the drop :
{∫ u

z
ϕd,δfd,δ(u− l)gδ(l − z)/(1− ϕδ)dl

}
h2,δ(x−z, y+

z, v − z|0) for x>z, y>0, 0<z<u, z<v<x.

Proof: First, with a choice of w∗(x, y, z, v) = e−s1x−s2y−s3z−s4v as in (4.1), from (4.12) and (4.8)

the Gerber-Shiu function satisfies

m∗
d,δ(u) = ϕd,δ

∫ u

0

m∗
δ(u− y)fd,δ(y)dy + e−s3uvd,δ(u), (4.16)

where vd,δ(u) from (4.14) is given by

vd,δ(u)=

∫ ∞

0

∫ ∞

u

e−s1x−s2y
{
e−s4uhd1,δ(x−u, y+u|0)+

∫ x

u

e−s4vhd2,δ(x−u, y+u, v−u|0)dv
}
dxdy.

(4.17)
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Using the expression for m∗
δ(u) given by Cheung et al. (2010b, Section 3) leads the integral on

the right-hand side in (4.16) to

ϕd,δ

∫ u

0

m∗
δ(u− y)fd,δ(y)dy =

∫ u

0

[ ∫ ∞

0

∫ ∞

l

e−s1x−s2y−s3l−s4lh1,δ(x−l, y+l|0)dxdy

+

∫ ∞

0

∫ ∞

l

∫ x

l

e−s1x−s2y−s3l−s4vh2,δ(x−l, y+l, v−l|0)dvdxdy

+

∫ l

0

∫ ∞

0

∫ ∞

z

e−s1x−s2y−s3z−s4z
{
h1,δ(x−z, y+z|0)

gδ(l−z)
1−ϕδ

}
dxdydz

+

∫ l

0

∫ ∞

0

∫ ∞

z

∫ x

z

e−s1x−s2y−s3z−s4v
{
h2,δ(x−z, y+z, v−z|0)

gδ(l−z)
1−ϕδ

}
dvdxdydz

]
ϕd,δfd,δ(u−l)dl.

(4.18)

Combining the above and (4.17) with a multiplication of e−s3u yields the Laplace-Stieltjes trans-

form of (Td, UT−
d
, |UTd|, XTd , RNTd

−1). With an interchange of the order of integration followed by

Laplace-Stieltjes transform inversion with respect to (s1, s2, s3, s4), Corollary 12 is proved. We

distinguish between the three cases according to the number of drops causing ruin. If ruin occurs

on the first drop in surplus below an initial level u, then there are two possibilities; ruin occurs on

the first claim or the subsequent claims. The second term on the right-hand side in (4.16), namely

e−s3uvd,δ(u) represents these two cases. Hence from (4.14) with w(x, y, v) = e−s1x−s2y−s4v, it follows

that 1(a) and 1(b) are obtained respectively. If ruin occurs not on the first drop, then these cases

are explained by the integral terms on the right-hand side in (4.16). Thus from (4.18), we can

obtain four different situations corresponding to ruin on the drop (second or subsequent to this)

caused by the (next or not next) claim after the drop. And the joint densities in these four cases

are given by 2(a),2(b) and 3(a),3(b) respectively. See Figure below for graphs depicting the six

different cases contributing to this discounted joint density. �

Note that probabilistic interpretations for the above cases are also available. For example, in

cases 3(a) and 3(b), ϕd,δfd,δ(u− l) appears in common which can be interpreted as the size of the

first drop being (u− l) not causing ruin. After this first drop, the surplus process is same as the
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Figure 4.1: The discounted joint density of UT−
d
, |UTd|, XTd , and RNTd

−1 at (x, y, z, v)
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ordinary process with an initial surplus l. This is followed by an arbitrary number of drops (≥ 1)

which bring the surplus process from l to z, as explained by the term gδ(l− z)/(1−ϕδ). Here, l is

arbitrary for z < l < u and with a level of surplus z, ruin immediately occurs on the next claim

represented by h1,δ for 3(a) or on the subsequent claim represented by h2,δ for 3(b).

Furthermore, we know that ϕd,δ in (4.10) and fd,δ(y) in (4.11) can be obtained by hd2,δ(x, y, v|0)

since hd1,δ(x, y|u) is readily known by using (4.4) and (4.6). Therefore, from Corollary 12, note

that hd2,δ(x, y, v|0) is sufficient to obtain the joint densities of four variables in the penalty function

under the delayed risk model as in the ordinary risk model (see Cheung et al. (2010b)). Thus,

this discounted joint distribution is derived in the following corollary.

Corollary 13 In the delayed renewal risk model, the discounted joint density of (UT−
d
, |UTd|, RNTd

−1)

at (x, y, v) is defined as:

hd2,δ(x, y, v|u) = h1,δ(x, y|v)ξδ(u, v), 0<v<x, y>0, (4.19)

where

ξδ(u, v) = Aδ(u, v) +

∫ ∞

0

Aδ(u, z)τδ(z, v)dz, (4.20)

and

Aδ(u, z) =


∫∞
0
e−δtp1,t(u+ ct− z)dK1(t), 0<z<u∫∞

(z−u)/c e
−δtp1,t(u+ ct− z)dK1(t), z>u

. (4.21)

Proof: By conditioning on the time and the amount of the first claim in order to identify the

components in (4.13), we have

md,δ(u) = βd,δ(u) +

∫ ∞

0

e−δtσδ,t(u+ ct)dK1(t), (4.22)

where σδ,t(x) =
∫ x
0
mδ(x− y)dP1,t(y), and

βd,δ(u) =

∫ ∞

0

e−δt
∫ ∞

u+ct

w(u+ct, y−u−ct, u)dP1,t(y)dK1(t). (4.23)
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In other words, by using (4.6), (4.23) may be rewritten as

βd,δ(u) =

∫ ∞

u

∫ ∞

0

e−δ(
x−u
c )w(x, y, u)hd1(x, y|u)dydx, (4.24)

or equivalently βd,δ(u) =
∫∞
u

∫∞
0
w(x, y, u)hd1,δ(x, y|u)dydx. Note that βd,δ(u) may be interpreted

as the contribution to the penalty function due to ruin on the first claim. Since md,δ(u) in (4.2)

is an expectation, it follows directly that it may be represented as

md,δ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)hd1,δ(x, y|u)dxdy +
∫ ∞

0

∫ ∞

0

∫ x

0

w(x, y, v)hd2,δ(x, y, v|u)dvdydx.

(4.25)
Then, using (4.24), it may be reexpressed as

md,δ(u) = βd,δ(u) +

∫ ∞

0

∫ ∞

0

∫ x

0

w(x, y, v)hd2,δ(x, y, v|u)dvdydx. (4.26)

Then, comparing (4.22) and (4.26) followed by a change of integration leads us to

∫ ∞

0

∫ ∞

0

∫ x

0

w(x, y, v)hd2,δ(x, y, v|u)dvdxdy =

∫ ∞

0

e−δtσδ,t(u+ ct)dK1(t) (4.27)

=

∫ ∞

0

e−δt
{∫ u+ct

0

mδ(z)p1,t(u+ ct− z)dz

}
dK1(t) =

∫ ∞

0

mδ(z)Aδ(u, z)dz,

where Aδ(u, z) given by (4.21). Similar to (4.25), mδ(u) is also be expressed in terms of the joint

defective densities and thus we get∫ ∞

0

mδ(z)Aδ(u, z)dz

=

∫ ∞

0

{∫ ∞

0

∫ ∞

z

w(x, y, z)h1,δ(x, y|z)dxdy+
∫ ∞

0

∫ ∞

0

∫ x

0

w(x, y, v)h2,δ(x, y, v|z)dvdxdy
}
Aδ(u, z)dz.

When w(x, y, v) = e−s1x−s2y−s3v on the left-hand side of (4.27) and on the above equation, equating

coefficients of e−s1x−s2y−s3v results in

hd2,δ(x, y, v|u) = h1,δ(x, y|v)Aδ(u, v) +
∫ ∞

0

h2,δ(x, y, v|z)Aδ(u, z)dz, 0<v<x, y>0. (4.28)
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But h2,δ(x, y, v|z) = h1,δ(x, y|v)τδ(z, v) for 0 < v < x (explicit forms for τδ(z, v) under certain

assumptions on the interclaim time and its probabilistic interpretations are provided by Cheung

et al. (2010a), and Willmot and Woo (2010)), we may express (4.28) as (4.19). �

As with τδ(u, z), the function ξδ(u, v) in (4.20) can also be probabilistically interpreted in the

following manner. If RNTd
−1 = v, the delayed process starting with an initial level u should reach

the surplus level v, just after the second last claim before ruin. This transition from u to v in

the current process is represented by the function ξδ(u, v) as seen from (4.19). However, since

the first pair (V1, Y1) is assumed different from the other pairs, ξδ(u, v) may also be obtained by

conditioning on the time and amount of the first claim which is expressible in terms of Aδ(u, z)

in (4.21). By the definition of hd2,δ, ruin occurs at NTd ≥ 2 and thus if NTd = 2 then the process

would be at level v after the first claim explaining the term Aδ(u, v). Otherwise, for NTd > 2, the

process would be at some arbitrary level z after the first claim and then moves from z to v like in

the ordinary process with Aδ(u, z)τδ(z, v).

Furthermore, using Corollary 13 results in an alternative representation for md,δ(u) as follows.

Corollary 14 In the delayed renewal risk model, the Gerber-Shiu function md,δ(u) defined by

(4.2) satisfies

md,δ(u) = βd,δ(u) +

∫ ∞

0

βδ(v)ξδ(u, v)dv, (4.29)

where βd,δ(u), βδ(u) and ξδ(u, v) are given by (4.24), (2.27) and (4.20) respectively.

Proof: Substitution of (4.19) into (4.26) directly yields the result above. �

We point out that Corollary 14 may also make sense intuitively based on the numbers of the

claims which cause ruin. If ruin occurs on the first claim with an initial level u, this case may

be represented by βd,δ(u). Or if the process first moves from u to v after an arbitrary number

of claims (≥ 1) followed by ruin on the subsequent claim from an initial level v, this case may
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be represented by ξδ(u, v)βδ(v). In particular, for the ordinary model we know that there is no

difference between ξδ(u, v) and τδ(u, v) while βd,δ(u) is equivalent to βδ(u) given by (2.27), so that

(4.29) is reduced to (2.25).

In particular, we may readily find some ruin related quantities with appropriate choices of

the penalty functions in (4.29) since only βd,δ(u) and βδ(u) contain the penalty function. For

example, if w(x, y, v) = e−s(x−v)/c, we have the Laplace transform of VNTd
given by md,0(u) in

(4.2). We remark that this quantity represents the last inerclaim time when NTd > 1 or the

time until the first claim causing ruin occurs when NTd = 1. In this case, (4.23) becomes

βd,0(u) =
∫∞
0
e−stk1(t)P 1,t(u + ct)dt and β0(u) =

∫∞
0
e−stk(t)P t(u + ct)dt. Thus, substituting

these expressions into (4.29) and inverting with respect to s yields the marginal defective density

of VNTd
(denoted by hd3) given by

hd3(t|u) = a1,u(t)k1(t) + a2,u(t)k(t), t > 0,

where a1,u(t) = P 1,t(u+ ct)/ψd(u) and a2,u(t) = {
∫∞
0
ξδ(u, v)P t(v + ct)dv}/ψd(u).

In addition, we may obtain bounds for the last interclaim time when P1,t(y)=Pt(y)=P (y) as

follows. First, define H
d

V (t|u) =
∫∞
t
hdV (y|u)dy and introduce two reliability classes, a new worse

(better) than used or NWU (NBU) (i.e. K1(x + y) ≥ (≤)K1(x)K1(y) for x, y ≥ 0). See Barlow

and Proschan (1981). From Cheung et al. (2010c, Theorem 7), if K1(t) is NWU (NBU), K1(t) ≥

(≤)K(t) for t > 0, and there exists a function F (y) on [0,∞) such that P (x+ y) ≤ (≥)P (x)F (y)

for x, y ≥ 0, then the survival function of VNTd
|Td < ∞ satisfies H

d

V (t|u) ≤ (≥)F (ct)K1(t).

Depending on the properties of P (y), Cheung et al. (2010c) provided three possible choices of

F (y).

We next turn our attention to the last ladder height YNTd
=XTd+|UTd|. As mentioned previously,

if w∗(x, y, z, v) = w23(y, z) = e−s(y+z) in (4.12) and (4.8), with the aid of the Laplace transform of

the last ladder height in the ordinary model given by (2.55), inverting with respect to s yields the
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defective discounted density of YNTd
(denoted by fd,δ(u, y)) given by

fd,δ(u, y) =


ϕδ

1−ϕδ
[Gd,δ(u− y)−Gd,δ(u)]fδ(y), y<u

ϕδ
1−ϕδ

[ϕd,δ −Gd,δ(u)]fδ(y) + ϕd,δfd,δ(y), y>u
. (4.30)

Then the proper survival function YNTd
given that ruin occurs denoted by F

∗
d,u(y) can be obtained

as
∫∞
y
fd,0(u, x)dx/ψ

d(u). Clearly, in the ordinary model (4.30) reduces to (2.54).

In the following section, we illustrate a numerical example in case of the time-dependent claims

in the delayed model which contains a comparison of the last ladder height with the ordinary

model. And the usual delayed model with the time-independent claims is also presented.

4.4 Examples

4.4.1 Time-dependent claims : Earthquake insurance

Let us consider the dependency model in (3.39) (Boudreault et al. (2006)). Suppose that f1(y) =

2.5e−2.5y, f2(y) = 0.5e−0.5y, β = 1/3, and k(t) = te−t (i.e. Erlang (2) interclaim times) with c=2

and δ = 0. In this example, if the interclaim time t is large then the time-dependent claim size

distribution pt(y) is more likely to be determined by f2 than f1.

Here, if the last earthquake before time 0 has occurred 5 years ago, we simply let k1(t) =

k(t + 5)/K(5) be the residual lifetime distribution corresponding to k(t) and p1,t(y) = pt+5(y).

Then from (3.58) and (3.59), ϕ0, F 0(y), and thus ψ(u) can be computed. In turn, an application

of Equation 32 and Box I in Cheung et al. (2010b) gives F
∗
u(y) (the proper survival function of

the last ladder height in the ordinary model). For the present model, if w(x, y, v) = w2(y) and
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u=0 in (4.22) and (4.23), we may obtain the defective density of the deficit as

hd0(y|0)=
1

c
k1

(
x− u

c

)
P 1,x−u

c
(y)+

∫ ∞

0

∫ ct

0

h0(y|z)p1,t(ct−z)k1(t)dzdt,

where h0(y|z) is the same as hd0(y|u) but defined in the ordinary model. With this hd0(y|0), from

(4.10) and (4.11) we get ϕd,0 and F d,0(y), and hence ψd(u) from (4.15). Then with the aid of

(4.30) one ultimately finds F
∗
d,u(y). When u=0.5, the comparison of F

∗
d,u(y) with F

∗
u(y), and also

with the generic ladder heights F d,0(y) and F 0(y) is summarized in Figure 4.2. In the graph, ‘D’

and ‘O’ indicates the delayed model and the ordinary model respectively.

Figure 4.2: The last ladder heights and the generic ladder heights in the delayed
and the ordinary models

From Figure 4.2, there is a distinctive difference among the four ladder heights of our interest.

In particular, they can be ordered as F
∗
d,u(y) ≥ F

∗
u(y) ≥ F d,0(y) ≥ F 0(y). We remark that the

stochastic ordering F
∗
u(y) ≥ F 0(y) has been proved by Cheung et al. (2010b) in the ordinary
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model. More interestingly, under this dependent structure, we may conclude that the insurer

is more likely to face the larger severity (drop under the minimum surplus level) in the delayed

model compared to the ordinary model. In other words, with the model having no adjustment for

the pair of the first event (i.e. ordinary model), the insurer may suffer bigger loss than expected.

In addition, from Figure 4.3 we can also check that ψd(u) ≥ ψ(u) for u ≥ 0, and the difference

between these ruin probabilities may not be significant for a large u.

Figure 4.3: The ruin probabilities in the delayed and the ordinary models

4.4.2 Time-independent claims

In this section, we demonstrate how to obtain m∗
d,δ(u) in (4.1) with a specific assumption on the

claim sizes. First, let us consider some simplified situation concerning interclaim-independent

claim sizes. Suppose that p1,t(y) = p1(y), P 1,t(y) = P 1(y), and pt(y) = p(y), P t(y) = P (y). Then
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as in Gerber and Shiu (1998), the conditional density of |UTd | given Td = t, UT−
d
= x,RNTd

−1 = v

for NTd ≥ 2 is given by p(x+ y)/P (x). By using this, one finds that the joint defective density of

(Td, UT−
d
, |UTd |, RNTd

−1) may be expressed as (see Section 2.3 for the ordinary model)

hd2(t, x, y, v|u) =
p(x+ y)

P (x)
hd(2)(t, x, v|u) (4.31)

where hd(2)(t, x, v|u) is the joint defective density of (Td, UT−
d
, RNTd

−1) for NTd ≥ 2. Thus the

discounted form of (4.31) is

hd2,δ(x, y, v|u) =
p(x+ y)

P (x)
hd(2),δ(x, v|u) (4.32)

where hd(2),δ(x, v|u) =
∫∞
0
e−δthd(2)(t, x, v|u)dt. Then, by substituting (4.32) into the integral on the

right-hand side of (4.9) one may write

hdδ(x, y|u) =
p1(x+ y)

P 1(x)
hd1,δ(x|u) +

p(x+ y)

P (x)
hd2,δ(x|u), (4.33)

where

hd1,δ(x|u) =
1

c
e−δ(

x−u
c )k1

(
x− u

c

)
P 1(x) (4.34)

and hd2,δ(x|u) =
∫ x
0
hd(2),δ(x, v|u)dv.

Therefore, using (4.33), ϕd,δ in (4.10) may be expressed as

ϕd,δ =

∫ ∞

0

∫ ∞

0

hdδ(x, y|0)dydx =

∫ ∞

0

hdδ(x|0)dx, (4.35)

where hdδ(x|0) = hd1,δ(x|0) + hd2,δ(x|0), and also fd,δ(y) in (4.11) may be expressed as the mixed

density (see Kim (2007) and Willmot (2007))

fd,δ(y) =

∫ ∞

0

{
hd1,δ(x|0)
ϕd,δ

}
p1(x+ y)

P 1(x)
dx+

∫ ∞

0

{
hd2,δ(x|0)
ϕd,δ

}
p(x+ y)

P (x)
dx. (4.36)

The following example illustrate how to derive the joint Laplace transform of five variable, namely

m∗
d,δ(u) in (4.1) with a proper choice of the penalty function, if claim sizes are exponentially
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distributed.

Example (Exponential claim sizes with arbitrary interclaim times)

The joint Laplace transform of (T, UT− , |UT |, XT , RNT−1) with exponential claim sizes under the

ordinary renewal risk model was considered in Section 2.3.1. Here, by using the results therein, the

joint Laplace transform of those five variables under the delayed renewal risk model is revisited.

Suppose that the first and the subsequent claims are exponentially distributed with the rate β,

i.e. p1(y) = p(y) = βe−βy.

In this case, v∗d,δ(u) in (4.8) can be obtained, by some simple algebra, as

v∗d,δ(u) =
βγd,δ(s1, s4)

β + s2
e−(β+s1+s3+s4)u, (4.37)

where

γd,δ(s1, s4) = k̃1(δ + cβ + cs1) +

∫ ∞

0

∫ x

0

e−s1x−s4vhd(2),δ(x, v|0)dvdx, (4.38)

and k̃1(s) =
∫∞
0
e−stk1(t)dt. Then, combining m∗

δ(u) in (2.71) with (2.72), and fd,δ(y) = p(y) =

βe−βy from (4.36), m∗
d,δ(u) in (4.12) becomes

m∗
d,δ(u) = Cδ(s1, s2, s3, s4)ϕd,δβe

−βu
∫ u

0

{
(s1 + s3 + s4)e

−(s1+s3+s4)y + ϕδβe
ϕδβy

}
dy + v∗d,δ(u)

= Cδ(s1, s2, s3, s4)ϕd,δβ
{
e−β(1−ϕδ)u − e−(β+s1+s3+s4)u

}
+ v∗d,δ(u), (4.39)

where v∗d,δ(u) is given by (4.37).

Similar to Section 2.3.1, γd,δ(s1, s4) (or the Laplace transform of hd(2),δ(x, v|0)) may be expressed

in terms of the Laplace transform of the interclaim times k̃(s). We simply consider m∗
d,δ(u) with

s2 = s3 = 0. Namely, with w∗(x, y, z, v) = e−s1x−s4v we denote (4.39) by

md,δ,14(u) = Cδ(s1, 0, 0, s4)ϕd,δβ
{
e−β(1−ϕδ)u − e−(β+s1+s4)u

}
+ vd,δ,14(u) (4.40)
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where

vd,δ,14(u) = γd,δ(s1, s4)e
−(β+s1+s4)u (4.41)

from (4.37). Then, from (4.22) by conditioning on the time and amount of the first claim one

finds the alternative integral expression for md,δ,14(u). First, in this case, βd,δ(u) in (4.23) with a

choice of w(x, y, v) = e−s1x−s4v reduces to

∫ ∞

0

e−δt
{∫ ∞

u+ct

e−cs1te−(s1+s4)uβe−βydy

}
k1(t)dt = k̃1(δ + cβ + cs1)e

−(β+s1+s4)u. (4.42)

Thus, md,δ,14(u) satisfies the integral equation from (4.22)

md,δ,14(u) = βd,δ,14(u) +

∫ ∞

0

e−δtσδ,t(u+ ct)dK1(t), (4.43)

where βd,δ,14(u) is given by (4.42), and σδ,t(x) =
∫ x
0
mδ,14(x− y)βe−βydy.

With substitution of (2.67) into the above equation, we can express the integral on the right-

hand side of (4.43) as∫ ∞

0

e−δtσδ,t(u+ ct)dK1(t) (4.44)

= Cδ(s1, 0, 0, s4)

∫ ∞

0

e−δtk1(t)

∫ u+ct

0

βe−β(u+ct−y)
{
(s1 + s4)e

−(β+s1+s4)y + ϕδβe
−β(1−ϕδ)y

}
dydt

= Cδ(s1, 0, 0, s4)βe
−βu

[∫ ∞

0

e−(δ+cβ)t

∫ u+ct

0

{
(s1 + s4)e

−(s1+s4)y + ϕδβe
ϕδβy

}
dydt

]
= Cδ(s1, 0, 0, s4)β

{
k̃1(δ + cβ − ϕδcβ)e

−β(1−ϕδ)u − k̃1(δ + cβ + cs1 + cs4)e
−(β+s1+s4)u

}
. (4.45)

Thus, combining (4.42) and (4.44) leads (4.43) to

md,δ,14(u) = k̃1(δ + cβ + cs1)e
−(β+s1+s4)u

+ Cδ(s1, 0, 0, s4)β
{
k̃1(δ+cβ−ϕδcβ)e−β(1−ϕδ)u−k̃1(δ+cβ+cs1+cs4)e−(β+s1+s4)u

}
. (4.46)

But, with s1 = s4 = 0, Cδ(0, 0, 0, 0) = β−1 from (2.72), and (4.38) reduces to (from (4.35))

105



γd,δ(0, 0) = k̃1(δ + cβ) +

∫ ∞

0

hd2,δ(x|0)dx = ϕd,δ

since
∫∞
0
hd1,δ(x|0)dx = k̃1(δ+ cβ) from (4.34) in this case. Consequently, using these Cδ(0, 0, 0, 0)

and γd,δ(0, 0), from (4.40) and (4.41) with s1 = s4 = 0 we obtain (4.3) as

Gd,δ(u) = ϕd,δe
−β(1−ϕδ)u,

where
ϕd,δ = k̃1(δ + cβ − ϕδcβ), (4.47)

from (4.46) with s1 = s4 = 0 and u = 0 (e.g. Kim (2007)). Evidently, in the ordinary model,

Gδ(u) = ϕδe
−β(1−ϕδ)u with ϕδ = k̃(δ + cβ − ϕδcβ) (e.g. Willmot (2007)).

Now, equating (4.40) and (4.46) followed by rearranging the equation yields

γd,δ(s1, s4)e
−(β+s1+s4)u = k̃1(δ + cβ + cs1)e

−(β+s1+s4)u + Cδ(s1, 0, 0, s4)β

×
[{

k̃1(δ+cβ−ϕδcβ)−ϕd,δ
}
e−β(1−ϕδ)u+

{
ϕd,δ−k̃1(δ+cβ+cs1+cs4)

}
e−(β+s1+s4)u

]
.(4.48)

Then, application of (4.47) to (4.48) followed by division by e−(β+s1+s4)u leads to

γd,δ(s1, s4) = k̃1(δ + cβ + cs1) + Cδ(s1, 0, 0, s4)β
{
ϕd,δ − k̃1(δ + cβ + cs1 + cs4)

}
.

In other words, using (2.72),

γd,δ(s1, s4) =
ϕd,δβk̃(δ+cβ+cs1)+(s1+s4)k̃1(δ+cβ+cs1)+βkδ(s1, s4)

s1+s4+βk̃(δ+cβ + cs1+cs4)
, (4.49)

where

kδ(s1, s4) = k̃1(δ + cβ + cs1)k̃(δ + cβ + cs1 + cs4)− k̃(δ + cβ + cs1)k̃1(δ + cβ + cs1 + cs4). (4.50)

Finally, substitution of (4.37) into (4.39) together with the use of (4.49) yields

m∗
d,δ(u) = Cd,δ(s1, s2, s3, s4)(s1 + s3 + s4)e

−(β+s1+s3+s4)u + Cδ(s1, s2, s3, s4)ϕd,δβe
−β(1−ϕδ)u,
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where

Cd,δ(s1, s2, s3, s4)

=
β
[
ϕd,δβs3k̃(δ+cβ+cs1)+(ϕδβ+s1+s3+s4)

{
(s1+s4)k̃1(δ+cβ+cs1) + βkδ(s1, s4)

}]
(β+s2)(s1+s3+s4)(ϕδβ+s1+s3+s4)

{
s1+s4+βk̃(δ+cβ+cs1+cs4)

} . (4.51)

But kδ(s1, s4) in (4.50) equals to 0 in the ordinary model, γd,δ(s1, s4) in (4.49) and Cd,δ(s1, s2, s3, s4)

in (4.51) are equivalent respectively to γδ(s1, s4) in (2.70) and Cδ(s1, s2, s3, s4) in (2.72).

Similar to Section 2.3.1, for example, we may readily obtain the Laplace transform of VNTd
=

(UT−
d
−RNTd

−1)/c with a choice of s1 = s/c, s4 = −s/c, and δ = 0 from (4.40) with (2.72), (4.41)

and (4.49) as

E[e
−sVNTd I(Td <∞)|U0 = u] =

k̃(cβ+s)

k̃(cβ)
ϕd,0e

−β(1−ϕ0)u +
k̃1(cβ+s)k̃(cβ)−k̃(cβ+s)k̃1(cβ)

k̃(cβ)
e−βu,

(4.52)

and inversion (4.52) with respect to s followed by dividing by ψd(u) = ϕd,0e
−β(1−ϕ0)u yields the

proper density of VNTd
in the delayed renewal risk model as a mixture of Esscher transformed

distributions of K1(t) and K(t), namely

hdV (t|u) = (1− au)ke(t) + auk1,e(t)

where au= k̃1(cβ)e
−βu/ψd(u), ke(t)=e

−cβtk(t)/k̃(cβ), and k1,e(t)=e
−cβtk1(t)/k̃1(cβ). Since k1(t)=

k(t) and ϕd,0=ϕ0 for the ordinary renewal risk model, the second term on the right-hand side of

(4.52) is cancelled out and thus agrees with (2.74).
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4.5 Asymptotic results for the compound geometric tail

In this section, we consider some asymptotic results regarding the compound geometric tail in the

delayed renewal process, consequently ruin probabilities are also obtained. First, suppose that

κδ > 0 which is the adjustment coefficient satisfying
∫∞
0
eκδyfδ(y)dy = 1/ϕδ then we know that

the asymptotic result for the compound geometric tail for the ordinary model is given by (3.36),

i.e. limu→∞ eκδuGδ(u) = Cδ, with Cδ = (1− ϕδ)
−1ϕδκδ

∫∞
0
yeκδydFδ(y), and that

Gδ(u) ≤ e−κδu, u ≥ 0 (4.53)

by a Lundberg inequality. Here, suppose that p̃1,t(−κδ) =
∫∞
0
eκδydP1,t(y) < ∞, implying that

limx→∞ eκδxP 1,t(x) = 0. Also, as (4.53) holds, by dominated convergence it follows that

lim
u→∞

eκδ(u+ct)
{
P 1,t(u+ ct) +

∫ u+ct

0

Gδ(u+ ct− y)dP1,t(y)

}
=

∫ ∞

0

{
lim
u→∞

eκδ(u+ct−y)Gδ(u+ ct− y)
}
eκδydP1,t(y) = Cδp̃1,t(−κδ).

Namely,

lim
u→∞

eκδuW δ,t(u) = Cδp̃1,t(−κδ), (4.54)

where W δ,t(u) = Gδ ∗ P1,t(u) = P 1,t(u) +
∫ u
0
Gδ(u− y)dP1,t(y).

Now, from (4.22) with w(x, y, v) = 1, (4.3) has an integral expression as

Gd,δ(u) =

∫ ∞

0

e−δtW δ,t(u+ ct)dK1(t). (4.55)

Since (4.54) holds which implies that eκδuW δ,t(u) is a bounded function of u on (0,∞). Thus,

again by dominated convergence one finds from (4.55)
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lim
u→∞

eκδuGd,δ(u) = lim
u→∞

∫ ∞

0

{
eκδ(u+ct)W δ,t(u+ ct)

}
e−(δ+cκδ)tdK1(t)

=

∫ ∞

0

{
lim
u→∞

eκδ(u+ct)W δ,t(u+ ct)
}
e−(δ+cκδ)tdK1(t)

=

∫ ∞

0

Cδp̃1,t(−κδ)e−(δ+cκδ)tdK1(t) = CδE[e
κδY1−(δ+cκδ)V1 ],

where
E[eκδY1−(δ+cκδ)V1 ] =

∫ ∞

0

e−(δ+cκδ)tp̃1,t(−κδ)dK1(t).

Hence,

Gd,δ(u) ∼ CδE[e
κδY1−(δ+cκδ)V1 ]e−κδu, u→ ∞. (4.56)

In particular, for interclaim-independent claim sizes, i.e. p1,t(y) = p(y), we know that

E[eκδY1−(δ+cκδ)V1 ] = p̃(−κδ)k̃1(δ + cκδ) =
k̃(δ + cκδ)

k̃1(δ + cκδ)

since κδ satisfies p̃(−κδ)k̃(δ + cκδ) = 1 (see Cheung et al. (2010b, Section 4)). Therefore, in this

case (4.56) reduces to

Gd,δ(u) ∼
Cδk̃(δ + cκδ)

k̃1(δ + cκδ)
e−κδu, u→ ∞.

And further for δ = 0 we know that Gd,0(u) = ψd(u), and the asymptotic result for ψd(u) from

the above is agreed with Theorem 11.4.3 in Willmot and Lin (2001).

Alternatively, we may directly obtain the asymptotic form in (4.54) by using the result for the

tail of a compound geometric convolution W δ,t(u) which satisfies the defective renewal equation,

(see Willmot and Cai (2004) and references therein)

W δ,t(x) = ϕδ

∫ x

0

W δ,t(x− y)dFδ(y) + ϕδF δ(x) + (1− ϕδ)P 1,t(x).

It is shown to be

lim
u→∞

eκδuW δ,t(u) =
(1− ϕδ)

∫∞
0
eκδydP1,t(y)

ϕδκδ
∫∞
0
yeκδydFδ(y)

= Cδp̃1,t(−κδ). (4.57)
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Furthermore, if w(x, y, v) = 1 in (4.13), then it is clear that from (4.15) Gd,δ(u)/ϕd,δ is also

the tail of a compound geometric convolution, and thus if f̃d,δ(−κδ) =
∫∞
0
eκδydFd,δ(y) < ∞, the

same argument used to drive (4.57) results in

Gd,δ(u) ∼ Cδϕd,δf̃d,δ(−κδ)e−κδu, u→ ∞. (4.58)

Curiously, comparison of (4.56) with (4.58) results in the identity

ϕd,δf̃d,δ(−κδ) = E[eκδY1−(δ+cκδ)V1 ], (4.59)

and obviously both sides of (4.59) equal 1 in the nondelayed case.
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Chapter 5

Discrete renewal risk models

In this chapter, analysis of a generalized Gerber-Shiu function is considered in a discrete-time

(ordinary) Sparre Andersen renewal risk process with time-dependent claim sizes. The results are

then applied to obtain ruin related quantities under some renewal risk processes assuming specific

interclaim distributions such as a discrete Kn distribution and a truncated geometric distribution

(i.e. compound binomial process). Furthermore, the discrete delayed renewal risk process is

considered and results related to the ordinary process are derived as well.

5.1 Introduction

First, let us introduce the classical Gerber-Shiu discounted penalty function defined in a discrete-

time Sparre Andersen renewal risk model (e.g. Li (2005a,b), Wu and Li (2008))

mv,12(u) = E
[
vTw12 (U(T − 1), |U(T )|) I (T <∞)

∣∣U(0) = u
]
, u ∈ N . (5.1)

where T is the time of ruin defined as T = min{t ∈ N+ : U(t) < 0} with T = ∞ if U(t) ≥ 0 for

all t ≥ 1. Also, U(T − 1) is the surplus before ruin, |U(T )| is the deficit at ruin, w12(x, y) is the
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penalty function, and v ∈ (0, 1] is interpreted as a discount factor.

As in continuous-time models considered in the previous chapters, in order to generalize the

above Gerber-Shiu function, we first define Xt = min0≤s<t U(s) to be the minimum surplus before

time t. Thus, XT is the minimum level of surplus before ruin occurs. Second, let us define

Rn = u +
∑n

i=1(Wi − Yi) for n = 1, 2, . . ., and R0 = u, i.e. Rn is the surplus just after the n-th

claim if n ≥ 1. Therefore, RN(T )−1 is the surplus immediately after the second last claim before

ruin occurs if N(T ) > 1, and R0 = u if ruin occurs on the first claim (i.e. N(T ) = 1). Note

that these two new quantities XT and RN(T )−1 may or may not be the same depending on a given

sample path. Then (5.1) may be generalized to

m∗
v(u) = E

[
vTw∗ (U(T − 1), |U(T )| , XT , RN(T )−1

)
I (T <∞)

∣∣U(0) = u
]
, u ∈ N . (5.2)

We may analyze the last ladder height before ruin XT + |U(T )|, and the last interclaim time before

ruin WN(T ) = U(T − 1)− RN(T )−1 + 1 from (5.2). As a special case of (5.2) with w∗(x, y, z, r) =

w(x, y, r), it follows that

mv(u) = E
[
vTw

(
U(T − 1), |U(T )| , RN(T )−1

)
I (T <∞)

∣∣U(0) = u
]
, u ∈ N . (5.3)

Using (5.3) we may study the last pair (WN(T ), YN(T )) where YN(T ) is the claim causing ruin given

by YN(T ) = U(T−1)+|U(T )|+1. Note that the actual surplus level prior to ruin is RN(T )−1+WN(T )

which is equivalent to U(T − 1) + 1. Cheung et al. (2010a) studied this quantity in the classical

compound Poisson risk process.

Also, we consider the particular special cases of the above Gerber-Shiu functions with the

successively simplified penalty functions respectively defined by w∗(x, y, z, r) = w123(x, y, z),

w∗(x, y, z, r) = w23(y, z), w
∗(x, y, z, r) = w2(y), and w

∗(x, y, z, r) = 1, i.e.

mv,123(u) = E
[
vTw123 (U(T − 1), |U(T )| , XT ) I (T <∞)

∣∣U(0) = u
]
, u ∈ N , (5.4)
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mv,23(u) = E
[
vTw23 (|U(T )| , XT ) I (T <∞)

∣∣U(0) = u
]
, u ∈ N , (5.5)

mv,2(u) = E
[
vTw2 (|U(T )|) I (T <∞)

∣∣U(0) = u
]
, u ∈ N , (5.6)

and

Gv(u) = E
[
vT I (T <∞)

∣∣U(0) = u
]
, u ∈ N . (5.7)

Certainly, with v = 1, (5.7) reduces to the ruin probability ψ(u) = Pr (T <∞|U(0) = u).

Furthermore, Lundberg’s (generalized) fundamental equation is given by (e.g. Li (2005a,b))

E[vW sY−W ] = 1, (5.8)

and in latter sections the roots of this equation play an important role for analyzing the Gerber-

Shiu functions just introduced.

For the analysis of (5.3) in Section 5.3, we shall define an auxiliary function and the discrete

Dickson-Hipp operator (see Dickson and Hipp (2001), Li and Garrido (2004) for a continuous

version of this operator) as follows. First, suppose

ηv(u) =
∞∑
t=1

vtωt(u+ t)k(t), u ∈ N , (5.9)

for some function ωt(u) , with generating function η̂v(s) =
∑∞

x=0 s
xηv(x). Then, taking the

summation from 0 to ∞ yields

η̂v(s) =
∞∑
u=0

su
∞∑
t=1

vtωt(u+ t)k(t) =
∞∑
t=1

s−tvtk(t)

{
∞∑
u=0

su+tωt(u+ t)

}

=
∞∑
t=1

(v
s

)t
k(t)

{
ω̂t(s)−

t−1∑
u=0

suωt(u)

}
,
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where ω̂t(s) =
∑∞

x=0 s
xωt(x). That is,

η̂v(s) =
∞∑
t=1

(v
s

)t
k(t)ω̂t(s)− ω̂∗,v(s), (5.10)

where ω̂∗,v(s) =
∑∞

t=1

∑t−1
u=0 s

u−tvtk(t)ωt(u).

In Section 5.2.1, analogous to a Sparre Andersen renewal risk process in continuous-time

studied in Section 2.1, structural properties of the generalized Gerber-Shiu function under the

present model are derived. Consequently, an alternative form of solution for the generalized

Gerber-Shiu function and various joint and marginal distributions of ruin related quantities can

be obtained. In Section 5.3, to identify the quantities involved in the recursive formulas for the

generalized Gerber-Shiu function, we assume a wide class of distributions, called the discrete Kn

class for the interclaim times. The discrete Kn class of distributions studied by Li (2005a,b) has a

probability generating function (pgf) which is a ratio of two polynomials of order n. The compound

binomial model can be easily retrieved as a special case, and has been widely considered by many

researchers (e.g. Cheng et al. (2000), Dickson (1994), Gerber (1988), Shiu (1989), Willmot (1993),

Yuen and Guo (2001)). Finally, in Section 5.4, a modified discrete ordinary renewal process (i.e.

discrete delayed renewal process) is considered. In particular, we assume time-dependent claim

sizes so that this model may be more reasonable as a model in which a pair of the first event follows

different distributional assumption from the subsequent pairs. For the generalized Gerber-Shiu

function in this model, a recursive formula for the discounted joint probability function (pf) is

derived in terms of the corresponding generalized Gerber-Shiu function in the ordinary model.

5.2 General structure

In the present section we explore the structure of the generalized Gerber-Shiu functions.
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5.2.1 Recursive formulas

To begin the analysis, if ruin occurs on the first claim, the joint defective pf of the surplus prior

to ruin (x) and the deficit at ruin (y) is given by

h1(x, y|u) = k(x− u+ 1)px−u+1(x+ y + 1), x ∈ N, y ∈ N+ (5.11)

where T = x − u + 1 and RN(T )−1 = u. For the subsequent claims causing ruin (i.e. N(T ) =

2, 3, . . .), since there is no longer a linear relationship between the time of ruin and the surplus

prior to ruin, the joint defective pf of (T, U(T − 1), |U(T )| , RN(T )−1) at (t, x, y, r) is given by

h2(t, x, y, r|u) for t = 2, 3, . . ., x, r ∈ N and y ∈ N+. Also, the discounted joint pf corresponding

to h1 and h2 are respectively given by

h1,v(x, y|u) = vx−u+1h1(x, y|u), (5.12)

and
h2,v(x, y, r|u) =

∞∑
t=2

vth2(t, x, y, r|u). (5.13)

As in Li (2005a), and Wu and Li (2008), let us consider the drop below the surplus u to obtain

a recursive equation for m∗
v(u) defined in (5.2). The pf of this first drop caused by a first claim is

governed by h1(x, y|0), in this case, the surplus level above an initial capital u before the drop is

x+ 1, and the drop amount below u is y, so that the surplus level after this drop becomes u− y

and the time of this drop is x + 1. If the drop below u is caused by any subsequent claims to

the first one, then the pf is governed by h2(x, y, r|0). There are two possibilities depending on

whether the first drop causes ruin or not. If y ≤ u (i.e. the surplus level after the drop u−y is still

nonnegative), then the process begins anew (probabilistically) with the new initial surplus u− y.

If y ≥ u+1 (i.e ruin occurs on the first drop), then in case of the drop occurring on the first claim,

U(T − 1) = x+ u, |U(T )| = y− u, XT = u, and RN(T )−1 = u. While in case of the drop occurring

on other than the first claim, U(T − 1) = x + u, |U(T )| = y − u, XT = u, and RN(T )−1 = r + u.
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Summing over all values of t, x, y, and r results in the recursive formula as follow. For u ∈ N,

m∗
v(u) =

u∑
y=1

m∗
v(u− y)

{
∞∑
x=0

h1,v(x, y|0) +
∞∑
x=0

x∑
r=0

h2,v(x, y, r|0)

}
+ l∗v(u), (5.14)

where h1,v(x, y|0) and h2,v(x, y, r|0) are given by (5.12) and (5.13) respectively, and

l∗v(u) =
∞∑

y=u+1

∞∑
x=0

{
w∗(x+ u, y − u, u, u)h1,v(x, y|0) +

x∑
r=0

w∗(x+ u, y − u, u, r + u)h2,v(x, y, r|0)

}
,

(5.15)

represents the contribution due to ruin on the first drop.

By summing over all values of t and r, we may obtain the discounted (marginal if v = 1) joint

pf of the surplus prior to ruin (x) and the deficit at ruin (y) given by

hv(x, y|u) = h1,v(x, y|u) +
x∑
r=0

h2,v(x, y, r|u). (5.16)

With u = 0 in the above pf, (5.14) may be rewritten as

m∗
v(u) =

u∑
y=1

m∗
v(u− y)

{
∞∑
x=0

hv(x, y|0)

}
+ l∗v(u). (5.17)

Then, letting

ϕv =
∞∑
x=0

∞∑
y=1

hv(x, y|0),

and the ladder height pf be

fv(y) =
1

ϕv

∞∑
x=0

hv(x, y|0), y ∈ N+, (5.18)

one may express (5.17) as

m∗
v(u) = ϕv

u∑
y=1

m∗
v(u− y)fv(y) + l∗v(u). (5.19)

Clearly, the discounted joint pf of U(T − 1), |U(T )|, and RN(T )−1 for ruin occurring on claims

subsequent to the first with zero initial surplus (i.e. h2,v(x, y, r|0)) is essential for analysis of the
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generalized Gerber-Shiu function m∗
v(u) in (5.2), since the discounted pf h1,v(x, y|0) in (5.12) is

known explicitly. Now, we consider the generalized Gerber-Shiu function (5.3) which also satisfies

the recursive expressions from (5.19) with w∗(x, y, z, r) = w(x, y, r) in (5.15), namely

mv(u) = ϕv

u∑
y=1

mv(u− y)fv(y) + lv(u), (5.20)

where

lv(u) =
∞∑

y=u+1

∞∑
x=0

{
w(x+ u, y − u, u)h1,v(x, y|0) +

x∑
r=0

w(x+ u, y − u, r + u)h2,v(x, y, r|0)

}
.

A change of the variable of summation yields

lv(u) =
∞∑
y=1

∞∑
x=u

{
w(x, y, u)h1,v(x, y|u) +

x∑
r=u

w(x, y, r)h2,v(x− u, y + u, r − u|0)

}
, (5.21)

since h1,v(x− u, y + u|0) = h1,v(x, y|u).

Furthermore, the Gerber-Shiu functions (5.4), (5.5), (5.6) and (5.7) also satisfy recursive equa-

tions respectively as follows. If w∗(x, y, z, r) = w123(x, y, z), then (5.15) becomes

lv,123(u) =
∞∑

y=u+1

∞∑
x=0

w123(x+ u, y − u, u)

{
h1,v(x, y|0) +

x∑
r=0

h2,v(x, y, r|0)

}
,

that is,

lv,123(u) =
∞∑

y=u+1

∞∑
x=0

w123(x+ u, y − u, u)hv(x, y|0), (5.22)

using (5.16). With this lv,123(u) in this case, (5.19) reduces to

mv,123(u) = ϕv

u∑
y=1

mv,123(u− y)fv(y) + lv,123(u).

For the simpler case of w∗(x, y, z, r) = w23(y, z), (5.5) may be obtainable from (5.19) with (5.15)
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and (5.18)

mv,23(u) = ϕv

u∑
y=1

mv,23(u− y)fv(y) + lv,23(u),

where

lv,23(u) = ϕv

∞∑
y=u+1

w23(y − u, u)fv(y). (5.23)

In this case, mv,23(u) depends only on the ladder height pf fv(y) and thus the pf of the last ladder

height XT + |UT | can be obtained from the generic ladder height pf (see Section 5.2.3). Further,

if the penalty function is only dependent on the deficit at ruin, i.e. w∗(x, y, z, r) = w2(y), then

from (5.19) with (5.15), (5.6) satisfies

mv,2(u) = ϕv

u∑
y=1

mv,2(u− y)fv(y) + ϕv

∞∑
y=u+1

w2(y − u)fv(y).

If w∗(x, y, z, r) = 1, then (5.7) also has a recursive equation

Gv(u) = ϕv

u∑
y=1

Gv(u− y)fv(y) + ϕvF v(u). (5.24)

The solution to (5.24) is known as the discrete compound geometric tail with Gv(0) = ϕv (e.g.

Willmot and Lin (2001), Wu and Li (2008)) given by

Gv(u) =
∞∑
n=1

(1− ϕv)(ϕv)
nF

∗n
v (u), u ∈ N ,

where Fv(u) = 1−F v(u) =
∑u

y=1 fv(y) and 1−F
∗n
v (u) is the df of the n-fold convolution of fv(u).

The general solution to (5.19) (and its special cases with (5.20) of particular interest) may be

expressed as (e.g. Wu and Li (2008, Theorem 1))

mv(u) =
1

1− ϕv

u∑
y=0

gv(u− y)lv(y), u ∈ N , (5.25)

where gv(u) is the compound geometric pf gv(u) = Gv(u−1)−Gv(u) for u ∈ N+ with gv(0) = 1−ϕv.

Note that gv(u) is given by

gv(u) =
∞∑
n=0

(1− ϕv)(ϕv)
nf∗n

v (u), u ∈ N ,
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where f ∗n
v (u) is the pf of the n-fold convolution of fv(u) with the usual convention f∗0

v (u)=I(u=0).

5.2.2 Analysis of mv(u)

As we demonstrated in Section 5.2.1, determination of the discounted joint pf h2,v(x, y, r|0) is

sufficient to study m∗
v(u) in (5.2), thus we may find an alternative form of solution to mv(u) which

leads to h2,v(x, y, r|0) in the following proposition (similar to Theorem 2 in the continuous-time

model).

Proposition 2 Assume that the discounted pf h2,v(x, y, r|0) admits the representation

h2,v(x, y, r|0) = h1,v(x, y|r)νv(r), x, r ∈ N, y ∈ N+, (5.26)

for some function νv(r). Then the Gerber-Shiu function in (5.3) may be expressed as

mv(u) = βv(u) +
∞∑
r=0

βv(r)τv(u, r), u ∈ N , (5.27)

where

βv(u) =
∞∑
x=u

∞∑
y=1

w(x, y, u)h1,v(x, y|u), (5.28)

and

τv(u, r) =


1

1−ϕv

{
gv (u− r) +

∑r
y=0 νv(r − y)gv(u− y)

}
, r = 0, 1, . . . , u− 1

1
1−ϕv

∑u
y=0 νv(r − y)gv (u− y), r = u, u+ 1, . . .

, (5.29)

with τv(0, r) = νv(r).

Proof. For notational convenience, let

ξv(u) =
∞∑
y=1

∞∑
x=u

x∑
r=u

w(x, y, r)h2,v(x−u, y+u, r−u|0) =
∞∑
r=u

∞∑
y=1

∞∑
x=r

w(x, y, r)h2,v(x−u, y+u, r−u|0),

(5.30)
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then (5.21) may be rewritten as lv(u) = βv(u) + ξv(u) where βv(u) is given by (5.28). With this

expression for lv(u), it follows from (5.25) one has

mv(u) =
1

1− ϕv

u∑
y=0

gv(u− y) {βv(y) + ξv(y)} . (5.31)

Under the assumption (5.26), one has

h2,v(x− u, y + u, r − u|0) = h1,v(x, y|r)νv(r − u).

Utilizing the above equation with (5.28), (5.30) becomes
∑∞

r=u βv(r)νv(r− u), and thus the right-

hand side of (5.31) may be expressed as

1

1− ϕv

u∑
y=0

gv(u− y) {βv(y) + ξv(y)} =
1

1− ϕv

u∑
y=0

gv(u− y)

{
βv(y) +

∞∑
r=y

βv(r)νv(r − y)

}
.

After an interchange of the order of summation on the above equation, (5.31) may be rewritten

as

mv(u) =
1

1− ϕv

u∑
r=0

βv(r)gv(u− r) +
1

1− ϕv

(
u−1∑
r=0

r∑
y=0

+
∞∑
r=u

u∑
y=0

)
βv(r)νv(r − y)gv(u− y)

= βv(u) +
∞∑
r=0

βv(r)τv(u, r),

since gv(0) = 1− ϕv. Thus, we have shown that (5.27) holds true with τv(u, r) given by (5.29). �

It is instructive to note that the form of solution in (5.27) is convenient to study the ruin related

quantities with a proper choice of the penalty function since in the solution, the penalty function

only appears in the function βv(u) in (5.28). The assumption (5.26) is explicitly considered in

detail in connection with discrete Kn interclaim times in Section 5.3. For the remainder of this

paper, we shall assume that (5.26) holds as it is true probabilistically in general. For further

details regarding this issue in a continuous-time model, see Cheung (2009). Also, the solution

(5.27) is a more appealing form in the sense that it distinguishes the contribution on the penalty
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function based on whether ruin occurs on the first claim or the subsequent ones. As we know,

based on our previous discussion, the time of ruin and the surplus prior to ruin are directly linked

when ruin event happens on the first claim.

In the next subsection, with a proper choice of the penalty function, we demonstrate how to

derive the general forms of discounted joint and marginal pf of ruin related quantities. In other

words, to obtain the following results, no specific assumptions on the interclaim times or the claim

sizes are assumed.

5.2.3 Discounted probability functions of ruin related quantities

First, the discounted joint pf of U(T−1), |U(T )| and RN(T )−1 is readily obtained from Proposition

2 as follows. Note that (5.3) may be viewed as an expectation of the penalty function so it may

be expressed using the discounted joint pfs (5.12) and (5.13) as

mv(u) =
∞∑
y=1

∞∑
x=u

w(x, y, u)h1,v(x, y|u) +
∞∑
y=1

∞∑
r=0

∞∑
x=r

w(x, y, r)h2,v(x, y, r|u). (5.32)

Using (5.28) and comparing the above expression to (5.27), one obtains

h2,v(x, y, r|u) = h1,v(x, y|r)τv(u, r), x = r, r + 1, . . . . (5.33)

Therefore (5.29) may also be interpreted as the discounted transition function in a surplus from

u to r.

Also, if w123(x, y, z) = sx1s
y
2s
z
3, then using (5.25) with lv,123(u) in (5.22) given by

lv,123(u) =
∞∑
y=1

∞∑
x=u

sx1s
y
2s
u
3hv(x− u, y + u|0)

in this case, one finds the joint generating function
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E
[
vT s

U(T−1)
1 s

|U(T )|
2 sXT

3 I (T <∞)
∣∣U(0) = u

]
=

1

1− ϕv

u∑
z=0

gv(u− z)lv,123(z) =
u∑
z=0

∞∑
y=1

∞∑
x=z

sx1s
y
2s
z
3

{
gv(u− z)

1− ϕv
hv(x− z, y + z|0)

}
.

Thus, by the uniqueness of the generating function, it follows that the discounted joint pf of

(U(T − 1), |U(T )|, XN(T )) at (x, y, z) is given by

h3,v(x, y, z|u) =
gv(u− z)

1− ϕv
hv(x− z, y + z|0), x = z, z + 1, . . . , y ∈ N+, z = 0, 1, . . . , u.

Also, we obtain the joint generating function of the time of ruin T and the last ladder height

|U(T )| + XT with a choice of w23(y, z) = sy+z by using (5.25) with lv,23(u) in (5.23) given by

ϕv
∑∞

y=u+1 s
yfv(y), that is

E
[
vT s|U(T )|+XT I (T <∞)

∣∣U(0) = u
]

=
1

1− ϕv

u∑
z=0

gv(u− z)lv,23(z) =
u∑
z=0

∞∑
y=z+1

sy
{
ϕvgv(u− z)

1− ϕv
fv(y)

}
.

An interchange of the order of summation in the above equation followed by equating coefficients

of sy yields the discounted pf of the last ladder height |U(T )|+XT , namely,

f1,v(u, y) =


ϕv

1−ϕv

{
Gv(u− y)−Gv(u)

}
fv(y), y = 1, 2, . . . , u

ϕv
1−ϕv

{
1−Gv(u)

}
fv(y), y = u+ 1, u+ 2, . . .

since
∑y−1

z=0 gv(u− z) = Gv(u− y)−Gv(u) and
∑u

z=0 gv(u− z) = 1−Gv(u).

Furthermore, the joint pf of the last pair of the interclaim time and the claim size, i.e.

(WN(T ), YN(T )) is obtainable as well. Recall that the last interclaim time is WN(T ) = U(T −

1) − RN(T )−1 + 1 and the claim causing ruin is YN(T ) = U(T − 1) + |U(T )| + 1. In this case,

if w(x, y, r) = sx−r+1
1 sx+y+1

2 , then βv(u) in (5.28) with (5.11) and (5.12) followed by changing a
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variable from (x− u+ 1) to t leads to

∞∑
x=u

∞∑
y=1

sx−u+1
1 sx+y+1

2

{
vx−u+1k(x− u+ 1)px−u+1(x+ y + 1)

}
=

∞∑
t=1

∞∑
y=u+t+1

st1s
y
2

{
vtk(t)pt(y)

}
.

With the above βv(u), the bivariate generating function of (WN(T ), YN(T )) is obtainable from (5.27)

as

E
[
vT s

WN(T )

1 s
YN(T )

2 I (T <∞)
∣∣U(0) = u

]
= βv(u) +

∞∑
r=0

βv(r)τv(u, r)

=
∞∑
t=1

∞∑
y=u+t+1

st1s
y
2

{
vtk(t)pt(y)

}
+

∞∑
r=0

∞∑
t=1

∞∑
y=r+t+1

st1s
y
2

{
vtk(t)pt(y)τv(u, r)

}
(5.34)

=
∞∑
t=1

∞∑
y=u+t+1

st1s
y
2

{
vtk(t)pt(y)

}
+

∞∑
t=1

∞∑
y=t+1

y−t−1∑
r=0

st1s
y
2

{
vtk(t)pt(y)τv(u, r)

}
,

and thus, the discounted joint pf of the last interclaim time WN(T ) and the claim causing ruin

YN(T ) is given by

h4,v(t, y|u) = vtk(t)pt(y)

{
I(y ≥ u+ t+ 1) + I(y ≥ t+ 1)

y−t−1∑
r=0

τv(u, r)

}
, t ∈ N+.

For the generating function of WN(T ), (5.34) with s2 = 1 becomes

E
[
vT s

WN(T )

1 I (T <∞)
∣∣U(0) = u

]
=

∞∑
t=1

st1

{
vtk(t)P t(u+ t) + vtk(t)

∞∑
r=0

P t(r + t)τv(u, r)

}
,

and in turn we obtain the discounted pf of the last interclaim time WN(T ) given by

h5,v(t|u) = vtk(t)

{
P t(u+ t) +

∞∑
r=0

P t(r + t)τv(u, r)

}
, t ∈ N+.

Similarly, the discounted pf of the claim causing ruin YN(T ) can be derived with s1 = 1 in (5.34).

The details are omitted here. For reference, Li (2005b) studied joint and marginal distributions

of the claim causing ruin together with the surplus before ruin and the deficit at ruin assuming a

discreteKn distribution for the interclaim times. We also assume this specific class in the following

123



section.

5.3 A class of discrete Kn distributions

To begin, we introduce a class of discrete Kn (or Coxian) distributions for the interclaim times as

follows. In Willmot (1993), the mixed Poisson connection between the classical continuous-time

compound Poisson model and the discrete-time compound binomial model was discussed in detail.

Similarly, to determine the representation of a discrete Kn distribution, we utilize the structure of

a truncated mixed Poisson distribution when the mixing distribution is in the class of continuous

Kn distributions.

First, we define a class of discrete Kn family distribution for interclaim times having pgf which

is a ratio of two polynomials of order n given by (e.g. Li (2005a,b))

k̂(s) =
sε(s)∏m

i=1(1− sqi)ni
, (5.35)

where 0 < qi < 1 for i = 1, 2, . . . ,m with qi ̸= qj for i ̸= j. Also, ni is a nonnegative integer

for i = 1, 2, . . . ,m, and n =
∑m

i=1 ni > 0, while ε(s) is a polynomial of degree n − 1 or less (the

denominator of (5.35) is a polynomial of degree n). It contains many distributions as special

cases, for instance, if m = n = 1, qi = q and ε(s) = 1 − q, then it is a shifted or truncated

geometric distribution with pgf k̂(s) = s(1 − q)/(1 − sq). In other words, the claim number

process {N(t); t ≥ 0} reduces to a binomial process which is further studied at the end of this

section.

Now, to recover a class of discrete Kn distributions with pgf in the form of (5.35), let us define
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the pgf of the truncated mixed Poisson probabilities as

P (s) =
ã(1− s)− ã(1)

1− ã(1)
, (5.36)

where ã(s) =
∫∞
0
e−stdA(t) and the associated mixing df A(t) belongs to the continuous Kn

class of distributions with Laplace transform (e.g. Willmot and Woo (2010, Equation 1 with

qi = (1 + λi)
−1))

ã(s) =
ζ(s)∏m

i=1(1− qi + sqi)ni
, (5.37)

with ζ(s) is a polynomial of degree n− 1 or less. With (5.37), (5.36) can be represented as

P (s) =
ζ(1− s)− ζ(1)

∏m
i=1 (1− sqi)

ni

C
∏m

i=1 (1− sqi)
ni

, (5.38)

where C is a constant given by C = 1 − ζ(1). Since P (s) is the truncated pgf at zero (i.e.

P (0) = 0), (5.38) may be rewritten as

P (s) =
sΥ(s)∏m

i=1 (1− sqi)
ni
,

where Υ(s) a polynomial of degree n− 1 or less, which is the same form of (5.35).

As just shown, a discrete distribution k(t) with the pgf (5.35) is the truncated mixed Poisson

when the mixing distribution is in a class of continuous Coxian distributions. Thus, using the

results in Willmot and Woo (2010), one finds the truncated mixed Poisson probabilities, namely

pf of the interclaim times k(t), can be obtained as

k(t) =
m∑
i=1

ni∑
j=1

a∗i,j
(1− qi)

jqti
1− (1− qi)j

(
j + t− 1

t

)
, t = 1, 2, . . . , (5.39)

where a∗i,j are constants. Therefore, a discrete Kn class may be viewed in terms of finite combina-

125



tions of truncated negative binomial (Pascal) distributions. The pgf (5.35) is thus given by

k̂(s) =
m∑
i=1

ni∑
j=1

a∗∗i,j
1− (1− sqi)

j

(1− sqi)j
,

where a∗∗i,j are constants.

To begin the analysis, we consider the time-independent claim sizes (i.e. pt(y) = p(y)) and

condition on the time and the amount of the first claim. The recursive expression for mv(u) in

(5.3) may be obtained as

mv(u) = βv(u) +
∞∑
t=1

vtσv(u+ t)k(t), u ∈ N , (5.40)

where

βv(u) =
∞∑
t=1

∞∑
y=u+t+1

vtw(u+ t− 1, y − u− t, u)p(y)k(t), (5.41)

and

σv(x) =
x∑
y=1

mv(x− y)p(y). (5.42)

The above βv(u) may be regarded as the contribution to the penalty function due to ruin on the

first claim, which is the same as (5.28) from (5.11) and (5.12). Because the second term on the

right-hand side of (5.40) is in the form of (5.9) with ωt(u) = σv(u) being independent of t, using

(5.10) one obtains the generating function for mv(u) in (5.40), namely m̂v(s) =
∑∞

u=0 s
umv(u) as

m̂v(s) = β̂v(s) + σ̂v(s)k̂
(v
s

)
− σ̂∗,v(s), (5.43)

where β̂v(s) =
∑∞

u=0 s
uβv(u), σ̂v(s) =

∑∞
u=1 s

uσv(u) and

σ̂∗,v(s) =
∞∑
t=1

t−1∑
u=0

su−tvtk(t)σv(u).
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In this case, using (5.39) followed by a interchange of summation yields

σ̂∗,v(s) =
∞∑
t=1

t−1∑
u=0

su−tvtσv(u)

{
m∑
i=1

ni∑
j=1

a∗i,j
(1− qi)

jqti
1− (1− qi)j

(
j + t− 1

t

)}

=
m∑
i=1

ni∑
j=1

a∗∗i,j

∞∑
u=0

suσv(u)

{
∞∑

t=u+1

(vqi
s

)t(j + t− 1

t

)}
, (5.44)

where a∗∗i,j = a∗i,j(1− qi)
j {1− (1− qi)

j}−1
. To simplify the right-hand side on the above equation,

first note that (see Klugman et al. (2008, p.154))

∞∑
t=u+1

(vqi
s

)t(j + t− 1

t

)
=
(
1− vqi

s

)−j vqi
s

1− vqi
s

j∑
k=1

(
1− vqi

s

)k (vqi
s

)u(u+ k − 1

u

)

=
(
1− vqi

s

)−j j−1∑
k=0

(
1− vqi

s

)k (vqi
s

)u+1
(
u+ k

u

)
.

Then using the above result, (5.44) can be rewritten as

σ̂∗,v(s) =
m∑
i=1

ni∑
j=1

j−1∑
k=0

a∗∗i,jσv(i, k)
1
s(

1− vqi
s

)j−k =
m∑
i=1

ni∑
j=1

θi,j

1
s(

1− vqi
s

)j ,
where σv(i, k) =

∑∞
u=0 σv(u)(vqi)

u+1
(
u+k
u

)
and θi,j =

∑ni

k=j a
∗∗
i,jσv(i, k − j). In other words, one

obtains the representation of (5.44) as

σ̂∗,v(s) =
m∑
i=1

ni∑
j=1

θi,j
sj−1

(s− vqi)j
, (5.45)

where θi,j are constants.

Using σ̂v(s) = m̂v(s)p̂(s) from (5.42) and (5.45) followed by rearranging (5.43) yields

m̂v(s)
{
1− p̂(s)k̂(v/s)

}
= β̂v(s)−

Qv(s)∏m
k=1 (s− vqk)

nk
, (5.46)
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where

Qv(s) =

{
m∏
k=1

(s− vqk)
nk

}
m∑
i=1

ni∑
j=1

θi,j
sj−1

(s− vqi)j
, (5.47)

is a polynomial in s of degree n − 1 or less. Li (2005a, Theorem 1) showed that the Lundberg

equation (5.8), namely p̂(s)k̂(v/s) = 1, has exactly n solutions ρ1, ρ2, . . . , ρn with 0 < |ρj| < 1 for

0 < v < 1. In what follows, we also assume that these roots are distinct. Then, by the theory of

Lagrange polynomials, (5.47) may be expressed as

Qv(s) =
n∑
i=1

{
β̂v(ρi)

m∏
k=1

(ρi − vqk)
nk

}
n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
,

where it is assumed that m̂v(ρi) < ∞ for i = 1, 2, . . . , n. Using the above expression for Qv(s)

and multiplying (5.46) by
∏m

k=1(s− vqk)
nk results in

m̂v(s)

{
m∏
k=1

(s− vqk)
nk

}{
1− p̂(s)k̂(v/s)

}
= β̂v(s)

{
m∏
k=1

(s− vqk)
nk

}
−

n∑
i=1

{
β̂v(ρi)

m∏
k=1

(ρi − vqk)
nk

}
n∏

j=1,j ̸=i

(
s− ρj
ρi − ρj

)
. (5.48)

From Lemma 1 in Li (2005a), we know that the defective pf ϕvfv(y) has generating function given

by

ϕvf̂v(s) = 1−
∏m

k=1(s− vqk)
nk(∏n

l=1
vql
ρl

)∏n
i=1(s− ρi)

{
1− p̂(s)k̂(v/s)

}
,

and thus (5.48) may be expressed as

m̂v(s)
{
1− ϕvf̂v(s)

}
= l̂v(s),

where

l̂v(s) =
β̂v(s)

∏m
k=1(s− vqk)

nk(∏n
l=1

vql
ρl

)∏n
i=1(s− ρi)

−
n∑
i=1

β̂v(ρi)
∏m

k=1(ρi − vqk)
nk(∏n

l=1
vql
ρl

)
(s− ρi)

∏n
j=1,j ̸=i(ρi − ρj)

. (5.49)
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Then, similar to Willmot and Woo (2010) we can find the expression for
∏m

k=1(s−vqk)nk/
∏n

i=1(s−

ρi) as ∏m
k=1(s− vqk)

nk∏n
i=1(s− ρi)

= 1 +
n∑
i=1

∏m
k=1(ρi − vqk)

nk

(s− ρi)
∏n

j=1,j ̸=i(ρi − ρj)
.

Substitution of this expression into the first term on the right-hand side of (5.49) results in

l̂v(s) =

(
n∏
l=1

ρl
vql

)[
β̂v(s) +

n∑
i=1

∏m
k=1(ρi − vqk)

nk∏n
j=1,j ̸=i(ρi − ρj)

{
β̂v(s)− β̂v(ρi)

s− ρi

}]
.

By the uniqueness of the generating function and the property of the discrete Dickson-Hipp op-

erator in (1.8), we identify lv(u) in (5.20) as

lv(u) =

(
n∏
l=1

ρl
vql

){
βv(u) +

n∑
i=1

a∗iTρiβv(u+ 1)

}
, (5.50)

where

a∗i =

∏m
k=1(ρi − vqk)

nk∏n
j=1,j ̸=i(ρi − ρj)

. (5.51)

As in Willmot and Woo (2010) who studied a continuous-time risk model with a class of Coxian

interclaim time distributions, now we recover the case of the classical Gerber-Shiu function in (5.1)

studied by Li (2005a) in the present discrete model. If w(w, y, r) = w12(x, y), then βv(u) in (5.41)

reduces to

βv,12(u) =
∞∑
t=1

vtα12(u+ t)k(t),

where

α12(x) =
∞∑

y=x+1

w12(x− 1, y − x)p(y) =
∞∑
y=1

w12(x− 1, y)p(x+ y), x ∈ N+. (5.52)

Since βv,12(u) is again of the form (5.9), using (5.10) and (5.45) with α12(u) in place of σv(u) yields

its generating function as

β̂v,12(s) = α̂12(s)k̂
(v
s

)
−

m∑
i=1

ni∑
j=1

θ∗i,j
sj−1

(s− vqi)j
,
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where θ∗i,j are constants. Then, using (5.35) and (5.47), we obtain

β̂v,12(s)

{
m∏
k=1

(s− vqk)
nk

}
= α̂12(s)Q

∗
1(s)−Q∗

2(s), (5.53)

where

Q∗
1(s) =

{
m∏
k=1

(s− vqk)
nk

}
k̂
(v
s

)
, (5.54)

and Q∗
2(s) are both polynomials of degree n − 1 or less. Thus, again by the theory of Lagrange

polynomials, Q∗
k(s) for k = 1, 2 may be expressed as

Q∗
k(s) =

n∑
i=1

Q∗
k(ρi)

n∏
j=1,j ̸=i

(
s− ρj
ρi − ρj

)
. (5.55)

Then, substituting (5.53) into (5.49) followed by application of (5.55), it follows that

l̂v,12(s) =
α̂12(s)Q

∗
1(s)−Q∗

2(s)(∏n
l=1

vql
ρl

)∏n
i=1(s− ρi)

−
n∑
i=1

α̂12(ρi)Q
∗
1(ρi)−Q∗

2(ρi)(∏n
l=1

vql
ρl

)
(s− ρi)

∏n
j=1,j ̸=i(ρi − ρj)

=

(
n∏
l=1

ρl
vql

)
n∑
i=1

Q∗
1(ρi)∏n

j=1,j ̸=i(ρi − ρj)

{
α̂12(s)− α̂12(ρi)

s− ρi

}

Hence, by the uniqueness of the generating function and (1.8) one finds

lv,12(u) =

(
n∏
l=1

ρl
vql

)
n∑
i=1

biTρiα12(u+ 1),

where bi = Q∗
1(ρi)/

∏n
j=1,j ̸=i(ρi − ρj) is same as a∗i k̂(v/ρi) with a∗i given by (5.51) due to (5.54).

This result agrees with Equation 37 in Li (2005a). Also, if w12(x, y) = 1, then from (5.24) we

know that lv,12(u) = ϕvF v(u) which is

ϕvF v(u) =

(
n∏
l=1

ρl
vql

)
n∑
i=1

biTρiP (u+ 1) =

(
n∏
l=1

ρl
vql

)
n∑
i=1

bi

∞∑
x=0

ρxi P (x+ u+ 1), u ∈ N ,

since α12(x) =
∑∞

y=1 p(x + y) = P (x) from (5.52). Because fv(y) = F v(y − 1) − F v(y), we

130



immediately get

ϕvfv(y) = ϕv

(
n∏
l=1

ρl
vql

)
n∑
i=1

bi

∞∑
x=0

ρxi p(x+ y + 1) = ϕv

(
n∏
l=1

ρl
vql

)
n∑
i=1

biTρip(y + 1), y ∈ N+ ,

which agrees with Equation 26 in Li (2005a).

Furthermore, as we know, to analyze (5.2) we need to derive a (discounted) joint pf of U(T −

1), |U(T )| and RN(T )−1 with a zero initial surplus as follows. From (5.21) and (5.28) at u = 0, it

is obvious that

lv(0) = βv(0) +
∞∑
y=1

∞∑
x=0

x∑
r=0

w(x, y, r)h2,v(x, y, r|0).

Comparing the above result with (5.50) at u = 0 yields

∞∑
r=0

∞∑
x=r

∞∑
y=1

w(x, y, r)h2,v(x, y, r|0) =

(
n∏
l=1

ρl
vql

− 1

)
βv(0) +

(
n∏
l=1

ρl
vql

)
n∑
i=1

a∗iTρiβv(1), (5.56)

and using (5.28), the right-hand side of (5.56) can be rewritten as

∞∑
x=0

∞∑
y=1

w(x, y, 0)

(
n∏
l=1

ρl
vql

− 1

)
h1,v(x, y|0)

+
∞∑
r=0

∞∑
x=r+1

∞∑
y=1

w(x, y, r + 1)

(
n∏
l=1

ρl
vql

)
n∑
i=1

a∗i ρ
r
ih1,v(x, y|r + 1). (5.57)

If w(x, y, r) = sx1s
y
2s
r
3, then equating coefficients of sx1s

y
2s
r
3 in the left-hand side of (5.56) and (5.57)

results in

h2,v(x, y, r|0) =

{
I(r = 0)

(
n∏
l=1

ρl
vql

− 1

)
+ I(r ̸= 0)

(
n∏
l=1

ρl
vql

)
n∑
i=1

a∗i ρ
r−1
i

}
h1,v(x, y|r), (5.58)

where h1,v(x, y|r) is given by (5.12) with (5.11) and (5.39) in this case.

Thus, under the discrete Kn interclaim time distribution, (5.26) is satisfied according to (5.58)
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with the obvious νv(r) in the bracket, and we can apply (5.29) in Proposition 1 to obtain the

discounted transition function τv(u, r). Therefore, from (5.33) along with such an expression for

τv(u, r), one readily obtains the discounted joint pf of U(T − 1), |U(T )| and RN(T )−1 with an

arbitrary initial surplus (i.e. h2,v(x, y, r|u)) as well. Certainly, any joint or marginal pfs studied

in Section 5.2.3 can be founded in this model by applying the general results therein.

Special case : Compound binomial process

Here, we consider the compound binomial process as a special case of the discrete Kn class. This

is a discrete analogue of the classical compound Poisson process. In this case, the interclaim

times follow a zero-truncated geometric distribution k(t) = (1 − q)qt−1 for t = 1, 2, . . . , with pgf

k̂(s) = s(1 − q)/(1 − sq). Denote the unique positive root of the Lundberg equation in (5.8) to

be ρ (e.g. Li (2005a)). Then, in this case, a∗1 in (5.51) reduces to ρ − vq and from (5.50) the

Gerber-Shiu function in (5.3) satisfies the recursive expression (5.20) with

lv(u) =
ρ

vq
{βv(u) + (ρ− vq)Tρβv(u+ 1)} .

Also, the discounted joint pf of U(T − 1), |U(T )| and RN(T )−1 in (5.58) simplifies to

h2,v(x, y, r|0) =
(
ρ

vq
− 1

)
[I(r = 0) + I(r ̸= 0)ρr]h1,v(x, y|r).

As mentioned earlier, this function determines the analysis of the generalized Gerber-Shiu function

in (5.2) and its special cases.

5.4 Discrete delayed renewal risk process

As in Chapter 4, with the same assumptions considered in Section 5.1, but assuming the process

has been running for some time before it is first observed, then the interclaim time for the first

event is assumed to be different from the subsequent ones. Without the assumption of time-
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dependent claim size, this delayed model was considered by Alfa and Drekic (2008) and Drekic

and Mera (2010) using matrix algorithms to compute various joint probabilities of ruin related

quantities.

In this model, let us assume that the pf of the first interclaim time is k1(t) and the joint

pf of the first pair (W1, Y1) is defined as k1(t)p1,t(y) where p1,t(y) is a conditional pf of Y1 = y

given W1 = t which implies the dependency structure of the first claim size is different from the

subsequent ones. Corresponding to (5.2) and (5.3) in the discrete ordinary model, we consider a

generalization of the classical Gerber-Shiu function in the present model

m∗
d,v(u) = E

[
vTdw∗ (U(Td − 1), |U(Td)| , XTd , RN(Td)−1

)
I (Td <∞)

∣∣U(0) = u
]
, u ∈ N ,

(5.59)
where Td is the time of ruin in the delayed model. If w∗(x, y, z, r) = w(x, y, r), (5.59) reduces

md,v(u) = E
[
vTdw

(
U(Td − 1), |U(Td)| , RN(Td)−1

)
I (Td <∞)

∣∣U(0) = u
]
, u ∈ N . (5.60)

As in Chapter 4, the structural results of the generalized Gerber-Shiu functions (5.59) and

(5.60) in a discrete delayed renewal risk model can be derived in terms of the discrete ordinary

renewal risk model studied in Section 5.2.1.

First, the joint defective pf of the surplus prior to ruin (x) and the deficit at ruin (y) when

ruin occurs on the first claim (i.e. N(Td) = 1) is defined as

hd1(x, y|u) = k1(x− u+ 1)p1,x−u+1(x+ y + 1), x ∈ N, y ∈ N+ (5.61)

where Td = x − u + 1 and RN(Td)−1 = u. For other cases (i.e. N(Td) ≥ 2), the joint defective

pf of (Td, U(Td − 1), |U(Td)| , RN(Td)−1) at (t, x, y, r) is denoted by hd2(t, x, y, r|u) for t = 2, 3, . . .,

x, r ∈ N and y ∈ N+. The discounted joint pf of these hd1 and hd2 are assumed respectively to be

hd1,v(x, y|u) = vx−u+1hd1(x, y|u), (5.62)

and
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hd2,v(x, y, r|u) =
∞∑
t=2

vthd2(t, x, y, r|u). (5.63)

Again, conditioning on the first drop below the initial surplus level u, we may obtain the

following recursive formula for (5.59) involving (5.2) with (5.62) and (5.63)

m∗
d,v(u) =

u∑
y=1

m∗
v(u− y)

{
∞∑
x=0

hd1,v(x, y|0) +
∞∑
x=0

x∑
r=0

hd2,v(x, y, r|0)

}
+ l∗d,v(u), (5.64)

where

l∗d,v(u) =
∞∑

y=u+1

∞∑
x=0

{
w∗(x+ u, y − u, u, u)hd1,v(x, y|0) +

x∑
r=0

w∗(x+ u, y − u, u, r + u)hd2,v(x, y, r|0)

}
,

(5.65)

which is the case when ruin occurs on the first drop. From (5.62) and (5.63), the joint pf of the

surplus prior to ruin (x) and the deficit at ruin (y) is obtainable as

hdv(x, y|u) = hd1,v(x, y|u) +
x∑
r=0

hd2,v(x, y, r|u). (5.66)

Using (5.66), (5.64) may be expressed as

m∗
d,v(u) = ϕd,v

u∑
y=1

m∗
v(u− y)fd,v(y) + l∗d,v(u),

where ϕd,v =
∑∞

x=0

∑∞
y=1 h

d
v(x, y|0) and fd,v(y) = ϕ−1

d,v

∑∞
x=0 h

d
v(x, y|0). We note that (5.59) only

depends on (5.63) with u = 0 as in the discrete ordinary model studied in Section 5.2.1. Hence,

in order to derive this joint pf, we consider (5.60) in the following. If w∗(x, y, z, r) = w(x, y, r),

then (5.65) becomes

ld,v(u) =
∞∑

y=u+1

∞∑
x=0

{
w(x+ u, y − u, u)hd1,v(x, y|0) +

x∑
r=0

w(x+ u, y − u, r + u)hd2,v(x, y, r|0)

}
,

and changing variables of summations yields

ld,v(u) =
∞∑
y=1

∞∑
x=u

{
w(x, y, u)hd1,v(x, y|u) +

x∑
r=u

w(x, y, r)hd2,v(x− u, y + u, r − u|0)

}
.
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Next, by conditioning on the time and the amount of the first claim, one finds

md,v(u) = βd,v(u) +
∞∑
t=1

vtσv,t(u+ t)k1(t), (5.67)

where

βd,v(u) =
∞∑
t=1

∞∑
y=u+t+1

vtw(u+ t− 1, y − u− t, u)p1,t(y)k1(t), (5.68)

and

σv,t(x) =
x∑
y=0

mv(x− y)p1,t(y). (5.69)

As in (5.41), (5.68) may be interpreted as the contribution on the penalty function due to ruin on

the first claim in the present model. From (5.61) and (5.62), it may be reexpressed as

βd,v(u) =
∞∑
x=u

∞∑
y=1

w(x, y, u)hd1,v(x, y|u). (5.70)

Similar to (5.32), using (5.70) and (5.63) we can express (5.60) as

md,v(u) = βd,v(u) +
∞∑
x=0

∞∑
y=1

x∑
r=0

w(x, y, r)hd2,v(x, y, r|u). (5.71)

Comparing the above expression to (5.67) with (5.69), one deduces that

∞∑
x=0

∞∑
y=1

x∑
r=0

w(x, y, r)hd2,v(x, y, r|u) =
∞∑
t=1

vt
u+t∑
z=0

mv(z)p1,t(u+ t− z)k1(t). (5.72)

Interchanging the order of summation on the right-hand side of (5.72) yields(
u∑
z=0

∞∑
t=1

+
∞∑

z=u+1

∞∑
t=z−u

)
mv(z)

{
vtp1,t(u+ t− z)k1(t)

}
=

∞∑
z=0

mv(z)Av(u, z), (5.73)

where

Av(u, z) =


∑∞

t=1 v
tp1,t(u+ t− z)k1(t), z = 0, 1, . . . , u∑∞

t=z−u v
tp1,t(u+ t− z)k1(t), z = u+ 1, u+ 2, . . .

.
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Using (5.32) and (5.33), it follows that the right-hand side of (5.73) is

∞∑
z=0

mv(z)Av(u, z)

=
∞∑
z=0

Av(u, z)

{
∞∑
y=1

∞∑
x=z

w(x, y, z)h1,v(x, y|z) +
∞∑
y=1

∞∑
r=0

∞∑
x=r

w(x, y, r)h1,v(x, y|r)τv(z, r)

}
.

(5.74)

Thus, if w(x, y, r) = sx1s
y
2s
r
3 in (5.72) and (5.74), by the uniqueness of the generating function, we

obtain the discounted joint pf of U(Td − 1), |U(Td)| and RN(Td)−1 given by

hd2,v(x, y, r|u) = h1,v(x, y|r)ξv(u, r), x = r, r + 1, . . . , y ∈ N+, r ∈ N ,

where

ξv(u, r) = Av(u, r) +
∞∑
z=0

Av(u, z)τv(z, r)

represents the discounted transition in a surplus from u to r in the discrete delayed process. In

turn, a substitution of the above expression of hd2,v into (5.71) with (5.28), one finds

md,v(u) = βd,v(u) +
∞∑
r=0

βv(r)ξv(u, r).

Based on the above expression for (5.60), the parts containing the penalty function are only in

the functions βd,v and βv, so that it is more useful for analyzing various ruin related quantities as

in Proposition 2 in the case of a discrete ordinary renewal risk process.
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Chapter 6

Two-sided bounds for a renewal

equation

Many quantities of interest in the study of renewal processes may be expressed as a special type

of integral equation known as a renewal equation. The main purpose of this chapter is to provide

bounds on the solution of renewal equations based on various reliability classifications. It contains

exponential and nonexponential inequalities by depending on the type of renewal equation.

6.1 Introduction

In this section, we derive two-sided bounds for renewal equations. Most of the bounds obtained

in the present paper are based on the results developed by Willmot et al. (2001) but all are

improved. Let us start with the renewal equation (e.g. Ross (1996), Karlin and Taylor (1975),

Tijms (1994), Willmot et al. (2001))

m(x) = ϕ

∫ x

0

m(x− y) dF (y) + ϕ r(x), x ≥ 0, (6.1)
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where ϕ > 0 , F (y) = 1− F (y) is a proper df with F (0) = 0 and r(x) ≥ 0 is locally bounded. As

in Willmot et al. (2001), we define x0 = inf{x : F (x) = 1} and obviously x0 = ∞ if F (x) > 0

for x > 0. The renewal equation (6.1) is said to be proper if ϕ = 1, defective if ϕ < 1, and

excessive if ϕ > 1. In particular, for ϕ < 1 and r(x) = F (x), we obtain the special case in

which the solution m(x) is the tail of a compound geometric distribution. A wide variety of

quantities in insurance risk theory and in applied probability are known to satisfy (defective)

renewal equations of the form (6.1). For example, Willmot and Lin (2001) showed that the

convolutions of a compound geometric distribution with another random variable may be solution

to a defective renewal equation. Within this formulation, they provide examples including ruin

model perturbed by a diffusion and an approximation to the equilibrium waiting time distribution

in the M/G/c queues. Also, see Feller (1971) and Resnick (1992) for further detailed discussion

of the application. The general solution to (6.1) is (e.g. Resnick (1992, Section 3.5))

m(x) = ϕr(x) +
∞∑
n=1

ϕn+1

∫ x

0

r(x− y)dF ∗(n)(y) =
∞∑
n=0

ϕn+1(r ∗ F ∗(n))(x), x ≥ 0, (6.2)

where F ∗(n)(y) is the df of the n-fold convolution of F with itself. We also introduce the Lundberg

condition that κ exists such that ∫ ∞

0

eκydF (y) =
1

ϕ
. (6.3)

The main method applied to find tighter bounds in Section 6.2 and Section 6.3 is in the

following. Basically, we substitute the existing results given by Willmot et al. (2001) into the

integrand on the right side of (6.1) is utilized. Then we may obtain improved bounds by using the

Lundberg condition (6.3) and assuming some specific reliability classifications. To find new tighter

bounds, we repeat the above procedure, that is, replacement of m(x − y) in the integral term in

(6.1) by the bounds obtained in the previous step. By mathematical induction, we show that

iteration of the above steps yields better bounds than Willmot et al. (2001). Note that similar

ideas to those used here, but only for the exponential bounds, have also appeared in studies

regarding specific ruin-related quantities. Chadficonstantinidis and Politis (2007) have studied
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the two-sided bounds for the distribution of the deficit at ruin in the Sparre Andersen model

which improve and generalize similar results studied by Cai and Garrido (1998, 1999), Willmot

(2002), Willmot et al. (2001), and Willmot and Lin (2001). Psarrakos and Politis (2008) have also

derived improved tail bounds for the joint distribution of the surplus prior to and at ruin in the

classical risk model. Furthermore, concerning the approach based on the reliability classification

for finding bounds, see Willmot (1994), Willmot and Lin (2001) and references therein.

The following sections are organized as follows. If ϕ ≥ 1 then there is always κ ≤ 0 satisfying

(6.3). Then, in this case, it is convenient to find exponential bounds associated with κ which is

the subject matter of Section 6.2. For a defective renewal equation (i.e. ϕ < 1), however, the

previous types of bounds are not generally available since we may not find κ satisfying (6.3). Thus,

in Section 6.3, we discuss nonexponential bounds by introducing some useful bounding functions

provided by Willmot et al. (2001). Finally, in Section 6.4 some examples including various ruin

related quantities are provided to illustrate the applications of the results given by the previous

sections. These results show the gradual refinement of the two-sided bounds by increasing the

number of iterations.

6.2 Exponential bounds

In this section, we establish improved bounds corresponding to the results in Section 3 of Willmot

et al. (2001).

First, from Theorem 3.1 in Willmot et al. (2001), it follows that

αL(x)e
−κx ≤ m(x) ≤ αU(x)e

−κx, (6.4)

where
α(z) =

eκzr(z)∫∞
z
eκydF (y)

, z ≥ 0,
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and

αU(x) = sup
0≤z≤x, F (z)>0

α(z), αL(x) = inf
0≤z≤x, F (z)>0

α(z).

Theorem 3 Suppose that κ satisfies (6.3). If r(x) = 0 for x ≥ x0, then for n = 1, 2, 3 . . . ,

m(x) ≤ αU(x)e
−κx −

n∑
m=1

ϕm(cU ∗ F ∗(m−1))(x), x ≥ 0, (6.5)

where cU(x) = αU(x)e
−κx ∫∞

x
eκydF (y)− r(x). Similarly, for n = 1, 2, 3 . . . ,

m(x) ≥ αL(x)e
−κx +

n∑
m=1

ϕm(cL ∗ F ∗(m−1))(x), x ≥ 0, (6.6)

where cL(x) = r(x)− αL(x)e
−κx ∫∞

x
eκydF (y).

Proof. First, for the upper bound, we shall show by mathematical induction on n that (6.5)

holds true for all n = 1, 2, 3, . . . . For n = 1, inserting the upper bound for m(x) in (6.4) into the

integrand on the right side of (6.1), we obtain

m(x) ≤ ϕ

∫ x

0

αU(x− y)e−κ(x−y)dF (y) + ϕr(x)

≤ ϕαU(x)e
−κx
{
1

ϕ
−
∫ ∞

x

eκydF (y)

}
+ ϕr(x)

= αU(x)e
−κx − ϕ(cU ∗ F ∗(0))(x).

Thus, (6.5) holds true for n = 1. Assuming that (6.5) holds true for some n ≥ 1 followed by
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substitution into the integrad in (6.1) yields

m(x) ≤ ϕ

∫ x

0

[
αU(x− y)e−κ(x−y) −

n∑
m=1

ϕm(cU ∗ F ∗(m−1))(x− y)

]
dF (y) + ϕr(x)

≤ αU(x)e
−κx − ϕ(cU ∗ F ∗0)(x)−

n∑
m=1

ϕm+1

∫ x

0

(cU ∗ F ∗(m−1))(x− y)dF (y)

= αU(x)e
−κx −

n+1∑
m=1

ϕm(cU ∗ F ∗(m−1))(x).

Therefore, (6.5) holds for all n = 1, 2, 3, . . . .

For the lower bound (6.6), we also apply a similar argument to show that it holds true for

n = 1, 2, 3, . . . . For n = 1,

m(x) ≥ ϕ

∫ x

0

αL(x− y)e−κ(x−y)dF (y) + ϕr(x) ≥ ϕαL(x)e
−κx
{
1

ϕ
−
∫ ∞

x

eκydF (y)

}
+ ϕr(x)

= αL(x)e
−κx + ϕ(cL ∗ F ∗(0))(x),

and thus (6.6) is true. Assume that (6.6) holds for some n ≥ 1 and inserting such lower bound

into the integrad in (6.1) yields

m(x) ≥ ϕ

∫ x

0

{
αL(x− y)e−κ(x−y) +

n∑
m=1

ϕm(cL ∗ F ∗(m−1))(x− y)

}
dF (y) + ϕr(x)

≥ αL(x)e
−κx + ϕ(cL ∗ F ∗(0))(x) +

n∑
m=1

ϕm+1

∫ x

0

(cL ∗ F ∗(m−1))(x− y)dF (y)

= αL(x)e
−κx +

n+1∑
m=1

ϕm(cL ∗ F ∗(m−1))(x).

Thus, (6.6) holds for all n = 1, 2, 3, . . . . By mathematical induction, we have the desired result.

We remark that the two-sided bounds given by (6.5) and (6.6) are getting tighter as n increases

since cU(x) and cL(x) are nonnegative by definitions. �

Next, we find the improve bounds corresponding to the results from Corollary 3.1 in Willmot
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et al. (2001) in the following corollary. First, from Corollary 3.1 in Willmot et al. (2001), we

know that
σL(x)ψL(x)e

−κx ≤ m(x) ≤ σU(x)ψU(x)e
−κx, x ≥ 0, (6.7)

where
ψU(x) = sup

0≤z≤x,F (z)>0

r(z)

F (z)
, ψL(x) = inf

0≤z≤x,F (z)>0

r(z)

F (z)
, (6.8)

and
σU(x) = sup

0≤z≤x,F (z)>0

eκzF (z)∫∞
z
eκydF (y)

, σL(x) = inf
0≤z≤x,F (z)>0

eκzF (z)∫∞
z
eκydF (y)

. (6.9)

Corollary 15 Suppose that κ satisfies (6.3). If r(x) = 0 for x ≥ x0, then for n = 1, 2, 3 . . . ,

m(x) ≤ σU(x)ψU(x)e
−κx −

n∑
m=1

ϕm(hU ∗ F ∗(m−1))(x), x ≥ 0, (6.10)

where hU(x) = σU(x)ψU(x)e
−κx ∫∞

x
eκydF (y)− r(x). Similarly, for n = 1, 2, 3 . . . ,

m(x) ≥ σL(x)ψL(x)e
−κx +

n∑
m=1

ϕm(hL ∗ F ∗(m−1))(x), x ≥ 0, (6.11)

where hL(x) = r(x)− σL(x)ψL(x)e
−κx ∫∞

x
eκydF (y).

Proof. By mathematical induction applied in Theorem 1, we may prove the bounds (6.10) and

(6.11) as well. First, for the upper bound, we are going to show that (6.10) holds true for all

n = 1, 2, 3, . . . . For n = 1, putting the upper bound for m(x) in (6.7) into the integrand on the

right side of (6.1), we obtain

m(x) ≤ ϕ

∫ x

0

σU(x− y)ψU(x− y)e−κ(x−y)dF (y) + ϕr(x)

= σU(x)ψU(x)e
−κx − ϕ(hU ∗ F ∗(0))(x),

and thus (6.10) is true for n = 1. Suppose that (6.10) holds for some n ≥ 1. Replacing the
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integrand part in (6.1) by such induction assumption yields

m(x) ≤ ϕ

∫ x

0

{
σU(x− y)ψU(x− y)e−κ(x−y) −

n∑
m=1

ϕm(hU ∗ F ∗(m−1))(x− y)

}
dF (y) + ϕr(x)

≤ σU(x)ψU(x)e
−κx −

n+1∑
m=1

ϕm(hU ∗ F ∗(m−1))(x).

Hence, (6.10) holds true for all n = 1, 2, 3, . . .. Similarly, the lower bound may be obtained as

(6.11). Again, noting that hU(x) and hL(x) are nonnegative by definitions, it follows that the

bounds given by (6.10) and (6.11) may be improved as n increases. �

Remark 2 Note that from Corollary 3.1 in Willmot et al. (2001), for ϕ ≥ 1, if F is NWUC,

then σL(x) = ϕ and if F is NBUC, then σU(x) = ϕ. Similarly, for ϕ ≤ 1, if F is NWUC, then

σU(x) = ϕ and if F is NBUC, then σL(x) = ϕ.

In particular, if κ = 0 (i.e. ϕ = 1) from (6.3), then σU(x) = σL(x) = 1 in (6.9). Thus the

two-sided bounds in (6.10) and (6.11) become, for n = 1, 2, 3, . . .,

ψL(x) +
n∑

m=1

(h1,L ∗ F ∗(m−1))(x) ≤ m(x) ≤ ψU(x)−
n∑

m=1

(h1,U ∗ F ∗(m−1))(x), x ≥ 0,

where h1,L(x) = r(x)− ψL(x)F (x) and h1,U(x) = ψU(x)F (x)− r(x).

Corollary 16 If κ ≤ (>) 0, then the upper (lower) bounds in Theorem 3 and Corollary 15 equal

the exact solution (6.2) when n → ∞. In particular, for NWUC df with r(x) = F (x), the lower

(upper) bound in Corollary 15 also becomes (6.2) for n→ ∞, namely, the bounds are sharp.

Proof. Let us define lU(x) = αU(x)e
−κx. First, using lU(x) we reexpress the upper bound in (6.5)
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as

m(x) ≤ αU(x)e
−κx −

n∑
m=1

ϕm(cU ∗ F ∗(m−1))(x)

= lU(x)−
n∑

m=1

ϕm
{
lU(·)

∫ ∞

·
eκydF (y)− r(·)

}
∗ F ∗(m−1))(x)

=
n∑

m=1

ϕm
(
r ∗ F ∗(m−1)

)
(x) + lU(x)−

n∑
m=1

ϕmlU(·)
{
1

ϕ
−
∫ ·

0

eκydF (y)

}
∗ F ∗(m−1)(x).

(6.12)

If κ ≤ 0 (i.e. ϕ ≥ 1), then
∫ ·
0
eκydF (y) ≤

∫ ·
0
dF (y) = F (·). Using this, (6.12) becomes

m(x) ≤
n∑

m=1

ϕm
(
r ∗ F ∗(m−1)

)
(x) + lU(x)−

n∑
m=1

ϕm−1
(
lU ∗ F ∗(m−1)

)
(x) +

n∑
m=1

ϕm
(
lU ∗ F ∗(m)

)
(x),

and thus, for n→ ∞

m(x) ≤
∞∑
m=0

ϕm+1
(
r ∗ F ∗(m)

)
(x).

Simiarly, if κ > 0 then
∫ ·
0
eκydF (y) >

∫ ·
0
dF (y) = F (·) and thus, one finds the the lower bound in

(6.6) for n→ ∞,

m(x) ≥
∞∑
m=0

ϕm+1
(
r ∗ F ∗(m)

)
(x).

By the similar argument used abvoe, we readily prove that the bounds in Corollary 15 become

equivalent to the exact solution in (6.2). In addtion, if κ ≤ 0 (i.e. implying ϕ ≥ 1), F is NWUC

and r(x) = F (x), then we have σL(x) = ϕ from Remark 2 and ψL(x) = 1. Therefore, the lower
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bound in (6.11) reduces to

m(x) ≥ ϕ(x)e−κx +
n∑

m=1

ϕm(hL ∗ F ∗(m−1))(x)

=
n∑

m=1

ϕm
(
r ∗ F ∗(m−1)

)
(x) + ϕe−κx −

n∑
m=1

ϕm
[
ϕe−κ·

{
1

ϕ
−
∫ ·

0

eκydF (y)

}]
∗ F ∗(m−1)(x)

=
n∑

m=1

ϕm
(
r ∗ F ∗(m−1)

)
(x)−

n∑
m=1

ϕm
(
e−κ· ∗ F ∗(m−1)

)
(x) +

n∑
m=0

ϕm+1
(
e−κ· ∗ F ∗(m)

)
(x),

and in turn, as n→ ∞,

m(x) ≥
∞∑
m=0

ϕm+1
(
r ∗ F ∗(m)

)
(x).

Therefore, two-sided bounds in Corollary 15 are sharp and also equivalent to the solution for

renewal equations given by (6.2). For the other case (κ > 0), the same argument can be applied

to prove that the bounds are sharp. �

6.3 Nonexponential bounds

Our main object in this section is to obtain another type of bound instead of the exponential

type considered in the previous section in the case of a defective renewal equation. Up to now we

have only discussed how to construct the bounds as long as κ exists satisfying (6.3). In this entire

section, it is assumed ϕ ∈ (0, 1), which implies that κ satisfying (6.3) may not be found. Consider

the case that eκy is replaced by {B(y)}−1 in (6.3) where B(y) = 1−B(y) is a df, thereby yielding

∫ ∞

0

{B(y)}−1dF (y) =
1

ϕ
. (6.13)

Some choices of B(x), for example, B(x) = (1+κ∗x)−n where the distribution F has the moments

up to the n-th order, are appropriate and useful if F has no moment generating function, but has

finite moments. See Willmot and Lin (2001) and references therein for further discussion. For
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the analysis of nonexponential bounds in Willmot et al. (2001), it is convenient to introduce the

function

τ(x, z) =
r(z)V (x− z)∫∞

z
{B(y)}−1 dF (y)

, 0 ≤ z ≤ x, (6.14)

as long as F (z) > 0, and assume that V (y) = 1− V (y) is either a B -NWU df, that is

B(y)V (x) ≤ V (x+ y), x ≥ 0, y ≥ 0, (6.15)

or V (y) = 1− V (y) is a B -NBU df, that is

B(y)V (x) ≥ V (x+ y), x ≥ 0, y ≥ 0. (6.16)

The following theorem provides the tighter bounds than Theorem 4.1 in Willmot et al. (2001)

Theorem 4 Suppose that the df B(y) satisfies (6.13), and the df V (y) satisfies (6.15). If r(x) = 0

for x ≥ x0, then for n = 1, 2, 3, . . . ,

m(x) ≤ τU(x)

V (0)
−

n∑
m=1

ϕm(qU ∗ F ∗(m−1))(x), x ≥ 0, (6.17)

where

τU(x) = sup
0≤z≤x, F (z)>0

τ(x, z), x ≥ 0, (6.18)

and qU(x) =
τU (x)

V (0)

∫∞
x
{B(y)}−1dF (y)− r(x). Conversely, if the df B(y) satisfies (6.13), but the df

V (y) satisfies (6.16), then for n = 1, 2, 3, . . . ,

m(x) ≥ τL(x)

V (0)
+

n∑
m=1

ϕm(qL ∗ F ∗(m−1))(x), x ≥ 0, (6.19)

where

τL(x) = inf
0≤z≤x, F (z)>0

τ(x, z), x ≥ 0, (6.20)

and qL(x) = r(x)− τL(x)

V (0)

∫∞
x
{B(y)}−1dF (y).
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Proof. First, consider the upper bound (6.17). We shall prove it holds true for all n = 1, 2, 3, . . . .

From Theorem 4.1 in Willmot et al. (2001), if the df B(y) satisfies (6.13), and the df V (y) satisfies

(6.15), then

m(x) ≤ τU(x)

V (0)
, x ≥ 0, (6.21)

where τU(x) is given by (6.18). From (6.1) and (6.21), it follows that

m(x) ≤ ϕ

∫ x

0

τU(x− y)

V (0)
dF (y) + ϕr(x) ≤ ϕ

τU(x)

V (0)

∫ x

0

dF (y) + ϕr(x)

≤ ϕ
τU(x)

V (0)

∫ x

0

1

B(y)
dF (y) + ϕr(x) ≤ ϕ

τU(x)

V (0)

{
1

ϕ
−
∫ ∞

x

1

B(y)
dF (y)

}
+ ϕr(x)

=
τU(x)

V (0)
− ϕ(qU ∗ F ∗(0))(x),

thus, (6.17) is true for n = 1. Assuming that (6.17) holds for some n ≥ 1, its substitution into

the integrand in (6.1) yields

m(x) ≤ ϕ

∫ x

0

{
τU(x− y)

V (0)
−

n∑
m=1

ϕm(qU ∗ F ∗(m−1))(x− y)

}
dF (y) + ϕr(x)

≤ τU(x)

V (0)
−

n+1∑
m=1

ϕm(qU ∗ F ∗(m−1))(x).

Therefore, (6.17) holds true for all n = 1, 2, 3, . . . by induction. Also, we obtain the tighter bound

as n increases since qU(x) is nonnegative.

In contrast, if the df B(y) satisfies (6.13), but the df V (y) satisfies (6.16), then Willmot et al.

(2001) showed that

m(x) ≥ τL(x)

V (0)
, x ≥ 0, (6.22)

where τL(x) is given by (6.20). Then, to find the improved bound to (6.22), the following line of

logic is essentially due to Willmot et al. (2001) and Willmot and Lin (2001). Let

m0(z) = ϕr(z), z ≥ 0, (6.23)
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and for k = 1, 2, 3, ...

mk(z) = ϕr(z) +
k∑

n=1

ϕn+1

∫ z

0

r(z − y)dF ∗(n)(y), z ≥ 0. (6.24)

Then {mk(z); k = 0, 1, 2, ...} satisfies the recursive relationship

mk+1(z) = ϕr(z) + ϕ

∫ z

0

mk(z − y)dF (y), z ≥ 0. (6.25)

We shall use an inductive approach as in Cai and Wu (1997). Let A1(z) = 1 − A1(z) =

ϕ
∫ z
0
{B(y)}−1dF (y), which is a df since (6.13) holds. Let Ak(z) = 1 − Ak(z) be the df of the

sum of k independent random variables, each with the df A1(z) where, by the law of total proba-

bility, for k = 1, 2, 3, . . .

Ak+1(z) = A1(z) +

∫ z

0

Ak(z − y)dA1(y), z ≥ 0. (6.26)

We shall show by induction that for k = 0, 1, 2, . . . ,

mk(z) ≥
τL(x)

V (x− z)
Ak+1(z) +

k+1∑
m=1

ϕm(qL,x ∗ F ∗(m−1))(z), 0 ≤ z ≤ x, (6.27)

where qL,x(z) = r(z)− τL(x)

V (x−z)

∫∞
z
{B(y)}−1dF (y). By (3.28) and (6.20),

r(z) ≥ τL(x)

V (x− z)

∫ ∞

z

{B(y)}−1dF (y), 0 ≤ z ≤ x.

Then, for k = 0, (6.23) implies that

m0(z) = ϕr(z) + ϕ
τL(x)

V (x− z)

∫ ∞

z

1

B(y)
dF (y)− ϕ

τL(x)

V (x− z)

∫ ∞

z

1

B(y)
dF (y)

=
τL(x)

V (x− z)
A1(z) + ϕ

{
r(z)− τL(x)

V (x− z)

∫ ∞

z

1

B(y)
dF (y)

}
=

τL(x)

V (x− z)
A1(z) + ϕ(qL,x ∗ F ∗(0))(z), (6.28)

since A1(z) = ϕ
∫∞
z
{B(y)}−1dF (y). Thus, (6.27) holds true for k = 0.
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Now assume that (6.27) holds true for some k ≥ 0. Then, from (6.25), replacement of ϕr(z)

and mk(z − y) by (6.28) and (6.27) respectively results in

mk+1(z) ≥ τL(x)

V (x− z)
A1(z) + ϕ(qL,x ∗ F ∗(0))(z) + ϕ

∫ z

0

τL(x)

V (x+ y − z)
Ak+1(z − y)dF (y)

+
k+1∑
m=1

ϕm+1

∫ z

0

(qL,x ∗ F ∗(m−1))(z − y)dF (y).

But V (x+y−z) ≤ B(y)V (x−z) for 0 ≤ z ≤ x from (6.16), the above inequality may be rewritten

as

mk+1(z) ≥ τL(x)

V (x− z)

{
A1(z) +

∫ z

0

Ak+1(z − y)dA1(y)

}
+

k+2∑
m=1

ϕm(qL,x ∗ F ∗(m−1))(z)

=
τL(x)

V (x− z)
Ak+2(z) +

k+2∑
m=1

ϕm(qL,x ∗ F ∗(m−1))(z).

Hence, (6.27) holds for all k = 0, 1, 2, . . . by induction.

It follows from Ross (1996, pp.99-101) that
∑∞

k=1Ak(x) <∞, implying that limk→∞Ak(x) = 0,

or equivalently, limk→∞Ak(x) = 1 . Therefore, now combining (6.2), (6.24) and (6.27) with z = x

we may write,

m(x) = lim
k→∞

mk(x) ≥
τL(x)

V (0)
lim
k→∞

Ak+1(x) +
∞∑
m=1

ϕm(qL ∗ F ∗(m−1))(x)

=
τL(x)

V (0)
+

∞∑
m=1

ϕm(qL ∗ F ∗(m−1))(x) =
∞∑
m=0

ϕm+1
(
r ∗ F ∗(m)

)
(x),

where qL(x) = r(x)− τL(x)

V (0)

∫∞
x
{B(y)}−1dF (y). Since qL(x) is nonnegative, by truncating the above

expression, the lower bound (6.19) is proved. Certainly, increasing n in (6.19) yields tighter and

tighter lower bound, and as n→ ∞ it becomes the exact solution in (6.2) as proved in Corollary

16. �

149



In particular, if the df B(y) is NWU satisfying (6.13), then the upper bound in Theorem 4

implies to give, for n = 1, 2, 3, . . . ,

m(x) ≤ τU(x)

B(0)
−

n∑
m=1

ϕm(q1,U ∗ F ∗(m−1))(x), x ≥ 0,

where q1,U(x) = τU (x)

B(0)

∫∞
x
{B(y)}−1dF (y) − r(x), since (6.15) holds true for NWU df B(y) with

V (y) = B(y).

If the df B(y) is NBU satisfying (6.13), then Theorem 4 yields, for n = 1, 2, 3, . . . ,

m(x) ≥ τL(x) +
n∑

m=1

ϕm(q1,L ∗ F ∗(m−1))(x), x ≥ 0,

where q1,L(x) = r(x)− τL(x)
∫∞
x
{B(y)}−1dF (y), since the df B(y) is NBU and hence B(0)B(0) ≥

B(0) which implies that B(0) = 1, and (6.16) holds with V (y) = B(y).

Next, we may improve the upper bound for m(x) given by Willmot et al. (2001, Corollary

4.1), which is simpler and generalizes (6.7).

Corollary 17 Suppose that the df B(y) satisfies (6.13), and the df V (y) satisfies (6.15), then for

n = 1, 2, 3 . . . ,

m(x) ≤ ψU(x)

V (0)
V (x)−

n∑
m=1

ϕm(wU ∗ F ∗(m−1))(x), x ≥ 0, (6.29)

where wU(x) =
ψU (x)

V (0)
V (x)

∫∞
x
{B(y)}−1dF (y)− r(x), and ψU(x) is given by (6.8).

Proof. To prove (6.29) by induction. We first consider n = 1. From Corollary 4.1 in Willmot et

al. (2001), we have

m(x) ≤ ψU(x)

V (0)
V (x), x ≥ 0. (6.30)
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Substituting the upper bound in (6.30) into the integrand on the right side of (6.1), we obtain

m(x) ≤ ϕ

∫ x

0

ψU(x− y)

V (0)
V (x− y)dF (y) + ϕr(x) ≤ ϕ

ψU(x)

V (0)
V (x)

{
1

ϕ
−
∫ ∞

x

1

B(y)
dF (y)

}
+ ϕr(x)

=
ψU(x)

V (0)
V (x)− ϕ(wU ∗ F ∗(0))(x),

since V (x−y)B(y) ≤ V (x) for 0 ≤ y ≤ x by assumption (6.15). Thus, (6.29) holds true for n = 1.

The induction step can be shown similarly. Hence (6.29) is true for all n = 1, 2, 3, . . .. �

Note that in applying Theorem 4, since (6.15) is assumed to hold, one has V (x) ≥ V (x+y−z) ≥

B(y)V (x− z) for 0 ≤ z ≤ y and 0 ≤ z ≤ x. Combining (6.8) and (6.14), one finds

ψU(x)V (x) = sup
0≤z≤x, F (z)>0

r(z)V (x)∫∞
z
dF (y)

≥ sup
0≤z≤x, F (z)>0

r(z)V (x− z)∫∞
z
{B(y)}−1dF (y)

≥ r(x)V (0)∫∞
z
{B(y)}−1dF (y)

,

which implies wU(x) is nonnegative. Therefore, increasing n in (6.29) yields increasingly tighter

bound.

Moreover, based on Corollary 17, different types of bounds depending on other reliability

properties of the df B(y) are proposed in the following two corollaries motivated by Willmot and

Lin (2001, pp.71-72).

Corollary 18 Suppose that the df B(y) is NWUC satisfying (6.13). Then for n = 1, 2, 3, . . . ,

m(x) ≤ ψU(x)
B1(x)

B1(0)
−

n∑
m=1

ϕm(w1,U ∗ F ∗(m−1))(x), x ≥ 0, (6.31)

where w1,U(x) = ψU(x)
B1(x)

B1(0)

∫∞
x
{B(y)}−1dF (y)− r(x).

Proof.If the df B(y) is NWUC, then (6.15) is satisfied with V (y) = B1(y) where B1(y) = 1−B1(y)

is the equilibrium df of B(y) defined by B1(y) =
∫ y
0
B(x)dx{

∫∞
0
B(x)dx}−1. Thus, from Corollary
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17, (6.31) can be obtained. �

Note that for the heavy tail claim sizes, Corollary 18 is convenient to calculate the ruin prob-

ability since ψU(x) equals 1 in this case. In the next section, we will illustrate how to compute

the bounds for the ultimate ruin probability by using (6.31).

Next, under a larger reliability class assumption, for example, if the df B(y) is NWUE, we

have the following result.

Corollary 19 Suppose that the df B(y) is NWUE satisfying (6.13). Then for n = 1, 2, 3, . . . ,

m(x) ≤ ψU(x)V (x)−
n∑

m=1

ϕm(w2,U ∗ F ∗(m−1))(x), x ≥ 0, (6.32)

where w2,U(x) = ψU(x)V (x)
∫∞
x
{B(y)}−1dF (y)−r(x) and V (x) =

∫∞
0
B(y)dy

{
x+

∫∞
0
B(y)dy

}−1
.

Proof. From equation (2.4.3) given by Willmot and Lin (2001), it follows that B(y) ≤ V (y).

Clearly, V (x) is a Pareto df which is DFR, and therefore NWU as well. Hence, from Corollary 17,

the result follows since B(y) ≤ V (y) ≤ V (x+ y)/V (x), i.e. (6.15) is satisfied with V (0) = 0. �

For the lower bound (6.19), we may also find the simple and improved bound corresponding

to Corollary 4.2 in Willmot et al. (2001) given by

m(x) ≥ ϕ

V (0)
γ(x)V (x), x ≥ 0,

where
γ(x) = max

{
B(x0)

ϕ
ψL(x), inf

0≤z≤x ,F (z)>0
r(z)

}
, (6.33)

with ψL(x) is given by (6.8) and x0 = inf{x : F (x) = 1}.

Corollary 20 Suppose that the df B(y) satisfies (6.13), and the df V (y) satisfies (6.16). Then,

m(x) ≥ ϕ

V (0)
γ(x)V (x) +

n∑
m=1

ϕm(qL ∗ F ∗(m−1))(x), x ≥ 0, n = 1, 2, . . . , (6.34)
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where qL(x) = r(x)− τL(x)

V (0)

∫∞
x
{B(y)}−1dF (y), γ(x) is given by (6.33) and ψL(x) is given by (6.8).

Proof. The result follows immediately from Theorem 4 since τ(x, z) ≥ {r(z)/F (z)}B(x0)V (x) or

τ(x, z) ≥ ϕr(z)V (x). See Corollary 4.2 in Willmot et al. (2001) for the detail of proof. �

Now, we obtain the bounds by considering the reliability assumptions for F itself in the fol-

lowing.

Corollary 21 Suppose that F (y) is an absolutely continuous NWU df. Then for n = 1, 2, 3, . . . ,

m(x) ≤ ϕψU(x){F (x)}1−ϕ −
n∑

m=1

ϕm(lU ∗ F ∗(m−1))(x), x ≥ 0, (6.35)

where lU(x) = ψU(x)F (x) − r(x). Conversely, if F (y) is an absolutely continuous NBU df, then

for n = 1, 2, 3, . . . ,

m(x) ≥ ϕψL(x){F (x)}1−ϕ +
n∑

m=1

ϕm(lL ∗ F ∗(m−1))(x), x ≥ 0, (6.36)

where lL(x) = r(x)− ψL(x)F (x).

Proof. From Corollary 4.4 in Willmot et al. (2001), if F (y) is an absolutely continuous NWU df,

then
m(x) ≤ ϕψU(x){F (x)}1−ϕ, x ≥ 0, (6.37)

where ψU(x) is given by (6.8). Conversely, if F (y) is an absolutely continuous NBU df, then

m(x) ≥ ϕψL(x){F (x)}1−ϕ, x ≥ 0,

where ψL(x) is given by (6.8).
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For the upper bound, to prove (6.35) for all n = 1, 2, 3, . . ., we first consider the case n = 1.

Inserting (6.37) into the integrand on the right side of (6.1), we readily obtain

m(x) ≤ ϕ2

∫ x

0

ψU(x− y){F (x− y)}1−ϕdF (y) + ϕr(x).

Because F (x− y)F (y) ≤ F (x) for 0 ≤ y ≤ x by NWU assumption, it follows that

m(x) ≤ ϕ2ψU(x)

∫ x

0

{
F (x)

F (y)

}1−ϕ

dF (y) + ϕr(x)

= ϕψU(x)
{
F (x)

}1−ϕ {
1−

{
F (x)

}ϕ}
+ ϕr(x)

= ϕψU(x){F (x)}1−ϕ − ϕ(lU ∗ F ∗(0))(x).

Thus, it holds for n = 1. Suppose that (6.35) holds true for some n ≥ 1, then we get

m(x) ≤ ϕ

∫ x

0

{
ϕψU(x− y){F (x− y)}1−ϕ −

n∑
m=1

ϕm(lU ∗ F ∗(m−1))(x− y)

}
dF (y) + ϕr(x)

≤ ϕψU(x){F (x)}1−ϕ −
n+1∑
m=1

ϕm(lU ∗ F ∗(m−1))(x).

By induction, we can obtain the improved bound (6.35) compared to (6.37) since lU(x) is a

nonnegative function from (6.8).

In addition, with similar argument, using the fact that F (x − y)F (y) ≥ F (y) for 0 ≤ y ≤ x

under NBU assumption on F , the lower bound may be easily obtained as (6.36). �

6.4 Applications

In this section, we illustrate the two-sided bounds in various examples. The first four examples

are related to insurance risk theory and the last one involves alternating renewal processes.
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Example 1 (The severity of ruin)

Let us consider the classical compound Poisson model with K(t) = e−λt as in Section 3.2 and

Section 3.3, and the claim size has a mean µ. Also, we assume that c = (1 + θ)λµ where θ > 0 is

the premium loading factor. Here, the interest is the probability that the deficit at the time of ruin

|UT | is at most y and ruin has occurred with initial surplus x defined as G(x, y) = ψ(u)−G(x, y)

where G(x, y) is given by (3.71), i.e.

G(x, y) = Pr (|UT | ≤ y, T <∞|U0 = x) .

From (3.73), we know that G(x, y) satisfies defective renewal equation (e.g. Gerber et al. (1987))

G(x, y) =
1

1 + θ

∫ x

0

G(x− t, y)dF (t) +
1

1 + θ

{
F (x)− F (x+ y)

}
. (6.38)

It is obvious that (6.38) is equivalent in form to (6.1) with ϕ = 1/(1 + θ) < 1 and r(x) =

F (x)− F (x+ y). Thus, if κ > 0 exists such that 1 + θ =
∫∞
0
eκtdF (t), then from Theorem 3 with

r(x) = F (x)− F (x+ y), the upper bound is given by, for n = 1, 2, 3, . . . ,

G(x, y) ≤ αU(x)e
−κx −

n∑
m=1

(
1

1 + θ

)m
(cU ∗ F ∗(m−1))(x), x ≥ 0, (6.39)

where cU(x) = αU(x)e
−κx ∫∞

x
eκydF (y) − [F (x) − F (x + y)] and αU(x) is given by (6.2), and the

lower bound is given by, for n = 1, 2, 3, . . . ,

G(x, y) ≥ αL(x)e
−κx +

n∑
m=1

(
1

1 + θ

)m
(cL ∗ F ∗(m−1))(x), x ≥ 0, (6.40)

where cL(x) = [F (x)−F (x+ y)]−αL(x)e
−κx ∫∞

x
eκydF (y) and αL(x) is given by (6.2). For n = 1

in (6.39) and (6.40), these results are in agreement with Theorem 3.2 in Chadficonstantinidis and

Politis (2007). Clearly, for n ≥ 2, we may obtain more improved results.

Also, from Corollary 15, we may easily obtain the simple bounds, for n = 1, 2, 3, . . . ,

G(x, y) ≤ σU(x)ψU(x)e
−κx −

n∑
m=1

(
1

1 + θ

)m
(hU ∗ F ∗(m−1))(x), x ≥ 0, (6.41)
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where hU(x) = σU(x)ψU(x)e
−κx ∫∞

x
eκydF (y)− [F (x)− F (x+ y)], and for n = 1, 2, 3, . . . ,

G(x, y) ≥ σL(x)ψL(x)e
−κx +

n∑
m=1

(
1

1 + θ

)m
(hL ∗ F ∗(m−1))(x), x ≥ 0, (6.42)

where hL(x) = [F (x)− F (x+ y)]− σL(x)ψL(x)e
−κx ∫∞

x
eκydF (y). In this case, (6.8) becomes

ψU(x) = 1−
{

inf
0≤z≤x, F (z)>0

F (z + y)

F (z)

}
, ψL(x) = 1−

{
sup

0≤z≤x, F (z)>0

F (z + y)

F (z)

}
. (6.43)

and σU(x) and σL(x) are given by (6.9). Again, for n = 1, the above inequalities (6.41) and (6.42)

are consistent with those in Theorem 3.3 of Chadficonstantinidis and Politis (2007) and it is also

easy to improve the above bounds (6.41) and (6.42) by increasing n where n ≥ 2.

Example 2 (The ultimate ruin probability)

Let us denote the ultimate (i.e. infinite time) ruin probability with initial surplus x by ψ(x).

Consequently, (6.38) becomes

ψ(x) =
1

1 + θ

∫ x

0

ψ(x− t)dF (t) +
1

1 + θ
F (x), x ≥ 0,

since ψ(x) = limy→∞G(x, y). See e.g. Willmot and Lin (2001, equation 10.1.7).

Hence, if κ > 0 exists satisfying (6.3), from Corollary 15 with ϕ = 1/(1+θ) < 1 and r(x) = F (x)

in equation (6.1) we can obtain the bounds. In particular, if P (y) is 2-NWU (2-NBU) df which

implies NWUC (NBUC) df F (y), then we get, for n = 1, 2, 3, . . . ,

ψ(x) ≤ 1

1 + θ
e−κx −

n∑
m=1

(
1

1 + θ

)m
(hU(L) ∗ F ∗(m−1))(x), x ≥ 0, (6.44)

where hU(x) =
1

1+θ
e−κx

∫∞
x
eκydF (y)− F (x) and hL(x) = −hU(x).

However, if no κ satisfying (6.3) exists and P (y) is 2-NWU df (i.e. implying F (y) is NWUC
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df), then from Corollary 18 gives the upper bound, for n = 1, 2, 3, . . . ,

ψ(x) ≤ B1(x)

B1(0)
−

n∑
m=1

(
1

1 + θ

)m
(w1,U ∗ F ∗(m−1))(x), x ≥ 0, (6.45)

where w1,U(x) =
B1(x)

B1(0)

∫∞
x
{B(y)}−1dF (y)− F (x).

In what follows, the security loading θ is assumed to be 0.1 and λ = 1. The bound for n = 0

is calculated by using the corresponding result given by Willmot et al. (2001). For the first two

claim size distribution, κ > 0 exists in (6.3) and thus, using (6.44), we calculate the bounds for

ruin probability. When the claim sizes are in the class of the combinations of exponentials, so the

exact ruin probabilities can be found based on the results in Gerber et al. (1987, Section 3).

First the claim size distribution is assumed to be a mixture of two exponentials given by

P (x) = 1− 1

3
e−1/2x − 2

3
e−2x, x ≥ 0.

From Corollary 15 with σU(x) = ϕ since a mixture of exponentials is a long-tailed, namely P is

NWUC, one yields the upper bounds for the ruin probabilities as in Table 6.1. The values on the

third column marked with ∗ in Table 6.1 are obtained by adding more terms of convolutions in

the exact solution given by (6.2). Altough the resulting bounds here contain convolution and thus

look similar to the exact solution in (6.2). By comparing the numbers for u = 10 as below, it is

clear that the upper bound works much better than the method by using the exact solution. It is

obvious that a large number of n results in a tighter bound. Second, we may calculate the lower

bounds for the ruin probabilities when the claim size distribution is light-tailed such as a sum of

exponentials. In this illustration the claim size distribution is assumed to be

P (x) = 1− 2e−1.5x + e−3x, x ≥ 0.

Again using Corollary 15 with σL(x) = ϕ since P is NBUC, we may obtain the lower bounds

shown in Table 6.2. The last demonstration illustrates the evaluation of the upper bounds when
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u = 1 u = 10 u = 10∗

Exact 0.8425516 0.4913739
n = 0 0.8566998 0.5021355 0.004084
1 0.8476895 0.5020066 0.017208
2 0.8439231 0.5015902 0.044707
3 0.8428390 0.5007778 0.087981
4 0.8426010 0.4995784 0.143615
5 0.8425588 0.4981179 0.205298

Table 6.1: Bohman distribution (mixture of two exponentials)

u = 1 u = 10
Exact 0.8143244 0.2821805
n = 0 0.8080771 0.2799380
1 0.8109008 0.2799381
2 0.8131127 0.2799381
3 0.8140137 0.2799388
4 0.8142623 0.2799418
5 0.8143143 0.2799525

Table 6.2: Sum of two exponentials

there is no κ satisfying (6.3). We consider the Pareto claim size distribution given by

P (x) = 1− (1 + x)−4, x ≥ 0.

Then we may use the result in Corollary 18 with B(x) = (1 + k∗x)−2 since the equilibrium

distribution of the claim size distribution has up to the second moment in this case. Since both

F (y) and B(y) are NWUC, from (6.45), the nonexponential-type upper bounds for the ruin

probabilities can be obtained as in Table 6.3. For comparison, the result given by Ramsay (2003)

is used to calculate the exact value as well. Note that the bounds for the ruin probability with

arbitrary claim sizes distribution are obtainable as long as ϕ in (6.1) is known.

Furthermore, we consider a dependency model in which the claim sizes are dependent on their

respective interclaim times and also compute the bounds for ruin probability.
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u = 1 u = 10
Exact 0.8383994 0.4751918
n = 0 0.9703688 0.7660722
1 0.9062603 0.7616415
2 0.8672447 0.7559901
3 0.8522605 0.7489817
4 0.8481224 0.7406976
5 0.8472357 0.7055629

Table 6.3: Pareto distribution

Example 3 (Dependency model)

From (3.64) in Section 3.2, we know that the Gerber-Shiu function under the dependent model

studied by Boudreault et al. (2006) satisfies the defective renewal equation. Thus we may apply

Corollary 15 to obtain the upper bound for the ruin probabilities when two claim size distributions

are exponentials given by F 1(y) = e−2.5y and F 2(y) = e−0.5y for y ≥ 0. After finding F = gδ, ϕ = κδ

and r = ξδ in equation (6.1) from (28),(29),(30) and (31) Boudreault et al. (2006), we get the

upper bound for the ruin probabilities as in Table 6.4. Furthermore, we consider the claim size

u = 1 u = 10
Exact 0.6001594 0.1304086
n = 0 0.6561768 0.1464128
1 0.6224251 0.1459792
2 0.6070369 0.1449589
3 0.6018794 0.1433618
4 0.6005205 0.1413565
5 0.6002266 0.1391894

Table 6.4: Dependency model (exponentials)

distributions are mixtures of two exponentials given by

F 1(y) = 0.7e−2x + 0.3e−0.5y, F 2(y) = 0.5e−0.3y + 0.5e−0.1y, y ≥ 0,

where F 1(y) =
∫∞
y
f1(x)dx and F 2(y) =

∫∞
y
f2(x)dx, then upper bounds for the ruin probabilities

are computed as in Table 6.5. From (3.68), the ladder height distribution f is a mixture of three
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ladder height of the claim size distributions. Therefore we may get the upper bound for this

example since the mixing regenerates a heavy-tailed distribution.

u = 1 u = 10
Exact 0.7253252 0.4902439
n = 0 0.7663269 0.5628704
1 0.7328309 0.5376456
2 0.7263444 0.5175386
3 0.7254343 0.5043506
4 0.7253348 0.4968704
5 0.7253259 0.4931003

Table 6.5: Dependency model (mixture of two exponentials)

The following example contains some bounds for the joint distribution of the surplus prior to

and at ruin in the classical compound Poisson model.

Example 4 (The joint distribution of the surplus prior to and at ruin)

Let us consider the joint distribution of the surplus prior to UT− and the deficit at ruin |UT |

(denoted by H(u, x, y)) studied by Dickson (1992) and Gerber and Shiu (1997b). Our interest is

the tail df of H(u, x, y), that is, H(u, x, y) = 1−H(u, x, y) defined by

H(u, x, y) = Pr (UT− > x, |UT | > y, T <∞|U0 = u) . (6.46)

We know that the function (6.46) satisfies the defective renewal equation which was proved by

Gerber and Shiu (1998). See also Schmidli (1999) and Dickson (1992) for a discussion on this.

Here, in the classical compound Poisson risk model, we follow the result which is presented in

Proposition 2.1 in Psarrakos and Politis (2008) given by

H(u, x, y) =
1

1 + θ

∫ u

0

H(u− t, x, y)dF (t) +
1

1 + θ
F (max{u+ y, x+ y}).

Let us define αU,x,y(u) and αL,x,y(u) as follows:

αx,y(z) =
eκzF (max{z + y, x+ y})∫∞

z
eκtdF (t)

, z ≥ 0,
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and
αU,x,y(u) = sup

0≤z≤u, F (z)>0

αx,y(z), αL,x,y(u) = inf
0≤z≤u, F (z)>0

αx,y(z).

Then, Theorem 3 with r(u) = rx,y(u) = F (max{u+ y, x+ y}) yields, for n = 1, 2, 3, . . . ,

H(u, x, y) ≤ αU,x,y(u)e
−κu −

n∑
m=1

ϕm(cU,x,y ∗ F ∗(m−1))(u), u ≥ 0, (6.47)

where cU,x,y(u) = αU,x,y(u)e
−κu ∫∞

u
eκtdF (t)− F (max{u+ y, x+ y}), and

H(u, x, y) ≥ αL,x,y(u)e
−κu +

n∑
m=1

ϕm(cL,x,y ∗ F ∗(m−1))(u), u ≥ 0, (6.48)

where αL,x,y(u) = F (max{u+ y, x+ y})− αL,x,y(u)e
−κu ∫∞

u
eκtdF (t).

The above bounds (6.47) and (6.48) for n = 1 agrees with the results in Theorem 6.1 in

Psarrakos and Politis (2008). Also, we may easily obtain tighter bounds by applying a larger

value of n where n ≥ 2.

Furthermore, using other generalized forms of bounds obtained in this chapter, we may readily

find various types of two-sided bounds. For example, Corollary 21 yields, if F is an absolutely

continuous NWU df then, for n = 1, 2, 3, . . . ,

H(u, x, y) ≤ ϕψU,x,y(u){F (u)}1−ϕ −
n∑

m=1

ϕm(lU,x,y ∗ F ∗(m−1))(u), x ≥ 0,

where lU,x,y(u) = ψU,x,y(u)F (u)−F (max{u+y, x+y}). Conversely, if F is an absolutely continuous

NBU df, then for n = 1, 2, 3, . . . ,

H(u, x, y) ≥ ϕψL,x,y(u){F (u)}1−ϕ +
n∑

m=1

ϕm(lL,x,y ∗ F ∗(m−1))(u), x ≥ 0,

where lL,x,y(u) = F (max{u + y, x + y} − ψL,x,y(u)F (u)), ψU,x,y(u) and ψL,x,y(u) are equivalent to

ψU(u) and ψL(u) respectively in (6.8) with r(u) = rx,y(u) = F (max{u+ y, x+ y})

Finally, we consider the example related to the alternating renewal processes.

Example 5 (The excess lifetime)
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The interarrival time between (n−1)th and nth event is denoted byXn. It is assumed that {Xn}∞n=1

is a sequence of iid non-negative random variables with df F (x) = 1− F (x) and F (0) = 0. Then

we consider the time of nth event denoted by Sn =
∑n

i=1Xi for n = 1, 2, . . . . and S0 = 0. Let

N(t) = sup{n : Sn ≤ t} be the number of events that occur before time t. The counting process

{N(t); t ≥ 0} is called a renewal process (e.g. Ross (1996, p.98)). We now consider that the

excess or residual lifetime at t denoted by Y (t) = SN(t)+1 − t is the time until the next renewal.

By conditioning on X1, it turns out that g(t, x) = Pr{Y (t) ≥ x} satisfies the renewal equation

(e.g. Resnick (1992, pp.199-201) and Ross (1996, pp.114-118))

g(t, x) = F (t+ x) +

∫ t

0

g(t− y, x)dF (y), t ≥ 0, x ≥ 0. (6.49)

Evidently, (6.49) is in the form of (6.1) with ϕ = 1 (i.e. κ = 0 from (6.3)) and r(x) = rt(x) =

F (t + x). Therefore, from Corollary 15 with σU(x) = σL(x) = 1, we may obtain the two-sided

bounds as follows. For n = 1, 2, 3, . . .,

ψL,t(x) +
n∑

m=1

(hL,t ∗ F ∗(m−1))(x) ≤ g(t, x) ≤ ψU,t(x)−
n∑

m=1

(hU,t ∗ F ∗(m−1))(x), t ≥ 0, x ≥ 0,

(6.50)

where hL,t(x) = F (t+ x)− ψL,t(x)F (x), hU,t(x) = ψU,t(x)F (x)− F (t+ x), and

ψU,t(x) = sup
0≤z≤x, F (z)>0

F (t+ z)

F (z)
, ψL,t(x) = inf

0≤z≤x, F (z)>0

F (t+ z)

F (z)
. (6.51)

If the df F (x) is NWU, then F (t+z)/F (z) ≥ F (t), and thus from (6.51), ψL,t(x) = F (t). Similarly,

if the df F (x) is NBU, then ψU,t(x) = F (t). Hence, we may simplify one of the bounds (6.50) for

each case.
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Chapter 7

Concluding remarks and future research

In this thesis, we consider a generalization of the classical Gerber-Shiu function in various risk

models. The generalization involves introduction of two new variables in the original penalty func-

tion which includes the surplus prior to ruin UT− and the deficit at ruin |UT |. These new variables

are the minimum surplus level before ruin occurs XT and the surplus immediately after the second

last claim before ruin occurs RNT−1. Although these quantities can not be observed until ruin

occurs, we can still identify their distributions in advance because they do not functionally depend

on the time of ruin, but only depend on known quantities including the initial surplus allocated to

the business. In addition, even if they are not directly connected to real world applications, our

understanding of the analysis of the random walk and the resultant risk management can only be

improved by a deeper knowledge of any and all associated quantities.

In Chapter 2, we demonstrate that the generalized Gerber-Shiu functions satisfy defective re-

newal equations with the some associated compound geometric distribution in the ordinary Sparre

Andersen renewal risk models (continuous time). As a result, the forms of joint and marginal dis-

tributions associated with the variables in the generalized penalty function are derived for an

arbitrary distribution of interclaim/interarrival times. Because the identification of the compound
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geometric components is difficult without any specific conditions on the interclaim times, in Chap-

ter 3 we consider the special case when the interclaim time distribution is from the Coxian class

of distributions including the special case involving the classical compound Poisson model. Note

that the analysis of the generalized Gerber-Shiu function involving the triplet (UT− , |UT |, RNT−1)

is sufficient to study of the four (UT− , |UT |, XT , RNT−1). This is shown to be true even in cases

where the interclaim of the first event is assumed to be different from the subsequent interclaims

(i.e. delayed renewal risk models) in Chapter 4 and the counting (the number of claims) process

is defined in discrete time (i.e. discrete renewal risk models) in Chapter 5. It is clear to me that

proper modelling of various real world insurance phenomena dealing with natural disasters such

as earthquakes needs to address both dependencies between claim sizes and claim times as well

as the delayed nature arising from beginning the insurance coverage at a specific point in time

(identified as t = 0 in our model). In addition, we further analyze various ruin related quantities

obtained from a discrete analogue of the generalized Gerber-Shiu function. To do so, we introduce

a nonnegative function representing a transition in the surplus (denoted by τδ(u, z) in a continuous

time process) which is an integral component of the analysis. References for the discrete renewal

risk model includes Shiu (1989) and Willmot (1993). Application of these results are provided in

cases when claim sizes depends on a discrete interclaim time, for instance, the bivariate compound

geometric distribution studied by Marceau (2009).

In Chapter 6 two-sided bounds for a renewal equation are studied. These results may be used

in cases involving various ruin quantities from the generalized Gerber-Shiu function analyzed in

the previous chapters. Note that the larger the number of iterations in computing the bound

produces the closer result to the exact value. However, for the nonexponential bounds the form

of the bound contains a convolution involving heavy-tailed distributions (e.g. heavy-tailed claims,

extreme events), we need to find an alternative method to implement the convolution computation

in this case. This would be one of the future research topics on the bounds for a renewal equation.

For this problem, some recursive results for convolutions were studied by De Pril (1985), Sundt
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(2002) and Hipp (2006) and references therein. Alternatively, an asymptotic approach using

the results in Albrecher et al. (2010) may be also considered. Furthermore, comparison with the

existing works (e.g. Kalashnikov (1999)) would be interesting. In addition, an extension to Markov

renewal equations in Markovian random environments (e.g. Miyazawa (2002)), which includes a

regime switching model as its special case, may be studied as well. Finally, further application of

the results obtained here may be possible for dependent extreme events in insurance business by

considering various copulas (e.g. Embrechts et al. (1997)).
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