

Design Optimization of a Porous Radiant Burner

by

Adam Philip Horsman

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical Engineering

Waterloo, Ontario, Canada, 2010

© Adam Philip Horsman 2010

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The design of combustion devices is very important to society today. They need to be

highly efficient, while reducing emissions in order to meet strict environmental standards. These

devices, however, are currently not being designed effectively. The most common method of

improving them is through parametric studies, where the design parameters are altered one at a

time to try and find the best operating point. While this method does work, it is not very

enlightening as it neglects the non-linear interactions between the design parameters, requires a

large amount of time, and does not guarantee that the best operating point is found. As the

environmental standards continue to become stricter, a more robust method of optimizing

combustion devices will be required.

In this work a robust design optimization algorithm is presented that is capable of

mathematically accounting for all of the interactions between the parameters and can find the

best operating point of a combustion device. The algorithm uses response surface modeling to

model the objective function, thereby reducing computational expense and time as compared to

traditional optimization algorithms.

The algorithm is tested on three case studies, with the goal of improving the radiant

efficiency of a two stage porous radiant burner. The first case studied was one dimensional and

involved adjusting the pore diameter of the second stage of the burner. The second case, also

one dimensional, involved altering the second stage porosity. The third, and final, case study

required that both of the above parameters be altered to improve the radiant efficiency. All three

case studies resulted in statistically significantly changes in the efficiency of the burner.

iv

Acknowledgements

First of all I would like to thank my supervisor, Kyle Daun, for all of his help and

guidance throughout my Masters research. Whether using his NSERC grants to fund my

research, helping write this thesis and other works, as well as being a friend to talk to when I

needed it, he has always been there for me and supported me throughout my work. I am very

grateful that he chose me as his first graduate student upon his arrival at the University of

Waterloo.

I would also like to thank David Burr and Sina Haji Taheri, my co-workers and fellow

graduate students, for their assistance along the way. They would listen to my questions and

complaints and offer their opinions and guidance whenever it was needed, as well as provide

much needed comic relief in the office (Journey breaks come to mind).

I am most grateful to my friends, my sister Leanne, my brother in-law Ryan, and my

girlfriend Candice, for their patience, understanding, and support throughout my Masters

research. Many fun adventures had to be put on hold for the last two years due to my research

occupying my mind and time.

Lastly, I would like to thank my parents. Without their love and support I would not

have been able to complete this journey, and I dedicate my thesis to them.

v

Table of Contents

Author’s Declaration ... ii

Abstract .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... vii

List of Tables ... ix

Nomenclature .. x

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Scope of Problem .. 2

1.3 Outline of Thesis ... 3

Chapter 2 Literature Review ... 4

2.1 Introduction ... 4

2.2 Porous Media Studies .. 4

2.3 Optimization in Combustion Studies .. 9

2.4 Summary ... 13

Chapter 3 The Combustion Model .. 14

3.1 Introduction ... 14

3.2 Burner Specifications .. 14

3.3 The Governing Equations.. 15

3.4 Boundary and Initial Conditions ... 19

3.5 Properties and Correlations ... 22

3.5.1 Gas Phase Transport Properties and Reaction Kinetics 22

3.5.2 Solid Phase Properties ... 24

3.5.3 Solid Phase Correlations ... 25

3.6 Solution Method .. 31

3.7 Verification of the Combustion Model ... 35

vi

Chapter 4 Optimization Method.. 42

4.1 Introduction ... 42

4.2 Optimization Principles ... 42

4.3 Modified Newton’s Method .. 43

4.4 Response Surface Modelling ... 46

4.4.1 Point Selection and Surface Generation .. 47

4.4.2 Constrained Optimization ... 50

4.4.3 Error Estimation .. 53

4.5 Verification of RSM Algorithm .. 54

Chapter 5 Implementation and Results .. 60

5.1 Introduction ... 60

5.2 One Dimensional Studies .. 60

5.2.1 Stage Two Pore Diameter ... 61

5.2.2 Stage Two Porosity ... 66

5.3 Two Dimensional Study .. 71

Chapter 6 Conclusions .. 79

6.1 Summary of Results .. 79

6.2 Benefits of Proposed Method .. 80

6.3 Recommendations for Future Work .. 81

6.3.1 Relation between Pore Diameter and Porosity .. 81

6.3.2 Other Design Variables ... 82

6.3.3 Multi-Objective Optimizations ... 83

6.3.4 Proximity to Optimum .. 83

6.3.5 Parallel Processing .. 84

6.3.6 Other Combustion Devices ... 84

References ... 85

Appendix A: DRM19 Reaction Mechanism .. 88

Appendix B: Sensitivity Analysis .. 92

Appendix C: Alterations to Cantera Code ... 97

Appendix D: Cantera Interface and Optimization Code .. 140

Appendix E: Two Dimensional Response Surfaces .. 166

vii

List of Figures

Chapter 2

Figure 2.1 - Hardesty and Weinberg (1974) Burner ... 5

Chapter 3

Figure 3.1 - Porous Burner Schematic .. 14

Figure 3.2 - Velocity Initial Condition ... 21
Figure 3.3 - Gas Temperature Initial Condition.. 21
Figure 3.4 – Oxygen (O2) Initial Condition .. 22
Figure 3.5 – Gas Temperature Profile Comparison using DRM19 and GRI 3.0.......................... 24

Figure 3.6 - Volumetric Heat Transfer Coefficient Using Correlated Values of C and m 27
Figure 3.7 – Gas Temperature Comparison using Fixed and Correlated Values for C and m 27

Figure 3.8 - Independent and dependent scattering regimes (Siegel and Howell 2002) 30
Figure 3.9 - Combustion Solver Flow Chart ... 33

Figure 3.10 – Comparison to Experimental Data for Burner Exit Temperature 36
Figure 3.11 – Comparison to Experimental Data for CO Concentration at the Burner Exit 37
Figure 3.12 – Comparison to Experimental Data for NOx Concentration at the Burner Exit 38

Figure 3.13 - Gas and Solid Temperature Profiles for the Reference Case 40
Figure 3.14 - Major Species Profiles in Flame Front for the Reference Case 40

Chapter 4

Figure 4.1 - FCC Point Selection Schematic .. 48

Figure 4.2 - Change to Model Region Near a Constraint ... 51

Figure 4.3 - Change to Model Region on a Constraint ... 51
Figure 4.4 - Rosenbrock's Function .. 55

Figure 4.5 - 1
st
 Surface of Rosenbrock's Function .. 55

Figure 4.6 - 2
nd

 Surface of Rosenbrock’s Function .. 56
Figure 4.7 - 3

rd
 Surface of Rosenbrock's Function ... 57

Figure 4.8 - Intermediate Surfaces of Rosenbrock's Function .. 58
Figure 4.9 - Path to Minimum of Rosenbrock's Function ... 59

viii

Chapter 5

Figure 5.1 - First Response Surface for dp,2 Optimization .. 62
Figure 5.2 - Tenth Response Surface for dp,2 Optimization .. 62

Figure 5.3 - Reference vs. Optimal Temperature Profile for dp,2 Optimization 64
Figure 5.4 - Response Surfaces and Function Values for dp,2 Optimization 64
Figure 5.5 - Change in Efficiency with Iteration Number for dp,2 Optimization 66
Figure 5.6 - First and Eighth Response Surface for ε2 Optimization .. 67
Figure 5.7 - Ninth Response Surface for ε2 Optimization .. 68

Figure 5.8 - Reference vs. Optimal Temperature Profile for ε2 Optimization 69
Figure 5.9 - Response Surfaces and Function Values for ε2 Optimization 70
Figure 5.10 - Change in Efficiency with Iteration Number for ε2 Optimization 71
Figure 5.11 - First Response Surface for 2-D Optimization ... 73

Figure 5.12 - Thirteenth Response Surface for 2-D Optimization.. 73
Figure 5.13 – First GRG Method Response Surface for 2-D Optimization, ε2=0.95 74

Figure 5.14 - Fifteenth Response Surface for 2-D Optimization .. 75
Figure 5.15 - Reference vs. Optimal Temperature Profile for 2-D Optimization......................... 76

Figure 5.16 - Change in Efficiency with Iteration Number for 2-D Optimization 77

ix

List of Tables

Chapter 3

Table 3.1 - Summary of Boundary Conditions ... 20
Table 3.2 - Burner Property Data .. 24

Table 3.3 - C and m values from Younis and Viskanta (1993) .. 25
Table 3.4 - Grid Refinement Parameters .. 32

Chapter 5

Table 5.1 - Initial Parameters for dp,2 Optimization .. 61
Table 5.2 - Initial Parameters for ε2 Optimization .. 67
Table 5.3 - Initial Parameters for 2-D Optimization ... 72

Chapter 6

Table 6.1 - Summary of Optimizations... 79

x

Nomenclature

Variables

A

A0

c

C

d

dp

EA

Dij

Dim

F(x)

g

h

hv

H

k

Kc

n

nr

P

q

R

T

u

Reactant

Pre-exponential Steric Factor

Molar Concentration [kmol/m
3
]

Specific Heat [J/kg K]

Search Direction

Pore Diameter [m]

Activation Energy [kJ/kmol]

Binary Diffusion Coefficient [m
2
/s]

Diffusion Coefficient into Mixture [m
2
/s]

Objective Function

Gradient Vector

Enthalpy [J/kg]

Volumetric Heat Transfer Coefficient [W/m
3
 K]

Hessian Matrix

Reaction Rate Constant

Equilibrium Constant

Number of Species

Number of Reactions

Pressure [atm]

Radiative Heat Flux [W/m
2
]

Universal Gas Constant [m
3
 atm/K kmol]

Temperature [K]

Velocity [m/s]

xi

V

W

W

x

X

Y

α

β

γ

ε

κ

λ

μ

ρ

σ

υ

φ

ω

Ω

Subscripts

g

i

j

s

Diffusion Velocity [m/s]

Molecular Weight [kg/kmol]

Mixture Molecular Weight [kg/kmol]

Design Variables

Mole Fraction

Mass Fraction

Step Size

Arrhenius Temperature Exponent

RSM Point Spacing

Porosity

Extinction Coefficient [1/m]

Thermal Conductivity [W/m K]

Viscosity [kg/m s]

Density [kg/m
3
]

Stefan-Boltzmann Constant [W/m
2
K

4
]

Stoichiometric Coefficient

Equivalence Ratio

Production Rate [kmol/m
3
 s]

Scattering Albedo

Gas Phase

Chemical Species Index

Reaction Index

Solid Phase

xii

Supersripts

k

k+1

*

+

Nondimensional

Nuv

Rep

Current Value

New Value

Optimal Value

Forward Direction

Backward Direction

Volumetric Nusselt Number (hvdp
2
/kg)

Pore Reynolds Number (ρgεudp/μ)

1

Chapter 1

Introduction

1.1 Motivation

In industrial combustion, the porous radiant burner is a very important development. It

allows combustion of fuels with lower heating values compared to other burner types, and also

has lower pollutant emissions and higher thermal efficiency. The combustion zone in these

burners is located inside a porous, chemically inert, solid matrix. Combustion products heat the

solid matrix downstream of the flame zone. Some of this heat is then conducted and radiated

back upstream, which preheats the reactants, and enables stable operation at a higher thermal

efficiency and lower temperature. Over the past forty years, a large amount of research has been

dedicated to further the understanding of porous burners as well as improving the numerical

models. As the technology matured, benefits were seen in the use of a two-stage porous ceramic

burner. The upstream stage contains smaller pores and acts as a flame arrester, thereby

anchoring the flame at the interface of the two porous sections, which further extends the stable

range over that obtained from a single-stage porous burner.

To date, attempts at design optimization of these burners have been limited to univariate

parametric studies that show how varying one aspect of the burner design affects its overall

performance. While somewhat enlightening, a parametric study generally ignores nonlinear

interactions between the parameters, and thus the optimal operating point can be missed. A more

comprehensive way of looking for the best operating point is to implement design optimization

2

methodologies. These methods transform the design problem into a mathematical minimization

problem by defining a vector of design variables and an objective function, which quantifies the

design performance. The minimum of the objective function, representing the optimal design

outcome, is then found using a gradient based solver, which repeatedly adjusts the design

variables based on the local topography of the objective function. Despite the benefits, however,

application of design optimization to industrial combustion has been quite limited to date.

This thesis presents the development of a generic optimization algorithm for use by the

combustion community, with the porous radiant burner as a test case. This algorithm will be

capable of dealing with the stiffness associated with the governing equations of combustion

problems and is capable of finding solutions in a timely manner. The algorithm is a new

approach to optimizing these kinds of problems.

The main contributions of this thesis are as follows. A comprehensive model for

combustion in porous media, combining all of the most recent correlations and property data will

be presented first. Then, an optimization algorithm capable of solving stiff, noisy problems

accurately will be given. Finally, the algorithm is demonstrated by carrying out one and two

dimensional optimizations involving a porous radiant burner.

1.2 Scope of Problem

The present study is limited to the optimization of a porous radiant burner. While

modelling the porous radiant burner, the best available data and correlations available were used,

and improving this model was beyond the scope of this research. Optimization is limited to

problems of one and two design variables and a single objective, although extensions to a larger

number of design variables and more complex objective functions are straightforward.

3

1.3 Outline of Thesis

This thesis is divided into five main sections; a literature review, a description of the

combustion model used, a description of the optimization algorithm used, the implementation of

the optimization algorithm and results, and the summary and recommendations for future work.

Chapter 2 presents a review of the literature in two fields: first the development of the

porous radiant burner and its model; and second a review of design optimization algorithms

found in the literature.

Chapter 3 presents the combustion model used in this research. This includes the

governing equations, the boundary and initial conditions, property values and correlations, and

concludes with a validation of the model.

The derivation of the optimization algorithm is presented in Chapter 4. Here the basic

principles of optimization are laid out followed by a description of Newton’s method and

Response Surface Modelling. The chapter concludes with a validation of the optimization

algorithm on a standard minimization test problem.

Chapter 5 contains three case studies of the optimization algorithm being used on a

porous radiant burner. Here the results are given along with physical justifications that explain

why the solutions make physical as well as numerical sense.

Finally, Chapter 6 summarises the results obtained in Chapter 5, as well as the benefits of

the optimization algorithm. Recommendations for future work involving the developed

optimization algorithm are also presented.

4

Chapter 2

Literature Review

2.1 Introduction

This chapter presents the literature relevant to the current research. The review is divided

into two major sections: experimental studies and numerical modeling of porous media; and the

development of design optimization for industrial combustion.

In the porous media section, the history of the porous ceramic burner will be discussed,

starting with the development of the physical burner and attempts to model the physics. Next,

improvements made to both the physical and model burner will be reviewed. Emission studies

will be discussed third, followed by a review on research about the physical properties of the

burner materials and the effect of those properties on performance.

As the practice of design optimization techniques is well established, the optimization

section will be limited to the application of design optimization to industrial combustion.

2.2 Porous Media Studies

Research into porous media combustion was initially motivated by the goal of creating an

excess enthalpy flame (Weinberg 1971). Weinberg used thermodynamic arguments to

hypothesize that peak temperatures in excess of the adiabatic flame temperature could be

achieved by recirculating heat from the combustion products to the reactants. Hardesty and

Weinberg (1974) then postulated that the excess enthalpy flame would allow stable combustion

of fuels having low energy content, but NOx concentrations may increase because the peak

5

temperature of the burner exceeds the adiabatic flame temperature. To validate the claim they

constructed a burner, shown schematically in Figure 2.1, containing a counter-flow heat

exchanger to provide the incoming reactants with the heat from the products. Measurements on

the burner clearly demonstrated that the peak temperature exceeded the adiabatic flame

temperature.

Figure 2.1 - Hardesty and Weinberg (1974) Burner

The main drawback of the Hardesty and Weinberg counter-flow burner was its

complexity. Takeno and Sato (1979) hypothesized that heat could be transferred from the

products to the reactants in a simpler fashion by placing a highly conductive solid into the flame

to conduct the enthalpy of combustion upstream to the reactants. They modelled the problem as

a laminar flame interacting with an isothermal solid. Their results demonstrated that increasing

the flow rate would also increase the peak temperature as the reaction zone thinned, and unlike

the Hardesty and Weinberg burner, the high peak temperature would actually have little effect on

NOx due to short residence times of the gases in the high temperature zone. This model was

used for several years to study the fundamental attributes and characteristics of the burner,

including the stability of the flame front (Buckmaster and Takeno 1981), the effect of the length

of the solid and heat loss (Takeno and Hase 1983), and an experimental study on the stability and

location of the flame front (Kotani and Takeno 1982).

6

A few years later, Echigo et al. (1986) investigated the idea of using a porous media in

place of a solid bar for heat recirculation. They modelled the problem as one dimensional with

spatially-dependant heat generation in place of detailed reaction kinetics, and scattering was

excluded from the radiation equations. They were able to show this simplified model adequately

matched experimental data. Experiments showed that low energy content fuels could be burned

in this type of burner, and the lean limit of combustion could therefore be extended. They also

noted that the porous media was far more effective at transferring the enthalpy of combustion

into radiant heat compared to an open flame, leading to improvements in radiation modeling in

the burner. Tong et al. (1987) modeled the radiation using absorption and anisotropic scattering,

and solved the radiative transfer equation (RTE) using the P-11 spherical harmonics

approximation. They showed that radiant output could be increased by increasing the optical

thickness of the porous medium, and also by using a strongly backscattering medium.

The research focus then shifted to improving the combustion chemistry model. Hsu and

Matthews (1993) showed that a single step chemistry mechanism over-predicted the peak flame

temperature by five to twenty percent and also over predicted the burning rate; based on this

observation they concluded that detailed chemical kinetics should be used whenever possible, as

it provides better numerical results as well as being a more realistic representation of the system.

They also showed that for equivalence ratios greater than 0.8, the porous media burner ceases to

be an excess enthalpy flame.

The next major improvement to porous burner technology was the addition of a second

stage of porous media (Hsu, Howell and Matthews 1993). In this design, the upstage porous

section has small pores to allow for greater preheating and to also act as a flame arrester, as the

7

small pore diameter is comparable to the quenching distance and thus prevents the flame from

travelling upstream. The second stage has larger pores to accommodate the submerged flame.

Increasingly strict emissions regulations on industrial combustion devices promoted an

increased focus on this aspect of porous ceramic burners. Experimental studies were performed

to determine the effect of flame speed and equivalence ratio on the emission levels of pollutants

such as NOx and CO. Khanna et al. (1994) experimented with pre-mixed methane and air and

showed that the concentration of NOx increases with flame speed, due to the increase in peak

temperature, while the concentration is relatively constant for a given equivalence ratio. They

also showed that CO increases with flame speed, as concentrations are dependent on flame

location and at faster speeds the flame is located near the end of the burner and does not have

time to oxidize the CO into CO2.

Further improvements to the numerical model required better characterization of the

porous ceramic properties. Younis and Viskanta (1993) performed experiments on alumina

having several different porosities and pore sizes to determine the effect these parameters have

on the volumetric heat transfer coefficient. They derived several correlations for the volumetric

Nusselt number, Nuv, of the porous media having the form

 Nuv=CRep
m (2.1)

where C and m are constants determined by the pore diameter of the solid and Rep is pore based

Reynolds number. Research was also carried out to determine the values of the conduction and

radiation properties. Hsu and Howell (1992) showed through experimentation that thermal

conductivity, λs, of partially stabilized zirconia (PSZ) was independent of temperature and could

be represented as a linear correlation with the pore size, dp, having the form

8

 𝜆𝑠=0.18817.5𝑑𝑝 (2.2)

They also presented two correlations for the extinction coefficient of the ceramic that were also

independent of temperature. The first correlation used geometric optics and was based on the

pore size and the porosity, while the second was based on experimentation and was only a

function of pore size. Hendricks and Howell (1996) used experimentation and inverse analysis

to determine the spectral absorption and scattering coefficients, as well as the accuracy of

different scattering phase functions. It was found that scattering is far more important than

absorption in these materials, and that the scattering and absorption coefficients were relatively

constant with wavelength. They found the phase functions to be mostly isotropic, although at

wavelengths above 2.4μm this was not the case.

The objective of the above research was to develop an efficient porous radiant burner for

industrial combustion applications, and to this end several studies were carried out to determine

how these burners should be designed. Barra et al. (2003) performed a parametric study to

investigate the effect of equivalence ratio, solid conductivity, volumetric heat transfer

coefficient, and extinction coefficient on the stable operating range of a two-stage porous

ceramic burner. Increasing the equivalence ratio caused the stable operating range to shift to

faster velocities as well as widen the range. The remainder of their tests were performed with an

equivalence ratio of 0.65. For the solid conductivity four different cases were run with different

combinations of solid conductivities in the upstream and downstream section of the burner. The

best operating condition occurred when the second stage thermal conductivity was increased by a

factor of ten which resulted in the stable range increasing by approximately a factor of two. For

the volumetric heat transfer coefficient, three cases were carried out by altering the pore diameter

in the Nusselt number correlation. The case where the pore diameter of the second stage was

9

decreased by a factor of two resulted in the greatest effect on the operating range. The final set

of tests was for the radiation extinction coefficient, which involved five cases. Increasing the

first stage extinction coefficient by a factor of six yielded the best stable operating range.

More recently, Randrianalisoa et al. (2009) attempted to find the porous radiant burner

design attributes that minimized pollutant emissions, such as CO and NOx, while maximizing

radiant power. For this study, a series of experiments were carried out to determine which

material would be best in what situations. Two experiments for each material were performed;

one at the high and one at the low range of the operating conditions for the desired burner.

While no rigorous mathematical optimization was performed, their results are still enlightening.

In terms of lowering pollutants, metallic foams, such as FeCrAlY, were found to be best at both

operating conditions. In terms of radiant power, on the other hand, Mullite foam was best for the

low operating condition, but second worse for the high end, where FeCrAlY was the best choice.

No conclusion was made about which material is best overall.

2.3 Optimization in Combustion Studies

Although the studies of Barra et al. (2003) and Randrianalisoa et al. (2009) show the

general trends of the porous burner performance with material properties, these univariate

parametric studies generally ignore the non-linear interactions that the properties have with each

other. This is why design optimization is important; it considers all the variables and their

interactions simultaneously, and identifies the combination of variables that provide the best

possible solution. As previously stated the use of design optimization is established with in other

disciplines and will not be the focus of this literature review. Instead this section will focus on

the application of optimization to designing industrial combustion devices, which is rather

limited.

10

One of the first studies using combustion and optimization was carried out by Smith et al.

(1990), who used optimization to improve the design of coal gasification combustion while using

a comprehensive model for the combustion. The objective was to maximize the cold gas

efficiency of the burner by changing the pressure, oxygen/coal ratio, and steam/coal ratio. Two

different injector designs were also considered: the first was a standard co-flow jet; while the

second had swirl added to the coal stream. Optimization was carried out using response surface

modelling (RSM), which is discussed in detail in Section 4.4. The optimal efficiencies were

found to be 84.86% for the co-flow burner and 82.74% for the burner with swirl; however,

experimental verification was still ongoing and not provided. Smith et al. (1990) also considered

performing optimization on the coal gasification burner to maximize burnout, while keeping the

NOx in the flue gas below 200ppm. The variables were the secondary swirl number, the variance

of the particle size distribution, and the primary-to-secondary momentum ratio. Using the same

techniques as the previous cases a solution to the problem was found, located on the constraint

due to the competing nature of NOx concentration and burnout.

A variant of the RSM method presented in this thesis can also be used for operational

optimization purposes of existing devices (Myers, Montgomery and Anderson-Cook 2009). In

this method the data is collected experimentally rather than be generated numerically. This

means that a physical device must exist for the experiment to be carried out on. As a result the

solution obtained does not have an immediately obvious physical explanation, as the governing

physics are not used to generate the surfaces. The method presented in this thesis, however, is

derived from the equations, meaning that physical insight may be seen during the iterative

process. The main difference between these two methods is that the one presented in this thesis

11

can be used during the design phase of burner construction, while the other method is used to

fine-tune and improve existing systems.

Correa and Smith (1998) used design optimization to improve the operation of an

ethylene furnace. Their objective was to bring the twelve coil outlet temperatures of the furnace

closer to a desired temperature, thus creating a more uniform temperature field. The furnace was

divided into two zones, with the coils in each zone receiving the same fuel flow rate, which were

the design variables for this study. The furnace was modelled using a steady state, turbulent,

incompressible reacting flow code, while the optimization was carried out using a quasi-Newton

algorithm. A sixty percent improvement was made to the objective function. The burner was

then divided into four zones, splitting the existing zones in half, to try and improve the objective

function further, however no significant improvement was made.

Another study involving optimizing combustion devices was carried out on molten

carbonate fuel cells (MCFC) (Gemmen 1998). The study involved designing a burner that

could combust the excess fuel in MCFC’s by injecting air into plug flow reactors (PFR). The

objective function was to minimize the amount of hydrogen and carbon monoxide leaving the

combustor, while the design variables were the amount of air going into each stage of the

purposed combustor. The optimization, however, was carried out heuristically; the flow rate for

one of the air injectors was perturbed slightly and then the other injector’s flow rates were

changed to ensure that the same total amount of air was injected for each iterate design. If the

modified design was better than the current one then the modification becomes the new current

design. This process was carried out until no significant improvement could be made. The final

design reduced the amount of hydrogen and carbon monoxide to less than 1ppm at the burner

exit. Although this method did lead to a design improvement, it is not true optimization since

12

there is no guarantee of optimality; due to the heuristic nature, different answers can be reached

depending on which iterates are selected, therefore the true minimum may not be found.

Unfortunately, this procedure represents a very common type of “optimization” used today in

industrial combustion.

A more rigorous method for optimizing combustion devices are genetic algorithms,

which are based on biological processes. Several parent designs are selected from the design

space and their objective value, or fitness, is calculated. Based on the principle of survival-of-

the-fittest, the designs are then “bred” to produce new designs by mixing the attributes of the

parents. Mutation is also introduced during the “breeding” process by randomly perturbing a

subset of variables. This process continues until the best design is found. In one study Büche et

al. (2001) used a genetic algorithm to minimize the amount of NOx produced and the amount of

pulsation in the burner. The design variables were the fuel flow rates to eight different sections

of the burner. Due to the competing nature of the objectives no true minimum was found, but a

Pareto front did form where all designs along the front have an equal minimum value for the

objective function. The design could then be chosen from this front based on the design needs of

the engineer.

Finally, Catalano et al. (2006) used progressive optimization to optimize the design of

duct-burners. In progressive optimization, optimization is carried out concurrently with the

solution to the combustion problem, so that when the problem is in its early stages of solving the

combustion problem the optimization can be quite coarse since the “exact” optimum solution is

not needed, while the optimization tolerance is reduced as the solver converges, thus saving

computational effort. Catalano et al. (2006) performed two different optimizations: the first was

to flatten the outlet temperature profile of the burner while changing the height of the slitform

13

gap and the crosswise dimension of the flame-holder; and the second was to reduce the near-wall

temperatures while altering the same variables as the previous study. Both tests were successful,

and the combustion problem was only solved to convergence once, thereby causing a

considerable time savings over regular optimization techniques.

2.4 Summary

The development of the porous radiant burner has taken place over the last forty years.

The idea began as the insertion of a highly conductive solid into the flame and over time evolved

into a multi-staged porous ceramic burner with a submerged flame. Attempts to improve the

design of these burners have been limited to parametric studies and trial and error, which ignores

the non-linear coupling effects of the equations. The performance of these burners could be

improved through design optimization, which is emerging as a design technique in the industrial

combustion industry. The objective of this thesis is to develop a multivariable design

optimization methodology for porous ceramic burners, which could be extended to other

combustion devices.

14

Chapter 3

The Combustion Model

3.1 Introduction

This chapter presents the combustion model used in this research. This chapter starts

with an overview of the porous burner, followed by the governing equations and the necessary

boundary and initial conditions. Third, properties and correlations pertaining to the gas phase

and solid porous ceramic phase are defined. Forth, the numerical algorithm used to solve the

governing equations will then be discussed. Finally, the combustion model will be validated

against the work of other researchers.

3.2 Burner Specifications

The burner examined in this study is the same one used by Barra et al. (2003) and

Khanna et al. (1994), as well as several other researchers, and is shown schematically in Figure

3.1.

Figure 3.1 - Porous Burner Schematic

0 3.5 6.05cm

Upstream Section Downstream Section

Burner Interface

InsulationReactants

φ,u,Tg,Yi
Products

15

The burner is constructed of PSZ and consists of a 3.5cm upstream section and a 2.55cm

downstream section; bringing the total length of the burner to 6.05cm. The upstream section

contains small pores to act as a flame arrester, while the downstream stage has a large pore

diameter for the reasons discussed in Section 2.2. The flame will be submerged within the solid

phase and is expected to be located near the interface of the upstream and downstream porous

segments.

3.3 The Governing Equations

The combustion model was based on the one presented by Barra et al. (2003), which is a

one-dimensional reacting flow that interacts with the solid phase through a volumetric

convection coefficient. The model also includes solid and gas phase conduction, solid radiation,

species diffusion, and detailed chemical kinetics. Gas phase radiation is unimportant and is

excluded from the model due to the small optical path lengths involved, while thermal diffusivity

in the gas phase due to diffusion is neglected as it is considered to be negligible (Henneke 1998).

Momentum conservation is also excluded from the model as the porous ceramic burner is

assumed to be isobaric at one atmosphere. Conservation of mass, gas energy, solid energy, and

species, as well as the ideal gas law for a multicomponent mixture give rise to five coupled

partial differential equations

 ∂(ρ
g
ε)

∂t
+

∂(ρ
g
εu)

∂x
=0 (3.1)

ρ

g
Cgε

∂Tg

∂t
+ρ

g
Cgεu

∂Tg

∂x
+ ρ

g
εYiCg,i

∂Tg

∂x

n

i=1

+ε ω ihiWi

n

i=1

ε
∂

∂x
 λg

∂Tg

∂x
 +hv TgTs =0 (3.2)

ρ

s
Cs

∂Ts

∂t
𝜆s

∂
2
Ts

∂x2
hv TgTs +

dq

dx
=0 (3.3)

ρ

g
ε

∂Yi

∂t
+ρ

g
εu

∂Yi

∂x
+

∂

∂x
 ρ

g
εYiVi εω iWi=0 (3.4)

16

ρ

g
=

PW

RTg

 (3.5)

where ρ is the density, ε is the porosity, u is the velocity, C is the specific heat, T is the

temperature, n is the number of species, Y is the mass fraction, ω is the species production rate, h

is the enthalpy, W is the molecular weight, λ is the thermal conductivity, hv is the volumetric heat

transfer coefficient, q is the radiative heat flux, V is the diffusion velocity, P is the pressure, R is

the universal gas constant, and W is the mixture averaged molecular weight, calculated from

W= WiXi

n

i=1

 (3.6)

where X is the mole fraction. Subscripts g, s, and i refer to the gas phase, solid phase and i
th

species respectively.

The species production rate is calculated from

ω i=Wi υij
−υij

+ kj × cυij
+

1

KC

 cυij
−

productsreactants

nr

j=1

 (3.7)

where nr is the number of reactions, kj is the reaction rate constant, Kc is the equilibrium constant,

and c, 𝜐𝑖𝑗
+, and 𝜐𝑖𝑗

− are the molar concentrations, and the stoichiometric coefficients for the

forward and backward direction of the reactant Ai in the j
th

 chemical reaction of the form

 υij

+Ak υij
−Ak

n

i=1

n

i=1

 (3.8)

The reaction rate constant for the j
th

 reaction is calculated from the modified Arrhenius

expression

17

kj=A0,jTg

βj
exp

EA,j

RTg

 (3.9)

where A0,j is the pre-exponential steric factor, βj is the temperature exponent, and EA,j is the

activation energy for the j
th

 chemical reaction.

The diffusion velocity, which represents the speed at which the species are diffusing in

the gaseous mixture, is calculated from

Vi=Dim

1

Xi

∂Xi

∂x
 (3.10)

with

Dim=

1Yi

Xj

Dij

(3.11)

where Dim is the diffusion coefficient of the i
th

 species into the mixture and Dij are the binary

diffusion coefficients.

There are many methods available to estimate the radiant source term, which is the

spatial derivative of the radiant heat flux found in Eqn. (3.3). Due to the highly isotropic nature

of the radiant intensity in porous ceramics the Schuster-Schwarzchild (S2) technique (Siegel and

Howell 2002) was used. The S2 method models the radiant intensity as isotropic in the forward

and backward directions, and by multiplying by π we can easily convert the system of ODEs for

intensity into

 dq+

dx
=κ 2Ω q++κΩq+2κ(1Ω)σTs

4 (3.12)

dq

dx
=κΩq+κ 2Ω q+2κ(1Ω)σTs

4 (3.13)

18

where q
+
 and q

 represent the radiant heat flux in the forward and backward direction, κ is the

extinction coefficient, Ω is the scattering albedo, which is the ratio of the scattering coefficient to

the extinction coefficient, and σ is the Stefan-Boltzmann constant. Once the system is solved for

q
+
 and q

the solutions can be used to find the radiant source term in the equation

 dq

dx
=4κ(1Ω) σTs

4
q++q-

2
 (3.14)

The S4 method (Siegel and Howell 2002), which assumes four directions of isotropic intensity,

was tested as well but provided minimal improvement in accuracy compared to its increased

computational expense.

The ensemble of coupled partial differential equations in Eqns. (3.1)-(3.5) is stiff due to

the high degree of coupling between the equations and the fact that the variables vary over

substantially different time scales. Coupling, caused by the presence of the same variables in

multiple equations, can be seen in Eqns. (3.1)-(3.5) which represent the system, but can also be

seen carrying over into Eqns. (3.6)-(3.14) which determine the properties. Different time scales

also exist, primarily due to the chemical reaction mechanisms, where reactions occur very

quickly and at different rates. As such the solver must proceed very slowly, and be spatially

refined, in order to capture the details of the changing chemical species. The time scale of the

temperatures is determined by diffusion, therefore the temperature profiles change much slower

than the species mass fractions. If the solver were to run at the time scale of the temperatures

then the solver would be inaccurate due to the missing detail of the chemical species. However,

if the solver is allowed to proceed at the time scale of the chemical reactions then round-off

errors can be introduced into the system, due to large number of unnecessary steps being taken

19

for the slower changing variables. A more detailed description of stiffness can be found in

Garfinkel et al. (1977) and Section 4.3 of this thesis. Due to the stiffness a special solver must be

employed to solve the governing equations which will be discussed in Section 3.6.

3.4 Boundary and Initial Conditions

 The governing equations (Eqns. (3.1)-(3.4), (3.12), and (3.13)) require boundary

conditions to close the system. For conservation of mass, Eqn. (3.1), a fixed inlet velocity is

selected as the inlet condition, which is constant at 0.45m/s for all cases studied. Conservation

of energy in the gas phase, Eqn. (3.2), requires two boundary conditions to close the problem.

The first is a fixed inlet gas temperature, which is set to 300K for all calculations. The second is

a zero gradient exit gas temperature, which ensures that equilibrium is reached within the burner.

Conservation of energy in the solid phase, Eqn. (3.3), also requires two boundary conditions,

which are selected as zero gradient solid temperature at the inlet and the outlet of the burner. A

zero gradient boundary condition was selected as the solid stops at the burner inlet and outlet and

cannot conduct heat any further. Although in some studies a modified Robin boundary condition

is used to account for radiant emission, this effect is instead accounted for through the S2

equations, Eqns. (3.12) and (3.13). Although the conservation of species equation, Eqn. (3.4),

only requires one boundary condition per species, two were used instead. The first boundary

condition is set mass fractions for each species; in this case an equivalence ratio (φ) of 0.65 was

used for all calculations, where air was assumed to have a composition of 21% oxygen, 78%

nitrogen, and 1% argon; all other species had an inlet mass fraction of zero. The second

boundary condition was that all species mass fractions would have zero gradients at the burner

exit, which is not necessary to solve the problem but ensures that equilibrium is reached within

the burner. The S2 equations, Eqns. (3.12) and (3.13), requires one boundary condition each,

20

which are selected as radiating to a blackbody at 300K from the inlet for Eqn. (3.12) and from

the outlet for Eqn. (3.13). Table 3.1 contains a summary of the boundary conditions listed

above.

Table 3.1 - Summary of Boundary Conditions

Equation Inlet Condition Outlet Condition

Conservation of Mass, (3.1) u=0.45m/s N/A

Conservation of Energy, Gas,

(3.2)
Tg=300K

dTg

dx
=0

Conservation of Energy, Solid,

(3.3)

dT𝑠
dx

=0
dT𝑠
dx

=0

Conservation of Species, (3.4)
Yi=Yi,0

 where Yi,0 is determined from φ

d𝑌𝑖
dx

=0

S2 Equation, (3.12) q+=σTs
4 N/A

S2 Equation, (3.13) N/A q=σTs
4

Due to the pseudo-transient solution scheme, explained in Section 3.6, Eqns. (3.1)-(3.4)

also require initial conditions. For conservation of mass, Eqn. (3.1), a velocity profile was

required. The profile, shown in Figure 3.2, linearly increases from the known inlet value to

another value at the burner exit, which is determined by solving the ideal gas law, Eqn. (3.5), for

the density using the adiabatic flame temperature and then using conservation of mass to

determine the velocity.

Conservation of energy in the gas phase, Eqn. (3.2), requires an initial profile for the gas

temperature. This profile, shown in Figure 3.3, starts at the inlet value and remains at this

temperature until just upstream of the burner interface, at which point it begins to linearly

increase. The profile stops increasing at a value of 2000K just downstream of the interface

where it begins to linearly decrease to the adiabatic flame temperature at the burner exit. The

21

reason for the large spike in temperature at the burner interface is to promote formation of the

flame front close to where it will likely stabilize.

Figure 3.2 - Velocity Initial Condition

Figure 3.3 - Gas Temperature Initial Condition

The initial condition for conservation of energy in the solid phase, Eqn. (3.3), a solid

temperature profile, is not set in advance but is instead calculated by the solver. Here, the radiant

0

0.5

1

1.5

2

2.5

3

0 0.01 0.02 0.03 0.04 0.05 0.06

V
el

o
ci

ty
 (

m
/s

)

Burner Location (m)

0

500

1000

1500

2000

2500

0 0.01 0.02 0.03 0.04 0.05 0.06

T
em

p
er

a
tu

re
 (

K
)

Burner Location (m)

22

source term is assumed to be zero and using the other initial conditions Eqn. (3.3) is solved to

find the initial profile for the temperature of the solid. Conservation of species, Eqn. (3.4),

requires initial guesses for each of the chemical species. These profiles start from their specified

known inlet condition and linearly change to their equilibrium value at the burner interface,

where they remain until the burner exit. The oxygen profile is provided as an example in Figure

3.4.

Figure 3.4 – Oxygen (O2) Initial Condition

3.5 Properties and Correlations

This section will discuss the physical properties and correlations that pertain to the gas

and solid porous ceramic phase.

3.5.1 Gas Phase Transport Properties and Reaction Kinetics

The transport properties of the gas are specified as part of the reaction mechanism and are

calculated internally by the solver. The mechanism used in this research is DRM19 (Krazakov

and Frenklach 1994), which is a methane combustion mechanism with 21 species participating in

0

0.05

0.1

0.15

0.2

0.25

0 0.01 0.02 0.03 0.04 0.05 0.06

M
a
ss

 F
ra

ct
io

n

Burner Location (m)

23

84 reactions (See Appendix A for a detailed listing of this mechanism). DRM19 is a reduced

mechanism based on GRI-Mech 1.2 (Frenklach, et al. 1994), and thus must use the

thermodynamic and transport files associated with it as well (thermo12.dat and transport.dat

respectively). A reduced mechanism reduces the computational time of the solver compared to a

more detailed mechanism like GRI-Mech 3.0 (Smith, et al. 1999) but provides better accuracy

compared to a global mechanism. A reduced mechanism also helps to reduce the stiffness of the

system by reducing the extent of coupling between the equations and by reducing the number of

different time scales, a result of having fewer variables. To verify the validity of this reaction

mechanism a comparison was made to GRI-Mech 3.0 (Smith, et al. 1999), which is currently

considered the most complete and accurate methane combustion mechanism. First, a solution

was found using the GRI-Mech 3.0 mechanism, setting the grid refinement parameters to ensure

an accurate solution and completion within a reasonable computational time. Then, a second

solution was found using the DRM19 mechanism, using the same grid refinement parameters.

Although this solution time was considerably faster, the solution did not match that of GRI-Mech

3.0. The refinement parameters were then increased, which increased the computational time of

DRM19 but still kept it below that required by the GRI3.0 solution. This resulted in a much

better agreement between the two reaction mechanisms, seen in the gas temperature profiles in

Figure 3.5. The two profiles are a very close match, and deviate by a maximum of 5% at the

peak temperature, where DRM19 under predicts the GRI-Mech 3.0 results by about 25K. As the

peak temperatures are around 1850K and moreover the location of the peak temperature is

consistent between the two models DRM19 can be considered a suitable mechanism for use in

this study.

24

Figure 3.5 – Gas Temperature Profile Comparison using DRM19 and GRI 3.0

3.5.2 Solid Phase Properties

The nominal properties for the solid phase are given in Table 3.2 and come from the

research of Khanna et al. (1994) and Barra et al. (2003). These properties are for the reference

case used for validation, and also as the initial point during the optimization phase of the

research.

Table 3.2 - Burner Property Data

Property Upstream Downstream

Pore Density 25.6ppc 3.9ppc

Pore Diameter, dp 0.029cm 0.152cm

Porosity, ε 0.835 0.87

Scattering Albedo, Ω 0.8 0.8

Density, ρs 510kg/m
3
 510kg/m

3

Specific Heat, Cs 824J/kgK 824J/kgK

To avoid any numerical difficulties, the pore diameter and the porosity are linearly

blended over a 4mm span surrounding the burner interface, which prevents any discontinuities

that could lead to failures in the numerical algorithm.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.01 0.02 0.03 0.04 0.05 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

GRI 3.0

DRM19

25

3.5.3 Solid Phase Correlations

The first solid phase correlation to be discussed is for calculating the volumetric Nusselt

number, which provides the volumetric heat transfer coefficient linking the gas and solid

conservation of energy equations. The correlation was proposed by Younis and Viskanta (1993)

and has the form

 Nuv=CRep
m (2.1)

This correlation was determined by carrying out experiments on alumina foams, but is used here

as no data exists for PSZ foams and is used by other researchers for studies involving PSZ, e.g.

Barra et al. (2003). As the Nusselt number is entirely dependent upon the gaseous properties and

the pore structure, and is independent of the solid properties, we are justified in using the

correlation regardless of the solid phase material. In their experiment, Younis and Viskanta

(1993) placed a porous ceramic at a specified uniform temperature into a stream of gas at a

different temperature. The transient variation in ceramic temperature, gas temperature and

velocity was monitored; this data in turn was used to solve for the volumetric heat transfer

coefficient which was then expressed in dimensionless form as the Nusselt number. A least

squares fit of the data was used to form Eqn. (2.1), the results of which can be found in Table

3.3.

Table 3.3 - C and m values from Younis and Viskanta (1993)

Pore Diameter (mm) C m

0.29 0.638 0.42

0.42 0.485 0.55

0.76 0.456 0.70

0.94 0.139 0.92

1.52 0.146 0.96

26

Since the optimization study will adapt the pore diameter in a continuous manner. we

must develop correlations that can be applied over a wide range of dp. In fact, Younis and

Viskanta (1993) developed their correlations with optimization studies in mind. A linear fit with

the pore diameter in meters was selected, and resulted in

 C=400𝑑𝑝+0.687 (3.15)

 m=443.7𝑑𝑝+0.361 (3.16)

The inset of Figure 3.6 shows that linear fits are reasonable for the values of C and m. To

validate these correlations for combustion purposes two tests were performed. We first plot the

volumetric heat transfer coefficient versus the pore diameter, shown in Figure 3.6, to see if the

correct trends were observed. The volumetric heat transfer coefficient decreases with increasing

pore size, which makes physical sense as an increase in pore size would decrease the number of

pores per millimetre, thereby decreasing the surface area per unit volume and leading to a

decrease in the amount of convective heat transfer.

The second test of Eqns. (3.15) and (3.16) was to compare the results of two combustion

simulations; the first simulation used the values from Table 3.3 that corresponded to each section

of the porous media; while the second simulation was run using Eqns. (3.15) and (3.16). Figure

3.7 shows the gas temperature profile found by each simulation.

 It can be seen that the two solutions are very similar, being within 5% at all times

outside of the region contained within the horizontal bars. Inside this region the solutions differ

by as much as 25%Due to the steep temperature gradient at the flame front, however, this much

error is not unexpected. Overall the temperatures between these two cases agree very well, so

Eqns. (3.15) and (3.16) are acceptable for the purposes of optimization.

27

Figure 3.6 - Volumetric Heat Transfer Coefficient Using Correlated Values of C and m

Figure 3.7 – Gas Temperature Comparison using Fixed and Correlated Values for

C and m

0

1

2

3

4

5

6

0 0.0004 0.0008 0.0012 0.0016

h
v

1
0

5
(W

/m
3
K

)

dp (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.0008 0.0016

C
dp (m)

C, Younis &

Viskanta (1994)

C Correlation

0

0.2

0.4

0.6

0.8

1

1.2

m

m, Younis &

Viskanta (1994)

m Correlation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.01 0.02 0.03 0.04 0.05 0.06

G
a
s

T
em

p
er

a
tu

re
 (

K
)

Burner Location (m)

Fixed C&m

Correlation C&m

28

Two other correlations were used, both proposed by Hsu and Howell (1992). The first is

a correlation is for the thermal conductivity,

 𝜆𝑠=0.18817.5𝑑𝑝 (2.2)

which is a linear fit to experimental data based on the pore diameter in metres. In their

experiment several pieces of ceramic foams with a variety of pore diameters and a few different

porosities were heated on one face using a hot plate and cooled on the other. Using Fourier’s

law, the thermal conductivity of the specimen could be estimated by replacing the derivative in

the law with the difference in the temperatures of the faces divided by the length of the burner.

A least squares regression was then used to fit a curve to the data for different pore diameters. A

trend was somewhat evident with porosity as well, with the thermal conductivity decreasing with

increasing porosity, which is expected since the solid phase has a higher thermal conductivity

than the gas phase. Nevertheless, due to the narrow range of porosities tested this was not

considered in their conclusions. A correlation of thermal conductivity in terms of the porosity by

Nait-Ali et al. (2007)was also considered, but their experiments were carried out on ceramics

having porosities between 50-75%, well below the porosities of the ceramic burner examined in

this study. Extrapolating this correlation to the porosities of interest, the correlation of Nait-Ali

et al. (2007) greatly under-predicts the value reported by Hsu and Howell (1992) as well as being

very flat for porosities that are of interest to this study. Howell, Hall, and Ellzey (1996) as well

as Vafai (2005) cite the correlation proposed by Hsu and Howell (1992) as the one to use when

calculating the thermal conductivity of a porous ceramic, meaning the scientific community has

accepted that the thermal conductivity is independent of porosity in the region of interest. To

further prove the validity of the correlation used by Hsu and Howell (1992) a sensitivity analysis

was carried out to ensure that the porosity had minimal effect on the objective function when

29

acting through the thermal conductivity. This analysis, found in Appendix B, shows that the

objective function is not sensitive to the porosity, so the use of the correlation is valid.

Accordingly the correlation of Hsu and Howell (1992) is used in this research as it was obtained

based on material properties similar to those used in this research as well as being highly

recommended by the scientific community.

The second correlation is for the radiative extinction coefficient

κ=

3

𝑑𝑝
(1ε) (3.17)

where κ is the extinction coefficient, ε is the porosity, and dp is the pore diameter in millimetres.

Equation (3.17), which is based on geometric optics, was validated for use by Hsu and Howell

(1992) for calculating the extinction coefficient for pore diameters larger than 0.6mm; however

we extrapolate it to the smaller pore diameters used here, as others have done when modelling

porous ceramics under the same operating conditions (Barra et al., 2003). The dominant source

of extinction in a porous ceramic is scattering, hence the relatively large value of 0.8 for the

scattering albedo. This scattering is caused by the change in index of refraction as the radiation

propagates across grain boundaries and different pore structures.

To test the validity of the geometrics optics model we must know whether the porous

ceramic solid is an independent or dependent scattering medium, which is done by examining the

map of the scattering regimes, shown in Figure 3.8. If a medium is in the dependent scattering

region then the participating particles are close enough together that constructive and

deconstructive interference can occur to the emitted radiation from each particle, meaning that

geometric optics do not apply. Independent scattering, however, means that the participating

30

particles are separated enough that they can be treated as isolated radiating bodies, as no

interference occurs with radiation from other particles. Using the web spacing for the scattering

particle diameter, which is assumed to be the same size as the pore diameter based on visual

observation (Hsu and Howell 1992), the particle size parameter is on the order of magnitude of

10
3
. The particle volume fraction, equal to one minus the porosity, is about 10

1
. Using Figure

3.8 we see that we are well within the independent scattering region, so geometric optics can be

applied. We also see that any reasonable variation to pore diameter will still result in being

within the independent scattering region.

Figure 3.8 - Independent and dependent scattering regimes (Siegel and Howell 2002)

103

102

10

1

101

102

106 105 104 103 102 101 1

Particle volume fraction

P
ar

ti
cl

e
si

ze
 p

ar
am

et
er

,
π

D
/λ

m

Fog and Clouds

Soot in flames

and smoke layers

Colloidal suspensions,

paints, pigments, etc.

Pulverized

coal

combustion

Microsphere

insulation

and

conglom-

erated soot

particles

Deposited

soot

Packed and

fluidized beds

Independent

scattering

Dependent

scattering

Current Location

31

The above properties and correlations completely define the system of coupled

differential equations, boundary conditions, and initial conditions, which must be solved

numerically.

3.6 Solution Method

The software package Cantera (Goodwin 2003) was used to perform the combustion

simulations in this research. Cantera is an open-source chemical kinetics program with a built-in

one dimensional, reacting flow solver. As the solver was written for a free flame, the source

code had to be adapted to account for the solid phase. The modified files can be found in

Appendix C, while the code for interfacing with Cantera, as well as instruction for compiling and

using Cantera, can be found in Appendix D. For these simulations the solver was used to

simulate combustion at steady state, which it does in a semi-transient manner as described below

and shown in Figure 3.9.

The first step in the solution procedure is creating the mesh. As noted in Section 3.3, the

physical phenomena occur over a wide range of length scales: the characteristic length for the

transport phenomena (heat and mass transfer) is the pore diameter; while the combustion

reactions occur over a much smaller distance/time. Accordingly, for reasons of numerical

stability and computational expediency, it is necessary to use an adaptive mesh that concentrates

grid points where they are needed. The initial mesh contains 300 nodes, 200 of which are tightly

clustered around the burner interface, as this is near where the flame is expected to be located

and where the highest degree of refinement is required. The four adaption parameters: ratio,

slope, curve, and prune are also set. These values were determined empirically to create an

accurate yet computationally inexpensive solution. The ratio parameter, which is set to four,

ensures that the ratio of the distances between two consecutive nodes and the next consecutive

32

nodes never exceeds this value by inserting a new node between the two existing nodes to reduce

the ratio as necessary. The slope parameter, set to 0.4, ensures that value of a variable at a node

and the next node never differs by more than the set percentage, again by adding a new point

between the existing nodes as necessary. The curve parameter, set to 0.4, operates similar to the

slope parameter, but it ensures that the slope never differs by more than the set percentage.

Lastly, prune, set to 0.001, removes nodes from the mesh if the percent change in value or slope

at a node goes below this value, ensuring that the mesh does not become cluttered with unneeded

nodes. These adaption parameters are summarized in Table 3.4.

Table 3.4 - Grid Refinement Parameters

Parameter Value

Ratio 4

Slope 0.4

Curve 0.4

Prune 0.001

The solution proceeds in two stages. In the initial stage grid adaption is not used and the

energy equations, Eqns. (3.2) and (3.3), are not solved. Instead, the gas and solid temperatures

are held at the initial guess values while the velocity and species mass fractions are allowed to

change. This step creates a more realistic initial condition for velocity and species mass fractions

for the chemical kinetics equations rather than relying solely on the guess profiles in Section 3.4.

The solver attempts to solve the equations at steady state by minimizing the residual norm

through Newton-minimizations. (A detailed description of Newton’s method can be found in

Section 4.3.) This process is repeated to reduce the residuals of the governing equations until

one of two things happens: the solution is found where the residuals meet the tolerances of the

solver; or the solution begins to diverge. If a solution is found the solver proceeds to the second

step of the process.

33

Figure 3.9 - Combustion Solver Flow Chart

Start

Create Grid

Solve Eqns. (3.1),

(3.2),(3.4),(3.5)

At Steady State

Converged?

Solve Eqns.

(3.1), (3.4),(3.5)

Transiently

No

Once if 1st time

Twice if 2nd time

Five times if 3rd time

Ten times for other cases

Solve Eqn. (3.3)

at Steady State

with dq/dx=0

Solve Eqns.

(3.12)-(3.14)

Yes

Solve Eqn. (3.3)

At Steady State

Converged?
No

Solve Eqns.

(3.1), (3.4),(3.5)

At Steady State

Yes

Converged?

Solve Eqn. (3.3)

Transiently

with dq/dx=0

Solve Eqns.

(3.12)-(3.14)

Solve Eqn. (3.3)

Transiently

Converged?

Solve Eqns. (3.1),

(3.2),(3.4),(3.5)

Transiently

No

Yes

Once if 1st time

Twice if 2nd time

Five times if 3rd time

Ten times for other cases

No

Refine Grid

Yes

New points

added

End

No

Yes

34

On the other hand, if the solution appears to be diverging, Cantera switches from trying

to solve the steady state problem to a transient problem. Physically, by switching to a transient

solution the profiles will be allowed to temporally evolve, allowing for the profiles to approach

the true steady state solution. Mathematically, including transient terms increases the diagonal

dominance of the matrix and mitigates the stiffness of the governing equations. At first the

solver only takes one step forward in time and then it reverts to solving the steady state problem,

the reason being that transient calculations are comparatively slow and should be avoided as

much as possible. If the steady state calculation fails again, then two transient steps are made.

After a third failure, five transient steps are taken followed by ten steps after a fourth failure.

Finally, if the steady state solution fails a fifth time, then ten transient steps are made, which is

the maximum number of transient steps that can be taken before attempting another steady state

solution. This process of attempting to solve the steady state problem, followed by ten transient

steps, is repeated until the steady state solution is found, and the solver proceeds to the second

stage. By taking the transient steps the solver operates on the time scale of the chemical

reactions. By only taking a few steps at a time, the chances of errors being introduced into the

system are reduced. By switching to steady state, the solver is operating at the time scale of the

temperature profiles and thus can proceed faster. Since the solution at steady state can only be

found when close to the steady state answer, the chemical reaction data is not lost by taking

larger steps.

For the second stage of the solution process all of the governing equations, Eqns. (3.1)-

(3.5), are solved, and grid refinement is activated. The algorithm begins by solving conservation

of energy in the solid phase, Eqn. (3.3), using the previous solution to the gas temperature profile

and assuming the radiant source term is zero. Next, the S2 equations, Eqns. (3.12)-(3.14), are

35

solved for the radiant source term using the solid temperature profile that was just found. The

algorithm then returns to Eqn. (3.3), now using the newly calculated radiant source term. This

process continues until the solid temperature profile converges. The solver then tries to solve the

remaining governing equations, Eqns. (3.1)-(3.2) and (3.4)-(3.5), at steady state. As is done in

the first stage, if the solver fails then transient steps are taken to improve the solution. Before

each transient step the solid temperature profile is updated with the new gas temperature profile.

Once again, the solver alternates between trying to solve the steady state problem and taking

transient steps in order to approach the steady state solution. In this stage, however, when the

steady state solver is successful the grid is refined by sweeping through all of the nodes and

checking the four refinement parameters. If new nodes are inserted into the domain then the

second stage begins anew, the solution to the steady state problem is attempted followed by

transient steps if the method fails. This process of adding nodes and resolving the problem

continues until no new nodes are needed. When this occurs then the problem has been fully and

accurately solved at steady state and the solver stops.

3.7 Verification of the Combustion Model

The solver is validated by comparison to the experimental work of Khanna et al. (1994)

and the numerical work of Barra et al. (2003), carried out under similar conditions.

The objective of Khanna et al. (1994) was to determine the effect of flame speed and

equivalence ratio on the emissions released from a porous ceramic burner and the exit

temperature. Since the current research was to focus on a single equivalence ratio, 0.65, only the

data pertaining to this ratio from Khanna et al. (1994) is used in the comparison. The first

comparison made was the exit temperature shown in Figure 3.10.

36

Figure 3.10 – Comparison to Experimental Data for Burner Exit Temperature

Khanna et al. (1994) do not specify whether the exit temperature shown is for the gas phase, the

solid phase, or a combination of both. As the Figure 3.10 shows, the numerical temperature

profiles have a very good agreement with the experimental profile, with both the solid and the

gas temperatures being within 10% of the published data at all times. If the data from Khanna et

al. (1994) represents an average of the gas and solid phase temperatures, then agreement between

their data and that of the present study is within 3%. The next area for comparison was the CO

emission from the burner, shown in Figure 3.11. Once again, a very good comparison can be

seen between the two sets of data, differing by a maximum of 3ppm at the fastest flame speed.

Khanna et al. (1994) believed the first data point to be the result of low temperatures, resulting in

less oxidation, however, we did not observe this in the current model and therefore believe it is

the result of experimental error and treat it as an outlier.

1000

1100

1200

1300

1400

1500

1600

0 0.1 0.2 0.3 0.4 0.5 0.6

E
x
it

 T
em

p
er

a
tu

re
 (

K
)

Flame Speed (m/s)

Khanna et al.

(1994)

Gas

Solid

37

Figure 3.11 – Comparison to Experimental Data for CO Concentration at the Burner Exit

The final comparison made is between NOx concentrations at the burner exit, shown in

Figure 3.12. This figure shows a fairly good comparison between the current model and the

experimental research of Khanna et al. (1994). Since predicting NOx formation is notoriously

difficult, and because a reduced chemistry model was used, we do not expect these two curves to

compare as well as the previous comparisons. Here, the average difference between the two

curves is around 50%, which again is quite reasonable given the current state in modelling NOx

formation. Unfortunately, this level of agreement and the current state of NOx modelling is

inadequate for conducting a multiobjective study with the goal of finding a good trade-off

between NOx formation and fuel efficiency. As all three comparisons with the work of Khanna

et al. (1994) are good, the model seems to be an accurate representation of combustion in porous

media.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

C
O

 C
o
n

ce
n

tr
a
ti

o
n

 (
p

p
m

)

Flame Speed (m/s)

Khanna et al.

(1994)

Current

38

Figure 3.12 – Comparison to Experimental Data for NOx Concentration at the Burner Exit

To further verify the model, comparisons were also made with the simulations of Barra et

al. (2003). They studied the effect of changing certain parameters on the stable operating range

of the burner, defined as the difference between the velocities at which blow-off and flash-back

occur. The ratio of maximum and minimum velocity is called the turn-down ratio, and is

considered an important attribute of the burner since it allows for operational flexibility. Flash-

back is numerically difficult to simulate, so Barra et al. (2003) defined it as occurring when the

peak temperature occurs just upstream of the burner interface. The stable operating range for the

reference case, found numerically by Barra et al. (2003), was between 4874cm/s, or a range of

26cm/s, while Khanna et al. (1994) found it to be 15-48cm/s or 33cm/s. For the current research,

the stable operating range was found to be 4350cm/s, or 7cm/s. The top end of the burner

stable range predicted by the current model is in much better agreement with Khanna et al.

(1994) compared to Barra et al. (2003). In contrast, both the present work and Barra et al. (2003)

greatly overestimate the lower stabile velocity. Barra et al. (2003) attribute this disagreement to

their definition of flashback. In the physical burner, the flame could stabilize upstream of the

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6

N
O

x
C

o
n

ce
n

tr
a
ti

o
n

 (
p

p
m

)

Flame Speed (m/s)

Khanna et al.

(1994)

Current

39

burner face, a phenomenon that is difficult to simulate and is excluded from the numerical

definition of flash-back. Therefore, our model can still be considered accurate for the parameters

of interest to this study, due to agreement with the stable range upper limit result the work of

Khanna et al. (1994) and the explanation for the lower limit provided by Barra et al. (2003).

Barra et al. (2003) performed twelve additional tests to investigate the effects of changing

certain parameters on the stable operating range, however, only two are reported here for the

sake of validation. For the first comparison, the thermal conductivity of both sections was

decreased by a factor of ten. Barra et al. (2003) observed a significant decrease in the flash-back

limit and only a slight decrease in the blow-off limit, resulting in an increase in the stable

operating range. The same trends were observed from the current simulation; the flash-back

limit dropped to 34cm/s and the blow-off limit dropped to 44cm/s resulting in a larger operating

range of 10cm/s. The second comparison was made with the thermal conductivity of both

sections of porous media being increased by a factor of ten. Barra et al. (2003) observed a

significant increase in both the flash-back and blow-off limits; however the overall stability

range decreased. The current model had the same trends, with the flash-back limit increasing to

70cm/s, the blow-off limit increasing to 73 cm/s, and the stable range decreasing to 3cm/s

As a final validation, we compare the calculated temperature and species profiles with

those of Barra et al. (2003) to see if they followed similar trends and make physical sense.

Although the profiles obtained from the current research are quite different in shape, peak

temperature, and flame location compared to those in Barra et al. (2003) as a result of the

different burning rates, the overall trends are in agreement and make physical sense. The first

profiles observed were those of the gas and solid temperature, seen in Figure 3.13.

40

Figure 3.13 - Gas and Solid Temperature Profiles for the Reference Case

The flame front is located right at the burner interface as we would expect. Secondly, the solid

temperature is higher than the gas temperature upstream of the flame front, allowing for the pre-

heating of the gas. A pre-heat zone is also observed leading up to the flame front. After the

flame front the general expectations are also met; the gas temperature peaks to be hotter than the

solid matrix and is then cooled by it. We also examine the major species of the reaction, seen in

the magnified view of the flame front in Figure 3.14.

Figure 3.14 - Major Species Profiles in Flame Front for the Reference Case

0

500

1000

1500

2000

0 0.01 0.02 0.03 0.04 0.05 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

Gas

Solid

0

0.05

0.1

0.15

0.2

0.25

0.03 0.032 0.034 0.036 0.038 0.04

M
a
ss

 F
ra

ct
io

n

Axial Location (m)

O2

CH4

H20

CO2

CO

41

All of the species profiles shown are similar to that of Barra et al. (2003) and follow the

expected trends. Figure 3.14 shows the flame front occurring at the burner interface, as

previously stated when discussing the temperature profiles. The reactants stay at their initial

values until they are close to the flame front where they begin to change. As the reference case

is for a lean flame, we see all of the methane being consumed and some oxygen being left over

as expected. The products begin to form and rise to their expected values within in the flame

front. The CO profile also follows the expected trend, forming quickly in the flame front and

then being consumed by the excess oxygen in the reaction.

As the burner model reproduces both the experimental data gathered by Khanna et al.

(1994) and the trends observed by Barra et al. (2003) the model can be considered verified and

validated and can be used to accurately model the combustion of methane within a porous

ceramic burner.

42

Chapter 4

Optimization Method

4.1 Introduction

This chapter presents the optimization algorithm used in the present research. First, some

principles of optimization will be laid out, followed by a description of Newton’s method.

Response Surface Modelling (RSM) will be discussed next as a way of improving the

functionality of Newton’s method for stiff sets of equations. These two methods together will be

used in the current research so a validation of the optimization algorithm is also included.

4.2 Optimization Principles

Optimization is the process that finds the minimum value of a given function, known as

the objective function, which mathematically quantifies the quality of the design. The variables

on which the objective function is based, known as the design variables, represent system

parameters that we are able to change and control. By using mathematical algorithms to identify

the minimum of the objective function we are really finding the best possible operating point for

that system, and the design variables that produce that minimum are the conditions that the

system should be run at to produce the optimal performance. The optimization problem is stated

mathematically as

 x*=argmin F(x) (4.1)

where x is the vector of design variables, x* are the design variables resulting in the minimum

value of the objective function, F(x). Optimization is far more rigorous than a trial-and-error

43

approach for several reasons. First, as the problem is represented mathematically, all of the

interactions between the design variables will be accounted for in the model, unlike a parametric

study where the variables are generally changed independently of each other. Second, the

objective function is continuous, rather than a set of discrete points as in trial-and-error

approaches, which means that sensitivities to the design variables can be found. Using these

sensitivities changes to the design variables can be found that may result in improvements to the

objective function. The design variables are changed by

 xk+1=xk+αkdk (4.2)

where x
k+1

 is the new set of variables, x
k
 is the current set of variables, α

k
 is a scalar called the

step length, and d
k
 is the search direction. To create an improvement in the objective function,

d
k
 must be a descent step, meaning

 g ∙ dk>0 (4.3)

where g is the gradient of the objective function containing the first order objective function

sensitivities with respect to the unknowns in x such that g
p
= ∂F xk ∂xp

k . There are several

strategies for choosing d
k
 and α

k
, but for this research, we will use a modified Newton’s method.

4.3 Modified Newton’s Method

Newton’s method is powerful yet simple method for optimizing functions (Nocedal and

Wright 2006). The method is derived by finding the vector d
k
 at the k

th
 iteration that, when

added to x
k
, will produce the largest possible drop in objective function.

 xk+1 = xk+dk (4.4)

44

Assuming the function is at least second-order differentiable, we perform a Taylor series

expansion of the objective function about the new set of variables, x
k+1

, to obtain

F xk+1 =F xk+dk = F xk +dkT

g+
1

2
dkT

Hdk+H.O.T. (4.5)

where H is the Hessian of the objective function containing the second-order sensitivities such

that Hpq= ∂
2
F xk ∂xp

k∂xq
k , and H.O.T. are the higher order terms. Knowing that an extreme

point of a function, which may be the minimum, occurs when the gradient is equal to zero, we

now take the gradient of Eqn. (4.5) with respect to x
k
 to get

 ∇F xk+dk = g+Hdk+H.O.D. (4.6)

where H.O.D. stands for higher order derivatives. Setting the gradient equal to zero and treating

the higher order derivatives as an error, followed by some rearranging, Eqn. (4.6) becomes

 dk = H1g (4.7)

Equation (4.7) is known as the Newton equation and is used to find the search direction

for Newton’s method. At this point a few observations about Newton’s method should be made.

First, even though the search direction is derived to go straight to an extreme point, due to the

error term it will not reach the minimum in a single step unless the objective function is

quadratic, which necessitates iteration for most objective function. Fortunately, most functions

can be modelled accurately as quadratic when sufficiently close to the minimum, so within the

region of the minimum Newton’s method guarantees rapid convergence, and is generally

regarded as the most efficient minimization algorithm for problems where F(x) is continuous and

unimodal. It is important to note, however, that by setting the derivative equal to zero, Newton’s

method only searches for extreme points, which are not necessarily local minima. If a maximum

45

point or a saddle point is close to the current point, Newton’s method will step towards these

points, thereby increasing the objective function value. To correct for this, Newton’s method

needs to be improved.

The modification begins with a test for descent. If Eqn. (4.3) does not hold, then the step

determined by Newton’s method is an ascent step and should not be used. Instead, we revert to

the steepest descent step (Nocedal and Wright 2006), defined as

 dk = g (4.8)

where g is the gradient of the objective function, which by definition points in the direction of

steepest ascent. Therefore by adding a negative sign we now point in the opposite direction. By

taking the steepest descent step, we are guaranteed that the objective function will be improved.

However, as no other information is accounted for, the steepest descent method converges very

slowly and always requires the calculation of the step length parameter in Eqn. (4.2), which will

be discussed in Section 4.4.1. Fortunately, the algorithm only uses steepest descent steps to get

within the vicinity of a local minimum at which point Newton’s method will be able to find

descent steps with a much higher rate of convergence.

Equations (4.7) and (4.8) show that most non-linear programming algorithms require first

and second order derivatives to calculate the search direction, d
k
, and occasionally the step

length, α
k
. For a known function these values can often be determined analytically, but for an

unknown function, which is the case in this research, these values need to be determined

numerically. This is usually done through finite differencing, where a first and second order

derivative are approximated as

46

∇F(x)≈

F x+∆x F(x)

∆x
 (4.9)

∇2F x ≈

F x+∆x 2F x +F(x∆x)

∆x
2

 (4.10)

respectively, where Δx is a small value usually on the order of magnitude of the square root of

machine precision, which is the accuracy of a floating point system before round-off becomes

significant. Since three function evaluations per variable per search direction are required, with

the possibility of the function being expensive to evaluate and having many variables, this can

become very time consuming. Furthermore, if the governing system of equations is stiff, as is

the case in this problem, the objective function evaluations will be contaminated with noise,

which is amplified when dividing by Δx and can dominate the finite difference estimates of the

gradient and Hessian. As these two problems with the modified Newton’s method are quite

serious, and pertain to the problem at hand, a different approach to the derivative calculations

must be used.

4.4 Response Surface Modelling

Response surface modelling (RSM) (Myers, Montgomery and Anderson-Cook 2009) is a

method for optimizing objective functions that are expensive or difficult to evaluate. It was

developed for use in optimizing physical experiments in a stochastic way. Rather than

determining the true objective function, several points in the design space are selected. A low

order polynomial interpolating function is then fit to these points, usually using a least squares

regression, and this model function that is optimized instead of the true objective function. RSM

has many benefits over a regular Newton’s method approach, including: fewer function

evaluations; reduced computational time; noise reduction; and finally both the gradient and

Hessian are analytically tractable. This section will describe the RSM method used in this

47

research for selecting the points, fitting and optimizing the surface, and using these surfaces to

optimize the objective function. Although we describe RSM for minimizing an objective

function having two variables, it can be extended to minimize functions having many more

variables.

4.4.1 Point Selection and Surface Generation

The points are selected using the Face Centered Central Composite (FCC) design method

(NIST/SEMATECH 2010). In principle, only six interpolating points are required to generate a

quadratic function in two dimensions. In this case, however, since the objective function

contains numerical noise induced by the stiffness of the governing equations, an additional three

points, for a total of nine interpolating points, are required. This mitigates the noise in F(x) while

still keeping the total number of points low to limit the computational effort required to construct

the objective function. The nine points are selected in an organized fashion, shown in Figure 4.1.

Of the nine points, eight of them are newly selected and centered about the current and ninth

point, x
k
, in a rectangular arrangement. The points are spaced at a distance of γ1 in the x1

direction and a distance of γ2 in the x2 direction away from the current point, giving the rectangle

the dimensions of 2γ1×2γ2. The values of γ1 and γ2 are selected empirically to ensure efficiency

and stability; if they are too large the response surface model will poorly approximate F(x), while

if these values are too small the method will take a very long time to reach x
k
.

The function value is now calculated at each of the model points, followed by a quadratic

function being fit to the nine points using a least squares regression. As the derivatives of any

polynomial function can be calculated analytically, no approximations have to be used in Eqns.

(4.7) and (4.8). This corrects one of the major problems with a regular Newton approach given

48

in Section 4.3 and is one of the ways that RSM accounts for the stiffness in the governing

equations. As the derivatives are easy to calculate for any polynomial, one may intuitively

conclude that a high order polynomial would be desirable to ensure a better fit to the data.

However, higher order polynomials require more interpolating points. For example, a cubic fit

requires fifteen points. This would substantially increase the computational time if the function

evaluation was expensive to calculate, which it is for the combustion problem. Therefore, a

quadratic model helps to minimize the number of required function evaluations. Lower order

polynomials also act to smooth out the objective function, thus removing any noise that may be

contaminating the data

Figure 4.1 - FCC Point Selection Schematic

Now that a surface has been generated, the optimal value of the surface can be found

using the modified Newton’s method. As the surface is quadratic, Newton’s method finds the

extreme point in a single step, or takes the steepest descent step in the case of the extreme point

being in an ascent direction. However, since we are now using a model of the objective function

xk

x1

x
2

γ1

γ2

49

we must constrain the problem within the model region. This means that Eqn. (4.2) must be used

and a step length must be calculated. Fortunately, there are only three possible cases for

determining the value of α
k
:

 Case 1: If the extreme point is inside the model region and Newton’s method calculates a

descent direction then the step length parameter is equal to one and the full Newton step

is taken to the minimum of the model region.

 Case 2: If the extreme point is outside the model region and Newton’s method calculates

a descent direction then the step length parameter is equal to the distance to the edge of

the model region in the direction of the Newton’s step.

 Case 3: If the extreme point is in an ascent direction then the step length parameter is

equal to the distance to the edge of the model region in the steepest descent direction.

Once the value of αk has been selected, Eqn. (4.2) can be used to find the new current

point and its objective value. At this point, the stopping criteria, of which there are two, are

checked to see if the optimal solution has been found. The first criterion is when the norm of the

difference between the new and current point is less than a certain tolerance, selected as

empirically as 10
-4

 for this research. This can be represented mathematically as

 xk+1xk <104 (4.11)

The second stopping criterion is when the new function value is greater than the old function

value, or an ascent step was taken for the actual function. As the minimization is carried out on a

model function, it is possible that the descent step that it calculates is actually an ascent step for

the objective function. The only way that this would occur is if the amount of numerical noise in

the objective function, caused by the stiffness of the problem, overwhelms the unperturbed

50

objective function. In this situation further optimization would be wasted computational effort

since any reductions in the objective function would be dominated by errors. Therefore, the

solver does not take the calculated step and the optimization procedure terminates. If neither of

the stopping criteria are met, then the solver continues by selecting new points.

When selecting new points, there are two scenarios to be considered: whether the new

point is on the model region’s boundary, or within the interior. If the new location is on the edge

of the model region, then the values of γ1 and γ2 remain the same and new points are selected.

This effectively shifts the model region from being centered about the old point to being centered

about the new one. If the new point is inside the model region, on the other hand, then there is a

good chance that the objective function minimum is located within the existing region.

Therefore, to obtain a more accurate model, and therefore a more accurate answer, the model

region is shrunk by decreasing γ1 and γ2 by a factor of two before selecting new interpolating

points.

4.4.2 Constrained Optimization

If the optimization problem of interest is constrained, then several alterations need to be

made to the RSM algorithm detailed above. These changes pertain to point selection, model

region size, and boundary optimization.

4.4.2.1 Point Selection

During constrained optimization, if the current point is closer to the edge of the

constrained region than γ1 or γ2 the points need to be selected in a different manner. The points

that would otherwise be out of the constrained region are moved so that they are on the edge of

51

the region, as shown in Figure 4.2. This ensures that all function evaluations are performed at

feasible locations and that any step calculated will also be within the feasible region.

Figure 4.2 - Change to Model Region Near a Constraint

Another change to consider is if the current point is on the constraint itself. Rather than

using only half of the model region, which is what the above change would recommend, the

model region is shifted so that the current point is on the edge of the model region rather than

being at its center, as shown in Figure 4.3. This ensures that all points are feasible as well as

ensuring that the model region is not shrunk prematurely.

Figure 4.3 - Change to Model Region on a Constraint

Constraint

Model Region

Constraint

Model Region

52

4.4.2.2 Model Region Sizing

If the calculated step goes from being within the feasible region to being on the boundary

of the feasible region, the size of the model region must be reconsidered. Normally, if a point is

selected on the edge of the model region the region is shifted rather than being shrunk.

However, if the edge of the model region and the constrained region are the same then the model

region is shrunk. Being on the constraint generally means that the objective function minimum

lies outside of the constrained region, however, as we are using an approximation to the

objective function it is possible that the model is too large to capture the detail of the objective

function near the constraint. By shrinking the model region and calculating a new search

direction and step length we allow the solver to step back into the feasible region if necessary.

4.4.2.3 Boundary Optimization

If the search direction leads to an infeasible point, i.e. one that lies outside of the feasible

region, the dimensionality of the problem is decreased by one by treating the inequality

constraint of the boundary as an equality constraint using a method called the generalized

reduced gradient method (Gill, Murray and Wright 1986). Further improvements can now be

found by searching along the boundary of the feasible region. Once a minimum is found, the

algorithm reverts back to its original dimensionality, shrinks the model region and calculates a

new search direction. This process of optimizing along the boundary continues until either of the

stopping criteria is met or the search direction points back into the feasible region.

53

4.4.3 Error Estimation

As RSM is a stochastic method, an estimate of the error in the function value is desirable

upon the completion of the algorithm. We start by calculating the mean square error of the

surface by

𝑠 =
 y

i
y

i

2

np

n

i=1

 (4.12)

where n is the number of points used to make the surface, p is the number of regressor variables,

and yi and y
i
 are the true objective function value and model function value of the i

th
 point

respectively. This calculation also reflects why more interpolating points are used rather than the

minimum required when making the response surface. If the minimum number of points were

used then the amount of error in the surface would be reported as zero, as the model would be

exact at the interpolating points. With the addition of more points, not only is the surface more

accurately represented but the error is as well. Next, we calculate the estimated standard error of

the minimum of the surface by

sy (x)=s x(m)T

 XTX
1

x(m) (4.13)

where x
(m)

 is a vector, based on the minimum location of the function, of the form

 x(m)= 1,x1,x2,x1
2,x2

2,x1x2
T
 (4.14)

and X is a matrix whose rows are the x(m)T
 vectors for each of the points that made up the model

surface. Finally, the error can be calculated for constructing confidence intervals by

54

 e = tα 2 ,npsy (x) (4.15)

where tα/2,n-p represents the value from the Student’s-t distribution for a 100(1α)% confidence

interval. Here a 90% confidence interval was desired (α=0.1) which led to tα/2,n-p being equal to

2.919986. What this confidence interval means is that if the error in the data is assumed to be

random noise, 90% of the time the minimum function value will be the calculated value plus or

minus the error term, e.

4.5 Verification of RSM Algorithm

The purpose of this section is to verify the validity of the RSM algorithm for optimizing

functions, the code for which can be found in Appendix D. A test case will be carried out on

Rosenbrock’s function, which is a common test case for optimization algorithm (Gill, Murray

and Wright 1986), and can be represented mathematically as

 F x =100 x2x1
2

2
+ 1x1

2 (4.16)

This function has a strong global minimum at (1,1)
T
 with a function value of zero.

Finding this minimum numerically can be quite challenging, however, since it is surrounded by a

shallow valley having steep sides, as seen in Figure 4.4. The steep sides can lead to errors when

calculating the gradients numerically, due to the rapidly changing function values, and the flat

valley can cause the algorithm to stall, due to the fact that the Hessian becomes nearly singular.

Therefore, if the RSM algorithm is capable of finding the minimum of Rosenbrock’s function we

can consider it a viable method for optimization and use it to optimize combustion devices. It

should be noted that ascent steps were allowed in this example. To start the RSM algorithm an

initial point is selected as (0,0)
T
 while γ1 and γ2 are both set equal to unity. Figure 4.5 shows the

55

contours of the first response surface, with superimposed contours of Rosenbrock’s function and

the + representing the current point.

Figure 4.4 - Rosenbrock's Function

Figure 4.5 - 1

st
 Surface of Rosenbrock's Function

x
1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Minimum

56

As a minimum clearly exists within the model region the algorithm will take a step to this

value, followed by the model region being decreased in size. New points are now selected to

form a new surface to approximate the objective function, shown in Figure 4.6 with the square

representing the new model region.

Figure 4.6 - 2

nd
 Surface of Rosenbrock’s Function

On first glance this may appear to be a bad model, but closer inspection shows that the

contours of the response surface match those of Rosenbrock’s function in the model region.

Here the extreme point is a saddle point; it is still in a descent direction, however, so the RSM

algorithm takes the Newton’s step towards it. However, the extreme point is outside of the

model region so the step length is set to the distance to the edge of the model region. Now the

values of γ1 and γ2 are unchanged, causing the model region to shift, and new points are selected,

leading to the new surface shown in Figure 4.7.

x
1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

57

Figure 4.7 - 3

rd
 Surface of Rosenbrock's Function

Once again, the extreme point is a saddle point; however, it is also in an ascent direction.

Therefore, the RSM algorithm takes the steepest descent step to the edge of the model region.

When the algorithm continues, shifting and shrinking the model region and taking the steepest

descent step when necessary, it converges to the point (0.9959,0.9920)
T
 with a function value of

1.6588×10
-5

 ± 0.0033 in 35 iterations, requiring 0.035 seconds. Several of the remaining

surfaces can be seen in Figure 4.8, while the path taken to the minimum is shown in Figure 4.9.

Figure 4.8 shows that as the solver progresses towards the minimum, the contours of the

model function become aligned with the contours of the true objective function. The path taken

to the minimum is also enlightening. At first the solver struggles, taking ascent steps and leaving

the valley of the function, due to the steepness of the sides affecting the model. However, once

the algorithm locates the center of the valley and the model region is sufficiently small, the

solver remains at the center of the valley until the problem has converged. As the RSM

algorithm was capable of finding the minimum value of Rosenbrock’s function, a numerically

x
1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

58

difficult problem to optimize, within a reasonable tolerance the RSM algorithm is considered

verified and is validated for use in optimizing combustion problems.

a) 4

th
 Surface of Rosenbrock’s Function

b) 15

th
 Surface of Rosenbrock’s Function

c) 25

th
 Surface of Rosenbrock’s Function

d) Final (35

th
) Surface of Rosenbrock’s Function

Figure 4.8 - Intermediate Surfaces of Rosenbrock's Function

x
1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x
1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x
1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x
1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

59

Figure 4.9 - Path to Minimum of Rosenbrock's Function

x
1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

60

Chapter 5

Implementation and Results

5.1 Introduction

Using the combustion model and optimization algorithm presented in Chapter 3 and 4

respectively, we now consider the design optimization of the porous radiant burner. This chapter

contains two one-dimensional studies and a two-dimensional study to try and improve the

performance of a porous radiant burner. The objective of these studies is to maximize the radiant

efficiency, expressed mathematically as

x*=argmin F(x) =argmin

Ts,out(x)
4

Tad
4
 (5.1)

where x is the vector of design variables and Tad is the adiabatic flame temperature, which is the

temperature achieved for complete combustion of an open flame without any additional energy

being transferred into or out of the system. As the optimization algorithm is for minimizing

functions, and we wish to maximize the radiant efficiency, the negative sign was added to

convert the problem from maximization into minimization. The code for optimizing the

efficiency can be found in Appendix D.

5.2 One Dimensional Studies

Two one-dimensional optimization studies are performed on the porous radiant burner:

first on the second stage pore diameter; and then on the second stage porosity. This section

details the two optimizations performed, starting with selecting the initial point and point spacing

61

parameter, providing the maximum function value with justification, and discussing the path to

the maximum.

5.2.1 Stage Two Pore Diameter

The first optimization was carried out on the second stage pore diameter. This parameter

was chosen as many of the correlations used in the combustion model rely on the pore diameter

of the solid. As such, this would help to highlight the non-linear interactions of the combustion

model. We focus on the pore diameter in the second stage as this is the reacting zone in which

most of the heat transfer is taking place. The initial value for the pore diameter was selected as

the nominal value of 1.52mm, and a grid spacing parameter of 0.0375mm was chosen. Table 5.1

provides a summary of the starting point for this optimization, as well as the function value for

the reference case.

Table 5.1 - Initial Parameters for dp,2 Optimization

Parameter Value

x
0
 1.52mm

γ 0.0375mm

F(x
0
) 27.29%

Rather than having the initial set of RSM points surround the initial point, they were all

located at smaller values, or to the left, of x
0
. The first response surface, and function values at

the desired points, seen in Figure 5.1, is a concave surface, or convex when the negative is

applied. Therefore, a Newton step can be taken to the edge of the model region and a new

surface can be constructed about this new point. The algorithm continues building surfaces and

finding the minimum, as described in Chapter 4, until it reaches the tenth surface, shown in

Figure 5.2.

62

Figure 5.1 - First Response Surface for dp,2 Optimization

Figure 5.2 - Tenth Response Surface for dp,2 Optimization

Here the algorithm has found its first maximum within the model region. The amount of

noise in the model is quite large at this point, however, leading to the maximum of the model

function being less than the maximum of the current point. Therefore, one of the stopping

criteria has been met and the optimization terminates after 9.1 hours. The algorithm gives the

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.69 0.89 1.09 1.29 1.49

E
ff

ic
ie

n
cy

dp,2 (mm)

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.69 0.79 0.89 0.99 1.09 1.19 1.29 1.39 1.49

E
ff

ic
ie

n
cy

dp,2 (mm)

63

maximum efficiency as 33.91% ± 2.75% with the second stage pore diameter being equal to

0.77mm. This is a statistically significant improvement as the total change in efficiency is

6.62%, which is larger than the amount of error in the final answer. Therefore, even in the worst

case scenario for the error, an improvement has still been found in the performance of the porous

radiant burner.

This answer also makes physical sense. As previously shown in Figure 3.6, decreasing

the pore diameter increases the volumetric heat transfer coefficient, and therefore the amount of

convective heat transfer. This means that for the optimal case more heat will be transferred from

the gas to the solid in the second stage of the burner, thus leading to an increase in the solid exit

temperature and the radiant efficiency. This is confirmed in

Figure 5.3 where the temperature profiles for the reference case are compared to the

optimal solution. For the optimal solution, the gas temperature decreases much more rapidly

after the flame front before levelling off. The solid temperature on the other hand rises much

higher for the optimal case and remains higher all the way to the burner exit, leading to the

greater efficiency. We would also expect that decreasing the pore diameter too much would be

detrimental to the efficiency. As Eqns. (2.2) and (3.17) show, a decrease in the pore diameter

will lead to an increase in the thermal conductivity and extinction coefficient respectively. This

means that conduction and radiation in the burner are also becoming more dominant. Eventually

these two methods of heat transfer would become the dominant forms of heat transfer causing

more energy to be moved upstream, resulting in a drop in exit temperature, and thus efficiency

regardless of the extra energy being convected into the solid. All of the response surfaces

leading to the maximum value, as well as all the actual function values, can be seen in

64

Figure 5.4.

a) Gas Temperature Profile Comparison

b) Solid Temperature Profile Comparison

Figure 5.3 - Reference vs. Optimal Temperature Profile for dp,2 Optimization

a) Response Surface b) Function Values

Figure 5.4 - Response Surfaces and Function Values for dp,2 Optimization

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

Reference

Case
Optimal

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

Reference

Case
Optimal

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.69 1.105 1.52

E
ff

ic
ie

n
cy

dp,2 (mm)

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.69 1.105 1.52

E
ff

ic
ie

n
cy

dp,2 (mm)

65

At first the objective function is quite smooth and has a clearly defined maximum where

the algorithm suggested it was located. It is interesting to note that as the solver approaches the

maximum value for the radiant efficiency the amount of noise in the objective function also

increases. This suggests that near the maximum value the equations have become even more

stiff, leading to noise being introduced into the objective function. This is most likely caused by

the production rates also increasing leading to enhanced coupling in the governing equations.

Equation (3.9) shows that as the temperature of the gas increases, as

Figure 5.3 shows it does for the optimal solution, the reaction rate constants will also

increase. These increases in reaction rate will in turn lead to an increase in the species

production and consumption rates, as seen in Eqn. (3.7). This means that the chemical aspect of

the model will become more important, thus leading to the speculated enhanced coupling as well

as an increase in the stiffness through the chemical time scales becoming more important.

Figure 5.5 shows the efficiency parameter versus the iteration number. The efficiency

initially improves relatively linearly with iteration number, since the RSM iterations constantly

stop at the edge of the model region. A large change is observed in objective function for the

first iteration as a result of the starting point being on the edge of the model region, as opposed to

in the center like everywhere else, allowing for a larger step to be taken and therefore more

improvement to be made. As the algorithm approaches the maximum value, the solver can be

seen to make larger improvements, which is caused by the proximity to the maximum. On the

tenth iteration the function value can be seen to decrease, which is why the solver stopped and

the maximum of the previous iteration is reported.

66

As the efficiency was improved by the statistically significant amount of 6.62% and the

changes in the efficiency and temperature profiles are physically justifiable, changing the second

stage pore diameter to 0.77mm will improve the performance of the porous radiant burner of

study.

Figure 5.5 - Change in Efficiency with Iteration Number for dp,2 Optimization

5.2.2 Stage Two Porosity

The second optimization was carried out on the second stage porosity. This parameter

was chosen as porosity appears in the governing equations as well as the radiative extinction

coefficient correlation. Also, this problem would be a good test case for demonstrating

constrained optimization as the porosity cannot be too low or too high, so it was constrained

between porosities of 0.865 and 0.95. These values were chosen because for porosities less than

0.865 the reaction zone was no longer within the burner, thus not being of interest in this study,

and a porosity of 0.95 was the largest found in porous media combustion studies (Sathe, Peck

and Tong 1990). The second stage was chosen for the reasons detailed in Section 5.2.1. The

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0 2 4 6 8 10

E
ff

ic
ie

n
cy

Iteration Number

67

initial value for the porosity was selected as the reference value given in Table 3.2, 0.87, and a

grid spacing parameter was set to 0.005. Table 5.2 provides a summary of the starting point for

this optimization, the function value for the reference case, and the constraints.

Table 5.2 - Initial Parameters for ε2 Optimization

Parameter Value

x
0
 0.87

γ 0.005

F(x
0
) 27.29%

Lower Bound 0.865

Upper Bound 0.95

As the reference value was close to one of the constraints, the initial point could not be in

the center of the model region. Therefore, one point was selected to be smaller than the initial

point, and therefore on the constraint, while the remaining points were selected for larger

porosities. The first response surface, and function values at the desired points, seen in Figure

5.6, is a concave surface, or convex when the negative is applied. Therefore, a Newton step can

be taken to the edge of the model region and then a new surface can be made centered about this

new point.

Figure 5.6 - First and Eighth Response Surface for ε2 Optimization

0.27

0.3

0.33

0.36

0.865 0.882 0.899 0.916 0.933 0.95

E
ff

ic
ie

n
cy

ε2

First Surface

Eighth Surface

68

The algorithm continues building surfaces and finding the minimum, as described in

Chapter 4, until it reaches the eighth surface, also seen in shown in Figure 5.6. Here the

maximum of the response surface is located on the boundary of the feasible region. Therefore

the value of γ is decreased and a new response surface is generated, shown in Figure 5.7.

Figure 5.7 - Ninth Response Surface for ε2 Optimization

Once again the maximum of the surface is on the constraint, so the algorithm chooses the same

point as the previous iteration. Therefore, one of the stopping criteria has been met and the

optimization is complete after 8 hours. The algorithm gives the maximum efficiency as 35.32%

± 0.68% with the second stage porosity being equal to 0.95. As with the pore diameter

optimization, this is a statistically significant improvement as the total change in efficiency is

8.03%, which is larger than the amount of error in the final answer. Therefore, even in the worst

case scenario for the error, an improvement has still been found in the performance of the porous

radiant burner.

This answer also makes physical sense, as Eqn. (3.17) shows an increase in the porosity

will cause a decrease in the extinction coefficient. A decrease in the extinction coefficient means

0.27

0.3

0.33

0.36

0.865 0.882 0.899 0.916 0.933 0.95

E
ff

ic
ie

n
cy

ε2

69

that the amount of radiative heat transfer is decreasing (if the coefficient is zero there is no

scattering or absorption, hence no radiation). With a decrease in the amount of radiative heat

transfer, conduction will become the dominant method of heat transfer within the solid, resulting

in the temperature profile becoming more linear, and increasing the exit temperature value,

resulting in an increase in efficiency. This is confirmed in

Figure 5.8 where the temperature profiles for the reference case are compared to the

optimal solution. For the optimal solution the solid temperature profile linearly decreases to the

exit value as one would expect for a conduction dominated problem. One would expect a true

maximum to exist, even though one was not observed here due to the constraint. As Eqn. (3.2)

shows, as the porosity increases the other forms of energy transfer in the gas phase become more

important. Therefore, we would expect at some point the other forms of energy transfer would

become more dominant than the convective heat transfer term, resulting in less energy being

transferred into the solid causing the efficiency to start to drop.

a) Gas Temperature Profile Comparison

b) Solid Temperature Profile Comparison

Figure 5.8 - Reference vs. Optimal Temperature Profile for ε2 Optimization

0

500

1000

1500

2000

0 0.02 0.04 0.06

T
em

p
a
ra

tu
re

 (
K

)

Axial Location (m)

Reference

Case

0

500

1000

1500

2000

0 0.02 0.04 0.06

T
em

p
a
ra

tu
re

 (
K

)

Axial Location (m)

Reference

Case

70

All of the response surfaces leading to the maximum value, as well as all the actual

function values, can be seen in

Figure 5.9.

a) Response Surface b) Function Values

Figure 5.9 - Response Surfaces and Function Values for ε2 Optimization

The objective function here is very smooth and has a quadratic shape. Once the algorithm has

decreased the size of the model region it can be seen that some noise has been introduced into the

objective function, resulting from the stiffness of the equation set. For this case the objective

function did not become noisier as the solution was approached, however, as the solution was

located on the constraint and the true maximum of the unconstrained function was not reached,

we cannot make a concrete statement regarding the stiffness of the governing equations close to

the optimum.

Plotting the change in objective function versus the iteration number, shown in Figure

5.10, we see that the change is relatively quadratic throughout. Once again a larger change in

0.27

0.3

0.33

0.36

0.865 0.9075 0.95

E
ff

ic
ie

n
cy

ε2

0.27

0.3

0.33

0.36

0.865 0.9075 0.95

E
ff

ic
ie

n
cy

ε2

71

objective function is seen at first due to a larger step being possible, as the initial point was not

located at the center of the model region. For the final iteration, no change was observed

because the solver wanted to leave the feasible region but was constrained from doing so,

stopping in the same location and ending the algorithm.

Figure 5.10 - Change in Efficiency with Iteration Number for ε2 Optimization

As the radiant efficiency was improved by the statistically significant amount of 8.02%

and the changes in the efficiency and temperature profiles are physically justifiable, changing the

second stage porosity to 0.95 will improve the performance of the porous radiant burner of study.

5.3 Two Dimensional Study

After the successful completion of both one-dimensional optimizations, a two-

dimensional case was studied. The design variables were the second stage pore diameter and the

second stage porosity. These parameters were chosen to show that what was best for each in a

one dimensional study may not be the best overall solution for a two dimensional optimization,

highlighting the importance of considering non-linear interactions of the design variables and the

0.26

0.28

0.3

0.32

0.34

0.36

0 3 6 9

E
ff

ic
ie

n
cy

Iteration Number

72

effect that they have on the radiant efficiency. As before, the problem is constrained between

porosities of 0.865 and 0.95 but now the pore diameters are constrained between 0.69mm and

1.52mm because the flame front was found to be outside of the stable range for diameters below

0.69mm, which is beyond the scope of this study, and Eqns. (3.15) and (3.16) were derived for

pore diameters less than 1.52mm, hence the top constraint. The initial values for the pore

diameter and porosity were selected as 1.445mm and 0.88, and grid spacing parameters of 0.075

and 0.01 were chosen. Different values were chosen from the reference values as having the

code start so close to the corner of the feasible region was undesirable. However, when

considering improvements to the objective function, the reference values are used for

comparison. Table 5.3 provides a summary of the starting point for this optimization, the

function value for the reference case, and the constraints.

Table 5.3 - Initial Parameters for 2-D Optimization

Parameter Value

x
0
 (1.445mm,0.88)

T

γ1 0.075

γ2 0.01

F(x
0
) 27.29%

Lower Bound for dp,2 0.69mm

Upper Bound for dp,2 1.52mm

Lower Bound for ε2 0.865

Upper Bound for ε2 0.95

The first response surface, seen in Figure 5.11, contains a saddle point; since it lies in a

direction that will increase the efficiency of the burner a Newton step is taken to the edge of the

model region and then a new surface can be made centered about this new point. The algorithm

continues building surfaces and finding the minimum, as described in Chapter 4, until it reaches

the thirteenth surface, shown in Figure 5.12.

73

Figure 5.11 - First Response Surface for 2-D Optimization

Figure 5.12 - Thirteenth Response Surface for 2-D Optimization

Here, after finding the minimum of the previous iteration to be on the edge of the feasible region

and shrinking the model region size, the response surface contains a maximum value so the

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

74

steepest descent step is desired. However, this causes the solver to stop once again in the same

place, meaning the generalized reduced gradient (GRG) method must now be used. Using the

current point as the initial point for the one dimensional solver, and selecting the grid spacing

parameter as half of the current value, the surface shown in Figure 5.13 is generated.

Figure 5.13 – First GRG Method Response Surface for 2-D Optimization, ε2=0.95

This surface has a maximum value within the model region so the Newton’s step is taken and the

problem reverts to being a 2-D problem. The solver continues shrinking the model region, and

alternating between two and one dimensions until the fourteenth surface, shown in Figure 5.14,

is made. Here the minimum of the surface is within the model region; however it results in a

decrease in efficiency. Therefore, one of the stopping criteria of the algorithm has been met and

the solver stops after 27.5 hours of computation.

0.354

0.3545

0.355

0.3555

0.356

0.3565

0.357

1 1.05 1.1 1.15 1.2 1.25 1.3

E
ff

ic
ie

n
cy

dp,2

75

Figure 5.14 - Fifteenth Response Surface for 2-D Optimization

The algorithm gives the maximum efficiency as 35.56% ± 0.19% with the second stage

pore diameter and porosity being equal to 1.21mm and 0.95 respectively. Once again this is a

statistically significant improvement as the total change in efficiency is 8.27%, which is larger

than the estimated amount of error in the final answer. Therefore, even in the worst case

scenario for the error, an improvement has still been found in the performance of the porous

radiant burner. This answer also makes physical sense for the same reasons explained in

Sections 5.2.1 and 5.2.2. This is confirmed in

Figure 5.15 where the temperature profiles for the reference case are compared to the optimal

solution. For the optimal solution the solid temperature profile linearly decreases to the exit

value as one would expect for a conduction dominated problem and is very similar to the

porosity solution.

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

76

a) Gas Temperature Profile Comparison

b) Solid Temperature Profile Comparison

Figure 5.15 - Reference vs. Optimal Temperature Profile for 2-D Optimization

All of the response surfaces leading to the maximum value are included in Appendix E.

Once the algorithm has decreased the size of the model region, it can be seen that some noise has

been introduced into the objective function, resulting from the stiffness of the equation set.

Similar to the pore diameter optimization, when the algorithm was close to the minimum value

more noise was observed in the system of equations, leading to the belief that the stiffness

increases when near an extreme point.

Plotting the change in objective function versus the iteration number, shown in Figure

5.16, shows that the objective function reduces quadratically throughout the optimization

procedure, which we would expect from a second-order solver. This figure only contains the

change in objective function between the two dimensional surfaces, ignoring the fact that a one

dimensional optimization occurred between the twelfth and thirteenth iteration and two one

dimensional steps were required between the thirteenth and fourteenth. Once again a larger

change in objective function is seen at first due to a larger step being possible, as the reference

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

Reference

Case

Optimal

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06

T
em

p
er

a
tu

re
 (

K
)

Axial Location (m)

Reference

Case

Optimal

77

point was not located at the center of the model region. For the final iterations minimal changes

were observed because the solver was close to the minimum value and the solution was located

on the constraint and the algorithm was fine tuning along it. Figure 5.16 also shows the

objective function value getting worse for the final iteration; hence the solver stopped and

reported the previous iterations maximum as the answer.

Figure 5.16 - Change in Efficiency with Iteration Number for 2-D Optimization

As the radiant efficiency was improved by the statistically significant amount of 8.27%

and the changes in the efficiency and temperature profiles are physically justifiable, changing the

second stage pore diameter to 1.21mm and the porosity to 0.95 will improve the performance of

the porous radiant burner of study. This result also highlights the non-linear relationship

between the design variables. For the one-dimensional optimization involving the pore diameter

of the second stage, the algorithm recommended reducing it to a value of 0.77mm, when here it

says to stop at a value of 1.21mm. Even though the algorithm has stopped on a constraint the

GRG method also says to leave the pore diameter at a value of 1.21mm, as reducing it further

would serve to make the objective function worse. Physically, since increasing the porosity and

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0 2 4 6 8 10 12 14

E
ff

ic
ie

n
cy

Iteration Number

78

decreasing the pore diameter both cause the extinction coefficient to decrease, a larger pore

diameter than the one dimensional case is required to prevent the radiation term from becoming

so small that the efficiency worsens. This difference in pore diameter values for the one and

two-dimensional optimizations is the result of the non-linear interaction of the pore diameter

with the porosity.

79

Chapter 6

Conclusions

6.1 Summary of Results

The goal of this thesis was to design an optimization algorithm for use on combustion

devices and apply it to a porous radiant burner design. Three optimizations were carried out in

attempts to improve the radiant efficiency of a porous radiant burner. From the nominal case a

univariate optimization on the second stage pore diameter, dp,2, showed an improvement of

6.62% ± 2.75% when the pore diameter was changed from 1.52mm to 0.77mm. A second

univariate optimization was performed on the second stage porosity, ε2, which showed an

improvement of 8.03% ± 0.68% when the porosity was changed from 0.87 to 0.95. Lastly, a two

dimensional optimization was carried out, allowing both of these parameters to change. An

improvement of 8.27% ± 0.19% was observed when the pore diameter and porosity were

changed to 1.21mm and 0.95 respectively. A summary of these results can be found in Table

6.1.

Table 6.1 - Summary of Optimizations
 dp,2 ε2 2-D

x
0
 1.52mm 0.87 (1.52mm,0.87)

T

F(x
0
) 27.29% 27.29% 27.29%

x
*
 0.77mm 0.95 (1.21mm,0.95)

T

F(x
*
) 33.91% 35.32% 35.56%

Error 2.75% 0.68% 0.19%

All optimizations performed led to statistically significant improvements, meaning that

the improvement, F(x
0
) – F(x

*
), was greater than the error estimate in F(x

*
).

80

6.2 Benefits of Proposed Method

The optimization algorithm laid out in this thesis has many benefits over other

optimization techniques. Trial-and-error methods, as well as parameter studies, ignore the non-

linear interactions between the design variables, which were demonstrated to be important in this

problem. The standard Newton’s method struggles with calculation of the gradient and Hessian

of the objective function, which are necessary to be able to find the minimum. The proposed

method, however, is capable of correcting these problems. First, by using RSM, the difficulties

with the stiffness of the governing equations are greatly reduced. RSM also presents analytically

tractable estimates of the gradient vector and Hessian matrix to be solved analytically, removing

the need to estimate those using finite differences, which is both problematic for stiff systems

and also computationally expensive. When the stiffness of the system causes the objective

function to become noisy, RSM smoothes the function, as it uses a model rather than the real

function.

Using a quadratic fit to the data for generating the surfaces also has its benefits. When a

modified Newton’s method is applied to the function a single step can be taken towards the

minimum. This avoids costly iterations, greatly reducing the computational time. A quadratic fit

also requires less data than higher order polynomials, meaning that less function evaluations are

required.

The use of the GRG method is another major benefit of the proposed algorithm. Here it

provided minimal changes to the objective function as the solution on the boundary was already

close to the minimal value. However, it is not difficult to imagine a problem where the optimal

solution is far from where the iterate solution lands on the boundary. The GRG method allows

81

for these changes to be made, reporting the best answer for a problem rather than the solution

where a constraint was met.

All of these benefits together lead to a robust algorithm for stiff systems, which is also

computationally inexpensive compared to other methods. Moreover, this algorithm is generic

enough that it can easily be applied to many types of combustion design problems, not just the

porous radiant burner examined here.

6.3 Recommendations for Future Work

While the optimizations performed were successful and the algorithm can be used to

optimize combustion devices there is still further research that can be carried out concerning the

algorithm. This section will detail these extensions and describe why they are significant.

6.3.1 Relation between Pore Diameter and Porosity

In this research, it was assumed that the pore diameter and porosity were independent

variables, as there was no discussion in the literature to suggest otherwise, but this seems like a

counterintuitive result. Obviously, if the porosity is very large we cannot have large pores as

well and if the porosity is small we cannot have small pores while maintaining a path through the

solid. This means that a relationship must exist between these two variables. As it is possible

for a single porosity to have a range of pore diameters however, this relationship will not be a

simple function. This relationship would result in constraints for the one dimensional

optimization cases, and would define the shape of the feasible region for the two dimensional

case. This means that entirely different solutions could be observed due to the different

constraints on the objective function. If a relationship between pore diameter and porosity were

82

to be researched and found, then the accuracy and feasibility of the optimization algorithm would

greatly improve.

6.3.2 Other Design Variables

While good improvement was found using the second stage pore diameter and porosity,

other design variables can be considered. Qiu and Hayden (2010) showed that the radiant

efficiency of a porous radiant burner is a function of the equivalence ratio; therefore it could be

used as a future design parameter in this algorithm. Other design parameters that could be used

include the pore diameter and porosity of the first stage, the scattering albedo, the specific heat

and density of the solid, and the lengths of each burner section. Each of these parameters should

affect the efficiency of the burner. The pore diameter and porosity would alter the convection

and radiation in the first stage of the burner for the reasons described in Section 5.2, leading to

different preheating. Changing the scattering albedo, specific heat, and density will change the

way that the solid conducts and radiates heat, while altering the lengths of the burner sections

will lead to different flames being able to stabilize within the burner. All of these parameters are

viable options that could lead to even greater improvements in the porous radiant burner design.

Another recommendation is to use more design variables. While this thesis only

provided one and two dimensional optimizations, the algorithm is easily extendable to higher

order problems. The non-linear interactions between the variables will be better accounted for

by using more design variables. This means that the more design variables that are considered

the better the system will be represented. This can lead to even greater improvements being

made to the efficiency as the algorithm will have more that it can change to improve the

performance.

83

6.3.3 Multi-Objective Optimizations

For this thesis the only objective considered was to maximize the radiant efficiency;

however there are other objectives that can be considered. As emissions control is becoming of

greater importance in industrial combustion, objectives such as minimizing NOx or CO would be

useful. Another objective could be to maximize the turn down ratio of the burner, which would

make a single burner more desirable to the industry as it could be operated under more

conditions. The algorithm could even be extended to deal with multi-objective problems. This

could be done by altering the code to become a genetic algorithm, as used by Büche et al. (2001)

or by using a weighted objective function. For a weighted objective function, each objective is

assigned a weight based on its importance to the design engineer. This method results in a single

solution, unlike the genetic algorithms in which a Pareto front is formed from many candidate

solutions. Using a multi-objective approach, burners could be designed that would maximize

radiant efficiency while minimizing pollutants, although with the current state of NOx modelling

this will still be difficult. Using multi-objective optimization would be very useful to the

industrial combustion community as they could design the best burners for their process without

compromising the environment.

6.3.4 Proximity to Optimum

In this research it was noted that close to the optimum, the noisiness of the objective

function increased as a result of the stiffness. It is unknown whether this result was coincidental

or a property of the stiffness, and determining so was beyond the scope of the research.

Researching this would be very beneficial to the performance of the optimization algorithm. If it

84

is true, that when close to the optimum the stiffness increases, the algorithm could be adjusted to

compensate for this stiffness, thus reducing the noise, leading to more accurate solutions.

6.3.5 Parallel Processing

Parallel processing is another recommendation that could greatly improve upon the

algorithm presented in this thesis. In this study, the optimizations and calculations were carried

out on a single processor. The response surface method is particularly amenable to speed up by

parallelization, since each objective function evaluation used to construct the response surface

can be carried out independently. This would reduce the computational time by approximately a

factor of five for the one dimensional case and a factor of nine for the two dimensional case.

Reducing the computational effort required to carry out the minimization means that more

resources could be allocated towards more detailed chemical mechanisms and a higher degree of

refinement, bringing the computational time back up to its current value. Both of these

improvements would allow for more realistic and accurate representations of the system,

meaning better results could be found.

6.3.6 Other Combustion Devices

The intention of this thesis was to present an optimization algorithm that would not only

improve the design of a porous radiant burner, but could also be adapted for use on other

combustion devices. Therefore, as a final recommendation this code should be used on other

devices. Any combustion device could benefit from an optimization algorithm being used on its

parameters to find its best operating point. By improving these burners we can get more useful

energy output, save money, or reduce the impact combustion has on the planet, by reducing

pollutants.

85

References

Barra, A. J., G. Diepvens, J. L. Ellzey, and M. R. Henneke. "Numerical study of the

effects of material properties on flame stabilization in a porous burner." Combustion and Flame

134, 2003: 369-379.

Büche, D., P. Stoll, and P. Koumoutsakos. "An evolutionary algorithm for multi-

objective optimization of combustion processes." Center for Turbulence Research Annual

Research Briefs, 2001: 231-239.

Buckmaster, J., and T. Takeno. "Blow-off and flashback of an excess enthalpy flame."

Combustion and Science Technology 25, 1981: 153-158.

Catalano, L. A., A. Dadone, D. Manodoro, and A. Saponaro. "Efficient design

optimization of duct-burners for combined-cycle and cogenerative plants." Engineering

Optimization 38, 2006: 801-820.

Correa, C. D., and P. J. Smith. "Optimization of ehtylene furnace operations." 1998

AiChe Annual General Meeting. Miami Beach, 1998.

Echigo, R, Y. Yoshizawa, K. Hanamura, and T. Tominura. "Analytical and experimental

studies on radiative propagation in porous media with internal heat generation." Proceedings of

the 8th International Heat Transfer Conference 2. 1986. 827-832.

Frenklach, M., et al. 1994. http://www.me.berkley.edu/gri_mech/.

Garfinkel, D., C. B. Marbach, and N. Z. Shapiro. "Stiff differential equations." Annual

Review of Biophysics and Bioengineering 6, 1977: 525-542.

Gemmen, R. S. "Oxidation of low calorific value gases - Applying optimization

techniques to combustor design." 1998 International Joint ASME/EPRI Power Generation

Conference. Baltimore, 1998.

Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization. London: Academic

Press, 1986.

Goodwin, D. G. "An open-source, extensible software suite for CVD process simulatio."

Proceedings of CVD XVI and EuroCVD Fourteen, 2003: 155-162.

Hardesty, D.R., and F. J. Weinberg. "Burners producing large excess enthalpies."

Combustion Science and Technmologies 8, 1974: 201-214.

Hendricks, T. J., and J. R. Howell. "Absorption/Scattering coefficients and scattering

phase function in reticulated porous ceramics." Journal of Heat Transfer 118, 1996: 79-87.

86

Henneke, M. R. Simulation of transient combustion within porous inert media (PhD

Thesis). University of Texas, 1998.

Howell, J. R., M. J. Hall, and J. L. Ellzey. "Combustion of hydrocarbon fuels within

porous inert media." Progress in Energy and Combustion Science, 1996: 121-145.

Hsu, P. F., and J. R. Howell. "Measurement of thermal conductivity and optical

properties of porous partially stabilized zirconia." Experimental Heat Transfer 5, 1992: 293-313.

Hsu, P. F., and R. D. Matthews. "The necessity of using detailed kinetics in models for

premixed combustion within porous inert media." Combustion and Flame 93, 1993: 457-467.

Hsu, P. F., J. R. Howell, and R. D. Matthews. "A numerical investigation of premixed

combustion within porous inert media." Journal of Heat Transfer 115(3), 1993: 744-750.

Khanna, V., R. Goel, and J. L. Ellzey. "Measurements of emissions and radiation for

methane combustion within a porous medium burner." Combustion Science and Technology 99,

1994: 133-142.

Kotani, Y., and T. Takeno. "An experimental study on stability and combustion

characteristics of an excess enthalpy flame." 19th Symposium (International) on Combustion.

The Combustion Institute, 1982. 1503-1509.

Krazakov, A., and M. Frenklach. 1994. http://www.me.berkeley.edu/drm/.

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. Response surface

methodology, 3rd ed. Hoboken: Wiley, 2009.

Nait-Ali, B., K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith. "Preparation and

thermal conductivity characterisation of highly porous ceramics comparison between

experimental results, analytical calculations and numerical simulations." Journal of the

European Ceramic Society 27, 2007: 1345-1350.

NIST/SEMATECH. 2010. http://www.itl.nist.gov/div898/handbook/.

Nocedal, J., and S. J. Wright. Numerical Optimization, 2nd ed. New York: Springer,

2006.

Qiu, K., and S. Hayden. "Premixed gas combustion in a porous medium burner system."

CICS 2010 Spring Technical Meeting. Ottawa, 2010. 403-408.

Randrianalisoa, J., Y. Bréchet, and D. Baillis. "Materials selection for optimal design of a

porous radiant burner for environmentally driven requirements." Advanced Engineering

Materials 11, 2009: 1049-1056.

Sathe, S. B., R. E. Peck, and T. W. Tong. "Flame stabilization and multimode heat

transfer in inert porous media: A numerical study ." Combustion Science and Technology 70,

1990: 93-109.

Siegel, R., and J. Howell. Thermal radiation heat transfer 4ed. New York: Taylor &

Francis, 2002.

87

Smith, G. P., et al. 1999. http://www.me.berkeley.edu/gri_mech/.

Smith, Philip J., William A. Sowa, and Paul O. Hedman. "Furnace design using

comprehensive combustion models." Combustion and Flame 79, 1990: 111-121.

Takeno, T., and K. Hase. "Effects of solid length and heat loss on an excess enthalpy

flame." Combustion and Science Technology 31, 1983: 207-215.

Takeno, T., and K. Sato. "An excess enthalpy flame theory." Combustion and Science

Technology 20, 1979: 73-84.

Tong., T. W., W. Q. Lin, and R. E. Peck. "Radiative heat transfer in porous media with

spatially-dependant heat generation." International Communications on Heat and Mass Transer

14, 1987: 627-637.

Vafai, K., ed. Handbook of porous media 2ed. Boca Raton: Taylor & Francis Group,

2005.

Weinberg, F.J. "Combustion temperatures: The future." Nature 233, 1971: 239-241.

Younis, L. B., and R. Viskanta. "Experimental determination of the volumetric heat

transfer coefficient between stream of air and ceramic foam." Internation Journal of Heat and

Mass Transfer 36(6), 1993: 1425-1434.

88

Appendix A: DRM19

Reaction Mechanism

89

The DRM19 reaction mechanism is presented below in CHEMKIN format. The reaction

is presented on the left while the values for the pre-exponential steric factor, A0, the Arhenius

temperature exponent, β, and the activation energy, EA (in cal/mol), from Eqn. (3.9) are

presented on the right. For three body reactions and other special reactions, the efficiencies and

other information is presented below the relevant reaction.

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!

! Reduced version of GRI-MECH 1.2. 19 species (+ N2, AR); 84 reactions. !

! PennState Dec, 1994 !

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!

ELEMENTS

O H C N AR

END

SPECIES

H2 H O O2 OH H2O HO2

CH2 CH2(S) CH3 CH4 CO CO2 HCO

CH2O CH3O C2H4 C2H5 C2H6

N2 AR

END

REACTIONS

O+H+M<=>OH+M 5.000E+17 -1.000 0.00

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

O+H2<=>H+OH 5.000E+04 2.670 6290.00

O+HO2<=>OH+O2 2.000E+13 0.000 0.00

O+CH2<=>H+HCO 8.000E+13 0.000 0.00

O+CH2(S)<=>H+HCO 1.500E+13 0.000 0.00

O+CH3<=>H+CH2O 8.430E+13 0.000 0.00

O+CH4<=>OH+CH3 1.020E+09 1.500 8600.00

O+CO+M<=>CO2+M 6.020E+14 0.000 3000.00

H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/ AR/0.50/

O+HCO<=>OH+CO 3.000E+13 0.000 0.00

O+HCO<=>H+CO2 3.000E+13 0.000 0.00

O+CH2O<=>OH+HCO 3.900E+13 0.000 3540.00

O+C2H4<=>CH3+HCO 1.920E+07 1.830 220.00

O+C2H5<=>CH3+CH2O 1.320E+14 0.000 0.00

O+C2H6<=>OH+C2H5 8.980E+07 1.920 5690.00

O2+CO<=>O+CO2 2.500E+12 0.000 47800.00

O2+CH2O<=>HO2+HCO 1.000E+14 0.000 40000.00

H+O2+M<=>HO2+M 2.800E+18 -0.860 0.00

O2/0.00/ H2O/0.00/ CO/0.75/ CO2/1.50/ C2H6/1.50/ N2/0.00/ AR/0.00/

H+2O2<=>HO2+O2 3.000E+20 -1.720 0.00

H+O2+H2O<=>HO2+H2O 9.380E+18 -0.760 0.00

H+O2+N2<=>HO2+N2 3.750E+20 -1.720 0.00

H+O2+AR<=>HO2+AR 7.000E+17 -0.800 0.00

H+O2<=>O+OH 8.300E+13 0.000 14413.00

2H+M<=>H2+M 1.000E+18 -1.000 0.00

H2/0.00/ H2O/0.00/ CH4/2.00/ CO2/0.00/ C2H6/3.00/ AR/0.63/

2H+H2<=>2H2 9.000E+16 -0.600 0.00

2H+H2O<=>H2+H2O 6.000E+19 -1.250 0.00

2H+CO2<=>H2+CO2 5.500E+20 -2.000 0.00

90

H+OH+M<=>H2O+M 2.200E+22 -2.000 0.00

H2/0.73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/ AR/0.38/

H+HO2<=>O2+H2 2.800E+13 0.000 1068.00

H+HO2<=>2OH 1.340E+14 0.000 635.00

H+CH2(+M)<=>CH3(+M) 2.500E+16 -0.800 0.00

 LOW / 3.200E+27 -3.140 1230.00/

 TROE/ 0.6800 78.00 1995.00 5590.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+CH3(+M)<=>CH4(+M) 1.270E+16 -0.630 383.00

 LOW / 2.477E+33 -4.760 2440.00/

 TROE/ 0.7830 74.00 2941.00 6964.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+CH4<=>CH3+H2 6.600E+08 1.620 10840.00

H+HCO(+M)<=>CH2O(+M) 1.090E+12 0.480 -260.00

 LOW / 1.350E+24 -2.570 1425.00/

 TROE/ 0.7824 271.00 2755.00 6570.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+HCO<=>H2+CO 7.340E+13 0.000 0.00

H+CH2O(+M)<=>CH3O(+M) 5.400E+11 0.454 2600.00

 LOW / 2.200E+30 -4.800 5560.00/

 TROE/ 0.7580 94.00 1555.00 4200.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/

H+CH2O<=>HCO+H2 2.300E+10 1.050 3275.00

H+CH3O<=>OH+CH3 3.200E+13 0.000 0.00

H+C2H4(+M)<=>C2H5(+M) 1.080E+12 0.454 1820.00

 LOW / 1.200E+42 -7.620 6970.00/

 TROE/ 0.9753 210.00 984.00 4374.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+C2H5(+M)<=>C2H6(+M) 5.210E+17 -0.990 1580.00

 LOW / 1.990E+41 -7.080 6685.00/

 TROE/ 0.8422 125.00 2219.00 6882.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

H+C2H6<=>C2H5+H2 1.150E+08 1.900 7530.00

H2+CO(+M)<=>CH2O(+M) 4.300E+07 1.500 79600.00

 LOW / 5.070E+27 -3.420 84350.00/

 TROE/ 0.9320 197.00 1540.00 10300.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

OH+H2<=>H+H2O 2.160E+08 1.510 3430.00

2OH<=>O+H2O 3.570E+04 2.400 -2110.00

OH+HO2<=>O2+H2O 2.900E+13 0.000 -500.00

OH+CH2<=>H+CH2O 2.000E+13 0.000 0.00

OH+CH2(S)<=>H+CH2O 3.000E+13 0.000 0.00

OH+CH3<=>CH2+H2O 5.600E+07 1.600 5420.00

OH+CH3<=>CH2(S)+H2O 2.501E+13 0.000 0.00

OH+CH4<=>CH3+H2O 1.000E+08 1.600 3120.00

OH+CO<=>H+CO2 4.760E+07 1.228 70.00

OH+HCO<=>H2O+CO 5.000E+13 0.000 0.00

OH+CH2O<=>HCO+H2O 3.430E+09 1.180 -447.00

OH+C2H6<=>C2H5+H2O 3.540E+06 2.120 870.00

HO2+CH2<=>OH+CH2O 2.000E+13 0.000 0.00

HO2+CH3<=>O2+CH4 1.000E+12 0.000 0.00

HO2+CH3<=>OH+CH3O 2.000E+13 0.000 0.00

HO2+CO<=>OH+CO2 1.500E+14 0.000 23600.00

CH2+O2<=>OH+HCO 1.320E+13 0.000 1500.00

CH2+H2<=>H+CH3 5.000E+05 2.000 7230.00

CH2+CH3<=>H+C2H4 4.000E+13 0.000 0.00

CH2+CH4<=>2CH3 2.460E+06 2.000 8270.00

91

CH2(S)+N2<=>CH2+N2 1.500E+13 0.000 600.00

CH2(S)+AR<=>CH2+AR 9.000E+12 0.000 600.00

CH2(S)+O2<=>H+OH+CO 2.800E+13 0.000 0.00

CH2(S)+O2<=>CO+H2O 1.200E+13 0.000 0.00

CH2(S)+H2<=>CH3+H 7.000E+13 0.000 0.00

CH2(S)+H2O<=>CH2+H2O 3.000E+13 0.000 0.00

CH2(S)+CH3<=>H+C2H4 1.200E+13 0.000 -570.00

CH2(S)+CH4<=>2CH3 1.600E+13 0.000 -570.00

CH2(S)+CO<=>CH2+CO 9.000E+12 0.000 0.00

CH2(S)+CO2<=>CH2+CO2 7.000E+12 0.000 0.00

CH2(S)+CO2<=>CO+CH2O 1.400E+13 0.000 0.00

CH3+O2<=>O+CH3O 2.675E+13 0.000 28800.00

CH3+O2<=>OH+CH2O 3.600E+10 0.000 8940.00

2CH3(+M)<=>C2H6(+M) 2.120E+16 -0.970 620.00

 LOW / 1.770E+50 -9.670 6220.00/

 TROE/ 0.5325 151.00 1038.00 4970.00 /

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/

2CH3<=>H+C2H5 4.990E+12 0.100 10600.00

CH3+HCO<=>CH4+CO 2.648E+13 0.000 0.00

CH3+CH2O<=>HCO+CH4 3.320E+03 2.810 5860.00

CH3+C2H6<=>C2H5+CH4 6.140E+06 1.740 10450.00

HCO+H2O<=>H+CO+H2O 2.244E+18 -1.000 17000.00

HCO+M<=>H+CO+M 1.870E+17 -1.000 17000.00

H2/2.00/ H2O/0.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/

HCO+O2<=>HO2+CO 7.600E+12 0.000 400.00

CH3O+O2<=>HO2+CH2O 4.280E-13 7.600 -3530.00

C2H5+O2<=>HO2+C2H4 8.400E+11 0.000 3875.00

END

92

Appendix B: Sensitivity

Analysis

93

B.1 Introduction

A sensitivity analysis was performed on the objective function for two reasons: first, to

gain an insight into the importance of each of the correlated parameters and; second to justify

neglecting the effect that porosity has on the thermal conductivity. The sensitivity of a function

to a variable is calculated by

𝑥

df

dx
 (B.1)

where f and x are the function and variable of interest. This measurement allows us to see how

important an effect the variable x has on the function f. If the sensitivity is small then x is

negligible to the function output, and if x is large it dominates it.

A major problem in estimating the sensitivities is that finite-difference estimates are

inaccurate when the governing equations are stiff, as discussed in Section 4.3. Instead we use a

variation of the RSM method discussed in Section 4.4. Eleven equally spaced points were

sampled from the nominal value of the desired parameter to the optimal value, followed by

fitting a surface to the data. The slope of the surface was then used for the derivative calculation.

For the case of the extinction coefficient, only five points were used as the combustion solver

encountered stability issues, as a result of flash-back, for increased values of the extinction

coefficient. This stability issue does not occur during the optimization as the other parameters

are allowed to change along with it, stabilizing the solution.

94

B.2 Objective Function Sensitivity to Thermal Conductivity, Extinction

Coefficient, and Volumetric Heat Transfer Coefficient

The first stage of the sensitivity analysis was to calculate the sensitivity thermal

conductivity, radiative extinction coefficient, and the convection heat transfer coefficient.

Figures B.1 – B.3 show the sampled points and fitted curves used for estimating the sensitivities

of these three parameters.

Figure B.1 – Thermal Conductivity Sensitivity Study

Figure B.2 – Radiative Extinction Coefficient Sensitivity Study

0.266

0.268

0.27

0.272

0.274

0.276

0.278

0.28

0.159 0.161 0.163 0.165 0.167 0.169 0.171 0.173 0.175

E
ff

ic
ie

n
cy

λs (W/mK)

0.264

0.266

0.268

0.27

0.272

0.274

250 270 290 310 330 350

E
ff

ic
ie

n
cy

κ (1/m)

95

Figure B.3 – Convection Heat Transfer Coefficient Sensitivity Study

Using these curve fits and the nominal value for each parameter the sensitivity of the

objective function to the thermal conductivity, the radiative extinction coefficient, and the

convection heat transfer coefficient is found to be 0.0226, 0.0203, and 0.0209 respectively. Here

we see that the objective function is equally as sensitive to all of the parameters.

B.3 Objective Function Sensitivity to Porosity

The next stage of the sensitivity analysis is to determine the effect that porosity has on the

objective function, when acting through the thermal conductivity. If this value is small then we

are justified in assuming that porosity is negligible in the thermal conductivity correlation. We

start by finding the sensitivity of the porosity on the thermal conductivity. As the correlation

presented by Hsu and Howell (1992) does not contain a porosity term we turn to the work of

Nait-Ali et al. (2007) to estimate the slope of the curve in the region of interest, 80-100%

porosity. Using this slope and the nominal value of the porosity the sensitivity of the thermal

conductivity to the porosity is calculated as 0.0457W/mK.

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 50000 100000 150000 200000 250000

E
ff

ic
ie

n
cy

hv (W/m3K)

96

Now that we know the sensitivity of the thermal conductivity to the porosity we can

calculate the objective function’s sensitivity to the porosity, when acting through the thermal

conductivity. This is done using the chain rule by

𝜀

dF

dλs

dλs

dε
 (B.2)

resulting in a sensitivity of calculated as 0.0064. The objective function is not very sensitive to

the porosity, evidenced by the sensitivity being an order of magnitude less than the sensitivities

of the correlated parameters. As a result it is safe to use a correlation for thermal conductivity

that does not contain a porosity effect, such as the one presented by Hsu and Howell (1992).

97

Appendix C: Alterations to

Cantera Code

98

This section contains the Cantera files that were altered in order to add the solid phase to

the existing combustion program. Each of the four following sections contains one of the four

altered files. All additions and alterations are commented and bolded to stand out.

C.1 OneDim.cpp

#ifdef WIN32

#pragma warning(disable:4786)

#pragma warning(disable:4503)

#endif

#include "MultiJac.h"

#include "MultiNewton.h"

#include "OneDim.h"

#include "../ctml.h"

using namespace ctml;

namespace Cantera {

 int dosolid=0; //variable added to tell algorithm when solid phase must be solved.

 //0 for no 1 for yes

 /**

 * Default constructor. Create an empty object.

 */

 OneDim::OneDim()

 : m_tmin(1.0e-16), m_tmax(10.0), m_tfactor(0.5),

 m_jac(0), m_newt(0),

 m_rdt(0.0), m_jac_ok(false),

 m_nd(0), m_bw(0), m_size(0),

 m_init(false),

 m_ss_jac_age(10), m_ts_jac_age(20),

 m_nevals(0), m_evaltime(0.0)

 {

 //writelog("OneDim default constructor\n");

 m_newt = new MultiNewton(1);

 //m_solve_time = 0.0;

 }

 /**

 * Construct a OneDim container for the domains pointed at by the

 * input vector of pointers.

 */

 OneDim::OneDim(vector<Domain1D*> domains) :

 m_tmin(1.0e-16), m_tmax(10.0), m_tfactor(0.5),

 m_jac(0), m_newt(0),

 m_rdt(0.0), m_jac_ok(false),

 m_nd(0), m_bw(0), m_size(0),

 m_init(false),

 m_ss_jac_age(10), m_ts_jac_age(20),

 m_nevals(0), m_evaltime(0.0)

 {

 //writelog("OneDim constructor\n");

 // create a Newton iterator, and add each domain.

 m_newt = new MultiNewton(1);

 int nd = static_cast<int>(domains.size());

 int i;

 for (i = 0; i < nd; i++) {

 addDomain(domains[i]);

 }

99

 init();

 resize();

 }

 int OneDim::domainIndex(string name) {

 for (int n = 0; n < m_nd; n++) {

 if (domain(n).id() == name) return n;

 }

 throw CanteraError("OneDim::domainIndex","no domain named >>"+name+"<<");

 }

 /**

 * Domains are added left-to-right.

 */

 void OneDim::addDomain(Domain1D* d) {

 // if 'd' is not the first domain, link it to the last domain

 // added (the rightmost one)

 int n = static_cast<int>(m_dom.size());

 if (n > 0) m_dom.back()->append(d);

 // every other domain is a connector

 if (2*(n/2) == n)

 m_connect.push_back(d);

 else

 m_bulk.push_back(d);

 // add it also to the global domain list, and set its

 // container and position

 m_dom.push_back(d);

 d->setContainer(this, m_nd);

 m_nd++;

 resize();

 }

 OneDim::~OneDim() {

 delete m_jac;

 delete m_newt;

 }

 MultiJac& OneDim::jacobian() { return *m_jac; }

 MultiNewton& OneDim::newton() { return *m_newt; }

 void OneDim::writeStats() {

 saveStats();

 char buf[100];

 sprintf(buf,"\nStatistics:\n\n Grid Functions Time Jacobians Time \n");

 writelog(buf);

 int n = m_gridpts.size();

 for (int i = 0; i < n; i++) {

 sprintf(buf,"%5i %5i %9.4f %5i %9.4f \n",

 m_gridpts[i], m_funcEvals[i], m_funcElapsed[i],

 m_jacEvals[i], m_jacElapsed[i]);

 writelog(buf);

 }

 }

 /**

 * Save statistics on function and Jacobiab evaulation, and reset

 * the counters. Statistics are saved only if the number of

 * Jacobian evaluations is greater than zero. The statistics saved

 * are

 *

 * - number of grid points

 * - number of Jacobian evaluations

 * - CPU time spent evaluating Jacobians

 * - number of non-Jacobian function evaluations

 * - CPU time spent evaluating functions

100

 */

 void OneDim::saveStats() {

 if (m_jac) {

 int nev = m_jac->nEvals();

 if (nev > 0 && m_nevals > 0) {

 m_gridpts.push_back(m_pts);

 m_jacEvals.push_back(m_jac->nEvals());

 m_jacElapsed.push_back(m_jac->elapsedTime());

 m_funcEvals.push_back(m_nevals);

 m_nevals = 0;

 m_funcElapsed.push_back(m_evaltime);

 m_evaltime = 0.0;

 }

 }

 }

 /**

 * Call after one or more grids has been refined.

 */

 void OneDim::resize() {

 int i;

 m_bw = 0;

 vector_int nvars, loc;

 int lc = 0;

 // save the statistics for the last grid

 saveStats();

 m_pts = 0;

 for (i = 0; i < m_nd; i++) {

 Domain1D* d = m_dom[i];

 int np = d->nPoints();

 int nv = d->nComponents();

 for (int n = 0; n < np; n++) {

 nvars.push_back(nv);

 loc.push_back(lc);

 lc += nv;

 m_pts++;

 }

 // update the Jacobian bandwidth

 int bw1, bw2 = 0;

 // bandwidth of the local block

 bw1 = 2*d->nComponents() - 1;

 // bandwidth of the block coupling the first point of this

 // domain to the last point of the previous domain

 if (i > 0) {

 bw2 = d->nComponents() + m_dom[i-1]->nComponents() - 1;

 }

 if (bw1 > m_bw) m_bw = bw1;

 if (bw2 > m_bw) m_bw = bw2;

 m_size = d->loc() + d->size();

 }

 m_nvars = nvars;

 m_loc = loc;

 m_newt->resize(size());

 m_mask.resize(size());

 // delete the current Jacobian evaluator and create a new one

 delete m_jac;

 m_jac = new MultiJac(*this);

 m_jac_ok = false;

 for (i = 0; i < m_nd; i++)

 m_dom[i]->setJac(m_jac);

 }

101

 int OneDim::solve(doublereal* x, doublereal* xnew, int loglevel) {

 dosolid=1;

 if (!m_jac_ok) {

 eval(-1, x, xnew, 0.0, 0);

 m_jac->eval(x, xnew, 0.0);

 m_jac->updateTransient(m_rdt, DATA_PTR(m_mask));

 m_jac_ok = true;

 }

 int m = m_newt->solve(x, xnew, *this, *m_jac, loglevel);

 return m;

 }

 void OneDim::evalSSJacobian(doublereal* x, doublereal* xnew) {

 doublereal rdt_save = m_rdt;

 m_jac_ok = false;

 setSteadyMode();

 eval(-1, x, xnew, 0.0, 0);

 m_jac->eval(x, xnew, 0.0);

 m_rdt = rdt_save;

 }

 /**

 * Return a pointer to the domain that contains component i of the

 * global solution vector. The domains are scanned right-to-left,

 * and the first one with starting location less or equal to i is

 * returned.

 *

 * 8/26/02 changed '<' to '<=' DGG

 *

 */

 Domain1D* OneDim::pointDomain(int i) {

 Domain1D* d = right();

 while (d) {

 if (d->loc() <= i) return d;

 d = d->left();

 }

 return 0;

 }

 /**

 * Evaluate the multi-domain residual function, and return the

 * result in array r.

 */

 void OneDim::eval(int j, double* x, double* r, doublereal rdt, int count) {

 clock_t t0 = clock();

 fill(r, r + m_size, 0.0);

 fill(m_mask.begin(), m_mask.end(), 0);

 if (rdt < 0.0) rdt = m_rdt;

 // int nn;

 vector<Domain1D*>::iterator d;

 // iterate over the bulk domains first

 for (d = m_bulk.begin(); d != m_bulk.end(); ++d) {

 (*d)->eval(j, x, r, DATA_PTR(m_mask), rdt);

 }

 // then over the connector domains

 for (d = m_connect.begin(); d != m_connect.end(); ++d) {

 (*d)->eval(j, x, r, DATA_PTR(m_mask), rdt);

 }

 // increment counter and time

 if (count) {

 clock_t t1 = clock();

 m_evaltime += double(t1 - t0)/CLOCKS_PER_SEC;

 m_nevals++;

 }

 }

102

 /**

 * The 'infinity' (maximum magnitude) norm of the steady-state

 * residual. Used only for diagnostic output.

 */

 doublereal OneDim::ssnorm(doublereal* x, doublereal* r) {

 eval(-1, x, r, 0.0, 0);

 doublereal ss = 0.0;

 for (int i = 0; i < m_size; i++) {

 ss = fmaxx(fabs(r[i]),ss);

 }

 return ss;

 }

 /**

 * Prepare for time stepping with timestep dt.

 */

 void OneDim::initTimeInteg(doublereal dt, doublereal* x) {

 doublereal rdt_old = m_rdt;

 m_rdt = 1.0/dt;

 // if the stepsize has changed, then update the transient

 // part of the Jacobian

 if (fabs(rdt_old - m_rdt) > Tiny) {

 m_jac->updateTransient(m_rdt, DATA_PTR(m_mask));

 }

 // iterate over all domains, preparing each one to begin

 // time stepping

 Domain1D* d = left();

 while (d) {

 d->initTimeInteg(dt, x);

 d = d->right();

 }

 }

 /**

 * Prepare to solve the steady-state problem. Set the reciprocal

 * of the time step to zero, and, if it was previously non-zero,

 * signal that a new Jacobian will be needed.

 */

 void OneDim::setSteadyMode() {

 m_rdt = 0.0;

 m_jac->updateTransient(m_rdt, DATA_PTR(m_mask));

 }

 /**

 * Initialize all domains. On the first call, this methods calls

 * the init method of each domain, proceeding from left to right.

 * Subsequent calls do nothing.

 */

 void OneDim::init() {

 if (!m_init) {

 Domain1D* d = left();

 while (d) {

 d->init();

 d = d->right();

 }

 }

 m_init = true;

 }

 /**

 * Signal that the current Jacobian is no longer valid.

 */

 void Domain1D::needJacUpdate() {

 if (m_container) {

103

 m_container->jacobian().setAge(10000);

 m_container->saveStats();

 }

 }

 /**

 * Take time steps using Backward Euler.

 *

 * nsteps -- number of steps

 * dt -- initial step size

 * loglevel -- controls amount of printed diagnostics

 */

 doublereal OneDim::timeStep(int nsteps, doublereal dt, doublereal* x,

 doublereal* r, int loglevel) {

 // set the Jacobian age parameter to the transient value

 newton().setOptions(m_ts_jac_age);

 if (loglevel > 0) {

 //writelog("Begin time stepping.\n\n");

 writelog("\n\n step size (s) log10(ss) \n");

 writelog("===============================\n");

 }

 int n = 0, m;

 doublereal ss;

 char str[80];

 while (n < nsteps) {

 dosolid=1; //solid phase must be solved before next gas phase iteration

 if (loglevel > 0) {

 ss = ssnorm(x, r);

 sprintf(str, " %4d %10.4g %10.4g" , n,dt,log10(ss));

 writelog(str);

 }

 // set up for time stepping with stepsize dt

 initTimeInteg(dt,x);

 // solve the transient problem

 m = solve(x, r, loglevel-1);

 // successful time step. Copy the new solution in r to

 // the current solution in x.

 if (m >= 0) {

 n += 1;

 if (loglevel > 0) writelog("\n");

 copy(r, r + m_size, x);

 if (m == 100) {

 dt *= 1.5;

 }

 // else dt /= 1.5;

 if (dt > m_tmax) dt = m_tmax;

 }

 // No solution could be found with this time step.

 // Decrease the stepsize and try again.

 else {

 if (loglevel > 0) writelog("...failure.\n");

 dt *= m_tfactor;

 if (dt < m_tmin)

 throw CanteraError("OneDim::timeStep",

 "Time integration failed.");

 }

 }

 // Prepare to solve the steady problem.

 setSteadyMode();

 newton().setOptions(m_ss_jac_age);

 // return the value of the last stepsize, which may be smaller

 // than the initial stepsize

104

 return dt;

 }

 void OneDim::save(string fname, string id, string desc, doublereal* sol) {

 struct tm *newtime;

 time_t aclock;

 ::time(&aclock); /* Get time in seconds */

 newtime = localtime(&aclock); /* Convert time to struct tm form */

 XML_Node root("doc");

 ifstream fin(fname.c_str());

 XML_Node* ct;

 if (fin) {

 root.build(fin);

 const XML_Node* same_ID = root.findID(id);

 int jid = 1;

 string idnew = id;

 while (same_ID != 0) {

 idnew = id + "_" + int2str(jid);

 jid++;

 same_ID = root.findID(idnew);

 }

 id = idnew;

 fin.close();

 ct = &root.child("ctml");

 }

 else {

 ct = &root.addChild("ctml");

 }

 XML_Node& sim = (XML_Node&)ct->addChild("simulation");

 sim.addAttribute("id",id);

 addString(sim,"timestamp",asctime(newtime));

 if (desc != "") addString(sim,"description",desc);

 Domain1D* d = left();

 while (d) {

 d->save(sim, sol);

 d = d->right();

 }

 ofstream s(fname.c_str());

 if (!s)

 throw CanteraError("save","could not open file "+fname);

 ct->write(s);

 s.close();

 writelog("Solution saved to file "+fname+" as solution "+id+".\n");

 }

 void Domain1D::setGrid(int n, const doublereal* z) {

 m_z.resize(n);

 m_points = n;

 int j;

 for (j = 0; j < m_points; j++) m_z[j] = z[j];

 }

}

105

C.2 refine.cpp

// turn off warnings under Windows

#ifdef WIN32

#pragma warning(disable:4786)

#pragma warning(disable:4503)

#endif

#include <map>

#include <algorithm>

#include "Domain1D.h"

#include "refine.h"

#include "Stflow.cpp"

using namespace std;

namespace Cantera {

 template<class M>

 bool has_key(const M& m, int j) {

 if (m.find(j) != m.end()) return true;

 return false;

 }

 static void r_drawline() {

 string s(78,'#');

 s += '\n';

 writelog(s.c_str());

 }

 /**

 * Return the square root of machine precision.

 */

 static doublereal eps() {

 doublereal e = 1.0;

 while (1.0 + e != 1.0) e *= 0.5;

 return sqrt(e);

 }

 Refiner::Refiner(Domain1D& domain) :

 m_ratio(10.0), m_slope(0.8), m_curve(0.8), m_prune(-0.001),

 m_min_range(0.01), m_domain(&domain), m_npmax(3000)

 {

 m_nv = m_domain->nComponents();

 m_active.resize(m_nv, true);

 m_thresh = eps();

 }

 int Refiner::analyze(int n, const doublereal* z,

 const doublereal* x) {

 if (n >= m_npmax) {

 writelog("max number of grid points reached ("+int2str(m_npmax)+".\n");

 return -2;

 }

 if (m_domain->nPoints() <= 1) {

 //writelog("can't refine a domain with 1 point: "+m_domain->id()+"\n");

 return 0;

 }

 m_loc.clear();

 m_c.clear();

 m_keep.clear();

106

 m_keep[0] = 1;

 m_keep[n-1] = 1;

 m_nv = m_domain->nComponents();

 // check consistency

 if (n != m_domain->nPoints())

 throw CanteraError("analyze","inconsistent");

 /**

 * find locations where cell size ratio is too large.

 */

 int j;

 vector_fp dz(n-1, 0.0);

 string name;

 doublereal vmin, vmax, smin, smax, aa, ss;

 doublereal dmax, r;

 vector_fp v(n), s(n-1);

 for (int i = 0; i < m_nv; i++) {

 if (m_active[i]) {

 name = m_domain->componentName(i);

 //writelog("refine: examining "+name+"\n");

 // get component i at all points

 for (j = 0; j < n; j++) v[j] = value(x, i, j);

 // slope of component i

 for (j = 0; j < n-1; j++)

 s[j] = (value(x, i, j+1) - value(x, i, j))/

 (z[j+1] - z[j]);

 // find the range of values and slopes

 vmin = *min_element(v.begin(), v.end());

 vmax = *max_element(v.begin(), v.end());

 smin = *min_element(s.begin(), s.end());

 smax = *max_element(s.begin(), s.end());

 // max absolute values of v and s

 aa = fmaxx(fabs(vmax), fabs(vmin));

 ss = fmaxx(fabs(smax), fabs(smin));

 // refine based on component i only if the range of v is

 // greater than a fraction 'min_range' of max |v|. This

 // eliminates components that consist of small fluctuations

 // on a constant background.

 if ((vmax - vmin) > m_min_range*aa) {

 // maximum allowable difference in value between

 // adjacent points.

 dmax = m_slope*(vmax - vmin) + m_thresh;

 for (j = 0; j < n-1; j++) {

 r = fabs(v[j+1] - v[j])/dmax;

 if (r > 1.0) {

 m_loc[j] = 1;

 m_c[name] = 1;

 //if (int(m_loc.size()) + n > m_npmax) goto done;

 }

 if (r >= m_prune) {

 m_keep[j] = 1;

 m_keep[j+1] = 1;

 }

 else {

 //writelog(string("r = ")+fp2str(r)+"\n");

 if (m_keep[j] == 0) {

 //if (m_keep[j-1] > -1 && m_keep[j+1] > -1)

 m_keep[j] = -1;

 }

107

 //if (m_keep[j+1] == 0) m_keep[j+1] = -1;

 }

 }

 }

 // refine based on the slope of component i only if the

 // range of s is greater than a fraction 'min_range' of max

 // |s|. This eliminates components that consist of small

 // fluctuations on a constant slope background.

 if ((smax - smin) > m_min_range*ss) {

 // maximum allowable difference in slope between

 // adjacent points.

 dmax = m_curve*(smax - smin) + m_thresh; // + 0.5*m_curve*(smax + smin);

 for (j = 0; j < n-2; j++) {

 r = fabs(s[j+1] - s[j]) /dmax;

 if (r > 1.0) {

 m_c[name] = 1;

 m_loc[j] = 1;

 m_loc[j+1] = 1;

 //if (int(m_loc.size()) + n > m_npmax) goto done;

 }

 if (r >= m_prune) {

 m_keep[j+1] = 1;

 }

 else {

 //writelog(string("r slope = ")+fp2str(r)+"\n");

 if (m_keep[j+1] == 0) {

 //if (m_keep[j] > -1 && m_keep[j+2] > -1)

 m_keep[j+1] = -1;

 }

 }

 }

 }

 }

 }

 //Section added so that Ts effects refinement process.

 name='Ts';

 for (j = 0; j < n; j++) v[j] = Tw[j];

 for (j = 0; j < n-1; j++)

 s[j] = (Tw[j+1] - Tw[j])/

 (z[j+1] - z[j]);

 // find the range of values and slopes

 vmin = *min_element(v.begin(), v.end());

 vmax = *max_element(v.begin(), v.end());

 smin = *min_element(s.begin(), s.end());

 smax = *max_element(s.begin(), s.end());

 // max absolute values of v and s

 aa = fmaxx(fabs(vmax), fabs(vmin));

 ss = fmaxx(fabs(smax), fabs(smin));

 // refine based on component i only if the range of v is

 // greater than a fraction 'min_range' of max |v|. This

 // eliminates components that consist of small fluctuations

 // on a constant background.

 if ((vmax - vmin) > m_min_range*aa) {

 // maximum allowable difference in value between

 // adjacent points.

 dmax = m_slope*(vmax - vmin) + m_thresh;

 for (j = 0; j < n-1; j++) {

 r = fabs(v[j+1] - v[j])/dmax;

 if (r > 1.0) {

 m_loc[j] = 1;

 m_c[name] = 1;

 //if (int(m_loc.size()) + n > m_npmax) goto done;

108

 }

 if (r >= m_prune) {

 m_keep[j] = 1;

 m_keep[j+1] = 1;

 }

 else {

 //writelog(string("r = ")+fp2str(r)+"\n");

 if (m_keep[j] == 0) {

 //if (m_keep[j-1] > -1 && m_keep[j+1] > -1)

 m_keep[j] = -1;

 }

 //if (m_keep[j+1] == 0) m_keep[j+1] = -1;

 }

 }

 }

 // refine based on the slope of component i only if the

 // range of s is greater than a fraction 'min_range' of max

 // |s|. This eliminates components that consist of small

 // fluctuations on a constant slope background.

 if ((smax - smin) > m_min_range*ss) {

 // maximum allowable difference in slope between

 // adjacent points.

 dmax = m_curve*(smax - smin) + m_thresh; // + 0.5*m_curve*(smax + smin);

 for (j = 0; j < n-2; j++) {

 r = fabs(s[j+1] - s[j]) /dmax;

 if (r > 1.0) {

 m_c[name] = 1;

 m_loc[j] = 1;

 m_loc[j+1] = 1;

 //if (int(m_loc.size()) + n > m_npmax) goto done;

 }

 if (r >= m_prune) {

 m_keep[j+1] = 1;

 }

 else {

 //writelog(string("r slope = ")+fp2str(r)+"\n");

 if (m_keep[j+1] == 0) {

 //if (m_keep[j] > -1 && m_keep[j+2] > -1)

 m_keep[j+1] = -1;

 }

 }

 }

 }

 //End of new section

 dz[0] = z[1] - z[0];

 for (j = 1; j < n-1; j++) {

 dz[j] = z[j+1] - z[j];

 if (dz[j] > m_ratio*dz[j-1]) {

 m_loc[j] = 1;

 m_c["point "+int2str(j)] = 1;

 }

 if (dz[j] < dz[j-1]/m_ratio) {

 m_loc[j-1] = 1;

 m_c["point "+int2str(j-1)] = 1;

 }

 //if (m_loc.size() + n > m_npmax) goto done;

 }

 //done:

 //m_did_analysis = true;

 return static_cast<int>(m_loc.size());

 }

 double Refiner::value(const double* x, int i, int j) {

 return x[m_domain->index(i,j)];

 }

109

 void Refiner::show() {

 int nnew = static_cast<int>(m_loc.size());

 if (nnew > 0) {

 r_drawline();

 writelog(string("Refining grid in ") +

 m_domain->id()+".\n"

 +" New points inserted after grid points ");

 map<int, int>::const_iterator b = m_loc.begin();

 for (; b != m_loc.end(); ++b) {

 writelog(int2str(b->first)+" ");

 }

 writelog("\n");

 writelog(" to resolve ");

 map<string, int>::const_iterator bb = m_c.begin();

 for (; bb != m_c.end(); ++bb) {

 writelog(string(bb->first)+" ");

 }

 writelog("\n");

 }

 else if (m_domain->nPoints() > 1) {

 writelog("no new points needed in "+m_domain->id()+"\n");

 //writelog("curve = "+fp2str(m_curve)+"\n");

 //writelog("slope = "+fp2str(m_slope)+"\n");

 //writelog("prune = "+fp2str(m_prune)+"\n");

 }

 }

 int Refiner::getNewGrid(int n, const doublereal* z,

 int nn, doublereal* zn) {

 int j;

 int nnew = static_cast<int>(m_loc.size());

 if (nnew + n > nn) {

 throw CanteraError("Refine::getNewGrid",

 "array size too small.");

 return -1;

 }

 int jn = 0;

 if (m_loc.size() == 0) {

 copy(z, z + n, zn);

 return 0;

 }

 for (j = 0; j < n - 1; j++) {

 zn[jn] = z[j];

 jn++;

 if (has_key(m_loc, j)) {

 zn[jn] = 0.5*(z[j] + z[j+1]);

 jn++;

 }

 }

 zn[jn] = z[n-1];

 return 0;

 }

}

110

C.3 Stflow.h

/**

 * @file StFlow.h

 *

 */

/*

 * $Author: hkmoffa $

 * $Revision: 1.13 $

 * $Date: 2006/03/07 20:52:16 $

 */

// Copyright 2001 California Institute of Technology

#ifndef CT_STFLOW_H

#define CT_STFLOW_H

#include "../transport/TransportBase.h"

#include "Domain1D.h"

#include "../Array.h"

#include "../IdealGasPhase.h"

#include "../Kinetics.h"

#include "../funcs.h"

//#include "../flowBoundaries.h"

namespace Cantera {

 typedef IdealGasPhase igthermo_t;

 class MultiJac;

 //--

 // constants

 //--

 // Offsets of solution components in the solution array.

 const unsigned int c_offset_U = 0; // axial velocity

 const unsigned int c_offset_V = 1; // strain rate

 const unsigned int c_offset_T = 2; // temperature

 const unsigned int c_offset_L = 3; // (1/r)dP/dr

 const unsigned int c_offset_Y = 4; // mass fractions

 // Transport option flags

 const int c_Mixav_Transport = 0;

 const int c_Multi_Transport = 1;

 const int c_Soret = 2;

 //---

 // Class StFlow

 //---

 /**

 * This class represents 1D flow domains that satisfy the

 * one-dimensional similarity solution for chemically-reacting,

 * axisymmetric, flows.

 */

 class StFlow : public Domain1D {

 public:

 //--------------------------------

 // construction and destruction

 //--------------------------------

111

 /// Constructor. Create a new flow domain.

 /// @param gas Object representing the gas phase. This object

 /// will be used to evaluate all thermodynamic, kinetic, and transport

 /// properties.

 /// @param nsp Number of species.

 StFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1);

 /// Destructor.

 virtual ~StFlow(){}

 /**

 * @name Problem Specification

 */

 //@{

 virtual void setupGrid(int n, const doublereal* z);

 thermo_t& phase() { return *m_thermo; }

 kinetics_t& kinetics() { return *m_kin; }

 virtual void init(){

 }

 /**

 * Set the thermo manager. Note that the flow equations assume

 * the ideal gas equation.

 */

 void setThermo(igthermo_t& th) { m_thermo = &th; }

 //initialize the solid solver as well as the radiant flux vector

 virtual void solid(doublereal* x, vector<double>& hconv, vector<double>& scond,

vector<double>& RK, vector<double>& Omega, double & srho, double & sCp, double rdt);

 vector<double> dq;

 //initialize the solid properties

 double pore1;

 double pore2;

 double diam1;

 double diam2;

 double Omega1;

 double Omega2;

 double srho;

 double sCp;

 /// Set the kinetics manager. The kinetics manager must

 void setKinetics(kinetics_t& kin) { m_kin = &kin; }

 /// set the transport manager

 void setTransport(Transport& trans, bool withSoret = false);

 /// Set the pressure. Since the flow equations are for the limit of

 /// small Mach number, the pressure is very nearly constant

 /// throughout the flow.

 void setPressure(doublereal p) { m_press = p; }

 /// @todo remove? may be unused

 virtual void setState(int point, const doublereal* state,

 doublereal *x) {

 setTemperature(point, state[2]);

 int k;

 for (k = 0; k < m_nsp; k++) {

 setMassFraction(point, k, state[4+k]);

 }

 }

 /// Write the initial solution estimate into

 /// array x.

 virtual void _getInitialSoln(doublereal* x) {

 int k, j;

 for (j = 0; j < m_points; j++) {

112

 x[index(2,j)] = T_fixed(j);

 for (k = 0; k < m_nsp; k++) {

 x[index(4+k,j)] = Y_fixed(k,j);

 }

 }

 }

 virtual void _finalize(const doublereal* x);

 /// Sometimes it is desired to carry out the simulation

 /// using a specified temperature profile, rather than

 /// computing it by solving the energy equation. This

 /// method specifies this profile.

 void setFixedTempProfile(vector_fp& zfixed, vector_fp& tfixed) {

 m_zfix = zfixed;

 m_tfix = tfixed;

 }

 /**

 * Set the temperature fixed point at grid point j, and

 * disable the energy equation so that the solution will be

 * held to this value.

 */

 void setTemperature(int j, doublereal t) {

 m_fixedtemp[j] = t;

 m_do_energy[j] = false;

 }

 /**

 * Set the mass fraction fixed point for species k at grid

 * point j, and disable the species equation so that the

 * solution will be held to this value.

 * note: in practice, the species are hardly ever held fixed.

 */

 void setMassFraction(int j, int k, doublereal y) {

 m_fixedy(k,j) = y;

 m_do_species[k] = true; // false;

 }

 /// The fixed temperature value at point j.

 doublereal T_fixed(int j) const {return m_fixedtemp[j];}

 /// The fixed mass fraction value of species k at point j.

 doublereal Y_fixed(int k, int j) const {return m_fixedy(k,j);}

 virtual string componentName(int n) const;

 //added by Karl Meredith

 int componentIndex(string name) const;

 virtual void showSolution(const doublereal* x);

 virtual void save(XML_Node& o, doublereal* sol);

 virtual void restore(const XML_Node& dom, doublereal* soln);

 // overloaded in subclasses

 virtual string flowType() { return "<none>"; }

 void solveEnergyEqn(int j=-1) {

 if (j < 0)

 for (int i = 0; i < m_points; i++)

 m_do_energy[i] = true;

 else

 m_do_energy[j] = true;

 m_refiner->setActive(0, true);

113

 m_refiner->setActive(1, true);

 m_refiner->setActive(2, true);

 needJacUpdate();

 }

 void fixTemperature(int j=-1) {

 if (j < 0)

 for (int i = 0; i < m_points; i++) {

 m_do_energy[i] = false;

 }

 else m_do_energy[j] = false;

 m_refiner->setActive(0, false);

 m_refiner->setActive(1, false);

 m_refiner->setActive(2, false);

 needJacUpdate();

 }

 bool doSpecies(int k) { return m_do_species[k]; }

 bool doEnergy(int j) { return m_do_energy[j]; }

 void solveSpecies(int k=-1) {

 if (k == -1) {

 for (int i = 0; i < m_nsp; i++)

 m_do_species[i] = true;

 }

 else m_do_species[k] = true;

 needJacUpdate();

 }

 void fixSpecies(int k=-1) {

 if (k == -1) {

 for (int i = 0; i < m_nsp; i++)

 m_do_species[i] = false;

 }

 else m_do_species[k] = false;

 needJacUpdate();

 }

 void integrateChem(doublereal* x,doublereal dt);

 void resize(int components, int points);

 virtual void setFixedPoint(int j0, doublereal t0){}

 void setJac(MultiJac* jac);

 void setGas(const doublereal* x,int j);

 void setGasAtMidpoint(const doublereal* x,int j);

 //Karl Meredith

 // doublereal density_unprotected(int j) const {

 // return m_rho[j];

 // }

 doublereal density(int j) const {

 return m_rho[j];

 }

 virtual bool fixed_mdot() { return true; }

 void setViscosityFlag(bool dovisc) { m_dovisc = dovisc; }

 protected:

 doublereal component(const doublereal* x, int i, int j) const {

 doublereal xx = x[index(i,j)];

 return xx;

 }

 doublereal conc(const doublereal* x,int k,int j) const {

 return Y(x,k,j)*density(j)/m_wt[k];

 }

114

 doublereal cbar(const doublereal* x,int k, int j) const {

 return sqrt(8.0*GasConstant * T(x,j) / (Pi * m_wt[k]));

 }

 doublereal wdot(int k, int j) const {return m_wdot(k,j);}

 /// write the net production rates at point j into array m_wdot

 void getWdot(doublereal* x,int j) {

 setGas(x,j);

 m_kin->getNetProductionRates(&m_wdot(0,j));

 }

 /**

 * update the thermodynamic properties from point

 * j0 to point j1 (inclusive), based on solution x.

 */

 void updateThermo(const doublereal* x, int j0, int j1) {

 int j;

 for (j = j0; j <= j1; j++) {

 setGas(x,j);

 m_rho[j] = m_thermo->density();

 m_wtm[j] = m_thermo->meanMolecularWeight();

 m_cp[j] = m_thermo->cp_mass();

 }

 }

 //--------------------------------

 // central-differenced derivatives

 //--------------------------------

 doublereal cdif2(const doublereal* x, int n, int j,

 const doublereal* f) const {

 doublereal c1 = (f[j] + f[j-1])*(x[index(n,j)] - x[index(n,j-1)]);

 doublereal c2 = (f[j+1] + f[j])*(x[index(n,j+1)] - x[index(n,j)]);

 return (c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1));

 }

 //--------------------------------

 // solution components

 //--------------------------------

 doublereal T(const doublereal* x,int j) const {

 return x[index(c_offset_T, j)];

 }

 doublereal& T(doublereal* x,int j) {return x[index(c_offset_T, j)];}

 doublereal T_prev(int j) const {return prevSoln(c_offset_T, j);}

 doublereal rho_u(const doublereal* x,int j) const {

 return m_rho[j]*x[index(c_offset_U, j)];}

 doublereal u(const doublereal* x,int j) const {

 return x[index(c_offset_U, j)];}

 doublereal V(const doublereal* x,int j) const {

 return x[index(c_offset_V, j)];}

 doublereal V_prev(int j) const {

 return prevSoln(c_offset_V, j);}

 doublereal lambda(const doublereal* x,int j) const {

 return x[index(c_offset_L, j)];

 }

 doublereal Y(const doublereal* x,int k, int j) const {

 return x[index(c_offset_Y + k, j)];

 }

 doublereal& Y(doublereal* x,int k, int j) {

 return x[index(c_offset_Y + k, j)];

115

 }

 doublereal Y_prev(int k, int j) const {

 return prevSoln(c_offset_Y + k, j);

 }

 doublereal X(const doublereal* x,int k, int j) const {

 return m_wtm[j]*Y(x,k,j)/m_wt[k];

 }

 doublereal flux(int k, int j) const {

 return m_flux(k, j);

 }

 // convective spatial derivatives. These use upwind

 // differencing, assuming u(z) is negative

 doublereal dVdz(const doublereal* x,int j) const {

 int jloc = (u(x,j) > 0.0 ? j : j + 1);

 return (V(x,jloc) - V(x,jloc-1))/m_dz[jloc-1];

 }

 doublereal dYdz(const doublereal* x,int k, int j) const {

 int jloc = (u(x,j) > 0.0 ? j : j + 1);

 return (Y(x,k,jloc) - Y(x,k,jloc-1))/m_dz[jloc-1];

 }

 doublereal dTdz(const doublereal* x,int j) const {

 int jloc = (u(x,j) > 0.0 ? j : j + 1);

 return (T(x,jloc) - T(x,jloc-1))/m_dz[jloc-1];

 }

 doublereal shear(const doublereal* x,int j) const {

 doublereal c1 = m_visc[j-1]*(V(x,j) - V(x,j-1));

 doublereal c2 = m_visc[j]*(V(x,j+1) - V(x,j));

 return 2.0*(c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1));

 }

 doublereal divHeatFlux(const doublereal* x, int j) const {

 doublereal c1 = m_tcon[j-1]*(T(x,j) - T(x,j-1));

 doublereal c2 = m_tcon[j]*(T(x,j+1) - T(x,j));

 return -2.0*(c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1));

 }

 int mindex(int k, int j, int m) {

 return m*m_nsp*m_nsp + m_nsp*j + k;

 }

 void updateDiffFluxes(const doublereal* x, int j0, int j1);

 //---

 //

 // member data

 //

 //---

 // inlet

 doublereal m_inlet_u;

 doublereal m_inlet_V;

 doublereal m_inlet_T;

 doublereal m_rho_inlet;

 vector_fp m_yin;

 // surface

 doublereal m_surface_T;

 doublereal m_press; // pressure

116

 // grid parameters

 vector_fp m_dz;

 //vector_fp m_z;

 // mixture thermo properties

 vector_fp m_rho;

 vector_fp m_wtm;

 // species thermo properties

 vector_fp m_wt;

 vector_fp m_cp;

 vector_fp m_enth;

 // transport properties

 vector_fp m_visc;

 vector_fp m_tcon;

 vector_fp m_diff;

 vector_fp m_multidiff;

 Array2D m_dthermal;

 Array2D m_flux;

 // production rates

 Array2D m_wdot;

 vector_fp m_surfdot;

 int m_nsp;

 igthermo_t* m_thermo;

 kinetics_t* m_kin;

 Transport* m_trans;

 MultiJac* m_jac;

 bool m_ok;

 // flags

 vector<bool> m_do_energy;

 bool m_do_soret;

 vector<bool> m_do_species;

 int m_transport_option;

 // solution estimate

 //vector_fp m_zest;

 //Array2D m_yest;

 // fixed T and Y values

 Array2D m_fixedy;

 vector_fp m_fixedtemp;

 vector_fp m_zfix;

 vector_fp m_tfix;

 doublereal m_efctr;

 bool m_dovisc;

 void updateTransport(doublereal* x,int j0, int j1);

 private:

 vector_fp m_ybar;

 };

 /**

 * A class for axisymmetric stagnation flows.

 */

 class AxiStagnFlow : public StFlow {

 friend class OneDim;

 public:

 AxiStagnFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1) :

 StFlow(ph, nsp, points) { m_dovisc = true; }

 virtual ~AxiStagnFlow() {}

 virtual void eval(int j, doublereal* x, doublereal* r,

117

 integer* mask, doublereal rdt);

 virtual string flowType() { return "Axisymmetric Stagnation"; }

 };

 /**

 * A class for freely-propagating premixed flames.

 */

 class FreeFlame : public StFlow {

 public:

 FreeFlame(igthermo_t* ph = 0, int nsp = 1, int points = 1) :

 StFlow(ph, nsp, points) { m_dovisc = false; }

 virtual ~FreeFlame() {}

 virtual void eval(int j, doublereal* x, doublereal* r,

 integer* mask, doublereal rdt);

 virtual string flowType() { return "Free Flame"; }

 virtual bool fixed_mdot() { return false; }

 };

 /*

 class OneDFlow : public StFlow {

 public:

 OneDFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1) :

 StFlow(ph, nsp, points) {

 }

 virtual ~OneDFlow() {}

 virtual void eval(int j, doublereal* x, doublereal* r,

 integer* mask, doublereal rdt);

 virtual string flowType() { return "OneDFlow"; }

 doublereal mdot(doublereal* x, int j) {

 return x[index(c_offset_L,j)];

 }

 private:

 void updateTransport(doublereal* x,int j0, int j1);

 };

 */

 void importSolution(doublereal* oldSoln, igthermo_t& oldmech,

 doublereal* newSoln, igthermo_t& newmech);

}

#endif

118

C.4 Stflow.cpp

/**

 * @file StFlow.cpp

 */

/*

 * $Author: dggoodwin $

 * $Revision: 1.29 $

 * $Date: 2006/04/28 17:22:23 $

 */

// Copyright 2002 California Institute of Technology

// turn off warnings under Windows

#ifdef WIN32

#pragma warning(disable:4786)

#pragma warning(disable:4503)

#pragma warning(disable:4267)

#endif

#include <stdlib.h>

#include <time.h>

#include <vector>

#include <fstream>

#include "StFlow.h"

#include "../ArrayViewer.h"

#include "../ctml.h"

#include "MultiJac.h"

#include "OneDim.cpp"

using namespace ctml;

using namespace std;

namespace Cantera {

 //initialize solid temperature vector, the previous temperature profile, the previous

mesh,

 //the heat transfer coefficient, and no adaption

 vector<double> Tw;

 vector<double> Twprev;

 vector<double> Twprev1;

 vector<double> zprev;

 vector<double> hconv;

 int adapt=0;

 //------------------- importSolution ------------------------

 /**

 * Import a previous solution to use as an initial estimate. The

 * previous solution may have been computed using a different

 * reaction mechanism. Species in the old and new mechanisms are

 * matched by name, and any species in the new mechanism that were

 * not in the old one are set to zero. The new solution is created

 * with the same number of grid points as in the old solution.

 */

 void importSolution(int points,

 doublereal* oldSoln, igthermo_t& oldmech,

 int size_new, doublereal* newSoln, igthermo_t& newmech) {

 // Number of components in old and new solutions

 int nv_old = oldmech.nSpecies() + 4;

 int nv_new = newmech.nSpecies() + 4;

 if (size_new < nv_new*points) {

 throw CanteraError("importSolution",

 "new solution array must have length "+

119

 int2str(nv_new*points));

 }

 int n, j, knew;

 string nm;

 // copy u,V,T,lambda

 for (j = 0; j < points; j++)

 for (n = 0; n < 4; n++)

 newSoln[nv_new*j + n] = oldSoln[nv_old*j + n];

 // copy mass fractions

 int nsp0 = oldmech.nSpecies();

 //int nsp1 = newmech.nSpecies();

 // loop over the species in the old mechanism

 for (int k = 0; k < nsp0; k++) {

 nm = oldmech.speciesName(k); // name

 // location of this species in the new mechanism.

 // If < 0, then the species is not in the new mechanism.

 knew = newmech.speciesIndex(nm);

 // copy this species from the old to the new solution vectors

 if (knew >= 0) {

 for (j = 0; j < points; j++) {

 newSoln[nv_new*j + 4 + knew] = oldSoln[nv_old*j + 4 + k];

 }

 }

 }

 // normalize mass fractions

 for (j = 0; j < points; j++) {

 newmech.setMassFractions(&newSoln[nv_new*j + 4]);

 newmech.getMassFractions(&newSoln[nv_new*j + 4]);

 }

 }

 static void st_drawline() {

 writelog("\n-------------------------------------"

 "--");

 }

 StFlow::StFlow(igthermo_t* ph, int nsp, int points) :

 Domain1D(nsp+4, points),

 m_inlet_u(0.0),

 m_inlet_V(0.0),

 m_inlet_T(-1.0),

 m_surface_T(-1.0),

 m_press(-1.0),

 m_nsp(nsp),

 m_thermo(0),

 m_kin(0),

 m_trans(0),

 m_jac(0),

 m_ok(false),

 m_do_soret(false),

 m_transport_option(-1),

 m_efctr(0.0)

 {

 m_type = cFlowType;

 m_points = points;

 m_thermo = ph;

 if (ph == 0) return; // used to create a dummy object

 int nsp2 = m_thermo->nSpecies();

 if (nsp2 != m_nsp) {

120

 m_nsp = nsp2;

 Domain1D::resize(m_nsp+4, points);

 }

 // make a local copy of the species molecular weight vector

 m_wt = m_thermo->molecularWeights();

 // the species mass fractions are the last components in the solution

 // vector, so the total number of components is the number of species

 // plus the offset of the first mass fraction.

 m_nv = c_offset_Y + m_nsp;

 // enable all species equations by default

 m_do_species.resize(m_nsp, true);

 // but turn off the energy equation at all points

 m_do_energy.resize(m_points,false);

 m_diff.resize(m_nsp*m_points);

 m_multidiff.resize(m_nsp*m_nsp*m_points);

 m_flux.resize(m_nsp,m_points);

 m_wdot.resize(m_nsp,m_points, 0.0);

 m_surfdot.resize(m_nsp, 0.0);

 m_ybar.resize(m_nsp);

 //-------------- default solution bounds --------------------

 vector_fp vmin(m_nv), vmax(m_nv);

 // no bounds on u

 vmin[0] = -1.e20;

 vmax[0] = 1.e20;

 // V

 vmin[1] = -1.e20;

 vmax[1] = 1.e20;

 // temperature bounds

 vmin[2] = 200.0;

 vmax[2]= 1.e9;

 // lamda should be negative

 vmin[3] = -1.e20;

 vmax[3] = 1.e20;

 // mass fraction bounds

 int k;

 for (k = 0; k < m_nsp; k++) {

 vmin[4+k] = -1.0e-5;

 vmax[4+k] = 1.0e5;

 }

 setBounds(vmin.size(), DATA_PTR(vmin), vmax.size(), DATA_PTR(vmax));

 //-------------------- default error tolerances ----------------

 vector_fp rtol(m_nv, 1.0e-8);

 vector_fp atol(m_nv, 1.0e-15);

 setTolerances(rtol.size(), DATA_PTR(rtol), atol.size(), DATA_PTR(atol),false);

 setTolerances(rtol.size(), DATA_PTR(rtol), atol.size(), DATA_PTR(atol),true);

 //-------------------- grid refinement -------------------------

 m_refiner->setActive(0, false);

 m_refiner->setActive(1, false);

 m_refiner->setActive(2, false);

 m_refiner->setActive(3, false);

 vector_fp gr;

 for (int ng = 0; ng < m_points; ng++) gr.push_back(1.0*ng/m_points);

 setupGrid(m_points, DATA_PTR(gr));

121

 setID("stagnation flow");

 ifstream in("Properties2.txt"); //Read in the solid properties

 double proper;

 in>>proper;

 pore1=proper;

 in>>proper;

 pore2=proper;

 in>>proper;

 diam1=proper;

 in>>proper;

 diam2=proper;

 in>>proper;

 Omega1=proper;

 in>>proper;

 Omega2=proper;

 in>>proper;

 srho=proper;

 in>>proper;

 sCp=proper;

 in.close();

 }

 /**

 * Change the grid size. Called after grid refinement.

 */

 void StFlow::resize(int ncomponents, int points) {

 Domain1D::resize(ncomponents, points);

 m_rho.resize(m_points, 0.0);

 m_wtm.resize(m_points, 0.0);

 m_cp.resize(m_points, 0.0);

 m_enth.resize(m_points, 0.0);

 m_visc.resize(m_points, 0.0);

 m_tcon.resize(m_points, 0.0);

 if (m_transport_option == c_Mixav_Transport) {

 m_diff.resize(m_nsp*m_points);

 }

 else {

 m_multidiff.resize(m_nsp*m_nsp*m_points);

 m_diff.resize(m_nsp*m_points);

 }

 m_flux.resize(m_nsp,m_points);

 m_wdot.resize(m_nsp,m_points, 0.0);

 m_do_energy.resize(m_points,false);

 m_fixedy.resize(m_nsp, m_points);

 m_fixedtemp.resize(m_points);

 m_dz.resize(m_points-1);

 m_z.resize(m_points);

 }

 void StFlow::setupGrid(int n, const doublereal* z) {

 resize(m_nv, n);

 int j;

 m_z[0] = z[0];

 for (j = 1; j < m_points; j++) {

 m_z[j] = z[j];

 m_dz[j-1] = m_z[j] - m_z[j-1];

 }

 }

 /**

 * Install a transport manager.

 */

122

 void StFlow::setTransport(Transport& trans, bool withSoret) {

 m_trans = &trans;

 m_do_soret = withSoret;

 if (m_trans->model() == cMulticomponent) {

 m_transport_option = c_Multi_Transport;

 m_multidiff.resize(m_nsp*m_nsp*m_points);

 m_diff.resize(m_nsp*m_points);

 m_dthermal.resize(m_nsp, m_points, 0.0);

 }

 else if (m_trans->model() == cMixtureAveraged) {

 m_transport_option = c_Mixav_Transport;

 m_diff.resize(m_nsp*m_points);

 if (withSoret)

 throw CanteraError("setTransport",

 "Thermal diffusion (the Soret effect) "

 "requires using a multicomponent transport model.");

 }

 else

 throw CanteraError("setTransport","unknown transport model.");

 }

 /**

 * Set the gas object state to be consistent with the solution at

 * point j.

 */

 void StFlow::setGas(const doublereal* x,int j) {

 m_thermo->setTemperature(T(x,j));

 const doublereal* yy = x + m_nv*j + c_offset_Y;

 m_thermo->setMassFractions_NoNorm(yy);

 m_thermo->setPressure(m_press);

 }

 /**

 * Set the gas state to be consistent with the solution at the

 * midpoint between j and j + 1.

 */

 void StFlow::setGasAtMidpoint(const doublereal* x,int j) {

 m_thermo->setTemperature(0.5*(T(x,j)+T(x,j+1)));

 const doublereal* yyj = x + m_nv*j + c_offset_Y;

 const doublereal* yyjp = x + m_nv*(j+1) + c_offset_Y;

 for (int k = 0; k < m_nsp; k++)

 m_ybar[k] = 0.5*(yyj[k] + yyjp[k]);

 m_thermo->setMassFractions_NoNorm(DATA_PTR(m_ybar));

 m_thermo->setPressure(m_press);

 }

 void StFlow::_finalize(const doublereal* x) {

 int k, j;

 doublereal zz, tt;

 int nz = m_zfix.size();

 bool e = m_do_energy[0];

 for (j = 0; j < m_points; j++) {

 if (e || nz == 0)

 setTemperature(j, T(x, j));

 else {

 zz = (z(j) - z(0))/(z(m_points - 1) - z(0));

 tt = linearInterp(zz, m_zfix, m_tfix);

 setTemperature(j, tt);

 }

 for (k = 0; k < m_nsp; k++) {

 setMassFraction(j, k, Y(x, k, j));

 }

 }

 if (e) solveEnergyEqn();

 }

123

 //--

 /**

 * Evaluate the residual function for axisymmetric stagnation

 * flow. If jpt is less than zero, the residual function is

 * evaluated at all grid points. If jpt >= 0, then the residual

 * function is only evaluated at grid points jpt-1, jpt, and

 * jpt+1. This option is used to efficiently evaluate the

 * Jacobian numerically.

 *

 */

 void AxiStagnFlow::eval(int jg, doublereal* xg,

 doublereal* rg, integer* diagg, doublereal rdt) {

 // if evaluating a Jacobian, and the global point is outside

 // the domain of influence for this domain, then skip

 // evaluating the residual

 if (jg >=0 && (jg < firstPoint() - 1 || jg > lastPoint() + 1)) return;

 // if evaluating a Jacobian, compute the steady-state residual

 if (jg >= 0) rdt = 0.0;

 // start of local part of global arrays

 doublereal* x = xg + loc();

 doublereal* rsd = rg + loc();

 integer* diag = diagg + loc();

 int jmin, jmax, jpt;

 jpt = jg - firstPoint();

 if (jg < 0) { // evaluate all points

 jmin = 0;

 jmax = m_points - 1;

 }

 else { // evaluate points for Jacobian

 jmin = max(jpt-1, 0);

 jmax = min(jpt+1,m_points-1);

 }

 // properties are computed for grid points from j0 to j1

 int j0 = max(jmin-1,0);

 int j1 = min(jmax+1,m_points-1);

 int j, k;

 //---

 // update properties

 //---

 // update thermodynamic properties only if a Jacobian is not

 // being evaluated

 if (jpt < 0) { //if (jpt < 0 || (m_transport_option == c_Multi_Transport)) {

 updateThermo(x, j0, j1);

 // update transport properties only if a Jacobian is not being

 // evaluated

 updateTransport(x, j0, j1);

 }

 // update the species diffusive mass fluxes whether or not a

 // Jacobian is being evaluated

 updateDiffFluxes(x, j0, j1);

 //--

 // evaluate the residual equations at all required

 // grid points

 //--

124

 doublereal sum, sum2, dtdzj;

 doublereal lam, visc, Re; //Defining new variables.

 double length=m_points; //

 hconv.resize(length); //

 //initialize property vectors

 vector<double> pore(length);

 vector<double> diam(length);

 vector<double> scond(length);

 vector<double> Omega(length);

 vector<double> Cmult(length);

 vector<double> mpow(length);

 vector<double> RK(length);

 //populate property vectors

 for (int i=0; i<=length-1;i++)

 {

 if (z(i)<0.033)

 {

 pore[i]=pore1;

 diam[i]=diam1;

 }

 else if (z(i)>0.037)

 {

 pore[i]=pore2;

 diam[i]=diam2;

 }

 else

 {

 pore[i]=(((pore2-pore1)/(.037-.033))*(z(i)-0.033))+pore1;

 diam[i]=(((diam2-diam1)/(.037-.033))*(z(i)-0.033))+diam1;

 }

 RK[i]=(3*(1-pore[i])/diam[i]);

 Cmult[i]=-400*diam[i]+0.687;

 mpow[i]=443.7*diam[i]+0.361;

 scond[i]=0.188-17.5*diam[i];

 }

 for (int i=0; i<=length-1;i++)

 {

 if (z(i)<0.035)

 {

 Omega[i]=Omega1;

 }

 else

 {

 Omega[i]=Omega2;

 }

 }

 int solidenergy=0;

 //loop over gas energy vecotr. If it is going to be solved then find hv

 for(j=jmin;j<=jmax;j++)

 {

 solidenergy+=m_do_energy[j];

 }

 solidenergy=1;

 if (solidenergy!=0)

 {

 for (j = jmin; j <= jmax; j++)

 {

 lam=m_tcon[j];

 visc=m_visc[j];

 Re=(rho_u(x,j)*pore[j]*diam[j])/visc;

 hconv[j]=((lam*Cmult[j]*pow(Re,mpow[j]))/pow(diam[j],2));

 }

 //Solve for the solid profile if required

 if (dosolid==1)

 {

125

 solid(x,hconv,scond,RK,Omega,srho,sCp,rdt);

 dosolid=0;

 }

 }

 for (j = jmin; j <= jmax; j++) {

 //--

 // left boundary

 //--

 if (j == 0) {

 // these may be modified by a boundary object

 // Continuity. This propagates information right-to-left,

 // since rho_u at point 0 is dependent on rho_u at point 1,

 // but not on mdot from the inlet.

 rsd[index(c_offset_U,0)] =

 -(rho_u(x,1) - rho_u(x,0))/m_dz[0]

 -(density(1)*V(x,1) + density(0)*V(x,0));

 // the inlet (or other) object connected to this one

 // will modify these equations by subtracting its values

 // for V, T, and mdot. As a result, these residual equations

 // will force the solution variables to the values for

 // the boundary object

 rsd[index(c_offset_V,0)] = V(x,0);

 rsd[index(c_offset_T,0)] = T(x,0);

 rsd[index(c_offset_L,0)] = -rho_u(x,0);

 // The default boundary condition for species is zero

 // flux. However, the boundary object may modify

 // this.

 sum = 0.0;

 for (k = 0; k < m_nsp; k++) {

 sum += Y(x,k,0);

 rsd[index(c_offset_Y + k, 0)] =

 -(m_flux(k,0) + rho_u(x,0)* Y(x,k,0));

 }

 rsd[index(c_offset_Y, 0)] = 1.0 - sum;

 }

 //--

 //

 // right boundary

 //

 //--

 else if (j == m_points - 1) {

 // the boundary object connected to the right of this

 // one may modify or replace these equations. The

 // default boundary conditions are zero u, V, and T,

 // and zero diffusive flux for all species.

 rsd[index(0,j)] = rho_u(x,j);

 rsd[index(1,j)] = V(x,j);

 rsd[index(2,j)] = T(x,j);

 rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1);

 diag[index(c_offset_L, j)] = 0;

 doublereal sum = 0.0;

 for (k = 0; k < m_nsp; k++) {

 sum += Y(x,k,j);

 rsd[index(k+4,j)] = m_flux(k,j-1) + rho_u(x,j)*Y(x,k,j);

 }

 rsd[index(4,j)] = 1.0 - sum;

 diag[index(4,j)] = 0;

126

 }

 //--

 // interior points

 //--

 else {

 //--

 // Continuity equation

 //

 // Note that this propagates the mass flow rate

 // information to the left (j+1 -> j) from the

 // value specified at the right boundary. The

 // lambda information propagates in the opposite

 // direction.

 //

 // d(\rho u)/dz + 2\rho V = 0

 //

 //--

 rsd[index(c_offset_U,j)] =

 -(rho_u(x,j+1)*pore[j+1] - rho_u(x,j)*pore[j])/m_dz[j] //added porosity

 -(density(j+1)*V(x,j+1) + density(j)*V(x,j));

 //algebraic constraint

 diag[index(c_offset_U, j)] = 0;

 //--

 // Radial momentum equation

 //

 // \rho u dV/dz + \rho V^2 = d(\mu dV/dz)/dz - lambda

 //

 //---

 rsd[index(c_offset_V,j)]

 = (shear(x,j) - lambda(x,j) - rho_u(x,j)*dVdz(x,j)

 - m_rho[j]*V(x,j)*V(x,j))/m_rho[j]

 - rdt*(V(x,j) - V_prev(j));

 diag[index(c_offset_V, j)] = 1;

 //---

 // Species equations

 //

 // \rho u dY_k/dz + dJ_k/dz + M_k\omega_k

 //

 //---

 getWdot(x,j);

 doublereal convec, diffus;

 for (k = 0; k < m_nsp; k++) {

 convec = rho_u(x,j)*dYdz(x,k,j)*pore[j]; //added porosity

 diffus = 2.0*(m_flux(k,j)*pore[j] - m_flux(k,j-1)*pore[j-1]) //added

porosity

 /(z(j+1) - z(j-1));

 rsd[index(c_offset_Y + k, j)]

 = (m_wt[k]*(wdot(k,j)*pore[j]) //added porosity

 - convec - diffus)/(m_rho[j]*pore[j]) //added porosity

 - rdt*(Y(x,k,j) - Y_prev(k,j));

 diag[index(c_offset_Y + k, j)] = 1;

 }

 //---

 // energy equation

 //---

 if (m_do_energy[j]) {

127

 setGas(x,j);

 // heat release term

 const vector_fp& h_RT = m_thermo->enthalpy_RT_ref();

 const vector_fp& cp_R = m_thermo->cp_R_ref();

 sum = 0.0;

 sum2 = 0.0;

 doublereal flxk;

 for (k = 0; k < m_nsp; k++) {

 flxk = 0.5*(m_flux(k,j-1) + m_flux(k,j));

 sum += wdot(k,j)*h_RT[k];

 sum2 += flxk*cp_R[k]/m_wt[k];

 }

 sum *= GasConstant * T(x,j);

 dtdzj = dTdz(x,j);

 sum2 *= GasConstant * dtdzj;

 rsd[index(c_offset_T, j)] =

 - m_cp[j]*rho_u(x,j)*dtdzj

 - divHeatFlux(x,j) - sum - sum2;

 rsd[index(c_offset_T, j)] =

 //adding of convective term

 rsd[index(c_offset_T, j)] - (hconv[j]*(T(x,j)-

Tw[j]))/pore[j]; //

 rsd[index(c_offset_T, j)] /= (m_rho[j]*m_cp[j]);

 rsd[index(c_offset_T, j)] =

 rsd[index(c_offset_T, j)] + m_efctr*(T_fixed(j) - T(x,j));

 rsd[index(c_offset_T, j)] -= rdt*(T(x,j) - T_prev(j));

 diag[index(c_offset_T, j)] = 1;

 }

 // residual equations if the energy equation is disabled

 if (!m_do_energy[j]) {

 rsd[index(c_offset_T, j)] = T(x,j) - T_fixed(j);

 diag[index(c_offset_T, j)] = 0;

 }

 rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1);

 diag[index(c_offset_L, j)] = 0;

 }

 }

 }

 //Solid solver

 void StFlow::solid(doublereal* x, vector<double> &hconv, vector<double>& scond,

vector<double>& RK, vector<double>&Omega,double & srho,double & sCp, double rdt) {

 writelog("Computing Solid Temperature Field...");

 double length=m_points; //

 Tw.resize(length);

 Twprev.resize(length);

 dq.resize(length);

 if (adapt==1)

 {

 int j=0;

 //Ensures solid profile has the correct number of points after an adaption

 for (int i=0;i<=length-1;i++)

 {

 if (z(i)==zprev[j]) //same point

 {

 Twprev[i]=Twprev1[j];

 j++;

 }

 else if (z(i)>zprev[j]) //deleted point

128

 {

 i--;

 j++;

 }

 else if (z(i)<zprev[j]) //added point

 {

 if (i==1)

 {

 Twprev[i]=Twprev[i-1];

 }

 else

 {

 Twprev[i]=Twprev[i-1]+(Twprev[i-1]-Twprev[i-2])*((z(i)-z(i-

1))/(z(i-1)-z(i-2)));

 }

 }

 }

 }

 adapt=1;

 zprev.resize(length);

 Twprev1.resize(length);

 //Start of Conduction Radiation Stuff

 //

 //Vector Iinitialization

 vector<double> edia(length);

 vector<double> fdia(length);

 vector<double> gdia(length);

 vector<double> rhs(length);

 vector<double> dqnew(length);

 double sigma=0.0000000567;

 double change1=1;

 //Vector Population

 for(int i=0;i<=length-1;i++)

 {

 dq[i]=0;

 }

 double T0=300;

 double T1=300;

 int count1=0;

 int fail1=0;

 while (change1>0.000001)

 {

 count1=count1+1;

 for(int i=0;i<=length-1;i++)

 {

 if (i==0)

 {

 edia[i]=0;

 fdia[i]=1;

 gdia[i]=-1;

 rhs[i]=0;

 }

 else if (i==length-1)

 {

 edia[i]=-1;

 fdia[i]=1;

 gdia[i]=0;

 rhs[i]=0;

 }

 else

 {

 edia[i]=(2*scond[i])/((z(i)-z(i-1))*(z(i+1)-z(i-1)));

 fdia[i]=-(2*scond[i])/((z(i+1)-z(i))*(z(i+1)-z(i-1)))-

(2*scond[i])/((z(i)-z(i-1))*(z(i+1)-z(i-1)))-hconv[i]-srho*sCp*rdt;

 gdia[i]=(2*scond[i])/((z(i+1)-z(i))*(z(i+1)-z(i-1)));

 rhs[i]=-hconv[i]*T(x,i)+dq[i]-srho*sCp*rdt*Twprev[i];

 }

 }

129

 //Decomposition

 for(int i=1;i<=length-1;i++)

 {

 edia[i]=edia[i]/fdia[i-1];

 fdia[i]=fdia[i]-edia[i]*gdia[i-1];

 }

 //Forward Substitution

 for(int i=1;i<=length-1;i++)

 {

 rhs[i]=rhs[i]-edia[i]*rhs[i-1];

 }

 //Back Substitution

 Tw[length-1]=rhs[length-1]/fdia[length-1];

 for(int i=length-2;i>=0;i--)

 {

 Tw[i]=(rhs[i]-gdia[i]*Tw[i+1])/fdia[i];

 }

 T0=Tw[0];

 T1=Tw[length-1];

 //Radiation Time

 //Vector Initialization

 vector<double> qplus(length);

 vector<double> qpnew(length);

 vector<double> qminus(length);

 vector<double> qmnew(length);

 double change2=1;

 //Vector Population

 for(int i=0;i<=length-1;i++)

 {

 double temp=T(x,i);

 double temp2;

 if (i==0)

 {

 qplus[i]=sigma*pow(temp,4);

 qpnew[i]=sigma*pow(temp,4);

 qminus[i]=0;

 qmnew[i]=0;

 temp2=temp;

 }

 else if (i==length-1)

 {

 qplus[i]=0;

 qpnew[i]=0;

 qminus[i]=sigma*pow(temp2,4);

 qmnew[i]=sigma*pow(temp2,4);

 }

 else

 {

 qplus[i]=0;

 qpnew[i]=0;

 qminus[i]=0;

 qmnew[i]=0;

 }

 }

 int count=0;

 int fail=0;

 S2 method

 while (change2>0.000001)

 {

 count=count+1;

 for(int i=1;i<=length-1;i++)

 {

 double temp=Tw[i];

 qpnew[i]=(qpnew[i-1]+RK[i]*(z(i)-z(i-

1))*Omega[i]*qminus[i]+2*RK[i]*(z(i)-z(i-1))*(1-Omega[i])*sigma*pow(temp,4))/(1+(z(i)-z(i-

1))*RK[i]*(2-Omega[i]));

 }

 for(int i=length-2;i>=0;i--)

130

 {

 double temp=Tw[i];

 qmnew[i]=(qmnew[i+1]+RK[i]*(z(i+1)-

z(i))*Omega[i]*qpnew[i]+2*RK[i]*(z(i+1)-z(i))*(1-Omega[i])*sigma*pow(temp,4))/(1+(z(i+1)-

z(i))*RK[i]*(2-Omega[i]));

 }

 double norm1=0;

 double norm2=0;

 for(int i=0;i<=length-1;i++)

 {

 norm1+=(qpnew[i]-qplus[i])*(qpnew[i]-qplus[i]);

 norm2+=(qmnew[i]-qminus[i])*(qmnew[i]-qminus[i]);

 qplus[i]=qpnew[i];

 qminus[i]=qmnew[i];

 }

 norm1=sqrt(norm1);

 norm2=sqrt(norm2);

 if (count>100)

 {

 change2=0;

 fail=1;

 }

 else

 {

 change2=max(norm1,norm2);

 }

 }

 if (fail==1)

 {

 for(int i=0;i<=length-1;i++)

 {

 dqnew[i]=dq[i];

 }

 writelog("Rad Stall");

 }

 else

 {

 for(int i=0;i<=length-1;i++)

 {

 double temp=Tw[i];

 dqnew[i]=4*RK[i]*(1-Omega[i])*(sigma*pow(temp,4)-

0.5*qplus[i]-0.5*qminus[i]);

 }

 }

 double norm=0;

 double a=0.1;

 for (int i=0;i<=length-1;i++)

 {

 norm+=(dqnew[i]-dq[i])*(dqnew[i]-dq[i]);

 dq[i]=a*dqnew[i]+(1-a)*dq[i];

 }

 if (count1>400)

 {

 fail1=1;

 change1=0;

 }

 else

 {

 change1=sqrt(norm);

 }

 }

 if (fail1==1)

 {

 for (int i=0;i<=length-1;i++)

 {

 Tw[i]=Twprev1[i];

 }

 writelog("Rad not Converged");

 }

 for (int i=0;i<=length-1;i++)

 {

131

 Twprev1[i]=Tw[i];

 zprev[i]=z(i);

 }

 writelog("Success\n");

 //

 //End of Newly Added Conduction Radiation Stuff

 }

 /**

 * Update the transport properties at grid points in the range

 * from j0 to j1, based on solution x.

 */

 void StFlow::updateTransport(doublereal* x,int j0, int j1) {

 int j,k,m;

 if (m_transport_option == c_Mixav_Transport) {

 for (j = j0; j < j1; j++) {

 setGasAtMidpoint(x,j);

 m_visc[j] = m_trans->viscosity();

 m_trans->getMixDiffCoeffs(DATA_PTR(m_diff) + j*m_nsp);

 m_tcon[j] = m_trans->thermalConductivity();

 }

 }

 else if (m_transport_option == c_Multi_Transport) {

 doublereal sum, sumx, wtm, dz;

 doublereal eps = 1.0e-12;

 for (m = j0; m < j1; m++) {

 setGasAtMidpoint(x,m);

 dz = m_z[m+1] - m_z[m];

 wtm = m_thermo->meanMolecularWeight();

 m_visc[j] = m_trans->viscosity();

 m_trans->getMultiDiffCoeffs(m_nsp,

 DATA_PTR(m_multidiff) + mindex(0,0,m));

 for (k = 0; k < m_nsp; k++) {

 sum = 0.0;

 sumx = 0.0;

 for (j = 0; j < m_nsp; j++) {

 if (j != k) {

 sum += m_wt[j]*m_multidiff[mindex(k,j,m)]*

 ((X(x,j,m+1) - X(x,j,m))/dz + eps);

 sumx += (X(x,j,m+1) - X(x,j,m))/dz;

 }

 }

 m_diff[k + m*m_nsp] = sum/(wtm*(sumx+eps));

 }

 m_tcon[m] = m_trans->thermalConductivity();

 if (m_do_soret) {

 m_trans->getThermalDiffCoeffs(m_dthermal.ptrColumn(0) + m*m_nsp);

 }

 }

 }

 }

 //--

 /**

 * Evaluate the residual function for axisymmetric stagnation

 * flow. If jpt is less than zero, the residual function is

 * evaluated at all grid points. If jpt >= 0, then the residual

 * function is only evaluated at grid points jpt-1, jpt, and

 * jpt+1. This option is used to efficiently evaluate the

 * Jacobian numerically.

 *

 */

132

 void FreeFlame::eval(int jg, doublereal* xg,

 doublereal* rg, integer* diagg, doublereal rdt) {

 // if evaluating a Jacobian, and the global point is outside

 // the domain of influence for this domain, then skip

 // evaluating the residual

 if (jg >=0 && (jg < firstPoint() - 1 || jg > lastPoint() + 1)) return;

 // if evaluating a Jacobian, compute the steady-state residual

 if (jg >= 0) rdt = 0.0;

 // start of local part of global arrays

 doublereal* x = xg + loc();

 doublereal* rsd = rg + loc();

 integer* diag = diagg + loc();

 int jmin, jmax, jpt;

 jpt = jg - firstPoint();

 if (jg < 0) { // evaluate all points

 jmin = 0;

 jmax = m_points - 1;

 }

 else { // evaluate points for Jacobian

 jmin = max(jpt-1, 0);

 jmax = min(jpt+1,m_points-1);

 }

 // properties are computed for grid points from j0 to j1

 int j0 = max(jmin-1,0);

 int j1 = min(jmax+1,m_points-1);

 int j, k;

 //---

 // update properties

 //---

 // update thermodynamic properties only if a Jacobian is not

 // being evaluated

 if (jpt < 0) {

 updateThermo(x, j0, j1);

 updateTransport(x, j0, j1);

 }

 // update the species diffusive mass fluxes whether or not a

 // Jacobian is being evaluated

 updateDiffFluxes(x, j0, j1);

 //--

 // evaluate the residual equations at all required

 // grid points

 //--

 doublereal sum, sum2, dtdzj;

 for (j = jmin; j <= jmax; j++) {

 //--

 // left boundary

 //--

 if (j == 0) {

 // these may be modified by a boundary object

 // Continuity. This propagates information right-to-left,

133

 // since rho_u at point 0 is dependent on rho_u at point 1,

 // but not on mdot from the inlet.

 rsd[index(c_offset_U,0)] =

 -(rho_u(x,1) - rho_u(x,0))/m_dz[0]

 -(density(1)*V(x,1) + density(0)*V(x,0));

 // the inlet (or other) object connected to this one

 // will modify these equations by subtracting its values

 // for V, T, and mdot. As a result, these residual equations

 // will force the solution variables to the values for

 // the boundary object

 rsd[index(c_offset_V,0)] = V(x,0);

 rsd[index(c_offset_T,0)] = T(x,0);

 rsd[index(c_offset_L,0)] = -rho_u(x,0);

 // The default boundary condition for species is zero

 // flux

 sum = 0.0;

 for (k = 0; k < m_nsp; k++) {

 sum += Y(x,k,0);

 rsd[index(c_offset_Y + k, 0)] =

 -(m_flux(k,0) + rho_u(x,0)* Y(x,k,0));

 }

 rsd[index(c_offset_Y, 0)] = 1.0 - sum;

 }

 //--

 //

 // right boundary

 //

 //--

 else if (j == m_points - 1) {

 // the boundary object connected to the right of this

 // one may modify or replace these equations. The

 // default boundary conditions are zero u, V, and T,

 // and zero diffusive flux for all species.

 // zero gradient

 rsd[index(0,j)] = rho_u(x,j) - rho_u(x,j-1);

 rsd[index(1,j)] = V(x,j);

 rsd[index(2,j)] = T(x,j) - T(x,j-1);

 doublereal sum = 0.0;

 rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1);

 diag[index(c_offset_L, j)] = 0;

 for (k = 0; k < m_nsp; k++) {

 sum += Y(x,k,j);

 rsd[index(k+4,j)] = m_flux(k,j-1) + rho_u(x,j)*Y(x,k,j);

 }

 rsd[index(4,j)] = 1.0 - sum;

 diag[index(4,j)] = 0;

 }

 //--

 // interior points

 //--

 else {

 //--

 // Continuity equation

 //--

 if (grid(j) > m_zfixed){

 rsd[index(c_offset_U,j)] =

 - (rho_u(x,j) - rho_u(x,j-1))/m_dz[j-1]

 - (density(j-1)*V(x,j-1) + density(j)*V(x,j));

 }

134

 else if (grid(j) == m_zfixed){

 if (m_do_energy[j]) {

 rsd[index(c_offset_U,j)] = (T(x,j) - m_tfixed);

 }

 else {

 rsd[index(c_offset_U,j)] = (rho_u(x,j)

 - m_rho[0]*0.3);

 }

 }

 else if(grid(j) < m_zfixed){

 rsd[index(c_offset_U,j)] =

 - (rho_u(x,j+1) - rho_u(x,j))/m_dz[j]

 - (density(j+1)*V(x,j+1) + density(j)*V(x,j));

 }

 //algebraic constraint

 diag[index(c_offset_U, j)] = 0;

 //--

 // Radial momentum equation

 //

 // \rho u dV/dz + \rho V^2 = d(\mu dV/dz)/dz - lambda

 //

 //---

 rsd[index(c_offset_V,j)]

 = (shear(x,j) - lambda(x,j) - rho_u(x,j)*dVdz(x,j)

 - m_rho[j]*V(x,j)*V(x,j))/m_rho[j]

 - rdt*(V(x,j) - V_prev(j));

 diag[index(c_offset_V, j)] = 1;

 //---

 // Species equations

 //

 // \rho u dY_k/dz + dJ_k/dz + M_k\omega_k

 //

 //---

 getWdot(x,j);

 doublereal convec, diffus;

 for (k = 0; k < m_nsp; k++) {

 convec = rho_u(x,j)*dYdz(x,k,j);

 diffus = 2.0*(m_flux(k,j) - m_flux(k,j-1))

 /(z(j+1) - z(j-1));

 rsd[index(c_offset_Y + k, j)]

 = (m_wt[k]*(wdot(k,j))

 - convec - diffus)/m_rho[j]

 - rdt*(Y(x,k,j) - Y_prev(k,j));

 diag[index(c_offset_Y + k, j)] = 1;

 }

 //---

 // energy equation

 //---

 if (m_do_energy[j]) {

 setGas(x,j);

 // heat release term

 const vector_fp& h_RT = m_thermo->enthalpy_RT_ref();

 const vector_fp& cp_R = m_thermo->cp_R_ref();

 sum = 0.0;

 sum2 = 0.0;

 doublereal flxk;

 for (k = 0; k < m_nsp; k++) {

 flxk = 0.5*(m_flux(k,j-1) + m_flux(k,j));

 sum += wdot(k,j)*h_RT[k];

 sum2 += flxk*cp_R[k]/m_wt[k];

 }

135

 sum *= GasConstant * T(x,j);

 dtdzj = dTdz(x,j);

 sum2 *= GasConstant * dtdzj;

 rsd[index(c_offset_T, j)] =

 - m_cp[j]*rho_u(x,j)*dtdzj

 - divHeatFlux(x,j) - sum - sum2;

 rsd[index(c_offset_T, j)] /= (m_rho[j]*m_cp[j]);

 rsd[index(c_offset_T, j)] =

 rsd[index(c_offset_T, j)] + m_efctr*(T_fixed(j) - T(x,j));

 rsd[index(c_offset_T, j)] -= rdt*(T(x,j) - T_prev(j));

 diag[index(c_offset_T, j)] = 1;

 }

 // residual equations if the energy equation is disabled

 else {

 rsd[index(c_offset_T, j)] = T(x,j) - T_fixed(j);

 diag[index(c_offset_T, j)] = 0;

 }

 rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1);

 diag[index(c_offset_L, j)] = 0;

 }

 }

 }

 /**

 * Print the solution.

 */

 void StFlow::showSolution(const doublereal* x) {

 int nn = m_nv/5;

 int i, j, n;

 //char* buf = new char[100];

 char buf[100];

 // The mean molecular weight is needed to convert

 updateThermo(x, 0, m_points-1);

 sprintf(buf, " Pressure: %10.4g Pa \n", m_press);

 writelog(buf);

 for (i = 0; i < nn; i++) {

 st_drawline();

 sprintf(buf, "\n z ");

 writelog(buf);

 for (n = 0; n < 5; n++) {

 sprintf(buf, " %10s ",componentName(i*5 + n).c_str());

 writelog(buf);

 }

 st_drawline();

 for (j = 0; j < m_points; j++) {

 sprintf(buf, "\n %10.4g ",m_z[j]);

 writelog(buf);

 for (n = 0; n < 5; n++) {

 sprintf(buf, " %10.4g ",component(x, i*5+n,j));

 writelog(buf);

 }

 }

 writelog("\n");

 }

 int nrem = m_nv - 5*nn;

 st_drawline();

 sprintf(buf, "\n z ");

 writelog(buf);

 for (n = 0; n < nrem; n++) {

 sprintf(buf, " %10s ", componentName(nn*5 + n).c_str());

 writelog(buf);

 }

 st_drawline();

 for (j = 0; j < m_points; j++) {

136

 sprintf(buf, "\n %10.4g ",m_z[j]);

 writelog(buf);

 for (n = 0; n < nrem; n++) {

 sprintf(buf, " %10.4g ",component(x, nn*5+n,j));

 writelog(buf);

 }

 }

 writelog("\n");

 }

 /**

 * Update the diffusive mass fluxes.

 */

 void StFlow::updateDiffFluxes(const doublereal* x, int j0, int j1) {

 int j, k, m;

 doublereal sum, wtm, rho, dz, gradlogT;

 switch (m_transport_option) {

 case c_Mixav_Transport:

 case c_Multi_Transport:

 for (j = j0; j < j1; j++) {

 sum = 0.0;

 wtm = m_wtm[j];

 rho = density(j);

 dz = z(j+1) - z(j);

 for (k = 0; k < m_nsp; k++) {

 m_flux(k,j) = m_wt[k]*(rho*m_diff[k+m_nsp*j]/wtm);

 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;

 sum -= m_flux(k,j);

 }

 // correction flux to insure that \sum_k Y_k V_k = 0.

 for (k = 0; k < m_nsp; k++) m_flux(k,j) += sum*Y(x,k,j);

 }

 break;

 default:

 throw CanteraError("updateDiffFluxes","unknown transport model");

 }

 if (m_do_soret) {

 for (m = j0; m < j1; m++) {

 gradlogT = 2.0*(T(x,m+1) - T(x,m))/(T(x,m+1) + T(x,m));

 for (k = 0; k < m_nsp; k++) {

 m_flux(k,m) -= m_dthermal(k,m)*gradlogT;

 }

 }

 }

 }

 string StFlow::componentName(int n) const {

 switch(n) {

 case 0: return "u";

 case 1: return "V";

 case 2: return "T";

 case 3: return "lambda";

 default:

 if (n >= (int) c_offset_Y && n < (int) (c_offset_Y + m_nsp)) {

 return m_thermo->speciesName(n - c_offset_Y);

 }

 else

 return "<unknown>";

 }

 }

 //added by Karl Meredith

 int StFlow::componentIndex(string name) const {

137

 if(name=="u") {return 0;}

 else if (name=="V") {return 1;}

 else if (name=="T") {return 2;}

 else if (name=="lambda") {return 3;}

 else {

 for (int n=4;n<m_nsp+4;n++){

 if(componentName(n)==name){

 return n;

 }

 }

 }

 return -1;

 }

 void StFlow::restore(const XML_Node& dom, doublereal* soln) {

 vector<string> ignored;

 int nsp = m_thermo->nSpecies();

 vector_int did_species(nsp, 0);

 vector<XML_Node*> str;

 dom.getChildren("string",str);

 int nstr = static_cast<int>(str.size());

 for (int istr = 0; istr < nstr; istr++) {

 const XML_Node& nd = *str[istr];

 writelog(nd["title"]+": "+nd.value()+"\n");

 }

 //map<string, double> params;

 double pp = -1.0;

 pp = getFloat(dom, "pressure", "pressure");

 setPressure(pp);

 vector<XML_Node*> d;

 dom.child("grid_data").getChildren("floatArray",d);

 int nd = static_cast<int>(d.size());

 vector_fp x;

 int n, np = 0, j, ks, k;

 string nm;

 bool readgrid = false, wrote_header = false;

 for (n = 0; n < nd; n++) {

 const XML_Node& fa = *d[n];

 nm = fa["title"];

 if (nm == "z") {

 getFloatArray(fa,x,false);

 np = x.size();

 writelog("Grid contains "+int2str(np)+

 " points.\n");

 readgrid = true;

 setupGrid(np, DATA_PTR(x));

 }

 }

 if (!readgrid) {

 throw CanteraError("StFlow::restore",

 "domain contains no grid points.");

 }

 writelog("Importing datasets:\n");

 for (n = 0; n < nd; n++) {

 const XML_Node& fa = *d[n];

 nm = fa["title"];

 getFloatArray(fa,x,false);

 if (nm == "u") {

 writelog("axial velocity ");

 if ((int) x.size() == np) {

138

 for (j = 0; j < np; j++) {

 soln[index(0,j)] = x[j];

 }

 }

 else {

 goto error;

 }

 }

 else if (nm == "z") {

 ; // already read grid

 }

 else if (nm == "V") {

 writelog("radial velocity ");

 if ((int) x.size() == np) {

 for (j = 0; j < np; j++)

 soln[index(1,j)] = x[j];

 }

 else goto error;

 }

 else if (nm == "T") {

 writelog("temperature ");

 if ((int) x.size() == np) {

 for (j = 0; j < np; j++)

 soln[index(2,j)] = x[j];

 // For fixed-temperature simulations, use the

 // imported temperature profile by default. If

 // this is not desired, call setFixedTempProfile

 // *after* restoring the solution.

 vector_fp zz(np);

 for (int jj = 0; jj < np; jj++)

 zz[jj] = (grid(jj) - zmin())/(zmax() - zmin());

 setFixedTempProfile(zz, x);

 }

 else goto error;

 }

 else if (nm == "L") {

 writelog("lambda ");

 if ((int) x.size() == np) {

 for (j = 0; j < np; j++)

 soln[index(3,j)] = x[j];

 }

 else goto error;

 }

 else if (m_thermo->speciesIndex(nm) >= 0) {

 writelog(nm+" ");

 if ((int) x.size() == np) {

 k = m_thermo->speciesIndex(nm);

 did_species[k] = 1;

 for (j = 0; j < np; j++)

 soln[index(k+4,j)] = x[j];

 }

 }

 else

 ignored.push_back(nm);

 }

 if (ignored.size() != 0) {

 writelog("\n\n");

 writelog("Ignoring datasets:\n");

 int nn = static_cast<int>(ignored.size());

 for (int n = 0; n < nn; n++) {

 writelog(ignored[n]+" ");

 }

 }

 for (ks = 0; ks < nsp; ks++) {

 if (did_species[ks] == 0) {

 if (!wrote_header) {

 writelog("Missing data for species:\n");

139

 wrote_header = true;

 }

 writelog(m_thermo->speciesName(ks)+" ");

 }

 }

 return;

 error:

 throw CanteraError("StFlow::restore","Data size error");

 }

 void StFlow::save(XML_Node& o, doublereal* sol) {

 int k;

 ArrayViewer soln(m_nv, m_points, sol + loc());

 //Added to provide Tw as an output

 ofstream f("Solid.txt");

 ofstream f2("Rad.txt");

 ofstream f3("Tout.txt");

 double length=Tw.size();

 for (int i=0;i<=length-1;i++)

 {

 f<<Tw[i]<<endl;

 f2<<dq[i]<<endl;

 }

 f3<<Tw[length-1]<<endl;

 f.close();

 f2.close();

 f3.close();

 //

 XML_Node& flow = (XML_Node&)o.addChild("domain");

 flow.addAttribute("type",flowType());

 flow.addAttribute("id",m_id);

 flow.addAttribute("points",m_points);

 flow.addAttribute("components",m_nv);

 if (m_desc != "") addString(flow,"description",m_desc);

 XML_Node& gv = flow.addChild("grid_data");

 addFloat(flow, "pressure", m_press, "Pa", "pressure");

 addFloatArray(gv,"z",m_z.size(),DATA_PTR(m_z),

 "m","length");

 vector_fp x(static_cast<size_t>(soln.nColumns()));

 soln.getRow(0,DATA_PTR(x));

 addFloatArray(gv,"u",x.size(),DATA_PTR(x),"m/s","velocity");

 soln.getRow(1,DATA_PTR(x));

 addFloatArray(gv,"V",

 x.size(),DATA_PTR(x),"1/s","rate");

 soln.getRow(2,DATA_PTR(x));

 addFloatArray(gv,"T",x.size(),DATA_PTR(x),"K","temperature",0.0);

 soln.getRow(3,DATA_PTR(x));

 addFloatArray(gv,"L",x.size(),DATA_PTR(x),"N/m^4");

 for (k = 0; k < m_nsp; k++) {

 soln.getRow(4+k,DATA_PTR(x));

 addFloatArray(gv,m_thermo->speciesName(k),

 x.size(),DATA_PTR(x),"","massFraction",0.0,1.0);

 }

 }

 void StFlow::setJac(MultiJac* jac) {

 m_jac = jac;

 }

} // namespace

140

Appendix D: Cantera

Interface and Optimization

Code

141

This section will detail how to setup Cantera, starting from downloading the files up to

compiling the code. It will also include all of the code the author wrote, for interfacing with

Cantera, the RSM algorithm, the GRG method algorithm, and any other functions that were

useful to the problem.

D.1 Using Cantera

Here we will layout the process involved to setup Cantera. First, Python version 2.4 or

greater needs to be installed on your computer. If you do not have it, it can be found at

http://www.python.org/ftp/python/2.5/python-2.5.msi. Once it is installed, you must download

and add the nummarray add on, which can be found at http://sourceforge.net/projects/numpy. Be

sure to download the installer for numarray, not the newer numpy package, as Cantera does not

support this new version. Next, some environmental variables need to be set on your PC. From

the control panel select system, press the advanced tab, and press the environmental variables

button. Here we will create two new user variables called PYTHON_CMD and

MATLAB_CMD with the value being set to the respective programs directory. These variables

allow Cantera to access the programs while compiling. The last setup step is to configure

MATLab. To do this, open MATLab and type “mex –setep” at the prompt. A window will pop-

up where you need to select Visual C++ from your list of compilers.

Now that your system is properly configured you should download the latest version of

Cantera from http://sourceforge.net/projects/cantera, which was 1.7.0 at the time of publication,

and extract the files into a temporary location of your choosing. You will also need to download

the SUNDIALS package, which Cantera uses to solve equations, from

www.llnl.gov/casc/sundials/. Extract these files into the same temporary folder as Cantera, as

142

the Cantera compiler is setup to build SUNDIALS and itself simultaneously. Open Visual C++

and open cantera.sln found in the cantera\win32\vc7 directory. You may be prompted to convert

the solution to a newer format, click finish to do so. Open the file arith.h found under the

f2c_libs->Header Files directory on the left side and change the line ending style to Unix when

prompted. Finally, change the configuration to Release and select Build Selection from the

Build menu. If your version of Python was not built with the same version of Visual C++ you

will receive an error upon completion of the build. Cantera will still work, however the Python

component will not. To ensure that MATLab can access Cantera the files clib.dll, from the

directory cantera\build\lib\i686-pc-win32, and the file msvcr80.dll, found on your PC, must be

copied into the directory cantera\Cantera\matlab\cantera. For the final step change the name of

the src file to kernel in the directory cantera\Cantera. You are now ready to use Cantera.

D.2 Interface and Optimization Code

The author’s code to solve the optimization problem of maximizing the radiant efficiency

of a two stage porous radiant burner is given below.

#include <iostream>

#include <vector>

#include <fstream>

#include <time.h>

#include <Cantera.h>

#include <onedim.h>

#include <IdealGasMix.h>

#include <equilibrium.h>

#include <transport.h>

using namespace std;

using namespace Cantera;

double Combust(vector<double> vars);

int RSM();

int RSM2D();

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim);

double norm(vector<double> x);

double inprod(vector<double>x, vector<double>y);

vector<double> Mv(double **M,vector<double> v,double row, double col);

double **MM(double **M1, double **M2,double a, double b, double c);

vector<double> LUSolve(double **M,vector<double> v);

double sum(vector<double> x);

double newfun(vector<double> x, vector<double> b, double &g, double &H);

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess);

143

double fun2(double x);

double fun2D(double x,double y);

double **MT(double **M,double n, double p);

double max(double x, double y);

double min(double x, double y);

int sign(double x);

double f;

double fnew;

vector<double> g;

vector<double> gnew;

vector<double> xnew;

int main()

{

 //Setup Timer

 clock_t start;

 clock_t end;

 double duration;

 start=clock();

 //int dude=RSM();

 int dude=RSM2D();

 //End Timer

 end=clock();

 duration=((double) (end - start)) / CLOCKS_PER_SEC;

 cout<<duration<<endl;

 system("PAUSE");

 return(0);

}

double Combust(vector<double> vars)

{

 //New Parameters to allow for correlations

 //Define Material Properties

 double pore1=0.835;

 double pore2=vars[1];

 double dpore1=.00029;

 double dpore2=vars[0];

 double Omega1=0.8;

 double Omega2=0.8;

 double srho=510;

 double sCp=824;

 //Export Proerties to fill

 ofstream fid("Properties2.txt");

 fid<<pore1<<endl;

 fid<<pore2<<endl;

 fid<<dpore1<<endl;

 fid<<dpore2<<endl;

 fid<<Omega1<<endl;

 fid<<Omega2<<endl;

 fid<<srho<<endl;

 fid<<sCp<<endl;

 fid.close();

 //Define Fluid Properties

 double P=OneAtm;

 double Tburner=300;

 double u0=0.45;

 double phi=.65;

 IdealGasMix gas("drm19.cti","drm19");

 int nsp=gas.nSpecies();

 vector_fp x;

 x.resize(nsp);

 for(int k=0;k<nsp;k++)

144

 {

 if(k==gas.speciesIndex("CH4"))

 {

 x[k]=1.0;

 }

 else if(k==gas.speciesIndex("O2"))

 {

 x[k]=0.21/phi/.105;

 }

 else if(k==gas.speciesIndex("N2"))

 {

 x[k]=0.78/phi/.105;

 }

 else if(k==gas.speciesIndex("AR"))

 {

 x[k]=0.01/phi/.105;

 }

 else

 {

 x[k]=0.0;

 }

 }

 gas.setState_TPX(Tburner,P,DATA_PTR(x));

 double rhoin=gas.density();

 double *yin=new double[nsp];

 gas.getMassFractions(yin);

 equilibrate(gas,"HP");

 double rhoout=gas.density();

 double Tad=gas.temperature();

 double *yeq=new double[nsp];

 gas.getMassFractions(yeq);

 //Create the grid

 double *grid=new double[301];

 double dz1=0.0006;

 double dz2=0.00005;

 double dz3=0.00041;

 for (int i=0;i<301;i++)

 {

 if (i<=50)

 {

 grid[i]=((double)i)*dz1;

 }

 else if (i<=250)

 {

 grid[i]=.03+((double)(i-50))*dz2;

 }

 else

 {

 grid[i]=.04+((double)(i-250))*dz3;

 }

 }

 //Create the flow object

 AxiStagnFlow flow(&gas);

 flow.setupGrid(301,grid);

 Transport* tr=newTransportMgr("Mix",&gas);

 flow.setTransport(*tr);

 flow.setKinetics(gas);

 flow.setPressure(P);

 //Create the inlet

 Inlet1D inlet;

 inlet.setMoleFractions(DATA_PTR(x));

 double mdot=u0*rhoin;

 inlet.setMdot(mdot);

 inlet.setTemperature(Tburner);

 //Create the outlet

 Outlet1D outlet;

145

 //Create the flame object

 vector<Domain1D*> domains;

 domains.push_back(&inlet);

 domains.push_back(&flow);

 domains.push_back(&outlet);

 Sim1D flame(domains);

 //Build initial guess

 vector_fp locs;

 vector_fp value;

 double z1=0.55;

 double z2=0.62;

 double uout=inlet.mdot()/rhoout;

 //Velocity Profile

 locs.resize(2);

 value.resize(2);

 locs[0]=0;

 locs[1]=1;

 value[0]=u0;

 value[1]=uout;

 flame.setInitialGuess("u",locs,value);

 //Species Profiles

 locs.resize(3);

 value.resize(3);

 locs[0]=0;

 locs[1]=z1;

 locs[2]=1;

 for (int i=0;i<nsp;i++)

 {

 value[0]=yin[i];

 value[1]=yeq[i];

 value[2]=yeq[i];

 flame.setInitialGuess(gas.speciesName(i),locs,value);

 }

 //Temperature Profile

 locs.resize(4);

 value.resize(4);

 locs[0]=0;

 locs[1]=z1;

 locs[2]=z2;

 locs[3]=1;

 value[0]=Tburner;

 value[1]=Tburner;

 value[2]=2000;

 value[3]=Tad;

 flame.setInitialGuess("T",locs,value);

 //Reset Inlet

 inlet.setMoleFractions(DATA_PTR(x));

 inlet.setMdot(mdot);

 inlet.setTemperature(Tburner);

 //Set solver parameters

 int loglevel=1;

 bool refine_grid=false;

 double rtolSS=1.0e-4;

 double atolSS=1.0e-9;

 double rtolTS=1.0e-4;

 double atolTS=1.0e-9;

 flow.setTolerancesSS(rtolSS,atolSS);

 flow.setTolerancesTS(rtolTS,atolTS);

 double SSJacAge=5;

 double TSJacAge=10;

 flame.setJacAge(SSJacAge,TSJacAge);

 //Solve and Save

 flame.solve(loglevel,refine_grid);

 refine_grid=true;

 int flowdomain=1;

 double ratio=4;

 double slope=0.4;

 double curve=0.4;

146

 double prune=0.001;

 flame.setRefineCriteria(flowdomain,ratio,slope,curve,prune);

 flow.solveEnergyEqn();

 flame.solve(loglevel,refine_grid);

 flame.save("gradienttest.xml","run","solution with energy equation");

 flame.writeStats();

 ifstream in("Tout.txt");

 double input;

 in>>input;

 double Tout=input;

 double eff=pow(Tout,4)/pow(Tad,4);

 return(eff);

}

int RSM()

{

 vector<double> x0(1);

 vector<double> xprev(1);

 x0[0]=1.52;

 xprev[0]=x0[0];

 //Selecting starting points

 vector<double> points(5);

 points[0]=1.37;

 points[1]=1.4075;

 points[2]=1.445;

 points[3]=1.4825;

 points[4]=1.52;

 double alpha=0.0375;

 //Initialize quantities

 double length=points.size();

 vector<double> f(length);

 double diff1=10000000000000000000;

 double diff2=10000000000000000000;

 int minloc=0;

 int maxloc=4;

 double lcon=-100000000000000; //Left Constraint

 double rcon=1000000000000000; //Right Constraint

 int count=0; //Added to control number of shrinks

 double error;

 f[0]=fun2(points[0]);

 cout<<endl<<endl<<points[0]<<" "<<f[0]<<endl<<endl;

 //Loop until the model and function have same value or the model points solution is the

same

 while ((diff1>0.0001) & (diff2>0.0001))

 {

 for (int i=1;i<length;i++)

 {

 f[i]=fun2(points[i]);

 cout<<endl<<endl<<points[i]<<" "<<f[i]<<endl<<endl;

 }

 //Perform Least Squares fit

 double n=length;

 int k=1; //This is equal to the number of variables;

 double p=2*k+1; //Number of regressor variable. Need to change for higher order.

 double **X;

 X=new double* [n];

 for (int i=0;i<n;i++)

 {

 *(X+i)=new double[p];

 }

 for (int i=0;i<n;i++)

 {

 for (int c=0;c<k;c++)

 {

 X[i][c]=1;

 X[i][c+1]=points[i];

 X[i][c+k+1]=pow(points[i],2);

 }

147

 }

 double **Xt;

 Xt=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(Xt+i)=new double[n];

 }

 Xt=MT(X,n,p);

 double **A;

 A=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(A+i)=new double[p];

 }

 A=MM(Xt,X,p,n,p);

 vector<double> c(p);

 c=Mv(Xt,f,p,n);

 vector<double> b(p);

 b=LUSolve(A,c);

 //Perform Newtons Method

 double g;

 double H;

 double fmin=newfun(x0,b,g,H);

 if (H<0)

 {

 double g1;

 double H1;

 vector<double> p(1);

 p[0]=points[minloc];

 double b1=newfun(p,b,g1,H1);

 double g2;

 double H2;

 p[0]=points[maxloc];

 double b2=newfun(p,b,g2,H2);

 if (b1<=b2)

 {

 fmin=b1;

 x0[0]=points[minloc];

 }

 else

 {

 fmin=b2;

 x0[0]=points[maxloc];

 }

 }

 else

 {

 double d=-g/H;

 double temp; //Added to stop solver from going beyond model range.

 temp=x0[0]+d;

 if (temp<points[minloc])

 {

 x0[0]=points[minloc];

 }

 else if (temp>points[maxloc])

 {

 x0[0]=points[maxloc];

 }

 else

 {

 x0[0]=x0[0]+d;

 if (count<3)

 {

 alpha=alpha/2;//Shrinks if convex and inside box

 count=count+1;

 }

 else

 {

 xprev[0]=x0[0];

148

 }

 }

 fmin=newfun(x0,b,g,H);

 }

 cout<<x0[0]<<endl<<endl;

 double fnew=fun2(x0[0]);

 int ignore=0;

 if (fnew>f[0])

 {

 x0[0]=points[0];

 fnew=f[0];

 xprev[0]=x0[0];

 ignore=1;

 }

 //Error Stuff

 if (ignore==0)

 {

 vector<double> xm(p);

 xm[0]=1;

 xm[1]=x0[0];

 xm[2]=pow(x0[0],2);

 vector<double> yhat(n);

 yhat=Mv(X,b,n,p);

 vector<double> fsurf(n);

 for (int i=0;i<n;i++)

 {

 vector<double> node(1);

 node[0]=points[0];

 fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p);

 }

 double temp=sum(fsurf);

 double s=sqrt(temp);

 vector<double> error1(p);

 error1=LUSolve(A,xm);

 error=inprod(xm,error1);

 error=s*2.919986*sqrt(error); //The number is for 90% confidence from

students t

 }

 cout<<endl<<endl<<x0[0]<<" "<<fnew<<endl<<endl;

 //Update loop ending parameters

 diff1=sqrt(pow((fnew-fmin)/fnew,2));

 vector<double> xtemp(1);

 xtemp[0]=x0[0]-xprev[0];

 xprev[0]=x0[0];

 diff2=norm(xtemp);

 cout<<diff1<<" "<<diff2<<endl;

 f[0]=fnew;

 //Update points

 points[0]=x0[0];

 if (x0[0]<(lcon+2*alpha))

 {

 if (x0[0]<=(lcon+alpha))

 {

 if (x0[0]<=lcon)

 {

 if (count<3)

 {

 alpha=alpha/2;//Shrink if on min edge

 count=count+1;

 }

 points[0]=lcon;

 points[1]=points[0]+alpha;

 points[2]=points[1]+alpha;

 points[3]=points[2]+alpha;

 points[4]=points[3]+alpha;

 minloc=0;

149

 maxloc=4;

 }

 else

 {

 points[1]=lcon;

 points[2]=points[0]+alpha;

 points[3]=points[2]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else

 {

 points[1]=lcon;

 points[2]=points[0]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else if (x0[0]>(rcon-2*alpha))

 {

 if (x0[0]>=(rcon-alpha))

 {

 if (x0[0]>=rcon)

 {

 if (count<3)

 {

 alpha=alpha/2;//Shrink if on max edge

 count=count+1;

 }

 points[0]=rcon;

 points[1]=points[0]-alpha;

 points[2]=points[1]-alpha;

 points[3]=points[2]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=0;

 }

 else

 {

 points[1]=rcon;

 points[2]=points[0]-alpha;

 points[3]=points[2]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=rcon;

 points[2]=points[0]+alpha;

 points[3]=points[0]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=points[0]-alpha;

 points[2]=points[1]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=2;

 maxloc=4;

 }

 }

150

 cout<<"x*="<<x0[0]<<" with fmax="<<f[0]<<"+/-"<<error<<endl;

 return(0);

}

int RSM2D()

{

 vector<double> x0(2);

 vector<double> xprev(2);

 x0[0]=1.445;

 x0[1]=0.88;

 xprev[0]=x0[0];

 xprev[1]-x0[1];

 //Selecting starting points

 double **points;

 points=new double* [9];

 for (int i=0;i<9;i++)

 {

 *(points+i)=new double[2];

 }

 points[0][0]=1.37;

 points[1][0]=1.37;

 points[2][0]=1.37;

 points[3][0]=1.445;

 points[4][0]=1.445;

 points[5][0]=1.445;

 points[6][0]=1.52;

 points[7][0]=1.52;

 points[8][0]=1.52;

 points[0][1]=.87;

 points[1][1]=.88;

 points[2][1]=.89;

 points[3][1]=.87;

 points[4][1]=.88;

 points[5][1]=.89;

 points[6][1]=.87;

 points[7][1]=.88;

 points[8][1]=.89;

 double alpha1=0.075;

 double alpha2=0.01;

 //Initialize quantities

 double length=9;

 vector<double> f(length);

 double diff1=10000000000000000000;

 double diff2=10000000000000000000;

 double lcon=0.69;

 double rcon=1.52;

 double bcon=0.865;

 double tcon=0.95;

 double error;

 int flagl=0;

 int flagr=0;

 int flagb=0;

 int flagt=0;

 int count1=0;

 int count2=0;

 int nshrinks=4;

 int noshrinkh=0;

 int noshrinkv=0;

 int start=0;

 f[0]=fun2D(points[0][0],points[0][1]);

 //Loop until the model points solution is the same

 while (diff2>0.0001)

 {

 for (int i=1;i<length;i++)

 {

 f[i]=fun2D(points[i][0],points[i][1]);

 }

 //Perform Least Squares fit

151

 double n=length;

 int k=2;

 double p=2*k+2;

 double **X;

 X=new double* [n];

 for (int i=0;i<n;i++)

 {

 *(X+i)=new double[p];

 }

 for (int i=0;i<n;i++)

 {

 X[i][0]=1;

 for (int c=0;c<k;c++)

 {

 X[i][c+1]=points[i][c];

 X[i][c+k+1]=pow(points[i][c],2);

 }

 for (int c=0;c<k-1;c++)

 {

 for (int j=c;j<k;j++)

 {

 X[i][c+2*k+1]=points[i][c]*points[i][j];

 }

 }

 }

 double **Xt;

 Xt=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(Xt+i)=new double[n];

 }

 Xt=MT(X,n,p);

 double **A;

 A=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(A+i)=new double[p];

 }

 A=MM(Xt,X,p,n,p);

 vector<double> c(p);

 c=Mv(Xt,f,p,n);

 vector<double> b(p);

 b=LUSolve(A,c);

 //Perform Newtons Method

 vector<double> grad(2);

 double **Hess;

 Hess=new double* [2];

 for (int i=0;i<2;i++)

 {

 *(Hess+i)=new double[2];

 }

 double fmin=newfun2D(x0,b,grad,Hess);

 vector<double> d(2);

 vector<double> gneg(2);

 gneg[0]=-grad[0];

 gneg[1]=-grad[1];

 double **Hes;

 Hes=new double* [2];

 for (int i=0;i<2;i++)

 {

 *(Hes+i)=new double[2];

 }

 Hes[0][0]=Hess[0][0];

 Hes[0][1]=Hess[0][1];

 Hes[1][0]=Hess[1][0];

 Hes[1][1]=Hess[1][1];

152

 d=LUSolve(Hes,gneg);

 //New code added to deal with indefinite Hessians. Gaurentees descent.

 double LS=inprod(gneg,d);

 if (LS<0)

 {

 vector<double> dprime(2);

 dprime[0]=sqrt(pow(gneg[0],2));

 dprime[1]=sqrt(pow(gneg[1],2));

 double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon));

 double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon));

 if ((alpha1prime==rcon-x0[0])&(sign(gneg[0])==-1))

 {

 alpha1prime=alpha1;

 }

 else if ((alpha1prime==x0[0]-lcon)&(sign(gneg[0])==1))

 {

 alpha1prime=alpha1;

 }

 if ((alpha2prime==tcon-x0[1])&(sign(gneg[1])==-1))

 {

 alpha2prime=alpha2;

 }

 else if ((alpha2prime==x0[1]-bcon)&(sign(gneg[1])==1))

 {

 alpha2prime=alpha2;

 }

 vector<double> dnew(2);

 double gamma1=atan(alpha2prime/alpha1prime);

 double gamma2=atan(dprime[1]/dprime[0]);

 if (gamma2>=gamma1)

 {

 dnew[0]=dprime[0]*alpha2prime/dprime[1];

 dnew[1]=alpha2prime;

 d[0]=sign(gneg[0])*dnew[0];

 d[1]=sign(gneg[1])*dnew[1];

 }

 else

 {

 dnew[0]=alpha1prime;

 dnew[1]=dprime[1]*alpha1prime/dprime[0];

 d[0]=sign(gneg[0])*dnew[0];

 d[1]=sign(gneg[1])*dnew[1];

 }

 }

 else

 {

 vector<double> dprime(2);

 dprime[0]=sqrt(pow(d[0],2));

 dprime[1]=sqrt(pow(d[1],2));

 double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon));

 double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon));

 if ((alpha1prime==rcon-x0[0])&(sign(d[0])==-1))

 {

 alpha1prime=alpha1;

 }

 else if ((alpha1prime==x0[0]-lcon)&(sign(d[0])==1))

 {

 alpha1prime=alpha1;

 }

 if ((alpha2prime==tcon-x0[1])&(sign(d[1])==-1))

 {

 alpha2prime=alpha2;

 }

 else if ((alpha2prime==x0[1]-bcon)&(sign(d[1])==1))

 {

 alpha2prime=alpha2;

 }

153

 vector<double> dnew(2);

 if ((dprime[0]>alpha1prime)|(dprime[1]>alpha2prime))

 {

 double gamma1=atan(alpha2prime/alpha1prime);

 double gamma2=atan(dprime[1]/dprime[0]);

 if (gamma2>=gamma1)

 {

 dnew[0]=dprime[0]*alpha2prime/dprime[1];

 dnew[1]=alpha2prime;

 d[0]=sign(d[0])*dnew[0];

 d[1]=sign(d[1])*dnew[1];

 }

 else

 {

 dnew[0]=alpha1prime;

 dnew[1]=dprime[1]*alpha1prime/dprime[0];

 d[0]=sign(d[0])*dnew[0];

 d[1]=sign(d[1])*dnew[1];

 }

 }

 else

 {

 if (count1<nshrinks)

 {

 if (count2<nshrinks)

 {

 alpha1=alpha1/2;

 alpha2=alpha2/2;

 count1=count1+1;

 count2=count2+1;

 }

 else

 {

 alpha1=alpha1/2;

 count1=count1+1;

 }

 }

 else if (count2<nshrinks)

 {

 alpha2/alpha2/2;

 count2=count2+1;

 }

 else

 {

 xprev[0]=x0[0];

 xprev[1]=x0[1];

 }

 }

 }

 //Update point

 x0[0]=x0[0]+d[0];

 x0[1]=x0[1]+d[1];

 fmin=newfun2D(x0,b,grad,Hess);

 double fnew=fun2D(x0[0],x0[1]);

 cout<<endl<<endl<<x0[0]<<" "<<x0[1]<<" "<<fnew<<endl<<endl;

 //If new point is worse than previous stop

 int ignore=0;

 if (fnew>f[0])

 {

 if (start==1)

 {

 x0[0]=points[0][0];

 x0[1]=points[0][1];

 fnew=f[0];

 flagt=0;

 flagb=0;

 flagl=0;

 flagr=0;

 xprev[0]=x0[0];

154

 xprev[1]=x0[1];

 diff2=0;

 ignore=1;

 }

 else

 {

 start=1;

 }

 }

 //Error Calc

 if (ignore==0)

 {

 vector<double> xm(p);

 xm[0]=1;

 xm[1]=x0[0];

 xm[2]=x0[1];

 xm[3]=pow(x0[0],2);

 xm[4]=pow(x0[1],2);

 xm[5]=x0[0]*x0[1];

 vector<double> yhat(n);

 yhat=Mv(X,b,n,p);

 vector<double> fsurf(n);

 for (int i=0;i<n;i++)

 {

 fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p);

 }

 double temp=sum(fsurf);

 double s=sqrt(temp);

 vector<double> error1(p);

 error1=LUSolve(A,xm);

 error=inprod(xm,error1);

 error=s*2.919986*sqrt(error); //The number is for 90% confidence from

students t

 }

 //Update loop ending parameters

 diff1=sqrt(pow((fnew-fmin)/fnew,2));

 vector<double> xtemp(2);

 xtemp[0]=x0[0]-xprev[0];

 xtemp[1]=x0[1]-xprev[1];

 xprev[0]=x0[0];

 xprev[1]=x0[1];

 diff2=norm(xtemp);

 cout<<diff1<<" "<<diff2<<endl;

 //Check if GRGM needs to be used

 if (diff2<0.0001)

 {

 if ((flagl==1)|(flagr==1))

 {

 fnew=GRGM(x0,fnew,alpha2,bcon,tcon,1);

 if (count2<nshrinks)

 {

 count2=count2+1;

 alpha2=alpha2/2;

 if (noshrinkh==0)

 {

 alpha1=alpha1*2;

 noshrinkh=1;

 }

 }

 else

 {

 xprev[0]=x0[0];

 xprev[1]=x0[1];

 }

 }

 else if ((flagb==1)|(flagt==1))

 {

 fnew=GRGM(x0,fnew,alpha1,lcon,rcon,0);

155

 if (count1<nshrinks)

 {

 count1=count1+1;

 alpha1=alpha1/2;

 if (noshrinkv==0)

 {

 alpha2=alpha2*2;

 noshrinkv=1;

 }

 }

 else

 {

 xprev[0]=x0[0];

 xprev[1]=x0[1];

 }

 }

 xtemp[0]=x0[0]-xprev[0];

 xtemp[1]=x0[1]-xprev[1];

 xprev[0]=x0[0];

 xprev[1]=x0[1];

 diff2=norm(xtemp);

 cout<<diff1<<" "<<diff2<<endl;

 //system("PAUSE");

 }

 f[0]=fnew;

 //Update points

 points[0][0]=x0[0];

 points[0][1]=x0[1];

 if (x0[0]<(lcon+alpha1))

 {

 if (x0[0]<=lcon)

 {

 if (count1<nshrinks)

 {

 alpha1=alpha1/2;//Shrink if on left edge.

 count1=count1+1;

 flagl=1;

 }

 else

 {

 flagl=0;

 }

 points[0][0]=lcon;

 points[1][0]=lcon;

 points[2][0]=lcon;

 points[3][0]=points[0][0]+alpha1;

 points[4][0]=points[0][0]+alpha1;

 points[5][0]=points[0][0]+alpha1;

 points[6][0]=points[3][0]+alpha1;

 points[7][0]=points[3][0]+alpha1;

 points[8][0]=points[3][0]+alpha1;

 flagr=0;

 flagb=0;

 flagt=0;

 }

 else

 {

 points[1][0]=points[0][0];

 points[2][0]=points[0][0];

 points[3][0]=lcon;

 points[4][0]=lcon;

 points[5][0]=lcon;

 points[6][0]=points[0][0]+alpha1;

 points[7][0]=points[0][0]+alpha1;

 points[8][0]=points[0][0]+alpha1;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

156

 noshrinkh=0;

 }

 }

 else if (x0[0]>(rcon-alpha1))

 {

 if (x0[0]>=rcon)

 {

 if (count1<nshrinks)

 {

 alpha1=alpha1/2;//Shrink if on right edge.

 count1=count1+1;

 flagr=1;

 }

 else

 {

 flagr=0;

 }

 points[0][0]=rcon;

 points[1][0]=rcon;

 points[2][0]=rcon;

 points[3][0]=points[0][0]-alpha1;

 points[4][0]=points[0][0]-alpha1;

 points[5][0]=points[0][0]-alpha1;

 points[6][0]=points[3][0]-alpha1;

 points[7][0]=points[3][0]-alpha1;

 points[8][0]=points[3][0]-alpha1;

 flagl=0;

 flagb=0;

 flagt=0;

 }

 else

 {

 points[1][0]=points[0][0];

 points[2][0]=points[0][0];

 points[3][0]=rcon;

 points[4][0]=rcon;

 points[5][0]=rcon;

 points[6][0]=points[0][0]-alpha1;

 points[7][0]=points[0][0]-alpha1;

 points[8][0]=points[0][0]-alpha1;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

 noshrinkh=0;

 }

 }

 else

 {

 points[1][0]=points[0][0];

 points[2][0]=points[0][0];

 points[3][0]=points[0][0]+alpha1;

 points[4][0]=points[0][0]+alpha1;

 points[5][0]=points[0][0]+alpha1;

 points[6][0]=points[0][0]-alpha1;

 points[7][0]=points[0][0]-alpha1;

 points[8][0]=points[0][0]-alpha1;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

 noshrinkh=0;

 }

 if (x0[1]<(bcon+alpha2))

 {

 if (x0[1]<=bcon)

 {

 if (count2<nshrinks)

 {

 alpha2=alpha2/2;//Shrink if on bottom edge.

157

 count2=count2+1;

 flagb=1;

 }

 else

 {

 flagb=0;

 }

 points[0][1]=bcon;

 points[1][1]=points[0][1]+alpha2;

 points[2][1]=points[1][1]+alpha2;

 points[3][1]=bcon;

 points[4][1]=points[0][1]+alpha2;

 points[5][1]=points[1][1]+alpha2;

 points[6][1]=bcon;

 points[7][1]=points[0][1]+alpha2;

 points[8][1]=points[1][1]+alpha2;

 flagl=0;

 flagr=0;

 flagt=0;

 }

 else

 {

 points[1][1]=points[0][1]+alpha2;

 points[2][1]=bcon;

 points[3][1]=points[0][1];

 points[4][1]=points[0][1]+alpha2;

 points[5][1]=bcon;

 points[6][1]=points[0][1];

 points[7][1]=points[0][1]+alpha2;

 points[8][1]=bcon;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

 noshrinkv=0;

 }

 }

 else if (x0[1]>(tcon-alpha2))

 {

 if (x0[1]>=tcon)

 {

 if (count2<nshrinks)

 {

 alpha2=alpha2/2;//Shrink if on top edge.

 count2=count2+1;

 flagt=1;

 }

 else

 {

 flagt=0;

 }

 points[0][1]=tcon;

 points[1][1]=points[0][1]-alpha2;

 points[2][1]=points[1][1]-alpha2;

 points[3][1]=tcon;

 points[4][1]=points[0][1]-alpha2;

 points[5][1]=points[1][1]-alpha2;

 points[6][1]=tcon;

 points[7][1]=points[0][1]-alpha2;

 points[8][1]=points[1][1]-alpha2;

 flagl=0;

 flagr=0;

 flagb=0;

 }

 else

 {

 points[1][1]=points[0][1]-alpha2;

 points[2][1]=tcon;

 points[3][1]=points[0][1];

 points[4][1]=points[0][1]-alpha2;

 points[5][1]=tcon;

158

 points[6][1]=points[0][1];

 points[7][1]=points[0][1]-alpha2;

 points[8][1]=tcon;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

 noshrinkv=0;

 }

 }

 else

 {

 points[1][1]=points[0][1]+alpha2;

 points[2][1]=points[0][1]-alpha2;

 points[3][1]=points[0][1];

 points[4][1]=points[0][1]+alpha2;

 points[5][1]=points[0][1]-alpha2;

 points[6][1]=points[0][1];

 points[7][1]=points[0][1]+alpha2;

 points[8][1]=points[0][1]-alpha2;

 flagl=0;

 flagr=0;

 flagb=0;

 flagt=0;

 noshrinkv=0;

 }

 }

 cout<<"x*=("<<x0[0]<<","<<x0[1]<<") with fmax="<<f[0]<<"+/-"<<error<<endl;

 return(0);

}

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim)

{

 //Selecting starting points

 alpha=alpha/2;

 int stop=0;

 double minloc;

 double maxloc;

 int adim;

 if (dim==1)

 {

 adim=0;

 }

 else

 {

 adim=1;

 }

 vector<double> points(5);

 points[0]=x0[dim];

 //checks which piece of the x vector we are altering and then chooses points

 if (x0[dim]<(lcon+2*alpha))

 {

 if (x0[dim]<=(lcon+alpha))

 {

 if (x0[dim]<=lcon)

 {

 stop=1;

 }

 else

 {

 points[1]=lcon;

 points[2]=points[0]+alpha;

 points[3]=points[2]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else

 {

159

 points[1]=lcon;

 points[2]=points[0]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else if (x0[dim]>(rcon-2*alpha))

 {

 if (x0[dim]>=(rcon-alpha))

 {

 if (x0[dim]>=rcon)

 {

 stop=1;

 }

 else

 {

 points[1]=rcon;

 points[2]=points[0]-alpha;

 points[3]=points[2]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=rcon;

 points[2]=points[0]+alpha;

 points[3]=points[0]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=points[0]-alpha;

 points[2]=points[1]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=2;

 maxloc=4;

 }

 //Initialize quantities

 double length=points.size();

 double fnew;

 vector<double> f(length);

 f[0]=f0;

 //Loop until the model and function have same value or the model points solution is the

same

 while (stop==0)

 {

 for (int i=1;i<length;i++)

 {

 if (adim==0)

 {

 f[i]=fun2D(x0[adim],points[i]);

 }

 else

 {

 f[i]=fun2D(points[i],x0[adim]);

 }

 }

 //Perform Least Squares fit

 double n=length;

 int k=1; //This is equal to the number of variables;

 double p=2*k+1; //Number of regressor variable. Need to change for higher order.

160

 double **X;

 X=new double* [n];

 for (int i=0;i<n;i++)

 {

 *(X+i)=new double[p];

 }

 for (int i=0;i<n;i++)

 {

 //Need to add here for higher dimensions

 for (int c=0;c<k;c++)

 {

 X[i][c]=1;

 X[i][c+1]=points[i];

 X[i][c+k+1]=pow(points[i],2);

 }

 }

 double **Xt;

 Xt=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(Xt+i)=new double[n];

 }

 Xt=MT(X,n,p);

 double **A;

 A=new double* [p];

 for (int i=0;i<p;i++)

 {

 *(A+i)=new double[p];

 }

 A=MM(Xt,X,p,n,p);

 vector<double> c(p);

 c=Mv(Xt,f,p,n);

 vector<double> b(p);

 b=LUSolve(A,c);

 //Perform Newtons Method

 double g;

 double H;

 double fmin=newfun(x0,b,g,H);

 if (H<0)

 {

 double g1;

 double H1;

 vector<double> p(1);

 p[0]=points[minloc];

 double b1=newfun(p,b,g1,H1);

 double g2;

 double H2;

 p[0]=points[maxloc];

 double b2=newfun(p,b,g2,H2);

 if (b1<=b2)

 {

 fmin=b1;

 x0[dim]=points[minloc];

 }

 else

 {

 fmin=b2;

 x0[dim]=points[maxloc];

 }

 }

 else

 {

 double d=-g/H;

 double temp; //Added to stop solver from going beyond model range.

 temp=x0[dim]+d;

 if (temp<points[minloc])

 {

 x0[dim]=points[minloc];

161

 }

 else if (temp>points[maxloc])

 {

 x0[dim]=points[maxloc];

 }

 else

 {

 x0[dim]=x0[dim]+d;

 stop=1;

 }

 }

 if (adim==0)

 {

 fnew=fun2D(x0[adim],x0[dim]);

 }

 else

 {

 fnew=fun2D(x0[dim],x0[adim]);

 }

 cout<<endl<<endl<<x0[dim]<<" "<<fnew<<endl<<endl;

 //system("PAUSE");

 if (fnew>f[0])

 {

 x0[dim]=points[0];

 fnew=f[0];

 stop=1;

 }

 f[0]=fnew;

 //Update points

 points[0]=x0[dim];

 //Added consraints back in and generalized April 14, 2010

 if (x0[dim]<(lcon+2*alpha))

 {

 if (x0[dim]<=(lcon+alpha))

 {

 if (x0[dim]<=lcon)

 {

 stop=1;

 }

 else

 {

 points[1]=lcon;

 points[2]=points[0]+alpha;

 points[3]=points[2]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else

 {

 points[1]=lcon;

 points[2]=points[0]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=1;

 maxloc=4;

 }

 }

 else if (x0[dim]>(rcon-2*alpha))

 {

 if (x0[dim]>=(rcon-alpha))

 {

 if (x0[dim]>=rcon)

 {

 stop=1;

 }

 else

 {

 points[1]=rcon;

162

 points[2]=points[0]-alpha;

 points[3]=points[2]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=rcon;

 points[2]=points[0]+alpha;

 points[3]=points[0]-alpha;

 points[4]=points[3]-alpha;

 minloc=4;

 maxloc=1;

 }

 }

 else

 {

 points[1]=points[0]-alpha;

 points[2]=points[1]-alpha;

 points[3]=points[0]+alpha;

 points[4]=points[3]+alpha;

 minloc=2;

 maxloc=4;

 }

 }

 return(fnew);

}

double norm(vector<double> x)

//finds norms of vectors

{

 double length=x.size();

 double sum=0;

 for (int i=0;i<length;i++)

 {

 sum+=x[i]*x[i];

 }

 double norm=sqrt(sum);

 return(norm);

}

double inprod(vector<double>x, vector<double>y)

//inner product of vectors

{

 double length=x.size();

 double ans=0;

 for(int i=0;i<length;i++)

 {

 ans+=x[i]*y[i];

 }

 return(ans);

}

vector<double> Mv(double **M,vector<double> v,double row, double col)

//matrix times a vector

{

 vector<double> ans(row,0);

 for(int i=0;i<row;i++)

 {

 for(int j=0;j<col;j++)

 {

 ans[i]=ans[i]+M[i][j]*v[j];

 }

 }

 return(ans);

}

double **MM(double **M1, double **M2,double a, double b, double c)

//matrix times matrix

{

163

 double **ans;

 ans=new double* [a];

 for(int i=0;i<a;i++)

 {

 *(ans+i)=new double[c];

 }

 for(int i=0;i<a;i++)

 {

 for(int j=0;j<c;j++)

 {

 ans[i][j]=0;

 }

 }

 for(int k=0;k<a;k++)

 {

 for(int i=0;i<c;i++)

 {

 for(int j=0;j<b;j++)

 {

 ans[k][i]=ans[k][i]+M1[k][j]*M2[j][i];

 }

 }

 }

 return(ans);

}

vector<double> LUSolve(double **M,vector<double> v)

//LU decomposion solver

{

 int length=v.size();

 for(int i=0;i<length-1;i++)

 {

 for(int j=i+1;j<length;j++)

 {

 double m=M[j][i]/M[i][i];

 M[j][i]=0;

 for(int k=i+1;k<length;k++)

 {

 M[j][k]=M[j][k]-m*M[i][k];

 }

 M[j][i]=m;

 }

 }

 for(int i=1;i<length;i++)

 {

 for (int j=0;j<i;j++)

 {

 v[i]=v[i]-M[i][j]*v[j];

 }

 }

 v[length-1]=v[length-1]/M[length-1][length-1];

 for (int i=0;i<length-1;i++)

 {

 for (int j=length-1-i;j<length;j++)

 {

 v[length-2-i]=v[length-2-i]-M[length-2-i][j]*v[j];

 }

 v[length-2-i]=v[length-2-i]/M[length-2-i][length-2-i];

 }

 return(v);

}

double sum(vector<double> x)

//add vector components

{

 double add=0;

 double length=x.size();

 for (int i=0;i<length;i++)

 {

 add+=x[i];

 }

 return (add);

164

}

double newfun(vector<double> x, vector<double> b, double &g, double &H)

//1-D model function

{

 double val=b[0]+b[1]*x[0]+b[2]*pow(x[0],2);

 g=b[1]+2*b[2]*x[0];

 H=2*b[2];

 return(val);

}

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess)

//2-D model function

{

 double val=b[0]+b[1]*x[0]+b[2]*x[1]+b[3]*pow(x[0],2)+b[4]*pow(x[1],2)+b[5]*x[0]*x[1];

 grad[0]=b[1]+2*b[3]*x[0]+b[5]*x[1];

 grad[1]=b[2]+2*b[4]*x[1]+b[5]*x[0];

 Hess[0][0]=2*b[3];

 Hess[0][1]=b[5];

 Hess[1][0]=b[5];

 Hess[1][1]=2*b[4];

 return(val);

}

double fun2(double x)

//combustion function evaluation for 1-D case

{

 vector<double> vars(1);

 vars[0]=x/1000; //Divide by 1000 for pore diameter

 double eff=-Combust(vars); //Added negative for maximization.

 return(eff);

}

double fun2D(double x, double y)

//combustion function evaluation for 2-D case

{

 //double eff=100*pow((y-pow(x,2)),2)+pow((1-x),2); //Rosenbrock

 vector<double> vars(2);

 vars[0]=x/1000;

 vars[1]=y;

 double eff=-Combust(vars);

 return(eff);

}

double **MT(double **M,double n, double p)

//matrix times its transpose

{

 double **ans;

 ans=new double* [p];

 for(int i=0;i<p;i++)

 {

 *(ans+i)=new double[n];

 }

 for (int i=0;i<p;i++)

 {

 for (int j=0;j<n;j++)

 {

 ans[i][j]=M[j][i];

 }

 }

 return(ans);

}

double max(double x, double y)

//max of two numbers

{

 double temp1=sqrt(pow(x,2));

 double temp2=sqrt(pow(y,2));

 double ans;

 if (temp1>=temp2)

 {

 ans=temp1;

 }

 else

 {

 ans=temp2;

 }

165

 return(ans);

}

double min(double x, double y)

//min of two numbers

{

 double temp1=sqrt(pow(x,2));

 double temp2=sqrt(pow(y,2));

 double ans;

 if (temp1<=temp2)

 {

 ans=temp1;

 }

 else

 {

 ans=temp2;

 }

 return(ans);

}

int sign(double x)

//sign of a number

{

 int ans;

 if (x>=0)

 {

 ans=1;

 }

 else

 {

 ans=-1;

 }

 return(ans);

}

166

Appendix E: Two

Dimensional Response

Surfaces

167

This section contains all of the response surfaces for the two dimensional case study.

They are presented here to allow for a better understanding of the solution path of the algorithm.

Figure E.1 – First Response Surface for the 2-D Case

Figure E.2 – Second Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

168

Figure E.3 – Third Response Surface for the 2-D Case

Figure E.4 – Fourth Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

169

Figure E.5 – Fifth Response Surface for the 2-D Case

Figure E.6 – Sixth Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

170

Figure E.7 – Seventh Response Surface for the 2-D Case

Figure E.8 – Eighth Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

171

Figure E.9 – Ninth Response Surface for the 2-D Case

Figure E.10 – Tenth Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

172

Figure E.11 – Eleventh Response Surface for the 2-D Case

Figure E.12 – Twelfth Response Surface for the 2-D Case

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

173

Figure E.13 – Thirteenth Response Surface for the 2-D Case

At this point the algorithm has stopped in the same location twice on a boundary, so the

GRG method is used until a maximum is reached.

Figure E.14 – First GRG Method Surface for the 2-D Case, ε2=0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.354

0.3545

0.355

0.3555

0.356

0.3565

0.357

1 1.05 1.1 1.15 1.2 1.25 1.3

E
ff

ic
ie

n
cy

dp,2

174

The first surface generated contains a maximum so only one iteration of the GRG method

is needed. The solver then reverts back to a 2-D method and continues to try and optimize the

burner further. Once again, however, the algorithm has lands in the same spot on the boundary

so the GRG method is needed, resulting in the following response surfaces.

Figure E.15 – Fourteenth Response Surface for the 2-D Case

Figure E.16 – Second GRG Method Surface for the 2-D Case, ε2=0.95

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.354

0.3545

0.355

0.3555

0.356

0.3565

0.357

1 1.05 1.1 1.15 1.2 1.25 1.3

E
ff

ic
ie

n
cy

dp,2

175

Figure E.17 – Third GRG Method Surface for the 2-D Case, ε2=0.95

The third GRG method surface contains a maximum value so the algorithm reverts back

to a two dimensional problem. Here, however, the maximum of the response surface results in

the objective function worsening, as a result of noise being introduced due to the small size of

the surface. Therefore the solver stops and reports the maximum of the previous surface, the

third GRG method surface, as the optimal value.

Figure E.18 – Fifteenth Response Surface for the 2-D Case

0.354

0.3545

0.355

0.3555

0.356

0.3565

0.357

1 1.1 1.2 1.3

E
ff

ic
ie

n
cy

dp,2

d
p,2

2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

