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Abstract

This thesis examines the problem of having an intelligent agent reasoning about inter-

action with users in real-time decision making environments. Our work is motivated by the

models of Fleming and Cheng, which reason about interaction sensitive to both expected

quality of decision (following interaction) and cost of bothering users. In particular, we

are interested in dynamic, time critical scenarios. This leads first of all to a novel process

known as strategy regeneration, whereby the parameter values representing the users and

the task at hand are refreshed periodically, in order to make effective decisions about which

users to interact with, for the best decision making. We also introduce two new parameters

that are modeled: each user’s lack of expertise (with the task at hand) and the level of

criticality of each task. These factors are then integrated into the process of reasoning

about interaction to choose the best overall strategy, deciding which users to ask to resolve

the current task. We illustrate the value of our framework for the application of decision

making in hospital emergency room scenarios and offer validation of the approach, both

through examples and from simulations. To sum up, we provide a framework for reasoning

about interaction with users through user modeling for dynamic environments. In addi-

tion, we present some insights into how to improve the process of hospital emergency room

decision making.
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Chapter 1

Introduction

In this thesis, we explore the problem of reasoning about interaction between an intelligent

agent and a user, in scenarios that are dynamic and time critical. An intelligent agent is

a software agent that has been designed to problem solve on behalf of its user, given a

user goal and preferences, and knowledge of the environment in which it is operating. In

particular, we develop a decision-theoretic framework for deciding when an agent should

enlist the problem solving assistance of a user, considering both the expected quality of

decision and the possible cost of bothering the user.

As a motivating example, consider the following (from [11]):

Suppose a user wants to know which path to choose in order to minimize travel time

but is unsure whether there are any traffic snarls on the two possible routes. The

intelligent agent may be privy to additional knowledge about these routes (though

there is uncertainty introduced, since its information is not guaranteed to be accu-

rate).

The user may choose to pick one of the two paths based on his or her knowledge alone,

without consulting the intelligent agent. But in cases where the user’s confidence in

its ability to decide is low and where its confidence in the agent’s ability to decide is,

at least, higher, it may choose to consult the agent.

In the following scenario the agent faces uncertainty and could benefit from informa-

tion gathering. An earthquake occurred, and there are fires raging throughout the

city. An assistant agent attached to a fire brigade is tasked with finding a route that

its fire brigade can take to quickly get to a fire.

1



Suppose the agent computes two feasible routes, Route1 and Route2. Route1 is the

most direct path to the fire, but requires crossing a bridge. Unfortunately, due to the

earthquake, the agent is uncertain about traveling over the bridge, as it may have

collapsed from the quake. If the bridge did indeed collapse, then the agent will need

to take a costly detour to get to the fire. On the other hand, Route2 is an indirect

path that does not involve crossing any bridge.

In this scenario, a relevant query that the agent could ask is Q1 = “Is the bridge

condition good enough to travel on?”, with the possible answer responses being r1,1 =

BG (bridge condition good), and r1,2 = BB (bridge condition bad). With this

information, the agent should be able to make a more informed decision and a wiser

choice of route. Without the information, the agent can still choose what it feels is

the best action to take, given the information that it has to date.

Previous research has examined what is referred to as mixed-initiative systems: partner-

ships between users and intelligent agents, where either party may take the initiative to

direct the problem solving or the interaction [11]. This research emphasized the impor-

tance of user modeling in the determination of whether an intelligent agent, charged with

performing the problem solving autonomously, should in fact interrupt the user in order

to offload the decision making.

In environments where there are multiple agents representing multiple users, all of

whom are cooperating towards the completion of some goal, the challenge is referred to as

adjustable autonomy [26]. Now each intelligent agent has a variety of possible users whose

assistance may be engaged and the question is not only whether a user should be bothered

but instead which user should be approached. One valuable approach to resolving the

adjustable autonomy challenge is proposed in the work of Tambe et al. referred to as the

Electric Elves project [27]. In this research, each agent calculates a preferred strategy: a

series of other entities (users or agents) that may be asked, at which point in time, followed

by other entities who will then be asked if the first party does not respond, through to a

final strategy state which is typically having the agent perform the decision making itself.

As an example to illustrate the reasoning that an agent may undergo when determining

who should be approached to take over the decision making of a current task, consider the

following scenario from [6]:

In this scenario, a meeting has been scheduled. Ed, the presenter for an upcoming group

meeting, has to cancel the meeting. The agent is charge of organizing meetings

2



is then tasked with finding an appropriate time slot to reschedule the meeting. It

can either make the decision itself, ask Ed to make the decision or in fact ask Bob,

the team leader, to make the decision. Which user to ask would be dependent on

expected quality of decision from that user, as well as likelihood of a response. An

overall strategy may be as expressed as follows: Bob(5)Ed(10)Agent meaning that

Bob will be asked to make the decision, the agent will wait 5 time units for a response

and if one is not received, Ed will be asked and another 10 time units will pass, at

which time the agent will just make the decision itself.

As an improvement to the approach of Tambe, Cheng developed a framework for ad-

justable autonomy multiagent systems which integrated not only a method for reasoning

about which entity should perform the decision making but also a method for reasoning

about interaction: asking users questions first, to then better direct the decision making

process [6]. In this framework, overall strategies for asking entities either for information

(partial transfers of control) or to perform decision making (full transfers of control) are

generated and evaluated, with the strategy that maximizes the overall utility being se-

lected. As with Fleming’s approach [11], one critical element in the reasoning is the cost of

bothering a user, modeled in terms of a set of formulae that integrate several elements of

user modeling (such as the user’s inherent willingness to assist and his or her attentional

state).

Distinct challenges arise, however, when the environment in which the reasoning is

performed is coping with critical tasks that must be completed in a timely manner, and

where there is a good deal of dynamic change. One such environment is that of decision

making for emergency rooms in hospitals. If an intelligent system were to be running,

calculating which experts would be best to contact to assist with the current patients,

modeling the expected improvement in decision making as well as the likelihood of response

(sensitive to the bother that would be generated), then improved overall decision making

could result.

The challenge of effective hospital decision making motivates the development of the

models presented in this thesis. Our overall approach consists of two primary components.

The first is a general framework for reasoning about strategies to generate and to select,

in order to approach the best users to perform decision making. Due to the demands of

time critical decision making in the face of dynamic change, novel elements need to be

developed, beyond the framework proposed by Cheng [6]. In our research, we focus on the

issue of reasoning with up-to-date parameter values and we propose a technique referred

to as strategy regeneration. In particular, we outline (in Chapter 3, Section 3.1) how this

3



element may be integrated (in Chapter 4) into an overall framework like that of Cheng’s,

and we demonstrate through a series of examples (in Chapter 5) the inherent value of this

technique, compared to the case where strategies are not regenerated.

The second component of our research is extended user modeling, to enable more ef-

fective decision making. For this task, we focus specifically on the scenario of emergency

room patient care and outline the kinds of parameters which, when modeled, would lead to

improved decisions about which experts to ask to assist for patients (in Chapter 3, Section

3.2). The value of our particular approach is discussed some simulated hospital scenarios

(in Chapter 4 and Chapter 5), where patients who are not attended to effectively may

become a problem for the hospital.

In Chapter 6, we discuss the value of our research both in advancing research on in-

telligent interaction for artificial intelligent systems and in assisting with emergency room

decision making. In addition, we chronicle a large number of interesting future paths with

this research, to expand its scope and to enrich its models. We conclude with a list of the

most valuable contributions offered in the thesis.
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Chapter 2

Background

In this chapter, we introduce some terminology and present some foundational related

work.

2.1 Agents and Multiagent Systems

In artificial intelligence, an intelligent agent (IA) is defined as an autonomous entity that

observes and acts upon an environment and directs its activity in order to achieve its

goals [25].

Multiagent systems are defined as follows: “... systems in which several interacting,

intelligent agents pursue some set of goals or perform some set of tasks.”[29] In addition,

Weiss [29] emphasizes the value of interaction in multiagent system, as follows:

“To build a multiagent system in which the agents “do what they should do” turns out

to be particularly difficult ... The only way to cope with these characteristics is to enable

the agents to interact appropriately.”

2.2 Mixed-initiative Systems

Mixed-initiative systems are ones in which a system (i.e. an intelligent agent) and users

form a problem solving partnership, where either party is able to take the initiative to

solve the problem. Haller and McRoy [13] describe mixed-initiative systems as follows: “In

a problem-solving situation, the information and abilities needed for the task at hand are
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often distributed among the collaborators. As a result, direction and control of the inter-

action shifts among the participants. If future computational systems are to collaborate

effectively with users to solve problems, they must have the ability to take and relinquish

control of the problem-solving process and the communication about it. The theory and

the mechanisms that underlie these behaviors are ... computational models for mixed

initiative interaction.”

2.3 Fleming’s Model for Mixed-Initiative Systems

A model for determining the interaction between the system and the user in a mixed-

initiative system is presented in [11]. This work forms the starting point for our own

research and is described below.

2.3.1 Reasoning about Interaction

Fleming & Cohen [11, 12] developed a domain-independent decision-theoretic model for

an agent to reason about whether or not it should interact with a human user. The

model is aimed at solving ‘single decision’ problems, defined as “from an initial state, the

system decides about interacting with the user, then makes a decision about what action

to perform and then takes that action to complete the task” [12].

The general algorithm for a system to reason about whether or not it should ask a

question is fairly intuitive, and proceeds as follows (as presented by [12]):

1. Determine the expected benefits of interacting with the user. More specifically, de-

termine by how much the system’s performance on the task is expected to improve

(if at all) after asking the user the question.

2. Determine the expected costs of the interaction.

3. Proceed with the interaction only if the benefits exceed the costs.

The computation of the benefits of interaction is simply Benefits = EUask − EU¬ask,
where EUask represents the expected utility of an agent’s decision using information ob-

tained from the user, while EU¬ask represents the expected utility of an agent’s decision

6



made without any more information. Note that the expected utility denoted here does not

incorporate the costs incurred, but rather refers only to the value of the decision.

The value of EU¬ask is the expected utility of the action that the agent believes to be

the most promising in the current state, given the information it has without asking the

user any further questions and is calculated as follows:

EU¬ask = max
a∈Actions

EU(a) (2.1)

For each possible action a, the expected utility calculation takes into account the fact

that there may be uncertainty about the possible outcomes of the action. For any given

action a, suppose there are several possible results, each denoted resi, with probability

P (resi) and utility U(resi). Then,

EU(a) =
∑
i

P (resi) · U(resi) (2.2)

To compute the value of EUask, let PUR denote the probability that the user responds

and let EUUR be the expected utility that the agent could achieve if it receives an answer

from the user. If the user does not respond or says that he does not know the answer, the

agent will choose the action it believes to be the best, with expected utility EU¬ask.

EUask = PUR · EUUR + (1− PUR) · EU¬ask (2.3)

Here, EUUR is computed by considering all possible responses rj that the user could

give and the expected utility of the action aj that the agent would choose, given each

response rj.

EUUR =
∑

rj∈Resp

P (rj) · EU(aj | rj) (2.4)

The computation of interaction costs is done through a linear model, where the total

cost is a weighted sum of individual costs; i.e., Costs =
∑

iwiCi. Two costs considered in

Fleming & Cohen’s work are the cost of the time required to interact with the user, and

the cost of bothering the user1. This research clearly outlines where a model of bother cost

can be introduced into the process of reasoning about interaction.

1[11] also discusses briefly the cost of carrying out certain queries, such as costs in fetching from

databases.
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Bother cost is in fact included as a key factor in determining whether or not an agent

will interact with a human user. How to model bother cost is discussed in greater detail

in Section 2.3.2, below.

2.3.2 Bother Cost Model

There are two main principles to Fleming’s bother cost model. The first is the idea that

“recent interruptions and diffcult questions should carry more weight than interruptions

in the distant past and very straightforward questions.” The second is the notion that

whether a user is willing to interact with the system is a critical factor to reason about, in

order to avoid bothering the user too much. Fleming’s model is as follows:

• First estimate how bothersome the dialogue has been so far. This bother so far (BSF)

is given by BSF =
∑

I c(I) × βt(I), where the system computes the sum over all

the past interactions with the user (including the currently considered interaction).

c(I) is how bothersome the interaction was (e.g., cognitive effort required by the

user to answer the question), t(I) is the amount of time that has passed since that

interaction, and β is a discount factor that diminishes the effect of past interactions

as time passes.

• Let w represent the user willingness, with a range of 0 to 10, with higher w meaning

more willingness.

• Let α = 1.26−0.05w and Init = 10−w. Here, Init is to reflect the cost of bothering

a user for the first time.

• Then, BotherCost = Init + 1−αBSF

1−α . From this formulation, a lower willingness w

results in a higher Init cost, and also a higher α value (which amplifies the effect of

the bother so far BSF ). As BSF increases, so too does BotherCost, but at different

rates, depending on the α value. As shown by [11], for low w values, α will be greater

than 1, and we will see an exponential-like increase due to BSF , while for high w

values, α will be less than 1, and we see a log-like increase. The values used for the

calculation of α are in order to generate these kinds of curves for users with these

characterizations of willingness.
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2.4 Adjustable Autonomy

Adjustable autonomy multiagent systems are ones in which any agent can offload decision

making of its current task to a user or to another agent [14]. In this section, we give an

overview of the Electric Elves (E-Elves) project which represents a agent-based adjustable

autonomy model. This model inspired that of Cheng [6], on which our own model is based.

2.5 The Electric Elves (E-Elves) Project

Research by Tambe et al. [27] at ISI/USC explored the challenge of adjustable autonomy

multiagent systems – allowing agents involved in completing tasks on behalf of users to

transfer decision making control to another entity in the environment, where an entity

would either be another agent or one of the human users.

Whereas previous research on adjustable autonomy systems led to a decision of the

agent to retain decision making control or to transfer it to a single entity in the environment,

Tambe et al. proposed the concept of a transfer-of-control strategy: a planned sequence

of transfer-of-control actions. In this case, there is a plan to ask a particular entity but

to wait a certain period of time before then asking a different entity, through to the end

of the planned sequence. For example, the transfer-of-control strategy U1(5) U2(10) Agent

would have the Agent attempting to offload decision making to User1, waiting until time 5,

then asking User2 and waiting until time 10, at which time the Agent itself would take on

the decision making. The central problem to resolve is to determine which of the possible

strategies maximizes the expected utility of the overall decision2. In order to determine

the best strategies, agents reason with a set of parameters and estimations of their values,

including EQd
e, the expected quality of decision made by the entity being asked and, P (t),

the probability that the entity will respond with a decision of that expected quality.

2.5.1 Definitions

At this point, it is useful to record various definitions from Tambe’s model [27], as follows:

Transfer-of-Control A transfer-of-control strategy is a planned sequence of transfer-of-

control actions, including both those that actually transfer control and those that

2Utility is a concept in artificial intelligence aimed at modeling the inherent value of an action for a

user, relative to their goals and preferences
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simply buy more time to get input.

An agent An agent, A, is responsible for making a decision, d.

Entities There are n entities, e1, ..., en, who can potentially make the decision. These

entities can be human users, other agents, or the agent itself.

EQ(t) The expected quality (EQ) of a decision, d, made by an entity, e, at time, t, is

given by EQd
e(t) : < → <.

P(t) The continuous probability distribution over time that the entity, e, in control will

respond with a decision of quality at time, t is given by: P>(t) : < → <.

W(t) The cost of delaying a decision until time t is W (t) : < → <. W (t) is assumed to

be non-decreasing and that there is some point in time, C, when the costs of waiting

stop accumulating (i.e., ∀t > C,W (t) = W (C)).

2.5.2 Expected Utility

In the Electric Elves model, the expected utility is calculated by multiplying the probabil-

ity of response by the expected utility at each instant of time and summing the products.

Below is a calculation of the expected utility for an arbitrary continuous probability dis-

tribution.

EU =

∫ ∞
0

P>(t)EUd
ec(t).dt

where ec denotes the entity currently in decision making control.

EUd
ec(t) consists of two factors: the quality of the decision and the cost of waiting as

follows:

EUd
ec(t) = EQd

e(t)−W (t)

2.6 Cheng’s Model

2.6.1 Reasoning about Interaction

We begin with a brief overview of Cheng’s model for reasoning about interaction [6], before

proceding to present our variation for the time-critical environment of hospital decision

making. Cheng [6] extends the Electric Elves model to allow each agent to reason about
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initiating information gathering interaction with a user before determining what to do

next. This adjustable autonomy model is described in detail below. In this work, Cheng

differentiates between the agent querying an entity for information which he refers to as

a partial transfer-of-control or PTOC, and the agent asking an entity to make a decision

which we refer to as a full transfer-of-control or FTOC. Both of these cases are considered

to be interaction from the agent to the entity. This yields overall what he refers to as a

hybrid transfer-of-control strategy.

Below are descriptions of an FTOC and a PTOC node.

FTOC An FTOC node represents the agent fully transferring control to some entity at

some time point ti and waiting until time point ti+1 for a response. For simplicity’s

sake, we regard the case of the agent deciding autonomously as an FTOC to the

agent itself. Note that for this special FTOC case, we do not need to plan for any

transfers afterwards because the decision will definitely have been made.

PTOC A PTOC node represents the agent partially transferring control by asking some

entity a query at some time point ti+1 for a response. Each possible response to a

query will be represented as a branch from the PTOC node to a strategy subtree

representing what the agent should do when it receives that particular response.

There are several terminologies to describe a PTOC node. For example, a particular query

is denoted as Qj, and its possible answer responses are denoted as rj,1, rj,2, ..., and rj,n. In

addition, rj,? is included to represent “I don’t know” and rj,¬resp is to represent the ‘no

response’ case which occurs when the entity does not respond in time.

Figure 2.1 revisits the meeting scheduling scenario introduced in Chapter 1 and illus-

trates an example hybrid TOC strategy where the agent is responsible for rescheduling a

presentation meeting time. In this interaction strategy, the agent is not sure which factor

should be prioritized when selecting a meeting time. Thus, the agent does a PTOC to

the group leader Bob, asking query Q1=“When rescheduling a meeting time, which factor

should be prioritized?”, with the possible answer responses being r1,1=“Prioritize having

the meeting earlier”, r1,2= “Prioritize having the meeting be convenient for the presenter”,

r1,?=“I have no idea”, and r1,¬resp=No response.

The response from Bob will determine the job the agent will do. If the response is

r1,1, we simply move to the FTOC node, and the agent figures that it is relatively capable

enough to make the decision by itself and decides autonomously. If the response is r1,? or

r1,¬resp, then the agent just tries to make the best decision it can.
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Figure 2.1: Example Hybrid TOC Strategy.

If the response is r1,2, then the agent figures that the presenter Ed, is much more

capable of making a good decision, and so does an FTOC to Ed, asking Ed to make the

meeting time decision and waiting until time T2 for the response. If time T2 arrives and

Ed still has not responded back, then the agent will just decide by itself.

Reasoning about this interaction in fact requires an effective model of bother cost as

well. The challenge is for each agent to determine its optimal TOC strategy, by generating

possible strategies, evaluating the expected utility of the strategies and then selecting the

one with the highest expected utility. The use of the term “utility” here is consistent with

that used in E-Elves and reflects the difference between the benefits and costs.

The expected utility of a strategy s is, in turn, dependent on the expected utility of all

the leaf nodes in s.3

Formula-wise, EU(s) is calculated as follows:

EU(s) =
∑
LNl

[P (LNl)× (EQ(LNl)−W (TLNl
)−BCLNl

)] (2.5)

In the equation, EQ(LNl) denotes the expected quality of the agent’s decision at leaf

node LNl, given the information it has gathered along the path to LNl. W (TLNl
) denotes

3Note that, in this Section, only two strategies were considered for the agent: it could ask the user a

question (with expected utility EUask) or it could proceed with its reasoning without the user’s help (with

expected utility EU¬ask). The benefits of asking were calculated by computing EUask − EU¬ask, and

these benefits were then compared to the costs of interaction. In the model in this section, the expected

utility of many possible interaction strategies, with both the benefits and costs incorporated into a single

expected utility measure, EU(s).
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the costs of waiting until the time of leaf node LN1 to finish the interaction.4, and BCLNl

denotes the bother cost accumulated from interacting with entities from all the trans-

fers that the agent has done up to (and including) the current transfer-of-control under

consideration.

The expected utility of the overall strategy is in effect the sum of the utility of each of

the individual paths in it; thus, one needs to factor in the probability that the particular

path will be taken P (LN l). This in turn will depend as well on the probability of response.

2.6.2 Bother Cost Model

Cheng offers an equation for modeling the cost of bothering a user that is user-specific and

incorporates several important elements as follows:

• The difficulty of the interruption query, TOC Base Bother Cost. For example, usu-

ally asking a user his/her preference is easier (i.e., cognitively less intense) than asking

a user to decide on a plan of action.

• The attention state of the user, Attention State Factor. For instance, a user is more

interruptible when resting than when he/she is busy with important work.

• The user’s unwillingness to interact with the system, User Unwillingness Factor(UUF )

(0.5 ≤ UUF ≤ 2). This is a measure of how receptive (or rather, unreceptive) the

user is towards being TOC’ed, and how disrupted they are by interruptions. Cheng

chooses to model user unwillingness factor, rather than willingness in order to make

the overall calculations more intuitive. As User Unwillingness Factor increases,

the value of bother cost increases.

• The timings of the interruptions, t(TOC), and the discount factor, β (0 < β < 1),

which reduces the bother impact of past TOCs as time passes.

The formulae below then specify the bother cost calculation:

• Init = User Unwillingness Factor × Attention State Factor×

TOC Base Bother Cost

4Note that W (t) is introduced in the E-Elves model as well and is intended to represent the cost of

waiting in order to get the task completed, with respect to the need for the actions to be carried out

quickly within the domain of application.
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Figure 2.2: Graph showing how much bother cost increases due to bother so far, for the

different user willingness types.

• BSF (Bother So Far) =
∑

toc∈PastTOC TOC Base Bother Cost(toc)× βt(toc), where

PastTOC is the set of all the past TOCs experienced by the user,

TOC Base Bother Cost(toc) is just the TOC Base Bother Cost of toc, and t(toc)

is the time point at which toc occurred.

• To determine the increase to the bother cost due to BSF , there is a function,

BC Inc Fn(BSF,User Unwillingness), that maps a BSF value to a bother cost

increase, based on the user’s unwillingness level.

• BotherCost (BC) = Init+BC Inc Fn(BSF,User Unwillingness).

In addition, Cheng suggests possible bother cost factor values as follows:

• [TOC Base Bother Cost] Easy=5, Medium=10, Hard=20

• [Attention State Factor] Relaxed=0.75, Neutral=1, Busy=1.25

• [User Unwillingness Factor] Willing=0.5, Neutral=1, Unwilling=2

• [β] 0.90
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• [BC Inc Fn] For Willing, BC Inc Fn(x) = x0.75, for Neutral, BC Inc Fn(x) = x1,

for Unwilling, BC Inc Fn(x) = x1.25. This gives us roughly the same bother cost

shape as used by [11] and [2]. Figure 2.2 shows how the bother cost increases due to

bother so far, for the different user willingness types.

2.6.3 Strategy Selection

Cheng provides algorithms to generate all possible strategies, choosing the one with the

highest expected utility. This strategy is then executed and various entities are either

asked questions or asked to take over decision making. This process is sensitive to both

the expected quality of decision and the cost of bothering as the two primary factors to

consider.

2.7 Hospital Background

A network of researchers in computer science, engineering, nursing and medicine is cur-

rently involved in a project aimed at providing effective decision making support in various

healthcare contexts, including that of the hospital setting, in a project known as hSITE

(Healthcare Support Through Information Technology Enhancements)[22]. The central

aim of this project is to be able to employ the right person, at the right time, with the

right information, for more effective healthcare. Specific challenges arise in the emergency

room setting, in particular5.

In general, in hospital emergency room scenarios, a patient arrives and is seen by the

ER triage nurse, who determines to what section of the ER the patient should go to. The

triage nurse has experience to decide whether the patient needs to be in acute, sub-acute,

fast-track section or resuscitation room. After this is determined, the first patient goes

to the respective section and is taken care of and assessed again, by an ER nurse, then a

Nurse practitioner/ER resident/doctor. If a patient is coming in with a condition that is

obvious and needs a specialist, then the nurse would proceed to call the specific specialist

right away, e.g., a brain injury triggers a call for a neurologist. If a condition is not obvious,

through further assessments with the nurse, nurse practitioner, and ER doctor, it would

be determined which specialist service to call.

5This scenario was outlined for us by health professionals associated with the strategic research health

network known as hSITE [22].
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If the patient being brought in by Emergency Medical Services is critical, they are

brought into the resuscitation room right away, and nurses assigned to that room attend

to the patient, as well as an ER doctor. From there it is determined if other specialities

are called. If a patient is being brought in presenting with a stroke, for example, and the

triage nurses are notified beforehand, the triage nurses call the specialists for thrombolytic

therapy immediately as this therapy is time sensitive. In some hospitals, an urgency level

is determined for each patient in the ER and is kept on record for the patient.

Without consideration of the possible bother being incurred when experts are solicited

(so merely focusing on who might have the best expertise for the problem at hand) what

results is a significant bottleneck in the effective delivery of the care to the patient. Espe-

cially with patients in critical conditions, it is important to make very effective decisions

about who should be consulted. In addition, the parameters that serve to model the pa-

tients are constantly changing in this dynamic setting, and reasoning needs to be sensitive

to this as well.

16



Chapter 3

Our Framework for Reasoning about

Dynamic, Time-Critical Interaction

3.1 Decision Making Element

We introduce a model that can be used specifically for scenarios where an agent is reasoning

about which human users to enlist to perform decision making, in an environment where

decisions need to be made under critical time constraints and where the parameters that

serve to model the human users are changing dynamically, to a significant extent.

Transfer-of-control strategies are generated in order for the optimal strategy to be

selected for execution. Within the transfer-of-control strategy, one user after another is

expected to respond, should there be no response from the previous user after a certain

extent of time. In contrast to the approach in Section 2.6, attempts at full transfers of

control are in fact framed as PTOCs with the question Q: “Can you take over the decision

making?”. This then enables both a “yes” response, which results in an FTOC to this user

or a “no” response (or silence)1. Note that, distinct from Cheng [6], we are not reasoning

about which questions to ask a user; we are focused on asking this particular question, to

drive the decision making.

The “no” response brings up a new approach to the dynamically changing environment

and the challenge of time. There is a new generation of possible strategies in anticipation

of other potential experts who may be suitable to help, and the transfer-of-control attempt

ends. The regeneration is useful in overcoming possible challenges where choices that are

1The case of silence in our model corresponds to the case of r1,¬resp in Section 2.6.1
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Figure 3.1: Visual representation of strategy with the FTOCs and PTOCs; each world

occupies one square.

less than optimal can be unappealing. It helps to reevaluate the users who are available

to help in terms of their decisions and bother costs, and the best users to enlist can be

recomputed.

The approach that is followed when there is silence projects continued attempts to

contact other users. At the end of this chain of attempts, we inject a final decision of

strategy regeneration2. Strategy regeneration will then allow for an updating of parameter

values. Note that in our current model, we make the simplification that the strategies do

not involve asking different entities within the same chain. This is because we are limiting

ourself to only one question, that of asking the expert to help. We revisit this restriction

in Section 6.1.9.

A diagram outlining the FTOCs and the PTOCs that we envisage is presented in Figure

3.1 where an arrow with a solid line means the stream of time, but a dotted line means

there is no break by the end of the arrow. In addition, we introduce a concept of world

to facilitate the computation of the utility of any given strategy. One world consists of

one PTOC, one FTOC, and one SG (Strategy Regeneration) node and includes all the

parameters currently used to calculate benefits and costs to reason about interaction with

entities. Therefore, when the current world is moved to the next step, our system asks

a new entity. The number of worlds is equivalent to the number of entities that will be

asked. The SG node is clarified as follows:

2This is in contrast to the general approach provided in Section 2.6.1, where the final node in a chain is

usually one where there is a full transfer-of-control back to the agent, who must then perform the decision.
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SG Node The expected utility of a SG node (sg) is just EU(sg) = 0 as the EU of a

PTOC node is zero, Cheng [6] clarifies that PTOCs have zero utility because this is

instead computed at the final FTOC node of the strategy. This is because a decision

is never made in a SG. The power of the SGs is that they allow a strategy chain to

be regenerated. We encounter a SG node when the response from an entity is “No”

or after an entire chain of silence, to the end of the strategy. Strategy regeneration

allows us to then reflect current parameter values.

3.1.1 Algorithm for Finding Optimal Strategy

The procedure for the agent to find the optimal strategy is a basic branch and bound

search, where the agent generates all possible strategies, containing one query, evaluates the

generated strategies, and then simply selects the one with the highest expected utility value.

The strategy generation and evaluation steps are described below. Our procedure differs

from that of Cheng [6] in its manner of generating and evaluating strategies containing

FTOCs, PTOCs, and SG nodes.

3.1.2 Strategy Generation

The basic idea is that we will generate all possible strategies containing one query. As

Cheng mentioned [6], we can visualize a strategy as a tree as displayed in Figure 2.1,

composed of FTOC nodes and PTOC nodes, but in our framework SG nodes are inserted

into the tree as well.

In our model, we assume that we are not considering strategies which involve the same

entity more than once but are considering all possible entities. Thus, using this analogy,

the length of the strategy is then the maximum depth of the tree, which is the number of

entities.

Let E be the set of all relevant entities in the system. Let FN be the set of all possible

FTOC nodes. Each FTOC node (fn) identifies which entity e in E to fully transfer control

to. Let SG be the set of all possible SG nodes. Another strategy is generated at the SG

node (sg). Let PN be the set of all possible PTOC nodes. The set PN consists of all the

possible pairings between a query q and entity e in E. So, each PTOC node (pn) identifies

which entity to ask which query. Also, each pn has branches corresponding to the possible

responses to query q, and each of these branches will have an attached strategy subtree.

With n possible entities, we obtain n! strategies.
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Using this model formulation, we show an algorithm for generating strategies, as below:

1: procedure GenerateStrategy(int i) . i represents the length of the strategy

chain to generate

2: if (i = 1) then . Base Case

3: create a PTOC node

4: create strategy by appending FTOC and SG node to the PTOC node

5: else if (i = the number of entities) then

6: create a Default node

7: create strategy by appending Default node to Si
8: else

9: Si−1 ← GenerateStrategy(i− 1) . Get the set of strategies of length i-1

10: create a PTOC node, a FTOC node, and a SG node

11: create strategy by appending the PTOC node to the PTOC in Si−1
12: create strategy by appending the FTOC and SG node to the PTOC node

which has been just created

13: end if

14:

15: return set of all newly created strategies

16: end procedure

3.1.3 Strategy Evaluation

The formulae that would be used to reason about the expected utility derived from a

strategy are explained below. As outlined in Section 2.3, the optimal strategy is determined

by evaluating the expected utility (EU) of each of the generated strategies and selecting

the one with the highest EU value. As explained in [6], a strategy generation phase would

begin with the simplest strategies (of length one) and then expand to longer strategies

by adding an FTOC or a PTOC node to previously generated strategies. The strategy

generation is then limited by bounding the maximal length of strategy. For the model of

reasoning presented in this section, we limit the strategy generation based on the number

of entities under consideration. If there are k entities, k! strategies are generated, among

which we choose the one with the highest EU value. Then, the overall EU of strategy s is

computed by taking the sum of the EU of all the leaf nodes in s.

Considering the calculation for the expected utility of a strategy as the sum of the

utilities of the leaf nodes in that strategy we then proceed to calculate separately the
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utility of a) ending in a full transfer-of-control b) ending in a strategy regeneration from a

“no” response c) going down a path of “silence”3 to a final stage of strategy regeneration.

Note as well that here the probability that a transfer-of-control is occurring is dependent on

the probability that all the PTOC nodes prior to this one are silence and on the probability

of the response associated with this node (“yes”, “no” or silence).

Below are the equations to calculate EU for the three cases having different a leaf

node: “yes” , “no”, and silence. If the response is “yes”, the leaf node of the path from the

initial PTOC node is an FTOC node. The EU of an FTOC node (fnl) in the jth world

is computed as follows:

EUj(fnl) =
∏
pnprev

P {resp=Silence}eprev × P {resp=Y es}ei
× (EQd

ei
−W (te − ts)−BCfnl

) (3.1)

where EUj(fnl) denotes the expected utility in the jth world of full transfer-of-control;

pnprev denotes a partial transfer to entity eprev; P
{resp=Silence}
eprev denotes the probability that

asking all the previous entities the query will result in silence; P
{resp=Y es}
ei denotes the

probability that asking the entity ei the query will result in “Yes”; EQd
ei

denotes the

expected quality of decision, d the entity ei has; W (te − ts) denotes the cost of waiting

a decision between time ts and te. Cheng [6] suggested that the cost of waiting is a

increasing function. Since our model is for time-critical scenario, the cost of waiting should

be increased rapidly as time progresses.

te is the ending time of the FTOC (so where the arrow meets the FTOC square in

Figure 3.1); ts is the starting time of the FTOC, (so where the arrow heading into the FTOC

square originates); BCfnl
is the accumulated bother cost to entities resulting from all the

transfers that agent has done up to the current transfer-of-control under consideration.s

If the response is “no”, the leaf node of the path from the initial PTOC node is a SG

node. The EU for each SG node in the jth world is calculated as follows:

EUj(sg) =
∏
pnprev

P {resp=Silence}eprev × P {resp=No}ei
× (EQd

ei
−W (te − ts)−BCsg − SGC) (3.2)

where BCsg is the accumulated bother cost to entities resulting from all the transfers that

the agent has done up to the current transfer-of-control under consideration, and SGC

denotes the cost of generating a new strategy.

3If nobody has been found to answer either “yes” or “no”, we define this as a case of silence.
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In case of a silence response, we put a virtual node dfl (“default”), into the final world.

The EU of the virtual node (dfl) 4 in the final (nth) world is computed as follows:

EUn(dfl) =
∏
pnprev

P {resp=Silence}eprev ×P {resp=Silence}ei
×(EQd

ei
−W (te−ts)−BCsg−SGC) (3.3)

There are n FTOC nodes, n PTOC nodes, and one virtual node in the overall framework

with n worlds. We obtain the overall EU of strategy s by summing up n EU values for

FTOC nodes, n EU values for SG nodes, and one EU value for the virtual node as follows:

EU(s) = EUn(dfl) +
n∑
j=1

(EUj(fnl) + EUj(sg)) (3.4)

where n represents the number of worlds.

3.2 User Modeling

Projecting the decision making into scenarios of emergency room hospital decision making,

we introduce additional assumptions and proceed to develop user models that comprise the

important features for this environment.

Fleming [11] proposed that a system should ask for further input precisely when the

perceived benefits of this interaction exceed the expected costs. Table 3.1 provides a

summary of the main factors identified in his work, where a domain-independent model

was developed for reasoning about interaction with users. The second column in Table 3.1

classifies each factor as being relevant to the user model (UM), dialogue model (DM) or task

model (TM). Fleming proposed inclusion of all of these factors, but only developed detailed

models of some of these parameters,d as shown in his primary formulae (Section 2.3). In

our work, factors classified as being relevant to the user model will be designed as follows: a

new level of expertise factor, used to help model user knowledge, user unwillingness factor,

and task criticality, all of which are described for our scenarios.

In Section 3.1, we had the PTOC nodes reflecting “Can you take over the decision

making?”. In emergency room scenarios, we now imagine patients arriving, with a current

patient selected as the task that needs to be resolved. We would imagine our algorithms for

decision making being run in order to determine the medical experts to approach, to attend

4The leaf node for the silence response is set to sg.
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Table 3.1: Summary of factors to be used in model
Factor Model

The user’s knowledge UM

The user’s willingness to interact UM

The user’s preference utility function UM, TM

Task criticality TM, UM

Current context and expected understandability DM, UM

of system utterance

Previous interactions DM

The expected improvement of the system’s TM

task performance due to interaction

Time and time criticality TM

Resource costs and other task-specific costs TM

to the patient. The question behind each new PTOC now becomes: “Can you look after

this patient?”. Following the models of Fleming (Section 2.3) and Cheng (Section 2.6),

decision making will be influenced in part by the cost of bothering a user and in part

based on the expected quality of decision from this user, requiring effective user modeling

to capture these elements.

Below we propose formulae for modeling the cost of bothering users. We assume that

the bother cost of users is determined by their willingness.

3.2.1 User Unwillingness Factor

Fleming proposes the user’s willingness to interact as one of the domain-independent user

modeling factors [11]. In our model, we design a factor called user unwillingness factor

which represents the aspect of the user’s willingness to interact.

Whereas in Fleming’s model [11] each user may have an inherent unwillingness to help,

in our model the user unwillingness factor is determined by adding the values for the

attentional state factor to the lack of expertise factor. In other words, we introduce a

new user modeling parament (expertise) to better model the expected quality of decision

and to ensure that attentional state (whether the medical expert is occupied with another

patient, for the scenario of hospital decision making) critically influences the calculation

of user unwillingness. Table 3.2 shows how the user unwillingness factor is calculated as a

combination of the attentional state factor and the lack of expertise factor.
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Table 3.2: Calculation of user unwillingness factor
ASF , ASF , ASF ,

Relaxed Neutral Busy

LEF , Low 0.5 0.75 1

LEF , Med 0.75 1 1.25

LEF, High 1 1.25 1.5

The user unwillingness factor of an entity is determined by considering attention state

factor and level of expertise of the entity. For example, the entity is a willing person if

the attention state factor is Relaxed and his knowledge is very helpful for a user. If the

attention state factor is Busy, and she is not good at the specialized area of the current

patient, she would not be willing to help a user. There are three different categories: Med-

Willing, Medium, and Med-Unwilling. Med-Willing is chosen if the attention state

factor is Relaxed and the lack of expertise factor is Low. Also, this state is chosen if the

attention state factor is Neutral and the lack of expertise factor is Low. Med-Unwilling

is chosen if the attention state factor and the lack of expertise factor is Neutral and High,

respectively or Busy and Med.

3.2.2 Level of Expertise

Fleming proposes the user’s knowledge as one of the domain-independent user modeling

factors [11]. Fleming defines the user’s knowledge as how likely it is that the user will have

the required knowledge to answer the question. In our model, we design a factor called

a level of expertise, which includes the same aspect of the user’s knowledge but evaluates

the knowledge to answer “Yes” for the specific question, “Can you take over the decision

making?” in PTOC nodes as described in Section 3.1. If the medical expert as a user

thinks that he/she has enough knowledge to treat the selected patient, the experts will be

willing to answer “Yes” to the question.

In addition, we propose the addition of level of expertise as part of the user mod-

eling for the bother cost, a Lack of Expertise Factor. We choose to model Lack of

Expertise, rather than Expertise in order to make the overall calculations more intu-

itive. A high Lack of Expertise corresponds to a low level of expertise, overall. This

parameter is used to help to record the general level of expertise of each doctor, with

respect to the kind of medical problem that the patient is exhibiting. This is called

Lack of Expertise Factor rather than just Expertise Factor to be consistent in adding
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another factor, User Unwillingness Factor which increases a Cost factor in order to de-

termine bother cost. Therefore, lack of expertise is High when the medical expert is lack

of expertise and Low when the expert is considerable expertise in dealing with the medical

problem of the patient.

Note that modeling lack of expertise enables the overall calculations to fall into the

desired range specified by Cheng (Section 2.6.2). This is explained in greater detail below.

We also adjust the calculations proposed by Cheng for estimating bother cost, (shown

in Section 2.4.2) in order to reduce the number of parameter values that need to be acquired

or solicited (for our time-critical scenarios).

Some factors which affect bother cost in hospital settings are thus as follows.

• The difficulty of the query, TOC Base Bother Cost. In hospital settings with a

streamlined model, this factor is fixed, since we are considering only one question to

ask (whether the user can assist with the patient).

• Attention State Factor reflects how busy the doctor (medical expert) is. A doc-

tor currently without a patient would have a low attentional state value; a doctor

currently attending to a patient would have a high attentional state value.

• The lack of expertise of the doctor, Lack of Expertise Factor (LEF). The expertise

will then affect the unwillingness of the doctor. That is, as this factor increases,

User Unwillingness Factor increases.

• The user’s unwillingness to interact with the system, User Unwillingness Factor.

This is a measure of how receptive (or rather, unreceptive) the doctor is towards being

TOC’ed, and how disrupted they are by interruptions. We currently present a simpli-

fication of this calculation. This factor is obtained by adding Attention State Factor

to Lack of Expertise Factor.

• The timings of the interruptions, t(TOC), and the discount factor, β (0 < β < 1),

which reduces the bother impact of past TOCs as time passes. We choose a relatively

high β because hospital settings are under time-critical situations where the time step

is ‘small’.

With the inclusion of the new parameter, we then propose adjusted formulae for mod-

eling the bother to users with following:

User Unwillingness Factor = Attention State Factor + Lack of Expertise Factor

(3.5)
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Init = User Unwillingness Factor×Attention State Factor×TOC Base Bother Cost

(3.6)

BSF (Bother So Far) =
∑

toc∈PastTOC

TOC Base Bother Cost(toc)× βt(toc) (3.7)

BC Inc Fn(x, bc inc fac) = xbc inc fac (3.8)

where bc inc fac is determined by user unwillingness factors. If user unwillingness factor

of the user is Willing, bc inc fac is 0.75. If Unwilling, bc inc fac is 1.25. Otherwise,

bc inc fac is 1 as suggested by Cheng [6].

BotherCost(BC) = Init+BC Inc Fn(BSF,User Unwillingness) (3.9)

Here are some suggestions for possible bother cost factor values:

• [TOC Base Bother Cost] Easy=5, Medium=10, Hard=20

• [Attention State Factor] Relaxed=0.75, Neutral=1, Busy=1.25

• [Lack of Expertise Factor] High(i.e., not very expert)=0.25, Medium=0,

Low(i.e., very expert)=−0.25

• [β] 0.90

• [BC Inc Fn] For Willing, BC Inc Fn(x) = x0.75, for Neutral, BC Inc Fn(x) = x1,

for Unwilling, BC Inc Fn(x) = x1.25.

Note that the User Unwillingness Factor ends up producing the value of 2 when the

user is Busy and the Lack of Expertise Factor is High and a value of 0.5 when the user

is Relaxed and the Lack of Expertise Factor is Low. These values in fact correspond to

those suggested for Unwilling and Willing by Cheng (from Section 2.6.2).

3.2.3 Task Criticality

We introduce another new parameter, task criticality (TC), to affect the reasoning about

interaction. TC is used to enable the expected quality of a decision to be weighted more

heavily in the overall calculation of expected utility, when the case at hand is very critical.

This parameter may also be adjusted dynamically. When a patient has high task criticality,
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Table 3.3: Level and increasing rate by the score of task criticality
[0, 10) [10, 80) [80, ∞)

Level of Task Criticality Low Med High

Increasing Rate 2 % 5 % 10 %

Table 3.4: Weights to determine the expected quality of a decision
Task Criticality High Med Low

LEF Low Med High Low Med High Low Med High

Weight 10 % 0 % −10 % 5 % 5 % −5 % 0 % 0 % 0 %

a high level of expertise is required because the patient’s condition may become much more

serious if not treated intensively.

There are two characteristics of task criticality. First, the TC of a patient who is not

treated increases as time passes. We consider different increasing rates for each TC level:

high-level, medium-level, and low-level. In other words, high-level TC will increase faster

than low-level TC as time passes. Generally speaking, more critical patients usually gets

worse quickly than less critical patients. In order to design the dynamic aspect of the

status of the patient, the TC curve should be convex so that the increasing rate would

grow as time passes. However, each patient has his/her own medical problem so that

he/she may have his/her own function of task criticality. We would need to bring the user-

customized task criticality function which could be continuous rather than the discrete our

model suggests. Table 3.3 shows the sample increasing rate for each type of task criticality.

expertise of medical experts.

Second, we propose that the expected quality of a decision is weighted by the TC level

and the level of expertise as presented in Equation (3.10). Table 3.4 shows weights for each

case, which will be applied in example scenarios in Chapter 4.

EQd
ei
→ EQd

ei
+ (Weight× EQd

ei
) (3.10)

If the TC of some patient is low, the patient does not have to consider the expertise

of a doctor carefully. Thus, the expertise does not affect determining the expected quality

of a decision. However, the TC of some patient is high, the patient should consider the

expertise of a doctor seriously. Therefore, the expertise will affect determining the expected

quality of a decision. In this case, when the TC is high, the expected quality of a decision
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Table 3.5: Probability of entity response to question Q by User Unwillingness Factor
User Unwillingness Factor Y es No Silence

Willing 60 % 20 % 20 %

MedWilling 50 % 30 % 20 %

Neutral 40 % 40 % 20 %

MedUnwilling 30 % 50 % 20 %

Unwilling 20 % 60 % 20 %

needs to be adjusted with more weight. Also, when the TC is low, the expected quality of

a decision needs to be adjusted with less weight.

3.2.4 Probability of Response

In our model, we assume that each user has his/her own probability of response. In

Tambe’s [27] model, we have seen the function of probability of response. Likewise, the

probability of response of users is influenced by the user’s willingness. A willing person

definitely prefers to say, “Yes.” rather than “No”.

Our model suggests parameter values as shown in Table 3.5. We basically give the same

estimate of probability for the case of “Yes” and “No” if the user unwillingness factor of

the entity is Neutral. For Willing and Med-Willing entities, we increase the probability

for the case of “yes” and decrease the probability for the case of “No”. On the other

hand, for Unwilling and Med-Unwilling entities, we increase the probability for the case

of “No” and decrease the probability for the case of “Yes”. This simplification is revisited

in Section 6.1.2.

As Cheng [6] has a discretized time step function with probability of responses values,

different probabilities of responses are given in Table 3.6 5 which represents the suggested

probability of responses for “Yes” and “No”. We assume that a willingness person prefer

to give a response quickly.

In our strategy chain, we move to the next world if the response from the entity who

was asked is silence. We need to check how much time has been passed so that we can

find whether the response from the entity can be considered as silence. When you see the

Table 3.6, the willingness entity is 33% during the 1st time unit, 27% during the 2nd time

5Suggested values in Table 3.6 are initially defined to execute but could be updated by keeping track

of behavior of entities.
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Table 3.6: Probability of how quickly entity responds to question
User Unwillingness Factor 1 unit 2 unit 3 unit 4 unit

Willing 33 % 27 % 13 % 7 %

MedWilling 27 % 23 % 17 % 13 %

Neutral 20 % 20 % 20 % 20 %

MedUnwilling 13 % 17 % 23 % 27 %

Unwilling 7 % 13 % 27 % 33 %

unit, 13% during the 3rd time unit, and 7% during the 4th time unit. The sum of all the

probabilities becomes 80% which implies that the entity has 80 percent for the response

between “Yes” and “No”.

For example, the user unwillingness factor of the entity who is asked is Willing, the

entity would willing to respond shortly. However, if the user unwillingness factor of the

entity is Unwilling, he/she would not likely to respond shortly.
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Chapter 4

Example

In this chapter, we present a series of examples to demonstrate the value of our proposed

framework. In particular, we anticipate having our algorithm running, determining the

best strategy (which experts to ask, how long to wait) which would then inform the first

clinical assistant (FCA) of how to address the needs of the current patient. Below is an

overview of the examples we introduce and the parts of our model that they illustrate:

Section 4.1 Fixed initial parameters for entities and patient - strategy chain is shown

Scenario 1 high critical patient

Scenario 2 medium critical patient

Scenario 3 low critical patient

Section 4.2 Variable initial parameters for entities - strategy chain is shown

Scenario 1 high critical patient - best expert is Relaxed

Scenario 2 high critical patient - best expert is Busy

Scenario 3 low critical patient - best experts are all Busy

Section 4.3 executing a strategy - varying responses from entities

Scenario 1 of Section 4.2
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4.1 Different Task Criticality Values

This first set of examples briefly illustrates how different strategies are selected to execute,

when the criticality of the patient is different. We assume 4 medical experts and keep

their parameter values the same for all three scenarios in this subsection. We vary the

task criticality of the current patient: high in scenario 1, medium in scenario 2 and low in

scenario 3.

We illustrate how effective choices are made to enable the coordination of medical

professionals and the resolution of the decision making regarding patient care in hospital

emergency room scenarios.

In our example, the 4 possible medical experts to approach, each has differing expected

quality of decision making, differing attentional state (e.g. attending to other patients

currently or not), and different inherent willingness to assist.

The model parameters used in our scenarios are as follows:

• [TOC Base Bother Cost] 15

• [Time discount factor β] 0.90

• [initial EQ] 150

• [Cost of Waiting, W (t)] t1.5

• [the Number of Worlds (n)] 4

• [SGC] 0 cost

Note that we assume that the cost of regenerating a strategy is simply zero. We also

assume that the expected quality of decision for all specialists begins with the same initial

base value (which is then adjusted according to the user’s expertise level as discussed

earlier). The TOC Base Bother Cost is set “somewhat high” (using the range of values

listed in Section 2.6.2 and 3.2.2). This is because our one question has the purpose of

getting a user to agree to carry out a decision.

As shown in Table 3.3, there are levels of task criticality and increasing rates for each

level of task criticality. We assume that the patient’s criticality will be assessed by the

first clinical assistant attending to the patient (and it may be periodically updated, as the

patient continues to be unattended).
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Table 4.1: Probability of entity response to question Q by Attentional State Factor
Attentional State Factor Y es No Silence

Relaxed 0.45 0.45 0.1

Busy 0.1 0.6 0.3

Table 4.2: Elapsed time (in time units)

Attentional State Factor Lack-of -expertise Factor Y es No Silence

Relaxed Low 2 4 5

Relaxed High 3 3 5

Busy Low 3 3 5

Busy High 4 2 5

The probability of response depends on the user unwillingness factor of each doctor. Ta-

ble 4.1 represents a probability of response for “Yes”, “No”, and “Silence”, which includes

two cases: relaxed and busy with respect to the attentional state factor.

The time by which a response to a question will be generated from the doctors will be

referred to as the elapsed time. We have this elapsed time determined by the attentional

state factor and the expertise level of the doctor, according to predefined values as provided

in Table 4.2. The units of time are left unspecified. Note that we assume a fixed elapsed

time for all the cases of “silence”.

In our scenario, we divide task criticality into three levels: high, medium, and low

level. Given the level of task criticality, we determine the expected quality of a decision by

adding a weight represented in Table 3.4. The expected quality of a decision is dynamically

changed by the change of the value of task criticality as time progresses.

Table 4.3 shows profiles of available doctors in a hospital currently (experts e1, e2, e3,

and e4), for our sample scenarios below.

Scenario 1.

A patient has just arrived at the emergency room who is assessed as highly critical. The

FCA tries to search for the right doctor for the current patient with the decision-support

system. In this hospital, as in Table 4.3, there are four doctors, e1, e2, e3, and e4. Our sys-

tem checks the profile of each doctor and begins finding the optimal strategy by calculating

an expected utility for each generated strategy. Since there are four doctors, we obtain

4! strategies. By evaluating each strategy, we obtain 24 expected utility values for each

strategy shown in Table 4.4. This is computed using Equation 3.4, which in turn relies on
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Table 4.3: Profiles of entities at the time the patient arrives
e1 e2 e3 e4

Attentional State Factor Relaxed Busy Busy Relaxed

Lack-of-expertise Factor Low High Low High

Probability of Response for Yes 0.45 0.1 0.1 0.45

Probability of Response for No 0.45 0.6 0.6 0.45

Probability of Response for Silence 0.1 0.3 0.3 0.1

Elapsed time for Yes 2 4 3 3

Elapsed time for No 4 2 3 3

Elapsed time for Silence 5 5 5 5

calculation of bother cost, sensitive to each particular expert who might be asked. The

greatest expected utility is EU(s) = 198.39, the strategy chain: e1 - e3 - e4 - e2.

The strategies that ask e4 first do not have high EU values, even though the expert is

not Busy and can attend to the patient. This is because the High Criticality of the patient

has raised the weight of the EQ value in the calculation. The maximal EU of a strategy

that asks e4 first is 49.87. Likewise, strategies that select e2 first have very low EU values,

as this expert is both Busy and has High Lack of Expertise.

Scenario 2.

A patient has just arrived at the emergency room, assessed at medium criticality. The FCA

tries to search for the right doctor for the current patient with the decision-support system.

In this hospital, there are again four doctors, e1, e2, e3, and e4. Our system checks the profile

of each doctor and begins finding the optimal strategy by calculating an expected utility

for each generated strategy. As before, since there are four doctors, we obtain 4! strategies.

By evaluating each strategy, we obtain 24 expected utility values for each strategy shown

in Table 4.5. The greatest expected utility is EU(s) = 163.03 whose strategy chain is e1 -

e3 - e4 - e2.

Scenario 3.

A patient has just arrived at the emergency room, assessed at low criticality (but still in

need of specialized assistance). The FCA tries to search for the right doctor for the current

patient with the decision-support system. In this hospital, there are four doctors, e1, e2, e3,

and e4. Our system checks the profile of each doctor and begins determining the optimal

strategy by calculating an expected utility for each generated strategy. And since there

are four doctors, we obtain 4! strategies once more. By evaluating each strategy, we obtain
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Table 4.4: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 189.055932 e1 - e2 - e3 - e4
2 186.222260 e1 - e2 - e4 - e3
3 197.846134 e1 - e3 - e2 - e4
4 198.391167 e1 - e3 - e4 - e2
5 189.251631 e1 - e4 - e3 - e2
6 188.493741 e1 - e4 - e2 - e3
7 49.190011 e2 - e1 - e3 - e4
8 46.356339 e2 - e1 - e4 - e3
9 44.739695 e2 - e3 - e1 - e4

10 32.315057 e2 - e3 - e4 - e1
11 4.896448 e2 - e4 - e3 - e1
12 5.150315 e2 - e4 - e1 - e3
13 138.701167 e3 - e2 - e1 - e4
14 126.276528 e3 - e2 - e4 - e1
15 177.340219 e3 - e1 - e2 - e4
16 177.885253 e3 - e1 - e4 - e2
17 136.679229 e3 - e4 - e1 - e2
18 133.046656 e3 - e4 - e2 - e1
19 35.955365 e4 - e2 - e3 - e1
20 36.209232 e4 - e2 - e1 - e3
21 44.745566 e4 - e3 - e2 - e1
22 48.378139 e4 - e3 - e1 - e2
23 49.867505 e4 - e1 - e3 - e2
24 49.109615 e4 - e1 - e2 - e3
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Table 4.5: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 157.143432 e1 - e2 - e3 - e4
2 156.109760 e1 - e2 - e4 - e3
3 162.258634 e1 - e3 - e2 - e4
4 163.028667 e1 - e3 - e4 - e2
5 158.614131 e1 - e4 - e3 - e2
6 158.381241 e1 - e4 - e2 - e3
7 64.527511 e2 - e1 - e3 - e4
8 63.493839 e2 - e1 - e4 - e3
9 60.077195 e2 - e3 - e1 - e4

10 53.727557 e2 - e3 - e4 - e1
11 40.483948 e2 - e4 - e3 - e1
12 40.512815 e2 - e4 - e1 - e3
13 117.288667 e3 - e2 - e1 - e4
14 110.939028 e3 - e2 - e4 - e1
15 141.752719 e3 - e1 - e2 - e4
16 142.522753 e3 - e1 - e4 - e2
17 119.541729 e3 - e4 - e1 - e2
18 117.709156 e3 - e4 - e2 - e1
19 71.542865 e4 - e2 - e3 - e1
20 71.571732 e4 - e2 - e1 - e3
21 76.658066 e4 - e3 - e2 - e1
22 78.490639 e4 - e3 - e1 - e2
23 79.980005 e4 - e1 - e3 - e2
24 79.747115 e4 - e1 - e2 - e3
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24 expected utility values for each strategy as shown in Table 4.6. The greatest expected

utility is EU(s) = 128.20 whose strategy chain is e1 - e4 - e3 - e2.

4.2 Conflicting Parameter Values

This series of examples serves to show which strategies are selected when there is a tension

between certain parameter values. The first scenario is a base case, where the expert chosen

to be first in the strategy is the one who will deliver the best expected quality of decision

and is also enduring the least bother. The second scenario is of a highly critical patient,

where there is a tension between choosing the best expert for this important task against

the cost of bother, since this expert is currently at a high bother level as well. The last

scenario is one of a patient with low criticality, where again there is a best expert who is at

a high state of bother, but where perhaps an expert with low bother and lower expertise

will be adequate to approach.

The examples in this subsection are also described at a greater level of detail. This

is done in order to further clarify all the steps that are proposed in our framework in

determining the appropriate strategy chain, along with various processes to update and

manage the parameters that serve to model the environment.

4.2.1 Scenario 1

In this example, there are five patients waiting for treatment and four medical experts in

the emergency room. The FCA tries to search for the right doctor for the current patient.

Below are profiles of medical experts:

Entity ASF

e1 Relaxed

e2 Relaxed

e3 Busy

e4 Relaxed

Entity Specialized Area Number of Patients LEF

e1 Cardio 7 Med

e2 Cardio 100 Low

e3 Cardio 0 High

e4 Cardio 0 High
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Table 4.6: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 125.905932 e1 - e2 - e3 - e4
2 125.772260 e1 - e2 - e4 - e3
3 127.346134 e1 - e3 - e2 - e4
4 127.891167 e1 - e3 - e4 - e2
5 128.201631 e1 - e4 - e3 - e2
6 128.043741 e1 - e4 - e2 - e3
7 80.540011 e2 - e1 - e3 - e4
8 80.406339 e2 - e1 - e4 - e3
9 76.089695 e2 - e3 - e1 - e4

10 74.465057 e2 - e3 - e4 - e1
11 75.396448 e2 - e4 - e3 - e1
12 75.650315 e2 - e4 - e1 - e3
13 96.551167 e3 - e2 - e1 - e4
14 94.926528 e3 - e2 - e4 - e1
15 106.840219 e3 - e1 - e2 - e4
16 107.385253 e3 - e1 - e4 - e2
17 102.629229 e3 - e4 - e1 - e2
18 101.696656 e3 - e4 - e2 - e1
19 106.455365 e4 - e2 - e3 - e1
20 106.709232 e4 - e2 - e1 - e3
21 107.895566 e4 - e3 - e2 - e1
22 108.828139 e4 - e3 - e1 - e2
23 110.317505 e4 - e1 - e3 - e2
24 110.159615 e4 - e1 - e2 - e3

37



Entity Specialized Area Number of Patients LEF

e1 Neuro 0 High

e2 Neuro 0 High

e3 Neuro 15 Med

e4 Neuro 120 Low

1. The FCA identifies the most serious patient from the waiting list. Below is a waiting

list in this scenario. Our system chooses p2 since the task criticality of p2 is high-

est among patients. Since p2’s task criticality is greater than 80 according to the

Table 3.3, he is assessed as highly critical.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 70

2 p2 Cardio 90

3 p3 Neuro 63

4 p4 Cardio 82

5 p5 Neuro 70

2. Then, the waiting list is updated by eliminating the selected patient which has been

assessed as the most critical patient. Thus, the number of patients remains becomes

four. Below is a table where you can find a updated waiting list in our scenario.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 70

2 p3 Neuro 63

3 p4 Cardio 82

4 p5 Neuro 70

3. We generated strategies by following the process introduced in Chapter 3. In our

scenario, 4! strategies are generated since there are four entities attending in our

scenario.

4. We evaluate the expected utility of each strategy generated in step 3. There are

several steps to evaluate the expected utility as follows:

(a) We set values of parameters for each entity based on the profile of the current

patient. We already know some information about each entity such as atten-

tional state factor, specialized area, and the number of patients the entity has

treated. We would like to set the following parameters: lack of expertise factor,

probability of response for answer, and probability of response, and how quickly
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the entity will respond, bc inc fac, and Init. These parameter values are used

to determine the bother cost of each entity.

The current patient we picked at step 1 has a medical what classified as Cardio.

The specialized area of e1 is Cardio, which is what the current patient requires,

but e1 has treated only 7 patients which have the same medical problem. Thus,

we consider this entity as Med person for the level of expertise factor. In case

of e2, his specialized area is the same as the problem the current patient has

and the number of patients is 100, which represents his expertise for the medical

problem. Therefore, the level of expertise factor becomes Low (lack of exper-

tise). However, e3 and e4 are assessed as entities whose lack of expertise factor

is High because they do not have any specialized area for the specific medical

problem the current patient has.

Now we can obtain the user unwillingness value by adding the value of atten-

tional state factor to the value of lack of expertise factor as we specified in

formula 3.5. With the user unwillingness factor, we define a value of probability

of response for each case of “Yes,” “No,” and “Silence” according to the table

below.

Entity ASF LEF UUF Yes No Silence

e1 Relaxed Med Med-Willing 50% 30% 20%

e2 Relaxed Low Willing 60% 20% 20%

e3 Busy High Unwilling 20% 60% 20%

e4 Relaxed High Medium 40% 40% 20%

We can also determine the probability of response of each entity based on his/her

user unwillingness factor as shown in Table 3.5.

Entity ASF LEF UUF 1 unit 2 unit 3 unit 4 unit

e1 Relaxed Med Med-Willing 27% 23% 17% 13%

e2 Relaxed Low Willing 33% 27% 13% 7%

e3 Busy High Unwilling 7% 13% 27% 33%

e4 Relaxed High Medium 20% 20% 20% 20%

We finally obtain the value of bc inc fac, the exponent used for the bother in-

creasing function based on the willingness values as below and calculate another

variable Init by following the formulae introduced in Section 3.2.2.
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Entity UUF bc inc fac Init

e1 Med-Willing 1 8.4375

e2 Willing 0.75 5.625

e3 Unwilling 1.25 28.125

e4 Medium 1 11.25

where the calculations are:

• Init(e1) = User Unwillingness Factor × Attention State Factor
× TOC BaseBotherCost = 0.75× 0.75× 15 = 8.4375

• Init(e2) = 0.5× 0.75× 15 = 5.625

• Init(e3) = 1.5× 1.25× 15 = 28.125

• Init(e4) = 1× 0.75× 15 = 11.25

(b) We update the task criticality(TC) of the current patient with different TC

weights as time passes. TC increases by 10% if it is highly critical as shown in

Table 3.3. The TC of the current patient is initially 90. If the strategy chain is

e3 - e2 - e1 - e4, e3 will meet the patient whose task criticality is 90. However,

e2 will meet the patient whose task criticality is 99, which is increased by 10%.

The task criticality goes up to 108.9 and 119.79 for e1 and e4.

(c) The EQ values are also set with different EQ weights as time passes. According

to Table 3.4, the EQ value of e1 is weighted by zero so that the EQ value is the

same as the initial value. However, the EQ value of e2 becomes 165 because e2
has expertise. On the other hand, the EQ values of e3 and e4 become 135 which

is less than the initial value, 150, because they do not have any expertise for

the medical problem of the patient. That is, e3 and e4 cannot treat the highly

critical patient very well due to the lack of expertise for the specific medical

problem of the patient.

e1 e2 e3 e4
EQ 150 165 135 135

(d) We calculate the expected utility for each FTOC node for “Yes”, SG node for

“No”, and Default node for “Silence” as we described in Section 3.1.3.

(e) After aggregating the expected utility value for each node as in formula 3.4 we

evaluate the final expected utility value of the current strategy chain.

(f) We repeat step 3 and 4 in order to evaluate the expected utility value for each

strategy chain and choose to execute the strategy with the highest expected

utility. (Note that we would repeat from step 1 to 4 until there is no patient on

the waiting list, in order to process all the patients.)
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5. We ask the first entity in the strategy we have chosen to execute the query, “Can

you take on this patient?”. The entities are ordered on the optimal strategy chain

which has been obtained at the step of strategy generation and evaluation.

(a) First, we set values for parameters of each entity based on the profile of the

current patient. There are parameters such as attentional state factor and the

number of patients the medical expert treated so far for the specific medical

problem.

We would like to change the parameter of each entity based on the type of

responses such as Yes, No, or Silence after asking him/her a question, “Can you

come over and take the patient right now?”.

i. If the response from the entity is “Yes,” we assign the entity to the patient.

At this time, the attentional state of the entity is changed to BUSY . Then,

we go to step 1 in order to treat the next patient1.

ii. If the response from the entity is “No,” we simply go to step 3 in order to

regenerate the strategy chain.

iii. If there is no response from the entity and the entity was not the person

positioned as a last one on the strategy chain, we simply ask the next entity

and repeat step 5(a) through step 5(c). If the response from the entity is

silence and the entity was the last person who was asked on the strategy

chain, we go to step 3 in order to regenerate the strategy chain.

Table 4.7 shows the list of expected utility of strategies at the time the patient arrives

in Scenario 1. It shows that the optimal strategy chain is e2 - e1 - e4 - e3 whose expected

utility is 130.080393.

Note that as housekeeping, we update task criticality (TC) of the patients as time

passes. As explained, we increase the TC of the current patient who is looking for a

medical expert. Second, we increase the TC of the patients on the waiting list. Finally,

we decrease the TC of the patients who are currently being treated by medical experts2.

The task criticality of patients on the waiting list are increased by the increasing rate

corresponding to the TC of each patient.

1If the entity answering “Yes” is the last person on the strategy chain, we end up the process for finding

the best entity.
2We assume that patients medical experts are treating get better, even though it might get worse in

real-life situations.
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Table 4.7: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 113.707732 e1 - e2 - e3 - e4
2 114.581042 e1 - e2 - e4 - e3
3 103.964326 e1 - e3 - e2 - e4
4 102.780795 e1 - e3 - e4 - e2
5 106.715640 e1 - e4 - e3 - e2
6 108.785957 e1 - e4 - e2 - e3
7 129.207084 e2 - e1 - e3 - e4
8 130.080393 e2 - e1 - e4 - e3
9 123.195320 e2 - e3 - e1 - e4

10 122.913160 e2 - e3 - e4 - e1
11 126.859259 e2 - e4 - e3 - e1
12 128.025983 e2 - e4 - e1 - e3
13 75.616428 e3 - e2 - e1 - e4
14 75.334268 e3 - e2 - e4 - e1
15 71.884786 e3 - e1 - e2 - e4
16 70.701255 e3 - e1 - e4 - e2
17 68.646845 e3 - e4 - e1 - e2
18 69.552732 e3 - e4 - e2 - e1
19 99.140234 e4 - e2 - e3 - e1
20 100.306958 e4 - e2 - e1 - e3
21 89.412599 e4 - e3 - e2 - e1
22 88.506712 e4 - e3 - e1 - e2
23 94.495967 e4 - e1 - e3 - e2
24 96.566284 e4 - e1 - e2 - e3
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4.2.2 Scenario 2

In our example, there are currently five patients who are waiting for treatment and these

are four medical experts in the emergency room. The FCA tries to search for the right

doctor for the current patient as we have seen in Scenario 1. Below are profiles of medical

experts. The status of each entity is the same as in Scenario 1 except the attentional state

of e2 is now BUSY .

Entity ASF

e1 Relaxed

e2 Busy

e3 Busy

e4 Relaxed

Entity Specialized Area Number of Patients LEF

e1 Cardio 7 Med

e2 Cardio 100 Low

e3 Cardio 0 High

e4 Cardio 0 High

Entity Specialized Area Number of Patients LEF

e1 Neuro 0 High

e2 Neuro 0 High

e3 Neuro 15 Med

e4 Neuro 120 Low

1. The FCA chooses the most serious patient from the waiting list as described in

Scenario 1. Below is a table where you can find a waiting list in our scenario. Our

system chooses p2 since the task criticality of p2 is highest among patients. Since p2’s

task criticality is greater than 80 according to the table 3.3, he is assessed as highly

critical.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 70

2 p2 Cardio 90

3 p3 Neuro 63

4 p4 Cardio 82

5 p5 Neuro 70
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2. Then, the waiting list is updated by eliminating the selected patient which has been

assessed as the most critical patient. Thus, the number of patients remaining be-

comes four. Below is a table where you can find a updated waiting list in our scenario.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 70

2 p3 Cardio 63

3 p4 Cardio 82

4 p5 Neuro 70

3. We generated strategies by following the process introduced in Chapter 3. In our

scenario, 4! strategies are generated since there are four entities attending in our

scenario.

4. We evaluate the expected utility of each strategy generated in step 3. There are

several steps to evaluate the expected utility with following:

(a) We set values for parameters of each entity based on the profile of the current

patient. We already know some information about each entity, such as atten-

tional state factor, specialized area, and the number of patients the entity has

treated. We would like to set the following parameters: lack of expertise factor,

probability of response for answer, and probability of response how quickly the

entity will response, bc inc fac, and Init. These parameter values are used to

determine the bother cost of each entity.

Now we can obtain user unwillingness factor by adding attentional state factor

to lack of expertise factor and have a slightly new table, as below. With user

unwillingness factor, we set a value of probability of response for each cases such

as “Yes,” “No,” and “Silence” according to the Table 4.1.

Entity ASF LEF UUF Yes No Silence

e1 Relaxed Med Med-Willing 50% 30% 20%

e2 Busy Low Medium 40% 40% 20%

e3 Busy High Unwilling 20% 60% 20%

e4 Relaxed High Medium 40% 40% 20%

We can also find the probability of response, which represents how quickly the

entity will respond.
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Entity ASF LEF UUF 1 unit 2 unit 3 unit 4 unit

e1 Relaxed Med Med-Willing 27% 23% 17% 13%

e2 Busy Low Medium 20% 20% 20% 20%

e3 Busy High Unwilling 7% 13% 27% 33%

e4 Relaxed High Medium 20% 20% 20% 20%

The values of bc inc fac and Init are as below:

Entity UUF bc inc fac Init

e1 Med-Willing 1 8.4375

e2 Medium 1 18.75

e3 Unwilling 1.25 28.125

e4 Medium 1 11.25

where the calculations are:

• Init(e1) = User Unwillingness Factor × Attention State Factor
× TOC BaseBotherCost = 0.75× 0.75× 15 = 8.4375

• Init(e2) = 1× 1.25× 15 = 18.75

• Init(e3) = 1.5× 1.25× 15 = 28.125

• Init(e4) = 1× 0.75× 15 = 11.25

(b) We update the task criticality(TC) of the current patient with different TC

weights as time passes. TC increases by 10% if it is highly critical as shown in

Table 3.3. TC of the current patient is initially 90. If the strategy chain is e3 -

e2 - e1 - e4, e3 will meet the patient whose task criticality is 90. However, e2 will

meet the patient whose task criticality is 99, which is increased by 10%. The

task criticality goes up into 108.9 and 119.79.

(c) The EQ values are also set with different EQ weights as time passes. According

to Table 3.4, the EQ value of e1 is weighted by zero so that the EQ value is

same as the initial value. However, the EQ value of e2 becomes 165 because e2
has expertise. On the other hand, the EQ values of e3 and e4 become 135 which

is less than the initial value, 150 because they do not have any expertise for

the medical problem of the patient. That is, e3 and e4 cannot treat the highly

critical patient very well due to the lack of expertise for the specific medical

problem of the patient.

e1 e2 e3 e4
EQ 150 165 135 135
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(d) We calculate the expected utility for each FTOC node for “Yes”, SG node for

“No”, and Default node for “Silence” as we described in Section 3.1.3.

(e) After aggregating the expected utility value for each node, we evaluate the final

expected utility value of the current strategy chain.

(f) We repeat step 3 and 4 in order to evaluate the expected utility value for each

strategy chain.

(g) We repeat from step 1 to 4 until there is no patient on the waiting list

5. We ask the entity with a query. The entities are ordered on the optimal strategy

chain which has been obtained at the step of strategy generation and evaluation.

Table 4.8 shows the list of expected utility of strategy chain at the time the patient

arrives in Scenario 2. We find that the optimal strategy chain is e1 - e2 - e4 - e3 whose

expected utility is 110.031364.

4.2.3 Scenario 3

In this example, there are currently five patients waiting for treatment and four medical

experts in the emergency room. The FCA tries to search for the right doctor for the current

patient as we have seen in Scenario 1. Below are profiles of medical experts.

Entity ASF

e1 Busy

e2 Busy

e3 Busy

e4 Relaxed

Entity Specialized Area Number of Patients LEF

e1 Cardio 7 Med

e2 Cardio 100 Low

e3 Cardio 2 High

e4 Cardio 2 High

Entity Specialized Area Number of Patients LEF

e1 Neuro 2 High

e2 Neuro 2 High

e3 Neuro 15 Med

e4 Neuro 120 Low
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Table 4.8: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 109.158054 e1 - e2 - e3 - e4
2 110.031364 e1 - e2 - e4 - e3
3 103.040701 e1 - e3 - e2 - e4
4 102.608701 e1 - e3 - e4 - e2
5 106.566054 e1 - e4 - e3 - e2
6 107.871364 e1 - e4 - e2 - e3
7 107.738381 e2 - e1 - e3 - e4
8 108.611691 e2 - e1 - e4 - e3
9 101.726617 e2 - e3 - e1 - e4

10 101.444457 e2 - e3 - e4 - e1
11 105.390556 e2 - e4 - e3 - e1
12 106.557280 e2 - e4 - e1 - e3
13 71.066750 e3 - e2 - e1 - e4
14 70.784590 e3 - e2 - e4 - e1
15 70.961161 e3 - e1 - e2 - e4
16 70.529161 e3 - e1 - e4 - e2
17 68.474750 e3 - e4 - e1 - e2
18 68.624590 e3 - e4 - e2 - e1
19 94.590556 e4 - e2 - e3 - e1
20 95.757280 e4 - e2 - e1 - e3
21 88.484457 e4 - e3 - e2 - e1
22 88.334617 e4 - e3 - e1 - e2
23 94.346381 e4 - e1 - e3 - e2
24 95.651691 e4 - e1 - e2 - e3
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1. The FCA identifies the most serious patient from the waiting list. Below is a waiting

list in this scenario. Our system chooses p2 since the task criticality of p2 is highest

among patients. Since p2’s task criticality is less than 10 according to the table 3.3,

he is assessed as low critical, while the most critical patient was assessed as high

critical in Scenario 1 and 2.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 7

2 p2 Cardio 9

3 p3 Neuro 6

4 p4 Cardio 8

5 p5 Neuro 7

2. Then, the waiting list is updated by eliminating the selected patient which has been

assessed as the most critical patient. Thus, the number of patients remained becomes

four. Below is a table where you can find a updated waiting list in our scenario.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 7

2 p3 Neuro 6

3 p4 Cardios 8

4 p5 Neuro 7

3. We generated strategies by following the process introduced in Chapter 3. In our

scenario, 4! strategies are generated since there are four entities attending in our

scenario.

4. We evaluate the expected utility of each strategy generated in step 3. There are

several steps to evaluate the expected utility as follows:

(a) We set values for parameters of each entity based on the profile of the current

patient. We already know some information about each entity, such as atten-

tional state factor, specialized area, and the number of patients the entity has

treated. We would like to set the following parameters: lack of expertise factor,

probability of response for answer, and probability of response for how quickly

the entity will response, bc inc fac, and Init. These parameter values are used

to determine the bother cost of each entity.

Now we can obtain user unwillingness factor by adding attentional state factor to

lack of expertise factor as we described in Section 3.2.2. With user unwillingness
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factor, we set values of probability of response for each case such as “Yes,” “No,”

and “Silence” according to the Table 4.1.

Entity ASF LEF UUF Yes No Silence

e1 Busy Med Med-Unwilling 30% 50% 20%

e2 Busy Low Medium 40% 40% 20%

e3 Busy High Unwilling 20% 60% 20%

e4 Relaxed High Medium 40% 40% 20%

We can also find the probability of response, which represents how quickly the

entity will response.

Entity ASF LEF UUF 1 unit 2 unit 3 unit 4 unit

e1 Busy Med Med-Unwilling 13% 17% 23% 27%

e2 Busy Low Medium 20% 20% 20% 20%

e3 Busy High Unwilling 7% 13% 27% 33%

e4 Relaxed High Medium 20% 20% 20% 20%

The values of bc inc fac and Init are as below.

Entity UUF bc inc fac Init

e1 Med-Unwilling 1 8.4375

e2 Medium 1 18.75

e3 Unwilling 1.25 28.125

e4 Medium 1 11.25

where the calculations are:

• Init(e1) = User Unwillingness Factor × Attention State Factor
× TOC BaseBotherCost = 1.25× 1.25× 15 = 23.4375

• Init(e2) = 1× 1.25× 15 = 18.75

• Init(e3) = 1.5× 1.25× 15 = 28.125

• Init(e4) = 1× 0.75× 15 = 11.25

(b) We update the task criticality (TC) of the current patient with different TC

weights as time passes. TC increases by 2% if it is highly critical as shown in

Table 3.3. TC of the current patient is initially 9. If the strategy chain is e2 - e3
- e4 - e1, e2 will meet the patient whose task criticality is 90. However, e3 will

meet the patient whose task criticality is 9.18, which is increased by 2%. The

task criticality goes up into 9.3636 and 9.5509.
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(c) The EQ values are also set with different EQ weights as time passes. According

to the table 3.4, however, the EQ value of any entities is not weighed because

the task criticality of the patient is low. That is, the EQ value of e1, e2, e3, and

e4 is 150 which is the initial value. Therefore, every entity has equally likely

ability to treat the patient.

e1 e2 e3 e4
EQ 150 150 150 150

(d) We calculate the expected utility for each FTOC node for “Yes”, SG node for

“No”, and Default node for Silence as we described in Section 3.1.3.

(e) After aggregating the expected utility value for each node, we evaluate the final

expected utility value of the current strategy chain.

(f) We repeat step 3 and 4 in order to evaluate the expected utility value for each

strategy chain.

(g) We repeat from step 1 to 4 until there is no patient on the waiting list

5. We ask the entity with a query. The entities are ordered on the optimal strategy

chain which has been obtained at the step of strategy generation and evaluation.

Table 4.9 displays the list of expected utility of strategy chain at the time the patient

arrives in Scenario 3. We find that the optimal strategy chain is e4 - e1 - e2 - e3 whose

expected utility is 105.848998.

4.3 Executing a Strategy

This example revisits Scenarios 1 in Section 4.2, in order to illustrate the possible out-

comes in executing a particular strategy. In particular, we examine a few distinct cases,

showing different possible responses from the experts to whom decision making control is

transferred, within the overall strategy.

Case 1. The first clinical assistant(FCA) obtained the optimal strategy chain and

asked the first expert in strategy a query, “Can you help with the current patient?”. The

expert provided a “Yes” response to the FCA in 3 unit time and the FCA assigned the

patient to the expert. The expert that was relaxed became busy after taking the patient.

Case 2. The FCA obtained the optimal strategy chain and asked the first expert in

strategy a query, “Can you help with the current patient?”. The expert did not provide
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Table 4.9: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 92.028054 e1 - e2 - e3 - e4
2 92.901364 e1 - e2 - e4 - e3
3 90.230701 e1 - e3 - e2 - e4
4 90.182701 e1 - e3 - e4 - e2
5 94.140054 e1 - e4 - e3 - e2
6 95.061364 e1 - e4 - e2 - e3
7 94.415688 e2 - e1 - e3 - e4
8 95.288998 e2 - e1 - e4 - e3
9 92.469555 e2 - e3 - e1 - e4

10 92.230492 e2 - e3 - e4 - e1
11 96.199099 e2 - e4 - e3 - e1
12 97.300218 e2 - e4 - e1 - e3
13 81.009687 e3 - e2 - e1 - e4
14 80.770625 e3 - e2 - e4 - e1
15 81.158468 e3 - e1 - e2 - e4
16 81.110468 e3 - e1 - e4 - e2
17 83.121687 e3 - e4 - e1 - e2
18 82.930625 e3 - e4 - e2 - e1
19 104.599099 e4 - e2 - e3 - e1
20 105.700218 e4 - e2 - e1 - e3
21 102.790492 e4 - e3 - e2 - e1
22 102.981555 e4 - e3 - e1 - e2
23 104.927688 e4 - e1 - e3 - e2
24 105.848998 e4 - e1 - e2 - e3
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any response even after 5 unit time had passed. Our system classified him as Silence and

suggested the FCA to ask the second best expert. The expert provided a “Yes” response

to the FCA in 2 unit time and the FCA assigned the patient to the expert.

Case 3. The FCA obtained the optimal strategy chain and asked the first expert in

strategy a query, “Can you help with the current patient?”. The expert did not provide

any response even after 5 unit time had passed. Thus, the FCA tried to ask the second

best expert but he also did not give any response for 5 unit time. The FCA asked the

third expert in the strategy. She said “Yes” immediately The patient is finally assigned to

the third expert. This might happen, for instance, if the first two experts, thought to be

Relaxed, actually became Busy and the third expert, thought to be Busy, became free by

the time she was asked.

Case 4. The FCA obtained the optimal strategy chain and asked the first expert in

strategy a query, “Can you help with the current patient?”. The expert did not provide

any response even after 5 unit time had passed. Thus, the FCA tried to ask the second

best expert but he also did not give any response for 5 unit time. The FCA asked the third

and fourth experts in the strategy but they also provided only Silence. Meanwhile, time

has been passed and the expert who had the greatest quality of decision was no longer

busy because the patient left the expert as she got better due to the treatment by that

expert. Strategy regeneration would put this expert as the first entity to whom control

was transferred and then we might be back in case 1 above.
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Chapter 5

Validation

5.1 Experimental Setup

Our validation measures performance of our model reflecting dynamic and time critical

aspects. Our simulation used Matlab (R2010a) on a machine with the following settings:

AMD athlon(tm) 64 X2 Dual, Core Processor 5600+, 2.91 GHz, and 3.25 GB of RAM. In

the setting of our validation simulating hospital emergency scenarios, there are four entities

on the entity list and five patients on the waiting list. Below are profiles of patients and

entities.

No. Patient Medical Problem Task Criticality

1 p1 Cardio 70

2 p2 Cardio 90

3 p3 Neuro 63

4 p4 Cardio 82

5 p5 Neuro 70

Entity ASF Specialized Area Number of Patients

e1 Relaxed Cardio 7

e2 Relaxed Cardio 100

e3 Relaxed Neuro 15

e4 Relaxed Neuro 120

*e5 Relaxed Neuro 240

*e6 Relaxed Cardio 98
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Note that entities e5 and e6 on the entity profiles were not included during the simulation

with 4 entities case.

Every patient has a task criticality for his/her specific medical problem, and the task

criticality of each patient is changed dynamically as time progresses.

Our simulation considers all the patients in the emergency room, beginning with the

most critical patient first and then sequentially processing the remaining patients on the

waiting list, always processing the most critical patient first.

5.2 Process

The first clinical assistant picks up the most serious patient from the waiting list. Then,

the waiting list is updated by eliminating the selected patient which has been assessed as

the most critical patient. Thus, the number of patients remaining becomes four.

Strategies are generated by following the process introduced in Chapter 3. In our

validation, 4! strategies are generated since there are four entities available in our scenario.

We evaluate the expected utility of each strategy and choose the one with the optimal

utility. There are several steps to evaluate the expected utility with following.

We set values of parameters of each entity based on the profile of the current patient.

We already know some information of each entity such as attentional state factor, special-

ized area, and the number of patients the entity has treated. Then, we set the following

parameters: lack of expertise factor, probability of response for answer, and probability of

response for how quickly the entity will respond, bc inc fac, and Init. Those parameter

values affect to determine the bother cost of each entity.

Obtain Parameter Values We obtain lack of expertise factor of the entity based on

the medical problem of the patient and the history of the entity.

We obtain user unwillingness factor by adding attentional state factor to lack of exper-

tise factor. With user unwillingness factor, we determine a value of probability of response

for each case such as “Yes,” “No,” and “Silence” according to the Table 3.5.

We can also find the probability of response timing, which represents how quickly the

entity will respond.

We finally obtain the value of bc inc fac and calculate another variable Init by following

the formulae introduced in Section 3.2.2.
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Update task criticality We update the task criticality(TC) of the current patient with

the increasing rate based on how critical he/she is as time passes according to Table 3.3.

Setting EQ The EQ values are also set with different EQ weights as time passes

according to Table 3.4.

Calculation of EU We calculate the expected utility for each FTOC node for “Yes”,

SG node for “No”, and Default node for “Silence”. After aggregating the expected utility

value for each node, we evaluate the final expected utility value of the current strategy

chain. This results in the strategy that is best to execute.

5.3 Execution

Obtain the answer and response time

We ask the best entity on the best strategy chain. He/she would have a function of

probability of response as shown in Table 3.5 based on his/her willingness.

The entity will answer “Yes”, “No” or “Silence” based on probability of response as

shown in Table 3.5. With the current user unwillingness factor, we get information about

when the entity will answer the question and which answer will be given. For example, if

the user unwillingness factor is Willing, the probability to answer “Yes” is 60%. We use a

uniform distribution. In other words, our simulation generates a random number between

0 and 10. If the random number is between 0 and 6, our simulation considers that the

answer is “Yes”. If the random number is between 6 and 8, the answer is considered as

“No”. Otherwise, we consider that the response from the entity is silence.

After obtaining the type of answer, we use another uniform distribution to simulate

when the entity responded to the question. If the answer is silence, the response time

becomes 5 unit time. Otherwise, we generate a random number between 0 and 80 and

see which number is generated. If the entity is a Willing person, the entity would give a

response which may be either “Yes” or “No” in 1 unit time with the probability of 33% as

designed in Table 3.6. Thus, if the random number generated from the uniform distribution

is between 0 and 33, we consider that the entity responded in 1 unit time after being asked.

Also, the entity a has probability of 27% to respond in 2 unit time, 13% in 3 unit time, and

7% in 4 unit time. Therefore, if the random number drawn from the uniform distribution

between 0 and 80 1 is between 33 and 60, 2 unit time is given to the entity as response

1We modeled that the probability of response for the case of silence as 20% for any type of user
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time. If it is between 60 and 73, 3 unit time is given. Otherwise, 4 unit time is given as

the entity response time to the question.

Update task criticality of the current patient

We learned about when the entity will respond from the last step. Since the current patient

should wait for a response from the entity, we increase the task criticality of the current

patient during the response time. Examples are as follows:

1. If the expected response is “Yes” in 3 unit time and the current task criticality of

the patient is 85, the expected task criticality in 3 unit time is calculated as follows:

• In 1 unit time,

TC = current TC + current TC × Increasing Rate = 85 + 85× 0.1 = 93.5

• In 2 unit time,

TC = 93.5 + 93.5× 0.1 = 102.85

• In 3 unit time,

TC = 102.85 + 102.85× 0.1 = 113.135

If the task criticality of the a patient increased over 100, we model this as a problem

patient. In this case, the patient becomes dead before he/she gets a response from

the entity. We put the patient on the Dead List.

2. If the expected response is “Yes” in 2 unit time, and the current task criticality of

the patient is 78, the expected task criticality in 2 unit time is calculated as follows:

• After 1 unit time,

TC = current TC + current TC × Increasing Rate = 78 + 78× 0.05 = 81.9

• After 2 unit time,

TC = 81.9 + 81.9× 0.1 = 90.09

After 1 unit time, 5% was applied as an increasing rate as task criticality of the

patient is Medium, but 10% was applied in 2 unit time since task criticality of the

patient became High. In this case, the patient is still alive before he/she get a

response from the entity. Since the entity’s answer to the question is “Yes”, the

patient will be taken by the entity.

unwillingness factor. In other words, the probability of response for the case of “Yes” and “No” is always

80%. Thus, we arranged the range of the distribution to be between 0 and 80 for convenience in our

calculation.
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3. If the expected response is “No” in 2 unit time, and the current task criticality of

the patient is 78, the expected task criticality in 2 unit time is calculated as follows:

• In 1 unit time,

TC = current TC + current TC × Increasing Rate = 78 + 78× 0.05 = 81.9

• In 2 unit time,

TC = 81.9 + 81.9× 0.1 = 90.09

After 1 unit time, 5% was applied as an increasing rate as task criticality of the

patient was Medium, but 10% was applied in 2 unit time since task criticality of of

the patient became High. In this case, the patient is still alive before he/she get a

response from the entity. However, the patient still need to wait for a while to see

a doctor because the expected doctor answered “No”. In our model, we regenerate

a strategy chain reflecting current parameter values and repeat asking an entity on

the new strategy. Meanwhile, task criticality of other patients on the waiting list is

increased by the increasing rate corresponding to the task criticality of them.

4. If the expected response is silence, and the current task criticality of the patient is

45, we need to calculate the the expected task criticality in 5 unit time.

• In 1 unit time,

TC = current TC + current TC × Increasing Rate = 45 + 45× 0.05 = 47.25

• In 2 unit time,

TC = 47.25 + 47.25× 0.05 = 49.6125

• In 3 unit time,

TC = 49.6125 + 49.6125× 0.05 = 52.0931

• In 4 unit time,

TC = 52.0931 + 52.0931× 0.05 = 54.6978

• In 5 unit time,

TC = 54.6978 + 54.6978× 0.05 = 57.4327

5% was applied as an increasing rate as task criticality of the patient was Medium.

In this case, the patient is still alive before he/she get a response from the entity.

However, the patient still needs to wait for a while to see a doctor because the

expected doctor answered nothing rather than “Yes”. In our model, we ask the

second best doctor on the strategy chain and wait for the response from the doctor.

If there is no next doctor left, we regenerate a strategy chain as is done in the case

of “No”.
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Check the status of patients on the waiting list

As time passes, task criticality of patients on the waiting list increases. If task criticality

of any patients become more than 100, we consider that the patient is dead at that point.

Our simulation first selects the patient whose task criticality is highest.

5.4 Simulations

5.4.1 Time Cost and Bother Cost

This validation measures performance of our model reflecting dynamic and time critical

aspects by comparing it with one that is missing the calculation of bother cost. In the

setting of our validation simulating hospital emergency scenarios, there are four entities on

the entity list and five patients on the waiting list.

Every patient has a task criticality for his/her specific medical problem, and the task

criticality of each patient is changed dynamically as time progresses. Our simulation first

selects the patient whose task criticality is highest.

The number of patients the entity has treated so far is used to determine weather

the entity has experience for a particular medical problem for the profile recorded. For

example, we consider the entity as an expert if he has treated more than 100 patients for

the specific medical problem. Otherwise, the entity is considered as novice for the specific

medical problem.

We then obtain a strategy chain by calculating formulae (Equation 3.4, 3.9, 3.10)

reflecting our model based on the patient’s profile (medical problem and criticality). After

choosing a entity in the chain, we ask him/her to treat the current patient and update

the criticality of patients who have been treated by entities, as well as those remaining on

the waiting list. If a patient has not been attended to (i.e. no doctor has replied “yes”),

the task criticality of the patient increases as time passes. If the task criticality of the

a patient increased over 100, we model this as a problem patient. When there are no

more patients on the waiting list, we finally count the number of problem patients. By

comparing the number of problem patients simulated by our model with bother cost and

without bother cost, we can validate whether our model reflects dynamic and time critical

domains effectively.

Figure 5.1 illustrates the distribution generated by our model with Bother Cost and

without Bother Cost. The graph on the left represents the case of 4 entities and 5 patients
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Figure 5.1: Our model with and without Bother Cost

and one on the right represents the case of 6 entities and 5 patients. The x-axis of each

graph denotes the number of problem patients, and the y-axis the frequency of each value

on x-axis after running our simulation 100 times. The solid line represents the version

including Bother Cost, and the dotted line represents the version excluding Bother Cost.

In Figure 5.1, we can find the peak of the dotted line located in a higher position than

the peak of the line at 4 on the x-axis and inclined to the right. This implies that there

have been more problem patients during simulations with the version without Bother Cost

(dotted line) than one with Bother Cost (solid line). In other words, the version calculating

Bother Cost outperforms the one which does not calculate Bother Cost by comparing the

number of problem patients on the graphs.

5.4.2 Strategy Regeneration

In this experiment, we compare the version with a SG node for strategy regeneration to

the one without the SG node. As shown in Section 3.1.3, there is a SG node where a new

strategy chain is generated if the response from the entity is “No” to reflect the aspect of

real-time and dynamic environments. For the version excluding the SG node, we simply

moved to the next world and asked the next entity instead of strategy regeneration.

Figure 5.2 illustrates the distribution generated by our model with strategy regeneration
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Figure 5.2: Our model with and without a SG node

and without strategy regeneration. The graph on the left represents the case of 4 entities

and 5 patients and one on the right represents the case of 6 entities and 5 patients. The

x-axis of each graph denotes the number of problem patients, and the y-axis the frequency

of each value on x-axis after running our simulation 100 times. The solid line represents

the version including a SG node, and the dotted line represents the version excluding the

SG node.

In Figure 5.2, we can find the peak of the solid line at 4 on the x-axis and inclined to

the right. However, the peak of the dotted line is spotted at 5 on the x-axis. This implies

that 4 problem patients are mostly found under the version with strategy regeneration but

5 problem patients under the version without strategy regeneration. In other words, the

version including a SG node outperforms the one which does not regenerate a strategy

chain.

5.4.3 Task Criticality

In this experiment, we compare the version with weights by task criticality of the patients

to the one without weights. The expected quality of decision of each entity is determined

by his/her lack of expertise factor as presented in Formula 3.10. In this section, we compare
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Figure 5.3: Our model with and without weights

the version with weights and the one without weights. The version without weights implies

that every entity has equal expected quality of decision.

Figure 5.3 illustrates the distribution generated by our model with strategy regeneration

and without weights. The graph on the left represents the case of 4 entities and 5 patients

and one on the right represents the case of 6 entities and 5 patients. The x-axis of each

graph denotes the number of problem patients, and the y-axis the frequency of each value

on x-axis after running our simulation 100 times. The solid line represents the version

reflecting weights, and the dotted line represents the version excluding weights. In Figure

5.3, we can find the peak of the dotted line located in a higher position than the peak of

the line at 4 on the x-axis and inclined to the right. This implies that there have been more

problem patients during simulations with the version without weights (dotted line) than

one reflecting weights (solid line). In other words, the version with weights outperforms

the one which does not reflect weights by comparing the number of problem patients on

the graphs.
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Table 5.1: Profiles of entities at the time the patient arrives
e1 e2 e3 e4

Attentional State Factor Relaxed Busy Busy Relaxed

Lack-of-expertise Factor Low High Low High

5.5 Level of Expertise

We illustrate the value of the Lack of Expertise factor through an example. Table 5.1

displays the Attentional State and Lack of Expertise of each of the four entities, at the

beginning.

5.5.1 With Level of Expertise

In our example, a patient has just arrived at the emergency room. The first clinical

assistant (FCA) assesses him as highly critical, whose task criticality is 85 for the medical

problem on his Neuro. The FCA tries to search for the right doctor for the current patient.

Our system checks the profile of each doctor and begins finding out the optimal strategy

by calculating an expected utility for each generated strategy. Since there are four doctors,

we obtain 4! strategies. By evaluating each strategy, we obtain 24 expected utility values

for each strategy. The greatest expected utility is EU(s) = 110.03 whose strategy chain is

e1 - e2 - e4 - e3.

The strategies that choose to ask e4 first do not have high EU values, even though the

expert is not Busy and can attend to the patient. This is because the High Criticality of

the patient has raised the weight of the EQ value in the calculation. The maximal EU

of a strategy that asks e4 first is 95.75 as represented in Table 5.2. Likewise, strategies

that select e2 first have very low EU values, as this expert is both Busy and with High

Lack of Expertise Factor.

5.5.2 Without Level of Expertise

Each entity has its own Lack of Expertise Factor of either High, Med or Low. However,

we set Lack of Expertise Factors of all the entities into Med. The greatest expected

utility is EU(s) = 110.37 whose strategy chains are e1 - e4 - e3 - e2, e1 - e4 - e2 - e3, e4 - e1
- e3 - e2, and e4 - e1 - e2 - e3 as shown in Table 5.3. We find that there are four different
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Table 5.2: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 109.158054 e1 - e2 - e3 - e4
2 110.031364 e1 - e2 - e4 - e3
3 103.040701 e1 - e3 - e2 - e4
4 102.608701 e1 - e3 - e4 - e2
5 106.566054 e1 - e4 - e3 - e2
6 107.871364 e1 - e4 - e2 - e3
7 107.738381 e2 - e1 - e3 - e4
8 108.611691 e2 - e1 - e4 - e3
9 101.726617 e2 - e3 - e1 - e4

10 101.444457 e2 - e3 - e4 - e1
11 105.390556 e2 - e4 - e3 - e1
12 106.557280 e2 - e4 - e1 - e3
13 71.066750 e3 - e2 - e1 - e4
14 70.784590 e3 - e2 - e4 - e1
15 70.961161 e3 - e1 - e2 - e4
16 70.529161 e3 - e1 - e4 - e2
17 68.474750 e3 - e4 - e1 - e2
18 68.624590 e3 - e4 - e2 - e1
19 94.590556 e4 - e2 - e3 - e1
20 95.757280 e4 - e2 - e1 - e3
21 88.484457 e4 - e3 - e2 - e1
22 88.334617 e4 - e3 - e1 - e2
23 94.346381 e4 - e1 - e3 - e2
24 95.651691 e4 - e1 - e2 - e3
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strategy chains which were generated with the same EU because there is indifferent between

High expertise medical experts and Low expertise experts. For example, e1 and e4 are

exchangeable on the strategy chain since their user unwillingness factor is same each other.

However, if e4 is chosen as the first entity, our patient would not be treated properly

because e4 has no experience for the medical problem.
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Table 5.3: Expected utility of strategies at the time the patient arrives
No. Expected Utility (EU) Strategy Chain

1 108.657664 e1 - e2 - e3 - e4
2 108.700761 e1 - e2 - e4 - e3
3 108.657664 e1 - e3 - e2 - e4
4 108.700761 e1 - e3 - e4 - e2
5 110.366391 e1 - e4 - e3 - e2
6 110.366391 e1 - e4 - e2 - e3
7 95.250357 e2 - e1 - e3 - e4
8 95.293454 e2 - e1 - e4 - e3
9 93.584726 e2 - e3 - e1 - e4

10 93.584726 e2 - e3 - e4 - e1
11 95.250357 e2 - e4 - e3 - e1
12 95.293454 e2 - e4 - e1 - e3
13 93.584726 e3 - e2 - e1 - e4
14 93.584726 e3 - e2 - e4 - e1
15 95.250357 e3 - e1 - e2 - e4
16 95.293454 e3 - e1 - e4 - e2
17 95.293454 e3 - e4 - e1 - e2
18 95.250357 e3 - e4 - e2 - e1
19 108.657664 e4 - e2 - e3 - e1
20 108.700761 e4 - e2 - e1 - e3
21 108.657664 e4 - e3 - e2 - e1
22 108.700761 e4 - e3 - e1 - e2
23 110.366391 e4 - e1 - e3 - e2
24 110.366391 e4 - e1 - e2 - e3
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Chapter 6

Discussion and Conclusions

In this chapter, we begin by presenting future work, commenting further on how to make the

calculations of our framework more complex. We then include a contrast with other related

work, including other efforts on designing mixed-initiative systems and other research on

reasoning about interaction with users, sensitive to bother. We end with a summary of the

contributions of the thesis.

6.1 Future Work

6.1.1 Sensor and Learning Techniques

One valuable topic for future work is how best to set the various parameter values. Some

parameter values could possibly obtained from sensors attached to the medical experts

being modeled. We would need to determine how often the sensor check the status of

the doctors and send information to the system. If the status has been checked by sensor

and sent to the system frequently, our system could reflect the aspect of dynamic and

real-time settings more effectively. However, the heavy loads might be required to work

out frequently.

The hSITE project ([22]) aims to integrate sensor readings into the overall decision

making in hospital environments and to integrate as well an effective networking of the

various devices used within the hospital. One could imagine, for instance, being able to

assess the attentional state of the medical experts based on devices which register patient

status. In addition, the time and location of the medical experts could be known and
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this could be another influence in determining the expected quality of decision, if asking a

particular expert (e.g. experts who are very far away may be less able to quickly assist a

critical patient). Integrating sensor data into the determination of parameter values is in

general an interesting topic for future research.

We may also use learning techniques to obtain parameter values instead of using in-

formation from the sensor. The parameter values obtained by using learning techniques

might not reflect the current situation as effectively as using the sensor, but it may give

the system less burden to use the learning techniques.

In order to acquire the values of some of the existing parameters in the model described

in Chapters 3 and 4, we are interested in using machine learning methods. We can classify

different machine learning algorithms, based on the desired outcome of the algorithm as

follows [25]. First, supervised learning is for learning a function from training data. The

training data consist of pairs of input objects and desired outputs. Second, unsupervised

learning models a set of inputs: labeled examples are not available. Third, semi-supervised

learning combines both examples to generate an appropriate function or classifier. Finally,

reinforcement learning learns how to act given an observation of the world. Every action

has some impacts in the environment, and the environment provides feedback in the form

of rewards that guides the learning algorithms.

We are especially interested in the active learning method [17] in the category of super-

vised learning since this method is more appropriate for dynamic and real-time situations.

By the active learning, we may determine the value of variables which are changed dynam-

ically. As seeing the characteristic of each variable, we can find the fact that Attention

State Factor can be determined by this learning method. That is, we may classify the

degree of how busy doctors are by the active learning method, and each classified cluster

may represent the value of the parameter, Attention State Factor.

A useful starting point for investigating active learning for reasoning about interruption

is the work of Kapoor and Horvitz [17] which advocates the use of active learning through

experience sampling to determine the benefit of predictive models against the cost of the

probes to obtain parameter values.

6.1.2 Probability of Response

Our current calculation for the probability of response uses an estimate based on the

user unwillingness factor of the medical expert. Various default values are employed; for

example, we assume that the probability of silence is the same, for all medical experts. For
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future work, it would be valuable to integrate into the estimate for probability of response

a calculation of how much stress the doctor has been under, due to workload with patients

that day. For example, we could measure how long the doctor has been with a status

of Relaxed and determine the parameter value of Stress Level Factor. If the doctor has

been relaxed longer than other doctors at this point, we could say that more relaxed doctor

would have less stress. Sensor information could be sent to our system and this can help to

determine the parameter value. Alternatively, we could simply be recording in time spent

with patients for that particular medical expert and reduce our expectations of a successful

probability of response for those who have been overworked that day.

We could also be modeling more carefully whether the expert’s attention state factor

is likely to be reduced soon, based on when the expert became busy and how much time

has past.

6.1.3 Attention State Factor

The Attention State Factor represents the attention state of the user. For instance, a user

is more interruptible when resting than when he/she is busy with important work [7]. In

our scenario, this variable will determine how busy doctors are currently. We can measure

the value of this variable by checking how many hours are needed to finish a current task

the doctors are undertaking. This factor changes over time under the dynamic situation

in our hospital setting.

For simplicity, if the doctor is currently handling any patient, we consider him/her as

the doctor with a status of Busy. If not, we consider him/her as the one with a status of

Relaxed. We could potentially obtain this parameter value by checking a sensor attached

to the doctor. The sensor will check whether the doctor is currently having a patient.

6.1.4 Lack of Expertise Factor

In order to obtain the value of Lack of Expertise Factor, we need to keep track of the

history of behavior of the medical expert from database in hospital. We can count the

number of patients who have been treated by the doctor to figure out how the doctor

has expertise for the specific patient. If the doctor has handled more than one thousand

patients having the specific symptom, the doctor would be considered as more skilled

expert than other doctors having treated five hundreds patients. In our model, we classify

medical experts as three groups: less skilled experts, medium skilled experts, and more
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skilled experts. More skilled experts are given a status, Low, and the others are given a

status, High for the parameter of Lack of Expertise Factor.

This current model can become more sophisticated. A more precise representation of

the kind of problem that the current patient is exhibiting may better determine whether

the medical expert in question has sufficient expertise. In addition, a class of problems

should all be addressible equally by any medical expert (i.e. do not require considerable

specific previous experience). In these cases, it may simply be the status of the medical

expert (e.g intern compared to longterm practitioner) that makes the most difference. We

note as well that as medical experts elect to take on more patients, their level of expertise

will need to be adjusted.

6.1.5 User Unwillingness Factor

The user unwillingness Factor is the user’s unwillingness to interact with the system. This

is a measure of how receptive the user is towards being TOC’ed, and how disrupted they

are by interruptions[Cheng, Fleming, and Cohen 05’]. This value is related to the expertise

of each doctor. If one doctor is good at the medical problem of the current patient because

of his/her expertise, the doctor may be willing to do treat the patient. Otherwise, he/she

will not help the patient and the doctor’s User unwillingness Factor may become higher.

If we view this variable in respect of the expertise of each doctor, we are able to conclude

the fact that this variable is not directly related to the dynamic and real-time situations.

Currently, user unwillingness is simply calculated in terms of attentional state and lack

of expertise. We could instead construct detailed user models more carefully, determining

just how inherently willing this particular expert appears to be, when asked to assist (from

previous scenarios). The inherent user willingness would then have to be integrated with

the current calculation to determine the most appropriate value.

6.1.6 Expected Quality of Decision

To decide which doctor has a higher quality of decision, we considered his/her special-

ized area for the medical problem to figure out which expert is more knowledgable for the

specific patient. In other words, we assumed that a doctor is knowledgable when the spe-

cialized area of the expert is matched with the medical problem of the patient. However,

there might be various methods to evaluate knowledge of doctors and several factors to

affect evaluating expected quality of decision after evaluating knowledge of the doctors.
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Experiences of each doctor in hospital such as how long they have worked or which educa-

tion they have obtained would be beneficial to gain information for estimating the expected

quality of decision.

6.1.7 Enhancing the PTOC Question

In our current model, the question that each medical expert is asked is “Can you help

with the current patient?”. We can imagine making this communication more informative,

indicating at least the basic area of the patient’s problem or perhaps a very specific initial

diagnosis. In this case, the expert’s response may be altered (for example a very busy

doctor who realizes he is the most expert may decide to say “Yes”). If more information

were flowing, then our modeling which estimates probability of response would have to be

adjusted as well.

6.1.8 Calculating the Timing in the Strategy Chains

Currently, the time to wait for the first entity in a strategy chain before then asking the

next is determined on the basis of fixed values and estimations of probability of response.

For future work, we could in fact explore more detailed algorithms to try to optimize the

times at which each strategy moves on to consider the next entity in its chain. Our starting

point for this research would be the methods proposed by Cheng [6] motivated by those

introduced in the E-Elves project [27] where one uses an expected utility equation with

an integral as in Section 2.4 and then differentiates solving for the t value that makes the

equation equal to zero.

6.1.9 Revisiting Strategy Regeneration

At the moment, we assume there is no cost for strategy regeneration. While it is definitely

valuable to proceed with updated parameter values, this will at least consume some time.

We leave open for future work a more careful consideration of the value of the strategy

regeneration cost.

We have also limited the length of strategies being generated, allowing the same entity

to be consulted only once in a given strategy chain. For future work, we could extend

the model to give up this restriction. Continuing to include strategy regeneration would

then require an algorithm for when that generation should take place. In addition, it may
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make sense to reconsider the same expert within a chain, if that person is changing their

attentional status (busy back to relaxed) or expertise level (to be increased).

It may also be interesting to vary the need for strategy regeneration based on the task

at hand. Very critical patients may introduce an even greater need to regenerate strategy

values frequently.

Finally, when the number of possible experts becomes quite high we may consider

techniques for reducing the number of strategies that are generated, as discussed in [6].

For example, not considering all the possible p experts or grouping experts into types where

parameters are all modeled similarly.

6.1.10 Task and Resource Allocation Problem

At the moment, our framework is developed in order to determine the best strategy (i.e.

which entities to ask, how long to wait before asking another entity, etc.) to address the

current task. In hospital emergency scenarios, this is the task of caring for the current

patient.

In general, in dynamic environments there will be multiple tasks that need to be ad-

dressed at once and multiple resources that can be brought to bear in order to address

those tasks (e.g. the different medical experts, for the hospital application).

In Chapter 5, we simply processed each new patient sequentially. For future work,

we would explore a multiagent extension to our current framework. As in the work of

Cheng [6], one approach we could investigate is effectively coordinating the requests for

assistance that each task requires. In particular, Cheng proposes that each agent have a

proxy who handles requests for the agent to assume decision making, which may arrive from

any number of other agents in the system. In the hospital decision making scenario, this

would involve having one medical expert being asked to assist with several different current

patients at once (simply because he is considered to be the agent with the best expected

quality of decision, relative to bother cost). The challenge is in effectively modeling the cost

of bother, if the estimates for bother cost are possibly stale (unaware of any simultaneous

requests for assistance with this expert or having a stale model of the expert’s current

attentional state). In Cheng, proxy agents could use a verification procedure, requiring

each agent asking the expert for assistance to also indicate their estimate of the expert’s

current bother cost and being provided with a more accurate estimate from the proxy, if

this is in fact quite out of sync with the expert’s current state. The agent who had put
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the expert into its transfer-of-control strategy could then recompute, possibly asking a

different expert.

With real-time settings, it would be important not to lose significant time approaching

experts who are unlikely to assist, due to other current committments. But it would also be

challenging to properly model the precise attentional state of each expert, because simply

being asked to assist in a strategy being executed for a current patient would not ensure

that the expert will say “Yes” and would actually be assisting.

What would ultimately be needed is some kind of effective task and resource allocation

scheme, whereby tasks that are executed simultaneously do not try to make use of exactly

the same resources at the same time. Research which may be of value to examine for

insights includes that of Decker and Li [9] that views the problem of patient scheduling in

hospitals as a multiagent coordination question.

6.1.11 Exploring Hospital Scenarios

In Chapter 5, we presented experimental results from simulations which monitored the

number of problem patients that would arise, due to various algorithms. We had orig-

inally planned to label these as “dead patients”, since they were in a critical state and

were unattended. In reality, hospitals will try hard to have these patients attended to in

some manner, but as their level of criticality rises beyond a certain point, we have simply

indicated that they are a problem because they may begin to incur a significant cost to the

hospital. The certain point can be determined by measuring the value of blood pressure,

breadth, and purse patients have. For future work, we could interact further with medical

professionals to gain greater insights into how very critical patients are managed while

waiting for their primary care.

We could as well learn how to model in some respects the economic considerations of

patient care for emergency room scenarios. In particular, currently hospitals in Ontario

are being judged according to their patient throughput and this is to impact the funding

that they will receive. For this reason, it will become even more important for the most

effective medical experts to be brought in to care for these patients.

The examples that we introduced in Chapter 4 indicated the best strategy chain to

execute, in order to result in the highest overall utility. Another direction for future

research would be to determine the importance of running the strategy with the top utility,

compared to other choices where the utility value is only somewhat lower. The side-

effects of operating at a lower level of utility could be investigated, to shed some light
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on the significance of the actual utility values. This might be done for instance through

simulations.

Ultimately, it would be most valuable to conduct a thorough user study with medical

professionals who operate in hospital settings. As a first step, we plan to learn more about

the challenges to hospital workflow faced by these medical experts through the research

that is currently being conducted by Diane Doran and her team, as part of the hSITE

project. At that stage of the project, the use of sensors may also be involved as part of

the information gathering during hospital scenarios.

Another element of the modeling of hospital scenarios that would be valuable to explore

is the extent to which each patient’s care is in fact reliant on multiple resources, working

together. As each current patient relies not only on multiple experts but perhaps multiple

kinds of equipment (which may or may not be available), there may be interesting chal-

lenges in reasoning about whether the group that is required to attend to the patient can

in fact be assembled appropriately.

6.1.12 Exploring other Application Areas

Currently, we have projected our framework into the application area of hospital decision

making. For future work, it would be worthwhile to explore the use of this framework for

distinct applications where it is important to be reasoning about interaction with users,

sensitive to bother and where there may be time critical conditions. One application of

particular relevance is that of handling real-world emergencies such as fires, to be attending

to by fire brigades. While often the solutions for addressing these problems are resolved

by algorithms for dispatching available resources1, one can imagine modeling more effec-

tively the tendency for certain units to respond quickly or not (reflecting a kind of lack of

expertise) or to be modeling the extent to which the current units are currently busy (so

not simply a binary state of being busy or not but a continuum of values).

1I have spent time as working on dispatching vehicles for a fire brigade in South Korea
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6.2 Contrast with Related Work

6.2.1 Modeling Bother

Our formulae for modeling the cost of bothering users are extensions of those used in

Cheng’s research [6], making use of an Initial bother cost reflective of the kind of question

being asked, a bother increasing function reflective of this particular user, the bother

endured by the user so far. In addition, we discuss how these parameters should be

updated after strategy chains are executed and how our new lack of expertise factor would

influence the user’s unwillingness which forms part of the bother cost calculation.

This formulation is distinct from various other efforts by artificial intelligence re-

searchers to model the cost of interrupting users. For example Bauer [2] proposes the

inclusion of differing kinds bother increases so that users who are inherently unwilling to

be bothered may have this factor increased exponentially whereas more relaxed users can

have a log-like increase in their bother. But the nature of the penalty function for bother

is not formulated explicitly. In this framework, users do indeed get more bothered with

each successive query, in what they refer to as an annoy factor.

Raskutti and Zukerman [23] look at what is referred to as a nuisance factor when

reasoning about which disambiguating query to issue, when interacting with a user. We

are less focused on the choice of query in our current framework. They also examine the

the number of additional queries that will likely come to the same user, once the initial

interaction is generated. As we discussed in Section 6.1.7 above, if we extend our framework

to be providing additional information when we approach an expert to take on the current

task, we might then consider the cost that would likely arise from an additional ongoing

dialogue, as generating bother. The suggestion that some questions carry more bother

than others is at least reflected in part in our decision to have a high base bother cost with

our query that asks users to assume the decision making.

Various researchers are considering the interruptability of users as critical to the design

of any intelligent interface. Horvitz et al.’s COORDINATE system [16] allows users to

indicate beforehand how interruptible they are during certain meetings. While we currently

consider a user’s unwillingness to be a reflection of their recorded attentional state and lack

of expertise, we could additionally allow, for instance in the medical application, experts

to declare themselves as highly disposed against interruption as they head into handling

critical tasks, themselves (and to reset this value when their current task is complete).

Horvitz’s follow up research [15] does move on to consider an attentional state factor and
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this motivated the inclusion of such a factor in Cheng’s work [6], which has carried over to

our own model.

Bailey et al. [1] also have interesting research to confirm that a user’s interruptability

is reflective of their mental load at the time of interruption. This again suggests a more

careful modeling, for future work, of the precise current task of each expert who is recorded

currently as busy, distinguishing those experts who may be less able to cope with a pos-

sible interruption (and thus adjusting our parameter values when calculating strategies).

We note that Bailey’s work is more experimental and psychological, to compliment the

development of models by artificial intelligence researchers.

6.2.2 Mixed-Initiative Systems

Although our current framework reasons about which entities to ask within a strategy

chain and is therefore concerned with the multi-user case, we focus on a decision for how

to handle the current task and as such are offering a process for whether to interact with

a particular user, similar to what is examined by researchers designing mixed-initiative

systems. A Good overview of mixed-initiative system is provided in [10] and [13].

As in the work of Fleming [11], our approach is one of deciding whether to interact with

a user based on various user modeling parameters and on the basis of the expected quality

of decision. This is in contrast with other efforts concerned with whether to interact with

users, which address differing subproblems.

The work of Cesta and D’Aloisi [5] advocates a task driven control of how the initiative

will shift within the system. This aligns well with our decision to focus on resolving the

current task and determining the appropriate strategy of who to ask, at that point. This

work also suggests that the user be allowed to control the decision making. It would

be interesting for us to explore this possibility, within the context of our framework; for

example, experts who became free could request that tasks be assigned to them, this

signalling the value of a regeneration of strategies currently underway. Rich and Sidner [24]

discuss the value of a shared plan known to both the user and the system, while the system

reasons about interacting with the user. Future directions for our research might also

explore how best to convey the current set of tasks that are underway, when interaction is

initiated with an expert.
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6.2.3 Adjustable Autonomy Systems

Our framework specifies the best strategy chain to execute in an effort to bring the most

appropriate expert to attend to the task at hand. It integrates a process of asking other

experts if a positive response is not received from the entities earlier in the chain. As such,

this is a proposal for adjustable autonomy of the agent handling the task that is modeled

on the framework provided in the E-Elves project [27].

Distinct from Cheng’s approach, we do not consider differing questions to ask our

entities, but we instead provide a kind of middle-ground solution whereby, as with Cheng’s

work, we allow a question to be asked of an expert, we allow for a response to that

question (either yes or no, or the case of silence). The question acts as an initiation of

the full transfer-of-control. This contrasts with Cheng’s separation of PTOCs and FTOCs

as two distinct nodes in the strategies that are considered. This is also distinct from the

proposal of Tambe et al. who do not allow for users to be asked questions per se.

There is a variety of other research in the design of adjustable autonomy multiagent sys-

tems which generally focuses on differing concerns. For example, Schreckenghost et al. [28]

view the challenge of adjustable autonomy in multi-user scenarios as best addressed by

methods employed for coordination and communication in multiagent systems. Similar to

Cheng, they introduce proxy agents who assist in the coordination, including an overall

Crew Proxy (for the application of space crew management) to assist in notifying agents

of incoming events and selecting the best methods for offloading the autonomy, for the

resolution of tasks. This research suggests further exploration of proxy agents to be un-

derstanding the current limitations of each entity that may be approached to take on a

current task.

Berry et al. [3] comment on the challenges of honouring preferences of users for tasks

such as meeting scheduling. This provides some backing for approaches such as ours where

which experts are consulted is simply driven by the predominant needs of the current task.

Martin et al. [21] point out that in multi-user environments there may be challenges

when different agents are soliciting the assistance of the same, other agents (or when

two parties may be asking each other to take on their current task). They refer to this

as the problem of interfering with each other’s commands. This work may provide some

insights into how to manage the case of multiple patients needing assistance simultaneously,

outlined in Section 6.1.10 above.

76



6.2.4 User Modeling for Healthcare Applications

Our research is aimed at contributing to the mandate of the hSITE project [22]: delivering

the right information to the right people at the right time. In particular, we determine

who the right people are and what the right time to ask each person is. Our procedure

forms part of the modeling required in hSITE’s Theme 1: determining the overall workflow

(outlined for the particular use of in-hospital decision making).

Other researchers have been exploring the value of user modeling towards the improve-

ment of healthcare services. A special issue of the UMUAI journal is forthcoming [8]. Some

of the other work that is relevant to this topic includes efforts to personalize the delivery

of health information to users (e.g. [4]) and projects to give users control over their user

model, for more effective health promotion (e.g. [19]).

6.2.5 Real-Time Decision Making

One of the primary challenges that we examine in this thesis is that of coping with a need

for quick decisions, in real-time dynamic environments. Altering the algorithms that have

been designed for intelligent automated reasoning to be more time sensitive is another

topic that other researchers have explored.

Included here are efforts by multiagent systems researchers in applications such as

RoboCup Search and Rescue [20] where algorithms need to be designed to coordinate

the activities of emergency medical, police and firefighting robots to rescue civilians after

an earthquake. In particular, the model of Micacchi, Cheng and Cohen [18] leverages

interaction between agents to ensure that parameters are up to date for more effective real-

time decision making, for this application. This suggests that our strategy regeneration

procedure, to determine current parameter values at periodic intervals is of general value.

6.3 Conclusions

This thesis has examined the challenge of having agents reason about whether to interact

with users, in multiagent, multi-user scenarios where each agent has been tasked with

operating autonomously to solve a problem on behalf of its user, and in environments where

the tasks may have critical time constraints and the parameter values may be dynamically

changing. In contrast with previous work on formulating transfer-of-control strategies
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for multiagent adjustable autonomy systems, we propose a strategy regeneration process

that limits the lengths of the strategy chains and results in updated parameter values

for the decision-theoretic reasoning. We demonstrate that this strategy regeneration is

effective, through a simulation in the application of hospital emergency room decision

making, showing the benefits of the regeneration of values, towards successfully completing

the tasks that are being transferred to the entities in each strategy chain. This begins to

provide some insights into how the dynamic nature of the environment can be considered as

part of the determination of the most effective transfer-of-control strategies. We restrict our

focus to effectively addressing each new task, sequentially and discuss possible extensions

to this procedure that address multiple tasks simultaneously.

We also explore in greater detail the user modeling requirements for designing effective

transfer-of-control strategies in scenarios that are time and task critical. In particular,

we first introduce a parameter that models the level of expertise of each entity, of use in

more effectively modeling the expected quality of decision from this entity. We integrate

this parameter into our calculation of a user’s willingness to accept a transfer-of-control

(equating less expertise with less willingness), of use in applications where there is a clear

understanding of the users’ expertise towards the possible tasks at hand. This provides

a richer modeling of the user unwillingess factor than that employed in previous models,

which was largely predicated on deriving an initial estimate for each user based on their

stereotype or through explicit acquisition (e.g. a survey).

We also introduce an explicit modeling of the criticality of the task at hand and propose

an weighting adjustment for the balance between the expected quality of decision and the

cost of bother, relative to the task criticality. We are thus able to place greater demands on

the quality of decision for more critical tasks and to reduce the focus on the cost of bother.

This proposal is in contrast to other approaches in the field which offer varying methods

for modeling bother, but do not reason about this factor relative to the importance of the

quality of decision provided by the user with whom interaction has been initiated.

In order to demonstrate that our proposed formulae for modeling users are effective,

we offer some detailed examples where there is tension between the need for an effective

decision and the possible cost of bother and discuss the value of our particular results.

We also provide a simulation to show that our modeling of bother in particular is effec-

tive, compared to a case where bother cost has not been modeled when reasoning about

transfering control for addressing current tasks in an environment.

As such, we begin to outline how the modeling of the task and of the user as part of

the overall process for reasoning about interaction can be designed effectively, for dynamic
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environments with time critical constraints.

We also project our model into the specific application of hospital emergency room

decision making, outlining how the various parameters serve to model the current patients

and the medical experts and exploring appropriate qualitative values to employ, to distin-

guish the user models in this environment (e.g. Attentional State ranging from relaxed to

busy). We propose to be running our algorithm for reasoning about transfers of control

to have a current patient attended to, driving the actual interaction with existing medical

professionals. Our proposal for constructing a strategy chain provides for a quick change to

eliciting the assistance of a different expert, if the initial expert is unwilling to assist. Our

strategy regeneration also allows for up to date modeling of the environment, where tasks

arise with great frequency (e.g. the attentional state of each expert may change a great

deal). As our validations are also projected in particular into this specific application, this

provides further evidence of the value of our approach for this particular medical challenge.
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