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Abstract

In wireless sensor networks (WSN), a large number of sensor nodes which are capable of

sensing, data processing and communicating are densely deployed in an area to measure

some physical phenomenon. Generally, wireless sensor nodes carry very limited irreplace-

able power sources. Thus, two primary concerns in WSN are to save the overall energy

consumption and to prolong the network lifetime, namely the time when all the nodes are

functional.

Motivated by these two concerns, this thesis mainly focuses on the energy efficient

transmission and bit allocation schemes in multi-source single-sink WSN from an informa-

tion theoretic point of view. Specifically, this thesis investigates the interactions between

source coding and channel coding to gain cooperation between them in terms of energy

efficiency.

For transmission through additive white Gaussian noise (AWGN) channel with path

loss, this work shows that the overall energy consumption can be minimized if each source

transmits with minimum power and cooperates with other sensors in TDMA (time-division

multiple access) mode. From the source coding perspective, the Slepian-Wolf coding the-

orem is applied for efficient bit allocation since sources are usually highly correlated in

WSN. Combining the transmission with correlated source coding, we derive an optimal

closed form bit allocation scheme to minimize the overall energy consumption. The fun-

damental idea is to allocate more bits to the nodes with better channel conditions and

less bits to the nodes with worse channel conditions. Based on this scheme, we further

maximize the network lifetime and develop a heuristic algorithm to average the distribu-

tion of energy consumption among all sensors. Both analytical and simulation results are

presented to show the superiority of our schemes.
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Chapter 1

Introduction

The rapid evolution of hardware circuits, as well as communication theory, has prompted

the realization of abundant new technologies, which were even unthinkable for engineers.

Among these, one promising technology which has profound application scenarios is the

utilization of low cost wireless sensors that are capable of sensing, data processing and

communicating [1], [2], [3], [4].

Usually, a wireless sensor network (WSN) consists of a large number of sensors that are

densely deployed in an area to measure some physical phenomenon, such as temperature,

humidity, pressure, etc. After their deployment, the distributed sensor nodes collect data

from their surroundings, encode the data, and transmit them to the sink node via wireless

channels [5]. The sink node is a special node which is responsible of gathering all the data

and thus connect sensors to the wired or wireless backbone network. Many applications

for large scale WSN include habitat monitoring [6], underground coal mine monitoring [7],

structural health monitoring [8], etc. [9], [10].
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1.1 Motivation and Related Work

In spite of the extensive scenarios where WSN can potentially be applied to, one funda-

mental bottleneck is the power supply limitation of the sensor nodes. Generally, wireless

sensors carry very limited irreplaceable power sources, resulting in two primary concerns

in WSN: to save the overall energy consumption and to prolong the network lifetime. The

network life time has numerous definitions established according to different application

scenarios; however, in this thesis, we only adopt the definition that the network lifetime is

the time when all the nodes are functional.

Another characteristic of WSN is that the data sensors collect are usually highly corre-

lated, rather than independent due to the dense deployment of large number of sensors in

an area. When encoding the correlated sources, Slepian-Wolf theorem remarkably indicates

that if the destination knows the underlying source correlation, it is possible to achieve a

fundamental limit on rate reduction without communication among the sources [11].

Therefore, in recent years, a huge surge of research activities have been dedicated in

providing all kinds of protocols and algorithms to improve the energy efficiency issue in

low-power WSN from several perspectives in the sensor networks protocol stack as depicted

in Figure 1.1.

Traditionally, in the physical layer of a communication system, people only focus on a

single part of the communication system which includes data collecting, correlated source

coding and channel coding (Figure 1.2) and optimize it to improve the energy efficiency. For

example, on source coding with correlated data, [12] proposes a closed form optimal rate

allocation scheme to minimize some transmission cost function which is proportional to the

distance from the source node to the sink, thus to decrease the overall transmitting power.

As for the transmission (channel coding) in a wireless environment, [13] shows that in order

to maximize the aggregate capacity with fixed power, only the user having the best channel

condition is allowed to transmit at any given time, which essentially shares the same spirit

as Time Division Multiple Access (TDMA). [14] examines the tradeoff between improving

the sum-rate and saving energy in many aspects of designing the sensor networks. Finally,
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Figure 1.1: The sensor networks protocol stack [1].

[15] considers both source and channel coding to optimize the rate distortion function under

a fixed power constraint. Also, [16] studies the combination to provide an algorithm to

minimize the overall power consumption and to maximize network lifetime; nevertheless,

it only considers a special scenario where one sensor is only correlated with another single

sensor.

The data link layer is responsible for the multiplexing of data streams, data frame de-

tection, medium access and error control. The proposed protocols mainly focus on medium

access control (MAC) and error control. However, an optimal MAC design typically de-

pends on a large range of tunable factors, such as node density, quality of service (QoS) and

latency required. Thus, it is especially challenging for analysis of a MAC design. In [17]

and [18], Zorzi and Rao employ a finite state machine model to study energy consumption;

however, for the adaptability and flexibility to support a variety of services, a provable
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Figure 1.2: A schematic diagram of sensory communication systems.

performance without tradeoffs still remains elusive.

In the network layer, special routing protocols meeting the power limitation and other

requirements of sensor networks are needed. One very common approach is to optimize

a cost function where the parameters may include some combination of delay, range, hop

count and battery level [19], [20]. Also, clustering algorithms naturally occur in the sensor

network that supports hierarchical signal processing [21]. Another fundamental issue arises

with node localization, the need for each node to know where it is in the system. This task

can be tackled by deployment at known locations [22], [23]. However, in many scenarios

where only random placement is available, how can we determine the relative or absolute

location information, and how accurate this estimation could possibly be? Also, cooper-

ative sensing, detection and estimation require synchronization between sensor nodes so

that sensed events can be synchronized across the network.

The transport layer is needed when the system is planned to be accessed through the

Internet or other external networks. However, to the best of our knowledge, there has been

no attempt to propose a scheme with regard to this issue for the reason that the existing

TCP matches the requirements of sensor network as well.
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For the application layer, there are potentially numerous aspects of protocols that

fall into three main categories: sensor management protocol, task assignment and data

advertisement protocol, and sensor query and data dissemination protocol.

1.2 Objectives and Contribution

Our motivation to study this issue is to understand how source coding and channel coding

can cooperate in terms of optimizing energy efficiency in general multi-source single-sink

wireless sensor networks.

In this thesis, an information theoretic approach combining both source and channel

coding is employed towards the energy efficiency issue in WSN where correlation exists

among all sensors. A multi-source single-sink wireless sensor network is considered, where

the channel is additive white Gaussian noise (AWGN) channel with path loss. The capacity

is then 1
2

log
(

1 +
Pi/d

γ
i

N

)
, which is dependent on the transmitting power Pi and the distance

di from source i to the sink node. We focus on the sensor network scenario where data do

not change very rapidly, so that there is enough transmitting time and the transmission

rate is not a major concern.

We demonstrate that when all the nodes use their respective minimum transmitting

powers in the TDMA fashion to transmit, the overall consumed energy can be minimized.

In this case, source-channel separation theorem [24] holds. For the source coding part,

according to the distributed source coding theorem (Slepian-Wolf), we can allocate bits

within the Slepian-Wolf region for each sensor to transmit avoiding loss of any information.

Combining both the transmission and source coding criterion, we derive a closed form bit

allocation scheme to transmit all the data while minimizing the overall energy consumption

at the same time. The idea is to allocate more bits to the nodes with better channel

conditions and less bits to those with worse conditions. Furthermore, based on this solution,

we develop an algorithm to find the optimal bit allocation scheme to maximize the network

lifetime, and meanwhile, to minimize the overall energy consumption.
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Simulation results are presented after the theorems and proofs. Some comparisons are

shown between our proposed algorithm and the average bit allocation scheme. The purpose

is to give an intuitive impression of how efficient our scheme is.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we review some basic concepts and provide the background knowledge

in information theory and network information theory that are prerequisite for later dis-

cussion. We first call to mind the definitions of several entropies and their relationships to

describe the measurement of information. Then the derivation of single user channel ca-

pacity is presented, for both discrete memoryless channel and Gaussian channel with path

loss. At last, some accomplishments in network information theory including multiple

access channel and Slepian-Wolf coding theorem are provided.

In Chapter 3 and Chapter 4, we study the energy efficiency issue in multi-source single-

sink wireless sensor networks. Specifically, Chapter 3 focuses on minimizing the overall

energy consumption. We start from single-sensor single-sink scenario and derive that it

is the most energy efficient if every sensor uses its minimum power to transmit. Then

we consider multi-sensor single-sink network and prove that if the network is organized

in the TDMA form, the overall energy consumption will be saved. Finally, combining

with correlated source coding, we propose an optimal bit allocation scheme to minimize

the overall energy consumption in the network. Both proofs and simulation results are

presented.

In Chapter 4, we extend the optimization problem to incorporate the network lifetime

prolonging. This optimization problem then contains two objective functions. We provide

an algorithm which aims to achieve lexicographical optimality, i.e, optimal in the sense

that the first objective has higher priority than the second objective. This algorithm starts

from the optimum solution obtained from the previous chapter that can minimize the

6



overall energy consumption, then try to average the energy consumption among all sensors,

since the network lifetime depends on the sensor that consumes the largest energy. Thus,

this algorithm can maximize the network lifetime, and under this condition, accomplish

minimizing the overall energy consumption. Furthermore, simulation results are given at

the end of this chapter.

Finally, the conclusion of this thesis and some discussions about possible future research

are presented in Chapter 5.
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Chapter 2

Background

In this chapter, we review some basic definitions and theorems in information theory and

network information theory, which are the preliminaries for the subsequent of our study.

In single user information theory, we provide some definitions of the measurement of

information and their properties and relationships. We also review Shannon’s single user

channel capacity for a discrete memoryless channel presented in his original 1948 paper

and how to derive the capacity in the Gaussian environment.

Then we present some accomplishments in multi-user information theory. In partic-

ular, the multiple access channel (MAC) model and the capacity results for both the

discrete memoryless and Gaussian multiple access channels are shown. Besides, for the

correlated source coding, we review the distinguished Slepian-Wolf theorem presented in

1973. This theorem introduces cooperation among sources with correlated information,

thus can greatly reduce source coding rate, which results in a diminution of the overall

energy consumption.
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2.1 Preliminaries

In this section, we rewrite some basic definitions that are fundamental yet crucial for the

development of information theory. Specifically, the theory of information starts from what

is the measurement of “information”. In his 1948 original paper, Shannon employed the

concept of entropy to measure the uncertainty of a random variable from its probability

mass function, which reflects the information contained in this random variable.

Definition 2.1.1. (Entropy):

The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (2.1)

where X is the alphabet of the random variable X and p(x) is the probability mass function.

2.1.1 Joint Entropy and Conditional Entropy

Based on the concept for the single random variable, the definition of entropy can be

extended to a vector of random variables. Besides, some properties with regard to the

relationships between these entropies are also worth mentioning.

Definition 2.1.2. (Joint Entropy):

The joint entropy H(X, Y ) of a pair of discrete random variables (X, Y ) with a joint

distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.2)

Given another random variable, the conditional entropy measures the remaining uncer-

tainty in the random variable as defined in Definition 2.1.3.

9



Definition 2.1.3. (Conditional Entropy):

The conditional entropy H(Y |X) with (X, Y ) ∼ p(x, y) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) (2.3)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (2.4)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (2.5)

The concepts of joint entropy and conditional entropy are defined especially to satisfy

the fact that the entropy of a pair of random variables is the entropy of one plus the

conditional entropy of the other, i.e.,

H(X, Y ) = H(X) +H(Y |X). (2.6)

This chain rule property can be extended to a vector of random variables as shown in

Theorem 2.1.1. In this chapter, we will present the theorems without any proof. For the

details, please refer to [24].

Theorem 2.1.1. (Chain rule for entropy):

Let X1, X2, . . . , Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , X1). (2.7)

Another observation is that knowing another random variable Y , the uncertainty of

random variable X should be reduced.

Theorem 2.1.2. (Conditioning reduces entropy):

H(X|Y ) ≤ H(X) (2.8)

with equality if and only if X and Y are independent.
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2.1.2 Mutual Information

The notion of information is so wide-ranging that one single definition is limited to cap-

ture all the intuitive interrelationships. Thus, Shannon introduced the concept of mutual

information between two random variables. It is a measure of the amount of information

that one random variable contains about another random variable.

Definition 2.1.4. (Mutual Information):

Consider two random variables X and Y with a joint probability mass function p(x, y) and

marginal probability mass functions p(x) and p(y). The mutual information I(X;Y ) is the

relative entropy between the joint distribution and the product distribution p(x)p(y), i.e.,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.9)

Actually, the mutual information is the reduction in the uncertainty of one random

variable due to the knowledge of another random variable. Therefore, we can easily prove

the following relationships between mutual information and entropy.

Theorem 2.1.3. (Relationships between mutual information and entropy):

I(X;Y ) = H(X)−H(X|Y ), (2.10)

I(X;Y ) = H(Y )−H(Y |X), (2.11)

I(X;Y ) = H(X) +H(Y )−H(X, Y ), (2.12)

I(X;Y ) = I(Y ;X), (2.13)

I(X;X) = H(X). (2.14)

The relationships between H(X), H(Y ), H(X, Y ), H(X|Y ), H(Y |X) and I(X;Y ) can

be expressed in a Venn diagram depicted in Figure 2.1.

Mutual information also satisfies the chain rule.
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Figure 2.1: Relationships between entropy and mutual information.

Theorem 2.1.4. (Chain rule for information):

I(X1, X2, . . . , Xn;Y ) =
n∑
i=1

I(Xi;Y |Xi−1, . . . , X1), (2.15)

where the conditional mutual information is defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (2.16)

2.2 Single User Channel Capacity

One fundamental question in information theory is, in point to point communication,

whether there is an ultimate limitation on how much information can be reliably trans-

12



mitted over a channel, instead of transmitting as much as we want. If there exists such

a limitation, is there a universal expression? Fortunately, Shannon solved this problem

by proposing the concept of capacity and hence based on which, he established the whole

model of communication system thereafter.

Consider the Discrete Memoryless Channel (DMC) as depicted in Figure 2.2, that is

the simplest channel model from which the channel capacity is derived.

Encoder
Message Channel

p(y|x)
X n Y n

Decoder
Estimate 

W of Message

Figure 2.2: A discrete memoryless channel.

The channel consists of an input alphabet X and an output alphabet Y and a probability

transition matrix p(y|x), which is the probability of observing the output y given x is sent

at the source.

Definition 2.2.1. The channel capacity of a discrete memoryless channel is defined as

C = max
p(x)

I(X;Y ), (2.17)

where I(X;Y ) is the mutual information of input random variable X and output random

variable Y , and the maximum is taken over all possible input distributions p(x).

Shannon proved in his original 1948 paper that the channel capacity is the supremum

of all the rates at which information can be sent reliably over a channel. At any rate

below this capacity the reliable transmission can be implemented, and any rate above

this capacity is impossible for reliable communication, no matter what coding technique is

employed.
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Figure 2.3: The Gaussian channel.

2.2.1 The Gaussian Channel

For most communication channels in reality, the input and output symbols are continuous

and the signals are corrupted by a Gaussian noise during transmission. We usually use the

Gaussian channel to model this type of continuous channels. The Gaussian channel is a

time discrete channel with output Yi at time i, where Yi is the sum of the input Xi and

the noise Zi. The noise Zi is independent of the input and is drawn i.i.d. from a Gaussian

distribution with variance N . Thus,

Yi = Xi + Zi, Zi ∼ N (0, N) (2.18)

Without any limitation on the input and noise, the capacity of this channel could be

infinite. For example, if the noise variance is zero, the decoder could estimate the input

perfectly at any arbitrary rate. Also, if there is no power constraint on the input, we can

choose infinite number of inputs arbitrarily far apart to be distinguishable at the receiver.

In this case, the capacity is infinite as well.

In a real Gaussian channel, the noise variance is non-zero and there is always a power

constraint on the input symbols. For any codeword (x1, x2, . . . , xn) transmitted over the

channel, the average power is constrained by P , i.e.,

1

n

n∑
i=1

x2i ≤ P. (2.19)

14



Definition 2.2.2. The capacity of the Gaussian channel with power constraint P is

C = max
p(x):EX2≤P

I(X;Y ), (2.20)

Expanding I(X;Y ), the capacity can be calculated as follows:

I(X;Y ) = h(Y )− h(Y |X) (2.21)

= h(Y )− h(X + Z|X) (2.22)

= h(Y )− h(Z|X) (2.23)

= h(Y )− h(Z) (2.24)

where h(X) is the differential entropy of continuous random variable X and the last equa-

tion follows from the fact that Z and X are independent.

Next, we only give the expression of differential entropy of Gaussian random variables

and omit the proofs. The proofs can be found in [24].

Theorem 2.2.1. For a single random variable X with the probability distribution N (0, σ2),

h(X) =
1

2
log 2πeσ2 bits. (2.25)

Theorem 2.2.2. Let X1, X2, . . . , Xn have a multivariate Gaussian distribution with mean

µ and covariance matrix K,

h(X1, X2, . . . , Xn) =
1

2
log(2πe)n|K| bits, (2.26)

where |K| denotes the determinant of K.

Thus, h(Z) = 1
2

log 2πeN . Also, since X and Z are independent and EZ = 0,

EY 2 = E(X + Z)2 = EX2 + 2EXEZ + EZ2 = P + N , the entropy of Y is bounded by
1
2

log 2πe(P +N).

Applying this result to calculate the capacity, we obtain

I(X;Y ) = h(Y )− h(Z) (2.27)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN (2.28)

=
1

2
log(1 +

P

N
). (2.29)
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Theorem 2.2.3. The capacity of the Gaussian channel is

C = max
p(x):EX2≤P

I(X;Y )

=
1

2
log(1 +

P

N
) (2.30)

where the maximum is attained when X ∼ N (0, P ).

This capacity is the supremum of all the successful transmission rates and it can be

achieved if the input satisfies a Gaussian distribution. In order to fully utilize the power,

the source would transmit at a rate as close to the capacity as possible. Thus, in the

following analysis, without loss of generality, we assume that the transmitting rate is equal

to this capacity, i.e. R = 1
2

log(1 + P
N

).

The Gaussian Channel with Path Loss

In the wireless environment, signals always undergo path loss. The signal strength atten-

uates with some exponent of transmission distance. For example, if the distance from the

sensor to the destination is d, and the path loss parameter in this area is denoted by γ,

then the received signal power at the receiver end is P/dγ, given that P is the emitting

power.

Thus, the capacity of this Gaussian channel with path loss fading is represented by:

C =
1

2
log

(
1 +

P/dγ

N

)
(2.31)

2.3 Some Accomplishments in Multi-user Information

Theory

In this section, we review two significant models and their corresponding results in multi-

user information theory. One is the Multiple Access Channel, which is a channel model

where there are more than one transmitters and one common receiver. The other one is

Slepian-Wolf Coding, which is a distributed source coding scheme.
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2.3.1 Multiple Access Channel

In a multiple access channel, two or more senders send information to a common receiver

as depicted in Figure 2.4.

p y|x1, x2 W1,W2

X1

X2

W1

W2

Y

Figure 2.4: The multiple access channel.

Sender 1 sends message W1 and employs the codeword X1. Sender 2 sends message W2

and the corresponding codeword is X2. The discrete memoryless multiple access channel

consists of three alphabets, X1, X2, and Y and a probability transition matrix p(y|x1, x2).

The multiple access channel capacity region was found by Ahlswede [25] and Liao [26]:

Theorem 2.3.1. The capacity of a multiple access channel is the closure of the convex

hull of all (R1, R2) satisfying

R1 < I(X1;Y |X2), (2.32)

R2 < I(X2;Y |X1), (2.33)

R1 +R2 < I(X1, X2;Y ) (2.34)

for some product distribution p(x1)p(x2) on X1 ×X2.
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This result can be generalized to m senders, m ≥ 2. Let S ⊆ {1, 2, . . . ,m} and Sc

denote the complement of S. R(S) =
∑

i∈S Ri, and X(S) = {Xi : i ∈ S}.

Theorem 2.3.2. The capacity region of the m-user multiple access channel is the closure

of the convex hull of the rate vectors satisfying

R(S) < I(X(S);Y |X(Sc)) for all S ⊆ {1, 2, . . . ,m} (2.35)

for some product distribution p1(x1)p2(x2) . . . pm(xm).

Gaussian Multiple Access Channel

There are m transmitters, each with the transmitting power Pi. In a Gaussian channel,

the received signal is the sum of all the transmitted signals plus Gaussian noise, i.e.,

Y =
m∑
i=1

Xi + Z. (2.36)

Then the capacity region is the closure of the convex hull of the rate vectors satisfying

R(S) <
1

2
log(1 +

|S|P
N

) for all S ⊆ {1, 2, . . . ,m}, (2.37)

where |S| denotes the cardinality of the set S.

2.3.2 Correlated Source Coding

For the problem of encoding a source X, we know that a rate R > H(X) is sufficient. Now

if there are two sources X and Y with the correlation p(x, y) as shown in Figure 2.5, what

rate vector is sufficient if they must be encoded separately? Slepian and Wolf studied this

interesting problem in [11] and they found that a joint entropy of H(X, Y ) is sufficient,

which is the same as the case when the two sources are encoded together.
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R1
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Figure 2.5: Slepian-Wolf coding.

Theorem 2.3.3. For the distributed source coding problem for the source (X, Y ) drawn

i.i.d. ∼ p(x, y), the achievable rate region is given by

R1 ≥ H(X|Y ), (2.38)

R2 ≥ H(Y |X), (2.39)

R1 +R2 ≥ H(X, Y ). (2.40)

This region is illustrated in Figure 2.6.

In general, if there are multiple sources W1,W2, . . . ,Wn drawn i.i.d. according to

p(w1, w2, . . . , wn) that are encoded separately, and there is one sink node that can decode

them together, then the set of achievable source coding rate vectors must lie in Slepian-Wolf

region:

R(U) > H(W (U)|W (UC)), (2.41)
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Figure 2.6: Slepian-Wolf region for two correlated sources.

for all U ⊆ {1, 2, . . . , n}, where

R(U) =
∑
j∈U

Rj, (2.42)

and

W (U) = Wj : j ∈ U. (2.43)

2.4 Summary

In this chapter, some basic background knowledge and preliminaries for the discussions

in the next two chapters of this thesis are provided. We first review some fundamental

definitions of entropies, which describe the measurement of information. Their properties

and interconnections are elemental for deriving the subsequent theorems in this thesis.

Then we introduce one significant triumph in Shannon’s single user information theory:

the channel capacity theorem, and derive the capacity expression for the Gaussian case.
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Finally, two major accomplishments in multi-user information theory related to our work

are presented: multiple access channel and correlated source coding.
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Chapter 3

Source-Channel Communication in

Minimization of Energy Consumption

3.1 Introduction

The following two chapters deal with the optimization of energy efficiency issue in wireless

sensor networks. In this chapter, we mainly focus on the interactions between source

coding and the channel characteristics in terms of saving the overall energy consumption.

Here, the concept energy consumption is raised, since from the previous chapter, we know

that higher rate demands higher power; However, if there are finite bits to be transmitted,

higher rate also saves transmission time, thus may save energy as well. Thus, in this case

energy consumption is of more study concern than power.

This chapter is organized as follows. Before arriving at the final solution, we divide

the approach into several steps. In the first two sections, we only concentrate on the

channel coding (signal transmission) part. For the single-sensor single sink transmission,

we already know that transmission rate is a log function of the transmitting power used.

The question is how much power should every sensor consume to achieve the optimal energy

consumption for the transmission of fixed number of bits? Section 3.2 gives the answer to
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this question. Then we extend to the scenario of multi-sensor single-sink WSN where each

sensor uses its optimal power obtained in Section 3.2. From the previous chapter we know

that the sensors can transmit at the same time, thus forming the multiple access channel.

However, another feasible transmission mode is: the sensors transmit one after another,

i.e., each uses a fraction of the total time. Now the question becomes how to coordinate

the transmission among these sensors, which will be answered in section 3.3.

Based on the previous results and inspired by Slepian-Wolf coding reviewed in the

previous chapter, we further come up with the bit allocation scheme that can minimize

the overall energy consumption in section 3.4. We take into account the effect of different

channel characteristics when encoding the sources.

3.2 Energy-Efficient Method for Single-Sensor Single-

Sink Transmission

First, we consider the case where there is only one source node and one sink node. Suppose

that this node has some finite non-negative bits B that need to be transmitted.

Generally, the transmitting power of each sensor is both lower bounded by Pmin and

upper bounded by Pmax. Still, there are many different levels of transmitting powers the

sensor can adopt. In other words, the sensor can use either lower power but longer time,

or higher power but shorter time to send the same amount of bits B. Now the question is:

which way is better if the overall energy consumption is the primary concern?

It is well known that for an AWGN channel, the reliable transmission rate is bounded

by its capacity: R ≤ 1
2

log (1 + SNR), where SNR is the received signal-to-noise ratio. Also,

in a wireless environment where there exists path loss, the channel capacity is:

R ≤ 1

2
log

(
1 +

P/dγ

N

)
, (3.1)

where, P is transmitting power, N is the noise variance, d is the distance from the source

to the sink node and γ is the path loss exponent.
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Then we come up with this theorem to answer the above question.

Theorem 3.2.1. In the single source case, given that the transmitting power can be chosen

arbitrarily within the bound Pmin ≤ P ≤ Pmax, in order to transmit B bits in total, using

Pmin consumes the least overall energy.

Proof. Denote the transmission time by T . Then,

B = RT =
1

2
log

(
1 +

P/dγ

N

)
T, (3.2)

where B and N are constants. The overall energy consumption in this transmission is

E = PT = P
B

1
2

log
(

1 + P/dγ

N

) . (3.3)

Taking the derivative of the overall energy consumption function over power P , we can

obtain

dE

dP
= 2B

 P

log
(

1 + P/dγ

N

)
′

(3.4)

=
2B[

log
(

1 + P/dγ

N

)]2 (
1 + P/dγ

N

) [(1 +
P/dγ

N

)
log

(
1 +

P/dγ

N

)
− P/dγ

N
log e

]
. (3.5)

Let

f(x) = (1 + x) log(1 + x)− x log e, (3.6)

where

x =
P/dγ

N
. (3.7)

Since P > 0, N > 0, and d > 0, x > 0,

f
′
(x) = log(1 + x) ≥ 0, ∀x > 0. (3.8)
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Taking into account f(0) = 0, we can obtain

f(x) > 0, ∀x > 0, (3.9)

which implies that
dE

dP
> 0, ∀P > 0, d > 0 and N > 0. (3.10)

This is to say, the energy function is monotone increasing with power P . Thus, using

minimum power Pmin consumes the least energy. This result is in accordance with our

observation. Since log(1 + x) approaches a linear function only when x → 0, the smaller

power we use, the more efficient is the transmission.

3.3 Energy-Efficient Method for Multi-Sensor Single-

Sink Transmission

For multi-source single-sink transmission, there are two types of transmission modes: source

nodes transmitting one after another, i.e., every time there is only one source-sink con-

nection (time division multiple access channel, TDMA) and more than one source-sink

connections existing at some specific time (multiple access channel).

Consider a network where n sensors are distributed in an area to collect some data.

All the sensor nodes transmit the data to a single sink node as depicted in Figure 3.1.

Let N be the set of sensor indices: N = {1, . . . , n}. Then for each node i ∈ N , it uses

its minimum power Pi,min and the total bits it needs to transmit are some fixed value Bi.
Suppose the distance from node i to the sink node is di and the path loss exponent γ is

the same for all sensor nodes since they are geologically close to each other.

To answer the question of which mode is more energy efficient, we propose the following

theorem.

Theorem 3.3.1. For multi-source single-sink transmission, given that each node uses its

minimum power and has finite total bits to transmit, using TDMA among all the nodes is

more energy efficient.
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Internet

Sensing Field

Sensor node
Sink node

Figure 3.1: A sensor network with N sensors and one sink node.

Proof. The overall energy consumption can be calculated as
∑n

i=1 Pi,minTi, where Ti =

Bi/Ri is the transmission time,

E =
n∑
i=1

Pi,min
Bi
Ri

. (3.11)

1. Using TDMA, the instant rates of all source nodes can achieve their separate channel

capacities, i.e.,

Ri =
1

2
log

(
1 +

Pi,min/d
γ
i

N

)
, ∀i ∈ N . (3.12)

Traditionally, the concept ”rate” usually refers to the average rate in a time frame.

However, here we adopt the ”instant rate” exclusively for the convenience of calcu-

lation of energy consumption.
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2. Suppose at some specific time, a set S ⊆ N with |S| ≥ 2 of sensors all connect to the

sink node, then the rate vector should lie in multiple access channel capacity region.

For any subset S1 ⊆ S (We use R
′
i to differentiate):∑

i∈S1

R
′

i ≤
1

2
log

(
1 +

∑
i∈S1

Pi,min/d
γ
i

N

)
<
∑
i∈S1

1

2
log

(
1 +

Pi,min/d
γ
i

N

)
=
∑
i∈S1

Ri.

So,

R
′

i < Ri, ∀i ∈ S.

Since both Pi,min and Bi are fixed, the energy consumption function is only reversely

proportional to the instant rate. Thus, the overall energy consumption in Case 2 is greater

than that in Case 1. Therefore, transmitting using TDMA is more energy efficient.

Remark 3.3.1. For the multiple access channel, it is well known that CDMA is optimal

in achieving the maximum rates with fixed power [24]. However, here we are interested in

a different problem of sending maximum bits with fixed energy. It is shown that TDMA

outperforms CDMA.

3.4 Optimal Bit Allocation Scheme

In this section, we are trying to find the optimal bit allocation scheme to minimize the

overall energy consumption based on that each sensor is utilizing its minimum power and

only a fraction of the total time to transmit. In this source coding problem, we take the

different channel characteristics into consideration.

This section is composed of two parts. First we explain the bit allocation problem based

on the Slepian-Wolf coding theorem. Then the optimal bit allocation scheme is proposed

and the proof is presented.
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3.4.1 Bit Allocation Problem

In general, the measurements of sensors, e.g. temperature, humidity, sound, etc., are highly

correlated. We denote the source from sensor i by Wi, i = 1, 2, . . . , n. These sources

are correlated with joint probability p(W1,W2, . . . ,Wn). When encoding these correlated

sources, we know from Slepian-Wolf coding theorem that a total rate of the joint entropy

RS = H(W1,W2, . . . ,Wn), instead of the sum of separate entropies H(W1) + H(W2) +

· · ·+H(Wn), is sufficient even if these nodes are not able to communicate with each other,

as long as they satisfy (Here, we use RS to differentiate source coding rate from channel

coding rate):

RS(U) > H(W (U)|W (U c)), (3.13)

for all U ⊆ N , where

RS(U) =
∑
j∈U

RSj, (3.14)

and

W (U) = Wj : j ∈ U. (3.15)

The total information generated by sensor i is RSiT , where T is one time period for data

gathering. Since the measurements of physical phenomena usually do not vary rapidly, e.g.,

the temperature in a day, T >
∑n

i=1 Ti. Under this assumption,

RSiT = Bi. (3.16)

So Bi must satisfy the following set of inequalities:∑
i∈U

Bi > H(W (U)|W (U c))T, ∀U ⊆ N . (3.17)

This sophisticated result has a simple interpretation. The information collected by

each sensor contains two part: the unique information that can only be conveyed by this

sensor and some common information which can be conveyed by other sensors. When

encoding these sources, each source must first encode its unique information; then this

sensor cooperate with other sensors to divide the task of common information to convey.
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3.4.2 Optimal Bit Allocation Scheme

From previous section, we know that in order to collect all the information without loss, the

total bits generated in each sensor must satisfy some constraints. Under these constraints,

in this section, we further take the effect of channel conditions into account to consider the

problem of how to allocate Bi among the sensor nodes to transmit in order to minimize

the overall energy consumption.

Intuitively, if a sensor is very far away from the destination, channel condition is severely

degraded. The transmitting rate is very slow even if high power is used, which is a waste

of energy. Thus we tend to assign less task (bits) to this channel. For example, we only

use this channel to transmit those information that is uniquely generated in this sensor

and use other good channels to transmit those common information.

The overall energy consumed is:

E =
∑
i

Pi,min
Bi
Ri

=
∑
i

Pi,min
Bi

1
2

log
(

1 +
Pi,min/d

γ
i

N

)
=
∑
i

Pi,min
1
2

log
(

1 +
Pi,min/d

γ
i

N

)Bi.
Since the coefficient of Bi is only related to i and when Pi,min and di are fixed, this

coefficient is a constant. Let

ai =
Pi,min

1
2

log
(

1 +
Pi,min/d

γ
i

N

) , (3.18)

then this problem can be formulated as follows:

min
∑
i

aiBi

subject to
∑
i∈U

Bi > H(W (U)|W (U c))T, ∀U ⊆ N . (3.19)
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Theorem 3.4.1. Without loss of generality, let a1 > a2 > · · · > an, then the solution to

the above optimization problem is BBB∗:

B∗1 = H(W1|W2 · · ·Wn)T

B∗2 = H(W2|W3 · · ·Wn)T

...

B∗n−1 = H(Wn−1|Wn)T

B∗n = H(Wn)T. (3.20)

Proof. We prove theorem 3.4.1 in two steps:

1. First, the solution (3.20) satisfies all the constraints in optimization problem (3.19).

2. Then, this solution can minimize the overall energy consumption.

Proof of Step 1 : Define set Sj = {j, j + 1, . . . , n}, where 1 ≤ j ≤ n, so S1 = N .

Then for any subset U ⊆ N ,∑
j∈U

B∗j =
∑
j∈U

H(Wj|W (Sj+1))T

=
∑
j∈U

H(Wj|W (Sj+1 ∩ U),W (Sj+1 ∩ U c))T

(a)

≥
∑
j∈U

H(Wj|W (Sj+1 ∩ U),W (U c))T

(b)
=H(W (U)|W (U c))T, (3.21)

where (a) follows from conditioning reduces entropy, and (b) follows from the chain rule

for entropy.

Proof of Step 2 : We prove this part by induction. We start from B∗n = H(Wn)T .

B∗1 + · · ·+B∗n = H(W1, . . . ,Wn)T , which has already achieved the Slepian-Wolf bound.

If there exists another set of solution, say, B′
1, . . . ,B

′
n, this set of solution must achieve the
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bound as well. Since B∗n is already the largest value that Bn can be, let B′
n = H(Wn)T − δ,

where δ is a positive small value that does not affect the Slepian-Wolf conditions. Then

this δ must be added to some B∗i , where 1 ≤ i ≤ n− 1. Then

E
′
=a1B

′

1 + · · ·+ anB
′

n

=a1B∗1 + · · ·+ ai−1B∗i−1 + ai+1B∗i+1 + · · ·+ an−1B∗n−1
+ aiB

′

i + anB
′

n

=E∗ + (ai − an)δ.

Since ai ≥ an, (ai − an)δ ≥ 0 and thus E
′ ≥ E∗. So B∗n is optimum.

Given B∗n, B∗n−1 = H(Wn−1|Wn)T is the largest value that Bn−1 can choose. By the

same argument, it is obvious that B∗n−1 is the optimal value.

Similarly, we can prove that BBB∗ is the optimum solution.

Actually, the interpretation of this solution is quite straight-forward. The coefficient ai

is actually the energy consumption per transmitted bit. Thus, it is the most efficient if we

transmit more bits to smaller ai and less bits to larger ai.

3.4.3 Numerical Results

From the previous section we know that BBB∗ is optimal in terms of minimizing the overall

energy consumption. Furthermore, in this section, we will show how much better can this

optimal scheme achieve than other schemes through the analytical results.

The reduction in the overall energy consumption using this bit allocation scheme de-

pends significantly on the geometric and initial information distribution among all the

sensors. In this section, we present some numerical results only in a specific case. Assume

all the sensor nodes are uniformly distributed in a line and the sink node is at one end

(Figure 3.2). All the channels are Gaussian.
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Sensor node
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Gateway

Internet

Figure 3.2: A sensor network with n sensors in a line and one sink node at one end.

The data collected by each sensor is Wi = W +Zi, where W ∼ N (0, N) is the common

information and Zi ∼ N (0, Ni) is the noise, whose variance is quadratically proportional

to the distance, i.e., Ni = d2i . Since both the sources and the channels are continuous, we

use differential entropy when calculating the optimal bit in Theorem 3.4.1.

We compare the results obtained from our proposed scheme with an average bit alloca-

tion scheme, where each sensor transmits its unique information and 1/n of the common

information. Figure 3.3 shows the overall energy consumption of our optimal bit allocation

scheme and the average bit allocation scheme.

It can be seen that the proposed scheme always achieves lower overall energy consump-
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Figure 3.3: Comparison of the optimal bit allocation scheme proposed in Theorem 3.4.1

and the average bit allocation scheme in terms of overall energy consumption.

tion as has been proved. As the number of sensor nodes increases, the discrepancy of

these two schemes broadens. When the number of nodes is 50, the proposed scheme is

approximately 30% more energy efficient.
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3.5 Summary

In this chapter, we come up with a bit allocation scheme that can minimize the overall

energy consumption by combining both channel characteristics and source coding. We first

prove that in AWGN channel with path loss, the optimal transmission mode is that every

sensor uses its minimum transmitting power and cooperates with other sensors by TDMA.

Then for the correlated source coding, the bit allocation scheme should considering the

channel conditions as well in order to improve the energy efficiency. In brief, we assign

higher rates (more bits) to those sensors with better channel conditions and assign lower

rates (less bits) to those with worse channel conditions. In this way, we can achieve both

reliable transmission and energy efficiency at the same time.
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Chapter 4

Source-Channel Communication in

Maximization of Network Lifetime

4.1 Introduction

In wireless sensor networks, energy consumption and network lifetime are the two primary

concerns. In the previous chapter, we presented a bit allocation scheme that can minimize

the overall energy consumption. However, if there is one sensor that consumes more energy

than the rest of the sensors, this sensor is the first to die. And when any sensor dies, the

whole network will lose a part of the information, so we say the network is not functional

any more. Therefore, in this chapter, we are looking for a scheme that can average the

energy consumption distribution among all the sensors, thus prolong the network lifetime,

while at the same time, minimizing the overall energy consumption.

35



4.2 Problem Formulation

The problem can be formulated by the following lexicographic optimization:

lexmin (max
i
Ei,
∑
i

Ei)

subject to
∑
i∈U

Bi > H(W (U)|W (U c))T, ∀U ⊆ N , (4.1)

where Ei = aiBi.

This optimization problem has a hierarchical structure, i.e. the first objective has

the highest priority [27]. Under the condition that the highest energy consumption has

been minimized, we try to further minimize the overall energy consumption to achieve

lexicographic optimality.

To minimize Ei for some node i, we only need to reduce its corresponding Bi, i.e.,

assign less bits that need to be transmitted by this sensor. Since we still desire the least

overall energy consumption, we start from the optimal solution point BBB∗, find the node that

consumes the most energy, reduce the bits of this node and reallocate these bits among the

rest nodes, until the highest energy consuming node’s transmitting bits cannot be reduced

anymore. Thus this algorithm can achieve lexicographical optimality.

4.3 Lifetime Maximization Algorithm

Suppose Ek, 1 ≤ k ≤ n is the largest, so Bk needs to be reduced. It can be seen that

B∗1 + B∗2 + · · ·+ B∗k = H(W1,W2, . . . ,Wk|Wk+1, . . . ,Wn)T, (4.2)

which is already the Slepian-Wolf bound. Thus, B1,B2, . . . ,Bk−1 need to increase the same

bits in total in order to satisfy the Slepian-Wolf inequalities again.

However,

B∗k + B∗k+1 + · · ·+ B∗n > Slepian-Wolf bound, (4.3)
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so Bk+1, . . . ,Bn may not need to change after Bk’s decrease, which will be proved later in

this section.

Suppose we first reduce Bk by 1 bit, so this bit needs to be added to B1, or B2, or . . . ,

or Bk−1. Since a1 > a2 > · · · > ak−1, adding this 1 bit to node k − 1 will consume the

least extra energy, thus is the most efficient. Therefore, when we need to transfer some

bits from node k to the nodes before it, we prefer to add those bits to the node just before

it first, and then two positions before it, and so on till the first node. 1 How many bits

can we transfer at most to node l, 1 ≤ l ≤ k− 1 without violating any of the Slepian-Wolf

conditions?

Lemma 4.3.1. If node k consumes the most energy, B∗k needs to be reduced, and we add

those bits to B∗k−1 until Bk−1 is full, then to B∗k−2 until Bk−2 is full, . . . , and so on till B1
is full.2 In this process, we can transfer to Bl, 1 ≤ l ≤ k − 1, at most

I(Wl;Wk|Wl+1, . . . ,Wk−1,Wk+1, . . . ,Wn)T (4.4)

bits before it is full.

Proof. Here, we only prove the case when l = k − 1. For the rest of ls, the proof is trivial

with the same argument. Now, suppose B∗k has been reduced to B̂k, and B∗k−1 has been

increased to B̂k−1, and all the rest of B∗i , i ∈ {1, 2, . . . , k − 2, k + 1, . . . , n} remain the

same. Therefore, the only possibility that Slepian-Wolf condition might not hold is that

the addition of any subset of {B∗1,B∗2, . . . ,B∗k−2} and B̂k might not be greater than the

Slepian-Wolf bound. Thus, we are looking for the largest dk−1k = B∗k−B̂k, which is the bits

we can transfer at most from B∗k to B∗k−1.

∀V ⊆ {1, . . . , k − 2},∑
i∈V

B∗i + B∗k =
∑
i∈V

H(Wi|Wi+1, . . . ,Wn)T +H(Wk|Wk+1, . . . ,Wn)T. (4.5)

1Node order is based on the index.
2Here, Bl is ”full” means that it achieves its largest value without violating any Slepian-Wolf condition.
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However, after B∗k has been reduced to B̂k, according to Slepian-Wolf bound,∑
i∈V

B∗i + B̂k = H(W (V ),Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T. (4.6)

Thus,

dk−1k =B∗k − B̂k (4.7)

=
∑
i∈V

H(Wi|Wi+1, . . . ,Wn)T

+H(Wk|Wk+1, . . . ,Wn)T

−H(W (V ),Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T (4.8)

(a)
=
∑
i∈V

H(Wi|Wi+1, . . . ,Wn)T

+H(Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T

+ I(Wk;W (V c),Wk−1|Wk+1, . . . ,Wn)T

−H(W (V ),Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T (4.9)

(b)

≥H(W (V )|W (V c),Wk−1, . . . ,Wn)T

+H(Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T

−H(W (V ),Wk|W (V c),Wk−1,Wk+1, . . . ,Wn)T

+ I(Wk;W (V c),Wk−1|Wk+1, . . . ,Wn)T (4.10)

(c)
=I(Wk;W (V c),Wk−1|Wk+1, . . . ,Wn)T (4.11)

(d)

≥I(Wk;Wk−1|Wk+1, . . . ,Wn)T, (4.12)

where (a) follows from I(X;Y ) = H(X)−H(X|Y ), (b) follows from (3.21), (c) follows from

H(X) +H(Y |X) = H(X, Y ), and (d) follows from the chain rule of mutual information.

Note that expression (4.12) is for the case when V = {1, . . . , k − 2}, which is the

tightest bound. Thus, dk−1k is at most I(Wk;Wk−1|Wk+1, . . . ,Wn)T , and this completes the

proof.

38



Remarks

There are two remarks.

1. After transferring I(Wk;Wk−1|Wk+1, . . . ,Wn)T bits from B∗k to B∗k−1, Bk becomes

H(Wk|Wk+1, . . . ,Wn)T − I(Wk;Wk−1|Wk+1, . . . ,Wn)T

= H(Wk|Wk−1,Wk+1, . . . ,Wn)T, (4.13)

and Bk−1 becomes

H(Wk−1|Wk+1, . . . ,Wn)T, (4.14)

which means that B∗k and B∗k−1 have switched their positions in the solution (3.20). If

Bk−1 is full and node k still consumes the highest energy, we need to further transfer

bits from Bk to B∗k−2, which will result in that B∗k and B∗k−2 switch positions, and so

on until B∗k has been moved to the first place.

2. Bits that can be reduced at most from B∗k are

H(Wk|Wk+1, . . . ,Wn)T −H(Wk|W1, . . . ,Wk−1,Wk+1, . . . ,Wn)T

=I(Wk;W1, . . . ,Wk−1|Wk+1, . . . ,Wn)T, (4.15)

which exactly equals to dk−1k + dk−2k + · · ·+ d1k by the chain rule.

Now we can get back to our previous question: If B∗k needs to be reduced, we know

that

B∗k + B∗k+1 + · · ·+ B∗n > Slepian-Wolf bound, (4.16)

should Bk+1, . . . ,Bn increase as well or can they remain still?

To answer this question, we propose the following lemma.

Lemma 4.3.2. Even if Bk has been reduced to the bound:

H(Wk|W1, . . . ,Wk−1,Wk+1, . . . ,Wn)T, (4.17)

Bk+1, . . . ,Bn can remain the same and satisfy Slepian-Wolf conditions.
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Proof. Among all the summations between B∗k and any subset of {B∗k+1, . . . ,B∗n}, B∗k+B∗k+1

is the closest to the bound. Thus if B∗k is reduced the most, while Bk + B∗k+1 is still above

the bound, so would the rest of the summations be .

Bkmin + B∗k+1

=H(Wk|W1, . . . ,Wk−1,Wk+1, . . . ,Wn)T+

H(Wk+1|Wk+2, . . . ,Wn)T

(a)

≥H(Wk|W1, . . . ,Wk−1,Wk+1, . . . ,Wn)T+

H(Wk+1|W1, . . . ,Wk−1,Wk+2, . . . ,Wn)T

(b)
=H(Wk,Wk+1|W1, . . . ,Wk−1,Wk+2, . . . ,Wn)T, (4.18)

where (a) follows from conditioning reduces entropy, and (b) follows from the chain rule of

entropy. Since (4.18) is the Slepian-Wolf bound, the proof is complete.

Now we can conclude the above explanations with Algorithm 1.
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Algorithm 1 Algorithm to maximize network lifetime

1: Calculate the energy consumption for each node i = 1, 2, . . . , n to find the highest one,

whose index is denoted by k1. If there are multiple nodes consuming highest energy,

let k1 be the smallest index. Let k2 denote the node index with the second highest

energy consumption;

2: If k1 = 1, stop since B∗1 is already the smallest and cannot be reduced anymore;

3: If k1 6= 1, and Bk1 > H(Wk1|Wk1−1,Wk1+1, . . . ,Wn)T , let

δ = min{Bk1 −
ak2
ak1
Bk2 ,

ak1Bk1 − ak1−1Bk1−1
ak1 + ak1−1

,

Bk1 −H(Wk1|Wk1−1,Wk1+1, . . . ,Wn)T}, (4.19)

transfer δ bits from Bk1 to Bk1−1;
If H(Wk1|Wk1−2,Wk1−1,Wk1+1, . . . ,Wn)T < Bk1 ≤ H(Wk1 |Wk1−1,Wk1+1, . . . ,Wn)T , let

δ = min{Bk1 −
ak2
ak1
Bk2 ,

ak1Bk1 − ak1−2Bk1−2
ak1 + ak1−2

,

Bk1 −H(Wk1|Wk1−2,Wk1−1,Wk1+1, . . . ,Wn)T}, (4.20)

transfer δ from Bk1 to Bk1−2;
...

If H(Wk1|W1, . . . ,Wk1−1,Wk1+1, . . . ,Wn)T < Bk1 ≤
H(Wk1|W2, . . . ,Wk1−1,Wk1+1, . . . ,Wn)T , let

δ = min{Bk1 −
ak2
ak1
Bk2 ,

ak1Bk1 − a1B1
ak1 + a1

,

Bk1 −H(Wk1|W1, . . . ,Wk1−1,Wk1+1, . . . ,Wn)T}, (4.21)

transfer δ from Bk1 to B1;
If Bk1 = H(Wk1|W1, . . . ,Wk1−1,Wk1+1, . . . ,Wn)T , stop since Bk1 is already the smallest;

4: Go to step 1.
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Remarks

1. When there are multiple nodes consuming the highest energy, we prefer to check the

one with the smallest index first. This is because of the chance that this index is 1.

In this case, reducing bits of other nodes will only waste more overall energy without

prolonging lifetime since the first node is always the network’s bottleneck.

2. The value of δ is chosen based on (4.19)-(4.21), where the first and second terms are

bits that Bk1 can be reduced at most until this sensor’s energy consumption is the

same as the second highest one, and the third term is the total reduced bits when

Bk1 can be decreased to the Slepian-Wolf bound.

3. After this algorithm, the final result will be that the node that consumes the most

energy is either the one that has the least bits to transmit, i.e.,

Bi = H(Wi|W1, . . . ,Wi−1,Wi+1, . . . ,Wn), (4.22)

or the first node.

4.4 Numerical Results

Under the same distribution of sensor nodes and channel conditions as in Section 3.4.3. We

still compare the results of the proposed algorithm with the average bit allocation scheme,

where each sensor transmits its unique information and 1/n of the common information.

Figure 3.2 illustrates the maximum energy consumption among the sensor nodes using the

proposed algorithm and using the average bit allocation scheme.

The lower the maximum energy consumption is, the longer the network can live. It

can be seen that the proposed algorithm effectively reduces the maximum energy con-

sumption and hence prolongs the network life time. When the number of nodes is 50, the

proposed scheme reduces the peak energy consumption by approximately 30%. Therefore,

our scheme has compelling advantages.
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Figure 4.1: Comparison of the peak energy consumption by adopting Algorithm 1 and by

adopting the average bit allocation scheme.

4.5 Summary

This chapter provides a network lifetime prolonging algorithm that can average the distri-

bution of energy consumption among all the sensors. This algorithm is designed to meet

two requirements: first extending the network lifetime and then reducing the overall en-

ergy consumption. Therefore, this algorithm proceeds as follows: we first locate the node

that consumes the largest energy based on the bit allocation scheme that can minimize

the overall energy consumption from the previous chapter, then reduce its transmission
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bits until either this node consumes the same amount of energy as the second largest

energy consumption node does or its transmission bits reach a lower bound constrained

by Slepian-Wolf coding theorem, reallocate these bits to the nodes with worse channel

conditions. Both proofs and analytical results are presented at last.
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude this thesis and give suggestions on the possible future work

along this path.

5.1 Conclusion

In wireless sensor networks, energy efficiency is one of the major concerns. Towards this

end, this thesis attempts to combine both source and channel coding to come up with the

optimal bit allocation scheme in multi-source single-sink wireless sensor networks.

If the overall energy consumption is the goal to be minimized, in AWGN channel with

path loss, this work shows that the overall energy consumption can be minimized under

the condition that each source transmits with its minimum power and in TDMA mode

with other sensors. In addition, considering the characteristics of correlated source coding,

the Slepian-Wolf coding theorem is applied for resource efficiency. Therefore, we derive a

closed form bit allocation scheme to minimize the overall energy consumption by allocating

more bits to the nodes with better channel conditions and less bits to the nodes with worse

channel conditions.
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Based on the above solution, we further extend to maximize the network lifetime,

which is the time when all the sensors are functional. In this case, the first objective

is to maximize the network lifetime and upon achieving this objective, we minimize the

overall energy consumption. We develop a heuristic algorithm to average the distribution

of energy consumption among all sensors and demonstrate the superiority of our algorithm

both by proofs and simulation results.

5.2 Future Work

According to the extensive applications of sensor networks and their intrinsic restrictions,

there are tremendous fascinating topics that are still yet to be investigated and improved,

e.g. time synchronization of signals, hardware design to support low power sensors, etc.

Among them, some questions related to our work are of particular interest in the future.

One natural extension of our network topology is to incorporate intermediate nodes,

i.e., relays. Relays can help the communication from the source to the destination [28],

[29]. Then the intermediate nodes can function either purely as relays or both sources and

relays. More generally, in a multi-source multi-destination multi-relay sensor network [30],

[31], what is the optimal source channel coding strategy in terms of energy efficiency? Can

our results be extended?

To approach the above mentioned problem, we first need to simplify the decoding

method for relay channel. By far, the largest achievable rate region for the multi-source case

can only be realized by the regular encoding/irregular encoding and backward decoding

[32], [33]. However, backward decoding usually causes excessive delays, thus is difficult to

implement. [34] proposes a new encoding scheme, namely offset encoding, to achieve the

same rate region in conjunction with the use of sliding-window decoding, which can reduce

the delays significantly. Unfortunately, it is proved that only in some special network

topologies, can the largest rate region be achieved by this new scheme. In this regard,

our subsequent research will focus on extending the offset encoding and sliding-window

decoding strategy in a general network frame to achieve the rate region in [31].
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If the network topology is not fixed, there would be two major issues. First, what is the

optimal node placement to obtain the coverage as well as the energy efficiency [22], [23]?

Then, after the sensor nodes have been deployed, what multi-hop strategy is optimal? For

example, for every single sensor, should it be the pure source only or can it be a relay as

well? Also, what is the best routing strategy in terms of energy efficiency [20], [35]?
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