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ABSTRACT

The increased use of wave-based nondestructive techniques in characterizing
existing infrastructure is restricted by their ability to detect relevant structural
conditions such as anomalies. Transmission and reflection measurements provide
average internal information about the structural elements. Although transmission
data can be tomograpically inverted to determine internal material parameters,
damage is usually initiated near the surface of the structural element. Rayleigh
waves that propagate along the surface of an object are ideally suited for the
detection of near surface defects.

This research investigates the use of Rayleigh waves for the identification of near
surface fractures in structural elements. The study involves a conceptual analysis,
finite element modeling and small scale experimentation. Initial work on thin
Plexiglas sheets develops the methodology of Rayleigh wave measurement and
examines the interaction of a Rayleigh wave with a slot. Subsequent finite element
modeling further advances the understanding of the Rayleigh wave/fracture
interaction. The final step uses the methodology and knowledge gained from
Plexiglas plates to study the ability of Rayleigh waves to detect slots in small scale
concrete beams.

To begin, the study focuses on the characteristics of a Rayleigh wave formed in an
infinite half-space. A subsequent chapter introduces the signal processing
techniques and algorithms used to measure Rayleigh wave dispersion and energy
density in the frequency-wavenumber (FK) domain. Experimental measurements on
two-dimensional Plexiglas analogues define the appropriate test procedures and
interpretation criteria needed for the characterization of Rayleigh waves. In plates,
Rayleigh waves form by the superposition of fundamental Lamb modes at high
frequencies and wavenumbers. After establishing the existence of Rayleigh waves in
the thin plate, time-acceleration measurements are made at different locations on the
Plexiglas plate, with respect to a slot of varying depth. The slot effectively blocks
wavelengths of the Rayleigh wave shorter than the slot depth. Frequency-
wavenumber data show reflections of the Rayleigh wave from the front of the slot,
where the strength of reflection increases as the slot depth increases.

Finite element modeling provides additional knowledge about the Rayleigh
wave/fracture interaction. Initially, the finite element model is calibrated using
experimental data and material parameters quoted in the literature. Subsequent
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simulations study time-acceleration measurements made at different locations
inside the plate for various slot depths. The Rayleigh wave formed behind the slot is
a combination of long wavelength energy passing the slot and short wavelength
mode converted Lamb waves.

A series of experiments further examines the slot detection ability of Rayleigh waves
in small concrete and cement beams. Initial measurements provide insight into
Rayleigh wave motion at different locations on the beam. A finite element model
calculates theoretical dispersion curves for comparison with experimental results. In
addition, the finite element model illustrates that Rayleigh waves form by the
superposition of fundamental flexural and longitudinal modes at high frequencies
and wavenumbers. Preliminary measurements show that the longest wavelength of
an ideal Rayleigh wave is 12 the beam thickness. A set of receiver array
measurements examines the effect of a slot cut on Rayleigh wave dispersion and
energy density. Slot depth and location could not obtained from these
measurements. Experiments show a transmitted Rayleigh wave for only the shortest
slot depth. Rayleigh wave reflections are not strong enough to confirm the location
of the slot. High material attenuation reduced the Rayleigh wave energy.

This method would benefit by additional work examining different receiver
arrangements and frequency regulated input sources. Also, further theoretical and
experimental work should focus on combining the knowledge acquired from
Rayleigh waves with information gained from observed higher vibrational modes.
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Chapter 1

Introduction

The analysis of Rayleigh wave propagation is a very useful and powerful technique
for the detection of fractures. The aeronautical engineering industry used ultrasonic
Rayleigh waves since the early 1950’s to locate fatigue cracking in airplane
components. More recent applications use Rayleigh waves for fracture detection in
composite materials. At a much larger scale, geophysicists analyze Rayleigh waves
generated by an earthquake to determine fault characteristics within the earth’s
crust. Another potential area for the application of Rayleigh waves is for fracture
identification in concrete.

Detecting defects in concrete using acoustic methods is difficult because of many
factors. Attenuation and multiple reflections in concrete members make capturing
and interpreting the appropriate signal difficult. Conventional acoustic techniques
applied to concrete rely on compression wave transmission, reflection and
diffraction models for defect detection. Although compression waves have the
highest velocity, they also contain the least amount of energy and suffer high
geometrical attenuation.

Quite often, the unconfined compressive strength is related to compression wave
velocity. This follows the assumption that a high compression wave velocity directly
relates to higher strength concrete. While such a correlation is observed in general,
the defect type, location and geometry causing the lower compression wave velocity
is postulated or unknown.
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Compared to compression waves, Rayleigh waves exhibit several unique properties
suitable for fracture detection in concrete. Rayleigh waves possess considerably
more energy than compression waves, allowing easier signal detection and
measurement. Also, Rayleigh waves propagate along the surface of an object, with a
penetration depth approximately equal to one wavelength. Thus, regulating the
central frequency of the Rayleigh wave permits various investigation depths.
Rayleigh waves are also less affected by geometrical attenuation; therefore they can
be measured at greater distances from the source.

The main difficulty in applying Rayleigh waves for fracture detection is the
development of an appropriate physical model to represent the interaction of a
Rayleigh wave with a fracture. Considerable research addresses the improvement of
Rayleigh wave/fracture interaction models. In general, ultrasonic resonance or time-
of-flight techniques study the wave/fracture interaction. These methods are useful
in homogeneous isotropic materials such as metals, but are difficult to apply in
heterogeneous materials like concrete. High attenuation and multiple reflections
from neighboring boundaries reduce the effectiveness of conventional ultrasonic
techniques in concrete structural elements.

Objectives: The purpose of this research is to gain an understanding of the
interaction of a Rayleigh wave with localized anomalies, such as fractures.
Comprehension of this phenomenon will provide information for the development
of a nondestructive methodology for the detection and sizing of surface breaking
fractures. Although results from this work are applicable to any material with a
surface breaking fracture, the intent of this research is to develop a foundation for a
new, or perhaps an additional tool, to nondestructively detect surface breaking
fractures in concrete using Rayleigh waves.

Furthermore, this work examines the conditions whereby Rayleigh waves form in
different solid geometries. A Rayleigh wave created in an infinite half-space
represents the classical definition. However, similar conditions exist in plates and
beams for wavelengths that are short in comparison to the cross section dimensions.
This work addresses the limits imposed by an element of finite dimensions on the
formation of an ideal Rayleigh wave.

Methodology and Organization: The research approach selected for this
investigation begins with simple models, and gradually increases the complexity of
the problem to three-dimensional concrete beams. Experimental, theoretical and



3

qualitative observations are used to determine the ability of array measurements to
detect and size surface breaking fractures.

Initial measurements use a thin Plexiglas sheet held in an upright position. With this
configuration, time history measurements of Rayleigh waves are free from three-
dimensional reflections. Furthermore, theoretical solutions exist allowing
verification of the measured results. A slot of varying depth is then cut into the
Plexiglas sheet. A measurement from different locations provides insight into the
Rayleigh wave/fracture interaction.

The next stage is to simulate Rayleigh wave motion in the Plexiglas sheet using a
finite element model. Results from the finite element simulations contribute to the
understanding of the interaction of a Rayleigh wave with a fracture. Calibration of
finite element results with experimental time-history data ensures a realistic model.
Subsequent finite element simulations supply frequency-wavenumber data at
different locations within the plate. Although rigorous calibration procedures are
not employed, a close time-history approximation is obtained which is sufficient for
the finite element model to provide qualitative observations.

Following the work with two-dimensional analogues, a series of experiments are
completed on concrete and cement beams with a square cross section. Measurement
locations are similar to the Plexiglas experiments. A closed-form solution for steady-
state vibrations in a beam with a square cross-section does not exist. This research
contains a description of a finite element program used to calculate theoretical
dispersion curves for comparison with experimental measurements. Preliminary
experiments study Rayleigh wave propagation in concrete and cement beams.
Subsequent measurements examine the effect of a slot on Rayleigh wave dispersion
and energy density.

This dissertation contains eight chapters organized as follows:

Chapter 2 begins with a theoretical examination of Rayleigh wave generation and
propagation in an infinite half-space, reviewing the physical properties of the
Rayleigh wave. Included are observations from photoelastic experiments to facilitate
the visualization of Rayleigh waves in three dimensions.
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Chapter 3 examines the signal processing techniques used for the measurement of
Rayleigh waves. The review includes time and frequency domain methods, along
with various dispersion calculation techniques. This chapter also describes the two-
dimensional Fourier transform method and receiver array configurations used in
this research.

Chapter 4 examines the initial measurements completed on a thin Plexiglas plate.
The Rayleigh-Lamb frequency equations are derived. A comparison of theoretical
calculations with initial measurements verifies the signal processing techniques and
confirms the formation of Rayleigh waves.

Chapter 5 reviews both theoretical and experimental approaches to detect fractures
using Rayleigh waves. A review of the literature identifies variables important to the
Rayleigh wave/fracture interaction. Additional measurements on the Plexiglas plate
containing a slot of varying depth, studies the effect on Rayleigh wave dispersion
and energy density. Examination of the results determines whether slot depth and
location are detectable from these measurements.

Chapter 6 discusses the finite element model used to simulate Rayleigh wave
motion in the Plexiglas sheet. Included is a description of mesh size, time stepping
and other important input variables. This chapter provides details on the method of
calibrating the finite element model with experimental results. Also presented, is a
description and interpretation of additional simulations examining the Rayleigh
wave motion inside the plate for different slot depths.

Chapter 7 centers on the theoretical and experimental work completed on the small
scale concrete and cement beams. This section describes the theoretical development
of a finite element model used to calculate dispersion curves for a beam with a
square cross-section. Comparison of numerical and experimental results helps to
define Rayleigh wave motion in a beam. The effect of increasing slot depth on
measured Rayleigh wave dispersion and energy density is investigated.

Chapter 8 presents a summary of conclusions and recommendations derived from
this work.



Chapter 2

Fundamentals of Rayleigh Wave Motion

This chapter introduces the properties of Rayleigh wave motion from a theoretical
and a physical perspective. Rayleigh waves are formed by the interaction of
compression and shear waves (body waves) along a traction free surface. Therefore,
this chapter begins with a brief theoretical description of body wave motion
followed by a theoretical derivation of the Rayleigh wave equation. This analysis
facilitates the identification of the physical attributes of Rayleigh wave motion. The
final section presents physical observations of Rayleigh waves from photoelastic
experiments which complement the theoretical results.

2.1 Body Waves in Elastic Solids

The most general analytical description of body waves is through the examination of
wave propagation in an infinite medium. The main assumptions are that the
medium is elastic, isotropic, and composed of homogeneous material not affected by
damping. In the absence of body forces, the equations of motion for a particle in the
X, ¥, and z directions are given by Navier’s equations (Richart et al. 1970; Landau
and Lifshitz, 1986; Mal and Singh, 1991).

2
‘;‘2“ =(r ﬁ»c})gx—Aa»szui [21]

p
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The dilational or volume expansion is given by A = ¢, + Ey + &, p is the density and
1=1,2,3 for the x, y, and z directions.

vE E
A= G=———
(1+vX1-2v) 21+v)

Where A and G are Lamé's constants and E and v are Young's modulus and
Poisson's ratio, respectively.

Manipulation of these equations can show the presence of compression and shear
waves. For example, the existence of a compression wave is demonstrated by
calculating the divergence of both sides of equation 2.1:

; .
(a+a+a)pag‘ =(a+a+a)(A+G)a—A+GV2ui
ax,  ox, ox )P e ox, | ox,  ox, ox,

2 2
which gives, Paat—zA=(l+G)§x%+ng_?
2
‘;—‘3 = (A +2G)VA [2.2]
5
‘;ZA =VIvia

where: V, = 4+2G [2.3]
v P

The divergence operator is a measure of "flow" across a Gaussian surface. Therefore,
equation 2.2 implies a strain direction aligned with the propagation direction.
Variations in strain cause a volumetric change in compression waves, as illustrated
in Figure 2.1. The compression wave velocity in an infinite medium is calculated
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using equation 2.3. Denoted by Vj, the compression wave velocity is a function of
Young's modulus, Poisson's ratio, and mass density of the material.

The existence of shear waves is proven by applying the curl operator to both sides of
equation 2.1, which gives (Bullen, 1963):

O curl(u)=(h+ G)curl(a—A) +GV2curl(y,)
Poe U ax, '

1

it can be shown that, curl(::) = ai,. ;‘: - aij (‘;‘I =0
which gives: p% =GV?, [2.4]
1{0u; ou 1{0u, ou 1{ou, ou
here: =— _3__2) =_(__1-_3_) =_(__z__¢)
where =3 (ax2 x) *73le ) P72l o,
and v,= 2 [2.5]
)

The curl operator describes the circulation of a vector field along a closed loop, i.e.
the tendency of "flow" to be circular rather than perpendicular to the "flow"
direction. Unlike the compression wave, shear wave particle motions are
perpendicular to the direction of wave propagation. Furthermore, shear waves do
not cause a volumetric change, as shown in Figure 2.1 The shear wave velocity, Vs, is
calculated with equation 2.5, using the shear modulus and mass density of the
material.

Equations 2.3 and 2.5 can be manipulated to express the ratio of compression wave
to shear wave velocity:



2(1-v)
Vo =T, [2.6]

The compression wave velocity is 1.73 times the shear wave velocity, assuming a
Poisson'’s ratio of 0.25 in equation 2.6.

2.2 Rayleigh Waves in an Infinite Half-Space

Mathematical derivations for the Rayleigh wave equation are given by Rayleigh
(1885), Viktorov (1967), Richart et al. (1970), Landeau and Lifshitz (1986) and Mal
and Singh (1991). The derivation that follows is the one presented by Richart et al.
(1970). The surface of the half-space is in the x-y plane with z positive in the
downward direction, as shown in Figure 2.2. Also, for a plane wave traveling in the
x-direction, particle displacements are in the x-z plane, independent of the y-
direction.

Direct solutions of Navier's equations of motion (equation 2.1) are difficult to obtain
because of strong coupling between compression and shear waves. Decoupling is
accomplished by introducing the potential functions, ® and '¥. Displacements in the
x and z directions correspond to u and w displacements, so that the plane strain
displacement components are:

|3

v oD
+— w=—-
oz oz

Y|

As will be apparent later, the potential functions are chosen in such a way so that ®
and ‘¥ are related to the dilation and rotation of the medium, respectively. These
potential functions are substituted into the equations of motion (equation 2.1). Let's
consider the equation of motion in the x-direction:

%u a(au aw) 5
9Y _a+G) [N, W) Gy
P MO = “

Substituting u and w with the potential functions,
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Palox "o x\ox  o2) @&\ez o
o (o*d o (d*Y (7] 7]

and similarly for the z-direction,
d(o*d o (o*%¥ 7/ o
"5(37)“’&(?)=<A+G>52-(V2¢)-Gg(v2w) 28]

Equations 2.7 and 2.8 are satisfied if;

’e

= - Vivie [2.9]
FY _ ooz
oA ¢ [2.10]

Equation 29 is associated with compression waves and equation 2.10 with shear
waves. These equations are referred to as the Helmholtz equations. The next step is
to find solutions to these equations. Assuming a solution for a sinusoidal plane
wave, moving in the x-direction for ® and ¥;

® = F(z)e! ™= [211]
¥ = G(z)e' ™™ [2.12]
k=2%

L

The wave amplitude is controlled by F(z) and G(z), k is the wave number, and L is
the wavelength (L is used instead of A, so as not to confuse with Lamé's constants).
Equations 2.11 and 2.12 are substituted into 2.9 and 2.10 respectively.
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-0’F(z)=V; (-kzF(z) + "Zﬁz)) [2.13]

~03G(z)= V? (-sz(z) + ";‘jﬁz’) [2.14]

Equations 2.13 and 2.14 can be rewritten as follows,

___a’al;(zz) -q*F(z)=0 [2.15]
2
9 ;ﬁz) ~53G(x)=0 [2.16]

where,

The solutions of 2.15 and 2.16 are,

F(z)= Ae™® + Be® [2.17]
G(z)=Ce™ + De™ [2.18]

The amplitude decreases with respect to depth so that B and D must be equal to
zero. Equations 2.17 and 2.18 are substituted into 2.11 and 2.12.

® = Ael =it [2.19]



11
P = Cel-=+itor-i)] [2.20]

Values for the constants A and C are obtained by applying boundary conditions to
the following stress displacement relations,

’d o'd ’®d 9*¥

o =‘(axz *EZTJ*ZG(ET*M) 221]
‘P Fo o Fv¥

%= = l( PGP ) +2G( o7 oxoz [222]

[2.23]

T

G(Z a’¢+azw_a’\p)
xoz o’ of

xZ

At the surface, z=0, there is no stress so that 5, = 0 and t., = 0. Now, the solutions of
® and ¥ (equations 2.19 and 2.20) are substituted into 2.22 and 2.23. The resulting
two equations are used to solve for the constants A and C.

o, = M(~Ak® + Aq’) + 2G(Aq’ - iCks)
c,=0
2 Y
Ala*(a +?G) Ak?] _ 224
C2iGks

and
T, =2iAkq +Cs? +Ck?
T, =0

A2ikq
_—— 1 -1
C(s* +k?) [223)

Equating 2.24 and 2.25 and multiplying,

4Ggsk® =[q*(r +2G)- A Js? + k]



Squaring both sides and substituting for q and s,

2 2
2 »? @? . . o
l6G2k‘(kz - W)(kl - V‘z—) = [(kz - —v'p?)(l + 2G)— ;lsz [k‘ +(k - ?)]

P

and dividing through by G2k8 gives,

2 2
2 2 A+2GY o? o?
(S NN (A .
VI U TV G Nikv? K2V2

Finally,

Where the L is the wavelength, o is the frequency of the Rayleigh wave. Equation
2.26 can be rewritten as follows,

A -]

Vil i1 Va)i_Ve
-9

Equation 2.27 illustrates that the Rayleigh wave velocity is a function of the
compression and the shear wave velocities. Relative velocities between compression,
shear, and Rayleigh waves are calculated by substituting equation 2.6 into equation
2.27. Ratios of compression, shear, and Rayleigh wave velocities, shown in Figure
2.3, indicate that compression waves are 1.5 times faster than Rayleigh waves when
Poisson's ratio is low. The compression wave velocity increases exponentially as the
Poisson's ratio approaches 0.5. The shear wave is only slightly faster than a Rayleigh
wave, becoming almost equal at a Poisson's ratio of 0.5.
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To examine the displacements associated with Rayleigh waves, solutions for ® and

¥ (equations 2.19 and 2.20) are substituted into the scalar potentials

b

ad oD

U= —4+— W=—
oz

@ = Ael @il

V7 Ce[-:ui(ml-b()]

u= _ikAe[‘qZ’i(m(—k-‘)l _ SCe[—noi(mt—kx)]

w = —qAel ®] iy cel -=rite-i)]

from 2.25
Aikq

Fe)

which is substituted into 2.28 and 2.29,
. - 2gs - | ilot-kx)
u=1kA{-e ¥ +—5—e e
s“+k

W= kA{_z-zq_kze-sz - ﬂe-qz }ei(m—tx)
s*+k k

[2.28]
[2.29]

[2.30)

[2.31]

The horizontal displacement is 90° out of phase from the vertical displacement as
designated by the imaginary component. These equations can also be expressed as
functions of depth. Assuming t=0,x =0, and A is an arbitrary constant, amplitudes

are given by,

2gs
e¥ —e®
s? +k?

u(z) =

2k ., q .
W(z)=s’+k2¢ -Fca

[2.32)

[2.33]
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Equations 2.32 and 2.33 are used to study horizontal and vertical displacements of
Rayleigh waves with respect to depth. A plot of horizontal and vertical amplitudes
with respect to depth for values of Poisson's ratio between 0 and 0.5 is shown in
Figure 2.4. Horizontal and vertical displacements near the surface are positive,
generating an elliptical motion with a retrograde rotation. Reversal of this motion
occurs at greater depth where the horizontal displacement becomes negative.
Ideally, the major axis of the ellipse describing this motion is perpendicular to the
surface. Higher values of Poisson's ratio reduces the reversal depth. A series of
aspect ratios (vertical to horizontal displacement) are given for various Poisson's
ratio in Table 1.1. Field measurements of Rayleigh wave ground motion made by
Dobrin et al. (1951) verify the reversal of rotation. Measurements by Dobrin et al.
(1951) also show a clockwise rotation of the major axis for successive wave cycles.
An explanation for this behavior is not given.

The aspect ratio of the ellipse describing Rayleigh wave motion is a unique quantity
(Hassan and Nagy, 1998). In addition to being equal to the ratio of vector to scalar
displacement potential amplitudes, the aspect ratio is also equal to shear and normal
stresses in any plane parallel to the surface at any depth. By rearranging equations
230 and 2.31 respectively, and only examining surface displacements (z=0), we
obtain,

u= ikA{ 2as -1}&‘"""" [2.34]
s“+k
2k* i(at-kx)
=qA -1’ 235
=9 {s2 +k? }e (2.35]

Using equations 2.34 and 2.35 to calculate the ratio of w/u gives,

( 2k? —1)
9 s? +k?

2gs )
(2=
s? +k?

[2.36]

Rearranging 2.36 provides,
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k¢—q
2.3
ek [2.37]
2qk
h =
where ) [~ Sz+k2

The same ratio as in equation 2.37 is obtained when the ratio of shear to normal
stress is calculated for all depths except at the surface. Hassan and Nagy (1998)
show that the relationship in equation 2.37 is only valid for a classical Rayleigh wave
propagating on the free surface of an isotropic homogeneous elastic half-space.

Figure 2.4 also demonstrates that vertical displacements peak near the surface,
becoming progressively smaller with increasing depth. The magnitude and depth of
the peak vertical displacement is a function of Poisson's ratio. Vertical and
horizontal displacements are confined to within one wavelength of the surface,
therefore, penetration depth depends on the frequency content of the Rayleigh
wave.

Rayleigh waves move radially outward along a cylindrical wave front. The energy
density of the Rayleigh wave becomes less as a larger volume is encountered: an
effect known as geometric damping. The Rayleigh wave amplitude decreases by a
factor of 1/ VR, where R is the distance from the source. In comparison, the reduction
of body wave amplitude is 1/R (Richart et al,, 1970). As a result, Rayleigh waves can
travel longer distances than body waves.

Approximately 67% of the energy imparted into a system through an impact or an
earthquake, is converted into Rayleigh wave energy (Miller and Pursey, 1955). The
combination of low geometric damping and high energy accounts for the
destructiveness of earthquakes. These properties also allow for easy identification of
Rayleigh waves by vertical displacement or acceleration measurements along the
surface of an object.
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2.3 Photoelasticity Observations

One of the best sources of information concerning Rayleigh wave propagation
through a medium is by photoelastic measurements. Although the surface motions
are easily observed, particle motions occurring beneath the surface are more
complicated. Photoelasticity studies by Lewis and Dally (1970), Riley and Dally
(1966), Daniel and Marino (1971), Dally and Thau (1967), Dally and Lewis (1968),
Thau and Dally (1969), and Dally and Riley (1967) provide useful observations
concerning particle motions associated with Rayleigh waves.

An example of a Rayleigh wave photoelastic study is shown in Figure 2.5 (Dally and
Lewis, 1968). Fringe patterns are related to principal stresses by the following
relation:

Nl-‘fc [2.38]

,61 "czl =

where N is the fringe order, £, is the material fringe value, and h is the thickness of
the model. Therefore, fringe values calculated from the model represent differences
in the principal stresses. As shown in Figure 2.5, the largest fringe order (N=3)
occurs at the leading edge of the surface wave, followed by the compression
component with N=2. Just below the surface a circular fringe pattern occurs with
N=2.5. From direct observation, the energy distribution of the Rayleigh wave
appears to have a lobed structure, where one lobe is associated with each of the
main features. A mathematical expression does exist to describe the lobe shaped
displacement field observed in photoelasticity experiments. Building on the work of
Chadwick (1976), Zhang and Ying (1987) calculated the displacement field of a
Rayleigh wave propagating through glass. Theoretical calculations correlated well
with experimental measurements.

Photoelasticity measurements also provide insight into the near field and far field
Rayleigh waves. Figures 2.6 and 2.7, taken from Dally and Lewis (1968), show the
increase in penetration depth of the Rayleigh wave as the distance from the source
increases.
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2.4 Higher Mode Rayleigh Waves

The previous mathematical derivation of a Rayleigh wave assumes homogenous
isotropic conditions, causing the Rayleigh wave to be nondispersive. Only ideal
materials exhibit these conditions. In soils for instance, Young's modulus and shear
modulus change with respect to depth causing dispersion of the Rayleigh wave. The
spectral analysis of surface waves (SASW) is a recent application of Rayleigh waves
by civil engineers to nondestructively determine near surface shear wave profiles
(Heisey et al., 1982; Nazarian et al., 1983). Many of the original studies into the
SASW technique assume that measured Rayleigh wave vibrations are attributed to
the fundamental mode vibration. As more SASW studies were conducted, difficulty
was encountered in interpreting dispersion curves where the shear velocity profile
did not increase with depth. Theoretical studies illustrate the effect of higher mode
Rayleigh waves on these types of dispersion curves.

A numerical parametric study by Gucunski and Woods (1992) examines how higher
mode vibrations contribute to the composition of a dispersion curve. Results from
various combinations of shear velocity profiles are presented. A shear wave velocity
increasing with depth generates a dispersion curve where the main contribution is
from the fundamental Rayleigh wave mode. When a low velocity layer is
sandwiched between two high velocity layers, higher Rayleigh wave modes
contribute to the dispersion curve. This effect is strong for long wavelengths,
whereas nearer to the surface the fundamental mode predominates. The number of
participating higher modes increases as the thickness of the low velocity layer
increases.

Al-Hunaidi (1993) studies the effect of higher mode Rayleigh waves on the
reduction of synthetic SASW data. This work shows that without knowing the low
frequency cutoff values for the higher mode Rayleigh waves, direct phase
unwrapping results in erroneous phase velocities. As with Gucunski and Woods
(1992), Al-Hunaidi (1993) recognizes the uncertainty of assuming that only the
fundamental mode is present in a SASW measurement.

2.5 Near Field Effects

The nature of the Rayleigh wave changes with respect to distance from the source
generating the Rayleigh wave. From a theoretical perspective Ewing et al. (1957)
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shows that, along with body wave components, a very short wavelength Rayleigh
wave is generated at the same instance as the point load impact on a free surface.
The penetration depth of the Rayleigh wave increases at greater distances from the
source. In reality, a perfect point source is difficult to obtain. Photoelastic
experiments by Dally and Thau (1967) show discrepancies between theoretically
predicted Rayleigh wave fringe orders and experimental measurements. The main
reason for the differences are variations between experimental loading and the
assumed mathematical loading.

Heisey et al. (1982) also address the near field effect in the SASW test methodology.
To overcome this problem they include a criterion in the data reduction where
A<3D; A is the wavelength of the Rayleigh wave and D is the source/receiver
distance. At greater distances from the source (variable D), longer wavelengths are
removed from the analysis.

Douglas and Eller (1986) also consider near field effects when measuring Rayleigh
waves in the SASW methodology. They show that the Fourier transform does not
adequately decompose short time domain signals that contain long wavelength and
low velocity Rayleigh waves. Their argument is that the a Bessel function best
represents the source, where the initial portion of the curve is irregular. Spurious
frequencies are introduced when the received signal is truncated and Fourier
transformed, resulting in the calculation of incorrect phase velocities.

2.6 Boundary Effects

Theoretical derivations of a classical Rayleigh wave assume the medium extends to
infinity in all directions. However, most objects have finite dimensions that have
many traction free boundaries. Traction free boundaries affect Rayleigh waves in
two ways. Superposition of body wave reflections with a propagating Rayleigh
wave alters the Rayleigh wave. Traction free boundaries may also invalidate the
half-space assumption, again changing the physical characteristics of the Rayleigh
wave and possibly generating new wave types.

In SASW analysis, finite dimensions of the pavement or concrete slab control
reflections from edge boundaries. Douglas and Eller (1986) address this problem by
illustrating the distortion in dispersion curves caused from cracks and edge
boundaries in runway pavements. Boundary reflections impose restrictions on the
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Rayleigh wave data collected by Kalinski et al. (1994). In this study, Rayleigh waves
are used to identify damaged zones in a concrete beam. Body wave reflections from
the bottom face of the concrete beam influenced Rayleigh wave measurements.

The experimental study by Kalinski et al. (1994) also introduces a key limitation of
the classical Rayleigh wave theory. The potential for the generation of new wave
types exists when wavelength dimensions are similar to dimensions of the
propagating medium. A concern in the measurements by Kalinski et al. (1994) is the
formation of Lamb modes. Because the beam has a finite thickness, the half-space
assumption of classical Rayleigh waves is violated. The Rayleigh wave in this case is
very similar to a classical type Rayleigh wave, but not identical.

2.7 Variations of Classical Rayleigh Wave Theory

More recently, the mathematical approach to deriving the classical Rayleigh wave
equation is used to solve many other problems related to Rayleigh waves. Material
anisotropy is incorporated with a stiffness tensor (Hamilton et al., 1999), allowing
different elastic constants to be assigned along various directions. Hamilton et al.
(1999) also developed a theory for the evolution of nonlinear Rayleigh waves in
crystal lattices.

Classical Rayleigh wave theory is also applied by Onodera and Choi (1998) to
calculate dispersion curves for Rayleigh waves propagation in gels. Their approach
is to assume an elastic solid and incorporate material viscosity by adding an
imaginary term to the elastic constants. Acoustic waves are propagated through the
medium during the gelation process, illustrating the alteration from a wave strongly
affected by surface tension to the formation of a classical Rayleigh wave.

2.8 Summary

The mathematical derivation of Rayleigh wave motion presented at the beginning of
the chapter represents the exact form of a Rayleigh wave. The main assumptions are
that the medium is elastic, homogeneous, isotropic and with only one traction free
surface i.e. a half-space. Under these conditions the Rayleigh wave is nondispersive.
It is also assumed that the aspect ratio of the displacement ellipse is equal to the
ratio of tangential to normal stresses at any depth parallel to the free surface.
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A number of factors causing deviation from the ideal Rayleigh wave are also
examined. The introduction of horizontal layering causes the Rayleigh wave to
become dispersive. In addition, higher mode Rayleigh waves may be generated
where the shear velocity profile is not increasing with depth.

The distance between the Rayleigh wave and the source is an important factor. Both
theoretical work and photoelastic observations show a gradual evolution of the
Rayleigh wave. The penetration depth of the Rayleigh wave increases as distance
from the source lengthens.

The effect of traction free boundaries is more an issue when Rayleigh waves are
measured in an object with finite boundaries. Multiple reflections of body waves
will interfere with the Rayleigh wave, altering the measured waveform.
Furthermore, when the wavelength of the Rayleigh wave (as well as compression
and shear waves) approaches the dimensions of the propagating medium, other
vibrational modes can be excited. The resulting propagating mode may exhibit some
similar characteristics of an ideal Rayleigh wave.
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Figure 2.1 - Physical characteristics of compression and shear waves.
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z v=0 v=0.25 v=0.333 v=0.5
J)

0 1000 1.000 1.000 1.000

0.772 0.676 0.626 0.540

0.25 0.745 0910 0968 1120

~0.007 —0076 -0101 ~0158

0.5 0432 0.587 0.643 0812

—0104 —0157 -0177 ~0.206

1.0 0109 0192 0219 0339

-0044 -0071 0077 ~0.099

Table 2.1 - Aspect ratios of a Rayleigh wave for various depths and

Poisson's ratio. The depth is given by z, A is the wavelength and v gives
the Poisson's ratio (from Victorov, 1967).



Figure 2.5 - Photoelastic observation of a Rayleigh wave (from Dally and Lewis,
1968).
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Chapter 3

Signal Processing Techniques

Signal processing methods are applied to measured signals to enhance the extraction
of relevant information and to compare measured vibrations with theoretically
calculated results. This chapter presents an introduction to time and frequency
domain signal processing techniques addressed in this research. It also includes an
examination of several approaches for calculating phase velocities, followed by a
discussion of frequency-wavenumber data reduction. The final part of this chapter
explores the application of the frequency-wavenumber methodology for data
processing to be used later in this research.

3.1 Time and Frequency Signal Processing Methods

Signal processing encompasses a whole series of methods and transformations for
manipulating signals. There are many types of signals such as displacements,
accelerations or temperature. Signal processing allows these measurements to be
compared and contrasted to a given input.

Most signal processing methods manipulate data in the time, frequency or
frequency-wavenumber domain. Signals in the time domain are usually represented
as a sum of impulse or step functions. Frequency domain analysis entails
decomposing the time domain signal into a summation of sine and cosine functions.
The frequency-wavenumber representation requires an additional decomposition of
the signal to incorporate a summation of sine and cosine functions in the spatial

28
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direction. The following section gives a brief outline of signal processing methods
and concepts needed in subsequent sections (Santamarina and Fratta, 1998).

Time Domain: The response of any linear time invariant (LTI) system can be
defined by measuring the behavior of a system after an impulse is applied. Repeated
summation of the impulse response h(t) of the system at different time intervals can
be used to predict system output y(t) when the input x(t) is known. This operation is
called convolution and is given by the following equation:

y(t)= Fx(t)h(t - t)dt continuous time [3-1]

-

y(nAt) = ix(kAt)\(nAt —kAt)  discrete time [3-2]

k= —ac

Frequency Domain: Any time series data, such as x(t), can be represented as a sum
of sine and cosine functions. Instead of examining amplitude with respect to time,
amplitude is examined with respect to frequency, given by X(»). The required
transformation is called a Fourier transform and is defined as: '

X(w) = Tx(t)e"““dt : continuous time [3.3]

X(w)= i x(nAt)e = discrete time [3.4]

fNi=-—as

the frequency is given by . Real and imaginary components result from the Fourier
transform and in complex number notation is given by:

X(®) = Re(X(®)) + Im(X(w)) [35]
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The phase angle is the angle between real and imaginary components in the Argand
plane.

The output of an LTI system can be predicted if the impulse response of the system
is known. In the frequency domain, the convolution operation is completed by
multiplication of the frequency components as follows:

Y(o) = H®)X(o) | [3-6]

where the input function is X(®), the transfer function (impulse response) is H(w),
and the output function is Y(w). Quite often, the input and output functions are
known, and division of the frequency components is used to calculate the system
transfer function.

Frequency Domain Operations: Time domain signals are usually transformed into
the frequency domain. The following are the most common functions used in signal
analysis:

complex conjugate X(0)" = Re(X(0)) - Im(X(e)) [3.7]
cross power spectrum Gy (0) = X(0)Y(e)’ [3.8]
Auto Power Spectrum - Gx(®) = X(e)X(w) [3.9]
Power Spectrum Density PSD(®) = {/G  (0) [3.10]

When the signal is noisy, the output signal is defined as:
Y(0) = H(o)X(0) + (o) [3.11]

where the Fourier transform of noise is S(»). The transfer function now becomes:



31

H{e) = H(m»;gooz; S(@)

[3.12]

The transfer function is redefined because the error is dependent on the ratio of

S(0)/X(w). By assuming that the average cross power spectrum (the bar defines
average) is:

G () = Y(0)X(0)

G (®) = (H(e)X(0) + S0))X(o)’

G (0) = G «(0)H(0) + S(0)X(w)’

G)x(m) = H(o)+ S(m)X(co)’
G () G (®)

H(e)= Gy (w) _ S(CO)X((D). _ Y((o)X((o)' 3 S(CO)X(OJ).
Gu(0) Gu@) X)X@) Xo)X@o)

assuming that the noise is random, the correlation of S(w)X(w)* will be equal to zero
so that,

_ Y(@)X(@)’

H(®) X(0)X(o)"

[3.13]

Random noise can be reduced by adding repeated measurements. This process of
canceling out random noise is referred to as stacking.
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Another important frequency domain operation is the calculation of a coherence
function given by the following equation,

G. G
o) = =2 3.14
Y (w) G.G. [3.14]

The coherence function is a measure of signal quality, giving values that range
between 0 and 1. When similar signals are measured at two receivers, the coherence
value will approach 1. Coherence functions are calculated to determine the
frequency range where linear behavior occurs and a high signal to noise ratio can be
expected.

Calculation of the signal to noise ratio is another measure signal quality. The signal
to noise ratio (SNR) is defined as the ratio between the autospectral density of a
signal without noise and the autospectral density of noise. Coherence values are
used to calculate SNR,

SNR(0) = i%(f(’z)—) [3.15]

Values for SNR range between 0 and infinity. Higher values for SNR indicate low
measurements of noise.

Frequency-Wavenumber Domain: A natural progression of the Fourier transform is
to represent a series of time domain traces measured at equal distances, x(t,x) as a
sum of sine and cosine functions. Time information is transformed into frequency
components and spatial information is converted into wavenumber components,
given by X(w,k). Such a representation is defined as a two-dimensional Fourier
transform given by:

X(o,k) = [ [x(t,x)e ™" dkdo continuous [3.16]
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X(o,k) = i i x(nAt, mAx)e ~{=(ra)-k(msx) discrete [3.17]

n=-cme-—<ax

3.2 Methods of Dispersion Calculation

Different material properties and geometries can cause waves to exhibit dispersion.
When dispersion occurs, the various frequency components of a wave travel at
different velocities. Dispersion curves are computed from time domain
measurements and used to backcalculate material properties or material thickness.
The following discusses some common methods used to calculate dispersion curves,
including the method used in this research.

n Point Phase: In this method, a monochromatic source generates a steady state
wave. The distance of the receiver is varied until the phase angle between the source
and the receiver differ by exactly n. A dispersion curve is built by measuring the
source/receiver distances for a range of frequencies. Although a very accurate
method, measurements are tedious and time consuming.

One Dimensional Spectral Method: Sachse and Pao (1978) introduce an easier
method of calculating dispersion. A transfer function is calculated by obtaining the
Fourier transform of a source signal and a received signal. Phase velocities are
calculated by knowing the source/receiver distance and the unwrapped phase
angles of the transfer function. The following relations illustrate the phase velocity
calculation,

Ad(w) =arg(%::))) [3.18]
vV, = ';‘T [3.19]
2nf

where F1 and F; are the input and output signals respectively, L is the distance
between the source and receiver. Phase angles will vary between 90° and -90°, and
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must be accumulated or unwrapped before the phase velocity is calculated. Yew
and Chen (1980) apply the same method for dispersion calculations.

The method proposed by Sachse and Pao (1978) is slightly improved by Pialucha et
al. (1989). Phase velocities cannot be calculated using the original method for signals
containing superimposed multiple reflections. Pialucha et al. (1989) demonstrate
that overlapping signals contain resonant modes related to the plate thickness;
causing minima in the frequency spectrum. Frequencies where minima occur are
used to calculate phase velocities.

Two-Dimensional Spectral Method: An alternative method of measuring phase
velocity is to obtain a series of time domain signals for an array of equally spaced
receivers. Measured data is transformed into the frequency-wavenumber domain by
applying a two-dimensional Fourier transform (equation 3.17). The resulting
complex values are used to generate a contour plot, revealing a series of peaks
related to the various propagating modes. Phase velocities are calculated from peaks
in the frequency-wavenumber domain (Alleyne and Cawley, 1991).

Frequency-wavenumber techniques have several advantages compared to the =
point phase and the one-dimensional spectral methods. Windowing of different
wavetrain components is not necessary to calculate a dispersion curve. As will be
shown in subsequent sections, phase velocity computation is simplified because
multiple propagation modes are easily identified. Contour plots of magnitude also
provide energy density information within the frequency-wavenumber domain.
Another unique feature of the two-dimensional Fourier transformation is the ability
to distinguish the rightward or leftward direction of a propagation mode through
the receiver array. For these reasons, the frequency-wavenumber methodology is
used to analyze the data collected in this research.

3.3 Frequency-Wavenumber Dispersion Calculations

In this section a number of synthetic examples similar to actual measurements are
transformed into the frequency-wavenumber (FK) domain. The purpose of this
approach is threefold. First, to give a detailed account of the calculation procedure.
Second, to illustrate the various properties of the FK plot and finally, to address the
issue of potential aliasing problems. Details of the array configuration and
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calculations used this section are identical for all measurements made in this
research.

Method of Calculation: Time histories of two synthetic models are shown in Figures
3.1 and 3.2. For each model, 41 time history measurements, with 1000 data points,
are generated with a receiver spacing of 0.0127 m. The first model has two
propagating modes; one moving from right to left and a second mode representing a
reflection moving from left to right. Both waves have a phase velocity of 1400 m/s,
however the reflected wave has half the amplitude of the direct wave. The second
model also has 41 time histories (1000 data points) with a receiver spacing of 0.0127
m. In this model there is a direct wave traveling from left to right with a velocity of
1400 m/s. In addition, there is a compression wave reflected from a bottom traction
free surface with a phase velocity of 2360 m/s.

The following procedure is used to calculate the dispersion curves in the frequency-
wavenumber domain. A matrix M is assembled with the time series. Each column in
the matrix corresponds to a measurement. Therefore the M;; element is the ith value
for the jth measurement. The ordering of the measurements in M reflects the spatial
arrangement in the field, ie., neighboring columns correspond to neighboring
measurements (Alleyne and Cawley, 1991; Costley and Berthelot, 1994). There are 41
receiver measurements made at 0.0127 m (¥z”) intervals for each array. Each time
domain signal has 1000 data points with a sampling frequency of 1 MHz. The entire
time domain trace is used without windowing any reflections. The time domain
signals are zero-tail packed to 2000 points and the spatial domain is zero-tail packed
to 201 points. Therefore, the size of matrix M is 2000 x 201. To reduce frequency and
wavenumber leakage, a Hamming window is applied across the spatial and
temporal directions of the matrix. Matrix M is 2D Fourier transformed to determine
spatial and temporal frequencies. The magnitude of each complex element in the
transformed matrix F is then calculated. The data are presented as contour plots of
amplitude in the frequency-wavenumber space.

The calculation of the two-dimensional Fourier transform requires two MathCAD
sheets (Mathgrams 3.1 and 3.2 are included in Appendix A). The first step is to
import a time history data file into the MathCAD sheet. Initially, the DC component
of the signal is removed then a cosine taper window function (Hamming window) is
applied to the signal to reduce leakage in the frequency direction. This signal is
saved into data file, then the next sequential time domain signal is imported and
analyzed. Each subsequent signal is appended onto the original data file, creating a
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matrix of time domain signals. When all the data files have been processed, the
second part of Mathgram 3.1 is to apply a Hamming window across the spatial
direction of the time domain matrix to reduce leakage in the spatial direction. After
this step is completed the windowed time domain matrix is saved to a data file for
conversion into the frequency-wavenumber domain. The Hamming window is used
because the frequency response exhibits a better roll off rate than the cosine taper or
Hanning window.

The windowed and preprocessed time domain matrix is imported in Mathgram 3.2.
The first step is to rearrange the time domain matrix to generate an optical
transform using the following relation (Niblack, 1986):

-1 [3-20]

where i and j are rows and columns respectively. The effect of equation 3.20 is
illustrated in Figure 3.3. Information contained in the four corners of the matrix are
redistributed, so that the center of the matrix becomes the origin, simplifying the
data presentation. After the data is Fourier transformed, the magnitude of the
complex values is calculated and scaled according to the following equation
(Gonzalez and Woods, 1992; Costley and Berthelot, 1994):

D(i, j) = clog[1 +|F(i, b [3.21]

where c is a constant and |F(i,j) | is the magnitude of the matrix element. Applying a
log scale to the data enhances the data by amplifying high frequency, low energy,
features. Calculations for the synthetic examples are shown in Mathgrams 3.1 and
3.2. The data is imported into Matlab for plotting purposes. Contour plots of the
synthetic examples are shown Figures 3.4 and 3.5.

Properties of the FK Plot: Vibrational modes in the contour plot are identified as a
sequence of peaks. The phase velocity of the different vibrational modes are
calculated by dividing the frequency by the wavenumber of the corresponding peak
(Graff, 1975).
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A O
V, =—=— 3.22
T [3.22]

where k=—and 0 =—=

Only the frequencies and the wavenumbers of the peaks are needed for phase
velocity calculations. The peaks shown in Figures 3.4 and 3.5 are generated by
extracting points in the magnitude matrix where the surrounding eight elements
have a lesser value.

Another important feature of the two-dimensional Fourier transform is the ability to
discriminate between waves propagating from left to right or right to left through
the measurement array. This effect is a direct function of the Fourier transform
calculation. One of the properties of the two-dimensional transform is rotational
invariance (Peardon, 1986). Lines in the time-space domain are rotated +90° (counter
clockwise) in the frequency-wavenumber domain. Therefore, a direct correlation
exists between first arrivals in the time-space and frequency-wavenumber domains.
In Figure 3.4, wavenumbers to the right of zero represent waves propagating from
left to right (direct wave) and wavenumbers to the left of zero correspond to the
right to left direction (reflected wave). Nondispersive waves plot as straight lines
through the origin, however, dispersive waves are curved and do not pass through
the origin. The direct and reflected waves shown in Figure 3.4 are nondispersive and
a line joining the peaks would pass through the origin.

An understanding of how reflections are mapped in the frequency-wavenumber
domain also provides meaningful insight into the FK plots. Peaks related to both the
direct and reflected waves, shown in Figure 3.5, plot to the right of the origin. The
phase velocity of the direct wave is correct, whereas a higher phase velocity of 5100
m/s is calculated for the reflected wave. Although the wave has traveled a longer
distance, the phase difference between receivers is shortened. This increases the
calculated phase velocity.

Array Pattern: A series of receiver measurements along a straight line, combined to
generate the FK plot, can also be viewed as a linear array. Techniques applied to
radar, sonar or radio telescope arrays also pertain to the presented measurements.
In particular, the concept of an array pattern is quite useful (Dudgeon and
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Mesereau, 1984). The array pattern indicates the frequency response of a linear
array, which in this research is entirely determined by the receiver spacing.

The concept of beamforming is first introduced in order to define the array pattern.
The simplest beamforming signal processing technique is the weighted delay and
sum. Beamformer output is generated by averaging weighted and delayed versions
of the received signals, :

b(t)=— ZW,S,(t t,) [3.23]

1-0

where b is the beamformer output, N is the number of receivers, w; is the weight for
each receiver, si is the receiver signal and v is the relative delay. The delays (t)) are
chosen to center the passband along a particular direction in the FK space,
commonly referred to as steering the beam.

An ideal beamformer should pass all signal components along a particular
orientation and reject all other information. The degree to which this ideal can be
achieved is given by the array pattern. The array pattern is derived from equation
3.23 (Dudgeon and Mesereau, 1984). For the one-dimensional case, the array pattern
is defined as,

W(k)= Z we™ [3.24)

1-0

The receiver locations are given by xi. The array pattern is essentially the Fourier
transform of the weighting function and receiver locations. Measurements in this
research conform to a linear array where the weighting function is equal to one for
each receiver. Solving equation 3.24 for a linear array gives,

i D
5“‘(“" 5) (-0
e ? [3-25]

. D
Nin{ 2}
sin, >

W(k)=
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where D is the distance between receivers. The frequency response of the array
pattern used in the synthetic examples is shown in Figure 3.6. The width of the main
lobe is inversely proportional to the product ND. Energy outside the main lobe is
partially attenuated by the array.

Spatial sampling effects alter the number and location of peaks observed in the FK
plot. Wavenumber intervals between peaks in the array pattern indicate the
minimum wavenumber expected between peaks in the FK plot. Peaks in Figure 3.6
are spaced at 1.92 1/m, however, peaks in the IK plots, shown in Figures 3.4 and
3.5, are spaced farther apart. The reason is that peaks in the FK plot are also
dependent on the frequency content of the propagating wave. A propagating wave
with a wide frequency spectrum causes the peaks in the FK plot to approach the 1.92
1/m limit. The implication of wavenumber resolution on the frequency-
wavenumber plot is that more peaks occur at short wavelengths and fewer peaks
occur at long wavelengths.

Aliasing: Aliasing is a direct result of spatial and/or temporal undersampling.
Spatial sampling is of greater importance in this research than temporal sampling.
Temporal aliasing can be simply corrected by either increasing (or decreasing) the
sampling rate or through the use of anti-aliasing filters. Receiver spacing dictates
whether spatial aliasing will occur. Shorter receiver spacings can be accommodated,
but longer receiver spacings may be more difficult to implement because the
concrete elements have finite dimensions.

An excellent discussion concerning aliasing in two dimensions is given by Clement
(1973). Aliasing in two dimensions is defined by relating an equivalent comparison
in one dimension. Assuming that Ax and At are the sampling intervals, then aliasing
occurs when

1 1
P d —_— 3.26
f>2At and/or k>2 [3.26]

where f and k are frequency and wavenumber respectively. These equations are the
two dimensional equivalent of the Nyquist frequency in one dimension.
Undersampling in one dimension results in overlapping frequency components in
the frequency domain. Similarly, information in two dimensions causes frequency
and wavenumber components to be spread across two dimensions without any
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apparent bandlimited boundaries. The effect of aliasing on Fourier transformed two-
dimensional data is shown in Figures 3.4 and 3.5.

The effect of spatial aliasing is also observed in the array pattern frequency
response, shown in Figure 3.6. The second peak, at a wavenumber of 78.8 1/m,
indicates the onset of spatial aliasing. Therefore, spatial aliasing does not occur
when,

Ds< %- [3.27]

where 1 is the smallest wavelength being measured.

The following calculations define data intervals, frequency and wavenumber where
aliasing is expected to occur.

Measured wavenumber resolution:

Ak
MAXx
Ao L
~ 41(0.0127m)
Ak =192 %n
1
Calculated wavenumber resolution: Ak = ——
MAx
1
Ak = ——8M8
201(0.0127)
Ak =039 Y
Maximum wavenumber: ko = _l_
2Ax

kK =1
=~ 2(0.0127m)

Koo =394 12
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Measured frequency resolution: Af = NLAt
Af = 1
1000(1x10~°s)
Af = 1000 Hz
Calculated frequency resolution: Af = NLAt
1
Af =
2000(1x10s)
Af = 500 Hz
|
M i fr . f = —
aximum frequency T
frex = 500 kHz

The measured resolution indicates the frequency and wavenumber data intervals
for the temporal and spatial sampling rates used in this research. The calculated
resolution gives the data intervals due to zero-tail packing. Maximum frequency
and wavenumber denotes the highest values where aliasing occurs.

Main Assumptions: A number of implicit assumptions are made with respect to
linear arrays (Justice, 1985). Array theory is developed for plane waves, however,
the wavefronts are curved, possibly suffering attenuation as they move across the
array. This will reduce the resolution of certain wave components because they are
measured at fewer receivers. Also, identical responses for all receiver measurements
are assumed. This may not be the case because coupling at each receiver location
may be inconsistent.



3.4 Summary

This chapter provides an introduction to time and frequency domain signal
processing techniques. In addition, this work examines the measurement and
calculation of phase velocities. Information from these areas provides the basis for
the discussion of the frequency-wavenumber approach. There are a number of
reasons for using frequency-wavenumber (FK) plots in this research; a) the capacity
to easily distinguish the Rayleigh wave from other propagating modes, b) the ease of
calculating phase velocities, c) the ability to obtain corresponding energy density
measurements, and d) the potential for determining propagation direction.

Dispersion and energy density measurements with the n point phase and 1D
spectral methods require that only one wave type be generated and measured.
Superposition of reflections and the generation of additional wave types distort the
measured phase angles, giving inaccurate dispersion and energy density
measurements. The use of a linear array overcomes these deficiencies to a certain
extent. Calculations from synthetic data show that reflections and multiple modes
can be more easily identified in FK plots. Identification of the different propagation
modes must be done with care, to avoid confusion with reflections. Reflections can
be recognized by peaks with unreasonably high phase velocities when compared to
body wave velocities. Furthermore, a straight line joining the peaks of a reflection
passes through the origin, as opposed to higher modes of vibration which have
cutoff frequencies above the origin. Another way of identifying reflections is by
observing the propagation direction across the array i.e. from right to left or left to
right.

This chapter also investigates issues related to the measurement characteristics of
the receiver array. An important concept in array signal processing is the array
pattern, which is a function of receiver spacing. The frequency response of an array
provides information about the minimum separation of peaks in the FK plot. Also,
the maximum reliable wavenumber, preventing aliasing, is shown in the array
frequency response. The theory related to arrays is based on several implicit
assumptions. Each receiver in the array has an identical response. This ideal is not
always achieved because identical coupling of each receiver to the medium cannot
be guaranteed. Array theory also assumes propagating plane waves which are in
reality curved wavefronts. Attenuation of waves propagating across the array may
cause reduced measurement resolution because all receivers are not measuring a
wave of equal amplitude.
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Chapter 4

Rayleigh Wave Dispersion Measurements in a Plexiglas Sheet

The following laboratory experimentation is based on the premise that fractures,
slots or any surface breaking feature will alter Rayleigh wave motion in some
measurable and consistent way. The approach is to examine the dispersion velocity
and energy distribution of Rayleigh waves, hypothesizing that either the phase
velocity or the energy density of certain frequencies and wavelengths are affected by
a local surface discontinuity.

The test specimen is a thin Plexiglas sheet. Even though the principal aim of the
research is to examine concrete beams, using Plexiglas in these initial measurements
reduces multiple reflections and avoids the theoretical complexities of wave motion
in a beam of finite dimensions. Furthermore, a Plexiglas plate eliminates the effects
of material anisotropy and heterogeneity inherent in concrete. This simplified
approach allows the establishment of signal processing procedures and the
observation of ideal Rayleigh wave behavior. This facilitates the subsequent
understanding of the interaction between Rayleigh waves and a fracture.

The first step is to develop the appropriate signal processing techniques for the
calculation of Rayleigh wave dispersion velocities. Issues important to signal
processing are the extraction of the Rayleigh wave arrival from the time domain
record and determining the correct procedure for calculating velocity dispersion
curves. These procedures were discussed in Section 3.3. In this chapter, the devised
signal processing techniques are used to understand the overall vibrational behavior
of a thin Plexiglas sheet with respect to the formation of a Rayleigh wave.
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Thin plates have been employed in many scaled models of seismic applications to
simulate in situ geologic conditions (Oliver et al., 1954; O’Brien and Symes, 1971).
Generally, a thin plate is held in an upright position, where the source and receivers
are placed along the top edge of the sheet. This allows three-dimensional problems
to be simulated with a two-dimensional model. The following experiments use a
similar configuration. The conditions whereby a Rayleigh wave propagates in a thin
plate needs to be established. Therefore, the first part of the study looks into wave
motion in plates from a theoretical perspective. This review complements the
developments in Chapter 2 which demonstrate the presence of Rayleigh waves in a
half-space. Initial dispersion measurements are made on a Plexiglas sheet in the
absence of any defects. Measured results are compared with theoretical predictions
to a) validate the signal processing techniques, b) determine whether an ideal
Rayleigh wave is measured and c) understand general wave motion in plates to
ascertain the effect on the Rayleigh wave.

4.1 Vibrations in Plates: Rayleigh-Lamb Frequency Equations

Elasticity theory can be used to derive the exact equations governing wave
propagation in plates. The interaction of compression and shear waves at two
parallel traction free boundaries is the basis for developing a general frequency
equation for plates. First derived by Rayleigh (1888) and Lamb (1889), the Rayleigh-
Lamb frequency equation completely describes wave motion in plates. The
Rayleigh-Lamb frequency equation is a transcendental function that incorporates
classical plate flexural motion, Rayleigh wave, and Lamb wave motion.

This chapter begins with a derivation of the Rayleigh-Lamb frequency equations.
Theoretical concepts used to analyze this problem provide a useful context for
subsequent understanding of dispersion measurements made on the Plexiglas sheet.
Specifically, the formation of Rayleigh waves along the plane of a plate and the
effect of other modes of vibration on the generated Rayleigh wave, are important.

The following derivation of the Rayleigh-Lamb frequency equation is similar to the
one given by Graff (1975). Other methods of obtaining the Rayleigh-Lamb frequency
equations can be found in Mindlin (1960), Victorov (1967), Auld (1990) and Yu
(1996). In all of the derivations the basic assumptions are that plane strain conditions
apply and that steady-state wave motion exists.
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The origin of the three-dimensional axis in this derivation is assumed to be in the
middle of the plate, as illustrated in Figure 4.1. Plate thickness is 2b, where the
middle surface of the plate is selected as the zy plane. The plate is infinitely long in
the x and y directions. Plane strain conditions are assumed in the y direction. The
displacements in the x and z directions are given by u and w respectively, which are
functions of the potentials ® and ¥, \

[4.1]

[4.2)

STEERE
p|e ¥[&

The wave motion by compression and vertically polarized shear waves is given by
equations 4.3 and 4.4 (identical to equations 2.9 and 2.10),

Ve = VL:Z—? [4.3]

Vi = \}3 Zy [44]
The form of thg potential functions is assumed to be:

® = q(z)e"™™ [4.5]

v = ir(z)e" [4.6]

where q(z) and r(z) are amplitudes, k is wavenumber and ® represents frequency.
The imaginary component is added to simplify subsequent calculations. Substituting
equations 4.5 and 4.6 into equations 4.3 and 4.4 gives,

a;%(zz_) +a’q(z)=0 [4.7]
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o’r(z
—a'fz )+ pr(z) =0 [4.8]
2 2
where, a’ = %-kz B = 32 -k?
P s

The following are solutions to equations 4.7 and 4.8:
q(z) = Asinaz + Beosaz [4.9]
r(z) = CsinPz + Dcospz [4.10]

where A, B, C and D are arbitrary constants. Substituting equations 4.9 and 4.10 into
equations 4.5 and 4.6 (the potential functions) gives,

® = (Asinaz + Bceos az)e' ™ [4.11]
v = i(Csin Bz + Dcos pz)e ™" [4.12)

Displacements can be obtained by substituting equations 4.11 and 4.12 into
equations 4.1 and 4.2 (displacement functions),

u = i{k(A sinaz + Bcosaz) + }(C cospz — Dsin Bz)}e ™~ [4.13)
w = {a(A cosaz - Bsinaz) + k(Csinpz + D cos Bz)}e=— [4.14]

Stress-strain functions combined with the boundary conditions are needed to
determine a relationship between the constants in the displacement functions,

’0. P e Y
g, =(l+2(}(ax2 +?) -ZG(axz + ) [415]
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o’'®d W &Y
T, =G|2 -
oxdz oz ox

the normal and shear stresses are given by 6. and respectively. Lamé's constants
are A (not to be confused in subsequent sections with wavelength) and G. The
boundary conditions in this case are,

cz=tu=tzy=o, z=1b

Substituting equations 4.11 and 4.12 into equations 4.15 and 4.16 and applying the
boundary conditions gives,

G, = G[{k2 - B’}(A sinaz + Bcos az)

. [4.17)
+2Bk(C cos Bz - Dsin Bz) e’

1, = iG[2ak(A cosaz - Bsinaz)

- (Bz -k? XC sin Bz + D cos Bz)]e"(""“") [4.18]

The boundary conditions specify a plate with a thickness +b. By inserting this
dimension into the displacement equations, motions in the x and y directions can be
defined as symmetric and antisymmetric with respect to the middle of the plate (at
z=0). For symmetric motions, the constants A and D in equations 4.13 and 4.14 are
set to zero, giving the following displacement functions,

u = i(kBcosaz + BC cos Bz)e’ "™ [4.19]
w = (—aBsin az + kCsin z)e ™ [4.20]

Similarly, the constants A and D are set to zero in the normal and shear stress
functions (equations 4.17 and 4.18), followed by applying the appropriate boundary
conditions on the z=tb faces. These operations provide two unique equations,
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(k* —B*)Bcosab +2kBCcospb = 0 [4.21]
+i{-2kaBsinab +(k* - B*)Csinpb} = 0 [4.22]

A necessary and sufficient condition for the existence of a solution to equations 4.21
and 4.22 is that the determinant of coefficients vanish. By finding the determinant of
equations 4.21 and 4.22, the frequency equation for symmetric waves becomes,

tanBb __ dapk’
tanab (k° _32)2

[4.23]

The same procedure is followed for antisymmetric waves. The displacement
functions are calculated by setting the constants B and C, in equations 4.13 and 4.14,

to zero.
u = i(kA sinaz - BDsin fz)e!™" [4.24]
w = (aA cosaz + kD cos Bz)e ™ [4.25]

Again, applying the boundary conditions to the stress-strain functions and setting
the constants B and C to zero gives,

+{(k? - B*)A sinab - 2BkDsin Bb} =0 [4.26]
2akA cosab - (B* -~ k?)Dcospb = 0 [4.27]

The determinant of equations 4.26 and 4.27 gives the frequency equation of the
antisymmetric waves in the plate:



ang __ (K -) [4.28]

tanab 4apk?

Equations 4.23 and 4.28 can be expressed as one formula to capture the frequency
equation for symmetric and antisymmetric waves in a plate:

tanpb | dapk® | _, [4.29]
tan ab (k2_32)2 )

where +1 is used for symmetric waves and -1 for antisymmetric waves.

This frequency equation represents waves produced in a plate due to the interaction
of a compression wave and a vertically oriented shear wave along the top and
bottom free surfaces of a plate.

The generality of the Rayleigh-Lamb frequency equation is illustrated by examining
the results at the limit of low and high frequencies. At low frequencies the tangent
functions can be approximated with the following relations (Yu, 1996);

tan ab 5ab(l+§-a2b2) taanst(l+%sz2)

Substitution of these equations into equation 4.29 gives;

k —Ez- compression [4.30]
{oi-¥)
0=k’ |—E flexural [4.31)
3p(l -~ vz)

0]
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For an infinite plate with plane strain conditions, these equations represent the
phase velocities of the extensional and flexural vibrations.

When the frequency is very high, the wavenumber becomes very large, resulting in,

tan 3b
tan ab

—1

Again, substitution into equation 4.29 and squaring both sides gives;

©? )4 o? ©?
—=21 =16 -1 -1
(kzvf kvZ Ve
v:T Vi Vi
4T o )-9) o

which is the governing equation for a Rayleigh wave, shown in Chapter 2, equation
2.27. Note that V;, is the compression wave velocity in a plate and will be further
discussed in a following section.

These examples illustrate that the Rayleigh-Lamb frequency equation is a
generalized solution. When the frequency is low and the wavelength is long, the
frequency spectrum tends towards large scale or global vibrations. Conversely, at
high frequencies and short wavelengths, the vibrations are more localized along the
surface of the plate. For an arbitrary impact containing a broadband of frequencies,
most resulting motions will fall within a transition region between global and local
behavior. These waves are generally referred to as Lamb waves.

Lamb Wave Mode Shapes: Mode shapes of Lamb waves are calculated using the
displacement equations. For symmetric modes, the vertical and horizontal
displacement are given by equations 4.19 and 4.20. To calculate the symmetric
displacement mode shapes the ratio between the constants B and C is required,



2EB cosfb
(8 -B*)cosab [433)

B_.
C

Similarly, vertical and horizontal displacements for antisymmetric modes are given
by equations 4.24 and 4.25. The ratio between A and D is needed to calculate the

antisymmetric displacement mode shapes, '

A 2EBsinfb
D (gz - Bz)sinab [434]

To obtain the mode shapes, the first step is to use the Rayleigh-Lamb frequency
equations to calculate dispersion curves for the various modes of vibration
anticipated. By using the frequency and wavenumber of a particular mode, vertical
and horizontal displacements in the z dimension (depth) can be calculated. Both
time and distance are assumed to be zero. Mode shape calculations are given in
Mathgram 4.1, in Appendix B. Examples of the first three symmetric and
antisymmetric displacement mode shapes are shown in Figure 4.2.

Acceleration mode shapes can also be calculated by differentiating the displacement
equations twice with respect to time. To plot the acceleration mode shapes,
equations 4.19 and 4.20 for symmetric modes, and equations 4.24 and 4.25 for
antisymmetric modes, are multiplied by the factor -»2.

Generalized Plane Stress Conditions: The derivation of the Rayleigh-Lamb
frequency equation assumes plane strain conditions. Experiments in this study are
done on a Plexiglas sheet held in an upright position. Therefore generalized plane
stress conditions can be assured in planes parallel to the length of the plate (Oliver et
al., 1954; Mindlin, 1960). The following analysis illustrates the modification of the
Rayleigh-Lamb frequency equation to calculate dispersion curves for generalized
plane stress conditions.

The plate is assumed to be homogeneous and isotropic with a small y-dimension, as
shown in Figure 4.3. Waves traveling in the x-direction have long wavelengths
compared to the y-dimension. Loads are applied in the z-direction with zero surface
tractions in the xy plane. Additionally, average stress and displacement values are



57
assumed throughout the y-dimension (except for oy). The following assumptions are
applied for the generalized plane stress condition (Filon, 1936):

Cy=Tyx=T:z:= Oony=th
oy = 0 throughout the y dimension

also assume average stress and displacement in the y dimension,

— 1 _ 1
_ 1 & — 1%
U=E:[‘Udy W=5H:[Wdy

To begin, the boundary conditions are substituted into the stress-strain relation for
the y-direction as follows,

u v ow v
Y L ICANCLA P 9N A4 435
¥ (ax+8y+62)+ By [4.35]
du ow
let A=—+—
€ ox | oz

o [4.36]
d A+2G |



—+—+—|+2G—

o_l(mavaw) du
*\ox oy oz x

Substitute equation 4.36 into equation 4.37,

AA ) du
=aa- G M
O« 7‘( 7+26) V0%
u 2GA
=2A+26  where A’ =
x T Y »+2G

Therefore the average stress components become;

z x oz
- (aﬁ aw)
T = —_—+—

oz ox

[4.37]

[4.38]

[4.39]

[4.40]

[4.41]

&

The displacement and stress components are identical to the plane strain
displacement and stress components, except than A is replaced by A’. This
relationship allows the calculation of the compression wave velocity in a plate by
using the compression wave velocity in an infinite medium (or plane strain case).
Therefore, the velocity of a compression wave in a plate can be calculated by
substituting A’ for A in equation 2.3 of Chapter 2, giving the following relation;

o 4G(1 +G)
P p(A +2G)

[4.42]
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Shear wave velocities in an infinite medium and in a plate are the same. The
compression wave velocity given in equation 4.42 is substituted into equation 4.32 to
calculate the Rayleigh wave velocity in a plate, or into equation 4.29 to calculate
Lamb wave dispersion curves.

4.2 Description of Experimental Study

The following initial measurements made on the Plexiglas sheet are designed to
provide an understanding of Rayleigh wave motion in a plate prior to
experimentation with a plate containing a surface-breaking fracture. The approach is
to first establish relevant measurement techniques and accompanying signal
processing methods needed for the recording of Rayleigh waves. The next stage is to
verify Rayleigh wave motion in a plate and to compare those motions to a pure
Rayleigh wave found in an infinite half-space (Chapter 2). In addition, other
propagating modes are studied to determine their impact on the Rayleigh wave.

Details of the experimental configurations and equipment used are described in the
following paragraphs. Observations from the various measurements are discussed.
Where appropriate, relevant theoretical information is incorporated to clarify the
observations. Conclusions from these experiments are summarized at the end of the
chapter.

Test Procedure and Configuration: A sheet of Plexiglas with dimensions of 1220
mm x 300 mm x 6 mm is held in an upright position with a table vice. The source is a
4.76 mm (3/16") diameter steel bearing dropped through a glass tube from a height
of 50 mm onto the edge of the Plexiglas sheet. The vertical acceleration history at
different points on the edge of the plate are measured with an accelerometer
coupled onto the plate edge with beeswax. The array has 41 measurements with a
spacing of 12.7 mm (}2”) for a total array length of 508 mm (20”). Time domain
traces are recorded with an oscilloscope and transferred to a computer for analysis.
Another accelerometer, mounted 3 mm behind the source, acts as a triggering
device. The trigger is held with a retort stand so as not to affect measurements made
at the receiving accelerometer. Accelerometer diameter is 10 mm, which is four
times smaller than the longest propagating wavelength.
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Initial Measurements: The source is placed 200 mm (8”) from the plate edge as
shown in Figure 4.4. The accelerometer is moved to different positions along the
top-edge, top-side, and bottom-edge of the plate as illustrated in Figure 44. A
separate set of measurements is made along the middle side of the plate. In this test,
the impact is applied to the side of a flatlying plate supported on foam, as shown in
Figure 4.5. :

Equipment: A PCB accelerometer (model 352A78), connected to a PCB amplifier
(model 480B), measures vertical accelerations. An oscilloscope (HP 85600A) records
the time domain data which is downloaded to a desktop computer via an HPIB
interface. The trigger is a Columbia Research accelerometer (model 8402), connected
to a Columbia Research charge amplifier (model 1035). Mounting the trigger directly
onto the edge of the plate affects measurements made at the receiver. Therefore, the
trigger accelerometer is mounted on a retort stand slightly behind the source, above
the Plexiglas sheet. A small piece of beeswax couples both the trigger and receiver
onto the edge of the plate.

Source Characteristics: Several initial measurements define the frequency range that
renders high coherence, ensuring linear behavior and proper signal to noise ratio. A
steel ball is dropped onto the edge of the Plexiglas plate at a distance of 152 mm
from the centerline of the sheet. Two sets of twenty measurements are made with
the receiving accelerometer mounted 50 mm on either side of the centerline.
Coherence is calculated using the two sets of receiver measurements. Coherence is
computed using equation 3.14, in Chapter 3.

Three different ball sizes are examined: 3.175 mm (1/ 8”), 4.762 mm (3/16"”) and 6.35
mm (1/4"). Power spectrum and coherence results are shown in Figures 4.6 to 4.8.
The smallest ball has the highest coherence over the widest frequency band;
however, this ball size also generates the highest resonant response of the
accelerometer, at 60 kHz. The coherence function of the 4.762 mm ball is high
between 2 kHz and 30 kHz and the resonant response of the accelerometer is lower.
Coherence for the 6.35 mm ball is lower, between 2 kHz and 20 kHz. Therefore, the
4.762 mm bearing is used for these experiments because of the wider frequency
spectrum and lower resonant response.

Dispersion Calculations: To calculate theoretical dispersion curves using the
Rayleigh-Lamb frequency equations (equation 4.29), only the body wave velocities
and thickness dimension are required. The compression wave velocity in Plexiglas is
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2700 m/s and the shear wave velocity is 1372 m/s for the plane strain case (a
flatlying plate). These velocities are measured in the plate. When considering the
plane strain condition the thickness dimension is 6.35 mm. Only the fundamental
modes are shown in Figure 4.9, the next highest mode occurs at 106 kHz which is
beyond the frequency range being studied.

For the generalized plane stress condition (upright plate) the shear wave velocity
remains unchanged, however, the compression wave velocity becomes 2372 m/s
(equation 4.29). The thickness dimension in these calculations is 304.8 mm. The
dispersion curves for the first five symmetric modes and the first four antisymmetric
modes are shown in Figure 4.10.

Body wave velocities are confirmed through measurement and by comparison with
the literature (Oliver et al. 1954). However, because Plexiglas is a viscoelastic
material, the elastic constants are frequency dependent. Quoted velocities are
sufficient to calculate accurate theoretical dispersion curves within the range of
frequencies examined. The viscoelastic properties of Plexiglas are addressed in
Chapter 6.

The theoretical dispersion curves are calculated by first inserting the appropriate
body wave velocities and plate thickness into equation 4.29, then choosing a
frequency and solving for the wavenumber. Dashed lines indicate symmetric modes
and solid lines denote antisymmetric modes. Indices of both symmetric and
antisymmetric modes are numbered in ascending order according to increasing
harmonics. The fundamental symmetric and antisymmetric modes begin at zero i.e.
So and Ag. The fundamental modes begin at zero frequency and wavenumber,
whereas successively higher modes only appear at increasing frequencies.
Frequencies where a particular mode first appears are known as cutoff frequencies.

Frequency-Wavenumber Plots: Figure 4.11 shows the measured dispersion on the
Plexiglas sheet. The format of this plot is similar to all other frequency-wavenumber
figures in the following section. Along the x-axis the wavenumber scale proceeds
from 25 to 0 and from 0 to 25. Contours to the left of zero refer to vibrations
propagating from right to left through the receiver array. Conversely, contours to
the right of zero are formed by waves propagating from left to right through the
receiver array. Contours to the right of zero are mainly generated by direct arrivals
from the source, whereas reflections from the end of the plate are recorded to the
left of zero. Peaks in the frequency-wavenumber plots, represented by black dots,
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are calculated by comparing neighboring matrix elements. Calculated peaks are
compared to dispersion curves computed using the Rayleigh-Lamb frequency
equations (equation 4.29). Solid lines represent antisymmetric modes and dashed
lines correspond to symmetric modes.

4.3 Results From Initial Dispersion Measurements

Initial measurements are made on a homogeneous, isotropic, Plexiglas sheet, held in
an upright position. The reason for these initial measurements is threefold. First, to
establish signal processing techniques. This includes determining the number of
receiver measurements in an array, spacing between receiver measurements and
developing the MathCAD sheets to perform the signal processing (discussed in
section 3.3 of Chapter 3). Second, to examine the presence and nature of the
produced Rayleigh wave. Third, to develop an understanding of other plate mode
vibrations and their effect on the Rayleigh wave.

Top-Edge: A frequency-wavenumber (FK) plot of the time histories measured on
the top surface of the Plexiglas sheet is shown in Figure 4.11. The phase velocity
calculated from the main trend of the peaks is 1276 m/s, which compares well with
the Rayleigh wave velocity of 1280 m/s determined from equation 4.32. Almost no
reflected Rayleigh wave energy is recorded.

Impacting the edge of the plate with a steel bearing generates a range of frequencies,
exciting a number of different Lamb modes. In addition to the Rayleigh wave,
higher Lamb modes also exist, as shown in Figure 4.11. Cutoff frequencies for the
higher Lamb modes occur at 7.5, 12 and 16 kHz. The measurements compare well
with theoretically calculated dispersion curves.

Middle-Side: Measurements along the middle side of the plate are compared to the
plane strain condition shown in Figure 4.12. Dispersion curves for the fundamental
Lamb wave modes are calculated using equation 4.29 (plane strain conditions). The
comparison between measured and calculated results is excellent. The A, mode is
clearly visible,; however, the fundamental symmetric mode is weak and
overshadowed by higher order vibrational modes. The higher mode harmonics are
probably caused by reflections of the antisymmetric mode from the side boundaries
of the plate (Mindlin, 1960).
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Top-Side: Measurements along the top lateral side of the Plexiglas sheet clearly
illustrate both the plane strain and generalized plane stress nature of wave motion
in a thin plate. Both the Rayleigh wave, generated in generalized plane stress
conditions, and the A, wave, formed in plane strain conditions, are visible in Figure
4.13. The So mode is very weak. An interesting feature is the difference when
comparing the Rayleigh wave in Figure 4.11 to the Rayleigh wave measured on the
lateral side of the plate, in Figure 4.13. Significant variations occur between the two
measurements below a depth of % plate thickness (or 13 1/m = 7.6 cm).

Bottom-Edge: A final set of measurements are made along the bottom-edge of the
sheet while applying the source along the top-edge (Figure 4.4). A weak Rayleigh
wave propagates along the bottom-edge of the sheet, as shown in Figure 4.14.
However, a clear dispersion relation is not evident.

4.4 Mode Superposition

The derivation in Chapter 2 shows that a Rayleigh wave propagating in an infinite
half-space is related to compression and shear displacements interacting at a traction
free surface. Defining Rayleigh wave motion in a plate is more difficult because of
the additional traction free surface. Section 4.1 illustrates that in the limit of very
short wavelengths, the Rayleigh-Lamb frequency equation provides the Rayleigh
wave equation derived for an infinite half-space. How is the Rayleigh wave
physically formed in a plate?

Mode superposition needs to be defined to explain Rayleigh wave motion in plates.
Theoretically, a time history measurement of a propagating wave can be
decomposed into contributions from various vibrational modes depending on the
source. The key characteristic of mode superposition is that each mode used in this
decomposition has a motion independent of all the other propagating modes;
however, when combined they generate the measured time history. The effect of
mode superposition is enhanced when the following conditions are met: 1) the two
or more modes have the same velocity; 2) the material attenuation per wavelength is
small; and 3) the motion is independent of position.

Rayleigh waves are formed by the superposition of fundamental Lamb modes.
Figure 4.10 shows that the phase velocities of the fundamental modes approaches
the Rayleigh wave velocity at high frequencies and wavenumbers. The
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superposition of fundamental Lamb modes is enhanced because the material
attenuation of Plexiglas is quite small for the frequencies considered (discussed in
Chapter 6).

Victorov (1967) calculates the vertical and horizontal mode shapes of the
fundamental Lamb modes for wavenumbers equivalent to the plate thickness and
compares them to the vertical and horizontal motions of Rayleigh wave propagating
through an infinite half-space. Figure 4.15 illustrates that motions near the surface,
between the combined fundamental modes and the Rayleigh wave, are almost
identical. As the depth increases to ¥: the plate thickness, their motions become less
alike. This result is consistent with the theoretical dispersion calculations shown in
Figure 4.10. As the wavelength becomes longer, a large difference in velocities
between the fundamental Lamb modes occurs.

Victorov (1967) observes that the receiver response in a plate is dominated by the
Rayleigh wave created by the fundamental modes. He suggests that higher mode
Lamb waves develop in relation to the Rayleigh wave. A similar observation is
made in the FK plot shown in Figure 4.11. Higher symmetric (51, S2) and
antisymmetric (A1 and Az) modes are visible only at low wavenumbers because the
Rayleigh wave masks these modes.

4.5 Beat Wavelength

In addition to the formation of Rayleigh waves, the superposition of fundamental
modes can cause the Rayleigh wave to migrate between opposite faces of the
Plexiglas sheet. This type of wave motion, experimentally proven by Ti et al. (1997),
occurs when propagating wavelengths are longer than 12 the plate thickness
(Victorov, 1967). The coherence measurement given in Figure 4.7, shows the main
energy band between 2 kHz and 30 kHz, which is equivalent to wavelengths
between 640 mm and 42 mm for a velocity of 1280 m/s.

Initially, at the point of impact, both the fundamental modes are in phase, but with
increasing distance from the source, they become out of phase. At some distance
away from the source the Rayleigh wave will appear along the bottom surface of the
plate, then reappear again at the top surface. The distance between consecutive
appearances of the Rayleigh wave along the same surface is referred to as the beat
wavelength (Auld, 1990). An important measure is ¥: the beat wavelength, given by:
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%A,, =—2 [4.43]

where iy is the beat wavelength and kao and kso are the wavenumbers of the
fundamental antisymmetric and symmetric modes respectively. Equation 4.43 can
be used to calculate the distance from the source where the Rayleigh wave
completely migrates to the surface opposite the source.

The beat wavelength reflects the transition between Lamb and ideal Rayleigh wave
behavior. At long wavelengths, the individual fundamental modes are observed. At
short wavelengths the fundamental modes couple to form a Rayleigh wave.
Between these extremes, a quasi-Rayleigh wave is formed.

Equation 4.43 is used to calculate the Y2 beat wavelength for the Plexiglas sheet
under generalized plane stress conditions and is shown in Figure 4.16. The main
effect of the beat wavelength on the frequency-wavenumber plot would be found
between a wavenumber of 1.96 and 3.8 1/m. These values correspond to the limit of
the longest wavelength that can be measured by the receiver array and the
maximum length of the plate, respectively. The lowest 1 beat distance is 480 mm, at
a wavenumber of 2.65 1/m. As shown in Figure 4.11 (top-edge), the effect of the beat
wavelength is limited to the reduction of the energy density between wavenumbers
of 1.96 and 3.8 1/m. Furthermore, measurements made on the underside of the plate
(Figure 4.14) do not reveal a Rayleigh wave within the range of wavenumbers
specified. Although this effect is not important in the initial measurements, the beat
wavelength is referred to in subsequent sections.

4.6 Plane Strain Lamb Modes

These initial measurements conducted on the Plexiglas sheet provide insight into the
wave motion generated when impacting the plate edge. Plane strain conditions
through the plate thickness produce the fundamental symmetric and antisymmetric
modes. Generalized plane stress conditions along the plane of the plate also
generate fundamental symmetric and antisymmetric modes. Higher mode
antisymmetric waves are also present.
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An important consideration is the effect of the A, and S, plane strain modes on the
Rayleigh wave propagating along the top-edge of the Plexiglas plate. As shown in
Figure 4.13, the Rayleigh wave and the fundamental Lamb modes are observed.
Within the frequency ranges of these measurements (0-30 kHz), the S, mode is weak
and the velocity is high enough not to interfere with the Rayleigh wave. Conversely,
the velocity of the A, mode increases to a point where superposition with the
Rayleigh wave occurs. As a result, the initial portion of the Rayleigh wave time
domain trace can be compared to a Rayleigh wave in an infinite half-space,
however, the final portion is a combination of a Rayleigh wave and an A, mode.
Figure 4.11 indicates that the A, mode has insufficient strength to affect the main
energy band of the Rayleigh wave measured along the top-edge.

4.7 Summary and Conclusions

A preliminary series of measurements are performed on a Plexiglas sheet. This
allows the measurement and signal processing methodology to be developed and
validated. A non-dispersive Rayleigh wave propagating along the plane of the plate
is measured. Furthermore, different measurement locations on the plate provide a
clearer understanding of wave propagation in plates, and their relation to the
propagating Rayleigh wave.

The Rayleigh wave generated in the Plexiglas sheet is slightly different than in the
infinite half-space case discussed in Chapter 2. Rayleigh waves are formed in a plate
by strongly superimposed fundamental Lamb modes at high frequencies and short
wavelengths. The strength of superposition is high because a) both modes travel at
the same velocity, b) the material attenuation of Plexiglas is low, and c) their motion
is independent of position.

This chapter also examines the concept of beat wavelength. Between independent
fundamental Lamb modes and a Rayleigh wave are intermediate wavelength
Rayleigh waves that migrate between two opposite faces of a plate. The beat
wavelength appears to have a weak influence on the measured Rayleigh wave
dispersion. Measurements along the bottom of the plate do not show clear evidence
of a migrating Rayleigh wave.

The frequency-wavenumber plots resulting from these measurements are compared
to the theoretically calculated dispersion curves. Plane strain conditions occur
through the thickness of the plate. Both fundamental Lamb modes are measured
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and compare well with the theoretical calculations. Within the plane of the plate,
generalized plane stress conditions prevail. The fundamental Lamb modes are
superimposed, forming the predicted Rayleigh wave. Higher Lamb modes are also
present. Measurements show that the plane strain A, mode, traveling through the
plate thickness, weakly interferes with the Rayleigh wave propagating along the
plane of the plate. The Rayleigh wave appears reliable between the wavenumbers of
6.56 1/m (152 mm) and 23.4 1/m (43 mm) for a phase velocity of 1280 m/s.
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Figure 4.2 - Calculated vertical and horizontal displacement Lamb mode shapes.
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Figure 4.3 - Convention for deriving the Rayleigh-Lamb frequency
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Figure 4.8 - Power spectral density and coherence measurements for a 6.3 mm
steel ball.
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Chapter 5

The Effect of Slots on Rayleigh Wave Propagation:
Experimental Study with Plexiglas

The purpose of this chapter is to examine the effect of a slot on Rayleigh wave
propagation. Knowledge gained in the previous chapter on Lamb wave propagation
in plates and the conditions whereby Rayleigh waves are formed, provides a basis to
examine the interaction of a Rayleigh wave with a slot. A slot is cut into a Plexiglas
sheet to determine if any changes occur in Rayleigh wave phase velocity and energy
density.

This chapter begins with a review of various methodologies that use Rayleigh waves
to detect surface breaking fractures. The review highlights important parameters
concerning fracture detection using Rayleigh waves. These parameters are part of a
dimensional analysis describing the Rayleigh wave/ fracture interaction. Then, two
series of tests are conducted. In the first series, the source is placed on one side of the
slot and the measurement array is located on the opposite side of the slot. In the
second series of measurements, the slot is located in the middle of the measurement
array. The focus of these experiments is to develop an understanding of Rayleigh
wave/fracture interaction and to determine whether this methodology can
effectively detect slot location and depth.



5.1 A Review of Using Rayleigh Waves for Fracture Detection

Rayleigh waves are mainly applied to fracture detection in metals. By utilizing
ultrasonic frequencies and monitoring Rayleigh wave reflections, fatigue cracks are
detected. From this initial approach, subsequent research attempts to explain the
interaction of Rayleigh waves with a fracture. The purpose is to either refine existing
Rayleigh wave techniques or to develop new methodologies for fracture detection
and sizing. Examples range over a number of disciplines, such as ultrasonic testing
of metals, to fracture detection in concrete structural elements. The following
sections review many of those approaches, combining mathematical and
experimental perspectives. The aim is to determine relevant variables when using
Rayleigh waves to detect fractures in concrete structural members.

Resonance: The premise of these techniques is to generate a resonant mode in the
fracture or groove by an impinging Rayleigh wave. Resonance of a surface anomaly
causes oscillations in transmission and reflection coefficients that are dependent on
the relationship between fracture dimension and wavelength. Victorov (1967)
differentiates possible defects into two categories: slots and grooves. Slots can be
represented by fractures whereas grooves are scratches or abrasions caused by
machining or grinding, usually having a semicircular shape. Victorov (1967) plots
reflection and transmission coefficients for different wavelength Rayleigh waves
incident onto a slot and a semi-circular groove, as shown in Figures 5.1 and 5.2
respectively. Oscillations or resonances are observed for the reflection coefficient,
where maxima and minima occur at every interval of Ah=A (Ah is the fracture depth
and A is the wavelength). The transmission coefficient exhibits similar oscillations
with a period of Ah=Y2\.. When Ah/2>1.5, the transmission coefficient shows a very
weak Rayleigh wave on the opposite side of the slot. Victorov (1967) concludes that
the reflected wave is composed of a direct reflection from the slot and scattered
body wave energy as the Rayleigh wave travels down the crack face to the tip. The
transmitted wave has components of energy from body wave scattering at the crack
tip, as well as a portion of the Rayleigh wave that passes underneath the crack.

Tittmann et al. (1978) and Tittmann et al. (1980) use a goniometer to collect Rayleigh
wave backscatter intensity from various angles of incidence. Their results are shown
in Figure 5.3. This research assumes complete scattering of the Rayleigh wave by the
fracture i.e. A less than fracture width and depth. Theoretical calculations using the
Huygens-Fresnel principle (Goodman, 1968) defines the scattered field around the
groove. Experimental and theoretical results differ because of errors in determining
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the incident angle. Data from various angles allows inversion of fracture
dimensions. Figure 5.4 shows that observed resonances are similar to those
measured by Victorov (1967). Additional oscillations are attributed to fracture
width. This method could not resolve fracture depth.

The approach used by Domarkas (1978) is similar to the methodology of Victorov
(1967). A few simple assumptions about Rayleigh wave/ fracture behavior are used
to determine crack width and depth. When the fracture width is half a wavelength
of the incoming wave, the fracture resonates and absorbs energy. Alternatively,
when the fracture width is a multiple of %(2n+1) A (where n is the mode number), a
maximum amount of backscatter occurs. Similarly, maximum backscattering results
when the fracture depth is a multiple of half a wavelength. Calculations of
frequency differences between points of resonance observed in the reflection
coefficients determine the fracture dimensions.

Geometric Elastodynamics and Geometrical Theory of Diffraction: Elastodynamic
ray theory can define the diffraction of waves by a fracture. Achenbach et al. (1977)
describes successive refinements to this model which allow computation of the
scattered field for an incident compression wave. The simplest diffraction theory is
geometrical elastodynamics. A zone of zero displacement or a shadow zone forms
behind the fracture, which is bounded by the rays passing through the point source
and the edge of the fracture, as illustrated by Figure 5.5. This model is unrealistic
because of discontinuities between shadow and reflected wave boundaries.

To account for the inaccuracies, the theory of geometrical elastodynamics is
corrected with the geometrical theory of diffraction. An incident compression wave
produces diffracted body waves on either side of the fracture, as shown in Figure
5.6. The total displacement field is computed by superimposing the results from
geometrical elastodynamics and the geometrical theory of diffraction. Further
refinement is necessary to provide continuity between the boundaries of the shadow
zones and the reflected waves. Elastodynamic ray theory gives reliable results
provided that a/Cp22, where o is the frequency, 'a' is one half the crack depth, and
Cp is the compression wave velocity (Achenbach et al., 1977).

Norris and Achenbach (1982) utilized the geometrical theory of diffraction to
determine fracture location. Regular oscillations along the fracture length occur
when a compression wave encounters a fracture. In the frequency domain this
corresponds to a series of peaks shown in Figure 5.7, where the period between
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peaks relates to the fracture location. When the incoming wave impinges the
fracture, a flashpoint or loss of energy occurs, caused by mode conversions. Crack
locations are identified by measuring flashpoints with different source/receiver
configurations.

The basis of the mathematical derivation used by Norris and Achenbach (1982) is
the geometrical theory of diffraction for linear elastodynamics, originally proposed
by Keller (1958). This model applies ray theory used in geometrical optics. A
compression wave contacting the edge of a fracture generates two cones of
diffracted rays. Figure 5.8 shows that the inner cone represents a diffracted
compression wave and the outer cone defines a diffracted shear wave. The solution
presented by Norris and Achenbach (1982) only accounts for compression wave
diffraction. Numerical work shows that crack locations can be found using this
technique by inverting the direct solution.

Yew et al. (1984) uses a large scale model to develop a methodology for fracture
detection. Transducer measurements are made on either side of a slot cut into an
aluminum plate. Time domain Rayleigh waves, shown in Figures 5.9 and 5.10, are
windowed and Fourier transformed into the frequency domain for analysis. Figure
5.11 shows that the peak amplitude of the Rayleigh wave spectra decreases as the
slot depth increases. Yew et al. (1984) suggests that once the fracture depth is greater
than the predominate wavelength of the Rayleigh wave, the transmitted Rayleigh
wave is entirely reformed by shear and compression waves scattered from the crack
tip. Measured results compare well with the elastodynamic ray theory.

Doyle (1986) uses a more refined resonance method. Forward and reverse scattering
of Rayleigh waves by a crack is calculated by using elastodynamic ray theory. The
spacing between interference fringes, either in front or behind the crack, provides an
estimate of crack depth. These results are not experimentally verified.

Mode Conversion From a Fracture Tip: Freund (1971) examines reflection of a
Rayleigh wave from the edge of a fracture. The mathematical derivation assumes a
Rayleigh wave traveling along the surface of an infinite crack that is reflected at the
fracture tip. An analogous situation occurs when a Rayleigh wave travels along the
surface of an object and encounters a fracture. The incident energy is converted into
reflected and tramsmitted Rayleigh waves, where the transmitted Rayleigh wave
travels along the crack face towards the tip. Freund (1971) shows that the sum of
reflected and transmitted energy is equal to one for small angles of incidence. At
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larger angles, the sum of reflected and transmitted energy drops to about 0.1.
Conversion of Rayleigh wave energy into body waves causes the observed energy
loss. Sansalone and Carino (1987) adopt this particular phenomenon for the
detection of fractures using the impact-echo technique.

Boundary Perturbation Technique: Perturbation techniques apply to problems
where the exact solution of a related problem is known. For boundary perturbation,
either the shape of the object or the boundary conditions are slightly altered from
the ideal case. By adding a small perturbation to the ideal solution, the related
problem can be approximately solved.

Tuan and Li (1974) use the boundary perturbation technique to calculate Rayleigh
wave reflection coefficients from groove and step discontinuities. The solution of a
Rayleigh wave traveling along a traction free surface is known, so the problem is
recalculated by adding a small perturbation to the surface. Displacements in the
ideal solution are replaced by a power series expansion to include higher order
scattered waves. The approximate problem is solved to determine the scattered
fields.

Time-of-Flight: In these types of measurements the time delay of the Rayleigh wave
is found to be directly proportional to the crack depth. Morgan (1974) uses Rayleigh
wave time-of-flight measurements to determine defect dimensions. Experimentally,
the time history of a Rayleigh wave is recorded in front and behind the crack. These
signals are Fourier transformed and divided in the frequency domain to obtain a
transfer function. By deconvolving the result, the calculated time history contains
peaks, representing mode conversions occurring at the different corners of the crack.
The methodology is shown in Figure 5.12.

Silk (1976) introduces a simpler model for crack detection in metals. The basic
assumption is that Rayleigh wave/crack interaction is wavelength dependent.
Travel times of longer wavelength Rayleigh waves are unaffected by a crack,
whereas shorter wavelengths are subject to a time delay. By measuring Rayleigh
wave arrival times for a range of frequencies, a plot of transit time versus frequency
is generated to determine crack depth.

In a field experiment by Picornell and Lytton (1989), a trench is excavated in soil.
Time history measurements of a Rayleigh wave are made on both sides of the
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trench. The source is a hammer impacting a steel plate on one side of the trench.
Rayleigh wave phase velocities are calculated using the one dimensional spectral
method described in section 3.2 of Chapter 3. A time delay caused by the trench
translates into an increased phase angle, thereby reducing the Rayleigh wave phase
velocity at certain wavelengths. Relatively good agreement is found between actual
and predicted values. However, there appears to be some problems with phase
unwrapping, caused either by the source or by the method of unwrapping.

Hirao et al. (1992) uses a combination of methods to size surface breaking cracks.
Their research describes three different signal processing procedures, depending on
the ratio of wavelength to crack depth. When the wavelength is greater than the
crack depth, the frequency spectrum of the Rayleigh wave is calculated. Crack depth
is determined by comparing the measured frequency spectrum to a theoretically
calculated amplitude versus frequency plot for various crack depths. When the
wavelength is almost equal to the crack depth, Rayleigh waves reflected from the
crack face and tip became more distinct and a cepstrum analysis is performed to
determine crack depth. At wavelengths smaller than the crack depth, time intervals
between Rayleigh waves reflected from the crack face and tip are used to size the
crack.

The attenuation of Rayleigh waves or ground roll in reflection geophysical
investigations is very important. Geophysicists use a number of techniques to
reduce the measured Rayleigh wave signal. One field method is to place a trench
between the source and receiver array. Pant and Greenhalgh (1989) experimentally
model a trench by cutting slots into a thin aluminum plate held in an upright
position and determining the energy reduction of an incident Rayleigh wave. Their
results show that almost all of the Rayleigh wave energy is blocked when the slot
depth equals the central wavelength of the Rayleigh wave.

Woods (1968) uses trenches to block Rayleigh waves in a field investigation. The
purpose of these experiments is to examine the potential of using trenches to reduce
the interaction of Rayleigh waves with support foundations of structures. Maximum
reduction of vertical displacement is found to occur at some distance behind the
slot, depending on the ratio of trench depth to wavelength.

Spectral Analysis of Surface Waves (SASW): SASW methodology uses Rayleigh
waves for nondestructive civil engineering applications (Nazarian et al., 1983). The
basis of this method is to use Rayleigh wave dispersion in layered media to develop
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a shear velocity profile with respect to depth. Rayleigh wave dispersion is
determined by measuring the vertical motions at two points on the surface caused
by a passing Rayleigh wave. The measured dispersion is "uniquely" defined by
material properties of the underlying soil layers. Inversion techniques use the
relationship between dispersion and material properties at depth to calculate a shear
wave velocity profile. Specifically, applications are related to site investigations and
inspecting pavement integrity (Rix et al, 1990). More recently, the SASW
methodology is applied to concrete structural elements to determine a surface
stiffness profile and for defect detection.

Bowen et al. (1992) examines the effect of fractures on Rayleigh wave dispersion
using the SASW approach. Experiments use small mortar beams where two
accelerometers are placed at different locations with respect to a slot cut into the
beam. Rayleigh wave dispersion curves are computed using the spectral analysis of
surface waves (SASW) methodology. Although the experimental data show a good
correlation with the finite element solution, no information is provided about the
finite element model or source characteristics. Furthermore, the calculated

dispersion is not explained.

Kalinski et al. (1994) uses the SASW methodology to estimate damage on a
prestressed concrete beam. Dispersion curves are calculated every 6" along the
entire length of the 40' beam. Rayleigh wave dispersion is compared to a visual
inspection of the damaged area, to qualitatively determine the accuracy of the
method. Low Rayleigh wave velocities correspond well with the damaged zones.
During data reduction, wavelengths greater than the beam thickness are removed
from the dispersion calculations. Also, multiple body wave reflections from nearby
surfaces complicate the dispersion calculations. To remove unwanted reflections, an
exponential filter is applied to the time history measurements.

In a study done by Opara et al. (1996), a concrete model structure is built and tested
with the SASW methodology. Measurements are made at different locations on the
concrete wall. Wavelengths on the order of 2.5 to 80 mm are used in this study to
ensure that the infinite half-space criterion is fulfilled. Inversion of the dispersion
curves is completed for a zone near the surface of the concrete element to illustrate
changes in Young's modulus with respect to depth. Problems are also encountered
with boundary reflections interfering with the Rayleigh wave.
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5.2 Important Variables for the Detection of Fractures Using Rayleigh Waves
(Dimensional Analysis)

The literature on the use of Rayleigh waves for fracture detection and studies
examining the Rayleigh wave/ fracture interaction is quite extensive. Many different
approaches have been applied by researchers to develop a methodology for fracture
detection. In this section, the previous research provides a basis to define important
variables for fracture detection using Rayleigh waves. A

Ratio of Wavelength to Fracture Size: Although some methods seem to provide
better results than others, invariably the methodology used is dependent on the
ratio of wavelength to fracture size. When the wavelength is considerably smaller
than the fracture depth, a part of the Rayleigh wave is reflected and another portion
is transmitted down the fracture face. In this case, time of flight measurements are
used from multiple Rayleigh wave reflections to provide crack dimensions.
Alternatively, resonance or reflection coefficient methods are used.

When the wavelength approaches the crack depth, the transmitted energy becomes
stronger. Time of flight techniques become more difficult to use because the time
histories of the multiple reflections from the fracture overlap, making the
determination of separate arrival times difficult. Reflection and resonance methods
are also less effective because more energy is transmitted past the fracture. The
measurement of transmission coefficient becomes easier in this region.

As the wavelength becomes longer than the fracture depth, the effect on the
Rayleigh wave is less pronounced. Long wavelength components of the Rayleigh
wave do not ‘see’ the slot. Essentially, the Rayleigh wave motion incorporates the
slot as part of the material. Nondestructive testing is usually not done in this region
except for some types of modal analysis.

Geometry: The geometry of the solid through which a Rayleigh wave propagates is
an important factor and not well defined in the literature. In an infinite solid only
two waves exist: compression and shear. By combining the motion of compression
and shear waves with the boundary conditions of an infinite half-space, a Rayleigh
wave is formed. The generation of Rayleigh waves in plates and beams is not as
straightforward. As shown in Chapter 4, Rayleigh waves in a plate are formed by
the superposition of fundamental Lamb modes. The transition from fundamental
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mode behavior to Rayleigh wave motion is not distinct. This physical characteristic
limits the penetration depth of a ‘pure’ Rayleigh wave. A similar argument can be
posed for beams with any arbitrary cross section. The important parameters when
considering geometry are wavelength and dimensions of the structure being
investigated.

Therefore, understanding the formation of Rayleigh waves and defining the limits of
penetration depth are important in fracture detection for various reasons. For
example, does the fracture impede certain modes of vibration that will inhibit
Rayleigh wave motion? If there is a limited penetration depth of the Rayleigh wave,
how will this affect the ability to detect fractures? These are some of the questions
addressed by this research.

Material Properties: Most of the research done with Rayleigh waves was performed
on metals. From an elastic wave perspective, metals are ideal because of their
homogenous, isotropic and linear elastic nature. They exhibit low attenuation
making signal detection and processing easier. Furthermore, theoretical linear elastic
solutions can be directly compared with experimental measurements, which is not
always possible with other materials.

Some research examines Rayleigh wave propagation in concrete. Signal degradation
is generally not specifically discussed. This can be an important factor depending on
the propagation wavelengths. As the wavelengths become shorter they tend to
interact with the material constituents or fabric of the concrete. As a consequence,
high attenuation of the relevant wavelengths, as well as the possibility of measuring
additional vibrational modes, can occur. When dealing with concrete, the important
parameters are wavelength and average size of the aggregate.

A dimensional analysis is performed to define the relevant dimensionless groups
from these measurements. Geometry of the test configuration, finite dimensions of
the plate and wavelengths of the propagating Rayleigh wave are taken into account.
The variables used in the dimensional analysis are specified in Figure 5.13 and also
shown in Table 5.1. The relevant dimensionless groups are given in Table 5.2.
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5.3 Experimental Measurements With a Slot

The following measurement configurations develop an incremental understanding
of the Rayleigh wave/fracture interaction. The measurements discussed in Chapter
4 show the motion of a pure Rayleigh wave in a Plexiglas sheet without a slot. As a
comparison, the first test series illustrates how the Rayleigh wave changes as it
passes the slot. The second test series examines information about the overlap
between what occurs in front and behind the slot. Combining observations from
these experiments provides conclusions about the interaction of a Rayleigh wave
with a fracture.

Test Series I (array opposite the slot): For these experiments, the source is placed
101.6 mm (4"), 203.2 mm (8") and 304.8 mm (12") in front of the slot. All receiver
measurements are made on the opposite side of the slot, with the first measurement
located 25.4 mm (1") behind the slot. Initial measurements are done without a slot
and in subsequent measurements, the slot depth is increased at 254 mm (1)
intervals, up to 152.4 mm (6"). The experimental setup for these tests is shown in
Figure 5.14. Table 5.3 lists all of the experimental dimensions.

The dimensionless groups graphed in Figure 5.15 differentiate between pure
Rayleigh wave and Lamb wave motion. This graph also indicates expected reflection
and transmission strengths. Maximum and minimum wavelengths are taken from
Chapter 4, and are 152.4 mm and 42.7 mm respectively. Measurements for this test
series are done in the region where the Rayleigh wave motion is almost pure, and
strong reflections and transmissions are expected.

The dimensionless groups shown in Figure 5.16 highlight the effect of source
distance and slot depth. Most of the measurements are in a region of low
attenuation and long wavelengths, with a number of measurements in a region of
high attenuation and short wavelengths. Again, maximum and minimum
wavelengths are 152.4 mm and 42.7 mm respectively.

Test Series II {(array straddling the slot): The following measurements are made
concurrently with the first test series. In these experiments, 20 receiver
measurements are made in front of the slot and 21 are made behind the slot, as
shown in Figure 5.17. The source is located 101.6 mm (4") from the first receiver.
Table 5.4 lists all of the experimental dimensions.
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The dimensionless analysis shown in Figure 515 also applies to this set of
measurements. However, the effect of source distance is slightly different from the
previous dimensionless analysis. Figure 5.18 shows that these measurements
examine a smaller region, encompassing areas of low attenuation and long
wavelengths. Maximum and minimum wavelengths used to calculate Figure 5.18
are 152.4 mm and 42.7 mm respectively.

5.4 Test Series I (receiver array opposite the slot)

This section describes the results from a series of measurements made with source
and receiver array located on opposite sides of the slot. Frequency-wavenumber
results are shown for incrementally increasing slot depths. The main parameters of
interest are changes in Rayleigh wave phase velocity and energy density. The
equipment configuration and the source used in these measurements are the same
as described in section 4.2 of Chapter 4.

Measurements Without a Slot: The measured dispersion curves for the 101.6 mm
(4"), 203.2 mm (8") and 304.8 mm (12") source distances are shown in Figures 5.19 to
5.21. The Rayleigh wave is observed for all of the source distances at frequencies
between 2.5 and 30 kHz. The phase velocity is constant within this frequency range.
The energy density of the Rayleigh wave is lower for the longest source distance
(304.8 mm). Geometrical and material attenuation decrease the highest frequency to
25 kHz. The lowest frequency of the Rayleigh wave increases to 5 kHz, probably
caused by the beat wavelength.

Higher modes of vibration are also observed for the 101.6 mm source distance
(Figure 5.19). Cutoff frequencies for the higher modes appear to occur at 7.5, 12, 16
and 19.5 kHz. As the source distance increases, attenuation causes the higher modes
to become less distinct. Dispersion curves are calculated up to the fourth symmetric
mode; however, not all of the symmetric and antisymmetric modes are observed in
the frequency-wavenumber plots. The reason is explained in Chapter 6. Briefly, the
magnitude of vertical accelerations recorded along the edge of the plate is
dependent on the mode shape of the propagating mode. Some modes exhibit low
amplitude motions along the surface, whereas other modes have strong surface
motions (i.e. the Rayleigh wave).

The Rayleigh wave masks higher Lamb wave modes. In particular, when the source
distance is 101.6 mm, the A; mode is not visible. At the 304.8 mm (12") source
distance, the A; mode is recorded at a wavenumber of 2 1/m at 4 kHz. Strong
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superposition of the fundamental Lamb modes and the effect of the beat wavelength
reduces the Rayleigh wave energy in this area, allowing observation of the A; mode.

Measurements With a Slot: Because the results for 203.2 and 304.8 mm source
distances are similar, the following description only references figures for the 101.6
mm source distance. Results from other source distances are given in Appendix C.
The frequency-wavenumber plots have the same format as previously discussed.
The only difference is that plots include a vertical dotted line that corresponds to the
slot depth at a position of K=1/h (where h is the slot depth).

Plots of measured dispersion for the range of slot depths between 25.2 and 152.4 mm
are shown in Figures 5.22 to 5.27. As the slot depth increases, the energy density for
all frequencies and wavenumbers related to the Rayleigh wave also decreases.
Besides an energy loss, the frequency-wavenumber plots for the 25.4 and 50.8 mm
depths are similar. However, for the 76.2 and 101.6 mm slots, a distinct drop is
recorded in the main energy band of the Rayleigh wave associated with the slot
depth. This energy reduction is less apparent for the 127 and 152.4 mm slot depths.
In all cases, some Rayleigh wave energy is found at wavelengths shorter than the
slot depth. Also, weak Rayleigh wave reflections from the end of the plate are
measured to the left of k=0. The energy density of the Rayleigh wave reflections
does not change very much as the slot depth increases.

Measurements made for the 203.2 and 304.8 mm source distances are similar to the
101.6 mm source distance. The Rayleigh wave energy density for the 25.4 and 50.8
mm slot depths are lower. Again, a distinct drop in Rayleigh wave energy density is
observed for the 101.6 and 127 mm slot depths. Yet, for the 203.2 and 304.8 source
distances, the energy drop associated with the 127 and 152.4 mm slot is easier to
identify. As with the 101.6 mm source distance, some Rayleigh wave energy is
measured at wavelengths shorter than the slot depth for the 203.2 and 304.8 source
distances. However, the short wavelength Rayleigh wave energy is much lower for
the increased source distances, making it easier to identify the energy drop
associated with the slot.

These measurements show that the slot tends to block the Rayleigh wave. The 25.4
mm and 50.8 mm slots reduce the Rayleigh wave energy, but a distinct energy drop
is not observed. The reason is that the slot depth is beyond the energy range of the
source i.e. the source does not produce high enough frequencies. Energy drops are
easier to identify in deeper slots; however, determining the exact slot depths from
the frequency-wavenumber plots is more difficult. As the slot depth increases, the
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transmitted energy of the Rayleigh wave decreases, allowing other Lamb modes to
gain relevance in the signal.

Wavenumber resolution is another important factor affecting the accuracy of
determining the slot depth. As discussed in section 3.3 of Chapter 3, the calculated
array pattern shows that peaks are spaced apart by 1.921/m. A plot of peak spacing,
shown in Figure 5.28, illustrates that for low wavenumbers the corresponding
wavelengths are quite large. Therefore, fewer peaks occur at low wavenumbers,
thus reducing the resolution for long wavelengths.

As with the measurements made without the slot present, higher mode Lamb waves
are observed for all of the source distances. The energy related to these modes is
slightly reduced by the increasing slot depth. The higher modes are still easily
identified for all of the slot depths. Similar to previous measurements, a reduced
energy density of the higher Lamb modes is recorded for increasing source
distances.

5.5 Test Series II (slot separating the receiver array)

In the second series of experiments the measurement array is placed so that half the
measurements are made on either side of the slot. The reason for the second series of
measurements is to examine the combined motion of the Rayleigh wave in front of
and behind the slot. Similar to the first test series, phase velocities and energy
densities are studied for increasing slot depths. The equipment configuration and
the source used in these measurements are the same as described in section 4.2 of
Chapter 4.

These measurements are also useful from a practical perspective. Ideally, in a
realistic application, prior information about fracture location or depth is usually
unknown. Observations from these tests are used to determine whether slot location
or depth can be ascertained when a slot disconnects the receiver array.

Measurements With and Without a Slot: The measurement without a slot is shown
in Figure 5.29. The Rayleigh wave and higher Lamb modes are visible, and no
energy is observed traveling from right to left through the receiver array i.e. no
reflections. For a 25.4 mm slot depth, shown in Figure 5.30, again the Rayleigh wave
and higher Lamb modes are visible, however, the width of the main energy band for
the Rayleigh wave has increased. In addition, strong reflections from the slot are
observed. The energy density of the Rayleigh wave reflecting from the slot increases
slightly as the slot depth extends from 50.8 to 76.2 mm, as shown in Figures 5.31 to
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5.32. Velocities of the Rayleigh wave remain consistent for slot depths up to 76.2
mm.

As shown in Figures 5.33 to 5.35, when the slot depth increases from 101.6 mm to
152.4 mm, dispersion is observed at low frequencies and wavenumbers. The peaks
related to this dispersion have a higher wavenumber, reducing the phase velocity.
Some variability of the peaks related to the Rayleigh wave is observed for
wavelengths shorter than the slot depth. Also shown in these figures is the increased
strength of the reflected Rayleigh wave as the slot depth increases. Phase velocities
for the reflected Rayleigh wave are lower than theoretically predicted; however, as
the slot depth increases, the phase velocities approach the predicted value.

When examining these figures, it is important to keep in mind that half of the
measurements are made on either side of the slot. From the previous measurements,
we observe blocking of wavelengths that are shorter than the slot depth. Therefore,
an strong Rayleigh wave is measured in front of the slot and a weak Rayleigh wave
is measured behind the slot. The Rayleigh wave energy, shown in Figures 5.30 to
5.35, is a combination of the Rayleigh wave energy before and after the slot.
Similarly, the energy density of waves traveling right to left through the
measurement array is a combination of measurements before and after the slot. In
this case, reflections from the slot are measured in front of the slot, and reflections
from the right end of the plate are measured behind the slot.

By only making half of the measurements on either side of the slot, the resolution of
the calculated frequency-wavenumber plot is affected. Because a strong Rayleigh
wave is measured on 20 receivers, instead of 41, the wavenumber resolution is
halved. Consequently, there are fewer peaks and the energy density of the Rayleigh
wave is spread in the wavenumber direction. The final result is that splitting the
measurement array causes certain information to be mixed and masked.

The low velocity peaks observed for slot depths greater than 76.2 mm are certainly
caused by the slot. Whether these peaks are part of a Rayleigh wave or a newly
formed wave type remains unclear. This wave is probably formed by the combined
interaction of the fundamental modes with the slot. Although the velocity decreases
with increasing slot depth, the exact relationship to slot depth is unknown.
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5.6 Summary and Conclusions

This chapter focuses on using a two-dimensional Plexiglas analogue to determine
whether Rayleigh waves can be used to detect slots cut into a plate. Before any
measurements are made, a review is presented on the use of Rayleigh waves for
fracture detection. Important variables describing the Rayleigh wave/fracture
interaction are listed -and used to develop a dimensional analysis for subsequent
experiments. )

Two sets of test measurements are completed. In the first set of measurements the
source and receiver array are placed on either side of the slot. In the second set of
measurements the slot is located in the middle of the receiver array. Experiments
include various slot depths and source distances. These measurements show that
wavelengths shorter than the slot depth are blocked, indicated by sharp drops in the
energy density. The energy density drops related to the slot are easier to see for the
203.2 and 304.8 mm source distances. However, depth determination of the 127 mm
and 152.4 mm slots is more difficult because the wavelength resolution decreases for
smaller wavenumbers.

In addition to higher signal attenuation, increasing the source distance affects the
measurements in another aspect. Observations from the 203.2 and 304.8 mm source
distances show increasing Rayleigh wave energy for wavelengths shorter than the
slot depth. These results are in accordance with theoretical and experimental data
examined in Chapter 2. The penetration depth of the Rayleigh wave increases at
longer distances from the source. By increasing the source distance, the Rayleigh
wave can achieve maximum penetration, allowing more transmitted energy.

In another series of measurements the slot is placed in the middle of the receiver
array. The slot depth cannot be determined from waves traveling through the array
from either direction. Mixing of the Rayleigh wave energy before and after the slot
complicates the frequency-wavenumber plots, making them difficult to interpret.
Low velocity peaks are observed for slot depths greater than 76.2 mm, however, the
wavetype corresponding to these peaks is unknown. Furthermore, the
correspondence of these peaks with slot depth is unknown. Reflections from the slot
are easily observed, even for the smallest slot depth. Phase velocities of the reflected
Rayleigh wave are lower than theoretically predicted for shallow slots. As the slot
depth increases, the Rayleigh wave phase velocities approach the predicted
velocities. Perhaps phase velocities are not accurately measured because the
reflection is weak for short slot depths.
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Figure 5.1 - Transmission and reflection coefficients for a Rayleigh wave
impinging a slot. Slot depth is given by h and wavelength by A (from

Victorov, 1967).
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Figure 5.2 - Transmission and reflection coefficients for a Rayleigh wave
impinging a groove. Slot depth is given by h and wavelength by A (from
Victorov, 1967).
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Figure 5.5 - The theory of geometrical elastodynamics.
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Figure 5.6 - The geometric theory of diffraction.
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Figure 5.9 - Time domain displacement measurements of a Rayleigh wave
made 3.81 cm behind the slot. The Rayleigh wave is less distinctive with
increasing slot depth, H (from Yew et al., 1984).
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Figure 5.13 - Variables for dimensional analysis.



Name Variable Dimension
Wavelength A L
Wavenumber k L'
Circular K radeL"'
Wavenumber
Fregeuncy f T'
Circular ® radeT"
Frequency
Velocity vV LT
Slot Depth h L
Slot Width w L
Source Distance d L
Depth t L
Width 1 L
Slot Angle (] rad (=90°)
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Table 5.1 - A list of variables and corresponding dimensions for dimensional

analysis.



109

Dimensionless

Physical Relationship

Groups

h - gives an indication of expected Rayleigh wave behavior during

4 interaction with a slot. When h/A<<l, Rayleigh wave does not 'see’ the
slot, A/h=1 the Rayleigh wave is both reflected and transmitted, h/A>>1
the Rayleigh wave is reflected.

t - a measure of Rayleigh wave penetration depth. An indication of

A whether the half-space criterion is being violated i.e. UA<1.

d - examines the effect of distance on the wavelength components.

A

h - provides a measure of whether the defect can be accurately measured

d 1.e. h/d<<1 the defect may not be observed

h - indicates how much of the Rayleigh wave is being reflected i.e. when

t h/t=1 then all of the Rayleigh wave energy is reflected.

h - defines the geometry of the defect i.e. hyw>>1 is a slot.

w

Table 5.2 - A listing of relevant dimensionless groups.
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Test Max. A Min. A d h t w
(mm) (mm) {mm) (mm) (mm) (mm)
1 152.4 427 101.6 o] 304.8 3
2 152.4 427 101.6 254 304.8 3
3 152.4 427 101.6 50.8 304.8 3
4 152.4 427 1016 | 762 304.8 3
5 152.4 427 101.6 101.6 304.8 3
6 152.4 427 1016 127 304.8 3
7 152.4 427 1016 152.4 304.8 3
8 152.4 427 203.2 0 304.8 3
9 152.4 427 203.2 254 304.8 3
10 152.4 42.7 203.2 50.8 304.8 3
1 152.4 427 203.2 76.2 304.8 3
12 152.4 427 203.2 101.6 304.8 3
13 152.4 427 203.2 127 304.8 3
14 152.4 42.7 203.2 1524 304.8 3
15 152.4 427 304.8 0 304.8 3
16 152.4 427 304.8 25.4 304.8 3
17 152.4 4?27 304.8 50.8 3048 3
18 152.4 427 304.8 76.2 304.8 3
19 152.4 427 304.8 101.6 304.8 3
20 152.4 427 304.8 127 304.8 3
21 152.4 42.7 304.8 152.4 304.8 3

Table 5.3 - Dimensions for measurements made behind the slot
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Source (4.76 mm steel bearing)

Receiving Accelerometer

Trigger
Accelerometer Siot
— — P & &
§33.4 mm

>

Figure 5.17 - Test configuration for measurements straddling the slot.
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Test Max. A Min. A d h t w
(mm) (mm) (mm) (mm) (mm) (mm)
1 152.4 427 101.6 0 304.8 3
2 152.4 427 1016 254 304.8 3
3 152.4 427 101.6 50.8 304.8 3
4 152.4 427 101.6 76.2 304.8 3
5 152.4 4927 101.6 101.6 304.8 3
6 152.4 427 101.6 127 304.8 3
7 152 .4 427 101.6 152.4 304.8 3

Table 5.4 - Dimensions for receiver array straddling the slot
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Chapter 6

Finite Element Modeling of Rayleigh Wave Propagation ina Plexiglas
Plate

The purpose of this chapter is to gain further physical insight into the Rayleigh
wave/ fracture interaction using finite element techniques. Finite element modeling
provides array measurements at locations inside the plate where experimental
measurements are not easily made. The main points of interest are a) to examine
changes in Rayleigh wave dispersion and energy density within the plate for various
slot depths, b) to study Rayleigh wave wave formation behind the slot and c) to
identify other useful wave propagation information such as anomalies in the
frequency-wavenumber field created by the slot. A range of h/A ratios are
examined, encompassing various Rayleigh wave/fracture interaction regions.

A commercially available finite element package, ABAQUS, is used. ABAQUS has
the ability to model the steel ball impact source and to incorporate damping
parameters. In addition, it allows for the monitoring of nodal displacements,
velocities and accelerations at discrete time intervals. The finite element model is
calibrated with time history measurements made on the Plexiglas specimen without
a slot. All the elastic constants used in the model are representative of Plexiglas. The
steel ball source is modeled with a half-sine function. Additional comparisons are
made for cases where a slot is cut into the Plexiglas sheet. Array measurements are
recorded using the finite element model, at locations identical to the experiments
performed in Chapter 5. These data are Fourier transformed into the frequency-
wavenumber domain for comparison with experimental results. A rigorous
calibration procedure is not undertaken. The main goal is to obtain a reasonable
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match between the finite element model and the experimental measurements, so
that subsequent qualitative observations made from the finite element model are

realistic.

Additional simulations examine Rayleigh wave behavior with respect to
measurement location. A series of 41 horizontal and vertical nodal accelerations are
recorded at different depths with respect to the top-edge of the plate. The array
configuration simulated in this chapter is identical to the array configuration used in
the experimental studies described in Chapters 4 and 5. Data are transformed into
the frequency-wavenumber domain to examine the effects of slot depth on Rayleigh
wave dispersion and energy density at different locations. In addition, Lamb wave
mode shapes are studied to interpret the results.

6.1 Previous Numerical Studies of Rayleigh Wave/Fracture Interaction

Numerical methods, such as finite differences or finite elements, are powerful tools
for studying Rayleigh wave/fracture interactions. These methods can provide
insight into the physical phenomena that occur during the interaction of a Rayleigh
wave with a fracture. However, very few numerical studies on Rayleigh
wave/fracture interaction exist in the literature.

Hirao and Fukuoka (1982) use the finite difference method to examine the scattering
of Rayleigh waves from a fracture. An idealized Rayleigh wave, called a Ricker
pulse, is numerically sent towards a fracture which is modeled by disconnected
adjacent nodes. Nodal displacements are used to calculate reflection and
transmission coefficients. The finite difference model is also compared to
experimentally obtained data. Fracture depths are calculated from increasing
Rayleigh wave arrival times. Excellent agreement is found between model and
experimental results, however, no information is given about the material tested or
elastic parameters assigned.

Imran et al. (1995) uses finite element modeling to simulate the effect of a Rayleigh
wave incident on a surface breaking fracture in soils. The experimental study uses
soil placed in an insulated wooden box as the wave propagation medium. Two
receivers placed on either side of the fracture provide time domain data. The
experimental measurements provide data for calibration purposes. Matching
experimental and finite element results proved difficult. The inability to properly
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incorporate damping parameters and difficulty in reducing reflections from the
boundaries of the laboratory apparatus are the authors' suggested reasons. Their
results indicate that fractures generate standing waves in the vicinity of the slot.
Instead of measuring reflection coefficients or transforming the data into the
frequency domain, observations are made directly from the time domain.

6.2 Modeling Wave Px;opagation

When an elastic material is subjected to a dynamic load, the displacement field
varies with respect to time. Both inertial and damping forces must be taken into
account. In finite elements, interpolation functions are used to develop element
mass, damping and stiffness matrices. Elemental matrices are assembled to obtain
global matrices representing the system equation of motion as follows,

[M]{8} + [CIf8} + [k ]{8} = {F (1)} [6.1]

The mass matrix is given by M, the damping matrix is C, and the stiffness matrix is
K. Nodal displacements, velocities and accelerations are given by 5, 5 and 3,
respectively. The forcing function is represented by F(t). Once the global matrices
are formed a solution of equation 6.1 can be obtained.

Wave propagation problems are usually solved through the use of mode
superposition or recurrence relations (Huebner et al., 1995). The mode superposition
method entails solving an eigenvalue problem to determine the natural modes of
vibration. These modes are superimposed to calculate the required solution.
Recurrence relations correlate displacement, velocity and accelerations of a node, at
one instant in time, to the values of these quantities at a later time, using the
following relations;

{8}t = {s}uaxz ;t{s} 1-A1 [6.2)

5y _ 18} 208} + 8.,
{8}, = = (631
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where At is an increment of time. To obtain a solution for an increment of time,
equations 6.2 and 6.3 are substituted into equation 6.1 to obtain,

| [ L [M]+_‘_[c]]{s}w - {F(t)}-[[K -B%[M]]{a}t

At® 2At
1

M- el

2At

[6-4]

Known displacements from a previous time step are used to calculate future
displacements at an increment of At. Direct inversion of equation 6.4 is referred to as
the implicit time integration method. Alternatively, the mass and damping matrices
can be lumped, whereby [K] becomes diagonal and direct solution is possible. This
procedure is the explicit time integration method. The explicit method is less
accurate than the implicit method because values of mass and damping are
combined at the nodes, however the explicit method requires less computational
effort. Both methods also vary with respect to numerical stability. Because the
explicit method is conditionally stable, the time increment must be kept below a
threshold value, whereas the implicit method is unconditionally stable. For the
following analysis, the implicit time integration method is used because of
numerical stability and accuracy.

The implicit time integration method is also known as the Newmark Beta method.
Normally, a and B parameters are chosen for the Newmark Beta method. These
parameters influence the accuracy of the solution and control stability by providing
some numerical damping. Typical values for a and B are 0.25 and 0.5 respectively.
ABAQUS incorporates a and B parameters into the Hilber-Hughes-Taylor operator
(Hilber and Hughes, 1978). This operator is represented by vy and is related to the
Newmark parameters through the following relations,

B=-£—(l-y)2 a:%—y [6.5]

The default value of y = -0.05 is used in this study, giving $=0.28 and a=0.55.
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6.3 Model Parameters

Time increment and model dimensions for the implicit integration procedure are the
most important parameters when modeling dynamic wave propagation problems.
These variables control the frequency spectrum of the propagating waves, data
resolution, and numerical stability.

Finite Element Mesh: The entire Plexiglas sheet is discretized into linear four
noded, quadrilateral, plane stress elements. The interpolation functions between
nodes are bilinear. Plane stress elements are chosen to simulate the motion in the
plane of the plate. Laboratory measurements completed on the Plexiglas sheet
illustrate that propagating wavelengths, in the plane of the plate, are longer than the
plate thickness. The shortest wavelength is 46 mm compared to a plate thickness of
6.35 mm. Limited out-of-plane motion is expected, allowing the use of plane stress
elements.

When using finite elements for wave propagation models, the element dimensions
are chosen with respect to the highest frequency propagating through the model
(Valliappan and Murti, 1984). If the element dimensions are too large, then high
frequencies are filtered. Conversely, the use of very small elements can cause
numerical instability. Another factor generally inhibiting the use of very small
elements is the available computational resource.

To calculate the element size the following equations are provided by Valliappan
and Murti (1984),

Vs
f

g<cr where A = [6.6]

The element dimension is given by g and the required wavelength is A. The constant
G is dependent on whether the mass matrices are consistent or lumped. Wavelength
is calculated using the maximum propagation frequency, fmax, Of the Rayleigh wave
and the shear wave velocity, V;. In the Plexiglas experiments the shear wave velocity
is 1370 m/s and the highest propagation frequency of the Rayleigh wave is 30 kHz,
giving a wavelength of 46 mm. For the consistent mass approach, used by ABAQUS
in the implicit solution, Valliappan and Murti (1984) suggest a value of 0.25 for &.
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The calculated element dimension is 11.5 mm; however, for simplicity in generating
the mesh for the entire plate, the element dimension chosen is 12.7 mm x 12.7 mm
(*2" x ¥2"). Using this mesh size, the plate is discretized into 2325 elements with 2425
nodes, as shown in Figure 6.1. The slightly larger element size still provides
reasonable accuracy up to 30 kHz for the Rayleigh wave. Dimensions of the plate in
the finite element model are identical to the plate used in Chapters 4 and 5.

The mesh is slightly altered to incorporate a slot. A narrow set of elements is
included at the intended slot location. The width of these elements is 3 mm and
occupied the entire depth dimension of the plate. To represent a slot, the elastic
properties of these elements are set to zero.

Time Increment: Determining the time increment for the implicit method of
solution is dependent on the selected mesh size. If the time step is too large, then
numerical instability may occur, causing the solution to diverge. A time increment
of less than 1/10 the characteristic time can result in spurious oscillations of the
propagating waveforms (Valliappan and Murti, 1984).

The time step is chosen with respect to the characteristic time, calculated with the
following equation,

T= -5— [6.7]

where 1 is the characteristic time, g is the mesh dimension and Vp is the compression
wave velocity. The characteristic time is 5.38 us for a mesh dimension of 12.7 mm
and a compression wave velocity of 2360 m/s. For easy comparison with the
Plexiglas measurements, a time increment of 1 us is used in the following
simulations. This value is also greater than 1/10 of the characteristic time,
preventing spurious oscillations from very small time increments.

Boundary Conditions: During the laboratory measurements on the Plexiglas plate,
the sheet was held in an upright position at the bottom corner by a table vice. The
opposite corner was placed on an aluminum block. The boundary constraints in the
finite element model are the two bottom corner nodes that are fixed in both the
vertical and horizontal directions.
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6.4 Material Properties

The material simulated in the finite element model is Plexiglas (poly methyl
methacrylate, PMMA). Plexiglas is a viscoelastic material and therefore the material
properties vary with time (or frequency). The implementation of viscoelastic
properties in ABAQUS can be done three ways: a) by defining the Prony series
parameters, b) by specifying experimental creep data or c) by the inclusion of
experimental relaxation data. Viscoelastic properties of Plexiglas with respect to
frequency are given in the literature by Ferry (1980) and Kolsky (1960). As part of
this research, an attempt was made to convert the dynamic frequency data intc a
time domain Prony series, however, a match between the finite element model and
the experimental values was not obtained. Reliable results are obtained from
ABAQUS only when the time span modeled is long (i.e. low frequencies). For very
short time spans (i.e. high frequencies) most polymers exhibit increasing
compliance, relaxation and damping. These mechanisms can be represented by a
Maxwell model. However, once a threshold frequency is surpassed, other damping
mechanisms predominate (i.e. vibration of polymeric chains) and the Maxwell
model is no longer valid.

The best method to ensure that reliable viscoelastic parameters are available is to
conduct creep or relaxation tests on the Plexiglas. This type of testing is difficult and
requires appropriate experimental equipment. Therefore, in this research, this
problem is resolved by establishing average dynamic elastic moduli for the
frequency range investigated. In the presented formulation a linear isotropic
material model is used. However, appropriate material parameters are chosen to
correspond to the frequency spectrum measured in the Plexiglas experiments.

Material Constants: Signal-to-noise ratio measurements discussed in section 4.2
show that the main frequency spectrum is between 2 and 30 kHz. A plot illustrating
Young's modulus, shear modulus and Poisson's ratio with respect to frequency is
shown in Figure 6.2 (Ferry, 1980). The graph shows that within the 2 to 30 kHz
frequency spectrum the Poisson's ratio is about 0.33. Young's modulus is
approximately 4.8 GPa at 2 kHz, increasing to 5.3 GPa at 10 kHz. The shear modulus
within the same frequency spectrum is about 0.9 GPa.

Prassianakis (1990) obtained a Poisson's ratio of 0.33 for PMMA-GS-222. The
measured Young's modulus is 3.3 GPa and the shear modulus is 0.9 GPa.
Backcalculation of compression wave velocity using the experimental elastic moduli
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provided a velocity of 2026 m/s, as compared to the accepted value of 2700 m/s.
This result illustrates the frequency dependent nature of the elastic moduli.

Using the elastic constants found in the literature as a guideline, a number of
simulations are run to determine the exact material constants. The best match with
the experimental data is obtained by using 6.0 GPa for Young's modulus and 0.33 for
Poisson's ratio.

Attenuation: Various measures of attenuation exist. Experimentally, attenuation is
measured in terms of a Q factor or damping ratio. When incorporating attenuation
in ABAQUS, a measure called Rayleigh damping is used. In order to use
experimental values of attenuation in ABAQUS, relationships between the different
measures of attenuation must be understood. The following paragraphs discuss
three interrelated measures of attenuation relevant to this research: Q factor,
damping ratio and Rayleigh damping.

A common method of measuring damping is the quality factor (Q). By definition Q
is the ratio of stored energy to dissipated energy per cycle. The inverse of the quality
factor is the dissipation factor and is given by the following relationship,

1_imv) 68
Q" Re(M) tan @ [6.8]

M is a complex elastic modulus (either shear, constrained or Young’s modulus). The
real part of M is the stored energy and the imaginary part corresponds to the
dissipated energy. Real and imaginary parts are also related to the loss tangent,
where ¢ is the phase lag of strain behind stress. The dissipation factor can be defined
with respect to the bandwidth around resonant frequency as follows (Johnston and
Toksoz, 1981),

é = ;ﬁ [6.9]

where f; is the resonant frequency and Af is the bandwidth at 1 of the peak power,
on a power spectral density plot.
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Another measure of attenuation is damping ratio, which is defined as the ratio
between system damping and critical damping. Solving the equation of motion for a
single degree of freedom system with viscous damping,

Mx +Cx + Kx =0 " [6.10]

assuming that, x=x_e" [6.11]

gives, H=- c + C* —4MK [6.12]
M 2M

where M is the mass, C is the system damping and K represents the stiffness. Critical
damping occurs when the discrimenant in equation 6.12 is equal to zero, giving,

C. =2vMK [6.13]

where Cc denotes critical damping. Physically, there is no oscillatory motion at
critical damping. Therefore, damping ratio is defined as,

p=C [6.14)
CC

which represents the limit between oscillatory and non-oscillatory motion. The
relationship between the dissipation factor and damping ratio is as follows,

=2D [6.15]

1
Q

where Af = L—C— and f = L /%
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Solution of the equations of motion is more difficult when damping is added to the
system. To overcome this problem, Caughey (1960) showed that the equations of
motion can be decoupled if the damping matrix is a linear combination of the
stiffness and mass matrices. This type of damping is referred to as Rayleigh
damping and is given by the following formulation:

[C] =[M]§ nk([%]j) [6.16]

where [C] is the damping matrix, [K] is the stiffness matrix, [M] is the mass matrix
and Nk is a constant. By setting p equal to 2 in equation 6.16, the following relation is
obtained (Liu and Gorman, 1995),

[€]=n.[M]+n,[K] [6.17]
where n1 and n; are constants for mass and stiffness damping respectively.

In ABAQUS, the formulation given in equation 6.17 can be used to model the
damping of a linear isotropic material. In many finite element applications, Rayleigh
damping is related to damping ratio so that experimental values can be
implemented in the finite element model. The relationship between Rayleigh
damping and damping ratio can be determined by substituting equation 6.17 and
6.13 into equation 6.14:

D=C£=*“'r""”[‘(2K =2"—'+——“;‘° [6.18]
c 2Mw/— @
M
where o = _E
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In practical applications the damping ratio is plotted with respect to the natural
frequencies of the system. For modeling purposes, a curve fit is applied to the
experimental data to obtain the constants n; and 2. The effect of mass and stiffness
damping is illustrated in Figure 6.3. For mass damping, high attenuation occurs at
low frequencies and high frequencies are subject to low attenuation. Alternatively,
attenuation by stiffness damping increases linearly with frequency.

Attenuation in a material such as Plexiglas can be quite difficult to measure and
model. A plot of complex moduli and loss tangent with respect to frequency is
shown in Figure 6.2. The loss tangent has a peak at 1 Hz related to vibration of the
polymeric chains, which then decreases at higher frequencies. Such a phenomenon
is difficult to model in ABAQUS with either a Prony series or through Rayleigh
damping. Therefore, the easiest way to incorporate attenuation is to use a
representative value for the frequency range of interest.

In the frequency range of 2 to 30 kHz, Figure 6.2 shows that the loss tangent is equal
to about 0.05. In comparison, Johnston and Toksoz (1980) measured Q to be equal to
20 for a Plexiglas rod in longitudinal resonance from 10 to 20 kHz. Equation 6.8
shows that the values from two different sources are identical.

The calculation of ® and n; in equation 6.18 is shown in Mathgram 6.1. Mass
damping is assumed zero (n1 =0) because the experimental results did not show
high damping at low frequencies. An initial value for N2 is calculated by assuming
the vibration of a 12.7 mm x 12.7 mm element. After a number of simulations, the
best fit for 1, is found to be 1.0x10 which converts to a Q of 12.5. This value appears
reasonable when compared to experimental data.

6.5 Impact Simulation

The force-time curve representing the steel ball impact requires a simple numerical
calculation. In general, a half-sine function is a very good approximation, which is
demonstrated experimentally by Hunter (1957) and by Proctor and Breckenridge
(1992). The half-sine impact approximation is also used by Sansalone et al. (1987) to
simulate a steel ball impact in a finite element model.
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The solution of the force-time curve is a combination of the dynamic problem of
impact of solids and the static approach of pressure between two bodies in contact.
The main assumption is that Hertz’s law is valid when the impact duration is long
compared to the periods of vibration for the bodies in contact. Therefore, this
solution should not be used for very small steel balls, where high frequencies are
generated, or for balls traveling at very high velocities. The method of calculating
the force-time curve is given in Mathgram 6.2, using formulae from Zukas et al.
(1982). The calculated impact duration is 53 us for the 4.76 mm diameter steel ball.

6.6 Model Verification

The initial step in the investigation is the calibration the finite element model with
the time domain measurements made on the homogeneous Plexiglas sheet. This
calibration allows the determination of appropriate input parameters for
representing the material properties of Plexiglas. Time domain traces obtained from
the finite element analyses represent 1000 us real time. Accelerations for the nodes
corresponding to the 203.2 mm source spacing are recorded in a data file and
compared to the experimental values.

Numerous simulations were completed to obtain a match between the finite element
model and the experimental data. The best possible outcome is a full waveform
match. However, this is difficult to achieve, and is only possible for simple source
characteristics and model geometries. For this model, a full waveform match was
not obtained. However, since the focus of this investigation is to acquire a physical
understanding of Rayleigh wave behavior, finite element and experimental results
are compared to obtain a match only for the Rayleigh wave portion of the time
domain trace. '

The main parameters affecting the generated Rayleigh wave duration and
amplitude are Young’s modulus, impact duration and damping. Small variations of
Poisson’s ratio and density have only a slight affect on the Rayleigh wave.
Increasing Young’'s modulus causes the velocity of the Rayleigh wave to increase
and the pulse duration to decrease. Conversely, a lower Young’s modulus reduces
the velocity and increases the pulse duration. Impact duration controls the
frequency content of the main pulse. A long duration impact introduces long
wavelengths thereby increasing the pulse length. A shortened pulse length is the
result of a short impact duration. However, Young’s modulus and impact duration
are not separate quantities because the Young'’s modulus is needed to calculate the
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impact duration. Finally, increased damping results in a decreased pulse amplitude
and an increased the pulse length. The opposite occurs when the damping is
decreased.

Initial calibration is done for a Plexiglas sheet without a slot and a source distance of
203.2 mm. A comparison of time domain traces for the finite element and
experimental measurements are given in Figure 6.4. The time histories are compared
at three different locations within the receiver array: the first, middle and last
receivers. At all the receivers, the main pulse of the Rayleigh wave modeled by
ABAQUS is similar to the experimental measurement. The main difference is that
the waveform from the experimental analysis has more high frequency components
near the beginning of the Rayleigh wave pulse. However, the overall shape of the
Rayleigh wave modeled by ABAQUS conforms well with the experimental
measurements.

The probable cause for the disparity between finite element and experimental
results is the inability to properly model attenuation with the Rayleigh damping
model. To calculate Rayleigh damping values, experimentally measured damping
ratios are computed from successively higher modes of vibration and plotted with
respect to frequency. A linear regression is then applied to find the appropriate n;
and n2 values for the Rayleigh damping model Obtaining attenuation
measurements for higher modes of vibration can be quite difficult. Furthermore, the
limited number of coefficients in the Rayleigh damping model constrains the ability
to simulate exact damping characteristics.

Other uncertainties arise from the elastic constants. The elastic constants are taken
from the literature and modified within an acceptable range to resolve differences
between experimental and finite element results. Static tests to determine elastic
moduli of Plexiglas are not performed in this study. In addition, the assumed impact
model is an approximation. The impact process is quite complex, the absorption and
dissipation of energy for a viscoelastic material such as Plexiglas is probably, to a
certain degree, different from the quasi-static assumption.

To ensure that all the general vibrational processes occurring in the Plexiglas sheet
are simulated by the finite element model, time history measurements from
ABAQUS are converted to the frequency-wavenumber domain for comparison with
experimental measurements. A series of vertical acceleration measurements are
made at 41 nodes, similar to the receiver array measurements completed on the
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Plexiglas sheet. Finite element models are completed for all slot depths where the
receivers are opposite the slot, as shown in Table 6.1. Plots comparing the
experimental and finite element results are shown in Figures 6.5 to 6.11 for the 304.8
mm source distance. Comparisons for the 101.6 mm and 203.2 mm source distances
can be found in Appendix D. Peaks in the frequency-wavenumber plots between
experimental and finite elements are almost identical. The main difference is the
reduced frequency spectrum of the finite element model compared to the measured
values. Experimentally, the frequency of the main energy band extends slightly
beyond 30 kHz, whereas for the finite element results, energy is only observed up to
22.5 kHz. For increasing slot depths, the frequency spectrum of the finite element
model decreases to about 15 kHz from 25 kHz in the measured results. However,
within the smaller frequency spectrum of the finite element model, a very good
match with the experimental measurements is obtained for all slot depths.

Although a perfect match between experimental and finite element results is not
obtained, the finite element model still properly models the propagation of the
Rayleigh wave and higher mode Lamb waves. The primary purpose of the finite
element modeling is to acquire a physical understanding of the interaction of a
Rayleigh wave with a fracture. Limitations encountered in trying to match finite
element and experimental results are not detrimental to this purpose.

6.7 Finite Element Modeling of Wave/Fracture Interaction

The purpose of the following simulations is to understand Rayleigh wave behavior
with respect to depth within the plane of the plate. Previous measurements are
made on the surface of the plate. The advantage of the finite element model is the
ability to examine Rayleigh wave propagation within the plane of the plate. The
main components of interest are a) the effects of the slot on the dispersion and
energy density of the Rayleigh wave measured inside the plate, b) the method of
Rayleigh wave formation behind the slot and c) the information provided about slot
location and detection from a Rayleigh wave generated behind the slot.

Three sets of models are used to study these effects. Initial measurements are made
behind the slot at different depths with respect to the top-edge of the plate. These
models are for comparison purposes. A similar series of models is then run for the
76.2 and 152.4 mm slot depths. Details of the model configurations are described in
the following paragraphs. Observations from the various measurements are
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discussed and, where appropriate, theoretical information is incorporated to clarify
the observations. A summary is given at the end of the chapter.

Methodology: ABAQUS allows for the monitoring of vertical and horizontal
accelerations for any node within the mesh. In the laboratory work, acceleration
readings are made on the surface of the plate. In the following, a series of 41
acceleration history measurements is made from nodes along various depths, as
shown in Figure 6.12. Vertical and horizontal data collected from the different
simulations are converted into the frequency-wavenumber domain using the two-
dimensional Fourier transform discussed in section 3.3 of Chapter 3.

Model Series I (no slot): Nodal acceleration readings are collected at depths of 25.4
mm, 76.2 mm, 127 mm, 152.4 mm (middle of the plate) and 304.8 mm (bottom of the
plate) with respect to the top-edge of the plate as shown in Figure 6.12. The source is
located 304.8 mm from the intended slot location. The model configuration is
identical to the calibration model and the source is again simulated with a half-sine
function. A listing of the simulations is given in Table 6.2.

Model Series II (effects of a slot): The slot depths studied in these models are 76.2
mm and 152.4 mm. As with the measurements in model series I, nodal accelerations
are retrieved for depths of 25.4 mm, 76.2 mm, 127 mm, 152.4 mm and 304.8 mm. All
other model parameters are identical to those specified in the model series I
description. Simulations are listed in Table 6.2.

Frequency-Wavenumber Plots: The plots of energy density with respect to
frequency and wavenumber are identical to those previously presented. However,
instead of plotting the theoretical dispersion curves for all of the Lamb modes, only
several plots are shown. These Lamb modes are predicted as being easier to measure
because of high amplitude accelerations occurring at certain depths. The method of
making these predictions is explained in the following section.

Lamb Wave Acceleration Mode Shapes: The results from the proposed finite
element models are studied using Lamb wave mode shapes. Mode shapes for the
first nine modes are examined to determine acceleration amplitude with respect to
the different depths monitored in the proposed finite element models. The concern
is that the energy density of the Lamb modes is dependent on location within the
plate (including surface measurements). In certain locations, some modes have no
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acceleration (i.e. a node) or exhibit high acceleration amplitudes. By examining the
mode shapes individually, we can determine what happens to the Rayleigh wave.
Do the fundamental modes propagate at all locations and slot depths?

Knowing that Lamb modes have certain accelerations at distinct locations within a
plate is insufficient for predicting the presence of certain vibrational modes.
Dispersion curves for the different modes cover a range of frequencies and
wavenumbers, each having a discrete mode shape. Because the source generates a
range of frequencies, the resulting time history measurement is comprised of a large
number of mode shapes. However, some assumptions about the measured Lamb
modes can be made. Assuming the source only produces long wavelengths (A>>2b),
then the plate vibration is large scale and no Rayleigh wave is observed. Conversely,
strong Rayleigh wave energy is observed for very short wavelengths (A<<2b). The
measured frequency-wavenumber plots illustrates that the results are between these
two extremes.

The approach is to use a wavenumber of 3.28 1/m as a baseline value to calculate
the mode shapes. This wavenumber corresponds to the plate depth (2b = 304.8 mm).
Acceleration mode shapes are calculated by using the frequencies corresponding to
the chosen wavenumber for each mode. As discussed in section 4.1 of Chapter 4,
acceleration mode shapes are calculated by multiplying by -2 After the mode
shapes are calculated, amplitudes are normalized using the maximum amplitude
calculated for each mode. Values range between 0 and 1, where 1 represents a high
likelihood of observing that particular mode at a certain depth. The Lamb modes
with the highest normalized values are shown on the subsequent frequency-
wavenumber plots. The results of these calculations are given in Tables 6.3 and 6.4.

6.8 Finite Element Model Results: No Slot

Dispersion curves for the Lamb wave modes with the highest amplitudes, at the
different depths, are shown on this series of frequency-wavenumber plots.

Rayleigh Waves: Frequency-wavenumber plots for both vertical and horizontal
accelerations at different depths are shown in Figures 6.13 to 6.17. These
measurements illustrate Rayleigh wave motion at depth. Examination of vertical
motions shows that the Rayleigh wave can be identified up to a depth of 127 mm. As
the measurement depth increases, short wavelength Rayleigh wave energy
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decreases. At a depth of 127 mm the shortest wavelength peak related to the
Rayleigh wave is 111 m (9 1/m). Examination of the horizontal motions shows that
the Rayleigh wave is only visible up to a depth of 76.2 mm. The corresponding
shortest wavenumber of the Rayleigh wave is 11.5 1/m (87 mm). Rayleigh wave
motion is not observed in the middle of the plate. Similarly, a propagating Rayleigh
wave is not measured along the bottom of the plate, confirming measurements
shown in Figure 4.14 (section 4.3).

The observations show that the Rayleigh wave is weak at depths approaching the
midsection of the plate. The reduced strength of the Rayleigh wave can be attributed
to a weak S, mode, which has a lower amplitude than the A, and A; modes, as
shown in Table 6.3. When examining the horizontal motions shown in Table 6.4, the
Ao mode becomes weaker near the midsection of the plate, possibly also reducing
the Rayleigh wave energy with depth. However, these predictions are only valid for
a wavenumber of 3.28 1/m and will be different for other wavenumbers.

Lamb Modes: Theoretical dispersion curves for the largest amplitude symmetric
and antisymmetric modes are plotted in Figures 6.13 to 6.17. Very good agreement is
observed for both the vertical and horizontal motions up to a depth of 154.2 mm.
From the theoretical calculations of mode shape, vertical motions of all symmetric
modes and horizontal motions of all flexural modes are found to be equal to zero in
the middle of the plate. These observations are confirmed by finite element
simulations. Results from the bottom of the plate do not agree well with the
predictions. The reason is probably because of the location and transient nature of
the source.

An important issue concerning the calculation of the mode shape amplitudes is the
fact that these theoretical results cannot wholly explain the observed measurements.
In the derivation of the Rayleigh-Lamb frequency equations, Lamb modes are
assumed to be generated by steady-state plane waves. Although the steel ball source
provides a wide frequency bandwidth, the duration of the generated waveform is
transient. In addition, the power spectrum density is not continuous, but has gaps at
certain frequencies. Under these conditions, dispersion measurements do not
exactly duplicate predictions from the Rayleigh-Lamb frequency equations. The
combination of reduced amplitude of the fundamental modes at certain depths
(theoretically calculated) and the source characteristics (experimental) affect the
energy density of the Rayleigh wave. Consequently, mode shape calculations using
a wavenumber of 3.28 1/m only provides a guideline to the expected results.
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6.9 Finite Element Model Results: Effects of a Slot

In the previous section dispersion curves for the highest amplitude Lamb wave
modes are plotted. The same dispersion curves are plotted in this section for
comparison purposes. The reason is to determine whether any differences in
dispersion and energy density exist between cases with and without a slot.

Rayleigh Waves: With the introduction of a 76.2 mm slot, motions in the vertical
direction reveal that the Rayleigh wave is visible up to a depth of 76.2 mm, as shown
in Figures 6.19 to 6.24. The energy density of the Rayleigh wave decreases at depth.
Examination of motions in the horizontal direction show that the Rayleigh wave is
only measured on the surface of the plate.

The measured Rayleigh wave is very weak when the slot depth is increased to 1524
mm, as shown in Figures 6.25 to 6.30. The vertical motions show a weak Rayleigh
wave up to a depth of 76.2 mm. The nature of this Rayleigh wave is different from
the Rayleigh wave observed with the 76.2 mm slot. Only one or two peaks are
measured at wavelengths shorter than the slot depth. A similar observation is made
for horizontal motions at the plate surface. The recorded horizontal motions at
depth do not reveal any Rayleigh wave motion.

Lamb Modes: Results for the 76.2 mm slot are shown in Figures 6.19 to 6.24. Vertical
measurements made at depths up to 76.2 mm show only partial agreement with the
analytical dispersion curves. The agreement is better for the horizontal motions. For
the 127 mm and 154.2 mm depths, measurements are almost identical to those made
without a slot. :

A similar pattern is recognized for the 152.4 mm slot depth. As shown in Figures
6.25 to 6.30, measured vertical motions partially agree with the calculated dispersion
curves, whereas the comparison with horizontal motions is slightly better. At a
depth of 1524 mm, shown in Figure 6.29, the results are quite close to the
measurement made at the same depth without a slot.
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6.10 Lamb Wave Mode Conversions

What is the character of the wave motion within the zone behind the slot? Several
assumptions are made about vibrations occurring behind the slot. First, there were
no new wave types being generated because the boundary conditions are
unchanged. Second, the plate depth is constant, except where the slot is located.
Therefore, theoretically calculated Lamb mode shapes are still valid behind the slot.
Third, the slot effectively blocks shorter wavelengths, allowing longer wavelengths
to pass. Therefore, a strong component of the Lamb wave motion behind the slot is
composed of energy passing through the constricted portion of the plate. However,
at some distance behind the slot, the energy redistributes itself to again embody the
entire plate depth. Both types of motion are combined in the frequency-
wavenumber plot.

To illustrate the Rayleigh wave/slot interaction, a series of acceleration vector plots
are shown in Figures 6.31 to 6.35. A snapshot is taken at 200, 260, 340, 420 and 440 pus
real time. In this model the slot depth is 76.2 mm and the source distance is 304.8
mm. Each figure shows the location of the slot and the Rayleigh wave. Vector
lengths cannot be compared between the different figures because they are scaled
according to the maximum acceleration attained in each plot.

The Rayleigh wave is easily visible in the 200 us snapshot, as shown in Figure 6.31.
Note the similarities with the lobed shape of the Rayleigh wave shown in Figure 2.6
of Chapter 2. The Rayleigh wave has several different components. The initial part
of the wave is in tension, followed by the main portion of the Rayleigh that
Penetrates deep into the plate. The final part of the wave is in compression. In this
frame the first part of the Rayleigh is almost touching the slot.

At 260 ps, the first part of the Rayleigh wave is moving down the slot face. The main
body of the Rayleigh wave deforms slightly, caused by the first part of the wave
deflecting back from the slot face. The next frame is taken at 340 us, where the main
body of the Rayleigh wave encounters the slot. Note the clockwise circular motion
underneath the slot. This same motion is observed in the previous frame. The
regeneration of the Rayleigh wave behind the slot is visible at 420 us. A short
wavelength Rayleigh wave is generated behind the slot, whereas the longer
wavelength energy moves beneath the slot. The longer wavelength energy is related
to the clockwise circular motion observed in previous frames. The next frame, 20 us
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later, shows how the long and short wavelength components combine to form a
single Rayleigh wave.

These results are consistent with observations made in the previous section, where
the slot blocked Lamb wave motion through the plate. As the observation depth
approaches the slot depth, peaks in the frequency-wavenumber domain are
characteristic of a plate without a slot. Shallower observation depths where the slot
is present record responses that differed from measurements made without a slot. In
the area behind the slot other Lamb modes appear to predominate.

Energy produced by the source on one side of the slot is partitioned into reflected
and transmitted energy. When examining transmitted energy, the slot can be
compared to a temporary thickness change. Experimental measurements by Sun et
al. (1993), show that fundamental Lamb wave phase velocities change when these
modes move from one thickness to a smaller cross-section. A similar argument can
be made for Lamb waves moving from a thin to a thick area. In either case, the
Lamb wave energy is redistributed to modes that can exist within a particular
thickness. Furthermore, the redistribution of energy is also dependent on source
characteristics.

An examination of Lamb waves transmitted past a slot is studied using finite
element modeling by Alleyne and Cawley (1992). In this model, only one Lamb
mode is generated and propagated past slots of varying depth. One set of
simulations uses frequencies where only the fundamental modes are generated. As
the Ao mode passes the slot, both the Ao and Sy modes are found propagating
opposite the slot. The Ao and So modes are also formed behind the slot when the So
mode is created in front of the slot. Higher frequencies are also used to include
motion from the A1 mode. In these simulations, the mode converted Ay and So
modes are weaker because of the higher frequencies employed.

With respect to this research, the redistribution of fundamental mode energy affects
the measurement of the Rayleigh wave opposite the slot. Long wavelength
fundamental modes propagate past the slot, whereas newly generated Lamb modes
form behind the slot. The implication with respect to Rayleigh waves is that long
wavelengths propagate past the slot. This is observed for Rayleigh wave energy
measured for the 76.2 mm slot depth. Alternatively, weak, short wavelength,
Rayleigh waves are generated by the energy filling the area behind the slot. This is
the case for the 152.4 mm slot depth.
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6.11 Summary and Conclusions

A commercial finite element package, ABAQUS, is used to model Rayleigh wave
motion in a Plexiglas plate. Initially, the model is calibrated (damping and elastic
moduli) by comparing measured and simulated time histories. An identical match
was not achieved because the exact viscoelastic properties of the Plexiglas are
unknown and are frequency dependent. However, the general motion of the
Rayleigh wave is captured. To verify that overall plate vibrations are being
adequately modeled, simulations are completed for all of the experimental slot
depths and source distances made with the source and receivers on opposite sides of
the slot in the Plexiglas experiments (chapter 5). A comparison of frequency-
wavenumber plots between measured and modeled results show very good
agreement. The only major difference is that the frequency spectrum of the finite
element model is narrower than the experimental measurements because of high
frequency filtering related to the material attenuation of Plexiglas.

After verifying the model results, a number of simulations are completed to
determine the effect of the slot on the Rayleigh wave. The finite element model
provides the ability to monitor vertical and horizontal accelerations at different
depths within the plate. A series of 41 vertical accelerations are recorded and
transformed into the frequency-wavenumber domain for various locations within
the plate. Initial measurements are done without a slot, then two different slot
depths are introduced; 76.2 mm and 152.4 mm. Using a maximum wavelength of the
Rayleigh wave as 152.4, ratios of h/A for the three sets of measurements are 0, 05
and 1.0 respectively. Without a slot, vertical measurements show the presence of the
Rayleigh wave up to a depth of 127 mm (depth/A=0.83), becoming nonexistent in
the middle of the plate (depth/A=0.83). Horizontal motions associated with the
Rayleigh wave are observed up to a depth of 76.2 mm (h/ A=0.5). For the 76.2 mm
slot depth, vertical measurements indicate a Rayleigh wave to a depth of 76.2 mm.
The Rayleigh wave is observed on the surface of the plate when the horizontal
motions are examined. Increasing the slot depth to 1524 mm (h/ A=1.0) causes
vertical Rayleigh wave energy to be measured at wavelengths shorter than the slot
depth up to a depth of 76.2 mm (depth/1=0.83). As with the 76.2 mm slot (h/A=0.5),
horizontal motions indicate a Rayleigh wave propagating only along the surface of
the plate (depth/1=0.0).

Observations from these simulations show that distinct modes of vibration
predominate at different depths. Theoretical mode shapes are calculated for all
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modes along a wavenumber of 3.28 1/m. Normalized amplitudes for the first nine
modes are ranked in both the vertical and horizontal directions. Dispersion curves
for the highest ranking modes at different depths are compared with the
corresponding peaks in the frequency-wavenumber domain. The agreement is very
good when a slot is not present. However, subsequent simulations with a slot show
that the correlation is not consistent at depths less than the slot depth (i.e. depth<h).
The recorded modes are assumed to be a combination of modes passing through the
constricted portion of the plate, where the slot is located, and wave motion covering
the entire plate depth.

Vibrations recorded behind the slot are a combination of short wavelength mode
converted Lamb waves and long wavelength Lamb waves. Eventually, at some
distance from the slot, the energy redistributes itself to again achieve a steady-state
condition. Because the Rayleigh wave is formed by the superposition of the
fundamental modes, long wavelength Rayleigh waves are unaffected by the slot, as
is illustrated by the 76.2 mm slot (h/A=0.5). The formation of a Rayleigh wave with
wavelengths shorter than the slot depth, observed both experimentally and through
finite element simulations, is created by mode converted Lamb waves propagating
through the constricted part of the plate. This type of Rayleigh wave is observed
when the slot depth is increased to 152.4 mm (h/1=1.0).

These results are also consistent with the Plexiglas experiments discussed in chapter
5. The experimental work shows a large drop in Rayleigh wave energy related to the
slot depth. The wavelength where the energy drop occurs is caused by blocking the
incident Rayleigh wave (h/A=1.0). Peaks associated with the Rayleigh wave,
measured at shorter wavelengths, are formed by Lamb wave mode conversions.

Therefore, the Rayleigh wave measured behind the slot has two components: one
related to the Rayleigh wave generated in front of the slot and another formed
because of the slot. This information is potentially useful for determining the depth
and location of a slot. This requires knowing the wavelength where the transition
between the two components of the Rayleigh wave occurs. Perhaps other signal
processing methods such as short time Fourier transforms or wavelets can be used
to determine the transition location.
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Quadrilateral Plane Stress Elements
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Fixed Nodes

Figure 6.1 - Finite element mesh used in ABAQUS.
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Source Location

: (mm)
Slot Depth (mm) 101.6 203.2 304.8
0 afin bfin cfin

254 alfin blfin clfin

50.8 a2fin b2fin c2fin

76.2 a3fin b3fin c3fin

101.6 adfin b4fin c4fin

127 asfin b5fin cSfin

1524 a6fin béfin c6fin

Table 6.1 - Listing of all finite element models executed to simulate the Plexiglas

experiments.
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Slot Depth (mm)
Depth (mm) 0 76.2 152.4
0 cfin c3fin cé6fin
254 cafin ca3fin caébfin
76.2 cbfin cb3fin cbéfin
127 ccfin cc3fin ccofin
152.4 cdfin cd3fin cdéfin
304.8 cefin ce3fin ceéfin

Table 6.2 - A listing of all finite element models completed to examine Rayleigh
wave motion with respect to depth and slot depth.



Depth (mm)

Mode o 254 76.2 127 1524 304.8
So 0.969* 0.991* | 0.726* 0.265 0 0.969*
S 1* 0.506 0.618* 0.526 0 1*
S 0.966* 0.784* | 0.481 0.595* 0 0.966*
Ss 0.377 0.064 | 0.575* | 0.796* 0 0.377
S4 0.984* 0.651* | 0.979* | 0.257 0 0.984*
Ao 0.945* 1* 0.923* | 0.835* | 0.822* | 0.945*
Aq 0.265 0.14 0.464 0.922* 1* 0.265
A; 0.277 0064 | 0.057 | 0.807* 1* 0.277
As 0.994* 0.766* | 0.475 0.405 | 0.252* | 0.994*

Table 6.3 - Vertical motions normalized with maximum amplitude for each
mode. Astrixes indicate modes graphed in subsequent frequency-

wavenumber plots.
Depth (mm)

Mode 0 254 76.2 127 152.4 304.8
So 1* 0.287 | 0.445* | 0.714* | 0.744* 1*
S1 0.806* 0.985* | 0.718* | 0.066 | 0.059 | 0.806*
Sz 0.223 0.286 | 0.298 | 0.766* 1* 0.223
Ss 0.995* 0.677* | 0.703* | 0.09 0.213 | 0.995*
S¢ 0.596 0.046 | 0.433* | 0.356 1* 0.596
Ao 1* 0428 | 0.008 | 0.029 0 1*
Ax 1* 0475* | 0106 | 0.121 0 1*
A2 0.993* 0.895* 0.1 0.197 0 0.993*
As 0.384 0.053 | 0.421* | 0.831* 0 0.384

Table 6.4 - Horizontal motions normalized with maximum amplitude for

each mode. Astrixes indicate modes graphed in subsequent frequency-
wavenumber plots.
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and horizontal Sy, S1, S3, As, A; and A; Lamb modes are
shown. At 304.8 mm depth, no slot.
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Chapter 7

Experiments on Concrete Beams

The approach so far in this research has been to generate an incremental growth in
knowledge, beginning with simple models, such as thin Plexiglas sheets, and
advancing to three-dimensional beams. The main objective of this chapter is to
determine the applicability of Rayleigh waves for the detection of near surface
fractures in concrete beams. Important issues with respect to beams are the material
properties and the three-dimensional beam geometry.

The theoretical method of studying Rayleigh wave motion in beams is different
from the Rayleigh-Lamb equations used for plates. Results from the Rayleigh-Lamb
frequency equations are not valid in beams with a square cross-section. Dispersion
curves of the fundamental modes in beams and plates are different: in a beam, there
are four traction-free surfaces that need to be taken into account. A closed-form
solution, such as the Rayleigh-Lamb frequency equations, cannot be obtained for a
beam with a square cross-section because too many boundary conditions need to be
fulfilled. Many theoretical approximations for the fundamental modes in beams
exist, as well as a few dispersion calculations for higher modes of vibration. The
approach followed here is to use finite elements to calculate dispersion curves for all
the modes of vibration.

The experimental approach implemented with concrete and cement beams is similar
to that used on the Plexiglas sheets. Four beams with a square cross-section are cast;
two concrete and two cement. The main reason for fabricating the cement beams is
to determine the effect of coarse aggregate on the dispersion measurements. In
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general, the assumption is that short wavelength energy is highly attenuated by the
aggregate, when the wavelength approaches the aggregate dimensions.

Initial measurements are made on the concrete and cement beams without a slot.
These measurements are compared to the theoretical dispersion curves calculated
using the finite element model. A series of measurements are then completed where
a slot is cut perpendicular to the longest dimension of the concrete beam. The slot
depth is incrementally increased after each set of measurements. For one set of
measurements, the source and receiver array are placed on opposite sides of the slot.
In the second set of measurements the slot is located in the middle of the receiver

array.
7.1 Approximate Dispersion Curves for Beams with a Square Cross-Section

Two types of waves exist in an infinite medium: compression and shear waves each
traveling at a different velocity. Similarly, for bounded geometries, compression and
shear waves are the elementary components of wave propagation. Repeated
reflections of compression and shear waves from traction-free boundaries generate
new waves.

Because of the complexity of the equations involved, closed-form (analytical)
solutions exist only for bars with a circular cross-section. These are called the
Pochhammer-Chree frequency equations (Graff, 1975). Obtaining solutions for
rectangular or square bars is more difficult because of the boundary condition
requirements. Consequently, a number of approximate methods are developed to
calculate the dispersion curve for bars of rectangular or square cross-section. As
discussed by Green (1960), approximate methods can be divided into two groups. In
the first case, approximate equations of motion are developed then solved. For the
second set of methods, the exact equations of motion are solved for an approximate
set of boundary conditions. Both methods result in an estimation of the dispersion
curve. Generally, approximate methods work well with the lowest propagation
modes. Without providing mathematical details, a few of the many approaches are
briefly discussed.

The method proposed by Morse (1950) is similar to the solution of the Rayleigh-
Lamb equation (eqn. 4.29). By assuming the width of the bar cross-section to be
much larger than the height, shear stresses on the four faces may be neglected. This
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leads to two dispersion relations for the ‘width’ mode and the ‘thickness’ mode.
Comparisons between experimental measurements and theoretical calculations are
given in Figures 7.1 and 7.2 for the thickness and width modes respectively. The
theoretical width mode compares well with experimental data; however, the
thickness mode does not.

Kynch and Green (1957) apply a perturbation method to extend the Pochhammer-
Chree frequency equations (Graff, 1975) to a bar with an arbitrary cross-section. This
method is cumbersome because of the need to include higher order terms and
difficulty with degenerating vibrational modes caused by the symmetry of the
square or rectangular shape.

Mindlin and Fox (1960) derive a solution for bars with a rectangular cross-section. A
complete dispersion relation cannot be calculated. Only a discrete set of points is
obtained for certain ratios of width to thickness.

Nigro (1966) solves the equations of motion by using a power series to approximate
the displacements. Similarly, Medick (1967) and Medick (1968) use approximate
displacement functions with Hamilton’s principle to approximately satisfy the field
equations and boundary conditions.

Fraser (1969) uses a collocation method to calculate the dispersion relations for
rectangular and square beams. Figure 7.3 shows a comparison of results from the
collocation method with solutions from Nigro (1966) for the longitudinal and screw
modes. The plot in Figure 7.4 illustrates changes in the longitudinal mode dispersion
curves for various cross section geometries. This plot clearly illustrates differences in
the dispersion curves between plates and rectangular cross sections. Dispersion
curves for flexural modes in square and rectangular cross sections are shown in
Figure 7.5. Although comparisons are made with Nigro (1966) and other
researchers, there is no direct comparison with experimental data.

7.2 The Finite Element Method for Calculating Dispersion in a Square Beam

Aalami (1973) uses the finite element method to calculate dispersion curves for all
modes of vibration in a square beam. The dispersion curves for the first ten modes,
for a Poisson's ratio of 0.3, are shown in Figure 7.6. These results could not be used
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for this study because the Poisson's ratios of concrete and cement are lower.
Onipede and Dong (1996) also use the finite element method for a similar
calculation. They show dispersion curves for a beam with a square cross section
which are in agreement with the results presented by Aalami (1973).

In the following work, the method introduced by Aalami (1973) is used to develop a
finite element model for the computation of dispersion curves for beams with a
square cross-section. This particular method has a number of advantages: a)
arbitrarily shaped cross-sections can be incorporated, b) orthotropic elastic material
constants can be defined and c) reduced computational requirements because the
three-dimensional problem is solved using two-dimensional elements. The model is
verified by computing dispersion curves for a cylindrical bar and comparing the
results with the Pochhammer-Chree frequency equations. In addition, the results for
a bar with a square cross-section are also in agreement with the approximate
solutions presented by Nigro (1968).

In the finite element formulation, the cross-section of the beam is discretized into
linear triangular elements, in the x-y directions. Steady-state wave propagation is
assumed along the length of the beam in the z direction, as shown in Figure 7.7. The
main assumptions of the model are as follows:

1) The cross-section shape remains constant along the length of the beam.
2) The material of the beam is homogeneous, linearly elastic, and isotropic.
3) The wave motion is steady-state and purely elastic.

4) There is no internal friction within the medium (no damping).

The basis of the finite element model is to use displacement functions (interpolation
functions) to describe the motion between nodes, that make up the triangular
elements. The Rayleigh-Ritz energy method is used to calculate the stress and strain
within the volume of each element. The derived equation of motion for the

assemblage of elements is represented by:

[K]{5} +pM]{8} =0 [71]
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where [K] is the global stiffness matrix, [M] is the global mass matrix, p is the density
and {3} are the nodal displacements. By assuming simple harmonic motion, the
following statement can be written:

{8} = (Bo}ei® [7.2)

where {5,} are the amplitudes of the nodal values. Substituting equation 7.2 into 7.1
reduces the steady-state wave propagation problem into an eigenvalue problem:

((Boxi-etm) .y =0 73]
where Q is given by:
Q- m:}p _ g [7.4]
and G is the shear modulus.

To solve the above eigenvalue problem, the stiffness and mass matrices for each
element must be assembled into global stiffness and mass matrices. The formulation
of the element stiffness and element mass matrices is now addressed.

Stiffness Matrix: A Fourier series formulation is used to describe motions in the z
direction. This allows a three-dimensional geometry to be modeled with two-
dimensional triangular elements. Assuming that the beam length in the z direction is
between 0 < z < a, the displacements can be written as:

{d} =[N(x.y.2)}{s}"

(= 3. {[NGx )] 0s 2 + [N, y)sin ™72 5 7.5
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where {d} is the displacement at any point within an element, N (x,y) are the
interpolation functions, {5} are the nodal displacements for a particular element,
and m represents higher harmonic terms of the series. In the following work, only
the first term of the series is used i.e. m = 1. As shown in equation 7.5, displacements
in the z direction can be decomposed into the sine and cosine functions of a Fourier
series. Similarly, loading functions can also be represented by:

03 = 3[R x9)]o0s ™2 4, )]sin 2] [76]

I=l
where {1} is the loading term, and Pi(x,y) are the loading interpolation functions.

Assuming that the beam is held at z=0 and z=a so that displacements do not occur in
the x-y directions and unrestricted motion is permitted in the z direction, the
following displacement functions are obtained from equation 7.5.

u= [N,,Nz,NJ]sin%{ui ¥

v= [N,,Nz,Nslsin%{vi}c

w=[N,,N2,N3]cos%{wi}e [7.7]

Displacements in the x, y, z directions are given by u, v, and w, respectively. For
linear triangular elements the shape functions are:

a, +bx+c,y

Nl
2A
N, = a, +b,x+c,y
2A
N. =2 +b,x+c,y [7.8]

3 2A
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where A is the area of the triangle and a;, b, and c; are constants of the shape
functions calculated with the following relations:

a1 = X2y3 - x3y2 a2 = Xay1 - x1y3 a3 = x1y2 - X2y1
b1 = yzry; b2=y3-y1 by=y1-y2
C1=X3-X2 C2=X1-X3 C3I=x2-X1

where x, y, and z are the global coordinates of the three nodes of the triangular
element. The next step is to incorporate equation 7.5 into the stiffness matrix. A
typical elemental stiffness matrix can be represented as follows:

[ks]' =w [B:]"[D]B, Jaxdydz [7.9]

where [k]e is the element stiffness matrix. The constitutive relation is given by [D]
and contains the elastic moduli as shown in the following matrix:

[1-v v ] 0 0
v 1l=-v v 0 0 0
v v l-v l 02 0 0
E —<V
D)= 6 0 0 0 0 7.10
[D] (1+v)1-2v) | 2 1—9v [7.10]
0 0 0 0 > 0
~ 1-2v
0 0 0 0 0
| 2 ]
The element displacements and strains are related by [B] as follows:
{e} = (BI5})" 7.11]

where [B] is given by the following matrix:
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Substituting the displacement functions of equations 7.7 into equation 7.12 gives:
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[' b,y 0 0
0 C;Y 0
n
0 0 -N;—vy
a
[83]= CyY b,y 0 [7.13}
n .
0 N, ;“P C;¢
T
N;—o 0 b,o
| “a
where Y= sin 2 and i) =cos 22
a a

To solve equation 7.9, the matrices are multiplied then integrated. After the
multiplication, sin? and cos? terms remain, where the integrals are equal to:

[sin? 24z = 2

o a 2

feos® PZaz=2 [7.14)
a 2

In addition to the trigonometric terms, there are linear terms of the shape function
that need to be integrated. An example of this integration is as follows:

[N, dxdy = {f @, +b,x +c,y)dxdy [7.15]

A A

Assuming that for each element the origin of the coordinates of the triangular
element is taken at the centroid, then integrating over the triangle area gives:

[[ xdxdy = [[ ydxdy =0 [7.16]

A A
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Substituting equation 7.16 into 7.15 gives:

[[(a, +b,x+c,y)dxdy =a, [7.17]

The entire stiffness matrix is not shown here, however all the terms are given in
Appendix E.

Mass Matrix: An elemental mass matrix can be represented as follows:
[M,] = JI . T of N, pixayez (718
v

The element mass matrix is [M]e, and the shape functions are [Ni] and [Nj].
Multiplication of the shape functions shown in equations 7.18 gives the following
mass matrix:

[Ny O 0 7

0 Ny O

0 0 Npo

N,y 0 0
[NI'=| 0 N,y o [7.19]

0 0 N,o

Nyy O 0

0 Ny O

| 0 0 N;p|

Ny O 0 N,y o0 0 N,y 0 0

[N]J=f 0 Ny O 0 N,y O 0 Ny O [7.20]

0 0 Ne 0O 0 No 0 0 Ny



[M,]=

[M]=

[N[]e =[M| | M, | Ms]

[ N2y?2 ]
0 Niy?
0 0

N,N,y?2 0
0 N,N,y?
0 0

N,N,y? 0
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where v? =sin’ 22 and ¢? =cos* 2
a a

The solutions to the trigonometric integrals given in equation 7.14 are used to
integrate the mass matrix. The following relationship is used to integrate the shape
functions:

HNidexdy=%A wheni=j
v

HNidexdy=-l%A wheni=j [7.22]
v

These results can be proven by using the following integration formula for a
triangle. The origin of the coordinate system of the triangle is taken at the centroid
of the triangle:

xi+x,-+xk yi+yj+yk
3 - 3

=0

where x and y are the coordinates of the three nodes with respect to the centroid of
the triangle. Then:

_gxzdxdy = %(xf +x7 + xi)
j:;[y’dxdy =%(y? +yi +yi)

IIxdedy=%(xiYi +X;y; +xk)’k) [7.23]
v
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Equations 7.23 can be used to prove equations 7.22. From these results the element
mass matrix becomes:

(Lo 0oL o o L g o
6 2 12
0 - 0 0 — 0 0 -~ o
6 12 12
0o 0 - 0 0o L o o L
: 6 12 12
= 0 0 - 0 0 L o o
12 6 2
a
MI'=A-{0 — 0 0 - 0 0 — o0 7.24
MI=4710 3 6 12 [7-24]
0 o 0 0 + 0o o L
) 12 6 12
= 0 0 0o 0o 1 o o
2 12 6
0 — 0 0 — 0 0 — 0
2 12 6
0 0 — 0 0 — 0 0 -
! 12 12 6

Method of Solution: A program code was written in the C language to perform the
finite element analysis. The first step was to calculate the stiffness and mass matrices
for all the triangular elements. After calculating the element matrices, they were
then assembled into the global stiffness and mass matrices. The global stiffness and
mass matrices were saved to a data file and imported into MathCAD to calculate the
eigenvalues. A flowchart outlining the method of calculation is shown in Figure 7.8.
The C code used to calculate the global matrices and the MathCAD file (Mathgram
7.1) used to find the eigenvalues are given in Appendix E.

There are two ways of calculating a dispersion curve: either assume a frequency and
solve for the corresponding wavenumber or assume a wavenumber and solve for
the frequency. The latter approach is used for the following calculations. The one-
half wavelength, a, is chosen and the frequencies at which the different modes occur
are calculated. The variable 'a’ is equal to the length of the bar and also equal to V2 of
the wavelength of the propagating wave in the z direction. By changing the variable
'a' in the displacement functions of equation 7.7, the length of the bar is altered to
determine the steady-state mode of vibration for a particular wavelength (or
wavenumber).
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7.3 Theoretical Dispersion Curves and End Resonances in Beams

The finite element model is used to develop an understanding of the vibrational
modes that exist in beams and as a comparison for the experimental dispersion
measurements. Prior to the experimental measurements, the finite element model is
used to make dispersion calculations for homogeneous isotropic square concrete
and cement beams. The elastic constants used for the concrete beam are a
compression wave velocity of 4600 m/s, a shear wave velocity of 2820 m/s, and a
Poisson's ratio of 0.23. For the cement beam, the compression wave velocity is 3910
m/s, the shear wave velocity of 2010 m/s and the Poisson's ratio is 0.27. Body wave
velocities were measured on the concrete and cement beams.

Generally, the size of the finite element should be one tenth of the shortest
propagating wavelength (Lin and Sansalone, 1992). The cross-section of the beam is
152.4 x 152.4 mm? and length is 1219.2 mm. To calculate dispersion curves for the
concrete and cement beams, the cross-section is discretized into 128 triangular
elements. The average length of each element is 12.5 mm, which translates into a
wavenumber of 80 1/m; therefore, high accuracy can be expected up to a
wavenumber of 8 1/m.

Phase velocities for the first longitudinal and flexural modes calculated with the
finite element model approach the Rayleigh wave velocity of 2580 m/s at high
frequencies. These velocities are compared with the Rayleigh wave velocity
calculated using equation 2.27 and are found to be accurate within 4% up to a
wavenumber of 20 1/m, as shown in Figure 7.9. Error will increase for higher
modes, where frequencies are higher and wavelengths are shorter. Better resolution
for higher modes of vibration can be obtained by using higher order triangular
elements. '

The dispersion curves for the first ten vibrational modes of the concrete beam are
shown in Figures 7.10 and 7.11. For cement beams, the first ten modes are shown in
Figures 7.12 and 7.13. Mode shapes for the concrete beam are shown in Figures 7.14
to 7.15.

Notwithstanding the type of impact, the beam will always dissipate energy in both
the first flexural and longitudinal modes (the fundamental modes). The generation
of the torsional or higher modes is dependent on the source. Furthermore, the
measurement of the various vibrational modes is dependent on the orientation and
location of the receiver. In the following experiments, only the vertical accelerations
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are measured. Therefore, there is an increased sensitivity to flexural modes as
opposed to the torsional or longitudinal modes.

Another important feature of beams is the formation of end resonances. In
experiments with circular rods by Hudson (1943) and Oliver (1957), large
displacements occur near the ends of the rod. Coupled reflections of fundamental
modes from the free end of the rod produce high amplitude vibrations that decay
exponentially from the free surface. Additional analysis showed that end mode
resonances are related to the imaginary portion of the frequency spectrum
(McNiven, 1961). To avoid complications from end mode resonances, the following
experimental measurements are made away from the ends of the beam.

7.4 Description of Experimental Measurements with Concrete and Cement Beams

The main objective of the experimental measurements on concrete and cement
beams is to develop an understanding of Rayleigh wave propagation in this type of
geometry and material, as well as examining the Rayleigh wave/ fracture interaction
in beam elements. The initial step is to verify Rayleigh wave motion in a beam with
a square cross section. After establishing the conditions whereby Rayleigh waves are
generated, additional measurements are done to examine the effect of a slot on a
propagating Rayleigh wave. Two different test configurations are applied. In the
first set of experiments the source is located in front of the slot, whereas the receiver
measurements are made behind the slot. The second set of experiments consist of
half the receiver measurements made on either side of the slot. All receiver
measurements are converted into the frequency-wavenumber domain, as discussed
in section 3.3. Similar to work presented in previous chapters, the energy density
and phase velocity of the Rayleigh wave are the main characteristics studied.

A dimensional analysis is performed for the dispersion measurements where a slot
is cut into the concrete beam. This analysis is similar to the one given in section 5.3
of Chapter 5. The dimensions of the beam, geometry of the test configuration and
wavelengths of the propagating Rayleigh wave are taken in account. Variables used
in the dimensional analysis are specified in Figure 7.16 and defined in Table 7.1.
Dimensionless groups are interpreted in Table 7.2.

Test Procedure and Configuration: Four beams are fabricated, two composed of
concrete and two made of cement. The constituents of the concrete beam are
Portland cement (Type I), angular aggregate with a maximum dimension of 20 mm
and water (w/c=0.2). Cement beams are composed of Type I cement mixed with
water (w/c=0.5). The beams are 1219.2 mm (4') in length and have a cross-section
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dimension of 152.4 x 152.4 mm?2 (6" x 6"). All samples were cured in a fog room for 30
days. The source is a 4.76 mm (3/16”) diameter steel ball, dropped through a glass
tube from a height of 50 mm onto the edge of the beam. A series of 41 measurements
with an accelerometer is made. The spacing between measurements is 12.7 mm for a
total array length of 508 mm. All the characteristics of this array are described in
detail in section 3.3 of Chapter 3. Time-acceleration measurements are recorded with
an oscilloscope and downloaded onto a personal computer for signal processing.
The trigger for these measurements is another accelerometer mounted 3 mm behind
the source. The equipment used in these measurements is the same as previous
experiments. In all of the subsequent measurements the beams are simply supported
at the ends by metal rods.

Initial Measurements: There is no slot cut into the beams for these measurements.
Five receiver array measurements are made at different locations on both the
concrete and cement beams, as shown in Figure 7.17. The first three receiver
measurements are made at the same location, and the source is moved 101.6 mm
(4"), 203.2 mm (8") and 304.8 mm (12") away from the intended slot location. The
first receiver measurement is made 25.4 mm (1") behind the proposed slot location.
In the following two array measurements, the receivers are situated along the
middle side and top side of the beam as shown in Figure 7.17. The source is situated
along the top edge of the beam at a distance of 101.6 mm from the intended slot
location.

Concrete Test Series I (receiver array opposite the slot): The source is placed at
distances of 101.6 mm (4”), 203.2 mm (8”) and 304.8 mm (12”) in front of the slot. All
receiver measurements are made behind the slot, with the first measurement being
25.4 mm behind the slot. A diamond saw is used to cut a slot into the concrete beam.
Slot depths are increased at 12.7 mm (12”) intervals with the first slot depth at 12.7
mm and a final depth of 101.6 mm. The experimental setup for these measurements
is shown in Figure 7.18 and a list of all measurement configurations is given in Table
7.3.

The dimensionless groups in Figure 7.19 contrasts between pure Rayleigh wave
motion and the motion of the fundamental flexural and longitudinal modes in a
beam. Initial measurements on the concrete beam are used to determine maximum
and minimum wavelengths of the Rayleigh wave used in the dimensional analysis.
The longest wavelength is 762 mm and shortest wavelength is 43 mm.
Measurements are done in a region where both pure Rayleigh waves and
fundamental modes exist. Strong transmissions of energy past the slot are expected.
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The dimensionless groups shown in Figure 7.20 are used to explore the effect of slot
depth and source distance on the measurements. Many of the measurements are in a
region where low attenuation and strong transmission of energy past the slot is
expected. Some measurements are made in a region where high attenuation of short
wavelengths is anticipated. Again, maximum and minimum wavelen are 76.2
mm and 43 mm respectively.

Concrete Test Series II (receiver array straddling the slot): In these measurements
the source is placed 101.6 mm (4”) from the first receiver measurement. The first 20
time-acceleration measurements are made in front of the slot and 21 are recorded
behind the slot. The measurement locations are shown in Figure 7.21 and a list of all
measurements is given in Table 7.4.

The dimensionless analysis shown in Figure 7.19 also applies to this series of
measurements. The effect of source distance is shown in Figure 7.22. Low
attenuation and strong transmission of energy past the slot is predicted from these
measurements. Maximum and minimum wavelengths used in Figure 7.22 are 76.2
mm and 43 mm respectively.

Equipment: Receiver measurements are made with a PCB accelerometer (model
352A78), connected to a PCB amplifier (model 480B). The time history of vertical
accelerations is recorded with an oscilloscope (HP 85600A) and downloaded to a
desktop computer for signal processing with an HPIB interface. The trigger is a
Columbia Research accelerometer (model 1035) mounted on a retort stand slightly
behind the source. Both receiver and trigger accelerometers are affixed to the surface

with beeswax.

Source Characteristics: A series of measurements are made to determine the
appropriate source for the concrete and cement beams. Coherence measurements
are completed for three steel ball sizes: 3.18 mm (1/ 8"), 476 mm (3/16") and 6.35
mm (1/4”). The purpose is to determine the frequency range where high coherence
values are recorded to ensure linear behavior and proper signal to noise ratio. The
steel ball is dropped is dropped through a glass tube from a height of 50 mm at a
distance of 152 mm from the centerline of the beam. A set of twenty measurements
is made with the receiving accelerometer mounted 50 mm on either side of the
centerline. Coherence calculations are made between the two sets of receiver
measurements. Coherence is computed using equation 3.14 in Chapter 3.
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In the concrete beam, high coherence is measured between 11 to 69 kHz for the 3.18
mm ball; however, ringing of the accelerometer is observed at 63 kHz. Although this
ball size has a high coherence over a wide frequency range, approaching the
resonant frequency of the accelerometer usually results in nonlinear measurements.
The frequency range where high coherence is observed for the 4.76 mm ball is
between 12 and 50 kHz. For the 4.76 mm size, ringing in the accelerometer is
significantly reduced. High coherence measurements for the 6.35 mm ball are
between 10 and 20 kHz, considerably lower than for the other ball sizes. The most
suitable ball size is 4.76 mm. Coherence measurements for the three ball sizes are
shown in Figures 7.23 to 7.25.

The frequency range of high coherence is generally lower in the cement beam. High
coherence is observed between 10 and 40 kHz for the 3.18 mm size, as shown in
Figure 7.26. By increasing the ball size to 4.76 mm, the frequency range of high
coherence, as shown in Figure 7.27, is between 8 and 25 kHz. Figure 7.28 shows that
the high coherence frequency range for the 6.35 mm ball is between 10 and 15 kHz.
Ringing of the accelerometer is not apparent in these measurements, suggesting
higher attenuation. Although the 3.18 mm ball has the widest high coherence
frequency range, the 4.76 mm ball is also used for the measurements on the cement
beam. Due to the higher attenuation of the material, the energy from the 3.18 mm
ball is too weak for longer measurement distances.

Frequency-Wavenumber Plots: The format of the frequency-wavenumber plots is
similar to those given in previous chapters. A detailed description of the various
components of the plot can be found in section 3.3 of Chapter 3. All of the
theoretical dispersion curves calculated with the finite element method are shown
on the frequency-wavenumber plots. Solid lines are used for flexural modes, dotted
lines for longitudinal modes and dash-dot lines for other modes (see Figure 7.10 for
exact identification). Slot depths are indicated with a vertical dotted line, where the
slot depths correspond to the appropriate wavenumbers.

7.5 Initial Dispersion Measurements on Cement and Concrete Beams

Initial measurements are made on homogeneous and isotropic concrete and cement
beams, without a slot. The purpose of these measurements is threefold: a) establish
the presence of a Rayleigh wave, b) to verify dispersion calculations from the finite
element model and c) examine cement beams to determine the effect of aggregate on
the propagating Rayleigh wave. Theoretically, Rayleigh waves will propagate if the
wavelength is much smaller than the main thickness dimension of the beam element
(Chapter 2). This condition should be verifiable through both theoretical calculations
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and experimental measurement. A comparison of the finite element model results
with the measured data will provide corroboration of the finite element model. With
the identification of the Rayleigh wave and verification of the finite element model,
the effect of aggregate in concrete is examined by making dispersion measurements
on cement beams.

7.5.1 Observations from the Concrete Beam

Top Edge: Dispersion measurements made at 101.6 mm, 203.3 mm and 304.8 mm
distances from the intended slot location are shown in Figures 7.29 to 7.31. The
Rayleigh wave is observed in all three measurements. Observations show a clear
Rayleigh wave for wavelengths shorter than V2 the beam thickness, corresponding to
a wavenumber of 13.1 1/m and a frequency of 33 kHz. The shortest wavelength
Rayleigh wave is 43 mm at 60 kHz. Measured peaks compare well with the 2580
m/s calculated with the finite element model. Wavelengths longer than ¥: the beam
thickness can be differentiated into the first flexural or longitudinal modes.
Although less distinctive, similar observations are made for the energy traveling
from right to left through the receiver array.

The direct Rayleigh wave (direct wave traveling from left to right) becomes less
coherent as the source distance is increased. The Rayleigh wave is easily identified at
the 101.6 mm source distance becoming less distinct at the 304.8 mm source
distance. The opposite observations are made for Rayleigh waves traveling from
right to left (reflected from the end of the beam). Stronger reflected Rayleigh wave
energy is recorded for the 304.8 mm source distance than for the 101.6 mm source
distance. The reason for these results is unclear.

Higher modes of vibration are also observed in these dispersion measurements.
Cutoff frequencies are observed at 12.5 (third flexural), 17 (fourth flexural?), 25 (fifth
flexural?), 31 (sixth flexural?), 34 and 45 kHz. At low wavenumbers, peaks
correspond relatively well to higher mode flexural waves. The sixth flexural mode
calculated from finite elements compares well with the measured results in Figure
7.29 (101.6 mm source distance). The match is not perfect at higher frequencies,
probably because of errors in the finite element model at such short wavelengths. In
between the first and sixth modes, the peaks and theoretical calculations compare
relatively well at small wavenumbers. The higher mode vibrations are easily visible
at the 101.6 mm source distance, but are less distinctive for the 304.8 m source
distance.
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Middle Side: The dispersion measurement made along the middle side of the beam
is shown in Figure 7.32. The peaks do not clearly correspond to the fundamental
modes or higher flexural modes. The Rayleigh wave is not observed in this plot. This
result is consistent with previous observations because longest wavelength is less
than % the beam thickness.

Top Side: Although weaker than previous measurements, the Rayleigh wave is
easily identified in Figure 7.33. This result is also consistent with previous
measurements where the longest wavelength of the Rayleigh wave is less than ¥; the
beam thickness. A reflected Rayleigh wave is not recorded with these
measurements. Also, higher mode vibrations cannot be distinguished.

7.5.2 Observations from the Cement Beam

Top Edge: Measurements made along the top edge of the cement beam are shown in
Figures 7.34 to 7.36, for the 101.6 mm, 203.2 mm and 304.8 mm source distances,
respectively. Unlike the concrete measurements, the Rayleigh wave is scarcely
visible in these plots. Some Rayleigh wave energy is observed in Figures 7.34 and
7.36, at a wavenumber of approximately 13 1/m. A Rayleigh wave reflected from
the end of the beam is observed in Figure 7.34, again, at a wavenumber of 13 1/m.

In all the measurements, the fundamental flexural mode is observed at low
frequencies and wavenumbers. Higher flexural modes do not correspond well to the
measured peaks shown in Figures 7.30 (203.2 mm source distance) and 7.31 (304.8
mm source distance).

Middle Side: The measurement made along the middle side of the cement beam is
shown in Figure 7.37. A Rayleigh wave is not observed in this plot. Measured peaks
do not compare well to the calculated longitudinal or higher flexural modes.

Top Side: The measurements made along the top side of the beam are very similar
to the measurement made on the concrete beam, at the same location. As shown
Figure 7.38, there appears to be a Rayleigh wave at wavenumbers greater than 13
1/m. Higher modes of vibration are also visible and compare well with the
dispersion curves calculated using the finite element model.

7.5.3 Formation of Rayleigh Waves in Beams

In Chapter 3, the Rayleigh wave is defined in the context of the free surface of an
infinite half-space. By the addition of the two traction-free boundaries of an infinite
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plate, the Rayleigh wave is formed by the superposition of fundamental modes, in
the limit for decreasing wavelength (section 4.4). The following will show the
existence of a Rayleigh wave in a beam, formed by the superposition of the first
flexural and longitudinal modes. Results will validate both the dispersion
measurements and the finite element model.

The existence of a Rayleigh wave in a beam can be shown by using the same
approach applied by Victorov (1967) for the Rayleigh-Lamb equations (section 4.4).
The main assumption is that the Rayleigh wave is formed by the superposition of
the first flexural and longitudinal modes. By adding together the mode shapes
calculated by the finite element model, the results are compared to the theoretical
distribution of vertical and horizontal motions given for a Rayleigh wave
propagating in an infinite half-space (eqn. 2.32 and 2.33).

This comparison is made for wavenumbers between 7 to 17 1 /m as shown in Figure
7.39. Assuming a maximum wavelength of 76.2 mm (from initial measurements),
ratios for depth/2 become 1.88 to 0.78. The vertical and horizontal axes are identical
to those shown in Figure 2.4. The finite element results are not identical to the
closed-form solution because of the number and type of elements used in the model.
More elements, with higher order interpolation functions, are needed for a more
accurate comparison.

As the wavelength decreases, the vertical and horizontal motions of the finite
element model approach the motion of the Rayleigh wave in an infinite half-space.
These plots show a gradual progression in the formation of the Rayleigh wave. The
comparison between the finite element results and the closed-form solution indicate
that the Rayleigh wave forms at wavenumbers greater than 13 1/m (depth/1=1.0).

These findings can also be explained by examining Figure 7.40. This plot shows
phase velocity dispersion of the first flexural and longitudinal modes. Also shown
are the locations of various beam thicknesses on the dispersion curves. A criterion
for increased mode superposition is that two or more modes must travel at the same
phase velocity. At ¥; the beam thickness, the phase velocities for the first flexural
and longitudinal modes are almost the same and equal to the Rayleigh wave
velocity calculated with equation 2.27. However, Rayleigh wave formation is not
likely to occur below % the beam thickness because the fundamental modes have
diverging phase velocities.
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The dispersion measurements confirm the finite element results. A distinct Rayleigh
wave is not observed for wavenumbers smaller than 13 1/m. In addition, excellent
agreement is observed between measured and predicted Rayleigh wave velocities.

7.5.4 Beat Wavelength

From the previous discussion, the Rayleigh wave in a beam is formed urder similar
circumstances as in the Plexiglas sheet. Therefore, beat wavelength may also have an
effect on the measured dispersion. The one-half beat wavelength is computed using
equation 4.43. Calculations are given in Mathgram 7.2. and the results are shown in
Figure 7.41. The shortest one-half beat wavelength is approximately 1.5 m, between
10 and 15 kHz. The effect of this phenomenon is not significant because the shortest
distance is greater than the beam length.

7.5.5 Effect of Attenuation and Aggregate

The effect of attenuation is easily observed in the measurements made on the
concrete beam. Propagation modes clearly visible at the 101.6 mm source distance
are less distinctive at the 304.8 mm source distance. A similar effect could not be
determined from the measurements completed on the cement beams because
definitive propagation modes were not established. However, the lack of clear
propagation modes was only in part caused by attenuative properties of the cement.
After curing, spider web textures appeared on the wetted cement surface. Therefore,
in addition to high attenuation, these beams have a low material stiffness.

Because the measurements from the cement specimens are not conclusive, the effect
of aggregate cannot be accurately determined through these measurements.
However, measurements from the concrete beams appear to be affected by the
aggregate. In general, a medium with an internal scale filters wavelengths less than
twice the scale diameter. In this case, the shortest propagating wavelength is about
40 mm and the largest dimension aggregate in the mix is approximately 20 mm.
Additional measurements with different sources are needed to conclusively verify
this result.

7.6 Concrete Test Series I (receiver array opposite the slot)

This section describes the series of measurements with the source impact and
receiver measurements made on opposite sides of the slot. Frequency-wavenumber
plots are given for incrementally increasing slot depths. A description of the test
configuration is given in section 74. In the following description, only
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measurements for the 101.6 mm source distance are discussed. Although the results
for longer source distances are similar, these measurements are less coherent and
more difficult to interpret. Dispersion curves for the 203.2 and 304.8 mm source
distances are given in Appendix E.

Measurements With a Slot: Reduced energy of the Rayleigh wave is observed for
the 127 mm slot depth shown in Figure 7.42. The Rayleigh wave is observed
between wavenumbers of 12.5 to 18 1/m. When the slot depth is increased to 25.4
mm as shown in Figure 743, the Rayleigh wave is no longer visible. In all the
subsequent measurements, shown in Figures 7.44 to 7.49, the Rayleigh wave
traveling from left to right behind the slot is not visible. Conversely, the Rayleigh
wave reflected from the end of the plate (traveling right to left through the array) is
weakly observed for a wavenumber of 13 1/m in Figures 7.42 to 7.49.

Aside from the Rayleigh wave, other modes of vibrations are observed. A strong
direct and reflected first flexural mode is detected at wavenumbers below 5 1/m for
all slot depths. Higher modes are visible with cutoff frequencies at 12.5 (third
flexural), 17 (fourth flexural?), 25 (fifth flexural?), 31 (sixth flexural?), 34 and 45 kHz.
These modes become weaker with increasing slot depth but are easily visible for all
slot depths except for the 63.5 and 76.2 mm slot depths. Excluding the first flexural
mode, peaks observed in the reflection portion (traveling from right to left) of the
frequency-wavenumber plots cannot be accurately compared with dispersion curves
calculated with the finite element model.

The effect of increasing source distance is similar to the measurements made
without a slot. Direct propagating modes (traveling from left to right) become
weaker as the source distance is increased, indicating greater attenuation.
Conversely, the reflection energy increases as the source distance increases. Again,
the reason for- this occurrence in unclear. However, a relatively strong reflected
Rayleigh is measured behind the slot. For the deeper slots (88.9 mm and 101.6 mm),
wavelengths of the reflected Rayleigh wave are shorter than the slot depth,
indicating that fundamental modes are generated at the end of the beam.

7.7 Concrete Test Series II (receiver array straddling the slot)

The results presented in this section refer to experiments where half of the receiver
measurements are made on either side of the slot. Similar to measurements made in
the first test series, frequency-wavenumber plots are shown for increasing slot
depths. A detailed description of the test configuration and equipment is given in
section 7.4.



214

From the previous experiments done on the Plexiglas sheet, the reflected Rayleigh
wave could be used to determine the presence of the slot; however, the slot depth
could not be resolved. The main purpose of these experiments is to determine
whether Rayleigh wave reflected by the slot are measured. The ability to define slot
depth is not expected from these results because the previous experiments illustrate
that a Rayleigh wave is not observed behind the slot.

Measurement With and Without a Slot: The dispersion measurement shown in
Figure 7.50 is similar to the initial dispersion results obtained on a beam without a
slot, discussed in section 7.5. A Rayleigh wave is recorded for wavelengths greater
than 13 1/m. The first flexural mode is strong at low wavenumbers. Higher mode
vibrations are also measured, with peaks between the third and fourth flexural
modes and the fifth and sixth flexural modes. The reflected Rayleigh wave, traveling
from left to right, is weak.

Dispersion measurements made for slot depths between 12.7 mm and 101.6 mm are
given in Figures 7.51 to 7.58. The direct Rayleigh wave is visible up to a slot depth of
50.8 mm; at greater slot depths, peaks related to the Rayleigh wave energy become
weak and scattered. Energy of the reflected Rayleigh wave is strong up to a slot
depth of 76.2 mm. At greater depths the velocity of the Rayleigh wave appears to
decrease and there are fewer peaks. At low wavenumber and frequency, the first
flexural mode shows increasing dispersion as the slot depth is extended from 50.8
mm to 101.6 mm. A similar observation is made from the Plexiglas measurements.

These results do not explicitly illustrate the depth or location of the slot. The
reflected Rayleigh wave energy is lower with increasing slot depth, which is
contrary to the measurements made on the Plexiglas sheet. Blocking of wave energy
by deeper slots reduces the reflections from the end of the beam. This lowers the
reflected Rayleigh wave energy with increasing slot depth. Furthermore, it appears
that the Rayleigh wave reflected by the slot is very weak and with only 20 receiver
measurements in front of the slot, the signal of the reflected Rayleigh wave is lost.
However, the observed dispersion of the first flexural mode is similar to
observations made on the Plexiglas sheet.

7.8 Summary and Conclusions
In this chapter, methods and information gained from studying a two-dimensional

Plexiglas sheet are applied to a three-dimensional concrete beam. The measurement
configurations are identical; the only difference is the theoretical approach for the
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calculation of the dispersion curves. To calculate the dispersion curves for the
various modes of vibration in a beam, a finite element model is developed. Results
from the finite element model are compared to the Rayleigh wave velocity with an
accuracy of 4% up to a wavenumber of 20 1/m. Assuming a maximum wavelength
of 76.2 mm for the Rayleigh wave, this corresponds to a depth/A of 0.66. The finite
element solutions diverge at high frequencies and wavenumbers; therefore, future
work with this model should include incorporating triangular elements with higher
order interpolation functions to increase accuracy.

The theoretical dispersion curve calculated for the concrete beam has similar
characteristics to the Plexiglas dispersion relations. In the Plexiglas sheet, the
Rayleigh wave is generated by the superposition of the fundamental modes at short
wavelengths. The first flexural and longitudinal modes of the concrete beam
resemble the fundamental modes of the Plexiglas sheet. By adding short wavelength
mode shapes for the first flexural and longitudinal modes, a Rayleigh wave is
generated. The vertical and horizontal displacements of a Rayleigh wave in a beam
compare well with the displacement field of a Rayleigh wave in an infinite half-
space. Calculations of the displacement field from the finite element model
demonstrate that the correlation to the infinite half-space case is weak below a
wavenumber of 13 1/m (depth/1>1.0). These calculations aided verification of the
finite element model.

The results from the finite element model are also verified with initial measurements
made on the concrete beam without a slot. A Rayleigh wave is generally first
observed at a wavenumber of about 13 1/m (depth/A=1.0). Therefore, the
maximum depth of a pure Rayleigh wave is approximately half the concrete beam
thickness. :

The correspondence between the appearance of Rayleigh waves at wavelengths
shorter than 76 mm (depth/A<1.0) and the theoretical prediction of Rayleigh at a
wavenumber of 13 1/m (depth/1=1.0) suggests limits to the generation of a pure
Rayleigh wave. Below a wavenumber of 13 1/m (depth/A<1.0) the phase velocities
of the first flexural and longitudinal modes diverge. Although longer wavelength
flexural and longitudinal mode energy is available, a longer wavelength, pure
Rayleigh wave, is not formed. The formation of a Rayleigh wave is defined by the
wavelength, material properties and geometry.

From measurements done on the concrete beam with a slot, the Rayleigh wave is
generally not visible behind the slot. Only when the slot depth is 12.7 mm
(h/1=0.17) with a source distance of 101.6 mm (d/A=1.33) is the Rayleigh wave
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observed behind the slot. These results are contradictory to the measurements
completed on the Plexiglas sheet, where the Rayleigh wave is easily identified
behind the slot for most depths and source distances.

The reason for the weak Rayleigh wave lies in the material properties of the
concrete. To have strong superposition between the first flexural and longitudinal
modes, both propagation modes must have the same phase velocity and the
attenuation of the medium must be low. In both Plexiglas and concrete the
fundamental modes approach the Rayleigh wave velocity at short wavelengths.
Therefore, the phase velocities are close enough to produce a Rayleigh wave.
However, the material attenuation is much higher in concrete than in Plexiglas. This
results in a weak Rayleigh wave propagating along the surface of the concrete beam.

The direct Rayleigh wave arrival becomes weaker as the source distance is
increased. However, measurements show that the reflected Rayleigh is stronger as
the source distance increases. The same results are obtained in cases with and
without a slot. An explanation for these results is unavailable.

The effect of a weak Rayleigh wave is also observed in measurements where the
receiver array straddles the slot. Contrary to the measurements completed on the
Plexiglas sheet, the reflection energy of the Rayleigh wave decreases as the slot
depth increases. The Rayleigh wave reflected by the slot is weak, and with only 20
receiver measurements in front of the slot, the reflected Rayleigh wave is not
measured. One similarity is observed between the Plexiglas and concrete beam
experiments. In both cases the phase velocity of the first flexural mode decreases as
the slot depth increases. The slot lowered the cross-sectional area of the beam
thereby reducing the flexural stiffness.

There are several ways of improving these measurements. A different source should
be used that imparts more high frequency energy into the concrete beam. The
source should also be reproducible. Devices similar to Schmidt hammers exist, with
removable tips mounted with steel balls. Perhaps even very small explosions, such
as caps used in children's toys could be used. Another improvement is to vary the
receiver spacing to sample shorter wavelength energy. Conversely, a larger beam
could be used.

Geometry plays a role in the formation of Rayleigh waves. A simple square cross-
section was chosen for these experiments. The symmetry of this geometry can be
observed in the flexural modes of vibration shown in Figures 7.14 and 7.15. Two
flexural modes exist, one for each pair of parallel sides. Many beams have a
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rectangular geometry which creates two separate and different flexural modes. The
effect of such a geometry on the generation of Rayleigh waves needs further study.

Higher modes of vibration are measured and appear to be affected by the presence
of the slot. These higher modes are compared to higher flexural modes, but they
may not necessarily be flexural. In a previous measurement on the Plexiglas sheet,
reflections from the side of the plate are described as anharmonic modes. Perhaps a
similar phenomenon is occurring in this situation: reflections from the beam edges
producing evanescent modes (these are exponentially decaying edge modes and are
related to complex solutions of the eigenvalue problem). In either case, physical
characteristics of these modes may provide an additional method for fracture
detection in beams.
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Figure 7.1 - Comparison of experimental and theoretical thickness mode
(from Morse, 1950). The shear wave velocity is given by C,, 'a’' is the
thickness dimension and A is the wavelength. Width is not much larger
than thickness, resulting in partial agreement between theory and
experiment.
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Figure 7.2 - Comparison of experimental and theoretical width mode (from
Morse, 1950). The shear wave velocity is given by C;, 'd' is the depth dimension
and A is the wavelength. Excellent agreement between theory and experiment is
obtained when width is a number of times larger than thickness.
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Figure 7.10 - Dispersion curves for vibrational modes in a concrete beam.
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Figure 7.12 - Dispersion curves for vibrational modes in a cement beam.
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Figure 7.16 - Variables for dimensional analysis in a concrete beam.
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Name Variable Dimension
Wavelength A L
Wavenumber k L'
Circular K radeL'
Wavenumber
Frequency f T
Circular ® radeT"
Frequency
Velocity V- LT
Slot Depth h L
Slot Width w L
Source Distance d L
Depth t L
Width | L
Slot Angle [ rad (=90°)

Table 7.1 - A list of variables and corresponding dimensions for dimensional
analysis on a concrete beam.
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Dimensionless Physical Relationship
Groups

h - gives an indication of expected Rayleigh wave behavior during

A interaction with a slot. When h/A<<1, Rayleigh wave does not 'see’ the
slot, /h=1 the Rayleigh wave is both reflected and transmitted,
h/A>>1 the Rayleigh wave is reflected.

t - a measure of Rayleigh wave penetration depth. An indication of

A whether the half-space criterion is being violated i.e. vA<1.

d - examines the effect of distance on the wavelength components.

A

h - provides a measure of whether the defect can be accurately measured

d i.e. h/d<<] the defect may not be observed

h - indicates how much of the Rayleigh wave is being reflected i.e. when

t h/t=1 then all of the Rayleigh wave energy is reflected.

h - defines the geometry of the defect i.e. hY'w>>1 is a slot.

w

t - defines the cross sectional shape of the beam element.

z

Table 7.2 - A listing of relevant dimensionless groups.




Source Distance
101.6 mm
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Figure 7.17 - Locations of array measurements for initial tests.
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3043\ mm 203.2 mm
l— /’| 101.6 mm

H__L'k—lﬁi/ Receiving

Source Accelerometer
Locations  Slot

s e %

533 mm 686 mm

152.4 mm

_/1_52.4 mm

Figure 7.18 - Location of receiver array for measurements behind the siot.



Test Max. A Min. A d h t b4 w
‘ (mm) (mm) (mm) (mm) (mm) (mm) (mm)
1 76.2 43 101.6 0 152.4 152.4 6
2 76.2 43 101.6 12.7 152.4 152.4 6
3 76.2 43 101.6 25.4 152.4 152.4 6
4 76.2 43 101.6 38.1 152.4 1524 6
5 76.2 43 101.6 50.8 152.4 152.4 6
6 76.2 43 101.6 63.5 152.4 152.4 6
7 76.2 43 101.6 76.2 152.4 152.4 6
8 76.2 43 101.6 88.9 152.4 152.4 6
9 76.2 43 101.6 1016 152.4 152.4 6
10 76.2 43 203.2 0 152.4 152.4 6
1 76.2 43 203.2 12.7 1524 152.4 6
12 76.2 43 203.2 25.4 152.4 152.4 6
13 76.2 43 203.2 38.1 152.4 152.4 6
14 76.2 43 203.2 50.8 152.4 152.4 6
15 76.2 43 203.2 63.5 152.4 152.4 6
16 76.2 43 203.2 76.2 152.4 152.4 6
17 76.2 43 203.2 88.9 152.4 152.4 6
18 76.2 43 203.2 101.6 152.4 152.4 6
19 76.2 43 304.8 0 152.4 152.4 6
20 76.2 43 304.8 12.7 152.4 152.4 6
21 76.2 43 304.8 25.4 152.4 152.4 6
22 . 762 43 304.8 38.1 152.4 152.4 6
23 76.2 43 304.8 50.8 152.4 152.4 6
24 76.2 43 304.8 63.5 152.4 152.4 6
25 76.2 43 304.8 76.2 152.4 152.4 6
26 76.2 43 304.8 88.9 152.4 152.4 6
27 76.2 43 304.8 101.6 152.4 152.4 6

Table 7.3 - Dimensions for measurements made behind the slot of a

concrete beam.
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Receiving
Accelerometer Source
Slot Location
Location |
/ coeode é‘ ooe J
f 152.4 mm
U 101.6 mm
152.4 mm
533 mm 686 mm

Figure 7.21 - Test configuration for measurements straddling the siot.
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Test Max. | Min. | d h t z w
(mm) (mm) (mm) (mm) (mm) (mm) (mm)
1 76.2 43 101.6 0 152.4 152.4 6
2 76.2 43 1016 12.7 152.4 152.4 6
3 76.2 43 101.6 25.4 152.4 152.4 6
4 76.2 43 1016 38.1 152.4 152.4 6
5 76.2 43 1016 508 152.4 152.4 6
6 76.2 43 101.6 63.5 152.4 152.4 6
7 76.2 43 101.6 76.2 152.4 1524 6
8 76.2 43 1016 88.9 152.4 152.4 6
9 76.2 43 101.6 101.6 152.4 152.4 6

Table 7.4 - Dimensions for receiver array straddling the slot for a concrete

beam:.

242



243

"weaq 3)31ou0d e 10j jois Surppens
Ae11e 19413231 ‘adueysip 321n0s Surunuexe sonel ssajuotsuawi - gz 3By

/P
b GE € %4 4 S’ | S0 0
r ‘_H -_ﬁ 0
UoISSIWSUBI| puUB UCKOBYS r . ;
Wougco <==m_m + uois _E#__S 1 6upng ‘uonenyapy Jo.. -
10jS poys ] ¢ IS MOjjeYS
aoue)sip aco_ ‘Yi6usjgnem poys p oowa.m_u Hoys ‘yibuajaaem Guo
- . .. . . . .. B B T v.o
.“ |
| sjuawuadxe Aq | .
' § pauwexe uoibay ¢ | 90
| |
= o ooz
. o '] +
yibusjareps wnwiuiy w i i
yibuajerep wnwixeyy e B T™% - 1
o . N N ‘:q_ww_ewcaw‘vcwd. joagey [ ¢t
uojosyay buoss .cok.gco.i :91 uonenugle mo7
. .. | j0)sdeap L v L Joysdeap. ] ] bl
aoue)sip buo| ‘yibusjgrem poys aoueysip 6uo) ‘yjbusiaAem Buoj
e e e eI ST SO ORI SRS SUSUO l - @P
(1o1s Buyppens Kese 19a10931)

9Juelsig 921n0g Jo Jo8ye oY) Bulujwex soney x



Amplitude

Ampliticde

0.5

o

,A/\‘\Y,m/\ P
Loy W \h/\i

3.18 mm (1/8") Diameter Steel Ball Source

Power Spectral Density
06

4
PN

0 10 20 30 40 50 60 70 80
Frequency (kHz)
, Power Spectral Density

A

il

/\/\f/

0 10 20 30 40

S0 60 70 80
Frequency (kHz)

Coherence

L |

0 10 20 30 40 50

Frequency (kHz)

Figure 7.23 - Power spectral density and coherence measurements for a 3.175
mm steel ball on cement.
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Figure 7.24 - Power spectral density and coherence measurements for a 4.762
mm steel ball.
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Figure 7.25 - Power spectral density and coherence measurements for a 6.35
mm steel ball on cement.
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Figure 7.28 - Power spectral density and coherence measurements for a 6.35
mm steel ball on concrete.
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Figure 7.29 - Source distance is 101.6 mm, no slot. The direct
Rayleigh wave is easily visible as well as higher vibrational
modes.
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Figure 7.31 - Source distance is 304.8 mm, no slot. The direct
Rayleigh wave and higher vibrational modes are weaker.
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Figure 7.32 - Measurement along the middle-side. The Rayleigh
wave is not visible at this location.
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Figure 7.33 - Measurement along the top-side. The Rayleigh
wave is easily visible at this location.
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Rayleigh wave and higher modes are not easily distinguished.
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Figure 7.36 - Source distance is 304.8 mm, no slot. Weak energy
levels, no Rayleigh wave is measured at this location.
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Figure 7.42 - Source distance of 101.6 mm, with a 12.7 mm
slot. Direct and reflected Rayleigh waves are visible as well as
higher propagation modes.
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Chapter 8

Conclusions and Recommendations

The main objective of this investigation was to examine the potential of using
Rayleigh waves for near surface fracture detection. The selected approach involved
a series of steps, moving from two-dimensional to three-dimensional geometries.
First, the ideal behavior of a Rayleigh wave in an infinite half-space was examined
from a theoretical perspective. This was followed by developing an understanding
of Rayleigh wave motion in thin Plexiglas plates. Rayleigh wave dispersion and
energy density were studied in the frequency-wavenumber domain. Measured
results were confirmed with theoretical calculations using the Rayleigh-Lamb
frequency equations. The concept of mode superposition was discussed to explain
the formation of Rayleigh waves in plates. Slots were then introduced and their
effect on Rayleigh wave motion studied.

A commercial finite element package, ABAQUS, was used to further study the
Rayleigh wave/fracture interaction in thin plates. Elastic constants for Plexiglas
taken from cited literature were used in the finite element model. The model was
calibrated with experimental measurements completed on the Plexiglas sheets. A
series of models was then completed to examine vertical and horizontal motions at
different locations within the plate for various slot depths. Two-dimensional Fourier
transforms were again applied to these measurements to identify the Rayleigh wave
and other additional modes of vibration. These measurements were used to examine
the effect of the slot on the Rayleigh wave dispersion and energy density at depth
within the plate. The finite element models illustrated that the ability to measure the
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Rayleigh wave as well as other Lamb modes was dependent on both measurement
orientation and location.

The experimental complexity was further increased by examining Rayleigh
wave/ fracture interaction in concrete and cement beams with square cross-sections.
The introduction of a third dimension constrained the conditions whereby ideal
Rayleigh waves were formed. Also, additional vibrational modes were generated,
further complicating the frequency-wavenumber plots. A finite element code was
designed to calculate theoretical dispersion curves for a beam with a square cross-
section. The finite element model was verified by comparing the vertical and
horizontal displacement distributions of an ideal Rayleigh wave (solution for an
infinite half-space) to the finite element results. Measured and calculated Rayleigh
wave phase velocities were in agreement. Again, a series of measurements were
completed and transformed into the frequency-wavenumber domain. Slots were
then cut into the concrete beam to study the interaction of a Rayleigh wave with a
slot.

In the following sections conclusions derived from this work are explored. Also, a
number of recommendations are outlined to provide direction for future
investigations.

8.1 Conclusions

The following conclusions are divided into separate sections, each dealing with a
different aspect of this research.

Rayleigh Wave Formation:

* Wave propagation in thin plates is governed by the Rayleigh-Lamb frequency
equations. Superposition of the fundamental Lamb modes at high frequencies and
short wavelengths creates a Rayleigh wave. The characteristics of a Rayleigh wave in
a plate are identical to the Rayleigh wave formed in an infinite half-space.

* Similar to the plate, Rayleigh waves in a beam are formed by the superposition of
the first flexural and longitudinal modes at high frequencies and short wavelengths.
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Again, the characteristics of this Rayleigh wave are identical to the theoretical
derivation by Richart et al. (1970).

Effect of Geometry:

* Disregarding material properties, the only limiting factor in Rayleigh wave
formation is the wavelength. Dispersion curves of the fundamental modes in plates
and the first flexural and longitudinal modes in beams show that long wavelength
Rayleigh waves do not form. As the wavelength shortens, the wave motion moves
from quasi Rayleigh wave to an ideal Rayleigh wave. The vertical and horizontal
displacement distributions of a quasi Rayleigh wave is similar to a Rayleigh wave,
formed in an infinite half-space. Because the fundamental modes are slightly out of
phase, the quasi Rayleigh wave migrates between two free surfaces.

* In the Plexiglas plate, the maximum wavelength of the Rayleigh wave is 152.4 mm
(t/2=2.0). The maximum wavelength of the Rayleigh wave in the concrete beam is
about 76.2 mm (t/A=2.0). Even though longer wavelengths are present in the
concrete beam, they do not form a pure Rayleigh wave. In both cases an ideal
Rayleigh wave does not appear when t/1<2.0.

* To properly apply Rayleigh waves for nondestructive evaluation of other
structural elements, appropriate theoretical calculations must be performed to
determine the limit of ideal Rayleigh wave behavior. The finite element model
developed in Chapter 7 can be used to calculate Rayleigh wave formation in
structures such as concrete pipes (water mains or culverts) or steel girders (e.g. I-
beams). »

Effect of Material Properties:

* Strong Rayleigh wave motion is observed in the Plexiglas plate, whereas weaker
Rayleigh waves are measured on the concrete beam. With increased or reduced

attenuation, superposition will be either weaker or stronger, respectively.

* In reality, many different materials are used in infrastructure. Concrete mixtures
contain special ingredients to enhance certain properties such as durability and
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strength. Alternatively, composite laminates are investigated for structural
purposes. These different materials will affect Rayleigh wave formation and
propagation and must be taken into account.

Near Surface Fracture Detection with Rayleigh Waves:

* In the Plexiglas plate, measurements behind the slot illustrate that the slot blocks
the Rayleigh wave. Blocking occurs when the slot depth is greater than the
wavelength of the Rayleigh wave (i.e. h/A>1).

* A weaker Rayleigh wave forms behind the slot by mode converted Lamb waves.
When the slot depth approaches the penetration depth of the Rayleigh wave
(h/1=1), a weaker Rayleigh wave, with short wavelengths, forms behind the slot.

* Measurements where the slot is located in the middle of the receiver array
illustrated the presence of both Rayleigh wave reflections and transmissions. The
reflected Rayleigh wave becomes stronger, whereas the transmitted Rayleigh
weakens as the slot depth increases.

* The Rayleigh wave in the concrete beam is measured behind the 12.7 mm slot
(h/2=0.17 for A=76.2), but is not be observed for deeper slots. Higher attenuation
reduces the transmitted Rayleigh wave energy.

* When the slot in the concrete beam is in the middle of the receiver array, the slot
depth and location cannot be explicitly identified. Rayleigh wave reflections from
the slot are weak.

Using Finite Elements for Modeling Rayleigh Wave Propagation:

* The finite element model shows that Lamb wave energy transmitted past the slot
is mode converted into other Lamb modes. In the process, newly formed
fundamental Lamb modes generate a Rayleigh wave behind the slot. This Rayleigh
wave has two components; longer wavelengths that have passed the slot and
shorter wavelengths created by the newly converted fundamental Lamb modes.
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* The material modeled in this work is Plexiglas (poly methyl methacrylate), which
has viscoelastic properties. An attempt was made to use viscoelastic material
properties of Plexiglas cited in the literature, however the results did not compare
well with the experimental measurements. For this reason, average elastic constants
within the required frequency range, are used to model the Plexiglas behavior.
Reasonably accurate results are obtained with this approach.

Use of Array Measurements:

* Signal processing using the two-dimensional Fourier transform is an excellent
method for nondestructive testing. The main advantage of this approach is the
ability to differentiate between various modes of vibration created by an arbitrary
source. In these measurements the Rayleigh wave is easily identified. Furthermore,
energy density with respect to frequency and wavenumber provides additional
information.

* Increasing the number of measurements while keeping the same receiver spacing
refines the resolution, but also lengthens the array. Conversely, reducing the array
length by making fewer measurements and maintaining the receiver spacing
reduces the resolution. Ideally, measurements should obtain high resolution
information for the widest possible frequency-wavenumber spectrum, which is
achieved by having a small receiver spacing and a large array length.

* The only disadvantage of this method is the number of measurements required to
obtain a reliable frequency-wavenumber plot. In all experiments, 41 receiver
measurements are made covering a length of 508 mm. Using the experimental
methodology shown in this research, considerable time and effort would be needed
to investigate large structural elements.

Finite Element Dispersion Calculations for Beams:

* The results obtained from the finite element model compare well with
measurements completed on the concrete beam. However, Rayleigh wave phase
velocities calculated with finite elements are found to decrease at wavenumbers
greater than 20 1/m. Accuracy of the results are limited by the element dimensions
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and interpolation functions. To remedy this problem, triangular elements with
additional nodes incorporating higher order interpolation functions are needed.

* The finite element method has many advantages when developing a
nondestructive testing strategy. Preliminary investigations can provide details on
specific mode shapes and phase velocities useful for detecting an different
anomalies at various locations. :

Higher Propagating Modes:

* The higher modes measured in the plate and the beam have a few similar
characteristics. As the slot depth increases, the higher modes become slightly
weaker, but are still clearly visible. Also, the observed higher vibrational modes do
not follow a consecutive mode number scheme; rather they are dependent on the
measurement location and orientation.

8.2 Recommendations for Future Work

The previous discussion describes a number of conclusions related to the results and
implications of this work. The following discussion uses these findings to identify
areas of further research to improve this nondestructive testing methodology.
Furthermore, these recommendations are not limited to surface breaking fractures,
but can also be applied to the detection of any near surface anomaly.

Effect of Geometry: The effect of cross-sectional shape on the formation of Rayleigh
waves should be examined. The beam experiments study Rayleigh waves
propagating through a square cross-section. However, because of the geometric
symmetry, flexural modes in both thickness directions are identical. A beam with a
rectangular cross section has separate flexural modes for the two different thickness
directions. The formation of Rayleigh waves in rectangular cross-sections needs to
be examined.

Source Control: These experiments use a steel ball to generate a range of input
frequencies and wavetypes. To input more high frequency energy, a calibrated
source such as Schmidt hammer with interchangeable steel ball tips can be used. An
alternative approach is to use a transducer to produce a pure Rayleigh wave. Also, a
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piezocrystal source attached to a function generator could be used to control the
input frequency. Both methods can be used to generate particular wavelengths.

Alternate Receiver Array Configurations: The effect of different receiver array
configurations should be explored. In addition to changing the receiver spacing, the
effect of altering the number of measurements and total length of the receiver array
should be examined. In addition, the possibility of linking together multiple array
measurements should be studied. This would provide overlap between array
measurements and extending the array. Also, the efficiency of making array
measurements should be enhanced.

Finite Element Method for Calculating Dispersion Curves: The finite element code
used to calculate the theoretical dispersion curves for vibrational modes in beams
should be rewritten and extended. The model should incorporate higher order
triangular elements to increase the accuracy of the results for higher frequencies and
shorter wavelengths. In addition, complex eigenvalues should be calculated from
this model so that the impact of evanescent modes can be investigated. The ability to
predict and measure evanescent modes may provide additional data for
nondestructive evaluation.

Also, the results from the finite element model should be used to calculate accurate
mode shapes. This will help identify which modes are likely to be measured at
different locations on the beam. Measurement techniques can then be refined so that
different modes, in conjunction with Rayleigh waves, can be used to detect defects
at different locations.

Application of Higher Vibrational Modes: In measurements done on both plates
and beams, higher modes of vibration are observed in the frequency-wavenumber
plots. Although not the focus of this investigation, these higher modes potentially
can be used in conjunction with Rayleigh waves to develop a more comprehensive
nondestructive testing methodology.

Use of Evanescent Modes: The frequency-wavenumber plots on concrete beams
have many more peaks than can be adequately explained with the dispersion curves
calculated using the finite element model. Perhaps some of these peaks are
generated by evanescent modes. A beam has many traction-free surfaces that can
potentially generate evanescent modes.
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In the context of nondestructive testing, evanescent modes may provide additional
information for fracture detection. Registering the existence of evanescent modes at
locations away from a free edge may be used to indicate the presence of a fracture or
other near surface anomaly. Using this methodology requires the theoretical
calculation and measurement of these modes.
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MATHGRAM 3.1: Assembly and Windowing of Time Domain Data

DP -1000 k =0.DP-1 C =1 r=950.DP
{2-n-(r-950)*1

Hamming Window: C, =054 - 0.46~00le 100 - 1 iy

Import Time Domain Trace:  Inpl - READPRN( ctopl da,) Rl =Inpl, ,

Remove DC Component: Rlc = Rl - mean(R1)

Apply Window Function: Winl, = C-Rlc, Winlc = Winl - mean(Winl)
Window Function 5 T

]

Amplitude (volis)
o

2
: os| ]
<
|
| '5
0 [} 500 1000
Y _500 1000 Time (microseconds)
Time (microseconds) — Original T
~~ Windowed Trace

Import Temporary Storage File: A = READPRN ( test dat)

(This file contains all the data that was windowed in the time domain)

. . PR ¢
1 =0..40 J =0..999 n = 1000 DR =41 Ali.j '=Aj+i~n A2 = Al
2-mi
Hamming Window: C. =054+ 0.46-005( - n)
! DR -1
Apply Hamming window ASJ. i C Azj G
across spatial domain: ’ ’
Spatial Domain Window
T T T
- -
z
£
E osf- ~
0 1 1 1
0 10 20 30 40
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Mathgram 3.2: Calculation of Two Dimensional Fourier Transform

Input Data: A = READPRN (saver dat)

i=0.40 j =0.999 ii =0..200 i =0.1999 Al =0 Al =A
Optical Transform: A2, - (-l)“‘-‘i")-mﬁJii
2D FFT: A3 = cfR(A2)
M . - H 11
Calculate Magnitude: A4 = 2o-log[| * 1 A316€100,(100 - i§)2 + i ii - Cif - 100321 |
Extract Relevent Portion: AS = submatrix(Ad4, 0,200, 1000, 1150)
75 T
i
60~ - - - - L
45— e T T e e
|
30_ e e e = - e - - -——— . - o ————— e - - - - p—
]

-
64 72 80
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Mathgram 4.1: Lamb Wave Mode Shapes

Symmetric Modes:

Compression Wave C; =2362
Velocity:
Shear Wave C, =1372
Velocity:
Plate Thickness: b =0.1524
Frequency: o = 2-%x-20000
Wavenumber: £ = 100.579
[ o2 2 [ @ 2 2-b
a:|—-¢ a=85356ip - —- - B=41.559 y =0.200 inc = —
lc .2 ic .2 200
1 C C
e q-2
-E-B- - 1 .
Caiculate Constants: z:=- 2.5 Prcos(B-b) B -1 C - Z C =1.122-10°i

Vertical Motion:

Horizontal Motion:

Vertical Motion

(g2 - p*}-cos(ab)
Wsmy = -1-(-B-a-sin(a-(y-inc - b)) -~ C-&-sin(B-(y-inc - b)))

Wsml = if{Re {'Wsmv‘;to,Lm{Wsmy“: .Re (Wsmy))

.

Usm =i -(B-§-cos(a(yinc - b)) ~ C-B-cos(B-(y-inc - b)))

Usmly = if(Re (Usmy)-O, hn(Usm),) .Re (Usmy))

Honzontal Motion

Plate Thickness (-b,b)

Plate Thickness (-b,b)
I <

y
Amplitude
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Antisymmetric Modes:

Compression Wave C| =2362
Velocity:
Shear Wave C, =1372
Velocity:
Plate Thickness: b =-0.1524
Frequency: ® = 2-7-20000
Wavenumber: & - 100.614

.'l mz fi mz 2
a = l— —§2 a =85.397; B = —z -E B =41.643i

G iC2

.E-B-sin(B- 1 .
Calculate Constants: - ié st“'(p b) A=l D :— D=-1113-10°i
(2 - B?)-sin(a-b) 2z
y =0..200 inc = 2b
200

Vertical Motion: Wasm_ - -1-(A-a-cos(a-(y-inc - b)) + D-&-cos(B-(y-inc - b)))

» . / .
Wasml,, = if| (Re ( Wasmy/\lo s [m\‘Wasmy/\, .Re( Wasmy})

Horizontal Motion: Uasmy =i -(A-&-sin(a-(y-inc - b)) - D-B-sin(B-(y-inc - b)))

Uasle = if(Re (Usmy}co, Im-(Uasmy) ,Re (Uasmy‘)‘)

Vertical Motion Honzontal Motion

Plate Thickness (-b.h)
I «

Plate Thickness (-b,b)

Wasm 'y
Amplitude ' Amplitude
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Mathgram 6.1: Calculation of Rayleigh Damping Constants

Damping Ratio:

where:

For Plexiglas:

Mass = p0.0127-m-0.0127-m-

K = E-0.0127m

Therefore:

Damping becomes:

Assuming:

For Damping Ratio:

Ds— +

n, Mass Damping

n mo

2w 2

[k

n, Stiffness Damping Q-Jﬁ

k
E =62510°Pa P = 'zw_gs
m
00127 Mass =0.001229-kg

K =7.938-10" -kg-sec >

- 1K ©=2541-10° -sec’!
-/ Mass
n, s
D=——— - 1.271-10%n,
5.282:10°
n,=0 D=1.271-10°n,
D-L Q =20 from literature
2-Q
1
D:— D =0.025
2-Q
N, = —D n, =1.967-10"

2 27110°

Nvie

Frequency

element dimensions

=1.271-10° -sec

1
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Mathgram 6.2: Impact Duration of Steel Bearing on Plexiglas
(equations from Zukas et al., 1982 )

Mass of Bearing:

Mass of Plexiglas:

Poisson's ratio of Bearing:

Poisson’s ratio of Plexiglas:

Stiffness of Bearing:

Stiffness of Plexiglas:

my =1210%kg

mo =5.76-kg
I 1 3 ~1
Mz—+— M =8334-10" -kg
m m
1 2
vy =033
Vz = 0.33

E| =20010°Pa

E, = 6.09510°Pa

2 2
l1-v 1 1- V2
K| = Ky =
E n-E 5
Curvature effect
Radii of curvature for both Rim =1.5910%m R p = 15910 %m
axes of an ellipse:
l = . -S .
Cos 4 C,=79510" ‘m
.
Rim RiMm
1 1\
theta = acos|C | —— - —— theta =90 -deg
Rim R IM/ |
(from tables, Zukas et al., 1982) mm =10 r=10 s =20
C

16

1

n'=1.116:10° -kg-m *> -sec

-

w
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Travel time of ball a-=g d -0.0508m - 1_2;‘! tt =0.102-sec
down the tube ~ 3
Velocity at the _ - -1
time of impact v=an v =0.998-m-sec
2
s 3 -5
Impact duration ty =294 / —) ty, =5.247-10° -sec
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The following gives the terms of the element stiffness matrix.
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Variables for the element stiffnes matrix are defined in section 7.2.



// This program calculates the dispersion curves for a bar with an arbitrary cross-section

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PI 3.141592653589793
#define MAX(a,b) ((a)>=(b) ? (a):(b))

/! subroutine prototypes

void Input_Data ();

void Shape_Functions ();
void Mass_Matrices ();
void Stiffness_Matrices ();
void Assemble ();

void Cholesky ();

void Stan_Form ();

void Jacobi ();

/1 global variables

int INC_I[300];
int INC_J[300];
int INC_K[300];

double X_Cord[250];
double Y_Cord[250];
double X_Roid[300];
double Y_Roid[300];

double a[300][4];

double b[300]{4];

double c[300][4];

double Area[405];

double HK[10][10];

double Glob_M[600][600], Glob_K[600][600];
double Eig[600}[600];

double E, v, |, aa, bb, I, rho, SN, CS;

int NN, GN, NE;
FILE *fpl;

struct Element_Mass
{
double M[9][9];
} EMass[300];

// i component of the incidence list
// § component of the incidence list
// k component of the incidence list

// x coordinate of the node
/'y coordinate of the node

// shape function constants, centroid coordinates

// area of each element
//constitutive matrix
//global matrices



struct Element_Stiffness
{
double K[9][9];
} EStiff{300];

void main ()
{

inti;

Input_Data ();
Shape_Functions ();

Consitutive ();
Mass_Matrices ();
Stiffness_Matrices ();
Assemble ();

}

void Input_Data ()

char filename[20];

float xxx, yyy;
int i;

printf ("Enter Poisson's Ratio: \n");
gets (filename);
v = atof (filename);

1=1.0;

printf ("Enter Half Wavelength Dimension (lambda): \n");
gets (filename);

bb = atof (filename);

aa = 1/bb/2;

printf{"%f \n", aa);

SN = a2a/2.0;
CS = aa/2.0;

/! Input incidence list

printf ("Enter the incidence list filename: \n");
gets (filename);

fp1 = fopen (filename, "rt");

fscanf (fp1, "%d", &NE),

for (i=1; i<=NE,; i++)
{
fscanf (fpl, "%d”, &INC_I[i]);
fscanf (fpl, "%d", &INC_J[i]);
fscanf (fpl, "%d", &INC_KI[i]);



}

printf ("%d\n", NE);
for (i=1; i<=NE; i++) printf ("%d %d %d\n", INC_I[i), INC_J[i), INC_K{i));
fcloseall (),

/I Input nodal coordinates

printf ("Enter the nodal coordinate filename: \n");
gets (filename);

fp1 = fopen (filename, "rt");

fscanf (fpl, "%d", &NN);

GN =3*NN;

for (i=1; i<=NN; i++)
{
fscanf (fpl, "%f", &xxx);
fscanf (fpl, "%f", &yyy);
X_Cord[i] = xxx;
Y _Cord(i] = yyy;
X_Cordfi} /= 100.0,
Y_Cord[i} /= 100.0;
}

printf ("%d\n", NN);

for (i=1; i<=NN; i++) printf ("%f %f\n", X_Cord[i], Y_Cord[i]);
fcloseall ();

}

void Shape_Functions ()
{
int i;
double Tmp, Tmpl;
double XRI_Cord, XRJ_Cord, XRK_Cord, YRI_Cord, YRJ_Cord, YRK_Cord;

for (i=1; i<=NE; i++)
{
// Calculate Area

Tmp = X_Cord[INC_J[i]}*Y_Cord[INC_K([i]] + X_Cord[INC_I(i]]*Y_Cord[INC _J[i]] +
X_Cord[INC_KIi}]*Y_Cord[INC_I{i]];

Tmpl = X_Cord{INC_J[i]]*Y_Cord[INC_I[i]] + X_Cord[INC_K[i]]*Y_Cord[INC_J[i]] +
X_Cord[INC_I{i]]*Y_Cord[INC_KI[i]};

Area[i} = (Tmp - Tmp1)/2;

// Calculate Centroid

X_Roid[i} = (X_Cord[INC_I[i]]+X_Cord{INC_J{i]]+X_Cord[INC_K[i}}}/3;
Y_Roid[i] = (Y_Cord[INC_I[i]]+Y_Cord{INC_J[i]]+Y_Cord[INC_K[i]]V3;



/I Calculate Nodal Locations with respect to the centroid

XRI_Cord = X_Cord[INC_I[i]] - X_Roid[i];
XRJ_Cord = X_Cord[INC_J[i]] - X_Roid{i];
XRK_Cord = X_Cord[INC_KIi]] - X_Roid[i);

YRI_Cord = Y_Cord[INC_I[i]] - Y_Roid[i];
YRJ_Cord = Y_Cord[INC_J[i]] - Y_Roid[i);
YRK_Cord = Y_Cord[INC_K(i]] - Y_Roid[i];

/1 Caiculate the interpolation functions

afi}{1] = XRJ_Cord*YRK_Cord - XRK_Cord*YRJ_Cord:
afi])[2] = XRK_Cord*YRI_Cord - XRI_Cord*YRK_Cord;
a(i][3] = XRI_Cord*YRJ_Cord - XRJ_Cord*YRI_Cord;

bli][1] = YRJ_Cord - YRK_Cord;
bfi][2] = YRK_Cord - YRI_Cord;
bli]{3] = YRI_Cord - YRJ Cord;

cfij(1} = XRK_Cord - XRJ_Cord;
c[i][2] = XRI_Cord - XRK_Cord,;
c[i][3] = XRJ_Cord - XRI_Cord;
}

}

void Consitutive ()
{
int i, j;
double tmp;

for (i=1; i<=6; i++)
{
for (=1; j<=6; j++) HK([i](j] = 0.0;
}

tmp = 1.0;

HK[1](1] = tmp*(1-v);
HK[2]{2] = tmp*(1-v),
HK[3]{3] = tmp*(1-v);
HK[4]{4] = tmp*(1-2*v)/2.0;
HK[S][5] = tmp*(1-2*v)/2.0;
HK([6][6] = tmp*(1-2*v)/2.0;

HK([1](2] = tmp*®v;
HK[1][3] = tmp*®v;
HK[2]{1] = tmp*®v,
HK[2](3] = tmp*®v,
HK([3][1] = tmp*®v;
HK[3](2] = tmp*v,
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void Mass_Matrices ()
{
inti, j, k;
double N1_Sqd, N2_Sqd, N3_Sqd, NIN2, NIN3, N2N3;

// zero all the matrices

for (i=1; i<=NE; i++)
{
for (=1, j<=9; j++)
{
for (k=1; k<=9, k++) EMass[i].M[j][k] = 0.0;
}
}

for (i=1; i<=NE; i++)
{
N1_Sqd = 1.0/6.0;
N2_Sqd =1.0/6.0;
N3_Sqd = 1.0/6.0;

NIN2 = 1.0/12.0;
NIN3 = 1.0/12.0;
N2N3 =1.0/12.0;

EMass[i].M[1]{1] = N1_Sqd*SN;
EMass[i]. M[2][2] = N1_Sqd*SN;
EMass{i]. M[3][3] = N1_Sqd*CS;
EMass[i]. M[4]{4] = N2_Sqd*SN;
EMass[i].M[5][5) = N2_Sqd*SN;
EMass[i]. M[6][6] = N2_Sqd*CS;
EMass[i]. M[7][7] = N3_Sqd*SN;
EMass[i]. M[8][8] = N3_Sqd*SN;
EMass[i]. M[9][9] = N3_Sqd*CS;

EMass[i] M[4](1] = NIN2*SN;
EMass[i] M[5][2] = NIN2*SN;
EMass[i]. M[6][3] = NIN2*CS:;
EMass[i]. M[7][4] = N2N3*SN:
EMass{i] M[8][5] = N2N3*SN;
EMass[i]. M[9][6] = N2N3*CS;

EMass[i]. M[7](1] = NIN3*SN;
EMass[i) M[8][2] = NIN3*SN;
EMass{i] M[9][3] = NIN3*CS;

EMass[i] M[1]{4] = NIN2*SN;
EMass[i].M[2]){5] = NIN2*SN;
EMass[i]. M[3][6] = NIN2*CS;
EMass[i] M[4][7] = N2N3*SN;



EMass{i]. M[5][8] = N2N3*SN;
EMass[i]. M[6][9] = N2N3*CS;

EMass[i] M[1][7] = NIN3*SN;
EMass(i].M[2][8] = NIN3*SN;
EMass[i] M[3][9] = NIN3*CS;
}

}

void Stiffness_Matrices ()
{
inti, j, k;
double TMP, TMP1, TMP2;
double N1_Sqd, N2_Sqd, N3_Sqd, NIN2, NIN3, N2N3, N1, N2, N3;

// zero all the matrices

for (i=1; i<=NE; i++)
{
for (j=1; j<=9; j++)
{

for (k=1; k<=9; k++) EStiff[i]. K[j][k] = 0.0;
}
}

// calculate element stiffness matrices

for (i=1; i<=NE; i++)
{
N1 =a[i]{1};
N2 =a[i](2};
N3 =a[i](3];

N1_Sqd = NI*NI;
N2_Sqd = N2*N2;
N3_Sqd = N3*N3;

NIN2 =NI1*N2;
NIN3 =NI1*N3;
N2N3 = N2*N3;

TMP = b[i}[1]*b[i)[1]*SN*HK[1][1]*2a%aa;
TMP1 = c[i]{1]*c[i][1]*SN*HK[4][4]*aa*aa;

TMP2 = N1_Sqd*I*I*PI*PI*CS*HK[6}[6];

EStiff{i] K[1][1] = (TMP + TMP1 + TMP2)/(2a%aa);

TMP = c[i][1]*b[i][1]*SN*HK([2]({1];
TMP1 = c[i][1]*b[i}{1]*SN*HK[4][4];
EStifffi]. K[2]{1] = (TMP + TMP1);
EStffTi] K[1]{2] = EStifii]. K[2){1]);
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TMP = -1*N1*bi][1]*I*PL;
TMP1 = (SN*HK[3][1] - CS*HK[6][6]Vaa;
EStiffli]. K[3][1] = TMP*TMP];

EStifi[i]. K[1][3] = EStff{i). K[3](1);

TMP = bfi]{1)*b[i}[2]*SN*HK[1][1]*aa®aa;
TMP1 = c[iJ[1]*<[i][2]*SN*HK[4][4]*aa*2a;
TMP2 = NIN2*I*I*PI*PI*CS*HK[6][6];

EStiff{i] K[4][1] = (TMP + TMP1 + TMP2)/(aa*aa);
EStiff[i] K[1][4] = EStifi{i). K{4](1);

TMP = c[i][2]*b[i][1]*SN*HK[2][1]};
TMPI = c[i]{1]*b(i][2]* SN*HK[4][4};
EStiff[i].K[S][1] = (TMP + TMP1);
EStiff[i). K[1][5] = EStiff[i}. K[S][1];

TMP = N2*b[i][1]*SN*HK[3][1];
TMP1 = N1*b{i][2]*CS *HK[6][6];

EStiff[i). K[6][1] = I*PI*(TMP1 - TMP)/(aa);
EStifi[i] K[1][6] = EStiff[i]. K[6])[1];

TMP = bi][1]*b[i]{3]*SN*HK[1][1]*2a*aa;
TMPI = c[i][1]*c[i)[3]* SN*HK[4][4]*aa*2a;
TMP2 = NIN3*I*I1*PI*PI*CS *HK[6](6];
EStifii] K[7][1] = (TMP+TMP1+TMP2)/(aa*aa);
EStiff[i). K[1){7] = EStiff{i). K[7](1];

TMP = c[i][3]*b(i]{1]*SN*HK[2)(1};
TMP1 = c(i][1]*b[i]{3]*SN*HK[4][4);
EStiff[i]. K[8][1] = (TMP+TMP1);
ESuff[i]. K[1](8] = EStffi] K[8](1];

TMP = N3*b[i][1]*SN*HK[3][1];
TMP1 = N1*b[i][3]*CS*HK[6][6];
EStiff[i]. K[9][1] = I*PI*(TMP1 - TMP)/aa;
EStift[i] K[1][9] = EStiff[i]. K[9][1]);

TMP = cfi]{1]*c[i][1]*SN*HK[2][2]*aa*as;
TMP1 = b(i][1]*b[i][1]* SN*HK[4][4]*aa*aa;
TMP2 = NI_Sqd*I*I*PI*PI*CS*HK[5][5];
EStifffi] K[2][2] = (TMP+TMP1+TMP2)/(aa®aa);

TMP = -1*N1*c[i][1]*I*PL;
TMPI = SN*HK[3][2] - CS*HK[5][5};
EStiff[i]. K[3][2] = TMP*TMP1/aa;
EStiff[i]. K[2](3] = EStiff{i}.K[3][2];

TMP = b[i][2]*c[i][1]*SN*HK[1]{2];
TMP1 = bil[1]*c[i}[2]* SN*HK[4][4];
EStiff[i] K[4](2] = (TMP + TMPI);
EStifi[i).K[2][4] = EStiff[i).K[4)[2];



TMP = c[i][1]°c[i]{2]*SN*HK[2](2]*aa*as;
TMP1 = b{i]{1]*b{i]{2]* SN*HK[4][4]*a2*aa;
TMP2 = NIN2*1*I*PI*PI*CS*HK{5][5];

EStiff[i]. K[S][2] = (TMP+TMP1+TMP2)/(aa*2a);

EStiff[i].K[2](5] = EStifffi]. K{5][2);

TMP = N2*c[i}{1]*SN*HK[3]{2];
TMP1 = N1*c[i][2]*CS*HK[S){5];
EStiff[i] K[6][2] = 1*PI*(TMP1-TMP)/aa;
EStiffi).K[2][6] = EStiff[i).K[6][2];

TMP = bli][3]*c(i]{1]*SN*HK[1]{2];
TMP1 = b[i]{1]*c[i}[3]*SN*HK{4][4];
EStiff[i]. K[7][2] = (TMP+TMP1);
EStff[i]. K[2}{7] = EStifi[i] K[T}[2];

TMP = cfi][1])*c[i][3]*SN*HK[2][2]*aa*aa;
TMP1 = b[i]{1]*b[i][3]*SN*HK[4][4]*aa*aa;
TMP2 = NIN3*I*I*PI*PI*CS*HK[5](5);

EStfi[i]. K[8]{2] = (TMP+TMP1+TMP2)/(aa*aa);

EStiff]i). K[2][8] = EStiff{i}. K[8][2];

TMP = N3*c[i][1]*SN*HK([3]{2};
TMP1 = N1*c[i][3]*CS*HK[S][5];
EStiff[i). K[9]{2] = (TMP1-TMP)*1*PVaa;
ESuiff[i].K{2][9] = EStiff[i]. K[9](2];

TMP = N1_Sqd*I*I*PI*PI*SN*HK[3](3];
TMP1 = b[i][1]*b[i][1)*CS*HK[6][6])*aa*aa;
TMP2 = c[i]{1]*c[i]{1]*CS*HK[5][5]*aa*aa;

EStifffi] K[3][3] = (TMP+TMP1+TMP2)/(aa*aa);

TMP = N1*b[i][2]* SN*HK[1][3];
TMP1 = N2*b(i][1]*CS*HK[6][6);

EStiffi]. K[4][3] = -1*I*PI*(TMP-TMP1 Vaa;
EStiff[i].K{3][4] = EStiff[i] K[4](3];

TMP = N1*c{i][2]*SN*HK[2][3]);

TMP1 = N2*c[i}{1]*CS*HK[5](5};

EStfi[i]. K[S][3] = -1*1*PI*(TMP-TMP1)/aa;
EStiff[i).K[3](5] = EStififi) K[S]{3];

TMP = NIN2*I*I*PI*PI*SN*HK(3](3];
TMP1 = bi]}{1]*b[i)[2]*CS*HK[6][6]*aa*aa;
TMP?2 = cfi][1])*c[i][2]*CS*HK[S][5] *aa*aa;

EStifi[i] K[6][3] = (TMP+TMP1+TMP2)/(aa*aa);

EStiff{i].K[3][6] = EStiff[i). K[6){3];

TMP = N1*b[i]{3]*SN*HK[1](3]);
TMP1 = N3*b[ij[1]*CS*HKI[6])(6];
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EStiff[i]. K[7](3] = -1*I*PI*(TMP-TMP1)/ax;
ESuff{i]. K[3]{7] = EStiffi).K[7](3);

TMP = N1*c{i][3]*SN*HK[2](3];
TMP1 = N3*c[i][1]*CS*HK[5][5]:
EStiff]i]. K[8][3] = -1*I1*PI*(TMP-TMP1 Vaa:
EStiff[i]. K[3](8] = EStifi[i].K[8][3];

TMP = NIN3*I*I*PI*PI*SN*HK[3][3};
TMPI = b[i][1]*b[i][3]*CS*HK[6][6]*aa*aa;
TMP2 = c[i]{1]*c[i][3]*CS*HK[S][S]*aa*aa;

EStiff[i]. K[9][3] = (TMP+TMP1+TMP2)/(aa*aa);

EStiffi).K[3][9] = EStifi{i]. K[9][3];

TMP = bli}{2]*b{i]{2]*SN*HK[1]{1]*a2%as;
TMPI = c[i][2]*c[i]{2]*SN*HK[4][4]*2a*aa;
TMP2 = N2_Sqd*I*I*PI*PI*CS*HK[6][6]);

EStiff[i] K[4][4] = (TMP+TMP1+TMP2)/(aa*as):;

TMP = bi][2]*c[i][2]*SN*HK[2][1];
TMP1 = bfi]{2]*c(i)[2]* SN*HK[4][4];
EStiff{i].K[5][4] = (TMP+TMP1);
EStiffi]. K[4][S] = EStifi{i]. K[5])[4];

TMP = -1*N2*b[i][2]*I*PL;
TMP1 = (SN*HK([3](1]-CS*HK[6](6])/aa;
EStiff{i). K[6][4] = TMP*TMP1;

EStiff[i). K[4]{6] = EStiff[i] K[6][4];

TMP = b[i][2]*b(i])[3]*SN*HK[1][1]*aa*aa;
TMP! = c[i]{2]*c[i][3]* SN*HK[4][4]*aa*aa;
TMP2 = N2N3*[*I*PI*PI*CS*HK[6](6];

EStiff]i] K[7){4] = (TMP+TMP1+TMP2)/(aa*aa);

EStiff[i]. K[4][7] = EStiff{i). K[7](4];

TMP = b[i]{2]*c[i}[3]*SN*HK[2](1};
TMPI = bfi][3]*c[i][2]*SN*HK[4][4];
EStiff[i]. K[8][4] = (TMP+TMPI),
EStiff{i). K{4](8] = EStiff[i] K[8][4);

TMP = b[i][2]*N3*SN*HK[3][1];
TMPI = b(i]{3]*N2*CS*HK[6][6];

EStiffi] K[9][4] = -1*I*PI*(TMP-TMP1)/aa;
EStiff[i].K[4][9] = EStiff[i].K[9](4];

TMP = cfi]{2]*c[i][2]*SN*HK[2]{2]*aa*aa;
TMP! = bi][2]*b[i][2]*SN*HK[4][4]*aa*aa;
TMP2 = N2_Sqd*I*|*PI*PI*CS*HK[5][5]):

EStiff[i] K[5][5] = (TMP+TMP 1+TMP2)/(aa*aa);

TMP = -1*N2*c[i](2]*I*P];
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TMP1 = (SN*HK[3][2]-CS*HK[5][5]Vax;
EStiffi].K[6][5] = TMP*TMPI;
EStifi[i] K[5](6] = EStifii] K{6][5];

TMP = b[i][3]*c[i][2]*SN*HK[1][2];
TMPI = b[i}[2]*c[i][3]*SN*HK[4][4];
EStiff[i] K[7][5] = (TMP+TMP1);
EStifi[i) K[5][7] = EStiff[i]. K[7][5);

TMP = c[i][2]*c[i}[3]*SN*HK[2][2]*aa* 2a;
TMP1 = bfi][2]*b{i}{3]*SN*HK[4][4]*aa*aa;
TMP2 = N2N3*I*|*PI*PI*CS*HK[5][5];

EStifi]i] K[8][S] = (TMP+TMP1+TMP2)/(aa*aa);
EStifiTi). K[5][8] = EStiff[i). K[8](5];

TMP = N3*c[i]{2]*SN*HK[3][2];
TMPI1 = N2*c[i][3]*CS*HK[5){5];
EStiff[i]. K[9][5] = -1*I*PI*(TMP-TMP1)/aa;
EStiffi]. K[S)[9] = EStiff[i]. K[9](5];

TMP = N2_Sqd*I*I*PI*PI*SN*HK[3]{3];
TMP1 = b{i][2)*b[i}{2]*CS*HK[6][6] *aa®aa;
TMP2 = cfi][2]*¢[i][2]* CS*HK[5][5]*aa*aa;
EStiff[i].K[6][6] = (TMP+TMP1+TMP2)/(aa%aa);

TMP = N2*b(i)[3]*SN*HK[1](3];
TMP1 = N3*b{i])[2]*CS*HK[6][6];
EStiff[i).K[7][6] = -1°*I*PI*(TMP-TMP1)/aa;
EStiff[i] K[6](7] = ESuff[i].K[7](6};

TMP = N2*c[i][3]* SN*HK[2](3];
TMP1 = N3*c[i}[2]*CS*HK[5](5];
EStifi[i]. K[8](6] = I*PI*(TMP1 - TMP)/aa;
EStififi]. K[6][8] = EStiff[i). K[8][6];

TMP = N2N3*I*|*PI*PI*SN*HK[3](3];
TMP! = b[i][2]*b[i][3]*CS*HK[6][6]*aa*aa;
TMP2 = c[i][2]*¢[i){3]*CS*HK[5][5]*aa®aa;
EStiff[i]. K[9][6] = (TMP+TMP1+TMP2)/(2a*2a);
EStifffi] K[6][9] = EStiff[i). K[9](6];

TMP = b[i](3]*b(i][3]*SN*HK[1]{1]*22%as;
TMP! = cfi][3]*c[i}[3]* SN*HK[4][4]*aa*aa;
TMP2 = N3_Sqd*I*I*PI*PI*CS*HK(6](6]:
EStiff[i). K[7][7] = (TMP+TMP1+TMP2)/(aa*aa);

TMP = bli][3])*c[i}(3]*SN*HK[2](1};
TMP1 = b(i][3]*{i)[3]*SN*HK[4][4];
EStiff[i] K[8]{7] = (TMP+TMP1);
EStifi[i] K[7][8] = EStifi{i]. K[8](7];
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TMP = -1*N3*b[i][3]*I*PL;
TMP1 = SN*HK{[3][1] - CS*HK[6](6];
EStiff]i]. K[9]{7] = TMP*TMPV/aa;
ESuff[i].K(7][9] = EStiff[i].K[9][7];

TMP = c[i}[3]*c[i][3]*SN*HK[2][2]*aa*aa;
TMP! = b[i][3]*b[i]{3]* SN*HK[4]{4]*aa*aa;
TMP2 = N3_Sqd*I*I*PI*PI*CS*HK[5][S];
EStiffi] K[8][8] = (TMP+TMP1+TMP2)/(aa*aa):

TMP = N3*c[i][3]*I*PL;
TMPI = CS*HK[6){6])-SN*HK[3]){2];
EStiff[i]. K[9](8] = TMP*TMP1/aa:
EStiffi]. K[8][9] = EStiff[i]. K[9][8];

TMP = c[i][3]*c[i}{3]*CS*HK[5}{5]*aa*aa;
TMP1 = b[i}[3]*b[i}{3]*CS*HK[6][6]*aa*sa;
TMP2 = N3_Sqd*I*I*PI*PI*SN*HK[3][3];
EStiff]i].K[9][9] = (TMP+TMP1+TMP2)/(aa*aa);
}

}

void Assemble ()
{
char filename[20];
int i, j, k, Row, Col;
double tmp;

tmp = 2/(1-2%v);
// zero the global matrices

for =1, j<=GN; j++)

{

for (k=1; k<=GN; k++)
{
Glob_K[j]l[k] = 0.0;
Glob_M{j}[k] = 0.0;
}

}

for i=1; i<=NE; i++)
{
for (=1, j<=9, j++)
{

if G=1) Row = (INC_I[i] - 1)*3 + |;
else if (=2) Row = (INC_I[i] - 1)*3 + 2;
else if ==3) Row = INC_I[i]*3;

else if (j==4) Row = (INC_J[i] - 1)*3 +1;
else if (j==5) Row = (INC_J[i] - 1)*3 + 2;



else if j==6) Row = INC_I[i}*3;

else if =7) Row = (INC _K{[i] - 1)*3 + 1;
else if —38) Row = (INC_K[i] - 1)*3 +2;
else if (=9) Row = INC_K[i]*3;

for (k=1; k<=9; k++)
{
if (==1) Col = (INC_I[i] - 1)*3 + 1;
else if (k—2) Col = (INC_I[i] - 1)*3 + 2;
else if (k—=3) Col = INC_I[i]*3;

else if (k=—4) Col = (INC_J[i] - 1)*3 + I;
else if (k==5) Col = (INC_J[i] - 1)*3 + 2;
else if (k==6) Col = INC_J[i]*3;

else if (k==7) Col = (INC_K({i] - 1)*3 + 1;
else if (k==8) Col = (INC_K[i] - 1)*3 + 2;
else if (k=9) Col = INC_K[i}*3;

Glob_M[Row]{Col] += EMass{i]. M[j][k]* Area{i];
Glob_K[Row][Col] += (EStiff[i).K[j][k]*tmp)/(4* Area[i]);
}
}
}

// Output the data to a file

printf ("Enter Mass Matrix filename: \n");
gets (filename);
fp1= fopen(filename, "wt");
for j=1; j<=3*NN; j++)
{
for (k=1; k<=3*NN; k++) fprintf (fp1, "%10.20f ",Glob_M([j}(k]);
fprintf (fp1, "\n");
}

fcloseall Q;

printf ("Enter Stiffness Matrix filename: \n");

gets (filename);

fp1= fopen(filename, "wt");

for =1; j<=3*NN; j++)
{
for (k=1; k<=3*NN; k++) fprintf (fp1, “%10.20f *,Glob_K[j]{k]);
fprintf (fp1, "\n");

}
fcloseall (;
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Mathgram 7.1: Calculating Eigenvalues from Global

Stiffness and Mass Matrices

Import Data Files: M = READPRN{m2 dat)

Calculating Eigenvalues: Q - genvals(K,M)

K = READPRN(SZ dat)

i=0.110
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Wavenumber (1/m)

Source distance of 203.2 mm, 101.6 mm slot.
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Frequency (kHz)
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Concrete

Wavenumber (1/m)
Source distance of 304.8 mm, 12.7 mm slot.
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Wavenumber (1/m)
Source distance of 304.8 mm, 25.4 mm slot.
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Wavenumber (1/m)
Source distance of 304.8 mm, 38.1 mm slot.
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5 10 5 0 5 10 15
Wavenumber (1/m)
Source distance of 304.8 mm, 50.8 mm slot.
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20 15 10 5 0 5§ 10
Wavenumber (1/m)
Source distance of 304.8 mm, 63.5 mm slot.
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Wavenumber (1/m)
Source distance of 304.8 mm, 76.2 mm slot.
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Wavenumber (1/m)
Source distance of 304.8 mm, 88.9 mm slot.
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Concrete

15 10 5 0 5 10 | 15 20 25
Wavenumber (1/m)
Source distance of 304.8 mm, 101.6 mm slot.





