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Abstract

This thesis investigates the impact of fragmentation in the ownership of complementary

patents or patent thickets on firms’ market value. This question is motivated by the

increase in the patent ownership fragmentation following the pro-patent shifts in the US

since 1982. The first chapter uses panel data on patenting US manufacturing firms from

1979 to 1996, and estimates the impact of patent thickets on firms’ market value. I find

that patent thickets lower firms’ market value, and firms with a large patent portfolio size

experience a smaller negative effect from their thickets. Moreover, no systematic difference

exists in the impact of patent thickets on firms’ market value over time. The second chapter

extends this analysis to account for the indirect impacts of patent thickets on firms’ market

value. These indirect effects arise through the effects of patent thickets on firms’ R&D and

patenting activities. Using panel data on US manufacturing firms from 1979 to 1996, I

estimate the impact of patent thickets on market value, R&D, and patenting as well as the

impacts of R&D and patenting on market value. Employing these estimates, I determine

the direct, indirect, and total impacts of patent thickets on market value. I find that patent

thickets decrease firms’ market value, while I hold the firms R&D and patenting activities

constant. I find no evidence of a change in R&D due to patent thickets. However, there

is evidence of defensive patenting (an increase in patenting attributed to thickets), which

helps to reduce the direct negative impact of patent thickets on market value.

The data sets used in Chapters 1 and 2 have a number of missing observations on

regressors. The commonly used methods to manage missing observations are the listwise

deletion (complete case) and the indicator methods. Studies on the statistical properties of

these methods suggest a smaller bias using the listwise deletion method. Employing Monte

Carlo simulations, Chapter 3 examines the properties of these methods, and finds that

in some cases the listwise deletion estimates have larger biases than indicator estimates.

This finding suggests that interpreting estimates arrived at with either approach requires

caution.

Keywords: Innovation, Fragmentation, Market Value, Patent, Patent Thicket, R&D,

Spillovers, Missing Data, Unobserved Error Terms, Censored Regressors, Listwise Deletion,

Dummy Indicator
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Introduction

Economic growth is a key objective in economic policy. Accordingly, identifying factors

that contribute positively to growth is a central aim in economic analysis. The literature

suggests innovation as one of the major forces behind growth. For instance, Solow (1957)

finds that technological changes play an important role in economic growth, and Schum-

peter (1942) argues that innovation is a key factor, and the replacement of old ideas with

new ideas generates growth.

Patent systems play an important role in fostering innovation. Patents grant innovators

the right to prevent others from the unauthorized use of their innovation for a limited time.

Such rights promote innovation by allowing innovators to recover their costs and perhaps

experience profit. Patents also encourage innovation by disclosing knowledge via the pub-

lication of patent documents. All innovators are able to benefit from the public stock of

knowledge. However, knowledge spillovers can also lead to underinvestment in innovation

as innovators cannot reap all the benefits associated with their innovation (Nelson, 1959

and Arrow, 1962). Patents help promote innovation by capturing the positive knowledge

spillovers and alleviating the underinvestment in innovative activities.

However, despite the crucial roles that patents play in encouraging innovation and eco-

nomic growth, they may also have counter effects. Patent systems can grant a large number
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of patents, and generate a technology market with highly fragmented patent ownership.

Each subsequent (cumulative) innovator builds innovation upon a set of complementary

patents, owned by previous innovators. Shapiro (2001) refers to a set of complementary

patents faced by a subsequent innovator a “patent thicket.”Patent thickets require such

innovators to obtain permission from all the right holders in their thicket, before they can

commercialize their own innovation. In patent systems that lead to highly fragmented

technology markets, subsequent innovators are faced with dense patent thickets, which

means they have to deal with a large number of patent holders in their patent thicket.

The costs of dense patent thickets, which are discussed below, can act as a disincentive to

innovation.

The costs imposed on subsequent innovators by dense patent thickets arise from the

high licensing fees associated with the complement problem and double marginalization,

the transaction costs, and the possibility of hold-up and prolonged litigation, all explained

below. The origin of the complement problem goes back to Cournot (1838); he analyzed a

manufacturer of brass who needed two inputs: zinc and copper. He showed that the price of

brass is lower when the inputs are controlled by a single monopolist than when each input

is controlled by a separate monopolist. Shapiro (2001) illustrates the negative impacts of

fragmentation in patent ownership by applying the complement analysis of Cournot (1838)

to the case of intellectual property rights. Shapiro (2001) shows that in more fragmented

technology markets, subsequent innovators pay higher licensing fees because of the multiple

right holders in their thicket. In other words, these innovators pay higher licensing fees

when the complementary patents in their thicket are owned by multiple licensors than

when those patents are owned by only one licensor. The large licensing fees associated

with dense patent thickets can lead to underinvestment in subsequent innovation. This
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aspect is emphasized by Heller and Eisenberg (1998) for the biomedical sector. They

compare the underinvestment problem to the tragedy of commons, that is, the overuse of

resources.1 Arguing that the large number of intellectual property rights in the biomedical

sector leads to underuse of knowledge resources, they call this phenomenon “the tragedy

of anti-commons.”

Patent thickets are also costly due to increased double marginalization in fragmented

technology markets. The double marginalization problem refers to a vertical sequence of

monopolists in which a markup is charged on a markup (e.g., Varian, 2010, p. 492). In

the case of intellectual property rights, a subsequent innovator is a downstream monopolist

who needs to obtain licenses from a stream of upstream monopolists (the owners of existing

patents upon which the subsequent innovator’s own innovation builds upon or relies on).

This implies a double markup and increases the licensing fee for the subsequent innovator.

Another cost of dense patent thickets is the transaction cost for identifying and ne-

gotiating licenses for complementary patents (Shapiro, 2001). Due to the difficulty in

identification, firms often become aware of related existing patents only after making large

sunk investments into their own innovation process. The associated potential for both

hold-up and prolonged litigation discourages firms from investing in innovation.

Subsequent innovators in the current US patent system are experiencing dense patent

thickets, because of the huge number of patents and a high degree of fragmentation in

patent ownership. The story behind the current situation in the US patent system goes

back to the 1970s. In those years, there was a concern that United States’ technology had

fallen behind other industrialized countries (Meador, 1992). Thus, the United States Court

of Appeals for the Federal Circuit (CAFC) was established in 1982 (Gallini, 2002). Prior to

1Fishing grounds and clean water are examples of commons.
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this, patent disputes were solved in the appellate courts of various circuits that differed in

their interpretation of patent law (Jaffe and Lerner, 2007, p. 9). The CAFC helped unify

standards across circuits and granted stronger patent rights to patent holders in infringe-

ment lawsuits (Gallini, 2002). Therefore, the CAFC increased the benefits of obtaining

patents by strengthening patent rights. This situation created considerable incentives for

obtaining patents, and the pro-patent attitude of the CAFC led to a proliferation of patents

in the US economy (Jaffe and Lerner, 2007, p. 10). Jaffe and Lerner (2007, p. 11) argue

that the proliferation of patents was further intensified by the decision of Congress in the

early 1990s that changed the United States Patent and Trademark Office (USPTO) from

an agency funded by tax revenues to an agency funded by fees that the USPTO collects.

Thus, the USPTO also started to grant patents extensively, feeding the proliferation of

patents. According to Jaffe and Lerner (2007, p. 10) the large number of patents gener-

ated following the CAFC and the pro-patent shifts led to a considerable fragmentation of

patent ownership in the US technology market. This situation left subsequent innovators

to deal with dense patent thickets and their costs.

The current status of the US patent system has become an increasing concern in recent

years and has led to several proposals for amendments (e.g., the 2005, 2007, and 2009 Patent

Reform Acts). These proposals have created considerable debate. The reform supporters,

represented by the Coalition for Patent Fairness, argue that the resources used to cover

the costs of dense patent thickets would be better spent on job creation and innovation.2

Innovation Alliance, in contrast, argues that the reform would weaken patent rights, which

would decrease innovation and have a negative impact on US technology leadership at the

2DiMartino, David. Coalition for Patent Fairness “Members of Senate High-Tech Task Force Ask Senate
Judiciary Leadership Not to Weaken the Patent Reform Act of 2009”
(http://www.patentfairness.org/media/press/; last accessed 30 Sept. 2009 )
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global level.3 Both sides of this debate are represented in economic literature on patent

thickets. As discussed previously, Heller and Eisenberg (1998) and Shapiro (2001) argue

that dense patent thickets deter innovation. In contrast, Merges (2001) argues that firms

largely avoid potential problems induced by patent thickets via establishing institutions

such as patent pools in which to conduct their transactions with other right holders.4

These arguments are pointing to the fact that the US patent system is acting like a

double-edged sword. On the one hand, the system is promoting innovation by protecting

the rights of innovators, and on the other hand, it is hindering innovation by building

dense patent thickets. This situation indicates a need for analysis to determine whether

any reform is needed in the current US patent system, and to examine how negatively the

dense patent thickets, formed following the CAFC, impact the economy. Therefore, the

presence and the extent of damaging impacts caused by dense patent thickets constitute

an empirical question.

The purpose of Chapters 1 and 2 of my thesis is to quantify the economic consequences

of dense patent thickets. To do so, I consider the impact of such thickets on the market

outcome of firms, which is measured by market value. Ideally, I would find the impact of

patent thickets on firms’ economic profits. However, the available information deals with

business profits. Therefore, employing market value as a measure of firms’ market outcome

is a better proxy than business profit. The rationale behind the effect of patent thickets on

firms’ market value is that the potential costs of patent thickets might change the expected

earnings of firms, and thereby change their market value.

3Metz,Cade. The Register “Techies oppose US Patent reform bill”
(http://www.theregister.co.uk/2007/10/25/techies send letter to senate against patent reform bill/;
last accessed 25 Oct. 2007)

4According to Shapiro (2001), in a patent pool, one entity, who can be one of the patent holders, licenses
patents of two or more entities to third parties.
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In Chapter 1, I measure the impact of patent thickets on the market value of firms in

the manufacturing sector, assuming that the R&D and patenting behavior of firms do not

change with dense patent thickets. The sample of analysis is longitudinal data on 1,975

patenting publicly traded US manufacturing firms from 1976 to 1996. To my knowledge,

only Noel and Schankerman (2006), who focus on the software industry, have previously

examined the impacts of patent thickets on market value of firms. I instead examine these

impacts in the manufacturing sector. Moreover, I analyze the heterogeneous impact of

patent thickets on the market value of firms in terms of firms’ different patent portfolio

sizes, the different industries they belong to, and over time. As far as I am aware, no prior

study has analyzed these heterogeneities in the impact of patent thickets on firms’ market

value.

The results of Chapter 1 suggest that denser patent thickets decrease firms’ market

value, but patent thickets penalize market value of firms with a large patent portfolio size

less than other firms. This advantage is probably because a large patent portfolio size

increases such firms’ bargaining power in licensing negotiations, and lowers the risk of

hold-up. The other findings of Chapter 1 are that no systematic difference exists in the

impact of patent thickets on firms’ market value over time, and this finding even holds for

firms with a large patent portfolio size. The findings of this chapter can help policy makers

in devising appropriate patent policies. The smaller negative impact of fragmentation on

market value of firms with a large patent portfolio size signals to policy makers that the

current US patent system is encouraging aggressive patenting to counter the negative costs

of patent ownership fragmentation. This problem might divert the resources of firms from

R&D activities to legal activities aimed at obtaining patents on marginal innovation and

increasing the patent portfolio size of firms. In order to prevent the formation of incentives

6



for obtaining patents on marginal innovations, policy makers can change the requirements

for obtaining patents to decrease costs of patent thickets.

Chapter 2 extends the analysis of the first chapter by arguing that dense patent thickets

in highly fragmented technology markets could have two types of impacts: direct and

indirect. The direct impact is the effect of patent thickets on market value of firms,

while I hold all firms’ patenting and R&D behavior constant. This impact occurs because

the potential costs of patent thickets might lower the expected earnings of firms, and

consequently, lower their market value. Estimating the direct impact of patent thickets is

not sufficient to determine the effects of patent thickets, because patent thickets might also

change the behavior of firms in terms of their patenting and R&D activities, and the changes

in these activities could contribute to future earnings of firms and their market value.

Patent thickets may encourage defensive patenting (the increase in patenting attributed to

avoiding costs of thickets) in order to increase bargaining power in negotiations with other

right holders (Ziedonis, 2004). Patent thickets may also make firms reduce their reliance on

other firms’ innovations by increasing their own R&D expenditures. Hence, I estimate the

indirect impacts of patent thickets on market value through the likely effects that thickets

have on patenting and R&D activities of firms.

Moreover, in the second chapter of the thesis I evaluate the direct and indirect impacts

of other firms’ patent thickets (patent thicket spillovers) on the market value of a given

firm. The rationale behind the direct impact of patent thicket spillovers is that other firms

charge higher licensing fees from the given firm for using their innovation. They do so

because other firms are also faced with their own patent thicket and they want to cover

the costs of obtaining licenses for the complementary patents in their own patent thicket.

Therefore, higher licensing fees that other firms charge the given firm, due to the costs of
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their own patent thicket, lower expected profits and the market value of the given firm. I

also measure the potential indirect impacts of others’ patent thickets on the market value

of the given firm through the effects of others’ thickets on patenting and R&D activities

of the given firm. Other firms’ patent thickets could make those firms raise their R&D

and defensive patenting. It is often asserted that the R&D and patenting activities of

firms have positive spillover effects on one another. The changes in R&D and patenting

activities of the given firm due to positive spillovers from other firms will be reflected in

higher expected profits and the market value of the given firm.

To find the direct and indirect impacts of patent thickets and patent thicket spillovers

in Chapter 2, I estimate the impacts of patent thickets on three outcome variables: market

value, patent, and R&D as well as the impacts of R&D and patenting on market value, using

longitudinal data on 1,272 publicly traded US manufacturing firms from 1979 to 1996. To

my knowledge, only Noel and Schankerman (2006), who focused on the software industry,

have previously examined the impact of firms’ own patent thicket on these three outcome

variables. Then, after estimating the impact of patent thickets on the outcome variables

as well as the impacts of R&D and patenting on market value, I use these estimates to

determine the direct, indirect, and total impacts of patent thickets on firms’ market value.

To my knowledge, no prior study has quantified the indirect and total impacts of patent

thickets on firms’ market value as well as the impact that other firms’ patent thickets may

have on a firm’s market value or behavior.

My results suggest that firms’ own patent thicket and patent thicket spillovers have

direct negative impacts on the market value of firms. I also find that patent thickets and

their spillovers increase defensive patenting, but do not have a statistically significant ef-

fect on firms’ R&D activities. While defensive patenting alleviates the negative impact
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that patent thickets and their spillovers have on market value, the total impact of patent

thickets and their spillovers on firms’ market value is still negative. The findings of Chap-

ter 2 indicate to policy makers that the ongoing concerns and debates over the negative

economic impacts of patent thickets are valid. They also indicate that any consideration

of patent reforms, such as increasing the requirements for obtaining patents, must weigh

any potential benefits of lowering the costs of dense patent thickets against the negative

effects that making patenting harder might have on the incentives to innovate.

While I was working on Chapters 1 and 2, I noticed a large number of missing observa-

tions on some of the regressors. In the sample of each chapter, about 30% of observations

of R&D was missing. To handle this problem, the two common approaches employed by

the empirical research are either dropping the missing observations and using the resulting

complete sample (the listwise deletion method or LW), or adding an indicator variable for

missing observations of a regressor and replacing the missing observations with a constant

(the indicator method or DI). The dropping of the missing observations leads to loss of

information and lower variation in the data. Moreover, if the missing observations are not

missing at random, the LW method could lead to selection bias and inconsistent estimates,

since the employed complete sample becomes a non-representative sample from the original

population. Nevertheless, the DI method uses all the available information, including the

missing observations on regressors (Cohen and Cohen, 1975 and Chow, 1979), and avoids

selection bias in the estimates. The comparisons between the two methods indicate a need

for an analysis of the performance of these methods.

Only a few studies analyze the performance of the DI and LW methods in models with

censored regressors and regressors with missing observations. The findings of these studies

suggest a smaller bias from using the LW method (Rigobon and Stoker, 2007 and Jones,
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1996). Nevertheless, as has been observed by Jones (1996), the DI method is widely used

in empirical research in fields such as epidemiology, sample survey research, behavioral

science, and business and economics.

The common employment of the DI method in empirical studies implies that it is likely

that the bias in estimates of the DI method is smaller than the bias of the LW method.

To examine this question, Chapter 3 studies the case of when the missing observations

of a regressor are assumed to be correlated with unobserved error terms and the value of

the regressor. The reason for focusing on this type of missingness is that it reflects many

economic conditions, and further, the existing literature does not analyze the performance

of the DI and LW methods when missingness is dependent on unobserved error terms and

the value of a regressor. Therefore, this study seeks to fill this gap using Monte Carlo

simulations, and benefits all the different fields within the applied economics literature.

The results of Chapter 3 show conditions in which the bias of the LW method is

much bigger than the DI method, when the probability of missingness on a regressor is

dependent on unobserved error terms and values of the regressor. The results imply that

the recommendation of the existing literature for using the LW method is not supported

when missingness is dependent on unobserved error terms and the value of a regressor.

Therefore, the third chapter of my thesis indicates that the selection of one approach over

the other one and interpreting the estimates under each method require greater care than

what exists in the current literature and the applications which generally employ these

methods.
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Chapter 1

Patent Thicket and Market Value:

An Empirical Analysis

1.1 Introduction

The United States Court of Appeals for the Federal Circuit (CAFC) was established in 1982

to strengthen patent rights and unify standards across circuits.1 The establishment of the

CAFC and the subsequent pro-patent shifts in the United States Patent and Trademark

Office (USPTO) increased the benefits and ease of obtaining patents.2 These changes

1In the 1970s, there was a concern that the United States had fallen behind other industrialized countries
in terms of its technology (Meador, 1992). Thus, according to Gallini (2002), the CAFC was established to
efficiently deal with patent disputes. Prior to 1982, patent disputes were solved in the appellate courts of
various circuits that differed in their interpretation of patent law (Jaffe and Lerner, 2007, p. 9). The CAFC
helped unify standards across circuits and granted stronger patent rights to patent holders in infringement
lawsuits (Gallini, 2002). Therefore, the CAFC increased the benefits of obtaining patents by strengthening
patent rights.

2According to Jaffe and Lerner (2007, p. 11), the USPTO adopted a pro-patent attitude following the
decision of Congress in the early 1990s that changed the USPTO from an agency funded by tax revenues to
an agency funded by fees that the USPTO collects. Thus, the USPTO started to grant patents extensively.
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Figure 1.1: Total Number of Patents by Grant Year.

caused a proliferation of patents and a higher fragmentation of patent ownership in the

technology market (Jaffe and Lerner, 2007, p. 10). Figure 1.1 displays the upward trend of

patenting in the US from 1979 to 1996.3 The total number of patent applications granted

by the USPTO grew at an average annual rate of 2.2% from 1976 to 1985 and increased

to 5.8% from 1986 to 1996.

Highly fragmented technology markets result in dense patent thickets for subsequent

innovators. A subsequent (cumulative) innovator builds innovation upon a set of comple-

mentary patents, owned by previous innovators. Shapiro (2001) refers to a set of comple-

mentary patents faced by a subsequent innovator a “patent thicket.”Patent thickets require

such innovators to obtain permission from all the right holders in their thicket, before they

can commercialize their own innovation. In patent systems that lead to highly fragmented

3The original data is from 1975 to 2002. However, I limit the sample to 1979-1996 to avoid problems
associated with truncation in the data (For a more detailed explanation see Section 1.3 and Appendix
A.1).
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technology markets, subsequent innovators are faced with dense patent thickest, which

means they have to deal with a large number of patent holders in their patent thicket. The

large number of external patent holders in dense patent thickets leads to high costs, which

are discussed below.

The costs imposed on subsequent innovators by dense patent thickets arise from the

high licensing fees associated with the complement problem and double marginalization,

the transaction costs, and the possibility of hold-up and prolonged litigation, all explained

below. The origin of the complement problem goes back to Cournot (1838); he analyzed

a manufacturer of brass who needed two inputs: zinc and copper. He showed that the

price of brass is lower, when the inputs are controlled by a single monopolist than when

each input is controlled by a separate monopolist. Shapiro (2001) illustrates the negative

impacts of fragmentation in patent ownership by applying the complement analysis of

Cournot (1838) to the case of intellectual property rights. Shapiro (2001) shows subsequent

innovators in fragmented technology markets have to pay a considerable licensing fee due

to the presence of multiple right holders in their thicket. In other words, these innovators

pay higher licensing fees when the complementary patents in their thicket are owned by

multiple licensors than when the complementary patents are owned by only one licensor.

Consequently, the existence of separate licensors for complementary patents leads to higher

prices of final goods. Fragmentation in patent ownership therefore lowers both the licensors’

profits and consumers’ welfare.

Another potential consequence of patent thickets is underinvestment in subsequent in-

novation because subsequent innovators pay higher licensing fees when the ownership of

complementary patents in their patent thicket is fragmented. This aspect is emphasized

by Heller and Eisenberg (1998), who discuss the potential impacts of patent thickets on
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innovative activities in the biomedical sector, and compare the problem to the tragedy

of commons, that is, the overuse of resources.4 They argue that the large number of

intellectual property rights in the biomedical sector leads to underuse of knowledge re-

sources, because subsequent innovators should obtain permission from patent holders in

their thicket if they want to use the complementary patents. Heller and Eisenberg (1998)

call this phenomenon “the tragedy of anti-commons.”

Patent thickets are also costly due to increased double marginalization in fragmented

technology markets. The double marginalization problem refers to a vertical sequence

of monopolists in which a markup is charged on a markup (e.g., Varian, 2010, p.492). In

the case of intellectual property rights, a subsequent innovator is a downstream monopolist

who needs to obtain licenses from a stream of upstream monopolists (the owners of existing

patents upon which the subsequent innovator’s own innovation builds upon or relies on).

This implies a double markup and increases the licensing fee for the subsequent innovator.

Patent thickets also imply larger transaction costs for identifying and negotiating li-

censes for complementary patents (Shapiro, 2001). The difficulty in identification makes

the use of ex-ante solutions costly or even impossible.5 Firms often become aware of related

existing patents only after making large sunk investments in their own innovation process.

The associated potential for hold-up and litigation further discourages firms from investing

in manufacturing facilities and innovation.

This chapter evaluates the economic impact of fragmentation in the ownership of com-

plementary patents by estimating the effect of patent thickets on the market value of

4Fishing grounds and clean water are examples of commons.
5An example of an ex-ante solution is the formation of a patent pool. According to Shapiro (2001), in

a patent pool, one entity, who can be one of the patent holders, licenses patents of two or more entities to
third parties.
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firms. Costs of patent thickets, including large licensing fees, large transaction costs, and

the increased likelihood of being held-up can be expected to decrease future profits, and

consequently, lower the market value of firms. This further implies that firms become less

profitable, and this aspect might lower innovation.

Using panel data on 1,975 publicly traded US manufacturing firms from 1979 to 1996,

this chapter exploits firm level data over a relatively long time period. The analysis builds

on the methodologies developed in Griliches (1981) and Hall et al. (2005).6 To my knowl-

edge, the only other study that examines the impact of patent thickets on market value

is Noel and Schankerman (2006), who employ data from the US software industry. While

Noel and Schankerman use data over longer time period (1980-1999), they rely on a smaller

set of firms (121) specific to a single industry (the software industry). My analysis, in con-

trast, uses firm level data across a variety of manufacturing industries.7

To assess the impact of patent thickets on the market value of firms, I estimate a

nonlinear Tobin’s q equation. My results suggest that more fragmentation in the technology

market decreases the market value of firms. I also find that firms with a large patent

portfolio size are penalized less than other firms, probably because a larger patent portfolio

size increases their bargaining power in licensing negotiations and lowers the risk of the

hold-up problem. The likelihood of the hold-up problem for these firms might also be

lower since other firms in the thicket have an incentive to avoid possible future retaliations.

6My analysis expands the studies of Griliches (1981) and Hall et al. (2005), since it includes a measure
of fragmentation of patent ownership as a possible determinant of firms’ market value. In addition, the
samples of these studies have a shorter time span than my sample of analysis.

Griliches (1981) examines the impact of patenting and R&D on the market value of firms using a sample
of 157 large US firms from Compustat data for the period from 1968 to 1974. Hall et al. (2005) analyze
the driving factors of the market value of firms by examining the impact of patenting and patent citations
on the market value of firms. This study employs a non-linear model in a sample of 1982 patenting
manufacturing US firms from 1979 to 1988.

7Further, the measure of patent thicket in my analysis is different from that of Noel and Schankerman
(2006). For more explanation, see section 1.2.
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Further, I examine whether the effect of fragmentation changes over time and whether the

effect of fragmentation varies across industries. I relate these analyses to changes in patent

policies and differences in the nature of innovations across industries. The results show

that patent thickets do not have systematic time effects on firms’ market value, and this

finding holds even for firms with a large patent portfolio size. The other result is that the

impacts of patent thickets on firms’ market value are independent of industry.8

The prior empirical evidence on the effects of patent thickets, which is summarized in

Table 1.1, is mixed. Murray and Stern (2007) find only a modest anti-commons effect in

biomedical patenting. Walsh et al. (2005) perform a survey on 414 biomedical researchers

in universities, government, and non-profit institutions. They find that limited access to

intellectual property does not restrict biomedical research. Walsh et al. (2003) perform

70 interviews with personnel in universities, the biotechnology sector, and pharmaceutical

firms. According to their interviews, the anti-commons problem is manageable. Hall and

Ziedonis (2001) and Ziedonis (2004) examine the semiconductor industry, and find that

firms patent aggressively in more fragmented technology markets and that this effect is

more pronounced for capital-intensive firms.

The main contributions of my analysis are two-fold. First, I measure the impact of

patent thickets on the market value of firms in the manufacturing sector. As stated be-

forehand, Noel and Schankerman (2006), who focus on software industry, have previously

examined the impact of patent thickets on firms’ market value. I instead examine these

8Additionally, I find that market structure does not play a role in how the stock market values firms,
when I control for patent thicket effect. This result holds, when I also control for the effect of possible
heterogeneity at the firm level as a result of the patent portfolio size of firms, time, or both time and
patent portfolio size. The statistically insignificant impact of the market structure variable on the market
value remains robust, when I control for heterogeneity across industries at the firm level. According
to Lindenberg and Ross (1981), a possible explanation is that markets with high concentration do not
necessarily reflect market power, and consequently, the market structure has no impact on the market
value.
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Table 1.1: A Summary of Previous Findings in the Literature

Author Data Main finding
Murray and Stern 340 peer-reviewed They find only a
(2007) scientific articles modest anti-commons

from 1997 to 1999 effect exists in
(Observations= 1,688). biomedical patenting.

Noel and Schankerman Unbalanced panel of 121 Patent thickets have
(2006) US software firms statistically significant

from 1980 to 1999 negative impacts on Tobin’s
(Observations= 865). q in the software industry.

Hall et al. Unbalanced panel of Intangible assets of firms
(2005) 4,864 US publicly traded [measured by

manufacturing firms R&D-, patent-, and
from 1979 to 1988 citation intensities]
(Observations= 12,118). have statistically significant

positive impact on Tobin’s q.
Walsh et al. A survey on 414 They find that limited access
(2005) biomedical researchers in to intellectual property

universities, government, does not restrict
and non-profit institutions. biomedical research.

Ziedonis (2004) 67 US semiconductor firms Patent thickets have
from 1980 to 1994 statistically significant
(Observation= 667). positive effects on

the patent propensity of
semiconductor firms.

Walsh et al. 70 interviews with The anti-commons
(2003) personnel in universities, problem is manageable.

biotechnology sector,
and pharmaceutical firms.

Hall and Ziedonis 95 US semiconductor They find evidence of
(2001) firms from 1979 to 1995 positive impacts of

based on data collected patent thickets on
from interviews with patenting propensity
industry representatives of firms.
(Observation= 946).
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impacts in the manufacturing sector. Second, I analyze the heterogeneous impact of patent

thickets on the market value of firms in terms of firms’ different patent portfolio sizes, the

different industries they belong to, and over time. To my knowledge, no prior study has

evaluated these heterogeneities in the effect of patent thickets on market value.

1.2 Empirical Framework

The empirical model that I employ to assess the impacts of patent thickets on market

value of firms is based on Griliches (1981) and Hall et al. (2005). The general empirical

framework used in these studies is

logMarket V alueit = logSVit + σ logTAit + σ log

(
1 + γ

INAit

TAit

)
. (1.1)

The variable logMarket V alueit is the log of the market value of firm i in year t. Following

Hall et al. (2005), the market value of a firm is calculated as the sum of the current market

value of common and preferred stocks, long-term debt adjusted for inflation, and short-term

debts of the firm net of assets. In the analysis of Hall et al. (2005), the variable logSVit

includes time fixed effects (mt) and the error term (εit). The term εit denotes the other

factors that influence market value of firms. I assume that εit is additive, independently and

identically distributed across firms and over time, and serially uncorrelated. The variables

TAit and INAit are tangible and intangible assets, respectively. Their measurement is

discussed shortly. The coefficient γ is the shadow price of the intangible asset to tangible

asset ratio. Moving the variable TAit to the left-hand side in equation (1.1) allows left-
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hand side of this equation to be written as log
(

Market V alueit

TAit

)
or Tobin’s q.9 Equation

(1.1) then becomes

logqit = log

(
1 + γ

INAit

TAit

)
+mt + εit. (1.2)

Following Hall et al. (2005), the variable TAit is measured by the book value of firms

based on their balance sheet. The book value of a firm is calculated as the sum of net

plant and equipment, inventories, investments in unconsolidated subsidiaries, and intangi-

bles and others. All components of TAit are adjusted for inflation.10 INAit is measured

based on the approach of Hall et al. (2005), who measure the variable INAit with R&D in-

tensity (R&Dstockit/TAit), patent intensity (PATstockit/R&Dstockit), and citation yield

per patent or citation intensity (CITEstockit/PATstockit). The variables R&Dstockit,

PATstockit, and CITEstockit measure the stock of R&D, patents, and citations, respec-

tively. These variables are constructed based on a declining balance formula with the

depreciation rate of 15%.11 Hall et al. (2005) justify their method for measuring INAit

of a firm by arguing that the firm’s R&D expenditures show the intention of the firm to

innovate. The R&D expenditures might become successful and result in an innovation.

Patents of the firm catalogue the success of the innovative activity, and the importance of

each patent is measured by the number of times it is cited in subsequent patents. There-

fore, I employ R&D, patent, and citation intensities to measure INAit following Hall et

9The parameter σ is a scale factor in the value function. According to Hall et al. (2005) the assumption
of constant returns to scale with respect to assets usually holds in the cross-section. Thus, σ becomes one.

10Inflation adjustments are based on the CPI urban US index for 1992 (Source: http://www.bls.gov).
11Following Hall et al. (2005), the employed declining balance formula is Kt = (1−δ)Kt−1 +flowt. The

variables Kt and flowt stand for knowledge stock and knowledge flow at time t, respectively. I define the
initial stock of knowledge variables as the initial sample values of the knowledge variables similar to Noel
and Schankerman (2006). I select the parameter δ or depreciation rate equal to 15%. Most researchers
settled with this deprecation rate (Hall et al., 2000, 2005, and 2007). Hall and Mairesse (1995) show
experiments with different deprecation rates, and they conclude that changing the rate from 15% does not
make a difference. As a result, I select δ = 15%, and this selection assists in easy comparisons to previous
studies.
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al. (2005), and equation (1.2) becomes

logqit = log

(
1 + γ1

(
R&Dstock

TA

)
it

+ γ2

(
PATstock

R&Dstock

)
it

+ γ3

(
CITEstock

PATstock

)
it

)
+mt + εit. (1.3)

There is usually a difference between the application and grant date of patents. Out of

the patents applied close to the end date of the sample, only a small fraction is granted,

and the rest are granted outside the reach of the sample. This issue indicates truncation in

patent counts. Citation counts are also truncated. Truncations in citations happen since

only citations that occur within the sample are observable. I correct for these truncations.

As a result, the PATstockit and CITEstockit variables are built based upon patent and

citation counts, which are corrected for the truncation problems. See Appendix A.1 for a

more detailed analysis of correction procedures.

To estimate the impact of patent thicket on the market value of firms, I augment

equation (1.3) with the fragmentation index variable used by Ziedonis (2004). The mea-

surement of the fragmentation variable (logFit) is discussed shortly. To control for the

effects of market structure on market value, I also add the log of a Herfindahl index for

market structure (logHHIit) to equation (1.3). This results in the specification

logqit = log

(
1 + γ1

(
R&Dstock

TA

)
it

+ γ2

(
PATstock

R&Dstock

)
it

+ γ3

(
CITEstock

PATstock

)
it

)
+δ1 logFit + δ2 logHHIit +mt + εit. (1.4)

The variable HHIit is calculated using firm-level sales based on 4-digit SIC codes. Equation

(1.4) is estimated using a nonlinear least squares estimator.12

12There are several issues worth noting with respect to equation (1.4). I do not approximate
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Some firms might have a permanently higher market value than others due to omitted

firm specific effects.13 With the inclusion of the firm fixed effects, equation (1.4) becomes

logqit = log

(
1 + γ1

(
R&Dstock

TA

)
it

+ γ2

(
PATstock

R&Dstock

)
it

+ γ3

(
CITEstock

PATstock

)
it

)
+δ1 logFit + δ2 logHHIit + αi +mt + εit. (1.5)

Parameters αi capture firm unobserved heterogeneities. Following Bloom et al. (2005) and

Noel and Schankerman (2006), I replace the non-linear terms in equation (1.5) with series

expansions. Thus, equation (1.5) becomes

logqit = γ1 Ψ

(
log

(
R&Dstock

TA

)
it

)
+ γ2 Ω

(
log

(
PATstock

R&Dstock

)
it

)
+γ3 Γ

(
log

(
CITEstock

PATstock

)
it

)
+ δ1 logFit + δ2 logHHIit

+mt + αi + εit, (1.6)

where the parameters Ψ, Ω, and Γ denote the polynomials of the measures of intangible

assets. To avoid the omitted variable bias due to unobserved firm heterogeneities, I estimate

equation (1.6) using a within estimator for panel data. Estimates of equation (1.6) imply

that the fifth order polynomial is satisfactory. I do not consider the multiplicative terms of

the measures of intangible assets in equation (1.6), because including them do not change

the results.

log
(

1 + γ INAit

TAit

)
with

(
γ INAit

TAit

)
because such an approximation is correct only if the ratio of intan-

gible assets to tangible assets is very small. However, this ratio is large for high technology firms in the
manufacturing sector. The other issue is that I use contemporaneous R&D because, according to Hausman
et al. (1984), the within firm correlation of R&D over time is not large and many firms have short R&D
histories.

13For example, this could be the result of the stock of past innovations at the beginning of the sample,
or a better ability of absorbing external technologies for reasons that are not explained by independent
variables.

21



Hall et al. (2005) argue against including firm fixed effects in equation (1.6). They

indicate that an important factor that creates heterogeneity across firms is the difference in

their R&D expenditures, which implies R&D intensity is highly related to firms’ individual

characteristics. Therefore, controlling for firm fixed effects removes this source of difference

among firms and implies over-correction. Hall et al. (2005) further explain that the

explanatory variables are predetermined and changing very slowly over time, which require

the use of a first-differences estimator in order to obtain consistent estimates.14 However,

according to Griliches and Hausman (1984), a small measurement error could lead to a large

downward bias in first-differences estimates. Despite the argument in Hall et al. (2005)

against controlling for the firm unobserved heterogeneities, I estimate equation (1.6) as a

robustness check.

Equations (1.4) and (1.6) are employed as base models for estimation in Chapter 1.

To capture the heterogeneity of the impact of the patent thickets on the market value of

firms in terms of firms’ different patent portfolio sizes, the different industries they belong

to and over time, I will add relevant variables to equations (1.4) and (1.6).

A question I have not explored yet is measuring the extent of fragmentation in patent

ownership. I employ the fragmentation index used by Ziedonis (2004). This measure is

based on a normalized Herfindahl index, which is usually used for measuring the level of

competition in the market. The index is calculated using the formula

Fit = 1−
J∑

j=0

(
citeijt

citeit

)2

. (1.7)

14A predetermined or weakly exogenous variable is a variable that its current and lagged values are not
correlated with the current period error terms, but its future values might be correlated with the current
period error terms (Cameron and Trivedi, 2006, p. 748).
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The variable citeijt is the number of citations made by firm i in its patent documents to

the patents of firm j at time t.15 The variable citeit is the count of all the citations made

by firm i in year t. The index Fit is zero when all the citations are made to the patents of

one firm and one when every citation is to a patent of a different firm. Figure 1.2 displays

the change in the fragmentation index of a hypothetical firm as a function of the number

of external right holders that this firm cites, assuming that the total number of citations

made in the patents of this firm remains constant at 20.16,17

15Each citation made in a patent document is a reference to a complementary patent. In calculating the
fragmentation index for a firm, I do not consider citations made to the firm’s own patents or to expired
patents.

16Assuming the number of complementary patents or external right holders in the patent thicket of
the hypothetical firm is N, I plot Figure 1.2 making the following assumptions about the citations that
external right holders’ patents receive from the hypothetical firm: If N=1, the only right holder receives
all the citations and Fit = 0. If N=2, each of the right holders receives 10 citations to its patents and
Fit = 0.5. If N=4, each of them receives 5 citations and Fit = 0.75. If N=6, 5 of them receive 3 citations
and one of them receives 5 citations (Fit = 0.8). If N=8, 6 of them receive 3 citations and one of them
receives 2 citations (Fit = 0.86). If N=10, each of them receives 2 citations and Fit = 0.9. If N=12, 8 of
them receive 2 citations and four of them receive one citation (Fit = 0.91). If N=14, 6 of them receive 2
citations and the rest receive one citation (Fit = 0.92). If N=16, 4 of them receive 2 citations and the rest
get only one citation (Fit = 0.93). If N=18, 2 of them receive 2 citations and the rest receive one citation
(Fit = 0.94). If N=20, all of them receive one citation and Fit ≈ 1

17I also conducted the analyses in Chapter 1 using the measure of patent thickets in Noel and Schanker-
man (2006). Using this measure in equations (1.4) and (1.6) did not change the empirical results. Noel and
Schankerman (2006) employ a measure which considers only the citations of each firm to patents of the
four largest rivals in the technology market. However, the measure of fragmentation that I use is based on
the citations to the patents of all firms. Therefore, my employed measure is able to capture heterogeneity
among the small and large firms in terms of their hold-up probabilities. The smaller firms might hold
up larger firms with higher probability than large firms. This is because smaller firms may assume that
the likelihood of dealing with the same large firm is quite low in the future. However, larger firms might
assume a correspondingly higher likelihood and therefore an enhanced probability of retaliation.
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Figure 1.2: Fragmentation Index and External Right Holders.

1.3 Data

1.3.1 Data Sources

I build the sample in my analysis based on three different data sets. The first data is

the National Bureau of Economic Research (NBER) data, consisting of information on

patents granted from 1963 to 2002 and their citations.18 The second data is the Compustat

North American Annual Industrial data from Standard and Poors, consisting of 500,000

observations on 26,000 US publicly traded firms from 1979 to 2002.19 This data set includes

18The NBER patent and citation data files were originally built for the data from 1963 to 1999, and
they are available in http://www.nber.org/patents. Hall et al. (2001) provide a detailed explanation of
these files. Bronwyn H. Hall later updated these files from 1999 to 2002. I use the updated files, which
are available at: http://elsa.berkeley.edu/∼bhhall/.

The Patent file contains information on utility patents granted between 1963 to 2002. The patent file
has information on citations in patents granted between 1975 to 2002.

19The publicly traded firms are those traded on the New York, American, and regional stock exchanges,
as well as over-the-counter in NASDAQ.
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information on firms’ R&D expenditures, sales, and components of firms’ book and market

values.20 The third data is a company identifier file, which facilitates linking the patent

and citation files from the NBER to Compustat data by firm names.21 This link file

is required because assignees apply for patents either under their own name or under

their subsidiaries’ names. The patent and citation information from the USPTO, which

are used for building the NBER data, do not specify a unique code for each patenting

identity. However, Compustat has a unique code for each publicly traded firm. The link

file contains the assignee number of each firm mentioned on patents in the NBER data,

and its equivalent identifier in the Compustat data.

I select a sample of manufacturing firms (SIC 2000-3999) from the publicly traded US

firms in Compustat data from 1979 to 2002. This selection results in an unbalanced panel

of 19,868 firms with 365,589 observations.22 Manufacturing firms are selected because

this sector includes high technology firms, and the patent-related issues and fragmented

technology markets are usually more important for them. Additionally, the sample of

publicly traded firms is not an exact representative of all firms in the high technology

sectors. However, due to the data limitation, it is the best possible approximation of

these firms. I also select a sample from the NBER data. After accounting for withdrawn

patents, cited patents granted before 1963, and considering only the patents of publicly

traded firms, my sample from the NBER data yields almost 19 million observations from

20Following Hall et al. (2005), I measure the book value of firms (TAit) based on their balance sheet.
The book value of a firm is calculated as the sum of net plant and equipment, inventories, investments in
unconsolidated subsidiaries, and intangibles and others. All variables are adjusted for inflation. Following
Hall et al. (2005), I measure the market value of a firm (Market V alueit)as the sum of the market value
of common and preferred stocks, long-term debt adjusted for inflation, and short-term debts of the firm
net of assets.

21The company identifier file is available at http://elsa.berkeley.edu/∼bhhall.
22SIC is the Standard Industrial Classification by the United States Government.
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1979 to 2002.23

I link the selected sample from the NBER data, explained above, to corresponding

observations of publicly traded US manufacturing firms in the sample from Compustat by

using Hall’s identifier file. Dropping missing observations on Market V alueit and TAit

of firms results in a sample that consists of 68,203 observations relating to 6,402 unique

patenting and non-patenting firms from 1979 to 2002 (almost 2000 firms in each year).24

This sample includes 20,852 missing observations on R&D.

The patent and citation data are truncated. The truncation in the patent data is the

result of the difference between the application and grant dates of patents. The truncation

in citation counts is the result of the fact that patents receive citations for a long period

after they are granted. Therefore, some citations to patents are received out of the range

of the analyzed sample. Moreover, there is a further truncation in citation counts in the

beginning of the sample as citation data is available only for the patents granted since 1975

from the NBER data.

The data has been corrected for these truncations. The correction procedures are

explained in the Appendix A.1. After these changes, I further limit the sample to 1979-

1996 to avoid any potential problems arising from truncations. As a result, I focus only

23I do not consider patents without any citations to previous patents or patents with only self-citations
in my sample from the NBER data because these patents do not face problems related to fragmentation
in the technology market. As a result, I do not have a patenting firm without any citation to previous
patents in my sample.

According to the USPTO’s website, withdrawn patents are the patents that are not issued
(http://www.uspto.gov/patents/process/search/withdrawn.jsp).

24I have replaced the missing observations of the variables that I use in the construction of
Market V alueit and TAit (The variables used in building Market V alueit and TAit are defined in section
1.2) with zero and then I have built the variables Market V alueit and TAit. In the next step, I have
dropped observations for which the value of variables Market V alueit and TAit are zero. If I calculated
the variables Market V alueit and TAit before replacing the missing observations of their components with
zero, and dropped the missing observations on Market V alueit and TAit, this would only leave me with
52,736 observations and would lead to a loss of information.
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on when the data is the least problematic, leaving me with an unbalanced panel of 1,975

patenting manufacturing firms with 10,273 observations from 1979 to 1996.25 The result

is a longitudinal firm-level data set on firm-level financial variables and patenting activity.

Table 1.2 presents the descriptive statistics of all variables. The average firm in the

sample is R&D intensive.26 On average, a firm experiences a fairly large fragmentation

index of 0.61 and a patent portfolio size of 19 patents.27 Using corrected patent counts,

Figure 1.3 illustrates the distribution of patent counts by each firm in the sample. Con-

sistent with previous studies, the distribution of patents is highly skewed (e.g., Hall et al.,

2005). Figure 1.4 demonstrates that variable Fit was increasing on average from 1979 to

1996.

1.3.2 Exogenous Sources of Identifying Variation

While not all of the variation in the fragmentation is necessarily exogenous to the unob-

served characteristics of firms, some is driven by two sources that are arguably exogenous

to unobserved firm characteristics: the pro-patent shifts in the US patent system (see

25This sample includes firms that have at least one patent. Considering these firms facilitates measuring
the variables: PATstockit and CITEstockit.

26The average firm is R&D intensive. The average of R&D intensity in the sample is 0.90.
27In the sample the variable Fit is missing if the firm has only self-citations or do not cite anything in

its patent. The reason is that in constructing Fit, I do not consider patents that only self-cite or they do
not have any citation in their patent as the owners of such patents do not come across with the risk of
being held-up. As a result, the variable Fit for the firms who owns such patents is missing in the sample.
This situation is equivalent to no impact from fragmentation, and I replace these observations with zero.
Some of the observations of the variable Fit are zero. These observations are for the firms that all of the
citations in their patents are made to the patents of one entity or they have only one patent with one
citation in year t. The variable logFit in equations (1.4) and (1.6) is missing in both of the cases that
Fit is missing or is zero. Therefore, to control for this issue, I adopt the indicator method for handling
missing data on explanatory variables (for the detailed explanation of this method refer to Chapter 3 of
the thesis). I define an indicator variable which takes the value one, if the variable logFit is missing and
takes the value zero otherwise. Then, I replace the missing observations of the variable logFit with an
arbitrary value, here zero.
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Table 1.2: Descriptive Statistics

Variable Description Obs Mean Median Min Max Std.er

Market Market Value 10273 1052.30 103 0.022 70772 3439
V alueit

TAit Book Value 10273 1410.27 113 0 57532 4122
qit (Market 10271 1.33 0.67 0.05 660 10.55

V alue/TA)it

Fit Fragment- 10273 0.61 0.75 0 0.98 0.35
ation Index

R&Dstockit Stock of 9178 346 34 0 28865 1270
R&D

PATstockit Stock of 10273 85.54 10.87 1 5426 290.1
Patents

CITEstockit Stock of 10273 826 89 1.19 79115 3460
Citations

(R&Dstock/ R&D 9176 0.90 0.29 0 184.8 4.30
TA)it Intensity
(PATstock/ Patent 9178 0.98 0.44 0 100.24 2.40
R&Dstock)it Intensity
(CITEstock/ Citation 10273 10.66 6.45 1.17 346.11 14.71
PATstock)it Intensity
Patent Number of 10273 19 3 1 1256 66.82
Portfolio Sizeit Patents
HHIit Market 10273 0.47 0.40 0 1 0.27

Structure
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Figure 1.3: Distribution of Patents in the Sample.

Figure 1.4: Patent Thicket over Time.
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Figure 1.5: Kernel Density of Fit for Small Firms.

introduction) and the pure randomness of having successful innovations.

To analyze the impact of pro-patent shifts following the establishment of the CAFC,

I illustrate the Kernel density distributions of the variable Fit for the periods before and

after the reforms, 1979-1985 and 1986-1996, respectively. In these analyses, I group firms

based on their patent portfolio size into three categories: firms with fewer than 3 patents

(small firms), firms with 4 to 42 patents (medium firms), and firms with more than 42

patents (large firms). Figures 1.5 to 1.7 investigate the effect of the pro-patent shifts on Fit

for each group. In Figures 1.5 to 1.7 except for Figure 1.7, the kernel densities experience

a shift to the right following the pro-patent policy changes, which imply higher Fit after

the establishment of the CAFC.28

28Figures 1.5 to 1.7 display that the impact of pro-patent policies depends on the number of patents
owned by the firm. Therefore, there is both over-time and cross-firm variation in Fit that help in identifying
the empirical estimates. The different finding of Figure 1.7 is quite puzzling as it points to the fact that
the impact of the pro-patent changes following the establishment of the CAFC is not that important for
firms with a large patent portfolio size. This finding might imply that large firms change their type of
innovation from cumulative to non-cumulative following reforms. Therefore, they do not have to cite other
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Figure 1.6: Kernel Density of Fit for Medium Firms.

Figure 1.7: Kernel Density of Fit for Large Firms.
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1.4 Results

Table 1.3 contains estimates of the effect of patent thickets (logFit) on the market value of

firms. Column 1 contains the nonlinear least squares estimates of equation (1.4), column 2

reports estimates for equation (1.6) with firm fixed effects, and column 3 shows estimates

for the same model as equation (1.6) but with industry fixed effects as a robustness check.29

I include industry fixed effects to control for the possibility of dense patent thickets which

may be more likely in some industries relative to others.30 Standard errors are clustered

at the firm level.31

The nonlinear least squares estimator in column 1 of Table 1.3 shows that the patent

thicket (logFit) has a negative and statistically significant impact on the market value of

the firm at the 10% level of significance. The coefficient of logFit implies that market

value declines by 0.8% as fragmentation increases by 10%.32 The other key finding of

this column is that all of the knowledge stock variables have a positive and statistically

significant impact on the market value, and this finding is consistent with previous studies

in the literature.33

I also estimate the impact of patent thickets on the market value of firms with controls

for firms fixed effects as a robustness check in column 2 of Table 1.3 (using equation,

firms’ patents, which keeps their fragmentation index unchanged.
29Industry fixed effects are defined based on four-digit SIC codes.
30One example is the semiconductor industry (SIC3674), which is characterized with highly cumulative

innovations (Ziedonis, 2004 and Hall and Ziedonis, 2001).
31Clustering at the industry level (based on four-digit SIC codes) generates similar results to clustering

at the firm level.
31The sample includes 1,975 patenting firms with 10,273 observations from 1979 to 1996. The signs ***,

**, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the parentheses are the
cluster-robust standard error (clustered at the firm level).

32The standardized estimated impact is that a one deviation increase in logFit lowers logMarket V alueit

by 0.113 standard deviation units (1.10%).
33One example of studies with similar results is Hall et al. (2005).

32



Table 1.3: Patent Thicket and Market Value

Dependent Variable: NLS Fixed Effect Pooled with Industry
logqit

31 Estimation Fixed Effects
logFit -0.076* -0.042 -0.062*

(0.042) (0.028) (0.033)
log(R&Dstock

TA
)it 0.309*** 0.206*** 0.206***

(0.052) (0.038) (0.038)
[log(R&Dstock

TA
)it]

2 0.077*** 0.098***
(0.020) (0.013)

[log(R&Dstock
TA

)it]
3 0.013** 0.010***

(0.004) (0.003)
[log(R&Dstock

TA
)it]

4 -0.001 -0.001
(0.001) (0.001)

[log(R&Dstock
TA

)it]
5 -0.000** -0.000

(0.000) (0.000)
log( PATstock

R&Dstock
)it 0.036*** 0.124*** 0.069***

(0.010) (0.025) (0.013)
[log( PATstock

R&Dstock
)it]

2 0.018 0.014**
(0.012) (0.007)

[log( PATstock
R&Dstock

)it]
3 -0.001 -0.000

(0.003) (0.002)
[log( PATstock

R&Dstock
)it]

4 -0.000 0.000
(0.001) (0.001)

[log( PATstock
R&Dstock

)it]
5 -0.000 0.000

(0.000) (0.000)
log(CITEstock

PATstock
)it 0.004** -0.492 0.347

(0.002) (0.387) (0.307)
[log(CITEstock

PATstock
)it]

2 0.429 -0.351
(0.384) (0.316)

[log(CITEstock
PATstock

)it]
3 -0.152 0.130

(0.168) (0.144)
[log(CITEstock

PATstock
)it]

4 0.024 -0.022
(0.033) (0.029)

[log(CITEstock
PATstock

)it]
5 -0.001 0.001

(0.002) (0.002)

33



Table 1.3 Continued

Dependent Variable: NLS Fixed Effect Pooled with Industry
logqit Estimation Fixed Effects
logHHIit 0.037* 0.035 -0.037

(0.022) (0.026) (0.023)
D(logFit = 0) 0.054* 0.017 0.046**

(0.028) (0.017) (0.020)
D(R&Dit = 0) 0.106*** -0.267*** -0.167***

(0.033) (0.084) (0.039)
Firm Fixed Effects No Yes No
Industry Fixed Effects No No Yes
Time Fixed Effects Yes Yes Yes
Adjusted-R2 0.3536 0.1546 0.2772

1.6). With the inclusion of firms fixed effects, the variable logFit keeps its negative impact

on the market value but not its statistically significant effect. The coefficient suggests

that an increase in fragmentation by 10% is associated with a market value decrease by

0.4%.34 In column 3, the patent thicket has a negative and statistically significant impact

on the market value controlling for industry fixed effects (using equation (1.6) with industry

fixed effects rather than firm fixed effects). A 10% rise in fragmentation is significantly

correlated with a 0.6% decrease in the market value. In summary, the results from different

specifications indicate a negative impact from patent thickets on the market value of firms.35

Using the estimates of column 1 of Table 1.3, I calculate the semi-elasticities of knowl-

34Empirical results suggest that the fifth order polynomial is satisfactory. The reason is that the coeffi-
cients of the polynomials higher than the fifth order are not statistically significant.

35Another finding from Table 1.3 is that the market structure (logHHIit) does not have a statistically
significant impact on how the stock market values the firm. This finding is in contrast to the common
notion that in highly concentrated markets, firms have higher market power that lead to larger expected
earnings for firms and consequently, higher market value. This result further implies that the market
structure measure does not reflect market power. To the best of my knowledge there are few studies in
the economic literature that focus specifically on the impact of market structure on market value of firms.
My results are similar to previous findings (Lindenberg and Ross, 1981 and Hirschey, 1985). According
to Lindenberg and Ross (1981), a possible reason for the statistical insignificance of the logHHIit is that
markets with high concentration do not necessarily reflect market power.
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Table 1.4: Calculating the Impact of Knowledge Stocks and Patent Thicket on Market
Value

Ratios Evaluated at37

Ratios Mean Median

(R&Dstock
TA

)it 0.711 0.241

( PATstock
R&Dstock

)it 0.872 0.375

(CITEstock
PATstock

)it 10.946 6.688

Fit 0.612 0.750

logFit -0.217 -0.130
Semi-elasticities

(∂logqit/∂(R&Dstock
TA

)it) 0.238*** 0.277***
(0.034) (0.044)

(∂logqit/∂( PATstock
R&Dstock

)it) 0.027*** 0.032***
(0.008) (0.009)

(∂logqit/∂(CITEstock
PATstock

)it) 0.003** 0.004**
(0.001) (0.001)

Elasticity
(∂logqit/∂logFit) -0.076* -0.076*

(0.042) (0.042)

edge stock variables as well as the elasticity of the variable logFit at both the mean and

median of the covariates in Table 1.4. These elasticities allow me to evaluate the size of

the impacts of the explanatory variables on the firms’ market value.36 According to Table

1.4, an increase of 1% in the R&D intensity of the firm increases Market V alueit by 2.3%,

an extra patent per million $ of R&D raises Market V alueit by 3%, and an additional

citation per patent boosts Market V alueit by 0.3%. Market value also declines by 0.8%

as fragmentation increases by 10%.

36I consider both the mean and median because of the skewness in the distribution of the knowledge
stock variables.
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Table 1.5 analyzes the possible heterogeneity in the impact of patent thicket on the

market value of firms as a result of the patent portfolio size of firms. To analyze the impact

of this heterogeneity, I add the variable logFit × logPatent Portfolio Sizeit to equation

(1.4) and use the resulting equation for the estimates in column 1 of Table 1.5. The results

show that the estimated coefficient of the variable logFit × logPatent Portfolio Sizeit

is positive and statistically significant, while logFit preserves its negative and significant

impact on the market value of firms in column 1. This finding implies that firms with a

large patent portfolio size in a fragmented technology market have higher market values

than other firms, probably because a larger patent portfolio size increases such firms’

bargaining power in licensing negotiations and lowers the risk of being held-up. Moreover,

the likelihood of the hold-up problem for these firms might be lower, since other firms have

incentives to avoid possible future retaliations. The results of column 1 of Table 1.5 are

robust to the models with firm fixed effects and industry fixed effects in columns 2 and 3

(based on equation (1.6)).

To capture the heterogeneous impact of patent thickets on market value over time,

I analyze the effect of patent thickets on the market value of firms before and after the

establishment of the CAFC in 1982. I divide the sample into two sub-samples, which consist

of observations for the period before the establishment of the CAFC and the period after

the establishment of the CAFC. However, using equation (1.4) for each sub-sample, the

results are sensitive to the selection of the year in which reforms become effective. In order

to avoid this problem and examine whether the impact of patent thickets on the market

37The sample includes 1,975 patenting firms with 10,273 observations from 1979 to 1996. The numbers
in parentheses are clustered robust standard errors (clustered at the firm level).

38The sample includes 1,975 patenting firms with 10,273 observations from 1979 to 1996. The signs ***,
**, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the parentheses are the
cluster-robust standard error (clustered at the firm level).
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Table 1.5: Patent Thicket, Patent Portfolio Size, and Market Value

Dependent Variable: (1) (2) (3)
logqit

38 NLS Fixed Effect Pooled with Industry
Estimation Fixed Effects

logFit -0.121*** -0.085*** -0.111***
(0.045) (0.033) (0.035)

(R&Dstock
TA

)it 0.308*** 0.208*** 0.266***
(0.052) (0.038) (0.020)

( PATstock
R&Dstock

)it 0.036*** 0.129*** 0.072***
(0.010) (0.025) (0.013)

(CITEstock
PATstock

)it 0.004*** -0.487 0.363
(0.002) (0.387) (0.309)

logFit× logPatent 0.161*** 0.084*** 0.148***
Portfolio Sizeit (0.040) (0.025) (0.030)
logHHIit 0.035 0.033 -0.039*

(0.022) (0.026) (0.023)
D(logFit = 0) 0.024 0.014 0.025

(0.028) (0.017) (0.020)
D(R&Dit = 0) 0.101*** -0.275*** -0.173***

(0.033) (0.084) (0.039)
Firm Fixed Effects No Yes No
Industry Fixed Effects No No Yes
Time Fixed Effectss Yes Yes Yes
Adjusted-R2 0.3558 0.1563 0.2793
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Table 1.6: Time Effect of Patent Thickets on Market Value

Dependent Variable: logqit
39

D1979 × logFit -0.024 D1988 × logFit 0.001
(0.087) (0.143)

D1980 × logFit -0.117 D1989 × logFit -0.055
(0.074) (0.136)

D1981 × logFit 0.004 D1990 × logFit -0.059
0.083 (0.120)

D1982 × logFit -0.089 D1991 × logFit -0.334**
(0.079) (0.146)

D1983 × logFit -0.040 D1992 × logFit -0.336**
(0.078) (0.150)

D1984 × logFit -0.180 D1993 × logFit -0.048
(0.111) (0.110)

D1985 × logFit -0.241** D1994 × logFit 0.131
(0.105) (0.112)

D1986 × logFit -0.016 D1995 × logFit 0.003
(0.113) (0.138)

D1987 × logFit -0.167* D1996 × logFit -0.066
(0.100) (0.141)

value of firms has been increasing over time as a result of the pro-patent shifts, I augment

equation (1.4) with variables Dyear× logFit, where the variable Dyear (year =1979,...,1996)

is a dummy variable for each year.

Table 1.6 contains the results of this exercise and reports only the coefficients of the

new variables added to equation (1.4). Most of the coefficients of these variables are

not statistically significant. Figure 1.8 plots the scatter plot of the estimated coefficients

of variables Dyear × logFit, where year =1979,...,1996, with their upper and lower 95%

confidence intervals. The results do not offer evidence in favour of a systematic time effect

in the impact of fragmentation index on the market value of firms.

39The estimating specification of Table 1.6 is based on equation (1.4) and is estimated with a non-linear

38



Figure 1.8: Estimated Coefficients of Variables Dyear× logFit.

Table 1.7 takes into account two heterogeneities (time and patent portfolio size) in

the impact of patent thickets. This table evaluates how the impact of patent thick-

ets on the market value changes over time for firms with a large patent portfolio size.

The estimating equation is based on equation (1.4) with extra variables Dyear × logFit ×

logPatent Portfolio Sizeit, and Dyear× logFit, where year =1979,...,1996 and Dyear is

a dummy variable for each year. Table 1.7 displays the results of this exercise and re-

ports only the coefficients of the new variables added to equation (1.4). The estimated

coefficients of these variables in Table 1.7 are statistically insignificant with respect to

most years. Figure 1.9 plots the scatter plot of the estimated coefficients of variables

Dyear × logFit × logPatent Portfolio Sizeit with their upper and lower 95% confidence

intervals. The findings of Tables 1.6 and 1.7 imply that I cannot find a systematic time

least squares estimator. The sample includes 1,975 patenting firms with 10,273 observations from 1979 to
1996. The signs ***, **, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the
parentheses are the cluster-robust standard error (clustered at the firm level).
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Figure 1.9: Estimated Coefficients of Variables Dyear×logFit × logPatent Portfolio Sizeit.

effect from patent thickets on the market value of firms, and this result even applies to

firms with a large patent portfolio size.

Table 1.8 provides the estimates of patent thickets on the market value of firms by

industry.37 Column 1 illustrates the impact of fragmentation on the market value for the

average industry, while the remaining columns report the impact of patent thickets on firms

in each industry. Although the estimates are negative, they are statistically insignificant.

Fragmentation has a higher than average penalty on the market value of firms in the

36The estimating specification of Table 1.7 is based on equation (1.4) and is estimated with a non-linear
least squares estimator. The sample includes 1,975 patenting firms with 10,273 observations from 1979 to
1996. The signs ***, **, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the
parentheses are the cluster-robust standard errors (clustered at the firm level).

37The industry classifications are based on Hall and Vopel (1997). In Table 1.8, the chemical industry
includes chemical products, the computer industry includes the computers and computing equipment,
the drugs sector consists of optical and medical instruments, and Pharmaceutical. The electrical sector
includes Electrical machinery and electrical instrument & communication equipment. The mechanical
sector includes Primary metal products, fabricated metal products, machinery & engines, transportation
equipment, motor vehicles, and auto parts. The percentage of each industry in my sample is: chemical
3.5%, computers 7%, drugs 22%, electrical 28%, and mechanical 19%.
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Table 1.7: Time Effect of Patent Thickets, Patent Portfolio Size, and Market Value

Dependent Variable: logqit
36

D1979 × logFit -0.112 D1979 × logFit 0.182**
(0.083) × logPatent Portfolio Sizeit (0.072)

D1980 × logFit -0.211** D1980 × logFit 0.184***
(0.084) × logPatent Portfolio Sizeit (0.067)

D1981 × logFit -0.104 D1981 × logFit 0.216**
(0.091) × logPatent Portfolio Sizeit (0.090)

D1982 × logFit -0.105 D1982 × logFit 0.089
(0.092) × logPatent Portfolio Sizeit (0.084)

D1983 × logFit -0.020 D1983 × logFit 0.012
(0.086) × logPatent Portfolio Sizeit (0.069)

D1984 × logFit -0.184 D1984 × logFit 0.068
(0.122) × log Patent Portfolio Sizeit (0.105)

D1985 × logFit -0.209* D1985 × logFit -0.017
(0.119) × logPatent Portfolio Sizeit (0.091)

D1986 × logFit -0.068 D1986 × logFit 0.182*
(0.123) × logPatent Portfolio Sizeit (0.102)

D1987 × logFit -0.211* D1987 × logFit 0.159*
(0.109) × logPatent Portfolio Sizeit (0.087)

D1988 × logFit -0.022 D1988 × logFit 0.087
(0.187) × logPatent Portfolio Sizeit (0.132)

D1989 × logFit -0.156 D1989 × logFit 0.241*
(0.165) × logPatent Portfolio Sizeit (0.137)

D1990 × logFit -0.084 D1990 × logFit 0.159
(0.127) × logPatent Portfolio Sizeit (0.120)

D1991 × logFit -0.377** D1991 × logFit 0.220*
(0.152) × logPatent Portfolio Sizeit (0.129)
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Table 1.7 Continued

Dependent Variable: logqit
D1992 × logFit -0.343** D1992 × logFit 0.101

(0.147) × logPatent Portfolio Sizeit (0.190)
D1993 × logFit -0.084 D1993 × logFit 0.158

(0.107) × logPatent Portfolio Sizeit (0.109)
D1994 × logFit 0.051 D1994 × logFit 0.225*

(0.113) × logPatent Portfolio Sizeit (0.128)
D1995 × logFit -0.056 D1995 × logFit 0.372***

(0.138) × logPatent Portfolio Sizeit (0.140)
D1996 × logFit -0.105 D1996 × logFit 0.185

(0.146) × logPatent Portfolio Sizeit (0.135)

chemical and computers sectors. The insignificant impact on the drugs sector is likely due

to the fact that in the pharmaceutical sector, firms use patents to block the development

of alternative drugs by rivals and therefore, patents are not used for expropriating rivals

(Cohen et al., 2000).

I conduct a joint hypothesis test of the equality of the impact of the variable logFit

on the market value of firms across industries.38 Even though the point estimates for the

coefficient of logFit are different across industries, the estimates are not statistically signif-

icantly different from each other across industries (F-statistics=1.24)– possibly because of

the lack of the power of the test. As a robustness check, I also weight the variables with the

patent portfolio size of firms and estimate equation (1.4) with a weighted nonlinear least

squares estimator. This specification also cannot reject the joint hypothesis of the equality

37The sample includes 1,975 patenting firms with 10,273 observations from 1979 to 1996. The signs ***,
**, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the parentheses are the
cluster-robust standard error (clustered at the firm level).

38To perform this test, I define a separate dummy variable for each industry (Dindustry). Then, I
include the dummy variables for each industry and the multiplication of these dummy variables with the
key variables of equation (1.4) in equation (1.4). Then I test for the equality of the coefficients of the
variables Dindustry × logFit across industries.
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Table 1.8: The Impact of Patent Thicket across Industries

Dependent Average Chemical Computers Drugs Electrical Mechanical
Variable
logqit

37

logFit -0.076* -0.370 -0.080 -0.050 -0.068 -0.066
(0.042) (0.226) (0.163) (0.118) (0.081) (0.076)

(R&Dstock
TA

)it 0.309*** 1.139 0.061 0.357*** 0.350*** 0.634***
(0.052) (0.893) (0.049) (0.083) (0.129) (0.223)

( PATstock
R&Dstock

)it 0.036*** -0.016 0.096* 0.112** 0.046** 0.020
(0.010) (0.011) (0.056) (0.045) (0.021) (0.020)

(CITEstock
PATstock

)it 0.044** 0.027 -0.000 0.000 0.008** 0.003
(0.002) (0.042) (0.001) (0.002) (0.003) (0.006)

logHHIit 0.037* 0.003 -0.180* 0.042 -0.034 0.027
(0.022) (0.089) (0.098) (0.053) (0.045) (0.048)

D(R&Dit = 0) 0.054* 0.428** 0.058 1.039*** 0.257*** 0.058
(0.028) (0.173) (0.118) (0.186) (0.092) (0.073)

D(logFit = 0) 0.106*** 0.034 0.063 0.013 0.086* 0.066
(0.033) (0.176) (0.102) (0.086) (0.047) (0.045)

Observation 10273 545 694 1850 2800 2348
Number of 1975 69 138 437 548 384
firms
Time Yes Yes Yes Yes Yes Yes
Fixed Effects
Adjusted-R2 0.3536 0.6791 0.2102 0.2415 0.3517 0.4384
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of the coefficient of the variable logFit across industries.39 There are also differences across

sectors in the knowledge stock variables, and these results are also consistent with the

findings of Hall et al. (2005).

1.5 Conclusion

This study provides empirical evidence on the negative impact of patent ownership frag-

mentation on firms’ market value. The analysis contributes to the literature on the deter-

minants of the market value of firms and research on the patent thicket problem.

My results show that firms experience a statistically and economically significant de-

crease in their market value when the technology market is fragmented. My results expand

on the work of Noel and Schankerman (2006) and show that the negative impact of patent

thickets on the market value of firms is not restricted to a single industry.

In this chapter, I analyze the heterogeneous impact of patent thickets on the market

value of firms in terms of firms’ different patent portfolio sizes, the different industries

they belong to, and over time. To my knowledge, no prior study has evaluated these

heterogeneities in the effect of patent thickets on market value. The findings indicate

that firms with a large patent portfolio size experience a smaller negative impact from

patent thickets on their market value. This finding is possibly because firms with a large

patent portfolio size have fewer problems in cross-licensing negotiations. Their larger patent

portfolio size increases their bargaining power in the licensing negotiations and lowers the

risk of being held-up. The other result of this chapter is that patent thickets do not have

systematic time effects on the market value of firms, and this finding even holds for firms

39A similar result holds when I estimate equation (1.4) with a Weighted Pooled Least Squares estimator.
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with a large patent portfolio size. Another outcome of this chapter is that market structure

does not have a statistically significant impact on how the stock market values firms after

controlling for fragmentation in the technology market. This finding holds, when I analyze

the effect of possible heterogeneity at the firm level as a result of the patent portfolio size

of firms, time, or both time and patent portfolio size. This result also holds, when I control

for heterogeneity across industries at the firm level. The insignificant impact of market

structure on market value is similar to the few studies available in the literature, such as

Lindenberg and Ross’s (1981) and Hirschey’s (1985). Finally, my results suggest that the

impact of patent thickets on the market value of firms is independent of industry.

The findings of Chapter 1 can help policy makers in devising appropriate patent policies

because this chapter quantifies the costs of patent thickets. The smaller negative impact of

fragmentation on market value of firms with a large patent portfolio size signals to policy

makers that the current US patent system is encouraging aggressive patenting to counter

the negative costs of fragmentation. This problem might divert the resources of firms from

R&D activities to legal activities aimed at obtaining patents on marginal innovation and

increasing the patent portfolio size of firms. To avoid forming incentives for firms to obtain

patents on marginal innovations, policy makers can change the patenting requirements to

decrease the costs of patent thickets.
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Chapter 2

Patent Thickets, Defensive

Patenting, and Induced R&D: An

Empirical Analysis of the Costs and

Unintended Potential Benefits of

Fragmentation in Patent Ownership

2.1 Introduction

In this chapter, I assess the economic impacts of patent thickets by estimating their effect

on the market value of firms. I argue that dense patent thickets in highly fragmented

technology markets could have two types of impacts: direct and indirect. The direct impact

is the effect of patent thickets on firms’ market value, while I hold the all firms’ patenting
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and R&D behavior constant. The potential costs of patent thickets, as discussed above,

lower the expected earnings of firms and thereby lower their market value. Estimating the

direct impact of patent thickets is not sufficient to determine the effects of patent thickets,

because patent thickets might also change the behavior of firms. Hence, I estimate the

indirect impacts of patent thickets as well.

Specifically, I estimate the indirect potential impacts that patent thickets have on mar-

ket value through the likely effects that patent thickets have on patenting and R&D ac-

tivities of firms. Patent thickets may encourage firms to patent defensively (the increase

in patenting attributed to avoiding thicket costs) in order to increase bargaining power in

negotiations with other right holders (Ziedonis, 2004). Firms may also reduce their reliance

on other firms’ innovation by increasing their R&D expenditures. The R&D activities and

defensive patenting behavior of firms may increase their market value, and therefore reduce

or even eliminate the negative direct impact that patent thickets have on the market value

of firms.

In addition, this study captures the potential direct and indirect impacts that firms’

patent thickets might have on one another (patent thicket spillovers). Assuming a given

firm, the rationale behind the direct impact of other firms’ patent thickets on the market

value of the given firm is that other firms charge higher licensing fees from the given firm

for using their complementary patents. They do so because other firms are also faced with

their own patent thicket, and they want to cover the potential costs of obtaining licenses

for the complementary patents in their own patent thicket. Therefore, higher licensing fees

that other firms charge the given firm due to the costs of their own patent thicket lower

expected profits and stock market valuation of the given firm. I also measure the potential

indirect impacts of others’ patent thickets on the market value of the given firm through
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the effects of others’ patent thickets on the given firm’s patenting and R&D activities.

Other firms’ patent thickets could make them raise their R&D and defensive patenting.

It is often asserted that the R&D and patenting activities of firms have positive spillover

effects on one another. The changes in R&D and patenting activities of the given firm due

to positive spillovers from other firms will be reflected in higher expected profits and the

market value of the given firm.

In my analysis, I use panel data on 1,272 publicly traded US manufacturing firms from

1979 to 1996. The analysis builds on the methodologies developed in Griliches (1981) and

Hall et al. (2005).1 My analysis also allows for the presence of R&D spillovers and patent

thicket spillovers (other firms’ patent thickets) among firms, and to measure spillovers I

employ the methodologies developed in Bernstein and Nadiri (1989), Jaffe (1986), and

Bloom et al. (2006), all of whom examine R&D spillovers.

My results suggest that patent thickets, both firms’ own as well as other firms’, have a

negative direct impact on the market value of firms. I also find that both firms’ own and

other firms’ patent thickets increase defensive patenting, but do not have a statistically

significant effect on firms’ R&D activities. While defensive patenting alleviates the direct

negative impact that patent thickets have on market value, the total impact of patent

thickets on the market value of firms is still negative. This finding implies that the concerns

over the negative impacts of patent thickets are valid. The prior empirical evidence on the

effects of patent thickets is mixed. For a detailed summary of the previous findings in the

literature refer to section 1.1 of Chapter 1.

1Griliches (1981) examines the impact of patenting and R&D on the market value of firms using a
sample of 157 large US firms from Compustat data for the period from 1968 to 1974. Hall et al. (2005)
analyze the driving factors of the market value of firms by examining the impact of patenting and patent
citations on the market value of firms. This study employs a non-linear model in a sample of 1982 patenting
manufacturing US firms from 1979 to 1988.
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This chapter makes three contributions to the literature. First, to calculate the direct

and indirect impacts of patent thickets on the market value of firms, I estimate the effects

that patent thickets have on patenting and R&D as well as on market value, using three

separate estimating equations. To my knowledge, only Noel and Schankerman (2006), who

focus on the software industry, have previously examined the impacts of patent thickets

on these three outcome variables. I instead examine the impacts of patent thickets on

these three outcome variables in the manufacturing sector. Second, I use the estimates

of the three empirical equations to determine the direct, indirect, and total impacts of

patent thickets on firms’ market value. To my knowledge, no prior study has quantified

the indirect and total impacts of patent thickets on the market value of firms. Third, my

estimating equations allows for the possibility that other firms’ patent thickets also have

direct and indirect impacts on the market value of a given firm. As far as I am aware,

no prior study has considered the impact that other firms’ patent thickets may have on a

firm’s market value or behavior.

2.2 Empirical Framework

In this section, I first present the functional relationships that determine the total impact

of patent thickets on the market value of firms. In the second subsection, I present three

estimating equations, one for each functional relationship. In the third subsection, I discuss

how the parameter estimates can be used to calculate the direct, indirect, and total impacts

of patent thickets on the market value of firms. In the fourth subsection, I discuss measuring

the patent thicket variables used in the analysis.
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2.2.1 Three Functional Relationships

The empirical framework is based on three functional relationships that enable me to

calculate patent thickets’ direct and indirect impacts on market value. The first functional

relationship is the impact of a firm’s own patent thicket (F ) and other firms’ patent thickets

(spillF ) on the firm’s market value:

Market V alue = f(F, spillF,R&D,Patents, ...). (2.1)

As is depicted in this relationship, R&D and patenting activities of a firm also impact its

market value. Since patent thickets may influence R&D expenditures and the patenting

behavior of firms, measuring the total impact of patent thickets on market value requires

that I estimate the impact of patent thickets on R&D and patenting as well. As a result,

the second functional relationship is the impact of a firm’s own and other firms’ patent

thickets on the firm’s R&D expenditures:

R&D = g(F, spillF, ...), (2.2)

and the third functional relationship is the impact of a firm’s own and other firms’ patent

thickets on the firms’ patenting behavior:

Patent = h(F, spillF,R&D, ...). (2.3)

51



As is illustrated in relationship (2.3), patenting activity by a firm is also influenced by its

R&D expenditures.2

The estimating equations for the relationships (2.1) through (2.3) are presented below.

After estimating the impacts of the right-hand side variables in the three relationships, I

calculate the direct impact of patent thickets on market value as

DIRECT =
∂Market V alue

∂F
+
∂Market V alue

∂spillF
× ∂spillF

∂F
, (2.4)

the indirect impact of patent thickets on market value through R&D as

INDIRECT (R&D) =
∂Market V alue

∂R&D
× ∂R&D

∂F

+
∂Market V alue

∂R&D
× ∂R&D

∂spillF
× ∂spillF

∂F
, (2.5)

and the indirect impact of patent thickets on market value through patenting as

INDIRECT (PATENTING) =
∂Market V alue

∂Patents
× ∂Patents

∂F

+
∂Market V alue

∂Patents
× ∂Patents

∂spillF
× ∂spillF

∂F
. (2.6)

The total impact of patent thickets on market value is calculated as the sum of direct

impact (2.4) and the two indirect impacts (2.5-2.6).

2The R&D expenditures of a firm impact its patenting, as successful R&D leads to innovation, and the
firm can obtain patents for innovation (Griliches and Pakes, 1980).
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2.2.2 Three Estimating Equations

Market Value Equation

To estimate the relationship (2.1) depicting the direct impacts of patent thickets on the

market value of a firm, I use

logqit = δ1 logFit−1 + δ2 logspillFit−1 + δ3 logspillR&Dit−1

+γ1 Ψ

(
log

(
R&Dstock

TA

)
it−1

)
+ γ2 Ω

(
log

(
PATstock

R&Dstock

)
it−1

)
+γ3 Γ

(
log

(
CITEstock

PATstock

)
it−1

)
+ δ4 logsaleit−1 + δ5 logsaleit−2

+δ6 logHHIit−1 + αMV
i +mt + εMV

it .

(2.7)

For a detailed derivation of equation (2.7) see Appendix B.1. The dependent variable

logqit is the logarithm of Tobin’s q.3 The variables logFit−1 and logspillFit−1 measure the

firm’s own patent thicket and the other firms’ patent thickets, respectively. The construc-

tion of these variables is explained in section 2.2.4. The variables (R&Dstock/TA)it−1,

(PATstock/R&Dstock)it−1, and (CITEstock/PATstock)it−1 are R&D intensity, patent

intensity, and citation yield per patent (citation intensity), respectively. These variables

measure the intangible assets of the firm. The construction of these variables is discussed

in Appendix B.1. The parameters Ψ, Ω, and Γ denote the polynomials of the measures

of intangible assets. The variable logspillR&Dit−1 captures potential (positive) spillovers

from other firms’ R&D expenditures on the firm’s market value.4 The construction of

3This variable is explained in Appendix B.1.
4The R&D activities of other firms raise the available research effort in the economy, which could help

the firm to achieve more innovation and consequently, higher future net cash flows and market value.
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this variable is discussed in Appendix B.3. The variable logHHIit−1 controls for market

structure impacts.5 The parameters αMV
i and mt represent firm and time fixed effects,

respectively.6 The variable εMV
it is the error term.

The lag structure in the right-hand side variables of equation (2.7) is designed to alle-

viate the reflection problem (Manski, 1993), which could make the estimates of the market

value equation inconsistent.7 This problem points to the fact that it is difficult to distin-

guish whether the coefficients on the spillover variables (logspillR&Dit−1, logspillFit−1)

reflect actual spillover effects or (technological opportunity) shocks that are correlated

across related firms. The distributed lag structure in the firm-level sales (logsaleit−1 and

logsaleit−2) decrease the potential inconsistency from demand shocks.8 To avoid the omit-

ted variable bias due to unobserved firm heterogeneities, I estimate equation (2.7), using

a within estimator for panel data.9

5To control for market structure, I use a Herfindahl index (HHI) that utilizes firm-level sales in four-
digit SIC codes.

6I assume that αMV
i is additive, time-invariant and not correlated across firms.

7I assume that the lagged values of the right-hand side variables are not correlated with εMV
it . An

alternative solution would be to use more distant lags as instruments.
8Higher order lags of the firm-level sales were not statistically significant.
9Estimates of equation (2.7) imply that the fifth order polynomial is satisfactory. I do not consider the

multiplicative terms of the measures of INAit−1 in equation (2.7) because including them does not change
the results.
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R&D Equation

To estimate the relationship (2.2), I apply the equation

logR&Dit = θ1 logR&Dit−1 + θ2 logFit−1 + θ3 logspillFit−1

+θ4 logspillR&Dit−1 + θ5 logsaleit−1

+θ6 logsaleit−2 + θ7 logHHIit−1 (2.8)

+mt + αR&D
i + εR&D

it .

The parameters αR&D
i and mt represent firm and time fixed effects, respectively. The

variable εR&D
it is an idiosyncratic error term.10

The lag structure on the right hand side is designed to lessen the impact of the re-

flection problem. The reflection problem could make the estimates of the R&D equation

inconsistent. Any shock that has an impact on the R&D expenditures of the firm is likely

to have impacts on other firms’ R&D expenditures in the same technology field. Thus,

a correlation between the R&D of other firms and their patent thickets with the given

firm’s R&D expenditures could be related to actual spillover effects or to technological

opportunity shocks that all the firms are experiencing.

The distributed lag structure in the firm-level sales decreases the inconsistency from

possible demand shocks.11 In order to capture the dynamics of the firm’s R&D expen-

ditures, I include one lag of the dependent variable as an explanatory variable in this

equation.12 Based on the argument in Nickell (1981), the long time dimension in the

10The fixed effects αR&D
i are assumed to be additive, time-invariant and not correlated across firms.

11Higher order lags of the firm-level sales were not statistically significant.
12According to Pakes (1985), previous values of R&D expenditures have impact on the current firms’

R&D expenditures. I only consider one lag of the dependent variable in the right-hand side of equation
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panel data used in Chapter 2 prevents inconsistent estimates due to the lagged dependent

variable in equation (2.8).13 To avoid the omitted variable bias due to unobserved firm

heterogeneities, I estimate equation (2.8) using a within estimator for panel data.

Patenting Equation

As the patent data is inherently count data, I adapt the approach in Hausman et al. (1984)

by estimating the relationship (2.3) using

E(Patentit|XRHS
it ) = exp(β1 logFit−1 + β2 logspillFit−1 + β3 logspillR&Dit−1

+β4 logR&Dstockit−1 + β5 logsaleit−1 + β6 logsaleit−2 (2.9)

+β7 logHHIit−1 + β8 logpre-sample patentsi

+mt).

The dependent variable is the number of successful patent applications made by a firm in

a given year. A Poisson estimator is the appropriate estimator for equation (2.9).14

(2.8) because, according to Griliches (1979), the R&D expenditures are highly correlated over the years,
and estimating the separate contribution from each lag with precision is hard.

13An alternative approach would be to use the panel generalized method of moments estimator of
Arellano and Bond (1991) for dynamic panels. This approach uses the panel GMM estimator, where the
instruments are lags of the dependent variable, and they are assumed to be weakly exogenous.

14The Poisson estimator requires the satisfaction of the equi-dispersion assumption (equality of the
conditional mean and variance of the dependent variable). Cameron and Trivedi (2006, p. 670), assuming
yit as a dependent variable with a count data nature and Xit as a set of regressors, argue that if the
hypothesis H0: α = 0 in the specification of over-dispersion: var(yit|Xit)=exp(X ′itβ)+αexp(Xitβ)2 cannot
be rejected, equi-dispersion assumption holds. Therefore, to test for equi-dispersion, they suggest building
an auxiliary regression

(yit − µ̂it)2 − yit

µ̂it
= α

µ̂it
2

µ̂it
+ uit,

where µ̂it is exp(X ′itβ̂), which is the fitted value of the Poisson model, assuming that the first moment in
the Poisson model is E(yit|Xit) = exp(X ′itβ). Therefore, following Cameron and Trivedi (2006, p. 670), I
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One lag of the right hand side variables is included to mitigate the reflection prob-

lem.15 The distributed lags of firm-level sales are included to capture demand shocks. The

parameter mt represents time fixed effects.

Firms’ unobserved heterogeneities could make estimates of patent thicket impacts on

patenting inconsistent. Firms might differ because of their pre-sample stock of innovations,

or their abilities to absorb external technologies for reasons that are not explained by

independent variables. Blundell et al. (1999) use a mean-scaling approach to control for

firm fixed effects. They argue that one interpretation of such effects is the entry level

of innovation of each firm, and this innovation is uncorrelated with subsequent shocks to

innovation. Therefore, they use the pre-sample information on the patenting propensity

of firms to construct a pre-sample average. Since the right-hand side variables in equation

(2.9) are pre-determined, I follow the mean-scaling approach of Blundell et al. (1999)

to control for firm fixed effects and include the variable logtextitpre− samplepatentsi in

equation (2.9). This variable is the average of the pre-sample patent counts of firm i.

estimate equation (2.9) with Poisson estimator and calculate the fitted value. Then using the fitted value,
I build the auxiliary regression, and estimate it with a linear Least Squares estimator. The results show
that α is statistically significant and over-dispersion exists in the data of this paper.

The over-dispersion problem leads to inefficiency of estimates in the Poisson model, but the Poisson-
based estimates remain consistent. According to Gourieroux et al. (1984), consistency of estimates holds
as long as the conditional mean is correctly specified because the Poisson model belongs to the linear
exponential class of models. Following Hall and Ziedonis (2001), I use the Poisson model, and to overcome
the inefficiency, I employ the robust standard errors. To solve the over-dispersion problem, some of
the studies such as Ziedonis (2004), suggest using the negative binomial estimator. The estimates in
the negative binomial approach are consistent if the true distribution of the data is a negative binomial
distribution. Nevertheless, the underlying distribution of the data is not evident.

15Any shock that has impact on the R&D investments of the firm and therefore, its patenting propensity
is likely to have an impact on other firm’s R&D and consequently their patenting in the same technology
field. Thus, a correlation between R&D spillovers and patent thicket spillovers with the given firm’s patent
propensity could be related to actual spillover effects or could be the result of technological opportunity
shocks that all firms experience.
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2.2.3 Using the Estimates to Calculate the Direct, Indirect, and

Total Impacts

Assuming the steady state condition, which is Xit = Xit−1 = Xi, holds for any variable

Xit, the equations (2.7) through (2.9) can be rewritten as

logqi = δ1 logFi + δ2 logspillFi + δ3 logspillR&Di

+γ1 Ψ

(
log

(
R&Dstock

TA

)
i

)
+γ2 Ω

(
log

(
PATstock

R&Dstock

)
i

)
(2.10)

+γ3 Γ

(
log

(
CITEstock

PATstock

)
i

)
+(δ4 + δ5) logsalei + δ6 logHHIi

+αMV
i + εMV

i ,

logR&Di =
θ2

1− θ1

logFi +
θ3

1− θ1

logspillFi +
θ4

1− θ1

logspillR&Di

+
θ5 + θ6

1− θ1

logsalei +
θ7

1− θ1

logHHIi (2.11)

+αR&D
i + εR&D

i ,

and

E(Patenti|XRHS
i ) = exp(β1 logFi + β2 logspillFi + β3 logspillR&Di

+β4 logR&Dstocki + (β5 + β6) logsalei (2.12)

+β7 logHHIi + β8 logpre-sample patentsi).
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Using equations (2.10-2.12) the direct impact (2.4) can be calculated as

DIRECT = δ1 + δ2, (2.13)

and the indirect impacts (2.5-2.6) can be calculated as

INDIRECT (R&D) =
∂logqi

∂logR&Dstocki

× 1×
(
θ2 + θ3

1− θ1

)
+

∂logqi
∂logPATstocki

× 1× 1

Patent
× β4 ×

(
θ2 + θ3

1− θ1

)
(2.14)

and

INDIRECT (PATENTING) =
∂logqi

∂logPATstocki

× 1× 1

Patent
× (β2 + β3), (2.15)

respectively, where Patent is the average of patent counts in the entire sample. See Ap-

pendix B.2 for the detailed steps of deriving equations (2.14) and (2.15).

2.2.4 Measuring Patent Thickets

To measure the extent of fragmentation in patent ownership, I employ the fragmentation

index used by Ziedonis (2004). This measure is explained in Chapter 1 in section 1.2.

Similar to the measurement of R&D spillovers (Appendix B.3), I measure the extent of

related firms’ patent thickets for firm i, the patent thicket spillovers, by

spillFit =
∑
j 6=i

ρij × Fjt, (2.16)
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which is a weighted sum of other firms’ patent thickets. The weight parameter, ρij, mea-

sures the distance between firm i and j (Appendix B.3). Following Noel and Schankerman

(2006), the construction of ρij is based on the distribution of citations across technology

classes in the patent data.

2.3 Data

2.3.1 Data sources

The sample of analysis in Chapter 2 is same as the sample in Chapter 1 except that I

include both patenting and non-patenting firms in the sample to facilitate estimation of

equation (2.9). Following Bloom et al. (2005), I further exclude firms with less than

four consecutive years of data. This aspect facilitates the calculation of the knowledge

stock variables in the sample of patenting and non-patenting firms.16 As a result, the

sample of analysis in Chapter 2 is an unbalanced panel of 1,272 manufacturing firms with

14,214 observations from 1979 to 1996. Table 2.1 presents the descriptive statistics of all

variables. The average firm in the sample is large and R&D intensive.17 On average, a

firm experiences a large fragmentation index of 0.70 and has 14 patents. The mean and

median of variables spillFit and spillR&Dit are not that different.

Figures 2.2 and 2.3 illustrate that variables Fit and spillFit were increasing on average

from 1979 to 1996. The distribution of patent counts by each firm in Chapter 2 is similar

to Figure 1.3 in Chapter 1.

16I also correct for the truncation in the patent and citation counts as I explained in section 1.3 of
Chapter 1. The correction procedures are in Appendix B.4.

17The average firm is large, because it has 13,000 employees. This firm is R&D intensive, since its R&D
intensity is 0.83.
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Table 2.1: Descriptive Statistics

Variable Description Obs Mean Median Std.er Min Max
Market Market Value 14214 867 78 3073 0 70772
V alueit

TAit Book Value 14214 1222 108 3721 0 61659
qit (Market 14207 1.14 0.67 4.76 0 390

V alue/TA)it

Fit Fragment- 9110 0.70 0.81 0.291 0 0.98
ation Index

spillFit Others’ 14135 18.73 16.36 11.47 0.21 0.78
Thicket

spillR&Dit R&D 14126 19516 14910 16107 79.63 117631
Spillovers

R&Dflowit The Level 12533 80.03 8.24 296 0 6099.34
of R&D

R&Dstockit The Stock 14214 307.2 21.46 1250 0 28958
of R&D

Patentit Patent 14214 14 1 58 0 1256
Counts

PATstockit Stock of 14214 64.22 5.64 260 0 5415.17
Patents

CITEstockit Stock of 9110 1152 126 4232 1.19 79115.o8
Citations

(R&Dstock/ R&D 14207 0.83 0.26 5.29 0 383.98
TA)it Intensity
(PATstock/ Patent 12523 0.54 0.23 1.55 0 104.50
R&Dstock)it Intensity
(CITEstock/ Citation 9110 13.5 8.47 19.49 1.17 416.98
PATstock)it Intensity
Saleit Firm-Level 13986 1766 186 5888 0 146991

Sales
HHIit Market 14214 0.43 0.36 0.26 0 1

Structure
pre-sample Firm’s Pre- 14214 14 1.78 43.84 0 6.29
patentsi Sample

Patents
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Figure 2.1: Own Patent Thicket over Time.

Figure 2.2: Other Firms’ Patent Thickets over Time.
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2.3.2 Exogenous Sources of Identifying Variation

While not all of the variation in the fragmentation is necessarily exogenous to the unob-

served characteristics of firms, some is driven by two sources that are arguably exogenous

to unobserved firm characteristics: the pro-patent shifts in the US patent system (see

introduction) and the pure randomness of having successful innovations.

To analyze the impact of pro-patent shifts following the establishment of the CAFC, I

use the Kernel density distributions of the variables Fit and spillFit for the periods before

and after the reforms, 1979-1985 and 1986-1996, respectively. In these analyses, I group

firms based on their patent portfolio size into three categories: firms with fewer than 5

patents (small firms), firms with 6 to 58 patents (medium firms), and firms with more than

58 patents (large firms). The effect of the pro-patent shifts on Fit in Chapter 2 are roughly

the same as Figures 1.5 to 1.7 in Chapter 1. Figures 2.4 to 2.6 investigate the effect of

the pro-patent shifts on spillFit for each group. In all of these figures, the kernel densities

experience a shift to the right following the pro-patent policy changes, which imply higher

spillFit after the establishment of the CAFC.
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Figure 2.3: Kernel Density of spillFit for Small Firms.

Figure 2.4: Kernel Density of spillFit for Medium Firms.
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Figure 2.5: Kernel Density of spillFit for Large Firms.

2.4 Results

2.4.1 Estimates of the Market Value, Patenting, and R&D Equa-

tions

Table 2.2 contains estimates of patent thickets on market value (direct impact) based on

equation (2.7). Standard errors are clustered at the firm-level.18 Both the estimated coef-

ficients on a firm’s own patent thicket (logFit−1) and others’ patent thickets (logspillFit−1)

indicate that patent thickets have a negative direct impact on market value. For example,

in Column 3, which contains estimates with firm fixed effects, the coefficient of logFit−1

implies that market value declines by 0.22% as fragmentation increases by 10%. However,

I lay limited emphasis on this result because the coefficient estimate is not statistically

18Clustering at the industry level (based on four-digit SIC codes) generates similar results to clustering
at the firm-level.
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significant. The coefficient of logspillFit−1 shows that if fragmentation in the technology

market increases by 10% for other firms, the given firm experiences lower market value by

0.69%. This finding is statistically significant at a 1% level of significance. The estimated

negative impacts og patent thickets are robust to the use of industry fixed effects in column

4.19 The results in Table 2.2 support the hypothesis that patent thickets lower a firm’s

market value directly.20

Table 2.3 reports estimates of the effect of patent thickets on R&D expenditures, em-

ploying equation (2.8). The results in Column 1 show that the major determinant of R&D

expenditures of a given firm is its past R&D expenditures. While the coefficients on the

patent thicket variables, logFit−1 and logspillFit−1, are both positive, they are not statis-

tically significant, and even their magnitude is very small. The estimated coefficient of

logFit−1 in column 3 implies that a 10% increase in firms’ own patent thicket lowers R&D

expenditure by only 0.23%, and the coefficient estimate on the variable logspillFit−1 in

the same column suggests that a 10% increase in others’ patent thickets increases R&D

expenditures of a firm by only 0.08%. Hence, the proliferation of patents seems not to have

generated the “tragedy of anti-commons” in the manufacturing sector.

Table 2.4 reports estimates of patent thicket impacts on patenting activity, using equa-

tion (2.9). The results in columns 3 and 4 indicate that patent thickets have a positive and

19The estimation is based on equation (2.7), but instead of controlling for firm fixed effects, I control for
industry fixed effects, which are based on four-digit SIC codes. The industry fixed effects are for controlling
the possibility of dense patent thickets, which may be more likely in some industries than others.

20Since columns 3 and 4 allow for interactions among firms, there are controls for R&D spillover
(logspillR&Dit−1) and market structure (logHHIit−1) in these columns. In both columns, the vari-
able logspillR&Dit−1 has a statistically insignificant impact on market value, but with different signs and
sizes. The market structure has a positive and statistically significant impact on market value in column
3. The finding on the market structure variable corresponds to the notion that in highly concentrated
markets, firms have higher market power that leads to larger future expected earnings for those firms and
consequently, higher market value. This result is interesting as, to the best of my knowledge, there are few
studies that focus on the impact of market structure on the market value of firms, and they do not find a
statistically significant impact (Lindenberg and Ross, 1981 and Hirschey, 1985).

66



statistically significant effect on patenting. The reported standard errors in Table 2.4 are

robust standard errors. The reason for using these standard errors is the over-dispersion

problem in the sample that leads to inefficiency in estimates.21 The estimated coefficient

on the variable logpre-sample patentsi, which is used to control for firm unobserved het-

erogeneity, is positive and statistically significant in columns 1 to 3. This result confirms

the need to control heterogeneity across firms with respect to their patenting behavior.22

21For a detailed explanation of the over-dispersion problem, refer to section 2.2.2
22For a detailed explanation of the reason behind using the variable pre-sample patentsi to control for

firm unobserved heterogenities, refer to section 2.2.2
28The signs ***, **, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the

parentheses are the cluster-robust standard error (clustered at the firm-level).
29The signs ***, **, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in the

parentheses are the cluster-robust standard error at the firm-level).
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Table 2.2: Patent Thicket and Market Value

Dependent Variable (1) (2) (3) (4)
logqit

28

logFit−1 -0.022 -0.022 -0.026
(0.020) (0.018) (0.028)

logspillFit−1 -0.069*** -0.039***
(0.017) (0.013)

logspillR&Dit−1 -0.003 0.011
(0.005) (0.007)

logSaleit−1 0.003 0.004 0.005 0.001
(0.005) (0.005) (0.005) (0.007)

logSaleit−2 0.005 0.005 0.005 0.012**
(0.005) (0.005) (0.004) (0.006)

logHHIit−1 0.058*** 0.019
(0.014) (0.021)

log(R&Dstock
TA

)it−1 0.151*** 0.152*** 0.159*** 0.314***
(0.031) (0.030) (0.011) (0.020)

[log(R&Dstock
TA

)it−1]
2 0.047*** 0.047*** 0.048*** 0.132***

(0.012) (0.011) (0.004) (0.008)
[log(R&Dstock

TA
)it−1]

3 0.003 0.003 0.002** 0.006**
(0.002) (0.002) (0.000) (0.002)

[log(R&Dstock
TA

)it−1]
4 -0.001 -0.001 -0.001*** -0.003***

(0.001) (0.001) (0.000) (0.000)
[log(R&Dstock

TA
)it−1]

5 -0.001* -0.000* -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000)

log( PATstock
R&Dstock

)it−1 0.054** 0.055** 0.053*** 0.044***
(0.021) (0.022) (0.010) (0.012)

[log( PATstock
R&Dstock

)it−1]
2 0.006 0.006 0.005 0.006

(0.010) (0.009) (0.004) (0.006)
[log( PATstock

R&Dstock
)it−1]

3 -0.002 -0.002 -0.001 -0.001
(0.002) (0.002) (0.001) (0.001)
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Table 2.2 Continued

Dependent Variable (1) (2) (3) (4)
logqit
[log( PATstock

R&Dstock
)it−1]

4 -0.001 -0.000 -0.000 -0.000
(0.001) (0.000) (0.000) (0.000)

[log( PATstock
R&Dstock

)it−1]
5 0.010 0.000 0.000 -0.000

(0.055) (0.000) (0.000) (0.000)
log(CITEstock

PATstock
)it−1 0.068 0.055 0.051 0.233*

(0.129) (0.130) (0.100) (0.132)
[log(CITEstock

PATstock
)it−1]

2 -0.092 -0.081 -0.077 -0.358*
(0.191) (0.191) (0.143) (0.191)

[log(CITEstock
PATstock

)it−1]
3 0.040 0.035 0.035 0.172*

(0.097) (0.097) (0.072) (0.098)
[log(CITEstock

PATstock
)it−1]

4 -0.007 -0.006 -0.007 -0.035*
(0.021) (0.020) (0.015) (0.021)

[log(CITEstock
PATstock

)it−1]
5 0.005 0.000 0.000 0.003*

(0.015) (0.001) (0.001) (0.002)
D(logFit = 0) -0.006 -0.007 -0.003

(0.012) (0.011) (0.018)
D(R&Dit = 0) -0.094** -0.094*** -0.100*** -0.081***

(0.034) (0.035) (0.023) (0.024)
D(Patentit = 0) 0.016 0.019 0.017 0.029

(0.011) (0.012) (0.011) (0.018)
Firm Fixed Effects Yes Yes Yes No

Industry Fixed Effects No No No Yes

Time Fixed Effects Yes Yes Yes Yes

Observation 11773 11773 11773 11773

R2 0.1364 0.1366 0.1397 0.2785
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Table 2.3: Patent Thicket and R&D

Dependent Variable (1) (2) (3) (4) (5)
logR&Dit

29 Panel GMM
logFit−1 0.024 0.023 0.015 -0.012

(0.019) (0.020) (0.018) (0.019)
logspillFit−1 0.008 0.012 0.020

(0.017) (0.010) (0.017)
logspillR&Dit−1 -0.004 0.010 0.004

(0.005) (0.006) (0.006)
logR&Dit−1 0.726*** 0.727*** 0.726*** 0.944*** 0.329***

(0.018) (0.023) (0.023) (0.007) (0.127)
logSaleit−1 0.187*** 0.186*** 0.187*** 0.181*** 0.078

(0.030) (0.037) (0.037) (0.023) (0.049)
logSaleit−2 -0.038 -0.037 -0.038 -0.144*** 0.103***

(0.027) (0.027) (0.027) (0.021) (0.029)
logHHIit−1 -0.024 0.002 -0.023

(0.016) (0.015) (0.020)
D(logFit = 0) 0.029** 0.029** 0.024* 0.021

(0.012) (0.012) (0.013) (0.014)
Firm Yes Yes Yes No No
Fixed Effects
Industry No No No Yes No
Fixed Effects
Time Yes Yes Yes Yes Yes
Fixed Effects
Observations 7340 7340 7340 7340 5496

R2 0.7294 0.7298 0.7299 0.9933
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2.4.2 Calculated Direct, Indirect, and Total Impacts

Table 2.5 displays the calculated direct and indirect impacts obtained using equations

(2.13), (2.14) and (2.15). I calculate these effects using both the estimates with firm

fixed effects (column 3 of Tables 2.2, 2.3, and 2.4) and the estimates with industry fixed

effects (column 4 of Tables 2.2, 2.3, and 2.4). Standard errors of direct, indirect, and total

impacts are estimated with non-parametric bootstrapping (the numbers in parentheses).

As a robustness check, I also report the standard errors based on wild bootstrapping (the

numbers in brackets).23

In models with firm fixed effects, the direct impact is negative, and indirect impacts

through R&D and patenting are positive. The direct impact shows that a 10% increase

in patent thickets is associated with a 0.9% decrease in firms’ market value. The in-

direct impact of patent thickets on market value through R&D is very small and sta-

tistically insignificant. However, the indirect impact of patent thickets on market value

through patenting is positive and statistically significant. As is expected, the beneficial

indirect impact of patent thickets on the market value through an increase in patenting

only partially offsets the negative direct impact of patent thickets. The total impact of

patent thickets on market value is negative and statistically significant. The estimates

imply that a 10% increase in the fragmentation of patent ownership decreases the market

value of firms by 0.81%. The models with industry fixed effects result in similar findings.

27The signs ***, **, and * mean significance at 1%, 5%, and 10%, respectively. The numbers in
parenthesis are standard errors, which are robust to heteroskedasticity. Numbers in the brackets are
marginal effects.

23The number of replications in both of non-parametric bootstrapping and wild bootstrapping is 1000.
For a detailed explanation of non-parametric and wild bootstrapping procedures, refer to Cameron et al.
(2007).
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Table 2.4: Patent Thicket and Patent Propensity

Dependent (1) (2) (3) (4)
Variable: Poisson Poisson Poisson Poisson
Patentit

27 Mean-scaling Mean-scaling Mean-scaling No Mean-scaling
logFit−1 1.250*** 1.151*** 1.022

(0.117) (0.116) (0.103)
[2.066] [1.932] [1.395]

logspillFit−1 0.023** 0.525***
(0.048) (0.061)
[0.039] [0.716]

logspillR&Dit−1 0.127*** 0.041**
(0.027) (0.020)

logR&Dstockit−1 0.585*** 0.552*** 0.534*** 0.709***
(0.018) (0.018) (0.017) (0.020)
[1.822] [0.913] [0.896] [0.967]

logSaleit−1 -0.079*** -0.080*** -0.090*** -0.044***
(0.014) (0.014) (0.013) (0.014)

logSaleit−2 -0.023** -0.024** -0.015 -0.015**
(0.010) (0.010) (0.010) (0.007)

logHHIit−1 0.143*** -0.188**
(0.023) (0.068)

logpre-sample 0.441*** 0.361*** 0.340***
patentsi (0.016) (0.016) (0.016)
D(logFit = 0) -2.317*** -2.300*** -2.363***

(0.049) (0.049) (0.049)
D(R&Dit = 0) 0.175* 0.270** 0.282*** 0.583***

(0.091) (0.100) (0.096) (0.113)
Industry No No No Yes
Fixed Effects
Time Yes Yes Yes Yes
Fixed Effects
Observations 11760 11760 11760 11760
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Table 2.5: Direct and Indirect Impacts of Fit and spillFit

Specification29 Direct Impact Indirect Impact Total Impact

INDIRECT INDIRECT

(R&D) (PATENTING)

Firm FE -0.091 +0.002 +0.008 -0.081

(0.030) (0.005) (0.003) (0.032)

[0.031] [0.007] [0.001] [0.030]

Industry FE -0.065 +0.004 +0.018 -0.043

(0.045) (0.007) (0.006) (0.047)

[0.044] [0.018] [0.002] [0.044]

2.5 Conclusion

The economic costs of patent thickets have been at the centre of ongoing debates on

reforming the US patent system. Economic analyses of patent thickets have provided

differing views on patent thickets’ effects. In this chapter, I estimate the direct and indirect

costs of patent thickets. The direct impact is the effect that patent thickets have on

firms’ market value, while I hold R&D and patenting activities of firms constant. The

indirect impact is the effect that patent thickets potentially have on market value through

29Direct impact is calculated based on equation (2.13). Indirect impact via R&D is calculated based
on equation (2.14). The indirect impact via patents is based on equation (2.15). The numbers in the
parentheses are the non-parametric bootstrapped standard errors. The numbers in the brackets are the
wild bootstrapped standard errors. In the models with industry fixed effects, the maximum likelihood
Poisson estimator of the patent equation encountered non-convergence 16 times out of 1000 bootstrapped
observations, when I measured standard errors. Models with firm FE are based on Column 3 of Tables
2.2, 2.3, and 2.4. Models with industry FE are based on Column 4 of Tables 2.2, 2.3, and 2.4.
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patent thicket induced changes in R&D and through a patent thicket prompted increase

in defensive patenting. In the empirical models, I also incorporate the influence that other

firms’ patent thickets have on market value of a given firm. The analysis is conducted

using panel data on 1,272 publicly traded US manufacturing firms from 1979 to 1996.

The results show that patent thickets lower the market value of firms. The total impact

on market value is smaller in magnitude than the direct impact because firms avoid some

of the potential costs of patent thickets through defensive patenting. Hence, exclusively

focusing on patent thickets’ direct impact on market value overstates patent thickets’ neg-

ative impact on firms’ market value. Moreover, I find that thickets have no statistically

significant impact on firms’ R&D expenditures.

The merit of my analysis for intellectual property policy is that it quantifies the costs

of patent thickets. As the US considers potential patent reforms, the benefit of lowering

costs of patent thickets through, for example, lowering fragmentation in patent ownership

by increasing the requirements for obtaining patents must be weighed against the negative

effects that making patenting harder might have on the incentives to innovate.
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Chapter 3

Missing Observations on a Variable:

A Comparison of the Listwise

Deletion and Indicator Approaches

3.1 Introduction

Censored regressors and explanatory variables with missing observations are quite common

in applied research. Applied studies usually employ the listwise deletion method (LW),

which is also called complete case analysis, or the indicator method (DI) in models with

such regressors.1 The LW method deletes observations with missing values on one or more

of the regressors. The DI approach adds an indicator variable for missing observations of

a regressor and replaces all missing observations of the regressor with a constant.

1Little (1992) and Little and Rubin (2002) offer a summary of the methods used for solving the problem
of missing data in the literature.
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Only few studies have analyzed the performance of the DI and LW methods in models

with censored regressors or regressors with missing observations. In economics literature,

Rigobon and Stoker (2007) employ a model of censoring to a single value in the case of

censored regressors, and find unbiased estimates for the LW method and biased estimates

for the DI method.2 In statistics literature, Jones (1996) assumes missing completely at

random (MCAR) and finds that unlike the LW method, the DI method generates biased

estimates unless the regressors are uncorrelated.3 Jones (1996) further observes that if the

missing data mechanism is dependent on all explanatory variables, the estimates obtained

using the DI method are biased, while the LW estimates are unbiased.

Nevertheless, as has been observed by Jones (1996), the DI method is widely used

in empirical research in fields such as epidemiology, sample survey research, behavioral

science, and business and economics. Some of the examples in the economics literature

that employ the DI method are Hall and Ziedonis (2001), Ziedonis (2004), Bloom et al.

(2005), and Noel and Schankerman (2006).

One potential justification for the abundant use of the DI method in empirical research

might be the dependence of the mechanisms on whether observations on a regressor are

missing on unobserved error terms, and on the value of the regressor. When missing

observations on a regressor are dependent on unobserved error terms and the value of the

2Rigobon and Stoker (2007) assume exogenous censoring for censored regressors. To analyze the perfor-
mance of the DI and LW methods, Rigobon and Stoker (2007) employ a top-coding censoring mechanism
to generate censored data. In this mechanism, the observations of a regressor Xi, which are larger than a
single fixed value, for example ξ, are missing. Rigobon and Stoker also analyze the properties of the DI
and LW methods using a bottom-coding censoring and determine that the observations on the regressor
Xi are missing if Xi < ξ.

3Rubin (1976) categorizes the random missingness to missing completely at random (MCAR), and
missing at random (MAR). MCAR means the probability of being missing for the kth observation, xik,
of an explanatory variable Xi neither depends on its own value nor on the value of other fully observed
variables in the data set. If the probability of xik being missing does not depend on its realized value, but
depends on the values of other fully observed variables in the data set, the type of missingness is MAR.
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regressor, using the LW method could lead to selection bias and inconsistent estimates. Due

to the dependence of the missingness mechanism on the error term and on the regressor, the

complete sample – which is employed in the LW method – becomes a non-representative

sample of the population.

In contrast, the DI method uses all the available information, including the missing

observations on regressors (Cohen and Cohen, 1975 and Chow, 1979), and may avoid the

bias. Even if the missing observations are MCAR and the LW estimates are consistent,

the deletion of missing observations, when the LW method is used, implies an inherent loss

of information.

In this chapter, I examine whether cases can be found in which the estimates obtained

using the DI method are less biased than estimates obtained using the LW method. In my

analysis, whether an observation on a variable is missing depends both on the value of the

error term and on the value of the regressor. To my knowledge, the performance of the DI

and LW methods, in this case of missingness, has not been previously examined. Using

Monte Carlo simulations, this chapter seeks to fill this gap in the literature.4

The findings of Chapter 3 reveal conditions under which the biases of the estimates

in the LW method are bigger than the biases in the DI method, when the probability of

whether an observation on an explanatory variable is missing depends on the value of the

4Imputation methods are sometimes used for solving the problem of missing observations of explanatory
variables. These methods predict the missing observations of each variable from the observed values of
that variable. According to Little and Rubin (2002), the cost of imputation methods comes from their
requirement for making (possibly wrong) assumptions on the procedure which should be used for filling the
missing observations. This approach has approximation errors, which should be taken into account in the
inferences (Cameron and Trivedi, 2006, p. 923). Such errors make statistical inferences more complicated.

Maximum Likelihood approach is another suggested method to correct for missing observations in the
literature. The limitation of this method is related to its requirement for making an assumption on the
joint distribution of all variables with missing observations. Usually the multivariate normal distribution
is assumed, but this assumption might not be realistic (Allison, 2001). Moreover, ML generates different
results every time it is used. This happens since a random variation is deliberately added to the process.
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unobserved error term and on the (possibly unobserved) value of the regressor itself. The

results imply that recommendations in the existing literature to use the LW method are

not supported when missingness is dependent on unobserved error terms and the value of a

regressor. Therefore, the selection of a proper method and interpretation of the estimates

under each method requires greater care than is implied by the existing literature.

3.2 The Model

To analyze the biases in the DI and LW methods, I assume that the true model is of the

form

Yi = β0 + β1Xi + β2Zi + Ui, (3.1)

where the variables Zi and Ui are uniformly distributed on the interval [-0.5, 0.5] and [-1,

1], respectively. The variables Yi and Zi are always fully observed. The only variable with

missing observations is Xi. For each observation on Xi, one of two mechanisms is used

to set whether the observation on Xi is missing. I assume that with probability α, the

variable Xi has missing observations if Xi > Ui, and with probability (1− α), the variable

Xi has missing observations if XiUi < 0. With this missing data mechanism, both the

unobserved error term Ui and the value of Xi influence whether an observation on Xi is

missing. Following Jones (1996), I set β0 = 1, β1 = 2, and β2 = 1.

As has been observed by Jones (1996), the correlation of regressors is an important

determinant of whether the DI estimators of the parameters β1 and β2 are biased. There-

fore, to generate a correlation between regressors, I assume that the relation between the
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variable Xi and the variable Zi is given by

Xi = γ(δZi +Wi), (3.2)

where Wi is uniformly distributed on the interval [-0.5, 0.5], and γ and δ are parameters.

Employing these assumptions in Monte Carlo simulations, I examine the conditions

that lead to a smaller bias in the DI estimates than the LW estimates, when missingness

depends on unobserved error term Ui and on the variable Xi.
5

3.3 Properties of the DI and the LW Methods

This section employs the Monte Carlo simulations and examines the bias in the DI and

LW estimates, when the missing data mechanism is dependent on unobserved error term

Ui and on the variable Xi.

The true model employed in the simulations for the DI and the LW methods is equation

(3.1), and the relationship between Xi and Zi is defined as equation (3.2). The DI method

includes a dummy variable, denoted by Di, in the estimating equation to control for missing

observations. The variable Di is equal to one for observations for which Xi is observed and

zero for observations for whichXi is missing. This method replaces the missing observations

of Xi with a constant, which I set to be zero. Thus, the estimating equation for the DI

method is

Yi = βDI
0 + βDI

1 X0i ×Di + βDI
2 Zi + βDI

3 (1−Di) + Ui, (3.3)

5The results of the Monte Carlo simulations are quantitatively similar if I change the distribution of
the variable Xi to standard normal distribution, or if I alter equation (3.2).
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where the missing observations of the variable X0i are replaced with 0. The variables Yi

and Zi have no missing values.

The estimating equation for the LW method is

Ỹi = βLW
0 + βLW

1 X̃i + βLW
2 Z̃i + Ũi, (3.4)

where the variables Ỹi, X̃i, Z̃i, and Ũi are the variables Yi, Xi, Zi, and Ui, respectively, from

the complete sample (the sample without any missing observations). For each reported

parameter combination, I perform 10,000 Monte Carlo simulations with a sample size of

1,000. For each simulation, I calculate the estimates of the parameters β1 and β2, while I

use the estimating equations (3.3) and (3.4) for the DI and LW methods, respectively.

Figures 3.1 and 3.2 display the average of the estimates of the coefficients β1 and β2 in

the LW and DI methods across the 10,000 simulated samples assuming γ = 0.5 and δ = 0.5.

These figures also report the averages of the 95% confidence intervals from simulations for

β1 and β2.

As is illustrated by Figures 3.1 and 3.2, there are cases in which the bias of the estimates

of the parameters β1 and β2, which are obtained using the DI method, are smaller than

the bias of the corresponding estimates, which are obtained using the LW method. For

example, when the parameter α is in the range 0.6 to 1, the bias in the DI method is

smaller than the bias in the LW method for both coefficients. The results of the Monte

Carlo simulations are almost quantitatively similar if the value of γ is decreased or if the

value of δ is either increased or decreased, while I hold the other parameter constant.

However, for very large values of γ, the smaller bias of the DI method in comparison to

the LW method disappears, as is illustrated in Figures 3.3 and 3.4, in which values of γ
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Figure 3.1: Average of β̂1 in the LW and DI Methods (γ = δ = 0.5).

Figure 3.2: Average of β̂2 in the LW and DI Methods (γ = δ = 0.5).
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Figure 3.3: Average of β̂1 in the LW and DI Methods (γ = 1.3, δ = 0.5).

and δ are 1.3 and 0.5, respectively. With this value of γ, the DI method generates much

larger bias than the LW method on the coefficient of the variable Zi in Figure 3.4.

The observed smaller bias in the DI estimates of the parameters β1 and β2 in comparison

to the LW estimates of these parameters in Figures 3.1 and 3.2 indicates that the LW

method is not a better choice than the DI method. Sometimes, the DI method can indeed

alleviate the selection bias associated with missing observations as is often implicitly and

in some cases even explicitly implied in the applied economics literature. The next step is

gaining a better understanding of why these results are found based on different values of

γ and δ in terms of the variances and covariance of Xi and Zi.
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Figure 3.4: Average of β̂2 in the LW and DI Methods (γ = 1.3, δ = 0.5).

3.4 Conclusion

It is surprising that few studies in the literature have addressed the estimation problems

associated with censored regressors and explanatory variables with missing observations,

as such regressors are quite common in applied work. Studies usually recommend using the

listwise deletion approach (LW) over the dummy indicator approach (DI) for estimation.

Despite the findings of these studies, the DI method is widely used in empirical research

as is observed by Jones (1996). The abundant use of the DI method in practice implies

the likelihood of cases in which the bias of the DI method is smaller than that of the LW

method.

This study illustrates cases that lead to smaller bias in the estimates of the DI method

than the LW method, when the missingness on a regressor is correlated with unobserved

error terms and the values of the regressor. The examined cases of this research imply that
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the suggestion of the existing literature on selecting the LW method over the DI method

does not help with these specific types of missingness. Therefore, the selection of one

approach over the other one needs careful consideration.

In the end, the simulated samples in Monte Carlo simulations are samples of cross-

sectional data, and only one of the regressors has missing observations. Further research

is required to analyze the bias of the estimates of the DI and LW methods in the context

of longitudinal data, and when there are several regressors with missing observations.
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Appendix A

Appendix for Chapter 1

A.1 Correcting Truncation in Patent and Citation Counts

To correct for truncation in patent counts, I follow the approach of Hall et al. (2000), which defines weight
factors to correct for truncation in patent counts. Their weight factors are calculated according to

patent∗t =
patentt∑1999−t

k=0 weightk
(A.1)

1996 ≤ t ≤ 1999,

where patentt is the number of patents granted at time t to all firms and weightk is built based on the
average of citations in each lag for the patents of firms.1 Hall et al. (2000) multiply patent counts in ending
years of the sample with the inverse of the weight factors (1/patent∗t ) and correct for the truncation. I only
correct patent counts for 1997 to 1999 because from 2000 to 2002 (end of my sample) the results are under
the “edge effect”(Hall et al., 2000). This means the 2002 data will not be usable and 2001 data will have
large variance. Figure A.1 displays a comparison of original and corrected patent counts for truncation.

To correct for truncations in citations, I employ the method of Hall et al. (2000). I calculate the
distribution of the fraction of citations received by each patent at a time between the grant year of the
citing patents and the grant year of the cited patent. Using this distribution, I predict the number of
citations received for each patent outside the range of the sample, maximum to 40 years after the grant
date of the patent. Figure A.2 displays a comparison of original and corrected citation counts. I use the
truncation corrected patent and citation counts in my analysis.

1Lags are defined as the difference between the ending years of the sample and year 1999. Therefore,
lags are 1999-1996=3, 1999-1997=2, 1999-1998=1, and 1999-1999=0.
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Figure A.1: Correction for Truncation in the Patent Counts.

Figure A.2: Correction for Truncation in the Citation Counts.
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Appendix B

Appendix for Chapter 2

B.1 Derivation Steps of the Market Value Equation

Following the studies of Griliches (1981) and Hall et al. (2005), the general specification for market value
function is

logMarket V alueit = logSVit + σlog(TAit + γINAit). (B.1)

The variable logMarket V alueit is the log of the market value of firm i in year t. Following Hall et al.
(2005), the market value of a firm is calculated as the sum of the current market value of common and
preferred stocks, long-term debt adjusted for inflation, and short-term debts of the firm net of assets. In
the analysis of Hall et al. (2005), the variable logSVit includes time fixed effects (mt) and the error term
(εit). The term εit denotes the other factors that influence the market value of firm i in year t. I assume
that error terms εit are additive, independently and identically distributed across firms and over time,
and serially uncorrelated. The variables TAit and INAit are tangible and intangible assets, respectively.
Their measurement is discussed shortly. The coefficient γ is the shadow price of the intangible to tangible
asset ratio. Moving the variable TAit to the left-hand side in equation (B.1) allows left-hand side of this
equation to be written as log(Market V alueit

TAit
) or Tobin’s q.1 Equation (B.1) then becomes

logqit = log

(
1 + γ

INAit

TAit

)
+mt + εMV

it . (B.2)

Following Hall et al. (2005), the variable TAit is measured by the book value of firms based on their
balance sheet. The book value of a firm is calculated as the sum of net plant and equipment, inventories,
investments in unconsolidated subsidiaries, and intangibles and others. All of the components of TAit

are adjusted for inflation.2 INAit is measured based on the approach of Hall et al. (2005), who measure
the variable INAit with R&D intensity (R&Dstockit/TAit), patent intensity (PATstockit/R&Dstockit),
and citation yield per patent or citation intensity (CITEstockit/PATstockit). The variables R&Dstockit,

1The parameter σ is a scale factor in the value function. According to Hall et al. (2005), the assumption
of constant returns to scale with respect to assets usually holds in the cross-section. Thus, σ becomes one.

2Inflation adjustments are based on the CPI urban US index for 1992 (Source: http://www.bls.gov).
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PATstockit, and CITEstockit measure the stock of R&D, patents, and citations, respectively. These
variables are constructed based on a declining balance formula with the depreciation rate of 15%.3 Hall et
al. (2005) justify their method for measuring INAit of a firm by arguing that the firm’s R&D expenditures
show the intention of the firm to innovate. The R&D expenditures might become successful and result
in an innovation. Patents of the firm catalogue the success of the innovative activity, and the importance
of each patent is measured by the number of times it is cited in subsequent patents. Therefore, I employ
R&D intensity, patent intensity, and citation intensity to measure INAit, following Hall et al. (2005),
and, equation (B.2) becomes

logqit = log

(
1 + γ1

(
R&Dstock

TA

)
it

+ γ2

(
PATstock

R&Dstock

)
it

+ γ3

(
CITEstock

PATstock

)
it

)
+mt + εMV

it . (B.3)

There is usually a difference between the application and grant date of patents. Out of the patents
applied close to the end date of the sample, only a small fraction is granted, and the rest are granted
outside the reach of the sample. This issue indicates truncation in patent counts. Citation counts are
also truncated. Truncation in citation counts happen since only citations that occur within the sample
are observable. I correct for these truncations. As a result, the PATstockit and CITEstockit variables
are corrected for truncations in patent and citation counts. See Appendix B.4 for detailed correction
procedures.

To estimate the impact of patent thicket on the market value of firms, I augment equation (B.3) with
the variables logFit as a measure of the firm’s own patent thicket, and logspillFit as a measure of other
firms’ patent thickets (the construction of these variables is explained in section 2.2.4). To control for R&D
spillovers, I include logspillR&Dit in equation (B.3), and the construction of this variable is explained in
Appendix B.3. The distributed lag structure in the firm level sales (logsaleit and logsaleit−1) decrease the
potential for inconsistent estimates due to demand shocks. To control for the effect of market structure
on the market value of firms, I also add the log of a Herfindahl index for market structure (logHHIit).
Finally, some firms might have a permanently higher market value than others due to omitted firm specific
effects.4 To control for the firm unobserved heterogeneity, I include αMV

i in equation (B.3). Adding the
above variables to equation (B.3) results in the specification

logqit = log

(
1 + γ1

(
R&Dstock

TA

)
it

+ γ2

(
PATstock

R&Dstock

)
it

+ γ3

(
CITEstock

PATstock

)
it

)
+δ1logFit + δ2logspillFit + δ3logspillR&Dit + δ4logsaleit + δ5logsaleit−1

+δ6logHHIit +mt + αMV
i + εMV

it . (B.4)

3Following Hall et al. (2005), the employed declining balance formula is Kt = (1−δ)Kt−1 +flowt. The
variables Kt and flowt stand for knowledge stock and knowledge flow at time t, respectively. I define the
initial stock of knowledge variables as the initial sample values of the knowledge variables similar to Noel
and Schankerman (2006). I select the parameter δ or depreciation rate equal to 15%. Most researchers
settled with this deprecation rate (Hall et al., 2000, 2005, and 2007). Hall and Mairesse (1995) show
experiments with different deprecation rates, and they conclude that changing the rate from 15% does not
make a difference. As a result, I select δ = 15%, and this selection further assists in easy comparisons to
previous studies.

4For example, this could be the result of the stock of past innovations at the beginning of the sample,
or a better ability of absorbing external technologies for reasons that are not explained by independent
variables.
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Equation (B.4) could be estimated with a non-linear least squares estimator, but it is easier to substitute
the non-linear terms with series expansions and estimate the equation with a linear estimator, following
Bloom et al. (2005) and Noel and Schankerman (2006).5 This approach makes the incorporation of firm
fixed effects easier. Therefore, equation (B.4) becomes

logqit = δ1logFit + δ2logspillFit + δ3logspillR&Dit

+γ1 Ψ
(
log

(
R&Dstock

TA

)
it

)
+ γ2 Ω

(
log

(
PATstock

R&Dstock

)
it

)
+γ3 Γ

(
log

(
CITEstock

PATstock

)
it

)
+ δ4logsaleit + δ5logsaleit−1

+δ6logHHIit + αMV
i +mt + εMV

it ,

(B.5)

where the parameters Ψ, Ω, and Γ denote the polynomials of the measures of intangible assets. Equation
(B.5) is used to build equation (2.7).

B.2 Indirect Impacts through R&D and Patenting

INDIRECT (R&D) = [
∂logqi

∂logR&Dstocki
× ∂logR&Dstocki

∂logR&Di
(
∂logR&Di

∂logFi
+
∂logR&Di

∂logspillFi
)]

+[
∂logqi

∂logPATstocki
× ∂logPATstocki

∂logPatenti
× ∂logPatenti

∂Patenti
× ∂Patenti
∂logR&Dstocki

×∂logR&Dstocki

∂logR&Di
× (

∂logR&Di

∂logFi
+
∂logR&Di

∂logspillFi
)]

=
∂logqi

∂logR&Dstocki
× 1× (

θ2 + θ3
1− θ1

)

+
∂logqi

∂logPATDstocki
× 1× 1

Patent
× β4 × 1× (

θ2 + θ3
1− θ1

). (B.6)

5I would not approximate log(1 + θ INAit

TAit
) with θ( INAit

TAit
) because such an approximation is right if the

ratio of intangible assets to tangible assets is small. However, this ratio is large for high technology firms
in the manufacturing sector.
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INDIRECT (PATENTING) = [
∂logqi

∂logPATDstocki
× ∂logPATDstocki

∂logPatenti
× ∂logPatenti

∂Patenti

×∂Patenti
∂logFi

] + [
∂logqi

∂logPATDstocki
× ∂logPATDstocki

∂logPatenti

×∂logPatenti
∂Patenti

× ∂Patenti
∂logspillFi

]

=
∂logqi

∂logPATDstocki
× 1× 1

Patent
× (β2 + β3). (B.7)

One point to note is that the R&D variable is a stock variable in equations (2.10) and (2.12), and is a
flow variable in equation (2.11). Following Hall et al. (2005), I define the relation between the R&D stock
and flow as

R&Dstockit = (1− δ)R&Dstockit−1 +R&Dit. (B.8)

Using the steady state condition (R&Dstockit = R&Dstockit−1 = R&Dstocki), and taking the logarithm
of both sides, equation (B.8) becomes

logR&Dstocki = logR&Di − logδ, (B.9)

where
∂logR&Dstocki

∂logR&Di
= 1. (B.10)

I use equation (B.10) in equation (B.6). The same applies to the patent variable as this variable is a
stock variable in equation (2.10) and is a count variable in equation (2.12).

B.3 Measuring Technology Spillovers

Firms in different industries interact with each other. These interactions imply the possibility of R&D
spillovers among firms. In order to measure the R&D spillovers, I follow the R&D spillovers literature that
I explain in section 2.1, and I measure the R&D spillovers of firm i at time t as

SpillR&Dit =
∑
j 6=i

ρij ×R&Dstockjt. (B.11)

The parameter ρij measures the closeness between firm i and j, and the variable R&Dstockjt stands
for the R&D stock of firm j at time t. According to Jaffe (1986), firms mostly benefit from R&D of
the firms that are closer to them in their technological field. Jaffe names ρij the technological proximity
between firms i and j, and he explains that ρij is built based on the uncentered correlation coefficient
of the location vectors of firms i and j (Si and Sj).6 For example, the location vector of each firm i

6The proximity measure of Jaffe (1986) is not directly under the impact of the length of the location
vectors, which are dependent on the concentration of firms in research fields. Other forms of proximity
measures such as Euclidean distance are highly dependent on the length of the location vector. For
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(Si) based on the distribution of the share of the firm i’s patents across N different technology classes is
Si = {si1, si2, ..., siN}, where sik shows firm i’s share of patents in the technology class k.

Bloom et al. (2005) use a modified version of Jaffe’s (1986) measure for the parameter ρij . Their
measure is

ρij =
S′iSj

(S′iSi)1/2(S′jSj)1/2
. (B.12)

The range of ρij is between 0 and 1. It is closer to 1 for the firms that are closer to each other in their
technological field, and it is zero if the location vectors of firms are orthogonal.7 Noel and Schankerman
(2006) suggest using the distribution of the citations in the patents of each firm across N different technology
classes for location vectors. This means sik is the share of all citations in the patents of firm i that belong
to a technology class k. These citations reflect the benefits that the firm enjoys from the research activity
of others in the same technology field, because they exactly show the previous patents that the firm is
using in its innovation. Therefore, I follow Noel and Schankerman (2006) and utilize the distribution of
citations across 426 different technology classes of the USPTO in the sample of my analysis to build the
location vectors. Then, I use the proximity measure in equation (B.12) to calculate the R&D spillovers
that firm i receives at time t from other firms based on equation (B.11).8

B.4 Correcting Truncation in Patent and Citation

To correct for truncation in patent counts, I follow the approach of Hall et al. (2000), which defines weight
factors to correct for truncation in patent counts. Their weight factors are calculated according to

patent∗t =
patentt∑1999−t

k=0 weightk
1996 ≤ t ≤ 1999,

where patentt is the number of patents granted at time t to all firms and weightk is built based on the
average of citations in each lag for the patents of firms.9 Hall et al. (2000) multiply patent counts in ending
years of the sample with the inverse of the weight factors (1/patent∗t ) and correct for the truncation. I only
correct patent counts for 1997 to 1999 because from 2000 to 2002 (end of my sample) the results are under
the “edge effect”(Hall et al., 2000). This means the 2002 data will not be usable and 2001 data will have
large variance. Figure B.1 displays a comparison of original and corrected patent counts for truncation.

To correct for truncations in citations, I have employed the method of Hall et al. (2000). I calculate
the distribution of the fraction of citations received by each patent at a time between the grant year of
the citing patents and the grant year of the cited patent. Using this distribution, I predict the number of
citations received for each patent outside the range of the sample, maximum to 40 years after the grant
date of the patent. Figure B.2 displays a comparison of original and corrected citation counts. I use the
truncation corrected patent and citation counts in my analysis.

example, in a Euclidean distance measure, diversified firms with orthogonal location vectors are counted
as close, since they are close to the origin of the coordinate system (Jaffe, 1986).

7The proximity measure is symmetric to the ordering of firms (ρij = ρji).
8In the proximity measure based on citation distribution, I exclude the self-citations, because they do

not impose any of the potential costs of patent thickets.
9Lags are defined as the difference between the ending years of the sample and year 1999. Therefore,

lags are 1999-1996=3, 1999-1997=2, 1999-1998=1, and 1999-1999=0.
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Figure B.1: Patents per R&D with Corrected and Not Corrected Patent Counts.

Figure B.2: Citations per R&D with Corrected and Not Corrected Citation Counts.
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