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Abstract

Fuzzy logic systems (FLSs) are well known in the literature for their ability to model
linguistics and system uncertainties. Due to this ability, FLSs have been successfully
used in modeling and control applications such as medicine, finance, communications, and
operations research. Moreover, the ability of higher order fuzzy systems to handle system
uncertainty has become an interesting topic of research in the field. In particular, type-2
FLSs (T2 FLSs), systems consisting of fuzzy sets with fuzzy grades of membership, a feature
that type-1 (T1) does not offer, are most well-known for this capability. The structure of
T2 FLSs allows for the incorporation of uncertainty in the input membership grades, a
common situation in reasoning with physical systems. General T2 FLSs have a complex
structure, thus making them difficult to adopt on a large scale. As a result, interval T2
FLSs (IT2 FLSs), a special class of T2 FLSs, have recently shown great potential in various
applications with input-output (I/O) system uncertainties.

Due to the sophisticated mathematical structure of IT2 FLSs, little to no systematic
analysis has been reported in the literature to use such systems in control design. Moreover,
to date, designers have distanced themselves from adopting such systems on a wide scale
because of their design complexity. Furthermore, the very few existing control methods
utilizing IT2 fuzzy logic control systems (IT2 FLCSs) do not guarantee the stability of
their system. Therefore, this thesis presents a systematic method for designing stable IT2
Takagi-Sugeno-Kang (IT2 TSK) fuzzy systems when antecedents are T2 fuzzy sets and
consequents are crisp numbers (A2-C0). Five new inference mechanisms are proposed that
have closed-form I/O mappings, making them more feasible for FLCS stability analysis.
The thesis focuses on control applications for when (a) both plant and controller use A2-C0
TSK models, and (b) the plant uses T1 Takagi-Sugeno (T1 TS) and the controller uses
IT2 TS models. In both cases, sufficient stability conditions for the stability of the closed-
loop system are derived. Furthermore, novel linear matrix inequality-based algorithms
are developed for satisfying the stability conditions. Numerical analyses are included to
validate the effectiveness of the new inference methods. Case studies reveal that a well-
tuned IT2 TS FLCS using the proposed inference engine can potentially outperform its T1
TSK counterpart, a result of IT2 having greater structural flexibility than T1. Moreover,
due to the simple nature of the proposed inference engine, it is easy to implement in
real-time control systems.

In addition, a novel design methodology is proposed for IT2 TSK FLC for modular
and reconfigurable robot (MRR) manipulators with uncertain dynamic parameters. A
mathematical framework for the design of IT2 TSK FLCs is developed for tracking purposes
that can be effectively used in real-time applications. To verify the effectiveness of the
proposed controller, experiments are performed on an MRR with two degrees of freedom
which exhibits dynamic coupling behavior. Results show that the developed controller can
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outperform some well-known linear and nonlinear controllers for different configurations.
Therefore, the proposed structure can be adopted for the position control of MRRs with
unknown dynamic parameters in trajectory-tracking applications.

Finally, a rigorous mathematical analysis of the robustness of FLSs (both T1 and
IT2) is presented in the thesis and entails a formulation of the robustness of FLSs as a
constraint multi-objective optimization problem. Consequently, a procedure is proposed
for the design of robust IT2 FLSs. Several examples are presented to demonstrate the
effectiveness of the proposed methodologies. It was concluded that both T1 and IT2 FLSs
can be designed to achieve robust behavior in various applications. IT2 FLSs, having a
more flexible structure than T1 FLSs, exhibited relatively small approximation errors in
the several examples investigated.

The rigorous methodologies presented in this thesis lay the mathematical foundations
for analyzing the stability and facilitating the design of stabilizing IT2 FLCSs. In addition,
the proposed control technique for tracking purposes of MRRs will provide control engineers
with tools to control dynamic systems with uncertainty and changing parameters. Finally,
the systematic approach developed for the analysis and design of robust T1 and IT2 FLSs
is of great practical value in various modeling and control applications.
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Chapter 1

Introduction

1.1 Motivation

The theory of fuzzy sets (FSs) was introduced by Zadeh [2] in 1965, which led to the advent
of fuzzy logic systems (FLSs). In general, FLSs are well known in the literature for their
ability to model linguistics and uncertainties in systems [3], [1], [4]. Because of this ability,
FLSs have found a variety of applications in modeling, control, and computing with words,
to name a few. Systems that use fuzzy logic reasonings have been used in fields such as
medicine, finance, control, communications, operations research.

Higher-order FLSs are referred to as fuzzy systems whose membership grades are them-
selves fuzzy. The analysis of these systems has become a favorite topic for investigation due
to such FLS’s ability to handle system uncertainties. In the literature, type-2 FLSs (T2
FLSs) are particularly well-known for this capability. More specifically, interval T2 FLSs
(IT2 FLSs)1 have become very popular recently and have shown great promise to be used
in various modeling and control applications with input-output (I/O) system uncertainties.
Therefore, this dissertation deals with the design of IT2 FLSs for modeling and control
applications.

Even though fuzzy logic was originally developed to model linguistic terms, interpre-
tations, and human perceptions, the most-frequent implementation of fuzzy systems has
been in control applications. To date, fuzzy logic control has been implemented with great
success in many real-world applications and was also shown in some cases to outperform
traditional control systems [5]. More specifically, IT2 fuzzy logic control systems (IT2
FLCSs) have of late also been applied in various applications [6], [7]. In particular, the
advantages of using FLSs and specifically IT2 FLSs are as follows:

1Interval T2 FLSs are a special class of T2 FLSs whose secondary membership grades of their fuzzy
sets are one.
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• When dealing with human knowledge, the applicability of fuzzy logic becomes ap-
parent; particularly for systems solely dependent on expert knowledge. Moreover, for
control applications, if the model of the plant is not known or is highly uncertain, IT2
FLSs have a great potential to model the plant more accurately than type-1 FLSs (T1
FLSs). Classical control systems require explicit knowledge about the plant model
and any associated uncertain parameters. Therefore, for systems with uncertainty,
classical nonlinear control may not perform as desired if explicit knowledge about the
models are not well defined. Hence, a fuzzy control system might be an attractive
alternative.

• Apart from the uncertainty of a plant model, in the real world, sensor data is noisy
and hence uncertain. Therefore, it is desirable to design and implement a system
that can also effectively process information in an uncertain environment.

• It is possible to design IT2 FLSs that act as adaptive or robust controllers. Those
FLCs can be designed with the characteristics of robustness or adaptability, according
to the application or process they are intended to control.

Recently, because of their ability to model uncertainties, IT2 FLSs are now being
considered for use in many applications as well as in control processes. Since IT2 FLSs
have more parameters to be characterized, they provide more flexibility in modeling or
control of physical systems with uncertain parameters. Hence, the possibility of achieving
enhanced results over T1 FLSs can be expected.

Because of the sophisticated mathematical structure of IT2 FLSs very few analyses have
been reported in the literature for the control design and, hence, designers have, up-to-date,
distanced themselves from adopting those systems on a wider scale. Furthermore, most of
the existing control methods do not provide insight into the design process and do not even
guarantee the stability of their system. Instead, control design is accomplished through
simulations or ad hoc parametric design. In an attempt to address the stability issue, new
inference mechanisms are introduced that are utilized for systematically designing IT2
FLCSs. Hence, this thesis presents a rigorous mathematical analysis which also entails the
design of stable IT2 FLCSs. The methods proposed herein lay the necessary foundations
to effectively analyze the stability of IT2 FLCSs as well as designing stable IT2 controllers.
To address the issue of control design, a practical approach is presented that enables
control engineers to easily implement IT2 FLCs. More specifically, a rigorous control
design methodology for MRR manipulators in tracking applications is presented. Finally,
the robustness of FLSs (both T1 and IT2) is analyzed in depth and several performance
measures are proposed. This analysis provides guidelines for the design of robust systems
that have merit for various modeling, identification, and control problems.
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1.2 Thesis contributions

This thesis addresses the design of IT2 FLSs for modeling and control applications. The
contributions of this thesis are as follows:

• Novel closed-form inference engines are proposed for IT2 FLSs. The proposed infer-
ence mechanisms facilitate the analytical design of IT2 FLSs for modeling and control
applications. More importantly, an easier implementation of IT2 FLCs in real-time
is made possible through the employment/utilization of the closed-form engines. Nu-
merous examples are shown to demonstrate the effectiveness of the newly developed
engines.

• For a proposed inference engine, sufficient stability conditions of IT2 TSK FLCs
in terms of linear matrix inequalities (LMIs) are derived and novel algorithms are
presented to assess the feasibility of those LMIs to analyze the stability of IT2 FLCSs.

• A new methodology is presented for the design of IT2 FLCs with applications for
MRRs. The effectiveness of the proposed approach has been validated experimentally.

• A novel methodology for the analysis of FLS robustness (both T1 and IT2) is pro-
posed. The proposed method facilitates the design of robust FLSs for modeling and
identification applications.

1.3 Literature Review

This section presents a review of the literature on T2 and IT2 FLSs. First, general and
IT2 FLSs and their applications are reviewed. In subsequent sections, IT2 FLSs literature
pertinent to control, robotics, and robust systems is presented.

T2 FSs were first proposed by Zadeh in 1975 as an extension of T1 FSs [8]. Some
research had indicated that representation of fuzziness in systems using T1 membership
functions (MF) is paradoxical because the membership grades are precise real numbers [9].
Hence, T2 FSs were introduced in the literature to model the uncertainties in systems [1],
[7]. In T2 FSs, the grades of MFs are themselves fuzzy and therefore eliminate the paradox
pointed out by researchers in earlier work.

Mizumoto and Tanaka [10] studied the operations of T2 FSs and examined the proper-
ties of membership grades of such sets as well as operations of algebraic products and sums.
Dubois and Prade [11] presented a minimum t-norm formula for the composition of T2
relations as an extension of the T1. Karnik and Mendel [12] studied the previous research
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and presented a general formula for the extended composition of T2 relations [13, 14, 15]
that established the theory of T2 FLSs.

Since then, T2 FLSs have been used in various modeling applications [16, 17]. Mitchel
[18] utilized T2 FLSs to formulate classification problems for pattern recognition. Zeng
and Liu in [16] integrated T2 FSs with traditional classifiers for pattern classification when
both feature and hypothesis spaces have uncertainties. In this application, T2 FLSs showed
improved performance in terms of robustness and classification rates. Recently, Liao et al.
[19] used a data clustering technique to model T2 Takagi-Sugeno FLSs (T2 TS FLSs) and
proposed approaches for the design of T2 TS model-based predictive FLCs.

In general, T2 FLSs are computationally involved due to the intensity of type-reduction
(TR) [7]. However, when interval sets are utilized as secondary MFs, i.e., they are either
zero or one, the computational complexity decreases [1]. Because of interval fuzzy sets
simplicity, several studies have been carried out to better analyze their structures [13, 14].
Karnik and Mendel [12], in their seminal work, developed the TR method for general T2
FSs. This method is an iterative algorithm that requires extensive calculations even for
interval fuzzy sets. On the other hand, as it is known that interval sets are characterized
by left and right boundaries (end-points), this algorithm is capable of computing the end
points accurately.

Owing to the effectiveness of Karnik-Mendel (KM) algorithms, they were extensively
adopted [7]. In an interesting application, Zarandi et al. [20] developed a T2 fuzzy rule-
based expert system for stock price analysis. The authors tested the effectiveness of their
approach by predicting the stock price of an automotive factory. Results were promising
and, hence, it was further suggested that the proposed methodology could be implemented
in real-time stock price predictions.

Recently, it was proven in [21] that the KM algorithms converge monotonically and
super-exponentially fast. It should be mentioned that when all sources of uncertainty
disappear, KM’s TR methods reduce to T1 FLSs. However, as Mendel [6] notes, KM’s
TR methods is not the only way for this design requirement to be met. In fact, other
TR methods have been proposed. For example, Niewiadomski et. al. [22] defined four
other kinds of TR, namely, optimistic, pessimistic, realistic, and realistic-weighted. Quite
recently, Coupland and John [23] proposed a geometric representation and operation-based
approach for general T2 FSs. The results of a real world example reported in their work
show the considerably fast response of this system compared to the KM type-reduction
method.

In order to reduce the computational complexity of KM algorithms, Wu and Mendel [24]
developed uncertainty bounds for IT2 FSs that estimates the TR. They showed that the
Wu-Mendel uncertainty bounds (WM UBs) can be computed without having to perform
TR while achieving similar results to those of KM algorithms. Hence, it was proposed that
this method be adopted for the design of IT2 FLSs.
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Later, Wu and Mendel [25] developed an enhanced method called the ‘Enhanced Karnik-
Mendel (EKM)’ algorithm and showed that it can save about two iterations, corresponding
to a more than %39 reduction in computation time. Melgarejo [26] proposed a recursive al-
gorithm to compute the generalized centroid of an IT2 FS. The new algorithm re-expresses
the limits of the generalized centroid of an IT2 FS. In this work, numerical analyses were
performed to investigate the performance of the proposed algorithm. Results show that
this method for finding the symmetric footprint of uncertainty (FOU) is considerably faster
than the KM algorithm and produces similar results. However, this method is recursive
and can not be expressed as an I/O mapping with a closed-format.

While KM algorithms have been widely adopted, some new inference engines have been
proposed that bypass TR. For example, Wu and Tan [27] also introduced a method that
eliminates TR by defining equivalent T1 sets (ET1S) as “the collection of T1 sets that can
be used in place of the footprint of uncertainties (FOU) in a T2 FLS”. They considered a
T2 set equivalent to a collection of E1TS. It was shown that ET1S method provides better
performances than KM iterative algorithms. However, they have demonstrated this ET1S
methodology for a two-input PI controller, and it is unknown this methodology generalizes
to more complicated systems [6].

In recent years, researchers have been rigorously investigating the properties as well as
the potentials of IT2 FLSs for numerous applications. Recently, Ying in [28, 29] has shown
that IT2 FLSs are universal approximators, hence proving the capability of such systems
to be used on a larger scale of modeling and control applications. In another work, Mendel
et al. in [30, 31] presented the α-plane for T2 FSs which is useful for both theoretical
and computational studies of these systems. Zhou et al. [32] proposed a new operator for
linguistic terms in human decision-making modeled by T2 FSs. In a tutorial paper, Mendel
[33] explains how to start solving problems involving IT2 FSs. Most recently, Mendel and
Wu in [34] have explained how IT2 FSs are used for perceptual computing and computing
with words. The increasingly ongoing research on T2 and more specifically IT2 FLSs is
facilitating the utilization of these FLSs in different applications.

1.3.1 IT2 FLCSs

Even though fuzzy logic was originally developed to model linguistic terms, interpretations,
and human perception, the most widely seen application of fuzzy systems has been in fuzzy
control [1]. FLC has its earliest root in 1974 [35], when T1 FSs were used for both premise
and consequent as part of the structure of the controller. T1 FLSs have been utilized in
the control of nonlinear systems, e.g., [36, 37, 38]. To date, FLCs have been used with
great success in many real-world applications [39, 40] and were also shown in some cases
to outperform traditional control systems [41, 5, 42, 43].
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Takagi-Sugeno-Kang (TSK) models were introduced in [44] and [45] to develop a sys-
tematic design of fuzzy systems in I/O mappings. Takagi-Sugeno [44] presented their
method to design consequent parameters of a general fuzzy TSK model based on least-
square methods. Sugeno and Kang [45] presented a strategy for structure identification
of fuzzy systems. Since then, TSK models have been widely used in control applications
[46, 37, 36, 47, 48, 49].

Proving the stability of FLCSs that use Mamdani inference engine is still a challenging
problem [50]. Using TSK fuzzy systems, stability has been extensively investigated and
solid mathematical foundations have been established; very compatible with conventional
works in control theory. Tanaka and Sugeno were the first researchers to study the stabil-
ity of T1 TSK FLCSs [51]. They modeled a general T1 FLCS as a fuzzy block diagram
and developed the connections between the blocks. Next, they presented a mathematical
framework to obtain sufficient stability conditions for these systems using Lyapunov’s di-
rect method. The stability criteria derived in this paper were presented as linear matrix
inequalities (LMIs). Subsequently, utilizing the developed stability analysis methodology,
a new technique for designing stable fuzzy controllers was presented. This work laid the
foundation for the design of stable T1 TSK FLCs. However, no systematic method was
introduced to ensure that the LMIs derived in the presented work are satisfied.

Wang et al. [52] considered satisfying the LMIs derived in [51] using numerical methods.
They converted the inequalities into standard LMIs format solvable using conventional
techniques [53]. Satisfying the derived LMIs in [51] using numerical techniques has also
been addressed in [54]. In addition, research was conducted to systematically design stable
T1 TSK FLSs. Joh et al. [55] attempted to tackle this by presenting a systematic method
to satisfy the LMIs for stability of T1 TSK FLCSs. They showed that for a TSK system
consisting of N subsystems that are pairwise commutative, the proposed algorithm is able
to find a common positive definite matrix that satisfies the inequalities. Furthermore, it was
shown that the common positive definite matrix can tolerate perturbations. They further
generalized their method and investigated the robustness issue under uncertainty in each
subsystem. Moreover, some researchers have investigated the stability of T1 TSK FLC of
a nonlinear plant subject to parameter uncertainties [56]. They presented relaxed stability
conditions for this class of fuzzy control systems, guaranteeing the system’s stability.

With the development of T2 FLSs and their ability to handle uncertainty, utilizing
T2 FLCSs has attracted a lot of interest in recent years [57, 58, 59, 60, 61]. Although
to-date mostly IT2 FLSs have been applied to control applications, promising results have
been reported, e.g., Wu and Tan [62] designed an IT2 FLCS for a coupled-tank liquid-
level system and showed that, when the level of uncertainty increases, the IT2 FLCS
outperforms its T1 counterpart. Additionally, Hagras [63] applied IT2 FLC to mobile
robot navigation in dynamic unstructured indoor and outdoor environments. All the IT2
FLCSs implemented in [63] used much smaller rule bases than their T1 counterparts, and it
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was concluded that IT2 FLCSs provide a faster computation platform as well as enhanced
performance results than T1 FLCSs.

The use of intelligent controllers, especially FLCs, for mobile robot applications has
been attempted by numerous researchers. T1 FLCSs have been implemented successfully
for these applications, and promising results achieved [64, 65, 66]. As well, the application
of IT2 FLCs in mobile robots is increasing in the literature [67, 42, 63, 68, 69, 70]. Hagras
[63] showed that “The T2-based control system when dealing with the uncertainties facing
mobile robots in unstructured environments results in good performance”. The use of
hybrid intelligent systems was attempted by Wagner and Hagras [68] who used a genetic
algorithm to design T2 FLCs. The developed T2 FLC in this work showed improved
performance over a T1 FLC. However, neither work [63] and [68] presents the design steps
of the tested IT2 FLCSs. Furthermore, the stability of the developed systems has not been
considered in the design process, and nor has system robustness.

The stability of IT2 FLCSs has been a topic of interest to investigators in the last few
years. Castillo et al. [70] presented a methodology for the design of stable IT2 FLCs for
robot manipulators. Even though the proposed approach in this work is interesting, it is
limited to a one-degree-of freedom robot manipulator, and it is therefore, unknown how
the proposed approach can be adopted for other nonlinear systems to guarantee stability.
In another attempt, Lam and Seneviratne in [71] investigated stability analysis of IT2 TS
FLCSs. Their approach requires several assumptions to be made about the MFs in order
to enable the derivation of stability conditions, which makes the approach applicable only
in specific situations. Additionally, no systematic method is introduced to identify the MF
parameters required to satisfy the inequalities defined by those assumptions. Moreover,
their model structure produces LMIs that can not be easily simplified or evaluated by
anyone wishing to examine the existence of stability criteria.

In recent years, interest has grown in the analysis and implication of IT2 FLCSs because
of the increased popularity of such systems [72, 73, 74, 75, 76, 77, 78, 79, 40, 80]. Zhou et al.
[78] developed a novel IT2 adaptive FLC for the control of uncertain systems. Simulation
results on an inverted pendulum demonstrated that the proposed controller is stable and
achieves satisfactory tracking performances. Jammeh et al. [40] developed an IT2 FLC for
encoded video streaming of films and demonstrated the enhanced improvement of the IT2
FLC over T1 and other traditional congestion controllers in the presence of uncertainties.
The IT2 FLC also reduced packet loss. The authors find the proposed IT2 FLC an efficient
controller for congestion control of video streaming. In the most recent work, Du and Ying
[81] derived and analyzed the analytical structures of proportional-derivative (PD) and
proportional-integral (PI)-like IT2 FLCs.

Because of the complicated nature of the TR method and nonlinearities associated
with the controller structure, very limited research has been conducted on systematic T2
fuzzy control designs and, hence, control designers have so far not generally adopted these
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systems widely. Moreover, most of the existing T2 FLC design methodologies do not even
guarantee the stability of their closed-loop system. Instead, control design is accomplished
through simulations or trial and error parameters tuning. As a result, this thesis focuses
on addressing the stability concern that will eventually facilitate the utility of IT2 FLCs.

T1 TSK models were extensively used for control applications, and demonstrated the
usefulness of their structures: consequently the author is motivated to exploit the extended
structure of T1 for T2 FLSs and derive the stability criteria needed for IT2 FLC design.

Since type-reduction algorithms are all iterative and have no closed-form formula for
I/O relationships, it is extremely difficult to prove the stability or at least obtain sufficient
stability conditions. The only available method that has a closed-form to infer the output
rules from T2 FLS is WM UBs that estimates the left and right boundaries of IT2 FSs
[24]. Therefore, in this research, WM UBs are exploited to develop stability analysis for
IT2 FLCSs.

In summary, the majority of the implemented IT2 FLCSs in the literature lack sta-
bility analysis in their design. Moreover, the aforementioned T2 FLCs used iterative KM
algorithms for TR, and hence, for fast control processes, the applicability of the developed
systems is in doubt.

1.3.2 Modular and Reconfigurable Robot (MRR)

Robot manipulators are being increasingly used in various industrial applications such
as pick-and-place, assembly, power-assisting, and welding tasks [82, 83, 84]. Although
fixed-configuration robots are still common in industry, they are capable of performing
only specific tasks, hence limiting their utility. These limitations are, but not restricted to,
workspace limits, singularities, etc. In order to perform multiple tasks to address a growing
demand from the automation industry, flexible manipulators have been proposed. Modu-
lar and reconfigurable robots (MRR), considered to be flexible manipulators, are a viable
solution for performing a multitude of desired tasks that cannot be handled using fixed-
configuration robots [85, 86, 87]. An MRR system is defined as a collection of individual
link and joint components that can be easily assembled into a variety of configurations and
geometries [86]. More specifically, MRR not only refers to the entire manipulator, including
the modular mechanical hardware, but also to modular electrical hardware, control algo-
rithms, and software [88]. Furthermore, short product life cycles and increasing demand for
highly diversified products require innovative design of adaptable manufacturing systems.
Today’s manufacturers must flexibly adapt production plants to both changing products
and methods of production. The use of MRRs for such systems will lead to the significant
facilitation of repair and maintenance. Moreover, MRRs will benefit the automation and
manufacturing industries by reducing labor and increasing throughput.
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MRRs are categorized into three groups: first, modular and reconfigurable serial robots,
second, modular and reconfigurable parallel robots, and finally modular self-reconfigurable
robots. The most common types of robots in industry are serial manipulators (sometimes
called serial robots), which is the category that this paper focuses on.

In the literature, several controllers with different structures have been proposed for
robotic systems [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]. In [97] authors proposed a
computationally efficient robust fuzzy control scheme based on the Takagi-Sugeno model.
However, the effectiveness of the developed controller was only verified through simulations
on a two-link robot manipulator. Most recently, Mostefai et al. [99] used fuzzy modeling
approach to compensate for the nonlinear friction of a robot joint structure. The linearity
of the local model facilitates the design and the effectiveness of the approach was shown
through experiments for trajectory tracking. However, it is an open question if the proposed
method can be applied to other complex systems driven by friction. Moreover, this work
was applied to a robot with single arm which limits the utility of the method for serial
industrial robots or MRRs with multiple degrees of freedom that exhibit dynamic coupling.

In addition, extensive research has been conducted on applying neural networks as well
as fuzzy neural networks to control these systems [100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 94, 112, 113]. Due to the universal approximation property of neural
networks, Lewis and his team developed a hybrid controller for robotic arms [104]. The
neural network in the control structure is used to handle the uncertainties and unknown
dynamics of the system. However, only simulations were carried out to demonstrate the
performance of the hybrid controller. In recent years, due to the advancements in the
implementation of fast algorithms, neural networks have been applied to control robotic
systems [106] and [109]. However, to obtain the optimum number of neurons in the in-
put and hidden layers of neural networks, several time consuming experiments must be
conducted.

The challenging aspects of controlling MRRs lie in uncertainties in dynamic parameters
due to arm reconfigurability. Friction, varying payloads, and dynamic couplings among the
joints also contribute to these challenges. There exists very limited research dedicated to
control of MRRs. In [114] a control strategy was proposed to handle MRRs as a group
of one degree-of-freedom defective joints. This approach does not consider dynamic inter-
actions amongst joints and their variability under reconfigurability. In another attempt,
Paredis et al. [115] developed a control software based on the assignment of configuration-
dependent parameters. This approach requires a large number of configurations that have
to be realized for MRRs. Liu et al. [116] developed a configuration-independent position
controller for MRRs based on a joint torque sensing approach. In this method, an MRR
is stabilized joint by joint, and modules can be added or removed without the need to
adjust the control parameters. However, this approach requires expensive torque sensors
to be installed at every joint. Moreover, the approach was not validated experimentally
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for varying MRR configurations.

Because researchers have to deal with robotic arms that have dynamic parameter uncer-
tainties, there has been an increasing interest in using T1 FLCs for such systems [117, 118].
For example, a stable adaptive fuzzy-based tracking controller with parameter uncertainties
and external disturbances was developed for serial robots in [117]. The proposed controller
results in a stable system with guaranteed trajectory tracking performances; however, only
simulations were performed to validate the performance of the control scheme for a ma-
nipulator with two links. In an another study, Chatterjee et al. [118] proposed a stable
state-feedback fuzzy control strategy for a flexible robotic arm. The controller structure is
based on a neuro-fuzzy model that requires training using experimental data. The authors
proved the stability of the system mathematically and verified the success of the design
methodology through experiments with several payload conditions. Nevertheless, the sys-
tem considered had only one flexible arm and dealt with a simple dynamic that exhibited
no motion coupling – a common challenge for most serial robots. Furthermore, hybrid
fuzzy logic systems (FLS) and neural networks have shown promising results in handling
unmodeled dynamics/disturbances. Melek and Goldenberg [119] proposed a hybrid neuro-
fuzzy controller that can be used in the presence of parameter uncertainties and unmodeled
disturbances. The proposed structure uses fuzzy logic for tuning the PID parameters of
the controller. The developed controller was implemented on an MRR with four joints,
and its performance was compared to a saturated-type controller. Although results showed
significant improvements due to the existence of neural networks in the control architec-
ture, implementing this control methodology is challenging due to the larger number of
control parameters that need to be defined a priori.

Interval IT2 FLCs have been shown in several case studies to handle uncertainties bet-
ter than their T1 counterparts [42, 120, 1, 6]. Furthermore, they have successfully been
implemented in real-time control applications, and notable results have been reported in
[6] and [121]. However, one of the main issues in adopting such systems on a larger scale is
lack of a systematic design methodology, largely because of the complex structure of IT2
fuzzy logic control systems (FLCSs), for which several parameters need to be designed.
Implementation of IT2 FLC for control of robotic systems is very limited in the literature,
and the existing handful of approaches lacks rigorous mathematical proof of closed-loop
system stability. As an example, an IT2 FLC based on the sliding mode control strategy
was proposed in [76]. The controller was implemented on a single arm and was proven to
outperform its T1 counterpart; however, due to the simplicity of the considered system,
the dynamic coupling effect, a major challenge in handling MRRs, does not exist in the
authors’ work. It is an open question whether this controller can perform better than tra-
ditional controllers such as Proportional-Derivative (PD). Moreover, no systematic design
methodology was provided to demonstrate how this work can be extended to robots with
more than one degree of freedom while still ensuring that stability is guaranteed.
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To the best of the author’s knowledge, no prior work has been published that provides
a systematic method for the design of IT2 TSK FLCs for MRRs. Therefore, in this thesis,
a rigorous design paradigm of novel IT2 TSK FLCs for MRRs is studied, the performance
of the proposed control strategy is experimentally validated, and finally the performance
of the proposed control methodology is compared with some well-known controllers.

1.3.3 Robustness

A great deal of research has been dedicated with success to effectively design FLSs that can
accurately capture the model/dynamics of systems [33], [1], [122]. To accurately determine
the dynamics of the considered system, it is desired to identify the system as precisely as
possible with maximum possible robustness to the given data point.

In most of the existing FLSs, robustness is not considered in the design process. There-
fore, it is of great importance to determine the sensitivity or robustness of a FLS to its
parameter variations [123, 124]. Robustness analysis in this sense is more appealing for
practical applications in which uncertainty, noise, disturbance, etc, not always considered
in the design, are present.

Furthermore, robustness of fuzzy mechanisms is one of the major topics in the design of
IT2 FLSs. Robustness is defined as the maximum deviation of the output as a result of the
deviation of the inputs [119]. In [119], a parameterized formulation of the fuzzy reasoning
process was introduced. This parameterized formulation has a closed form and it can be
exploited to investigate the robustness characteristics of the fuzzy inference mechanism.
Melek and Goldenberg [119] formulated the robustness problem by introducing several
parameters into the fuzzy reasoning. By defining the bounds on inference parameters,
they obtained maximum input deviation without reaching the maximum desired output.
Although authors have mathematically investigated the problem of robustness, certain
assumptions have been made on the MFs and, hence, it is uncertain whether the results can
be applied in more general cases. Furthermore, the proposed approach is only applicable
to FLSs that use Mamdani as their inference engine. Moreover, the approach presented in
this paper lacks a systematic methodology for the design of robust T1 FLSs.

Robustness of FLSs with respect to fuzzy operators has been studied thoroughly.
Nguyen et al. [125] introduced the robust properties of various fuzzy connectors. He
also showed that min and max are the most robust operators. Ying [126] proposed the
concepts of maximum and average perturbations of fuzzy sets that led to estimation of
perturbation parameters of a fuzzy reasoning. Cai [127] investigated robustness of various
operators and inference rules in fuzzy reasoning and discussed how errors in premises affect
conclusions. In another study, Li et al. [128] as well as in [129] introduced some measures
of robustness of fuzzy operators and discussed their relationships to perturbation. They

11



showed that the robustness of fuzzy reasoning is directly dependent on the fuzzy con-
nectives and implication operators. The measures defined in this work are useful in the
context of robustness (or sensitivity) analysis; however, the focus of this work is only on
the operators. Most recently, Zheng et al. [130] investigated the robustness of fuzzy sys-
tem operators for small random perturbations. Their work is based on algebraic operators
and proposes two methods to analyzing robustness for random deviations. Similar to the
previous publications in the literature, the focus of this paper is also on fuzzy operators.
Furthermore, no methodology has been proposed for the design of robust FLS.

Research on the robustness of T1 FLSs is mostly limited to fuzzy operators and, hence,
more in-depth analyses must be conducted which will ultimately lead to design of robust
systems. Furthermore, this thesis is concerned with a systematic methodology for robust-
ness analysis as well as the design of robust systems that can be practical for modeling and
control applications. More importantly, robustness of IT2 FLSs is an important concept
that to the best of the author’s knowledge has not been studied in the literature.

In most of the existing FLSs, robustness is not considered in the design process. There-
fore, it is of great importance to determine the sensitivity of an FLS to input deviations.
Specifically, to the best of our knowledge, no research has been conducted to investigate
the robustness of T1 TSK and also IT2 FLSs. Therefore, in this work, the robustness of T1
and IT2 TSK FLSs as a function of input data variations is mathematically formulated.
We also present algorithms for the design of robust FLSs. Robustness in this sense is an im-
portant concept for applications involving I/O mappings such as function approximation,
forecasting, modeling, and identification. It is believed that an in-depth analysis of IT2
FLS robustness will help researchers design IT2 FLS structures with maximum robustness
for modeling and control applications.

1.4 Organization

The organization of this thesis is as follows:

Chapter 2 establishes preliminaries and backgrounds on T1 TSK and T2 FLSs. It also
presents some preliminaries on Linear Algebra used in the control design. First, T1 TSK
fuzzy structures are reviewed. Next, T2 FLS structures are visited and existing inference
engines are reviewed. Finally, important Linear Algebra results, needed for the control
design of MRRs, are presented.

Chapter 3 discusses the stability analysis of IT2 TSK FLSs. We propose new inference
engines for the design of IT2 FLSs and present detailed derivation of stability conditions
for these systems. We also present algorithms to systematically satisfy the stability criteria
followed by several numerical analyses.
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Chapter 4 introduces a novel design of IT2 TSK FLC with applications to MRR. An
adaptive control scheme is presented for tracking applications of MRRs. Experimental
results are provided to demonstrate the effectiveness of the proposed control technique.

Chapter 5 presents a systematic methodology for the robustness analysis and design
of robust FLSs (both IT2 and T1). We formulate robustness of FLSs in the context of
constraint multi-objective optimization and illustrate the implementation of the proposed
approach through several case studies.

Chapter 6 discusses the conclusions and future work of the dissertation.
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Chapter 2

Background and Preliminaries

This chapter provides background on T1 TSK FLSs and general T2 FLSs. Preliminaries
on Linear Algebra, necessary for control development, are also provided. The organization
of this chapter is as follows: First, T1 TSK FLSs are described and necessary facts are
established. Next, T2 FLSs are introduced and their properties are presented. The third
section is devoted to IT2 TSK FLSs which are extensively used in the subsequent chapters.
Finally, in the last section, important Linear Algebra concepts are reviewed.

2.1 T1 TSK FLSs

Consider n inputs x1εX1, · · · , xnεXn where X1, · · · , Xn are T1 FSs and M outputs yi,
i = 1, ...,M that are crisp numbers. A T1 TSK FLS is described by fuzzy If-Then rules
representing I/O relations of the system. In a T1 TSK system with M rules, the ith rule
is expressed as

ith rule : If x1 is F i
1 and · · · and xn is F i

n Then yi = ai0 + ai1x1 + · · ·+ ainxn (2.1)

where i = 1, ...,M , F i
j represents the T1 FS of input state j in rule i, ai0, a

i
1, · · · , ain are the

coefficients of consequent parameters for rule i. Note that in (2.1) MFs are only associated
with rule antecedents. Next, define the input vector as

x = [x1, · · · , xn]T (2.2)

The output yT1-TSK is then obtained by combining the outputs of the M rules as follows:

yT1-TSK =

∑M
i=1 f

i(x)yi(x)∑M
i=1 f

i(x)
(2.3)
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where f i(x) is the firing strength of rule i and is given by

f i(x) = µF i
1

(x1) ∗ · · · ∗ µF i
n

(xn) (2.4)

“∗” represents a t-norm and µF i
j

represents the membership of input xj in FS F i
j of rule i.

Note that if a discrete system is considered for the purpose of modeling, then the structure
of the fuzzy system remains the same but state variables replace the inputs in the above
equations.

2.2 T2 Fuzzy Models

This section reviews the main characteristics of T2 FLSs and revisits some important
concepts associated with them.

2.2.1 T2 MFs

T2 FLSs are characterized by the shape of their MFs. Figure 2.1 shows two different MFs:
(a) a typical T1 MF, (b) a blurred T1 MF that can represent a T2 MF.
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Figure 2.1: (a) T1 MF, (b) Footprint of Uncertainty.

Definition 1 [1], A T2 FS, denoted as Ã, is characterized by T2 MF µÃ(x, u), where
x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,
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Ã =
{(

(x, u) , µÃ(x, u)
)
| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(2.5)

which simply shows that a T2 MF is a function of two variables x, and u. It should be
mentioned that µÃ(x, u) is a number between 0 and 1.

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] (2.6)

where
∫∫

denotes union over all x and u.

Definition 2 [13] When all µÃ(x, u) = 1 then Ã is an IT2 FS.

Definition 3 [1] The domain of a secondary MF is called the primary membership of x.
Therefore, Jx is the primary membership of x. Using this notation, (2.5) can be re-written
as

Ã =
{(

(x, u) , µÃ(x)
)
| ∀x ∈ X

}
(2.7)

2.2.2 FOU

FOU is one of the major parameters in T2 FLSs, which is frequently used in this thesis.
This terminology denotes the uncertainty in the system and also enables us to have a
convenient method of description of the entire domain for the secondary MFs.

Definition 4 [13]: Uncertainty in the primary memberships of a T2 FS consists of a
bounded region that is called the FOU, which is the union of all primary memberships, i.e.,

FOU(Ã) = ∪
x∈X

Jx (2.8)

Upper and Lower MFs

Definition 5 [14]: If we bound the FOU of a T2 FS by two T1 MFs, the upper MFs is
associated with the upper bound denoted by µÃ(x),∀x ∈ X and the lower MF is related to
the lower bound denoted by µ

Ã
(x),∀x ∈ X. In other words,

µÃ(x) = FOU(Ã),∀x ∈ X (2.9)

µ
Ã

(x) = FOU(Ã),∀x ∈ X
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Embedded T2 sets

Definition 6 [1]: For continuous universe of discourse X and U , an embedded T2 set Ãe
is:

Ãe =

∫
x∈X

[fx(θ)/θ] /x....θ ∈ Jx ⊆ [0, 1] (2.10)

Set Ãe is embedded in set Ã, and there are infinite number of embedded T2 sets.

2.2.3 T2 Fuzzy Structure

Figure 2.2 shows the structure of a general T2 FLS. This structure is similar to a T1 FLS
except that the output processor consists of two operations: type-reducer and defuzzifier.
In the remainder of this section, each block of Figure 2.2 is explained.

Fuzzifier

Defuzzifier

Typereducer

Rules

Inference
Fuzzy inputs Fuzzy outputs

Outputs

type2

type1

Output Processing

Inputs

Figure 2.2: Structure of a T2 FLS [1].

Fuzzifier

The first block in Fig. 2.2 is the ‘Fuzzifier’, where the crisp inputs are fuzzified. The
fuzzifier maps the crisp input vector x = (x1, x2,. . ., xn)T to a T2 FS Ãx, very similar to
the procedure performed in a T1 FLS.
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Rules

The general form of the ith rule of a T2 FLS can be written as

If x1 is F̃ i
1 and x2 is F̃ i

2 and · · · and xn is F̃ i
n, Then yi = G̃i (2.11)

where i = 1, ...,M , F̃ i
j represents the T2 FS of input state j of the ith rule, x1, x2,. . ., xn

are inputs, G̃i is the output of T2 FS for rule i, and M is the number of rules. As can be
seen, the rule structure of a T2 FLS is very similar to T1 except that T1 MFs are replaced
with their T2 counterparts.

Inference Engine

The next block is the inference where reasoning is applied. During this process, using fuzzy
logic principles, rules are combined and a mapping is performed from fuzzy input sets to
T2 fuzzy output sets.

Output Processing

The output of the inference engine is a T2 FS and must be processed by output processor.
Thereafter, the outputs are defuzzified and the corresponding crisp values are found. This
process is accomplished through using TR followed by defuzzification.

TR

After the rules are fired and inference is executed, the centroid of the obtained T2 FS
resulting in a T1 FS is computed. In this part, the available methods to compute the
centroid of a T2 FS using the Extension Principle [1] are discussed. The centroid of a T1
FS, A, is given by

CA =

∑n
i=1 ziwi∑n
i=1 wi

(2.12)

where n represents the number of discretized domain of A, zi ∈ R and wi ∈ [0, 1] . If each zi
and wi are replaced with a T1 FS, Zi, and Wi, with associated MFs of µZ(zi) and µW (wi),

respectively, by using the Extension Principle, the generalized centroid for a T2 FS Ã is
given by

GCÃ =

∫
z1∈Z1

· · ·
∫
zn∈Zn

∫
w1∈W1

· · ·
∫
wn∈Wn

[T ni=1µZ(zi) ∗ T ni=1µW (wi)] /

∑n
i=1 ziwi∑n
i=1wi

(2.13)
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where T is a t-norm. Note that GCÃ is a T1 FS. For an IT2 FS

GCÃ =

∫
z1∈Z1

· · ·
∫
zn∈Zn

∫
w1∈W1

· · ·
∫
wn∈Wn

1/

∑n
i=1 ziwi∑n
i=1wi

= [yl, yr] (2.14)

KM Algorithms

Since IT2 FLSs are the most common T2 FLSs, the well-known KM algorithms are now
presented that are used to find their center. First, express (2.14) as

YTR = [yl(x), yr(x)] ≡ [yl, yr] =

∫
y1∈[y1l ,y

1
r ]

· · ·
∫
yM∈[yM

l ,yM
r ]

∫
f1∈[f1,f

1
]

· · ·∫
fM∈[fM ,f

M
]

1/

∑M
i=1 f

iyi∑M
i=1 f

i
(2.15)

The KM algorithms presents iterative procedures to compute yl, yr in (2.15) as follows
[131]:

To compute yr:

1. Without loss of generality, assume that yir are arranged in ascending order; i.e.,
y1
r ≤ y2

r ≤ · · · ≤ yMr .

2. Compute yr as yr =
∑M

i=1 f
i
ry

i
r∑M

i=1 f
i
r

by initially setting f ir =
f i+f

i

2
for i = 1, · · · ,M and let

y
′
r ≡ yr.

3. Find R (1 ≤ R ≤M − 1) such that yRr ≤ y
′
r ≤ y

R+1

r .

4. Compute yr =
∑M

i=1 f
i
ry

i
r∑M

i=1 f
i
r

with f ir = f i for i ≤ R and f ir = f
i

for i > R and let y
′′
r ≡ yr.

5. If y
′′
r 6= y

′
r then go to Step 6. If y

′′
r = y

′
r, then stop and set y

′′
r ≡ yr.

6. Set y
′
r equal to y

′′
r , and return to Step 3.

The procedure to compute yl is very similar to yr. Just replace yir by yil and in Step 3,

find L (1 ≤ L ≤ M − 1) such that yLl ≤ y
′

l ≤ y
L+1

l . In Step 2, compute yl as yl =
∑M

i=1 f
i
l y

i
l∑M

i=1 f
i
l

by initially setting f il =
f i+f

i

2
for i = 1, · · · ,M and in Step 4, compute yl =

∑M
i=1 f

i
l y

i
l∑M

i=1 f
i
l

with

f il = f
i

for i ≤ L and f il = f i for i > L .
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Defuzzifier

To get a crisp output from a T1 FLS, the type-reduced set must be defuzzified. The most
common method to do this is to find the centroid of the type-reduced set. If the type-
reduced set Y is discretized to m points, then the following expression gives the centroid
of the type-reduced set as

youtput(x) =

∑m
i=1 y

iµ(yi)∑m
i=1 µ(yi)

(2.16)

2.3 IT2 TSK FLSs

This section deals with IT2 TSK FLSs. The general structure of an interval A2-C0 TSK
model for a discrete system1 is as follows [1]:

If x(k) is F̃ i
1 and x(k−1) is F̃ i

2 and · · · and x(k−n+1) is F̃ i
n, Then yi = ai1x(k)+· · ·+ainx(n−k+1)

(2.17)

where i = 1, ...,M , F̃ i
j represents the IT2 FS of input state j in rule i, x(k),. . ., x(k−n+1)

are states, ai1, · · · , ain are the coefficients of the output function for rule i (and hence are
crisp numbers, i.e., type-0 FSs), yi is the output of the ith rule, and M is the number of
rules. The above rules allow us to model the uncertainties encountered in the antecedents.
In an IT2 TSK A2-C0 model, f i and f

i
, lower and upper firing strengths of the ith rule,

respectively, are given by

f i (x) = µ
F̃ i

1

(x(k)) ∗ · · · ∗ µ
F̃ i

n
(x(k − n+ 1)) (2.18)

f
i
(x) = µF̃ i

1
(x(k)) ∗ · · · ∗ µF̃ i

n
(x(k − n+ 1)) (2.19)

where µ
F̃ j

i

and µF̃ i
j

represent the jth (j = 1, · · · ,M) lower and upper MFs of rule i, and

“∗” is a t-norm operator. State vector is defined as

x = [x(k), x(k − 1), · · · , x(k − n+ 1)]T (2.20)

The final output of the IT2 TSK A2-C0 is given as

YTSK/A2-C0 = [yl, yr] =

∫
f1∈

[
f1,f

1
] · · ·

∫
fM∈

[
fM ,f

M
] 1/

∑M
i=1 f

i(x)yi∑M
i=1 f

i(x)
(2.21)

where yi is given by the consequent part of (2.17). YTSK/A2-C0 is an interval T1 set and only
depends on its left and right end-points yl,yr, which can be computed using the iterative
KM algorithms explained in the previous section. Therefore, the final output is given as

Youtput(x) =
yl(x) + yr(x)

2
(2.22)

1This discrete model is used for the stability analysis of IT2 FLCs in Chapter 3.
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2.4 Linear Algebra Preliminaries

This section provides preliminaries on the Linear Algebra used to develop IT2 TSK FLCs.

Suppose x, r1, r2 ∈ Rn, and P ∈ Rn×n is a positive semi-definite matrix, then the
following properties hold:

P1. rT1 r2 ≤ ‖r1‖ ‖r2‖.

P2. ‖x‖2 min(eig(P )) ≤ xTPx ≤ ‖x‖2 max(eig(P )).

P3. If P is also symmetric, ‖P ‖2 = max(eig(P )).

P4. Given two matrices P 1 ∈ Rn×m and P 2 ∈ Rm×p, ‖P 1P 2‖ ≤ ‖P 1‖ ‖P 2‖.

P5. For any symmetric matrix Q ∈ Rn×n, rT1Qr2 = rT2Qr1.

P6. For any skew-symmetric matrix Q ∈ Rn×n, xTQx = 0.
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Chapter 3

Design of IT2 TSK FLCSs for
Modeling and Control Applications

This chapter presents the design of IT2 TSK FLSs for modeling and control applications.
First, WM UBs are introduced and necessary background are established. Second, new
inference engines for IT2 TSK FLSs are introduced. Third, using the most general proposed
inference engine, the stability analysis of IT2 FLCSs is presented. Finally, the last section
is devoted to the examples.

3.1 WM UBs

Since the iterative KM algorithms can not be expressed in a closed mathematical form,
WM UBs [24] are used to obtain the output of an IT2 TSK FLS. For development of IT2
FLCs, the following are key requirements:

1. An analytical methodology is preferred, so as to guarantee a stable control design.

2. The control structure must be suited for real-time implementation.

Therefore, a closed-form I/O inference engine relationship is preferred especially for
Lyapunov-based control design. Unfortunately, (2.21) does not provide such a closed-
form relationship. Moreover, to satisfy the second requirement, iterative KM inference
algorithms may not be suitable. Hence, an alternative approach is considered.

As an alternative to computing Youtput(x) using (2.18)-(2.22), WM UBs [24] are used.
First, background on WM UBs and their general form as stated in 1 [6] are provided.

1In [6], a Mamdani rule is used in which the consequent is an IT2 FS.
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3.1.1 Background on WM UBs

WM UBs use the following four centroids (also called boundary T1 FLSs):

{LMFs, left} : y
(0)
l (x) =

∑M
i=1 f

i (x) yil∑M
i=1 f

i (x)
(3.1)

{LMFs, right} : y(M)
r (x) =

∑M
i=1 f

i (x) yir∑M
i=1 f

i (x)
(3.2)

{UMFs, left} : y
(M)
l (x) =

∑M
i=1 f

i
(x)yil∑M

i=1 f
i
(x)

(3.3)

{UMFs, right} : y(0)
r (x) =

∑M
i=1 f

i
(x)yir∑M

i=1 f
i
(x)

(3.4)

where yil and yir are the left and right end points of the centroid of the ith consequent IT2

FS and f i (x) and f
i
(x) are computed using (2.18) and (2.19). The WM UBs are lower

and upper bounds for yl, yr, and are

yl(x) = min
{
y

(0)
l (x), y

(M)
l (x)

}
(3.5)

y
r
(x) = max{y(0)

r (x), y(M)
r (x)} (3.6)

y
l
(x) = yl(x)−

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×

∑M
i=1 f

i(x) (yil − y1
l )
∑M

i=1 f
i
(x)

(
yM

l
− yil

)∑M
i=1 f

i(x) (yil − y1
l ) +

∑M
i=1 f

i
(x)

(
yM

l
− yil

)


(3.7)

yr(x) = y
r
(x)+

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×
∑M

i=1 f
i
(x) (yir − y1

r) .
∑M

i=1 f
i(x)

(
yM

r
− yir

)∑M
i=1 f

i
(x) (yir − y1

r) +
∑M

i=1 f
i(x)

(
yM

r
− yir

)


(3.8)
Using the WM UBs the final output of an IT2 FLS, YWM(x), is computed as [6]

YWM(x) =
1

2

[
y
l
(x) + yl(x)

2
+
y
r
(x) + yr(x)

2

]
(3.9)

Subsequently, the general form of WM UBs is applied to (2.17)-(2.22). Since this
chapter deals with IT2 A2-C0 TSK models, yil = yir = yi, the boundary T1 FLSs defined
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by (3.1)-(3.4) reduce to the following two equations:

y(0)(x) =

∑M
i=1 f

i (x) yi∑M
i=1 f

i (x)
(3.10)

y(M)(x) =

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

(3.11)

Without loss of generality, assume y(M)(x) > y(0)(x) (YWM(x) in (3.9) is invariant to
y(M)(x) > y(0)(x)); therefore, (3.5)-(3.8) can be written as

yl(x) = y(0)(x) =

∑M
i=1 f

i (x) yi∑M
i=1 f

i (x)
(3.12)

y
r
(x) = y(M)(x) =

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

(3.13)

y
l
(x) =

∑M
i=1 f

i (x) yi∑M
i=1 f

i (x)

−

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×
∑M

i=1 f
i(x) (yi − y1) .

∑M
i=1 f

i
(x) (yM − yi)∑M

i=1 f
i(x) (yi − y1) +

∑M
i=1 f

i
(x) (yM − yi)

 (3.14)

yr(x) =

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

+

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×
∑M

i=1 f
i
(x) (yi − y1) .

∑M
i=1 f

i(x) (yM − yi)∑M
i=1 f

i
(x) (yi − y1) +

∑M
i=1 f

i(x) (yM − yi)

 (3.15)

Using (3.12)-(3.15), it is straightforward to show that YWM(x) in (3.9) can be expressed as

YWM(x) =
1

2

(∑M
i=1 f

i (x) yi∑M
i=1 f

i (x)
+

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

)

− 1

4

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×
∑M

i=1 f
i(x) (yi − y1) .

∑M
i=1 f

i
(x) (yM − yi)∑M

i=1 f
i(x) (yi − y1) +

∑M
i=1 f

i
(x) (yM − yi)


+

1

4

 ∑M
i=1

(
f
i
(x)− f i(x)

)
∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×
∑M

i=1 f
i
(x) (yi − y1) .

∑M
i=1 f

i(x) (yM − yi)∑M
i=1 f

i
(x) (yi − y1) +

∑M
i=1 f

i(x) (yM − yi)

 (3.16)
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YWM(x) given by (3.16) represents the final output of the IT2 TSK A2-C0 system (2.17). It
is easy to see that YWM(x) can be computed without having to perform TR and therefore
YWM(x) can be considered a viable alternative to using (2.21) and (2.22) for real-time
control.

Now, YWM(x) is applied to YTSK/A2-C0(x) using the following discrete-time model that
appears in the consequent of rule i in (2.17):

yi =
n∑
p=1

aipx(k − p+ 1) (3.17)

It follows that

yi − y1 =
n∑
p=1

(aip − a1
p)x(k − p+ 1) ≡

n∑
p=1

vi,pa
i
px(k − p+ 1) (3.18)

yM − yi =
n∑
p=1

(aMp − aip)x(k − p+ 1) ≡
n∑
p=1

wi,pa
i
px(k − p+ 1) (3.19)

where

vi,p ≡
aip − a1

p

aip
(3.20)

wi,p ≡
aMp − aip
aip

(3.21)

Substituting (3.17)-(3.19) into (3.16), it is straightforward to show that YWM(x) can be
expressed as

YWM(x) =
1

2

∑M
i=1 f

i (x)
(∑n

p=1 a
i
px(k − p+ 1)

)
∑M

i=1 f
i (x)

+
1

2

∑M
i=1 f

i
(x)

(∑n
p=1 a

i
px(k − p+ 1)

)
∑M

i=1 f
i
(x)

+ α(x) + β(x) (3.22)

where

α(x) = −1

4

∑M
i=1(f

i
(x)− f i(x))∑M

i=1 f
i (x) .

∑M
i=1 f

i
(x)
×

∑M
i=1 f

i(x)
(∑n

p=1 vi,pa
i
px(k − p+ 1)

)
.
∑M

i=1 f
i
(x)

(∑n
p=1 wi,pa

i
px(k − p+ 1)

)
∑M

i=1 f
i(x)

(∑n
p=1 vi,pa

i
px(k − p+ 1)

)
+
∑M

i=1 f
i
(x)

(∑n
p=1wi,pa

i
px(k − p+ 1)

) (3.23)
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β(x) =
1

4

∑M
i=1(f

i
(x)− f i(x))∑M

i=1 f
i(x).

∑M
i=1 f

i
(x)
×

∑M
i=1 f

i
(x)

(∑n
p=1 vi,pa

i
px(k − p+ 1)

)
.
∑M

i=1 f
i(x)

(∑n
p=1 wi,pa

i
px(k − p+ 1)

)
∑M

i=1 f
i
(x)

(∑n
p=1 vi,pa

i
px(k − p+ 1)

)
+
∑M

i=1 f
i(x)

(∑n
p=1wi,pa

i
px(k − p+ 1)

) (3.24)

(3.22) has been used recently for control design [68]; however, no information is available
to-date on how to systematically design IT2 FLCSs using YWM(x). Stability analysis for
(3.22) was attempted, but no successful results were achieved (due to its nonlinear and
complicated structure).

3.2 Proposed Inference Methods for IT2 TSK FLCSs

To obtain stability conditions for a FLCS using rigorous mathematical analyses, closed-
form equations are required. However, due to the complexity of WM UBs, use of this
method is limited. Hence, in this section, novel inference engines are proposed that are
effectively used to replace TR. The new inference mechanisms have simple structures and
are therefore more suited for implementation in real-time control applications. These
inference engines are as follows:

YTSK1 (x) =

∑M
i=1 f

i(x)yi∑M
i=1 f

i(x) +
∑M

i=1 f
i
(x)

+

∑M
i=1 f

i
(x)yi∑M

i=1 f
i(x) +

∑M
i=1 f

i
(x)

(3.25)

YTSK2 (x) = q

∑M
i=1 f

i(x)yi∑M
i=1 f

i(x)
+ (1− q)

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

(3.26)

YTSK3 (x) = q

∑M
i=1 f

i(x)yi

q
∑M

i=1 f
i(x) + (1− q)

∑M
i=1 f

i
(x)

+(1−q)
∑M

i=1 f
i
(x)yi

q
∑M

i=1 f
i(x) + (1− q)

∑M
i=1 f

i
(x)

(3.27)

YTSK4 (x) =
m
∑M

i=1 f
i(x)yi + n

∑M
i=1 f

i
(x)yi

m
∑M

i=1 f
i(x) + n

∑M
i=1 f

i
(x)

(3.28)

YTSK5 (x) = m

∑M
i=1 f

i(x)yi∑M
i=1 f

i(x)
+ n

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

(if M = 1 : m+ n = 1) (3.29)

To tune the model variables, parameters p, q, m, and n are introduced in the formulas.
The parameters q in (3.26) and (3.27) and m and n in (3.28) and (3.29) are design factors
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that weight the share of firing level of each fired rule depending on the level of the system
uncertainty. The parameter formulas enable designers to effectively optimize the I/O
mapping represented by the selected inference methods.

Formula (3.29) is similar to the output of a T1 TSK FLS in which the fired rules are
weighted-averaged. However, it differs from it in a sense that both upper and lower MFs
contribute to the output of the fuzzy system. Throughout this thesis, (3.29) is adopted as
the inference engine since it is more general than other proposed engines and similar to a
T1 FLS output. Observe that m and n are design parameters that weight the sharing of
lower and upper firing levels of each fired rule and can be tuned during the design of this

new TSK system. Observe, also, that if all uncertainty disappears so that f i (x) = f
i
(x),

then (3.29) reduces to a T1 TSK FLCS in which one can set m + n = 1. There is also a
connection between YTSK5(x) and YWM(x).

Proposition 1 If m and n are independent parameters that do not depend on the inference
process, then YTSK5(x) is derivable from YWM(x) and is a simplified version of YWM(x).

Proof. Using (3.23) and (3.24), α(x) and β(x) can be expressed as nonlinear functions of
the upper and lower firing levels of each rule as well as the input states, i.e.,

α(x) = g1

(
f i (x) , f

i
(x) ,x, vi,p, wi,p

)
.

∑M
i=1 f

i (x)
[∑n

p=1 a
i
px(k − p+ 1)

]
∑M

i=1 f
i (x)

(3.30)

β(x) = g2

(
f i (x) , f

i
(x) ,x, vi,p, wi,p

)
.

∑M
i=1 f

i
(x)

[∑n
p=1 a

i
px(k − p+ 1)

]
∑M

i=1 f
i
(x)

(3.31)

where functions g1and g2 are given by2

g1 = −1

4

∑M
i=1

(
f
i
(x)− f i(x)

)
[∑M

i=1 f
i (x)

∑n
p=1 a

i
px(k − p+ 1)

]∑M
i=1 f

i
(x)

×

∑M
i=1

[
f i(x)

∑n
p=1 vi,pa

i
px(k − p+ 1)

]∑M
i=1

[
f
i
(x)

∑n
p=1wi,pa

i
px(k − p+ 1)

]
∑M

i=1

[
f i(x)

∑n
p=1 vi,pa

i
px(k − p+ 1)

]
+
∑M

i=1

[
f
i
(x)

∑n
p=1wi,pa

i
px(k − p+ 1)

] (3.32)

2In order to simplify the notation, in the rest of the derivation g1 and g2 are short for
g1

(
f i (x) , f

i
(x) ,x, vi,p, wi,p

)
and g2

(
f i (x) , f

i
(x) ,x, vi,p, wi,p

)
.

27



g2 =
1

4

∑M
i=1

(
f
i
(x)− f i(x)

)
[∑M

i=1 f
i
(x)

∑n
p=1 a

i
px(k − p+ 1)

]∑M
i=1 f

i(x)

×

∑M
i=1

[
f
i
(x)

∑n
p=1 vi,pa

i
px(k − p+ 1)

]∑M
i=1

[
f i(x)

∑n
p=1wi,pa

i
px(k − p+ 1)

]
∑M

i=1

[
f
i
(x)

∑n
p=1 vi,pa

i
px(k − p+ 1)

]
+
∑M

i=1

[
f i(x)

∑n
p=1wi,pa

i
px(k − p+ 1)

] (3.33)

Using (3.30)-(3.33), YWM(x) in (3.22) can be written as

YWM(x) =

∑M
i=1 f

i (x)
(

1
2

∑n
p=1 a

i
px(k − p+ 1)

)
∑M

i=1 f
i (x)

+

∑M
i=1 f

i
(x)

(
1
2

∑n
p=1 a

i
px(k − p+ 1)

)
∑M

i=1 f
i
(x)

+ g1 ×

∑M
i=1 f

i (x)
[∑n

p=1 a
i
px(k − p+ 1)

]
∑M

i=1 f
i (x)

+ g2 ×

∑M
i=1 f

i
(x)

[∑n
p=1 a

i
px(k − p+ 1)

]
∑M

i=1 f
i
(x)

(3.34)

Combining the first and the third terms and the second and the fourth terms of YWM(x),
(3.34) can be rewritten as

YWM(x) =

∑M
i=1 f

i (x)

∑n
p=1

m︷ ︸︸ ︷(
1

2
+ g1

)
aipx(k − p+ 1)


∑M

i=1 f
i (x)

+

∑M
i=1 f

i
(x)

∑n
p=1

n︷ ︸︸ ︷(
1

2
+ g2

)
aipx(k − p+ 1)


∑M

i=1 f
i
(x)

(3.35)

Comparing (3.35) and (3.29), it can be seen that m and n correspond to
(

1
2

+ g1

)
and(

1
2

+ g2

)
, respectively, i.e.,

m =
1

2
+ g1 (3.36)

n =
1

2
+ g2 (3.37)

where g1 and g2 are given by (3.32) and (3.33), respectively. Under the assumption that
m and n are adjustable parameters that do not depend on the inference process, YWM(x)
simplifies to YTSK5(x).
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When (3.29) is used to model the plant, a procedure to obtain the TSK consequent
parameters as well as the tuning parameters, m and n, is given next. First, bounds for the
tuning parameters of the plant are derived; then, for a given m and n, it is mathematically
explained how to identify the IT2 TSK consequent parameters, and finally, an algorithm
is presented to obtain suitable tuning parameters for the plant.

Since this chapter deals with stability analysis, it is assumed the parameters of the
MFs are known [identifying the MFs is not within the scope of this thesis]. When IT2
TSK is used for practical control design, states x(k), x(k−1), · · · , x(k−n+1) are physical
quantities, e.g., displacement, velocity, acceleration; therefore, for a specific problem, the
lower and upper bounds of these states can be determined by the designer. Moreover,
yi =

∑n
p=1 a

i
px(k − p + 1) corresponds to the output of rule i and represents a physical

quantity [similar arguments can be made for the two terms
∑n

p=1 vi,pa
i
px(k − p + 1) and∑n

p=1wi,pa
i
px(k− p+ 1) in g1 and g2]; hence, regardless of whether aip is known or not, the

designer can establish the lower and upper bounds on yi as well as another similar terms
in g1 and g2 (the range of variation is known). The lower and upper bounds on g1 and g2

for all rules can therefore be determined, i.e.,

gmin
1 ≤ g1 ≤ gmax

1 (3.38)

gmin
2 ≤ g2 ≤ gmax

2 (3.39)

Then, using (3.36) and (3.37) in (3.38) and (3.39), the bounds on m and n are given as

mmin ≡ 1

2
+ gmin

1 ≤ m ≤ 1

2
+ gmax

1 ≡ mmax (3.40)

nmin ≡ 1

2
+ gmin

2 ≤ n ≤ 1

2
+ gmax

2 ≡ nmax (3.41)

Recently, fuzzy clustering and subtractive clustering have been proposed to find the
parameters of T2 FLSs. Subsequently, similar to [132], in the method presented in this
chapter, it is assumed that the parameters of the input MFs are known by using a predefined
clustering method, and the TSK consequent parameters are identified. Assume the plant
is modeled as

If x1 is F̃ i
1 and x2 is F̃ i

2 and · · · and xn is F̃ i
n, Then yi = ai0 + ai1x1 + ai2x2 + · · ·+ ainxn

(3.42)
where i = 1, ...,M . Suppose p input-output data (training data) for the plant are given as{ [

xi1, x
i
2, · · · , xin

]
, Y i
}p
i=1

(3.43)

where [xi1, x
i
2, · · · , xin] is the ith input vector consisting of n inputs, and Y i is the corre-

sponding output. Define Y ∈ Rp containing the training outputs

Y ≡
[
Y 1, Y 2, · · · , Y p

]T
(3.44)
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Using (3.29) and applying the method described in [133], Y i can be expressed as

Y i = m

∑M
j=1 f

j

i
(aj0 + aj1x

i
1 + aj2x

i
2 + ...+ ajnx

i
n)∑M

j=1 f
j

i

+ n

∑M
i=1 fi

j
(aj0 + aj1x

i
1 + aj2x

i
2 + ...+ ajnx

i
n)∑M

j=1 fi
j (3.45)

where i = 1, · · · , p. Let

vji =
f j
i∑M

j=1 f
j

i

(3.46)

vi
j =

fi
j∑M

j=1 fi
j (3.47)

Using (3.46) and (3.47), (3.45) can be rewritten as

Y i = m
M∑
j=1

vji (a
j
0 + aj1x

i
1 + aj2x

i
2 + ...+ ajnx

i
n)

+ n
M∑
j=1

vi
j(aj0 + aj1x

i
1 + aj2x

i
2 + ...+ ajnx

i
n) (3.48)

Define φ as

φ ≡


v1

1 · · · vM1 v1
1x

1
1 · · · vM1 x

1
1

v1
2 · · · vM2 v1

2x
2
1 · · · vM2 x

2
1

...
...

...
...

...
...

v1
p · · · vMp v1

px
p
1 · · · vMp x

p
1

· · · · · ·

v1
1x

1
n · · · vM1 x

1
n

v1
2x

2
n · · · vM2 x

2
n

...
...

...
v1
px

p
n · · · vMp x

p
n

 (3.49)

Define φ and θ

φ ≡


v1

1 · · · vM1 v1
1x

1
1 · · · vM1 x

1
1

v1
2 · · · vM2 v1

2x
2
1 · · · vM2 x

2
1

...
...

...
...

...
...

v1
p · · · vMp v1

px
p
1 · · · vMp x

p
1

· · · · · ·

v1
1x

1
n · · · vM1 x

1
n

v1
2x

2
n · · · vM2 x

2
n

...
...

...
v1
px

p
n · · · vMp x

p
n

 (3.50)

θ ≡
[
a1

0, · · · , aM0 , a1
1, · · · , aM1 · · · , a1

n, · · · , aMn
]T

(3.51)
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Using (3.49) and (3.50), Y can be expressed as

Y = Aθ (3.52)

where A = mφ+ nφ is a known matrix consisting of the parameters of the input MFs.

Finally, the error vector is defined as e ≡ Y −Aθ, and the total error, et, which is the
sum of squares of the components of e is defined by

et ≡
p∑
i=1

e2
i (3.53)

To obtain the tuning parameters, m and n, of the plant inference engine, the following
algorithm is proposed:

Algorithm 1 Finding the plant tuning parameters.

m← mmin and n← nmin, and calculate the initial error using (3.44)-(3.53)
repeat

repeat
n← nmin

Solve for θ from (3.52), and find the total error from (3.53)
the new error is less than the error found in the previous step, save m, n, and θ
Increment n, i.e., n← n+ ∆n (where ∆n = 0.05n)

until n ≤ nmax

m← m+ ∆m (where ∆m = 0.05m)
until m ≤ mmax

Note that in the proposed algorithm, the increments for ∆m
m

and ∆n
n

are 0.05. Depending
on the required accuracy for identification of the plant or computational complexity in
performing the algorithm, smaller or greater increments can be used.

3.3 Stability of SISO IT2 TSK FLCSs

In this section, a model for the stability analysis of single-input single-output is introduced
(SISO)3 IT2 TSK FLCS. SISO systems are considered because of the variety of applications
in computing systems and bioengineering ([134], [135]). To begin, a controller structure
is introduced; then, a model is introduced for a closed-loop control system, after which
mathematical analyses are established for the design of stable IT2 TSK FLCSs.

3Referring to SISO systems, ‘input’ is considered the controller output signal and ‘output’ is the plant
output (both input and output being scalars).
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3.3.1 Controller

Figure 3.1 shows a controller in which the inputs are the states, x(k), and the output is
u(k).

x(k+1)

Plant
Type2 TSK A2C0 model

Controller
Type2 TSK A2C0

u(k) x(k)

Figure 3.1: Closed-loop IT2 TSK A2-C0 FLCS.

For this system, the general ith rule has the following form:

ith controller rule : If x(k) is C̃i
1 and x(k − 1) is C̃i

2 and · · · and x(k − n+ 1) is C̃i
n

Then ui(k + 1) = ci1x(k) + ci2x(k − 1) + · · ·+ cinx(k − n+ 1) (3.54)

where i = 1, 2, ..., Q, C̃i
j represents the T2 FS of input state j of the ith rule, and cij is the

jth coefficient of the output function for rule i. Applying (3.29) to (3.54), the controller
output, u(k), can be expressed as

u(k) = m′
∑Q

i=1 v
i(x)ui(k + 1)∑Q
i=1 v

i(x)
+ n′

∑Q
i=1 v

i(x)ui(k + 1)∑Q
i=1 v

i(x)
(3.55)

where

vi(x) = µ
C̃i

1

(x(k)) ∗ · · · ∗ µ
C̃i

n
(x(k − n+ 1)) (3.56)

vi(x) = µC̃i
1

(x(k)) ∗ · · · ∗ µC̃i
n

(x(k − n+ 1)) (3.57)

and m′ and n′ are tuning parameters of the controller. Substituting the consequent part
of (3.54) into (3.55), (3.55) can be written as

u(k) = m′
∑Q

i=1

∑n
j=1 v

i(x)cijx(k − j + 1)

k1

+ n′
∑Q

i=1

∑n
j=1 v

i(x)cijx(k − j + 1)

k2

(3.58)
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where {
k1 ≡

∑Q
i=1 v

i(x)

k2 ≡
∑Q

i=1 v
i(x)

(3.59)

Note that parameters k1 and k2 are short for k1(x) and k2(x), respectively.

3.3.2 Closed-loop System

Consider the feedback control system shown in Figure 3.1, where the plant and the con-
troller are each IT2 TSK A2-C0 models. For a closed-loop system, the controller signal,
u(k), is incorporated as an input to the plant. The general ith rule for the plant is

If x(k) is F̃ i
1 and x(k − 1) is F̃ i

2 and · · · and x(k − n+ 1) is F̃ i
n and u(k) is B̃i

Then xi(k + 1) = ai1x(k) + · · ·+ ainx(n− k + 1) + biu(k) (3.60)

where i = 1, ...,M , xi(k+ 1) is the output of the ith plant rule, F̃ i
j represents the T2 FS of

input state j of the ith rule, B̃i represents the T2 FS of the plant input, and aij is the jth
coefficient of the output function for rule i. The control rules are the same as (3.54) with
Q being the number of rules, and u(k) is given by (3.58). Substituting u(k) from (3.58)
into the consequent of (3.60), the output of the ith plant rule, xi(k + 1), is given by

xi(k+1) =
n∑
j=1

[
aijx(k − j + 1)

]
+bim′

∑Q
l=1

∑n
j=1 v

lcljx(k − j + 1)

k1

+bin′
∑Q

l=1

∑n
j=1 v

lcljx(k − j + 1)

k2

(3.61)
Using (3.29), the output of the closed-loop system, x(k + 1), can be expressed as

x(k + 1) =
m
∑M

i=1 f
ixi(k + 1)∑M

i=1 f
i

+
n
∑M

i=1 f
i
xi(k + 1)∑M

i=1 f
i (3.62)

where m and n are the tuning parameters of the plant and f i and f
i

[short for f i(x) and

f
i
(x)] are given by

f i (x) = µ
F̃ i

1

(x(k)) ∗ · · · ∗ µ
F̃ i

n
(x(k − n+ 1)) ∗ µ

B̃i
(u(k)) (3.63)

f
i
(x) = µF̃ i

1
(x(k)) ∗ · · · ∗ µF̃ i

n
(x(k − n+ 1)) ∗ µB̃i (u(k)) (3.64)
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Applying (3.61) to (3.62), x(k + 1) can be expressed as

x(k + 1) =
m
∑M

i=1

∑n
j=1 f

iaijx(k − j + 1)∑M
i=1 f

i
+mm′

∑M
i=1

∑Q
l=1

∑n
j=1 f

ivlbicljx(k − j + 1)

k1

∑M
i=1 f

i

+mn′
∑M

i=1

∑Q
l=1

∑n
j=1 f

ivlbicljx(k − j + 1)

k1

∑M
i=1 f

i
+
n
∑M

i=1

∑n
j=1 f

i
aijx(k − j + 1)∑M

i=1 f
i

+ nm′
∑M

i=1

∑Q
l=1

∑n
j=1 f

i
vlbicljx(k − j + 1)

k2

∑M
i=1 f

i + nn′
∑M

i=1

∑Q
l=1

∑n
j=1 f

i
vlbicljx(k − j + 1)

k2

∑M
i=1 f

i

(3.65)

Next, define n× n matrices Ai and Bi,l as follows:

Ai =


ai1 ai2 . . . ain−1 ain
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,Bi,l =


bicl1 bicl2 . . . bicln−1 bicln
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (3.66)

where i = 1, 2, ...,M and l = 1, 2, ..., Q. Define the output vector as

x(k + 1) = [x(k + 1), x(k), · · · , x(k − n+ 2)]T (3.67)

Using (3.65) and (3.66), it is straightforward to show that x(k+1) in (3.67) can be written
as

x(k + 1) = Cx(k) (3.68)

where

C =
m
∑M

i=1 f
iAi∑M

i=1 f
i

+
n
∑M

i=1 f
i
Ai∑M

i=1 f
i

+mm′
∑M

i=1

∑Q
l=1 f

ivlBi,l

k1

∑M
i=1 f

i
+mn′

∑M
i=1

∑Q
l=1 f

ivlBi,l

k1

∑M
i=1 f

i

+ nm′
∑M

i=1

∑Q
l=1 f

i
vlBi,l

k2

∑M
i=1 f

i + nn′
∑M

i=1

∑Q
l=1 f

i
vlBi,l

k2

∑M
i=1 f

i (3.69)

Although (3.68) may look like a linear system, it is not becauseC depends on x through

the dependencies of f i and f
i

on x.
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3.3.3 Stability of closed-loop system

The stability of T1 TSK FLCSs using Fuzzy Lyapunov Function (FLF) has been addressed
in several works ([136], [137]). Most notably, Tanaka et. al. in [136] proposed an FLF
method composed of multiple Lyapunov functions to obtain the stability conditions for a
T1 TSK FLCS. They also presented a new design control methodology using parallel dis-
tributed compensation. The proposed FLF methodology in [136] provided relaxed stability
conditions for a T1 TSK FLCS; however, the design process required the time derivatives
of premise MFs, and it is not always possible to derive such derivatives from the system
states, which limits the use of this method. Because the same drawback will limit the
use of this method for IT2 TSK FLCSs, in this thesis, a quadratic Lyapunov function is
introduced to derive stability conditions for IT2 TSK FLCSs.

The proposed Lyapunov function is V (x(k)) = xT (k)Px(k), where P is a positive
definite matrix [138]. ∆V (x(k)) is given by

∆V (x(k)) = xT (k + 1)Px(k + 1)− xT (k)Px(k) (3.70)

Using (3.68), ∆V (x(k)) can be expressed as

∆V (x(k)) = xT (k)Zx(k) (3.71)

where
Z ≡ CTPC − P (3.72)

and C is given by (3.69). Z has 36 components, and can be expressed as

Z ≡ Z1 +Z2 +Z3 (3.73)

where Z1, Z2, and Z3 are given in Appendix A.3.

Let the first bracketed term of Z1 in (A.1) be denoted Z1,1, i.e.,

Z1,1 =
m
∑M

i=1 f
iAT

i∑M
i=1 f

i
P
m
∑M

j=1 f
jAj∑M

j=1 f
j
− 1

36
P (3.74)

It can be expressed as

Z1,1

(
M∑
i=1

f i
M∑
j=1

f j

)
=

M∑
i,j=1

f if j
[
m2AT

i PAj −
1

36
P

]
(3.75)

Using the fact that f i and f j are positive, for Z1,1 < 0 the expression inside the bracket
in (3.75) must be negative definite; thus,

m2AT
i PAj −

1

36
P < 0 (3.76)
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where i, j = 1, 2, ...,M . It is straightforward to demonstrate that similar conditions are
obtained for the remaining three terms of Z1, i.e.,

aAT
i PAj −

1

36
P < 0 (3.77)

where
a =

{
m2,mn, n2

}
(3.78)

Applying the same method to Z2 and Z3, similar conditions can be obtained (some of
the details are provided in Appendix A.4). The resulting conclusions are:

bAT
i PBj,l + bBT

i,lPAj −
1

18
P < 0 (3.79)

where
b = {m2m′,mnm′,m2n′,mnn′, n2m′, n2n′} (3.80)

cBT
i,lPBj,q −

1

36
P < 0 (3.81)

where

c =
{
m2m′2, n2n′2,m2m′n′,mnm′n′,m2n′2,mnn′2,mnm′2, n2m′2, n2m′n′

}
(3.82)

In (3.77), (3.79), and (3.81), i, j = 1, 2, ...,M , and l, q = 1, 2, ..., Q. For each i, j, l
and q combination, only 18 inequalities are given by (3.77)-(3.81), because half of the 36
inequality conditions for ∆V (x(k)) < 0 are repetitive. If there exists a common positive
definite matrix P that satisfies the inequalities in (3.77)-(3.81), then the closed-loop system
is globally asymptotically stable.

Note that combining the terms of C in (3.69) will not lead to simpler stability con-
ditions, because when common terms are combined, the expressions inside the resulting
multiple summations include several combinations of the Ai and Bj,l matrices, and hence
require a larger number of inequalities to be satisfied.

Next, (3.77)-(3.81) are formulated into the LMI problems that can be solved using
numerical techniques such as the interior point method [53]. Consider, e.g., one of the
inequalities given by (3.77). By multiplying both sides of it by −36, it is straightforward
to show that it can be rewritten as

P − 36aAT
i PAj > 0 (3.83)

Since (3.83) can be non-symmetric, it follows that its symmetric part must satisfy

1

2

{[
P − 36aAT

i PAj

]T
+
[
P − 36aAT

i PAj

]}
> 0 (3.84)
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(3.84) can be re-expressed as (i, j = 1, 2, ...,M ; a in (3.78))

P − 36a

2
(AT

j PAi +AT
i PAj) > 0 (3.85)

It can be similarly shown that for (3.79) and (3.81) the following equivalent LMIs can
be obtained [ i, j = 1, 2, ...,M , and l, q = 1, 2, ..., Q; b in (3.80), and c in (3.82)]:

P − 18

2
b
(
BT
j,lPAi +AT

i PBj,l

)
− 18

2
b
(
AT
j PBi,l +BT

i,lPAj

)
> 0 (3.86)

P − 36

2
c(BT

i,lPBj,q +BT
j,lPBi,q) > 0 (3.87)

The stability conditions in (3.85)-(3.87) can be evaluated using standard software tools,
such as the Matlab LMI toolbox4 or the CVX5 that have been developed to efficiently solve
LMI problems.

If the LMIs given by (3.85)-(3.87) have a positive definite solution for P , then system
(3.65) is globally asymptotically stable.

3.3.4 Bounds for the controller tuning parameters

In this subsection a method is proposed for deriving the bounds for the controller tuning
parameters m′ and n′ in (3.55). These bounds are used to find the controller tuning pa-
rameters in the next section. Paralleling the derivation in Section 3.2, it is straightforward
to show that the controller tuning parameters, m′ and n′, are given by

m′ =
1

2
+ g′1 (3.88)

n′ =
1

2
+ g′2 (3.89)

where

g′1 = −1

4

∑Q
i=1

(
vi(x)− vi(x)

)[∑Q
i=1 v

i (x)
∑n

p=1 c
i
px(k − p+ 1)

]∑Q
i=1 v

i (x)

×

∑Q
i=1

[
vi(x)

∑n
p=1 ri,pc

i
px(k − p+ 1)

]∑Q
i=1

[
vi(x)

∑n
p=1 si,pc

i
px(k − p+ 1)

]
∑Q

i=1

[
vi(x)

∑n
p=1 ri,pc

i
px(k − p+ 1)

]
+
∑Q

i=1

[
vi(x)

∑n
p=1 si,pc

i
px(k − p+ 1)

] (3.90)

4Matlab LMI toolbox solves semi-definite programming and LMI problems.
5CVX is a Matlab-based modeling system for convex optimization ([139], [140]).
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g′2 =
1

4

∑Q
i=1

(
vi(x)− vi(x)

)[∑Q
i=1 v

i (x)
∑n

p=1 c
i
px(k − p+ 1)

]∑Q
i=1 v

i(x)

×

∑Q
i=1

[
vi(x)

∑n
p=1 ri,pc

i
px(k − p+ 1)

]∑Q
i=1

[
vi(x)

∑n
p=1 si,pc

i
px(k − p+ 1)

]
∑Q

i=1

[
vi(x)

∑n
p=1 ri,pc

i
px(k − p+ 1)

]
+
∑Q

i=1

[
vi(x)

∑n
p=1 si,pc

i
px(k − p+ 1)

] (3.91)

and

ri,p ≡
cip − c1

p

cip
(3.92)

si,p ≡
cQp − cip
cip

(3.93)

When IT2 TSK is used for control design, bounds on g′1 and g′2 from (3.90) and (3.91)
can be determined, i.e.,

g′min
1 ≤ g′1 ≤ g′max

1 (3.94)

g′min
2 ≤ g′2 ≤ g′max

2 (3.95)

It follows from (3.88), (3.89), (3.94), and (3.95) that the bounds on m′ and n′ are given
as

m′min ≡ 1

2
+ g′min

1 ≤ m′ ≤ 1

2
+ g′max

1 ≡ m′max (3.96)

n′min ≡ 1

2
+ g′min

2 ≤ n′ ≤ 1

2
+ g′max

2 ≡ n′max (3.97)
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3.3.5 An Algorithm to find the controller tuning parameters

The proposed algorithm to find the controller tuning parameters, m′ and n′, is as follows:

Algorithm 2 Finding the controller tuning parameters.

m′ ← m′min

repeat
repeat
n′ ← n′min

Solve the LMIs given by (3.85)-(3.87), and determine the feasibility/infeasibility 6

of P
If the LMIs are feasible, save m′, n′, and P, and exit the loop (inner loop)
Increment n′, i.e., n′ ← n′ + ∆n′ (where ∆n′ = 0.05n′)

until n′ ≤ n′max

m′ ← m′ + ∆m′ (where ∆m′ = 0.05m′)
until m′ ≤ m′max

At the end of this algorithm, a set of feasible (m′, n′, P ) are found. The designer
chooses the specific set that achieves the best transient performance. An advantage of this
algorithm is that there is no need to change the controller TSK parameters. Using this
algorithm, when m′ and n′ are chosen by tuning only two controller parameters, stabilizing
the system is easy to achieve.

3.4 Stability of MIMO IT2 TS FLCSs

In this section, unlike Section 3.3 where IT2 TSK was used for plant to derive the stability
conditions, the plant model is simplified to a T1 TSK. This simplifies the process of stability
analysis for multi-input multi-output (MIMO) IT2 control systems. This assumption is
reasonable because T1 TSK FLSs have been proven to be universal approximators [122],
and can model nonlinear plants relatively well [141]. Hence, the focus on this section will
be the stability analysis of IT2 TS FLCSs that use T1 TS plant model. To begin, the
structure of the hybrid system for a T1 TS FLCS is reviewed.

A. T1 TS FLCS

The general ith rule for the plant is now given as [141]

Ri
p: If x(k) is P i

1 and · · · and x(k−n+1) is P i
n, Then xi(k+1) = Aix(k)+biu(k), i = 1, 2, · · · , r

(3.98)
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where r is the number of rules, xi(k+1) is the output of each rule, P i
j represents the T1 FS

of input state j of rule i, x(k) is the state vector and is given by (2.20) , and Ai ∈ Rn×n,
bi ∈ Rn×m, u(k) ∈ Rm. The output of the system, x(k + 1), is given by

x(k + 1) =

∑r
i=1 qi(k) {Aix(k) + biu(k)}∑n

i=1 qi(k)
(3.99)

where
qi(k) = µP i

1
(x(k)) ∗ · · · ∗ µP i

n
(x(k − n+ 1)) (3.100)

The ith control rule is [141]

Ri
c: If x(k) is Ci

1 and · · · and x(k − n+ 1) is Ci
n, Then ui(k) = F ix(k), i = 1, 2, · · · , r

(3.101)
where F j is the jth feedback gain matrix of the consequent part, and Ci

j represents the
T1 FS of input state j of rule i. Note that the number of rules for the controller is also r.
The controller output, u(k), for a system that uses a T1 TS FLCS is given by [141]

u(k) =

∑r
j=1wj(k)F jx(k)∑r

j=1wj(k)
(3.102)

where
wi(k) = µCi

1
(x(k)) ∗ · · · ∗ µCi

n
(x(k − n+ 1)) (3.103)

The complete closed-loop modified T1 TS FLCS is obtained by substituting (3.102)
into (3.99).

B. IT2 TS FLCS

As mentioned at the start of Section 3.4 the IT2 TS FLS utilizes an IT2 TSK FLS for
the controller and the T1 TS FLS in (3.99) for the plant. The rule structure for the IT2

TS FLCS is kept the same as (3.101) except that Ci
js are replaced with IT2 FSs, i.e., C̃j

i .
Now, however, u(k), has the same structure as (3.55) and is given as

u(k) = m′
∑r

j=1 wj(k)F jx(k)∑r
j=1 wj(k)

+ n′
∑r

j=1 wj(k)F jx(k)∑r
j=1 wj(k)

(3.104)

where

wj(k) = µ
C̃j

1

(x(k)) ∗ · · · ∗ µ
C̃j

n
(x(k − n+ 1)) (3.105)

wj(k) = µC̃j
1

(x(k)) ∗ · · · ∗ µC̃j
n

(x(k − n+ 1)) (3.106)
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Substituting (3.104) into (3.99), the output of the system, x(k + 1), can be expressed
as

x(k + 1) =

∑r
i=1 qi(k)

{
Aix(k) + bim

′
∑r

j=1 wj(k)F jx(k)∑r
j=1 wj(k)

+ n′
∑r

j=1 wj(k)F jx(k)∑r
j=1 wj(k)

}
∑n

i=1 qi(k)

=

∑r
i,j,l=1 qi(k)wj(k)wl(k) {Aix(k) +m′biF jx(k) + n′biF lx(k)}∑r

i,j,l=1 qi(k)wj(k)wl(k)
(3.107)

which can be further expressed in a more compact form as

x(k + 1) =

∑r
i,j,l=1 gijl(k)Gijl∑r
i,j,l=1 gijl(k)

x(k) (3.108)

where

gijl(k) = qi(k)wj(k)wl(k) (3.109)

Gijl = Ai +m′biF j + n′biF l (3.110)

It is straightforward to show that
∑r

i,j,l=1Gijl can be expressed as

r∑
i,j,l=1

Gijl =
r∑
i=1

Giii +
r∑
i 6=j

r∑
j=1

Gijj +
r∑
i=1

r∑
j 6=l

r∑
l=1

Gijl (3.111)

Observe that

r∑
i 6=j

r∑
j=1

Gijj =
r∑
i<j

r∑
j=1

Gijj +
r∑
i>j

r∑
j=1

Gijj

=
r∑
i<j

r∑
j=1

Gijj +
r∑
t<p

r∑
t=1

Gptt = 2
r∑
i<j

r∑
j=1

[
Gijj +Gjii

2

]
(3.112)

and

r∑
i=1

r∑
j 6=l

r∑
l=1

Gijl =
r∑
i=1

r∑
j<l

r∑
l=1

Gijl +
r∑
i=1

r∑
j>l

r∑
l=1

Gijl

=
r∑
i=1

r∑
j<l

r∑
l=1

Gijl +
r∑
i=1

r∑
p>t

r∑
l=1

Gipt =
r∑
i=1

r∑
j<l

r∑
l=1

Gijl +
r∑
i=1

r∑
l>j

r∑
l=1

Gilj

= 2
r∑
i=1

r∑
j<l

r∑
l=1

[
Gijl +Gilj

2

]
(3.113)
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Substituting (3.112) and (3.113) into (3.111), (3.111) is obtained.

Next define H t and vt(k) as:

H t ≡


Gijl+Gilj

2
t = i+ r(j − 1 + (l−1)(l−2)

2
) and j < l

Gijj+Gjii

2
t = i+ j(j−1)

2
+ r2(r−1)

2
and j = l, i < j

Giii t = i+ i(i−1)
2

+ r2(r−1)
2

and i = j = l

(3.114)

vt(k) ≡


2gijl(k) t = i+ r(j − 1 + (l−1)(l−2)

2
) and j < l

2gijj(k) t = i+ j(j−1)
2

+ r2(r−1)
2

and j = l, i < j

giii(k) t = i+ i(i−1)
2

+ r2(r−1)
2

and i = j = l

(3.115)

Note that the number of H t matrices given in (3.114) is calculated as

r(r + 1)

2
+
r2(r − 1)

2
=
r(r2 + 1)

2
(3.116)

where r(r+1)
2

is the number of H t for the case when i ≤ j and j = l, and r2(r−1)
2

is the
number of H t matrices for the case when j < l. Observe that H t matrices are functions
of the Gijl matrices that are dependent on the control parameters m′ and n′ in (3.110).

Using (3.114) and (3.115), (3.108) can be re-expressed using a single summation, as:

x(k + 1) =

∑ r(r2+1)
2

s=1 vs(k)Hs∑ r(r2+1)
2

s=1 vs(k)

x(k) (3.117)

It is well known [141] that system (3.117) is globally asymptotically stable if there exists
a common positive-definite matrix P such that

HT
s PHs − P < 0 (3.118)

for s = 1, 2, . . . , r(r
2+1)
2

.

Observe, from (3.108) that r3 LMIs (note the three summations) must be satisfied to
ensure the stability of the IT2 TS FLCS; however, by introducing the H t matrices, only
r(r2+1)

2
< r3 LMIs need to be satisfied to arrive at the same result.

Before assessing the feasibility of the LMIs in (3.118), it is important to identify the
bounds on the controller tuning parameters m′ and n′ in (3.104) because Hs depends
on them [H t matrices are functions of the Gijl matrices (3.110)]. When WM UB in
(3.22)-(3.23) is used an as inference engine, the controller output is uWM(x) and hence
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each of its component ujWM(x) for j = 1, ..., r, can be expressed as [[F ix(k)]j replaces∑n
p=1 a

i
px(k − p+ 1) in (3.34)]

ujWM(x) =
1

2

∑r
i=1w

i (x)
(

[F ix(k)]j
)

∑r
i=1w

i (x)
+

1

2

∑r
i=1w

i(x)
(

[F ix(k)]j
)

∑r
i=1 w

i(x)

+ g′j1 ×
∑r

i=1 w
i (x) [F ix(k)]j∑r
i=1w

i (x)
+ g′j2 ×

∑r
i=1w

i(x) [F ix(k)]j∑r
i=1w

i(x)
(3.119)

where g′j1 and g′j2 are given by

g′j1 =
1

4

−
∑r

i=1

(
wi(x)− wi(x)

)∑r
i=1w

i (x)
∑r

i=1w
i (x) [F ix(k)]j

∑r
i=1w

i(x) [(F i − F 1) x(k)]j .
∑r

i=1 w
i(x) [(F r − F i) x(k)]j∑r

i=1 w
i(x) [(F i − F 1) x(k)]j +

∑r
i=1w

i(x) [(F r − F i) x(k)]j

(3.120)

g′j2 =
1

4

∑r
i=1

(
wi(x)− wi(x)

)∑r
i=1w

i (x)
∑r

i=1w
i(x) [F ix(k)]j

.

∑r
i=1 w

i(x) [(F i − F 1) x(k)]j .
∑r

i=1 w
i(x) [(F r − F i) x(k)]j∑r

i=1w
i(x) [(F i − F 1) x(k)]j +

∑r
i=1 w

i(x) [(F r − F i) x(k)]j

(3.121)

ujWM(x) can therefore be expressed as

ujWM(x) =

∑r
i=1w

i (x)

m′j︷ ︸︸ ︷(
1

2
+ g′j1

)
[F ix(k)]j∑r

i=1w
i (x)

+

∑r
i=1 w

i(x)

n′j︷ ︸︸ ︷(
1

2
+ g′j2

)
[F ix(k)]j∑r

i=1w
i(x)

(3.122)

Finally, the bounds of m′ and n′ are given by

m′min ≡ min
j

(
1

2
+ g′jmin

1 ) ≤ m′ ≤ max
j

(
1

2
+ g′jmax

1

)
≡ m′max (3.123)

n′min ≡ min
j

(
1

2
+ g′jmin

2 ) ≤ n′ ≤ max
j

(
1

2
+ g′jmax

2

)
≡ n′max (3.124)

where j = 1, ..., r.

Next observe that (3.118) can be transformed into the following LMIs (s = 1, 2, . . . , r(r
2+1)
2

):

P −HT
s PHs > 0 (3.125)

Let X ≡ P−1 and multiply both sides of (3.125) by X from left and right. It is straight-
forward to see that (3.125) becomes

X −XHT
sX

−1HsX
−1 > 0 (3.126)
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which is equivalent to the following LMIs (s = 1, 2, . . . , r(r
2+1)
2

):[
X XHT

s

HsX X

]
> 0 (3.127)

Using the bounds of m′ and n′ found in (3.123)-(3.124) and a procedure similar to the
algorithm in Subsection 3.3.5 [(3.85)-(3.87) are replaced with (3.127)], the feasibility of
(3.127) can be investigated using the Matlab LMI toolbox or the CVX. If a positive definite
X exists, then the closed-loop system will be asymptotically stable.

To ensure stability in a Lyapunov sense, it is required that ∆V (x(k)) < 0; hence, if
all the components of ∆V (x(k)) are made negative (equivalently, all the components of Z
are made negative definite) the result will be an asymptotically stable system.

3.5 Examples

This section introduces two examples. The first presents applications of the developed
theory to analyze the stability of SISO and MIMO systems, respectively. The second
example presents case studies demonstrating the effectiveness of the IT2 TS FLCS in
tracking applications and control of nonlinear systems.

Example 1:

This example presents two case studies. The first deals with a SISO system defined in
Subsection 3.3.3. The second deals with a MIMO system described in Section 3.4.

Case study a: Consider the following SISO IT2 TSK FLS:

If x(k) is F̃ 1and x(k − 1) is F̃ 2, then x1(k + 1) = 2.3x(k)− 2x(k − 1) + 0.7u(k).

If x(k) is F̃ 2and x(k − 1) is F̃ 1, then x2(k + 1) = 1.5x(k)− 1x(k − 1) + 0.01u(k).

This system has two control rules:

If x(k) is C̃1and x(k − 1) is C̃2 then u1(k + 1) = −0.9x(k)− 1.08x(k − 1).

If x(k) is C̃2and x(k − 1) is C̃1 then u2(k + 1) = 1.4x(k)− 2.1x(k − 1).

The MFs for the plant, F̃ 1 and F̃ 2, and the controller, C̃1 and C̃2, are shown in Figure
3.2.
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Figure 3.2: MFs for Example 1, case study a.

The Bij and Ai matrices, according to (3.66), are:

A1 =

[
2.3 −2
1 0

]
, A2 =

[
1.5 −1
1 0

]
(3.128)

B11 =

[
−0.63 −0.756

1 0

]
, B12 =

[
−0.009 −0.011

1 0

]
(3.129)

B21 =

[
0.980 −1.470

1 0

]
, B22 =

[
0.014 −0.021

1 0

]
(3.130)

Note that in this example m and n in (3.62), which are plant parameters, are assumed
given as m = 0.1 and n = 0.1. The controller tuning parameters, m′ and n′, were designed
based on the method introduced in Sections 3.3.4 and 3.3.5 (note that this is a stabilizing
controller design problem). Bounds on the states were assumed to be [−3, 1]. Using the
algorithm of Section 3.3.5, the bounds for m′ and n′ were obtained as [0.176, 0.5] and
[0.149, 1.299], respectively. Table 3.1 summarizes some of the selected values for m′ and n′

and their corresponding matrix P .
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Table 3.1: Some selected controller tuning parameters and their corresponding P.
m′ n′ P

0.2 0.2

[
24.691 −23.500
−23.500 44.044

]
0.32 0.32

[
21.279 −20.197
−20.197 37.998

]
0.45 0.38

[
16.645 −15.745
−15.745 29.746

]

Tuning parameters m′ and n′ were selected that resulted in the best output transient
response, e.g, when the initial conditions are x(1) = 0.1 and x(2) = 0.01, the response of
the system for the m′ and n′ in Table 3.1 are shown in Figure 3.3.

The output of the system shown with solid line (m′ = n′ = 0.2) has the best transient
response.

5 10 15 20 25 30

0.05

0

0.05

0.1

t

x

mp=0.2, np=0.2

mp=0.32, np=0.32
mp=0.45 np=0.38

Figure 3.3: Closed-loop system response for different controller tuning parameters.

Case study b:

In this case study, an IT2 TS FLC is applied to stabilize an inverted pendulum which
is an example of a benchmark problem often used in the design of controllers. Figure 3.4

46



shows an inverted pendulum located on a cart. The control problem is to stabilize the
inverted pendulum by applying a horizontal force to the system (control action).

l2

1x

m

M
uF =

M

Figure 3.4: Inverted pendulum.

Tanaka and Wang [54] demonstrated that for certain initial conditions (angles), a linear
controller is not capable of stabilizing the system. Hence, they introduced a T1 TS FLS
that can be used to model as well as control this inverted pendulum. In this case study, it
is shown that the proposed IT2 TS FLC in Section 3.4 is capable of stabilizing the inverted
pendulum while achieving a better performance compared to its T1 counterpart.

The inverted pendulum system has nonlinear dynamics and the equations of motion
are given as

ẋ1(t) = x2(t) (3.131)

ẋ2(t) =
g sin(x1(t))− amlx2

2(t) sin(2x1(t))/2− a cos(x1(t))u(t)

4l/3− aml cos2(x1(t))
(3.132)

where x1(t) and x2(t) are the angular position and velocity of the pendulum, respectively,
u(t) is the control input, m is the pendulum mass, M is the cart mass, 2l is the length of
the pendulum, and a ≡ 1

m+M
.

The performance of the IT2 TS FLC is also compared with a nonlinear controller [142]
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as well as a linear controller. The structure of the nonlinear controller is given by

u(t) =
g

a
tan(x1(t)) +

4le1e2

3a
ln[sec(x1(t) + tan(x1(t)]− e1e2ml sin(x1(t))

−(e1 + e2)x2(t)

a
[
4l

3
sec(x1(t))− aml cos(x1(t))] (3.133)

where e1 and e2 are specified closed-loop eigenvalues. To compare the performance of the
IT2 TS FLC with the T1 controller, the model of the plant is kept as a T1 TS and only the
controller is replaced with an IT2 TS model. To make a fair comparison, the parameters
of the plants and controllers are kept unchanged for both control systems, and only the
MFs for the IT2 controller are designed.

Define x(t) ≡ [x1(t), x2(t)]T where x1(t) and x2(t) are the state variables, i.e., angular
position and velocity of the pendulum. The structure of the plant and the controllers is
given by

Plant rules: (see Figure 3.5 for antecedent MFs)7
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Figure 3.5: IT2 MFs for Example 1, case study b.

Rule 1: If x1(t) is “about 0”, then ẋ = A1x(t) + b1u(t)

Rule 2: If x1(t) is “about π
2

or −π
2
”, then ẋ = A2x(t) + b2u(t)

Control rules:

7x1 is given in radians.
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Control Rule 1: If x1(t) is “about 0”, then u(t) = f 1x(t)

Control Rule 2: If x1(t) is “about π
2

or −π
2

”, then u(t) = f 2x(t)

in which

A1 =

[
0 1

17.3118 0

]
, A2 =

[
0 1

9.3696 0

]
(3.134)

b1 =

[
0

−0.1765

]
, b2 =

[
0

−0.0052

]
(3.135)

f 1 =
[

120.6667 22.6667
]
, f 2 =

[
2551.6 0.7640

]
(3.136)

Note that in order to make an unbiased comparison, f 1 and f 2 are adopted from [141].
Those gains were chosen by a pole-placement method. The linear controller is given by
u(t) = f 1x(t). The values of the parameters used in this case study are: m = 2kg,
M = 8kg, l = 0.5m, a = 0.1kg−1, g = 9.81m

s2
, e1 = e2 = −2, and the tuning parameters for

the IT2 controllers are m′ = 1 and n′ = 0.9. Note that this example deals with a continuous
system. Following the same approach explained in Section 3.4, it is very straightforward
to show that the stability conditions for the continuous system can be simply written as

HT
s P + PHs < 0 (3.137)

where Hs matrices are defined by (3.114), and P is a positive definite matrix. Using the
Matlab LMI toolbox, it is easy to obtain the following P matrix satisfying (3.137):

P =

[
0.6219 0.0852
0.0852 0.0324

]
(3.138)

Figure 3.6 shows the performance of the different controllers simulated for the initial
angle of x1(0) = 0.105 rad (note that the responses of the linear and nonlinear controllers
are almost the same for this specific initial angle). Clearly, IT2 controller not only stabilizes
the system, but also results in enhanced transient performances, i.e, reduced rise time and
faster settling time. The rise and settling times for the T1 controller are tr = 0.64 sec
and ts = 1.16 sec, respectively. For the nonlinear controller, the corresponding values are
tr = 0.49 sec and ts = 0.9 sec. Finally, for the IT2 controller these values are tr = 0.49 sec
and ts = 0.90 sec. The transient response of each controller for different initial angles has
been summarized in Table 3.2.
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Table 3.2: Rise and settling times of different controllers for different initial angles.
x1(0) = 0.105 rad x1(0) = 0.873 rad x1(0) = 1.483 rad
tr(s) ts(s) tr(s) ts(s) tr(s) ts(s)

Linear 1.72 3.42 unstable unstable unstable unstable
T1 0.64 1.16 0.63 1.53 0.65 1.75

Nonlinear 1.72 3.42 1.83 3.47 2.44 3.47
IT2 0.49 0.90 0.62 1.45 0.63 1.64
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Figure 3.6: Outputs of different controllers for the initial angle of x1(0) = 0.105rad.

Figure 3.7 compares the response of each controller for different initial angles. The
nonlinear, T1, and IT2 controllers are capable of stabilizing the system for all initial angles
x1(0) ∈ (0, π

2
). For initial angles x1(0) > 0.7854 rad, the linear controller, however, fails to

stabilize the system. Furthermore, the IT2 controller is consistently outperforming other
controllers in terms of transient response. The IT2 controller offers a simpler structure
that does not have the complexity of the nonlinear controller in (3.133), yet it performs
considerably better while concurrently ensuring the stability of the nonlinear system.
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Figure 3.7: Outputs of different controllers for different initial angles.

Example 2:

This example offers two more case studies that demonstrate the effectiveness of the
proposed IT2 TS FLC for tracking applications and control of nonlinear dynamic systems
such as chaotic oscillators.

Case study c: (tracking application)

This control example is adopted from [141] where a T1 TS controller was designed to
track a predefined trajectory of a model car. The specific problem is to control a computer-
simulated model car from an arbitrary initial position by manipulating the steering angle
and allowing only forward movements. The car is the plant and is modeled by a T1 TS
FLCS. In [141], it was verified that the dynamics of the approximated fuzzy model agree
with the original model. In Figure 3.8, observe that x0 is the angle that the car makes with
the horizontal axis and x1 is the vertical position of the rear end of the car. The control
objective is to track the car from a given initial position to the position where x0 = x1 = 0
with no backward movement.
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Figure 3.8: Coordinate system used to describe the car position and orientation.

This example has two parts. First, stability conditions are derived for a system that
utilizes an IT2 TS FLCS in controller design. Second, the performance of the designed IT2
TS FLCS is compared with its T1 counterpart.

(a) Stability

As mentioned earlier, a T1 TS model is a valid approximation for the plant. Moreover,
in order to make an unbiased comparison of the performance of T1 TS FLCS and IT2 TS
FLCS, the plant is considered as a T1 TS model and only the controller is redesigned.

Plant and control rules are given as:

Plant rules: (see Figure 3.9 for antecedent MFs)8

8x0 is given in radians.
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Figure 3.9: Coordinate system used to describe the car position and orientation.

Rule 1: If x0(k) is “about 0”, then x(k + 1) = A1x(k) + b1u(k)

Rule 2: If x0(k) is “about π or −π”, then x(k + 1) = A2x(k) + b2u(k)

Control rules:

Control Rule 1: If x0(k) is “about 0”, then u(k) = f 1x(k)

Control Rule 2: If x0(k) is “about π or −π ”, then u(k) = f 2x(k)

in which

A1 =

[
1 0
1 1

]
, A2 =

[
1 0

0.003183 1

]
(3.139)

b1 =

[
0.357143

1

]
, b2 =

[
0.357143

1

]
(3.140)

f 1 =
[
−0.4212 −0.02933

]
, f 2 =

[
−0.0991 −0.00967

]
(3.141)

Note that in order to make an unbiased comparison, f 1 and f 2 are adopted from [141],
where they were obtained by a pole-placement method. Similar to Example 1, the bounds
for m′ and n′ are obtained as [−6.207, 1.275] and [−2.235, 4.935], respectively. In this
example, r = 2 and hence the number of LMIs to be satisfied is 5. Using (3.114), the H i
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matrices are calculated as

H1 =

[
0.8495 −0.0105

1 1

]
, H2 =

[
0.9071 −0.0070

1 1

]
H3 =

[
0.9071 −0.0070
0.5016 1

]
, H4 =

[
0.9071 −0.0070
0.0032 1

]
, H5 =

[
0.9646 −0.0035

1 1

]
(3.142)

From which it follows that, P , computed from the Matlab LMI toolbox, is

P =

[
699.6386 57.3766
57.3766 11.7997

]
(3.143)

It can be verified that P satisfies the stability conditions for all 5 LMIs in (3.118), i.e.,

HT
1PH1 − P =

[
−85.369 −3.659
−3.659 −1.125

]
< 0, HT

2PH2 − P =

[
−8.077 1.650
1.650 −0.765

]
< 0

HT
3PH3 − P =

[
−68.788 −4.033
−4.033 −0.765

]
< 0, HT

4PH4 − P =

[
−123.637 −9.714
−9.714 −0.765

]
< 0

HT
5PH5 − P =

[
−48.296 −4.325
−4.325 −0.3880

]
< 0 (3.144)

Therefore, the closed-loop system is asymptotically stable.

(b) Performance Evaluation

Here, the performance of T1 TS FLC and the IT2 TS FLC given in part (a) of this
example are compared. The rules and consequent parameters of T1 TS are kept the same
as in part (a) and only the MFs of the antecedents for the proposed T2 inference engine are
redesigned from T1 to IT2. The MFs are shown in Figure 3.9, and the initial conditions
are x0(0) = π, and x1(0) = 20. To make the comparison more realistic, a steering angle
threshold has been set to ±π

3
which is the threshold of a steering angle of a typical car.

Figure 3.10 compares the performance of the T1 TS and IT2 TS systems. Observe that
the T1 TS controller has a noticeable overshoot9 and a slower convergence to the set point
in comparison to the IT2 TS controller. Clearly, the IT2 TS controller has less overshoot.
It is easy to see that the IT2 TS controller has a faster settling time than the T1 TS.
Moreover, the T1 TS controller has a noticeably undesirable undershoot between t = 57
and t = 80 sec, where the IT2 TS controller does not.

9‘Overshoot’ occurs when the system’s response overshoots the starting trajectory (initial position),
and ‘undershoot’ occurs when the system’s response undershoots the zero trajectory.
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Figure 3.10: Trajectories of the car model for the two controllers.

Figure 3.11 compares the angular positions of the two controllers. Angular position
with the IT2 TS controller has a slightly larger negative slope that helps the car to get
to x0 = 0 and x1 = 0 faster. This is noticeable by comparing the time required for both
controllers to reach the final angle, i.e., 0◦.
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Figure 3.11: Angular position of the car for T1 and T2 fuzzy controllers.

To further explain this, the control efforts (steering angles) of both controllers are
compared in Figure 3.12. As can be seen, initially, the control effort of the IT2 TS controller
is significantly greater than the T1 TS controller. This results in less overshoot in the
transient response of the IT2 TS controller. Additionally, the IT2 TS control effort reveals
a large slope in decreasing the steering angle, rendering less undershoot compared to the T1
TS controller. This is attributed to the shape of the T2 MFs that allows more uncertainty
in the controller structure.
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Figure 3.12: Controller outputs for T1 and T2 fuzzy systems.

This example demonstrates that the proposed IT2 TS with the proposed inference,
YTSK/NEW, is capable of outperforming a well-tuned T1 TS FLCS.

Case study d (control of a nonlinear/chaotic system)

In the second part of this example, an IT2 TS FLC is developed and is applied to
another popular nonlinear system. This case study shows that the IT2 controller can
stabilize a chaotic system while simultaneously achieving enhanced results compared to its
T1 counterpart. The system considered in this problem is an electrical circuit, known as
Chua’s circuit [143], that exhibits chaotic output behaviors. The Chua’s circuit consists of
one inductor (L), two capacitors (C1, C2), one linear resistor (R), and one piece-wise linear
resistor (g(vc1)). This circuit is described by the following equations [144]:

v̇c1 =
1

C1

(
1

R
(vc2 − vc1)− g(vc1)

)
+ u1 (3.145)

v̇c2 =
1

C2

(
1

R
(vc1 − vc2) + iL

)
+ u2 (3.146)

i̇L =
1

L
(−vc2 −R0iL) + u3 (3.147)
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where g(vc1) is given by

g(vc1) =


Gbvc1 + (Ga −Gb)E vc1 ≥ E

Gavc1 −E < vc1 < E
Gbvc1 − (Ga −Gb)E vc1 ≤ −E

(3.148)

where vc1, vc2, iL are state variables, Ga, Gb, E are the characteristics of the piece-wise
linear resistor, and u1, u2, u3 are the control inputs. For more information about the Chua’s
circuit see [143] and [145]. It is well-known that Chua’s circuit has nonlinear dynamics such
as bifurcation and chaos. Chaotic systems can reveal large oscillations/motions and hence
there is a growing interest in the controllers that can effectively handle such systems. Wang
and Tanaka in [144] developed a T1 TS model that represents this circuit well. Hence,
similar to previous examples, the plant is kept as a T1 TS and the controller is replaced
with the proposed IT2 TS FLC. To make an unbiased comparison, only the IT2 MFs
are redesigned while keeping all other parameters the same for both control systems. Let
x(t) ≡ [x1(t), x2(t), x3(t)]T where xi(t)’s are the state variables, i.e., x1 = vc1, x2 = vc2,
x3 = iL. The values for the parameters used in this example are: R = 1.4286, R0 =
0Ω, C1 = 0.1, C2 = 0.2, L = 0.1429, Ga = −2, Gb = 0.1, and E = 1.

Plant and control rules are given as:

Plant rules:

Rule 1: If x1(t) is M1, then ẋ = A1x(t) + bu(t)

Rule 2: If x1(t) is M2, then ẋ = A2x(t) + bu(t)

Figure 3.13 shows the antecedent MFs M1 and M2.
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Figure 3.13: IT2 MFs for Example 2, case study d.

Control rules:

Control Rule 1: If x1(t) is M1, then u(t) = F 1x(t)

Control Rule 2: If x1(t) is M2, then u(t) = F 2x(t)

in which

A1 =

 5.7143 14.2857 0
0.7143 −0.7143 0.5

0 −7 0

 , A2 =

 −12.0190 14.2857 0
0.7143 −0.7143 0.5

0 −7 0


F 1 =

 −33.3333 −31.6202 −1.7961
24.2702 0.0167 −1.9808
1.7961 8.4808 −0.3333

 , F 2 =

 3.0667 21.4379 −3.7158
−28.7879 0.0167 −20.2722

3.7158 26.7722 −0.3333


(3.149)

and b is a 3 by 3 identity matrix. F 1 and F 2 are adopted from [144]. It is very easy to
show that for m′ = n′ = 0.8, the following P matrix satisfies the LMIs in (3.137):

P =

 2.2240 0.0112 0.1701
0.0112 2.5747 −0.0198
0.1701 −0.0198 2.0743

 (3.150)
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Figure 3.14 illustrates the response of the Chua’s circuit for the duration of 50 sec when
both T1 and IT2 controllers are applied. The initial conditions considered for simulations
are x(0) = [1, 0, 0]T .
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Figure 3.14: Chua’s circuit response to the T1 and IT2 controllers.

Note that the controllers are invoked at t = 30 sec. Before the controllers are activated,
the system’s output is oscillating. As shown in Figure 3.14, both controllers stabilize the
system. However, examining the performance after 30 sec using Figure 3.15 (enlarged plot
of the controllers output in Figure 3.14 when t ≥ 30 sec), it is easy to observe that the
IT2 controller has a much better transient response. The rise and settling times for the
IT2 and T1 controllers, respectively, are tr = 0.15 sec , ts = 0.19 sec, and tr = 0.22 sec and
ts = 0.25 sec. Moreover, the IT2 controller produces much less overshoot compared to the
T1 controller when 30 sec ≤ t ≤ 31 sec.
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Figure 3.15: Chua’s circuit response to the T1 and IT2 controllers (controllers are invoked
at t = 30 sec).

3.6 Conclusion

In this chapter, novel inference engines were proposed to facilitate the stability and design
of IT2 FLCs. More specifically, the WM UBs were modified to develop the most general
inference engine, amongst the proposed engines, for IT2 TSK A2-C0 and IT2 TS FLSs.
The inference engine was formulated in closed-form and hence does not require using the
the iterative KM algorithms. Due to the simple structure of the proposed inference engine,
it can be adopted to design IT2 TSK and IT2 TS FLCSs for real-time control applications.
Using the proposed inference mechanism, stability conditions in terms of LMIs for IT2 TSK
FLCSs and IT2 TS FLCSs were derived and transformed into the standard formats that
can be easily solved using software tools such as the Matlab LMI toolbox. Consequently,
the stability of a control system can be proved analytically when the proposed inference
mechanism is used to design both IT2 TSK FLCSs and IT2 TS FLCSs. To evaluate the
performance of IT2 TS FLCSs with the proposed inference engine in control and tracking
applications, two benchmark examples were adopted from the literature. It was shown that
a well-tuned IT2 TS FLCS has the potential to outperform its T1 counterpart, and that
is because IT2 FLCs have a more flexible structure than T1. Finally, using the proposed
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model for IT2 TSK A2-C0 or IT2 TS FLSs will enable control engineers to design and
implement stable IT2 FLCSs with enhanced performance.

In the next chapter, the proposed inference mechanism for the design of an IT2 TSK
FLC is used in tracking control applications of MRRs.
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Chapter 4

Design of Novel IT2 TSK FLCs with
Applications to Robot Manipulators

This chapter presents a novel adaptive control design paradigm of IT2 TSK FLCs. Specif-
ically, a design methodology is developed for the tracking control of MRRs with uncertain
dynamic parameters. Experiments are performed to verify the effectiveness of the pro-
posed approach. This chapter is organized as follows: Section 4.1 provides background on
MRR and available techniques for their control. Section 4.2 presents the IT2 TSK FLC
structure. Section 4.3 reviews the governing equations for MRRs and presents the control
design for tracking purposes. Section 4.4 presents the experimental results of the proposed
controller on an MRR, and finally, Section 4.5 draws conclusions.

4.1 Introduction

Based on the literature survey conduced, no prior work has been published that provides
a systematic method for the design of IT2 TSK FLCs for MRRs. Therefore, a novel IT2
TSK FLC is developed for tracking applications of MRR. The contributions of this chapter
lie in: 1) a rigorous design paradigm of novel IT2 TSK FLCs for MRRs, 2) validation of
the performance of the proposed control strategy experimentally, and 3) comparison of the
proposed control methodology with some well-known controllers.

This chapter has two main parts. In the first part, an IT2 TSK FLC is designed
for trajectory tracking. The consequent parameters as well as IT2 MFs are designed,
thus eliminating the extra effort usually needed to define these functions. Moreover, by
adopting the closed-form inference engine in [146], a computationally effective IT2 TSK
FLCS is proposed that can be easily implemented in real-time control applications.
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In the second part of the chapter, a serial MRR is considered with two degrees-of-
freedom and present a novel control design methodology for such systems. An IT2 TSK
FLC is rigorously designed with the guaranteed stability and the performance of the con-
troller through experiments is validated.

4.2 Design of IT2 TSK FLCSs

To identify IT2 TSK FLCSs, rules, MFs, and TSK consequent parameters must be de-
signed, all of which are described in this section.

4.2.1 Rule bases

Rules are one of the main components of any FLS. Obtaining suitable rules for FLCSs
that can capture the behavior of the plant or controller is very crucial and not an easy
exercise. Due to the several parameters needed to characterize a FLCS, there is no general
and yet systematic method to effectively define the rules. Designers usually exploit expert
knowledge or sometimes use their intuition to define the rules for their model. However, it
was shown that MacVicar-Whelan rule base can be effectively adopted for tracking design
problems in FLCSs [147]. The rule structure for an IT2 TSK FLC is as follows:

If e is F̃ i
1 and ė is F̃ i

2, Then ui = ai1e+ ai2ė (4.1)

where i = 1, ...,M , F̃ i
j represents the IT2 FS of input state j in rule i, ai1 and ai2 are the

coefficients of the output function for rule i (and hence are crisp numbers, i.e., type-0 FSs),
ui is the output of the ith rule for the two controllers, respectively, and M is the number
of rules. Error, e, and its rate of change, ė, are given as

e ≡ r − y (4.2)

ė =
de

dt
(4.3)

where r is the set point and y is the output of the closed-loop system. The above rules
allow us to model the uncertainties encountered in the antecedents. Lower and upper firing

strengths of the ith rule, f i and f
i
, are given by [1]

f i (e) = µ
F̃ i

1

(e) ∗ µ
F̃ i

2

(ė) (4.4)

f
i
(e) = µF̃ i

1
(e) ∗ µF̃ i

2
(ė) (4.5)
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where µ
F̃ i

j

and µF̃ i
j

represent the jth (j = 1, 2) lower and upper antecedent MFs of rule i,

respectively, and “∗” is a t-norm operator. Error vector, e, is defined as

e = [e, ė]T (4.6)

Using the inference engine introduced in [146], the controller output, u, is given as

u = m

∑M
i=1 f

i (e)ui∑M
i=1 f

i (e)
+ n

∑M
i=1 f

i
(e)ui∑M

i=1 f
i
(e)

(4.7)

where m and n are the controller parameters. Note that T1 FLSs are a special case of T2
FLSs. When the FOUs of IT2 MFs are removed, they become T1 MFs. Thus, removing
the FOUs and letting m+ n = 1 in the inference engine, (4.7), will turn the designed IT2
TSK FLC into a T1 TSK FLC, i.e., the IT2 TSK FLC structure in (4.7) is a generalized
form of T1 TSK FLCs. Hence, if the designer has the freedom to select m and n producing
the best possible performance (not necessarily m + n = 1), then it is expected that the
IT2 TSK FLC outperforms its T1 counterpart. This fact will be also verified during the
experimental analyses.

A general MacVicar-Whelan rule-base ([148], [149]) uses error, e, and change in error,
∆e, to determine u for IT2 TSK-PD. This rule-base has 9 rules and is defined in Table 4.1
where three linguistic variables for the states of e and ė, “NB,” “ZE,” and “PB,” represent
“negative big,” “zero,” and “positive big,” respectively.

Table 4.1: Fuzzy rule-base for a system with 9 rules.
ė/e NB ZE PB
NB NB NB ZE
ZE NB ZE PB
PB ZE PB PB

4.2.2 MFs

Figure 4.1 shows the proposed T1 and IT2 MFs for systems with 9 rules. The ‘x’ axis is
a normalized representation of e or ė. The IT2 MFs are based on the generalization of T1
MFs used in [147]. The IT2 MFs have been selected to have comparable parameters to
their T1 counterparts hence making a fair comparison between the two systems.
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Figure 4.1: MFs for e and ė of the proposed IT2 and T1 TSK FLCS for a system with 9
rules.

4.2.3 Initial TSK consequent parameters

To trigger the IT2 TSK FLC, the initial values of the TSK consequent parameters must
be determined (in Section 4.3.3 it is explained how these parameters are adjusted in a
real-time process to achieve a good tracking performance); therefore, in this subsection,
a straightforward approach is presented for determining the initial TSK consequent pa-
rameters of the proposed IT2 TSK FLC. Note that there is no unique method to find the
consequent parameters, i.e., ai1’s and ai2’s for every rule in (4.1); hence, to make the most
efficient use of the rule-base system, conditions are considered where en and ∆en corre-
spond exactly to the linguistic terms defined in the rule-base given in Table 4.1, i.e., to
‘NB,’ ‘ZE,’ and ‘PB’:

1. If e is NB (e −→ −1), then
Rule 1. If ∆e is NB, ∆e −→ −1: u1 = −a1

1 − a1
2 −→ −1

Rule 2. If ∆e is ZE, ∆e −→ 0: u2 = −a2
1 −→ −1

Rule 3. If ∆e is PB, ∆e −→ 1: u3 = −a3
1 + a3

2 −→ 0

2. If en is ZE (en −→ 0), then
Rule 4. If ∆en is NB, ∆en −→ −1: u4 = −a4

2 −→ −1

Rule 5. If ∆en is ZE, ∆en −→ 0: u5 −→ 0
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Rule 6. If ∆en is PB, ∆en −→ 1: u6 = a6
2 −→ 1

3. If e is PB (e −→ 1), then
Rule 7. If ∆e is NB, ∆e −→ −1: u7 = a7

1 − a7
2 −→ 0

Rule 8. If ∆e is ZE, ∆e −→ 0: u8 = a8
1 −→ 1

Rule 9. If ∆e is PB, ∆e −→ 1: u9 = a9
1 + a9

2 −→ 1

where ‘a −→ b’ denotes ‘a’ approaches/equals ‘b’. From the above 9 conditions, one can
solve for ai1 and ai2, i = 1, · · · , 9, to find the consequent parameters of the IT2 TSK FLC.
It is worth noting that the above constraints do not explicitly determine all of the TSK
parameters. For instance, a1

1, a
1
2, a4

1, a6
1, and a8

2 cannot be determined. As a result, these
parameters are restricted to be in [0, 1] and allow designers the freedom to choose their
values within this range to satisfy the required design criteria. For instance, in Table 4.2,
some arbitrary values in [0, 1] were selected for those parameters that can not be explicitly
determined. All the TSK consequent parameters obtained by the aforementioned method
are summarized in Table 4.2.

Table 4.2: TSK consequent parameters for a system with 9 rules.
a1

1 a2
1 a3

1 a4
1 a5

1 a6
1 a7

1 a8
1 a9

1

0.1 1 0.5 0.5 0.3 0.2 0.9 1 0.8

a1
2 a2

2 a3
2 a4

2 a5
2 a6

2 a7
2 a8

2 a9
2

0.9 0.01 0.5 1 0.9 1 0.9 0 0.2

In this chapter, the controller structure in (4.7) with fixed parameters is referred to as
“fixed-parameters.” Using the proposed TSK consequent parameters in Table 4.2, the
designer only needs to tune the controller parameters, m and n. The advantage of the
fixed-parameters controller over a linear controller such as PD is that it can handle the
nonlinear dynamics of an MRR to a certain degree. Yet, the parameters of this controller
need to be re-tuned by the designer every time the MRR is reconfigured, and this need
is seen as the limitation of the fixed-parameters controller. To handle an MRR with
unmodeled dynamics and changing parameters, a control system is needed that is capable
of adjusting/tuning its parameters to be able to cope with the resulting uncertainties, i.e.,
a controller with varying parameters. For mathematical derivation of this controller with
adjustable parameters, first some background on MRRs and their dynamics are introduced.
The structure of this controller will then be derived in Section 4.3.3.

67



4.3 Robot Manipulators

In this section, the dynamics of robot manipulators (RMs) is reviewed. First, fundamental
properties of RMs, needed for control design, are provided. Next, the tracking problem in
RMs are defined and the assumptions made to achieve this objective are presented. The
dynamics of robot manipulators with p-link arms can be written as [100]

M(q)q̈ + V m(q, q̇)q̇ + F (q̇) +G(q) + τ d = τ (4.8)

where M(q) ∈ Rp×p is the inertia matrix, V m(q, q̇) ∈ Rp×p is the Coriolis matrix, F (q̇) ∈
Rp contains the friction terms, G(q) ∈ Rp is the gravity vector, τ d ∈ Rp represents
disturbances, τ ∈ Rp is the torque vector or control input, and q ∈ Rp is the joint variable.

RM Properties

The fundamental properties of RMs are [101]:

1. M (q) is a symmetric, positive-definite matrix and bounded, i.e., ‖M (q)‖ ≤ MB

where MB is a constant.

2. V m(q, q̇) is bounded, i.e., ‖V m(q, q̇)‖ < VB ‖q̇‖ with VB being a constant.

3. The matrix M(q)− 2V m(q, q̇), is skew-symmetric.

4. F (q̇) and G(q) are bounded, i.e., ‖F (q̇)‖ ≤ FB ‖q̇‖ + KB and ‖G(q)‖ ≤ GB (FB,
KB, and GB are constants).

5. The disturbances are bounded, i.e., ‖τ d‖ ≤ DB.

4.3.1 Tracking Problem

In robot position control, the objective is to make the RM follow a prescribed designed
trajectory, i.e., qd. The tracking problem is then defined as finding a control input, τ , to
achieve this objective. First, define tracking error, e, and filtered tracking error, r, as

e ≡ qd − q (4.9)

r ≡ ė+ Λe (4.10)

where Λ ∈ Rp×p is a positive-definite design matrix. Λ is usually selected to be diagonal
with positive elements.
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Using the norm properties, it follows that

‖r‖ ≥ ‖ė‖ (4.11)

‖r‖ ≥ ‖Λe‖ (4.12)

It is easy to re-write (4.10) as

Λ−1r = Λ−1ė+ e (4.13)

Thus ∥∥Λ−1r
∥∥ ≥ ‖e‖ (4.14)

Using the properties of matrix norms and knowing that Λ is positive-definite, the left-
hand side of (4.13) can be expressed as∥∥Λ−1r

∥∥ ≤ ∥∥Λ−1
∥∥ ‖r‖ =

‖r‖
min(eig(Λ))

(4.15)

where eig(Λ) represents the eigenvalues of Λ. Hence, from (4.14) and (4.15) it is concluded
that

‖r‖
min(eig(Λ))

≥ ‖e‖ (4.16)

The inequalities in (4.11) and (4.16) are exploited in the next section. Solving for q
from (4.9) and ė from (4.10), and inserting their first and second derivatives in (4.8), the
dynamics of the RM can be written as1

Mṙ = M [q̈d +Λ ė] + V m [q̇d+Λe]− V mr + F (q̇)

+G(q) + τ d − τ (4.17)

Alternatively, (4.17) is expressed as follows:

Mṙ = −V mr + f + τ d − τ (4.18)

where f is given by

f = M [q̈d +Λ ė] + V m [q̇d+Λe] + F (q̇) +G(q) (4.19)

Note that f contains nonlinear terms as well as some unmodeled dynamics. For MRRs the
dynamic parameters in (4.17)-(4.19) will change when a robot arm is reconfigured; hence,
model-based control is not feasible for MRRs that can assume multitude of configuration.
Therefore, those parameters are dealt with as unknowns regardless of the robot configura-
tion. Section 4.3.2 deals with the control design for an MRR with dynamic parameters (of
any assumed configurations) described by (4.18) and (4.19).

1M and V m are short for M(q) and V m(q, q̇), respectively.
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4.3.2 MRR Control Structure

Figure 4.2 shows the structure of IT2 TSK FLCS, where qd is the reference trajectory.
Error, e, is defined as the difference between r and y. The inputs to the IT2 TSK PD-
FLCS are en and ėn, and the output is uFuzzy.

MRR
 q e

q

+

PD

Controller

Varying-Parameters 
          Type-2 

   Fuzzy Controller
-

d/dt

uPD

uFuzzy

+

e

ed

     Function 

Approximator

q
.

d +

ue

Figure 4.2: Controller structure for an MRR.

The following theorem is used later in the design of the IT2 TSK FLC:

Theorem 1 [101] : If for a nonlinear system ẋ = f(x) + d(t), there exists a Lyapunov
function V (x, t) with continuous partial derivatives such that for x in a compact set S ⊂ Rn

V (x, t) > 0 (4.20)

and
V̇ (x, t) < 0 for ‖x‖ > R (4.21)

for some R > 0 such that the ball of radius of R is contained in S, then the system is
uniformly ultimately bounded (UUB), and the norm of the state is bounded to within a
neighborhood of R.
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Next, the MRR control structure is proposed to be of the form

τ = uPD + uFuzzy + ue (4.22)

where

uPD = KPDr (4.23)

uFuzzy = g(e, ė) (4.24)

where uPD is the control effort of a PD controller, uFuzzy is the control effort of the
IT2 TSK FLC (a function of e and ė), ue is an extra compensation torque that will be
explained in Section 4.3.3, and KPD is a design gain matrix of the linear controller. Lewis
[101] showed that a PD controller can not handle the entire dynamics of an MRR by itself.
Therefore, a nonlinear controller that can handle uncertainties and varying dynamics, must
be used to result in acceptable tracking performances. While the PD controller is handling
the linear dynamics, the IT2 TSK FLC is handling uncertainties, varying dynamics, and
unknown parameters of the MRR. Note that the IT2 TSK FLC is designed to handle most
of the nonlinearities and uncertainties embedded in f given by (4.19). The total control
effort is the summation of each controller’s output as given by (4.22).

In the following section, it is shown that if (4.22) is used to control the robot, under
certain assumptions, UUB stability is guaranteed.

4.3.3 Design of Varying-Parameter Controller

In a decentralized control method, ‘p’ controllers are used (corresponding to ‘p’ links of an
MRR) which control the motion of each joint. Using (4.7) as an inference engine of the
control command for each individual joint, it is easy to show that the output of an IT2
TSK FLC for the entire MRR can be expressed as

uFuzzy = g(e, ė) = XΘ (4.25)

where X ∈ Rp×(2M) and Θ ∈ R2M are given by

X ≡ (φ+ φ) (4.26)

Θ ≡
[
a1

1, · · · , aM1 , a1
2, · · · , aM2

]T
(4.27)
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in which
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and,
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(4.29)

Substituting (4.23) and (4.25) into (4.18) yields

Mṙ = −V mr −KPDr −XΘ− ue + f + τ d (4.30)

One can decompose f into f 1 and f 2 such that f = f 1 + f 2 where

f 1 = M [q̈d +Λ ė] + F (q̇) +G(q) (4.31)

f 2 = V m [q̇d+Λe] (4.32)

In this decomposition, the Coriolis/centripetal term through a nonlinear function approxi-
mator is estimated. The IT2 TSK FLC handles the nonlinearities and uncertainties in f 1.
Hence, (4.30) can be rewritten as

Mṙ = −V mr + f 1 + V m [q̇d+Λe] + τ d −KPDr −XΘ− ue (4.33)

Based on the universal approximation property of neural networks and/or fuzzy logic sys-
tems [100], there exists a nonlinear function (a neural network or a fuzzy logic system) that
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can approximate any given real continuous function such as V m [q̇d+Λe] ∈ Rp. Assume
the nonlinear function approximator, ue, is used to approximate V m [q̇d+Λe]. Define

ûe ≡ V m [q̇d+Λe]− ue (4.34)

with ‖ûe‖ ≤ εN (εN is a constant), and ûe is the difference between the function and its
estimated value.

Assumption on the boundedness of the desired trajectory

The desired trajectory and its first and second derivatives are assumed to be bounded, i.e.,
‖qd‖ ≤ qd, ‖q̇d‖ ≤ q̇d, and ‖q̈d‖ ≤ q̈d. These bounds are used for the control design.

Now consider the following Laypunov function:

V =
1

2
rTMr +

∫ t

0

ΘTFΘdt (4.35)

Since M and F are positive-definite, then V > 0. Derivative of V is given by

V̇ =
1

2
rTMṙ+

1

2
rTMṙ +

1

2
rTṀr + ΘTFΘ

= rTMṙ +
1

2
rTṀr + ΘTFΘ (4.36)

Substituting (4.30) into (4.36) yields

V̇ = rT
[
− V mr −KPDr −XΘ− ue + f + τ d

]
+

1

2
rTṀr + ΘTFΘ (4.37)

Substituting f in (4.19) into (4.37), V̇ can be expressed as

V̇ = rT
{
M [q̈d +Λ ė] + V m [q̇d +Λe−r]

+F (q̇) +G(q) + τ d −KPDr −XΘ− ue
}

+
1

2
rTṀr + ΘTFΘ

= −rTKPDr +
1

2
rT (Ṁ − 2V m)r − rTXΘ

+ΘTFΘ + rT
{
M [q̈d +Λ ė] + V m [q̇d+Λe]

−ue + F (q̇) +G(q) + τ d

}
(4.38)
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(4.38) be can expressed as

V̇ =
1

2
rT (Ṁ − 2V m)r −ΘT (XTr − FΘ)− rTKPDr

+rTφ (4.39)

where φ is given by

φ ≡M [q̈d +Λ ė] + F (q̇) +G(q) + ε+ τ d (4.40)

Since rTφ ≤ ‖φ‖.‖r‖ (using P1 in Chapter 2), it follows that

rTφ ≤
∥∥∥M [q̈d +Λ ė] + F (q̇) +G(q) + ε+ τ d

∥∥∥.‖r‖ (4.41)

Next, the upper bounds of ‖φ‖ : is derived

‖φ‖ ≤ ‖M [q̈d +Λ ė]‖+ ‖F (q̇)‖+ ‖G(q)‖+ ‖τ d‖
≤ ‖Mq̈d‖+ ‖MΛė‖+ ‖F (q̇)‖+ ‖G(q)‖+ ‖ε‖

+ ‖τ d‖ (4.42)

From the properties of RMs, the boundedness of the desired trajectories and their deriva-
tives, and using (4.11), each term of (4.42) is bounded from above as follows:

‖Mq̈d‖ ≤ ‖M‖ ‖q̈d‖ ≤MB q̈d (4.43)

‖MΛė‖ ≤ ‖M‖ ‖Λ‖ ‖ė‖ ≤MB max(eig(Λ)) ‖r‖
‖F (q̇)‖ ≤ FB ‖q̇‖+KB ≤ FB ‖q̇d − ė‖+KB

≤ FB ‖q̇d‖+ FB ‖ė‖+KB ≤ FB(q̇d + ‖r‖) +KB

‖G(q)‖ ≤ GB

‖ε‖ ≤ εN

‖τ d‖ ≤ DB

Using the bounds in (4.43), (4.42) is expressed as

‖φ‖ ≤ MB q̈d +MB max(eig(Λ)) ‖r‖+ FB(q̇d + ‖r‖)
+KB +GB +DB + εN (4.44)

Using (4.44), it is easy to show that the summation of the last two terms in (4.39),
−rTKPDr + rTφ , is bounded, i.e.,

− rTKPDr + rTφ ≤ −KPDmin ‖r‖2 + ‖φ‖ ‖r‖
≤ −KPDmin ‖r‖2 +MB q̈d ‖r‖+MB max(eig(Λ)) ‖r‖2

+FB(q̇d + ‖r‖) ‖r‖+ (KB +GB +DB + εN) ‖r‖ (4.45)
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where KPDmin is the minimum eigenvalue of the matrix KPD. Note that P2 in Chapter 2
have been used to derive (4.45). One can rewrite (4.45) as

− rTKPDr + rTφ ≤ (A ‖r‖+B) ‖r‖ (4.46)

where A and B are given by

A = −KPDmin +MB max(eig(Λ)) + FB (4.47)

B = MB q̈d + FB q̇d + (KB +GB +DB + εN) (4.48)

To ensure V̇ in (4.39) is negative, it is enforced that −rTKPDr + rTφ < 0 and XTr−
FΘ = 0 [note that Ṁ−2V m, using the third property of RMs, is a skew-symmetric matrix
and hence rT (Ṁ − 2V m)r vanishes2]. First, to make −rTKPDr + rTφ < 0, one needs
to ensure (A ‖r‖+B) ‖r‖ < 0. Thus

A ‖r‖+B < 0 (4.49)

Let R ≡ −B
A

. Then, by making A < 0 and knowing that B is a positive constant, for
∀ ‖r‖ > R, the inequality (4.49) holds and hence −rTKPDr + rTφ < 0.

The condition, XTr − FΘ = 0, which is needed to ensure V̇ < 0, will result in
the derivation of a law dictating how the TSK parameters must change, referred to as
the adjustment (adaptive) law. To achieve the adjustment law which is simply given by
XTr − FΘ = 0, it is required that

Θ = F−1XTr (4.50)

where F is the positive-definite design matrix, X includes the TSK as well as the controller
parameters, and r is the filtered tracking error. To satisfy the adjustment law, (4.50), the
controller parameters, m and n, are initially selected and kept fixed (they do not change
in the adjustment process); hence, the TSK consequent parameters are adjusted according
to (4.50) for each joint of the MRR to ensure V̇ < 0. As a design guideline, m and n, are
recommended to be chosen small (start with low gains).

In an independent joint control scheme, if the sufficient conditions are satisfied to ensure
V̇ < 0, i.e., (4.49) and (4.50), then the system is UUB stable and hence the error, e, is
bounded which means the MRR trajectories, i.e., q will be bounded (it was assumed qd is
bounded [see Subsection 4.3.3]).

4.4 Experiments

In this section, first the experimental setup is described. Next, the results of the experi-
ments are presented.

2See Chapter 2, P6.
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4.4.1 Experimental setup

Control implementations are performed on an MRR with two degrees-of-freedom, and there
is a payload of M = 6.80kg at the end of the second arm. Each joint uses a harmonic drive
transmission mechanism. In this chapter, the controller is implemented and its performance
for two different MRR configurations is evaluated.

The MRR is controlled by a MSK2812 DSP-based micro-controller via a controller area
network (CAN) communication bus. The DSP is connected to a computer through a RS-
232 to implement a developed control algorithm written in C++ language. The control
command as well as the feedback signals are sent to and transmitted back from each joint
via the CAN bus.

The MSK2812 DSP is operated at 150MHz and has powerful calculation capabilities,
but the data transmission rate of the CAN bus is 1 Mbit/s. As a result, the control
frequency is limited by the CAN bus data transmission rate; hence, only a low control
frequency is possible for implementing the controller algorithm. Figure 4.3 shows the
system hardware used in the experiments.

Robot

Power distributor

Power Supply Computer

MSK2812

Microcontroller

Emergency Brake

Figure 4.3: System hardware.
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In the experiments, five controller structures are tested and evaluated, namely, PD,
T1 TSK FLC with fixed-parameters, T1 TSK FLC with varying parameters, IT2 TSK
FLC with fixed-parameters, and IT2 TSK FLC with varying parameters and compare
their performances. The fixed-parameters controller uses the TSK parameters chosen from
Table 4.2 and are kept unchanged. In this scheme, only the controller parameters m and
n need to be tuned. For the varying-parameters controller, the same m and n (properly
tuned in the design of the fixed-parameter controller) are used, and the adjustment or
adaptive law adjusts the TSK parameters when the dynamic parameters of the MRR are
unknown due to reconfigurability. An Radial Basis Function (RBF) neural network [150]
is used to approximate ue. However, for the MRR configurations in the experiments and
by using sinusoids (see Subsection 4.4.2 for the details of the reference trajectory), the
magnitude of ue is small compared to uPD and uFuzzy. Therefore, this term is omitted in
the experiments to reduce the online computational complexity.

The linear controller parameters are Kp = 0.25, Kd = 0.65. The tuning parameters of
the IT2 TSK FLC are m = 0.001, n = 0.0012. To make a fair comparison between T1 and
IT2 FLCs, the total control efforts of these controllers should be comparable. Therefore,
the T1 TSK consequent parameters are multiplied by k = m + n to get the best possible
performance of the T1 FLC. This will ensure the control effort of both T2 and the IT2
controllers are comparable ; otherwise, the T1 will have larger control output which results
in an undesirable tracking performance and hence an unfair judgment. For the ease of
real-time implementation, the following design matrices are chosen to be diagonal:

F ∈ R18×18

with F ii = 10 (i = 1, · · · , 18), and ΛIT2 = diag[0.001, 0.0019], and ΛT1 = diag[0.0005, 0.0004].

4.4.2 Results

A sinusoidal trajectory is applied to each joint with amplitude and frequency of π
2

and
0.05Hz, respectively, i.e.,

qd = Asin(2πf) (4.51)

where A = 90◦ and f = 0.05Hz. To compare the performance of the controllers, mean
squared error (MSE ) and percentage improvement (PIm) are used, which are defined as
follows:

MSE =

n∑
i=1

e2
i

n
(4.52)

where n is the number of sampled points in each experiment. And,

PIm =
MSEcontroller −MSEPD

MSEPD
× 100 (4.53)
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where MSEPD and MSEcontroller are the MSE s of the PD controller and a specific con-
troller (either fixed-parameters or varying-parameters), respectively.

Configuration 1

In this configuration, the axes of the first and second joints are parallel to each other, as
shown in Figure 4.4.
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Figure 4.4: First configuration and its schematic.

Table 4.3 summarizes the results (averaged results) for the PD controller, T1 and IT2
controllers with fixed-parameters, and T1 and IT2 controllers with varying-parameters in
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terms of MSE and also PI (%).

Table 4.3: First configuration results.
First joint Second joint

Controller MSE PIm (%) MSE PIm (%)
PD 1.2478 – 0.3323 –

T1 fixed-parameters 0.7682 38.44 0.2572 22.61
T1 varying-parameters 0.7294 41.55 0.2313 30.41
IT2 fixed-parameters 0.6098 51.13 0.1851 44.29

IT2 varying-parameters 0.5124 58.93 0.1724 48.12

From the tabulated results, it is concluded that the IT2 varying-parameters controller
produces the best tracking output and outperforms the other controllers significantly, as
shown in the third and fifth columns. The effectiveness of the IT2 varying-parameters
controller is more apparent in the second joint where the dynamic coupling effect is more
profound. Those results are consistent over several runs for the same controller and thus
indicating the repeatability of the result; hence, it is deduced that the IT2 FLC can better
handle the uncertain portion of the MRR dynamics compared to linear or fixed-parameters
T1 or IT2 TSK FLCs.

Control efforts for different controllers are shown in Figures 4.5-4.8. Figures 4.5 and 4.7
compare the control efforts of the PD and T1 controllers, for the first and second joints,
respectively, and Figures 4.6 and 4.8 show a comparison between the control outputs of
the PD and IT2 controllers for the first and second joints, respectively. As can be seen,
the control outputs of the fixed-parameters and varying-parameters controllers (all T1
and IT2) are comparable to the PD controller. Moreover, the control efforts of other
controllers are comparable to each other. Hence, without increasing the control efforts, the
developed fixed-parameters as well as varying-parameters controllers outperform the PD
controller significantly. More specifically, the varying-parameters IT2 TSK FLC has the
best performance without increasing the control output compared to others. Note that the
effect of dynamic coupling is noticeable in the second joint as more control action is required
to minimize the tracking error. This observation is consistent for all the controllers. The
oscillation observed in the control effort of the controllers in the second joint is due to the
relatively heavy payload at the end of the second arm.
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Figure 4.5: Control efforts of PD and T1 controllers for joint 1: first configuration.
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Figure 4.6: Control efforts of PD and IT2 controllers for joint 1: first configuration.
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Figure 4.7: Control efforts of PD and T1 controllers for joint 2: first configuration.
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Figure 4.8: Control efforts of PD and IT2 controllers for joint 2: first configuration.

The plots that compare the position errors of different controllers testes are provided
in Appendix A.

Configuration 2

In this configuration, the axes of the first and second joints are perpendicular to each other.
Figure 4.9 shows the configuration under investigation. It should be noted that the control
parameters are kept unchanged from configuration 1. When the robot is reconfigured,
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dynamic parameters of the MRR change and are still unknown; hence, the adjustment law
will be invoked to handle the varying dynamics of the system.

Driver

First joint Payload
Second joint

m

1
θ

2
θ

Z1 

Z2 

Figure 4.9: Second configuration and its schematic.
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Similar to the first configuration, the results from Table 4.4 verify the superiority of
the IT2 controller with varying-parameters compared to other controllers.

Figures 4.10-4.13 compare the control efforts of the different controllers. Similar to
the first configuration, while the IT2 varying-parameters controller is producing enhanced
results, its control output is very much comparable to the other controllers. This is seen
as another major advantage of the proposed varying-parameters control strategy.

Table 4.4: Second configuration results.
First joint Second joint

Controller MSE PIm (%) MSE PIm (%)
PD 1.1849 – 0.5709 –

T1 fixed-parameters 0.7391 37.62 0.5303 7.11
T1 varying-parameters 0.7344 38.02 0.5129 8.34
IT2 fixed-parameters 0.6302 46.82 0.5107 10.54

IT2 varying-parameters 0.5637 52.43 0.4181 26.77

Note also the noticeable tracking performance enhancement in the second joint which
validates the ability of the varying-parameters controller to compensate for the dynamic
coupling effect. Please see Appendix B for position error trajectories of each controller.

In the above experiments, adding an integral term to the PD controller, resulting in
a PID controller, will not increase the tracking performance, because the PID controller
acts as a high gain controller at only low frequencies and not at the desired frequency.
Experiments with different KI gains were performed and results were verified/observed.
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Figure 4.10: Control efforts of PD and T1 controllers for joint 1: second configuration.
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Figure 4.11: Control efforts of PD and IT2 controllers for joint 1: second configuration.
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Figure 4.12: Control efforts of PD and T1 controllers for joint 2: second configuration.
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Figure 4.13: Control efforts of PD and IT2 controllers for joint 2: second configuration.

4.5 Conclusion

Experimental results verified the enhanced performance of the varying-parameters IT2
TSK FLC for both configurations. Moreover, the advantage of the proposed controller
methodology is that a minimum effort is required for the designer to tune the controller
parameters, m and n. It is sufficient for these parameters to be initially chosen small
(small gains). During the adjustment process described by (4.50), the TSK parameters
are adjusted automatically to ensure enhanced tracking and UUB stability. Furthermore,
during experiments it was observed that the performance of both T1 and IT2 TSK FLCs
are not sensitive to the change of initial TSK consequent parameters.

This chapter presented the design of a novel adaptive IT2 TSK FLC for tracking pur-
poses of MRRs. It was shown that the proposed controller can effectively handle uncertain-
ties as well as the dynamic coupling between the joints of two serial MRR configurations
while outperforming a well-known linear controller.
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Chapter 5

On the Robustness of T1 and IT2
Fuzzy Logic Systems in Modeling
and Identification

5.1 Introduction

Modeling is the main step in the identification of physical systems such as robotics, com-
munications, medical systems, to name a few. More specifically, identification is vital in
engineering systems estimation and control, both of which have found a wide range of
applications in aerospace, automotive, micro-robotics, weather forecasting, etc.

In identification problems, usually some data (referred to as sampling points and often
obtained by dedicated experiments) are used to capture the entire dynamics (or portions)
of plants. To accurately determine the dynamics of the system considered, it is crucial to
capture the behavior of systems through I/O mappings. However, hardware/software lim-
itations, unavoidable round off, and truncation of a system’s errors will ultimately result
in deviation of the output from the optimum point for which the system was originally
designed: the desired output. The output of a system can also change because of un-
certainties, perhaps substantial ones, in sensory data. Moreover, in control, considerable
deviations in the output change the closed-loop performance that, in severe cases, might
even lead to an unstable system.

When a system is subjected to small deviations around the sampling points (operating
points), it is essential to find the maximum tolerance of the system with respect to those
perturbations, referred to herein as the system’s robustness. Thus, in the context of mod-
eling, robustness is a metric for measuring the impact of input deviations on the desired
output.
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Based on the literature review presented in Chapter 1, research on the robustness of
T1 FLSs is mostly limited to fuzzy operators and, hence more in-depth analyses into
robust system design is required. In this chapter, the robustness of T1 and IT2 FLSs
is investigated. The robustness problems of T1 and IT2 TSK FLSs are mathematically
formulated and a procedure is proposed for the design of robust FLSs. The contributions
of this chapter are a) a systematic robustness analysis of FLSs in the presence of parameter
perturbations, and, b) an efficient procedure for the design of robust FLSs that will enable
engineers and researches to design more robust FLSs for modeling and control applications.
The focus of this work is on IT2 FLSs, but since T1s are a special class of IT2s, the
proposed methodology in this thesis is general and can be used for both T1 and IT2
FLSs. The organization of this chapter is as follows: Section 5.2 presents a definition
and mathematical derivation of FLSs’ robustness. Section 5.3 provides the upper bounds
of the maximum output deviation. Section 5.4 presents a procedure for designing robust
FLSs. Section 5.5 presents numerical examples. Finally, Section 5.6 provides the chapter
conclusions.

5.1.1 Problem Statement

Given an FLS, either T1 or IT2, it is of great interest to find the maximum input deviations
so that the output deviation of the FLS, ∆Y , does not exceed a threshold determined by
a designer.

The purpose of this chapter is to present a systematic methodology to investigate the
robustness of FLSs (both T1 and IT2). The robustness analysis will exploit a general
structure of IT2 TSK FLSs, and since T1 TSK FLSs are a special case of IT2 TSK FLSs,
the presented results can be readily used for T1s as well.

In Chapter 3 a new inference engine for IT2 TSK FLSs was introduced which its output
is given by

YNEW(x∗) = m

∑M
i=1 f

i (x∗) yi(x
∗)∑M

i=1 f
i (x∗)

+ n

∑M
i=1 f

i
(x∗) yi(x

∗)∑M
i=1 f

i
(x∗)

(5.1)

where yi is the output of each rule, and f i (x∗) and f
i
(x∗) are given by (2.18) and (2.19),

respectively (if M = 1, then m + n = 1). In this chapter, YNEW(x∗) is adopted as the
inference engine simply because it will make it possible to analytically investigate the
robustness of IT2 TSK FLSs.
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5.2 Robustness of FLSs

In this section, the robustness of FLSs is formulated and the governing equations are
derived. The final expressions derived herein are used for the analysis and design of robust
FLSs in the subsequent sections.

To begin, define

wi (x
∗) ≡

f
i
(x∗)∑M

i=1 f i (x
∗)

(5.2)

wi (x
∗) ≡ f i (x

∗)∑M
i=1 f i (x

∗)
(5.3)

Thus, (5.1) can be expressed as

Y (x∗) = m
M∑
i=1

wi (x∗) yi(x
∗) + n

M∑
i=1

wi (x∗) yi(x
∗) (5.4)

Suppose x∗ is deviated by a small ∆x∗. The new input to the FLS would be x∗ + ∆x∗.
The deviated output, ∆Y , is given by

∆Y = Y (x∗ + ∆x∗)− Y (x∗)

= m
M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗) + n

M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)

− m
M∑
i=1

wi (x∗) yi(x
∗)− n

M∑
i=1

wi (x∗) yi(x
∗) (5.5)

To further reduce the notations, define

∆A ≡ m

M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)−m

M∑
i=1

wi (x∗) yi(x
∗) (5.6)

∆B ≡ n

M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)− n

M∑
i=1

wi (x∗) yi(x
∗) (5.7)

Then, (5.5) can be written as

∆Y = ∆A+ ∆B (5.8)
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In what follows, ∆A and ∆B are expanded to help formulate ∆Y . The expression for
only ∆A is derived (similar analysis can be done for ∆B). Since it is easier to work with
∆A
m

, divide ∆A in (5.6) by m to get

∆A

m
=

M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)−

M∑
i=1

wi (x∗) yi(x
∗) (5.9)

Assuming ∆x∗ is small and using a Taylor-series expansion, yi (x∗ + ∆x∗) and wi (x∗ + ∆x∗)
can be expressed around x∗ as

wi (x∗ + ∆x∗) ' wi (x∗) +

p∑
j=1

∂wi (x∗)

∂xj
∆xj + h.o.t (5.10)

yi (x∗ + ∆x∗) ' yi (x∗) +

p∑
j=1

∂yi (x∗)

∂xj
∆xj + h.o.t (5.11)

where h.o.t is short for higher order terms. For the derivation of ∂wi(x∗)
∂xj

see Appendix C.1.

Using (5.10) and (5.11) and neglecting the h.o.t, (5.9) can be written as

∆A

m
=

M∑
i=1

[(
wi (x∗) +

p∑
j=1

∂wi (x∗)

∂xj
∆xj

)(
yi (x∗) +

p∑
j=1

∂yi (x∗)

∂xj
∆xj

)]
−

M∑
i=1

wi (x∗) yi(x
∗)

=
M∑
i=1

[
wi (x∗) yi (x∗) + wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

+

(
p∑
j=1

∂wi (x∗)

∂xj
∆xj

)(
p∑
j=1

∂yi (x∗)

∂xj
∆xj

)]
−

M∑
i=1

wi (x∗) yi(x
∗) (5.12)

Assuming ∆xj is small, the fourth term in (5.12),
(∑p

j=1
∂wi(x∗)
∂xj

∆xj

)(∑p
j=1

∂yi(x∗)
∂xj

∆xj

)
,

is small and hence can be further neglected. Therefore, ∆A
m

can be simply rewritten as

∆A

m
'

M∑
i=1

[
wi (x∗) yi (x∗) + wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]

−
M∑
i=1

wi (x∗) yi(x
∗)

=
M∑
i=1

[
wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]
(5.13)
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Thus, ∆A is given by

∆A = m

M∑
i=1

[
wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]
(5.14)

Paralleling the above analyses, a similar expression for ∆B is derived

∆B = n

M∑
i=1

[
wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]
(5.15)

Therefore, ∆Y can be expressed as

∆Y = m
M∑
i=1

[
wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]

+ n
M∑
i=1

[
wi (x∗)

p∑
j=1

∂yi (x∗)

∂xj
∆xj + yi (x∗)

p∑
j=1

∂wi (x∗)

∂xj
∆xj

]
(5.16)

It is straightforward to show that (5.16) can be written as

∆Y =
M∑
i=1

p∑
j=1

[
mwi (x∗)

∂yi (x∗)

∂xj
∆xj +myi (x∗)

∂wi (x∗)

∂xj
∆xj

]

+
M∑
i=1

p∑
j=1

[
nwi (x∗)

∂yi (x∗)

∂xj
∆xj + nyi (x∗)

∂wi (x∗)

∂xj
∆xj

]
(5.17)

Rearranging (5.17) gives

∆Y =

p∑
j=1

M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂xj
+myi (x∗)

∂wi (x∗)

∂xj

]
.∆xj

+

p∑
j=1

M∑
i=1

[
nwi (x∗)

∂yi (x∗)

∂xj
+ nyi (x∗)

∂wi (x∗)

∂xj

]
.∆xj

(5.18)
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Define

X l
j ≡

M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂xj
+myi (x∗)

∂wi (x∗)

∂xj

]
(5.19)

Xu
j ≡

M∑
i=1

[
nwi (x∗)

∂yi (x∗)

∂xj
+ nyi (x∗)

∂wi (x∗)

∂xj

]
(5.20)

Then, (5.18) can be expressed as

∆Y =

p∑
j=1

X l
j∆xj +

p∑
j=1

Xu
j ∆xj =

p∑
j=1

(
X l
j +Xu

j

)
∆xj (5.21)

The final expression for ∆Y , given by (5.21), is significant because it allows us to express
the output deviation, ∆Y , as a linear combinations of ∆xj’s. Hence, connects the output
deviation to the perturbations in the inputs.

When TSK rule structure is used in the design of a FLS, ∂yi(x∗)
∂xj

= aij. Therefore, the

expressions in (5.19) and (5.20)1 can be simplified as follows:

X l
j =

M∑
i=1

[
m

f i∑M
l=1 f

l
aij +m

(
a0 +

p∑
k=1

aikxk

)

×

(∏p−1
k=1
k 6=j

µi
k
(xk)

)
∂µi

j
(xj)

∂xj

[∑M
l=1 f

l
]
− f i

∑M
l=1

[(∏p−1
k=1
k 6=j

µl
k
(xk)

)
∂µl

j
(xj)

∂xj

]
[∑M

l=1 f
l
]2

(5.22)

Xu
j =

M∑
i=1

[
n

f
i∑M

l=1 f
l
aij + n

(
a0 +

p∑
k=1

aikxk

)

×

(∏p−1
k=1
k 6=j

µik(xk)

)
∂µi

j(xj)

∂xj

[∑M
l=1 f

l
]
− f i

∑M
l=1

[(∏p−1
k=1
k 6=j

µlk(xk)

)
∂µl

j(xj)

∂xj

]
[∑M

l=1 f
l
]2

(5.23)

5.2.1 Robustness Definition

Suppose ∆Ydesired ≥ 0 is the desired (allowable) output deviation. Robustness is defined
as follows:

1Note that f i and f
i

are short for f i (x∗) and f
i
(x∗), respectively
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Given ∆Ydesired, find the maximum allowable |∆xi|’s such that |∆Y | ≤ ∆Ydesired. In other
words,

|∆Y | =

∣∣∣∣∣
p∑
j=1

(
X l
j +Xu

j

)
∆xj

∣∣∣∣∣ ≤ ∆Ydesired (5.24)

where X l
j and Xu

j are given by 5.22 and 5.23, respectively.

In general, especially for applications in physical systems, ∆xj’s are bounded. Consider
the bounds as additional constraints, i.e.,

− β1 ≤ ∆x1 ≤ α1

−β2 ≤ ∆x2 ≤ α2

...

−βp ≤ ∆xp ≤ αp (5.25)

Next, formulate (5.24) as a multi-objective optimization problem subject to constraints
given in (5.25). Since ∆xj’s are small, the optimization problem with constrains is ex-
pressed as follows:

Maximize : |∆x1|, · · · , |∆xp|

Subject to :
∣∣∣∑p

j=1

(
X l
j +Xu

j

)
∆xj

∣∣∣ ≤ ∆Ydesired

−β1 ≤ ∆x1 ≤ α1

−β2 ≤ ∆x2 ≤ α2
...
−βp ≤ ∆xp ≤ αp

Next, extend the above analysis for the case when q pairs of training (sampling) points is
given for a FLS. First, for each pair, calculate the maximum input deviation of each input
resulting in less than or equal to the desired output deviation. Suppose the maximum
allowable deviation of the jth input corresponding to the ith training pair is ∆ixj (i =
1, · · · , q and j = 1, · · · , p). Then, the maximum acceptable deviation of each individual
input of the FLS is obtained by getting the minimum of the obtained input deviations of
all the training pairs corresponding to that specific input, i.e.,

∆xj = min
{

∆ixj | i = 1, · · · , q
}

(5.26)

The robustness problem in this case is re-formulated as
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Problem 1 Given q pairs of training data and ∆Ydesired ≥ 0, Maximize |∆xi|’s such that
|∆Y | ≤ ∆Ydesired subject to the constraints in (5.25).

The above optimization problem can be solved for ∆xj’s using software such as Matlab
optimization toolbox. Note that designers have the freedom to select the bounds on ∆xj’s
as long as they are feasible for a given physical problem.

Next, define a robustness measure that enables us to quantitatively compare the robust-
ness performance of FLSs. According to the definition of robustness, for a given ∆Ydesired,
max ∆xi’s are sought. Thus, the robustness measure is defined as

Ri ≡
max |∆xi|
∆Ydesired

(5.27)

where the index i corresponds to the ith input. This index is used as a base line for
determining the robustness of a given FLS, and also as a metric to compare different FLSs’
robustness based on (5.24).

Note 1 By removing FOUs, the above results hold for the robustness analysis of T1 FLS
and hence making the proposed methodology more general.

Now the expressions for two special cases of FLSs with one or two inputs are derived,
which are common in many applications.

• For a system with a single input, (5.18) is simplified to

∆Y = ∆x
M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂x
+myi (x∗)

∂wi (x∗)

∂x

]

+ ∆x
M∑
i=1

[
nwi (x∗)

∂yi (x∗)

∂x
+ nyi (x∗)

∂wi (x∗)

∂x

]
(5.28)

Solving for ∆x yields

∆x =
∆Y∑M

i=1

[
mwi (x∗) ∂yi(x∗)

∂x
+myi (x∗) ∂wi(x∗)

∂x

]
+

∆Y∑M
i=1

[
nwi (x∗) ∂yi(x∗)

∂x
+ nyi (x∗) ∂wi(x∗)

∂x

]
(5.29)

The expression given in (5.29) is interesting because it directly outputs ∆x which
can be easily used to compute maximum allowable deviation in the input.
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• For a system with two inputs,

∆Y = ∆x1

M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂x1

+myi (x∗)
∂wi (x∗)

∂x1

+ nwi (x∗)
∂yi (x∗)

∂x1

+ nyi (x∗)
∂wi (x∗)

∂x1

]

+ ∆x2

M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂x2

+myi (x∗)
∂wi (x∗)

∂x2

+ nwi (x∗)
∂yi (x∗)

∂x2

+ nyi (x∗)
∂wi (x∗)

∂x2

]
(5.30)

So far, a first-order approximation has been used in the robustness analyses. To obtain
more accurate approximation of the output of an FLS, wi (x∗) and y (x∗) can be expanded
around small ∆ (x∗) up to their second derivatives. It is easy to see that, for systems with
more than two inputs, the computational effort will be considerable, and hence, satisfying
the corresponding inequalities might be intractable. Therefore, in this thesis, the expansion
of higher order derivatives for only FLSs with one and two inputs are considered. Details
of the derivations are summarized in Appendix C.2.

5.3 Upper bound of the output deviation

In this section, an upper bound of |∆Y | is found. This result will be of interest to designers
for estimating the maximum deviations expected for a given problem. To do so, it is only
needed to find the upper bounds of ∆A and ∆B. Here, the derivation for the upper bound
of |∆A| is presented (similar analysis can be performed to obtain ∆B). |∆A| can be written
as

|∆A| = |m|

∣∣∣∣∣
M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)−

M∑
i=1

wi (x∗) yi(x
∗)

∣∣∣∣∣
≤ |m|

∣∣∣∣∣
M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)

∣∣∣∣∣+ |m|

∣∣∣∣∣
M∑
i=1

wi (x∗) yi(x
∗)

∣∣∣∣∣ (5.31)

Observe that∣∣∣∣∣
M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)

∣∣∣∣∣ ≤
M∑
i=1

∣∣wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)

∣∣
≤

M∑
i=1

∣∣wi (x∗ + ∆x∗)
∣∣ . |yi(x∗ + ∆x∗)| (5.32)
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Since 0 ≤ wi ≤ 1, (5.32) can be expressed as∣∣∣∣∣
M∑
i=1

wi (x∗ + ∆x∗) yi(x
∗ + ∆x∗)

∣∣∣∣∣ ≤
M∑
i=1

|yi(x∗ + ∆x∗)| (5.33)

Similarly ∣∣∣∣∣
M∑
i=1

wi (x∗) yi(x
∗)

∣∣∣∣∣ ≤
M∑
i=1

|yi(x∗)| (5.34)

Therefore,

|∆A| ≤ |m|

(
M∑
i=1

|yi(x∗ + ∆x∗)|+
M∑
i=1

|yi(x∗)|

)
(5.35)

Suppose

y1
max = max

i
{|yi(x∗)|}

y2
max = max

i
{|yi(x∗ + ∆x∗)|}

(5.36)

Using (5.36), ∆A is bounded from above by

|∆A| ≤ |m|
(
y1
max + y2

max

)
(5.37)

In a similar fashion,

|∆B| ≤ |n|
(
y1
max + y2

max

)
(5.38)

Therefore, the upper bound of |∆Y | is given by

|∆Y | ≤ (|m|+ |n|)
(
y1
max + y2

max

)
(5.39)

For a T1 FLS, it is true that

|∆YT1| ≤
(
y1
max + y2

max

)
(5.40)

In summary, the maximum allowable deviations for IT2 and T1 FLSs are respectively
given by

|∆YIT2|max =
(
|m|+ |n|

) (
y1
max + y2

max

)
(5.41)

|∆YT1|max =
(
y1
max + y2

max

)
(5.42)

Observe that for a designed FLS, the TSK parameters are known and hence |∆YIT2|max
can be simply determined because y1

max and y2
max are polynomial functions of the consequent

TSK parameters.
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5.4 Procedure to design robust FLSs

This section presents a procedure to design robust TSK FLSs.

First, a T1 TSK FLS is designed using available software tools such as ANFIS/Matlab.
The model-structure of the developed T1 is exploited for the design of an IT2 TSK.

Next, define the error vector as the difference between the sampling (training) output
vector, Y sampling, and the T1 output vector, Y T1, as eT1 ≡ Y sampling − Y T1. The total
error for the T1 TSK, eType−1, is defined as

eType−1 ≡ (eT1)T .eT1 (5.43)

In Chapter 3 it was shown that the TSK consequent parameters of an IT2 TSK is given
by the following expression:

θ = (mφ+ nφ)†Y IT2 (5.44)

where θ contains the TSK consequent parameters, Y IT2 is the output of the IT2, m,
n are the tuning parameters, φ and φ are the functions of lower and upper fired rules,
respectively, and (mφ+nφ)† is the pseudo-inverse of (mφ+nφ). Similar to the definitions
presented earlier for the T1, define the error vector as the difference between the sampling
(training) output vector, Y sampling, and the IT2 output vector, Y IT2, as eIT2 ≡ Y sampling−
Y IT2. The total error for T2 TSKs, eType−2, is defined as

eType−2 ≡ (eT2)T .eT2 (5.45)

Expressions given in (5.43) and (5.45) are used for the design of robust FLSs.

Subsequently, the IT2 MFs must be designed. To reduce the complexity in the design of
IT2 MFs, the T1 TSK MFs generated by ANFIS are used as a starting point and only the
FOUs are designed to extend the structure to an IT2 FLS. Note that this work uses mainly
Gaussian MFs, simply because these functions and their derivatives are smooth. As well,
in comparison to trapezoidal MFs, Gaussian MFs require fewer parameters to be identified.
Hence, the mean of IT2 MFs are kept the same as the means of their T1 MFs and only
lower and upper standard deviations of each MF are designed. To design the FOUs (or
lower and upper MFs) as well as the IT2 tuning parameters, m and n, an optimization
algorithm such as Genetic Algorithm (GA) can be used to output the optimum values of
these parameters.

Finally, the robustness design is formulated through a constraint optimization problem.
To ensure the robustness objective has been achieved, (5.43) is used as a basis for the design.
The procedure for the design of robust TSK FLSs is as follows:

1. Design a T1 (using ANFIS for example) for a given training data to approximate the
objective function, f , and calculate the output error, i.e., eType−1 using (5.43)
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2. Use the T1 MF parameters obtained in step 1 in conjunction with an optimization
technique like GA to design the FOUs as well as the optimum m and n to design an
IT2 FLS that approximates f . Next, construct the following constrained optimization
problem: 

Maximize : Ri

Subject to : |eType−2| ≤ |eType−1|
(5.46)

Note that to perform this step, one needs to perform iterations for obtaining the
consequent TSK parameters given by (5.44).

3. If the above constraint problem is feasible, save the parameters of the IT2; otherwise,
T1

The feasibility of the constraint optimization problem can be easily verified using software
such as Matlab. If the problem is feasible, then IT2 is selected as it reveals more robustness;
otherwise, T1 will be preferred.

To summarize the process of designing robust FLSs:

• Design a T1 FLS to approximate a given static/dynamic function for the known
sampling points.

• Assign the maximum allowable output deviation, i.e., ∆Ydesired.

• Calculate the maximum allowable input deviations using (5.26), and check whether
the system is able to handle uncertainties (due to sensor noise, disturbance, etc.)
associated with those of ∆x’s . If not, go back to the previous step and set a
reasonable ∆Ydesired for the given system.

• Use the procedure explained above for the design of a robust FLS (could be either
T1 or IT2).

Section 5.5 provides several examples to illustrate the application of the proposed ro-
bustness analysis in several modeling and control case studies.

5.5 Examples

In this section, several examples are presented to demonstrate how the methodology pre-
sented in Section 5.4 is used for the analysis and design of the FLS robustness.
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The error performance index (EPI) (in percentage) is defined as

%EPI ≡ |eT1| − |eIT2|
|eT1|

× 100 (5.47)

Similarly, to compare the robustness performance of the two FLSs qualitatively, define

%RPIi ≡
max |∆xi|IT2 −max |∆xi|T1

max |∆xi|T1

× 100 (5.48)

where RPIi is the robustness performance improvement and i corresponds to the ith input.

In the following examples, Gaussian functions are considered in the design of T1 and
IT2 MFs. The parameters of these MFs are characterized by standard deviation, σ, and
mean, µ, respectively. The mean of the MFs are kept the same for T1 and IT2. The
absolute values of the maximum input deviations are reported in all the following results.
Figure 5.1 shows the IT2 FOU and standard deviations of lower and upper MFs, σl, and
σu. Also note that ∆Ydes is short for Ydesired.
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Figure 5.1: IT2 MFs and FOU.

Example 1: Function approximation- single-input

Two examples of single-input function are presented in Parts A and B.
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Part A

In this example, T1 and IT2 TSK FLSs are generated to approximate a single-input func-
tion given by f(x) = x+ 1

x2 . The purpose of this example is to demonstrate different design
capabilities of IT2 and T1. First, a sample training data of 75 I/O pairs, chosen randomly
in [1, 3], was used to develop a T1 TSK model with four Gaussian MFs, which captures
the function very accurately. Using these results, the optimum parameters of the IT2 TSK
FLS are designed. The parameters of the MFs of the T1 and IT2 TSK FLSs are shown in
Table 5.1. The IT2 TSK FLS tuning parameters, m and n, are 0.88 and 1.1, respectively.

Table 5.1: Membership function parameters of T1 and IT2 TSK FLSs- first example: Part
A.

MF1 MF2 MF3 MF4

T1
µ = 0.8375 µ = 1.4490 µ = 2.1370 µ = 2.7950
σ = 0.1111 σ = 0.1876 σ = 0.1231 σ = 0.1196

IT2
σl = 0.0978 σl = 0.1651 σl = 0.1083 σl = 0.1052
σu = 0.1222 σu = 0.2064 σu = 0.1354 σu = 0.1316

For a single input system, using (5.29), |∆x| is expressed as

|∆x| = |∆y|
|∆|

(5.49)

where ∆ is the denominator of (5.29) and is given by

∆ =
M∑
i=1

[
mwi (x∗)

∂yi (x∗)

∂x
+myi (x∗)

∂wi (x∗)

∂x

]
+

M∑
i=1

[
nwi (x∗)

∂yi (x∗)

∂x
+ nyi (x∗)

∂wi (x∗)

∂x

]
(5.50)

Since ∆ depends only on the training/sampling points, the maximum allowable devia-
tion in x is achieved when |∆y| = |∆ydes|, i.e.,

|∆x|max =
|∆ydes|
|∆|

(5.51)

(5.51) can be expressed as
|∆x|max
|∆ydes|

=
1

|∆|
(5.52)

From (5.52) it is easy to see that R = |∆x|max

|∆ydes|
is only a function of the sampling points.

Hence, the robustness index, R, is constant for different desired output deviations.

To perform robustness analysis, different desired output deviations, ∆Ydes, are consid-
ered and the results are compared for both T1 and IT2. Simulation results in terms of
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function approximation error, e (based on the root of sum of squares) and error performance
improvement (EPI) are summarized in Table 5.2.

While both T1 and IT2 FLSs satisfy the required constraint on the maximum output
deviation, IT2 reveals fewer output errors for different values of ∆Ydes.

Table 5.2: T1 and IT2 performances for different desired output deviations- first example:
Part A.

∆Ydes = 0.01 ∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15 ∆Ydes = 0.2
e EPI e EPI e PI e EPI e PI

T1 0.3617 – 0.3596 – 0.3587 – 0.3506 – 0.3302 –
IT2 0.0940 74.00% 0.1014 71.80% 0.0942 73.74% 0.0839 76.08% 0.0837 74.64%

Based on (5.27), the robustness indices of T1 and IT2 are computed as RT1 = 0.5073
and RIT2 = 0.5915, respectively. Hence, the robustness performance improvement of IT2
over T1 is calculated as RPI = 16.60%. Thus, in this example, the IT2 proves to be a
more robust FLS than the T1 FLS.

Part B

Similar to Part A, the robustness performance of T1 and IT2 TSK FLSs are compared in
the approximation problem of a single-input function given by f(x) = x2 ln(x). A sample
training data of 75 I/O pairs, chosen randomly in [1, 2], was used to develop a T1 TSK
model with five Gaussian MFs. The parameters of the MFs of the T1 and IT2 TSK FLSs
are shown in Table 5.3. The tuning parameters, m and n, are chosen as 0.007 and 0.29,
respectively.

Table 5.3: Membership function parameters of T1 and IT2 TSK FLSs- first example: Part
B.

MF1 MF2 MF3 MF4 MF5

T1
µ = 1.0270 µ = 1.5160 µ = 2.0100 µ = 2.4990 µ = 2.9840
σ = 0.2340 σ = 0.2555 σ = 0.2655 σ = 0.2657 σ = 0.2417

IT2
σl = 0.2059 σl = 0.2248 σl = 0.2336 σl = 0.2338 σl = 0.2127
σu = 0.2363 σu = 0.2581 σu = 0.2682 σu = 0.2684 σu = 0.2241

Next, robustness analysis for different desired output deviations, ∆Ydes, is performed.
The results for both T1 and IT2 are summarized in Table 5.4.

The robustness indices are RT1 = 0.1098 and RIT2 = 0.1109, respectively, and hence,
RPI = 1.02%. Results show that the robustness performance of the two FLSs are compa-
rable.
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Table 5.4: T1 and IT2 performances for different desired output deviations- first example:
Part B.

∆Ydes = 0.01 ∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15 ∆Ydes = 0.2
e EPI e EPI e PI e EPI e PI

T1 0.0531 – 0.0534 – 0.0542 – 0.0556 – 0.0576 –
IT2 0.0481 9.34% 0.0485 9.13% 0.0497 8.35% 0.0517 7.03% 0.0546 5.23%

Table 5.5: T1 and IT2 performances for different desired output deviations- first example:
Part B.

∆Ydes = 0.01 ∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15 ∆Ydes = 0.2
e EPI e EPI e PI e EPI e PI

T1 0.0436 – 0.0445 – 0.0463 – 0.0488 – 0.0521 –
IT2 0.0385 11.54% 0.0389 12.68% 0.0399 13.95% 0.0415 14.98% 0.0439 15.70%

Next, the results of T1 and IT2 FLSs ARE tabulated when the number of sampling
points is increased to 100.

The robustness indices are RT1 = 0.1093 and RIT2 = 0.1091, respectively, and hence,
RPI = −0.22%. It is observed that, for this example, when the number of sampling points
increases the robustness of both FLSs decreases. Intuitively, the reason lies in the increase
in the number of constraints required to satisfy the robust criteria, which, in effect, will
limit the tolerance of the system to input deviations.

Similar to the first example, both FLSs prove to be mapping the function accurately
as well revealing robust behaviors.

Example 2: Function approximation-two inputs

This example investigates the robustness of a two-input system. Similar to the previous
examples, two fuzzy models, T1 and IT2 TSK, for 100 I/O pairs are developed to ap-

proximate the function given by f(x1, x2) = sin(x1)
x1

. sin(x2)
x2

for x1, x2 ∈ [−10, 10] as shown
in Figure 5.2. The MF parameters of the two FLSs are given in Table 5.6. For the GA
parameters, a population size of 20 with a crossover rate of 0.8 is considered, and the
tuning parameters are m = 0.3 and n = 0.1.

Next, the responses of T1 and IT2 TSK FLSs to different desired output deviations are
investigated. Results are shown in Table 5.7, in which T1 and IT2 reveal very comparable
performances. In some cases, T1 outputs a slightly improved robustness than IT2; however,
the output error generated by IT2 is slightly smaller than T1.
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Table 5.6: Membership function parameters of T1 and IT2 TSK FLSs- second example.
First Input Second Input

MF1 MF2 MF3 MF4 MF1 MF2 MF3 MF4

T1
σ = 2.9290 σ = 1.7180 σ = 2.2510 σ = 3.7520 σ = 3.0390 σ = 2.7360 σ = 2.8220 σ = 3.4400
µ = −9.7910 µ = −3.9740 µ = 1.1110 µ = 8.0220 µ = −9.3970 µ = −3.2000 µ = 2.8460 µ = 9.2040

IT2
σu = 2.9290 σu = 1.7180 σu = 2.2510 σu = 3.7520 σu = 3.0390 σ = 2.7360 σu = 2.8220 σu = 3.4400
σl = 2.6361 σl = 1.5462 σl = 2.0259 σl = 3.3768 σl = 2.7351 σl = 2.4624 σl = 2.5398 σl = 3.0960

Example 3: Function approximation- three inputs

Two T1 and IT2 TSK FLSs are developed to approximate a nonlinear function given by
f(x, y, z) = (1 +x−0.5 + y−1 + z−1.5)2 for x, y, z ∈ [1, 6]. Each input has four MFs, resulting
in a FLS with a total of 64 rules. As in the other examples, robustness analyses on T1
and IT2 TSK FLSs for different output deviations are performed. The MF parameters
are shown in Tables 5.8 and 5.9. For the GA parameters, a population size of 20 with a
crossover rate of 0.8 is considered (default values), and the optimized tuning parameters
are m = 0.1 and n = 0.1.

Next the performance of the T1 and IT2 FLSs are compared for different desired output
deviations. Results are tabulated in Table 5.10 for different output deviations.
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Table 5.7: T1 and IT2 performances for different desired output deviations- second exam-
ple.

∆Ydes = 0.01
e EPI% R1 R2 RPI1% RPI2%

T1 0.1491 – 0.0114 0.0100 – –
IT2 0.1476 1.0231% 0.0166 0.0100 45.61 0

∆Ydes = 0.03
T1 0.1491 – 0.0034 0.0033 – –
IT2 0.1449 2.81% 0.0034 0.0034 0 3.03

∆Ydes = 0.05
T1 0.1499 – 0.0066 0.9400 – –
IT2 0.1450 3.26% 0.0081 0.5120 44.26 -45.53

∆Ydes = 0.07
T1 0.1615 – 0.0021 2.8471 – –
IT2 0.1534 5.04% 0.0067 2.6029 > 100 -9.38

∆Ydes = 0.1
T1 0.1763 – 1 3 – –
IT2 0.1688 4.28% 1 3 0 0

Table 5.8: Membership function parameters for T1 and IT2 TSK FLSs- third example.
First Input Second Input

MF1 MF2 MF3 MF4 MF1 MF2 MF3 MF4

T1
σ = 0.6754 σ = 0.6192 σ = 0.5991 σ = 0.6619 σ = 0.0.6994 σ = 0.6424 σ = 0.6647 σ = 0.6463
µ = 1.125 µ = 2.796 µ = 4.346 µ = 5.968 µ = 1.063 µ = 2.701 µ = 4.299 µ = 5.91

IT2
σu = 0.8780 σu = 0.8050 σu = 0.7788 σu = 0.8605 σu = 0.9092 σu = 0.8351 σu = 0.8641 σu = 0.8402
σl = 0.6079 σl = 0.5573 σl = 0.5392 σl = 0.5957 σl = 0.6295 σl = 0.5782 σl = 0.5982 σl = 0.5817

Table 5.9: Membership function parameters of the third input for T1 and IT2 TSK FLSs-
third example.

Third Input
MF1 MF2 MF3 MF4

T1
σ = 0.9375 σ = 2.635 σ = 0.7054 σ = 0.6386
µ = 4.299 µ = 1.539 µ = 4.27 µ = 5.935

IT2
σu = 0.7066 σu = 0.7703 σu = 0.9170 σu = 0.8302
σl = 0.4891 σl = 0.5333 σl = 0.6349 σl = 0.5747

Both T1 and IT2 approximate the function accurately and exhibit robust performances
for various ∆Ydesired. It is important to note that the IT2 consistently reveals smaller errors
for all the given desired outputs. Moreover, the maximum output deviation for each input
is larger then its T1 counterpart and, hence, it demonstrates a more robust behavior. For
this example, when both minimization of the output error and robustness are considered
concurrently, IT2 will be a better choice for modeling.
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Table 5.10: T1 and IT2 performances for different desired output deviations: third exam-
ple.

∆Ydes = 0.01
e EPI% R1 R2 R3 RPI1% RPI2% RPI3%

T1 0.0015 – 0.0100 0.2600 0.0100 – – –
IT2 0.0012 15.56% 0.0105 0.2600 0.0125 5 0 25

∆Ydes = 0.03
T1 0.0123 – 0.0027 0.2533 0.0025 – – –
IT2 0.0108 12.36% 0.0029 0.2600 0.0028 7.41 2.6451 12

∆Ydes = 0.05
T1 0.0325 – 8.9848e-4 0.2480 0.0011 – – –
IT2 0.0285 12.43% 0.0014 0.2560 0.0014 55.82 3.23 27.27

∆Ydes = 0.07
T1 0.0621 – 0.0014 0.2471 0.0010 – – –
IT2 0.0533 14.08% 0.0025 0.2514 0.0013 78.57 1.74 30

∆Ydes = 0.1
T1 0.1222 – 0.0020 0.2440 0.0016 – – –
IT2 0.1040 14.90% 0.0027 0.2470 0.0051 35 1.23 >100

Example 4: Real-time identification for control (single input)

In many real applications, fuzzy logic has been used as an estimator or identifier of a portion
of a plant [151] (the controller may or may not be a fuzzy controller). An FLS, used as
an estimator, due to its universal approximation property, should be able to capture the
dynamics of the plant relatively well. More importantly, the FLS must be robust to input
deviations. In other words, small deviations in the FLS inputs should not cause a large
deviation and hence error in the output. Significant deviations of the FLS output will
change the closed-loop performance and, in severe cases, could even lead to an unstable
system. In Examples 4 and 5, it is demonstrate how robustness of T1 and IT2 affect the
performance of different nonlinear plants. Example 4 consists of two parts, and Example
5 deals with a more complex plant.

Part A

Consider the following plant whose dynamic model is given by

y(k + 1) = 0.3y(k) + 0.6y(k − 1) + f(u(k)) (5.53)

where u(k) and y(k) are input and output, respectively, and f(u(k)) is an unknown function
of the following form

f(u(k)) = sin(u(k)). cos(u(k)) (5.54)
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The unknown function is meant to be identified by an FLS. Similar to other exam-
ples, for 50 I/O sampling points, two FLS models, T1 and IT2, are developed and have
three MFs. The parameters of the MFs have been tabulated in Table 5.11. The tuning
parameters of the IT2 TSK FLS are m = 0.2 and n = 0.01.

Table 5.11: Membership function parameters of T1 and IT2 TSK FLSs- fourth example:
Part A.

MF1 MF2 MF3

T1
σ = 0.3172 σ = 0.3660 σ = 0.3592
µ = 0.5511 µ = 1.2800 µ = 1.9280

IT2
σl = 0.2633 σl = 0.3038 σl = 0.2981
σu = 0.4758 σu = 0.5490 σu = 0.5388

Table 5.12 provides the outputs of T1 and IT2 FLSs for different desired output devi-
ations. It can be easily seen that the IT2 FLS produces outputs with smaller error than
the T1 FLSs.

Table 5.12: T1 and IT2 performances for different desired output deviations- fourth exam-
ple: Part A.

∆Ydes = 0.01 ∆Ydes = 0.05 ∆Ydes = 0.07 ∆Ydes = 0.1
e EPI e EPI e EPI e EPI

T1 0.0032 – 0.0138 – 0.0181 – 0.0234 –
IT2 0.0004 77.08% 0.0032 76.59% 0.0042 76.70% 0.0055 76.59%

The robustness indices of T1 and IT2 are computed as RT1 = 0.9984 and RIT2 =
1.0016, respectively, and hence, the robustness performance improvement of IT2 over T1
is calculated as RPI = 0.32%. Observe that the maximum output deviations of the two
systems are very comparable.

Next, the performances of both FLSs are evaluated when the input, u(k), is deviated
by 0.01u(k), 0.05u(k), and 0.1u(k), respectively. This comparison is of great importance in
identification of the plant since a robust identifier should ultimately capture the plant as
accurately as possible, a crucial step for control design. To compare the output of the two
TSK models, simulations were carried out for k = 0 to k = 250. Results are summarized
in Table 5.13, where for all different deviations, 0.1%∆u(k) − 10%∆u(k), the IT2 FLS
captures the dynamic term f(u(k)) more accurately than the T1 FLS. Therefore, in this
example, the IT2 clearly proves to be a more robust system for identification of the plant.

Part B

Consider another plant with the following dynamics:

y(k + 1) = 0.4y(k) + f(u(k)) (5.55)
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Table 5.13: T1 and IT2 performances for different deviated inputs- fourth example: Part
A.

∆u(k) = 0.01 ∆u(k) = 0.05 ∆u(k) = 0.1
e1 EPI1 e2 EPI2 e3 EPI3

T1 0.0037 – 0.0135 – 0.0368 –
IT2 0.0012 67.32% 0.0047 65.21% 0.0138 62.45%

where u(k) and y(k) are input and output, respectively, and f(u(k)) is an unknown function
with the following form

f(u) =
u(k)

1 + u3(k)
(5.56)

Suppose the initial condition is y(0) = 0.01. The parameters of the MFs are tabulated in
Table 5.14. For 75 I/O sampling points, T1 and IT2 TSK FLSs are designed. The tuning
parameters of the IT2 TSK FLS are m = 0.3 and n = 0.1.

Table 5.14: Membership function parameters of T1 and IT2 TSK FLSs- fourth example:
Part B.

MF1 MF2 MF3 MF4

T1
µ = −0.9754 µ = −0.3357 µ = 0.3566 µ = 0.9632
σ = 0.3573 σ = 0.3797 σ = 0.3908 σ = 0.3774

IT2
σl = 0.3287 σl = 0.3493 σl = 0.3595 σl = 0.3472
σu = 0.3716 σu = 0.3949 σu = 0.4064 σu = 0.3925

Table 5.15 provides the outputs of T1 and IT2 FLSs for different desired output de-
viations and shows both FLSs are capable of estimating the unknown function relatively
well.

Table 5.15: T1 and IT2 performances for different desired output deviations- fourth exam-
ple: Part B.

∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15
e EPI e EPI e EPI

T1 0.0185 – 0.0220 – 0.0278 –
IT2 0.0145 16.61% 0.0184 16.57% 0.0231 16.83%

The robustness indices are RT1 = 0.2945 and RIT2 = 0.2921, respectively, and hence,
RPI = −0.81%, which show the comparable robust behaviors of T1 and IT2.

Similar to Part A, simulations are performed for k = 0 to k = 100 and results are
summarized in Table 5.16. For all different deviations, 5%∆u(k) − 15%∆u(k), the IT2
FLS identifies f(u(k)) with a higher accuracy than the T1 FLS.
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Table 5.16: T1 and IT2 performances for different deviated inputs- fourth example: Part
B.

∆u(k) = 0.05 ∆u(k) = 0.1 ∆u(k) = 0.15
e1 EPI1 e2 EPI2 e3 EPI3

T1 0.0029 – 0.0039 – 0.0055 –
IT2 0.0026 10.64% 0.0035 11.39% 0.0046 15.35%

For large input deviations, the estimation error is an important index and therefore
designing an FLS that can better approximate the unknown variables/parts is essential,
especially for real-time applications.

Example 5: Real-time identification for control- a more complex
problem

This example presents a more complex identification problem than any previously pre-
sented. The plant to be identified is given by

y(k + 1) = f(u1(k)) + g(u2(k)) + 0.2y(k) (5.57)

where f and g are two unknown nonlinear functions (two nonlinear FLCs). These functions
are of the form, f = 1

1+u2
1(k)

and g = exp(−u2
2(k)), respectively. Two FLSs are designed

for identifying f and g. Similar to the previous examples, two T1 TSK FLSs for f and
g for 100 I/O sampling points are generated. Subsequently, their corresponding IT2 TSK
FLSs are developed. The MFs of the FLSs are given in Tables 5.17 and 5.18. The tuning
parameters for f and g are mf = 0.023, nf = 0.41, mg = 0.001, and ng = 0.5, respectively.

Table 5.17: Membership function parameters of T1 and IT2 TSK FLSs models estimating
the function f - fifth example.

MF1 MF2 MF3 MF4 MF5 MF6

T1
σ = 0.2533 σ = 0.2666 σ = 0.2665 σ = 0.2483 σ = 0.2248 σ = 0.1953
µ = 0.0475 µ = 0.4030 µ = 0.8036 µ = 1.1980 µ = 1.5920 µ = 1.9870

IT2
σl = 0.2280 σl = 0.2399 σl = 0.2399 σl = 0.2235 σl = 0.2023 σl = 0.1758
σu = 0.3293 σu = 0.3466 σu = 0.3465 σu = 0.3228 σu = 0.2922 σu = 0.2539

Next, performances of the FLSs are evaluated in the identification of the two functions,
f and g. To make the comparison of the two FLSs easier, the results are tabulated as
shown in Table 5.19 in which ∆fdes and ∆gdes denote the desired output deviation of each
corresponding function.

The robustness indices and RPI of the T1 and IT2 corresponding to the function f
are calculated as RT1 = 1.5382, RIT2 = 1.5396, and RPI = 0.1%, respectively. The
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Table 5.18: Membership function parameters of T1 and IT2 TSK FLSs models estimating
the function g- fifth example.

MF1 MF2 MF3 MF4 MF5 MF6

T1
σ = 0.1041 σ = 0.1222 σ = 0.1325 σ = 0.1303 σ = 0.1137 σ = 0.0946
µ = 0.0318 µ = 0.2252 µ = 0.4130 µ = 0.6070 µ = 0.7935 µ = 0.9922

IT2
σl = 0.0989 σl = 0.1161 σl = 0.1259 σl = 0.1238 σl = 0.1080 σl = 0.0899
σu = 0.1457 σu = 0.1711 σu = 0.1855 σu = 0.1824 σu = 0.1592 σu = 0.1324

Table 5.19: T1 and IT2 performance for different desired output deviations of function f :
fifth example.

∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15
e EPI e EPI e EPI

T1 0.0012 – 0.0033 – 0.0073 –
IT2 1.7380e-4 85.20% 6.4067e-4 80.40% 0.0016 77.88%

Table 5.20: T1 and IT2 performance for different desired output deviations of function g:
fifth example.

∆Ydes = 0.05 ∆Ydes = 0.1 ∆Ydes = 0.15
e EPI e EPI e EPI

T1 0.0015 – 0.0057 – 0.0201 –
IT2 5.3622e-4 63.63% 0.0028 50.95% 0.0088 59.94%

robustness indices and RPI of T1 and IT2 for the function g are computed as RT1 = 1.1573,
RIT2 = 1.1655, and RPI = 1%, respectively, and hence the maximum allowable input
deviations of both FLSs are comparable for all ∆Ydes. However, as the results indicate,
the IT2 FLS demonstrates its superior capability in modeling both functions. In specific
terms, the smaller the deviations, the better the IT2 performance.

Finally, simulations are performed to compare the output of the plant, y, given by
(5.57) when the inputs u1 and u2 are deviated by 0.1%− 15%. The simulation results are
provided in Table 5.21. Both T1 and IT2 successfully reveal robust behavior in allowing
the input deviations, while IT2 appears to be a more robust FLS for this problem.

Table 5.21: T1 and IT2 performances for different input deviations- fifth example.
∆u1(k),∆u2(k) = 0.01 ∆u1(k),∆u2(k) = 0.1 ∆u1(k),∆u2(k) = 0.15

e1 EPI1 e2 EPI2 e3 EPI3

T1 0.5297 – 0.6896 – 0.8007 –
IT2 0.3236 38.91% 0.6210 9.95% 0.5576 30.36%

In summary, the examples presented in this section demonstrate the potential of both
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T1 and IT2 FLSs in the design of robust static and dynamic systems. More importantly,
the case studies conducted herein prove that IT2 FLSs, due to their more flexible structure
compared to T1 FLSs, produce relatively small approximation errors. For larger sampling
data, the robustness of T1 and IT2 usually decreases, and both tend to reveal comparable
robust behavior. However, this observation is not always the case. Depending on the
nature of a nonlinear function, T1 or IT2 might perform more robustly than to the other.

5.6 Conclusion

This chapter presented a rigorous mathematical analysis of the robustness of T1 and IT2
FLSs. The robustness of FLSs was formulated for the case when the sampling points
are subjected to small deviations (through first order Taylor approximation). An efficient
procedure was introduced that can be used for the design of robust FLSs. Several examples
verified the effectiveness of the proposed methodologies, and it was concluded that, because
of their flexible structures, IT2 FLSs reveal a great potential that can be exploited in the
design of robust FLSs. In future work, it would be interesting to investigate the effect of
higher order approximations on the robustness of FLSs and thus to provide a metric to
measure the trade-off between accuracy and computational complexity. In addition, other
MFs, not only Gaussian MFs, are suggested for further investigation in the design of robust
FLSs.
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Chapter 6

Conclusions and Future Work

This chapter presents conclusions and future work of the thesis in two sections. In each
section, for the ease of reading, the contribution of each chapter is provided in a separate
subsection.

6.1 Conclusions

6.1.1 Stability Analysis

In Chapter 3, five novel inference engines for the design and analyses of IT2 FLSs were
proposed. The inference mechanisms all have closed-forms and thus facilitate the analysis
of IT2 TSK FLCs. It was shown that, among the proposed inference engines, the most
general one is derivable from WM UBs. Using the general inference engine, this dissertation
focused on the following control applications when (1) both plant and controller use A2-C0
TSK models, and (2) the plant uses T1 TS and the controller uses IT2 TS models. In
both cases, sufficient conditions for the stability of the closed-loop system were derived.
Furthermore, novel linear matrix inequalities-based algorithms were developed. These
results further enable the stability analysis and the design of stable IT2 TS (or TSK)
FLCs that are of interest to control engineers. To validate the effectiveness of the new
inference engines, numerical analyses were presented, and it was concluded that an IT2
TS FLCS using the proposed inference engine has the potential to outperform its T1 TSK
counterpart. In addition, because of the simple nature of the proposed inference engines,
they are easy to implement in real-time control systems.

111



6.1.2 MRR Control

Chapter 4 presented the design and implementation of a novel IT2 TSK fuzzy logic control
strategy for tracking applications in MRRs. It was shown that the proposed controller can
be effectively applied to MRRs with guaranteed UUB stability. Furthermore, due to the
adjustment law, a minimal effort is required to design the IT2 TSK FLC parameters. It was
also demonstrated that the developed controller can considerably outperform a well-known
linear controller in terms of tracking performances. Furthermore, the varying-parameter
controller demonstrated its ability to handle the dynamic coupling between the joints of
two serial MRR configurations. Therefore, the proposed control methodology can be easily
adopted for MRRs with uncertain and varying dynamic parameters.

6.1.3 Robustness

A rigorous mathematical analysis of the robustness of T1 and IT2 FLSs was presented
in Chapter 5. The robustness of FLSs was formulated as a constraint multi-objective
optimization problem. Subsequently, an efficient procedure was introduced to facilitate
the design of robust FLSs. Several examples demonstrate the effectiveness of the proposed
methodologies. It was shown that both T1 and IT2 FLSs reveal robust behaviors, and
preference one or the other, in general, is application-dependant. However, through several
case studies, it was concluded that IT2 FLSs, because of their flexible structures, reveal
a great potential for approximating static and dynamic functions. For larger sampling
data, a decrease in T1 and IT2 FLSs robustness is expected, making both FLSs exhibit
comparable robust behavior. However, this observation is problem dependent. Based on
the nature of a nonlinear function, T1 or IT2 might demonstrate comparably improved
robustness. The developed approach is of practical value when FLSs are used for modeling
and control applications.

6.2 Future Work

6.2.1 Stability

The developed stability conditions for IT2 TSK FLCs are sufficient. Thus, for problems
in which a common Lyapunov function is not found, no conclusion can be made about the
stability of the closed-loop system. Further investigation into relaxed stability conditions
might facilitate the design of stable controllers. In addition, it would be interesting to
perform a stability analysis of MIMO IT2 TS FLCSs when both plant and controller are
IT2 TS. Finally, future work can be also geared toward the development of uncertainty
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bounds, not considered in the proposed inference engines, but which could further facilitate
the use of the proposed inference engines in the design of IT2 TSK FLCSs.

6.2.2 MRR

A more systematic design methodology for tuning the parameters of PD and PD-like IT2
TSK FLCs should be developed to enhance facilitating their use in control applications. In
addition, a more efficient algorithm is suggested to be developed to investigate the effect
of IT2 TSK FLC with more rules and find the trade off between the number of rules and
improvement in the tracking performance of MRRs. Furthermore, to validate the proposed
control methodology on more complex MRRs, involving high dynamic couplings among
joints, it would be useful if future experiments considered a system with more degrees of
freedom. The noticeable fluctuations observed in the controller efforts of the second joint of
the MRR, in severe cases, excite some modes of the systems; thus, resulting in undesirable
motions. As for future work, it is important to consider the chattering effects especially
when a heavy payload is used in the tracking applications. It would be also interesting to
consider developing an adaptive controller to handle varying masses of the payload. Lastly,
parallel processing of lower and upper portions of the control effort of the IT2 TSK FLC
will reduce the computational time required to implement the controller. A code enabling
parallel computing should be developed and its performance improvement observed.

6.2.3 Robustness

A First-order Taylor’s series was used to approximate the output of a deviated FLS. Al-
though robust IT2 TSK FLSs can be designed using this assumption, it would be interesting
to investigate the second-order derivative approximations and compare their results with
the ones presented in this dissertation. In addition, to find the maximum allowable input
deviations, a systematic algorithm should be developed to design the parameters of IT2
FLSs, i.e., MFs, as well as the tuning parameters, hence further enabling the design of
robust mechanisms that can be used for various applications.

Other MFs, not considered in this dissertation, are suggested for further investigation
of FLS robustness. In addition, the robustness of FLSs can be investigated with different
t-norm operators. Finally, examination and comparison of the performance of FLSs with
different fuzzy operators might be a fruitful topic for investigation.
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APPENDICES

Appendix A: Supplementary details of stability deriva-

tions

A.1 Components of Z in (3.73)

Components of Z, namely, Z1, Z2, and Z3 are as follows:
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A.2 Details of stability derivations

This section presents additional details of the stability conditions (3.79) and (3.81). Con-
sider the first bracketed term of Z2 in (A.2) and denote it as Z2,1, i.e.,

Z2,1 ≡
m
∑M

i=1 f
iAT

i∑M
i=1 f

i
P
mm′

∑M
j=1

∑Q
q=1 f

jvqBj,q

k1

∑M
j=1 f

j
− 1

36
P (A.4)

Similarly, denote the ninth bracketed term of Z2 as Z2,9

Z2,9 ≡ mm′
∑M

i=1

∑Q
l=1 f

ivlBT
i,l

k1

∑M
i=1 f

i
P
m
∑M

j=1 f
jAj∑M

j=1 f
j
− 1

36
P (A.5)

Multiply both sides of (A.4) and (A.5) by k1

∑M
i=1 f

i∑M
j=1 f

j. It is easy to see that

(Z2,1 +Z2,9)

(
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M∑
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)
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+mm′
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)
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T
i

)
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18
P

]}
(A.6)

It can be shown that, for the remaining terms ofZ2, similar expressions can be obtained.
Hence, to make all terms of Z2 negative definite, the following criteria must be satisfied:

bAT
i PBj,l + bBT

i,lPAj −
1

18
P < 0 (A.7)

where i, j = 1, 2, ...,M , and l = 1, 2, ..., Q and

b = {m2m′,mnm′,m2n′,mnn′, n2m′, n2n′} (A.8)

Next, consider the first term of Z3 in (A.3) and denote it as Z3,1, i.e.,

Z3,1 ≡
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Multiply both sides of (A.9) by
(
k2
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j
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. It is straightforward to show [using
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(A.10)

In a similar fashion, it can be shown that, for the remaining terms of Z3, similar expressions
can be obtained. Hence, to make all terms of Z3 negative definite, the following criteria
must be satisfied:

cBT
i,lPBj,q −

1

36
P < 0 (A.11)

where i, j = 1, 2, ...,M , and l, q = 1, 2, ..., Q, and,

c =
{
m2m′2, n2n′2,m2m′n′,mnm′n′,m2n′2,mnn′2,mnm′2, n2m′2, n2m′n′

}
(A.12)
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Appendix B: Error trajectories of different controllers

tested on the MRR

B.1. First configuration

This appendix contains the position error trajectories of each controller for the first config-
uration. Figures 1 and 2 demonstrate the real-time position errors for different controllers.
The difference in the output error for T1 and IT2 controllers are noticeable (for quantitative
comparison please refer to Table 4.3).
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Figure 1: Position errors of different controllers for joint 1: first configuration.
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Figure 2: Position errors of different controllers for joint 2: first configuration.
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B.2. Second configuration

Here the trajectories of error for the second configuration are shown. Figures 3 and 4
compare the control efforts of the different controllers, for the first and second joints,
respectively.
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Figure 3: Position errors of different controllers for joint 1: second configuration.
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Figure 4: Position errors of different controllers for joint 2: second configuration.
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Appendix C: Details of derivation of Chapter5

In this appendix, to simplify the notations, wi, wi, f i, f
i
, and yi are short for wi(x), wi(x),

f i(x), f
i
(x), and yi(x).

C.1. Derivation of ∂wi

∂xj

In the following, ∂wi

∂xj
is analytically expressed in terms of the FLS’s parameters. First,

∂f i

∂xj

is derived.

∂f i

∂xj
=

∂

∂xj

[
µi(x1) ? · · · ? µi(xp)

]
(C.1)

where ? is a t-norm. Using algebraic product as the t-norm, (C.1) is calculated as

∂f i

∂xj
= µi

1
(x1) · · ·µi

j−1
(xj−1).

∂µi
j
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.µi
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(xj+1) · · ·µi
p
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p−1∏
k=1
k 6=j

µi
k
(xk)

 .∂µij(xj)
∂xj

(C.2)

Now ∂
∂xj

[∑M
i=1 f

i
]

is found

∂
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(C.3)

Using (C.2) and (C.3), ∂wi

∂xj
is given as follows:

∂wi

∂xj
=

∂
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[
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Similarly,

∂wi

∂xj
=
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l
]2 (C.5)

C.2. Derivation of robustness for higher order derivatives

This section provides the formulation for robustness analysis for FLSs with a single and
two inputs.

• For a single input system, (5.18) is modified to

∆Y = ∆x
M∑
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[
mwi
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(C.6)

Define

X1 ≡
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Thus, Using (C.7) and (C.8), (C.6) can be expressed as

X1(∆x)2 +X2∆x = ∆Y (C.9)

To satisfy the robustness criteria, |∆Y | ≤ ∆Ydesired, is it required that∣∣X1(∆x)2 +X2∆x
∣∣ ≤ ∆Ydesired (C.10)
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• The simplified expression for ∆Y for a two-input system is given by
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(C.11)

where the right-hand side is calculated at the point x∗1 and x∗2. Equation (C.11) can
be turned into an inequality as∣∣X1(∆x1)2 +X2(∆x2)2 +X3∆x1x2 +X4∆x1 +X5∆x1

∣∣ ≤ ∆Ydesired (C.12)

where Xi’s (i = 1, · · · , 5) are the expressions given by each summation in (C.11),
respectively. Matlab can be used to solve (C.12) before which the second-derivatives
of wi and wi must be computed.
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