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Abstract

A data integration system offers a single interface to multiple structured data sources.
Many application contexts (e.g., searching structured data on the web) involve the inte-
gration of large numbers of structured data sources. At web scale, it is impractical to
use manual or semi-automatic data integration methods, so a pay-as-you-go approach is
more appropriate. A pay-as-you-go approach entails using a fully automatic approximate
data integration technique to provide an initial data integration system (i.e., an initial
mediated schema, and initial mappings from source schemas to the mediated schema), and
then refining the system as it gets used. Previous research has investigated automatic
approximate data integration techniques, but all existing techniques require the schemas
being integrated to belong to the same conceptual domain. At web scale, it is impractical
to classify schemas into domains manually or semi-automatically, which limits the applica-
bility of these techniques. In this thesis, I present an approach for clustering schemas into
domains without any human intervention and based only on the names of attributes in the
schemas. My clustering approach deals with uncertainty in assigning schemas to domains
using a probabilistic model. I also propose a query classifier that determines, for a given
keyword query, the most relevant domains to this query. I experimentally demonstrate the
effectiveness of my schema clustering and query classification techniques.
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Chapter 1

Introduction

1.1 Motivation

As the number of structured data sources on the web continues to increase, so does the
difficulty of organizing them and making them accessible. A prominent example of struc-
tured data sources on the web is the large number of web sites that provide access to
databases through web forms. Such databases hidden behind web forms are usually called
the deep web or the hidden web, and are believed to surpass the surface web in quantity
and quality [5]. Recent studies by Google estimate an order of 10 million high quality
HTML forms [20]. Many other types of structured data sources spanning a wide spectrum
of domains are also available on the web, such as HTML tables, Fusion Tables [14], and
downloadable spreadsheets. The need to provide access to a large number of heterogeneous
structured data sources also arises on a smaller scale in personal information management
and scientific data management applications [13].

One of the approaches used to access such large numbers of heterogeneous structured
data sources is to treat their data as mere documents and apply keyword search on them
using information retrieval (IR) techniques. For the deep web, various techniques have
been proposed to surface it, making it searchable via traditional IR techniques [21]. This
approach, however, does not take much advantage of the structure of data sources.

Another approach that takes advantage of such structure is to use data integration.
Data integration systems provide the user with a unified interface to access a set of data
sources that provide information about the same real-world domain but have different
schemas. Typically, a data integration system is established by first defining a mediated
schema that represents the domain that is being considered and acts as the user’s interface
to the system. Mappings are then defined from the schemas of the various data sources
to this mediated schema. Creating and maintaining data integration systems has always
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been an expensive process that consumes much effort. Consequently, much research has
been done to facilitate this process by developing techniques that recommend mediated
schemas and schema mappings to the user [25].

Different data integration techniques require different levels of user involvement. At
web scale, the massive number of data sources makes even semi-automatic data integra-
tion techniques impractical. For example, attempts to use semi-automatic integration
techniques by Google [21] indicate that a human annotator working on data integration
with the help of semi-automatic tools can integrate only 100 schemas on average per day.
The other alternative, which is fully automatic data integration, produces imprecise medi-
ated schemas and schema mappings. Therefore, it was suggested [20] that a pay-as-you-go
data integration approach is the only way to deal with web-scale data integration. A pay-
as-you-go data integration system accepts approximate and incomplete integration as a
starting point, and allows further enhancements to be introduced later, whenever deemed
necessary. The system starts providing services (e.g., keyword search) without having to
wait until full and precise integration takes place. To deal with imprecision in fully auto-
matic integration, prior research [8, 9] proposes using a probabilistic model where several
possible mappings are generated from each data source to the generated mediated schema,
and each mapping is assigned a probability value.

All existing fully automatic integration techniques assume that the data sources to be
integrated belong to the same domain (e.g., all data sources are about travel, bibliography,
people, etc.), so a preprocessing phase is still needed to cluster data sources into domains
before data integration takes place [20]. Without such a step, data integration is more
likely to produce semantically incoherent mediated schemas and inaccurate mappings to
these schemas. Surprisingly, there has been very little work on automatic clustering of
data sources into domains.

Once the schemas are clustered into domains, and data integration techniques are
applied to each domain, we need to be able to direct the user’s queries to their relevant
domains at runtime. For example, a search engine needs to detect when a keyword query
contains attribute names that are relevant to one or more of the domains constructed in the
clustering phase. More concretely, a keyword query like “departure Toronto destination
Cairo” contains two attribute names that are relevant to the ‘travel’ domain, namely
‘departure’ and ‘destination’. The search engine can then retrieve the mediated schemas of
relevant domains and present them to the user in the form of structured query interfaces as
part of the search results page, ranked by their relevance to the query. The user can then
pose structured queries over any of these query interfaces and retrieve structured data.
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1.2 Contribution

In this thesis, I present an approach for clustering structured data sources into domains
based on their schemas. This problem involves many challenges. First, the only information
guaranteed to be available about a data source is attribute names. Even simple information
like attribute data types is not always easy to determine. Therefore, the clustering approach
that I propose in this thesis relies entirely on attribute names to cluster schemas into
domains. Second, there is no prior knowledge about the types of domains that should be
created or how many they are, since the web is essentially about everything. Consequently,
I use a clustering algorithm that does not make assumptions about the number or the types
of domains in advance. Third, since I am proposing a fully automatic technique, I need
to handle uncertainty in deciding which domain a schema should be assigned to. I use a
probabilistic model to deal with this uncertainty, where each data source may belong to
multiple domains with different probabilities. Typically, after schemas are clustered into
domains, existing techniques of schema mediation and mapping will be run on each domain
separately. My work integrates well with previous work on schema mediation and mapping
with uncertainty [8, 9].

I also propose a technique based on naive Bayesian classification to determine the
domains relevant to a given keyword query and rank these domains according to their
relevance to the query. The probabilistic nature of the domains adds more challenges to
classification since the query is supposed to be assigned to a domain whose content is
uncertain.

The work in this thesis has been published in [22]. The contributions can be summarized
as follows:

1. A fully automatic technique for clustering schemas into domains based on attribute
names only.

2. A probabilistic approach for handling uncertainty in clustering. This approach inte-
grates seamlessly with existing approaches for schema mediation and mapping with
uncertainty.

3. A technique based on naive Bayesian classification to determine the domains relevant
to a keyword query and rank those domains according to their relevance to the query.
The classifier takes into account the fact that the domains are probabilistic.

4. An experimental evaluation on schemas from a wide spectrum of domains.
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1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents background and related
work. Chapter 3 provides an overall view of the proposed solution after providing a more
formal definition of the problem. Chapter 4 explains the schema clustering approach, then
Chapter 5 explains the process of retrieving domains that are relevant to a keyword query.
The experimental evaluation is presented in Chapter 6, and finally the conclusion is in
Chapter 7.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Clustering

I use machine learning techniques from the domain of document clustering [2, 27] to deal
with schema clustering. Typically, when clustering a set of data objects (e.g., documents,
or schemas), the objects are represented as a set of vectors with the same dimensionality.
A distance function is defined to measure the distance between each two vectors, and then
a clustering algorithm is used to group vectors that are close to each others into clusters.

One of the most widely-used clustering algorithms is k-means [19]. It starts with an
initial estimate (possibly a random estimate) of clusters’ centroids, then the algorithm
works iteratively. At each iteration, each data object is assigned to the cluster of the
closest centroid, then the centroids are recomputed based on the data objects in each
cluster. The k-means algorithm assumes that the number of clusters is known in advance,
and its output depends on the initially estimated centroids. Moreover, it is hard to use
k-means in cases where the centroid is hard to define (e.g., for binary feature vectors).

Another possible approach is to use density-based clustering algorithms (e.g., DB-
SCAN [11]), which search the data space for regions of high density that are separated
from each others by regions of low density. Density-based clustering is more robust than
k-means since it is less sensitive to noise, and can handle clusters of arbitrary shapes, and
it does not require prior knowledge about the number of clusters. However, it is problem-
atic when the notion of density is hard to define (e.g., in high-dimensional data) or when
clusters have varying densities.

A third approach is hierarchical clustering, where the dataset is viewed as a tree of
clusters. At the root of the tree is a cluster that contains all the data, while the leaves of
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the tree are singleton clusters that contain single data objects, and each non-leaf cluster
is the union of its children clusters. Hierarchical clustering is either divisive (top-down) or
agglomerative (bottom-up).

In divisive clustering, the algorithm starts with the whole data set (i.e., the root of
the tree), then breaks it down into two (or more) clusters, then breaks the new clusters
down into smaller clusters, and so on. At each iteration, a cluster is chosen to be split
based on some criterion. For example, one possible criterion [18] is to pick the cluster with
the largest diameter, where the diameter of a cluster is defined as the maximum distance
between any two objects in it. A partitioning algorithm (e.g., k-means) is used to split the
chosen cluster into smaller ones.

Agglomerative clustering goes in the opposite direction: it starts with singleton clusters
(i.e., the leaves of the tree), then it merges them iteratively to produce larger clusters.
At each iteration, the closest pair of clusters is chosen to be merged, based on a specified
measure of inter-cluster distance. Some common measures of inter-cluster distance include:
single-link (i.e., the minimum distance between the objects of the two clusters), complete-
link (i.e., the maximum distance between the objects of the two clusters), group average
(i.e., the average of the distances between the objects of the two clusters), and centroid-
based (i.e., the distance between the centroids of the two clusters).

Hierarchical clustering, whether divisive or agglomerative, typically does not run until
the whole tree of clusters is constructed. It is usually terminated once the current level
of clusters satisfies a particular condition. For example, we can terminate divisive clus-
tering once the diameters of all clusters are below some threshold, and we can terminate
agglomerative clustering once the distance between the closest pair of clusters is above
some threshold. Another approach is to terminate hierarchical clustering once a particular
number of clusters is reached.

Agglomerative hierarchical clustering avoids many of the limitations of other clustering
techniques. For example, it does not require prior knowledge of the number of clusters,
its output does not depend on initial estimates, and it can be used with any inter-cluster
distance measure, so it is useful when the notions of centroid and density are hard to define.
However, it is also expensive. Divisive hierarchical clustering can be more efficient than
agglomerative clustering if the tree of clusters is balanced and the number of clusters is
very small compared to the number of data objects. Whether agglomerative clustering is
more effective than divisive clustering or not is subject to debate (see for example [31]).
However, as a bottom line, divisive clustering inherits the limitations of the algorithm
that it uses to partition clusters. For example, if k-means is used, then the output of
partitioning depends on the initial estimates of the centroids, and we are still limited by
our ability to define a meaningful centroid.

Clustering algorithms can be also classified based on whether clusters overlap (i.e.,
the same data object may belong to multiple clusters) or not. If clusters are allowed to
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overlap, a data object that is assigned to multiple clusters might have a different degree
of membership in each cluster, and in such case it is referred to as fuzzy clustering. Fuzzy
clustering is based on fuzzy set theory [30], where elements may belong to multiple sets with
membership values that range from 0 to 1. The most common fuzzy clustering algorithm is
fuzzy c-means (FCM) [3]. Another approach to handle uncertainty in clustering is through
probability theory, which is the model I use in this thesis because it fits well with previous
research in data integration with uncertainty.

2.1.2 Classification

Classification is the problem of assigning a data objects to one of several pre-specified
classes. When the user poses a keyword query at runtime, the problem of determining
the domain(s) relevant to the query can be dealt with as a classification problem. The
object to be classified (in our case, the keyword query) needs to be represented as a vector,
similar to the vectors of the data objects in the clusters. Then this vector is passed to a
classification algorithm that returns the most-relevant class, or a list of classes sorted by
relevance.

As with clustering, there are many well-known classification algorithms that can be
used, including instance-based classification algorithms (e.g., nearest neighbour [12]), de-
cision tree classification algorithms (e.g., C4.5 [24]), Perceptron-based classification algo-
rithms [26], support vector machines [28], etc. However, the design choice I make in the
classification phase is guided by the design choice I made in the clustering phase; that is, to
use a probabilistic model to handle uncertainty in clustering. I use naive Bayesian classifi-
cation which is a machine learning technique that has been used extensively in document
classification and other applications [23], and it works effectively on top of the probabilistic
model constructed during clustering. Bayesian classification makes use of Bayes’ rule to
calculate the probability that the query object belongs to one of the classes:

Pr(y|x) =
Pr(x|y)Pr(y)

Pr(x)

where x is the query object and y is a class. The classifier is called “naive” if it assumes
that the elements of the vector x are statistically independent given y. This is usually
done to make the problem more tractable. The classifier can still perform well under such
assumption. Also, although Bayesian classification is expensive, it is possible to move all
expensive operations to setup time rather than query time, as demonstrated in Chapter 5.
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2.2 Related Work

Clustering schemas into domains was considered in [17]. However, there are still important
differences between my work and that work. The main differences are as follows:

1. The work in [17] considered exactly eight specific domains (flights, cars, movies, etc.)
and presented a clustering algorithm that is given the number of clusters in advance.
I do not pre-specify the number or the types of domains considered. This is important
because, at web-scale data integration, it is hard (even impossible) to determine the
number of the available domains. Also the types of domains available on the web are
so many that the boundaries between them are usually blurred.

2. The authors of [17] assumed that, for each of the eight domains, there exist anchor
attributes that do not occur except in the schemas of the domain. I do not assume
the existence of such anchor attributes.

3. The clustering algorithm in [17] was based on agglomerative hierarchical clustering
as in this thesis, but with a different cluster-to-cluster similarity measure. Basically,
the algorithm in [17] assumes that, for each domain, the attribute names follow a
distinct multinomial probability distribution, then measured the similarity between
every two clusters based on how high the probability that the attributes of both
clusters belong to the same multinomial distribution, as determined using chi-square
test. My approach uses a simple (yet effective) distance measure based on Jaccard
similarity.

4. The work in [17] did not deal with uncertainty in clustering; that is, the assignments
of schemas to domains were certain. I use probabilistic schema-to-cluster assignment
to handle uncertainty.

Schema clustering is also mentioned in [20] as part of the proposed pay-as-you-go archi-
tecture, but without details on how to deal with the numerous challenges that arise when
clustering web data sources.

Finally, clustering is also used as a tool in another phase of data integration, namely
schema mediation, where it is the attributes that are clustered not the schemas [1, 8, 29].
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Chapter 3

System Overview

3.1 Problem Definition

Existing techniques of automatic data integration assume that the data sources to be
integrated belong to the same domain. For these techniques to work on a large number of
data sources from multiple domains, there has to be an initial step in which the data sources
are clustered into domains. The objective of this thesis is to automate the clustering step.
Therefore, I consider the two problems of (1) clustering schemas into domains, and (2)
retrieving and ranking relevant domains at query time. For the purpose of my research, I
define the notion of a domain as follows:

Definition 3.1.1 (Domain) A domain is a set of single-table schemas with sufficiently
large intra-domain similarity and sufficiently large inter-domain dissimilarity, according to
some measure of similarity.

I also define a schema as a set of attribute names, and an attribute name as a set of terms
(e.g., the attribute name ‘First Name’ consists of the terms ‘First’ and ‘Name’).

My system takes as an input a set of single-table schemas, where each schema is ex-
tracted from a structured data source (e.g., a web form, an HTML table, a downloadable
spreadsheet). I focus on single-table schemas since most data sources on the web belong
to this category. My approach works on schemas without assuming any access to the
actual databases behind these schemas, so as to be general enough to handle deep web
data sources without the need to surface them. Moreover, the only information I need to
know about a schema is the attribute names, which is often the only information that is
available. So, for example, attribute data types are not required. I also do not assume any
prior information about the exact number or nature of potential domains. Consequently,
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domains need to be discovered from the available schemas. The problem generally involves
uncertainty in determining whether two schemas belong to the same domain or not. The
output of the clustering phase is a set of domains, where each domain is a set of schemas
as in Definition 3.1.1. In a typical pay-as-you-go system, each output domain will be fed as
an input to a schema mediation and mapping algorithm. Schema mediation and mapping
is already a well-studied problem and is not a focus of this thesis, but I have to ensure
that my solutions integrate well with previous work. At query time, I need to provide the
user with the capability to retrieve domains relevant to a keyword query, where a keyword
query is a set of terms (i.e., keywords), taking in consideration that the domains are con-
structed with uncertainty. The query classifier takes as an input a keyword query and a
set of domains, and outputs for each domain its degree of relevance to this query. The
classifier expects the keyword query to include some keywords that are similar to attribute
names from the relevant domain(s) (e.g., “departure Toronto destination Cairo” or “books
authored by Stephen King”).

3.2 Solution Overview

I use hierarchical agglomerative clustering to group schemas into domains. This algorithm
operates by iteratively merging similar schemas together into clusters and merging similar
clusters together into larger clusters, until a maximum level of inter-cluster dissimilarity
is reached [10]. Since textual similarity among attribute names is the basis upon which
mediated schemas and schema mappings are usually generated, it is reasonable to rely
on the same basis when measuring schema-to-schema similarity during schema clustering.
Therefore, I assume that the probability that two schemas belong to the same domain
can be determined based on the textual similarity between the attribute names of the
two schemas. Previous empirical studies [16] show that attribute names within the same
domain tend to be similar across different schemas. Moreover, relying only on attribute
names makes it possible to apply my approach on data sources whose data and data types
are not plainly exposed (e.g., the deep web). My experiments on the schemas of hundreds of
web data sources from diverse domains show that assigning probabilities based on textual
similarities works well (Chapter 6).

I handle uncertainty in schema clustering based on a probabilistic model. Besides be-
ing mathematically appropriate, using a probabilistic model is consistent with previous
research that deals with uncertainty in pay-as-you-go data integration systems [8, 9]. The
steps of constructing the probabilistic model and drawing inferences from it can be sum-
marized as follows:

1. Each schema is represented by a feature vector that is constructed based on the terms
extracted from the attribute names of the schema.
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2. Hierarchical agglomerative clustering is applied to the feature vectors of the schemas
to group them into domains.

3. Schemas that have equal or close similarities to multiple domains are assigned to
each of these domains with different probabilities. The probabilities are based on the
similarities between schemas and domains.

4. When a user poses a keyword query over the system, naive Bayes classification is
used to determine, for each domain, the probability that the query belongs to this
domain. Relevant domains are then ranked based on probability values.

Between Steps 3 and 4, existing techniques from previous research can be used to gen-
erate a mediated schema for each domain and then generate probabilistic mappings from
the schemas in the domain to the domain’s mediated schema. The generated schema map-
pings are also probabilistic so as to handle the uncertainty in determining which attributes
in a source schema correspond to which attributes in the mediated schema [8]. A proba-
bilistic mapping from a source schema to a mediated schema is basically a set of possible
mappings, each assigned a probability.

The probability assigned to any individual tuple retrieved from a domain at query
time is the product of two probabilities: (1) the probability that the schema from which
the tuple is retrieved belongs to that domain (where such probability is computed by my
clustering algorithm), and (2) the probability that the schema mapping based on which the
tuple was mapped to the mediated schema of the domain is the correct mapping (where
such probability is computed by the probabilistic schema mapping algorithm, e.g., [8]).

3.3 Architecture

Figure 3.1 illustrates the architecture of the proposed system. It clarifies the two levels
of uncertainty in the data integration system: the uncertainty in assigning schemas to
domains, and the uncertainty in mapping the schemas in each domain to the domain’s
mediated schema. Besides, the figure also illustrates a typical use case of the system. In a
typical use case, the user poses a keyword query on the system at runtime. The keyword
query is forwarded to the query classifier which determines the most relevant domains to
this query. The relevant domains are presented to the user in the form of structured query
interfaces that correspond to the mediated schemas of the relevant domains, sorted by
their relevance to the keyword query. Then the user poses a structured query on one of
the mediated schemas to retrieve tuples, and the structured query is forwarded to the data
sources in the domain behind this mediated schema. The tuples retrieved from each data
source are assigned probability values as explained in the previous section, then all tuples
are merged into a single result set to be presented to the user sorted by tuple probability.
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Figure 3.1: System architecture illustrated via an example of a typical use case.
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Chapter 4

Schema Clustering

This chapter explains the process of schema clustering, which can be divided into three
phases: (1) creating feature vectors, (2) the actual clustering of schemas, and (3)as-
signing probabilities of schema memberships in domains. Given a set of schemas S =
{S1, S2, . . . , S|S|} as input, the target is to output a set of clusters C = {C1, C2, . . . , C|C|},
where Cr ⊆ S, for all Cr ∈ C. Optimally, for all i, j = 1, 2, . . . , |S|, and for all r =
1, 2, . . . , |C|, the two schemas Si and Sj should belong to Cr if and only if Si and Sj repre-
sent the same real-world domain. However, we have no means by which we can determine
automatically and with absolute certainty whether any two given schemas represent the
same domain or not. We have to rely on approximate methods and accept best-effort
results, which is an essential aspect of the pay-as-you-go approach. I assume that the
probability that two schemas belong to the same domain can be determined based on the
textual similarity between the attribute names of the two schemas.

4.1 Creating Feature Vectors

Before proceeding with clustering, I need to characterize each schema with a feature vector.
Feature vectors are needed both during the clustering process and during query classifica-
tion. I use a vector space model similar to that used in document clustering [2]; that is, if
there are d distinct terms in all given schemas, I characterize each schema with a vector
comprised of d binary features, one feature for each distinct term to indicate whether this
term exists in the schema or not. I use binary features instead of, for example, counting
the frequency of terms in schemas, because schema attributes usually contain a few terms,
so binary features are sufficient.

Algorithm 1 describes how feature vectors are created. First, for each schema Si ∈ S,
I extract all the terms from Si by splitting its attribute names over a set of pre-defined
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delimiters, like white spaces, slashes, and underscores. For example, given the following
schema {Class ID,Day/Time, Professor Name, Subject}, the set of extracted terms will be
{Class, ID, Day, Time, Professor, Name, Subject}. I also split attribute names that consist
of several capital-started terms concatenated to each others (e.g., ‘MaxNumberOfStudents’
is split into ‘Max’, ‘Number’, ‘Of’ and ‘Students’). Splitting attribute names is motivated
by the observation that individual terms within the attributes names of schemas in a
single domain can cluster together better than the whole attribute names, since they tend
to be less sensitive to rephrasing (e.g., ‘Professor Name’ versus ‘Name of the Professor’). I
convert all terms to a canonical form for better comparisons (e.g., all characters to lower
case), then I remove stop words and extremely short terms (e.g., terms with less than three
letters). The result is the set T = {T1, T2, . . . , T|T |}, where Ti is the set of terms extracted
from the schema Si.

Algorithm 1 Create Feature Vectors

1: procedure CreateFeatureVectors
2: input: Set of schemas S = {S1, S2, . . . , S|S|}

3: for all Si ∈ S do
4: Define the set of terms Ti
5: Extract all terms from Si’s attribute names to Ti
6: Convert all terms in Ti into a canonical form
7: Remove very small terms and stop words from Ti
8: end for
9: Sort all terms in ∪|S|i=1Ti into a vector L

10: for all Si ∈ S do
11: Define a binary vector F i, where dim F i = dim L
12: for all terms Lj in L do
13: if max

t∈Ti

t sim(Lj, t) ≥ τt sim then

14: F i
j ← 1

15: else
16: F i

j ← 0
17: end if
18: end for
19: end for
20: return F = {F 1, F 2, . . . , F |S|}
21: end procedure

Next, all terms in ∪|T |i=1Ti are sorted into a vector of terms L =< L1, L2, . . . , Ldim L >,

where dim L = | ∪|T |i=1 Ti|. I then create, for each Si ∈ S, a binary feature vector F i, such
that dim F i = dim L. Let F i

j denote the jth feature in F i. The vector F i characterizes Si
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Figure 4.1: The system interface while creating feature vectors.

by indicating, for each term Lj in L whether Si contains a term that is sufficiently similar
to Lj or not; if yes then F i

j = 1, otherwise F i
j = 0.

For each Si ∈ S, F i is computed as follows. Let t sim be a function that takes two terms
t and t′ as input and returns a real value in the range [0, 1] that indicates how similar the
two terms are. For each term Lj in L, I compute max

t∈Ti

t sim(Lj, t); that is, the maximum

among all the similarities between Lj and each of the terms in Si. I then compare this
maximum to a threshold τt sim that I set based on our knowledge of the similarity function
t sim. If max

t∈Ti

t sim(Lj, t) ≥ τt sim then F i
j = 1, otherwise F i

j = 0.

There are already several well-studied functions for measuring term similarity [7]. In
this thesis, I use a function that is based on the longest common substring. Let the function
LCS(ti, tj) denote the longest common substring between the two terms ti and tj, and the
function len(t) denote the number of characters in the term t; then

t sim(ti, tj) =
2.len(LCS(ti, tj))

len(ti) + len(tj)

That is, the length of the longest common substring divided by the average of the lengths of
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the two terms. I pick a high value for τt sim, for example 0.8, to ensure sufficient similarity.
The longest common substring can be computed efficiently in linear time using suffix trees
[15]. Another possible alternative for the term similarity function t sim is to use a function
that recognizes two terms to be similar if and only if they have the same stem. Figure 4.1
shows the system interface at the phase of generating feature vectors.

4.2 Clustering Algorithm

I use hierarchical agglomerative clustering as described in Algorithm 2.

Algorithm 2 Cluster Schema

procedure ClusterSchema
input: Set of schemas S = {S1, S2, . . . , S|S|}

k ← 1
U (k) ← {{S1}, {S2}, . . . , {S|S|}}
Let (U

(k)
a , U

(k)
b ) be:

arg max
(U

(k)
i ,U

(k)
j )∈U(k)×U(k); i 6=j

c sim(U
(k)
i , U

(k)
j )

while c sim(U
(k)
a , U

(k)
b ) ≥ τc sim do

U
(k+1)
ab ← U

(k)
a ∪ U (k)

b

U (k+1) ← (U (k) \ {U (k)
a , U

(k)
b }) ∪ {U

(k+1)
ab }

k ← k + 1
U (k) ← {{S1}, {S2}, . . . , {S|S|}}
Let (U

(k)
a , U

(k)
b ) be:

arg max
(U

(k)
i ,U

(k)
j )∈U(k)×U(k); i 6=j

c sim(U
(k)
i , U

(k)
j )

end while
return C = U (k)

end procedure

First, I measure the similarity between every two schemas by measuring the similarity
between their feature vectors. Let the function s sim(Si, Sj) be the similarity function
between the two schemas Si and Sj, where 1 ≤ i, j ≤ |S|. I use the Jaccard coefficient as
a similarity measure since it is known to be suitable for high dimensional binary feature
vectors [27]. Thus,

s sim(Si, Sj) = Jaccard(F i, F j) =
|{r : F i

r = 1 and F j
r = 1}|

|{r : F i
r = 1 or F j

r = 1}|
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All schema-to-schema similarities should be computed and memoized (i.e., cached) in ad-
vance so as to avoid recomputing them multiple times during clustering.

Next, I proceed to clustering. Initially, every schema is considered a singleton cluster in
its own right. Then agglomerative hierarchical clustering operates iteratively by merging
the most similar pair of clusters among the set of available clusters into one new cluster,
based on some measure of cluster similarity. At the beginning of each iteration k, I denote
the set of clusters that I have as U (k). Since I start by placing every schema in a singleton
cluster, U (1) = {{S1}, {S2}, . . . , {S|S|}}. After each iteration k, the number of clusters
shrinks by one as I merge the two closest (most similar) clusters into one new cluster, i.e.,
|U (k+1)| = |U (k)| − 1.

I define the similarity between any two clusters U
(k)
i and U

(k)
j as follows:

c sim(U
(k)
i , U

(k)
j ) =

1

|U (k)
i ||U

(k)
j |

∑
Sa∈U(k)

i

∑
Sb∈U

(k)
j

s sim(Sa, Sb)

That is, the average of the similarities between every schema in U
(k)
i and every schema in

U
(k)
j . Experiments in Section 6.2 show that other cluster similarity measures can also be

used to give similar results.

For each iteration k, let the closest pair of clusters be U
(k)
a and U

(k)
b , then the new

(merged) cluster will be the union of U
(k)
a and U

(k)
b ; that is, U

(k+1)
ab = U

(k)
a ∪ U (k)

b . For

every other cluster U
(k)
c ∈ U (k) \ {U (k)

a , U
(k)
b }, U

(k)
c remains the same in U (k+1); that is,

U
(k+1)
c = U

(k)
c . Consequently,

U (k+1) = (U (k) \ {U (k)
a , U

(k)
b }) ∪ {U

(k+1)
ab }

For every pair of clusters in U (k+1) not including U
(k+1)
ab , inter-cluster similarities remain

the same as they were in the previous iteration, so there is no need to recompute them.
For U

(k+1)
ab , I compute its similarity to every other cluster U

(k+1)
c ∈ U (k+1) \ {U (k+1)

ab } in a
constant amount of time by utilizing the memoized values from the previous iteration as
follows:

c sim(U (k+1)
c , U

(k+1)
ab ) =

|U (k)
a |.c sim(U

(k)
c , U

(k)
a ) + |U (k)

b |.c sim(U
(k)
c , U

(k)
b )

|U (k)
a |+ |U (k)

b |
Thus, the memoization can be updated in O(|U (k+1)|) running time.

Clustering stops when the most similar pair of clusters (U
(k)
a , U

(k)
b ) is not similar enough;

that is, c sim(U
(k)
a , U

(k)
b ) < τc sim, where τc sim is a pre-defined threshold. The experiments
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Figure 4.2: The system interface during schema clustering.

in Section 6.2 elaborate on the choice of τc sim. Let the last set of clusters produced before
the algorithm stops be C = {C1, C2, . . . , C|C|}. The set C is the output of the clustering
algorithm. Figure 4.2 shows the system interface during the schema clustering phase.

4.3 Assigning Probabilities

The main source of uncertainty in schema clustering are the schemas that lie on the
boundaries between clusters. Actually, in some cases, assigning these boundary schemas
to clusters is arbitrary. For example, consider the case when agglomerative clustering
is running and there exist three clusters U

(k)
1 , U

(k)
2 and U

(k)
3 . It is possible to have

c sim(U
(k)
1 , U

(k)
2 ) = c sim(U

(k)
1 , U

(k)
3 ) ≥ τc sim. If no other pair of clusters is as similar

as (U
(k)
1 , U

(k)
2 ) and (U

(k)
1 , U

(k)
3 ), then either U

(k)
2 or U

(k)
3 will be merged with U

(k)
1 . The

choice will typically be arbitrary. Other possible sources of uncertainty include cases of
very small differences between c sim(U

(k)
1 , U

(k)
2 ) and c sim(U

(k)
1 , U

(k)
3 ). Thus, I consider as-

signing a single schema to multiple domains with different probabilities if it has sufficient
similarity to all of them.
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Algorithm 3 explains how these probabilities are assigned.

Algorithm 3 Assign Probabilities

1: procedure AssignProbabilities
2: input: Set of schemas S = {S1, S2, . . . , S|S|}
3: input: Set of clusters C = {C1, C2, . . . , C|C|}

4: for all Cr ∈ C do
5: Define a domain Dr

6: end for
7: for all Si ∈ S do
8: for all Cr ∈ C do
9: if s c sim(Si, Cr) ≥ τc sim and

10:
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1− θ then

11: Pr(Si ∈ Dr)←
s c sim(Si, Cr)∑

Dj∈D(Si)

s c sim(Si, Cj)

12: else
13: Pr(Si ∈ Dr)← 0
14: end if
15: end for
16: end for
17: return {(Si, Dr, P r(Si ∈ Dr)) : for all Si and Dr}
18: end procedure

Since I am going to assign some schemas to multiple domains, while each schema in S
belongs to one and only one cluster in C, I need to separate the concept of clusters from
the concept of domains. I use the term clusters to refer to sets of schemas that partition S,
like those returned by Algorithm 2. I use the term domains to refer to sets of schemas too;
however, every schema in S may belong to multiple domains with different probabilities.

I construct domains from the clusters returned by Algorithm 2 as follows. First, I con-
sider the existence of a cluster as an indicator of the existence of a domain, so the number of
domains equals the number of clusters. Let the set of domains be D = {D1, D2, . . . , D|D|},
where |D| = |C|, and each domain Dr ∈ D corresponds to a cluster Cr ∈ C, for all r. I
then examine every schema Si ∈ S; if Si is sufficiently similar to multiple clusters then I
assign Si to the domains corresponding to these clusters with different probabilities based
on the similarities between Si and each of these clusters.

19



The similarity between a schema Si ∈ S and a cluster Cr ∈ C is measured as follows:

s c sim(Si, Cr) =
1

|Cr|
∑
Sj∈Cr

s sim(Si, Sj)

That is, the average of the schema similarities between Si and all the schemas in Cr.
For any schema Si to be assigned to any domain Dr, two conditions must be satisfied.
First, the value of s c sim(Si, Cr) must be at least τc sim. Second, I require that the ratio
between s c sim(Si, Cr) and the maximum similarity between Si and any other cluster be

sufficiently large; that is,
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1− θ, for some θ ∈ [0, 1]. The threshold θ

quantifies the degree of uncertainty allowed when assigning schemas to domains; a higher
θ means higher uncertainty. The value used in the experiments of this thesis is θ = 0.02.

For each schema Si ∈ S, let D(Si) be defined as follows:

D(Si) = {Dr : s c sim(Si, Cr) ≥ τc sim and
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1− θ}

Also, for each domain Dr ∈ D, let S(Dr) = {Si : Dr ∈ D(Si)}. For all Si 6∈ S(Dr),
Pr(Si ∈ Dr) = 0. Otherwise, for all Si ∈ S(Dr), the probability that Si belongs to Dr is
estimated as the schema-to-cluster similarity between Si and the Cr, normalized so that
all the probabilities assigned to Si sum up to 1. That is,

Pr(Si ∈ Dr) =


s c sim(Si, Cr)∑

Dj∈D(Si)

s c sim(Si, Cj)
; if Si ∈ S(Dr)

0 ; otherwise

The output of this phase is the set of triples {(Si, Dr, P r(Si ∈ Dr)) : for all Si ∈
S and Dr ∈ D}. Triples with Pr(Si ∈ Dr) = 0 do not need to be represented explic-
itly. In practice, most schemas will belong to one domain with probability 1, while only a
few schemas in each domain will belong to the domain with probabilities between 0 and 1
exclusive.

After schema clustering, a fully automatic schema mediation and mapping technique
can be run to generate a mediated schema for each domain Dr, and generate probabilistic
mappings from each schema Si ∈ S(Dr) to the mediated schema of Dr. The following
section explains how this is typically done.
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4.4 Probabilistic Mediation and Mapping

Between schema clustering and query classification, we need to create a mediated schema
for each domain and map all the domain’s schemas to that mediated schema. There is
already previous research that deals with that problem [8], and it is not among the goals
of this thesis to add to that research. However, I need to show how my work integrates
with previous work. Therefore, this section serves to complete the picture rather than to
develop new schema mediation and mapping techniques.

Any existing method of schema mediation and mapping can be used as long as it
provides the following for each domain Dr ∈ D, given S(Dr) as an input:

• A mediated schema Mr = {AMr
1 , AMr

2 , . . . , AMr

|Mr|}, where AMr
j is a mediated attribute

for j = 1, 2, . . . , |Mr|. A mediated attribute is not necessarily a single attribute.
Depending on the algorithm used for schema mediation, it may be a set of similar
attributes extracted from S(Dr) and clustered together. Typically, attribute simi-
larity should be based on the same similarity function t sim that is used in creating
feature vectors.

• For each schema Si ∈ S(Dr), a probabilistic schema mapping ΦSi,Mr =
{(φSi,Mr

j , P r(φSi,Mr

j )); where j = 1, 2, ..., |ΦSi,Mr |}. φSi,Mr

j is a schema mapping from

Si to Mr; that is, a function that maps tuples from Si to Mr. Pr(φSi,Mr

j ) is the
probability that such mapping is correct. I make the simplifying assumption that
Pr(φSi,Mr

j ) is independent of Pr(Sk ∈ Dr), for all Sk ∈ S(Dr). So the probabilities
assigned to schema mappings by the schema mapping algorithm are only based on
the attribute names of the schemas in S(Dr).

I use the same symbol Si when referring to the data source whose schema is Si so as to
simplify the notation. I also use the phrase raw tuples to refer to tuples retrieved from Si
but not mapped yet to Mr, while those already mapped to Mr are referred to as mapped
tuples.

At query-time, whenever a query is posed over Mr, the query is dispatched to every
schema Si in S(Dr). Let the set of raw tuples retrieved from Si be Ri = {Ri

j : j =
1, 2, . . . , |Ri|}. The probabilistic schema mapping ΦSi,Mr is then applied to every raw tuple
Ri
j ∈ Ri to map it into a tuple compatible with the schema Mr. Since ΦSi,Mr actually

comprises several mappings, each having its own probability, we have for each raw tuple
Ri
j ∈ Ri a set of mapped tuples, each with its own probability. If, for the same raw tuple

Ri
j, two (or more) mapped tuples are exactly the same, e.g. φSi,Mr

l (Ri
j) = φSi,Mr

l′ (Ri
j) where

l 6= l′, then they will be consolidated into one mapped tuple whose probability is the sum
of the probabilities of the original tuples; that is, Pr(φSi,Mr

l ) + Pr(φSi,Mr

l′ ).
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The mapped tuples retrieved from different data sources, all of them already mapped
to Mr, will be gathered into a single result set Rall to be returned to the user. In our
case, different data sources belong to Dr with different probabilities. Therefore, the overall
probability assigned to every mapped tuple φSi,Mr

l (Ri
j) in the result set Rall will be the

product of two probabilities: (1) the probability that the schema Si, from which the tuple
Ri
j was retrieved, belongs to the domain Dr, and (2) the probability that the mapping

φSi,Mr

l , that was used to map the tuple Ri
j into Mr, is correct. That is,

Pr(φSi,Mr

l (Ri
j) ∈ Rall) = Pr(φSi,Mr

l ) . P r(Si ∈ Dr)

Finally, if two (or more) tuples in the final result set Rall, retrieved from different data

sources, are exactly the same, e.g. φSi,Mr

l (Ri
j) = φ

Si′ ,Mr

l′ (Ri′

j′), where i 6= i′, then they will
be consolidated into one tuple whose probability is

1−
[(

1− Pr(φSi,Mr

l (Ri
j) ∈ Rall)

)(
1− Pr(φSi′ ,Mr

l′ (Ri′

j′) ∈ Rall)
)]
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Chapter 5

Query Classification

In this chapter I investigate the issue of answering keyword queries posed over a multi-
domain data integration system by retrieving and ranking relevant domains. I use a naive
Bayesian classifier to determine the probability that a keyword query belongs to any of the
domains that are constructed during the clustering phase. For the classifier to do this, some
of the keywords in the query need to be similar to some attribute names in the relevant
domains. The design of the classifier ensures that expensive operations are performed at
system setup time rather than query time.

5.1 The Naive Bayesian Classifier

At query time, the user poses keyword queries on the system. The system proposed in
this thesis deals with keyword queries that include keywords that are similar to some of
the attribute names in the schema domains (e.g., “departure Toronto destination Cairo”).
Whenever a keyword query is posed over the system, the system generates a feature vector
to characterize the keyword query in the same manner as it does for every schema in S
(Section 4.1). Let Q denote the set of keywords in the keyword query entered by the user.
I convert all keywords into the canonical form, and remove stop words and extremely small
keywords. The result is the set of terms TQ. I then construct the binary feature vector

FQ. Let FQ
j be the jth feature in FQ, and Lj be the jth term in the vector L that contains

all terms in all schemas. I set the value of the feature FQ
j to 1 if there exists a term in TQ

that is sufficiently similar to Lj; that is, if max
t∈TQ

t sim(Lj, t) ≥ τt sim. Otherwise, FQ
j = 0.

The target is to determine the posterior probability for each domain Dr; that is, given
FQ, the probability that Q belongs to Dr. Let us denote this probability as Pr(Dr|FQ).
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According to Bayes’ rule:

Pr(Dr|FQ) =
Pr(FQ|Dr)Pr(Dr)

Pr(FQ)
(5.1)

Pr(FQ|Dr) is the probability that an arbitrary schema Srand, randomly chosen from the
domain Dr, has a feature vector equal to FQ. Pr(Dr) is the probability that an arbitrary
schema Srand, randomly chosen from S, belongs to Dr. Pr(F

Q) is the probability that an
arbitrary schema Srand, randomly chosen from S, has a feature vector equal to FQ.

Based on application context, I may assign Q to the domain that has the maximum
posterior probability (i.e., arg max

Dr

Pr(Dr|FQ)), or I may return a list of relevant domains

ranked by posterior probabilities. Note that, in Equation 5.1, I do not need to compute
Pr(FQ) since it is constant for all Dr ∈ D and thus it does not affect the relative order
of posterior probabilities. Consequently, for each domain Dr, I only need to compute
Pr(FQ|Dr)Pr(Dr).

Let us make the fundamental assumption of the naive Bayes classifier, which is the
assumption that all features are conditionally independent given the domain. Consequently,

Pr(FQ|Dr)Pr(Dr) = Pr(Dr)
dim L∏
j=1

Pr(FQ
j |Dr) (5.2)

where Pr(FQ
j |Dr) is the probability that an arbitrary schema Srand, randomly chosen from

the domain Dr, has its jth feature F rand
j equal to FQ

j .

The values of Pr(Dr) and Pr(FQ
j |Dr), for all j, depend on which schemas are assigned

to which domains. This assignment is determined based on another probability distribution
as described in Section 4.3. Therefore, Pr(Dr) can be expressed in terms of the following
summation over all subsets of S(Dr):

Pr(Dr) =
∑

S′⊆S(Dr)

Pr(Dr|Dr = S ′)Pr(Dr = S ′) (5.3)

Similarly, for all j,

Pr(FQ
j |Dr) =

∑
S′⊆S(Dr)

Pr(FQ
j |Dr = S ′, Dr) Pr(Dr = S ′|Dr) (5.4)

I analyze the probabilities on the right-hand sides of Equations 5.3 and 5.4 as follows:

1. The probability Pr(Dr|Dr = S ′) is estimated as:

Pr(Dr|Dr = S ′) =
|S ′|
|S|

(5.5)
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2. The probability Pr(Dr = S ′) can be expressed as the probability of the following
conjunction:

Pr(Dr = S ′) = Pr

( ∧
Si∈S′

Si ∈ Dr

∧
Si 6∈S′

Si 6∈ Dr

)
I make a second simplifying assumption by assuming that the assignments of schemas
to domains are statistically independent. Consequently,

Pr(Dr = S ′) =
∏
Si∈S′

Pr(Si ∈ Dr)
∏
Si 6∈S′

Pr(Si 6∈ Dr) (5.6)

3. Pr(FQ
j |Dr = S ′, Dr) is the probability that the jth feature of an arbitrary schema

Srand, randomly chosen from S ′, equals FQ
j . This probability is estimated as follows:

Pr(FQ
j |Dr = S ′, Dr) =

|{Si : Si ∈ S ′ and F i
j = FQ

j }|
|S ′|

Since all features are binary, the last equation can be rewritten as follows:

Pr(FQ
j |Dr = S ′, Dr) =


∑

Si∈S′ F i
j

|S ′|
; if FQ

j = 1

1−
∑

Si∈S′ F i
j

|S ′|
; if FQ

j = 0

(5.7)

4. The probability Pr(Dr = S ′|Dr) can be computed using Bayes’ rule as follows:

Pr(Dr = S ′|Dr) =
Pr(Dr|Dr = S ′)Pr(Dr = S ′)

Pr(Dr)
(5.8)

Note that the probabilities on the right-hand side of Equation 5.8 are already com-
puted as part of Equation 5.3.

By substituting Equations 5.5, 5.6, 5.7, and 5.8 into Equations 5.3 and 5.4, and then
substituting Equations 5.3 and 5.4 into Equation 5.2, I obtain the posterior probabilities
required to rank domains. Figure 5.1 shows the system interface during the construction
of the query classifier.

5.2 Robustness Issues

There are two issues with Equation 5.7. The first issue is that |S ′| can be zero; if, for
all Si ∈ S(Dr), Pr(Si ∈ Dr) 6= 1, then there is a non-zero probability that Dr is empty,
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Figure 5.1: The system interface during the construction of the query classifier.

so |S ′| may be zero. The second issue is that, if a query has an extra term (i.e., a term
that does not exist in any of the schemas in S(Dr)), then no matter how many other
terms are common between the query and the schemas in S(Dr), the probability that the
query belongs to Dr will be zero. To see this, assume that F i

j = 0 for all Si ∈ S(Dr).

Then, according to Equation 5.7 the probability Pr(FQ
j |Dr = S ′, Dr) will be zero, for all

S ′ ⊆ S(Dr). Substituting Pr(FQ
j |Dr = S ′, Dr) in Equation 5.4, the probability Pr(FQ

j |Dr)

will also be zero. Eventually, by substituting Pr(FQ
j |Dr) in Equation 5.2, the posterior

probability will be zero. Similarly, it is easy to see that, if a query has a missing term
(i.e., a term that exists in all the schemas in S(Dr) but not in the query), then no matter
how many other terms are common between the query and the schemas in S(Dr), the
probability that the query belongs to Dr will be zero.

To solve these two problems I use the m-estimate of probabilities [4]. Basically, for
each domain Dr, and for each subset S ′ ⊆ S(Dr), I act as if S ′ has m additional schemas,
some of them have all their features set to 1, while the others have all their features set
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to 0. Consequently, Equation 5.7 can be rewritten as follows:

Pr(FQ
j |Dr = S ′, Dr) =


∑

Si∈S′ F i
j + p.m

|S ′|+m
; if FQ

j = 1

1−
∑

Si∈S′ F i
j + p.m

|S ′|+m
; if FQ

j = 0

(5.9)

where p ∈ (0, 1) is the fraction of additional schemas that have all their features set to 1.

A typical choice would be to set p = 0.5 so as to give the classifier no bias towards
either extra terms or missing terms. However, I need to consider the fact that keyword
queries are usually short. A typical keyword query will contain a small subset of the terms
in the schemas of S(Dr), plus a small number of extra terms, so it is much more likely to
have missing terms than extra terms. I set p = 1/dim L and m = 1 + |S ′|, which gives
much more bias towards missing terms, and keeps the number of added schemas reasonable
compared to the size of the domain.

5.3 Time Complexity

Bayesian classification is expensive, but all of the expensive operations in my case can be
done at setup time rather than query time. Equations 5.5, 5.6, and 5.8 are all independent
of the user’s query. Equation 5.9 depends on the value of the query feature FQ

j , but since

FQ
j may assume one of only two values (either 0 or 1) I can still compute Equation 5.9

at setup time for both FQ
j = 0 and FQ

j = 1. Therefore, all the probabilities used on the
right-hand side of Equation 5.2 can be pre-computed and stored at setup time. At query
time, calculating Equation 5.2 for all domains takes O(|D| dim L) running time per query.

To analyze the setup time needed for Equation 5.2 let us first define the set of uncertain
schemas for each domain Dr as Ŝ(Dr) = {Si : Si ∈ S(Dr) and Pr(Si ∈ Dr) 6= 1}. Ŝ(Dr)
is the set of all schemas that belong to Dr with probabilities strictly smaller than 1 and
strictly greater than 0. I will also use the term certain schemas to refer to schemas
that belong to Dr with probability 1; that is, S(Dr)\Ŝ(Dr). Any subset S ′ ⊆ S(Dr) may
include or exclude any uncertain schemas and still maintain a non-zero probability; that is,
Pr(Dr = S ′) 6= 0. However, if any certain schema is excluded from S ′, then Pr(Dr = S ′)
will be zero according to Equation 5.6, and consequently S ′ will not contribute to the
summation in Equation 5.3. Additionally, by substituting Pr(Dr = S ′) into Equation 5.8,
Pr(Dr = S ′|Dr) will also be zero, and again S ′ will not contribute to the summation in
Equation 5.4. Therefore, when computing the summations in Equations 5.8 and 5.4, I only
need to consider the subsets that contain all the certain schemas in S(Dr). This prunes

the number of subsets to be considered from 2|S(Dr)| to 2|Ŝ(Dr)|.
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By memoizing intermediate values, the probabilities in Equation 5.2 can be calculated

for all domains at setup time in O(max
Dr∈D

{|Ŝ(Dr)| 2|Ŝ(Dr)|} |D| dim L + |S| dim L) running

time. The growth rate of setup time is dominated by the need to enumerate all possible
combinations of uncertain schemas for each domain. Thus, the time to construct the clas-
sifier depends on the number of uncertain schemas much more than the total number of
schemas. Uncertain schemas are schemas that lie on the boundaries between domains; that
is, schemas with close similarities to multiple domains. Typically, they should not consti-
tute significant portions of their domains. Whenever necessary, the number of uncertain
schemas can be decreased by decreasing the parameter θ (Section 4.3).
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Chapter 6

Experimental Evaluation

6.1 Experimental Setup

I implement the back end schema clustering and classification algorithms in C++, while
the front end GUI is implemented in C#, and I use this prototype to evaluate the effective-
ness of my schema clustering and query classification techniques. I run my experiments on
a Windows Vista machine, with Intel Centrino Duo 2GHz processor and 3GB RAM. The
goal of my experiments is to demonstrate that my techniques can correctly cluster schemas
of data sources available on the web into domains, and can classify keyword queries into
appropriate domains. For these experiments I need schemas of web data sources labeled
with their correct domains, and I need queries that are also labeled with domains. Gener-
ating and labeling schemas and queries in a meaningful way in itself poses some interesting
challenges, which I describe next.

6.1.1 Schemas Used

I use the schema set used in [8], which I obtained from the authors of that paper. This
schema set consists of 2323 schemas from 5 different domains (bibliography, cars, courses,
movies, and people) that were extracted from Google’s web index, and I refer to it as the
DDH set after the initials of the authors of [8]. Examples of schemas from the DDH data set
include {title, authors, year of publish, conference name} from the ‘bibliography’ domain
and {year, type, make, model} from the ‘cars’ domain. The domains in DDH are few and
sharply separated, and thus are expected to lend themselves perfectly to clustering. Data
sources on the web are not restricted to a small number of well-defined domains, but rather
come from extremely diverse and overlapping domains. To test my schema clustering and
query classification methods on such diverse and overlapping domains, I collect my own
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Figure 6.1: Extracting schemas from deep web data sources and downloadable spread-
sheets. Attribute names are circled in red.
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schema sets manually through web search and through lists of hidden web data sources
that are available on-line (e.g., in Wikipedia).

I extract two sets of schemas from two types of data sources as illustrated in Figure 6.1.
The first schema set, which I refer to as DW, is extracted from deep web data sources. For
this schema set, I find the web form interfaces to deep web data sources, and manually
extract the attribute names in each form. These attribute names form the schema of the
data source. For example, the schema extracted from the web page of expedia.com that
is shown in Figure 6.1 is {departure airport, destination airport, departing (mm/dd/yy),
returning (mm/dd/yy), airline, class}. The second schema set, which I refer to as SS, is
extracted from downloadable spreadsheets that I obtained using Google’s “search by file
type” option. The schema of a spreadsheet consists of the manually extracted headers of
the columns in the spreadsheet. For example, the schema extracted from the spreadsheet
that is shown in Figure 6.1 is {song, artist/composer, genre}. The attribute names in
DW schemas tend to be phrased in a better way and are more accurately indicative of the
domain than the ones in SS schemas. In both schema sets, around 25% of the schemas are
unique in the sense that a human would not cluster any of them with any other schemas in
their sets. These unique schemas are expected to remain unclustered after the clustering
algorithm terminates.

6.1.2 Evaluating Schema Clustering

To evaluate the effectiveness of schema clustering, a typical approach would be to manually
assign a label to each schema indicating its domain, and then to measure the effectiveness of
the clustering algorithm at grouping schemas with the same domain label. This approach
works well for the DDH schema set since the domains are sharply separated, but it does not
work well for DW and SS. For DW and SS, the boundaries between different domains are
not always obvious, and a single schema may be correctly classified into several domains.
The following example illustrates this problem.

Example 6.1.1 Consider the following two schemas, extracted from two different data
sources, both providing information about faculty members:
S1:{faculty member, office phone, email, fax}
S2:{name, position, affiliation, research interests}
Although both schemas are concerned with faculty members, they provide different types of
information. In principle, S1 and S2 should be clustered together since a user looking for
information about faculty members may find both of them useful. However, considering
the fact that the objective of clustering in my case is to serve as a preliminary step before
schema mediation and mapping, clustering S1 and S2 together may not be so useful since
the two schemas together do not provide a good input for schema mediation and mapping
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DW SS Both
Number of Schemas 63 252 315
Max. terms per schema 72 119 119
Avg. terms per schema 14 12.4 12.8
Number of labels used 24 85 97
Max. labels per schema 2 4 4
Avg. labels per schema 1 1.5 1.4
Max. schemas per label 13 67 67
Avg. schemas per label 2.8 4.4 4.5

Table 6.1: Statistics about schema sets.

algorithms. The question is: If the clustering algorithm clusters S1 and S2 together, is it a
false positive? If it does not cluster them together, is it a false negative?

In order to deal with this problem, I perform my experiments as follows. For the two
schema sets DW and SS, I manually associate each schema Si with a set of labels B(Si)
according to what I perceive as potential domains for Si. Example domain labels that I
use include ‘movies’, ‘bibliography’, and ‘people’ (see Appendix A for a complete list). As
a concrete example, the schema {first name, last name, function, gender, description, date
of birth, place of birth, date of death, place of death} that is extracted from a deep web
data source is associated with the label ‘people’, while the schema {Name, Grade, School,
District, Project} that is extracted from a downloadable spreadsheet is associated with
the four labels ‘schools’, ‘people’ ‘awards’, and ‘projects’. Each schema in the data set is
labeled with at least one label. Table 6.1 provides detailed statistics about the labels used
for DW, SS, and their union. These numbers indicate that a few labels have the majority
of schemas associated with them, while the majority of labels have a few schemas.

Let the set of all labels used be B = ∪|S|i=1B(Si) = {B1, B2, . . . , B|B|}. Also, let S(Bj)
denote the set of all schemas labeled with Bj. I run the clustering algorithm on the schema
sets and examine the set of domains D that is produced by the clustering algorithm, and I
label each domainDr ∈ D with the set of dominant labels within this domain. Usually there
is only one dominant label, but sometimes there are several labels that equally dominate
the domain (i.e., there exist two or more labels, each of them is associated with n schemas
in the domain, where n is the largest number of schemas associated with any label in the
domain). Let B(Dr) denote the set of dominant labels in the domain Dr. Also, let D(Bj)
denote the set of domains dominated by Bj. I determine dominant labels as follows:

B(Dr) = arg max
Bj∈B

∑
Si∈S(Bj)

Pr(Si ∈ Dr)
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Summing the probabilities should be interpreted as a weighted counting of the schemas
in Dr and is not intended to have a probabilistic meaning. I also sum probabilities as a
weighted counting of schemas when estimating precision and recall. If more than one label
equally dominate the domain, I include them all in B(Dr).

A special case is when the dominant label of Dr does not have an absolute majority;
that is,

max
Bj∈B

∑
Si∈S(Bj)

Pr(Si ∈ Dr) <
1

2

∑
Si∈S

Pr(Si ∈ Dr)

I then call Dr a non-homogeneous domain. A non-homogeneous domain is treated as if it
has no dominant label; i.e. B(Dr) = φ. When computing precision and recall, schemas
assigned to non-homogeneous domains are all counted as false negatives. I also compute
the fraction of schemas assigned to non-homogeneous domains as one of my performance
measures. Another special case is a domain with only one schema. This happens when a
schema is not sufficiently similar to any other schemas in S, given the value used for the
threshold τc sim. I measure the fraction of unclustered schemas, and exclude them from
other performance measurements like precision and recall. One last case to be considered
is when two different domains are dominated by the same label; i.e. B(Da) ∩ B(Db) 6= φ
where a 6= b. I use the term fragmentation to refer to this case and I measure the degree of
fragmentation in my experiments by computing the average number of domains dominated

by each label; that is,
1

|B|
∑
Bj∈B

|D(Bj)|. Finally, I measure precision and recall as follows.

Precision: For each schema Si ∈ S(Dr), if B(Si) ∩B(Dr) 6= φ then Si contributes to the
true positives of Dr, denoted as TPDr , by the probability of membership of Si in Dr.

TPDr =
∑

Si:B(Si)∩B(Dr)6=φ

Pr(Si ∈ Dr)

Similarly, the false positives of Dr, denoted as FPDr , are estimated as

FPDr =
∑

Si:B(Si)∩B(Dr)=φ

Pr(Si ∈ Dr)

I therefore estimate the average precision as

1

|D|
∑
Dr∈D

TPDr

TPDr + FPDr

Recall: For each domain Dr, if Bj ∈ B(Dr) and there exists Si ∈ S(Dr) such that
Bj ∈ B(Si), then Si contributes to the true positives of Bj, denoted as TPBj

, by the
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probability of membership of Si in Dr; that is,

TPBj
=

∑
Dr∈D(Bj)

∑
Si∈S(Bj)

Pr(Si ∈ Dr)

Similarly, the false negatives of Bj, denoted as FNBj
, are estimated as

FNBj
=

∑
Dr 6∈D(Bj)

∑
Si∈S(Bj)

Pr(Si ∈ Dr)

I therefore estimate the average recall as

1

|B|
∑
Bj∈B

TPBj

TPBj
+ FNBj

To evaluate my clustering approach, I measure the effect of changing τc sim on the
performance measures like precision, recall, fragmentation, unclustered schemas, and non-
homogeneous domains. I also compare the performance of my clustering algorithm when
other cluster-to-cluster similarity measures are used instead of the average Jaccard similar-
ity that is described in Section 4.2. The other alternatives I consider for cluster-to-cluster
similarity are Min. Jaccard, Max. Jaccard, and Total Jaccard. These three similarity mea-
sures can be defined as follows. Let U

(k)
i and U

(k)
j be two clusters at a given iteration

k.

Min. Jaccard: The minimum of the Jaccard similarities between every schema in U
(k)
i

and every schema in U
(k)
j .

c sim(U
(k)
i , U

(k)
j ) = min

Sa∈U(k)
i ,Sb∈U

(k)
j

s sim(Sa, Sb)

Max. Jaccard: The maximum of the Jaccard similarities between every schema in U
(k)
i

and every schema in U
(k)
j .

c sim(U
(k)
i , U

(k)
j ) = max

Sa∈U(k)
i ,Sb∈U

(k)
j

s sim(Sa, Sb)

Total Jaccard: The number of terms common between all the schemas in U
(k)
i and U

(k)
j

divided by the number of all terms that exist in any of the schemas in U
(k)
i or U

(k)
j .

c sim(U
(k)
i , U

(k)
j ) =

|{l :
∧
Sa∈U(k)

i
F a
l = 1

∧
Sb∈U

(k)
j
F b
l = 1}|

|{l :
∨
Sa∈U(k)

i
F a
l = 1

∨
Sb∈U

(k)
j
F b
l = 1}|
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6.1.3 Generating Queries

To evaluate my query classification algorithm I need to simulate a typical query formu-
lation process in which the user enters a query that includes some attribute names with
a particular domain in mind. This query formulation process is a random process that
I simulate as follows. I let the number of keywords in each query range from 1 to 10,
with 100 queries generated for each number in this range. I use the same domain labeling
terminology as in Section 6.1.2. For each randomly generated query Qrand, I pick from B a
random label Brand for Qrand to target. The label Brand is selected based on the following
probability distribution:

Pr(Brand) =
|S(Brand)|∑|B|
j=1 |S(Bj)|

That is, a label associated with a larger number of schemas will receive a larger number
of queries, ensuring a balanced distribution of queries. Having selected a label Brand, I
start generating the keywords of the query. For simplicity, I treat the multiple keywords in
the same query as a set of conditionally independent and identically-distributed random
variables given Brand. Let Tall be the set of all terms extracted from all schemas as explained
in Section 4.1; that is, Tall = ∪Si∈STi. I need to pick from Tall some keywords that a user
will typically associate with Brand as characteristic keywords that distinguish it from other
labels. For each term tl ∈ Tall, let Freq(tl, Bj) indicate the number of schemas in S(Bj)
that contain the term tl; that is, Freq(tl, Bj) = |{Si : Si ∈ S(Bj) and tl ∈ Ti}|. When
picking terms for Brand, I filter out the terms that do not exist in a sufficiently large fraction
of schemas in S(Brand). The fraction that I use for DW and SS is 0.25, while in the case
DDH I use only 0.1 since the size of S(Brand) in the case of DDH is counted in hundreds.
After filtering out infrequent terms, I need to estimate for each of the remaining terms the
probability that the term will be used in a query that targets Brand. I use the following
formula to estimate the degree by which a term tl distinguishes a label Bj from other
labels:

λ(tl, Bj) =
Freq(tl, Bj)∑

ta∈Tall

Freq(ta, Bj)
/

1

|B|
∑
Bb∈B

Freq(tl, Bb)∑
ta∈Tall

Freq(ta, Bb)

That is, the ratio between the relative frequency of tl in Bj, and the average relative
frequency of tl in all domain labels. I normalize λ(tl, Bj) such that, given a label Bj, the
summation of the normalized λ(tl, Bj), for all tl, equals 1. The normalized value of λ(tl, Bj)
is used as the probability of picking the term tl given that the label Bj has already been
picked. Therefore,

Pr(trand|Brand) =
λ(trand, Brand)∑
ta∈Tall

λ(ta, Brand)

This way, I assign higher probabilities to the terms that exist in S(Brand) with higher ratios
relative to their existence in the schemas of other labels.
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Figure 6.2: Average precision.

Examples of randomly generated queries include: the single keyword query “make”
targeted at the domain ‘cars’, the 3-keywords query “pages author words” targeted at the
domain ‘bibliography’, and the 4-keywords query “class hours bldg location” targeted at
the domain ‘courses’.

6.2 Schema Clustering Quality

I compare the effectiveness of my clustering algorithm when using the four similarity mea-
sures: Min. Jaccard, Max. Jaccard, Avg. Jaccard and Total Jaccard. I also measure the
effect of changing the value of τc sim on the quality of clustering.

First I run my clustering algorithm on the DDH schema set. The clustering algorithm
works perfectly on DDH, giving precision and recall values above 0.99 for all τc sim ≥ 0.2
and for all similarity measures, except Max. Jaccard which gives low recall for τc sim < 0.5.
The perfect performance of the clustering algorithm on DDH is expected since the schemas
in DDH belong to a few well-separated domains.

Next, I run the clustering algorithm on the union of the two schema sets DW and SS.
Figures 6.2 to 6.6 show the performance of the clustering algorithm on the union of DW
and SS, using the four similarity measures, as τc sim varies from 0.1 to 0.9. The figures
show that all the similarity measures perform almost the same, except for Max. Jaccard
which performs worse than the rest under some settings, and is therefore not recommended.
Total Jaccard, which is more expensive than the rest, provides no substantial gains over
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Figure 6.3: Average recall.

Figure 6.4: Average fragmentation.
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Figure 6.5: Fraction of schemas in non-homogeneous domains.

Figure 6.6: Fraction of unclustered schemas.
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τc sim = 0.2 τc sim = 0.3
DW SS Both DW SS Both

Precision 0.75 0.84 0.81 0.85 0.87 0.82
Recall 0.93 0.77 0.78 0.98 0.86 0.86
Unclustered 0.25 0.37 0.29 0.48 0.56 0.50
Non-homog. 0 0.11 0.13 0 0.03 0.04
Fragmentation 1 1.77 1.29 1.38 1.67 1.58

Table 6.2: Evaluation of schema clustering.

Avg. Jaccard or Min. Jaccard, so it too is not recommended. I recommend either Avg. Jac-
card or Min. Jaccard. I use Avg. Jaccard as my default similarity measure as described in
Section 4.2.

The figures also illustrate how τc sim affects the effectiveness of clustering. As τc sim
increases, precision and recall increase, and the fraction of schemas in non-homogeneous
domains decreases, which are all desirable effects. However, as τc sim increases, the number
of unclustered schemas also increases, which is undesirable. However, we should take into
account that 25% of the schemas are already unique (as mentioned in Section 6.1.1) and
should therefore remain unclustered. At the extreme value of τc sim = 0.9, all schemas are
unclustered. Therefore, we have a trade-off between the number of unclustered schemas and
the quality of clustering as measured through precision, recall and the fraction of schemas
in non-homogeneous domains. Fragmentation, which does not include unclustered schemas
or non-homogeneous domains, generally increases as the value of τc sim increases from 0.1
to 0.5, since higher values of τc sim prohibit similar clusters from getting merged before the
clustering algorithm terminates, and therefore they get fragmented. Starting from around
0.5, as the value of τc sim increases fragmentation decreases because τc sim is becoming so
high that it breaks many domains down into unclustered schemas. As more domains get
broken down into unclustered schemas (which are not counted as domains), the number
of domains significantly decreases. Therefore, there is much less potential to have a label
associated with multiple domains. This set of experiments suggests setting τc sim between
0.2 and 0.3. It also shows that clustering is robust since it is not very sensitive to minor
changes in τc sim.

Table 6.2 presents results from a set of experiments that focuses on the performance
of the clustering algorithm for τc sim = 0.2 and 0.3. This set of experiments is performed
on each of the two sets of schemas DW and SS separately, and on the union of DW and
SS. As we saw previously, increasing the value of τc sim from 0.2 to 0.3 increases precision
and recall, and decreases the fraction of schemas in non-homogeneous domains, but it also
increases the fraction of unclustered schemas. The performance measures are generally
better for DW than SS because SS is more noisy than DW. The performance on the union
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of DW and SS is between the performance on the individual sets, which is expected. The
important observations are that clustering quality is high, and varying τc sim does not cause
major variations in any of the clustering performance measures. From these experiments,
we see that the clustering algorithm produces high quality results for different data sets,
and can be effectively and robustly controlled using the parameter τc sim.

6.3 Effect On Mediation And Mapping

Although it is possible in principle to perform schema mediation and mapping without
prior clustering, my experiments show that there are serious problems that arise when
doing that. In this section, I describe two problems that I observed when doing schema
mediation and mapping on my schema sets without prior clustering. For the purpose of my
experiments, I use the probabilistic schema mediation and mapping algorithms described
in [8].

The first problem is related to the semantic coherence of mediated attributes. It is
common to encounter two attributes from two different domains having exactly the same
name but with different meanings depending on the domain. For example, in the DW
schema set, the attribute ‘family name’ is used in a schema from the ‘people’ domain to
refer to the last name of a person, and in a schema from the ‘biology’ domain to refer to
the family of a living organism (i.e., a taxonomic rank). When performing mediation and
mapping on DW without clustering the schemas first, these two attributes are associated
with each others in a single mediated attribute. At runtime, when posing a query on
the mediated schema to retrieve values from the attribute ‘family name’, the result is an
incoherent set of values obtained from both data sources. This problem does not arise
when schemas are clustered before mediation.

The second problem is related to the size of the mediated schema. One of the techniques
used in schema mediation to make it tractable is to use an attribute frequency threshold
to filter out attributes that appear in only a small fraction of schemas (e.g., in [8] the
threshold is set to 0.1). However, this threshold is problematic if no clustering is done
before mediation. In that case, the threshold will eliminate most or all the attributes from
the domains that have fewer schemas than other domains, causing these small domains to
be under-represented or completely absent in the mediated schema. For example, when
performing schema mediation on the DDH schema set with a threshold of 0.1 and without
clustering, the result is a mediated schema in which 2 of the 5 domains of DDH are absent.
Even after reducing the threshold to 0.01, the smallest domain, namely ‘people’, is still
under-represented with only 4 attributes in the mediated schema, not including the most
relevant attributes like ‘phone’, ‘address’, and ‘email’. Picking a very small threshold value
will cause larger domains to be over-represented by including a large number of infrequent
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Figure 6.7: Query classification quality.

and uninteresting attributes in the mediated schema. Going to the extreme of completely
eliminating the threshold (i.e., using a threshold of 0) results in a meaningless mediated
schema that is merely a union of all attributes from all schemas (12060 mediated attributes
in the case of DDH). Besides being meaningless, this huge number of mediated attributes
significantly increases the running time of schema mediation and mapping. The total
running time for mediation and mapping in this case is 5 hours, while in all my experiments,
when doing schema clustering, mediation, and mapping, using typical parameters, the total
end-to-end running time is always less than 25 minutes. I conclude that schema clustering
before mediation and mapping improves quality and scalability.

6.4 Query Classification Quality

In this section, I present experiments to evaluate the accuracy of my query classifier. First,
I run my clustering algorithm to cluster schemas into domains. Next, I construct a naive
Bayesian classifier as described in Chapter 5 based on the domains that are generated from
clustering. I then use this classifier to classify queries that I generate randomly as described
in Section 6.1.3. The classifier returns a ranked list of domains, sorted descendingly ac-
cording to their relevance to the query. For each query size from 1 to 10, I compute the
top-1 fraction, which is the fraction of queries for which the top-ranked domain identified
by the classifier is labeled with the same label Brand as the query. I also compute the top-3
fraction, which the fraction of queries for which at least one of the top three domains is
labeled with the same label as the query. The top-3 fraction is meaningful only for DW
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and SS since the number labels is relatively large. For DDH, where the number of labels
is only 5, I only compute the top-1 fraction.

My experiments on DDH give almost perfect results, with the top-1 fraction being 1 for
all query sizes, except for single-keyword queries where the top-1 fraction drops slightly to
about 0.95. The classification results on the union of DW and SS are shown in Figure 6.7.
As the number of keywords per query increases, classification accuracy increases until the
top-1 fraction becomes almost 1. My results show that the classifier works well, even
though the keyword queries generated by my random query generator sometimes include
very non-indicative keywords due to the random nature of the query generator. For small
query sizes, it is quite common to generate a query that is dominated by non-indicative
keywords. In addition to quality, I also measure the running time needed to construct the
naive Bayesian classifier. For the large schema set DDH, it takes only about 5 minutes to
construct the classifier, while for the union of DW and SS it takes less than a minute.
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Chapter 7

Conclusion and Future Work

The growing number of structured data sources on the web has entailed growing interest
in data integration for these sources. Existing data integration techniques operate on data
sources that belong to a single domain. At web scale, it is infeasible to cluster data sources
into domains manually. I deal with this problem and propose a schema clustering approach
that utilizes techniques from document clustering. My solution depends on attribute names
only, and therefore is general enough to handle the different types of data source on the
web. I use a probabilistic model to handle the uncertainty in assigning schemas to domains,
which fits perfectly with previous work on data integration with uncertainty. I also propose
a technique based on naive Bayesian classification that reasons on top of my probabilistic
model in order to assign keyword queries posed by the user at runtime to the most relevant
domains.

Experiments show that, despite the limited amount of information available about
the data sources at clustering time, and despite the great amount of overlapping and
irregularity in the schemas of the data sources, the proposed clustering techniques work
well, and are not very sensitive to minor variations in parameters. The query classifier also
demonstrates good performance even though the experiments are run using automatically
generated queries that involve some randomness.

A possible direction of future work is to refine the solution to remove the exponential
factor in the running time needed to construct the query classifier (see Section 5.3). Even
if the running time can be effectively controlled through the parameter θ, the existence
of an exponential factor in the running time is an issue that needs to be resolved. One
approach to handle this issue is by approximating the probability distributions that require
such exponential time.

Another direction of future work is to develop techniques that incorporate user feedback
to update the system. User feedback can be either explicit, where the user directly assesses
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the correctness of clustering (e.g., by informing the system that a schema should be assigned
to another cluster rather than the one determined by the system), or implicit, where the
system automatically infers the correctness of clustering by monitoring user interaction
(e.g., clicking on search results). A different approach is to solicit automatic feedback from
the data retrieved from each data source at query time. That is, to determine whether
the tuples retrieved from the data sources in a given cluster are consistent with each
others, according to some measure of consistency, and use this to assess the correctness of
clustering.

It is also possible to extend the system by supporting other query models beyond the
current notion of keyword queries, considering data sources more general than single-table
sources, or working with other types of data sources such as RDF data.
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Appendix A

Domain Labels Used in Experiments

TOC, access, accounts, activities, airdisasters, alcohol, animals, applications, architec-
ture, art, articles, attributes, awards, banks, bibliography, blogs, boardgames, buildings,
business, cartoons, categories, channels, chemistry, chess, codeofconduct, comics, com-
petitions, concerts, contacts, courses, databases, degrees, departments, drink, environ-
ment, events, exams, exposures, factories, fellowships, festivals, food, games, gender, genes,
grants, healthplans, hotels, housing, industry, inflation, insurance, interments, internships,
invoices, items, jobs, librarians, licenses, licensing, locations, math, media, medications,
money, movies, music, names, nurseries, organizations, people, plans, plants, producers,
projects, race, religious, research, roads, robots, schedule, schemas, schools, series, sessions,
shows, sports, subjects, suppliers, taxes, teachers, theatres, tourism, tracking, videos, vul-
nerabilities, windows
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