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Abstract 
 

Tropical agroforestry systems are perceived to have the capacity to be resilient to 

future changes in climate.  This study quantifies the response of two tropical agroforestry tree 

seedlings; Gliricidia sepium (Jacq.) Walp and Cedrela odorata L. to increases in atmospheric 

concentrations of carbon dioxide (CO2) (800 ppm), temperature (+2°C daytime and +3°C 

nighttime) and the combined conditions.   As well, this study analyzes the microbial 

community structure and nutrient concentration in response to elevated concentrations of CO2 

on tropical silvopastoral soil, conventional pastoral soil and a regenerated forest soil.  Both 

tree species demonstrated very individual responses to the different climate scenerios. While 

no significant CO2 fertilizer effect was observed in either species the combined treatment 

demonstrated a significant increase in seedling height for both species.  The response of G. 

sepium to the combined treatment was similar to its response to the temperature treatment 

which could be a result of achieving the optimal range in temperature for growth.  As well, 

an increase in C:N ratio from G. sepium seedling leaves under the combined treatment 

indicates the possibility of the nutrient concentration diminishing thereby reducing the role of 

this species as a provider of high nutrient biomass.   The soil microbial community showed 

very little change in response to elevated concentrations of CO2 and differences in 

community structure between sites were also negligible.  Soil nutrient concentration 

maintained the best balance over the course of both twelve week incubations for the 

regenerated forest site followed by the silvopastoral site and lastly the conventional pasture 

site.  The response of soil nutrient concentration to elevated concentrations of CO2 was 

negligible reflecting the response of the soil microbial community.                 
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Chapter 1: General Introduction 

1.1 Introduction 

Tropical ecosystems, characterised by their latitudinal position at 0-23.4º north and 

south and distinct climatic regimes, offer a multitude of services at the global and ecosystem 

scale.  Tropical forests provide unique habitats allowing for the proliferation of biodiversity 

hotspots including endangered organisms and those that have not yet been identified 

(Chazdon, 2002; Bawa et al., 2004; Michon et al., 2007). These habitats, formed through the 

selection of very specific and constant conditions of temperature and precipitation, are highly 

sensitive to changes in climate which could impact biodiversity on a global scale (Chazdon, 

2003).    Due to its significant role in global processes and functions, understanding how 

tropical systems may react to changes in climate is vital for climate change adaptation 

strategies. Millions of people depend directly on the various services and products provided 

by tropical ecosystem to sustain their daily livelihoods.  Ecological services derived from 

tropical systems include contributing to global hydrological cycling, global cycling of 

nutrients and carbon in addition to biodiversity (Bawa et al., 2004; Hutchinson et al., 2007; 

Michon et al., 2007).   

The greatest threat to tropical ecosystems is the conversion of primary forests or 

grasslands to agroecosystems dominated by crops and livestock (Amezquita et al., 2005).  

This change in land use has resulted in a decline in biodiversity, soil degradation, habitat 

fragmentation and has negatively affected carbon (C) and nutrient cycles (Esquivel et al., 

2008).  The implementation of sustainable agricultural land management practices, such as 

agroforestry systems, may help address the current and prevalent issues relating to land 

degradation and soil infertility (Esquivel et al., 2008).  Agroforestry is defined as the 

inclusion of woody perennial species within an agricultural land area, including crop and/or 
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pasture dominated use (Nair, 1993).     Due to their complex structures agroforestry systems 

help to maintain diversity on the landscape, levels of soil organic matter and soil fertility. The 

higher input of organic matter from tree pruning, leaf litter and root turnover within an 

agroforestry system compared to monocrop agroecosystems maintain levels of soil organic 

matter (SOM) on the landscape. Soil organic matter contributes to soil fertility and has the 

potential to sequester C over the long-term (Oelbermann et al., 2004; Esquivel et al., 2008).     

Global ecosystems are currently subjected to a new disturbance: namely climate change.  

Irrespective of cause, it is indisputable that current research demonstrates an overall warming 

of the global climatic system including higher average air temperatures, ocean temperatures, 

increased rates of rising sea levels and increased rates of ice melts (IPCC, 2007).  Elevated 

levels of greenhouse gases (GHG) in the atmosphere has lead to warming trends and events 

which begin positive feedback loops within the system exacerbating current conditions 

(IPCC, 2007).  Changes in climate do not only signify a change in average temperature but 

will alter precipitation, occurrence of extreme weather events, wind patterns and ultimately 

all aspects of the natural resources upon which all global life depend (IPCC, 2007).  This 

includes the probability of impacting levels of agricultural productivity under current 

management practices.  Climate change models suggest different scenarios and predictions 

which are predominantly presented within a global context, however; the true impacts will 

occur within a local context.  Field and laboratory research can be used as a tool to further 

understand the ramifications of the changing climate on localised scales and for economically 

relevant land uses such as agriculture, thereby reducing the vulnerability of differing 

communities to these impacts with the aim to increase their capacity to adapt to climate 

change. 

 



3 
 

 

1.2 General Research Goals and Objectives 

There is uncertainty as to whether agroforestry systems will remain effective at 

providing the products and services necessary for sustainable agriculture when exposed to a 

changing climate.  In order to evaluate the impact of climate change on these systems, the 

response of the individual components to these conditions must be understood.   

The purpose of this study is to determine how tropical agroforestry tree seedling growth 

will be effected by the expected change in temperature and atmospheric concentrations of 

carbon dioxide (CO2) associated with climate change in order to provide further insight to 

help inform adaptation strategies for agroforestry systems.     

The general objectives of the study are as follows:  

1) Quantify changes in tree seedling growth rates under ambient conditions, an elevated 

CO2 concentration treatment, an elevated CO2 concentration in combination with the 

resulting change in temperature, and the temperature change only. 

 

2) Quantify changes in the carbon and nitrogen concentrations of the soil under an 

elevated concentration of CO2 compared to an ambient treatment. 

 

3) Determine changes in soil microbial community structure under an elevated 

concentration of CO2 compared to an ambient treatment. 
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Chapter 2: Literature Review 

2.1 Potential Implications of Climate Change on Tropical 
Agroecosystems 

Global modelling studies have demonstrated that concentrations of atmospheric 

carbon dioxide (CO2) have been rising at an unprecedented rate over the past century and 

predict rates could more than double over the next century to over 750 ppm (Cox et al., 2000; 

White et al., 2000; Ometto et al., 2005).  Temperature changes as a result of increased 

concentrations of greenhouse gases (GHG) including CO2 has resulted in a 0.6º C increase in 

mean global air temperature over the past century (IPCC, 2007).  Predictions for the future 

include night time temperatures increasing more rapidly than daytime temperatures (IPCC, 

2007).  For example, in tropical regions temperature has increased 0.26ºC per decade from 

1976-1998 (Malhi & Wright, 2004).  It is predicted that temperatures could increase by 2.5 to 

2.9ºC within the tropics over the next century corresponding to similar increases in CO2 

(White et al., 2000; Zhang et al., 2001).  Current predictions include a short-term rapid 

increase in temperature that does not follow the previously predicted linear increase (White et 

al., 2000).  As well, positive feedback loops must be taken into account. For example, 

increased temperatures in tropical forests causes elevated rates of biological respiration 

thereby resulting in increased levels of CO2 released and increasing atmospheric GHG 

(Graham, 2003).  However, these feedbacks are complex and not fully understood (Graham, 

2003).   These changes in climate could impact the capacity for vegetation to grow within the 

tropics, including the trees associated with agroforestry systems (Clark, 2004). 

Specifically, ecosystem functions influenced by climate are expected to be affected.  

This includes species distribution and extinction rates, biome shifts and biogeochemical 

cycling (Williams, 2007).  Within an agricultural setting the direct impacts could include a 

change in the optimal range for vegetation growth and resiliency to disturbance such as pests 
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(Williams, 2007).  Changes in levels of precipitation and occurrences of drought and floods 

could impact the availability of feed for livestock, levels of crop productivity and may alter 

decomposition rates leading to a change in soil fertility and nutrient availability (Sanchez, 

2001; Williams, 2007).  As well, any change in climate could alter the timing for flowering, 

fruiting, seed production, and germination of crops (Bazzaz, 1998).   While this may be 

location and species specific, the potential ramifications could be significant for people 

directly dependent on agriculture. Sustainable agricultural practices, such as agroforestry, 

have the potential to provide one means of adapting to a changing climate.  

2.2 Tropical Agroforestry Systems 

2.2.1 Historical Perspective 

Traditional agricultural systems have historically utilized a wide variety of 

management practices including the incorporation of multiple crops (intercropping) or 

integrating trees with crops and/or pasture (agroforestry) on the same land unit at the same 

time (Nair, 1993). The purpose for such complex agroecosystems is varied, and includes the 

need for timber and fuel wood, production of food and livestock fodder, products derived 

from trees and the beneficial interactions between crops, trees and soil  (Scales and Marsden, 

2008).  Some of the earliest examples include slash and burn techniques and home gardens 

dating back to more than 7000 years ago (Scales and Marsden, 2008; Lentz and Hockaday, 

2009).  As well, there is evidence of agroforestry being used by the Mayan’s over 1000 years 

ago, using mainly Manilkara zapota (L.) P. Royen trees, commonly known as sapodilla, 

which has hard, durable and very wear resistant wood for the construction of palaces and 

ceremonial buildings.  These trees are believed to have been maintained in grooves with 

important vegetation such as fruit bearing trees and spiritually significant species (Scales and 

Marsden, 2008; Lentz and Hockaday, 2009).  Varying agroforestry techniques were used up 



6 
 

to the beginning of the last century in Europe and other temperate regions, however 

monocultures quickly gained prevalence in that region thereafter (Torquebiau, 2000).  

Agroforestry continued to be utilized especially in tropical regions during that time with 

examples such as the use of Erythrina poepiggiana (Walp.) OF Cook trees for shade grown 

coffee (Coffea Arabica L.) and cocoa (Theobroma cacao L.), the rubber tree (Hevea 

brasiliensis Müll.Arg.) agroforests of Indonesia and the coffee forests in Ethiopia 

(Torquebiau, 2000).   

Agroforestry became a recognized science in the early 1970’s as a result of greater 

awareness and concern over global environmental issues (Pollini, 2009).  Following the 

Green Revolution, there was a focus on increasing agricultural production levels for 

subsistence farmers, however there was also a new understanding that one method could not 

be employed successfully in all regions (Pollini, 2009).  Research conducted by the 

International Development Research Centre (IDRC) of Canada recommended the creation of 

the International Council for Research in Agroforestry (ICRAF), now known as the World 

Agroforestry Centre, in 1977.  It is through this centre that extensive consistent research in 

agroforestry practices were conducted and extension for sharing new techniques became 

common (Pollini, 2009; ICRAF, 2009).   

2.2.2 Defining Agroforestry Systems 

Agroforestry systems, according to the World Agroforestry Centre, are defined as the 

deliberate spatial and temporal incorporation of woody perennials with agricultural land use 

or practice including crops and/or livestock.  The interactions between woody and non woody 

components on the land can have both ecological and economic benefits and that there is a 

variety of forms that this incorporation can take (ICRAF, 2009).  A more thorough definition 

available is; 
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 “a dynamic, ecologically based, natural resources management system that, through 

the integration of trees on farms and in the agricultural landscape, diversifies and sustains 

production for increased social, economic and environmental benefits for land users at all 

levels.” (ICRAF, 2009) 

Various types of agroforestry systems exist in tropical biomes and include the 

incorporation of trees at different densities, configurations, and the use of different tree 

species.  Techniques  can be divided into three dominant groups; agrosilvicultural systems 

which incorporate crops and trees together, agrosilvopastoral systems where trees, crops and 

livestock are incorporated in a pasture or non pasture setting and silvopastoral systems where 

trees and livestock are incorporated together (Nair, 1993; Torquebiau, 2000).   

Agrosilvocultural systems include practices such as alley cropping in which 

alternating rows of food crops are planted with shrubs or hedgerows of woody perennial 

species that are often nitrogen (N) fixing (Nair, 1993).   The presence of N fixing species 

adjacent to crops, the input of biomass from pruning and the possibility of incorporating 

value added products such as fruit or nuts has been demonstrated to improve soil fertility and 

productivity (Nair, 1993; Molua, 2003). Alley cropping has also been found to maintain or 

improve grain yield and sequester greater amounts of carbon (C) in the soil when compared 

to conventional monoculture systems in tropical environments (Oelbermann, 2004).  Another 

example includes improved fallow where fast growing short rotation trees are utilized in 

rotation with crops or pasture land to improve soil fertility and N levels (Wilkinson, 2007).   

Silvopastoral systems refer to the incorporation of trees in a pastoral land 

management system.  The role of trees in these systems is diverse and includes providing 

shade for livestock, provision of alternate sources of forage and fodder, live fences, mulch to 

maintain soil fertility and grass productivity and sources of alternate income through timber, 
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fruit and nut production (Bambo et al., 2009; Pollini, 2009).  Silvopasture has also been 

shown to be beneficial for livestock through the occurrence of reduced parasites and the 

promotion of increased feeding and activity (Francisco et al., 2009; Karki and Goodman, 

2010).  Some of the benefits of integration of trees into pastureland include increases in 

above and belowground plant productivity (Scholes and Hall, 1996; Archer et al., 2001), 

modifications to rooting depth and distribution (Gill and Burke, 1999), and changes in the 

quantity and quality of litter inputs (Connin et al., 1997; Jackson et al., 2000; Jobba´gy and 

Jackson, 2000). 

Agrosilvopastoral systems include the incorporation of crops, pasture and trees on the 

same land use.  This often represents a complex system where trees are utilized as a 

protective barrier either for wind or in riparian zones, thereby protecting waterways (Nair, 

1993).  It has been argued that this category can technically include any form of agroforestry, 

including those mentioned above due to the temporal aspect (Torquebiau, 2000).  However, 

one example of all three components being incorporated on a landscape at the same time is 

home gardens.  Typically, home gardens are perennial and annual species planted for the 

purpose of livelihood supplementation and can include livestock.  Home gardens have the 

potential to assist in biodiversity conservation through the presence of a greater diversity of 

native plant species and endangered or rare species when compared to other agricultural 

settings (Webb and Kabir, 2009).         

2.2.3 Biogeochemical cycle and Benefits of Agroforestry Systems 

The implementation of woody perennial species on agricultural land impacts all of 

the components of the system including the soil, crops and the interactions with other 

systems including the atmosphere (Figure 2.1) (Torquebiau, 2000).  The soil component can 

be divided into physical, chemical and biological characteristics.  All categories contribute 
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Figure 2.1 Example of a biogeochemical cycle for an agricultural system 
incorporating the soil, plants and the atmosphere (Adapted from Wan et al. 2007) 

 

to the fertility or possible productivity of the land.  One of the main indicators of fertility is 

the presence of soil organic matter (SOM) available to provide valuable nutrient for the 

growth of crops and trees (Manlay et al., 2007).  Soil organic matter can be divided into three 

pools. The active pool represents the microbial biomass and materials with a high turnover 

rate which could be representative of yearly fluctuations due to crop harvest (approximately 

1.5 yrs).  A slow pool includes materials more resistant to physical and chemical break up 

with a turnover of about 25 years.  Finally, a passive pool contains recalcitrant or very 

resistant compounds which could take 1000 years to decay (Parton et al., 1987; Manlay et al., 

2007).  Decomposition is one of the main processes contributing to the levels of SOM.   

Decomposition within soil is a function of microbial activity where non living tissue and 
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constituents are physically and chemically transformed ultimately releasing energy and 

nutrients into bioavailable forms to facilitate crop growth (Milton and Kaspari, 2007).  

Tropical soils are especially sensitive to the rapid depletion of SOM (Maia et al., 2006). The 

implementation of intensive conventional agricultural practices, such as high rotation 

monocroping systems, initially results in high production levels. However, within a few years 

the active SOM levels are reduced due to the high rates of decomposition and with it the 

many nutrients required to maintain production levels (Maia et al., 2006).  Erosion, a physical 

process resulting in the loss of nutrient rich top soil predominantly through wind and water is 

another cause for the loss of productivity in many tropical intensive agricultural management 

systems (Nair, 2009).   

Through the addition of trees on agricultural land, agroforestry has the potential to 

mitigate some of the causes of the degradation of land in conventional agricultural 

management systems (Jackson et al., 2000; Nair, 2009).  Biomass inputs of tree roots, leaves 

and branches can replenish SOM levels and when combined with techniques such as 

improved fallow are able to maintain long term fertility (Jackson et al., 2000; Jobba´gy and 

Jackson, 2000; Jose, 2009; Nair, 2009).  Often agroforestry utilizes N2-fixing tree species 

which help maintain soil N levels and deep rooted trees are able to utilize nutrients available 

at greater depths making these nutrients biologically available for crops or forage grasses 

(Nair, 1993; Rao et al., 1998; Gill and Burke, 1999; Ong et al., 2001).  For example a study 

by Bambo et al. (2009) demonstrated that silvopastoral systems in Florida maintained a great 

retention of N in soils when compared to conventional pastures through a significant 

reduction in N leaching.  In another study, by Lee and Jose (2005) where a pecan (Carya 

illinoinensis Wangenh. K.Koch) and cottonwood (Populus deltoides W Bartram ex 

Marshall) alleycropping was examined, higher levels of soil microbial biomass and SOM 
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were found compared to a monoculture of cotton.  Agroforestry also has the potential to 

improve physical soil characteristics.  In a study by Kumar et al. (2010) in Missouri it was 

shown that soil porosity levels in soil 0-10 cm deep could increase up to 13 times more under 

buffer strips of cottonwood trees (Populus deltoides W. Bartram ex Marshall ssp. deltoides) 

as compared to red clover (Trifolium pratense L.) and Korean lespedeza (Kummerowia 

stipulacea (Maxim.) pasture.   

Another aspect to agroforestry systems are the interactions which occur between trees 

and crops or pasture grasses.  Most plants have similar basic requirements at varying 

quantities for growth and survival such as nutrients and moisture through the soil component, 

atmospheric components such as oxygen, CO2 and sunlight (Pollini, 2009).  When the study 

of agroforestry first began there was great focus on the potential detrimental competition 

between tree and crop roots (Pollini, 2009).  However, various studies have demonstrated that 

in most cases trees can access a greater depth of soil than crop roots can attain thereby 

improving nutrient availability and soil structure (Nair, 2009).  Also, many studies have  

found environmentally beneficial interactions of tree-crop roots in the upper soil levels (0-20 

cm) through the reduction of erosion rates and leaching of excess nutrients (Allen et al., 

2004).  While some competition does occur for soil moisture and excess shade could have 

negative effects in growth, changes in management techniques and species selection is able to 

maximize facilitation and minimize competition (Gea-Izquierdo et al., 2009; Pez- Diaz et al., 

2009).   

The diversity and structure which agroforestry provides also influences water quality, 

biodiversity and C sequestration (Allen et al., 2004; Jose, 2009).  The ability of tree roots to 

access excess nutrients at greater soil depths serves as a safety net to reduce leaching and 

surface runoff of sediment and applied chemicals thereby reducing contamination of local 

water sources (Allen et al., 2004; Bambo et al., 2009).   The presence of trees on the 
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landscape is able to act as a mechanism of biodiversity preservation.  Certain spatial 

configurations of trees can act as corridors for species movements between patches of habitat 

or can act as habitat for species less sensitive to disturbances.  As well, agroforestry is 

increasingly recognized for its ability to preserve germplasm of sensitive species (Jose, 

2009).  The diversity and complexity of agroforestry systems provides the potential for 

microhabitats thereby increasing the diversity in soil fauna such as in shade cacao systems 

(Jose,  2009).  A study by Jha and Vandermeer (2009) demonstrated that shade coffee 

agroforestry systems in Mexico had the potential to provide greater habitat for native social 

bees and native wasps compared to invasive species.  While there are numerous other 

interacting components in agroforestry systems, the final discussion will pertain to the 

potential of agroforestry for C sequestration.  Carbon sequestration is the removal and storage 

of atmospheric CO2 into sinks through biological and chemical processes (Jose, 2009).  

Carbon is captured during tree growth and stored in plant biomass which can contribute to 

overall levels of atmospheric CO2, however recent focus has shifted to root and soil storage 

of C (Nair et al., 2009).  Soil reserves of C are three times the levels in the atmosphere 

therefore it has the potential to be a significant source of CO2 or an even greater sink.  Soil C 

sequestration is facilitated by plant photosynthesis and the conversion into soil organic C 

(SOC).  The higher the level of biomass input reflects a higher potential in SOC 

sequestration.  For this reason agroforests are ranked as the second highest land use for levels 

of SOC after old growth forests (Nair et al., 2009). However in all instances variability in 

benefits exist due to countless factors such as climate, geology and the specific management 

techniques chosen.      
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2.3 Effects of Climate Change on Tropical Agroforestry Systems 

2.3.1 Influence on the Growth of Trees 

Liebig’s Law of Minimum states that the growth of all plant life is determined by the 

most limiting component; be it water or nutrients or any other factor (Liebig, 1831).  In the 

past it was hypothesized that CO2 may be a limiting factor in photosynthesis and that an 

increase in CO2 levels would further drive accelerated rates of photosynthesis; thereby 

increasing growth and biomass accumulation, also known as the CO2 fertilization effect. This 

has been found to be true, especially for C3 plants including trees which respond up to a level 

of 800 ppm of atmospheric CO2 before levelling off.  C4 plants, including corn, had a much 

lower response with the maximum rate of photosynthesis occurring at 400 ppm of CO2 (Akita 

& Moss, 1973; Notoro et al., 2007).  The CO2 fertilization effect is a function of stomatal 

conductance, where higher concentrations of CO2 allows for a more narrow opening of the 

stomata thereby conserving water and decreasing respiration resulting in greater water use 

efficiency (Korner, 2000; Notoro et al., 2007).  In more temperate regions elevated 

concentrations of CO2 enhanced biomass production to varying degrees in seedling growth 

depending on species type.  For example fast growing, early successional trees such as aspen 

(Populus tremuloides Michx.) experienced a greater increase in biomass including root 

growth and leaf size than slower growing trees (Lindroth et al., 1993).  However, it has also 

been shown that the impacts of CO2 fertilization are the most pronounced in drought 

condition where the optimization of water use efficiency causes the greatest increases in 

photosynthesis, while in water rich conditions the effects may be inconsequential (Hamann & 

Wang, 2006). 

Early studies demonstrated a drastic decrease in respiration in response to elevated 

CO2 due to its inhibitory effect on the enzyme cytochrome c oxidase necessary within the 
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electron transport chain; however more recent investigation has shown this decrease is due to 

experimental error (Chambers & Silver, 2004).  The investigation of the inhibitory effects of 

CO2 on cytochrome c oxidase continues and at present it is believed that a decrease in 

respiration of 10% may occur (Hamilton et al., 2001).      

Studies within the tropics have demonstrated varying degrees of the CO2 fertilization 

effect depending on limiting nutrients (Lovelock et al., 1999; Chambers and Silver, 2004).  

However, the possibility of excess CO2 absorption causing detrimental effects or no 

significant increase in biomass has been observed (Lovelock et al., 1999; Chambers and 

Silver, 2004).  Other field experiments with tropical rainforest tree seedlings exposed to 

elevated CO2 have shown variable response depending on the species involved and when 

there was an increase in growth rate it diminished over the long term (Clark, 2004).                 

Temperature also has the potential to influence the growth of trees within the tropics.  

One study by Cavaleri et al. (2008) examining old growth tropical rainforests found that as 

temperature increased the rates of respiration from the leaves increased as well.  During El 

Nino Southern Oscillation years with higher temperatures respiration was found to be about 

9% greater than other years.  As well, it was acknowledged that measurements during La 

Nina caused uncharacteristically low values for respiration thereby impacting the estimates of 

these trees as C sinks (Cavaleri et al., 2008).  Temperature can also impact rates of 

photosynthesis; having a positive effect up to a threshold and then causing very rapid 

declines in growth (Keller & Lerdau, 1999; Clark, 2004).  The effect of temperature alone by 

raising respiration rates and decreasing photosynthesis could lead to an overall decrease in 

net primary production (NPP) and a decline in potential to store C (Nemani et al., 2003).   

The combined impact of the rise in temperature and CO2 has some variable predicted 

responses.  CO2 fertilization effect is believed to vary with differing temperatures; as 

temperature increases the oxygenation reaction catalyzed by Rubisco has a competitive 
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advantage over the carboxylation reaction catalyzed by the same enzyme; as well oxygen is 

more soluble than CO2; therefore the increase in photosynthesis outweighs the increase in 

respiration (Chambers & Silver, 2004).    One approach to determine the interactive effects of 

the changing climate on the growth of trees have been to monitor long term plots over time to 

determine any changes realized to date on tropical forest species.  A study by Lewis et al. 

(2004) examined fifty different forest plots located throughout South America from 1971-

2002 to determine how the tropical forest systems were changing over time.  Over the thirty 

years Lewis et al. (2004) showed that there was an increase in stand level basal area, basal 

area growth rates and mortality, as well as a similar trend in woody stems.  However, the 

overall increase in growth outweighed the losses in biomass reflecting an overall increase in 

biomass throughout the various study plots.  The overall increase in biomass is a reflection of 

the availability of resources and the interaction of various components; however it does not 

necessarily reflect changes that may occur in the coming years.   

2.3.2 Influence on Soil Microbial Communities and Nutrient Dynamics 

The growth of agroforestry trees is deeply reliant on and directly impacts the soil 

components including the availability of soil nutrients, soil organic carbon and the microbial 

communities within (Pollini, 2009).  Not only will the trees be impacted by the change in 

climate but both the soil microbial communities and therefore the resulting dynamics of 

nutrients will also be affected (Pollini, 2009).   

A direct correlation between the effects of temperature on soil microbial activity has 

been comprehensively studied and is well understood; demonstrating an increase in 

enzymatic activity and chemical reactions facilitating this activity up to a threshold 

temperature (Wu et al., 2010).  Soil respiration is a function of microbial activity which is 

influenced by temperature; however, rate of soil respiration is also dependent on other 
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variables including availability of substrates, moisture and quality of substrate.  Vegetation 

type has minimal impact on the rate of respiration; however it directly contributes to the 

substrate quality which is highly influential (Rustad & Fernandez, 1998; Raich & 

Tufekcioglu, 2000). A meta-analysis of 32 different investigations revealed an overall 

increase in N mineralization (46%) and soil respiration rates (20%) when exposed to elevated 

temperatures in varying ecosystem types including forest, tundra and grassland (Rustad et al., 

2001).  A long term study by van Meeteran et al. (2008) demonstrated an initial increase in 

litter mass decomposition; however, over the long term decomposition was actually reduced 

due to reduced soil moisture resulting from elevated temperatures.  These conditions, over 

the long term, also reduced N and phosphorus (P) immobilization and therefore biological 

availability (van Meeteran et al., 2008).  

The evaluation of the impact of elevated concentrations of CO2 on soil processes has 

been more difficult to determine because the soil C pool is more difficult to monitor in a field 

setting (Pendall & King, 2007).  An open-top chamber experiment in the Colorado shortgrass 

steppe using stable isotopes (δ13C)  by Pendall and King (2007) demonstrated that at elevated 

concentration of CO2 surface C in both the active and slow pools initially expressed an 

increase in decomposition rates; however over the long term levels became stable.  With the 

aid of the stable isotopes it was distinguished that elevated concentrations of CO2 did not 

alter decomposition rates of newly inputted biomass (Pendall & King, 2007).  Another 

incubation study, however, demonstrated very definitive changes in decomposition rate of 

spring wheat (Triticum aestivum L. cv. Triso) residue (Marhan et al., 2008).  The treatments 

without visible residue resulted in similar mineralization rates between the ambient and 

elevated CO2 conditions but the treatments with visible spring wheat residue had an 
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approximately 20% decrease in mineralization rates for the elevated CO2 versus the ambient 

conditions (Marhan et al., 2008).    

An understanding of how soil constituents including microbial communities and 

activity will respond to the changing climate is an area of research which requires further 

development (Marhan et al., 2008).  There is very little understanding on the interactive 

effects of the individual variables associated with climate change such as temperature, CO2, 

moisture and other contributing variables (Marhan et al., 2008).  Research to date suggests 

that temperature and CO2 enrichment cause opposing results. For example, an increase in 

temperature could cause an increase in microbial activity such as respiration up to a threshold 

level (Marhan et al., 2008; van Meeteran et al., 2008; Wu et al., 2010).  However, elevated 

concentrations of CO2 may cause a decline in decomposition and mineralization (Marhan et 

al., 2008; van Meeteran et al., 2008; Wu et al., 2010).  These implications appear to be 

constant, irrespective of the vegetation type.  Without direct research based evidence it is 

difficult to determine which variable may be more influential or if the response to the 

interaction is an unconsidered alternative.   

2.4 Areas for Knowledge Improvement 

Research to date involving the implications of climate change on agroforestry trees is 

extremely limited.  In addition to this gap in research the information currently available on 

the interactive effects of CO2 and temperature on the growth of trees and soil dynamics 

appears somewhat conflicting and uncertain.  While the physiological responses of some 

plants are well understood under individual treatments (Clark, 2004; Hamilton et al., 2001; 

Keller & Lerdau, 1999; Lindroth et al., 1993), the combined effect requires greater attention 

on both the individual species basis, due to the variability in response, and on an ecosystem 

or stand level (Clark 2004; Lewis et al., 2004).  The effect of temperature on soil processes is 
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well understood but further investigation on the effect of CO2 is required.  Although the 

importance of the tropical rainforest as a C sink is of great concern, systems directly tied to 

the livelihoods of people all over the tropics such as agriculture and agroforestry require a 

more close inspection.           

2.5 Specific Objectives of the Study 
 

1) To quantify the effect of elevated CO2, temperature and a combined treatment 
(temperature and CO2) on the growth of Cedrela odorata and Gliricidia sepium, 
multipurpose agroforestry tree seedlings. 

2) To determine the effect of elevated CO2 on the soil microbial community dynamics 
from three different land uses (conventional pasture system, silvopastoral system and 
a regenerated forest). 

3) To determine the effect of elevated CO2 on soil C and N concentration of three 
different land uses (conventional pasture system, silvopastoral system and a 
regenerated forest). 

 

2.6 Hypotheses and Null Hypotheses 

1) The CO2 treatment will cause a significant increase in tree seedling growth due to the 
fertilization effect when compared to the other treatments of ambient conditions and 
elevated temperature.   
 
Ho: There will be no significant difference in growth of the two agroforestry tree 
seedlings between treatments.  

 
 

2) The pasture site will express a significant difference in soil microbial community 
structure between the ambient and CO2 treatment. 
 
Ho: No significant differences will be seen for soil microbial community structure 
between the ambient and CO2 treatment for any of the sites. 
 
 

3) The silvopastoral system and regenerated forest will demonstrated the greatest 
capacity to maintain nutrient levels under elevated CO2 conditions. 
 
Ho: There will be no significant difference in nutrient quality between the pasture, 
silvopasture and regenerated forest sites. 
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Chapter 3: Study Site 
This research is representative of agroforestry in a tropical setting; however the focus 

site is Esparza, Costa Rica.  Costa Rica was chosen due to its wide use of silvopastoral 

systems and the close relationships between farmers and educational institutions encouraging 

sustainable agricultural practices in the farming community.  Due to previous world scrutiny 

of the country’s environmental standards, Costa Rica has become one of the world leaders in 

environmental legislation and sustainable agricultural practices (Quesada, 2009).          

Costa Rica is located in Central America between Nicaragua and Panama.  In 2008 

agriculture represented just less than 10% of the country’s GDP, employed over 10% of the 

population, and the food industry accounted for over 30% of the total exports (Ministerio de 

Agricultura y Ganaderia, 2008).  Prominent products are melons (Cucumis melo L.), bananas 

(Musa acuminate L.), sugar cane (Saccharum officinarum L), pineapple (Ananas comosus L. 

Merr) and milk (Ministerio de Agricultura y Ganaderia, 2008).  The economic importance of 

the agricultural industry provides the reason for investigating any possible causes for changes 

in productivity.   

3.1 Biophysical Description of Visited Sites 

Esparza, Costa Rica is located at 09°59‟ N and 84°38‟ W in the Barranca district 

situated in the northern area of the Puntarenas province.  This region is approximately 432 

km2 and includes the cities and towns of: Esparza, Artieda, Angostura, Salitral, Salinas, 

Miramar, Marañonal, San Jerónimo, San Juan, Sabana Bonita, Mesetas, Macacona, San 

Miguel, Cerrillos, Guadalupe and Peñas Blancase.  Elevation changes in this region range 

from 50 to 1000 m above sea level.  The agricultural activity in this area is predominantly 
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beef production (80%), followed by mixed livestock farms (18%) and milk production (2%) 

(Orozco, 2002).     

 

 

Figure 3.1: Study site Esparza, Costa Rica the location of the farms included in field 
sampling (Google Maps, 2010) 
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Esparza, Costa Rica is located in the sub-humid tropical forest zone (Jesus, 2008).  

This zone is characterized by two seasons, the wet season occurring from May to November 

and the dry season from December to April.  As well, this region is influenced by large scale 

inter-annual fluctuations such as El Nino-La Nina events which impact all of Latin America.  

The mean annual temperature is 27.2°C with mean annual precipitation between 1500 to 

2000 mm.  The mean daytime temperature is 32° C and the mean nighttime temperature is 

22° C.  This area experiences a relative humidity ranging from 65% to 80% (Casasola et al., 

2004; Auquila, 2005).   

The geology consists of alluvial sedimentation and volcanic origins.  The alluvial 

sedimentation is divided into the Esparza and Orotina terraces, and the remainder of the flat 

surfaces originated by alluvial fan mud currents of the Barranca, alluvial plain of the river 

Jesus María and marshes (Jesus, 2008). The unit of volcanic origin is divided in two 

denominated subunits of ridges in the mining mountain range of Tilarán and hills and valleys 

of the Aguacate (Jesus, 2008).      

The sites for soil sampling include a conventional pasture site, silvopastoral site and 

regenerated forest.  The conventional pasture site supports cattle for dairy and meat 

production.  Pasture rotation between the wet and dry season is the only management 

technique used and common pasture grasses are used (Panicum maximum Jacq., Hyparrhenia 

rufa (Nees) Stapf, Paspalum notatum Flugge etc.).  This site has been used with the current 

practices for 20 years. For this site the bulk density is 1.10 g/cm3 and the soil texture is loam 

(Ramirez, 2006).  The silvopastoral site is used primarily for the raising of dairy heifers.  At 

this site live fences and fodder banks have been incorporated into the pasture setting, as well 

as the use of nitrogen fixing grasses.  The fodder banks began 15 years ago and the live 

fences have been in growth soon after that. The bulk density at this site is 1.04 g/cm3 and the 

soil texture is clay loam (Ramirez, 2006). The regenerated forest is adjacent to the 
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silvopastoral site.  It was previously a conventional pasture site and has been regenerating for 

14 years.  Almost full canopy and vertical stratifications have been established.  The bulk 

density at this site is 1.11 g/cm3 and the soil texture is loam (Ramirez, 2006). The soils in all 

three sites were dominated by Nitosols (FAO, 1974; Ramirez, 2006).  Nitosols are 

characterized by dark red, brown or yellow color and the presence of an argillic B horizon.  

This soil, within 125 cm from the surface, lacks ferric and vertic properties (FAO, 1974).       

3.2 Historical Context 

In 1997 Costa Rica implemented national level payments for environmental services 

program (PES) or pagos por servicios ambientales.  Payments for environmental services 

provides a means of designating a monetary value to environmental services and a direct 

payment to the land user, thereby creating a financial incentive for providing these services 

(Pagiola et al., 2004; Pagiola et al., 2005; Sanchez-Azofeifa et al., 2007; Jesus, 2008). The 

first phase was from 1997-2001 and focused on forest conservation practices in an attempt to 

recover some of the forest area destroyed for lumber extraction.  The services which were 

compensated were greenhouse gas mitigation, hydrological services, scenic value and 

biodiversity (Sanchez-Azofeifa et al., 2007).  During this phase the services were not valued 

separately but assumed to occur together and it was based on a first come first serve process 

irrespective of farm size or any other characteristic of the farm (Pagiola et al., 2005).  The 

average return was between US $22 and US $42/ha/year (Sanchez-Azofeifa et al., 2007).  

The second phase was initiated in 2001 and is still continuing, attempts to provide a more site 

specific program allowing for the inclusion of more services and altering the payments based 

on the specific conditions (Sanchez-Azofeifa et al., 2007).   

The region of Esparza was one of the three chosen locations involved in a specific 

pilot PES project in Latin America along with Quindío, Columbia and Matiguás-Río Blanco, 
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Nicaragua.  This project was initiated in 2002 as the Regional Integrated Silvopastoral 

Ecosystem Management Project (RISEMP) and was funded by the Global Environmental 

Facility (GEF) (Pagiola et al., 2005).  The goal of this project is to improve degraded 

pastureland through the implementation of features on the landscape which would encourage 

biodiversity, carbon sequestration or the use of more sustainable management techniques.  

Some examples include the use of trees as live fences, trees as shade areas, riparian zones to 

protect stream water from animal waste runoff, and the use of nitrogen fixing legumes and 

grasses in the pasture.   At the Esparza location researchers from the Centro Agronómico 

Tropical de Investigacíón y Enseñanza (CATIE) evaluated initial conditions of each farm and 

worked with farmers to develop specific implementation strategies.  Progress assessment and 

evaluation was also carried out by CATIE (Pagiola et al., 2004).   

The involvement of the region of Esparza in the PES project ensured accurate and 

comprehensive data on the initial and continuous conditions of the participating farms.  The 

availability of recorded data made this region an ideal location for this research.  Continued 

relationships between CATIE and the farmers provided for access to the sites and important 

site information from the farmers themselves. As well, the variety and extensive use of 

silvopastoral systems in this location made this research applicable and valuable for them.   
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Chapter 4: Implications of climate change variables on 
the growth of tropical agroforestry seedlings 

4.1 Introduction 

Trees have an important role in tropical agricultural systems, characterizing one form 

of sustainable management technique, agroforestry.  While a diversity of roles exist for trees 

on an agricultural setting, silvopastoral systems have proven to be easily implemented and 

economically and ecologically beneficial (Nair, 1993; Rao et al., 1998; Gill and Burke, 1999; 

Jackson et al., 2000; Jobba´gy and Jackson, 2000; Ong et al., 2001; Jose, 2009; Nair, 2009).  

Commonly used tree species can include native species and those ideal for a specific role. For 

example, Gliricidia sepium (Jacq.) Welp. is often used as live fences, Pseudosamanea 

guachapele (Kunth) Harm. is often used as fodder and Enterolobium cyclocarpum (Jacq.) 

Griseb. is often used as shade and for forage in Costa Rica (Jesus, 2008).  However, in order 

for this practice to remain effective, both environmentally and economically, the prominent 

species used must be resilient to possible future changes in climate including changes in 

temperature and atmospheric concentrations of carbon dioxide (CO2). 

It is possible for CO2 to impact the growth of vegetation, including trees, with a 

fertilization effect through the acceleration of photosynthesis rates, hence increasing growth 

and biomass accumulation.  The CO2 fertilization effect is a function of stomatal 

conductance, where higher concentrations of CO2 allows for a more narrow opening of the 

stomata thereby conserving water and decreasing respiration resulting in greater water use 

efficiency (Korner, 2000; Notoro et al., 2007).   

Within the tropical setting the ability of leaves to respond to elevated CO2 depends on 

the presence and conditions of other variables including nutrient availability. When there is 

the capacity for carbohydrate formation then the response is an increase in the rate of 
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photosynthesis.  However, if an excess amount of CO2 is absorbed into the leaf than can be 

efficiently utilized than the rate of photosynthesis can decline (Chambers & Silver, 2004).  In 

a study by Lovelock et al. (1999) Luehea seemanii Planch. & Triana branchlets were 

enriched with CO2 within a tropical forest in Panama and demonstrated an increase in 

photosynthetic carbon (C) fixation and a decrease in stomatal conductance.  However, it did 

not lead to an increase in biomass within the leaves, the occurrence of flowers or fruit or the 

concentration of non-structural carbohydrates within the leaves.  There was an increase in 

non-structural carbohydrates within the woody stem tissue indicating that the storage of the 

increased fixed C has the potential to be in long term sinks such as the woody material rather 

than high turnover biomass such as roots and leaves. Other field experiments with tree 

seedlings, for example Beilschmiedia pendula (Sw.) Hemsl., and Tachigalia versicolor 

Standl. & L.O. Wms. trees grown in Panama, exposed to elevated CO2 have shown variable 

responses depending on the species involved and when there was an increase in the growth 

rate it diminished over the long term (Lovelock et al., 1998; Wurth et al., 1998; Clark, 2004; 

Cramer et al., 2004).                 

Photosynthesis is the most heat sensitive process undergone by plants (Chambers & 

Silver, 2004).  Photosynthesis has a parabolic relationship with temperature; up to an 

optimum level there is an increase in photosynthetic levels, however beyond that rapid 

decline can occur (Clark, 2004).  It was found that the threshold level in tropical forest 

species is approximately greater than or equal to 30ºC at the leaf surface and this level has 

been reached and exceeded during at least half of the year from 1995-1998 (Keller & Lerdau, 

1999).     The effect of temperature alone by raising respiration rates and decreasing 

photosynthesis could lead to an overall decrease in net primary production (NPP) and a 

decline in the potential to store C (Keller & Lerdau, 1999).   
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The combined impact of the rise in temperature and CO2 has some variable responses 

on vegetation.  The CO2 fertilization effect is believed to vary with differing temperatures. As 

temperature increases the oxygenation reaction catalyzed by Rubisco has a competitive 

advantage over the carboxylation reaction catalyzed by the same enzyme (Chambers & 

Silver, 2004).    

Overall, while there has been thorough investigation into how trees in the tropics may 

react to the individual variables involved in climate change (Lovelock et al., 1998; Keller & 

Lerdau, 1999; Chambers & Silver, 2004) there is still no certainty on how the interactive 

effects will impact the trees (Chambers & Silver, 2004; Clark, 2004).  In addition, it was 

acknowledged in numerous studies that the effects were variable depending on the species 

type and very limited research has concentrated on the study of agroforestry tree species 

(Keller & Lerdau, 1999; Chambers & Silver, 2004; Clark, 2004).  Therefore, while general 

responses can be inferred no direct evidence is currently available to provide insight into how 

these specific tree species may react to the changing climate.   

 

The specific objectives of this study were: 

1. To quantify the effect of elevated CO2 (800 ppm), temperature (+2°C daytime and 
+3°C nighttime) and a combined treatment (CO2 and temperature) on the growth and 
survival of Cedrela odorata L. and Gliricidia sepium (Jacq.) Walp, seedlings. 
 

2. To quantify changes in C. odorata and G. sepium leaf C and N concentration between 
treatments; elevated CO2 (800 ppm), temperature (+2°C daytime and +3°C nighttime) 
and a combined treatment (CO2 and temperature).   
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4.2 Materials and Methods 

4.2.1 Selection of Experimental Tree Species 

Gliricidia sepium is naturally found in a range from Mexico, throughout Central 

America and Columbia however it has now been introduced throughout to other locations 

within the tropical and subtropical biomes (Joker, 2002).  Originally, this tree grew in 

tropical deciduous forests, on hillsides and ravines (Csurhes and Edwards, 1998). This fast 

growing tree is able to flourish at various altitudes, areas with rainfall as low as 400 mm/year 

but grows best with over 900 mm/year, and will grow in soils from heavy clays to sands and 

on rocky eroded sites (Csurhes and Edwards, 1998).  Water logging and acidic conditions 

causing aluminum saturation are the two known conditions which G. sepium is highly 

sensitive to (Suittie, 2005). Gliricidia sepium typically attains 10 to 12 m in height and basal 

diameter reaching 50-70 cm. Leaves are once-pinnate, usually alternate, positioned 

subopposite or opposite and reach approximately 30 cm long. The leaves are composed of six 

to twenty four leaflets that are oval or elliptical in shape.  Leaflets tend to be two to eight cm 

long and one to three cm wide (Suittie, 2005; CATIE, 1991).  

Due to the following characteristics, G. sepium is representative of a widely used 

multipurpose agroforestry tree (Suittie, 2005).  It is a N2-fixing species, having a symbiotic 

relationship with Rhizobia bacteria, with a high nutrient content in the leaves, making it 

suitable for mulch and green manure (Joker, 2002).  As well, its ability to re-sprout 

repeatedly after intensive pruning allows for high biomass utilization and control of the 

extent of shading at any point in the year (Joker, 2002).  These trees are often utilized as 

living fences and windbreaks in silvopastoral applications and can also be used for timber, 

fuel and furniture production (Duke, 1983).        
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Cedrela odorata grows naturally from Mexico, throughout Central America and to 

the Northern areas of Argentina (Cavers et al., 2004; Cintron, 2005).  Typically, C. odorata is 

found in mixed semi-deciduous or semi-evergreen forests (Cintron, 2005). These trees are 

able to grow in areas with dry seasons and a precipitation range of 1200-2400 mm (Cintron, 

2005). This tree species is often found over limestone clay soils or volcanic origin soils with 

a tolerance for acidic conditions (Cintron, 2005).   Cedrela odorata can reach 40 m in height 

and 120 cm in diameter (Cavers et al. 2004).  Leaves are paripinnate or imparipinnate, 15 to 

50 cm long and are made up of 10 to 22 oblong or lancelet leaflets (Rocas, 2002).  Cedrela 

odorata is a fast growing tree species, often sought after for its wood for furniture production 

and other value added products (Rocas, 2002).  It is resistant to many insects and fungus 

thereby making it selected by farmers.  It is often used as a windbreak or riparian barrier in 

silvopastoral systems (Rocas, 2002; Ricker et al., 2000). 

Both G. sepium and C. odorata shared common characteristics which made them 

ideal for this experiment.  Both species had seeds which remained viable over a long-term 

and which germinated quickly (Cintron, 2005; Suittie, 2005).  In addition, both species were 

fast growing at the seedling stage allowing for some differences in height to be seen over the 

five week growing period (Cintron, 2005; Suittie, 2005). Gliricidia sepium represents a 

widely used species in Costa Rica for the environmental benefits such as N2-fixing and the 

high nutrient content in the leaf and biomass (Suittie, 2005).  On the other hand C. odorata is 

not as widely used and when used it’s a means for protection from insects or a value added 

product of lumber (Rocas, 2002).  Therefore, each species represents a different need which 

trees can fill in an agroforestry setting. 
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4.2.2 Tree Growth Conditions 

In order to determine relevant changes in growth within the context of tropical 

silvopastoral systems it was necessary to identify the most sensitive and economically 

important life stage of growth.  In this case the early seedling stage, when the trees are first 

planted and rapid successful establishment is essential, is the most relevant.  For the purposes 

of this research it was decided that a five week growth experiment following a controlled 

germination period would provide sufficient insight into changes in seedling establishment 

between treatments.    

Seeds of both species were attained from the forest seed bank at the Centro 

Agronómico Tropical de Investigacíón y Enseñanza (CATIE), Costa Rica in August of 2008.  

Germination of the seeds was the same for all treatments and followed the procedure which 

accompanied the seeds when purchased.  The method was similar between species.  For both 

species twenty seeds were germinated, ten per Petri dish.  The seeds were submerged in room 

temperature water (21°C) and kept in darkness.  The seeds were removed from the water after 

12 hours for C. odorata and after 24 hours for G. sepium and covered in moist sand for the 

remainder of the germination process.  The sand was kept moistened throughout and the Petri 

dishes were kept in a darkened state.  On average, germination was completed within two 

weeks for G. sepium and three weeks for the C. odorata.  The visual indicators of a 

successful germination were the formation of root structures, the opening of the seed 

covering and the beginning of cotyledon separation (Evans, 1972).  The eight most 

successfully germinated seeds were chosen for planting.    

Changes in seedling growth rates were determined by the use of controlled 

environmental chambers (PGR15, Conviron Canada).  The use of controlled environmental 

chambers is ideal for this study because of its precise control of various climate variables 
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including temperature, humidity, light intensity and CO2.  Controlled environmental 

chambers supply the only current means in climate change research to manipulate both 

variables at the same time.  These results will provide insight into the response of the 

seedlings to different temperatures and CO2.  It should be noted that environmental chambers 

do not mimic all field conditions such as the level of light intensity found in the field, the 

presence of pests, wind and competition. Therefore, the results will not be presented as a 

reflection of tree seedling growth in the field, but will provide insight into the response of 

tree seedlings to changes in climate during their initial growth phase.  Within this experiment 

tree seedlings were grown under four different treatments: 

 
1. Ambient conditions (360 ppm for concentration of CO2 and 32º C as mean 

daytime temperature, 22 ºC as mean nighttime temperature), from here on 
referred to as  AMB 

 
2. Elevated concentrations of CO2 predicted for the year 2100 (800 ppm CO2 

and 32º C and 22º C), from here on referred to as CO2 
 

3. Elevated temperature predicted for the year 2100 (360 ppm CO2 and 34ºC and 
25ºC), from here on referred to as TEMP 

 
4. Combination of elevated CO2 and temperature (800 ppm CO2 and 34ºC and 

25ºC), from here on referred to as TEMPxCO2 
 

 
The values chosen are a reflection of the UK Hadley Centre Global Climate Model 

(GCM) predictions used in the Intergovernmental Panel for Climate Change (IPCC) reports 

(2007).  These predictions are based on the A2 scenario which assumes a slow continuous 

increase in human population, steady regional economic growth and fragmented 

technological advancements (IPCC, 2007).  This scenario presents predictions that are not the 

most extreme but still reflect a more pessimistic future global outlook.    

All treatments had eight tree seedling replications for each species. All other 

conditions such as daylight hours, humidity etc. were consistent throughout the treatments 
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and reflected conditions found in Esparza, Costa Rica.  Light intensity was as closely 

mimicked to the field conditions as could be done with controlled environmental chambers 

(Appendix 1).  Daily variations in temperature however do occur in the field and are not 

accounted for in the controlled environmental chambers. In these experiments where 

controlled environmental chambers were used it was the most practical to maintain a constant 

elevated temperature rather than attempting to mimic daily variability.    The schedule of 

conditions for each treatment used in the controlled environmental chamber can be found in 

Appendix 1.   

Tree seedlings were planted in pots with measurements of 20.3 cm diameter and 14 

cm height. This provided the minimum rooting area necessary for growth. The potting soil 

was a general purpose soil (Premier Horticulture, Pro-mix Bx Mycorise Pro, Canada) with 

mycorrhizal inoculum (Glomus intraradices).  The soil was derived from Canadian 

sphagnum peat moss (75-85%/volume), horticultural grade perlite and vermiculite and 

dolomitic and calcitic limestone. Based on 900 mm of average rainfall per year for the 

specific region studied, 120 ml of water was delivered every two days to the trees.    

Although this geographical area, as discussed previously, experiences seasonal extremes in 

rainfall, for the purpose of this research it was determined, through discussions with the local 

farmers, that mean levels of precipitation would be the most appropriate to reflect typical 

conditions when farmers plant trees on their fields.  Once a week the tree order within the 

chamber was randomly changed using the random number generator in order to compensate 

for any condition variability within the chamber (Potvin et al., 1990).  The schematic of the 

tree positions within the chamber and the weekly order for each treatment are outlined in 

Appendix 2.  At day 21, a general fertilizer (Schultz Liquid Plant Food, 10-15-10) was 

applied to all trees by the addition of four drops to every litre of water used for all treatments 

in order to supplement the potting soil used. 
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4.2.3 Quantification of Tree Seedling Growth  

Observations on tree height, leaf number, tree color and overall health were taken 

every two days throughout the five weeks of growth when watering occurred.  Tree height 

was determined by placing the ruler at the marked ridge on the pot in order to avoid 

fluctuations due to soil unevenness and eventual compaction.  Leaf number included buds of 

new leaf growth and did not include leaves that may have died throughout the five week 

growth phase.  Tree color was assessed using qualitative observations every two days for the 

five week growing period. 

Leaf surface area was measured one day before destructive sampling of the trees 

occured.  This measurement was determined by tracing each leaf onto grid paper, cutting out 

the shapes and analyzing the shapes with the LI-COR (LI-3000) portable area meter to 

determine the total area for each tree at the end of the five week period.  While other direct 

surface area measurements techniques exist such as the graphical method, where the squares 

are manually counted, the accuracy and variability of the applied method was comparable 

(Beerling and Fry, 1990).   

Once the five week growth period was completed the trees were removed from the 

environmental chamber.  After removal, each tree was extracted from the pot and the soil was 

separated from the roots.  This was first done by physically breaking up the soil and shaking 

it off the roots.  When most of the soil was removed the roots were soaked in water in order 

to remove attached debris.  Although the goal was to remove all soil particulate matter from 

the roots, it is possible that not all of the soil was removed or that some of the roots were 

removed accidently with the debris.  Once manually dried with paper towel, the tree was 

weighed (wet weight).  Subsequently the trees were dried at 80 °C for 48 hours and were 

weighed (dry weight) (Evans, 1972).  The dried root and shoot were separated and weighed 
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in order to attain a root:shoot ratio.   Leaf area ratio was derived from dividing leaf area by 

the final dry weight of the plant.     

 

a)  

b)  

Figure 4.1: a) A G. sepium seedling at the end of the 5 week growth period  
b) The root system of the G. sepium when removed from the pot at the end of the 5 
week growth period  
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4.2.4 Quantification of Leaf Nutrient Concentration 

 The chosen trees represented the smallest, medium and tallest trees for each species 

within each treatment.  Leaf samples were dried at 65°C for 36 hours and then ground with a 

Kinematica Polymix plant grinder (Px-MFC 90D, NY) using a 2 mm sieve and then a Retsch 

Ball Mill (MM 200, PA).  The samples were analyzed for C and N concentration using a 

Costech Elemental Analyzer (ECS 4010, CA) though elemental combustion analysis.  

4.2.5 Statistical Analysis 

All data were examined for homogeneity of variance using the Levene Test and 

normal distribution was tested using the Kolmogorov-Smirnov (K-S) Test and the Shapiro-

Wilks Test.  If the data did not meet the Levene Test it was natural log transformed in order 

to meet the assumptions (Evans, 1972; Zar, 1984).  All of the growth variables were 

compared between treatments using a one-way analysis of variance (ANOVA) using SPSS 

(SPSS Science Inc. 2009).  Significant differences were tested using the Tukey’s least 

significant difference multiple comparison test (Zar, 1984).  Tree height data were corrected 

by subtracting the first days measurement from all of the subsequent days measurements in 

order to quantify the change in growth over the five week period.  For all statistical analyses, 

the threshold probability level for determining significant differences was p<0.05. 
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4.3 Results 

4.3.1 Tree Seedling Growth Measurements  

For G. sepium the CO2 and TEMPxCO2 treatment both had 100% survival, followed 

by the TEMP treatment with 86% survival and the AMB treatment with 75% survival.  For 

C. odorata the TEMP treatment had 100% survival, followed by the AMB and TEMPxCO2 

treatments both with 86% survival and the CO2 treatment with 50% survival.  The overall 

growth rate for all the C. odorata trees followed a similar trend of a positive generally 

curvilinear growth (Fig. 4.3).  Gliricidia sepium demonstrated a more positive linear growth 

rate (Fig. 4.4).    For C. odorata the final height for the TEMPxCO2 treatment was 

significantly greater than all the other treatments.  The CO2 treatment had a final height that 

was significantly lower than the TEMPxCO2 and TEMP treatment.   For G. sepium the 

TEMPxCO2 treatment and TEMP treatment were significantly higher in the final height than 

AMB and CO2 (Table 4.1).    

Mean leaf number for C. odorata followed a trend of AMB> TEMPxCO2> TEMP> 

CO2.  For G. sepium the trend was AMB> TEMP> TEMPxCO2> CO2 (Fig. 4.5).  Leaf 

number for both species did not pass the Levene test and for that reason the values were log 

transformed in order to do the analysis. Tree leaf number, when log transformed, 

demonstrated significant differences between treatments.  For G. sepium, the TEMP and 

TEMPxCO2 treatment were significantly greater than AMB and CO2 (Table 4.1).   For C. 

odorata the AMB and TEMPxCO2 treatment were significantly greater than the CO2 

treatment.  However, no significance was found between the TEMP treatment and any of the 

other treatments (Table 4.2)
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Figure 4.2: Mean C. odorata height (cm) under the four treatments; ambient (AMB: 360 ppm CO2, 32° C daytime and 22° C night time 
temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 34° C daytime and 25° C night time temperature) and 
combined treatment (TEMPxCO2: 800 ppm, 34° C and 25° C) over the five weeks of growth. Standard error bars shown for all data 
points. 
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Figure 4.3: Mean G. sepium height (cm) under the four treatments; ambient (AMB: 360 ppm CO2, 32° C daytime and 22° C night time 
temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 34° C daytime and 25° C night time temperature) and 
combined treatment (TEMPxCO2: 800 ppm, 34° C and 25° C) over the five weeks of growth. Standard error bars shown for all data 
points. 
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Figure 4.4: Comparison of mean leaf number between G. sepium and C. odorata for all treatments; ambient (AMB: 360 ppm CO2, 32° C 
daytime and 22° C night time temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 34° C daytime and 25° C 
night time temperature) and combined treatment (TEMPxCO2: 800 ppm, 34° C and 25° C).  Standard error bars included. 
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Table 4.1 Summary of mean growth variables and significance between treatments; ambient (AMB: 360 ppm CO2, 32° C daytime and 22° 
C night time temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 35° C daytime and 26° C night time 
temperature) and combined treatment (TEMPxCO2: 800 ppm, 34° C and 25° C) results for G. sepium, standard error is indicated in 
parentheses.   
 
Treatments Final Tree Height 

(cm) 
Leaf number (log) % water Root:shoot ratio Leaf area ratio 

AMB 12.88 (1.28) a 2.53 (0.10) a 84.76 (0.46) a 0.66 (0.05) a 95.02 (6.65) a 

TEMP 16.59 (0.89) b 2.80 (0.06) b 83.72 (0.52) a 1.06 (0.10) a  80.33 (6.05) a 

CO2 10.30 (0.71) a 2.32 (0.07) a 83.41 (0.59) a 1.44 (0.15) b 59.09 (3.79) b 

TEMPxCO2 16.44 (1.25) b 2.78 (0.08) b 82.44 (0.43) b 1.54 (0.10) b 56.60 (2.19) b 

Note: Significant differences between treatments (p< 0.05) are indicated by differing lower case letters. 
 
 
 
Table 4.2: Summary of mean growth variables for C. odorata.  Significance between treatments; (AMB: 360 ppm CO2, 32° C daytime and 
22° C night time temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 35° C daytime and 26° C night time 
temperature) and combined treatment (TEMPxCO2: 800 ppm, 34° C and 25° C)  indicated.   Standard error is indicated in parentheses. 
 
Treatments Final Tree Height 

(cm) 
Leaf number (log) % water Root:shoot ratio Leaf area ratio 

AMB 5.83 (1.03) a 2.68 (0.32) a 86.61 (1.15) a 0.48 (0.04) a 153.27 (16.09) a 

TEMP 7.84 (0.39) a 2.41 (0.27) a 86.45 (0.51) a 0.98 (0.07) b 143.63 (11.16) a 

CO2 3.35 (0.50) a 1.95 (0.00) b 84.95 (0.92) a 1.24 (0.20) b 121.06 (15.51) a 

TEMPxCO2 13.96 (0.92) b 2.65 (0.34) a 85.13 (0.31) a 1.14 (0.09) b 112.01 (11.13) a 

Note: Significant differences between treatments (p< 0.05) are indicated by differing lower case letters. 
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Percent water in the tree seedlings was not significantly different for C. odorata 

between treatments; however for G. sepium the TEMPxCO2 treatment had significantly 

lower percent water than the AMB treatment.  The root:shoot ratio for G. sepium was 

significantly greater for the CO2 and TEMPxCO2 treatment (Table 4.1).  For C. odorata all 

the treatments were significantly greater than the AMB treatment (Table 4.2).  The leaf area 

ratio for G. sepium was significantly lower for the CO2 and TEMPxCO2 treatment.  For C. 

odorata no significant difference was found. 

4.3.2 Leaf Nutrient Concentration 

The leaf nutrient concentration for C. odorata demonstrated a significantly lower N 

concentration for the CO2 treatment and this caused a significant increase in the C:N ratio 

(Table 4.3).  For G. sepium the CO2 treatment and TEMPxCO2 treatment had significantly 

lower N concentration and for both of these treatments the C:N ratio reflected this with a 

significant increase (Table 4.3). 

4.3.3 General Observations 

 Plant leaf color and general observations changed between treatments and species.  

Cedrela odorata predominantly had brown leaf tips in the older leaves by the end of the five 

weeks of growth.  This was especially pronounced in the TEMPxCO2 treatment where every 

tree had at least two brown leaf tips.  In addition, C. odorata demonstrated the beginning 

stages of lignification in the stem which was especially pronounced for the TEMP and 

TEMPxCO2 treatments.  For G. sepium the leaves maintained a green color for all the 

treatments; however both the TEMP and TEMPxCO2 treatments displayed light spotting on 

older leaves.  This species also demonstrated the beginning stages of lignifications, bark 
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formation, in the stem which was most pronounced in the TEMP and TEMPxCO2 

treatments.    

 
 
 
 
Table 4.3: Summary of C, N concentration and C:N ratio for the leaves of C. odorata and G. 
sepium under the treatments (AMB: 360 ppm CO2, 32° C daytime and 22° C night time 
temperature), CO2 treatment (CO2: 800 ppm), temperature treatment (TEMP: 35° C 
daytime and 26° C night time temperature) and combined treatment (TEMPxCO2: 800 
ppm, 34° C and 25° C).  Standard error is represented in parentheses.  
 

Note: Significant differences between treatments (p < 0.05) are indicated by differing 
lower case letters. 
 
 
 
 
 
 
 
 
 

Species Treatment Carbon (g/kg) Nitrogen (g/kg) C:N ratio 

C. odorata AMB 437.8 (4.96) a 32.0 (0.41) a 13.67 (0.06) a 

 CO2 436.6 (2.17) a 12.1 (0.33) b 36.23 (0.83) b 

 TEMP 450.6 (6.12) a 35.3 (1.24) a 12.78 (0.43) a 

 TEMPxCO2 445.7 (0.87) a 31.6 (2.54) a 14.27 (1.12) a 

G. sepium AMB 437.8 (4.96) a 23.9 (2.57) a 18.75 (2.13) a 

 CO2 436.6 (2.18) a 11.5 (0.27) b 37.90 (0.99) b 

 TEMP 437.3 (2.34) a  21.1 (0.46) a 20.71 (0.35) a 

 TEMPxCO2 423.9 (3.89) a 12.5 (0.88) b 34.10 (1.96) b 
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4.4 Discussion 

4.4.1 Tree Seedling growth measurement 

As was hypothesized, growth response to different climatic conditions varied by 

species.  Seedling survival rate may indicate that any change in climate would be beneficial 

for G. sepium. For C. odorata survival indicates that the best conditions would be a warmer 

climate but not one with elevated CO2.  However, due to the small number of seedlings in 

each treatment it is difficult to make any generalizations.  Typically, survival is a function of 

seedling size, rate of growth and competition for and availability of resources (Collet and Le 

Moguedec, 2007).  These factors often reflect success in germination and the growing 

conditions, so no one variable can be the direct cause for survival.  For example genetic 

variability within each species may have caused differences in seed size and shape which 

could influence the survival of seedlings past the germination stage (Khurana and Singh, 

2001).   

Although tree height is not correlated with biomass, it is still a factor necessary for 

the survival and successful establishment of agroforestry tree seedlings (Nair, 1993).  Rapid 

early seedling growth is an indicator valued by farmers of successful establishment and a 

characteristic of both species.  For example, Turner (1990) demonstrated, in a field study 

measuring the survival of tree seedlings in the Malaysian tropical rain forest, that seedling 

height was inversely correlated with mortality.   For both species the TEMPxCO2 treatment 

demonstrated the greatest significant overall increase in height.  As well, for G. sepium the 

TEMP treatment resulted in a significant increase in total height.    These findings are 

supported by a study in Martin et al. (1995) and Allen and Vu (2008) where an increase in 

temperature and CO2 (+4.5°C and 700 ppm CO2) increased the growth of citrus trees (Citrus 

reticulata B., Citrus limon (L.) Burm.) in Gainesville, Florida.  However, unlike previous 
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studies where a fertilization effect was clearly demonstrated (Wurth et al., 1998; Raizada et 

al., 2009; Lindroth, 2010) there was no significant CO2 fertilization effect for either species, 

for any growth indicator.   Gliricidia sepium had a greater growth under the higher TEMP as 

compared to the AMB and CO2 treatment which could be a reflection of its natural optimal 

temperature requirements. The results of the TEMPxCO2 treatment could be reflecting these 

optimal temperature requirements (Khurana and Singh, 2001).  In a similar study by 

Overdieck et al. (2007) where European Beech (Fagus sylvatica L.) saplings were grown in 

field phytotron chambers, they also found elevated temperature (+4 °C) resulted in greater 

tree height and stem biomass.  This study also demonstrated greater sapling height for the 

CO2 treatment (700 ppm) and TEMPxCO2 treatment (+ 4°C and 700 ppm) (Overdieck et al., 

2007).   

For G. sepium leaf number was a reflection of tree height and could be attributed to 

the same influences as differences in height.  Leaf number was significantly lower for the 

CO2 treatment of C. odorata, however this could be an artefact of the high mortality rate.  

While it is not common for growth to decrease under elevated CO2 conditions, it has been 

shown that if an excess of CO2 is taken up than can be utilized, a decrease in photosynthesis 

may occur (Chambers and Silver, 2004).  However, other factors may contribute to the loss 

of photosynthesis.  For example, a study by Thomas and Strain (1991) demonstrated that the 

transfer of cotton plants (Gossypium hirsutum L.) from a small pot to a large pot decreased 

the effect of root stress allowing for the expression of CO2 fertilization.  As well, the lack of 

bioavailable N or other nutrients such as phosphorus can cause the same effect (Hsiao and 

Jackson, 1999).  If this was the case, it would be the most pronounced in C. odorata, because 

G. sepium is an N2-fixing species and would therefore not be limited by the availability of N 

(Suittie, 2005).              

http://en.wikipedia.org/wiki/Gossypium_hirsutum�
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It was expected that no change in percent water would occur since it is a reflection of 

the structural capacity of the plant and this study is comparing seedlings that are the same age 

and under the same water treatment (Evans, 1972).  However, since no study or information 

pertaining to a significant difference in water content can be found any difference in percent 

water could be a reflection of experimental error.  Either, not enough water was administered 

the day before extraction, the oven conditions were not consistent with the other treatments 

or the dried tree was allowed to reabsorb atmospheric moisture when removed from the oven.   

The root:shoot ratio was significantly higher in the case of G. sepium for the CO2 and 

TEMPxCO2 treatment.  For C. odorata it was significantly higher for all the treatments 

compared to the AMB conditions.  This is quite different from other studies which 

demonstrated a decrease in root:shoot ratio when exposed to elevated CO2 (Overdieck et al., 

2007;Allen and Vu, 2008).  These studies demonstrated that most growth occurred above 

ground under the differing temperatures (+4 °C and +4.5 °C) and a CO2 concentration of 

(700 ppm).  This is supported by commonly accepted plant physiology theory where factors 

which improve growing conditions often lead to reduced root:shoot ratios (Evans, 1972; 

Harris, 1992).   In a study by Markesteijn and Poorter (2009) 62 tropical dry and moist forest 

seedlings in Bolivia were grown under various light treatments (shade and open canopy) and 

water treatments (drought and moist conditions).  This study demonstrated that tree growth 

occurs to maximize the most limiting necessary component for growth when under stress 

(Markesteijn and Poorter, 2009).    When taken in the context of this study, the increase in 

root:shoot ratio is a reflection of the optimum above ground conditions resulting in a greater 

requirement for belowground resources in order to maintain high rates of photosynthesis.  As 

a result of an increase in root mass, an increase in soil fertility in the area surrounding the tree 

due to root turnover could occur.  For G. sepium this is further emphasized by the associated 

significant decrease in leaf area ratio for the CO2 and TEMPxCO2 treatments reflecting the 
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possible allocation of plant biomass in the root mass.  The lack of significant change in leaf 

area ratio for C. odorata indicates that although the treatments have an increase in rooting 

mass it has not reduced the photosynthetic potential of the seedlings.  Other studies, indicated 

an increase in leaf area and leaf area ratio under elevated CO2 conditions which correspond to 

the other findings of a decrease in root:shoot ratios (Khurana and Singh, 2001; Allen and Vu, 

2008; Markesteijn and Poorter, 2009).   

For both species, the CO2 treatment resulted in significantly lower N concentration 

leading to an increase in C:N ratio.  Gliricidia sepium also experienced a decrease in N for 

the TEMPxCO2 treatment, again leading to a significant increase in C:N ratio.  While for G. 

sepium this could be a reflection of the increased root growth leading to a reallocation of 

nutrient content for root growth, this is not the case in C. odorata.  It has been demonstrated 

that N use efficiency increases under CO2 treatments since the N allocated to Rubisco can 

instead be diverted to other metabolic processes (Lindroth, 2010).  This effect combined with 

the increase in carbohydrate production and phenolic concentrations associated with elevated 

CO2 could explain the increase in C:N ratio (Lindroth, 2010; Coûteaux et al., 1999).  

However, in this study there were no significant differences in C leaf concentration between 

treatments for either species.  This indicates that photosynthesis and respiration rates either 

remained similar between treatments or that rates may have changed but the overall balance 

remained constant.  The individual processes would need to be studied further in order to 

comment specifically on rates of change. As a result of elevated C:N ratios these leaves have 

lower nutrient quality and when used as mulch or for any other purpose in order to sustain the 

fertility of the land they will have a lower rate of decomposition and lower capacity to renew 

the bioavailable nutrients necessary for crop and forage growth (Ball, 2006).         

The ramifications of this study for agroforestry are varied.  The response of both trees 

reflects a species specific response to the different variables in climate change.  This 
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indicates that other tree species used in agroforestry could have similarly varied responses 

and therefore one model cannot be applied to all of agroforestry.  As well, the response of G. 

sepium demonstrates that the benefits which specific species are able to provide presently 

may diminish in the future.  There is also the possibility that other species may become more 

suited for agroforestry in the future.  The short growing phase utilized in this research may 

help inform how seedlings could react. However, trees utilized for agroforestry remain on the 

landscape for a longer timeframe than five weeks making it difficult to generalize how adult 

trees may react to a changing climate.  Further studies incorporating longer timeframes could 

help fill that gap in knowledge and may further contribute to agroforestry practices.                 

4.5 Conclusions  
Under predicted climatic conditions, G. sepium and C. odorata seedlings reacted very 

differently.  Gliricidia sepium seedlings would be best suited for the expected changes in 

CO2 and temperature, as proposed by the IPCC, because those conditions would allow for 

maximum seedling survival rate, height and leaf number.  However, if over time this species 

response of increased root growth and decreased leaf nutrient content continues to further life 

stages, it could reduce its current use in agroforestry as a source for mulch.  Cedrela odorata, 

however; may be more resilient to the overall changes in climate. This study has shown that 

C. odorata may be sensitive to changes in CO2 alone. It may exhibit a greater growth in 

height but have no significant change in nutrient concentration if both temperature and CO2 

were to change.  However, since C. odorata is more commonly used as a barrier for wind or 

riparian zone changes to leaf nutrient concentration may be of limited importance.  Overall, 

this study demonstrated that species react to differing conditions to varying extents and that 

understanding the response of these seedlings to the individual variables and TEMPxCO2 

treatments can reveal insight into the mechanisms of tree seedling growth.  In addition, this 
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study highlights the importance of understanding the response of economically valued 

species, such as agroforestry tree species, to climate change.  If a change in climate results in 

altering the valued characteristics of the trees, such as being fast growing or high leaf nutrient 

quality, then more appropriate species should be selected which will maximize the benefits of 

agroforestry on a landscape.    
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Chapter 5: Soil Microbial Community Dynamics and Nutrient 
Concentration 

5.1 Introduction 

Agroforestry production is deeply reliant on, and directly impacts, soil constituents including 

the availability of soil nutrients, soil organic carbon (SOC) and the microbial communities within.  

While commonly used agroforestry tree seedlings will be impacted by the change in climate, both the 

microbial communities and the resulting nutrient dynamics will also be affected (Nair, 1993).  The 

soil component of any agricultural system can be divided into physical, chemical and biological 

characteristics.  All characteristics contribute to the fertility or possible productivity of an 

agroforestry system and can be correlated to the presence of soil organic matter (SOM) (Manlay et 

al., 2007).  The process of decomposition; where non living tissue and constituents are physically and 

chemically transformed by microbial activity releasing nutrients for use by the trees, crops or grasses 

found in silvopasture, is one of the main processes contributing to the formation of SOM (Milton and 

Kaspari, 2007).  Soil biota also contribute to nutrient levels through biological nitrogen (N) fixation, 

where atmospheric forms of N are transformed into bioavailable forms which plants can utilize.  As 

well, soil biota contribute to the physical aggregation of the soil and chemical composition (Lacombe 

et al., 2009).  Therefore; soil biota play an essential role in maintaining the benefits of agroforestry 

systems including those under a changing climate. 

It is well established that an increase in temperature, up to a threshold, results in an increase 

in enzymatic and microbial activity.  This threshold varies between classes of soil microfauna and 

species.  The increase in activity can lead to elevated rates of soil respiration causing the release of 

carbon dioxide (CO2) and N mineralization (Raich & Tufekcioglu, 2000; Rustad et al., 2001).  

Over the long-term; however, elevated temperatures can result in a loss of soil moisture thereby 

reducing decomposition and N and phosphorus (P) immobilization (van Meeteren et al., 2008).   
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Climate change is also predicted to lead to elevated levels of CO2 in the atmosphere.  

Research to date has demonstrated conflicting responses of soil microorganisms exposed to elevated 

concentrations of CO2.  Theoretically, elevated concentrations of CO2 should result in the turnover of 

greater C rich biomass from roots and tissue into the soil leading to greater biological activity (Drigo 

et al., 2008).   Various free air CO2 enrichment studies (FACE) demonstrated that no long-term 

changes in microbial community structure and enzymatic activity occurred (Lipson et al., 2005; 

Phillips et al., 2002; Sinsabough et al., 2003; Zak et al., 2000).  However, other studies noted an 

increased rate in decomposition and microbial activity (Drissner et al., 2007; Finzi et al., 2006; 

Marhan et al., 2008).  For example, Taneva and Gonzalez-Meler (2008) performed incubation tests 

on temperate coniferous forest soil to determine changes in soil decomposition rates exposed to 600 

ppm of CO2.  The results indicated that CO2 did increase the rates of decomposition in mineral soil.   

Overall, information exists on the impacts of temperature on soil microorganisms but the 

implications of elevated concentrations of CO2 are very unclear.  While some difficulties exist in 

testing these effects, including limited methods for field testing, the lack of comparative work is a 

major gap in knowledge (Pendall & King, 2007).  In addition, the lack of research in the tropical 

setting comparing the capacity of various types of land uses to adapt to possible future changes 

provides an opportunity for further study (Pendall & King, 2007).   

The objectives of this study were therefore: 

1) Determine changes in microbial community dynamics of a conventional pasture, 
silvopastoral system and a 14 year old regenerated forest throughout a 12 week soil 
incubation exposed to ambient conditions compared to elevated levels of CO2 (800 ppm). 
 

2) Determine changes in soil carbon and nitrogen concentration of a conventional pasture, 
silvopastoral system and a 14 year old regenerated forest after a 12 week soil incubation 
exposed to ambient conditions compared to elevated levels of CO2 (800 ppm).  
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5.2 Materials and Methods 

5.2.1 Soil Sampling  

 Soil was sampled from three sites in Esparza, Costa Rica.  Each site was visited and sampled 

on the same day, August 6, 2008.  The first site was a 14 year old silvopasture which included a 

fodder bank and live fencing for the production of dairy.  The next site was a 20 year old 

conventional pasture used for the production of cattle for dairy and meat products. The last site was a 

14 year old regenerated forest which was previously degraded pastureland and adjacent to the 

silvopastoral site.  Soil was sampled to a 20 cm depth, using a soil auger.  The depth of 20 cm 

reflects the typical rooting depth and highest soil biological activity zone (Drigo et al. 2008).  Three 

sub-samples were taken for each site and all of the soil was mixed together in order to account for 

heterogeneity at the sites.  At the conventional pasture site and regenerated forest site the three sub-

samples were taken following a transect through the site, one sample near one edge, one near the 

middle and one near the other edge.  For the silvopasture site two of the samples were taken 

randomly in the pasture and one was taken near at fodder bank.  A 2.0 kg sub-sample was taken for 

each site, air dried for seven days and sieved (2 mm) before transport back to Canada.   

5.2.2 Soil Incubation Study 

 Two twelve week incubations occurred; an ambient treatment, from here on referred to as 

AMB, where conditions reflected the temperature, humidity and concentrations of CO2 currently 

occurring in Esparza, Costa Rica and an elevated CO2 treatment (800 ppm), from here on referred to 

as CO2.  The CO2 treatment condition was based on predictions made from the UK Hadley Centre 

Global Climate Model (GCM) based on the A2 scenario in the Intergovernmental Panel for Climate 

Change (IPCC) reports (IPCC, 2007).   Both of these two incubations occurred with the use of 

controlled environmental chambers (PGR 15, Conviron Canada).  The specific schedule of 

conditions for each treatment used in the environmental chambers is outlined in Appendix 1.  For 
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each site, six incubation jars were used per treatment containing 60 g of wet soil.  Three jars were 

destructively sampled at 6 weeks and the rest at 12 weeks for the microbial community analysis and 

C and N analysis.  The jars were covered on all sides to try and prevent exposure to light, however; 

the tops were left open in order to allow exposure to the differing levels of CO2.  A level of 50% soil 

water content was maintained for all the soils throughout the incubation by weighing the jars and 

adding the difference in moisture every two days.  As well, the jar arrangement was changed every 

week in order to compensate for any variability in chamber conditions.  The weekly jar order is 

available in Appendix 3. 

 

 

Figure 5.1: Incubation jars and configuration within the environmental chamber for the 
CO2 treatment after t=6 destructive sampling. 
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5.2.3 Soil Microbial Community Structure 

Microbial community structure was assessed using the Biolog Ecoplates (Biolog Inc., CA, 

USA) at t=0, t=6 and t=12 for each treatment.  The soil from the three jars for each site and time 

were mixed together into one sample because a single Biolog Ecoplate™ provides a triplicate (n=3).  

Biolog Ecoplates ™ are based on C substrate utilization causing a change in color development 

thereby reflecting the presence and activity of differing C utilizing microorganisms (Garland, 1997).   

A representative 2 g of soil for each site and treatment (AMB and CO2) were taken and placed into a 

test tube. An amount of 18ml of 0.85% NaCl solution was added to the test tube and then 

subsequently shaken vigorously for 10 minutes.  A serial dilution was performed to reach a 1:10 000 

concentration. From this, a 150 μl sample was added into each well of the Ecoplate™ with a 

multichannel pipette. The Ecoplate™ was incubated at 25 °C and the colour development of each 

well was read as optical density (OD) at 590 nm with a plate reader at time 0 and every 24 hours 

thereafter, up to 168 hours.  This method is based on the research developed by Garland and Mills 

(1991) and has been successfully utilized for soil microbial community analysis in many other 

studies (Gorlenko & Korzhevin, 1994; Zak et al., 1994).  

The microbial communities were characterized by several variables.  All of the 

characteristics were determined by using the Ecoplate™ results from day five to seven.  Microbial 

activity in each Ecoplate™ was determined as the average well-color development (AWCD).  This 

was determined by the following equation:    

AWCD = ∑ ODi/31        (1) 

Where the value of OD from each of the 31 wells is ODi. 
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Microbial richness (R) represents the number of oxidized C substrates (>0.25 OD).   The Shannon 

Index (Hs) is an indicator of the diversity and evenness of substrate utilization.  This was quantified 

using the following equation:  

 (Hs) = - ∑pi (ln pi)        (2) 

Given that Pi is the ratio of activity on each substrate (ODi) to the sum of activities on all substrates 

(ΣODi) (Garland, 1997).  The threshold for a positive test was any positive response above a 0.25 

absorbency (Garland, 1997). Optical density data were corrected by blanking each response well 

against the first well reading (blank well) thereby eliminating absorbance of the C reading and any 

negative values associated with a control well (Insam and Goberna, 2004; Garland, 1997).     

5.2.4 Soil Nutrient Analysis 

 Soil samples from each treatment and site at t=0, t=6 and t=12 were taken and dried at 50°C 

for 48 hours.  Soil was ground to a fine powder (< 250 μm) using a Retsch Ball Mill (MM 200, PA) 

and analyzed for soil organic C (SOC) and total N (TN) on a Costech Elemental Analyzer (ECS 

4010, CA).  Through a hydrochloric acid test it was determined that carbonates were not present.  A 

2.0 mg sample of soil for each site was put into test tubes and exposed to 3 mL of 3M hydrochloric 

acid.  No effervescence was seen indicating the lack of CO2 formation.  

5.2.5 Statistical Analysis 

All data were examined for homogeneity of variance using the Levene Test and normal 

distribution was tested using the Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks Test.  All 

of the soil data were compared between sites and treatments using a one-way analysis of variance 

(ANOVA) using SPSS (SPSS Science Inc. 2009).  Significant differences were tested using the 

Tukey’s least significant difference multiple comparison test (Zar, 1984).  

Principal components analysis (PCA) was performed on the OD data for the Ecoplate™ C 

substrate utilization analysis.  All of the data met the assumptions of continuous data which is 
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normally distributed.  The Kaiser-Meyer-Olkin measure of sampling adequacy was greater than 0.5 

for each individual variable as well as the set of variables.  The Bartlett’s test of sphericity was 

significant (p < 0.05).  Therefore, PCA was the appropriate technique for this data set. For all 

statistical analyses, the threshold probability level for determining significant differences was 

p<0.05.  While other methods of analysis could be applied to this data PCA is the most commonly 

used and makes these results more comparable to other studies (Garland, 1997). 

 

5.3 Results 

5.3.1 Soil microbial community structure dynamics 

Results showed that the AWCD is significantly greater for the CO2 treatment compared to 

the AMB treatment at t=6 for both the pasture and silvopasture sites but no significant differences 

were found for the regenerated forest site.  No significant difference in species richness was observed 

for any treatment or site.  The Shannon index exhibited varied responses.  For all sites the t=12 CO2 

treatment demonstrated significantly lower values.  For the pasture and regenerated forest site the t=6 

AMB treatment also had a significantly lower value (Table 5.1).     

 The PCA demonstrated components at t=6, t=12 and when all of the times were combined 

demonstrating trends and relationships in data points.  For t=6 the first and second principle 

components explained 62% and 32% (Fig. 5.2).  The AMB treatment for the various sites clustered 

together and the CO2 treatment for the various sites clustered together.  At t=12 the first component 

explained 69% and the second component explained 16% (Fig 5.3).  All of the sites and treatments 

clustered together except the AMB regenerated forest. 
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Table 5.1: Average well color development (AWCD), richness (R) and Shannon index (Hs) 
based on carbon substrate use in Biolog Ecoplate ™ between sites (conventional pasture, 
silvopasture and regenerated forest soil), sampling time (t=0, t=6, t=12) and treatments 
(AMB: 360 ppm, CO2: 800 ppm).  Standard error given in parentheses (n=3).   
 
Site Treatment Time   AWCD R Hs 

  t=0  0.67 (0.04)a 20 (1.0)a 3.10 (0.01)a 

 AMB t=6  0.56 (0.03)a 18 (1.0)a 2.94 (0.01)b 

Pasture AMB t=12  0.52 (0.04)a 20 (1.0)a 3.07 (0.02)a 

 CO2 t=6  1.01 (0.21)b 21 (1.0)a 3.07 (0.03)a 

 CO2  t=12  0.39 (0.20)a 15 (3.0)a 2.90 (0.04)b 

 

  t=0  0.67 (0.03)a 21 (1.0)a 3.12 (0.01)a 

Silvopasture AMB   t=6  0.60 (0.03)a 20 (0.3)a 3.03 (0.01)a 

 AMB  t=12  0.52 (0.06)a 22 (1.0)a 3.12 (0.02)a 

 CO2  t=6  1.25 (0.24)b 21 (1.0)a 3.06 (0.04)a 

 CO2  t=12  0.35 (0.18)a 14 (3.0)a 2.94 (0.02)b 

 

  t=0  0.66 (0.03)a 21 (1.0)a 3.10 (0.01)a 

 AMB  t=6  0.50 (0.02)a 18 (0.4)a 3.00 (0.01)b 

Regenerated Forest AMB t=12  0.48 (0.01)a 19 (0.5)a 3.10 (0.01)a 

 CO2  t=6  0.52 (0.07)a 20 (2.0)a 3.09 (0.04)a 

 CO2  t=12  0.36 (0.18)a 13 (3.0)a 2.96 (0.38)b 

Note: Significant differences between treatments (p<0.05) are indicated by differing lower case 
letters. 
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Figure 5.2 Principle components based on carbon source utilization in Biolog Ecoplates™ 
of conventional pasture (Past), silvopasture (Sil) and regenerated forest (RF) exposed to 
ambient (A) and elevated CO2 (800 ppm) conditions at t=6. 
 
 
When all of the data for each site (pastor, silvopasture and regenerated forest) and treatment (AMB 

and CO2) were analyzed for principal components three components were found.  The first 

component accounted for 62% of the data, the second component accounted for 17% of the data 

points and the third for 8% (Fig. 5.4).  There were three clusters; the first included all the sites for the 

AMB treatment at t=12 and t=6, the second included the sites for the CO2 treatment at t=12 and the 

AMB treatment at t=0, and the last cluster consisted of the sites in the CO2 treatment at t=6 and the 

regenerated forest site for the AMB treatment t=12 (Fig. 5.4). 

(62%) 

(3
2%

) 



57 
 

 
 
 

Figure 5.3 Principle components based on carbon source utilization in Biolog Ecoplates™ 
of conventional pasture (Past), silvopasture (Sil) and regenerated forest (RF) exposed to 
ambient (A) and elevated CO2 (800 ppm) conditions at t=12. 
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Figure 5.4 Principle components based on carbon source utilization in Biolog Ecoplates™ 
of conventional pasture, silvopasture and regenerated forest  exposed to ambient (AMB: 
360 ppm) and elevated CO2 (CO2: 800 ppm) conditions at t=0, t=6 and t=12. 

 

5.3.2 Soil carbon and nitrogen concentration under elevated atmospheric 
concentrations of CO2 

The concentration of soil C was significantly higher for all of the silvopasture treatments and 

times compared to the other treatments (Table 5.2).  There was no significant difference in soil C 

concentration for any of the times and treatments of the regenerated forest site. Soil N concentration 

was significantly lower for all of the regenerated forest samples except at t=6 for the CO2 treatment 

(Table 5.2).  The pasture soil at t=0 also contained significantly lower soil N concentration.  The C:N 

ratio was significantly greater for the pasture site at t=0, the regenerated forest site at t=0, AMB 

treatment t=12 and the CO2 treatment t=12 (Table 5.2).   
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Table 5.2: Comparison of the carbon, nitrogen concentration, and C:N ratio of three soil 
sites; conventional pasture, silvopasture and regenerated forest for two treatments; 
ambient (AMB: 360 ppm), CO2 (CO2: 800 ppm) at different times (t=0, t=6 and t=12).  
Standard errors are given in parenthesis. 

Note: Significant differences between treatment (p<0.05) are indicated by differing lower case 
letters. 

 

 
 

Site  Treatment  Time  C (g/kg)  N (g/kg)  C/N ratio  

  t=0  28.2 (0.76) a 1.6 (0.06) b 17.65c 

 AMB  t=6  35.9 (0.75) b 2.4  (0.03) a 14.75 a 

Pasture  AMB  t=12  33.2 (0.96) a 2.5 (0.03) a 13.46 a 

 CO2  t=6  27.8 (0.35) a 2.3 (0.06) a 12.09 a 

 CO2  t=12  31.5 (0.36) a 2.4 (0.06) a 13.13 a 

  t=0  37.6 (0.21) b 2.6 (0.07) a 14.28 a 

 AMB  t=6  37.1 (0.78) b 2.7 (0.10) a 13.74 a 

Silvopasture  AMB  t=12  38.3 (0.95) b 2.8 (0.03) a 13.87 a 

 CO2  t=6  36.9 (0.31) b 2.6 (0.03) a 14.01 a 

 CO2  t=12  36.2 (0.87) b 2.7 (0.03) a 13.56 a 

  t=0  13.0 (0.85) a 1.3 (0.03) b 10.29 b 

 AMB t=6  13.8 (0.43) a 1.2 (0.07) b 11.86 a 

Regenerated  Forest  AMB t=12  10.9 (0.29) a 1.3 (0.00) b 8.36 b 

 CO2  t=6  33.1 (0.32) b 2.2 (0.32) a 15.28 a 

 CO2  t=12  11.3 (0.12) a 1.2 (0.00) b 9.44 b 
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5.4 Discussion 

 The soil microbial diversity was comparable between site types and treatments as indicated 

by the richness index (Garland, 1997).  The Shannon index is a reflection of microbial diversity by 

expressing the evenness in C substrate utilization (Garland, 1997).   Every site experienced a 

significantly lower Shannon index level for the CO2 treatment at t=12 thereby indicating a lower 

diversity of the microbial community.  In addition, both the pasture and regenerated forest sites 

experienced significantly lower Shannon indexes for the AMB treatment at t=6.   

The diversity of conditions on the landscape of a silvopastoral system and regenerated forest 

should have allowed for microbial niche creation within the below ground environment encouraging 

a wider diversity of soil microorganisms (Hogberg and Read, 2006).  As well, vegetation type is one 

of the main factors influencing microbial activity and the diversity in vegetation found between the 

sites should have caused significant differences in microbial community dynamics (Raich and 

Tufekcioglu, 2000; Hogberg and Read, 2006; Pinay et al., 2007).  However, this study did not reflect 

that. The PCA analysis at t=6 indicated that clusters were formed based on treatments and not 

differences in sites, while the PCA analysis at t=12 demonstrated that the AMB regenerated forest 

sample was significantly different from the rest.  This is supported by other studies; for example one 

study conducted in Costa Rica (Tornquist et al., 1999) comparing a silvopastoral site utilizing 

Vochysia guatemalensis D. Smith and Vochysia ferruginea  Mart. tree species to conventional 

pasture found no significant differences in microbial activity between the two sites. Another study 

conducted in the Three Gorges Reservoir area (Yan et al., 2003) comparing agroforestry to native 

forest also found no significant difference in soil microbial activity or diversity between land uses.  

As well, a five year study on a grassland setting demonstrated that increasing the above ground plant 

species diversity on a landscape did not lead to increased diversity in microbial community (Gruter et 

al., 2006).   In the context of this study, soil sampling in the silvopasture site only had one sub-
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sample from the fodder bank and the contribution of trees in this space may have had a limited effect 

on soil microbial communities. Therefore there could be many contributing factors for the negligible 

difference in microbial community dynamics between the silvopasture and conventional pasture site.   

Vegetation type and biomass quality could have a greater influence on microbial diversity rather than 

the level of above ground plant diversity.  However, a study by Lima et al. (2009) found that an 

agroforestry and conventional pasture site contained a greater diversity of N2-fixing bacteria when 

compared to a pristine forest.  Therefore, whether a change in land use increases microbial activity or 

diversity could be a factor of the tree or other crop species and the distribution of the vegetation 

within the system (Pandey and Singh, 2009).    

The CO2 treatment caused an increase in AWCD for both the pasture and silvopasture sites 

at t=6 of the incubation.  This could be a reflection of greater activity in the soil microbial 

community at this time but that the activity returns to levels similar to t=0 by the end of the 12 week 

span, thereby demonstrating no long term effects.  This could be explained by the elevated CO2 

leading to elevated rates of labile C cycling and respiration (Carney et al., 2007); however, over time 

without the addition of more easily utilized C substrate the microbial activity would have reduced 

due to dieback (Taneva and Gonzalez-Meler, 2008).  However; this is not reflected in the nutrient 

dynamics measured since no significant difference in C or N concentrations are measured and the 

C:N ratio is also not altered for these treatments.  Other studies claim that a reduction in N 

accumulation will actually slow down microbial activity and rates of respiration near the surface and 

at further depths over time, allowing for the further build up of C stocks in the soil (Hu et al., 2001; 

Pendall and King, 2007).  Further research supports that the direct effects of elevated concentrations 

of CO2 alone, without the interaction with vegetation, have negligible effects on microbial 

community structure (Kanerva et al., 2008).  The variability of possible influences on the dynamics 

of soil microbial communities, including varying vegetation types, land use, soil type, climate and 



62 
 

other factors can help explain the various findings from previous studies (Pendall and King, 2007; 

Kanerva et al., 2008). 

The lower the C:N ratio of the soil the higher the rates of mineralization leading to greater 

quantities of bioavailable forms of nutrients (Manley et al., 2007).  Although, both soil organic 

carbon (SOC) and total nitrogen (TN) are necessary for the productivity and overall fertility of the 

land, it is the balance they form that is the most beneficial for plant growth (Manley et al., 2007).  

High C:N ratios allow for the accumulation of C within the soil, however, without adequate 

quantities of nitrogen decomposition is reduced and bioavailable nutrient concentrations are 

diminished, this process is termed immobilization (Knops and Tilman, 2000).  This study had the 

potential to reflect changes in microbial activity leading to changes in soil nutrient concentration 

based on rates of decomposition or other processes causing a loss of C and N.  However, due to the 

chosen method of destructively sampling at t=6, soil from the same jars were not tested throughout 

the incubation and could account for changes in nutrient concentration including increases in C and 

N concentrations over time.  The regenerated forest had significantly lower C:N ratios for t=0 and 

t=12 for both the AMB and CO2 treatments indicating that over the long run it is able to maintain a 

high level of bioavailable nutrients.  The ability of the regenerated forest to maintain the most 

bioavailable nutrients is a reflection of the diversity of species found, including the presence of 

nitrogen fixing plant and tree species and the consistent levels of litterfall and biomass input, 

including the input from animal species.  As a result of this high level of input combined with the 

high levels of decomposition commonly found in a tropical setting, soil fertility and soil nutrient 

equilibriums are maintained (de Gama-Rodrigues et al., 2007).    

The conventional pasture site had a significantly higher C:N ratio at the beginning of the 

incubation reflecting the nitrogen deficient conditions which are often associated with this practice 

(Manley et al., 2007).   The consistent significantly higher C concentrations in the silvopasture site 

did not lead to any overall difference in C:N ratio thereby demonstrating that it is better able to 



63 
 

maintain the nutritive balance then a conventional system.  This is supported by many other studies     

(Kaur et al., 2000; Raich and Tufekcioglu, 2000; Sharma et al., 2004; Pinay et al., 2007).  The ability 

of the silvopastoral system to be resilient to changes in nutrient concentration could be a reflection of 

the tree species found on the site and the resulting quality of leaf litter input (Pinay et al., 2007).  As 

well, some studies have demonstrated that the species type can impact the quality and quantity of 

root turnover and the presence of C exudates from the roots thereby impacting the levels of SOM 

turnover (Silver and Miya, 2001; Pinay et al., 2007).  These factors differ between a conventional 

pasture site where typically only one grass species is used as compared to a silvopastoral site where a 

combination of grass and trees are used.  Overall, the study based on such a short time frame cannot 

be representative of the potential long term effects which climate change could have on agroforestry 

systems.  However, microbial community responses to differing conditions can be rapid and this 

research was attempting to provide a short term perspective on the possible responses of the below 

ground fauna.      

5.5 Conclusion  
 
 An understanding of the soil microbial community structure and nutrient concentration in 

differing land uses when exposed to the conditions of a changing climate could help inform future 

sustainable agricultural management practices and adaptation strategies.  Although, soil microbial 

community dynamics demonstrated very little differences between sites, the soil nutrient 

concentration over the twelve week incubation demonstrated the potential capacity of silvopastoral 

systems to maintain adequate C:N ratios in order to maintain fertility.  The regenerated forest had the 

best ratio between these nutrients and the pasture site demonstrated a lack of capacity to maintain 

levels of N.  In response to elevated concentrations of CO2 microbial community diversity showed 

little change; however in a field setting with the exposure to varying levels of biomass and other 

conditions this response could change.  This study demonstrated that the type of land use is important 
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in terms of nutrient concentration and when taken outside of the field setting the microbial 

communities do not necessarily reflect responses to varying climate conditions in an accurate or real 

manner.  Therefore, other methods which include long term observation in microbial and nutrient 

dynamics within a field setting should be investigated.   
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Chapter 6: Final Summary and Conclusions 

6.1 Final Summary and Conclusions 
 
 Under global climate change scenerios, the role of agroforestry to maintain and 

improve soil fertility and crop production levels will be even more necessary.  Therefore 

there may be a reliance on commonly used agroforestry tree species to continue to provide 

benefits in the form of physical barriers, nutritive biomass addition and enhancing physical 

soil properties (Nair, 1993; Rao et al., 1998; Gill and Burke, 1999; Jackson et al., 2000; 

Jobba´gy and Jackson, 2000; Ong et al., 2001; Jose, 2009; Nair, 2009).  When grown under 

treatments reflecting changing climate conditions, both Gliricidia sepium (Jacq.) Walp. and 

Cedrela odorata L. tree seedlings expressed species specific responses.  While a limited CO2 

fertilization effect was observed, the overall combined treatment resulted in an increased 

seedling growth for both species.  Although this lack of expression of the CO2 fertilization 

effect was not hypothesized at the beginning of the study it does emphasize that these species 

reacted differently than others studied.   As well, the implications of the combined conditions 

include possible long-term changes in leaf nutrient concentration in G. sepium which could 

result in a lower capacity to renew soil fertility when applied as mulch.   

When soil from three different land uses; silvopasture system, conventional pasture 

system and a regenerated forest were exposed to elevated concentrations of atmospheric CO2 

little change in microbial community structure was observed over a twelve week incubation.  

As well, microbial diversity did not vary by site indicating that land use may have varying 

impact on soil biota diversity.  The nutrient concentration did vary by site demonstrating that 

the regenerated forest had the best C:N ratio followed by silvopasture and then the 

conventional pasture site.  However, the CO2 treatment had very little impact on the soil 

nutrient concentration. 
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 While these studies were done separately they do focus on components which are 

very deeply interconnected in the field setting.  As was discussed in Chapter 5, the microbial 

response and nutrient dynamics in the soil are very dependent on plant biomass input and the 

long term cycling of both C and N (Kaur et al., 2000; Sharma et al., 2004; Pandey and Singh, 

2009).  In turn, the extent of plant growth is very dependent on the availability of nutrients.  

When considered all together climate change could cause various impacts on the farm level.  

As the nutrient concentration in G. sepium leaves decrease when applied in the field this 

results in a decline in the levels of microbial activity and levels of decomposition. Therefore, 

a greater accumulation and storage of C in the soil would result causing less bioavailable 

nutrients for crop and forage production.   While some caution must be taken when 

extrapolating these individual component results into a field setting, they do give some 

insight into the possible responses and implications of the changing climate on the ability of 

agroforestry to be a means of sustainable agriculture.     

6.2 Recommendations for future research 

 This research attempts to fill some of the existing knowledge gaps with respect to the 

implications of climate change on the growth of tropical tree species especially those valued 

for agroforestry use.  However, due to the species specific responses to the varying climate 

variables, further study with other tropical agroforestry species is required.  When comparing 

previous studies there is an inconsistency in the expression of the CO2 fertilization effect and 

the ability of temperature to enhance the fertilization effect.  While the mechanism for the 

CO2 fertilization effect is well understood the diversity of responses by the differing species 

indicates that a greater understanding of the influence of these variables on the specific 

pathways is required.  As well, a better understanding is required of the response of trees 
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exposed to the combined conditions predicted with the changing climate throughout a 

lifetime, from germination to maturity.  This study can comment on the sensitive seedling 

stage; however the response over the long-term is still not very well understood.  The use of 

growth chambers in some early and current plant experiments allows for the control of CO2 

concentrations, temperature, moisture and all other variables associated with the growth of 

the plants.  While these studies provide insight into the plant physiological responses, the 

lack of any of the realistic factors found in the field including pests, competition and 

disturbance prevent it from informing stand or ecosystem level responses.  As well, from the 

perspective of agroforestry a focus should remain on the ability of each individual tree 

species to provide the product or service which makes them valuable even under differing 

climate conditions, this can include high nutrient litter, added value products such as nuts and 

fruit or the provision of structural components such as shade.  

As individual tree responses are better understood, further forest stand and farm level 

studies are also required in order to incorporate other components including soil nutrient and 

microbial community dynamics.  While many studies investigating the influence of CO2 on 

soil processes and function exist there is a diversity of methods used causing a discrepancy 

when comparing studies.  As well, studies to date have emphasized the importance of 

differing litter type and vegetation cover on the microbial community diversity and activity 

thereby influencing the various soil processes.  This further indicates that on site field 

experiments would be the most appropriate in order to capture the conditions occurring in 

agroforestry systems. Ideally, if an ecosystem level or forest stand level experiment is the 

goal, field studies present the most optimum situation for understanding how all of the 

variables interact.  In terms of climate change research the method representing the 

conditions the best that is currently available is free air CO2 enrichment (FACE) and open top 

chambers (OTC).  Both of these procedures involve a field situation within which CO2 is 
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artificially pumped into an area to mimic predicted levels.  FACE allows a whole stand to be 

enriched while OTC allows for one section, branch or stem of a tree or plant to be enriched 

while the rest of the plant encounters ambient conditions.  Limitations to these studies 

include the fact that temperature cannot be mimicked and therefore the interactive effect 

between the variables cannot be assessed.  In addition, within field settings many variables 

differ and it is extremely difficult to assess whether changes occur due to the enrichment of 

CO2 or due to other variables.  While all methods will always have some limitations the need 

for a better understanding of the impacts of climate change should drive the improvement of 

current available methods.  
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Appendix 1: Schedule of conditions in the controlled 
environmental chamber for all the treatments 
 
Ambient 
 
Time Temperature 

(°C) 
Relative 
Humidity (%) 

Light (umol) CO2 (ppm) 

0:00 22 82 0 (0) 380 
5:35 22 82 1 (90) 380 
5:45   2 (300)  
9:00   3 (450)  
12:00   4 (615)  
13:30 32 60 4 (615) 380 
15:00   3 (450)  
17:00   2 (300)  
17:35   1 (90)  
18:00   0 (0)  
22:00 22 82 0 (0) 380 
23:59 22 82 0 (0) 380 
 
 
Elevated Temperature 
 
Time Temperature 

(°C) 
Relative 
Humidity (%) 

Light (umol) CO2 (ppm) 

0:00 25 82 0 (0) 380 
5:35 25 82 1 (90) 380 
5:45   2 (300)  
9:00   3 (450)  
12:00   4 (615)  
13:30 34 60 4 (615) 380 
15:00   3 (450)  
17:00   2 (300)  
17:35   1 (90)  
18:00   0 (0)  
22:00 25 82 0 (0) 380 
23:59 25 82 0 (0) 380 
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CO2 

 
Time Temperature 

(°C) 
Relative 
Humidity (%) 

Light (umol) CO2 (ppm) 

0:00 22 82 0 (0) 800 
5:35 22 82 1 (90) 800 
5:45   2 (300)  
9:00   3 (450)  
12:00   4 (615)  
13:30 32 60 4 (615) 800 
15:00   3 (450)  
17:00   2 (300)  
17:35   1 (90)  
18:00   0 (0)  
22:00 22 82 0 (0) 800 
23:59 22 82 0 (0) 800 
 
 
Combined (Temperature and CO2) 
 
Time Temperature 

(°C) 
Relative 
Humidity (%) 

Light (umol) CO2 (ppm) 

0:00 25 82 0 (0) 800 
5:35 25 82 1 (90) 800 
5:45   2 (300)  
9:00   3 (450)  
12:00   4 (615)  
13:30 34 60 4 (615) 800 
15:00   3 (450)  
17:00   2 (300)  
17:35   1 (90)  
18:00   0 (0)  
22:00 25 82 0 (0) 800 
23:59 25 82 0 (0) 800 
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Appendix 2: Tree number order within the environmental 
chambers for all treatments (ambient, temperature, CO2 and 
combined) 
Ambient 
WEEK 1   Back of Chamber    

1 2 3 LIGHT SENSOR 4 5 6 

7 
TEMP 
SENS 8 9 10 11 12 

  13 14 15 16  
       
       
WEEK 2       

5 14 1  12 9 4 
6  15 8 2 7 10 

  16 13 3 11  
       
Week 3       

11 10 1  2 5 8 
4  16 7 9 13 14 

  6 3 12 15  
       
Week 4       

5 2 12  15 8 9 
11  10 7 14 3 6 

  13 4 16 1  
       
Week 5       

14 7 6  8 3 12 
4  13 9 5 10 16 

  15 1 2 11  
       
Week 6       

12 5 15  9 8 10 
3  7 2 13 11 16 

  14 6 1 4  
       
       

Please note: numbers indicate tree number
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Temperature Treatment     
       
Week 1     

1 2 3  4 5 6 
7  8 9 10 11 12 

  13 14 15 16  
       
Week 2     

11 9 13  14 5 2 
4  3 6 15 7 1 

  16 8 12 10  
       
Week 3     

13 3 14  8 10 7 
16  2 6 11 4 12 

  9 15 5 1  
       
Week 4     

8 4 6  7 9 12 
10  11 5 3 13 1 

  15 16 14 2  
       
Week 5     

4 6 13  5 9 3 
14  2 16 8 11 1 

  12 7 10 15  
       
       

Please note: numbers indicate tree number 
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TEMP AND CO2 TREATMENT     
Week 1     

1 2 3  4 5 6 
7  8 9 10 11 12 

  13 14 15 16  
       
Week 2     

13 11 3  4 14 5 
10  2 15 6 12 9 

  1 16 8 7  
       
Week 3     

3 14 10  1 4 15 
5  16 11 8 12 2 

  6 9 7 13  
       
Week 4     

5 9 12  4 7 16 
1  13 2 14 10 8 

  3 11 15 6  
       
Week 5        

9 16 7  8 11 2 
3  1 10 6 4 14 

  5 13 15 12  
       

Please note: numbers indicate tree number 
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CO2       
Week 1       

4 12 1  7 15 8 
16  2 3 9 11 13 

  6 10 14 5  
       
Week 2       

2 5 12  8 11 6 
10  14 3 9 4 13 

  1 16 15 7  
       
Week 3       

11 7 9  6 14 5 
8  12 2 15 3 16 

  4 13 10 1  
       
Week 4       

5 12 8  3 16 6 
1  2 10 14 9 4 

  7 15 11 13  
       
Week 5       

7 16 1  14 3 8 
5  9 11 15 6 10 

  4 13 2 12  
Please note: numbers indicate tree number 
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Appendix 3: Soil incubation jar order within the environmental 
chambers for all sites (pasture, silvopasture, regenerated forest) 
and treatments (ambient and CO2) 
 
Treatment Jar number Treatment Jar number 
Pasture 1 1 Silvopasture 4 10 
Pasture 2 2 Silvopasture 5 11 
Pasture 3 3 Silvopasture 6 12 
Pasture 4 4 Regenerated Forest 

1 
13 

Pasture 5 5 Regenerated Forest 
2 

14 

Pasture 6 6 Regenerated Forest 
3 

15 

Silvopasture 1 7 Regenerated Forest 
4 

16 

Silvopasture 2 8 Regenerated Forest 
5 

17 

Silvopasture 3 9 Regenerated Forest 
6 

18 

 
 
Ambient Treatment       
WEEK 1       
Upper Level       

1 2      
3 4      
5 6      
7 8      
9       

Lower       
10 11      
12 13      
14 15      
16 17      
18       
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WEEK 2 
 Upper   Lower   
 17 16  3 10  
 15 18  9 7  
 4 14  6 5  
 1 2  13 12  
 8   11   
       
WEEK 3       
 Upper   Lower   
 11 2  5 7  
 10 15  6 14  
 8 9  13 16  
 3 18  1 17  
 4   12   
       
WEEK 4       
 Upper   Lower   
 1 13  11 17  
 10 16  12 6  
 5 15  18 9  
 14 8  3 4  
 7   2   
       
WEEK 5       
       
 Upper   Lower   
 7 16  10 15  
 9 13  3 1  
 4 18  2 5  
 11 6  14 8  
 12   17   
       
WEEK 6       
 Upper   Lower   
 11 14  1 7  
 15 5  8 17  
 13 4  9 10  
 3 18  2 6  
 16   12   
       
Week 7 Upper   Lower   
 11 5  12 17  
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 16 4  6 10  
 18      
       
Week 8       
 Upper   Lower   
 17 11  4 6  
 18 10  12 16  
 5      
       
Week 9       
 Upper   Lower   
 5 4  18 11  
 16 6  10 17  
 12      
       
Week 10       
 Upper   Lower   
 18 5  10 6  
 4 16  17 11  
 12      
       
Week 11       
 Upper   lower   
 12 16  4 17  
 5 10  11 6  
 18      
       
Week 12       
 Upper   lower   
 4 18  5 16  
 17 6  11 12  
 10      
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CO2 treatment 
       
Week 1       
 Upper   lower   
 1 2  10 11  
 3 4  12 13  
 5 6  14 15  
 7 8  16 17  
 9   18   
       
Week 2 Upper   lower   
 13 18  5 14  
 2 1  8 3  
 10 12  17 11  
 9 6  15 7  
 4   16   
       
Week 3 Upper   lower   
 2 7  3 14  
 10 13  8 5  
 17 12  11 1  
 18 6  9 15  
 4   16   
       
Week 4 Upper   lower   
 1 17  9 4  
 11 5  13 2  
 10 16  15 18  
 3 7  8 14  
 6   12   
       
Week 5 Upper   lower   
 7 13  11 8  
 6 5  9 10  
 3 15  1 16  
 14 12  2 18  
 17   4   
       
Week 6 Upper   lower   
 13 18  5 9  
 3 2  1 12  
 11 15  17 4  
 8 6  7 10  
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 14   16   
       
Week 7 Upper   lower   
 4 5  12 16  
 6 10  17 18  
 11      
       
Week 8 Upper   lower   
 16 6  18 5  
 12 17  10 4  
 11      
       
Week 9 Upper   lower   
 10 18  4 11  
 5 12  16 17  
 6      
       
Week 10 Upper   lower   
 5 18  6 11  
 17 12  10 16  
 4      
       
Week 11 Upper   lower   
 4 12  10 5  
 18 17  16 11  
 6      
       
Week 12 Upper   lower   
 10 16  11 17  
 5 18  12 4  
 6      
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