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Abstract

The human being, the most magnificent autonomous entity in the universe, frequently
takes the decision of ‘what to look at’ in their day-to-day life without even realizing the
complexities of the underlying process. When it comes to the design of such an attention
system for autonomous robots, all of a sudden this apparently simple task appears to be
an extremely complex one with highly dynamic interaction among motor skills, knowledge
and experience developed throughout the life-time, highly connected circuitry of the visual
cortex, and super-fast timing. The most fascinating thing about visual attention system of
the primates is that the underlying mechanism is not precisely known yet. Different influ-
ential theories and hypothesis regarding this mechanism, however, are being proposed in
psychology and neuroscience. These theories and hypothesis have encouraged the research
on synthetic modeling of visual attention in computer vision, computational neuroscience
and, very recently, in AI robotics. The major motivation behind the computational model-
ing of visual attention is two-fold: understanding the mechanism underlying the cognition
of the primates’ and using the principle of focused attention in different real-world applica-
tions, e.g. in computer vision, surveillance, and robotics. Accordingly, we observe the rise
of two different trends in the computational modeling of visual attention. The first one
is mostly focused on developing mathematical models which mimic, as much as possible,
the details of the primates’ attention system: the structure, the connectivity among visual
neurons and different regions of the visual cortex, the flow of information etc. Such models
provide a way to test the theories of the primates’ visual attention with minimal involve-
ment from the live subjects. This is a magnificent way to use technological advancement
for the understanding of human cognition. The second trend in computational modeling,
on the other hand, uses the methodological sophistication of the biological processes (like
visual attention) to advance the technology. These models are mostly concerned with de-
veloping a technical system of visual attention which can be used in real-world applications
where the principle of focused attention might play a significant role for redundant infor-
mation management. This thesis is focused on developing a computational model of visual
attention for robotic cognition and, therefore, belongs to the second trend. The design
of a visual attention model for robotic systems as a component of their cognition comes
with a number of challenges which, generally, do not appear in the traditional computer
vision applications of visual attention. The robotic models of visual attention, although
heavily inspired by the rich literature of visual attention in computer vision, adopt different
measures to cope with these challenges. This thesis proposes a Bayesian model of visual
attention designed specifically for robotic systems and, therefore, tackles the challenges in-
volved with robotic visual attention. The operation of the proposed model is guided by the
theory of biased competition, a popular theory from cognitive neuroscience describing the
mechanism of primates’ visual attention. The proposed Bayesian attention model offers a
robot-centric approach of visual attention where the head-pose of a robot in the 3D world

iii



is estimated recursively such that the robot can focus on the most behaviorally relevant
stimuli in its environment. The behavioral relevance of an object determined based on two
criteria which are inspired by the postulates of the biased competitive hypothesis of visual
attention in the primates. Accordingly, the proposed model encourages a robot to focus
on novel stimuli or stimuli that have similarity with a ‘sought for’ object depending on
the context. In order to address a number of robot-specific issues of visual attention, the
proposed model is further extended to the multi-modal case where speech commands from
the human are used to modulate the visual attention behavior of the robot. The Bayes
model of visual attention, inherited from the Bayesian sensor fusion characteristic, natu-
rally accommodates multi-modal information during attention selection. This enables the
proposed model to be the core component of an attention oriented speech-based human-
robot interaction framework. Extensive experiments are performed in the real-world to
investigate different aspects of the proposed Bayesian visual attention model.
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Chapter 1

Introduction

The research in cognitive robotics operates with the very focused goal of designing robots
with human like abilities (albeit of reduced complexity) in perception, reasoning, decision
making, and action execution. Integration of all these abilities entitle human as a cogni-
tive entity. Reaching this goal, however, involves dispersed connectivity with several other
research areas in different disciplines namely, AI robotics, cognitive psychology, develop-
mental neuroscience, and linguistics. Based on the research conducted in these disciplines
on different aspects of human cognitive development, it is now a well accepted fact that
cognition is something that can not be fully hand-coded in the artificial agents (e.g., the
robot), rather it emerges through a bi-directional interaction between the robot and its
surroundings [1–4]. Modern robots, therefore, are equipped with a redundant number of
sensors and actuators to perceive and perturb the surrounding as a way of developing
their cognition. The increased number of sensors and actuators introduces the challenge
of managing enormous amount of information steadily arriving through them. The first
major challenge of developing cognition, therefore, lies at the perceptual level: informa-
tion management. The primates master this information management skill through their
custom-built attention mechanism. The underlying idea is simple yet robust: focus on
the piece of information (in relative exclusion of the others) which is the most relevant
to the current context. In case of humans the question of ‘what is relevant?’ is itself a
‘discipline’, but for robotic systems we optimize the definition of ‘relevancy’ in the context
of some predefined tasks (e.g., entertainment, assistance, rescue operation). Mimicking the
attention behavior of the primates in the design of robot’s attention behavior has gained
tremendous popularity in the recent years [5,6]. The problem with redundant information
management is the most severe in case of visual perception of the robots. Even a moder-
ate size image of the natural scenes generally contains enough visual information to easily
overload the real-time decision making process of an autonomous robot. A well accepted
solution to tackle this problem is designing a human-like visual attention mechanism for
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the robots where the robot will selectively (and autonomously) choose a ‘behaviorally rel-
evant’ segment of visual information for further processing. The research on developing
such a computational model of visual attention has experienced significant success during
the last decade but we are still far away from having an artificial model of human-like
visual attention which can serve as a component of robotic cognition. The goal of this
thesis is to contribute to the endeavor of cognitive robotics through developing
a model of visual attention which will serve as a component of cognition of the
autonomous robots.

This thesis performs a comprehensive analysis of the existing computational models of
visual attention to shed light on their strengths and shortcomings with respect to cognitive
robotics and thereby defines a set of properties that are expected to be observed in a
computational model of visual attention designed for cognitive robots. The thesis then
proposes a probabilistic model of visual attention which accommodates all of these expected
properties. Extensive experiments with a physical robot and sensors in the real-world are
presented to validate the proposed visual attention model.

1.1 Background and Motivation

The endeavor of cognitive robotics to design a bio-inspired visual attention model for
robots has strong connectivity with the research in cognitive psychology, computer vision,
and computational neuroscience as these are the three disciplines which cultivated the basic
research on the artificial modeling of human visual attention. The visual attention models
developed for robotic cognition heavily rely on the computational models of visual attention
proposed in computer vision and computational neuroscience while the inspiration of all
these models is rooted in the theories of human visual attention proposed in cognitive
psychology and neuroscience. The theories of primates’ visual attention mechanism first
took the form of a computational model by the research work reported in [7]. The major
inspiration behind the development of computational models of attention was two fold.

1. Development of a computational tool to test the validity of the theories/hypothesis
of attention proposed in psychology and neuroscience

2. The potential applications of the principle of focused attention in computer vision,
video surveillance, and robotics.

Accordingly, we observe the rise of two distinct trends in the computational modeling
of visual attention. The first one is mostly concerned about simulating the response of
the visual cortex during attention related activities [8–14]. Majority of the models here
are proposed in computational neuroscience. The second kind of computational models are
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Figure 1.1: General architecture of the computer vision models of visual attention

concerned about developing a technical system of visual attention while utilizing the unique
properties of the biological attention system [7, 11, 15–23]. The researchers in computer
vision are the major developers of the technical models of visual attention and cognitive
robotics, probably, is their most recent user. This thesis is solely focused on the
second group of computational models and is committed to propose a technical
model of visual attention for the cognitive robots.

The computational models of visual attention proposed in computer vision literature
gained widespread popularity in many sectors of robotics research. This is mostly because
of the fact that their strategies of analyzing visual features make them suitable to be
applied on a real-time technical system like autonomous robots. But most of the existing
computer vision models are characterized by a number of properties which impose some
restrictions on their direct use in the robotic applications. They will be discussed later in
this chapter.

The architecture generally followed by most of the computer vision models of visual
attention is shown in Fig. 1.1. The key differences among different models occur in two
sectors: 1) the methodology of implementing the overall architecture, e.g connectionist
approach [20, 21], filter-based approach [7, 16–19, 22–24] and 2) the mechanism of con-
structing a saliency map. Despite these two sectors of mismatch, the computer vision
models of visual attention share a set of common characteristics. They are summarized
below.
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(a) (b) (c)

Figure 1.2: The role of saliency operator in evaluating visual attention (a) A natural image
from the standard image database [17] (b) The saliency map calculated using the visual
attention model proposed in [23] (c) Five focus points in the image marked in the order of
decreasing saliency

Saliency operator

A centralized ‘saliency map’, first introduced in the attention model reported in [7], plays
a key role to guide attention toward different regions of an input image in almost all of the
existing computer vision models of visual attention [18,19,21–24]. A saliency map, in simple
words, is a two-dimensional image (of same size as the input image) in which the intensity
value of a pixel represents the relative visual saliency of its corresponding pixel in the
original input image. The higher the value is, the more salient the pixel is. A saliency map
does not hold any information about the feature channel (e.g., color, intensity contrast, or
orientation) that causes a particular pixel to appear more salient than the others. Besides,
the relative feature strength of a pixel plays the main role to obtain higher value in the
saliency map while the local absolute feature strength is of very little importance [25]. A
saliency map-based attention model generally reports the most salient pixel in the saliency
map as the current focus of attention. In order to prevent the attention from re-visiting
the same location, the saliency of the current focus of attention is suppressed after being
attended and thereby achieving the property of inhibition of return (IOR) [26]. Figure 1.2
shows a typical saliency map corresponding to a natural image (obtained from the freely
available standard image database [17]) along with the five focuses of attention marked on
the image in the order of decreasing saliency.

The most interesting fact about the saliency map is, it is a controversial notion in
neurobiology. The hypothesis of attentional control based on a unique, centralized saliency
map is, thus far, not supported by any of the existing neuro-physiological findings [7, 27–
29]. Rather, majority of the functional magnetic resonance imaging (fMRI)- and positron
emission tomography (PET)-based studies of attention in the primates advocates the idea
that there are several areas in the primates’ visual cortex (e.g., frontal eye field (FEF),
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superior colliculus (SC), posterior parietal cortex (PPC)) which process different visual
features in a distributed manner [30–32]. Even if the integrated operation of these brain
areas helps to constitute some form of ‘saliency map’, the organization of that map is
completely different than the one conventionally used in the existing computational models
of visual attention [33]. As compared to the notion of ‘saliency map’, a more neuro-
biologically plausible way of explaining attentional shift is the concept of bias modulation
as described in [34]. An early psychophysical theory of visual attention [35] also advocates
on the role of bias modulation for attention selection. The concept of bias modulation,
however, has gained very limited popularity among the researchers in computer vision for
developing technical model of visual attention [11].

Covert shift of attention

Majority of the computational models of visual attention in the existing literature are
designed based on the assumption that neither the eye nor the head moves to perform
attention. The attention mechanism in the primates which follows this assumption is
called covert attention [36]. The absence of eye/head movement during the direction of
attention has a number of consequences.

• The retinal input remains unchanged throughout the attentional task.

• The frame of reference remains unchanged in the subsequent directions of attention.
That simplifies the implementation of the IOR.

• The scene saliency remains unchanged causing no further requirement to recalculate
it after each attentional shift.

Most of the computational models of visual attention (e.g., [7,18–24]) enjoy the simplicity of
computation arising from the above three consequences of the covert nature of attentional
shift. The covert shift of attention, however, makes it difficult to compare the performance
of the computational models with the ground truth, e.g., with the attention behavior of
the human.

Bottom-up and top-down analysis

The early computational models of visual attention (e.g., [7, 17, 18, 20, 24]) mostly dealt
with bottom-up (or stimulus driven) influence in attention selection. To be consistent with
the biological findings, the recent computational models started to invoke the effect of
top-down influence [19,21,23,37,38]. These latter computational models [19,21,23,37,38],
however, limit the influence of top-down information in attention selection only to the case
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Figure 1.3: Standard images (available in [17]) commonly used to test the computational
models of visual attention. One of the stimuli stands out of the scene in at least one feature
dimension (e.g., orientation, color, intensity contrast). Some of the recent computational
models can almost accurately identify such stimuli

of visual search. Thus the bottom-up cues guide the visual exploration (focusing on the
most salient stimuli) while the top-down cues guide the visual search. In almost all of the
existing models these two modes of attention (visual search and visual exploration) run
in mutual exclusion of each other as shown in Fig. 1.1. In some of the models, even the
process of generating the saliency map for visual exploration considerably differs from that
for visual search. The desired mode of attention (visual exploration or visual search) is
manually activated by the programmer depending on the task at hand.

Off-line training for visual search

Almost all computer vision models of visual attention require an off-line training phase prior
to performing visual search. The model learns the target-specific visual features during a
training phase and the learned information is used to increase the saliency of the target-like
features during the visual search. The success of visual search, therefore, strongly relies on
the efficiency of the off-line training stage: type and quality of the training images, number
of training images etc [23].

Space- and object- based analysis

Inspired by the early psychophysical theories of attention [39, 40], the majority of the
computer vision models hypothesizes ‘space’ as the elemental unit of attention selection
[7, 17–21, 23, 24]. Accordingly, saliency and task-relevance are investigated at the pixel
level without considering the concept of object. Increasing evidence, in the psychology and
cognitive neuroscience, of ‘object’ being one of the elemental units of attention selection
[41–46] has influenced the recent computer vision models of visual attention. Many of the
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Figure 1.4: Natural images where the focus of attention of a human is never known precisely
[18]

recent models perform object-based analysis for selective attention [22, 47, 48]. There are,
however, only a few efforts which integrate space- and object-based analysis in the same
framework [8, 10,11,49].

Although common in almost every computational model, the way the above mentioned
characteristics are achieved differs in different attention models and hence the variation
in performance. These characteristics along with their sophisticated implementation have
enabled todays computational models to reach the stature where some of them can accu-
rately mimic the ‘what to focus on?’ behavior of the human when presented with typical
test images (e.g., the image shown in Fig. 1.3). The performance, however, is not that sat-
isfactory in case of other natural images where the ground truth is never precisely known
(e.g., the image shown in Fig 1.4).

An important fact about the computer vision models of visual attention is that their
characteristics make them well suited for the applications where static images or images
from a video stream are manually fed to the model in order to identify the most salient/task-
relevant stimuli. In case of some real-time applications where the current visual input of
the attention model has to be determined by the decision output of the model (i.e the
focus of attention) at the immediate past, the traditional computer vision models of visual
attention face severe limitations in a number of aspects. Using the visual attention models
as a component of robotic cognition is an example of such applications. In this case the
attention model should be able to locate the behaviorally-relevant stimuli in an ongoing
stream of visual input and respond to it, perform learning in an on-line fashion and with
minimal human supervision, and apply the learned knowledge for guiding the attention
behavior in arbitrary environmental settings.

It is worth mentioning that a realization of the human-like attention system (a reduced
complexity version) requires a complex interaction among attention, knowledge, emotion,
and reasoning. Design of such an attention model might not be possible in the near future
with our present understanding of human cognition and current technological sophistica-
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tion, but there are some milestones in this journey that we can certainly achieve through
adopting a slightly different design perspective.

1.2 Problem Statement

This thesis has identified a set of research issues that must be addressed in order to design
an attention model which will serve as a component of robotic cognition. These issues has
been identified based on an intensive investigation of the requirements of cognitive robots,
the properties of the computer vision models of visual attention and the modifications
required to fit them in cognitive robotic applications. A detailed analysis of these research
issues is provided in this section.

Issue 1. Overt shift of attention

In robotic applications (e.g., social robots, assistive robots, entertainment robots) it is
generally desired that visual attention will be accompanied by a saccadic movement of the
camera head of the robot. Such movement is necessary to place the object of attention
at the center of the camera frame and facilitates the learning of the focused object. A
computational model of visual attention for the robots, therefore, requires an integration
of the covert and overt modes in a common framework, much the same way the primates
integrate covert and overt shift of attention. The overt shift of attention leads to the
following issues that must be solved to design a model of attention for the robots.

Issue 1.1 Change of reference frame: In the simplest case, the visual attention
hardware of a robot consists of a camera (generally, color camera) and a two degrees of
freedom (DOF) pan-tilt unit (PTU) on to which the camera is mounted. There are at least
five coordinate systems involved with such an arrangement for execution of overt attention.

• The world coordinate system, Cw : (xw, yw, zw).

• The base coordinate system (the coordinate system attached with the home position
of the PTU), Cb : (xb, yb, zb)

• The head coordinate system (the coordinate system attached with the current posi-
tion of the PTU), Ch : (xh, yh, zh).

• The camera coordinate system, Cc : (xc, yc, zc).

• The image coordinate system, Ci : (xi(u), yi(v)).
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Figure 1.5: The coordinate systems involved with robotic overt visual attention for a simple
camera-PTU arrangement (please see text for detail)

The coordinate systems are shown in Fig. 1.5 in case of a stationary robot. The world
coordinate is fixed. For a given position of the robot in the 3D world, the base coordinate
is also stationary. But the head, camera and the image coordinate systems are changing
according to the movement of the PTU. A (α, β) amount of pan-tilt movements of the
PTU cause the camera to perceive a different segment of the environment. Thus the
content of the robot’s visual field (VF) changes, although a considerable amount of overlap
generally exists between two successive snap-shots of the environment. This makes the
‘saliency map’ calculated prior to the camera movement partially obsolete and demands
either a fresh calculation of saliency or re-mapping of the previous saliency to the new
image coordinate.

Issue 1.2 Dynamic IOR: The role of IOR in robotic attention is the same as that
in the biological attention system: encouraging the shift of attention toward fresh stim-
uli/ location [26]. Failure to implement the IOR properly might cause a robot to oscillate
between two stimuli. In overt attention camera movement causes the location of a stim-
ulus to shift in the image coordinate. It is, therefore, required to design a dynamic IOR
strategy where the location of the recently attended object will be mapped to the new
image coordinate in order to inhibit its candidacy as the next focus of attention. The
space-based dynamic IOR introduces the complexity that if, between two successive frame
capture, a new object appears at the inhibited location, the robot completely ignores its
presence. Fig. 1.6 demonstrates one instance of this problem. This might incur a longer
time to identify a ‘sought for’ object during visual search which is undesirable in many
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(a) (b) (c)

Figure 1.6: Difficulty in visual search with space-based dynamic IOR (a) The region of the
attended object at time (k − 1) is made inhibited for time k, (b) The inhibited region is
mapped to the new image coordinate system at time k. A ‘sought for’ object appears within
the inhibited region and the robot ignores its presence, (c) A random head movement in
search of the ‘sought for’ object causes it to go out of the VF. As a result, the robot requires
longer time to find the ‘sough for’ object

robotic applications. This kind of problem can be avoided by implementing object-based
IOR. The object-based IOR, however, introduces the problem of object correspondence.
In order to inhibit a recently attended object from being attended again, the robot needs
to identify it in the shifted image coordinate. This is generally a challenging task due to
change in camera perspective, lighting, image blurring due to camera motion, and partial
appearance of the objects.

Issue 1.3 Partial appearance: Due to head movement, it is highly likely that many
objects will partially/ completely go out of the camera frame in course of time. The
probability of this increases when the robot uses a narrow angle optics for the camera
or when the objects are located either very close to the camera or near the periphery of
the frame. Due to partial appearance the robot might fail to identify a recently attended
object. This, in turn, results in a failure to apply the IOR on it and the robot might re-
attend the same object. In the worst case, the attention of the robot will start oscillating
among a set of objects. The same trapped situation might also occur if the robot always
finds a set of objects ‘attention worthy’ (e.g., because of their novelty) as it can not match
the partially perceived features of these objects with its memory database of previously
attended and learned features. Application of space-based dynamic IOR on all of the
previously attended locations might relax this problem at the expense of exacerbating the
problem stated under Issue 1.2.
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Issue 2. Integrated space- and object- based analysis

The space-based analysis, commonly used in the majority of the computational models
of attention, does not practically fulfill the interest of most robotic applications. Instead
of a single pixel reported as the focus of attention, the information about the object
underlying that salient pixel is of greater interest in robotic applications. The space-based
models of attention, which generally rely on a traditional saliency map, do not preserve
the information of the underlying objects. Another serious problem with the space-based
approaches is the common practice of using coarse scales of the input image for space-based
saliency map construction [17–19, 23]. This causes the fading of many attention-worthy
small regions which do not get a chance to be highlighted in the saliency map [50]. The
problem of space-based dynamic IOR as stated under Issue 1.2 is another consequence of
space-based analysis. The object-based analysis works well in certain situations but it has
its own shortcomings, e.g., the object correspondence problem as stated under Issue 1.2.
Besides, extraction of meaningful objects from the scene is computationally more expensive
and makes the object-based model of attention slower than its space-based counter part.
Integration of the space- and object-based analysis in the same framework will have superior
performance and is expected as the quality of a computational attention model for robotic
systems.

Issue 3. Optimal learning strategy

This issue is particularly related to visual search. The robot needs to know the visual
features of a target object prior to performing a search for it in the environment. Because
of the extended number of sensors and actuators, modern-day robots are blessed with higher
degrees of freedom in their visual perception. Even an static object in the environment
can be perceived by the robot from arbitrary viewing angle. For a dynamic object the
possibilities are even higher. To the best of our knowledge, there is no such image feature
which is invariant to arbitrary affine transformation, change in viewing angle and lighting
condition. Consequently, in order to identify an object in an arbitrary setting the robot
requires to learn ‘several’ views of the object. The precise number to quantify the term
‘several’, however, is not known. The visual attention model of a robot, therefore, should
have a reasonable strategy (with human supervision) to learn sufficient visual features of
an object for identification in arbitrary setting.

Issue 4. Generality

As shown in Fig. 1.1, in majority of the computer vision models of visual attention, visual
search and visual exploration run in mutual exclusion of each other. The desired loop of
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attention (visual search or visual exploration) is manually activated by the programmer.
Such a manual selection of the mode of visual attention significantly reduces the generality
of an attention model and makes it unsuitable for robotic applications. A robotic visual
attention model must be able to switch back-and-forth autonomously between the two
modes of attention depending on the behavioral requirement.

Issue 5. Prior training

This issue is also related to visual search. The robotic applications can not afford to have
a separate off-line training phase for visual search. A robot has a very little use as a task-
assistant of human if it requires a precise training to learn every possible object prior to
performing a search for it. Rather, it is generally expected in the cognitive robots that
they will learn while working, much the same way we humans learn.

Many of the research issues stated above have strong mutual dependency on each other.
For instance, a strategy to deal with the changing reference frame (Issue 1.1 ) will inher-
ently provide a solution to implement the dynamic IOR (Issue 1.2 ). Again, for the sake of
generality (Issue 4 ) if we integrate visual search and visual exploration in the same frame-
work such that the model can switch back-and-forth between the two modes, there will
be no room for prior training (Issue 5 ). In other words, the learning has to be performed
on-line in an integrated framework of visual search and exploration. Again, if the target-
learning is performed on-line, an intelligent learning strategy must be devised to ensure
that the robot obtains enough information about the target for identification in arbitrary
settings (Issue 3 ).

Addressing the Issues 1 -5 is a crucial requirement to design a sound model of visual
attention for cognitive robots. In response to this requirement we observe the rise of a
separate group of visual attention models dedicated solely for robotic applications. There is
no doubt that this new group of models are heavily inspired by the computer vision models
of visual attention, specially when it comes to the detail of visual feature processing, but
they attempt to address at least some of the research issues stated above. For instance, a
popular choice to address Issue 1 and Issue 2 is robot-centric approach of visual attention
as reported in [49, 51–55]. Imitation learning and scaffolding are obtaining increasing
popularity to address the Issues 3, 4, and 5 [56–61]. Each of these approaches, however,
has their pros and cons. A complete model of visual attention providing solution to all of
these research issues is yet to be delivered.

1.3 Objectives

Two objectives are set for the research reported in this thesis.
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Objective I: Development of a bio-inspired model of visual attention for cognitive robots
which will

• permit the robot to execute overt attention with head-eye movements,

• be able to resolve the research issues arising from overt shift of attention, e.g.,
the change of camera and image coordinated systems, the implementation of
dynamic IOR, the partial appearance of different objects,

• integrate space- and object-based analysis of visual attention in the same frame-
work,

• run autonomously with minimum amount of human involvement, and

• be, as much as possible, independent of any prior training such that the success
of the model does not depend on the robustness of a training algorithm/session.

Objective II: Implementation of the proposed model on a real robotic system.

1.4 Contributions

The thesis makes several contributions while meeting the objectives stated in section 1.3.

• The thesis proposes a novel Bayesian model of visual attention for cognitive robots.

• The proposed model makes the first attempt to exploit the theory of biased compe-
tition (BC) [34], a very famous neurodynamic theory of primates’ visual attention,
to design a model of visual attention for robotic cognition.

• The proposed Bayesian model of attention offers a robot-centric solution of visual
attention to address the research Issue 1.

• An attention-oriented speech-based human robot interaction (HRI) framework is pro-
posed to address Issues 3, 4, and 5.

1.5 Organization

The rest of the thesis is organized in the following manner.

Chapter 2 provides a review of literature on visual attention models developed for
robotic systems. The major focus of this review is how the research issues stated in section
1.2 have been addressed in the current robotic literature and what are the existing open

13



challenges. For the sake of continuity the chapter will also provide a brief history of the
computational modeling of visual attention.

Chapter 3 will describe the proposed Bayesian model of visual attention for cognitive
robots. The chapter provides necessary mathematical formulation to establish the model
along with its proposed particle filter implementation.

Chapter 4 presents a number of performance criteria which will be used to evaluate
the performance of the proposed visual attention model. The chapter then presents a set
of real-world experiments conducted on a robotic camera head for performance evaluation
of the proposed model.

Chapter 5 describes a multi-modal extension of the Bayesian model presented in
chapter 3.

Chapter 6 presents a set of experiments to validate the performance of the multi-modal
Bayesian attention model described in chapter 5.

Chapter 7 concludes this thesis with a summary of the works presented along with
the future direction of research. This chapter also lists the publications originated from
the research work presented in this thesis.

1.6 Conclusion

This chapter has discussed the motivation and specified the goals of this thesis. It has
reported a brief background of visual attention modeling and described the motivation
behind developing a visual attention model for cognitive robots. The chapter has also
identified a set of research issues involved with the robotic visual attention and has set up
two objectives of this thesis based on these research issues. Finally, the contribution of
this thesis has been summarized.

The next chapter will provide a survey of the literature on visual attention with a
special focus on how they have addressed the research issues involved with robotic visual
attention discussed in this chapter.
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Chapter 2

Literature Review

The major focus of this chapter is to shed light on the ongoing research of visual attention
modeling for robotic cognition and to investigate on how the existing works deal with
the research issues stated in section 1.2. As discussed in chapter 1, the robotic research
on visual attention modeling are closely connected with the visual attention research in
cognitive psychology, computational neuroscience, and computer vision. This chapter,
therefore, also provides a brief history of evolution of the research on visual attention in
psychology, neurobiology and computer vision.

2.1 Visual Attention: The Biological Basis

The Principles of Psychology [36] is probably the first effort to investigate on the visual
attention mechanism in the primates. Since then numerous researchers in psychology and
neuroscience investigated on the mechanism of visual attention in the primates although
we are still far away from having a complete understanding of how attention works [62,63].
The recent imaging technologies (e.g fMRI, PET) have enabled cognitive neuroscience to
perform non-invasive studies on the primates’ brain which helps to improve our under-
standing about the operation of brain areas dedicated for visual processing. The current
findings on attention allow us to state safely that the attention mechanism of the primates
is carried out by a network of anatomical areas which frequently interact with other brain
networks while maintaining its own identity. Each anatomical region in this attention
network performs specified duty [64]. Several studies on monkey show that more than 30
separate brain areas are involved with the attention network [65]. The processing for visual
features starts from lateral geniculate nucleus (LGN) and primary visual cortex (V1), and
is believed to be carried out in two functionally specialized processing pathways, namely
ventral stream or ‘what’ pathway and dorsal stream or ‘where’ pathway [62, 65–69]. The
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Figure 2.1: Visual pathways shown in a lateral view of the macaque brain

ventral stream runs from V1, to V2, V3, V4, and inferior temporal (IT) cortex areas TEO
and TE. This pathway is responsible for object recognition. Along the ventral stream,
the complexity of visual processing as well as the size of the receptive field (RF) increases
from one step to another. Accordingly, the IT neurons deal with the most complex object
feature (shape) and have larger RF. The dorsal stream runs from V1, to V2, V3, middle
temporal (MT or V5) area, medial superior temporal (MST) areas, and finally on to the
posterior parietal cortex (PPC) areas VIP and LIP. Fig. 2.1 shows the dorsal and ventral
stream in the lateral view of the macaque brain. Generally, dorsal stream is responsible for
spatial perception and visuomotor activities. Neurons in temporal areas are sensitive to
the spatial distribution of the object’s features. Similarly, the neurons in the PPC are more
sensitive to the stimuli within the foveal region than to other spatial locations. As a whole,
the spatial sensitivity of the neuronal RF can be summarized as: the foveal region of retina
are mapped in a large region of the visual cortex while the peripheral region get smaller
representation (retinotopic mapping) [29]. Consequently, neurons are more sensitive to
stimulus in the foveal region than that on the peripheral region. Integrated operation of
these brain areas is revealed in different attentional functions and plays a key role in the
survival and normal operation of the biological entities.

There are three distinct activities related to the execution of visual attention in the
primates [64,65].

1. Visual orienting.

2. Feature processing.
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3. Alertness or sustained attention.

These three subtasks of attention are briefly described below to provide the basic idea
about some attentional terms which will be used frequently in the rest of this thesis.

Visual orienting

Visual orienting refers to the process of shifting the attention to a particular spatial loca-
tion/object. Orienting could be performed in pure overt fashion (where the eye moves for
foveation of the stimulus/space of interest [66]), or covert fashion (where the object/space
of interest undergoes enriched processing through attention without being foveated [70])
or a combination of both (where covert shift of attention acts as a guide to move the eye
to the appropriate location [26]). The overt visual orienting could be of two types: 1)
smooth pursuit, which is characterized as “continuous, slow, smooth, and automatic eye
movements that can only be elicited by the tracking of a target moving slowly across the
visual field” [63], and 2) saccadic eye movement, which is a kind of rapid movement of
the eyes made to foveate a target abruptly appeared in the peripheral region of the visual
field [71].

A topic of major debate is whether visual orienting directs the attention toward a
‘spatial location’ or an ‘object’ and has given birth to two distinct concepts: object-
based attention and space-based attention [72]. A somewhat popular hypothesis on
this dichotomy is that attention is directed toward some segmented region/blob (which
could easily be a part of an object) in the space rather than to a spatial location [43, 73].
Another distinct phenomenon in visual orienting is the pop-out effect which refers to the
process of automatically orienting toward any discrepant visual stimuli (e.g., a white car in
the pool of red cars) [74–76]. An interesting component of visual orienting is inhibition of
return (IOR) which suggests that the attention network in the brain resists the attentional
shift to a previously attended location/stimuli [26,77]. The IOR manifests itself as a delayed
response to a location or an object that has recently been cued.

The dorsal visual pathway in the visual cortex (also termed the posterior attention
system) is believed to be involved with the attentional functions related to visual orienting.

Feature processing

Feature processing refers to the process of foveal inspection of the attended object/location
mediated by the ventral pathway. It involves object recognition and visual search process.
The most popular hypothesis on feature processing is that the basic visual properties of
the objects (e.g., color, intensity, orientation) are processed independent of one another
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by different regions along the ventral pathway and re-integrated at a later stage to form
the concept of the object for object recognition [78]. An interaction between the ventral
and the dorsal pathway occurs to perform the space-feature binding for successful visual
search [39,79]

Alertness

Alertness is referred as being prepared to process high priority signals. Alertness or sus-
tained attention is the property of the relatively mature brain and is mediated by the
frontal brain areas [70]. Alertness assists the process of visual orienting

The attention of the primates is not yet a fully understood mechanism and, therefore,
associated theories and hypotheses are being updated continuously. In spite of this lack of
complete understanding, the research on visual attention in the last few decades has reached
the status where we can derive a functional framework for attention related activities. This
development inspired the researchers in biology, psychology, computational neuroscience,
computer vision, and robotics to develop synthetic models of visual attention which have
potential applications in their respective fields.

2.2 Evolution of Research on Visual Attention: From

Biology to Synthetic Modeling

This section sheds light on the evolution of computational modeling of visual attention.
The pioneering work on visual attention, the feature integration theory [39], was proposed
in psychology. The generic purpose of the attention models in psychology is to use the
behavioral data (of the primates) to explain human perception and cognition [39,40,42,80].
The feature integration theory went through several facets of development to accommodate
the new findings on attention from psychological experiments. A comprehensive survey on
this popular theory is available in [81]. One major drawback of the early feature integration
theory is that it considers only the bottom-up effect in attentional selection. The guided
search model [40] overcomes this limitation by invoking the effect of top-down selection.
The guided search model is mostly focused on explaining the attentional functions related
to visual search. Similar to the feature integration theory, continuous upgrading is observed
in the guided search model [35,82,83]. Another influential model in psychology is the CODE
theory of attention [42] which is an integration of the theory of visual attention in [80] with
the theory of perceptual grouping by proximity [84]. A major difference of CODE theory
as compared to the feature integration theory and guided search model is it considers both
space and object during attentional selection. Besides these, there are many other models
of visual attention available in psychology (please see [85] for a comprehensive survey).
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The synthetic models of visual attention developed in neurobiology and computational
neuroscience are based on the neurobiological findings from lesion study and brain imaging
study (e.g., fMRI, PET). The goal of these models is to faithfully reproduce the results
obtained from the study of different attentional networks in the primates’ brain. Given
the fact that study on the brain of live subjects is a very delicate matter and is subjected
to ethical bindings, accurate models in computational neuroscience plays a critical role
in understanding the operation of different brain networks. The models in computational
neuroscience are generally not concerned about the technical applications. A survey on
the neurobiological models of visual attention is available in [86].

One of the most popular theories of attention in neuroscience is the biased competition
hypothesis (BC) (also known as integrated competition hypothesis [34, 45, 68, 87, 88]). A
number of computational models have been proposed in computational neuroscience based
on the postulates of the BC hypothesis [8–11, 89, 90]. These models invoke many new
findings of attention, e.g., combination of object and space based analysis for attentional
selection, integration of top-down and bottom-up bias, integration of covert and overt shift
of attention.

Table 2.1: Synthetic models of visual attention.

Model Discipline Synopsis
Feature Psychology • Different features (e.g., red, vertical) register their
integration saliency in separate feature maps and feature maps
theory are summed up to create a master map of saliency
[39,81] • Primitive features: Color, intensity, orientation

• Visual search is fast and parallel for a target
with at least one unique primitive feature but slow and
serial if the target shares several primitive features
with the surroundings

Guided Psychology • Features (color and orientation) register their
search saliency in two bottom-up feature maps
[40, 82] • A top-down feature map for each feature is
[35,83] created using the unique feature

• Feature maps are summed up to create an
activation map of saliency

CODE Psychology • Integrates space- and object-based approach
theory of • Proximity effect is used for perceptual grouping
attention • A group of stimuli is chosen based on their strength
[42,80] and the subject’s bias in favor of them
Kochs’s Neurobiology • Coins the term ‘saliency map’ which encodes the

Continued on next page
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Table 2.1 – continued from previous page
Model Discipline Synopsis
model conspicuousness of different image locations
[7] • Proximity effect is used during the computation

of saliency
• A winner take all (WTA) mechanism is proposed
to identify the current focus of attention
• A WTA-based IOR mechanism is proposed

Biased Neuroscience • Being excited by the visual stimuli, the visual neurons
competition engage in a mutually suppressive interaction
[34,68] • The attention mechanism biases this competition
[45,87] through feedback bias mechanism

• Feedback bias can favor neurons excited by
a behaviorally relevant space or features
(e.g., color, shape, texture)

Deco’s Computational • Implements the visual attention mechanism in the
model neuroscience framework of biased competition
[9, 89] • A pool of neurons implements three modules: early

visual module (EM), ventral-stream module (VM) and
dorsal-stream module (DM)
• The functions of the neurons in EM, VM, DM
and the type of their connectivity are the same as
that in the primates’ visual cortex
• The interaction between VM and DM
through the EM enables translation-invariant
object recognition and search

Linda’s Computational • Implements the search behavior of a monkey
model neuroscience in case of a conjunctive search for color
[10,90] and orientation in the frame work of

biased competition
• Pools of neurons with mean field population
dynamics are used to represent the areas of visual
cortex to model different stages of
visual processing

Hamker’s Computational • Introduces the concept of ‘perceptual map’
model neuroscience • Considers the top-down influence in attention
[11,91] • For visual search the target features are preserved

in working memory which enhances the saliency of
target-like features

Continued on next page
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Table 2.1 – continued from previous page
Model Discipline Synopsis

• Considers both covert and overt attention
NVT & Computer • Inspired by Kochs’s model in several aspects
extensions vision • Primitive features: color, intensity, orientation
[18,19,92] • Multi-scale analysis of image

• To include the top-down influence the feature
maps are multiplying by some weights which are
determined through off-line training

VOCUS Computer • A number of theoretical and implementation-
[23,93] vision related improvement over the NVT [18]

• A novel mechanism for feature maps fusion
• Uses background information during visual search
• Requires separate training phase to learn target
features from several images

Selective Computer • Luminance, orientation, color, and motion are analyzed
tuning vision • Pyramid style processing of information where the
model stimuli of interest are located at the top and control
[20,38,94] an inhibitory beam which could inhibit or pass a zone

for further processing
• The top-down influence is modeled through
manipulation of the inhibitory beam

The rise of the computer vision models of attention happened almost in parallel with
the psychophysical models [7, 16, 18–24]. The goal of these models, however, is somewhat
different from the psychophysical models of visual attention. The major focus of the
computer vision models is to develop a technical system of attention which has potential
application in pattern recognition, video surveillance, and AI robotics. The model proposed
in [7] is the first computer vision model of visual attention and relies on the basic postulates
of the feature integration theory [39]. Probably the most influential computational model
in computer vision literature is the neuromorphic vision toolkit (NVT) [18] which has been
extensively used in many other later models of visual attention. The early version of
NVT [18] performed only bottom-up analysis of attention but a later modification in [19]
invokes the effect of top-down selection. Some of the flaws of NVT have been alleviated
in the NVT-based model visual object detection with a computational attention system
(VOCUS) [23]. A very famous connectionist model of visual attention in the computer
vision literature is the selective tuning model [20]. A unique characteristic of this model
is, in spite of being a technical model of attention, the selective tuning model [20] and
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all of its later variants [38, 94] are tightly coupled with biological principles. Table 2.1
summarizes the major properties of some of the most influential attention models/theories
in psychology, neuroscience, and computer vision.

The computational models of visual attention proposed in computer vision gained
widespread popularity in robotic research. The early works on attention in robotics mostly
adopted the attention models in computer vision and modified them to meet the require-
ments of the robotic applications. The recent trend, however, is to design attention models
which are specific to robots. The following section sheds light on the efforts in robotic
research for visual attention modeling and investigates on how they address the research
issues discussed in section 1.2.

2.3 Visual Attention for Robotics Systems: The Cur-

rent Trend

A number of attempts are observed in robotic literature on the modeling of visual attention
for cognitive robots. Many of these models propose general solution to tackle the research
issues while some address them in task-specific manner. This thesis classifies the existing
works on robotic visual attention into two groups based on their goal and motivation.

1. Overt attention models: The research works in this group focus on developing cam-
era maneuvering technique based on the principle of overt visual attention. A consid-
erable number of overt models are inspired by the covert attention models proposed
in computer vision.

2. Application-specific visual attention models: The research works in this group
develop robotic attention models which are tuned to specific task, e.g., localization,
navigation, manipulation, HRI and joint attention. Many of these tasks consider the
property of selectivity of the primates’ visual attention as a mere technique to solve
the desired task while others consider visual attention as a component of developing
cognition in the robots. Most of the works related to HRI and joint attention fall
under the second category while attention-based robot navigation, localization and
manipulation are generally the members of the first category.

Analysis of each group with respect to the research issues stated in section 1.2 are described
below.
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2.3.1 Overt Attention Models

The attention mechanism in the primates integrates the overt and covert modes of attention
in a highly efficient manner: the stimulus of interest is selected covertly and then placed
at the foveal region through overt movement of the eyes [95]. Evidence is also available in
favor of the independent occurrence of covert and overt attention [96,97]. In case of robotics
applications, however, direction of attention mediated by eye/head movement is the most
suitable choice. The major reason behind this is placing the object of interest at the center
of visual field facilitates the learning process. Besides, head/eye movement of the robot
provides a way for the user to understand the current gaze of the robot which is specially
important in many applications (e.g., HRI). Inspired by these requirements, a number of
efforts are observed in the robotic literature for modeling of overt visual attention. At the
early stage of this research the principle of overt attention (to place an object of interest at
the center of visual field) helped the concept of ‘active vision’ [98], ‘active perception’ [99],
or ‘animate vision’ [100] to be established in computer vision. For instance, the theme of
‘active vision’ is to actively position a sensor (preferably a camera) for obtaining enriched
information to solve the basic computer vision problems (e.g., shape from shading and
depth computation, shape from contour, shape from texture, and structure from motion).
A number of active vision models propose mechanism of positioning a camera based on the
feedback from a visual attention model [101–106]. The major focus of most of these models
is the control aspects of saccade generation and/or smooth pursuit tracking. A common
practice among these works is the use of some well-known covert models of attention
(e.g., [7,18]) to identify the most interesting/salient region in a scene. These active vision
models, therefore, are less concerned about the research issues stated in section 1.2 of this
thesis.

The overt attention models described in [47, 51, 53, 54, 107–117] have been designed to
be implement in the robots/robotic heads. Among them the models in [47, 107, 108, 110]
adopted different variants of the covert model NVT [18] to identify the visually salient/task-
relevant stimuli and introduced different measures to deal with the research issues involved
with robotic overt attention. For instance, the model in [108] addresses the Issue 1.1 by
adopting the idea of shifting the entire content of the saliency map in the direction of
head movement as stated in [12]. The object-based overt attention system proposed in [47]
implements a simple form of integrated object- and space-based IOR to deal with Issue
1.2 and Issue 2. The overt model described in [110] suggests to re-map the location of
the recently attended object to the transformed image coordinate in order to implement a
space-based IOR (Issue 1.2 ). The problem involved with the partial appearance of objects
(Issue 1.3) is not noticeable in the experiments demonstrated in [110] due to the use of a
wide angle camera. The model in [107] demonstrates few simple cases of overt attention
and does not provide any effective solution to any of the research issues.

The neural network based overt model reported in [113] is tightly coupled with biology
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(with respect to motor aspects of attention) and is focused on implementing visual ex-
ploration behavior guided by the novelty preference characteristics of primates’ attention.
The identification of novelty in [113], however, is achieved though the implementation of
space-based IOR, i.e the robot moves to novel locations (through successive application
of space-based IOR) and thereby attends to novel objects. The model [113] also relies
on NVT [17] for visual saliency calculation. The issue of dynamic IOR (Issue 1.2) is ad-
dressed by remembering the locations of the previously visited stimuli. To comply with
this strategy the model [113] assumes that all of the stimuli lie within the visual field of the
robot at all times. This is a strong assumption which is valid in the experiments demon-
strated in [113] but generally does not hold in most robotic applications. The Feature Gate
model [21] based overt model in [114] claims to propose a general purpose model of visual
attention for the humanoid robots but mostly focuses on mimicking the feature-processing
attributes of the primates’ attention system (e.g., log-polar retino-cortical mapping, banks
of oriented filter).

All of the overt models discussed thus far follow an image-centric approach where the
attention model operates absolutely in the image plane. Focus of attention is evaluated
based on the content of a given image and necessary motion command is calculated based on
the image dimension and the parameters of the camera optics. In contrast to this traditional
image-centric approach, the recent models of overt attention adopt a robot-centric solution
for attentional selection [51–54]. In case of robot-centric approach it is assumed that a robot
is a human-like autonomous entity which decides ‘what to look at?’ based on its perception
of surrounding with respect to an ego-centric frame of reference. For instance, the model
in [51] considers an ego-sphere of infinite radius around a robotic head and the robot is able
to project the perceptual information collected through different modality on the surface
of the ego-sphere. The concept of the head-centric ego-sphere provides an elegant solution
of the issues involved with overt shift of attention (Issues 1.1, 1.2, 1.3 ). The multi-modal
attention model [51] considers both acoustic and visual information and combines them into
a single head-centric saliency map by taking the maximum value between the two modes.
This straightforward methodology of fusing multi-modal perception into a single saliency
map has several shortcomings, e.g saliency maps from different modes have same influence
on the aggregated saliency map. A detailed analysis of this problem is available in [23].
The model [51] operates in a purely bottom-up fashion and performs NVT [17] style space-
based analysis for saliency calculation. The concept of an ego-sphere is also present in the
attention model reported in [52]. The model [52], however, uses the principle of attention
for updating a sensory ego-sphere with overlapping images perceived by the robot. The
multi-modal attention model in [116] also uses sensory ego-sphere to focus, learn, and then
track the salient stimuli (bright colored moving objects or human faces) in the visual field.
The model [116] integrates the visual search and visual exploration in the same frame work
and thereby eliminates the presence of a training phase during visual search (Issue 4, 5 ).
The overt model in [54] uses the term ‘scene space’ instead of ‘ego-sphere’ to represent a
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two dimensional surface which contains the information perceived by the robot with respect
to the robot’s head-centric coordinate system. The purpose of the model [54], however, is
to track a set of predefined objects in the surrounding. To achieve this goal it uses only the
color information of the target objects and performs object-based analysis to implement
the IOR (Issue 1.2, 2 ). Although the model might have the potential to be extended for
complex attention scenario, the current implementation in [54] is dealing with only few
simple cases. The models in [56, 57] use scaffolding where the human operator heavily
guides the robot to teach what to focus on through speech command and hand-gesture.
This solves the problem of prior training (Issue 5 ) and optimal learning strategy (Issue
3 ) with the price of having a dedicated human operator throughout the attention process.
Unfortunately, having such a dedicated human operator severs the generality problem
(Issue 4 ). A reduced amount of human-dependency for learning of attention is observed
in the multi-modal overt attention model described in [53]. The model [53] proposes the
idea of an attention map, similar to ‘probabilistic occupancy grid’ widely used in robotic
mapping [118], to encode the saliency of the robot’s surrounding. The attention map can
be modulated by the task-demand conveyed to the robot through speech command. The
model, however, requires significant amount of prior training and manual work to create
an useful attention map for any specific robotic application.

For quick reference, Table 2.2 shows a comparative analysis of the overt attention
models discussed in this section. In the tables the issues are denoted by the letter ‘I’, e.g
‘Issue 1.1’ is written as ‘I 1.1’ etc.

Table 2.2: Overt attention models for the robots.

References Synopsis Issue(s) addressed
[108] • Relies on [7] for saliency • I1.1:Re-maps the entire saliency

• Considers the bottom-up effect only map to new camera coordinate
[47,109] • Object-based attention model • I1.2: Memorizes the locations

• Integrates top-down and of the last visited objects
bottom-up effect along with the objects’ features
• Color-based bottom-up saliency

[110] • Attention model for stereo-vision • I1.2: Locations of the
• Provision for top-down and attended object is mapped to
bottom-up bias but no actual the new camera frame
demonstration of top-down effect
• Saliency map is inspired by NVT

[113] • Tightly coupled with biology • I1.2: Remembers the location
• Relies on NVT for saliency of the previous focus with
• calculation the assumption that all objects

Continued on next page
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Table 2.2 – continued from previous page
References Synopsis Issue(s) addressed

remain within visual field
[51] • Robot-centric approach • I1.1: Projects sensor data to

• Operates only with bottom-up an ego-centric frame of reference
information • I1.2: Performs space-based IOR
• Saliency calculation is inspired • I5: Fuses acoustic and visual
by NVT [18] information on a sensory ego-sphere

through a ‘Maximum’ operator
[52] • Robot-centric approach

• Uses visual attention to map -
overlapping images on a sensory
ego-sphere
• Uses Feature Gate [21] model

[116] • Learning of attention • I1.1: Projects sensor data to
• Object-based analysis an ego-centric frame of reference
• Considers color, face, and • I1.2: Performs object-based IOR
sound as salient and tracks • I5: Performs on-line learning
them in consecutive frames of target and maintains a memory

[54,119] • Attention model for • I1.1: Projects sensor data to
tracking a set of object a ‘scene space’ which is expressed w.r.t
• Uses color information only the head-centric coordinate system
to evaluated saliency • I1.2: Performs object-based IOR

[53] • Focuses only on the • I1.1: Projects sensor data to
task-relevant objects an ‘attention map’
• Requires a lot of prior • I5: Uses speech command to bias
learning attention selection

2.3.2 Application-specific Visual Attention Models

The application-specific visual attention models are tuned to the applications they are
developed for. Visual attention mechanism has at least two properties which can be tuned
in the application specific manner.

• Selectivity: The basic idea of attention is to focus on a relevant visual stimulus
for further processing. The ‘relevancy’ of a stimulus can be defined in terms of its
similarity with a set of predefined task-specific features. The irrelevant information

26



in the visual scene are not considered for further processing and thereby reducing the
computational load on an artificial system.

• Visual Search: Visual search is an important property of the primates’ visual atten-
tion mechanism which helps to focus on the target-related information in relative
exclusion of the others. Thus the visual search is an special case of manifesting se-
lectivity. The success of a visual search and the time requirement depends on the
number of distractor stimuli present in the VF and the number of features they share
with the target.

Exploitation of these two properties often causes visual attention to reduce to a tracking
problem in many application-specific models of visual attention. In case of attention-based
tracking, many of the research issues stated in section 1.2 do not arise. For instance,
the object that is to be tracked is learned once and is tracked in the subsequent camera
frames. Each incoming camera frame is searched for this specific object. Thus there is no
need to implement the IOR and the change of coordinates does not have any significant
effect on the tracking decision (hence, no need to address ( Issues 1.1, 1.2)). An example
of such attention-based tracking is demonstrated in [93]. Here a covert model of visual
attention VOCUS [23] is used to perform simultaneous localization and mapping (SLAM)
by a mobile robot [93]. The role of the attention model is to identify the most salient
stimuli in the scene (the landmarks) and then keep on tracking that specific stimuli in
the successive frames by adjusting the camera head. Similar strategy of attention-based
tracking is also adopted in [120] for vision-based SLAM by mobile robots. To deal with
the partial appearance of object (Issue 1.3 ) the model in [93] adopts the strategy that the
landmarks that reside at the center of the visual field are given higher priority as it is likely
that they can be tracked for an extended period of time.

The attention model in [115] exploits the principle of visual search for robot navigation
and mapping. The robot learns the visual features of a set of objects during an off-line
training phase. During the autonomous navigation the robot searches for the learned ob-
jects, which appear as landmarks, in natural indoor environment. A number of important
parameters of the navigation model are chosen based on the off-line training phase. The
objects location are projected in an ego-centric frame of reference in order to update a
3D occupancy grid which contains the information about the landmarks/obstacles in the
robot’s workspace (Issues 1.1, 1.2, 1.3 ). The model described in [117] is dedicated to
design a Bayesian approach of fast visual search for human faces in a video stream. To
achieve faster response the attention model sacrifices all other visual information except
the intensity feature. Similar to [93], this model [117] also considers each incoming frame
as an isolated static image and does not implement IOR. Similar kind of attention model
(focusing on the visual search) is also proposed in [121]. Here the robot is provided with
a predefined set of features to search for, e.g., a talking person, human face, human legs
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located at the closest distance, etc. The robot then uses its multi-modal perception to
search for these features and attend to them. The task-specific attention model proposed
in [122] performs visual search for pre-specified object patterns (domino) and executes ma-
nipulative actions based on their 3D locations. The attention model in [123] is designed
for social interaction with human. The model uses omni-directional camera and the nature
of images obtained from such cameras enables the visual features to be registered directly
in an ego-centric frame of reference. This inherently offers a solution to the problem of
coordinate change (Issue 1.1 ), dynamic IOR (Issue 1.2 ), and partial appearance (Issue
1.3 ).

The visual attention model developed for HRI mostly considers attention as a step
toward making the robots cognitive. Visual attention plays a significant role in HRI in
order to establish joint attention [124] between the robot and the human. Establishing joint
attention between a human and robot requires that a robot should be able to detect and
manipulate the attention of the human, socially interact with the human, and finally see
itself as well as the human as intentional agents. Joint attention, therefore, is an excellent
tool to build a meaningful HRI system. A basic requirement of joint attention is that the
robot should posses a human like attention model with the capacity to manipulate attention
of other agent as well as of being manipulated by other agents. The visual attention models
proposed in HRI literature, therefore, have strong emphasis on top-down modulation of
attention. A number of approaches, inspired by the cognitive development of human child,
are available to model the top-down influence in attention selection, e.g imitation learning,
scaffolding. These methodologies have their own unique way of addressing the issues sated
in section 1.2. In some cases, however, their way of addressing one issue worsens the
consequence of the others.

In case of imitation based learning of attention, the robot imitates the movements
(head/eye/hand) of a person (the user or the operator) to exhibit overt attention behavior
[125]. Thus the top-down bias appears as the commands from the human operator conveyed
through natural speech, hand gesture, gaze direction, etc. For instance, the models in
[59–61] evaluate the gaze direction of the user to identify the object of interest to attend.
Thus the model guides a robot to look at the objects to which its user is also looking
and thereby establishing simultaneous looking behavior which is a major requirement of
joint attention [124]. The work in [126] uses the head pose and eye-gaze direction of the
user to identify the object to attend. To further enhance the quality of joint attention it
uses pointing behavior by the robot once it attends to an object. The shared attention
model in [127, 128] uses the gaze direction as a cue to decide which object to attend. An
integration of imitation learning and visual search is observed in the connectionist model
of joint attention reported in [129, 130] where the robot learns a set of motion patterns
in an off-line training phase and reproduces them when it finds similar kind of motion
pattern performed by the user. The model introduced in [131] performs overt attention
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based on gaze direction of the user as well as spoken command. A major complexity
of imitation learning is in order to be accurate it requires the robot to have an efficient
learning strategy to conceptualize the underlying goal of the imitative actions and form
knowledge from that [132]. In other words, the robot has to decide on its own about ‘what
to imitate?’, which, by itself, is a type of skill that requires cognition.

A bit more relaxed approach (with respect to the amount of cognitive load on the
robot) as compared to imitation learning is attention mediated by scaffolding [133]. Here
the idea is to explicitly attract the attention of the robot to certain specific stimuli through
different kind of actions, e.g., verbal command, hand-gesture, motionese. For instance, the
attention model in [56] uses hand-gesture and verbal command to guide the attention
of the robot toward novel objects. Similar approach of attention guiding has been used
in [57] in order to perform grasping task by a robot manipulator. The attention model
in [134] uses motionese in order to make certain stimuli to appear as extremely salient in
the robot’s perception. The model [134], however, relies on NVT [17] for calculation of
saliency, does not implement any form of IOR, and operates in a pure off-line fashion. The
attention model developed for HRI in [111] is based on the psychophysical model of visual
search proposed in [40]. The model is sensitive to task-specific stimuli (e.g., human face,
toys with specific color) and attends to them based on the task-context. This model also
uses motionese to guide the robot’s attention toward certain specific stimuli. The model
performs the IOR and the habituation effect with moving camera but does not mention
explicitly how the issues involved with camera movement have been addressed.

The imitation learning approach and scaffolding relieve a visual attention model from
worrying about the issues such as change of image coordinates (Issue 1.1 ), implementation
of IOR (Issue 1.2 ), partial appearance of the objects (Issue 1.3 ), and generality (Issue
3 ). The human operator takes care of these issues and the robot’s attention model just
mimics the operator. Such a huge benefit, however, comes with the heavy price that a
human operator must be dedicated for a robot, which is often an unrealistic demand for
autonomous robotic applications.

For quick reference, the Table 2.3 shows a comparative analysis of the application-
specific attention models discussed in this section.

Table 2.3: Application-specific models of visual attention

Application Synopsis (of the attention model) Issue(s) addressed
Vision- • Extension of VOCUS [23] • I1.3: Higher priority is given
based • Identifies the most salient to the stimuli (landmark) located
SLAM region in a frame and tracks at the center of the frame
[93] it in the consecutive frames

Continued on next page
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Table 2.3 – continued from previous page
Application Synopsis (of the attention model) Issue(s) addressed
Navigation • Attention model for visual search • I1.1: Update a 3D occupancy
and • Learns object in an off line grid with the locations of the
mapping training phase and detect objects in the 3D world
[115] them in the environment
Search for • A Bayesian model of visual search Visual attention reduces to target
human • Searches for face features in tracking problem which does not
face each incoming camera frame require to address the
[117] • Only intensity feature is used research issues
People • Model of visual search to track Visual attention reduces to target
tracking multiple person tracking problem which does not
[121] • Abstract level information about require to address the

target are given to the robot and research issues
multi-modal data are analyzed to
identify people

Social • Integrates vision and audition • I1.1, 1.2, 1.3: Omni-directional
interaction to identify and focus on human vision is used to maintain a 180o

[123] • Option for top-down and bottom-up wide attentional span
influences is available but no actual
demonstration of top-down effect

Joint attention • Considers the caregiver’s face • I1.1, 1.2, 1.3, 4, 5: Use of
in HRI as the most salient region imitation learning approach let
[60,61] • Calculates the gaze direction the human operator to
[58,59] of the caregiver from his/her face take care of the issues

• Attends overtly to the object(s)
the caregiver is looking at

HRI • Learns sensorimotor mapping • I 1.1, 1.2, 1.3, 4, 5: Use of
[126] through active interaction imitation learning approach let

• Uses head-pose and eye-gaze the human operator to
direction to identify the next focus take care of the issues

Joint attention • Uses the gaze direction of the • I 1.1, 1.2, 1.3, 4, 5: Use of
[127,128] human to identify the next focus imitation learning approach let

of attention the human operator to
take care of the issues

HRI • Learns motion patterns off line • I 1.1, 1.2, 1.3, 4, 5: Use of
[129,130] and reproduces them when similar imitation learning approach let

motion patterns are observed the human operator to
in the environment take care of the issues

Continued on next page
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Table 2.3 – continued from previous page
Application Synopsis (of the attention model) Issue(s) addressed
HRI • Hand-gesture and verbal command • I 1.1, 1.2, 1.3, 3: Uses
[56,57] are used to guide the robot’s scaffolding to draw attention

attention to a novel object of the robot to the
• Object-based analysis target object

• I4: Switches back-and-forth
between visual search and
visual exploration based
on speech command

Joint attention • Relies on NVT for saliency • I 1.1, 1.2, 1.3, 3: Uses
[134] • Use motionese to make some scaffolding to draw attention

regions highly salient to the of the robot to the
robot and thus drawing the target objects
attention toward that regions

HRI • Implements Guided Search [40] • I 1.1, 1.2, 1.3, 3: Uses
[111] • Attends to task-specific stimuli, scaffolding to draw attention

e.g., face, colored toy, etc. of the robot to the
• Motionese is used to make the target objects
task-specific stimuli to appear
as the most salient

2.4 Conclusion

This chapter has presented a brief survey of research on synthetic modeling of visual
attention. The chapter first introduces the biological basis of visual attention in a very
concise manner. This is followed by a brief discussion on the rich literature of visual
attention in psychology, neuroscience, and computer vision. Finally the existing works on
visual attention in robotics literature and how they deal with the research issues identified
by this thesis are discussed in detail.

The following chapter will introduce the proposed Bayesian model of visual attention.
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Chapter 3

The Proposed Bayesian Model of
Visual Attention

The Bayesian model proposed in this thesis provides a robot-centric solution of visual
attention. The proposed model recursively estimates the next head-pose of a robot such
that a behaviorally relevant object resides approximately at the center of its visual field
(VF). The primates (more specifically the human) are able to perform overt and covert
shift of attention in an integrated manner as well as independent of each other. For
implementation of a technical system of overt visual attention, however, it is a requirement
that every overt shift will be preceded by a covert shift of attention. In other words, a
technical model of overt attention has to focus on the object of interest in a covert manner
before physically orienting the camera toward that object. The proposed model also relies
on this strategy. The transition between two successive head-poses is guided by a set of
criteria which are inspired by the biased competition (BC) hypothesis of visual attention
in the primates. The proposed Bayesian model is implemented using particle filter.

This chapter first describes the biological motivation of the model along with its func-
tional overview for a clear understanding of the Bayesian formulation in the context of
robotic visual attention. This will be followed by the detail of the particle filter implemen-
tation of the Bayesian attention model.

3.1 Biological Motivations of the Model

There are two major aspects where the proposed model mimics the primates visual atten-
tion system.

1. Transition of attention
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2. Hierarchical processing of visual features

The biological motivation of the proposed model in these two aspects are discussed below.

3.1.1 Transition of Attention

The proposed model follows the postulates of BC hypothesis [34] to guide the switching
of attentional focus from one stimulus to the other. For a better understanding of the
biological inspiration of this behavior, a brief description of the BC hypothesis is provided
here.

Biased competition hypothesis

Avoiding the biological details, which are available in [87,135], the BC hypothesis of visual
attention in the primates can be summarized as follows.

• Competition among visual stimuli: When multiple stimuli appear in the VF of
a subject, they activate populations of neurons in different areas of the visual cortex.
These activated neurons engage themselves in a mutually suppressing interaction.
The only objective of this competition is to win the limited processing power of the
brain. If two stimuli in the VF excite the neurons of the same local region of the
cortex then the competition is assumed to be stronger than the case when they excite
two different regions of the visual cortex.

• Biasing the competition: The competition among visual neurons can be biased in
favor of certain specific set of neurons. The result of this biasing effect manifests itself
as the visual attention behavior of the subject. In other words, the subject focuses on
the stimuli which have activated the set of neurons that received the biasing signal.

• Criteria of feedback bias: There are two well-investigated criteria of feedback
bias. The first one is stimulus-driven. In this case the visual properties of a stimulus
cause the set of neurons excited by this stimulus to win in the competition. For in-
stance, one stimulus might have strong contrast as compared to the others and draws
the attention quickly. The saliency of the stimuli, however, depends on a number
of factors among which the spatial location of the stimuli and the contrast in color,
orientation, and intensity are the most investigated. The stimulus-driven bias is com-
monly termed as the ‘bottom-up bias’ in the visual attention literature. The second
criteria of feedback bias is independent of the visual strength of the stimulus and is
commonly termed as the ‘top-down bias’. In case of top-down bias a number of brain
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Figure 3.1: An abstract-level graphical representation of biased competition in the visual
cortex

areas outside of visual cortex generate biasing signals which modulate the competi-
tion among neurons in favor of a specific set. This modulating effect can be revealed
in this ‘chosen set of neurons’ in a number of different ways, e.g. enhancement of
their neuronal response, increment of sensitivity to their target visual features, in-
crease in their baseline activity. Irrespective of the way they reveal, the top-down
biasing effect generally causes a ‘chosen set of neurons’ to win in the competition
irrespective of the visual saliency of the stimuli that activated them in the first place.
The specific regions of visual cortex which contribute in generating top-down biasing
signals are not precisely known yet. Two possible sources of top-down bias, however,
has been reported in [34]: the long term memory (LTM) and the working memory
(WM).

• The attended stimulus achieves further access to the memory and motor system to
control the behavior and action of the subject.

Fig. 3.1 demonstrates an abstract level graphical representation of biased competition in
the visual cortex of the primates. The bottom-up bias is represented by the competitive
interaction among the visual neurons excited by specific visual features, e.g. color, intensity,
orientation.
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The top-down bias can be classified into two categories: 1) bias in favor of object feature
(known as object bias) and 2) bias in favor of spatial location (known as spatial selection).
The object bias can be delivered either from the LTM or from the WM. When the bias is
delivered from the LTM, it usually favors novel visual features [34, 136, 137]. An exactly
opposite kind of bias can be delivered from the LTM where it chooses the most familiar
stimuli for attention due to its long-term learned importance [138]. When the object bias is
derived from the WM, the attentional process is generally termed as visual search. During
visual search the WM holds the visual features of the target stimuli and the stimuli in the
visual field which are a good match to these features receive strong top-down feedback bias.
In case of spatial selection prior knowledge about the target’s spatial location is stored in
the WM and a top-down bias is delivered accordingly in favor of the stimuli at that specific
location. These two forms of top-down biases seamlessly integrate the space- and object-
based attention and thereby advocating the fact that the object- and space- based modes
of visual attention are the mere manifestation of two different kind of top-down selection
processes. This capacity to inherently integrate the space- and object- based modes of
attention is a powerful characteristics of the BC hypothesis of visual attention.

The proposed Bayesian model takes the motivations from the BC hypothesis to guide
the attentional switching of the robot among different stimuli. The head-pose space of a
robot is continuous and, at a given time, each head-pose enables the robot to focus on one
specific stimulus (i.e., placing that stimulus at the center of the camera frame). The head-
poses in the pose space, therefore, are behaviorally analogous to the visual neurons with
respect to the fact that they are competing with each other to select the stimulus associated
with them for attending. The robot requires to resolve this competition among head poses
through preferring the head-pose which satisfies its current behavioral requirement the
most. Inspired by the tenets of BC hypothesis, the proposed model guides the robot to
perform a biasing of head poses using the following criteria.

• A head-pose receives bottom-up bias proportional to the saliency of the stimulus it
is focusing at.

• A head-pose receives top-down bias proportional to the behavioral relevance of the
visual feature or spatial location it is focusing at.

Two types of behavioral relevance of the objects are considered during top-down biasing.
The objects with novel visual features are considered as ‘worthy to attend’ and receives
excitatory top-down bias from the LTM. The objects having similar visual features to a
‘sought for’ object is considered as ‘worthy to attend’ and receives excitatory top-down bias
from the WM. The proposed Bayesian model, therefore, always chooses the novel objects
and the ‘sought for’ objects as the focus of attention.
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3.1.2 Hierarchical Processing of Visual Features

The computational models of visual attention (irrespective of overt or covert models) gen-
erally observe the property of the primates’ visual cortex to hierarchically process the
visual features. Accordingly, primitive image features like color and intensity contrast are
processed at the first stage (similar to the processing in the V1 area [139]). High level
features containing specific object information (e.g. SIFT keypoints, for this work) are
processed at a later stage (similar to the processing in the areas V4, TE, MT [139]).

3.2 Functional Overview of the Model

The proposed Bayesian model guides the robot to choose a head-pose which has the highest
probability of letting the robot to focus on the most behaviorally relevant stimuli in the
environment. For evaluation of such probabilities the model uses current sensor measure-
ments as well as the prior knowledge learned throughout the life-time of the robot. Fig. 3.2
shows a functional overview of the model. Here the LTM is a database of features of the
attended objects and the WM is a database of features of a ‘sought for’ object. The prime
modality for visual attention is vision, although there are evidences that other modalities
(e.g audio, tactile) have modulatory effect on the visual attention behavior of the primates.
The proposed Bayesian model, inherited from the Bayesian sensor fusion characteristics,
is capable to accommodate the effect of multiple modalities while evaluating the focus of
attention. This chapter, however, focuses only on the vision sensor (i.e., the camera). The
multi-modal extension of the model to accommodate auditory measurements is discussed
in chapter 5.

At each decision cycle the model guides the robot through the following stages.

1. The camera-head of the robot orients to the object identified as ‘worthy to attend’
during the immediate past cycle. A new frame is captured at this new head-pose.

2. The memory is updated with the high level features of the focused object (i.e., the
object located at the center of the current frame).

3. From the current head-pose the robot can switch to a number of different head
poses. The Bayesian model helps to identify the most probable head-pose for the
robot. The probability of a head-pose, at this stage, depends on the saliency of the
visual feature(s) it focuses on. The primitive visual features (e.g. color and intensity
contrast) of the current frame are analyzed to identify a set of visually salient regions
(a predefined priority order is given to the features as: intensity contrast> color).
The head poses which focus on these regions are the potential candidates for the next
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Figure 3.2: Functional description of the proposed Bayesian model

head-pose of the robot. Thus the head poses engage in a competitive interaction
with each other to focus on certain visual features. In light of BC hypothesis this
competition is termed as the ‘bottom-up competition’.

4. The bottom-up competition among the head poses is then modulated by top-down
biases from the LTM and the WM. Advanced visual features are used to evaluate top-
down biases. The current implementation uses the SIFT keypoints [140] associated
with different objects in this regard (complex feature like ‘shape’ can also be used at
this stage to achieve further accuracy in attention decision). Based on the analysis
of SIFT keypoints, the LTM generates non-zero bias for the head poses which focus
on novel objects while the WM generates non-zero bias for the poses which focus
on a ‘sought for’ object. A head-pose that focuses neither on a novel object nor on
a ‘sought for’ object receives minimum top-down bias. Finally, the robot takes the
head-pose which receives the maximum bias.

3.3 The Bayes Filter for Visual Attention

The goal of a Bayesian model is to recursively estimate the state of a dynamic system
conditioned on the measurement data. In the context of robotic visual attention, the robot
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and its surrounding environment constitute a dynamic system and the state x of this
system is the head-pose of the robot. The head-pose of a (stationary) robot is expressed in
terms of the pan (α) and tilt (β) angles of the PTU where α is the rotation with respect to
the zb axis and β is the rotation with respect to the xb axis of the base coordinate system
Cb (please see Fig. 1.5 for coordinate systems).

x = {α, β} (3.1)

The center of the two-dimensional head-pose space of a robot, therefore, coincides with the
center of the base coordinate system. In case of visual attention by a moving robot the
location of the platform in the 3D world and its heading direction are also required to be
considered as the state variables. At any time, the system state x defines a unique location
for the camera coordinate system Cck

and the image coordinate system Cik . Here, k is the
discrete time index. The focus of attention of the robot in the image plane is denoted by
ak and is located at the center of the image Ik which is situated along the (x, y) plane of
the Cik . According to the requirement of the Bayes filter, the system state x is Markov,
i.e, the past and the future data are independent of each other if the current state is known.

Statement The system state x is a Markov state.
Justification: The LTM of the robot holds the information of the objects attended through-
out the life-time of the robot. Thus the robot has, at a given time, the knowledge of the
objects attended at all other previous head poses including the current one. Prediction
of the next head-pose, therefore, requires to analyze the current measurement (i.e., the
camera image) and is independent of all other past measurements. This is a reasonable
Markov assumption which renders x as a Markov state.

The symbols Mk and mk are used to denote the LTM and the WM of the robot, re-
spectively. The simplest way of realizing the LTM is to maintain a database of visual fea-
tures attended throughout the life-time of the robot. In case of the WM, such a database
contains the information of a ‘sought for’ object.

The proposed model recursively estimates the posterior probability p(xk|z0:k). The
posterior probability is commonly termed as belief in the robotic literature. Accordingly,

Bel(xk) = p(xk|z0:k) (3.2)

Here z0:k denotes the measurements starting from time 0 up to time k. There are two types
of measurement involved in robotic visual attention: sensor measurement F and top-down
bias b derived from the robot’s memory. The latter measurement does not require any
physical sensor. Considering vision as the only modality used by the robot, the sensor
measurement F consists of a set of primitive visual features and a set of advanced visual
features.

z = {F,b} (3.3)
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Equation (3.2) can be written as follows.

Bel(xk) = p(xk|bk,Fk,bk−1,Fk−1, . . . ,b0,F0) (3.4)

Applying Bayes rule we obtain the following expression.

Bel(xk) = ηp(bk|xk,Fk,bk−1,Fk−1, . . . ,b0,F0)

p(xk|Fk,bk−1,Fk−1, . . . ,b0,F0) (3.5)

where

η =
1

p(bk|Fk,bk−1,Fk−1, . . . ,b0,F0)

As xk is a Markov state, the past and future measurements will be independent of each
other given the knowledge of xk. Therefore,

p(bk|xk,Fk,bk−1,Fk−1, . . . ,b0,F0) = p(bk|xk,Fk) (3.6)

This simplifies the belief as follows.

Bel(xk) = ηp(bk|xk,Fk)p(xk|Fk,bk−1,Fk−1, . . . ,b0,F0)

= ηp(bk|xk,Fk)p(xk|Fk,b0:k−1,F0:k−1) (3.7)

Applying the Chapman-Kolmogorov equation to predict the transition density, we obtain
the following expression.

Bel(xk) = ηp(bk|xk,Fk)

∫
p(xk|xk−1,Fk,b0:k−1,F0:k−1)

p(xk−1|Fk,b0:k−1,F0:k−1)dxk−1 (3.8)

The assumption of Markov state suggests that the knowledge of the immediate past state
xk−1 and the current measurement Fk renders the current state xk independent of all other
previous measurements. This simplifies the belief as follows.

Bel(xk) = ηp(bk|xk,Fk)

∫
p(xk|xk−1,Fk)p(xk−1|Fk,b0:k−1,F0:k−1)dxk−1 (3.9)

Again, the current measurement Fk does not alter our knowledge about the previous system
state xk−1. Therefore

Bel(xk) = ηp(bk|xk,Fk)

∫
p(xk|xk−1,Fk)p(xk−1|b0:k−1,F0:k−1)dxk−1 (3.10)

The final expression for recursive state estimation is

Bel(xk) = ηp(bk|xk,Fk)

∫
p(xk|xk−1,Fk)Bel(xk−1)dxk−1 (3.11)
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Equation (3.11) is a formal description of BC-based overt visual attention for a robot.
Evaluation of (3.11) is computationally expensive due to the continuous nature of the head-
pose space. Knowledge of the three following distributions are required for implementation
of (3.11):

1. the initial belief Bel(x0),

2. the transition probability p(xk|xk−1,Fk), and

3. the measurement likelihood p(bk|xk,Fk).

The shape of these distributions are defined in the context of robotic overt attention.

1. Bel(x0): The distribution Bel(xk−1) makes the state estimation recursive. Knowledge
of this distribution at k = 1 is required to implement the (3.11). We can assume,
without violating the generality of the model, a known orientation for the camera-
head (e.g. α = α0 and β = β0) when the robot is first turned-on for an attention
experiment. This makes Bel(x0) a Dirac distribution located at (α0, β0) in the (α, β)
space.

2. p(xk|xk−1,Fk): This distribution describes the transition probability between two head-
poses conditioned on the perceived visual features. In other words, if the visual fea-
tures Fk are perceived at the head-pose xk−1, p(xk|xk−1,Fk) evaluates the probability
of the next head-pose of the robot such that the most salient feature in Fk is focused.
Thus the distribution models the competition among head poses to focus on different
visual features and hence termed as the bottom-up competition model.

3. p(bk|xk,Fk): This is the probability of receiving non-zero top-down bias from the mem-
ory if the robot takes the head-pose xk and focuses on the stimuli with visual features
Fk. As the non-zero bias is assigned only for those head-poses which focus on the
behaviorally relevant objects, the probability p(bk|xk,Fk), in other words, evalu-
ates the degree of behavioral relevance of the object focused at xk. The probability
p(bk|xk,Fk) is termed as the top-down modulation model.

The realization of the two models of Bayesian visual attention are discussed in the following
section.

3.3.1 The Bottom-up Competition Model

The process of defining a shape for p(xk|xk−1,Fk) is tricky as Fk and xk are expressed in
two different coordinate systems. To understand the process, let consider a hypothetical
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Figure 3.3: Evaluation of the bottom-up competition model for a hypothetical 3×3 camera
image. The numbers in Ik represent the intensity values of different pixels and p1, . . . , p9

indicate their probabilities. Here, ρ = 1 (please see text for detail)

3 × 3 image frame Ik (as shown in Fig. 3.3) which is perceived at a head-pose xk−1. The
numbers shown in Ik indicate the intensity values of different pixels. The focus of attention
is at the center of the frame, i.e the (0, 0)-th pixel. Attending to any other point in the
image means performing a head movement such that the point becomes the center of the
frame. For a stationary robotic head as presented in this paper, there exists a one-to-one
relation between an image point and a head-pose at which that point is focused. Such a
one-to-one relationship does not hold good for a mobile camera-head or for a system with
multiple camera-heads. In that case the relation between an image point and a head-pose
can be retrieved by mapping the image point to the camera-heads’ ego-centric frame of
reference. For the current setting, focusing a point along the positive xi axis requires a
negative (or clockwise) pan (α) movement of the camera-head while focusing a point along
the positive yi axis requires a positive (or anticlockwise) tilt (β) movement. A parameter
ρ defines the resolution of the head-pose space in terms of the number of image pixel.
The value of ρ depends on the ‘angle of view’ of the camera optics and the image size.
The probability of a head-pose is proportional to the visual saliency of the image point
it focuses on. For instance, the (1, 0)-th pixel in Ik (Fig. 3.3) has the highest intensity
contrast and is calculated as the most probable point (with a probability value p6) to focus
on. Corresponding head-pose in the (α, β) space will have the most high probability among
the possible nine head poses associated with the 3× 3 frame.

For full scale images a mixture of Gaussian distribution p(u|Fk) is used to represent
the probability of different image points (u = {u, v}) to be attended based on their visual
features. In case of practical implementation the visual features are more meaningful
when they are evaluated for a neighboring region than for a single isolated pixel. Each
image frame, therefore, is divided into ε × ε sub-image blocks. Each sub-image block
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(a) (b) (c)

Figure 3.4: (a) A 50 × 50 pixels image (b) The mixture of Gaussian p(u|Fk) (c) The
bottom-up competition model p(xk|xk−1,Fk) with ρ = 2

holds one component Gaussian whose mean is located at the point of the highest intensity
contrast and variance is calculated based on the color and intensity variance within that
block. The distribution p(u|Fk), therefore, acts as a scaled reflection of the distribution
p(xk|xk−1,Fk) with an scaling factor of ρ. Fig. 3.4 shows p(u|Fk) and p(xk|xk−1,Fk) for a
50× 50 camera frame (with ε = 5 and ρ = 2). The qualitative property of the distribution
p(uk|Fk) indicates that it is a probabilistic generalization of the traditional ‘saliency map’
introduced in [7].

A notable characteristic of the bottom-up competition model is it performs space-based
analysis of image features to identify a set of potential head poses. The contrast in color
and intensity in different regions in the image are investigated without explicitly forming
the notion of an object.

3.3.2 The Top-down Modulation Model

The top-down modulation model acts on the objects and evaluates their behavioral rele-
vance with the current context of the robot. The top-down modulation model, therefore,
operates with the assumption that a set of objects has been extracted from the poten-
tially interesting regions identified by the bottom up competition model. The object
segmentation process will be discussed in the next section along with the particle filter
implementation of (3.11).

As discussed in section 3.1, two types of behavioral relevance of the objects are con-
sidered during top-down biasing. The objects with novel visual features are considered
as ‘worthy to attend’ and receive excitatory top-down bias from the LTM. The objects
having similar visual features as a ‘sought for’ object is considered as ‘worthy to attend’
and receive excitatory top-down bias from the WM. Establishing behavioral relevance for
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attentional selection in these ways has strong biological evidence [34,136]. Accordingly,

p(bk|xk,Fk) = λ( p(bLTM
k |xk,Fk) + p(bWM

k |xk,Fk)) (3.12)

Here λ is a parameter which manipulates the importance of a head-poses to implement the
dynamic IOR. The process of choosing a value for λ will be discussed later in this chapter.
The behavioral relevance of different objects are investigated through comparing the SIFT
keypoints of the objects with that stored in the LTM and WM. The LTM Mk contains the
SIFT keypoints of the objects attended throughout the life-time of the robot and is used
when evaluating bias for the novel objects. The WM mk contains the SIFT keypoints of
an object which is being searched by the robot and is used when evaluating bias for the
target-like objects. The top-down biases for an object which is focused at xk and has the
SIFT keypoints Fk is evaluated as follows.

p(bLTM
k |xk,Fk) = 1− p(O|fmatch) (3.13)

p(bWM
k |xk,Fk) = p(O|fmatch) (3.14)

Here O represents the hypothesis that the object has been observed before and fmatch is
a set of Q keypoints from Mk (in case of (3.13)) or mk (in case of (3.14)) that matches
with the Q keypoints from Fk. p(O|fmatch), therefore, is the probability that the set of
keypoints fmatch is a true match of the candidate object. For evaluation of p(O|fmatch), a
set of Q́ keypoints f́match is identified in the memory (Mk or mk, based on the context) as
the nearest neighbors of the Q́ keypoints from Fk based on minimum Euclidean distance
between keypoint descriptor vectors [140] (Q́ ≤ Q). For each pair of the matched keypoints
the probability that the match is correct is evaluated based on the following three measures.

• Position constraint: Position constraint Pxy determines how far the location of the
candidate object’s keypoint is from the location of its matched keypoint in the mem-
ory. Assuming that a 20% change in size in each direction is acceptable, Pxy is the
probability that the candidate object’s keypoint satisfies this criteria. The probabil-
ity is modeled using a Gaussian distribution with the mean located at the position
corresponding to the matched keypoint in the memory and the standard deviation
of 0.2.

• Scale constraint: The scale constraint χ is the probability that the scale of the can-
didate object’s keypoint is within a close proximity of that of the matched database
keyopoint. The probability is modeled using a Gaussian distribution with the mean
equal to the scale of the matched keypoint and the standard deviation of 0.5 (the
same value has been suggested for pattern matching in [141]).

• Orientation constraint: A 30% change in orientation between the object keypoint and
the database match is considered acceptable. Accordingly, the orientation constraint
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ψ represents the probability that the orientation of the object keypoint satisfies this
criteria. The probability is modeled using a Gaussian distribution with the mean
located at the orientation of the database keypoint and the standard deviation is
30/360 = 0.085.

The keypoints for which the probabilities Pxy, χ, and ψ are less than a certain threshold

are discarded from the set f́match. The remaining Q keypoints constitute the set fmatch

whose probability of being the true match of a candidate object is calculated as follows.

p(O|fmatch) =

Q∏
q=1

Pxyqψqχq (3.15)

The next section describes the implementation of Bayesian model of attention using particle
filter algorithm.

3.4 The Particle Filter Implementation

Evaluating the full distribution of (3.11) is a computationally expensive process. Particle
filter [142] provides a time-efficient solution and has been used to implement (3.11). The
particle filter represents the belief by a set of L weighted samples who are distributed
according to the original distribution. Accordingly, from (3.11)

Bel(xk) : {x(l)
k , w

(l)
k , l = 1, . . . , L} (3.16)

Here, each sample x
(l)
k represents a system state and w

(l)
k is a non-negative number serving

as the importance weight of the sample. The weights sum up to unity. In case of robotic
visual attention where we can assume a full knowledge of the initial belief Bel(x0), the
L samples (each with weight 1

L
) representing the Bel(x0) are densely populated around

the very first head-pose of the robot. At any time k > 1, the recursive attention equation
(3.11) is realized through the following four steps.

Step 1. Sampling from the prior belief: A set of L samples {x′(l)k , l = 1, . . . , L} is col-

lected from Bel(xk−1) according to the importance weights {w(l)
k−1}, where Bel(xk−1) :

{x(l)
k−1, w

(l)
k−1, l = 1, . . . , L}.

Step 2. Prediction through bottom-up competition model: The bottom-up com-
petition model p(xk|xk−1,Fk) is used to generate a sample set {x(l)

k , l = 1, . . . , L} as
a sample-based prediction of the current state.

x
(l)
k ∼ p(xk|x′(l)k ,Fk) (3.17)
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Step 3. Measurement update through top-down modulation model: An importance
weight w

(l)
k is calculated for each sample in {x(l)

k } according to (3.12)- (3.15).

w
(l)
k = p(bk|x(l)

k ,Fk) (3.18)

The weights are normalized to form
∑

l w
(l)
k = 1 so that the samples constitute a

probability distribution. This makes the weighted sample set {x(l)
k , w

(l)
k , l = 1, . . . , L}

an approximate representation of the distribution in (3.11).

Step 4. Reporting the current state The sample with maximum weight is reported as
the current head-pose of the robot. Taking this head-pose places the corresponding
object at the center of the VF of the robot.

Further clarifications are required for Steps 2 to 4 and are provided in the following
sections. A set of experimental data are used to clarify these steps. The camera images
used are of dimension 600× 600 pixels and the value of the parameter ρ is 0.06.

3.4.1 Prediction Through Bottom-up Competition Model

During the prediction stage a set of L poses are predicted as the next head-pose of the
robot. The sample set constructed in step 1 along with the bottom-up competition model
is used to make this prediction. For instance, the predicted head-pose x

(l=1)
k is a sample

collected from the bottom-up competition model p(xk|x′(l=1)
k ,Fk). To maintain diversity in

the sample set, a sample head-pose which has been selected more than 10 times is prohibited
from being selected again. This reduces the possibility of degeneracy, a common problem
in particle filter [143].

Fig. 3.5 graphically demonstrates the prediction stage. Let us assume that the head-
pose reported at (k−1) focuses on the center of the frame shown in Fig. 3.5(a). Fig. 3.5(b)
shows the set of samples drawn according to the bottom-up competition model using (3.17).
The image points that will be focused at these predicted head poses are shown by black
dots in Fig. 3.5(c). The points in the image plane corresponding to a predicted head-pose

set are denoted by {U(l)
k }. These image points play a key role in object segmentation.

3.4.2 Measurement Update Through Top-down Modulation Model

During this stage each sample in {x(l)
k } is assigned with an importance weight w

(l)
k . The

weight of a sample head-pose is determined based on the behavioral relevance of the object
to which the corresponding focus points in the image belongs. Object segmentation and
SIFT keypoint extraction from the segmented objects, therefore, play a key role in this
stage.
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(a) (b) (c)

Figure 3.5: Graphical demonstration of the prediction stage in the particle filter for visual
attention (a) The reported head-pose at time (k − 1) focuses on the center of the visual
field (b) For prediction of xk the head-pose samples drawn according to the bottom-up
competition model (c) The points in the image that will be focused at the sample head-
poses shown in (b) (please see text for detail)

Object segmentation and SIFT keypoints extraction

The set of image points {U(l)
k } is used for object segmentation. Due to its process of

construction (described in section 3.4.1) these points are located at the regions of the
image which are visually salient due to contrast in color and/or intensity. In order to

segment the objects underlying these regions the points in {U(l)
k } are used as the ‘seed’ of

a region growing algorithm. For better success in object segmentation the region growing
algorithm is not directly applied on the raw camera image. Rather, the RGB image from
the camera is preprocessed through the following steps prior to applying the region growing
algorithm.

• The camera image Ik is transformed to the YCrCb color space. Four images are
created from the YCrCb image, one for the intensity (IY

k ) and three for the three
distinct colors red (Ir

k), green (Ig
k ), and blue (Ib

k ).

• A pyramid-based image segmentation technique is performed on Ir
k, I

g
k , and Ib

k (using
the pyramid-based image segmentation algorithm implemented in the open source
computer vision library). Three levels are used for the pyramid segmentation. There
are two parameters involved with the pyramid segmentation process, ζ1 (the threshold
value used to define connectivity among different pixels) and ζ2 (the threshold value
used to merge the connected components into different clusters). The values used
for these two parameters in the experiments described in this thesis are 12 and 10,
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(a) (b) (c)

(d)

Figure 3.6: Object segmentation process corresponding to the image in Fig. 3.5(a). The

images after the pyramid-based image segmentation (a) Ir′

k (b) Ig′

k (c) Ib′

k (d) The segmented
object blob corresponding to the head-pose (α = −9o, β = −20o) and the image region
considered for SIFT keypoint extraction based on the bounding rectangle of the segmented
blob

respectively. These values are chosen on a trial and error basis after analyzing 20
indoor images taken with two different cameras having different angular resolutions.

• The images Ir′

k , I
g′

k , and Ib′

k , obtained after pyramid-based segmentation, are used to
apply the region growing algorithm.

• The intensity image IY
k is used for extracting SIFT keypoints.

The result of the pyramid-based segmentation for the image shown in Fig. 3.5(a) are shown
in Fig. 3.6(a)- 3.6(c)

The segmentation of the object focused at a sample head-pose works as described below.

1. For each image point (which is focused at a sample head-pose) the mean values of
the pixels within a 3×3 neighborhood is calculated for the Ir

k, I
g
k , and Ib

k . The image
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which yields the maximum mean value is considered to be the dominant image and
the corresponding segmented image is considered for further processing (for instance,
if the mean value corresponding to Ir

k is the highest then Ir′

k is selected).

2. Region growing is performed on the segmented image considering the focused pixel
as the ‘seed’. All pixels that differs in value at most ±5% from the ‘seed’ pixel are
merged together.

3. The validity of the blob obtained through region growing is analyzed based on its
size. For instance, if the extracted blob occupies most of the scene (the dimension of
the bounding rectangle of the blob is more than 50% of the dimension of the image),
it is likely that the blob corresponds to the background. Similarly, too small blob is
discarded as outliers (the dimension of the bounding rectangle is less than 4% of the
dimension of the image).

4. A thumb rule is applied on an extracted blob to investigate if it is a part of an object
which has been extracted earlier using another seed point: if more than 70% of an
extracted blob lies within the bounding rectangle of another blob, they are merged
together and is considered as a single object.

5. The image region within the bounding rectangle of the segmented object blob is
considered to be a part of that object. An object blob might include several points
from the point set {U(l)

k }. In other words, there might be more than one head poses
which focus on the same object blob. In such case, the region growing algorithm will
run once and the segmented blob will be used for assigning weights to all of the head
poses that focus on it. Accordingly, the head poses that focus on the same object
blob will receive similar weight.

The region growing from only one pixel generally can not fully segment an object if it
has complex texture or have very large body with different colors. But in any case, it is
likely that there will be some other head-poses that focus on other parts of the object. It
will cause those parts to be segmented through region growing with different ‘seed(s)’. In
the worst case, different blobs from the same object might not be merged together. At
the behavioral level, it is, therefore, possible that different parts of a large object will be
attended separately. Fig. 3.6(d) demonstrates a case of object segmentation corresponding
to five sample head-pose.

The SIFT filter is applied on the region of the image residing within the bounding rect-
angle of each extracted object blob. Fig. 3.7 shows the regions of the image (corresponding
to different head-poses) selected for collecting SIFT keypoints.

Once an object corresponding to a sample head-pose is segmented, the SIFT keypoints
associated with it are analyzed for evaluating a weight for the sample using equation (3.12)
to (3.15). Fig. 3.8(a) shows the sample set of Fig. 3.5(b) after weight assignment.
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Figure 3.7: The regions of the image selected for SIFT keypoints extraction based on the
predicted head-pose samples shown in Fig. 3.5(b)

(a) (b)

Figure 3.8: (a) The weighted samples representing the posterior for attention. The particle
with highest weight (marked by the white circle) is reported as the next head-pose of the
robot (b) The object (marked by a rectangle) focused at the new head-pose (please see
text for detail)
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3.4.3 Reporting the Current State

It is required to obtain an estimate of the current system state from the posterior distribu-
tion. For multi-modal posterior distribution the most commonly used measure of system
state is the sample with maximum weight. The posterior for visual attention is generally
multi-modal but might not have one unique maximum. In the simplest case of having one
unique maximum, the head-pose sample that corresponds to that maximum is reported
as the next head-pose xk of the robot. Fig. 3.8(a) shows such a scenario where the sam-
ple with unique maximum weight is marked. When the robot takes this head-pose, the
associated object resides at the center of the VF as shown in Fig. 3.8(b).

Reporting a system state is relatively complex when the posterior has several equal-
amplitude peaks. This might occur when the robot observes more than one novel object
(during a visual exploration) or several copies of a target (during a visual search) in its VF.
Inspired by the characteristics of the primates’ visual attention two different strategies are
proposed here to resolve this confusion and choose a sample to report as the next head-pose
of the robot.

• Relative proximity-based analysis: In this case, among the samples with equally
high probabilities the one closest to the previous system state xk−1 is chosen as the
next state of the system. This strategy of favoring the closest sample is inspired by
the proximity effect in visual attention [7]. Some recent studies on visual attention,
however, suggest that there is no proximity effect in the selective attention of the
primates [144].

• Relative saliency-based analysis: In this case the objects associated with the samples
with equally high probabilities are further analyzed to evaluate their relative visual
saliency. The head-pose for which the associated object has the highest relative
visual saliency is chosen as the next state of the system. Relative visual saliency is
used as the major criteria (sometimes the only criteria) of visual attention in most
of the existing computer vision models of visual attention [18, 19, 22, 23]. A number
of methods, therefore, are available in the existing literature to evaluate the relative
saliency of different objects in an image. Two very popular method in this category
are NVT [18] and VOCUS [23]. Any of the existing algorithms can be used in this
purpose.

When there is no novel stimulus in the VF (in case of visual exploration) or none of the
objects have similarities with the target (in case of visual search), the posterior essentially
becomes uniform. In such a case the robot remains at its current head-pose.

In case of visual search, all head-poses whose weights are within the 5% of the maximum
weight are considered as the next head-pose of the robot. Relative proximity- or relative
saliency-based analysis is performed to chose a sequence of attention.
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3.5 Dealing with the Research Issues

The way the proposed model deals with the research issues involved with robotic visual
attention are discussed in this section.

3.5.1 Integrated Space- and Object-based Analysis

The proposed model integrates the space- and object-based analysis while identifying the
next head-pose of the robot (Issue 2 in section 1.2). The bottom-up competition model
operates on the space and identify the regions in the VF worthy to attend. This is done
without forming any concept of object. The top-down modulation model, on the other
hand, operates on the objects. As a result, only those regions of the VF are attended,
among all of the ‘attention worthy’ regions selected by the bottom-up competition model,
which are occupied by behaviorally relevant objects. This integrated analysis assists to
resolve the problem of dynamic IOR and will be discussed later in this section.

3.5.2 Change of Reference Frame

Once the head-pose xk is estimated from Bel(xk), the robot executes the required pan-tilt
movements in order to be at that pose. Accordingly, the content of the VF as well as the
image coordinate system change. This changes a traditional saliency map and requires a
re-mapping of the saliency information to the new image coordinate (discussed as Issue 1.1
in section 1.2). As the particle filter of attention operates in the head-pose space, unlike
an image-centric saliency map, the posterior for visual attention does not require any such
re-mapping. The system state merely shift to a new location in the (α, β) space. This is a
significant beauty of the robot-centric approach of visual attention. Some of the particles
in the old posterior, however, might represent probabilities corresponding to objects which
are not visible from the new system state. The prediction of next head-pose uses this old
posterior as the prior information (step 1 in section 3.4) and thereby rendering the visual
attention of the robot as a process which has memory. This is also consistent with the
attention system of the primates which is not believed to be a memoryless process [145].

3.5.3 Dynamic IOR and the Value of the Parameter λ

The robot-centric approach of the proposed model as well as the integration of space- and
object-based analysis offer an interesting way of implementing dynamic IOR (Issue 1.2
in section 1.2). The proposed model operates on the head poses and a head-pose always
focuses on a space. As mentioned in section 3.5.2, the head-poses are invariant to the change
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in image coordinate or the content of the VF. Implementing the space-based dynamic IOR,
therefore, is as simple as inhibiting the previous head-pose (and its close neighborhood)
in the (α, β) space from being the next state of the robot. This automatically prevents
the robot to focus on the space that was attended in the immediate past, irrespective of
the camera and image coordinates. But the space-based IOR, as mentioned in section 1.2,
might introduce some unexpected delay in visual search. The proposed model, therefore,
also includes the object-based analysis while implementing the IOR. The space which is
focused at any head-pose might be occupied by an object or might simply belongs to the
background. A head-pose, therefore, always associates a space in the 3D world but might
or might not associate an object. Again, the object occupying a space might be familiar or
novel, target or non-target. The proposed model selects a space to focus on based on the
properties of the object lying in that space. This is mostly achieved by choosing a value
for the parameter λ in (3.12).

λ =


0.01 if s1

2 if s2 ors1 ∧ s2

1 if s3 ors1 ∧ s3

(3.19)

Here,

• s1 : The head-pose is inhibited.

• s2 : The head-pose focuses on a ‘sought for’ object.

• s3 : The head-pose focuses on a novel object.

• ∧ : The logical and operator.

The problem associated with the object-based IOR, as discussed in section 1.2, still exists
in the proposed model. Because of that the robot might re-attend to an object when there
is large change in the object’s orientation, camera perspective, or illumination.

3.5.4 Partial Appearance of Features

In case of the SIFT keypoint-based object identification, the robot can successfully recog-
nize an object as long as a certain number of matching keypoints can be extracted from
the visible region of the object. The head-pose(s) at which a focused object is partially
visible with dimension less than a certain threshold (the area is less than 2500 pixels) are
assigned a predefined small weight during the top-down modulation.

The discussion in section 1.2 on the issues involved with robotic visual attention enlists
three other research issues namely, optimal learning strategy, generality, and prior training.
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The Bayesian model of visual attention proposed in this chapter is not capable to address
these three research issues. A multi-modal extension of the model will be introduced in
chapter 5 which offers solutions to deal with these three research issues.

3.6 Conclusion

This chapter has described the proposed Bayesian model of visual attention. At first the
biological motivation of the proposed model is explained along with a brief summarization
of the BC hypothesis of visual attention. The Bayesian formulation for the robotic visual
attention is then discussed in light of the BC hypothesis. The chapter also provides a
detailed description of the particle filter implementation of the proposed Bayesian model.
Finally, it sheds light on how the proposed model deals with the research issues of robotic
visual attention.

The next chapter will describe a set of experiments to evaluate the performance of the
proposed model.

53



Chapter 4

Performance Evaluation of the
Proposed Visual Attention Model

Analysis of performance in different real-world scenarios is a crucial requirement to eval-
uate any technical model. There is a lot of research on visual attention modeling but
unfortunately no generic method has been proposed to evaluate the performance of a tech-
nical model of visual attention. The visual attention models in computational neuroscience
generally use the response data of the primates’s visual cortex (collected through single-cell
experiments, e.g fMRI, PET) as the ground truth and compare the response of a model
with them. In case of technical models of attention no such ground truth is available. This
chapter focuses on the performance evaluation of the proposed model of visual attention.

4.1 Evaluation Criteria

Performance evaluation/comparison is not a very common practice in the computational
modeling of visual attention. The handful of computational models which consider perfor-
mance evaluation mostly use the following metrics.

1. Accuracy of visual search: A simple method for performance evaluation of a tech-
nical model of visual attention is to measure how accurately the model can identify
a target during visual search. Measure of visual search accuracy, therefore, has been
adopted by many visual attention models for performance evaluation. For instance,
the covert model in [23] proposes a metric named hit number which indicates the re-
quired number of focus transitions before landing on the target object. A hit number
close to unity is indicative to a good model of visual attention with respect to visual
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search. The model in [146] uses target detection speed as a measure of goodness of
the model in case of visual search.

The metrics like hit number and target detection speed are highly biased by different
factors, e.g., type of training images, similarity of the test and training images etc.
Besides, they are only applicable for visual search, but not for the overall attention
behavior.

2. Reaction time: Reaction time is the time required to identify the focus of attention
in a given image. This is the most commonly used evaluation criteria for both
overt and covert models of visual attention. In case of robotic overt attention the
reaction time also includes the time required for the camera to orient to the stimuli
of attention. Reaction time in covert models are generally smaller than the overt
models. Again, the reaction time of the models which deal only with bottom-up cues
is less than those which deal with both the top-down and the bottom-up cues. The
famous covert model NVT [17] reported a maximum of 10 seconds reaction time for
visual search task in a 640 × 480 pixels static image. The NVT [17] also reports
a linear relationship among the reaction time, complexity of the image (number
of distractors), and the image dimension. The extension of NVT in [92] reports
reaction time of approximately 1 minute to precisely detect novel events in the video
sequence. In case of processing pure bottom-up cues the reaction time of VOCUS
[23] is approximately around 1 second to 1.5 seconds. The reaction time of the
attention model with VOCUS like bottom-up processing has been minimized to 10
milliseconds to 20 milliseconds in [147] through using the processing power of the
graphic processing unit (GPU). Several research works on task-specific visual search
in constrained environments report reaction time in millisecond range through being
selective in feature processing, e.g., the work in [117] reports 11 milliseconds reaction
time to identify human face in the indoor environment while using only intensity
feature. Thus, the reaction time is a metric of attention which can be biased by
three major factors: mode of attention (overt or covert), type of application, and
complexity of the image.

3. Human eye tracking: Eye tracking of the human subject is becoming a popular
method to evaluate the overt models of visual attention. In this case the output
of an attention model (i.e., the attentional scan paths) for a set of images/ video
sequence is compared with the result of an eye tracking experiment performed on
a group of humans using the same images/ video sequence. Commercially avail-
able eye-tracking systems are used to record the gaze patterns of the human. The
comparison is trivial for the standard psychophysical test images (e.g., the first two
images in Fig. 1.4) but extremely non-trivial for the natural images. The overt model
in [148] performs an analysis to compare the gaze pattern of a robotic head with that
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of a human in a specially designed simplistic type experimental environment. The
model [148] reports significant similarity between the two gaze patterns. The covert
model in [92] uses the same method of comparison, except it is performed off line on
a video sequence.

To further enhance the use of human eye tracking as a way of evaluating the visual
attention models, a number of works have been reported in the recent literature
focusing on different strategies to compare human gaze data with the synthetic models
of attention. For instance, the models in [149,150] advocate a location-based strategy
where a synthetic model’s performance is considered as satisfactory if it focuses on
the same spatial location as the human. The work in [151] further introduces the
condition of feature similarity and suggests that a synthetic model and a human gaze-
pattern will be ‘close’ if they focus on similar features irrespective of their spatio-
temporal locations. All of these models [149–151] require a prior training phase with
a considerably large amount of human gaze data. This prior training stage does not
lend the method of comparison with human gaze pattern to be used as an unbiased
metric of visual attention performance. This is mainly because the way the human
gaze pattern data is collected in eye-tracking experiments is very likely to differ (with
respect to eye-tracking hardware, experimental set-up, subjects’ age, experience, and
preference) from researcher to researcher. In order to use the comparison with the
human gaze pattern as a statistically correct metric of visual attention performance,
we have to have a general database of gaze patterns of considerably large numbers of
people from different age groups, professions, and in a wide variety of environments.

4. Qualitative analysis: Qualitative analysis of attention behavior is performed by the
majority of the attention model. There are some models which perform analysis of
their performance with respect to their self-defined objectives (the majority of the
models fall under this category, e.g., [51, 107, 117, 131]) while others compare their
performance with similar existing models (e.g., [23, 50])

Based on the analysis of the commonly used performance metrics, this thesis focuses
on three metrics for performance evaluation of the proposed attention model.

1. Self evaluation

2. Consistency of decision

3. Robustness against parameter variation

They are discussed below.
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4.1.1 Self Evaluation

Self-evaluation is the process of evaluating the performance of an attention model with
respect to the properties/ characteristics expected to be observed in that model. In other
words, every attention model is designed to fulfill some specific goal(s) and is expected
to have certain characteristics. Self evaluation evaluates how well the goals are fulfilled
and how accurately the characteristics are manifested in the real-time implementation of
the model. Self-evaluation is performed through a set of experiments specially designed
to focus on the goals of a model and the characteristics expected to be observed in it. If
other existing models of attention have similar goals or characteristics then it is strongly
desirable to perform a direct comparison with such a model with respect to that common
goal or characteristic.

The Bayesian model of visual attention proposed in this thesis is dedicated for au-
tonomous robots. The autonomous robot which is being operated by the proposed model
is expected to exhibit the following two attention behaviors.

• The novel stimuli in the VF of the robot will always be attended. Accordingly, the
visual exploration of the robot is driven by the preference for novelty.

• While conducting visual search, the stimuli in the VF which have target-like features
will be attended by the robot. Visual search has higher priority over the visual
exploration.

While operating with these two properties, the major goal of the proposed model is to
address the research issues reported in section 1.2. Self-evaluation of the proposed model,
therefore, is concerned about how well the proposed model maintains these two character-
istics while simultaneously tackling the issues of robotic visual attention.

4.1.2 Consistency of Decision

When it comes to visual attention, humans are generally never consistent in their deci-
sion. For the same scene the attentional scan-path of different human differs based on the
individual’s habit, background, personal preference, current state of mind, environmental
condition (lighting) etc. Resulting from a complex interaction among all of these criteria
it is not unusual that the same person will choose a different scan-path for the same scene
at two different points of time. This apparent ‘uncertainty’ is one aspect of human cog-
nition that makes us so special. As we are not able to mimic the whole cognitive system
of the human, we are not interested in mimic this kind of uncertainty of human attention
in a technical system. Rather, we want to develop a technical model of attention which is
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consistent in its decision of ‘what to focus on’ as much as possible subject to reasonable
change in illumination, viewing perspective (more accurately, moderate amount of affine
transformation), and relative spatial position of the stimuli. It is worth mentioning that
change of viewing perspective and varying illumination are very common phenomena in
the robotic overt attention.

Consistency of decision is a very important criterion for a technical model of visual
attention in order to demonstrate different concepts and to analyze and compare perfor-
mance among different attentional scenario. Consistency of decision, therefore, will be used
as a evaluation criteria for the experiments for self-evaluation of the proposed model.

4.1.3 Robustness Against Parameter Variation

Any mathematical model of the natural systems contains several parameters. It is ex-
tremely important to focus on the behavior of the model subjected to variation in the
parameters’ values. This helps to define a safe operating zone for the model. The pro-
posed model has the following tunable parameters.

• The number of particles L.

• The block size ε (related to the bottom-up competition model)

• Image processing parameters ζ1, ζ2

The performance of the proposed model will be investigated subjected to the variation in
values of these parameters. Aside these four parameters, the effect of the size of the LTM
on the visual attention performance will also be investigated.

4.2 Experimental Hardware

A set of experiments is performed for self-evaluation of performance of the proposed
Bayesian model of visual attention. The experiments are categorized into three groups.

1. Experiments related to visual exploration

2. Experiments related to visual search

3. Experiments related to parameter variation
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Figure 4.1: A Point Grey Research Flea2 color camera mounted on a Directed Perception
PTU constitutes a robotic camera-head and is used during the experiments

Experimental hardware includes a Point Grey Research Flea2 color camera which is mounted
on a Directed Perception PTU to serve as the camera-head of a robotic system (Fig. 4.1).
The rest of this chapter will refer this camera-head as the ‘robot’. The physical location of
the robot in the 3D world does not change during the course of an experiment. Flea2 uses
a narrow angle optics with the angle of view 38.47o(H) × 29.35o(V ). Image dimension is
640× 480 pixels. The particle filter implementation of the Bayesian attention model uses
500 particles. Corresponding to one snap-shot of the environment the total time required
for running the attention algorithm and executing the motion command by the PTU is
considered as the time for one decision cycle. Each decision cycle begins with capturing an
image at a new head-pose and ends with delivering the appropriate motion command to
the PTU. A constant time delay of 1.5 seconds is introduced between two successive cycles
in order to allow the mechanical movements of the PTU. The average time of a decision
cycle in different experiments is found to be 5.6s with a 2GHz processor (including the
constant time delay). No additional processing support (e.g., a GPU) is involved with this
timing. It is worth to mention that currently the program code is not optimized and that
code optimization will further reduce the time requirement of the algorithm.

4.3 Experiment 1: Visual Exploration

Two sets of experiments are performed to demonstrate the novelty-guided visual explo-
ration characteristic of the proposed model. During the experiments the robot is exposed
to different objects and it attends only to those objects which appear novel in its perception.
The first set of experiments focuses on demonstrating the strategy of the proposed model
to deal with multiple novel stimuli and the second set is focused on the demonstration of
dynamic IOR.
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(a) (b)

Figure 4.2: Novelty-guided visual exploration with relative proximity-based analysis (a)
The experimental environment with seven novel objects (b) The VF of the robot at the
first decision cycle. In the successive cycles the objects are attended in order of their
proximity to the current focus of attention. The numbers denote the sequence of attention
(please see text and Fig. 4.3 for detail)

4.3.1 Dealing with Competing Stimuli

During this experiment the robot starts with an empty LTM. The robot is initially exposed
to the environment shown in Fig. 4.2(a). There are seven objects in the VF (as shown in
Fig. 4.2(b)), all of which are novel to the robot as it does not have any prior knowledge.
This causes the posterior distribution to have multiple equal-amplitude peaks. To resolve
the confusion arising from such competing novel stimuli the proposed model suggests two
different strategies as discussed in section 3.4.3. The attention sequence resulting from
each of these two strategies are discussed below.

Relative proximity-based analysis

The relative proximity-based analysis chooses the head pose, among a set of equally prob-
able head-poses, which is the closest to the current head-pose as the next system state.
Five trials of the same experiment are performed while using the proximity-based analysis
to resolve the conflict among competing novel stimuli. During these five trials the relative
positions of the objects with respect to the camera position are kept unchanged. In all of
the trials the robot sequentially attends to the novel objects while following the sequence
marked in Fig. 4.2(b). Fig. 4.3 shows different stages of the experiment.

Now the same experiment is performed with the same camera setting but some of the
objects in the VF change their position as shown in Fig. 4.4(a). In all five trials of the
experiment the attention sequence followed by the robot is shown in Fig. 4.4(b).

With further change in relative positions of the objects (as shown in Fig. 4.4(c)), the
experiment is conducted again and the resulting attention sequence is shown in Fig. 4.4(d).
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(a) α = −11o, β = −36o (b) α = −5o, β = −36o (c) α = −5o, β = −46o (d) α = −12o, β = −49o

(e) α = −20o, β = −46o (f) α = −18o, β = −39o (g) α = −28o, β = −44o (h) α = −28o, β = −44o

Figure 4.3: Different stages of the visual exploration experiment shown in Fig. 4.2. For
each image the top row indicates the frame captured at the beginning of a decision cycle
and the bottom row indicates the objects to be focused at the successive decision cycle
based on the estimated head-pose (α, β) shown within parenthesis. After attending the
object in (h), the robot can not identify any other novel stimulus in the VF and remains
at the current state
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(a) (b) (c) (d)

Figure 4.4: Novelty guided visual exploration with relative proximity-based analysis: the
novel objects change their relative positions as compared to the environment shown in Fig.
4.2(a). (a), (c) The VFs of the robot at the first decision cycle during the experiments with
two different settings of the objects. The objects are attended sequentially in the subse-
quent decision cycles. The sequences of attention are shown in (b) and (d), respectively
(please see text for detail)

Although the proximity-based analysis is applied on the head-poses in the pose-space, the
distance between different objects visible in Fig. 4.2(a), 4.4(a), and 4.4(c) indicate that
the sequences at which they are attended are highly consistent with the theme of the
proximity-based analysis.

Relative saliency-based analysis

In case of relative saliency-based analysis, among a set of equally probable head-poses,
the one focusing on the object with highest relative visual saliency is chosen as the next
system state. The current experiments use VOCUS-like image processing [23] to evaluate
the relative visual saliency of the objects in the VF that are associated with different
equally probable head-poses. As the VOCUS algorithm performs space-based analysis of
attention, a small modification of the original algorithm is performed to accommodate the
object-based analysis of the current system. According to the original VOCUS algorithm
several pixel-points from one object might be focused in order of their decreasing saliency,
especially when the object is highly textured and can not be segmented through the simple
color- or intensity-based region growing method [23]. Switching to a different focus point is
achieved through application of space-based IOR. In the modified VOCUS algorithm, once
a pixel-point is focused, the entire object to which the pixel belongs is inhibited for the next
attention. The object blobs are extracted according to the object segmentation method
described in section 3.4.2. An object, therefore, can be focused only once during a novelty
exploration experiment. The most salient pixel of an object is the representative of the
relative visual saliency of that object and, thereby, determines the position of the object in
the attention sequence. For comparison purposes, the VOCUS-based saliency map of the
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(a) (b) (c) (d)

Figure 4.5: Novelty guided visual exploration with relative saliency-based analysis (a) The
visual field of the robot at the first decision cycle where all seven novel objects are visible.
(b) The saliency map of the visual field generated using the VOCUS algorithm [23]. (c)
The first sixteen focuses of attention suggested by the saliency map. (d) The first seven
objects of attention evaluated according to the modified VOCUS algorithm (please see text
for detail)

VF in Fig. 4.5(a) is shown in Fig. 4.5(b). The first sixteen focuses of attention, according
to the original VOCUS algorithm, are marked in Fig. 4.5(c). The first seven focuses of
attention, according to the modified VOCUS algorithm, are marked in Fig. 4.5(d).

Five trials of the visual exploration experiment are performed while using the relative
saliency-based analysis to resolve the conflict among competing novel stimuli. For the
environment in Fig. 4.2(a) the robot executes three different attention sequences as shown
in Fig. 4.6(a), 4.6(b), and 4.6(c). Completely different attention sequences are observed
when the objects switch their positions. For instance, there are two different attention
sequences for the environment in Fig. 4.4(a) and are shown in Figs. 4.7(c) and 4.7(d).
For comparison purposes, the first sixteen focuses of attention for the same environment
calculated according to the original VOCUS algorithm are marked in Fig. 4.7(b). Again,
there are two different attention sequences for the environment in Fig. 4.4(c) and are
shown in Figs. 4.8(c) and 4.8(d). For comparison purposes, the first sixteen focuses of
attention for the same environment calculated according to the original VOCUS algorithm
are marked in Fig. 4.8(b). The results from all of the relative proximity- and relative
saliency- based analysis are summarized in Table 4.1.

Analysis of the results in Table 4.1 shows that although the relative saliency-based
analysis is a more biologically-legitimate approach to deal with the competing stimuli, the
resulting attention sequences are highly unstable. This is probably because of the fact that
the saliency information never remains exactly the same in two images captured at two
different points of time. The relative saliency has high degree of dependency on natural
lighting variation, slight change in camera perspective, and even on the relative position
of different objects. The relative proximity-based analysis, on the other hand, generates
highly stable attention sequence in all conditions. This stability has significant importance
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(a) (b) (c)

Figure 4.6: Novelty guided visual exploration with relative saliency-based analysis. The
robot executes three different attention sequences for the environment in Fig. 4.2(a). The
sequences are marked on the visual field of the robot at the first decision cycle (please see
text for detail)

(a) (b) (c) (d)

Figure 4.7: Novelty guided visual exploration with relative saliency-based analysis: the
novel objects change their relative positions as compared to the environment shown in Fig.
4.2(a). (a) The visual fields of the robot at the first decision cycle. (b) The first sixteen
focuses of attention calculated according to the original VOCUS algorithm-based saliency
map [23]. (c), (d) Two different attention sequences for the same environment resulting
from using the modified VOCUS algorithm to resolve the conflict among the competing
novel stimuli (please see text for detail)
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(a) (b) (c) (d)

Figure 4.8: Novelty guided visual exploration with relative saliency-based analysis: the
novel objects change their relative positions as compared to the environment shown in Fig.
4.2(a). (a) The visual fields of the robot at the first decision cycle. (b) The first sixteen
focuses of attention calculated based on the VOCUS algorithm-based saliency map [23].
(c), (d) Two different attention sequences for the same environment resulting from using
the modified VOCUS algorithm to resolve the conflict among the competing novel stimuli

Table 4.1: Novelty guided visual exploration: dealing with competing stimuli
Environment Relative-proximity Relative-saliency

Attention sequence # of trial Attention sequence # of trial
Fig. 4.2(a) Fig. 4.2(b) 10 Fig. 4.6(a) 5

Fig. 4.6(b) 6
Fig. 4.6(c) 5

Fig. 4.4(a) Fig. 4.4(b) 5 Fig. 4.7(c) 5
Fig. 4.7(d) 3

Fig. 4.4(c) Fig. 4.4(d) 5 Fig. 4.8(c) 3
Fig. 4.8(d) 4

during demonstration of different attention-related phenomena as well as for performance
analysis and comparison. The experiments described in the rest of this thesis, therefore,
adopt the proximity-based analysis unless otherwise stated.

4.3.2 Demonstration of IOR

The goal of this experiment is to demonstrate the implementation of IOR in the proposed
model. During the experiment the robot starts with an empty LTM and the camera is
exposed to the scene of Fig. 4.9(a). There are seven novel objects in the VF. The robot
focuses on each of them and updates the LTM with their associated SIFT keypoints.
The sequence of attention is marked in Fig. 4.9(a). The VF lacks novel stimulus after the
seventh object is attended (as shown in Fig. 4.9(b)). The robot never re-visits the locations
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.9: Demonstration of IOR: (a) The experimental environment and the sequence of
attention. (b)-(j) Different stages of the experiment (please see the text and the multimedia
file “Multimedia IOR.wmv” for detail)
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attended thus far as none of them is occupied by any novel stimulus. At this point a novel
object is placed at the location which was visited at the immediate past (Fig. 4.9(c)).
Although the last-visited head-pose is inhibited according to space-based IOR, the robot
re-visits its neighborhood to focus on the novel object under the influence of object-based
IOR (as shown in Fig. 4.9(d)). Similar reasoning applies for the attention behavior of
the robot when another novel object is placed at the last visited location as shown in Fig.
4.9(e) and the robot focuses on it (Fig. 4.9(f)). At this point, another object is inserted
in the VF as shown in Fig. 4.9(g). This newly inserted object has visual features similar
to one of the previously attended objects (the first object in the attention sequence shown
in Fig. 4.9(a)). Due to familiarity of its visual features the object does not get attention
of the robot (as shown in Fig. 4.9(h)). When a novel object is inserted at the same place
(Fig. 4.9(i)), the camera immediately identifies the novelty and focuses on it (Fig. 4.9(j)).
The features of the object occupying a space make that space worthy to attend. Similar
reasoning applies for the attention toward another novel object inserted in the VF as
shown in Fig. 4.9(l). Thus, the property of the proposed model to prefer novel stimuli for
attention inherently prevents the model from visiting previously visited locations, thereby
implementing a form of space-based IOR. If, however, a novel object appears in any of the
already visited locations (including the one visited in the immediate past), the attention
model allows the robot to focus on it, thereby implementing a form of object-based IOR.
A video of this experiment is available in the multimedia file “Multimedia IOR.wmv”
attached with this thesis.

4.3.3 Analysis of Results

The results of the experiments reported in this section help to shed light on the following
facts.

• The characteristic of the proposed model to attend the novel visual stimuli in the
VF has been successfully implemented. The implementation of the proposed model
on a robotic camera-head allowed the robot to identify and focus on the stimuli that
appears as novel in its perception. This novelty preferring attribute guides the visual
exploration behavior of the robot.

• The proposed model successfully tackles the research issues such as change of coor-
dinates (Issue 1.1 ), dynamic IOR (Issue 1.2 ), partial appearance of features (Issue
1.3 ) to smoothly perform the visual exploration behavior.

• The integration of object- and space-based analysis in the proposed model helps to
implement the dynamic IOR.
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(a) (b)

Figure 4.10: Target objects for visual search experiments

• To resolve the conflict among competing stimuli, the relative proximity-based analysis
provides more stable results than the relative saliency-based analysis.

4.4 Experiment 2: Visual Search

A set of experiments are performed to evaluate the performance of the proposed model in
conducting a search for a specific target. Two target objects, a red hat and a blue bowling
pin as shown in Fig. 4.10, are used throughout these experiments. The visual features of
the targets are learned in a separate training phase. During the training phase the camera
is exposed to the scenes of Figs. 4.10(a) and 4.10(b) separately. The model runs in visual
exploration mode and the robot focuses on the only novel object present in each scene and
learns the associated SIFT keypoints. The LTM developed in this way are used as the
WM during the visual search experiments. The number of SIFT keypoints corresponding
to the blue bowling pin and the red hat are 26 and 88, respectively. During the visual
search the camera is exposed to a number of different environments where the targets
share the VF with several other objects. A number of different environmental settings are
chosen carefully in order to investigate the robustness of the visual search performed by
the proposed model.

• Setting I: The target is rotated moderately with respect to the training case and
placed with several other objects. Some of these objects share common feature(s)
with the target. The background is the same as the training case.

• Setting II: The target is occluded partially and placed with other objects. The
background is the same as the training case.

• Setting III: Multiple target-like objects are placed in the environment. The back-
ground is the same as the training case.
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• Setting IV: The target is placed in backgrounds which are different than the training
case.

• Setting V: The target is rotated significantly.

• Setting VI: The relative position of the camera and the target in the 3D world changes
with respect to the training case.

For settings I- V the camera position in the 3D world remains the same as the training case.
In each of these settings the robot tries to identify the target using the target information
stored in the WM and focuses on it.

The results from the experiments are summarized in Table 4.2. In the majority of
successful cases of visual search only one head movement, from the starting head-pose, is
performed to focus on the target. In different trials of the same experiment the head-poses
taken by the robot to focus on the target are averaged and is reported as the ‘average pose
sequence’ in the Table 4.2. The robot successfully identifies the target with a moderate
amount of occlusion and change in orientation. The visual search with two target-like
objects in the VF creates the situation of competing target-like stimuli and the robot
attends to both of the objects, one after another.

The most important aspect to notice in Table 4.2 is the failure of search in setting
V and VI. In the case of setting V, the strong change in the target’s orientation causes
a failure in visual search for both of the target objects. In the case of setting VI, the
targets are neither heavily rotated nor occluded as shown in Fig. 4.11(f) and 4.12(f). The
model, however, fails to identify them using the knowledge of the targets extracted from
the training images in Fig. 4.10(a) and 4.10(b). The reason behind this failure is the
change in the camera perspective to which the SIFT keypoints are highly sensitive.

4.4.1 Analysis of Results

The results of the experiments reported in this section demonstrate the visual search char-
acteristic of the proposed model. The visual search experiments are conducted with the
prior-knowledge of the targets’ visual features learned from one snap-shot of the target.
With such a limited knowledge of the target, the proposed model demonstrates consider-
able robustness in visual search against change in orientation of the target, partial occlusion
of target, and change in the background. In spite of this success, a notable shortcoming of
the model lies in the fact that a separate training session was designed for target learning
where a clean view of the target was manually arranged to provide the robot with enriched
information about the target. This training stage significantly reduces the autonomy of
the model. This issue has been discussed in section 1.2 of this thesis (Issue 5 ).
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Table 4.2: Demonstration of visual search by the proposed model
Target

Setting Bowling pin Red hat
Result # of Average pose Result # of Average pose

trial sequence trial sequence
I Success 5 (−12◦,−42◦)→ Success 5 (−12◦,−38◦)→

Fig. 4.11(a) (2◦,−50◦) Fig. 4.12(a) (−24◦,−34◦)
II Success 5 (−12◦,−42◦)→ Success 5 (−12◦,−38◦)→

Fig. 4.11(b) (−30◦,−38◦) Fig. 4.12(b) (−7◦,−34◦)
III Success 5 (−12◦,−42◦)→ Success 5 (−12◦,−38◦)→

Fig. 4.11(c) (−17◦,−34◦)→ Fig. 4.12(c) (0◦,−46◦)→
(−30◦,−39◦) (−16◦,−35◦)

IV Success 5 (−12◦,−42◦)→ Success 5 (−12◦,−38◦)→
Fig. 4.11(d) (−28◦,−38◦) Fig. 4.12(d) (−30◦,−44◦)

V Failure 5 - Failure 5 -
Fig. 4.11(e) Fig. 4.12(e) -

VI Failure 3 - Failure 3 -
Fig. 4.11(f)- Fig. 4.12(f)-
(top) (top)
Failure 3 - Failure 3 -
Fig. 4.11(f) Fig. 4.12(f)
(middle) (middle)
Failure 3 - Failure 3 -
Fig. 4.11(f) Fig. 4.12(f)
(bottom) (bottom)
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Visual search for the blue bowling pin. (a)-(d) Success. (e), (f) Failure (please
see Table 4.2 for detail) 71



(a) (b) (c)

(d) (e) (f)

Figure 4.12: Visual search for the red hat. (a)-(d) Success. (e), (f) Failure (please see
Table 4.2 for detail) 72



In addition to the training phase problem, the failure of the model to identify the
targets in setting V and VI reveals a significant shortcoming of the proposed model in
case of visual search. The proposed model is designed to serve as a component of robotic
cognition. A cognitive robot is most likely to be a mobile platform with high degrees of
freedom in perception and action. Such a robot is able to observe its surrounding from
different perspectives. Besides, objects themselves often change their orientation (mediated
by human) in the natural human environment. A visual attention model must be able to
cope with the change in the camera perspective and large affine transformation of the
object while performing visual search. Otherwise, an unrealistic amount of prior learning
will be required to familiarize the robot with different objects in order to recognize them
from arbitrary perspectives and/or orientations. A real-world robotic-application can not
afford that sort of learning (Issues 3, 4 in section 1.2).

4.5 Experiment 3: Performance with Parameter Vari-

ation

A set of experiments is conducted to investigate the performance of the proposed model
subjected to variation in different parameters.

4.5.1 Number of Particle and Block Size

The success of a particle filter to approximate any posterior distribution highly depends
on the number of particles. The higher the number of particles, the better the filter
approximates the original distribution. But for a lower number of particles the estimated
system state becomes a very crude approximation of the original system state. The way
this incorrect state estimation affects the system behavior differs in different applications.
In the case of the proposed Bayesian model of visual attention, the variation in the number
of particles is manifested in the attention behavior of the robot in a very interesting and
unique way.

To investigate the effect of particle size, four trials of a visual exploration experiment
are conducted where each trail runs with a different number of particles. The number of
particles used are L = 100, 200, 500, and 700. In each trial the robot starts with an empty
LTM and is exposed to the VF shown in Fig. 4.13(a). The results of these experiments
reveal two aspects of the proposed model which are affected by the number of particles:
1) the sequence of attention, and 2) the time required to detect a behaviorally relevant
stimulus (in this case, a novel stimulus).
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The sequence of attention

The attention sequences followed by the robot in different trials of the visual exploration
experiment are shown in Figs. 4.13- 4.14. These sequences indicate that when the particle
filter operates with fewer numbers of particles, the robot attends to the same object more
than once. Attending to different parts of one object generally results in wiggly movements
of the camera-head, especially when the object is small in size. The exact number of re-
visit is generally proportional to the type and visual complexity of the objects. Highly
textured and large objects (e.g., the red car in Fig. 4.13(b)) are re-visited more than the
less-textured and relatively smaller objects (e.g., the orange toy in Fig. 4.13(b)). As the
number of particles decreases, the number of re-visits increases. Besides, with too few
particles the attention sequence sometimes may not even follow the theme of proximity-
based analysis, i.e., the robot starts to attend the distant objects earlier than the closer
objects. For around 500 particles and higher, the number of re-visit is optimized and
the robot mostly likely attends to an object once. The reason behind this apparently
strange attention behavior is the relation between the number of particles and the image
segmentation process described in section 3.4.2. The image points corresponding to the
head-poses (particles) are used as the seeds for the region growing algorithm which segments
different objects. Fewer particles means fewer seeds for region growing. A region growing
algorithm with a fewer number of seeds generally results in small object blobs which can
not be merged together to form a complete view of the objects. The problem is severe
for the objects with complex texture. The top-down modulation model considers different
parts of a single object as isolated objects and assigns weights accordingly. This results in
the re-visiting of a same object. When the particle number is high, several blobs are created
from one object and the probabilities are higher that they will be merged together to form
a complete view of the object. Consideration of the full object during the top-down biasing
process reduces the probability of re-visiting it in the same trial. For better understanding
of the fact, Fig. 4.14 shows the object blobs segmented with different numbers of particles
from the visual field of the robot at the first decision cycle during the visual exploration
experiments demonstrated in Fig. 4.13 (the blobs are shown in the RGB space). With
higher number of particles the blobs are smoother and include more features from the
underlying objects.

All of the experiments discussed in this section are performed with a value of ε = 20.
The parameter ε (the sub-image block size used for constructing the bottom-up competition
model discussed in section 3.3.1) has an interesting effect on the relation between the
number of particles and the image segmentation process. To investigate the effect of the
parameter ε, two more trials of the same experiment are conducted, one with L = 100
and ε = 10 and the other with L = 500 and ε = 40. The resulting attention sequences
and segmented object blobs from the visual field of the robot at the first decision cycle are
shown in Fig. 4.15. Comparison of the results shows that for a given number of particles,
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Effect of the number of particle L on the visual attention behavior. The
experimental environment is shown in (a) and the VF of the robot at the first decision
cycle is shown in (b). The attention sequences resulted from using different numbers of
particles are marked on the VF at the first decision cycle. (c) L = 100 (d) L = 200 (e)
L = 500 (f) L = 700. As the number of particles decreases, the robot starts to attend to
different parts of the objects rather than the entire object (please see text for detail)

(a) L = 100 (b) L = 200 (c) L = 500 (d) L = 700

Figure 4.14: The effect of the number of particles on visual attention behavior: the blobs
segmented from the VF of the robot at the first decision cycle (during the visual exploration
experiments demonstrated in Fig. 4.13) while using different number of particles (please
see text for detail)
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(a) L = 100, ε = 10 (b) L = 100, ε = 10 (c) L = 500, ε = 40 (d) L = 500, ε = 40

Figure 4.15: The effect of the block size on the visual attention behavior. The attention
sequences resulted from using different combinations of values for ε and L are marked on
the first VF of the robot and shown in (a) and (c). The segmented object blobs are shown
in (b) and (d) (please see text for detail)

small values of ε reduce the number of re-visits while large values of ε increase it. The
underlying reason for this behavior is that smaller values of ε (i.e., small sub-image block)
increase the effective resolution of the image plane by increasing the number of component
distributions in the Gaussian mixture which represents the bottom-up competition model.
The component distributions corresponding to image regions with bright color and/or
with high contrast in color and intensity become narrower, while that corresponding to
a plain background become wider. Sampling from such a bottom-up competition model
increases the number of head-poses that focuses on meaningful objects rather than the
background. Using the corresponding image points as the seeds for region-growing increases
the chances of segmenting the full object. Accordingly, the chances of re-visiting the same
object go down. On the other hand, for larger values of ε the effective resolution of the
image plane decreases as the number of component Gaussian in the bottom-up competition
model decreases. Due to a large area-coverage the majority of the component Gaussian
become wider. Thus the probability of the samples collected according to such a bottom-up
competition model to correspond to meaningful objects in the VF becomes lower.

The time

The time for running the particle filter algorithm for visual attention varies with the number
of particles as well as the block size. For the experiments demonstrated in Figs. 4.13- 4.15,
the average time to detect a novel object is summarized in Table 4.3. Thus for a given
environment, the attention filter needs more time to run with higher numbers of particles,
and for a given number of particles the time requirement is inversely proportional to the
block size.
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Table 4.3: Effect of the parameters L and ε on the time for novelty detection in a 2GHz
processor

L ε Time (ms)
100 20 2850
200 20 3135
500 20 3984
700 20 4520
100 10 3138
100 40 3268
500 10 4781
500 40 3265

4.5.2 Image Processing Parameters ζ1, ζ2

The parameters ζ1 and ζ2 are involved with the pyramid-based image segmentation process
discussed in section 3.4.2. The values for ζ1 and ζ2 are chosen to be 12 and 10, respectively
on a a trial-and-error basis after analyzing 20 images of different indoor environments
captured with a Point Grey Research Flea2 color camera and a Bumblebee stereo camera.
The optics are different for these two test cameras. As the region growing algorithm (for
segmentation of object blobs) is applied on the images resulted from the pyramid-based
segmentation, the parameters ζ1 and ζ2 have some degree of influence on the proposed visual
attention algorithm. To investigate this influence, two visual exploration experiments are
conducted with different values for ζ1 and ζ2.

Similar to the other visual exploration experiments described in this section, the robot
starts with an empty LTM and is initially exposed to the environment shown in Fig.
4.16(a). The values of the parameters for the first experiment are ζ1 = 6 and ζ2 = 5. The
values of the other parameters involved are L = 500 and ε = 20. The result of the pyramid
segmentation for the first snap-shot of the environment (i.e., the image in Fig. 4.16(b)) is
shown in Figs. 4.16(c)-4.16(e). While running the visual attention algorithm the object
blobs segmented from the image in Fig. 4.16(b) are shown in Fig. 4.16(f). The attention
sequence of the robot during the experiment is shown in Fig. 4.16(g).

Now the same experiment is conducted with ζ1 = 24 and ζ2 = 20. Corresponding
results are presented in Fig. 4.17. Comparison of the results presented in Figs. 4.13,
4.16, and 4.17 indicate that for appropriately chosen values for L and ε, the attention
sequence of the robot is not very sensitive to the variation of ζ1 and ζ2. The quality of the
segmented object blobs, however, varies with the variation of ζ1 and ζ2. The smaller values
of ζ1 and ζ2 make the pyramid segmentation process very restrictive and generate many
small clusters in the segmented image. Application of region growing on this image results
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.16: Effect of the image processing parameters: visual exploration experiment with
ζ1 = 6, ζ2 = 5. (a) The experimental environment. (b) The VF of the robot at the first
decision cycle. (c)-(e) The images Ir′

, Ig′
and Ig′

corresponding to the VF. (f) The object
blobs segmented from the image in (a) during the visual exploration experiment. (g) The
attention sequence of the robot during the experiment (please see text for detail)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.17: Effect of the image processing parameters: visual exploration experiment with
ζ1 = 24 and ζ2 = 20. (a) The experimental environment (b) The visual field of the robot
at the first decision cycle. (c)-(e) The images Ir′

, Ig′
and Ig′

corresponding to the visual
field (f) The object blobs segmented from the image in (a) during the visual exploration
experiment. (g) The attention sequence of the robot during the experiment (please see
text for detail)

in non-smooth object blobs as shown in Fig. 4.16(f). The blob merging technique used
in this research, however, helps to merge such non-smooth blobs and selects a reasonable
image region for SIFT keypoints extraction. For larger values of ζ1 and ζ2 the pyramid
segmentation becomes relaxed and generates larger clusters. The region growing algorithm
on such images results in relatively smoother object blobs as shown in Fig. 4.17(f). Too
small or too large values of ζ1 and ζ2, however, may result in situations where the segmented
object blobs will be too small or too big to qualify as an object (outliers or background).
Thus there will be very few meaningful object blobs in the image and the majority of the
head-pose samples will be assigned with zero weight. Fig. 4.18 shows such a scenario for
two extreme values of ζ1 and ζ2. In such cases the attention behavior of the robot will
change significantly.

The recommended operating regions for ζ1, ζ2 are the values around ζ1 = 12 and ζ2 = 10
but the region is not very restricted. It is, however, recommended to decide the values
for these two parameters prior to working with a different camera (other than Flea2 or
Bumblebee).
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(a) (b) (c)

Figure 4.18: Effect of too large or too small values for ζ1 and ζ2. The object blobs segmented
from the image in (a) during a visual exploration experiment using (b) ζ1 = 2 and ζ2 = 1
(c) ζ1 = 72 and ζ2 = 60. Too small values of ζ1 and ζ2 generate several small blobs
corresponding to one object while too large values generate very large blobs which are
discarded as background and their underlying objects can not compete for attention (please
see text for detail)

4.5.3 The Size of the Memory

A series of experiments are conducted to investigate the effect of memory size on the time
performance of visual attention. During the experiments the robot starts with an empty
LTM and is initially exposed to the scene of Fig. 4.19(a). The model runs in visual
exploration mode and attends to all of the seven novel objects. The time required to
identify the first novel object is the time that the model requires to identify novelty with
an empty LTM. The number of SIFT keypoints stored in the LTM after learning the seven
novel objects is 801. With this LTM, the robot is then exposed to the scene of Fig. 4.19(b)
which is the same scene as Fig. 4.19(a) except that one familiar object is replaced with a
novel object. In this case, to identify the novel object the visual attention model has to
perform a total of NP keypoint-matching operations, where N = 801 and P is the number
of SIFT kyepoints associated with the objects segmented from Fig. 4.19(b). The robot
attends to and learns the novel object. The time required to identify and focus on this
object is the time that the model requires to identify novelty with a memory size of N .
Learning the new object adds P ′ more SIFT keypoints in the LTM where P ′ is the number
of keypoints associated with the novel object. In order to determine the time required for
detection of novelty with a very large LTM, the number of SIFT keypoints in the LTM
is doubled by manually copying the existing keypoints twice. The camera-head is then
sequentially exposed to the scenes of Fig. 4.19(c)- 4.19(g). In each case the novel object
is focused (and learned) and the LTM sized is doubled by copying the existing keypoints
twice. The results are summarized in Fig. 4.20 where the time required to identify a novel
object is plotted with respect to varying LTM sizes. The results of these experiments help
to infer that a small increase in memory size does not have significant effect on the timing
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.19: Effect of memory size on the time performance of visual attention. (a) A
visual field with seven novel objects. (b)-(g) In a series of visual exploration experiments
one familiar object from the scene is replaced by one novel object (please see text for detail)

Figure 4.20: Time required to identify a novel object with varying memory (LTM) sizes
(corresponding to the experiments demonstrated in Fig. 4.19)
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of visual attention during visual exploration.

In case of visual search the number of keypoint-matching operation is also NP where N
is the number of keypoints in the WM and P is the number of SIFT keypoints associated
with the objects segmented from a scene. As the time requirement is mostly related
to the total number of keypoint matching operation, the effect of WM size on the time
performance of visual search can also be expected as insignificant. Thus the memory size
has small effect on the timing of visual attention.

4.5.4 Analysis of Results

The results of the experiments presented in this section shed light on the following facts
about the parameters involved with the proposed Bayesian model of visual attention.

• The number of particles affects the sequence of attention as well as the time to
identify a behaviorally relevant stimuli. The experimental investigation suggests that
satisfactory performance is achieved when the number of particles is around 500.

• The sub-image block size involved with the computation of the bottom-up compe-
tition model also affects the sequence of attention as well as the time to identify a
behaviorally relevant stimuli. The experimental investigation suggests that a satis-
factory performance is achieved when operating with a 20× 20 block size.

• The image processing parameters influence the top-down modulation model and mod-
erately affect the sequence of attention. These parameters are mostly camera depen-
dent and should be fixed prior to implementing the algorithm on a different camera.

• The increasing size of the LTM of the robot gradually makes the robot slow in
responding to behaviorally relevant stimuli. The rate of this change, however, is very
small.

4.6 Conclusion

This chapter has described a set of experiments for evaluating the performance of the
Bayesian visual attention model proposed in chapter 3. The results of the experiments
help to summarize the following characteristics of the Bayesian model.

1. The model successfully exhibits the visual exploration and visual search behavior in
a natural environment.
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2. The model efficiently addresses the research Issues 1 and 2 in different cases of visual
exploration and visual search.

3. As demonstrated in the experiments, the visual search and visual exploration run in
mutual exclusion of each other. This hampers the generality of the model and makes
it unsuitable for most robotic applications (Issue 4)

4. The proposed model fails to address the Issues 3 and 5 in the case of visual search.

5. The parameters involved with the implementation technique of the proposed model
have effect on the performance of the model. The performance variation with the
change in parameters’ values has been investigated in detail.

It is, therefore, evident that the Bayesian model proposed in chapter 3 does not completely
fulfill the promises of this thesis made in section 1.2. In order to address the Issues 3, 4,
and 5 this thesis proposes a solution which relies on multi-modal interaction with the
human during attentional selection. Accordingly, the proposed Bayesian model of visual
attention is further extended to accommodate the multi-modal information and the human-
robot interaction. The multi-modal attention algorithm will be discussed in the following
chapter.
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Chapter 5

A Multi-modal Extension of the
Proposed Model

A multi-modal extension of the Bayesian visual attention model is proposed in this chapter.
The major goal of this extension is to address a number of research issues namely, optimal
learning strategy, generality, and prior training. The original Bayesian model proposed in
chapters 3 and 4 fails to deal with these research issues. This thesis identifies the role of
multi-modal information and occasional interaction with the human as a potential solution
to deal with these research issues. Accordingly, it proposes an extension of the Bayesian
attention model to design a visual attention-oriented speech-based HRI framework. The
proposed model integrates the visual search and visual exploration. Visual exploration runs
as the default mode of attention. Switching to the visual search mode occurs in response
to the user request which is conveyed to the robot through speech command. Speech,
being the most powerful modality of human communication, makes the attention-oriented
bi-directional HRI natural. The robot maintains an audio-visual memory of the attended
objects. This enables the robot to autonomously fetch the target information from the
memory when a request for visual search is made. This eliminates the requirement of a
training session for target learning. In case of failure in target identification, however, the
speech-based HRI framework can assist the robot to recover from its fault through using
human guidance. The novelty preferring characteristics of the Bayesian attention model
along with the proposed attention-oriented speech-based HRI framework is used to design
a strategy for optimal learning.
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Figure 5.1: Functional description of the proposed model. Visual search and visual explo-
ration is integrated through robot learning and speech-based interaction with the human

5.1 Functional Overview of the Model

The attention-oriented speech-based HRI framework of the proposed model binds the two
modes of visual attention in the same framework. The default mode is the visual explo-
ration behavior. The visual search mode is activated by the speech-based request from the
user. The proposed attention-oriented HRI framework is bi-directional in the sense that
the interaction can be triggered by both the human and the robot. Fig. 5.1 shows an
overview of the operation of the model. At each decision cycle the model guides the robot
through the following steps in order to identify the most behaviorally relevant object.

1. The robot visually orients itself to the object identified as ‘worthy to attend’ during
the immediate past cycle. A camera image is captured at this new head-pose.

2. The robot triggers an interaction with the human. As per robot’s perception, if the
current object of attention is a ‘novel object’, then the goal of this interaction is
to request the human to provide certain high-level knowledge about this object (e.g
name of the object, name of its color). On the other hand, if the object is attended
in response to a search request from the human (occurred during the immediate
past cycle), the robot interacts with the human to confirm if the current object of
attention is the ‘sought for’ object.

3. The speech feedback from the human is recognized and analyzed to determine its
content. If the feedback is about high-level description of the current object of
attention, the speech information along with the newly captured frame are used for
learning. If the feedback is to affirm the success of a visual search then the WM is
cleared and the robot switches back to the default mode of novelty exploration. If the
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human negates the success of visual search, the robot retains the WM and continues
the search.

4. In case of sustained visual search the Bayes filter for attention processes the newly
arrived camera input along with the top-down modulating bias from the WM to
identify the ‘sough for’ object. At this stage, if required, the human can provide the
robot with speech-based assistive feedback to identify the ‘sought for’ object.

5. In case of switching back to novelty exploration mode, the Bayes filter for attention
processes the newly arrived camera input along with the top-down modulating bias
from the LTM to identify a novel object to focus at the next cycle.

6. At any time the human can request the robot to search for any specific object. In
that case, the human triggers an interaction and provides the robot with high-level
specifications of the ‘sought for’ object using speech command. Until a success of
this visual search is confirmed by the human, steps 1 to 4 repeat themselves.

Prior to describing the multi-modal extension of the Bayes filter, the following section
describes the audio-visual memory and the learning mechanism which play a key role in
the operation of the model.

5.2 The Audio-Visual Memory

The LTM of the robot contains audio-visual information of the attended objects. The robot
is able to automatically generate a WM from the LTM based on the contextual demand.

For the multi-modal extension of the model, two different kinds of visual features of the
objects are considered during top-down bias generation: the SIFT keypoints and the color
of the objects. The LTM stores the visual features in two separate linked lists: the first
one is for the set of SIFT keypoints and the second one is for the color information of the
attended objects. The process of extracting SIFT keypoints associated with each object
is same as described in section 3.4.2. For each attended object blob, the mean values of
the pixels in the YCrCb color space are used as color information. The color information,
therefore, is represented by a three dimensional vector. After attending each new object,
its name and color are introduced by the human. The name of an object is used as the
‘object label’ for its corresponding set of SIFT keypoint while the color name is used as
the ‘color label’ for the corresponding color vector. A look-up table keeps record of the
entries of linked list that corresponding to a specific ‘object label’.

Other than the case of visual search, the attention of the robot is driven by its sense of
novelty. Re-attending to a previously attended object, therefore, indicates that the visual
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features of the object appear as novel to the robot, possibly due to change in camera
perspective, lighting condition, or change in the object’s own orientation in the 3D world.
As the object was attended at some other time in the past, its name and color exist in
the lists of ‘object labels’ and ‘color labels’ in the LTM of the robot. When such a match
occurs, the robot stores the newly arrived SIFT keypoints under the already existing ‘object
label’ of that object. Note that the entire set of keypoints are stored. This is because the
current implementation considers an object ‘novel’ if the number of its SIFT keypoints that
matches with any object in the LTM is less than 3. Therefore, re-identifying an object
as ‘novel’ means that majority of the SIFT keypoints contain new information about that
object. In case of color information, however, a Gaussian Adaptive Resonance Theory
(GART)- style learning [152] is performed to update the LTM. Each color vector forms
a cluster in the color feature space. A color cluster is characterized by a triplet (µ̄, σ̄, n),
where µ̄ and σ̄ are three-dimensional vectors representing the cluster mean and standard
deviation in each feature dimension, respectively, and n is a scalar denoting the number of
times the color has been observed. For the first visual encounter of a color, the color feature
vector itself serves as the mean of that color cluster and an arbitrary value γ is used as
the initial standard deviation in each feature dimension. For every subsequent encounter
of the same color, which generates a color vector ȳ, the corresponding color cluster in the
LTM is updated as follows.

n = n+ 1 (5.1)

µ̄ = (1− n−1)µ̄+ n−1ȳ (5.2)

σ̄i =
√

(1− n−1)(σ̄i)2 + n−1(µ̄i − ȳi)2 if n > 1

= γ, otherwise (i = 1, 2, 3) (5.3)

The proposed strategy to maintain and update the LTM has two significant consequences.

• The robot stores only those views of an object which, the robot ‘feels’, are required
to identify it in a changed background or from a different perspective. This saves the
LTM from being burdened with overlapping information.

• The high-level knowledge obtained from the human saves the system from running
a complex pattern matching algorithm to decide if the two sets of SIFT keypoints
observed at two different points of time and from two different perspectives belong
to the same object or not. A major disadvantage of using such a pattern-matching
algorithm is that the attention behavior of the robot will be heavily dependent on
its success.

The WM is created during visual search. When the human makes a visual search request
for an object, the robot places the object’s specification (e.g., name, color) in the WM and
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searches the LTM to find the most appropriate match for this specification. If a match
occurs (several partial matches might also occur due to failure in speech recognition), the
corresponding visual features (e.g SIFT keypoints and/or color information) are copied to
the WM which then acts as a template of the ‘sought for’ object for the top-down bias
generation. The WM is cleared after successfully processing every visual search request.

5.3 Bayesian Formulation for the Audio-Visual At-

tention

The Bayesian filter for robotic visual attention, as described in section 3.3, is expressed as
follows.

Bel(xk) = ηp(bk|xk,Fk)

∫
p(xk|xk−1,Fk)Bel(xk−1)dxk−1

For the current audio-visual scenario there are two different types of sensor measure-
ments: visual input from the camera (Fv

k), and speech input from the microphone (Fa
k),

Fk = {Fv
k,F

a
k}. The speech feature set Fa

k contains the name and/or color of the ‘sought
for’ object spoken by the human and recognized by the speech recognition engine. The
modification of the bottom-up and top-down models for the multi-modal case is discussed
below.

Bottom-up competition

The bottom-up competition model is generated based only on the visual features and is
evaluated in the same way as the unimodal case described in section 3.3.1.

p(xk|xk−1,Fk) = p(xk|xk−1,F
v
k) (5.4)

This distribution describes the transition probability between two head poses conditioned
on the perceived visual features.

Top-down modulation

The top-down modulation model considers both the visual and the speech information for
bias generation and is modified as follows.

p(bk|xk,F
v
k,F

a
k) = p(bLTM

k |xk,F
v
k) + p(bWM

k |xk,F
v
k,F

a
k) (5.5)
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The first term on the right hand side of (5.5) implements the default novelty preferring
behavior of the robot. The probability p(bLTM

k |xk,F
v
k) is evaluated using equations (3.12)-

(3.15). The second term in (5.5) performs a speech-based modulation of visual attention.
The probability p(bWM

k |xk,F
v
k,F

a
k) evaluates a non-zero bias for the head poses which focus

on objects with visual features having the same ‘object label’ and/or ‘color label’ as Fa
k.

The probability is evaluated as follows.

p(bWM
k |xk,F

v
k,F

a
k) = p(Z|Fv

k,F
a
k) (5.6)

Here Z represents the hypothesis that the object focused at the head-pose xk is the same
object as the human ‘asked for’.

p(Z|Fv
k,F

a
k) = papv (5.7)

Here pa is the probability that a WM has been created from the LTM using the speech
information and pv is the probability that the visual features of the object focused at xk

is the correct match of the current content of the WM. A value for pv is calculated using
(3.15) but the WM, rather than the entire LTM, is used for matching. There are three
possible cases in evaluating a value for pa.

• Case I The audio input exactly matches with an ‘object label’ and/or a ‘color label’
in the LTM data base, pa = 1

• Case II Due to failure in speech recognition the audio input partially matches with
several ‘object labels’ and/or ‘color labels’ in the LTM database.

pa =
c

C
(5.8)

Here, C : the total number of letters in the recognized ‘label’, and c : the number of
letters matched (from the left) with an LTM ‘label’ until the first mismatch is found.

• Case III The audio input does not match any of the ‘labels’ in the LTM database,
pa = 0.

In the third case, a failure in visual search is reported.

5.4 Speech Understanding

The open source speech recognition engine ‘Julius’ is used to understand the speech com-
mand. The vocabulary and the grammar developed for the current system enable the robot
to understand speech input of four different categories.
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• Description: This type of input consists of high level description of an attended
object. Example grammar for a description type speech input is: ‘That is a [color]
[object]’. Here color : red, green, blue, etc. and object : car, toy, book, etc.

• Query: The visual search request is made through this type of speech command.
Example grammar for a query type command is: ‘Find a [color] [object]’.

• Confirmation: After executing a visual search task the robot checks with the human
if the focused object is the ‘sought for’ object or not. The human performs this
verification using confirmation type speech input. Example grammars are: ‘Yes,
thank you’, ‘that is correct’,‘no, try again’. An affirmative confirmation causes the
robot to switch back to the visual exploration mode while a negative confirmation
instructs to continue the search.

• Assistance: In case of visual search at least two confusing cases might arise: 1) There
is more than one target-like object and the human wants a specific one of them, but
the robot focuses on the others. 2) The robot has some knowledge of the target but
can not recognize it in the current scene due to change in lighting or view angle. In
both of these two cases the human can provide the robot with additional clues to
narrow down the search and thereby the robot can identify the target successfully.
The assistance type speech input are used to perform this. Example grammars are:
‘Find something [color]’, ‘not this one’, ‘no, the other one’, etc. The first example
grammar basically helps to narrow down the search to specific colored objects while
the others cause the focus to travel through different target-like objects before landing
on the expected one (which is confirmed using the confirmation type speech input).

Once a speech input is recognized, a speech understanding module, which is a simple
state machine and operates like a parser, categorizes it into one of the above four categories
and extracts the useful information, e.g., color and/or name of an object.

5.5 Dealing with the Research Issues

This section briefly summarizes the way the proposed model deals with the issues of optimal
learning strategy, generality, and prior training.

5.5.1 Generality

The proposed multi-modal Bayesian framework of visual attention addresses the problem
of generality by integrating visual search and visual exploration in the same framework.
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The multi-modal attention model and the attention-oriented speech-based HRI framework
enable the robot to switch back-and-forth between visual search and visual exploration
modes depending on the context.

5.5.2 Optimal Learning Strategy

The proposed framework of visual attention suggests self-directed learning by the robot.
The LTM of the robot helps it to develop its own sense of novelty while the Bayesian
model causes the robot to prefer novel stimuli for attention (given that there is no request
for visual search). Combination of these two phenomena helps to devise this self-directed
learning strategy. The robot attends to whatever appears as ‘novel’ in its perception. If a
previously attended object appears as novel at a later time due to change in lighting and
view angle, the robot will re-attend (and learn) it. This makes the knowledge of the robot
about that object more complete. This strategy of “learn what you feel is required” voids
the requirement of teaching the robot with a number of carefully chosen views of different
target objects. The high-level knowledge from the human operator still plays a key role
to quickly re-organize the LTM every time an object is re-attended. This strategy does
not guarantee the most optimal learning but provides a way to get rid of the huge manual
work and uncertainty involved with target learning.

5.5.3 Prior Training

According to the proposed model, the robot maintains an LTM of the attended objects
and is able to create the WM relevant to a visual search request. The more time the
robot spends in an environment, the more it encounters different objects from different
perspectives. This enriches the LTM and, in turn, enhances the probability of success
in visual search in any arbitrary setting. The requirement of a separate training session,
therefore, is essentially eliminated. If the robot, in spite of its long visual experience, fails
to identify a target, an on-spot learning strategy is proposed to tackle such scenario. The
on-spot learning strategy uses the ‘assistance’ type speech input to conduct an interactive
visual search in order to direct the attention of the robot toward the target object (similar
to scaffolding). Depending on the complexity of the environment it may take several
decision cycles before the robot focuses on the correct object. When the robot focuses on
the correct object, the success of visual search affirmed by the human causes the robot
to update its database with the new information of a familiar object. For instance, if the
robot fails to identify an object due to huge change in its orientation or camera perspective
(to which the SIFT keypoints are sensitive), the human can ask the robot to look for an
object with a similar color as the target object (color is a more stable feature with respect
to this kind of variation). If there ise more than one object with that specific color then
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the human can guide the robot toward the correct object by negating the success of visual
search every time the robot focuses on an undesired target object (e.g by saying ‘try again’,
or ‘not this object’, or ‘try the other one’ etc). A significant beauty of this strategy is that
it does not expect the model to perform accurately at all times. Rather, if it fails, the
interaction with the human allows the model to recover from its failure and learn from the
experience.

5.6 The Proposed Model and the Operator Burden

The attention-oriented speech-based HRI framework proposed in this chapter plays a major
role to address the Issues 3, 4 and 5 and thus enables the proposed Bayesian model of
visual attention to address all of the research issues of robotic visual attention discussed
in section 1.2 of this thesis. As the interaction with the human is speech-based, the
human operator does not have to be an expert in handling the robots. Enriching the
vocabulary and grammar will further enhance the situation in this regard. The proposed
HRI framework, however, imposes one constraint on the human operator. That is, when
the robot focuses on an object and interacts with the human for feedback, the human
operator must be around the robot to identify the object toward which the camera is
oriented. The situation becomes very confusing when the focused object is located closely
with other objects. An obvious solution to this problem is that the image of the focused
object can be made available to the human operator through WiFi devices e.g., PDA,
iPhone. When the operator is located at a different place than the robot then the use of
such WiFi devices is unavoidable. But when both the operator and the robot are located
in the same room, it is possible to make the interaction independent of such devices. We
propose to include a pointing behavior in the robot to point to the object it is currently
focusing at using its available actuating resources (e.g., an arm-like robotic manipulator).
During the developmental process of human, pointing behavior is considered as one of the
strongest means of establishing joint attention with the caregivers [124]. Implementing
pointing behavior in the robots, therefore, is becoming popular in robotic models of joint
attention [126]. In the proposed work, a robotic manipulator is used to point to the
attended objects. After identifying a focus of attention, camera calibration is performed to
guide the manipulator to point to the focused object. Fig. 5.2 shows the relative position
of the camera, PTU, and the manipulator used in the experiment as well as the coordinate
systems involved with them. Here, a stereo camera is used to obtain accuracy in hand-
eye coordination. The Triclops API from Point Grey Research is used to calculate the
location of the focused object in the three-dimensional camera coordinate. The object
location expressed in the camera coordinate is transformed to the world coordinate system
as follows.

Aw =w Tb
bTh

hTcAc (5.9)
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Figure 5.2: (a) The experimental set-up: the robotic manipulator used for pointing behav-
ior, the PTU and the camera (b) The coordinate systems involved with the setup

Here,

• Ac: Object location expressed in the camera coordinate system

• Aw: Object location expressed in the world coordinate system

• hTc: transformation matrix between the camera and the current position of the PTU

• bTh: transformation matrix between the current position of the PTU and the ‘home’
position of the PTU

• wTb: transformation matrix between the ‘home’ position of the PTU and the world
coordinate system

Among the transformation matrices, hTC and wTb are constant for a given setup and can
be evaluated based on the dimension of the PTU and the physical separation between the
robot and the PTU (as shown in Fig. 5.2(b)). The matrix bTh depends on the current
head-pose xk as follows.

bTh =


cosα −sinαcosβ −sinαsinβ 0
sinα cosαcosβ cosαsinβ 0

0 −sinβ cosβ 0
0 0 0 1

 (5.10)
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The current implementation is using the ‘shoulder’ and the ‘wrist’ joint of the manipulator
for pointing to an object. The coordinate system of the ‘shoulder’ joint coincides with the
world coordinate system. The location Aw, therefore, can be used directly to deliver motion
command to the ‘shoulder’ joint. The ‘wrist’ joint, however, operates with a coordinate
system different than the world coordinate system. The location Aw is further transformed
to the ‘wrist’ coordinate system for appropriate motion command to the wrist joint.

5.7 Conclusion

This chapter has presented a multi-modal extension of the Bayesian model for visual atten-
tion. The proposed extension includes a visual attention-oriented speech-based HRI frame-
work which contributes to deal with the research issues 3, 4, 5. Through this multi-modal
extension the proposed Bayesian model of visual attention addresses all of the research
issues involved with robotic visual attention as discussed in section 1.2. The attention-
oriented speech-based HRI integrates the two modes of visual attention (visual exploration
and visual search) in the same framework. Thus the attention of the robot can switch
back-and-forth between these two modes autonomously. The model maintains an audio-
visual LTM of the attended objects which helps the robot to grow a sense of novelty. The
novelty preferring characteristics of the model along with the robot’s own sense of novelty
are exploited to devise a learning strategy for the robot. The robot learns whatever it
‘feels’ is required to be learned in order to enrich its knowledge about an object. It is,
therefore, not required to teach the robot with different views of the target for robust iden-
tification. The proposed model also allows the robot to autonomously create a WM (using
the information from the LTM) corresponding to a visual search request. This eliminates
the requirement of a separate training session prior to the visual search. This chapter has
also described the implementation of pointing behavior in the robot where the robot will
point to the focused object. This reduces the burden on a human operator to identify the
focused object during the human-robot interaction. The next chapter will describe a set
of experiments for performance evaluation of the model presented in this chapter.
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Chapter 6

Performance Evaluation of the
Multi-modal Attention Model

This chapter describes a set of experiments for self-evaluation of the performance of the
multi-modal Bayesian visual attention model described in chapter 5. As the multi-modal
extension of the Bayes model is proposed to address the research issues 3,4, and 5, the
experiments are specifically designed to investigate how well the proposed model addresses
these research issues. Accordingly, the experiments are categorized into four groups:

1. Experiments related to optimal learning strategy

2. Experiments related to generality

3. Experiments related to prior training

4. Experiments related to pointing behavior

As the extension is made on the basic Bayesian model described in chapters 3 and 4,
the extended model inherently tackles the research issues 1, 2 whenever they arise, while
performing these experiments.

6.1 Experimental Hardware

The majority of the experiments are conducted using the Flea2 color camera and a Di-
rected Perception PTU as described in section 4.2. The experiments related to the pointing
behavior, however, use the Bumblebee2 stereo camera from Point Grey Research. Bumble-
bee2 has a wide angle optics with angle of view of 97o(H)×73o(V ). Stereo images are also
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of dimension 640× 480 pixels. A T265 CRS robot manipulator is used to implement the
pointing behavior. The ‘Active Robot’ API supplied with the CRS manipulator is used to
solve the inverse kinematics of the robot. A simple hand-held microphone is used to record
the speech input. Similar to the experiments described in chapter 4 the particle filter im-
plementation uses 500 particles. Corresponding to one snap-shot of the environment the
total time required for running the attention algorithm, executing the motion command
by the PTU (and the manipulator), and interacting with the human operator is considered
as the time for one decision cycle. Thus the average length of the decision cycle of the
experiments presented in this chapter is longer than that of the experiments presented in
chapter 4.

Due to the nature of the experiments presented in this chapter the location of the
camera in the 3D world will vary. The camera position in the 3D world is expressed with
respect to the world coordinate system using the five-tuple (r, θ, φ, α, β), where (r, θ, φ)
represent the location of the PTU in the spherical coordinate system with respect to the
center of the world coordinate system. Thus, r is the radial distance of the PTU from the
center of the world coordinate system, θ is the azimuth angle in the (xw, yw) plane from
the xw axis, and φ is the zenith angle from the positive zw axis. α and β are the pan-tilt
angles of the PTU (please see Fig. 1.5 for the definitions of different coordinate systems).

6.2 Experiment 1: Optimal Learning Strategy

A set of visual search experiments is performed first where target learning is conducted
using the traditional method, i.e., in a separate training phase several views of the targets
are manually arranged to learn target related visual features from different perspectives.
The results from these visual search experiments are then compared with that from another
set of experiments where target learning is conducted using the proposed self-directed
learning strategy. The same two objects (a red hat and a blue bowling pin) as used in the
visual search experiments described in chapter 4 are used as targets.

Experiment 1A

For this set of experiments the targets are learned in a separate training phase. Four
different views of the red hat and seven views of the blue pin are chosen manually for the
training purpose. The target views are shown in Fig. 6.2. The visual features of a target
extracted from its different views are combined together to create a WM to be used during
visual search for that target. Camera position during the training phase is approximately
at (r = 6ft, θ = 85o, φ = 50o, α = 0o, β = 0o) while the targets are located roughly along
the xw axis and approximately 2ft away from the center ow.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j) (k)

Figure 6.1: Experiment 1A: views of the targets chosen manually to create the WM for
visual search

During the test phase the search for targets are performed in four different environ-
mental settings.

• Setting I: Camera position is same as the training case (i.e no change in camera per-
spective). The environment is same as the training case. The individual orientation
of the target does not change significantly.

• Setting II: Camera position is same as the training case (i.e no change in camera
perspective). The environment contains few other objects which share visual features
with the target in one or more feature dimension(s). The individual orientation of
the target does not change significantly

• Setting III: Camera position is different than the training case, approximately at
(7.6ft, 73o, 57o, 7o, 0o) (the (α, β) angles change during the course of the experiment).
The individual orientation of the target changes significantly.

• Setting IV: Camera position is different than the training case, approximately at
(8.5ft, 65o, 60o, 13o, 0o) (the (α, β) angles change during the course of the experiment).
The individual orientation of the target changes significantly.

Views of the targets in different orientations are obtained automatically by placing the
target on a robotic manipulator and positioning the camera in front of it, as shown in Fig.
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Figure 6.2: Experiment 1A: Environmental setting during visual search for the targets

6.2. Note that the experiments here use the robotic manipulator only to rotate the targets
in a controlled manner. The ‘shoulder’ joint of the manipulator performs a rotation of 200o

in 10o steps causing different views of the targets to be presented to the camera gradually.
During the experiments an occasional human intervention is made to control the amount
of change in the target’s individual orientation. In other words, when the orientation of
the target changes heavily (due to movement of the manipulator), the target is rotated
back (by a human) to one of the familiar orientations (approximately same as one of the
training cases). Such human intervention evidently helps in target identification and leads
to better success in visual search. The performance of visual search is quantified in terms
of the number of views (out of 200o

100 = 20 views) where the model successfully identifies the
target. The quantity is expressed as a percentage and is termed as the success rate. To
ensure the consistency of the results, 5 trials of each experiment are performed and the
average of the success rates from the 5 trials is reported as the success rate of an experiment
at a specific environmental setting. The results of these experiments are summarized in
Table 6.1. A video of one trial of the second experiment in Table 6.1 (with the blue pin as
target) is available in the multimedia file “Multimedia ManualSearch.wmv” attached with
this thesis.

The analysis of the results reported in Table 6.1 leads to the following conclusion.

1. Learning more views of the target enhances the search performance.

2. For a given number of learned target views, the search performance decreases when
the camera perspective changes from the training case.

3. For a given number of learned target views, the search performance decreases if the
target’s orientation changes heavily from the training cases (the cases with no human
intervention)
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Table 6.1: Visual search with manually selected target views
Experimental Specifications Target

Hat Bowling pin
Setting Human # of # of # of Average # of # of Average

inter- trial training SIFT success training SIFT Success
vention images KP rate images KP rate

I Yes 5 1 120 50% 1 27 22%
Fig.6.1(a) Fig.6.1(e)

I Yes 5 4 90% 7 80%
II No 5 Fig.6.1(a)- 50% Fig.6.1(e)- 60%
III No 5 Fig.6.1(d) 242 45% Fig.6.1(k) 163 55%
IV No 5 40% 35%

4. A considerable amount of manual works (starting from the training arrangement,
up to human intervention during the test phase) is required to enhance the search
performance.

As discussed in section 1.2, the required number of views to achieve maximum success
rate in an arbitrary case of visual search is not known a priori. Besides, change of camera
perspective is a fairly common event for any mobile robot. The objects in the real world
might also appear with different orientations when the robot is in action. A better target
learning strategy, therefore, is required to save a visual attention model from severe failure
in visual search in case of real world applications.

Experiment 1B

This set of experiments are performed in the same environmental settings as that of the
experiment 1A but here the target learning is performed using the proposed self-directed
learning strategy. For the sake of performance comparison with experiment 1A, these
experiments do not use speech feedback from the human operator. A separate training
phase, therefore, is used for target learning. The self-directed learning with speech feedback
does not require a separate training phase and will be demonstrated later in this section.
During the self-directed learning of the target the camera is exposed to the target which is
placed on the manipulator. The ‘shoulder’ joint of the manipulator performs a rotation of
200o in 10o steps. The attention model runs in the novelty exploration mode and chooses
only those views of the target which appear as ‘novel’ to learn and thereby developing
a LTM of the target. The process runs autonomously without any human intervention.
During this learning process the model chooses 6 views of the red hat and 10 views of the
bowling pin to learn. The autonomously chosen views of the targets are shown in Fig. 6.3.
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Figure 6.3: Experiment 1B: views of the targets chosen autonomously by the robot using
the proposed optimal learning strategy

Table 6.2: Visual search with the proposed self-directed target learning strategy
Experimental Specifications Target

Hat Bowling pin
Setting Human # of # of # of Average # of # of Average

inter- trial images SIFT success images SIFT success
vention learned KP rate learned KP rate

I No 5 6 314 90% 10 253 95%
II No 5 (top) 90% (bottom) 88%
III No 5 85% 75%
IV No 5 80% 80%

The LTM developed during the training stage is used as the WM for the visual search. The
test phases run in the same way as that in experiment 1A but completely without human
intervention. The results are summarized in Table 6.2. A video of one trial of the third
experiment in Table 6.2 (with the red hat as the target) is available in the multimedia file
“Multimedia AutoSearch.wmv” attached with this thesis.

Comparison of the results reported in Tables 6.1 and 6.2 shows a significant average
improvement of the visual search performance when the learning is performed using the
proposed self-directed learning strategy. Besides, no manual training or human intervention
are required here. The size of the WM is slightly larger in the case of self-directed learning
(than that in manual learning). But according to the investigation reported in section
4.5.3 a small increase in memory size does not have any significant effect on the time
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Experiment 2A: Integration of visual exploration and visual search (a) The
experimental environment with several novel objects. The numbers denote the sequence
at which different objects are attended (b)-(f) The visual fields of the robot at differ-
ent stages of the experiment (please see text and the attached multimedia file “Multime-
dia Generality.wmv” for detail)

performance of visual search.

6.3 Experiment 2: Generality

A set of experiments are performed to demonstrate the integration of visual exploration
and visual search in the proposed multi-modal Bayesian model of attention. The experi-
ments also demonstrate the effectiveness of the proposed attention-oriented speech-based
HRI framework to resolve conflict in a visual search scenario. Such conflicts are very com-
mon in real-world applications of visual attention.

Experiment 2A

In this experiment the robot starts with an empty LTM and is exposed to the environment
shown in Fig. 6.4(a). There are six objects and the robot attends to all of them because
of their novelty. The sequence of attention is shown in Fig. 6.4(a).
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Figure 6.5: Experiment 2A: pan-tilt positions of the camera head

After focusing on each object the robot interacts with the human who provides the
robot with the name and color of the focused object. In this way a LTM is developed
which contains 524 SIFT keypoints under 5 different ‘object labels’ (cone, pin, plate, hat,
and toy) and 4 color vectors under 4 different ‘color labels’ (orange, blue, red, and purple).
After attending the purple toy (as shown in Fig. 6.4(b)) the robot can not identify any
other novel object in the VF and the camera remains at its current position. At this point
two other objects having very similar visual features as the red hat (attended fourth in
the sequence) are inserted in the visual field of the robot (as shown in Fig. 6.4(c)). As
both of these newly inserted objects have familiar patterns, the robot refrains itself from
focusing on them. The human then triggers an interaction using ‘Query’ type speech input
and asks the robot to look for a red hat. The robot extracts the color feature vector
corresponding to the ‘color label’ red and 132 SIFT keypoints corresponding to the ‘object
label’ hat from its LTM and creates a WM for the visual search task. The head-poses
corresponding to all three of the red hat-like objects receive different amount of top-down
modulating biases from the WM. The robot focuses on one of them as shown in Fig. 6.4(d)
and interacts with the human for confirmation. The human uses ‘Assistance’ type speech
input (e.g ‘not this one’) to negate the success of visual search. This nullifies the future
candidacy of the head-pose corresponding to this object as a ‘sought for’ object for the
ongoing request of visual search. The robot continues the search and focuses on another
red hat-like object as shown in Fig. 6.4(e). This time the human affirms the success of
the visual search. Consequently, the WM is cleared and the robot goes back to the visual
exploration mode. But as there is no novel stimuli in the visual field, the camera remains
at its current position. At this point the human further requests to look for a blue pin.
Here the ‘sought for’ object is not within the visual field of the robot, as seen in Fig. 6.4(e).
An exploratory movement in search of the ‘sought for’ object brings it within the visual
field (as seen in Fig. 6.4(f)) and the robot focuses on the target (a default (±10o,±8o)
pan-tilt movement is predefined as the exploratory movement if a ‘sought for’ object can
not be identified within the VF). Thus the visual search is performed along with visual
exploration without having any separate training phase.
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(a) (b) (c) (d)

Figure 6.6: Experiment 2B: (a) The experimental environment with several novel objects.
The numbers denote the sequence of attention (b)-(d) The VFs of the robot at different
stages of the experiment (please see text for detail)

Figure 6.7: Experiment 2B: pan-tilt positions of the camera head

A video of the experiment is available in the multimedia file “Multimedia Generality.wmv”
attached with this thesis. Fig. 6.5 shows the pan-tilt position of the camera head dur-
ing the experiment. The camera angles are always expressed with respect to the base
coordinate system (please see Fig. 5.2(b) for the coordinate systems).

Experiment 2B

This experiment shows an interesting case to demonstrate the effectiveness of the proposed
model in real-world robotic applications. Here the robot learns a ‘color label’ at some point
of time and uses this knowledge at a later time to differentiate between two objects who
have, according to the robot’s memory, similar ‘object label’ but no specific ‘color label’.

During the experiment the robot starts with an empty LTM and is exposed to the
environment shown in Fig. 6.6(a). In this case there are six objects with 4 distinct ‘object
labels’ (pin, ball, plate, toy) and 3 distinct ‘color labels’ (blue, orange, purple). When
the robot attends to the novel objects, the human operator mentions the ‘color labels’
only for the first four objects (i.e., blue ball, orange pin, orange plate, and purple plate).
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The fifth and sixth objects are introduced by their ‘object labels’ only (i.e., pin and toy,
respectively). When there are no other novel object in the VF (as shown in Fig. 6.6(b)),
the robot is asked sequentially to look for a purple plate, a purple toy, a blue pin, and
an orange pin. The search for the purple plate and the orange pin was straightforward
as the robot has knowledge of the colors and the SIFT keypoints that characterizes these
two objects. The case, however, is a bit different for the purple toy and the blue pin. The
robot had to apply its own sense of purple and blue color, developed from the color of the
purple plate and the blue ball, to identify these two objects. Specially, the search for the
blue pin is more interesting as the VF has two pins as shown in Fig. 6.6(c). The only way
to prioritize the SIFT keypoints corresponding to the blue pin (in order to focus it instead
of the orange pin) is through using the sense of color. The robot successfully performs that
task and focuses on the blue pin (Fig. 6.6(d)). Fig. 6.7 shows the pan-tilt position of the
camera head during the experiment.

Video of this experiment is available in multimedia file “Multimedia Cross-modal.wmv”
attached with this thesis.

6.4 Experiment 3: Prior Training

The goal of this experiment is to demonstrate the on-spot learning strategy discussed in
section 5.5. At first a set of experiments are conducted to create the case of a mobile
cognitive robot which is situated in a natural environment for an extended period of time
and has gathered knowledge of different objects through the proposed visual attention
model. This is done by exposing the robot to a set of objects from different locations
in the world and allowing it to focus on and learn them while being guided by its sense
of novelty. Fig. 6.8 shows different environmental settings at which the robot gathers
information of seven different objects. A total of 1073 SIFT keypoints are stored in the
LTM under 5 ‘object labels’ (car, pin, toy, cone, hat) and 4 color vectors are stored under 4
‘color labels’ (orange, blue, red, green). Different orientations of the objects learned during
this time are shown in Fig. 6.9

With such an enriched LTM the robot is then placed at the location (4ft, 5o, 39o, 0o, 0o)
where it is exposed to the environment shown in Fig. 6.10(a). There are eight objects
among which one is novel. Among the seven familiar objects, five objects (blue pin, green
pin, red car, red hat, orange cone) appear with orientations significantly different than
that observed in Fig. 6.8. The robot first focuses on the novel object (the purple dog)
and updates its LTM. The human then asks the robot to look for different familiar objects
and it successfully identifies the green pin, the blue toy, the red car, the orange pin, and
the purple dog after search requests were made for them (Figs. 6.11(a)- 6.10(f)). The
robot, however, fails to immediately identify the blue pin (in Fig. 6.10(g)). During the
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(d) (e) (f)

Figure 6.8: Experiment 3: The robot is exposed to a set of objects from different 3D
locations in the world and learns about them while being guided by its continuously de-
veloping sense of novelty. The camera locations (r, θ, φ, α, β) are (a) (6ft, 85o, 50o,−5o, 0o)
(b) (6.5ft, 68o, 52o, 15o, 5o) (c) (6.5ft, 68o, 52o,−15o, 5o) (d) (3ft, 75o, 30o,−5o, 0o) (e)
(3ft, 80o, 30o, 8o, 5o) (f) (6.5ft, 68o, 52o,−15o, 5o)
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Figure 6.9: Experiment 3: On-spot learning. Different views of the objects chosen by the
robot to learn. The SIFT keypoints corresponding to these views are stored in the LTM

search for the blue pin the robot first chooses the blue toy and then the green pin as the
‘sought for’ objects. The type of these two successive failures indicates that the robot has
the knowledge of ‘what is a pin’ and ‘what is blue’ but it can not identify a pin which is
blue in color. The human applies on-spot learning to teach the robot. First the robot is
asked to look for any blue object (e.g by asking ‘find something blue’). As the head-pose
corresponding to the blue toy was already inhibited as a candidate for the next system
state for the ongoing request of visual search, the robot focuses on the other blue object,
i.e the blue pin (Fig. 6.10(h)). The human then affirms it as the correct choice. The
robot updates its LTM with the new information about the blue pin. At a later time, this
on-spot learning is checked by asking the robot to search for the blue pin again and the
robot immediately identifies the target.

The visual search for the red hat was also failed initially but that was because of the
object segmentation problem. Figs. 6.11(a) and 6.11(b) show the segmentation failure
during the search for the red hat. Incorrect region growing causes the red hat to become
a part of the large object blob which is discarded from further analysis of attention due
to its large size. The robot selects the red car as the best match of the ‘sought for’ object
and focuses on it. The human negates the success of visual search and allows the robot to
continue the search. The segmentation problem no longer exists in the next decision cycle
and the robot successfully identifies the red hat (Fig. 6.11(c)). Fig 6.12 shows the pan-tilt
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Figure 6.10: Experiment 3: on-spot learning. (a) The experimental environment. (b)-(f)
Focusing on different ‘sought for’ objects: green pin, blue toy, red car, orange pin, and
purple dog. (g) Failure to identify the blue pin due to large change in orientation. (h) The
blue pin is focused through on-spot learning (please see text and the attached multimedia
file “Multimedia On-SpotLearning.wmv” for detail)

positions of the camera during the experiment.

Video of this experiment is available in the multimedia file “Multimedia On-Spot
Learning.wmv” attached with this thesis.

6.5 Experiment 4: Operator Burden

An experiment is performed where a robotic manipulator is used to point to the focused
object. The Bumblebee stereo camera is used in this experiment for accuracy of hand-eye
coordination. During this experiment, similar to experiment 3, both visual search and vi-
sual exploration are performed. But along with the visual orientation of the camera toward
the focused object, a manipulator also points to the object of attention to make it easily
identifiable to the human user (as shown in Fig. 6.13). This makes the task of providing
high level information easier for the human user. Fig. 6.15 shows the camera position
along with the position of the wrist and shoulder joints of the manipulator throughout
the experiment. There are four novel objects in the VF (orange cone, green pin, green
toy, red hat) and the robot attends to each of them due to their novelty as shown in
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(a) (b) (c)

Figure 6.11: Experiment 3 (a) The visual field where the red hat is searched (b) Incorrect
region growing causes the the red hat to become a part of the large object blob which is
discarded from further analysis of attention due to its large size (c) The red hat is focused

Figure 6.12: Experiment 3: pan-tilt positions of the camera-head

Figure 6.13: Experiment 4: The manipulator points to the object on which the camera
focuses

108



(a) (b)

(c) (d)

Figure 6.14: Experiment 4: in each case the top image shows the camera focusing on an
object (due to its novelty or search request for it) and the bottom image show the manipu-
lator pointing to the focused object to make it more salient to the human operator (please
see text and the attached multimedia file “Multimedia AttentionAndPointing.wmv” for
detail) 109



Figure 6.15: Experiment 4: Positions of the camera, shoulder and the wrist joint during
the experiment. The shoulder and wrist angles are with respect to the world coordinate
system

Figure 6.16: Experiment 4: Effect of lens distortion on the appearance of objects. The
(α, β) angles of the camera are (−25o,−40o) for the left image and (35o,−53o) for the right
image. The values of (r, θ, φ) are the same for both cases. The non-affine stretching of the
green toy in the right image makes it difficult to identify during the visual search
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Fig. 6.14. The robot also fulfill the search request for two of the objects (red hat, green
toy) and focuses on them. A video of this experiment is available in the multimedia file
“Multimdedia AttentionAndPointing.wmv” attached with this thesis.

The Bumblebee2, being a very wide angle camera, does not provide the detailed texture
of the objects in its visual field. Fewer number of SIFT keypoints, therefore, are extracted
from each object. Besides, the lens distortion is significant in wide angle optics. Fig. 6.16
demonstrates one example of the lens distortion effect. Fewer number of SIFT keypoints
from each object as well as the strong changes in the object’s appearance caused by lens
distortion make visual search more challenging with wide angle cameras like Bumblebee2.
On-spot learning, therefore, plays a significant role when dealing with lower resolution wide
angle cameras.

6.6 Conclusion

This chapter has presented a set of experiments for self-evaluation of the proposed multi-
modal Bayesian model of visual attention. The experiments presented in this chapter
show that the proposed model addresses all of the research issues involved with the robotic
application of visual attention as discussed in section 1.2.
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Chapter 7

Conclusion

Two objectives were set-up for the research presented in this thesis.

Objective I: Development of a bio-inspired model of visual attention for robotic cogni-
tion. Such a model is expected to have the following characteristics.

• The model should be able to execute overt attention with head-eye movement.

• The model should properly tackle the change in the content of the VF as well as
the camera and image coordinate systems resulting from the execution of overt
attention (Issue 1 in section 1.2).

• The model should be able to run autonomously (if required, with minimum
human supervision). Should it be required, the human supervision will be such
that it does not interrupt the normal flow of operation of the model (Issue 4 in
section 1.2).

• The model should, as much as possible, be independent of any prior training
such that the success of the model does not depend on the robustness of a
training session (Issue 3 and Issue 5 in section 1.2).

Objective II: Implementation of the proposed model on a real robotic system and eval-
uation of its performance.

The research presented in this thesis fully observes these two objectives.

In relation to objective I, a comprehensive literature survey is first conducted to inves-
tigate the bio-inspiration in visual attention modeling, the ways of mimicking biological
principles (related to visual attention) in a technical system, and the existing models of
visual attention to identify their strengths and shortcomings. The analysis and the survey
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has been presented in chapters 1 and 2 of this thesis. Based on this intense survey this
thesis formally reports the following issues to be considered in the design of a robotic model
of visual attention.

1. Consequences of the overt shift of focus: There are three consequences of overt shift
of focus which are: 1) change of reference frame, 2)dynamic IOR, and 3) partial
appearance of features. If not properly tackled, they might seriously hamper the
visual attention behavior of a robot.

2. Integration of space- and object based analysis: To resolve conflicts in the implemen-
tation of many attention-related phenomena it is highly beneficial to consider both
space and object as the elemental units of attentional selection.

3. Generality: The two modes of visual attention (visual exploration and visual search)
should run in conjunction with each other. Separate processing for visual search and
visual exploration is not desirable in robotic applications.

4. Prior training: The visual search of an object should not be preceded by an off-line
training session for learning of the features of that object.

5. Optimal learning strategy: For successful visual search in the arbitrary settings (en-
vironment and camera perspective) there must be a learning strategy which ensures
that the robot knows enough information about the target. Such learning must not
violate the generality of the attention model and should not impose the burden of a
prior training phase.

Based on this investigation this thesis proposes a Bayesian model of visual attention for
robotic systems. The proposed model takes its inspiration from the theory of biased compe-
tition which is a widely accepted neurodynamic theory of visual attention in the primates.
The Bayesian filter for attention proposes a robot-centric solution of visual attention where
the robot is considered as an autonomous entity which attends to the stimulus of its choice.
A set of possible choices of the robot for attention is derived from the tenets of biased com-
petition. The choice of the stimuli to attend depends on the visual saliency of the stimuli
as well as their relevance with the current behavior of the robot. The saliency and behav-
ioral relevance are considered as the measurement data for the proposed visual attention
model. The Bayes filter considers the head-pose of the robot as the state variable and
recursively estimates the system state based on the current measurements. The Bayesian
attention model has been implemented using a particle filter. The robot-centric approach
of attention inherently addresses the issues resulting from the overt shift of focus mediated
by head-eye movement. Besides, the particle-filter implementation integrates the space-
and object- based analysis while predicting a head-pose as the next state of the visual
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attention system. Details of the mathematics, operation, and implementation of the filter
has been reported in chapter 3 of this thesis.

In relation to Objective II, the performance of the proposed Bayes filter for visual
attention is evaluated in a number of real-world experiments conducted with a robotic
camera-head. A set of criteria is defined for performance evaluation and the experiments
are specifically designed to investigate the success of the proposed model with respect to
its defined goal. The details of the experiments are reported in chapter 4 of this thesis.
The analysis of the experimental results reveals that the proposed model integrates the
space- and object-based analysis during attentional selection and successfully addresses
the research issues involved with the overt shift of focus. The model, however, fails to
address the issues of generality, prior training, and optimal learning strategy. In response
to this failure, the Bayesian model described in chapters 3 and 4 is further extended
to the multi-modal case where speech inputs from the human user are processed along
with the visual information in order to develop an attention-oriented speech-based HRI
framework. According to this framework the visual attention system of the robot maintains
an occasional interaction with its user (or operator) to enhance its knowledge about the
surrounding with multi-modal information. The interaction also enables the robot to switch
back-and-forth between the two modes of attention. Besides, such an occasional interaction
with the human assists to develop an optimal learning strategy for the robot. The detail of
the multi-modal extension of the Bayes filter for attention is reported in chapter 5. A set
of experiments are designed to evaluate the performance of the multi-modal Bayes filter for
attention and are reported in chapter 6. Analysis of the experimental results shows that
the proposed framework of visual attention successfully address all the research issues and
fulfill the goals setup by this thesis.

7.1 The List of Publications

The research presented in this thesis has generated the following technical publications.

1. Momotaz Begum and Fakhri Karray, “Integrating Visual Exploration and Visual
Search for Robotic Visual Attention: The Role of Human-Robot Interaction,” Sub-
mitted to IEEE International Conference on Intelligent Robots and Systems 2010

2. Momotaz Begum and Fakhri Karray, “Visual Attention for Cognitive Robots: The
Role of Multi-modality and Human Interaction,” Submitted to IEEE Transaction on
System, Man, and Cybernetics. Part B

3. Momotaz Begum and Fakhri Karray, “Visual Attention for Robotic Cognition: A
Survey,” Submitted to IEEE Transaction on Autonomous Mental Development
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4. Momotaz Begum, Fakhri Karray, G. K. Mann, and R. Gosine, “A Probabilistic Model
of Overt Visual Attention for Cognitive Robots,”, Accepted for Publication In IEEE
Transaction on System, Man, and Cybernetics. Part B,
DOI: 10.1109/TSMCB.2009.2037511

5. Momotaz Begum and Fakhi Karray, “Computational Intelligence Techniques in Bio-
inspired Robotics,” In Computational Intelligence in Autonomous Robotic Systems,
Springer 2008, pp. 1-29.

6. Momotaz Begum, F. Karray, G. K. I. Mann, and R. G. Gosine, “A Probabilistic
Approach for Attention-Based Multi- Modal Human-Robot Interaction,” In IEEE
International Symposium on Robot and Human Interactive Communication 2009,
pp. 200-205.

7. Momotaz Begum, F. Karray, G. K. I. Mann, and R. G. Gosine, “Re-mapping of Visual
Saliency in Overt Attention: A Particle Filter Approach for Robotic Systems,” In
IEEE International Conference on Robotics and Bio-mimetic 2008, pp. 425-430.

8. Momotaz Begum, George K. I. Mann, Raymond G. Gosine, and Fakhri Karray,
“Object- and Space- based Visual Attention: An Integrated Framework for Au-
tonomous Robots,” In IEEE/RSJ International Conference on Intelligent Robots
and Systems 2008, pp. 301-306.

9. Momotaz Begum, George K. I. Mann, and Raymond G. Gosine, “A Biologically
Inspired Bayesian Model of Visual Attention for Humanoid Robots,” In IEEE-RAS
International Conference on Humanoid Robots 2006, pp. 587-592.

10. Rajibul Huq, Momotaz Begum, George K. I. Mann, and Raymond G. Gosine, “Bi-
ased Competitive Model of Humanoid Visual Attention Using Fuzzy Discrete Event
System ,” In IEEE International Conference on Robotics and Biomimetics 2006, pp.
1559-1564.

7.2 Future Works

7.2.1 The Model

There is a number of sectors where the Bayesian model proposed in this work can be further
improved. They are summarize below.

• The top-down modulation model has the significant capacity to make any visually
insignificant or less conspicuous stimulus as ‘worthy to attend’. In order to receive
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that favor from the top-down model, the stimuli, however, have to be selected by the
bottom-up competition model at the first place. The bottom-up competition model in
the current implementation considers only the color and intensity features to identify
the potentially interesting regions in the snapshot of an environment. This causes
the proposed model to consider only the colorful objects with noticeable texture and
reasonable size (not too big or too small) for attention. Thus the stimuli that are
less colorful or have very poor contrast with the surrounding have very small chance
of getting selected by the bottom-up competition model. Use of more image features
(e.g. motion, orientation) and intelligent analysis of them to define the parameters
of the Gaussian mixture representing the bottom-up competition model will enable
the model to identify regions in the visual field having small and less interesting
stimuli to be identified as the potential candidate for attention. This is also a very
legitimate conclusion with respect to the particle filter implementation. The bottom-
up competition model serves as the proposal distribution for the Bayesian model of
visual attention and, the better the proposal distribution is, the closer the weighted
samples represent the true posterior.

• The image segmentation process has some influence on the operation of the top-
down modulation model. Use of more robust segmentation techniques will make the
algorithm more robust against the segmentation failure. For instance, the type of
segmentation failure demonstrated in Fig. 6.11 of chapter 6 can be avoided through
using improved segmentation techniques.

• The current implementation is operating with a very limited set of vocabulary and
grammars for the speech-based HRI part. Improving the vocabulary and use of
context-free grammar will make the visual attention model more general for any
robotic application and will ease the interaction with the non-expert users. This will
open up the possibilities of natural speech-based control of cognitive robots.

7.2.2 Research Direction

In the primates, visual attention is submerged in their perception, action, and in many of
the cognitive functions. In addition to its trivial manifestation in the visual exploration and
visual search, visual attention works underneath the action execution, planning, reasoning,
and decision making process of the primates [153]. This ensures the survival and normal
operation of the primates in their environment. Mimicking the visual attention of the
primates in the robotic system will not be complete until we explore this hidden influence
of attention in the overall cognition of the primates. That will also enable us to model the
true nature of human cognition in a more realistic manner.
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In robotics, the use of visual attention as a stand alone ability of the robot is far
less appealing than the case where the visual attention operates in conjunction with the
reasoning, decision making, and action planning of the robot. In all of these cases visual
attention works at the perceptual level and passes only those information to the higher
cognitive processes which are relevant to their respective requirements. The model of
visual attention proposed in this thesis can easily blend in such a scenario. The proposed
model maintains two different channels (bottom-up and top-down) to reflect the behavioral
relevance of the stimuli on the attention behavior of the robot. Depending on the higher
cognitive process it is cooperating with, the model can pass the appropriate visual stimuli
to that process while blocking the others. For instance, when a robot is performing the
task of manipulating an object, the relevant visual stimuli for the planning process is the
current and the future position of the target object while the action execution process is
only concerned about the visual features and locations of the graspable parts of the object.
The role of the visual attention model, therefore, will be to deliver the position information
of the object to the planning process and the visual feature-related information to the action
execution process. A visual attention model can also invoke measurements from multiple
sensors to further assist the operation of a cognitive process. The visual attention model,
therefore, serves as the gate-keeper of information and thereby making the autonomous
robots a bit more cognitive. Such robots have increasingly growing demand in service
industries, assistive and health-care sectors, and entertainment industries.
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