
Feature Selection for Gene Expression

Data Based on Hilbert-Schmidt

Independence Criterion

by

Hadi Zarkoob

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Statistics

Waterloo, Ontario, Canada, 2010

c© Hadi Zarkoob 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

DNA microarrays are capable of measuring expression levels of thousands of genes, even

the whole genome, in a single experiment. Based on this, they have been widely used to

extend the studies of cancerous tissues to a genomic level. One of the main goals in DNA

microarray experiments is to identify a set of relevant genes such that the desired outputs

of the experiment mostly depend on this set, to the exclusion of the rest of the genes. This

is motivated by the fact that the biological process in cell typically involves only a subset

of genes, and not the whole genome. The task of selecting a subset of relevant genes is

called feature (gene) selection. Herein, we propose a feature selection algorithm for gene

expression data. It is based on the Hilbert-Schmidt independence criterion, and partly

motivated by Rank-One Downdate (R1D) and the Singular Value Decomposition (SVD).

The algorithm is computationally very fast and scalable to large data sets, and can be

applied to response variables of arbitrary type (categorical and continuous). Experimental

results of the proposed technique are presented on some synthetic and well-known microarray

data sets. Later, we discuss the capability of HSIC in providing a general framework which

encapsulates many widely used techniques for dimensionality reduction, clustering and metric

learning. We will use this framework to explain two metric learning algorithms, namely the

Fisher discriminant analysis (FDA) and closed form metric learning (CFML). As a result

of this framework, we are able to propose a new metric learning method. The proposed

technique uses the concepts from normalized cut spectral clustering and is associated with

an underlying convex optimization problem.

iii

Acknowledgements

I’d like to extend my gratitude to my supervisors Prof. Ali Ghodsi and Prof. Mohammad

Kohandel, for their support, patience and the lessons that they have taught me. Their help

and support was truly beyond the traditions of academic study. I would also like to thank

Prof. Siv Sivaloganathan and Prof. Mu Zhu for carefully reading my thesis and providing

valuable comments. I would like to thank my fellow graduates students Vahed Maroufi,

Reza Ramezan, Colin Phipps and Easwar Magesan. I enjoyed their kind support during my

studies. And last, but not the least, I’d like to thank my wonderful family for the unwavering

support they have consistently given to me during my life.

iv

Dedication

To my family!

v

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Gene and Gene Expression . 1

1.2 DNA Microarrays . 4

1.3 Analysis of Gene Expression Data . 5

1.3.1 Unsupervised Methods . 6

1.3.2 Supervised Methods . 8

1.3.3 Feature Selection Methods . 9

2 Analysis of Brain Tumors CD133+/− Expression Data 15

2.1 Introduction . 15

2.2 Application of Principal Component Analysis 17

2.3 Application of Non-negative Matrix Factorization 20

3 Feature Selection Based on Hilbert-Schmidt Independence Criterion 25

3.1 Introduction . 25

vi

3.2 Background of the Hilbert-Schmidt Independence Criterion 26

3.2.1 Empirical HSIC . 27

3.3 Feature selection via HSIC . 28

3.3.1 Sparsity constraint . 29

3.4 Experimental results . 35

3.4.1 Synthetic data . 35

3.4.2 Gene expression data . 36

4 A Unified View of Learning Algorithms Based on Hilbert-Schmidt Inde-

pendence Criterion 39

4.1 General Framework . 40

4.2 Dimensionality Reduction Techniques . 41

4.3 Clustering algorithms . 48

4.4 Metric learning . 53

5 Conclusion and Future Work 65

APPENDICES 67

A Appendix A 68

Bibliography 75

vii

List of Tables

3.1 Experimental results on two-class data sets. The best LOO classification correction

rate is presented for each feature selection technique. 37

3.2 Experimental results on multi-class data sets. Again, the best LOO classification

correction rate is presented for each feature selection method. 37

4.1 Different Dimensionality Reduction techniques formulated in terms of the proposed

general framework. In all techniques, the constraint GGT=I is used. 47

4.2 Different clustering techniques formulated in terms of the proposed general frame-

work. In all techniques, the constraints G ≥ 0 and GGT=I are assumed. 54

4.3 Different Metric learning techniques formulated in terms of the proposed general

framework. 61

viii

List of Figures

1.1 DNA chemical structure (taken from Wikipedia under the GNU Free Docu-

mentation License). 3

1.2 A typical DNA microarray experiment. (The image is taken from Wikipedia.

It is released into the public domain by the copyright holder.) 4

1.3 PCA identify the directions along which data has maximal variability. 7

1.4 Support Vector Machine (SVM) classification technique. 10

2.1 Heatmap of gene expression data. 18

2.2 Eigenvalues obtained from PCA sorted in descending order. Each eigenvalue

provides the variance of data projected on the corresponding eigenvector. . . 19

2.3 Projection of data points on the second principal component. 20

2.4 Projection of data points on the ninth principal component. 20

2.5 Non-negative matrix factorization of order 3 applied to cancer gene expres-

sion data. The top diagram shows the identified sample clusters and the

corresponding extracted genes. The bottom diagram shows the columns of

matrix W from which clustering of samples is inferred. In the above two dia-

grams, G47 stands for BT47 GBM, G63 stands for BT63 GBM, M88 stands

for BT88 Medullo, NC1 stands for hNC1, NC2 stands for hNC2 and NC3

stands for hNC3. 22

ix

2.6 Scores obtained from NMF versus scores obtained from PCA. In the above

two diagrams, G47 stands for BT47 GBM, G63 stands for BT63 GBM, M88

stands for BT88 Medullo, NC1 stands for hNC1, NC2 stands for hNC2 and

NC3 stands for hNC3. 23

2.7 Loadings obtained from NMF versus scores obtained from PCA. 24

x

Chapter 1

Introduction

For a long time, the fields of biology and medicine dealt with the observable traits of or-

ganisms, such as, their morphology, development and behaviors. These traits are referred

to as the phenotype of the organism. The discovery of DNA molecules in 1940’s, however,

revolutionized biology by extending the studies to a genomic level. At this level, scientists

study genes whose activation/deactivation lead to an organism’s phenotype. In this chapter,

we start by explaining the basic concepts of genes and molecular signature for an organism.

We subsequently introduce the enabling technologies that are used to acquire such genomic

information. As we will see, this information is usually organized in large-scale data sets,

and statistical tools must be exploited to extract meaningful biological information. We

conclude this chapter by introducing a number of key methodologies and algorithms from

statistics and machine learning that are commonly used in the analysis of gene expression

data.

1.1 Gene and Gene Expression

All the biological reactions in a cell depend on the information stored in DNA molecules.

DNA molecules consist of two long strands entwined in the shape of a double helix. Each of

1

these strands is a long polymer of simpler units called nucleotides. Each nucleotide consists of

a backbone and one of the four bases adenine (abbreviated A), cytosine (C), guanine (G) and

thymine (T). The bases, attached to the two strands, are bound to each other via hydrogen

bonds. It is an important property of bases that base A bonds only to T and base C bonds

only to G. As a result, the sequence of bases in a strand has a one-to-one correspondence

with the bases on the complementary strand. Genes are segments of DNA that contain

genetic information. The information stored in genes can be used in the development and

functionality of cells only after the corresponding segments in DNA are converted into RNA

molecules and subsequently proteins. In this case, we say the gene is expressed and the

process is referred to as the central dogma of biology. The first step, the process of

building RNA molecules based on DNA molecules, is called transcription. RNA molecules

are structurally very similar to DNA molecules with some important differences. They differ

from DNA molecules in that the base uracil (U) replaces thymine (T); further, RNA has

only one strand. Base A on the DNA sequence results in the incorporation of base U in the

RNA sequence. Similarly, base G results in the incorporation of base C on the RNA. It is of

interest to note that genes may contain both coding and non-coding regions. These regions

are referred to as exons and introns, respectively. The non-coding regions of gene are not

used in creating proteins. As a result, a large part of initial RNA molecules that correspond

to introns, will be eliminated via a process called splicing. The resulting RNA molecule that

is much shorter than the original one is called messenger RNA or mRNA. The reason

for this name is that mRNA acts as a messenger leaving the nucleus and moving into the

cytoplasm. It then attaches to submolecular components called ribosomes. Proteins are

comprised of sequences of constructing units named amino acids. Each triple of nucleotides

in the mRNA is called a codon and will be mapped to a specific amino acid. The resulting

sequence of amino acids is the protein corresponding to the original gene. The process of

creating protein from RNA molecules is called translation.

The entire genetic information encoded in DNA molecules is called genome. All cells

2

Figure 1.1: DNA chemical structure (taken from Wikipedia under the GNU Free Documen-

tation License).

in an organism have the same genome1. The number of genes in the human genome was

recently estimated to be 20000-25000 [9]. These genes exist in the DNA molecules of all cells

in the body; however, as mentioned earlier, a gene impacts functioning and development of

living cells only if it is expressed. Based on this, an interesting task would be to evaluate

the functional genes in a cell at any time. One way to accomplish this is to examine the

RNA transcripts obtained from that cell, and determine the amount of RNA corresponding

to each of the genes. Due to the large number of genes present in an organism’s genome,

this is not an easy task and was not feasible until recently when DNA microarrays were

developed. DNA microarrays are high-throughput assays that enable measurement of the

expression levels of thousands of gene, even the whole genome, in a single experiment. In

the next section we will introduce DNA microarrays and discuss their principles of operation

in more detail.

1Genes, however, may have variations called alleles among different members of an organism.

3

Figure 1.2: A typical DNA microarray experiment. (The image is taken from Wikipedia. It

is released into the public domain by the copyright holder.)

1.2 DNA Microarrays

DNA microarray are high throughput biological assays that enable measurement of the

expression levels of thousands of genes in a single experiment. The operational principle of

DNA microarrays is based on the fact that DNA sequences tend to combine with each other

when their bases are matched (this is called base pairing). On a DNA microarray chip

there are a large number of spots each containing picomoles (10−12 moles) of a specific DNA

sequences. These DNA sequences are known as probes. Each probe consists of about 20-

70 nucleotide in length. (The length of probes varies among different types of microarrays.)

Each gene is represented by a number of probes on the chip. As mentioned earlier, to identify

the expression levels of genes in a given sample, one can measure the mRNA content obtained

from that sample. To hybridize with the DNA sequences available on the microarray chip,

mRNA has to be transformed back into DNA sequences. This process is called reverse

transcription and the resulting DNA sequences are referred to as complementary DNA

or cDNA. Then cDNA molecules will be applied to the microarray chip. After washing

off the chip, only strong bonds that correspond to paired strands will remain. The cDNA

molecules are pre-labeled with fluorescent tags so that matched molecules can be detected

after the hybridization process. The labels are subsequently scanned, and the strength of

signal at each probe is used to determine the amount of the corresponding gene in the original

sample.

4

1.3 Analysis of Gene Expression Data

In this section we assume that we are given the gene expression data for a number of sam-

ples and explore different methodologies that are widely used for the analysis of such data.

Assume we have the expression levels of m genes given for a number of n samples. Sam-

ples might be associated with response variables or labels. For instance, they may be

labeled as cancerous or healthy samples (categorical response variable), or be associated

with survival time of corresponding patients (continuous response variable). In microarray

experiments, m is typically of the order of tens of thousands and n is of the order of only

tens or hundreds. Let Xm×n be a real-valued matrix containing the gene expression data.

Data mining techniques are generally divided into three different groups: unsupervised,

supervised and semi-supervised methods. In unsupervised methods, the samples are not

associated with labels and the analysis is performed on the matrix X introduced above. Tasks

like clustering the samples or genes and dimensionality reduction belong to this group. In

supervised sampling, there are some labels associated with samples, and these labels are

used in the data analysis. For example, we might use the data labels to train a classifier

distinguishing between different types of samples. Another important example of supervised

techniques is feature selection (also known as variable selection). In feature selection, we

select a small subset of genes that are most relevant with respect to a given set of labels.

In semi-supervised techniques, labels are given only for a number of samples. However,

samples without labels still can be used to enhance the performance of learning algorithms

such as classification. In the context of DNA microarrays, we mostly deal with supervised

and unsupervised methods. In the following, we explore these techniques in more detail.

5

1.3.1 Unsupervised Methods

Principal Component Analysis

Principal component analysis (PCA) is a very popular tool for dimension reduction and data

visualization. It provides the directions of maximal variability in the data. Mathematically

speaking, assume we have n data points of dimension m stacked in matrix Xm×n. We assume

matrix X is normalized such that its rows add to zero. Assume Um×d is a transformation

that maps the data onto a d-dimensional space, UTX. Columns of U represent the directions

into which the data is mapped. PCA finds a linear transformation U such that:

Tr((UTX) (UTX)T) = Tr(UTXXTU)

is maximized. When d = 1, the above trace is proportional to the variance of data points

along the direction Um×1. For d > 1, the above trace is proportional to the summation over

variances of data along the d directions (vectors) stored in the columns of U.

The above optimization problem is a standard form of trace maximization problem.

Using the Rayleigh-Ritz theorem (see e.g. [31]), it can be shown that the solution under

the condition that UTU = Id×d is given by setting the columns of matrix U (i.e., the

directions of transformation) equal to the top d eigenvectors of matrix XXT. The value of

the corresponding eigenvalue gives the variance along each eigenvector.

There is a close relationship between PCA and the singular value decomposition (SVD).

SVD decomposes the matrix Xm×n as X = UΣVT, where Um×m and Vn×n are unitary

matrices and Σm×n is a diagonal matrix with nonnegative elements. It can be shown that

the columns of U are given by eigenvectors of XXT. One may combine matrices Σ and

V in a single matrix W = VΣT, and write the SVD of matrix X as X = UWT. In this

format, the columns of W are called scores. They can be used to provide a low-dimensional

representation of X in terms of the bases stored in columns U. Columns of U are called

loadings in this representation.

6

Figure 1.3: PCA identify the directions along which data has maximal variability.

Non-negative Matrix Factorization

In many applications, the data matrix consists of only non-negative elements. Examples

are image intensities and DNA microarray data. Non-negative matrix factorization (NMF)

decomposes the non-negative data matrix Xm×n into a product of two non-negative matrices

Um×d and WT (Wn×d) such that X ≈ UWT [30]. There are two measures commonly used

in evaluating the error in this approximation. The first one is sum of squared errors (or

Frobenius norm). Based on this, the non-negative factorization of matrix X is obtained by

solving an optimization problem of the form:

min
U,W
‖X−UWT‖2

F =
m∑
i=1

n∑
j=1

(
Xij − (UWT)ij

)2

where U and W are non-negative matrices and ‖ · ‖F denotes Frobenius norm of a matrix.

The second measure is Kullback-Leibler divergence,

min
U,W

DKL(X‖UWT) =
m∑
i=1

n∑
j=1

Xij log
Xij

(UWT)ij
−Xij + (UWT)ij

where log(·) denotes the natural logarithm. Matrices U and W obtained in NMF frequently

happen to be sparse. Based on this, they may be used to extract rank-one submatrices of

the original matrix X. More specifically, when the non-negative matrix Xm×n consists of,

say d approximately rank-one submatrices, then these submatrices will be identified by d

7

terms in a d-order NMF as Xm×n ≈ UWT = u1w
T
1 + u2w

T
2 + · · ·+ udw

T
d , where ui and wi,

i = 1, 2, · · · , d, denote the columns of U and W, respectively. Note that all the components

here are non-negative and so they cannot cancel out each other. Instead they combine

together to reconstruct the original matrix X. Identifying such submatrices can be thought

of as simultaneously clustering features and samples in the data matrix X. The process

of simultaneously extracting features and samples in a data matrix is called bi-clustering or

two-way clustering. We will see an example of using NMF for bi-clustering in gene expression

data in the second chapter.

Clustering

One of the other important tasks in the analysis of gene expression data is clustering. Clus-

tering is the process of grouping objects together based on their similarities/dissimilarities.

In microarray experiments, clustering may be performed both on samples and genes. Cluster-

ing of samples might provide insight into subtypes of samples and their molecular signatures.

Clustering of genes, on the other hand, might help to identify the function of unknown genes

based on the known genes in their group [2]. Common techniques for clustering in gene

expression data are hierarchial clustering, k-means clustering and self organizing maps [29].

1.3.2 Supervised Methods

As mentioned earlier, supervised methods in machine learning use sample labels during the

analysis. One important supervised task is classification. In classification, we train a

classifier based on the samples in the training set, and then use this classifier to predict the

class (label) of the new samples in the test set. The most common classification technique

used for DNA microarrays is the support vector machine (SVM). It finds a separating

hyperplane between data points from different classes such that the distance between the

hyperplane and boundary points is maximized (see Figure 1.4). A mathematical description

of SVM in the simplest case when there are two classes and the classes are linearly separable

8

is the following. Let x1, · · · ,xn be n data points in Rm with labels yi ∈ {±1}, i = 1, · · · , n.

Since classes are assumed to be linearly separable there exists a hyperplane (and, in fact, a

family of hyperplanes) in Rm such that data points of different classes are on different sides

of this hyperplane. The SVM classification method finds the hyperplane w · x + b = 0 such

that the distances of the hyperplane to the closest member of each class is maximized. It

can be shown [34, 10] that this problem may be formulated as the following minimization

problem:

minw
1
2
‖w‖2

2 (1.1)

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , n

where ‖w‖2
2 = w · w is the squared l2-norm of the normal vector of the hyperplane. This

optimization problem is usually transformed into its dual form and is solved using quadratic

programming.

Other classification techniques used for DNA microarrays are nearest neighbors and

decision trees. For more information on these algorithms see [43].

1.3.3 Feature Selection Methods

Feature (or variable) selection is one of the most important tasks in analyzing high-dimensional

data. It extracts the most relevant features in a data set such that the response variable

mainly depends on these features, and not the remaining ones. Feature selection helps to

enhance both the efficiency and accuracy of algorithms in analyzing high dimensional data.

This is specially relevant in the case of gene expression data where a large number of genes

are usually unrelated to a specific biological process. In many cases, feature selection is a

preprocessing task for a subsequent classification or regression problem. Based on this, the

feature selection techniques are usually divided into three groups: filters, wrappers and

embedded methods [28, 36]. In a filter method, the feature selection task is independent

of the subsequent classification procedure. Most of the filter methods consider genes indi-

vidually and evaluate them based on their dependence with the given response variable. To

9

Figure 1.4: Support Vector Machine (SVM) classification technique.

this end, dependence measures based on signal-to-noise ratio, t-test and mutual information

have been proposed [22, 25]. To account for interaction between genes, one way is to build

a classifier using a given subset of genes and use the classification error as a measure for

evaluating the quality of that subset. Having this measure of merit, different algorithms can

be devised to extract an optimal subset of genes. Feature selection methods that use clas-

sification techniques in the above fashion are called wrappers (see, e.g., [54, 46]). Another

class of feature selection techniques are embedded methods. In an embedded method, the

intrinsic properties of classifiers are used to assign degrees of relevance to features [26, 14, 32].

For instance, if a linear classifier is built based on the data, the relevance of features can be

measured using the corresponding weights in the linear classifier.

In the following, we introduce a number of common filter and embedded methods for gene

selection. We do not elaborate further on wrapper methods, as they are not used commonly

in the literature for gene selection. We refer the interested reader to [36].

10

Filter Methods

Fold change: This technique is a simple yet effective method for feature selection. It uses

the ratio between the mean of the expression levels in two different classes as a measure of

importance. Usually a ratio equal to 2 or more is considered to be significant. In the context

of gene expression data analysis, it is common to work with log2 of the expression levels. In

this way, a difference equal to one or more in log2 of expression levels is considered to be

significant.

t-test: A Problem with fold change is that it does not take into account the variance of

gene expression levels in each class. To see the role of variances, consider the following two

synthetic scenarios. In both scenarios we assume there are two types (classes) of samples,

and the goal is to determine whether a given gene is differentially expressed in the two sample

types or not. In the first scenario, the (log2 of) expression levels of genes in the first and

second sample types are assumed to be {0.99, 1, 1.01} and {1.99, 2, 2.01}, respectively. In

the second scenario, the expressions levels are assumed to {0, 1, 2} and {1, 2, 3}. The mean

of expression levels (and thus their difference) is the same in both scenarios; however, it is

clear that the considered gene in the first scenario is much more likely to be significantly

differentially expressed compared to gene studied in the the second scenario.

A t-test accounts for variance of expression levels in different classes by using the following

ratio to decide about differentially expressed genes

T =
m1 −m2√
σ2

1 + σ2
2

(1.2)

A generalization for t-test for multi-class problems is formulated under the acronym

ANOVA (ANalysis Of VAriance methods). These methods use the F-test instead of t-test

to evaluate the dependence between genes and class labels (see e.g. [15]).

11

Signal-to-noise ratio: Signal-to-noise ratio method is similar to the t-test; but it uses

the following signal-to-noise ratio to decide about differentially expressed genes

SNR =
m1 −m2

σ1 + σ2

(1.3)

Mutual information (MI): MI provide a measure of dependence between two random

variables. The mutual information between two random variables equals zero if and only if

the two random variables are independent. Mathematically speaking, mutual information

between random variables X and Y is defined to be

I(X;Y) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p1(x) p2(y)

)
dx dy, (1.4)

where p(x, y) is the joint probability density function of X and Y , and p1(x) and p2(y) are

the marginal probability density functions of X and Y , respectively. A difficulty with using

mutual information is that in practice the joint probability density functions are not given

and one needs to estimate them based on the data.

Embedded Methods

All filter methods introduced above consider genes individually when evaluating dependence

on the given response variable. As a result, they are computationally fast, but they can

not account for the interaction between genes. In the following we present in more de-

tail two embedded methods, namely support vector machine-recursive feature elimination

(SVM-RFE) [26] and approximation of the zero-norm minimization-support vector machine

(AROM-SVM) [53]. As previously mentioned, embedded methods use the intrinsic proper-

ties of classifiers to evaluate the degree of relevance for each features. This enables them to

somehow take into account the interactions between genes.

SVM-RFE: The SVM-RFE is a widely used method for feature selection from gene expres-

sion data. SVM-RFE is an iterative algorithm that works based on the SVM classifier. To

explain this method, we assume there are only two classes. At each step, SVM-RFE method

12

builds an SVM classifier based on the data and uses the absolute value of the weights in the

normal vector of the classifier as a measure of relevance for the features. (By normal vector

of the classifier we mean vector w in the classifier sign(w · x + b), see Section 1.3.2.) To

obtain a small subset of features, SVM-RFE use Recursive Feature Elimination method to

eliminate irrelevant features at each step. That means SVM-RFE modifies data at each step

by eliminating the least relevant feature. This feature corresponds to the lowest weight in

w. The procedure is repeated until the desired number of features is obtained.

Since SVM-RFE requires the training if an SVM classifier at each step, it would be

computationally expensive to eliminate only one feature at each step. One can increase the

speed of this algorithm by reducing the number of features by a certain percentage at each

iteration instead of eliminating the features one by one.

AROM-SVM: To explain the AROM-SVM feature selection method, we recall from Sec-

tion 1.3.2 that SVM can be formulated as follows:

minw ‖w‖2
2 (1.5)

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , n

where ‖w‖2
2 = w ·w is the squared l2-norm of w. Induced by this formulation, Weston et.

al [53] proposed minimizing the zero norm 2 of w instead of the second norm to obtain a

sparse w, as follows:

minw ‖w‖0 (1.6)

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , n

Solving this optimization problem provides us with the separating hyperplane with the

fewest nonzero elements in the normal vector w. The features corresponding to these nonzero

elements would be the important features obtained from feature selection process. The

optimization problem presented in 1.6 is shown to be computationally hard [4]. Instead,

2Zero norm of a vector is defined as the number of non-zero elements in that vector.

13

Weston et. al [53] proposed an approximate method to solve this problem. They show that

one can solve the following optimization problem to approximate the solution to the original

one:

minw

∑n
j=1 ln(ε+ |wj|) (1.7)

subject to yi(w · xi + b) ≥ 1, i = 1, · · · , n

where ε is used to avoid zero arguments in ln(·) when the elements of w are zero. The

optimization problem presented in 1.7 is tractable in this form and can be solved using an

iterative gradient-based method [53].

In chapter 3, we will use a sparse matrix factorization method, namely Rank-one Down-

date (R1D), to obtain sparse solutions to the proposed optimization problem. We will see

that this method is much simpler and faster than optimizing the zero-norm of the vectors.

14

Chapter 2

Analysis of Brain Tumors CD133+/−

Expression Data

In the previous chapter, we introduced a number of widely used methodologies for the anal-

ysis of gene expression data. In this chapter, we present the result of two important tech-

niques, namely Principal Component Analysis (PCA) and Non-negative Matrix Factorization

(NMF), applied to a data set of real-world cancerous and normal samples. We will see how

these techniques can be effectively used to extract information from gene expression data.

This data set we use was obtained from the Singh Lab at McMaster University.

2.1 Introduction

In recent years, the stem cell hypothesis for brain tumors [39] has received an increasing

amount of support. Based on this hypothesis, only a small fraction of brain tumor cells are

responsible for initiating and maintaining brain tumors. This stem-like subset of cells are

called Brain Tumor Initiating Cells (BTICs). Identification of biomarkers that are able

to identify BTICs is one of the most important aspects of research on brain tumors. The

surface protein prominin 1 (CD133) has been widely used in the literature for this purpose.

15

In [39], Singh et. al assert that the injection of only about 100 brain tumor cells which

expressed the CD133 protein resulted in a brain tumor with the same phenotype as the

original tumor in vivo. However, the injection of as many as 10’000 CD133- cells did not

result in initiation of any brain tumor. Following these original experiments, the literature on

brain tumor stem cells has witnessed a consistent series of works reporting on the stemness

properties of CD133+ cell as opposed to their CD133- counterparts.

In spite of the existing evidence supporting the stem cell hypothesis for brain tumors,

there are still many important questions that need to be addressed. Is CD133 a perfect

biomarker for BTICs? What is the relation between expression of CD133 and stemness

properties of cell such as proliferation and self-renewal? In addition, it is not clear yet if

environmental factors such as hypoxia can affect the expression of CD133 in a cell. DNA

microarrays are powerful tools capable of simultaneously measuring the expression levels of

whole genes in the genome. Based on this, they can be used to unravel important information

about genomic signatures of different brain tumor cells, and address these types of questions

at a genomic level. DNA microarrays have been effectively used in a variety of applications

ranging from classification and clustering of cancerous and normal sample data to functional

analysis of new genes.

We have recently received experimental data containing the gene expression levels of 18

samples of cancerous and normal cells. These samples are organized in 9 pairs. Each pair

consists of CD133+ and CD133− samples of the same tissue. More specifically, the data

consists of 3 normal pairs (obtained from normal brain tissue), 2 glioblastoma (GBM) pairs,

2 medulloblastoma pairs and 2 metastasized pairs. Glioblastoma and medulloblastoma are

two malignant types of brain tumors. The metastasis samples correspond to tumors that

originally developed in other tissues in the body and which have then metastasized to the

brain. The samples in this data set are labeled as follows:

• Normal: hNC1+, hNC1-, hNC2+, hNC2-, hNC3+ and hNC3-

• GBM: BT47 GBM+, BT47 GBM-, BT63 GBM+, BT63 GBM-

16

• Medulloblastoma: BT88 Medullo+, BT88 Medullo-, Medullo+, Medullo-

• Metastasis: BT84 Lung Mets+, BT84 Lung Mets-, BT53 Mets+, BT53 Mets-

The signs + and - after sample names indicate the state of being CD133 positive or negative.

A heatmap of expression levels of a limited number of genes given for these samples is shown

in Figure 2.1.

As a first step, we have used the DNA microarrays chips Affymetrix c© GeneChip Human

Genome U133 Plus 2.0 arrays which are capable of measuring the expression levels of the

whole human genome on a single array. These chips have 54675 probe sets, which results in

54675 features for each sample data point. The reason why the number of features is greater

than the total number of genes is that some genes are represented by more than one probe

on the array. We have successfully used a variety of well-known dimensionality reduction

and clustering algorithms to distinguish between different tissues in our data, based solely on

their gene expression profiles. Since this data is still not published, we are not able to name

the individual genes; however, here we will show the capability of a number of techniques

introduced in the previous chapter to effectively extract information from real-world gene

expression data.

2.2 Application of Principal Component Analysis

We start our analysis by performing PCA on this data. It is common to work with log2 of

expression levels instead of the original values. In this way, the range and distribution of

expression levels will have a more reasonable behavior. Let X be the 54675×18 data matrix.

Since rank of X and thus XXT is 18, PCP provides up to 18 directions of maximum variability

in the data. As mentioned in subsection 1.3.1, the variances of projected points along

these directions are given by the corresponding eigenvalues. Figure 2.2 plots 18 eigenvalues

obtained from PCA. As shown, there is a gap between the first 9 eigenvalues and the rest of

them. The last small eigenvalues (variances) might be due to noise only.

17

Figure 2.1: Heatmap of gene expression data.

We noted that the projection of points over the first principal component (PC) corre-

sponds to the date in which data was created. More specifically, we received the data in two

stages, and the 8 points of the first stage and 10 points of the second stage lie far apart after

projection on the first PC, which gives the direction of maximal variability. However, we are

not interested in this source of variation. Figure 2.3 depicts the projection of data points on

the second principal component. One may see that the position of points on this direction

well describes the type of the samples. Specifically, data points from each of the groups nor-

mal, GBM, Medulloblastoma and metastasis samples lie close to each other. The direction

demonstrates the second maximum source of variation in data. One may use this direction

as a classifier for a new unknown sample. It is interesting to note that the medulloblastoma

sample lying at the very left of the diagram was first introduced as a GBM sample to us.

However, after further investigations deducted from our mathematical analysis, we noted

18

Figure 2.2: Eigenvalues obtained from PCA sorted in descending order. Each eigenvalue

provides the variance of data projected on the corresponding eigenvector.

that the sample in fact corresponds to a medulloblastoma sample.

We normally expect one of the extracted directions to correspond to the CD133 positive

or negative property of the sample, as this is another known source giving rise variation in

the data. We noted that the ninth PC in fact does so. Figure 2.4 depicts the projection

of data points on this principal component. Remember this direction is the last direction

that was expected to reflect significant variation in the data. It is seen, however, that the

separation between positive and negative samples is not perfect. This might be due to the

noise in the DNA microarray experiments or due to the labeling process of the samples.

Assigning CD133 positive/negative labels to samples requires performing a process called

cell sorting, and there might be some experimental errors associated with this process.

19

Figure 2.3: Projection of data points on the second principal component.

Figure 2.4: Projection of data points on the ninth principal component.

2.3 Application of Non-negative Matrix Factorization

The second method we study in this chapter is Non-negative Matrix Factorization (NMF).

As mentioned in subsection 1.3.1, both PCA and NMF provide a decomposition of the data

matrix of the form X ≈ UWT. However, in PCA there is no restriction on the sign of the

elements in X, U and W. In contrast, NMF is applied to non-negative matrices and the

elements of U and W are restricted to be non-negative. As mentioned in subsection 1.3.1,

this property allows NMF to identify approximate rank-one submatrices in the data matrix

X, and in this way, simultaneously cluster samples and features. Figure 2.5 depicts the results

of 3-order NMF applied to 12 samples, namely, BT47 GBM+, BT47 GBM-, BT63 GBM+,

BT63 GBM-, BT88 Medullo+, BT88 Medullo-, hNC1+, hNC1-, hNC2+, hNC2-, hNC3+

and hNC3-. Note that NMF must be applied to the original gene expression data (that are

always positive) and not to the log2 of expression levels. As shown in the bottom diagram,

20

columns of matrix W are sparse and distinguish between normal, GBM and medulloblastoma

samples.

It is instructive to compare the scores (see subsection 1.3.1) obtained from PCA with

those obtained from NMF. Figure 2.6 depicts scores obtained from both NMF and PCA.

One can see that the scores obtained from NMF are sparse, while those obtained from

PCA are not. As a result, scores of NMF clearly distinguish between different samples

types. Note also that, as mentioned in the previous part of this chapter, the scores of the

second principal component in PCA distinguish between different sample types, but this

distinguishing behavior is less apparent than that obtained from NMF.

Finally, we compare NMF and PCA in terms of the sparsity of the loading vectors stacked

in matrix U. Figure 2.7 depicts the loading corresponding to the first principal component

obtained from the two methods. It is seen that the loadings are much sparser in NMF. It

is a very helpful property; as it indicates that not only does NMF correctly cluster GBM

samples together, but that it also extracts a small subset of genes that have similar expression

levels among these samples and are grouped together. Currently, we are collaborating with

researchers from the Singh lab at McMaster university to study the biological relevance of

the extracted genes. This may shed important light on how genetic information influences

the phenotype of cancerous and normal cells.

21

Figure 2.5: Non-negative matrix factorization of order 3 applied to cancer gene expression

data. The top diagram shows the identified sample clusters and the corresponding extracted

genes. The bottom diagram shows the columns of matrix W from which clustering of

samples is inferred. In the above two diagrams, G47 stands for BT47 GBM, G63 stands for

BT63 GBM, M88 stands for BT88 Medullo, NC1 stands for hNC1, NC2 stands for hNC2

and NC3 stands for hNC3.

22

Figure 2.6: Scores obtained from NMF versus scores obtained from PCA. In the above

two diagrams, G47 stands for BT47 GBM, G63 stands for BT63 GBM, M88 stands for

BT88 Medullo, NC1 stands for hNC1, NC2 stands for hNC2 and NC3 stands for hNC3.

23

Figure 2.7: Loadings obtained from NMF versus scores obtained from PCA.

24

Chapter 3

Feature Selection Based on

Hilbert-Schmidt Independence

Criterion

3.1 Introduction

In the previous chapter, we introduced feature selection as an important task in the analysis

of high dimensional data. We saw that a challenge in designing feature selection algorithms

is the trade-off between accuracy and speed of the underlying algorithms. The wrapper and

embedded algorithms are more accurate than the filter methods, at the expense of being

time-consuming. The filter methods, on the other hand, are fast but they cannot take into

account gene-to-gene interactions when extracting the important genes.

In this chapter, we propose a fast multivariate feature selection method for DNA microar-

rays based on the Hilbert-Schmidt Independence Criterion (HSIC) [23, 24]. HSIC provides

a measure of dependence between two random variables. Once a set of observations (real-

izations) of the two random variables is given, one can estimate the value of HSIC based

on the observations. This is discussed in subsection 3.2.1. HSIC has been already used to

25

propose a family of gene selection algorithms, namely, Backward elimination HSIC (BAH-

SIC) family of algorithms, which encapsulates a number of well-known methods such as fold

change, signal-to-noise ratio, Shrunken centroid and ridge regression ([42, 40]). The methods

in BAHSIC family are mostly univariate techniques and thus does not take into account the

interaction between features.

We use a completely different approach to accomplish feature selection based on HSIC,

which is capable of takeing into account the interaction between features. We use HSIC in

association with a fast technique for the sparse decomposition of matrices, namely Rank-one

downdate (R1D) [7], to identify a sparse projection of the DNA microarray features that well

represents the underlying response variables. Only a small subset of genes will have non-zero

weights in the extracted projection vector and are thus recognized as the relevant genes with

respect to the given response variables. The proposed algorithm is computationally very fast

and scalable as storage of the whole microarray data in memory, is not required. Thus it

can be easily applied to real-world large data sets.

3.2 Background of the Hilbert-Schmidt Independence

Criterion

The Hilbert-Schmidt norm of the cross-covariance operator [23] in reproducing kernel Hilbert

spaces (RKHS) has been proposed as an independence criterion. This measure will be

referred to as the Hilbert-Schmidt independence criterion (HSIC). HSIC uses the fact that

two random variables x and y are independent if and only if any bounded continuous function

of the two random variables is uncorrelated. Consider two multivariate random variables x

and y with joint probability distribution pxy. Let X and Y be the support (the set of

possible values) of the random variables x and y respectively. Let F be a separable RKHS

of real-valued functions from X to R with universal1 kernel k(·, ·). Similarly, define G to be

1It is known that there is a unique correspondence between any kernel and the RKHS it reproduces. A

kernel k is called universal if the corresponding RKHS, F , includes all continuous functions on domain X .

26

a separable RKHS of real-valued functions from Y to R with universal kernel b(·, ·). We are

interested in the cross-covariance between elements of F and G:

cov (f(x), g(y)) = Ex,y[f(x)g(y)]− Ex[f(x)]Ey[g(y)].

There exists a unique operator Cx,y : G → F mapping elements of G to elements of F

such that: 〈f, Cx,y(g)〉F = cov(f, g) for all f ∈ F and g ∈ G. This operator is called the

cross-covariance operator [23].

The measure of dependence between two random variables can be defined as the squared

Hilbert-Schmidt norm of the cross-covariance operator:

HSIC(pxy,F ,G) := ‖Cxy‖2
HS.

Note that if ‖Cxy‖2
HS is zero, then the value of 〈f, Cx,y(g)〉, i.e., cov(f, g), will always be zero

for any f ∈ F and g ∈ G, and thus the random variables x and y are independent. Now it

becomes clear why kernels k and b need to be universal. That is because the corresponding

RKHS, F and G, have to include all continuous functions defined on supports X and Y ,

respectively.

3.2.1 Empirical HSIC

To compute the HSIC we need to express it in terms of kernel functions. This can be achieved

via the following identity [23]:

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x,x′)b(y,y′)] + Ex,x′ [k(x,x′)]Ey,y′ [b(y,y′)]

−2Ex,y [Ex′ [k(x,x′)]Ey′ [b(y,y′)]]

where Ex,x′,y,y′ is expectation over (x,y) and (x′,y′) with (x,y) and (x′,y′) being random

variables taken independently from pxy. Now let Z := {(x1,y1), · · · , (xn,yn)} ⊆ X × Y be

a collection of n independent observations drawn from pxy. An estimator of HSIC is given

by [23]:

HSIC(Z,F ,G) := (n− 1)−2 Tr(KHBH) (3.1)

27

where H,K,B ∈ Rn×n,Kij = k(xi,xj),Bij = b(yi,yj), H = I−n−111T, k and b are positive

semidefinite kernel functions, and 1 is a vector of ones. Based on this result, in order to

maximize the dependence between two random variables x and y, we need to increase the

value of the empirical estimate, i.e. Tr(KHBH).

3.3 Feature selection via HSIC

Suppose X ∈ Rm×n represents genomic microarray data with m genes and n samples. Also

assume y is a discrete or continuous response variable. For example, y could be labels of

patients with high risk cancer (discrete) or their survival time (continuous) 2. The goal is to

select a small feature set that contains as much predictive information about the response

y as possible. In other words, we are looking for a subset of features, such that y depends

mainly on this subset and not on the rest of the features.

We address this problem as follows. Suppose there are n samples and n response values

{(x1, y1), · · · , (xn, yn)} where xi denotes the ith column of matrix X. We are looking for a

projection S = uTX such that y depends mainly on S. uTX is a linear combination of all

features where elements of u determine the importance, or the weight, of each feature. If

u is a sparse vector, then the weight of some features are zero and the subset of features

with corresponding nonzero weights will be the desired subset with maximum predictive

information.

The dependence between the projection uTX and the response variable y can be measured

using the empirical estimation of HSIC given in (3.1). If x1 . . .xn are projected to S =

[uTx1 . . .u
Txn] = uTX, a linear kernel on subspace S can be computed as XTuuTX. Then

B is a kernel of y and can be used to capture different types of prior information in the

2Here we assume the response variable is univariate. However, the results can be directly extended to the

case of multivariate response variables. In such cases, the observations of the response variable is captured

in matrix Y rather than the vector y.

28

problem:

Tr(HKHB) = Tr(HXTuuTXHB)

= Tr(uTXHBHXTu) (3.2)

We can make (3.2) arbitrarily large by increasing the magnitude of u. To make the

problem well-posed we choose u to maximize (3.2) while constraining u to have unit length.

On the other hand, to accomplish the feature selection task, u is required to be sparse. Based

on these two constraints the optimization problem becomes

max
u

Tr(uTXHBHXTu) (3.3)

subject to uTu = 1

subject to u is sparse

If we relax the sparsity constraint, this problem can be solved in closed-form. If the

symmetric and real matrix Q = XHBHXT has eigenvalues λ1 ≤ · · · ≤ λn and eigenvectors

v1, . . . ,vn, then the maximum value of the cost function is λn and the optimal solution is

u = vn [31].

Note that both Q and B are positive semidefinite matrices and thus we can define:

Q = AAT

B = ∆T∆

A = XH∆T

Clearly the solution for u can be expressed as the first singular vector of A, since the

singular vectors of A are the eigenvectors of AAT = XHBHXT.

3.3.1 Sparsity constraint

As noted earlier, u needs to be sparse. Otherwise we will not be able to locate important

genes. A classical approach to add sparsity to u is to follow an approach similar to Lasso

29

[49] by adding the L1 penalty
∑n

i=1 |ui| to the objective function. However, this leads to a

rather computationally intensive problem which cannot be solved in closed form. Another

approach is to set a threshold and keep only those elements in u that exceed the threshold.

This is a common approach in the area of text mining and has been used extensively by

methods such as latent semantic indexing (LSI) [12]. However, we believe this will not lead

to an appropriate solution in our case. This can be seen in the following example:

Consider the following matrix A, which is the sum of a completely separable matrix F

and a noise matrix E:

A = F + E

=


1.01 1.01 0 0

1.01 1.01 0 0

0 0 1 1

0 0 1 1

+


−0.02 −0.02 0.02 0.02

0 0 0 0

0 0 0 0

0 0 0 0

 .

It should be clear that there are two separate sets of columns in A, given by the two

diagonal blocks, and a reasonable algorithm ought to be able to identify the two blocks.

In other words, one would expect an answer close to [1100]T. Perhaps unexpectedly, the

dominant right singular vector of A is very close to being proportional to [1111]T, which is

different from what is normally expected. The reason for this behavior is that the matrix

F has two nearly equal singular values, so its singular vectors are highly sensitive to small

perturbations (such as the matrix E). This pitfall can be avoided by computing a sparse

singular vector that is used to factorize a submatrix of the original A instead of the whole

matrix. Inspired by Rank-One Downdate (R1D) [7], we propose a new algorithm that finds

the largest rank one submatrix of A and its singular vectors simultaneously. It therefore

computes [1100]T as the sparse singular vector of A, as desired.

One of the classical algorithms for computing the first singular vectors of a matrix is

the Power method [44]. Here we first review this algorithm and then show how it can be

modified so as to extract a submatrix along with the optimal singular vectors. As presented

30

below, the Power method takes an m × n matrix A as input and returns its first singular

vectors u ∈ Rm×1 and v ∈ Rn×1 as well as the corresponding singular value σ ∈ R. It is

known that the factorization uσvT provides the best rank-one approximation to A in either

Frobenius norm or 2-norm.

Algorithm [u, σ,v] = PowerMethod(A)

Input: A ∈ Rm×n.

Output: u ∈ Rm, v ∈ Rn, σ ∈ R

1. Select a random nonzero ū ∈ Rm.

2. σ = ‖ū‖.

3. u = ū/σ.

4. repeat

5. v̄ = ATu.

6. v = v̄/‖v̄‖.

7. ū = Av.

8. σ = ‖ū‖.

9. u = ū/σ.

10. until stagnation in u, σ,v.

Our proposed method, which we call the Sparse Power Method (SparsePM), is similar

to the classical Power method. It provides a rank one approximation to the original matrix

A. The output of our algorithm, however, includes a submatrix of the original matrix

which is approximately rank-one as well as the corresponding optimal singular vectors used

to factorize this submatrix. The SparsePM algorithm and its parameters may be briefly

described as follows.

[M,N,u, σ,v] = SparsePM(A)

Inputs: A ∈ Rm×n.

Outputs: M , N , u ∈ Rm, v ∈ Rn and σ ∈ R.

31

Here, M ⊂ {1, . . . ,m} and N ⊂ {1, . . . , n} specify the indices of the extracted submatrix. In

addition, u ∈ Rm and v ∈ Rn are sparse unit vectors whose nonzero elements are indexed by

the subsets M and N , respectively. In this chapter, we use subscripts to denote submatrices

(sub-vectors) of a matrix (a vector). For example, AM,N denotes an |M | × |N | submatrix

of A with rows and columns in sets M and N , respectively. Also, uM denotes an |M | × 1

vector consisting of elements of u indexed by M . Here, | · | denotes cardinality of a set.

The function SparsePM selects the submatrix AM,N such that it is approximately rank

one, and in particular approximately equal to uMσvT
N . In this way, it provides a sparse

rank-one approximation to the original matrix A. Specifically, the function SparsePM is de

signed to maximize the following objective function:

f(M,N,u, σ,v) = ‖AM,N‖2
F − γ‖AM,N − uMσvT

N‖2
F − ρ|M | |N | (3.4)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and γ and ρ are penalty parameters.

The first term in the above objective function favors submatrices with large norm. Such

submatrices provide better approximations to the original matrix A, and are less likely to

be produced by noise. The second term in 3.4 penalizes deviations from being rank-one,

and the third term ensures that the size of the extracted submatrix is not too large. This is

particularly relevant in the feature selection applications where we do not want the number

of selected features to be too large.

Maximization of the objective function (3.4) is conjectured to be NP-hard [7], however it

can be optimized using a heuristic procedure. To this end, we update the values of parameters

u, M , v and N in a periodic manner. First assume the values of v, and thus N , is given. It

can be shown that the objective function is separable in terms of rows (as well as columns)

of matrix A. In particular, the contribution of the ith row is given by:

ri = ‖Ai,N‖2 − γ‖Ai,N − βivT
N‖2 − ρ|N | (3.5)

where βi = uiσ and ui is the ith element of u. Due to this property, one can consider the

contribution of the rows separately and choose only those rows that can potentially make

32

positive contribution to the objective function. The values of the first and third terms in 3.5

is fixed when a row is given. One can solve a simple least squares problem to show that the

value of the second term is maximized (the values of ‖Ai,N − βivT
N‖2 is minimized) when βi

is set to Ai,NvN . Based on this the contribution of the ith row would be:

ri = ‖Ai,N‖2 − γ‖Ai,N −Ai,N vNvT
N‖2 − ρ|N |. (3.6)

Now one can evaluate the above expression for all rows and select only those whose contri-

bution could be positive. This provides us with the set M . The nonzero elements of vector

u and the values of σ can be obtained simply by normalizing the vector consisting of βi,

i ∈M .

The expression presented in 3.6 can be further simplified to:

ri = Ai,NAT
i,N

−γ
(
Ai,N −Ai,N vNvT

N

) (
Ai,N −Ai,N vNvT

N

)T − ρ|N |

= −(γ − 1)Ai,NAT
i,N + γ(Ai,NvN)2 − ρ|N |.

A similar analysis may be applied to the columns. The result is that for given values of M

and u, the column j should be accepted provided that cj > 0, where,

cj = −(γ − 1)AT
M,jAM,j + γ(AT

M,juM)2 − ρ|M |.

The separability characteristics of the objective function (3.4) (in terms of rows and

columns) not only provides an easy way to implement the above algorithm but also leads

the proposed technique to be scalable to large data sets. That means one does not need to

store the whole microarray data in memory when running the algorithm; we only need to

deal with the one row (or column) of data which is being used in th operation. This feature

proves particularly important when dealing with large real-world data sets.

Finally, we need to decide about initial values of parameters M,N,u, σ,v. These starting

values should be chosen such that the initial value of the objective function (3.4) is positive.

Otherwise, it is possible that no row (or column) will be selected in the subsequent steps.

33

We select the row which has the greatest norm as the initial value of v, and start iterations

to find M . Alternatively, one could select the column with the largest norm as the initial

value of u and proceed to find N and v. Thus we have derived the following algorithm for

the subroutine SparsePM:

Algorithm [M,N,u,v, σ] = SparsePM(A)

Input: A ∈ Rm×n, parameter γ.

Output: M ⊂ {1, . . . ,m}, N ⊂ {1, . . . , n}, u ∈ Rm, v ∈ Rn, σ ∈ R.

1. Select i0 ∈ {1, . . . ,m} to maximize ‖Ai0,:‖.

2. N = {1, . . . , n}.

3. M = {i0}.

4. σ = ‖Ai0,:‖.

5. v = Ai0,:/σ.

6. repeat

7. Let ū = A:,NvN .

8. M = {i : −(γ − 1)Ai,NAT
i,N + γ(Ai,NvN)2 − ρ|N | > 0}.

9. uM = ūM/‖ūM‖.

10. Let v̄ = AT
M,:uM .

11. N = {j : −(γ − 1)AT
M,jAM,j + γ(AT

M,juM)2 − ρ|M | > 0}.

12. σ = ‖v̄N‖.

13. vN = v̄N/σ.

14. until stagnation in M,N,u, σ,v.

The value of the objective function is increased at each iteration in the above algorithm;

so the convergence of the algorithm is guaranteed. In practice, we observe the algorithm

converges within a few iterations, leading the underlying feature selection method to be fast.

The entire feature selection algorithm can be expressed as follows:

34

Algorithm M = FeatureSelection(X,y)

Input: X ∈ Rm×n and y ∈ Rn.

Output: M ⊂ {1, 2, · · · ,m}.

1. Compute B = b{yi, yj} = ∆T∆

2. Compute A = XH∆T

3. [M,N,u,v, σ] = SparsePM(A)

4. return M

3.4 Experimental results

3.4.1 Synthetic data

To evaluate the performance of our algorithm, we first consider an experiment on synthetic

data. Assume we have a set of 50 data points {xi}50
i=1 each consisting of 60 features, stacked

in a 60 × 50 matrix X. We construct a univariate response variable y which depends only

on a specific subset of the features, as follows:

y = sin(X5,:) + sin(X10,:) + X15,: �X15,: + ε

where ε ∼ N(0, 0.01) is Normally-distributed additive i.i.d. noise and Xi: denotes the ith

feature (the ith row of X), and � stands for the elementwise product between two vectors

(also known as Hadamard product). Note that there is a relatively complicated relationship

between the response variable y and the features of X. We produce elements of the data

points X according to the unit uniform distribution. A linear kernel is used for the response

variable y in this example. We have arbitrarily used the value ρ ≈ 0.015 which results in

a reasonable number of selected features. One may see that the presented results are not

very sensitive to this parameter. Furthermore, the value of the parameter γ is always set

to a default value of 1.1 and this is kept constant throughout this chapter. We repeat the

process 100 times to explore different possibilities for the variables X and y. We observed

35

that the true features (5, 10 and 15) were selected by our method in all 100 trials. However,

all of the other features occurred in at most 3% of the trials.

3.4.2 Gene expression data

In this section, we present the experimental results on a number of well-known DNA mi-

croarray data sets. For all the classification problems in this work we use the Leave One

Out (LOO) classification correction rate to evaluate the performance of feature selection

methods. To apply our proposed algorithm, the label matrix ∆ is chosen to be a linear

indicator matrix whose elements are normalized by the cardinal of the corresponding data

classes. For the classification task, we apply a linear SVM classifier subsequent to our fea-

ture selection algorithm. For other feature selection techniques we use the same classifiers

as those used in the original references. The results are presented both on the two-class and

multi-class data sets. For the two-class case we study four data sets, namely, Leukemia [22],

Colon cancer [3], Lymphoma [2] and Prostate [38]. The results for the two-class data sets

are summarized in Table 3.1. In this case, we compare our feature selection method with

four standard techniques, as presented in Table 3.1. In this table our method is represented

by SHS-SVM which stands for Sparse Hilbert-Schmidt independence criterion based feature

selection technique followed by an SVM classifier. In addition, Golub-Golub denotes the

feature selection and classification methods introduced in [22]. RFE-SVM and L0-SVM rep-

resents the RFE-SVM and AROM-SVM feature selection techniques introduced in the first

chapter followed by an SVM classifier. Finally, FC-SVM uses a simple Fold Change criterion

to filter important genes and then the extracted genes would be fed into an SVM classifier.

We have used the implementations of RFE and L0 feature selection techniques presented in

the SPIDER toolbox [52].

To evaluate the performance of our proposed feature selection algorithm on multi-class

problems, we perform experiments on three data sets: Lung cancer [6], SRBCT [27], and 11

tumor [45]. We follow our proposed feature selection method with a linear one-vs-one SVM

classifier taken from LIBSVM [8]. We compare our method with the baseline BSS/WSS

36

Data Set

Method Leuk. Colon Lymph. Prostate

SHS-SVM 98.61% 85% 96.88% 95.1%

Golub-Golub 98.61% 87.1% 92.71% 95.1%

RFE-SVM 98.61% 85.48% 96.88% 95.1%

L0-SVM 98.61% 82.26% 96.88% 95.1%

FC-SVM 98.61% 85.48% 96.88% 95.1%

Table 3.1: Experimental results on two-class data sets. The best LOO classification correction

rate is presented for each feature selection technique.

Data Set

Method Lung cancer SRBCT 11 tumors

SHS-SVM 94.09% 100.0% 90.3%

BSS/WSS-SVM 94.09% 100.0% 93.1%

Table 3.2: Experimental results on multi-class data sets. Again, the best LOO classification

correction rate is presented for each feature selection method.

filtering method [16]. This is a univariate technique that uses the ratio of Between-class

to Within-class Sum of Squares to rank the genes. We apply the same multi-class SVM

classifier to this feature selection technique as was proposed in the SHS-SVM method. The

results of the experiment on multi-class data sets are presented in Table 3.2. Recall that our

proposed feature selection method does not use a fixed number of genes for each separation

of the test/training data, as opposed to other feature selection methods. Because of this, a

comparison between these techniques cannot be made in any straightforward way. To make

a fair comparison, for each data set, we report the best LOO correction rate obtained by

37

each method on each of the data sets. To do so, in our method, we change the value of the

parameter ρ so that the number of genes vary between 1 and the total number of genes. On

the other hand, for other feature selection techniques, we manually vary the number of genes

between 1 and the total number of genes. In both cases, we report the best classification

correction rate that was obtained. In all tests performed here (both two-class and multi-

class cases) the optimal (varying or fixed) number of genes was only a small fraction (always

less than half) of the total number of genes, which is an indicator of the feature selection

task. One may note that the performance of our proposed method is comparable to the well-

established feature selection techniques used in the literature. Indeed, considering the fact

that the variance of the classification correction rates is relatively high in DNA microarray

experiments (we observed an average of 10% variance in our experiments), the difference

between the reported classification rates are considered to be statistically insignificant based

on the standard statistical significant tests. On the other hand, unlike other multi-gene

feature selection techniques, our method has the virtues of being fast and scalable to large

data sets.

38

Chapter 4

A Unified View of Learning

Algorithms Based on Hilbert-Schmidt

Independence Criterion

In the first chapter, we introduced a number of widely used techniques for the analysis

of gene expression data. They include methods for dimensionality reduction, clustering

and classification of data. Later in chapter three, we proposed a feature selection method

based on an independence criterion, namely, the Hilbert-Schmidt independence criterion

(HSIC). In this chapter, we will see that HSIC can be indeed used to explain a wide range

of techniques in machine learning including dimensionality reduction, clustering and metric

learning methods.

There are some works in the literature that aim to provide unified frameworks for some

learning algorithms. Ham, et al. [33] suggested that a number of well-known dimensionality

reduction techniques may be thought of as a special case of the Kernel Principle Component

Analysis (KPCA). Dhillon, et al. [13] showed that different clustering algorithms, including

k-means, Ratio Cut and Normalized Cut Spectral Clustering, can be cast as a special case

of weighted kernel k-means. In [41], Song, et al. presented a dependence view of k-means

39

clustering based on HSIC. In this chapter, we describe a framework that can encompass all

these descriptions. Also, we show the capability of this framework in explaining a number

of new machine learning techniques. In particular, we show that two successful metric

learning techniques, namely Fisher’s Discriminant Analysis (FDA) [17] and Closed Form

Metric Learning (CFML) [1], can be formulated in the context of our proposed framework.

In addition, inspired by the introduced general framework, we derive a new method for

distant metric learning. The new technique uses the concepts from normalized cut spectral

clustering and can be formulated in terms of a convex optimization problem.

4.1 General Framework

Let x and y be two random variables with joint distribution pxy and supports X and Y ,

respectively. Suppose Z := {(x1,y1), · · · , (xn,yn)} ⊆ X ×Y is a collection of n independent

observations drawn from pxy. As stated in Section 3.2.1, an empirical estimator of HSIC is

given by

HSIC(Z) := (n− 1)−2 Tr(KHBH) (4.1)

where H,K,B ∈ Rn×n,Kij = k(xi,xj),Bij = b(yi,yj), H = I − n−111T, k and b are

positive semidefinite kernel functions, and 1 is a vector of ones. In order to maximize the

dependence between two random variables x and y, we need to increase the value of the

empirical estimate, i.e. Tr(KHBH). As mentioned in the previous chapter, matrices K and

B usually represent kernels of data and labels, respectively.

In some applications, the labels are already given as some sort of side-information about

the data (e.g. metric learning). In other applications (e.g. clustering and dimensionality

reduction), the labels are unknown and the goal is to learn labels based on data. In the latter

case, the unknown labels might be categorical (clustering) or continuous (dimensionality

reduction). In the following sections, we consider each of the above techniques in more

detail.

40

4.2 Dimensionality Reduction Techniques

Let Xm×n = [x1, . . . ,xn] be a data matrix consisting of n points in the Rm space. Also let

matrix Gd×n=[g1, . . . ,gn] be an alternative representation of the data consisting of n points

in Rd. In dimensionality reduction techniques, d is assumed to be much less than m, and

the goal is to find a real-valued matrix G such that it is an appropriate low-dimensional

representation of the data.

As mentioned earlier, it is known that many widely used dimensionality reduction algo-

rithms can be represented using the framework of kernel PCA [33]. The covered methods

include metric multidimensional scaling (MDS) [11], Isomap [47, 48], locally linear embed-

ding (LLE) [35, 37] and Laplacian eigenmap (LEM) [5]. On the other hand, it is known [41]

that kernel PCA can be reproduced by maximizing the empirical estimate of HSIC between

a kernel of X and a linear kernel of a low-dimensional representation G. Based on this,

many dimensionality reduction techniques can be recovered using the formulation given in

4.1. The formulation, in this special case, reproduces kernel PCA as follows:

max Tr
[
HKH GTG

]
= Tr

[
G(HKH)GT

]
(4.2)

In kernel PCA, the optimization problem presented in 4.2 is solved subject to GGT = I,

where G could be any real-valued matrix of size d× n 1. No other constraint is imposed on

G in this formulation. As will be seen in the subsequent sections, one needs to impose some

extra constraints on the structure of G when reproducing clustering and metric learning

techniques.

By appropriately choosing the value of the kernel matrix K in 4.2, one can recover

different dimensionality reduction techniques. In the following, we briefly introduce the

aforementioned dimensionality reduction methods, namely, MDS, Isomap, LLE and LEM;

and present the kernels that can be used to reproduce these methods based on the formulation

given in 4.2.

1If the linear kernel K = XTX is used in 4.2, the low-dimensional representation represented by G would

be identical to the low-dimensional representation given by direct PCA up to scaling factors [19].

41

LLE: In nonlinear dimensionality reduction methods, including LLE, the goal is to learn

a low-dimensional neighborhood preserving embedding (manifold) of high-dimensional data.

Suppose the data in the high-dimensional space lie on or are close to a (generally nonlinear)

manifold of dimensional d. In LLE, we assume that each point and its nearest neighbors lie

on, or are close to, a locally linear patch of the manifold. To determine the nearest neighbors

of a given data point, we can choose a fixed number, say k, of its nearest neighbors in

Euclidian space; or choose all points within some fixed radius ε of that given data point. At

the next step, we obtain the optimal weights by which each data point can be reconstructed

from its nearest neighbors in the original space. This can be done by solving the following

optimization problem:

min
W

n∑
i=1

‖xi −
k∑
j=1

Wij xNi(j)‖2 s.t.
k∑
j=1

Wij = 1, 1 ≤ i ≤ n.

where Ni(j) denotes the index of the jth neighbor of the ith point, and Wij denoted the

contribution of the jth data point in reconstructing the ith data point. Of course, the (i, j)-th

element of the weight matrix W equals zero whenever the jth data point is not a neighbor of

the ith data point. At the last step, LLE selects data points g1, · · · ,gn in the low-dimensional

space so as to preserve the reconstruction weights obtained above. Mathematically speaking,

it solves

min
G

n∑
i=1

‖gi −
k∑
j=1

WijgNi(j)
‖2

This objective function can be expressed as [35]:

min
G

Tr(GLGT) (4.3)

where L = (I−W)T(I−W). The solution for G can have arbitrary origin and orientation. To

make the problem well-posed, the optimization problem in 4.3 is solved subject to constraints∑n
i=1 gi = 0 and GGT = I. Matrix L in 4.3 always has an eigenvalue equal to zero, and

the corresponding eigenvector is a vector of all ones, denoted by 1. Using the Rayleigh-Ritz

theorem (see e.g. [31]), one can see that the solution to the optimization problem in 4.3

subject to the constraints proposed above is given by the eigenvectors corresponding to the

42

lowest eigenvalues of L, excluding the trivial eigenvector 1. To express LLE in terms of the

formulation given in 4.2 (which, as mentioned before, is the formulation of kernel PCA), one

needs to express the optimization problem in 4.3 as a maximization problem. This can be

done in two ways. The first one is by using the pseudo inverse of matrix L, which we denote

by L†. Using the Rayleigh-Ritz theorem, and the fact that the eigenvalues of the pseudo

inverse of a given matrix are equal to the inverse of the eigenvalues of the original matrix,

one can show that the solution to LLE can be reproduced by solving

max
G

Tr(GL†GT) (4.4)

Note that matrix L, and thus its pseudo inverse L†, are positive semidefinite matrices. So

we can set the value of the kernel matrix K in 4.2 to L†, and solve the resulting optimization

problem subject to GGT = I. This provides us with the desired equivalent optimization

problem expressed in terms of the formulation given in 4.2.

Another way to express the optimization problem presented in 4.3 as an equivalent max-

imization problem, is the following:

max
G

Tr(G(λmaxI− L)GT) (4.5)

Here, λmax is the absolute value of the largest negative eigenvalue of L. The term λmaxI in

4.5 is added to make the expression λmaxI− L positive semidefinite. Note that:

Tr[G(λmaxI− L†)GT] = Tr[G(λmaxI)GT] + Tr[GL†GT] = dλmax + Tr[GL†GT]

and thus the solution to 4.5 is identical to the solution to LLE in 4.3.

MDS: In MDS, the idea is to choose points in the low-dimensional space such that the

pairwise distances between the points in this space are as close as possible to the pairwise

distances between the points in the original space. Mathematically speaking, MDS aims to

minimize the following objective function:

min
G

n∑
i=1

n∑
j=1

(d
(X)
ij − d

(G)
ij)2

43

where d
(X)
ij = ‖xi − xj‖ and d

(G)
ij = ‖gi − gj‖ are Euclidian distances between points in the

original and the low-dimensional space, respectively. Let D(X) denote the distance matrix

whose (i, j)-th element is equal to d
(X)
ij . It can be shown [11] that the solution to the above

optimization problem is given by G = Λ1/2VT where V represents the eigenvectors of matrix

−1
2
HD(X)H corresponding to the top d eigenvalues, and Λ is a diagonal matrix consisting

of the top d eigenvalues of −1
2
HD(X)H. So MDS can be reproduced using the formulation

given in 4.2 up to scaling factors Λ1/2.

Isomap: Isomap is very similar to MDS. The only difference is that in evaluating the dis-

tance matrix D(X) it uses geodesic distance between points instead of the Euclidian distance.

The geodesic distance between points is obtained based on an auxiliary graph. The auxiliary

graph has n vertices corresponding to the n data points. Each data point is connected to its

nearest data points via an edge. The geodesic distances between two data points is given by

the shortest path between the corresponding vertices on the graph. Again, to determine the

nearest neighbors of a given data point one can choose a fixed number, say k, of its nearest

neighbors in the Euclidian space; or choose all points within some fixed radius ε of that data

point.

LEM: In LEM, we first need to have a similarity matrix W whose (i, j)-th entry captures

a measure of similarity between the jth and ithdata points. A widely used measure is the

Gaussian measure defined as Wij = exp(−‖xi−xj‖2
σ2). Then LEM selects points g1, · · · ,gn in

the low-dimensional space such that the following objective function is minimized:

min
G

n∑
i=1

n∑
j=1

‖gi − gj‖2Wij (4.6)

Optimizing the above objective function results in the data points with high similarity lying

close to each other. One may see that this objective function can be expressed as follows:

min
G

Tr(GLGT) (4.7)

44

where L = D −W, D is a diagonal matrix with Dii =
∑n

j=1Wij. Matrix L defined in this

way is called the Laplacian matrix. Again, to account for the degrees of freedom due to

location and orientation of data, one can solve the optimization problem in 4.7 subject to

GGT = I. Again like LLE, one can use either L† or λmaxI − L to obtain a maximization

problem. This allows us to express LEM in terms of the formulation given in 4.2.

A normalized form of LEM may also be proposed as follows. In this form, the goal is to

minimize the following objective function:

min
G

n∑
i=1

n∑
j=1

‖ gi√
Dii

− gj√
Djj

‖2Wij (4.8)

Similar to normal LEM the above objective function can be expressed in the trace form. To

do so, we can replace G by GD−
1
2 in 4.7 to arrive at:

min
G

Tr[GD−
1
2 LD−

1
2 GT]

The above objective function can be simplified as follows:

Tr[GD−
1
2 LD−

1
2 GT] = Tr[GD−

1
2 (D−W)D−

1
2 GT]

= Tr[G(I−D−
1
2 WD−

1
2)GT]

= Tr[GGT]− Tr[G(−D−
1
2 WD−

1
2)GT]

= d− Tr[G(D−
1
2 WD−

1
2)GT]

Based on this, one can write the optimization problem in 4.8 as a maximization problem as

follows:

max
G

Tr[G(D−
1
2 WD−

1
2)GT]

Now we can use a kernel of the form λmaxI + D−
1
2 WD−

1
2 to recover normalized LEM in

terms of the formulation given in 4.2. In this formulation, λmax is the absolute value of the

largest negative eigenvalue of D−
1
2 WD−

1
2 , and helps to obtain a positive semidefinite kernel

in formulation 4.2.

45

The above results are summarized in Table 4.1. It is interesting to note that the kernels

introduced for MDS, Isomap and kernel L† for LLE and LEM are already double centered

and the application of centering matrices H in equation (4.2) leaves them unchanged. Also,

the centering effect of H on the kernels λmaxI−L for LLE and LEM does not affect the final

result. To see this, let α1, · · · , αn be eigenvalues of the involved matrix L, and u1, · · · ,un
be the corresponding orthogonal eigenvectors 2. It can be easily seen that matrix L in both

LLE and LEM has an eigenvalue equal to zero, and the eigenvector corresponding to this

eigenvalue is 1. Without loss of generality, we may assume α1 = 0 and u1 = 1. Due to

orthogonality of eigenvectors of L, we have 1Tui = 0, for all 2 ≤ i ≤ n. It immediately

follows that:

Hui = (I− 1

n
11T)ui = ui −

1

n
11Tui = ui for all 2 ≤ i ≤ n

Now we note that the eigenvectors of the matrix λmaxI−L are the same as the eigenvectors

of L, and the corresponding eigenvalues are given by λmax−αi. Based on this, the eigenvalue

decomposition of matrix λmaxI− L would be the following:

λmaxI− L = (λmax − α1)u1u
T
1 + (λmax − α2)u2u

T
2 + · · ·+ (λmax − αn)unu

T
n

Double multiplying both sides of the above equation by H, and noting that Hu1 = 0, and

Hui = ui for 2 ≤ i ≤ n, we obtain:

H(λmaxI− L)H = (λmax − α1)(Hu1)(uT
1 H) +

(λmax − α2)(Hu2)(uT
2 H) + · · ·+ (λmax − αn)(Hun)(uT

nH)

= (λmax − α2)u2u
T
2 + · · ·+ (λmax − αn)unu

T
n

As seen above, the eigenvectors u2, · · · ,un remain unchanged. Now we note that the solution

to the optimization problem presented in 4.2, in this special case, is given by the eigenvectors

corresponding to the largest eigenvalues λmax − αi, 2 ≤ i ≤ n. This is exactly identical to

the solution of LLE and LEM.
2Note that matrix L is real and symmetric in both LLE and LEM methods, and thus has orthogonal

eigenvectors given by eigenvalue decomposition.

46

Kernel K Kernel B Comments

PCA XTX GTG —

MDS −1
2
HDH GTG D is the matrix of pair-

wise Euclidian distances.

Isomap −1
2
HD(G)H GTG D(G) is the matrix of pair-

wise geodesic distances.

LLE L† or λmaxI− L GTG L=(I−V)T (I−V)

V is the matrix of locally

embedded weights

LEM L† or λmaxI− L GTG L=D−W

W is a positive symmet-

ric affinity matrix, D is

the corresponding degree

matrix.

Normalized LEM λmaxI+D−
1
2 WD−

1
2 GTG W is a positive symmet-

ric affinity matrix, D is

the corresponding degree

matrix.

Table 4.1: Different Dimensionality Reduction techniques formulated in terms of the proposed

general framework. In all techniques, the constraint GGT=I is used.

47

4.3 Clustering algorithms

In a clustering application, the goal is to group n given data points into d clusters. (The

number of clusters is assumed to be given.) An indicator matrix Fd×n is usually used to

describe the members in each cluster. Indicator matrix F is defined as follows: Fij = 1

if and only if the jth data point belongs to the ith cluster. In [41], Song et. al provide a

maximal dependence view of k-means clustering based on HSIC. In this section, we take a

different approach from that presented in [41] which allows us to recast a number of well-

known clustering algorithm using the formulation given in 4.2. In our approach, matrix G in

4.2 plays the role of a normalized indicator matrix and therefore is the unknown variable in

the underlying clustering problem. As presented in Table 4.2, matrix G may be normalized

in different ways depending on the clustering technique. However, in all cases, it satisfies

the constraints G ≥ 0 and GGT=I, by construction.

K-means. We first briefly review the k-means clustering method. Suppose we are given

n data points x1,x2, · · · ,xn in Rm. The goal is to cluster the data into d groups indexed

by 1, 2, · · · , d. To accomplish this task, k-means finds d centroids c1, c2, · · · , cd, and assigns

each data point to one (and only one) of them. Let Ci be the set of indices of data points that

are assigned to the ith centroid (cluster), i = 1, 2, · · · , d. The selection of centroid locations

and the assignment of data points to clusters in k-means clustering is such that the following

objective function is minimized:
d∑
i=1

∑
j∈Ci

‖xj − ci‖2
2 (4.9)

This objective function can be written in matrix form as follows:

min
C,F
‖X−CF‖2

F (4.10)

where X = [x1,x2, · · · ,xn] is the data matrix and C = [c1, c2, · · · , cd] is a matrix consisting

of cluster centroids. Matrix F denotes the indicator matrix, as stated before. To investigate

the above optimization problem, we first assume that the indicator matrix F is fixed and

obtain the optimum matrix for C as a function of X and F. Taking the derivative of the

48

above objective function with respect to matrix C, we obtain:

∂

∂C
Tr[(X−CF)T(X−CF)] =

∂

∂C
(Tr[XTX]− 2Tr[XTCF] + Tr[FFTCTC])

= −2FXT + 2C (FFT)

Setting the above derivative equal to zero, we obtain:

C = XFT(FFT)−1 (4.11)

This equation indicates that, for a fixed clustering of data points, the corresponding

optimal centroids are given by the cluster means. We may proceed by plugging C from

equation 4.11 into 4.10 to obtain:

max
F

Tr[XTXFT(FFT)−1F]

Defining G = (FFT)−
1
2 F, we can express the above optimization problem as follows:

max
G

Tr[G XTX GT] (4.12)

Note that in the above formulation we have GGT = I. An example of G in the case

where we have 5 data points and 2 clusters, is presented below. Here it is assumed that the

first 2 data points belong to the first cluster and the last 3 data points belong to the second

cluster.

G =

 1√
2

1√
2

0 0 0

0 0 1√
3

1√
3

1√
3


One may note that the optimization problem presented in 4.12 can be written as:

max
G

Tr
[
G(HXTXH)GT

]
To see this, we note that the double application of matrix H is equivalent to replacing matrix

X by XH, and this is equivalent to centering the data points around the origin. It is not

hard to show that the solution to the original k-means problem presented in 4.9 does not

change by shifting the data points by a constant vector. The above results, taken together,

49

imply that the method of k-means clustering can be cast using the formulation presented

in 4.2. Note that, here, we need to impose two constraints on matrix G when solving the

optimization problem in 4.2. First, matrix G is required to be to be orthogonal (which is the

same condition as that presented for kernel PCA). In addition, the elements in each row of

G are required to be nonnegative and equal. The second constraint restricts the acceptable

values for matrix G compared to the case of kernel PCA.

Weighted k-means. Weighted k-means clustering is similar to k-means clustering; but

it assigns a weight (degree of importance) to each data point. Here we denote the weight

of the ith point by Mi. The method of weighted k-means minimizes the following objective

function:
n∑
i=1

Mi‖xi − cπ(i)‖2
2 (4.13)

where π(i) ∈ {1, 2, · · · , d} is the index of the cluster centroid to which the ith data point

is assigned. One can easily see that the weighted k-means clustering with equal weights is

equivalent to k-means clustering. The objective function presented in 4.13 may be written

in terms of matrices as follows:

min
C,F
‖(X−CF)M

1
2‖2

F

where M is a diagonal matrix with the ith diagonal entry being equal to Mi. Using ma-

trix manipulations similar to that presented above for k-means clustering, we arrive at the

following maximization problem for weighted k-means:

min
G

Tr
[
G M

1
2 XTX M

1
2 GT

]
(4.14)

where G is defined as: G =
(
FMFT

)−1
2 FM

1
2 . This representation may be used to obtain

the formulation given in table (4.2). An example of G in the case where we have 5 data

points and 2 clusters, is presented below. Here it is assumed that the first 2 data points

belong to the first cluster and the last 3 data points belong to the second cluster. Weights

of the data points are denoted by Mi, i = 1, · · · , 5.

G =

 √
M1√

M1+M2

√
M2√

M1+M2
0 0 0

0 0
√
M3√

M3+M4+M5

√
M4√

M3+M4+M5

√
M5√

M3+M4+M5


50

Spectral Clustering. In Spectral clustering, the goal again is to cluster n data points

x1,x2, · · · ,xn in Rm into d clusters. Let Ci, i = 1, · · · , d, denote the set of indices of points

that are assigned to the ith cluster. In spectral clustering, the clustering task is based on a

positive symmetric similarity matrix W whose (i, j)-th entry provides a measure of similarity

between the ith and the jth data point. There are two forms of spectral clustering known as

ratio cut spectral clustering and normalized cut spectral clustering [51]. In ratio cut spectral

clustering the goal is to minimize the following objective function:

RatioCut(C1, · · · , Cn) =
d∑
i=1

cut(Ci, C̄i)
|Ci|

(4.15)

Here, | · | denotes cardinality of a set, and cut(Ci, C̄i) is the summation over similarities of

every point whose index is in set Ci with each and every point whose index is out of this set.

Mathematically speaking, let C̄i be the complement of set Ci defined as C̄i = {1, 2, · · · , n}−Ci.

Then cut(Ci, C̄i) is:

cut(Ci, C̄i) =
∑

r∈Ci,s∈C̄i

Wr,s =
∑

r∈Ci,s/∈Ci

Wr,s

Two important matrices in spectral clustering are the degree matrix D and the Laplacian

matrix L. The degree matrix is an n×n diagonal matrix with the ith diagonal entry defined

as Di,i =
∑n

j=1 Wi,j. The Laplacian matrix L is defined as L = D −W. One may show

that the value of cut(Ci, C̄i) can be reproduced by FiLFT
i , where Fi denotes the ith row of

the indicator matrix F, i = 1, 2, · · · , d. Based on this, the objective function in 4.15 may be

written as:

RatioCut(C1, · · · , Cn) =
d∑
i=1

FiLFT
i

|FiFT
i |

=
d∑
i=1

(Fi/‖Fi‖)L(Fi/‖Fi‖)T.

This objective function may be summarized in matrix form as follows:

min
G

Tr[GLGT]

where G = (FFT)−
1
2 F. Note that again we have GGT = I, by construction. We may use

the same technique as that used in the previous section to change the above minimization

51

problem to a maximization problem:

max
G

Tr[G(λmaxI− L)GT]

This formulation is presented in the forth row of Table 4.2. Now we turn our attention

to Normalized cut spectral clustering.

Normalized cut spectral clustering is similar to ratio cut spectral clustering, but it uses

a modified objective function as follows:

RatioCut(C1, · · · , Cn) =
d∑
i=1

cut(Ci, C̄i)
vol(Ci)

(4.16)

where vol(Ci) =
∑

r∈Ci Dr,r, by definition. We may express the above objective function

presented in 4.16 in terms of the indicator matrix F as follows:

RatioCut(C1, · · · , Cn) =
d∑
i=1

FiLFT
i

FiDFT
i

(4.17)

=
d∑
i=1

FiD
1
2 D−

1
2 LD−

1
2 D

1
2 FT

i

FiDFT
i

=
d∑
i=1

(
FiD

1
2

‖FiD
1
2‖

)
D−

1
2 LD−

1
2

(
FiD

1
2

‖FiD
1
2‖

)T

The above summation may be summarized in the matrix form as follows:

min
G

Tr[G D−
1
2 LD−

1
2 GT] (4.18)

where G = (FDFT)−
1
2 FD

1
2 . Note that once again we have GGT = I. An example of G in

the case where we have 5 data points and 2 clusters, is presented below. Here, it is again

assumed that the first 2 data points belong to the first cluster and the last 3 data points

belong to the second cluster. Also, the degree corresponding to the data ith data point,

i = 1, · · · , 5, is denoted by Di.

G =

 √
D1√

D1+D2

√
D2√

D1+D2
0 0 0

0 0
√
D3√

D3+D4+D5

√
D4√

D3+D4+D5

√
D5√

D3+D4+D5


52

The objective function presented in 4.18 may be further simplified to:

Tr[G D−
1
2 LD−

1
2 GT] = Tr[G D−

1
2 (D−W)D−

1
2 GT]

= Tr[G (I−D−
1
2 WD−

1
2) GT]

= d− Tr[G D−
1
2 WD−

1
2 GT]

Based on this, the minimization problem presented in 4.18 may be expressed as a maximiza-

tion problem as follows:

max
G

Tr[G D−
1
2 WD−

1
2 GT] (4.19)

Since the matrix D−
1
2 WD−

1
2 is not necessarily positive semidefinite, we may use the

same technique as that introduced in the previous section to define the new kernel λmaxI +

D−
1
2 WD−

1
2 . The result is presented in Table 4.2.

Remark. One may see that the kernels presented for weighted k-means, ratio cut spec-

tral clustering and normalized cut spectral clustering are not double centered. Based on

this, application of the centering matrix H might lead to slightly different versions of these

algorithms.

4.4 Metric learning

In metric learning applications, we assume the data labels are given and the aim is to learn

a linear transformation U such that the location of the points in the new space, UTX, well

matches the underlying given labels.

In this section we mostly deal with the formulation of LEM introduced in section 4.2.

The LEM method can be formulated as follows:

min
G

Tr
[
GLGT

]
, s.t. GAGT=I (4.20)

where L=D−W is the Laplacian matrix, W is an affinity matrix and D is the corresponding

degree matrix. In the above formulation, it is common to set matrix A either to the identity

53

Kernel K Kernel B Comments

K-means XTX GTG G=
(
FFT

)− 1
2 F is the normal-

ized indicator matrix

Kernel k-means K GTG G=
(
FFT

)− 1
2 F is the normal-

ized indicator matrix

Weighted k-means M
1
2 XTX M

1
2 GTG M diagonal weight matrix

G=
(
FMFT

)− 1
2 FM

1
2 is the

normalized indicator matrix

Ratio Cut

spectral

clustering

λmaxI− L GTG L=D−W

W is a positive symmetric

affinity matrix, D is the cor-

responding degree matrix.

G=
(
FFT

)− 1
2 F is the normal-

ized indicator matrix

Normalized Cut

spectral

clustering

λmaxI+D−
1
2 WD−

1
2 GTG L=D−W

W is a positive symmetric

affinity matrix, D is the cor-

responding degree matrix.

G=
(
FDFT

)− 1
2 FD

1
2 is the

normalized indicator matrix

Table 4.2: Different clustering techniques formulated in terms of the proposed general framework.

In all techniques, the constraints G ≥ 0 and GGT=I are assumed.

54

matrix I or the degree matrix D. Using the Rayleigh-Ritz theorem, it can be shown that

the solution subject to the former constraint is given by the eigenvectors corresponding to

the smallest eigenvalues of L. Also, using the change of variable G = GD
1
2 , one can show

that the solution subject to the later constraint is given by the eigenvectors corresponding

to the smallest eigenvalues of D−1W 3.

In this section, we propose a new constraint for solving the optimization problem pre-

sented in 4.20. Suppose all eigenvalues of L are in interval [0, 1). If not, one can multiply

the underlying affinity matrix W by an appropriate constant such that the above condition

become satisfied 4. We propose to solve the optimization problem in 4.20 by setting the

value of A to H − L, where H is again the centering matrix. The resulting optimization

problem would be:

min
G

Tr
[
GLGT

]
, s.t. G(H− L)GT=I (4.21)

We will see some applications and interpretations of this formulation later in this section.

A discussion on the solution of the LEM problem subject to this constraint is presented in

Appendix A.

At this step, let us show that the optimization problem presented in 4.21 can be expressed

in terms of the formulation given in 4.2. To do so, we choose a kernel of the form K =

λ(H−L)−L in 4.2, where λ is a constant factor. We show that: (i) the optimization problem

presented in 4.2 with the above kernel and constraint G(H− L)GT = I is equivalent to the

optimization problem presented in 4.21. (ii) There exists some λ for which the above kernel

3Note that this type of normalization of the Laplacian matrix L is slightly different from that presented

in section 4.2, where L was symmetrically normalized as D− 1
2 LD− 1

2 .
4This constant should converge to 1/λm from left, where λm is the largest eigenvalue of L. Note that L

is positive semidefinite, and all its eigenvalues are nonnegative.

55

is positive semidefinite. Verification of the first part is straightforward. We note that:

Tr[GKGT] = Tr[G (λ(H− L)− L) GT] (4.22)

= λTr[G(H− L)GT]− Tr[GLGT]

= λTr[I]− Tr[GLGT]

= λd− Tr[GLGT]

Since λd is a constant, maximizing the objective function in 4.22 is equivalent to minimizing

the objective function in 4.21. From this, it follows that the optimization problems in 4.2

and 4.21 are equivalent when they are solved subject to constraint G(H− L)GT = I.

Now we show that there exists a parameter λ for which the introduced kernel K =

λ(H−L)−L is positive semidefinite. Let 0 ≤ α1 ≤ · · · ≤ αn be eigenvalues of the Laplacian

matrix, L. We show that the value of λ0 = max{ αi

1−αi
}ni=1 satisfies the above property, that

is the corresponding kernel K0 = λ0(H − L) − L will be positive semidefinite. Considering

the fact that 1− αi > 0 for all 1 ≤ i ≤ n, one can check that with the above choice of λ0 we

have:

λ0 − (λ0 + 1)αi ≥ 0 for all 1 ≤ i ≤ n (4.23)

We will use these inequalities later in our proof. To show that K0 is positive semidefinite,

we first note that K0 = λ0(H − L) − L = λ0H − (λ0 + 1)L is a real symmetric matrix.

So its eigenvalues are real, and the eigenvectors corresponding to distinct eigenvalues are

orthogonal. It is not hard to see that 1 is an eigenvector of K0, and the corresponding

eigenvalue is zero. To show that K0 is positive semidefinite, we need to show that the

nonzero eigenvalues of K0 are positive. Let β be a nonzero eigenvalue of K0, and u be the

corresponding eigenvector. Due to the orthogonality property mentioned above, we have

1Tu = 0. From this expression, one can see that Hu = (I − 1
n
11T)u = u. Now recall that

K0u = βu, so we have:

βu = K0u = (λ0H− (λ0 + 1)L)u = λ0Hu− (λ0 + 1)Lu = λ0u− (λ0 + 1)Lu

56

Rearranging the terms in the above equation, we obtain:

Lu =
λ0 − β
λ0 + 1

u

From this expression it follows that if β is a nonzero eigenvalue of L, then α∗ = λ0−β
λ0+1

is an

eigenvalue of L. Using this result, one can express the value of β as follows:

β = λ0 − (λ0 + 1)α∗

Recall from 4.23 that we have λ0− (λ0 + 1)αi ≥ 0 for all 1 ≤ i ≤ n. So β ≥ 0, and the proof

is complete.

In this chapter, we use the formulation presented in 4.21 to reproduce two examples

of successful metric learning techniques, namely, Fisher’s discriminant analysis (FDA) and

Closed-form metric learning (CFML). In addition, we propose a new metric learning method

based on ideas from normalized cut spectral clustering. The proposed method is associated

with a convex optimization problem.

Let us start by reviewing the methods of Fisher’s discriminant analysis (FDA) and Closed-

form metric learning (CFML).

Fisher Discriminant Analysis (FDA): Let x1,x2, · · · ,xn be n data points in Rm.

Assume the labels of data are given, meaning that the data is already partitioned into, say d,

classes. Let Ci be the set of indices of data points that belong to the ith class, i = 1, 2, · · · , d.

In metric learning methods the goal is to find a linear transformation U such that the points

zi=UTxi (i = 1, . . . , n) in the low-dimensional space satisfy the following property: Points

in the same class lie as close as possible to each other, and points from different classes lie

as far as possible from each other. FDA accomplishes this goal by maximizing the following

objective function:

max
U

Tr[(UTSWU)−1(UTSBU)] (4.24)

where SW is the within covariance of the data points, and SB is the between covariance of

57

the data points. These covariance matrices are mathematically defined as:

SW =
d∑
i=1

∑
j∈Ci

(xj − ci)
T(xj − ci) (4.25)

SB =
d∑
i=1

(ci − c)T(ci − c)

where ci denotes the mean point of the ith class of data, and c denotes the mean of the

whole mean points ci’s, i = 1, 2, · · · , d. It is shown (see, e.g., [18]) that the solutions to

the above optimization problem are determined by those eigenvectors corresponding to the

largest eigenvalues of matrix S−1
W SB.

To extract the FDA method based on the formulation presented in (4.21), we set the value

of G to UTX, that is, a low-dimensional representation of the data. Also, we set the value

of L to a Laplacian of the labels. The appropriate Laplacian for the labels that reproduces

the FDA method is obtained based on the affinity matrix W=GTG, where G=
(
FFT

)− 1
2 F

is a normalized indicator matrix. A simple example of W for the case where we have only

two clusters with 2 and 3 members is given below:

W =



1
2

1
2

0 0 0

1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3


As mentioned earlier, the Laplacian matrix would be obtained from this affinity matrix

via equation L=D−W. To solve the underlying LEM problem we first need to choose a

constraint, as presented in (4.20). Using the newly introduced constraint G (H−L) GT=I,

which in this application becomes
(
UTX

)
(H−L)

(
XTU

)
=I, we arrive at the following op-

timization problem:

min
U

Tr
[
UTSWU

]
, s.t. UTSBU=I (4.26)

58

where SW = XLXT and SB = X (H−L) XT. One may see that the values of SW and

SB presented above, in fact, denote the within- and between covariance of the data points

x1,x2, · · · ,xn, presented in 4.25. From the Rayleigh-Ritz theorem, it follows that the solu-

tions to the above optimization problem are determined by the eigenvectors corresponding

to the smallest eigenvalues of matrix S−1
B SW . Recall that the solutions of FDA are given by

the top eigenvectors of S−1
W SB. The equivalence between the two approaches can be seen by

considering the fact that the matrix S−1
B SW is the inverse of S−1

W SB, and thus its eigenvalues

are the inverse of the eigenvalues of matrix S−1
W SB.

Closed Form Metric Learning (CFML): closed Form Metric Learning (CFML) [1]

is a metric learning technique which, similar to FDA, provides closed-form solutions for the

optimum linear transformation U. In this section, we discuss type (II) of this method. Let

S be the set of all similar pairs in the data, e.i., the set of all pairs of data that belong to the

same class. Also let D be the set of all dissimilar pairs, e.i., the set of all pairs that belong

to different classes. Type II of CFML solves the following optimization problem:

min
U

Tr[UT(SW − SB)U] s.t. UTSWU = I

where SW and SB are defined as:

SW =
1

|S|
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T (4.27)

SB =
1

|D|
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T (4.28)

It may be shown [1] that the solution to the above optimization problem is given by the

top eigenvectors of matrix S−1
W SB.

To extract this technique based on the formulation given in (4.20), we may use the same

steps as those described for the FDA. The only difference is that we need to use the affinity

matrix W= 1
n
F

T
F to include the side information given by the labels. A simple example of

W for the case where we have only two clusters with 2 and 3 members is given below:

59

W =
1

5



1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


It is not hard to show that, in this case, SW = XLXT and SB = X (H−L) XT would

be equal to SW and SB presented in equations (4.27) and (4.28), up to scaling factors 1
|S|

and 1
|D| , respectively. Recall that the solution to the optimization problem presented in 4.26

is given by the eigenvectors corresponding to the smallest eigenvalues of matrix S−1
B SW . So

the solution is identical to the solution of the CFML, which is given by the eigenvectors

corresponding to the top eigenvalues of matrix S−1
W SB.

A new Algorithm: Metric learning based on Normalized cut spectral clustering

(ML-SpCl):

In the previous subsections, we used a linear kernel for the low-dimensional representation

UTX in association with a Laplacian of the labels. In this subsection, we use a Laplacian

of low-dimensional representation UTX in association with a linear kernel of G. As we will

see shortly, this provides us with a new algorithm for distance metric learning which has an

associated underlying convex optimization problem. The main idea in this technique is as

follows: we learn the transformation matrix U such that the clusters obtained by Normalized

cut spectral clustering in the low-dimensional representation of data (given by UTX) matches

the clusters already given by the data labels.

To do so, we use a Gaussian similarity matrix W to construct the Laplacian for UTX,

as follows:

Wij=exp
(
−
∥∥UTxi−UTxj

∥∥2
)

=exp
(
−(xi−xj)

TP (xi−xj)
)

(4.29)

where P = UUT is a symmetric semi-positive matrix.

60

Kernel K Affinity matrix Comments

CFML
(
UTX

)T (
UTX

)
W = 1

n
F

T
F FFT=D, F ≥ 0

F is the indicator

matrix consisting of

0’s and 1’s.

FDA
(
UTX

)T (
UTX

)
W = GTG GGT=I, G ≥ 0

G=
(
FFT

)− 1
2 F is

normalized indicator

matrix

ML-SpCl GTG Wij =

exp
(
−
∥∥UTxi−UTxj

∥∥2
) GGT=I, G ≥ 0

G=
(
FFT

)− 1
2 F is

normalized indicator

matrix

Table 4.3: Different Metric learning techniques formulated in terms of the proposed general frame-

work.

As mentioned in previous sections, in the Normalized cut spectral clustering, we are

looking for a normalized indicator function G=
(
FFT

)−1
2 F (GGT=I) which maximizes the

following trace:

max Tr
[
G D−

1
2 WD−

1
2 G

T
]

(4.30)

where W is the Gaussian similarity matrix and D is the corresponding degree matrix. In

our application, however, the situation is the reverse. That is, we already have an indicator

matrix G and need to learn the similarity matrix W, or equivalently the transformation

matrix U. This can be accomplished by setting the value of G based on the given data

labels and solving the maximization problem presented in (4.30) for U.

Relation to other techniques: The technique introduced above is closely related to

Neighborhood Component Analysis (NCA) [21] and Maximally Collapsing Metric Learning

61

(MCML) techniques [20]. In NCA, a conditional probability p(i|j) is defined as follows:

p(i|j) =
exp(−‖UTxi −UTxj‖2)∑
k 6=i exp(−‖UTxi −UTxk‖2)

(4.31)

where U is the transformation which is supposed to be learnt. This conditional probability

is interpreted as the probability that point i selects another point j as one of its neighbors

(classmates). The probability that point i selects itself as a neighbor, p(i|i), is set to zero by

definition in NCA. The NCA method maximizes the following objective function:

max
U

d∑
t=1

∑
(i,j)∈Ct

p(i|j)

where, as before, set Ct, t ∈ {1, · · · , d}, is the set of indices of points in the ith class. It may

be easily seen that the objective function of NCA can be written as follows:

max
U

Tr
[
D−1W (F

T
F)
]

= Tr
[
F D−1W F

T
]

where W is the Gaussian similarity matrix presented in 4.29.

Before discussing the relation between the NCA and our proposed method, let us review

the MCML technique, as well. The method of MCML maximizes the KL divergence between

the above conditional probabilities and the conditional probabilities in the ideal situation.

The conditional probabilities in the ideal situation can be obtained from expression 4.31;

but in this case, it is assumed that all points in the same class collapse to a single point,

and at the same time, points from different classes get infinitely far from each other. It

can be seen that the maximization of KL divergence in this problem results in the following

maximization problem:

max
U

d∑
t=1

∑
(i,j)∈Ct

1

|Ct − 1|
log p(i|j) (4.32)

One may see that this maximization problem is equivalent to maximizing the following

objective function:

max
U

Tr
[
log(D−1W)(GTG)

]
= Tr

[
G log(D−1W) GT

]
(4.33)

62

where G = (FFT− I)−
1
2 F is the normalized indicator matrix. (As before, F is the indicator

matrix consisting of zeros and ones). In 4.33, log(·) denotes the componentwise logarithm

operation.

One may note that in both the NCA and MCML techniques we are aligning a non-

symmetric matrix D−1W with the symmetric matrix FTF or GTG, which may not make

good sense. Maaten and Hinton in [50] suggest using
(
D−1W+(D−1W)

T
)
/2 or (Tr [D])−1W

instead of D−1W, to obtain a symmetric probability matrix. However, none of these alter-

natives has an explicit clustering interpretation. So, in one sense, our method may be inter-

preted as a systematic way for obtaining such a symmetric similarity matrix to be aligned

with GTG.

The optimization problem presented in (4.30), as it stands, is non-convex, and may be

solved in a similar fashion to the optimization problem presented in the NCA technique.

However, one might change the formulation presented in (4.30) by applying a logarithm

operator to the entries of D−
1
2 WD−

1
2 . In this case, it may be seen that, similar to the

situation that we have in MCML, the resulting optimization problem would be convex. To

see this, we note that the logarithm of (i, j) entry of the symmetrically normalized Laplacian,[
D−

1
2 WD−

1
2

]
ij

, equals:

−log

([
D−

1
2 WD−

1
2

]
ij

)
= −log


 Wij√∑

j Wij

√∑
i Wij


ij

 (4.34)

= (xi−xj)
TP (xi−xj) +

1

2
log

(∑
j

Wij

)
+

1

2
log

(∑
i

Wij

)

As in MCML, the first term is linear in P and thus convex, and the next terms are

log(
∑

exp) functions of affine functions of P and therefore they are convex, as well. As a

result, the underlying convex optimization problem may be solved uniquely and does not

suffer from the local minima problem. Interesting future work would be to apply this method

63

to a number of real-world data sets, and compare its performance with the NCA and MCML

techniques.

64

Chapter 5

Conclusion and Future Work

Herein, we have presented a feature selection algorithm based on Hilbert-Schmidt indepen-

dence criterion. To do so, we defined an optimization problem whose solutions are known to

be eigenvectors of a given matrix, and then we obtained sparse solutions to this optimization

problem. Optimization problems of this type frequently appear in the area of machine learn-

ing (and other areas), and the same methodology can be used to achieve sparse solutions to

such problems. This general methodology can thus have applications in a variety of areas

including sparse SVD, variable selection, etc.

To perform the feature selection task, as mentioned in previous chapters we identified a

sparse projection vector such that the dependence between the low-dimensional representa-

tion of data obtained from this projection and the response variables is maximized. We used

a linear kernel for data and an arbitrary kernel for labels. Since there is no restriction on

the kernel for the labels, several variations can be derived from our method. One may note

that each of these techniques corresponds to a linear metric learning algorithm derived from

the original optimization problem when no sparsity constraint is imposed. Fisher discrimi-

nant analysis (FDA) and closed-form metric learning (CFML) are examples of such metric

learning techniques. Based on this flexibility, an immediate future direction of research is to

test the applicability of our algorithm to the feature selection task in contexts rather than

gene expression data.

65

As for the biological part of this work, the research is ongoing to learn more about the

biological significance of the extracted genes. An ultimate goal of the fields of computational

and molecular biology is to extract the gene regulatory networks which control and regulate

the expression levels of genes in the cell. Since our proposed algorithm is a multi-gene feature

selection algorithm it has the capability to take into account the interactions between genes.

This feature is particularly relevant in the study of gene regulatory networks. So one of the

directions of future research is to combine the results obtained from gene expression data

analysis with other sources of biological information to pave the way for an understanding

and analysis of the genetic networks in cancerous and normal cells.

66

APPENDICES

67

Appendix A

In the appendix, we elaborate to some extent on the constraint G (H−L) GT=I used for

solving the LEM objective function presented in equation (4.20). First, we note that H−L,

as it stands1, does not have full rank2. The reason is that, columns of both matrices H and

L, and thus H−L, sum to zero. So the solutions are not simply given by the Rayleigh-Ritz

theorem as the lowest eigenvectors of (H−L)−1L. We guess that the solution to this problem

should involve the pseudo inverse of matrix H−L.

In this appendix, however, we address a weaker version of this constraint, that is the trace

constraint Tr
[
G (H−L) GT

]
= 1. We will show that the solution to this new optimization

problem would be a rank-one matrix G whose columns are given by eigenvector corresponding

to the smallest (nonzero) eigenvalue of L.

To see this, we use a Lagrange multiplier α to obtain:

L (G,α) =Tr
[
GLGT

]
−α

(
Tr
[
G (H−L) GT

]
− 1
)

1 As seen in metric Learning applications, we may set the value of G to UTX . In this case, the introduced

constraint becomes UT
(
X (H−L) XT

)
U=I which is expressed in terms of the new variable U . In this form,

the matrix SB = X (H−L) XT can have full rank and be positive semidefinite and thus the problem may be

solved easily using the Rayleigh-Ritz theorem.
2 We note that as long as the dimension of the low-dimensional representation of data d (or the number

of clusters in clustering applications) is less than the number of data points, the ranks of both sides of the

equality G (H−L) GT=Id×d may be still equal.

68

Differentiating with respect to G gives:

GL = αG (H−L)

By left multiplying both sides by GT and taking the trace, we note that we must look for a

solution with the lowest corresponding Lagrange multiplier α. To proceed, we define a new

variable β = α/(α+ 1) and take the transpose of both sides of the above equation to obtain:

LGT=βHGT (A.1)

This is a generalized eigen-decomposition problem based on a single eigenvalue β. To find

the solution to this equation, we note that any solution to the ordinary eigen-decomposition

problem LGT=βGT (which would be a rank one solution) may be a solution to A.1, as

well. The reason is that all of the eigenvectors of Laplacian matrix L are orthogonal to

the eigenvector 1 and thus the sum of their entries equals zero. (It may be seen that

eigenvector 1 also holds in equation A.1. However, we are not interested in that.) As

a result, multiplication by the centering matrix H leaves them unchanged. Since we are

looking for a solution with the corresponding lowest Lagrange multiplier α = β/(1− β), we

have to choose the eigenvector of L corresponding to the eigenvalue for which the value of

β/(1− β) is a minimum. Since all eigenvalues of L are assumed to be in the interval [0, 1),

this is equivalent to choosing the eigenvector corresponding to the smallest eigenvalue of L.

69

Bibliography

[1] Babak Alipanahi, Michael Biggs, and Ali Ghodsi. Distance metric learning vs. fisher

discriminant analysis. In AAAI’08: Proceedings of the 23rd national conference on

Artificial intelligence, pages 598–603. AAAI Press, 2008. 40, 59

[2] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.

Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G. E. Marti, T. Moore,

J. Hudson Jr, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C.

Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R.

Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt. Distinct types of

diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–

511, 2003. 8, 36

[3] U Alon, N Barkai, DA Notterman, K Gish, S Ybarra, D Mack, and AJ Levine. Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon

tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Science

of the United States of America, 96(12):6745–6750, JUN 8 1999. 36

[4] Edoardo Amaldi and Viggo Kann. On the approximability of minimizing nonzero vari-

ables or unsatisfied relations in linear systems, 1997. 13

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Computation, 15(6):1373–1396, 2003. 41

70

[6] Bhattacharjee. Classification of human lung carcinomas by mRNA expression profiling

reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of

Science of the United States of America, 98(24):13790–13795, NOV 20 2001. 36

[7] M. Biggs, A. Ghodsi, and S. Vavasis. Nonnegative matrix factorization via rank-one

downdate. In ICML ’08: Proceedings of the 25th international conference on Machine

learning, pages 64–71, New York, NY, USA, 2008. ACM. 26, 30, 32

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,

2001. 36

[9] FS Collins, ES Lander, J Rogers, RH Waterston, and Int Human Genome Sequenc-

ing Conso. Finishing the euchromatic sequence of the human genome. NATURE,

431(7011):931–945, 2004. 3

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning,

pages 273–297, 1995. 9

[11] T. Cox and M. Cox. Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd edition,

2001. 41, 44

[12] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by

latent semantic analysis. Journal of the American Society for Information Science,

41:391–407, 1990. 30

[13] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means, spectral clustering

and normalized cuts, 2004. 39

[14] R. Dı̀az-Uriarte and S. Alvarez de Andrés. Gene selection and classification of microarray

data using random forest. BMC Bioinformatics, 7, 2006. 10

[15] S. Draghichi. Data Analysis Tools for DNA Microarrays. Chapman & Hall/CRC, 2003.

11

71

[16] Rine Dudoit, Jane Fridly, and Terence P. Speed. Comparison of discrimination methods

for the classification of tumors using gene expression data. Journal of the American

Statistical Association, 97:77–87, 2002. 37

[17] RA Fisher. The use of multiple measurements in taxonomic problems. ANNALS OF

EUGENICS, 7:179–188, 1936. 40

[18] Keinosuke. Fukunaga. Introduction to statistical pattern recognition. Academic Press,

New York,, 1972. 58

[19] Ali Ghodsi. Dimensionality reduction, a short tutorial. Department of Statistics and

Actuarial Science, University of Waterloo, 2006. 41

[20] Amir Globerson and Sam Roweis. Metric learning by collapsing classes, 2006. 62

[21] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighbour-

hood components analysis. In Advances in Neural Information Processing Systems 17,

pages 513–520. MIT Press, 2004. 61

[22] TR Golub. Molecular classification of cancer: Class discovery and class prediction by

gene expression monitoring. Science, 286(5439):531–537, OCT 15 1999. 10, 36

[23] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical depen-

dence with Hilbert-Schmidt norms. In Algorithmic Learning Theory, 16th International

Conference, ALT 2005, Singapore, October 2005, Proceedings, volume 3734 of Lecture

Notes in Artificial Intelligence, pages 63–77. Springer, October 2005. 25, 26, 27

[24] A. Gretton, K. Fukumizu, C. Hui Teo, L. Song, B. Schölkopf, and Alex Smola. A kernel

statistical test of independence. In Advances in Neural Information Processing Systems

20, pages 585–592. MIT Press, 2008. 25

[25] I. Guyon and Elisseeff A. An introduction to variable and feature selection. Journal of

Machine Learning Research, 3:1157–1182, 2003. 10

72

[26] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification

using support vector machines. Mach. Learn., 46(1-3), 2002. 10, 12

[27] J Khan, JS Wei, M Ringner, LH Saal, M Ladanyi, F Westermann, F Berthold,

M Schwab, CR Antonescu, C Peterson, and PS Meltzer. Classification and diagnos-

tic prediction of cancers using gene expression profiling and artificial neural networks.

Nature Medicine, 7(6):673–679, JUN 2001. 36

[28] R. Kohavi and G.H. John. An introduction to variable and feature selection. Artif Intel,

1(2):273–324, 1997. 9

[29] T Kohonen and P Somervuo. Self-organizing maps of symbol strings. NEUROCOM-

PUTING, 21(1-3):19–30, 1998. 8

[30] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization.

Nature, 401:788–791, 1999. 7

[31] H. Lütkepohl. Handbook of Matrices. Wiley, New York, 1997. 6, 29, 42

[32] S. Ma and J. Huang. Regularized roc method for disease classification and biomarker

selection with microarray data. Bioinformatics, 21:43564362, 2005. 10

[33] Sebastian Mika, Jihun Ham, Jihun Ham, Daniel D. Lee, Daniel D. Lee, Mika Sebas-

tian, Bernhard Schlkopf, and Bernhard Schlkopf. A kernel view of the dimensionality

reduction of manifolds, 2003. 39, 41

[34] F Rosenblatt. The Perceptron: A Perceiving and Recognizing Automaton. Technical

Report, 86-460-1, 1957. 9

[35] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.

Science, 290:2323–2326, 2000. 41, 42

[36] Yvan Saeys, Inaki Inza, and Pedro Larranaga. A review of feature selection techniques

in bioinformatics. Bioinformatics, 2007. 9, 10

73

[37] L. Saul and S. Roweis. Think globally, fit locally: Unsupervised learning of nonlinear

manifolds. JMLR, 2003. 41

[38] D Singh. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell,

1(2):203–209, MAR 2002. 36

[39] Sheila K. Singh, Cynthia Hawkins, Ian D. Clarke, Jeremy A. Squire, Jane Bayani,

Takuichiro Hide, R. Mark Henkelman, Michael D. Cusimano, and Peter B. Dirks. Iden-

tification of human brain tumour initiating cells. Nature, 432(7015):396–401, November

2004. 15, 16

[40] Le Song, Justin Bedo, Karsten M. Borgwardt, Arthur Gretton, and Alex Smola. Gene

selection via the BAHSIC family of algorithms. Bioinformatics, 23(13), 2007. 26

[41] Le Song, Alex Smola, Arthur Gretton, and Karsten M. Borgwardt. A dependence

maximization view of clustering. In ICML ’07: Proceedings of the 24th international

conference on Machine learning, 2007. 39, 41, 48

[42] Le Song, Alex Smola, Arthur Gretton, and Karsten M. Borgwardt. Supervised feature

selection via dependence estimation, 2007. 26

[43] T. P. Speed. Statistical analysis of gene expression microarray data. Chapman &

Hall/CRC, Boca Raton, Fla., 2003. 9

[44] G. W. Stewart. On the early history of the singular value decomposition. SIAM Review,

35:551–566, 1993. 30

[45] AI Su, JB Welsh, LM Sapinoso, SG Kern, P Dimitrov, H Lapp, PG Schultz, SM Pow-

ell, CA Moskaluk, HF Frierson, and GM Hampton. Molecular classification of human

carcinomas by use of gene expression signatures. Cancer Research, 61(20):7388–7393,

OCT 15 2001. 36

[46] E.K. Tang, P.N. Suganthan, and X. Yao. Gene selection algorithms for microarray data

based on least squares support vector machine. BMC Bioinformatics, 7, 2006. 10

74

[47] J. Tenenbaum. Mapping a manifold of perceptual observations. In Advances in Neural

Information Processing Systems 10, pages 682–687, 1998. 41

[48] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290:2319–2323, 2000. 41

[49] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B, 58:267–288, 1994. 30

[50] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journl of

Machine Learning Research, 9:2579–2605, 2008. 63

[51] Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report, Max Plank

Institute for Biologocal Cybernetics, 2006. 51

[52] Jason Weston. SPIDER: a machine learning toolbox (Matlab), 2003. 36

[53] Jason Weston, Andr Elisseeff, Bernd Schlkopf, and Mike Tipping. Use of the zero-norm

with linear models and kernel methods, 2002. 12, 13, 14

[54] X. Zhou and K.Z. Mao. Ls bound based gene selection for dna microarray data. Bioin-

formatics, 21:1559–1564, 2005. 10

75

	List of Tables
	List of Figures
	Introduction
	Gene and Gene Expression
	DNA Microarrays
	Analysis of Gene Expression Data
	Unsupervised Methods
	Supervised Methods
	Feature Selection Methods

	Analysis of Brain Tumors CD133+/- Expression Data
	Introduction
	Application of Principal Component Analysis
	Application of Non-negative Matrix Factorization

	Feature Selection Based on Hilbert-Schmidt Independence Criterion
	Introduction
	Background of the Hilbert-Schmidt Independence Criterion
	Empirical HSIC

	Feature selection via HSIC
	Sparsity constraint

	Experimental results
	Synthetic data
	Gene expression data

	A Unified View of Learning Algorithms Based on Hilbert-Schmidt Independence Criterion
	General Framework
	Dimensionality Reduction Techniques
	Clustering algorithms
	Metric learning

	Conclusion and Future Work
	APPENDICES
	Appendix A
	Bibliography

