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Abstract 

The expansion of supply chains into global networks has drastically increased the 

distance travelled along shipping lanes in a logistics system. Inherently, the increase in 

travel distances produces increased carbon emissions from transport vehicles. When 

increased emissions are combined with a carbon tax or emissions trading system, the 

result is a supply chain with increased costs attributable to the emission generated on the 

transportation routes. Most traditional supply chain design models do not take emissions 

and carbon costs into account. Hence, there is a need to incorporate emission costs into a 

supply chain optimization model to see how the optimal supply chain configuration may 

be affected by the additional expenses. 

This thesis presents a mathematical programming model for the design of green 

supply chains. The costs of carbon dioxide (CO2) emissions were incorporated in the 

objective function, along with the fixed and transportation costs that are typically 

modeled in traditional facility location models. The model also determined the unit flows 

between the various nodes of the supply chain, with the objective of minimizing the total 

cost of the system by strategically locating warehouses throughout the network. 

The literature shows that CO2 emissions produced by a truck are dependent on the 

weight of the vehicle and can be modeled using a concave function. Hence, the carbon 

emissions produced along a shipping lane are dependent upon the number of units and the 

weight of each unit travelling between the two nodes. Due to the concave nature of the 
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emissions, the addition of the emission costs to the problem formulation created a 

nonlinear mixed integer programming (MIP) model.  

A solution algorithm was developed to evaluate the new problem formulation. 

Lagrangian relaxation was used to decompose the problem by echelon and by potential 

warehouse site, resulting in a problem that required less computational effort to solve and 

allowed for much larger problems to be evaluated. A method was then suggested to 

exploit a property of the relaxed formulation and transform the problem into a linear MIP 

problem. The solution method computed the minimum cost for a complete network that 

would satisfy all the needs of the customers.  

A primal heuristic was introduced into the Lagrangian algorithm to generate 

feasible solutions. The heuristic utilized data from the Lagrangian subproblems to 

produce good feasible solutions. Due to the many characteristics of the original problem 

that were carried through to the subproblems, the heuristic produced very good feasible 

solutions that were typically within 1% of the Lagrangian bound.  

The proposed algorithm was evaluated through a number of tests. The rigidity of 

the problem and cost breakdown were varied to assess the performance of the solution 

method in many situations. The test results indicated that the addition of emission costs to 

a network can change the optimal configuration of the supply chain. As such, this study 

concluded that emission costs should be considered when designing supply chains in 

jurisdictions with carbon costs. Furthermore, the tests revealed that in regions without 

carbon costs it may be possible to significantly reduce the emissions produced by the 

supply chain with only a small increase in the cost to operate the system.   
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Chapter 1: 

Introduction 

Transportation provides the link between firms in a supply chain. With the globalization 

of supply chains, the distance between nodes in the distribution network has grown 

considerably. Consequently, longer travel distances produce increased vehicle emissions 

on the transportation routes, resulting in an inflated carbon footprint. With the growing 

public concern around global warming, organizations are being called to review their 

current practices and shift towards green and sustainable policies (Seuring & Muller, 

2008; Mohanty & Mohanty, 2009). The implementation of sustainable practices, while 

having a profound impact on the environment, can also enhance the reputation of the firm 

as a green organization. Hence, there is a need to effectively and efficiently design eco-

friendly supply chains, to both improve environmental conditions and the bottom line of 

the organization. 

The economics of logistics frequently conflict with sustainable design and 

environmental responsibility. Alternative fuel vehicles, such as electric or hybrid means 

of transportation, are often not fiscally viable without vast subsidies or substantial fringe 

benefits (i.e. marketing or public relations benefits). As such, decisions to improve the 

productivity at a logistics firm often come at the expense of the environment. The need 

for corporate sustainability was identified over a decade ago, although it has just recently 

gained traction throughout the business world (Hesse, 1995; Greene & Wegener, 1997).  
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Network design is a logical place to start when looking to green a supply chain. 

Wu and Dunn (1995) cite transportation as the largest source of environmental hazards in 

the logistics system. This claim is supported by the fact that transportation via 

combustion engine vehicles accounted for 27% of the Canadian greenhouse gas (GHG) 

inventory in 2007 (Environment Canada, 2009). And while heavy duty diesel vehicles, 

such as diesel tractors commonly used in logistics, account for only 4.2% of vehicles on 

the road, they also accounted for 29.2% of Canadian GHG emissions from transportation 

in 2007. Thus, reducing the number of vehicle kilometers travelled (VKT) through the 

strategic placement of nodes could play a significant role in reducing the carbon footprint 

of the nation.  

In the past, network location models have focused on minimizing the operating 

cost of the system. Works by Cornuejols et al. (1991), Pirkul & Jayaraman (1998) and 

Elhedhli & Gzara (2008) all proposed solution methods for three-echelon facility location 

models, focusing on the transportation cost between nodes and fixed cost of opening a 

facility. However, these traditional models do not account for the environmental 

implications of the logistics network. With carbon tax or cap-and-trade systems in place 

in many jurisdictions, and on the horizon in many more, the cost of carbon emissions in 

supply chain design models is becoming increasingly relevant.  

This thesis extends on the aforementioned publications and develops a green 

supply chain design model that incorporates the cost of carbon emissions into the 

objective function. The goal of the model is to simultaneously minimize logistics costs 

and the environmental cost of CO2 emissions by strategically locating warehouses within 
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the distribution network. A three echelon, discrete facility location model is proposed. 

The model is extended beyond previous research through the inclusion of a nonlinear 

term to account for CO2 emissions in the objective function. This paper uses published 

experimental data to derive nonlinear concave expressions relating vehicle weight to CO2 

emissions. The resulting nonlinear mixed integer programming (MIP) model can be used 

to minimize the total cost (logistics cost plus emissions cost) of the network. A method is 

proposed to exploit the structure of the problem to reduce it to a linear MIP problem. 

Lagrangian relaxation is used to decompose the problem by echelon and by warehouse 

site. This decomposition results in subproblems that require less computational effort 

than the initial problem. The lower bound for the initial problem is determined by the 

subproblems, while the upper bound is computed via the Lagrangian dual master 

problem. By keeping most of the features of the original problem in the subproblems, a 

strong Lagrangian bound was achieved in a relatively small number of iterations. A 

primal heuristic was proposed to generate a feasible solution in each iteration using 

information from the subproblems. The quality of the heuristic was measured against the 

Lagrangian bound. Test results indicated that the proposed method was effective in 

finding good solutions.  

The remainder of the thesis is organized as follows. The next section has a 

comprehensive literature review, followed by the problem formulation and motivating 

examples in Chapter 3. Chapter 4 details the solution method, with a primal heuristic for 

generating feasible solutions proposed in Chapter 5. Finally, the solution algorithm is 

tested in Chapter 6, and Chapter 7 contains our conclusions. 
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Chapter 2: 

Literature Review 

Strategic supply chain management involves the both the location of facilities throughout 

the supply chain and the allocation of products across the network. This scenario has 

been referred to as the strategic supply chain design problem (Vidal & Goetschalckx, 

1997). A great deal of research has been done analyzing supply chain design models, as 

reviewed by Goetschalckx et al. (2002). However, the incorporation of environmental 

attributes into supply chain design models is a relatively novel concept. Supply chain 

design literature, as well as articles identifying a need for sustainable supply chains, is 

identified in this chapter. Green supply chain design models that have incorporated the 

cost of carbon emissions into the objective function are also identified. Lagrangian 

relaxation is also discussed briefly in this section, as it is imperative to the solution 

method discussed later in this thesis.  

The model developed in this thesis incorporates the cost of emissions into the 

objective function of a supply chain design model. As such, a review of emissions and 

carbon equivalents is in order. The method of converting emissions into a cost, such as a 

carbon tax or cap-and-trade system, is also discussed. Finally, gaseous emissions from 

heavy-duty diesel vehicles (i.e. tractors-trailers commonly used in logistics) are 

examined.  
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2.1 Supply Chain Design Models 

The facility location literature provides a variety of models for supply chain design. 

These models range from simple uncapacitated facility location models to complicated 

multi-echelon, multi-product, capacitated facility location models. When considering 

facility location in the sense of a supply chain, the objective is to locate facilities 

throughout the network while minimizing production and transportation costs throughout 

the supply chain. A review by Sarmiento & Nagi (1999) depicts how supply chain 

location models can be broken down and classified. This thesis concentrates on multi-

echelon deterministic models with direct trips and no transshipment points, with the 

objective to minimize the cost. This is arguably the most popular objective in supply 

chain design (Melo, Nickel, & Saldanha-da-Gama, 2009).  A review of modeling design 

methods in the sense of global logistics systems was compiled by Goetschalckx et al. 

(2002). Sahin & Sural (2007) present a recent comprehensive review of multi-echelon 

facility location models. Production and distribution systems, as well as unit flow 

formulations and solution methods, which are of particular interest to this thesis, are 

discussed in depth in this review. 

2.1.1 Lagrangian Relaxation in Location Models 

The Lagrangian relaxation technique has been used for various applications in operations 

research. Applications include location models and strategic supply chain design models, 

to name a few. Many facility location problems can be view as relatively simple 

problems with a complex set of constraints that makes the problems difficult to solve. 
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Lagrangian relaxation attempts to simplify the problem by dualizing the complicating 

constraints and inserting them into the objective function with a penalty term. The result 

is a problem with a simpler evaluation procedure where the optimal solution is a lower 

bound to the original problem (for minimization problems). See Geoffrion (1974) and 

Fisher (1981) for details on the use of Lagrangian relaxation in integer programming. 

The unique attribute of the Lagrangian relaxation procedure is the ability to 

decompose a problem into smaller subproblems after dualizing specific constraints. An 

example of how Lagrangian relaxation can be used to decompose a strategic supply chain 

design problem was presented by Wu & Golbasi (2004). They considered a multi-

commodity supply chain design model that attempted to locate facilities and compute unit 

flows. The original problem was decomposed by relaxing certain constraints into two 

subproblems: one subproblem computed the unit balance throughout the network with the 

setup constraints relaxed; and, a second subproblem relaxed the multi-product constraints 

while keeping intact the mass balance and setup constraints. The subproblems required 

considerably less computational effort to solve than the original problem and allowed for 

larger problems to be tackled. 

Pirkul and Jayaraman (1998) also demonstrated how Lagrangian relaxation could 

be used to break the down a facility location problem into smaller subproblems. This 

study considered a three-echelon facility location model, with the first echelon being 

manufacturing plants, the second being warehouses or distribution centres, and the third 

echelon being retailers. Constraints were imposed to ensure the unit flows into and out of 

the warehouses in the second tier are exactly equal. Coincidently, these constraints also 
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linked the top two echelons of the problem to the bottom two tiers. The authors relaxed 

these linking constraints, which allowed for the problem to be separated into two 

subproblems: one that solves for locations and unit flows in the top two tiers of the 

model, and a second subproblem that solves for the bottom two echelons. The ability to 

decompose the initial problem into smaller subproblems decreased the computational 

demand and allowed for larger problems to be evaluated.  

2.1.2 Heuristics in Supply Chain Design Models 

The previous section detailed how Lagrangian relaxation can be utilized to find a lower 

bound to a strategic supply chain problem. However, Lagrangian relaxation does not 

reveal the combination of product flows, customer assignments and open facilities that 

will produce the optimal result. Hence, heuristics are commonly used in conjunction with 

Lagrangian algorithms to generate feasible solutions, which are in essence an upper 

bound (for a minimization problem).  

 Several Lagrangian heuristics for locations models are proposed and evaluated by 

Beasley (1993). The paper presented a framework for developing robust interchange 

Lagrangian heuristics by using methods that range from simple methods that require little 

computational effort and are computed every iteration to difficult techniques are only 

executed once per test run. The framework was evaluated on both capacitated and 

uncapacitated warehouse location problems and benchmarked against other proposed 

Lagrangian heuristics. It was noted that while Lagrangian heuristics presented by 

Cornuejols et al. (1991) and Pirkul (1987) produced better solutions, the interchange 
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heuristic proposed by Beasley was able to generate optimal or near-optimal solutions at a 

reasonable computational cost.  

 Agar & Salhi (1998) proposed a Lagrangian heuristic to generate feasible 

solutions in large scale capacitated plant location problems. The method starts by 

producing a list of illegal plant location combinations for the original problem. The 

problem formulation is then relaxed and solutions are generated. The relaxed solution is 

compared against the illegal combination list to see if it is a feasible solution. If it is not, 

then alterations are strategically made to the solution until it becomes feasible. This 

method improved the efficiency of the Lagrangian algorithm when introduced.  

 The shortest path algorithm was tested in a Lagrangian supply chain design 

algorithm by Wu & Golbasi (2004). The heuristic seeks to generate feasible solutions that 

minimize the transportation distance in the network. Thus, a feasible solution is reached 

by linking with the closest open source facility that has the available capacity to 

accommodate the customer. The authors showed that in certain situations the algorithm 

could produce high quality solutions in a fraction (roughly 2%) of the computational 

time.  

Of particular interest to this thesis is the use of primal heuristics in strategic 

supply chain design models that also use Lagrangian relaxation to decompose the 

problem by echelon. The solution from the subproblems can be substituted into the 

original problem formulation, which is then solved to yield a feasible solution and an 

upper bound (for a minimization problem). The primal heuristic is activated in each 

iteration of the Lagrangian algorithm to find a feasible solution. Since the subproblems 
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will retain at least some of the characteristics of the original problem, this heuristic has 

the ability to produce good feasible solutions. Examples of this procedure are provided by 

Jayaraman and Pirkul (2001) and Elhedhli and Gzara (2008).  

Several meta-heuristics have also been used to generate feasible solutions in 

supply chain design models. Meta-heuristics are traditionally search algorithms that 

strategically exploit the nature of the problem to search for the optimal feasible solution. 

Syam (2002) used simulated annealing in combination with a facility location problem to 

produce feasible solutions. Altiparmak & Karaoglan (2008) presented an adaptive 

heuristic that combined tabu-search and simulated annealing methods to find a feasible 

solution in a transportation problem constructed with a concave cost structure. Another 

commonly used meta-heuristic is the genetic algorithm. This procedure attempts to 

strategically combine pairs of feasible solutions in the hopes that the positive attributes of 

each individual will come together in the offspring. The genetic algorithm approach is 

applied to a multi-echelon supply chain network by Syarif, Yun & Gen (2002).  

2.1.3 Test Problems 

In order to test the Lagrangian solution approach developed in this thesis, a procedure for 

generating sample problems was required. Several procedures have been suggested in the 

literature, each with its own advantages and drawbacks. For this thesis, test problems 

were generated in accordance with the procedure for capacitated facility location 

problems as suggested by Cornuejols et al. (1991). The procedure calls for problems to be 

generated randomly while keeping the parameters similar those experienced in practice. 
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The coordinates of the all facilities are generated uniformly over a defined region. 

Transportation and handling costs between nodes in the model were set at ten times the 

distance between nodes and then adjusted using a scalar during sensitivity analyses. The 

demand of each customer was also generated randomly in the testing process. The 

difficulty of the problem was defined by a user input scalar. The storage capacity of a 

warehouse facility was generated randomly, and then scaled so that the ratio of total 

warehouse capacity to customer demand is equal to a predetermined value. The cost of 

opening a warehouse was based on the storage capacity of the facility and reflected 

increasing economies of scale.  

This testing procedure suggested by Cornuejols et al. (1991) has been used in 

subsequent studies, such as Elhedhli and Goffin (2005) and Elhedhli and Gzara (2008). 

2.2 Green Logistics 

Green logistics and sustainable supply chains are relatively novel concepts. The 

movement towards corporate sustainability started gaining momentum in the 1990’s, 

when a variety of articles were published identifying the need for green supply chains 

(McKinnon, 1995; Black, 1997; Greene & Wegener, 1997). Nearly twenty years later, 

many organizations have taken notice of the benefits of green practices and have 

incorporated sustainability into their corporate culture. A recent survey identified popular 

green strategies employed by North American and European firms (Murphy and Poist 

2000, 2003) and highlighted the willingness of companies to implement sustainable 

practices. Wu and Dunn (1995) demonstrated that several aspects of the supply chain are 
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impacted by environmental issues, including the acquisition of raw materials, inbound 

logistics and outbound logistics. Accounting for the economics of sustainability has 

become so prevalent that many academics have suggested the idea of a corporate triple 

bottom, which includes financial, social and environmental impacts (Forana, Lenzenb, 

Deyb, & Bilek, 2005). However, the financial leg of the triple bottom line is still the clear 

driver, with the social and environmental pillars being secondary (Norman & 

MacDonald, 2004). 

With the advent of government imposed emissions costs in certain jurisdictions, 

the environmental and financial legs of the triple bottom have become linked. As such, 

increasingly more attention has been paid to the environmental pillar. A recent review 

showed that the number of publications in the field of sustainable supply chains has risen 

steadily over the past decade (Linton, Klassen, & Jayaraman, 2007). However, the 

majority of the papers offer only conceptual framework and are lacking theoretical 

background (Seuring & Muller, 2008). The desire of firms to implement green strategies 

is apparent, and the need from an environmental standpoint is obvious, but the green 

supply chain design tools provided by the literature are still developing, and a 

comprehensive toolbox is not yet available.  

Extensive reviews of the sustainable supply chain literature are provided by 

Seuring and Muller (2008) and Carter and Rogers (2008). Still, only a small selection of 

the work cited in these reviews focus on optimization tools for sustainable supply chain 

design. The next chapter takes a looks a look at the green logistics models available and 

their advantages and shortfalls.  
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2.2.1 Green Logistics Models 

Both consumers and legislation have urged organizations to consider environmental 

impact when designing their logistics network. While reducing the carbon footprint of a 

supply chain is an important part of green logistics, cost minimization must also be 

considered simultaneously. The literature does offer select multi-criteria supply chain 

design models that incorporate environmental considerations into the decision criteria. 

Cruz and Matsypura (2009) consider multi-criteria decision-making behaviour in the 

design of supply chain networks. The objective of the model is to maximize profits, while 

minimizing both emissions and risk. Manufacturing costs are modeled similarly to 

traditional facility location models, with a fixed and per unit component. However, 

emissions and risk are modeled as convex and continuously differentiable functions that 

increase exponentially with demand. The variational inequality formulation is used to 

develop a solution method to compute the equilibrium flows and price patterns.  

Nagurney et al. (2007) demonstrated how sustainable supply chains can be 

transformed and studied as transportation networks. This publication studied a multi-

echelon problem with multiple manufacturers each operating multiple plants and 

competing for retailers. A range of transportation modes were available between the 

plants and retailers. Again, the solution model was multi-objective, focusing on both 

profit maximization and emissions minimization. The weighting of these decision 

parameters were weighted distinctly by the different decision makers. Emissions 

produced on the transportation routes were modeled linearly. The paper concludes by 

proposing a solution algorithm and proving that a sustainable supply chain model can be 
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reformulated and solved as an elastic demand transportation network equilibrium 

problem.  

 A green supply chain simulation model was examined by Merrick and 

Bookbinder (2010). Their simulation model investigated the effect of various shipment 

consolidation policies on the amount of pollutants emitted during the movement of 

goods. Nonlinear concave expressions relating carbon dioxide emissions to vehicle 

weight were derived from published experimental data and used to evaluate the 

performance of each shipment release policy. The simulation studied particular situations 

and presented general conclusions based on the results. The results showed that for short 

holding times, the quantity policy performed best, both in terms of logistics cost and 

pollution reduction. In the case of low order arrival rates and long holding times, the time 

policy was best at reducing emissions and logistics costs. However, the best dispatch 

policy conflicts in terms of pollution reduction and logistics cost minimization for the 

following cases: (i) moderate holding times; and (ii) long holding times combined with 

high order arrival rates. In these cases, it is necessary to consider the speed of travel, trip 

length and unit cost of emissions when selecting the optimal shipment release policy. 

Environmental issues have on occasion been combined with city logistics. City 

logistics involve the transportation of a high volume of goods in a geographically 

concentrated area. Queuing theory and congestion models are frequently used in city 

logistics to simulate urban traffic patterns. Taniguchi et al. (1999) developed a 

mathematical model for determining the optimal size and location of public logistics 

terminals and conclusions are drawn about the environmental impacts. Later work by 
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Taniguchi and van der Heijden (2000) evaluated city logistics initiatives in terms of 

carbon dioxide (CO2) emissions using a vehicle routing model. Similarly, carbon 

monoxide (CO) emissions were studied by Sugawara and Niemeier (2002) in an attempt 

to find an upper bound on the benefit that can be gained by optimizing trip assignments 

via city logistics. Ando and Taniguchi (2006) provided a vehicle routing model with time 

windows that simultaneously reduces costs and emissions of various pollutants creating 

an environmentally friendly delivery system for an urban area.  

2.3 Cap-and-Trade vs. Carbon Tax 

With the growing awareness of environmental issues, many governments have passed 

legislation to implement programs where citizens must pay for the emissions they 

produce. The two most common types of emissions tariffs are a cap-and-trade system or a 

carbon tax. This chapter will first look at carbon dioxide equivalents (CO2e) and then 

discuss the cap-and-trade systems in the European Union and Alberta, along with the 

British Columbia carbon tax. 

Carbon dioxide equivalents are measurement systems used in carbon markets. 

They account for the global warming potential (GWP) of the gas emitted. The six 

gaseous compounds that make up CO2e are: CO2, methane (CH4), nitrous oxide (N2O), 

hydrofluorocarbons (HFC), perfluorocarbons (PFC), and sulphur hexafluoride (SF6). The 

GWP of each of these gases, as determined by the Intergovernmental Panel on Climate 

Change, are shown in Table 2.1 (Intergovernmental Panel on Climate Change, 2003). 

 



 

 15 

Table 2.1: Global warming potential of gases. 

Compound GWP 

carbon dioxide 1 

methane 23 

nitrous oxide 300 

hydrofluorocarbons 120 - 12,000 

perfluorocarbons 5,700 - 11,900 

sulphur hexafluoride 22200 
 

To determine the amount of CO2e, the weight of a particular gaseous emission is 

multiplied by the respective GWP (from Table 2.1) and then summed. Emission 

allowances, the currency in cap-and-trade systems, are typically issued for the emission 

of one tonne of CO2e.  

Cap-and-trade systems attempt to set a limit on the CO2e emissions from a 

particular region. A maximum allowable emission quantity is defined for the region and 

divided among the constituents. If a constituent emits over their allowance, a penalty or 

fine is imposed. The most prolific cap-and-trade system in the world is the European 

Union emissions trading scheme (EU ETS). The EU ETS is the world’s largest emissions 

permit market and encompasses nearly half of the EU’s total greenhouse gas emissions 

(Hintermann, 2010).  

The EU ETS program operates in phases, with phase 1 spanning 2005-2007 and 

phase 2 from 2008-2012. At the beginning of a phase, emission allowances (one-time 

rights to emit 1 tonne of CO2e) are issued to participating parties for use over the duration 

of the phase. The number of emission allowances issued is intended to decrease with each 

consecutive phase in accordance with the Kyoto Protocol targets. Firms can trade 
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allowances freely throughout the EU, but must turn in permits on April 30 of each year to 

account for emissions produced in the previous calendar year. The penalty for non-

compliance is €40 during phase 1 and €100 in phase 2 for every tonne of CO2e for which 

an allowance is not surrendered by a firm. During phase 1, the price of an allowance 

ranged from less than €1 to just over €30. In phase 2, the price of an emissions allowance 

has stabilized between €10 and €20. 

In 2007, Alberta became the first province in Canada to pass legislation to reduce 

greenhouse gas emissions intensity generated by large industrial constituents. The cap-

and-trade system created applies to firms that emit more that 100,000 tonnes of carbon 

dioxide equivalents, and requires them to reduce their greenhouse gas emission intensity 

by 12% annually (Province of Alberta, 2006). The program applies to approximately 100 

companies, which account for roughly 70% of the provinces industrial emissions. The 

involved companies have three means to reduce their environmental impact: (i) by 

making operational improvements to reduce GHG emissions, (ii) by purchasing Alberta 

based emissions offsets from firms that emit less than the 100,000 tonne threshold, or (iii) 

by contributing to the government administered technology fund. The technology fund 

contribution carries a price tag of $15 per tonne CO2e. Revenue generated by the 

technology fund is intended to be reinvested into the province to develop GHG reducing 

technologies, such as carbon capture and storage.  

In 2008, the government of British Columbia imposed carbon tax legislation in an 

effort to curb GHG emissions. The carbon tax is a consumption tax applied to all fuels 

and combustibles, which is applied at the point of sale (Ministry of Finance, 2010). The 
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tax rate for each fuel is based upon the CO2e emissions produced from the combustion of 

the respective fuel. Thus, cleaner fuel, such as natural gas, would have a lower tax rate 

than a dirty fuel, such as gasoline or diesel. The tax rates prior to July 1, 2010 were based 

on $15 per tonne CO2e, although after July 1, 2010, the rates will be increased and based 

on $20 per tonne CO2e. 

2.4 Vehicle Emission Data 

Few comprehensive data sets exist that show the relationship between vehicle weights 

and exhaust emissions. While the exact emission levels will depend on the engine type, 

terrain driven and the driver tendencies, the general relationship between vehicle weight 

and emissions will not change (i.e. linear, concave or convex relationship). This section 

reviews the available emissions data and draws conclusions about the relationship 

between emissions and the vehicle operating weight. 

The most comprehensive data set of vehicular GHG emissions for is that 

contained in the Mobile6 computer program (Environmental Protection Agency, 2006). 

Mobile6 contains an extensive database of carbon dioxide (CO2) emissions for heavy 

heavy-duty diesel vehicles (HHDDV) obtained from full scale experiments. The database 

contains emissions factors for various vehicle weights, ranging from class 2 trucks up to 

class 8b. Speed correction factors, outlined by the California Air Resources Board (Zhou, 

2006) for use with the Mobile6 program, can also be applied to relate CO2 emission 

levels with vehicle weight and speed of travel. Figure 2.1 displays the relationship 

between vehicle weight and CO2 emissions for various speeds of travel. The units for 
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CO2 emissions are grams (g) per vehicle kilometer travelled (VKT) and the vehicle 

weight is in pounds (Note that “vehicle weight” represents the empty weight plus the 

cargo). The concave expressions are clearly nonlinear and can be well approximated by 

polynomial functions.  

 

Figure 2.1: Vehicle weight vs. CO2 emissions at various travel speeds 

(Environmental Protection Agency, 2006). 

Figure 2.1 shows that, for any given speed, the quantity of emissions is a concave 

increasing function of vehicle weight. In addition, for a given weight, as vehicle speed 

increases from 40 kph to 60 kph to 80 kph, the CO2 emissions decrease. Note that the two 

curves for 80 kph and 100 kph are virtually indistinguishable.  

 While the Mobile6 data set is comprised of emissions from a number of fully-

loaded vehicles of varying weight classes, the data are still useful in determining the 
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emissions from a logistics network. In the case of large carriers (either private or 

common) with a diverse fleet of vehicles, it would be optimal in terms of fuel 

consumption, economics and emissions to choose the smallest vehicle possible that could 

accommodate the required payload (i.e a vehicle at or near its capacity). Thus, in this case 

of large carriers with diverse vehicles fleets, the carrier would select an optimally sized 

vehicle and the Mobile 6 data presented in Figure 2.1 would accurately represent the 

emissions along the respective shipping lane. 

 For carriers with smaller fleets, it is unlikely that they will be able to assign an 

optimally sized vehicle to meet the needs of the shipper in every circumstance. Thus, the 

emission characteristics of a single vehicle (i.e. a class 8 tractor-trailer) with varying 

payload levels must be considered. The published data available in this scenario is 

lacking. While it would be expected that the emissions versus operating weight 

relationship would follow a similar pattern to that shown in Figure 2.1, it is important to 

verify this assumption.  

 As previously mentioned, there is a relatively small number of data sets available 

that provide CO2 emission levels at a number of vehicle weights. Researchers have 

commonly measured emission rates at two operating weights. However, this practice will 

always demonstrate a linear association between emissions and vehicle weight. Several 

publications confirm that CO2 emission rates increase as the operating weight of the truck 

is increased (Gajendran & Clark, 2003; Brodrick, Laca, Burke, Farshchi, Li, & Deaton, 

2004; Strimer, Clark, Carder, Gautam, & Thompson, 2005). However, only the former 

two publications provide adequate data (three or more data points) to establish a concave 
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expression relating. Figure 2.2 presents the emissions data from Gajendran & Clark 

(2003) and Strimer et al. (2005) for an HHDDV operating at a variety of vehicle weights.  

 

Figure 2.2: Vehicle weight vs. CO2 emissions. 

The data shown in Figure 2.2 indicate a concave relationship between CO2 emission rates 

and vehicle operating weights. This conclusion is consistent with that reached through 

examination of the Mobile6 data.  

 Clark et al. (2002) also concluded that emissions are nonlinear concave as grade is 

increased. If it is assumed that both grade and vehicle weights affect the work done by 

the engine, the statement by Clark et al. (2002) can be expanded to conclude that an 

increase in vehicle weight results in a nonlinear concave increase in CO2 emissions.  

 The data presented in this section show a concave relationship between vehicle 

weight and CO2 emissions, both in the case of fully-loaded vehicles at differing weight 
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classes and in the case of a single vehicle with varying payload weights. By incorporating 

the carbon emissions, and later the carbon costs, into the cost function for the logistics 

network, the network can be optimized both fiscally and environmentally. Since the 

objective of this work is to develop a solution method to a set of network problems with a 

concave cost function, rather than an exact solution to a particular emissions data set, the 

shape of the relating curve is more important than the specific values. Thus, with the 

concave relationship established, the solution method can be adapted to represent the 

emissions of a particular vehicle fleet.  

2.5 Positioning 

The current research extends beyond traditional facility location models by incorporating 

emission costs into the decision criteria. Traditional facility location models, such as 

those reviewed by Melo, Nickel and Saldanha-da-Gama (2009), have focused only on 

minimizing production, transportation and fixed costs. By incorporating the cost of 

carbon emissions into the objective function, the present study minimizes both the 

logistics cost of the network and the environmental cost. The relationship between 

vehicle weight and carbon emissions has been modeled as linear (Nagurney, Liu, & 

Woolley, 2007), convex (Cruz & Matsypura, 2009) and concave (Merrick & Bookbinder, 

2010) in the past. This thesis uses emissions data from laboratory tests (Environmental 

Protection Agency, 2006) that show a concave relationship between vehicle weight and 

emissions, i.e. emissions per unit vehicle weight decrease as vehicle weight is increased. 

These concave emissions are combined with a carbon cost and added to the objective 



 

 22 

function of a strategic supply chain design model to create a nonlinear MIP. This 

extension creates a unique green strategic supply chain design model that has not been 

previously studied.  
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Chapter 3: 

Problem Formulation and Motivation 

The introduction of emission taxes and cap-and-trade systems mean that governments are 

now realizing the cost that industrial operations impose on the environment. The financial 

outlook of a firm can now be impacted by carbon costs, and thus, operational decisions 

should incorporate methods to reduce the environmental impact of the supply chain. The 

ultimate solution for the organization can be derived through a combination of traditional 

facility location analysis and modern green supply chain methods. The objective function 

for the hybrid model will then seek to minimize the sum of the logistics and carbon costs 

of the resulting network. 

This chapter outlines the operational problems that have produced a need for this 

research. First, a problem formulation is developed that captures carbon costs into the 

objective function of the model. Then, examples of real-world situations where the model 

could be used are discussed. 

3.1 Problem Formulation 

This thesis extends on traditional facility location models by incorporating emission costs 

into the objective function of a network design problem. The goal of the model in this 

thesis is to strategically locate distribution centres and compute the unit flows between 

plants, distribution centres (also denoted as warehouses or DCs) and retailers (also 
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referred to as customers) in a distribution network. These variables are calculated while 

trying to minimize both the logistics cost and the emissions produced by the resulting 

supply chain. The logistics cost of the system is comprised of the fixed cost to establish a 

distribution centre and the variable per unit cost to handle and transport each unit 

throughout the supply chain. The emissions cost of the supply chain is made up of the 

carbon dioxide emissions produced by the network, multiplied by an assumed per volume 

cost to emit greenhouse gases.  

The research conducted in this thesis is made unique by the addition of carbon 

cost into the objective function of the model. The emission costs produced by the supply 

chain are a result of the carbon dioxide emissions along the transportation routes. The 

carbon emissions, and thus the carbon costs as well, are a variable per unit quantity that is 

related to the weight of the vehicle transporting the goods. As more units are shipped on a 

single vehicle, the vehicle weight is increased and the per unit emissions resulting from 

the transportation is reduced. Thus, a concave relationship between the number of units 

on a vehicle (or the weight of the vehicle) and the resulting emissions (and emission 

costs) is established. For this research, experimental data from the U.S. EPA was used to 

correlate vehicle weight to carbon dioxide emissions, shown in Figure 2.1 

(Environmental Protection Agency, 2006). The resulting emissions from the supply chain 

can then be multiplied by the market cost of carbon emissions to get the emission costs, 

which are combined with the logistics cost of the system in the objective function to 

minimize the total cost of the network.  
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The network was designed as a three-echelon supply chain, with plants at the first 

level, distribution centres at the second and retailers at the third level. Figure 3.1 

illustrates the three-echelon model.  

 

Figure 3.1: Three echelon supply chain. 

The available plants, warehouse sites and retailers are indexed by , 

, , respectively. The cost of emissions are a function of the weight of 

the payload being transported and are captured by the concave function, f. A distribution 

centre at location j has a maximum capacity Vj and a fixed cost of gj. Each customer has a 

demand of dk. The variable cost of handling and shipping a production unit from a plant 

at location i to distribution centre j is designated as cij. Similarly, hjk denotes the average 

handling and shipping cost to move a production unit from distribution centre j to 

customer k. One continuous flow variable and two binary location variables are 

introduced: xij is the flow of units from plant i to warehouse j; yjk takes a value of one if 

1 2 Plants 

DCs 

Retailers 

1 2 3 4 
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customer k is assigned to distribution centre j and zero otherwise; and, zj is given a value 

of one if distribution centre j was opened and zero otherwise. The capacity of the plants is 

assumed to be unlimited, which models a situation where the manufacturer has the 

capacity to increase production to meet all customer demands (i.e. additional overtime or 

weekend production capabilities). The resulting MIP is: 

[FLM]:  

s.t. 

 

  (1) 

   (2) 

   (3) 

   (4) 

    (5) 

The objective function in [FLM] minimizes the handling and transportation cost 

of goods between all nodes, the fixed cost of opening warehouses, and the pollution cost 

to the environment. The cost of all carbon dioxide emissions is accounted for in the first 

two terms of [FLM], which are a function of the product flows between nodes. 

Constraints (1) guarantee that each customer is assigned to exactly one distribution 

centre. Constraints (2) balance the flow of goods into and out of the warehouse, thus 

linking the decisions between echelons in the network. Constraints (3) and (4) force 
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capacity restrictions on the distribution centres, as well as ensured that only open 

facilities are utilized. 

[FLM] was formulated with a few unique attributes. Foremost, it was designed to 

strategically select distribution centre sites, thus it was plausible that several potential DC 

sites would not be used in the optimal solution. Furthermore, the binary variable yjk 

ensured that each retailer was single-sourced by only one distribution centre. Finally, the 

problem formulation allowed for distribution centres to be served by more than one plant. 

However, since the plants were assumed to have limitless production capacity, it is later 

proven that the optimal solution will always result in each distribution centre being 

served by a single plant. 

3.2 Motivating Examples 

Recent legislation in certain jurisdictions has imposed emission costs on logistics firms. 

The problem studied in this thesis has been formulated to design a supply chain network 

where carbon costs are incurred. In addition, the problem formulation has been arranged 

to deal with firms who operate the following types of logistics networks: 

1) Free on board manufacturer (FOB-M) delivery system 

2) Networks with large and diverse vehicle fleets 

These situations are discussed in the forthcoming sections and their applicability to the 

problem formulation is reviewed. 
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3.2.1 Free On Board Manufacturer Delivery 

The problem formulated in this thesis was designed to support certain types of real world 

problems. This first motivating example to consider is the case where a manufacturer 

controls the delivery of a product from the plant through to the retailer, thus operating all 

transportation vehicles throughout the supply chain. In this scenario, the products are 

typically shipped via tractor-trailer from the plant to the distribution centre. The goods 

are then cross-loaded, mixed, and placed onto smaller local delivery vehicles for transport 

to the retailers.  

 The FOB-M delivery model fits well within the problem formulation for several 

reasons. Foremost, the structure of the problem means that there will be a higher unit 

flow on the shipping lanes between the plants and distribution centres than there will be 

on the routes between the DCs and retailers. This scenario fits the FOB-M distribution 

model well since this system typically has larger vehicles to transport the additional units 

between the first two echelons and smaller vehicles to transport the lesser quantity of 

units between the last two echelons. A manufacturer in control of product delivery from 

the DC to the customer can select an appropriately sized vehicle to meet the demand of 

the retailer and create a situation where the vehicles are nearly full on each trip.  

 Secondly, the concept of selecting a vehicle appropriately sized for the unit 

demand of the customer (whether internal or external) fits well with the emissions data 

used in this research. The most comprehensive carbon dioxide emissions data set is that 

published by the U.S. EPA (Environmental Protection Agency, 2006). While this data set 

is comprised of emissions from a number of vehicles of varying weight classes, the data 
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works perfectly when considering a fleet of vehicles, varying in class, that are loaded at 

or near their maximum payload. This synergy between the problem structure and the 

emissions data creates an accurate model to tackle a real world issue. 

 

3.2.2 Networks with Large and Diverse Fleets 

The problem presented in this thesis is well suited for solving a network design problem 

for a firm with a large and diverse vehicle fleet. An organization with large and diverse 

fleet can select vehicles that are appropriately sized to meet the demand of the customer 

being served. Since the emissions data used in this thesis were derived from experiments 

on a number of vehicles of varying weight classes, the data is most applicable when 

dealing with trucks that are loaded at or near their maximum payload. Again, a synergy is 

produced where the problem structure and the emissions data produce a precise model to 

tackle a real world supply chain and logistics matter.  
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Chapter 4: 

Solution Methodology 

4.1 Lagrangian Relaxation 

Lagrangian relaxation was used to decompose the initial problem, [FLM], into a set of 

simpler problems that could be solved more easily. Lagrangian relaxation is a commonly 

used technique for solving mixed integer programming problems, as outlined by 

Geoffrion (1974) and Fisher (1981). The method involves the strategic elimination of 

select constraints, which are transformed and incorporated into the objective function, to 

obtain a set of subproblems that are easier to solve than the original problem. The 

Lagrangian relaxation technique yields a bound on the objective function value, and is 

usually combined with a heuristic to produce good solution sets.  

We can exploit the echelon structure of the current problem using the Lagrangian 

relaxation technique. Relaxing constraints must be done strategically as the relaxation of 

certain constraints can deteriorate the quality of the bound and heuristics. In this thesis, 

constraints (2) are relaxed since they link the echelons of the supply chain, as done in 

Pirkul & Jayaraman (1998) and Elhedhli & Gzara (2008). To decompose [FLM], 

Lagrangian multipliers, μj, are associated with constraints (2), which led to the following 

problem: 
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[LR-FLM]:  

    

s.t. Constraints (1), (3), (4) and (5)   

With the relaxation of Constraints (2), the problem is then separable by echelon. 

Compiling all terms and constraints containing the decision variables yjk, along with the 

fixed cost term from the objective function, lead to: 

[SP1]:   

s.t    

    

     

The remaining terms and constraints were combined as: 

[SP2]:    

s.t.    

     

Note that [SP2] can also be decomposed by potential warehouse site, resulting in n 

subproblems. [SP1] determines the assignment of customers to a distribution centre, 

while [SP2] determines the flow of goods from a plant to a distribution centre.  
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Examination of [SP1] reveals that it is simply a capacitated facility location 

problem with single sourcing: 

[SP1]:   

s.t.    

    

     

Now consider the formulation of [SP2].  

[SP2]:   

s.t.  (3) 

    

Since  is a binary variable, we can consider the following two cases for [SP2]: 

1)  

2)  

In case (1), the right-hand side of Constraints (3) is zero and thus  is equal to zero for 

all values of ij. When considering case (2), [SP2] reduces to a concave minimization 

problem in the following form: 
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[SP2]:   

s.t.  (3) 

    

An important property of a concave minimization problem is that every local and global 

solution is achieved at an extreme point (Pardalos & Rosen, 1986). In the particular case 

of [SP2], it has an optimal solution at an extreme point of . This 

implies that at optimality at most one  will take the value of  and the remaining  

will be equal to 0.  

 We can visualize this property by looking at concave curve of the cost of the 

network, shown in Figure 4.1.  

 

Figure 4.1: Concave cost curve. 
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Figure 4.1 has three unit quantities denoted, xj, xj1 and xj2, where xj = xj1 + xj2. If the DC 

requires xj units, we have the option to ship xj on a single truck, or to ship xj1 on one truck 

from plant 1and xj2 on a subsequent truck from plant 2. Due to the shape of the curve, it 

can be declared that cost to ship one truck is less than the cost to ship an equal number of 

units on multiple vehicles from multiple plants, or: 

   

Knowing that at most one  will take the value of  and the remaining  will 

be equal to 0, allows us to reformulate [SP2] as: 

[SP2-j]:   

s.t.   

    

This formulation of [SP2] is now broken into n subproblems, each corresponding to a 

particular j. The Lagrangian multipliers will determine if the DC is open at site j. The 

Lagrangian multipliers, ,will vary for iteration through the Lagrangian algorithm. 

When  is such that , then all  will equal to zero in order to 

minimize the objective function. This situation also signals that the distribution centre 

will not receive any product from the plants, and thus the site isclosed and  is equal to 

zero for the corresponding j. When  is such that , then  is equal 

to  for  and  is equal to zero for . This signals that product is flowing 

from the plant (  to the respective distribution centre, which is open, and thus  equal 

to one for the corresponding j.  
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[SP2-j] now has emissions cost terms that are deterministic. Since  takes a 

single value (the cost of emissions produced by transporting ), the nonlinearity is 

removed from the problem and it can be solved using linear MIP methods.  

The advantage of this relaxation procedure is that [SP1] retains several important 

characteristics of the initial problem, such as the assignment of all customers to a single 

warehouse and the condition that the demand of all customers is satisfied. In addition, 

[SP2] reduces to n subproblems, which can be solved with little computational effort 

relative to the original problem. The drawback of this formulation is that [SP1] does not 

decompose further into a set of smaller subproblems, and instead remains a capacitated 

facility location problem with  assignment variables. Thus, the solution to 

[SP1] requires significantly more computational effort than [SP2]. However, [SP1] is still 

easier to solve than [FLM] and by retaining the critical characteristics of the [FLM] in 

[SP1], the Lagrangian bound can be achieved in a relatively small number of iterations 

and reduce the overall solution time while still obtaining a high quality bound (Elhedhli 

& Gzara, 2008).  

The solution to the subproblems can be obtained by inserting an initial set of 

Lagrangian multipliers, μj, into each subproblem. The solutions to the subproblems yield 

a lower bound, LB, to the overall problem according to the following: 

 

LB is calculated in each iteration, with the best Lagrangian lower bound, LB*, being: 
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LB* is a concave non-differentiable problem, which is equivalent to: 

 (6) 

where  is the index set of feasible integer points of the set: 

 

and  is the index set of extreme points of the set: 

 

We can then reformulate (6) in the Lagrangian master problem: 

[LMP]:  

s.t.   

  ,   

 

[LMP] can be solved as a linear programming problem.  and  define the 

relaxation of [LMP]. An initial set of Lagrangian multipliers, , is used to solve [SP1] 

and [SP2] and generate  cuts of the form: 
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The index sets  and  are updated at each iteration as  and , 

respectively. 

The solution to the [LMP] produces an upper bound, UB, to the full master 

problem and a new set of Lagrangian multipliers. The new set of Lagrangian multipliers 

is input to [SP1] and [SP2] to generate a new solution to the subproblems and an 

additional set of cuts to the [LMP]. The procedure of iterating through subproblems and 

master problem solutions is terminated when the best lower bound is equal to the upper 

bound, at which point the Lagrangian bound is achieved. A flow chart outlining the 

proposed Lagrangian solution method is shown in Figure 4.2. Note that the heuristic 

procedure designed to generate a feasible solution is outlined and discussed in the next 

chapter. 
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Figure 4.2: The Lagrangian algorithm 
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Chapter 5: 

A Primal Heuristic for Generating Feasible 

Solutions 

While the Lagrangian algorithm provides the optimal objective function value, it does not 

reveal the combination of product flows, customer assignments and open facilities that 

will produce this result. Hence, heuristics are commonly used in conjunction with 

Lagrangian relaxation algorithms to generate feasible solutions, see for example 

Jayaraman & Pirkul (2001) and Elhedhli & Gzara (2008). Several meta-heuristics have 

also been used to generate feasible solutions in location models, such as simulated 

annealing (Syam, 2002), genetic algorithm (Syarif, Yun, & Gen, 2002) and hybrid 

method termed as tabu-simulated annealing (Altiparmak & Karaoglan, 2008).  

An efficient heuristic was extremely important for the Lagrangian relaxation of 

the formulation proposed in this thesis. Due the strength of [SP1], the Lagrangian bound 

will be achieved in a relatively small number of iterations. Since the Lagrangian 

algorithm only attempts to produce one feasible solution per iteration, a quality primal 

heuristic must produce a good feasible solution in a relatively small number of attempts. 

To generate feasible solutions, a primal heuristic was introduced that was based on the 

solution obtained from the subproblems. Subproblem [SP1] generated the assignments of 

customers to distribution centres and determined if a distribution centre was open or 
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closed. The optimal solution produced by subproblem [SP1] for iteration h was denoted 

as  and . Using  and  from [SP1], the units demanded by the retailers at each 

distribution centre can be determined. With the demand at each distribution centre being 

deterministic, the original problem could be reduced to a simple continuous flow 

transportation problem, [TP], which will always have a feasible solution. 

[TP]:  

s.t.    

     

The first and fourth terms in [TP] are simply constants, thus leaving only two terms in the 

objective function. The first and fourth terms in [TP] are grouped together and denoted as 

C in future formulations. The problem formulation stipulated that the each warehouse 

will be single-sourced by one plant and that the goods will be transported on a single 

truck, as opposed to being spread over multiple vehicles (see proof in section 4.1). 

Therefore, the optimal flow of units from a plant to warehouse will be equal to the 

quantity demanded by the warehouse or zero. [TP] can then be formulated as an 

assignment problem of the following form: 

[TP]:  

s.t.    

     



 

 41 

where  takes a value of one if warehouse j is supplied by plant i and zero otherwise. In 

numerical testing of the algorithm, the heuristic was activated at each iteration to find a 

feasible solution. The quality of the heuristic solution was evaluated through a 

comparison of the heuristic objective function value with the Lagrangian bound.  
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Chapter 6: 

Numerical Testing 

The Lagrangian solution algorithm, outlined in section 4.2, was tested on a number of 

sample problems. The test problems varied in size, cost structure and difficulty to provide 

a robust proving ground for the model. This Chapter first outlines the problem generation 

procedure, which is then followed by the definition of evaluation statistics and the 

numerical testing results and analysis. 

6.1 Problem Generation 

The solution algorithm was implemented in Matlab 7 and utilized Cplex 11 to solve the 

subproblems, heuristic problem and the master problem. The test problems were 

generated in accordance with the procedure for capacitated facility location problems as 

suggested by Cornuejols et al. (1991), and later used by Elhedhli and Goffin (2005). The 

procedure calls for problems to be generated randomly while keeping the parameters 

realistic. The coordinates of the plants, distribution centres and customers were generated 

uniformly over a unit square of dimension 190, or U[10,200]. From the coordinates, the 

Euclidean distance between each set nodes, dij and djk, was computed. The transportation 

and handling costs between nodes were then set using the following relationship, where β 

was simply a scaling parameter to exploit different scenarios in numerical testing: 
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 The demand of each customer, dk, was generated uniformly on U[10,50]. The capacities 

of the distribution centres, Vj, were also created randomly using the following form, 

where  was used to scale the ratio of warehouse capacity to demand: 

 

In essence,  dictates the rigidity or tightness of the problem and has a large impact on 

the time required to solve the problem. The capacities of the distribution centres were 

scaled so as to satisfy 

 

The fixed costs of the DCs were designed to reflect economies of scale. The fixed cost to 

open a distribution centre, gj, was calculated using the following equation: 

 

Again,  is a scaling parameters used to test different scenarios in the numerical testing 

phase.  

The research in this thesis differs from traditional facilities location models due to 

the addition of emission costs into the objective function. Just as the problem formulation 

was extended, the testing model must also be extended. In order to compute the emission 

costs, the distance travelled, vehicle weight and emission rate must be known. The 

distance travelled can easily be determined from the randomly generated coordinates of 

the sites. The vehicle weight is determined by the number of units loaded on the truck 

(  or ). To compute the weight of the vehicle, an empty vehicle weight of 15,000 

pounds was assumed and the weight of a single production unit was assumed to be 75 

pounds. The payload was calculated as the number of units on the truck multiplied by the 
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weight of a single unit, which resulted in loads between 0 and 45,000 pounds. The sum of 

the empty tractor-trailer weight and the payload results in a loaded vehicle weight range 

of 15,000 pounds to 60,000 pounds. It was assumed that single vehicle trips would be 

made between nodes, thus the vehicle weights were reasonable and the emissions curve 

for a single truck was used. However, the emissions curve could be substituted with a 

best fit concave line that would represent a number of vehicle trips, if so desired. Finally, 

the emission rate, e, was determined using the U.S. EPA lab data, shown in Figure 2.1 

(Environmental Protection Agency, 2006). Using these parameters, the emission cost of 

the network, f, can be determined using the following equation: 

 

 

 is used as a scaling parameter to test various network scenarios. The constants on the 

right-hand sides of the above equations are used for unit conversions and to associate a 

dollar value to the emission quantity. For all test cases, a travel speed of 80 kph was used 

to compute emission levels, which was assumed to be representative of highway 

transportation.  

6.2 Test Statistics 

The solution algorithm underwent rigorous testing to measure its effectiveness. Each test 

case investigated a unique combination of facilities. The test problems ranged in size for 
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a small problems, with 3 plants, 5 warehouses and 15 customers, to large scale problems, 

10 plants, 20 distribution centres and 150 customers. 

Several statistics were tracked throughout the computation procedure for later 

evaluation. Upon completion of the Lagrangian algorithm, the Lagrangian bound and best 

feasible solution were used to calculate more statistical indicators. This section describes 

how the test statistics were computed using information collected during the solution 

procedure.  

 Foremost, the load ratio of the open distribution centres was calculated. The DC 

load ratio, DCLR, relates the total capacity of all open DCs to the total units demanded by 

the customers, and was computed as: 

 

 The cost breakdown of the best feasible network resulting from the solution 

algorithm was also evaluated. Three primary cost groups were considered: the fixed costs 

to open the distribution centres (FCR_DC), the variable logistics costs (VCR) and the 

emissions costs (ECR). These categories were computed as a percentage of the total 

system expense, denoted as Z, using the following formulas: 

 

 

 

 The Lagrangian algorithm employed in this research leveraged a primal heuristic 

to generate a feasible solution at each iteration. The quality of the heuristic was measured 



 

 46 

by comparing the cost of the feasible solution versus the Lagrangian bound, denoted as 

LR, as follows: 

 

Data on the evaluation times required to solve each section of the Lagrangian 

algorithm were also collected. The computation time was computed as a percentage of 

the total solution time in each of the following sections: subproblems 1, subproblems 2, 

generating a feasible solution via the primal heuristic, and the Lagrangian master 

problem. The solution times can be used to give insight as to the relative difficult of the 

particular problem. 

Finally, the number of iterations required to achieve the Lagrangian bound was 

tallied and recorded for each test case.  

6.3 Base Scenario 

The solution algorithm was tested using a variety of cases. The first test case considered 

was the base scenario, which serves as baseline for comparison. In the base case the 

scaling parameters were set as follows: 

 

 

 

The base case was tested with varying DC capacity ratios: tight capacities ( ), 

moderate capacities ( ), and excess capacities ( ). The results for the base 
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scenario testing are provided in Tables 6.1, 6.2 and 6.3, corresponding to tight, moderate 

and excess capacities, respectively.  

The test statistics lead to several insights about the problem formulation and 

solution algorithm. First, consider the distribution centre load ratio (DCLR). The data 

show that the rigidity of the problem (dictated by ) had a large impact on the DCLR, 

both in terms of the average and range of the ratio. Tables 6.1 to 6.3 show that as the 

tightness of the problem is decreased (or as  is increased), the DCLR is also lessened. 

This is evident by the decreasing trend in the mean DCLR, which reduces from 0.919, to 

0.869, to 0.709, for tight, moderate and excess capacities, respectively. Furthermore, the 

results show that the range of the DCLRs increase as  increases. For tight capacities, the 

range of load ratios produced was relatively small (from 0.825 to 0.981), whereas the 

excess capacities base scenario produced a range in excess of 50% of the DCLR (from 

0.409 to 0.997). Thus, it can be said that the tightness of the problem has an adverse 

effect on the load ratio of the distribution centre. 

The cost breakdowns for the base scenario test cases are also presented in Tables 

6.1 to 6.3. In contrast to the DCLR, the distribution of costs is fairly stable across the 

varying DC capacity levels. For the base test case, the FCR_DC range was between 0.35 

and 0.40, the VCR ranged from 0.50 to 0.55, and the ECR was between 0.10 and 0.15, 

for tight, moderate and excess capacities. Hence, the value of  had little impact of the 

cost distribution of the network. 
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Table 6.1a: Base test scenario – Tight capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.828 0.387 0.496 0.117 3 

3.5.25 145 0.827 0.304 0.567 0.129 3 

4.8.20 200 0.903 0.378 0.512 0.110 4 

4.8.30 280 0.825 0.398 0.484 0.118 4 

5.10.20 260 0.917 0.404 0.489 0.107 4 

5.10.40 460 0.886 0.371 0.522 0.107 4 

5.10.60 660 0.858 0.343 0.537 0.120 4 

8.15.25 510 0.947 0.486 0.423 0.091 4 

8.15.50 885 0.952 0.380 0.509 0.111 4 

8.15.75 1260 0.980 0.339 0.539 0.122 5 

10.20.50 1220 0.978 0.454 0.444 0.102 4 

10.20.75 1720 0.944 0.398 0.498 0.105 4 

10.20.100 2220 0.972 0.409 0.485 0.106 4 

10.20.125 2720 0.981 0.363 0.519 0.117 4 

10.20.150 3220 0.980 0.365 0.527 0.108 5 

Min - 0.825 0.304 0.423 0.091 3 

Mean - 0.919 0.385 0.503 0.111 4.0 

Max - 0.981 0.486 0.567 0.129 5 

 

Table 6.1b: Base test scenario – Tight capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.135 67.5 17.1 7.8 7.6 0.19 

3.5.25 0.160 83.5 9.2 3.9 3.4 1.1 

4.8.20 0.072 89.0 6.8 2.2 1.9 1.6 

4.8.30 0.127 96.1 2.4 0.8 0.7 2.3 

5.10.20 0.102 91.7 5.3 1.7 1.3 2.5 

5.10.40 0.092 98.6 0.9 0.2 0.2 14.0 

5.10.60 0.099 98.8 0.8 0.2 0.2 22.0 

8.15.25 0.053 94.1 3.6 1.5 0.8 189 

8.15.50 0.025 99.6 0.2 0.1 0.1 358 

8.15.75 0.008 99.6 0.2 0.1 0.1 276 

10.20.50 0.024 99.6 0.3 0.1 0.0 986 

10.20.75 0.060 99.9 0.1 0.0 0.0 765 

10.20.100 0.010 99.9 0.1 0.0 0.0 1543 

10.20.125 0.013 99.9 0.0 0.0 0.0 1328 

10.20.150 0.019 99.8 0.1 0.0 0.0 2194 

Min 0.008 67.5 0.0 0.0 0.0 0.19 

Mean 0.067 94.5 3.1 1.2 1.1 512 

Max 0.160 99.9 17.1 7.8 7.6 2194 
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Table 6.2a: Base test scenario – Moderate capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.770 0.331 0.540 0.129 4 

3.5.25 145 0.708 0.330 0.550 0.121 3 

4.8.20 200 0.823 0.341 0.540 0.119 4 

4.8.30 280 0.750 0.345 0.538 0.117 4 

5.10.20 260 0.849 0.402 0.489 0.109 4 

5.10.40 460 0.818 0.331 0.552 0.117 4 

5.10.60 660 0.917 0.280 0.595 0.124 4 

8.15.25 510 0.917 0.428 0.461 0.111 5 

8.15.50 885 0.887 0.402 0.473 0.125 4 

8.15.75 1260 0.939 0.352 0.531 0.116 4 

10.20.50 1220 0.970 0.371 0.506 0.123 4 

10.20.75 1720 0.937 0.344 0.532 0.124 4 

10.20.100 2220 0.935 0.343 0.531 0.127 4 

10.20.125 2720 0.897 0.310 0.563 0.127 4 

10.20.150 3220 0.916 0.298 0.578 0.125 4 

Min - 0.708 0.280 0.461 0.109 3 

Mean - 0.869 0.347 0.532 0.121 4.0 

Max - 0.970 0.428 0.595 0.129 5 

 

Table 6.2b: Base test scenario – Moderate capacities.  

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.124 64.1 18.7 9.1 8.1 0.31 

3.5.25 0.179 78.2 12.2 5.1 4.5 4.4 

4.8.20 0.069 91.3 5.1 2.1 1.6 51.7 

4.8.30 0.126 81.5 11.2 4.1 3.2 0.66 

5.10.20 0.063 85.0 9.6 3.1 2.4 1.00 

5.10.40 0.077 97.5 1.5 0.5 0.4 7.5 

5.10.60 0.041 97.9 1.2 0.5 0.3 17.0 

8.15.25 0.039 92.7 4.7 1.6 1.0 147 

8.15.50 0.036 94.3 3.0 1.3 1.4 180 

8.15.75 0.030 99.3 0.4 0.2 0.1 592 

10.20.50 0.009 95.6 2.6 0.9 0.9 583 

10.20.75 0.023 99.9 0.0 0.0 0.0 883 

10.20.100 0.014 99.6 0.3 0.1 0.1 1061 

10.20.125 0.041 99.8 0.1 0.0 0.0 1242 

10.20.150 0.041 98.8 0.8 0.3 0.2 1548 

Min 0.009 64.1 0.0 0.0 0.0 0.31 

Mean 0.061 91.7 4.8 1.9 1.6 421 

Max 0.179 99.9 18.7 9.1 8.1 1548 
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Table 6.3a: Base test scenario – Excess capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.580 0.334 0.550 0.116 3 

3.5.25 145 0.560 0.270 0.590 0.140 4 

4.8.20 200 0.409 0.496 0.401 0.103 4 

4.8.30 280 0.505 0.401 0.470 0.129 3 

5.10.20 260 0.623 0.483 0.399 0.118 4 

5.10.40 460 0.655 0.259 0.580 0.161 4 

5.10.60 660 0.640 0.273 0.611 0.116 3 

8.15.25 510 0.904 0.356 0.533 0.111 4 

8.15.50 885 0.772 0.326 0.523 0.151 4 

8.15.75 1260 0.826 0.315 0.558 0.127 6 

10.20.50 1220 0.902 0.450 0.434 0.116 4 

10.20.75 1720 0.997 0.307 0.564 0.129 4 

10.20.100 2220 0.646 0.327 0.538 0.135 4 

10.20.125 2720 0.927 0.298 0.577 0.125 5 

10.20.150 3220 0.693 0.297 0.562 0.141 4 

Min - 0.409 0.259 0.399 0.103 3 

Mean - 0.709 0.346 0.526 0.128 4.0 

Max - 0.997 0.496 0.611 0.161 6 

 

Table 6.3b: Base test scenario – Excess capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.174 45.9 22.3 20.8 11.0 0.13 

3.5.25 0.079 60.8 18.5 12.7 8.0 0.56 

4.8.20 0.097 86.6 7.0 4.1 2.4 0.74 

4.8.30 0.061 62.7 18.2 12.6 6.6 0.21 

5.10.20 0.204 99.9 0.1 0.0 0.0 96.1 

5.10.40 0.039 94.8 2.9 1.4 0.9 2.4 

5.10.60 0.083 95.5 2.9 0.9 0.7 1.4 

8.15.25 0.040 99.1 0.5 0.2 0.1 16.8 

8.15.50 0.118 92.7 5.0 1.3 1.0 1.8 

8.15.75 0.049 95.7 2.9 0.7 0.6 4.5 

10.20.50 0.050 99.8 0.1 0.0 0.0 106 

10.20.75 0.001 96.8 1.8 0.7 0.7 6.6 

10.20.100 0.034 99.7 0.2 0.1 0.0 59.2 

10.20.125 0.008 99.9 0.1 0.0 0.0 199 

10.20.150 0.035 98.6 1.0 0.2 0.2 173 

Min 0.001 45.9 0.1 0.0 0.0 0.13 

Mean 0.071 88.6 5.6 3.7 2.2 45 

Max 0.204 99.9 22.3 20.8 11.0 199 
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Time data was also collected in the numerical testing procedure. The results 

showed that as the numbers of decision variables in the problem increased, the 

computation time required to complete the solution algorithm also increased. 

Additionally, the average solution time increased as the tightness of the problem 

increased. Data was also collected regarding the percentage of time spent computing each 

step in the algorithm. The data showed that the majority of the solution time was spent 

solving [SP1], accounting for roughly 90% of the total time. The next largest time 

consumer was [SP2], although it required considerably less time than [SP1] due to the 

fact that [SP2] was decomposed by DC site into many smaller problems that were easier 

to solve. Making up the remainder of the processing time were, in decreasing order, the 

heuristic solution and the Lagrangian master problem. It was also observed that as the 

number of variables increased, an increasing percentage of the solution time was spent 

solving [SP1]. 

The primal heuristic proposed in this research is critical to the Lagrangian 

algorithm, since it selects the DCs to be opened and computes the unit flow between 

nodes. To evaluate the quality of the heuristic, the objective function value produced best 

feasible heuristic solution is compared against the Lagrangian bound. The data collected 

from the base scenario test runs showed that the primal heuristic produced very good 

feasible solutions that were in all cases less than 1% away from the optimum. 

Contributing to the strength of the heuristic was the fact that the information used to 

construct the heuristic solution was taken from [SP1]. Furthermore, [SP1] retained many 

attributes of the original problem and was already a very strong formulation, which was 
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evident by the large amount of time spent solving [SP1]. As such, the heuristic quality 

was much improved and allowed for a very good feasible solution to be achieved in a 

small number of iterations.  

6.4 Dominant Fixed Cost Scenario 

The second test scenario for the solution algorithm is the dominant fixed cost case. This 

scenario enlarges the scaling parameter on the fixed costs to establish the distribution 

centres, which causes the total fixed cost of the network to represent a large portion of the 

total system expense. For the dominant fixed cost scenario the scaling parameters were 

set as follows: 

 

 

 

The dominant fixed cost scenario was also tested with varying DC capacity ratios: tight 

capacities ( ), moderate capacities ( ), and excess capacities ( ). The 

solution statistics from the dominant fixed cost scenario are present in Tables 6.4, 6.5 and 

6.6, which correspond to tight, moderate and excess capacities, respectively.   



 

 53 

Table 6.4a: Fixed cost dominant scenario – Tight capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.631 0.885 0.094 0.022 4 

3.5.25 145 0.983 0.756 0.204 0.039 4 

4.8.20 200 0.952 0.858 0.119 0.023 4 

4.8.30 280 0.954 0.868 0.105 0.027 4 

5.10.20 260 0.991 0.855 0.121 0.024 4 

5.10.20 260 0.923 0.836 0.136 0.028 4 

5.10.60 660 0.994 0.733 0.208 0.059 4 

8.15.25 510 0.995 0.902 0.079 0.019 4 

8.15.50 885 0.963 0.871 0.118 0.011 5 

8.15.75 1260 0.961 0.817 0.147 0.037 6 

10.20.50 1220 0.980 0.853 0.110 0.037 4 

10.20.75 1720 0.953 0.856 0.097 0.047 4 

10.20.100 2220 0.932 0.844 0.102 0.054 4 

10.20.125 2720 0.978 0.786 0.191 0.023 5 

10.20.150 3220 0.978 0.820 0.159 0.021 4 

Min - 0.631 0.733 0.079 0.011 4 

Mean - 0.944 0.836 0.133 0.031 4.3 

Max - 0.995 0.902 0.208 0.059 6 

 

Table 6.4b: Fixed cost dominant scenario – Tight capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.081 73.0 10.6 10.6 5.8 0.28 

3.5.25 0.007 99.0 0.4 0.4 0.2 7.5 

4.8.20 0.017 99.9 0.1 0.0 0.0 80.4 

4.8.30 0.006 98.0 0.9 0.7 0.4 4.6 

5.10.20 0.002 98.5 0.7 0.5 0.3 6.7 

5.10.20 0.017 99.9 0.0 0.1 0.0 311 

5.10.60 0.001 100.0 0.0 0.0 0.0 1586 

8.15.25 0.001 100.0 0.0 0.0 0.0 705 

8.15.50 0.001 99.9 0.1 0.0 0.0 2100 

8.15.75 0.014 99.9 0.1 0.0 0.0 3151 

10.20.50 0.002 99.9 0.1 0.0 0.0 3051 

10.20.75 0.003 98.9 0.4 0.4 0.3 601 

10.20.100 0.005 100.0 0.0 0.0 0.0 5550 

10.20.125 0.012 100.0 0.0 0.0 0.0 6800 

10.20.150 0.009 100.0 0.0 0.0 0.0 8050 

Min 0.001 73.0 0.0 0.0 0.0 0.28 

Mean 0.012 97.8 0.9 0.8 0.5 2134 

Max 0.081 100.0 10.6 10.6 5.8 8050 
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Table 6.5a: Fixed cost dominant scenario – Moderate capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.865 0.799 0.161 0.040 4 

3.5.25 145 0.689 0.766 0.183 0.051 4 

4.8.20 200 0.916 0.722 0.226 0.052 4 

4.8.30 280 0.905 0.650 0.286 0.063 4 

5.10.20 260 0.960 0.824 0.149 0.028 4 

5.10.40 460 0.983 0.744 0.213 0.042 4 

5.10.60 660 0.997 0.716 0.237 0.047 4 

8.15.25 510 0.953 0.846 0.123 0.030 5 

8.15.50 885 0.944 0.811 0.150 0.039 5 

8.15.75 1260 0.994 0.808 0.155 0.037 5 

10.20.50 1220 0.999 0.828 0.142 0.030 5 

10.20.75 1720 0.972 0.791 0.178 0.032 5 

10.20.100 2220 0.983 0.768 0.190 0.042 5 

10.20.125 2720 0.999 0.745 0.216 0.039 5 

10.20.150 3220 0.991 0.715 0.235 0.050 5 

Min - 0.689 0.650 0.123 0.028 4 

Mean - 0.943 0.769 0.190 0.041 4.5 

Max - 0.999 0.846 0.286 0.063 5 

 

Table 6.5b: Fixed cost dominant scenario – Moderate capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.015 80.6 6.0 6.0 7.4 0.61 

3.5.25 0.025 73.1 14.9 6.3 5.7 0.20 

4.8.20 0.011 99.9 0.1 0.0 0.0 116 

4.8.30 0.016 93.7 3.9 1.3 1.2 1.1 

5.10.20 0.010 91.8 5.5 1.5 1.3 1.00 

5.10.40 0.003 100.0 0.0 0.0 0.0 295 

5.10.60 0.000 99.1 0.5 0.3 0.1 12.5 

8.15.25 0.005 83.5 9.2 3.5 3.8 1.2 

8.15.50 0.006 100.0 0.0 0.0 0.0 3263 

8.15.75 0.001 98.2 1.0 0.4 0.4 34.0 

10.20.50 0.000 100.0 0.0 0.0 0.0 2410 

10.20.75 0.004 100.0 0.0 0.0 0.0 1478 

10.20.100 0.002 99.5 0.3 0.1 0.1 49.3 

10.20.125 0.000 99.9 0.1 0.0 0.0 248 

10.20.150 0.002 99.9 0.1 0.0 0.0 194 

Min 0.000 73.1 0.0 0.0 0.0 0.20 

Mean 0.007 94.6 2.8 1.3 1.3 540 

Max 0.025 100.0 14.9 6.3 7.4 3263 
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Table 6.6a: Fixed cost dominant scenario – Excess capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.587 0.789 0.171 0.040 4 

3.5.25 145 0.417 0.785 0.176 0.038 3 

4.8.20 200 0.718 0.774 0.190 0.037 7 

4.8.30 280 0.695 0.772 0.179 0.050 5 

5.10.20 260 0.914 0.738 0.213 0.048 4 

5.10.40 460 0.875 0.712 0.234 0.055 5 

5.10.60 660 0.825 0.637 0.293 0.070 6 

8.15.25 510 0.948 0.736 0.217 0.048 5 

8.15.50 885 0.924 0.607 0.328 0.064 7 

8.15.75 1260 0.905 0.615 0.319 0.065 5 

10.20.50 1220 0.998 0.811 0.152 0.036 6 

10.20.75 1720 0.949 0.788 0.168 0.044 6 

10.20.100 2220 0.949 0.725 0.218 0.057 6 

10.20.125 2720 0.973 0.689 0.255 0.056 6 

10.20.150 3220 0.968 0.714 0.226 0.060 5 

Min - 0.417 0.607 0.152 0.036 3 

Mean - 0.843 0.726 0.223 0.051 5.3 

Max - 0.998 0.811 0.328 0.070 7 

 

Table 6.6b: Fixed cost dominant scenario – Excess capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.045 46.4 16.7 16.9 20.0 0.18 

3.5.25 0.088 56.1 16.5 18.5 8.9 0.14 

4.8.20 0.034 83.7 8.2 5.1 3.1 0.83 

4.8.30 0.011 84.6 7.6 5.0 2.7 0.68 

5.10.20 0.015 99.9 0.1 0.0 0.0 58.2 

5.10.40 0.005 99.9 0.1 0.0 0.0 100 

5.10.60 0.013 92.4 4.1 2.2 1.3 1.8 

8.15.25 0.005 90.8 5.4 2.4 1.4 1.6 

8.15.50 0.009 98.1 1.2 0.4 0.3 10.1 

8.15.75 0.011 98.4 0.9 0.4 0.2 51.9 

10.20.50 0.000 99.8 0.2 0.1 0.0 88.6 

10.20.75 0.001 98.2 1.1 0.4 0.3 67.0 

10.20.100 0.001 98.7 0.7 0.3 0.3 60.3 

10.20.125 0.001 99.6 0.2 0.1 0.1 99.6 

10.20.150 0.002 99.8 0.1 0.0 0.0 193 

Min 0.000 46.4 0.1 0.0 0.0 0.14 

Mean 0.016 89.7 4.2 3.5 2.6 49 

Max 0.088 99.9 16.7 18.5 20.0 193 
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The test statistics from the fixed cost dominant scenario have many similarities, as 

well as differences, to the results from the base test case. Looking at the warehouse load 

ratio, a decrease in the average DCLR was observed as  was increased. Also, the range 

of the computed load ratios increased as the DC capacities were increased. These trends 

were the same as observed in the base case. However, the average DCLR in the tight, 

moderate and excess capacities cases was noticeably higher in the dominant fixed cost 

scenario than in the base case. This is due to the increased cost incurred to open a DC, 

which increases the importance of utilizing the DC space available before opening a new 

facility.  

 As would be expected, the cost breakdowns for the fixed cost dominant test cases 

were drastically different than those observed in the base case. The inflated fixed cost to 

open a warehouse meant that the fixed cost of the network was substantially higher than 

in the base scenario. Around 80% of the network costs were observed in the fixed costs, 

with the remaining amount distributed to the variable and emission costs. As observed in 

the base case, the distribution of costs is fairly stable across the varying DC capacity 

levels. 

On average, the solution time for the fixed cost dominant case was greater than 

that required in the base scenario. The increased fixed cost seemingly created a tighter 

problem to be solved and in turn increased the computational difficulty and the solution 

time. Again, the majority of the time was spent in the solution of [SP1], with the 

remainder of the time attributed to [SP2], heuristic solution and the master problem, in 



 

 57 

decreasing order. It was also observed that as the number of variables increased a greater 

percentage of the solution time was spent solving [SP1]. 

The primal heuristic produced very good feasible solutions in the dominant fixed 

cost cases. In all cases, the heuristic produced a solution that was within 1% of the 

optimal solution.  

6.5 Dominant Variable Cost Scenario 

The third solution scenario tested was the dominant variable cost case. This scenario 

increases the scaling parameter on the variable per unit handling and transportation costs, 

thus creating a situation where the variable costs represent a significant percentage of the 

total system expenditure. For the dominant variable cost scenario the scaling parameters 

were set as follows: 

 

 

 

Again, this scenario was tested with varying DC capacity ratios: tight capacities ( ), 

moderate capacities ( ), and excess capacities ( ). The results from the 

variable cost dominant case are shown in Tables 6.7, 6.8 and 6.9, which correspond to 

tight, moderate and excess capacities, respectively. 
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Table 6.7a: Variable cost dominant scenario – Tight capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 3220 0.584 0.165 0.800 0.034 4 

3.5.25 145 0.572 0.142 0.825 0.033 4 

4.8.20 200 0.666 0.218 0.745 0.037 4 

4.8.40 360 0.784 0.126 0.836 0.038 4 

5.10.20 260 0.639 0.217 0.745 0.038 4 

5.10.40 460 0.718 0.141 0.828 0.031 4 

5.10.60 660 0.619 0.125 0.841 0.034 4 

8.15.25 510 0.837 0.198 0.770 0.032 4 

8.15.25 510 0.874 0.217 0.744 0.038 4 

8.15.75 1260 0.830 0.143 0.823 0.034 4 

10.20.50 1220 0.780 0.211 0.754 0.034 4 

10.20.75 1720 0.864 0.157 0.703 0.141 5 

10.20.100 2220 0.804 0.170 0.695 0.135 7 

10.20.125 2720 0.797 0.134 0.705 0.160 5 

10.20.150 3220 0.664 0.161 0.700 0.139 5 

Min - 0.572 0.125 0.695 0.031 4 

Mean - 0.736 0.168 0.768 0.064 4.4 

Max - 0.874 0.218 0.841 0.160 7 

 

Table 6.7b: Variable cost dominant scenario – Tight capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.054 83.4 4.9 6.7 3.2 0.35 

3.5.25 0.150 85.7 5.6 5.6 3.1 0.53 

4.8.20 0.162 95.9 2.0 1.4 0.7 2.2 

4.8.40 0.030 96.0 1.9 1.4 0.7 2.3 

5.10.20 0.110 95.1 2.4 1.6 0.9 2.1 

5.10.40 0.091 99.6 0.2 0.1 0.1 27.8 

5.10.60 0.073 99.9 0.1 0.0 0.0 91.7 

8.15.25 0.051 87.1 7.3 3.6 2.0 0.96 

8.15.25 0.071 95.4 3.1 0.8 0.7 2.1 

8.15.75 0.055 99.6 0.2 0.1 0.1 29.6 

10.20.50 0.062 90.2 5.3 2.2 2.3 1.8 

10.20.75 0.156 99.9 0.1 0.0 0.0 141 

10.20.100 0.189 99.8 0.1 0.0 0.0 164 

10.20.125 0.243 99.9 0.1 0.0 0.0 213 

10.20.150 0.370 99.9 0.1 0.0 0.0 199 

Min 0.030 83.4 0.1 0.0 0.0 0.35 

Mean 0.124 95.2 2.2 1.6 0.9 59 

Max 0.370 99.9 7.3 6.7 3.2 213 
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Table 6.8a: Variable cost dominant scenario – Moderate capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.667 0.132 0.825 0.043 3 

3.5.25 145 0.522 0.120 0.841 0.040 3 

4.8.20 200 0.676 0.143 0.827 0.030 4 

4.8.40 360 0.902 0.120 0.843 0.037 5 

5.10.20 260 0.584 0.185 0.770 0.045 5 

5.10.40 460 0.603 0.127 0.841 0.032 4 

5.10.60 660 0.515 0.152 0.818 0.030 4 

8.15.25 510 0.780 0.216 0.748 0.036 5 

8.15.50 885 0.876 0.166 0.799 0.035 4 

8.15.75 1260 0.469 0.202 0.762 0.035 4 

10.20.50 1220 0.699 0.229 0.733 0.038 4 

10.20.75 1720 0.763 0.196 0.772 0.032 5 

10.20.100 2220 0.655 0.148 0.815 0.037 4 

10.20.125 2720 0.750 0.144 0.821 0.035 5 

10.20.150 3220 0.742 0.136 0.828 0.036 4 

Min - 0.469 0.120 0.733 0.030 3 

Mean - 0.680 0.161 0.803 0.036 4.2 

Max - 0.902 0.229 0.843 0.045 5 

 

Table 6.8b: Variable cost dominant scenario – Moderate capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.040 53.7 17.6 19.5 9.2 0.14 

3.5.25 0.073 52.3 17.4 20.6 9.6 0.13 

4.8.20 0.078 54.7 21.4 15.6 8.3 0.20 

4.8.40 0.020 65.9 16.4 11.4 6.3 0.30 

5.10.20 0.130 73.3 14.0 8.2 4.5 0.43 

5.10.40 0.051 97.7 1.2 0.7 0.4 4.1 

5.10.60 0.089 96.5 1.7 1.1 0.6 2.9 

8.15.25 0.053 91.7 4.9 2.1 1.3 1.8 

8.15.50 0.050 93.6 3.6 1.8 1.0 2.0 

8.15.75 0.079 96.2 2.2 1.1 0.6 3.4 

10.20.50 0.057 94.7 3.1 1.4 0.8 3.0 

10.20.75 0.020 99.8 0.1 0.1 0.0 87.6 

10.20.100 0.040 99.8 0.1 0.0 0.0 107 

10.20.125 0.034 99.8 0.1 0.0 0.0 120 

10.20.150 0.029 99.8 0.1 0.1 0.2 213 

Min 0.020 52.3 0.1 0.0 0.0 0.13 

Mean 0.056 84.6 6.9 5.6 2.9 36 

Max 0.130 99.8 21.4 20.6 9.6 213 
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Table 6.9a: Variable cost dominant scenario – Excess capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.201 0.354 0.613 0.033 5 

3.5.25 145 0.317 0.137 0.821 0.042 4 

4.8.20 200 0.973 0.095 0.851 0.054 4 

4.8.20 200 0.446 0.150 0.820 0.030 5 

5.10.20 260 0.331 0.223 0.741 0.036 4 

5.10.20 260 0.330 0.241 0.725 0.034 4 

5.10.60 660 0.202 0.191 0.782 0.027 4 

8.15.25 510 0.423 0.202 0.766 0.032 5 

8.15.50 885 0.430 0.243 0.717 0.039 5 

8.15.75 1260 0.400 0.186 0.779 0.035 5 

10.20.50 1220 0.579 0.201 0.761 0.038 4 

10.20.75 1720 0.579 0.149 0.813 0.038 4 

10.20.100 2220 0.402 0.178 0.790 0.032 4 

10.20.125 2720 0.437 0.172 0.792 0.036 4 

10.20.150 3220 0.345 0.176 0.793 0.030 4 

Min - 0.201 0.095 0.613 0.027 4 

Mean - 0.426 0.193 0.771 0.036 4.3 

Max - 0.973 0.354 0.851 0.054 5 

 

Table 6.9b: Variable cost dominant scenario – Excess capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.335 47.5 21.9 20.1 10.5 0.17 

3.5.25 0.065 54.5 18.1 18.3 9.1 0.16 

4.8.20 0.001 56.0 21.0 14.8 8.3 0.20 

4.8.20 0.088 58.6 24.6 9.3 7.6 0.19 

5.10.20 0.106 95.0 2.5 1.6 0.8 2.0 

5.10.20 0.190 97.4 1.6 0.5 0.4 2.9 

5.10.60 0.127 97.4 1.3 0.8 0.5 3.9 

8.15.25 0.085 95.6 2.5 1.2 0.7 3.5 

8.15.50 0.031 73.0 15.9 7.0 4.1 0.57 

8.15.75 0.056 84.5 9.0 4.1 2.4 0.97 

10.20.50 0.040 81.0 11.7 4.7 2.6 0.80 

10.20.75 0.036 86.9 6.9 2.9 3.2 1.3 

10.20.100 0.071 99.7 0.2 0.1 0.0 57.6 

10.20.125 0.047 99.8 0.1 0.0 0.0 88.1 

10.20.150 0.077 97.2 1.7 0.7 0.4 5.5 

Min 0.001 47.5 0.1 0.0 0.0 0.16 

Mean 0.090 81.6 9.3 5.7 3.4 11 

Max 0.335 99.8 24.6 20.1 10.5 88 
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The dominant variable cost cases were drastically different than the base scenario. 

Again, it was observed that the average DCLR decreased as  was increased, and the 

range of the computed load ratios increased as the DC capacities were increased. On the 

other hand, the average DC load ratio was substantially lower in the variable cost 

dominant scenario than the baseline situation. The increased cost to transport the units 

between nodes resulted in more DCs being opened in order to reduce the total travel 

distance. As a result, the warehouses are under-utilized and a low DCLR is observed.  

 As anticipated, the cost breakdowns for the variable cost dominant test scenarios 

were dissimilar to those recorded in the base case. The increased variable transportation 

costs encourage shorter routes, which leads to more DCs being open. In turn, the system 

cost was comprised primarily of variable costs, followed by the fixed cost to open a DC. 

The emission costs were observed to be very low in comparison to the alternatives. 

Further, as seen in the base case, the distribution of costs is fairly stable across the 

varying DC capacity levels. 

The solution time for the dominant variable cost cases were substantially less than 

those observed in the base and dominant fixed cost scenarios. The increased variable cost 

decreased the rigidity of the problem and thus decreased the computational difficulty and 

the solution time. As seen in the previous cases, the majority of the time was spent in the 

solution of [SP1]. The balance of the computational effort was spent in [SP2], heuristic 

solution and the master problem. The percentage of time spent on [SP1] increased as the 

size of the problem was expanded.  
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Similar to the base scenario, the primal heuristic produced very good feasible 

solutions in the variable cost cases. In all cases tested, the heuristic achieved a solution 

that was within 1% of the Lagrangian bound.  

6.6 Dominant Emission Cost Scenario 

The fourth test scenario analyzed was the dominant emission cost case. This case 

amplifies the scaling parameter on the cost of carbon emissions. The quantity of carbon 

emissions is dependent on the distance travelled, vehicle weight (number of units 

shipped) and the emissions rate. The increased scale factor on the cost of carbon 

emissions produces a condition where the emissions costs represent a vast percentage of 

the total system expenditure. For the dominant emission cost case the scaling parameters 

were set as follows: 

 

 

 

The scenario outlined above was tested with varying DC capacity ratios: tight capacities 

( ), moderate capacities ( ), and excess capacities ( ). The results from 

the emission cost dominant case are shown in Tables 6.10, 6.11 and 6.12, corresponding 

to tight, moderate and excess capacities, respectively.  
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Table 6.10a: Emission cost dominant scenario – Tight capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.830 0.262 0.332 0.406 3 

3.5.25 145 0.655 0.227 0.354 0.419 3 

4.8.20 200 0.864 0.288 0.376 0.336 4 

4.8.30 280 0.953 0.205 0.361 0.434 4 

5.10.20 260 0.822 0.382 0.278 0.340 4 

5.10.40 460 0.871 0.279 0.343 0.378 4 

5.10.60 660 0.766 0.231 0.353 0.416 4 

8.15.25 510 0.912 0.364 0.303 0.333 4 

8.15.50 885 0.869 0.313 0.316 0.371 4 

8.15.75 1260 0.992 0.255 0.382 0.362 4 

10.20.50 1220 0.952 0.355 0.311 0.334 4 

10.20.75 1720 0.803 0.332 0.344 0.324 5 

10.20.100 2220 0.883 0.306 0.363 0.331 5 

10.20.125 2720 0.849 0.315 0.335 0.350 5 

10.20.150 3220 0.785 0.270 0.408 0.323 5 

Min - 0.655 0.205 0.278 0.323 3 

Mean - 0.854 0.292 0.344 0.364 4.1 

Max - 0.992 0.382 0.408 0.434 5 

 

Table 6.10a: Emission cost dominant scenario – Tight capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 0.587 52.1 13.1 15.4 19.4 0.17 

3.5.25 1.047 56.7 16.3 17.7 9.3 0.14 

4.8.20 0.796 97.2 1.3 1.0 0.5 3.2 

4.8.30 0.065 98.9 0.5 0.4 0.2 7.9 

5.10.20 0.571 99.3 0.4 0.2 0.1 13.2 

5.10.40 0.417 96.4 1.8 1.1 0.6 2.7 

5.10.60 0.739 97.4 1.3 0.8 0.4 3.8 

8.15.25 0.568 91.2 5.0 2.4 1.3 1.4 

8.15.50 0.353 98.9 0.6 0.3 0.2 11.8 

8.15.75 0.022 98.9 0.5 0.3 0.3 13.9 

10.20.50 0.143 100.0 0.0 0.0 0.0 362 

10.20.75 0.625 99.3 0.4 0.2 0.1 27.7 

10.20.100 0.136 99.8 0.1 0.0 0.0 112 

10.20.125 0.050 99.7 0.2 0.1 0.0 58.4 

10.20.150 0.976 99.7 0.2 0.1 0.0 74.0 

Min 0.022 52.1 0.0 0.0 0.0 0.14 

Mean 0.473 92.4 2.8 2.7 2.2 46 

Max 1.047 100.0 16.3 17.7 19.4 362 
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Table 6.11a: Emission cost dominant scenario – Moderate capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.608 0.287 0.386 0.327 5 

3.5.25 145 0.657 0.245 0.415 0.340 4 

4.8.20 200 0.676 0.257 0.389 0.354 3 

4.8.40 360 0.567 0.269 0.386 0.344 5 

5.10.20 260 0.701 0.353 0.315 0.332 5 

5.10.40 460 0.557 0.329 0.336 0.335 4 

5.10.60 660 0.633 0.230 0.389 0.381 4 

8.15.25 510 0.875 0.315 0.314 0.371 4 

8.15.50 885 0.856 0.253 0.384 0.363 5 

8.15.75 1260 0.678 0.314 0.349 0.337 4 

10.20.50 1220 0.814 0.364 0.280 0.355 4 

10.20.75 1720 0.706 0.306 0.351 0.342 4 

10.20.100 2220 0.709 0.289 0.362 0.349 4 

10.20.125 2720 0.788 0.315 0.354 0.331 5 

10.20.150 3220 0.690 0.287 0.373 0.340 4 

Min - 0.557 0.230 0.280 0.327 3 

Mean - 0.701 0.294 0.359 0.347 4.3 

Max - 0.875 0.364 0.415 0.381 5 

 

Table 6.11a: Emission cost dominant scenario – Moderate capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 1.138 57.5 17.2 16.5 8.8 0.20 

3.5.25 1.369 87.0 5.1 5.3 2.6 0.55 

4.8.20 0.876 62.4 16.9 13.9 6.8 0.19 

4.8.40 1.156 96.8 1.5 1.1 0.6 3.2 

5.10.20 1.014 94.6 2.8 1.7 1.0 2.1 

5.10.40 0.777 87.5 6.3 4.0 2.1 0.77 

5.10.60 0.501 99.6 0.2 0.1 0.1 25.2 

8.15.25 0.327 100.0 0.0 0.0 0.0 815 

8.15.50 0.424 97.6 1.4 0.6 0.4 6.2 

8.15.75 0.586 99.6 0.2 0.1 0.1 34.1 

10.20.50 0.393 97.3 1.6 0.7 0.4 5.4 

10.20.75 0.564 99.9 0.0 0.0 0.0 185 

10.20.100 0.469 99.5 0.3 0.1 0.1 31.3 

10.20.125 0.411 99.9 0.1 0.0 0.0 207 

10.20.150 0.636 99.4 0.3 0.1 0.1 26.6 

Min 0.327 57.5 0.0 0.0 0.0 0.19 

Mean 0.710 91.9 3.6 3.0 1.5 90 

Max 1.369 100.0 17.2 16.5 8.8 815 
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Table 6.12a: Emission cost dominant scenario – Excess capacities. 

Problem           

m.n.p Vars. DCLR FCR_DC VCR ECR Iters. 

3.5.15 95 0.414 0.366 0.270 0.364 5 

3.5.25 145 0.379 0.263 0.411 0.326 5 

4.8.20 200 0.375 0.320 0.347 0.333 5 

4.8.40 360 0.513 0.265 0.376 0.359 6 

5.10.20 260 0.702 0.365 0.313 0.323 4 

5.10.40 460 0.461 0.253 0.366 0.381 5 

5.10.60 660 0.364 0.286 0.388 0.326 4 

8.15.25 510 0.588 0.310 0.346 0.344 6 

8.15.50 885 0.594 0.337 0.338 0.325 5 

8.15.75 1260 0.821 0.263 0.371 0.367 5 

10.20.50 1220 0.836 0.289 0.355 0.356 4 

10.20.75 1720 0.763 0.229 0.391 0.380 4 

10.20.100 2220 0.660 0.288 0.332 0.380 4 

10.20.125 2720 0.622 0.261 0.354 0.385 5 

10.20.150 3220 0.584 0.261 0.359 0.380 4 

Min - 0.364 0.229 0.270 0.323 4 

Mean - 0.578 0.290 0.354 0.355 4.7 

Max - 0.836 0.366 0.411 0.385 6 

 

Table 6.12a: Emission cost dominant scenario – Excess capacities. 

Problem Heur. Time (%, %, %, %, sec) 

m.n.p Quality SP1 SP2 Heur MP Total 

3.5.15 1.329 72.8 11.0 10.3 5.8 0.31 

3.5.25 2.104 58.1 17.4 16.2 8.3 0.20 

4.8.20 0.866 80.7 9.4 6.3 3.6 0.52 

4.8.40 0.450 73.5 13.2 8.5 4.9 0.44 

5.10.20 0.929 58.0 21.2 13.5 7.3 0.23 

5.10.40 0.537 73.9 13.5 8.2 4.4 0.45 

5.10.60 0.971 99.5 0.3 0.2 0.1 19.5 

8.15.25 0.522 92.5 4.5 1.9 1.1 2.3 

8.15.50 0.567 96.5 2.4 0.7 0.4 5.5 

8.15.75 0.146 92.9 4.1 1.9 1.1 2.1 

10.20.50 0.213 95.2 2.9 1.2 0.7 3.2 

10.20.75 0.230 94.5 3.3 1.4 0.8 2.8 

10.20.100 0.141 99.3 0.4 0.2 0.1 21.7 

10.20.125 0.241 98.2 1.2 0.3 0.2 13.1 

10.20.150 0.116 99.4 0.3 0.1 0.1 27.5 

Min 0.116 58.0 0.3 0.1 0.1 0.20 

Mean 0.624 85.7 7.0 4.7 2.6 7 

Max 2.104 99.5 21.2 16.2 8.3 27 
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The dominant emission cost cases were similar to the variable cost dominant 

cases, and hence drastically different than the base scenario. It was observed that the 

average DCLR decreased as  was increased, and the range of the computed load ratios 

increased as the DC capacities were increased. Alternatively, the average DCLR was 

reduced in the emission cost dominant scenario from the base case. This situation arises 

due to the increased cost of carbon emissions, which are produced on the transportation 

routes. To minimize the carbon emissions, the travel distance must also be minimized, 

and thus more DCs are opened in order to reduce the total travel distance. As a result, the 

DCs are not used to their fullest capacity and a low DCLR is observed.  

 The cost breakdowns for the emission cost dominant test scenarios were unlike 

those recorded in the base case. As previously mentioned, the increased emission costs 

encourage reduced route length, which results in more warehouses being open. In turn, 

the emissions cost was much higher than in the base case and the overall costs were fairly 

evenly distributed among the three cost categories. As observed in the base scenario, the 

distribution of costs is fairly stable across the varying values of . 

The solution time for the dominant emission cost cases were significantly less 

than those observed in the base and dominant fixed cost scenarios. As seen with the 

increased variable cost scenario, the increase emission cost decreased the rigidity of the 

problem and thus decreased the computational difficulty and the solution time. Once 

more, the majority of the time was spent in the solution of [SP1], with the remainder 

attributed to [SP2], heuristic solution and the master problem. It was also observed that as 
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the number of variables increased a greater percentage of the solution time was spent 

solving [SP1]. 

In all cases, the heuristic produced good feasible solutions. However, the quality 

of the heuristic deteriorated slightly in the emission cost dominant scenario versus the 

base case. The heuristic was shown to be within 3% of the Lagrangian bound in the 

dominant emissions costs tests.  

6.7 Network Design Comparison 

Another method used to test the solution algorithm was to visualize the effect that the 

addition of carbon costs could have on the network design. A relatively small problem 

with 3 plants, 7 warehouse sites and 15 retailers was considered so that the layout of the 

network could easily be plotted and visualized. The scaling parameters on the emission 

costs were varied and the impact on the design of the network was visualized. Three 

cases were considered: zero emission costs, base scenario and dominant emission cost. 

The locations of the facilities, fixed costs to open a warehouse, DC capacities and retailer 

demands were consistent across all three scenarios. This Chapter illustrates how the 

addition of emission cost can affect the design of a supply chain and discusses the 

differences between the three problems analyzed.  

6.7.1 Design Layout – Zero Emission Costs  

The objective of this test was to plot and visualize the best feasible solution generated by 

the algorithm. The first case considered was zero emission cost scenario, which showed 
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how the network would be designed in the absence of carbon costs. To model this 

situation, the scaling parameters were set as follows: 

    

Using these parameters, the evaluation method was run and the best feasible 

solution was obtained. The objective function value obtained from the heuristic was equal 

to the Lagrangian bound. Figure 6.1 plots the best feasible solution obtained from the 

solution method. The plants were denoted with large squares, open distribution centres 

were represented by circles and retailers were shown with small diamonds. Warehouse 

sites that were not used were depicted with an “X”. The assignment of retailers to 

warehouses and warehouses to plants are represented by dotted lines, in essence showing 

the shipping lanes.  

The network layout shown in Figure 6.1 highlights three open DCs and four sites 

that were not selected for a distribution centre, while each plant is serving a single DC. 

The open warehouses are located close to the plants, and close to the centre of the grid. 

Each customer is assigned to a DC, as is required by the problem formulation.  

Due to the specified customer demands and DC capacities, at least three 

warehouses must be opened in order to meet the demand of the customers. Hence, this 

solution contains the minimum possible number of open distribution centres. This arises 

because the fixed cost of a DC is sufficiently higher than the cost to transport the goods 

(both the variable costs and the emission cost, which is zero in this instance). In order to 

minimize the cost of the supply chain, an emphasis is placed on minimizing the number 

of warehouses in the network and their associated fixed costs.  
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Figure 6.1: Network design – Zero emission costs. 

6.7.2 Design Layout – Base Scenario 

While the first case considered no cost for carbon emissions, the second situation looked 

at a system with nominal emission costs, identical to that analyzed in Section 6.3. As 

such, the scaling parameters were set as follows: 

    

The values were inserted into the solver and best feasible solution was produced. 

As seen in section 6.3, the objective function value obtained from the heuristic was 

Plants Open DC Closed DC Retailers Routes
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within 1% of the Lagrangian bound. Figure 6.2 illustrates resulting supply chain from the 

best feasible solution generated.  

 

Figure 6.2: Network design – Base scenario. 

The resulting network was comprised of four open warehouses and three locations 

that were not selected for a DC. Only three distribution centres were opened in the zero 

emissions case, so one additional DC was opened with the inclusion of the emission 

costs. We know that the total cost of emissions will increase as vehicle kilometers 

travelled are increased since the emissions cost is dependent on VKT. The opening of a 

fourth DC indicates that the cost of transporting the units (both the variable and emissions 

costs) is sufficiently high that a reduction in vehicles kilometers travelled becomes 

Plants Open DC Closed DC Retailers Routes
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increasingly important. As seen in Figure 6.2, the opening of a distribution centre in the 

lower left-hand corner of the grid significantly reduces the distance travelled to service 

the customers in that vicinity, and in turn reduces the emission cost of the network.   

6.7.3 Design Layout – High Emission Costs 

It was evident that the addition of nominal emission costs can affect the design of a 

supply chain. This third case analyzes the impact that significant carbon costs would have 

on the layout of a supply chain. The scaling parameters for the high emission cost 

scenario were set as: 

    

The above parameters were entered into the solution procedure to obtain a 

Lagrangian bound and feasible solution.  Similar to cases analyzed throughout this 

research, the objective function value obtained from the best feasible solution was within 

3% of the Lagrangian bound. The best supply chain design from the heuristic problem 

was obtained and is present as Figure 6.3.  

Each plant in this case served two warehouses. In contrast to the three DCs that 

were opened in the zero emissions case and the four sites opened in the base scenario, the 

high emission case opens six of the seven potential sites. As seen with the base case, the 

increased cost to transport units meant increased attention was paid to the reduction of the 

vehicles kilometers travelled. Thus, more distribution centres were opened to reduce the 

travel distances and the cost of the system. As Figure 6.3 illustrates, warehouses around 

the exterior of the grid are now fiscally feasible to minimize the total cost of the system. 
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An extra DC is opened in the bottom right-hand corner to service local retailers. 

Additionally, a warehouse is opened in the upper left corner of the grid to serve two local 

customers. In this case, the cost of transporting the goods extra kilometers is so great that 

is it feasible to open a facility to serve only a couple customers, if the trip length can be 

sufficiently reduced.  

 

Figure 6.3: Network design – High emission cost. 

6.8 Emissions Reductions vs. Cost 

The results have shown that as emission costs increase more distribution centres are 

opened in order to reduce travel distances and minimize the total cost of the system. This 

Plants Open DC Closed DC Retailers Routes
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section examines the absolute reduction in emissions as emissions costs increase and 

compares the reductions versus the logistics cost of the system.  

In this section, we consider a problem with 5 plants, 15 warehouse sites and 30 

retailers. The following scaling parameters were also applied: 

    

The problem was tested several times with the properties of the facilities (location, 

capacities, demands and costs) remaining constant, but the scaling parameter on the 

emissions cost was varied. For each test run, the total emissions produced by the network 

and the logistics cost were recorded. The logistics cost of the network is defined as the 

sum of the fixed costs plus the variable cost to handle and transport the goods between 

nodes. Figure 6.4 plots the quantity of emissions versus the logistics cost of the system 

obtained in the testing.  

 The results showed that with no emissions costs the system had 3 open 

distribution centres and produced roughly 780 tonnes of CO2e (leftmost point on Figure 

6.4). As the cost of emissions was increased, the total emissions produced decreased very 

quickly at first, but then slowed and approached a minimum emissions value. The 

minimum amount of emissions obtained from this problem was approximately 630 

tonnes of CO2e, which required that 9 DCs be opened (rightmost point in Figure 6.4).  

 Of particular interest is the fact that a substantial amount of the emissions can be 

reduced for a nominal incremental cost. For the case considered, a 3.8% increase in the 

logistics cost of the system (which does not include the emission costs) results in a 17.6% 

reduction in the total CO2 emissions produced by the network. We have already seen in 
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previous sections that the introduction of emission costs can alter the optimal design of 

the supply chain. But, the data presented in Figure 6.4 show that even in jurisdictions 

without emission costs, for certain cases, a considerable amount of the vehicular 

emissions can be reduced if a small extra investment is made in the supply chain. While 

more distribution centres are required in order to reduce the emissions, a large portion of 

the extra costs to open the warehouses is offset by the reduced handling and 

transportation costs that arise from the shorter shipping lanes. Thus, considerable 

environmental benefit can be gained for a nominal extra investment if so desired. 

 

Figure 6.4: Emissions quantity versus logistics cost. 
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6.9 Testing Summary 

Several trends were noticed in the numerical testing of the solution algorithm. Foremost, 

the DCLR was greatly impacted by the tightness for the problems generated. In all 

scenarios, the DCLR decreased as the rigidity of the problem decreased. Furthermore, the 

range of DCLRs obtained from the best feasible solution increased as the tightness of the 

problem decreased. As would be expected, the DCLR was also impacted by the cost 

structure of the problem. Higher fixed facility costs produced higher load ratios, while 

higher variable and emission costs generated lower DCLRs.  

 Alternatively, the cost breakdowns observed in the tests were not adversely 

affected by the tightness of the problem. Rather, the cost compositions of the best 

solution in the tests were primarily due to the scaling parameters selected for the 

particular problem.  

 The time required to process the algorithm increased as the number of variables 

increased, and also increased as the tightness of the problem increased. The fixed cost 

dominant scenario appeared to be more difficult to solve than the base case, whereas the 

variable and emissions cost situations were easier to solve than the base case. Of more 

importance is the fact the majority of the computation time is spent solving [SP1]. In 

essence, [SP1] is the bottleneck in the algorithm that prevents larger problems from being 

tackled. An extension that would alleviate the computational demand of [SP1] could be 

an area of future research. However, it would be important to do so while maintaining the 

integrity of the primal heuristic.  
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 The heuristic proposed in this research performed exceptionally, achieving 

solutions within 1% of the optimum. Even though the algorithm achieved the Lagrangian 

bound in a small number of iterations, the heuristic still managed to obtain a good 

solution. The strength of the heuristic was due to the input of variables selected from the 

solution of [SP1]. Since [SP1] maintained many of the characteristics of the original 

problem, the solution data passed along to the heuristic aided greatly in producing a high 

quality feasible solution.  

 It was visually observed that as the emission costs were increased, the supply 

chain tended towards shorter transportation routes, and as a result, more distribution 

centres were opened. This showed that carbon cost schemes can have an impact on 

network designs, and therefore should be considered when designing or evaluating supply 

chains in a regulated emissions market.  

 Finally, the influence of emissions costs on the quantity of emissions produced by 

the supply chain was analyzed. It was observed that as the emission costs were increased, 

the carbon emissions produced by the best network design decreased. For the particular 

case considered, it was shown that a 3.8% increase in the logistics cost of the system 

resulted in a 17.6% reduction in the total CO2 emissions produced by the network. Thus, 

a substantial benefit to the environment can be obtained for a nominal extra investment, 

even in regions without carbon costs. 
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Chapter 7: 

Conclusion 

This thesis attempted to integrate the cost of carbon emissions into a supply chain design 

model. The new problem formulation minimized the combined expenses associated with 

the fixed costs to set up a facility, the transportation cost to move goods and the cost of 

emissions generated on the shipping lanes. A network design model that minimizes both 

the logistics cost and the emission cost of a supply chain has practical applications for 

supply chain design, particularly in regions that have a carbon tax or cap-and-trade 

system.  

 This thesis offered two primary contributions to supply chain design literature: 

1) Foremost, this research proposed a supply chain design model that added the cost 

of carbon emissions into the objective function. A solution method was then 

developed to evaluate the new problem formulation. The Lagrangian relaxation 

technique was used to decompose the problem by echelon and by potential DC 

site. Then, the problem was linearized and solved to achieve the Lagrangian 

bound. A primal heuristic that used data from the Lagrangian subproblems was 

utilized to generate a feasible solution in each iteration.  

2) The results from this research confirmed that the addition of carbon costs into the 

decision process for supply chain can change the optimal configuration of the 

network. However, rather than using linear or convex functions to express the 
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emissions costs, this study used experimental data that demonstrated a concave 

relationship. 

Through the application of the solution methodology, this research showed that 

the addition of carbon costs to a supply chain created a pull to reduce the amount of 

vehicle kilometers travelled. Since the customer demands must still be met, the solution 

model suggested that more distribution centres be opened in order to create additional 

shipping lanes from the plant to the warehouse and reduce the travel distance from 

warehouse to retailer.  

This thesis also demonstrated that substantial environmental benefit may also be 

able to be obtained for a nominal extra investment in the supply chain. It was shown that 

for a particular case, a marginal extra investment to open additional distribution centres 

resulted in a significant decrease in carbon emissions produced by the supply chain. The 

extra costs to open the warehouses were partially offset by the reduced handling and 

transportation costs that arise from the shorter shipping lanes, resulting in a greener 

supply chain with only marginally higher costs. 

The practical applications of this research are abundant, especially to 

organizations with a free on board manufacturer delivery model located in jurisdictions 

with carbon pricing systems. While only a small number of regions in the world currently 

operate under a carbon tax system or emissions trading system, the supply chain design in 

these regions is greatly affected by the additional emission costs. And with the growing 

awareness of climate change, an increasing number of governments are considering the 

creation of a carbon pricing system for their constituencies. Thus, the applicability of this 
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research is likely to grow with time, and it is hoped that this study will provide a 

foundation for future research and model extensions.  
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Appendix A: 

8.1 Problem Generator 

% Generate random problem 

    % Generate Coordinates for each plant, DC, customer 

        i_locs = rand(i,2)*190 + 10; 

        j_locs = rand(j,2)*190 + 10; 

        k_locs = rand(k,2)*190 + 10; 

  

    % Compute i to j distances 

        for l=1:i 

            for m=1:j 

                itoj(l,m) = ((i_locs(l,1)-j_locs(m,1))^2 +  

(i_locs(l,2)-j_locs(m,2))^2)^0.5; 

            end 

        end 

        c = beta1 * itoj * 10; 

  

    % Compute j to k distances 

        for l=1:j 

            for m=1:k 

                jtok(l,m) = ((j_locs(l,1)-k_locs(m,1))^2 +  

(j_locs(l,2)-k_locs(m,2))^2)^0.5; 

            end 

        end 

        h = beta2 * jtok * 10; 

  

    % Generate customer demands (between 10 and 50) 

        d = rand(k,1)*40 + 10; 

  

    % Generate DC capacities (between 10 and 160) 

        V = rand(j,1)*150 + 10; 



 

 81 

        V_sf = kappa1 / (sum(V)/sum(d)); 

        V = V * V_sf; 

  

    % Generate fixed costs for DC's 

        g = alpha1 * (rand(j,1)*90 + (rand(j,1)*10 + 100) .*  

V.^0.5); 

  

    % Calculate weights of each shipment 

        density = 75 

  wd = d*density + 6800;  

        wV = V*density + 6800; 

  

    % Calculate emission values of each route 

        fdk = -0.000000814*wd.^2 + 0.0407*wd + 210.45; 

        for m=1:j 

            for n=1:k 

                f_jtok(m,n) = jtok(m,n)*fdk(n,1)*e; 

            end 

        end 

        for m=1:j 

            fVj(m,1) = -0.0000008*wV(m,1)^2 + 0.0407*wV(m,1) +  

210.45; 

        end 

        for l=1:i 

            for m=1:j 

                f_itoj(l,m) = itoj(l,m)*fVj(m,1)*e; 

            end 

        end 

        dummy3 = []; 

        for m=1:i 

            dummy3 = [dummy3; V']; 

        end 

        f_itoj = f_itoj ./ dummy3; 

        for m=1:j 

            for n=1:k 

                hjk_dk(m,n) = h(m,n)*d(n,1); 
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            end 

        end 

8.2 Solver Code for Base Scenario 

% MIP Solver 

    solver = 2; % GLPK=1, Cplex=2 

     

% Define Problem - Numerical Testing Parameters 

    i = 3; % number of plants 

    j = 3; % number of DCs 

    k = 15; % number of customers 

  

    % Numerical Testing Scalars 

    alpha1 = 100; % multiplier on fixed DC cost 

    beta1 = 1; % multiplier on var. trans. cost from i to j 

    beta2 = beta1; % multiplier on var. trans cost from j to k 

    kappa1 = 3; % ratio of total DC capacity to total demand 

    omega1 = 1; % multiplier on emissions cost 

    e = 0.2; % 

    e = e * omega1; % new emissions cost 

    density = 75; 

    bound = 10000000 * k;  

    initial_mu = -8000;  

     

    % Lagrangian variable and constants 

        LB = -inf; 
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        UB = inf; 

        mu = ones(j,1)*initial_mu; 

  

    % GLPK variable and constants 

        continuous = 'C';  

        integer = 'I';      

        if solver == 1 

            % GLPK constraints types 

            upper = 'U'; 

            fixed = 'S'; 

            lower = 'L'; 

            binary = 'I'; 

            param.msglev=0; 

        end 

        if solver == 2 

            % Cplex constraint types 

            upper = 'L'; 

            fixed = 'E'; 

            lower = 'G';   

            binary = 'B'; 

            param.errmsg=0; % For Cplex only 

            H = []; % For Cplex only 

            save = 0; % For Cplex only 

            x0_mp = ones(1+j+j,1)*inf; % For cplex 

            x0_sp1 = ones(j*k+j,1)*inf; % For cplex 

            x0_sp2 = ones(i,1)*inf; % For cplex 

            x0_feas = ones(i*j, 1)*inf; % For cplex 
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        end         

        senseSP = 1; 

         

% Setup master problem 

    tic; 

    C_mp = [1, ones(1,j), zeros(1,j)]; 

    A_mp = []; 

    b_mp = []; 

    lb_mp = ones(1+j+j,1)*(-bound); 

    ub_mp = ones(1+j+j,1)*bound;  

    ctype_mp = []; 

    vartype_mp = repmat(continuous, 1, j+j+1); 

    sense_mp = -1; 

    iters = 0; 

    time_mp = time_mp + toc; 

     

% Set up [SP1] 

    % Constraints 

    A_sp1_1 = [repmat(eye(k),1,j) zeros(k,j)]; 

    A_sp1_2 = []; 

    for m=1:j 

        for n=1:k 

            dummy = zeros(j,1); 

            dummy(m,1) = 1*d(n,1); 

            A_sp1_2 = [A_sp1_2 dummy]; 

        end 

    end 
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    dummy2 = diag(-V); 

    A_sp1_2 = [A_sp1_2 dummy2]; 

    A_sp1 = [A_sp1_1; A_sp1_2]; 

    % RHS 

    b_sp1 = [ones(k,1); zeros(j,1)]; 

    % bounds 

    lb_sp1 = zeros(j*k+j,1); 

    ub_sp1 = ones(j*k+j,1); 

    % constraints and variable types 

    ctype_sp1 = [ repmat(fixed,1,k) repmat(upper,1,j) ]; 

    vartype_sp1 = repmat(binary, 1, j*k+j) ;    

     

% Set up [SP2] 

    A_sp2 = ones(1,i); 

    lb_sp2 = zeros(i,1); 

    ub_sp2 = ones(i,1)*inf; 

    ctype_sp2 = [upper]; 

    vartype_sp2 = repmat(continuous, 1, i); 

     

% Set up Heuristic Problem     

    D = repmat(d',j,1); 

    A_feas = repmat(eye(j),1,i); 

    b_feas = ones(j,1); 

    lb_feas = zeros(i*j, 1); 

    ub_feas = ones(i*j, 1); 

    ctype_feas = repmat(fixed,1,j); 

    vartype_feas = repmat(binary,1,i*j); 
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    sense_feas = 1; 

  

% Loop to find Lagrangian Bound 

    while UB-LB > 0.01 

        % Solve Subproblem [SP1] 

            tic;       

                % Create GLPK input matrices     

                % Update Objective function w/ current mu 

                fdk_j = reshape(f_jtok', 1, j*k);   

                hjk_dk_row = reshape(hjk_dk',1,j*k); 

                dk_mu = reshape( (repmat(mu,1,k) .*  

repmat(d',j,1))', 1, j*k); 

                C_sp1 = [ (fdk_j+hjk_dk_row-dk_mu) g']; 

  

                % Solve IP-SP1 in GLPK/Cplex 

                    display 'solving [SP1]' 

                    if solver == 1           

[yz_min,obj_yz_min,status,extra_sp]=gl 

pkmex(senseSP,C_sp1',A_sp1,b_sp1,ctype 

_sp1',lb_sp1,ub_sp1,vartype_sp1',param); 

                    end 

                    if solver == 2 

[yz_min,obj_yz_min,status,extra_sp]=cp 

lexmex(senseSP,H,C_sp1,A_sp1,b_sp1,cty 

pe_sp1',lb_sp1,ub_sp1,vartype_sp1',x0_ 

sp1,param,save); 

                    end 
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                    display '[SP1] solved' 

                    y = yz_min(1:j*k,1); 

                    z = yz_min(j*k+1:j*k+j,1); 

                    SP1_obj = obj_yz_min; 

                    store_yz = [store_yz; yz_min']; 

                    z_SP1 = [z_SP1; obj_yz_min]; 

                    time_sp1 = time_sp1 + toc;        

                     

        % Solve Subproblems [SP2] 

            tic; 

            for m=1:j 

                % Create GLPK input matrices 

                    C_sp2 = f_itoj(:,m)' + c(:,m)' + mu(m,1); 

                    b_sp2 = V(m,1); 

  

                % Solve LP-SP2 in GLPK/Cplex 

                    if solver == 1  

[x_min,obj_x_min,status,extra_sp]=glpk 

mex(senseSP,C_sp2',A_sp2,b_sp2,ctype_sp2',lb_sp

2,ub_sp2,vartype_sp2',param); 

                    end 

                    if solver == 2 

[x_min,obj_x_min,status,extra_sp]=cple 

xmex(senseSP, H, C_sp2, A_sp2, b_sp2,  

ctype_sp2', lb_sp2, ub_sp2,  

vartype_sp2', x0_sp2, param, save); 

                    end                   
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                    x = [x x_min]; 

                    SP2_obj = [SP2_obj obj_x_min]; 

            end 

             

            store_x = [store_x; x]; 

            z_SP2 = [z_SP2; sum(SP2_obj)]; 

            time_sp2 = time_sp2 + toc; 

  

        % Find Lower Bound 

            store_LB = [store_LB; SP1_obj + sum(SP2_obj)];       

            if LB < SP1_obj + sum(SP2_obj) 

                LB = SP1_obj + sum(SP2_obj); 

            end   

  

        % Find feasible solution 

        % Create [STP] 

            tic; 

                        % Calc demand at each DC 

                        y2 = [reshape(y,k,j)]'; 

                        dk_yjk = sum(y2.*D,2); 

                        dk_yjk2 = repmat(dk_yjk',i,1); 

  

                        % Calculate weights of each shipment 

                        density = density; 

                        w_dk_yjk = zeros(j,1); 

                        for m = 1:j 
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                            if dk_yjk(m,1) == 0 

                                % do nothing 

                            else 

                                w_dk_yjk(m,1) = dk_yjk(m,1) *  

density + 6800; %  

                            end 

                        end 

                        % Calc emission values of each route 

                        f_dk_yjk = zeros(j,1); 

                        for m=1:j 

                            if w_dk_yjk(m,1) == 0 

                                % do nothing 

                            else 

                                f_dk_yjk(m,1) = -0.0000008*  

  w_dk_yjk(m,1)^2 +  

  0.0407*w_dk_yjk(m,1) + 210.45; 

                            end 

                        end 

                        for l=1:i 

                            for m=1:j 

                                f_itoj_feas(l,m) = itoj(l,m)*  

  f_dk_yjk(m,1)*e; 

                            end 

                        end 

  

                    % Set up problem for [STP] 

                        c_feas = reshape( ((c.*dk_yjk2) +  
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(f_itoj_feas))', 1, i*j); 

                        A_feas = repmat(eye(j),1,i) .*  

repmat(dk_yjk,1, i*j); 

                        b_feas = dk_yjk; 

  

                    % Solve for feasible solution 

                        if solver == 1  

[soln_x,obj_x,status_feas,extra_ 

heur]=glpkmex(sense_feas,c_feas' 

,A_feas,b_feas,ctype_feas',lb_fe 

as,ub_feas,vartype_feas',param); 

                              msg = 171; 

                        end 

                        if solver == 2  

[soln_x,obj_x,status_feas,extra_ 

heur]=cplexmex(sense_feas,H,c_fe 

as,A_feas,b_feas,ctype_feas',lb_ 

feas,ub_feas,vartype_feas',x0_fe 

as, param,save);  

                              msg = 101; 

                        end                          

                         

                    % Calculate objective function value 

                        if status_feas == msg 

                            obj_g = g'*z; 

                            obj_y = sum(sum((f_jtok +  

hjk_dk).*y2)); 
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                            obj = obj_g + obj_x + obj_y;   

                            store_feas = [store_feas ; obj]; 

                        end 

  

                    % Save solution if minimum optimal  

                        if status_feas == msg  

                            if obj < z_feas 

                                z_feas = obj; 

                                xyz_feas = [soln_x' y' z']; 

                            end 

                        end 

                         

            time_heur = time_heur + toc; 

  

        % Add constraints from SPs to master problem 

            tic; 

                % constraint from [SP1] 

                new_constr1 = [1, zeros(1,j), dk_yjk']; 

                fdky = sum(sum(f_jtok.*y2)); 

                hdky = sum(sum(hjk_dk.*y2)); 

                gz = sum(g.*z); 

                new_rhs1 = fdky+hdky+gz; 

                A_mp = [A_mp; new_constr1]; 

                b_mp = [b_mp; new_rhs1]; 

  

                % constraints from [SP2] 
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                x_col = sum(x); 

                for m=1:j 

                    dummy = zeros(1,j); 

                    dummy(1,m) = 1; 

                    dummy2 = zeros(1,j); 

                    dummy2(1,m) = x_col(1,m); 

                    new_constr2 = [0, dummy, dummy2*-1]; 

                    fVjx = sum(sum(f_itoj(:,m).*x(:,m))); 

                    cx = sum(sum(c(:,m).*x(:,m))); 

                    new_rhs2 = fVjx+cx; 

                    A_mp = [A_mp; new_constr2]; 

                    b_mp = [b_mp; new_rhs2]; 

                end 

                ctype_mp = [ctype_mp repmat(upper,1,j+1)]; 

  

            % Solve [MP] in GLPK 

                if solver == 1 

[LMP,new_UB,status,extra_mp]=glpkmex(sense_mp,C_mp',A

_mp,b_mp,ctype_mp',lb_mp,ub_mp,vartype_mp',param); 

                end 

                if solver == 2  

[LMP,new_UB,status,extra_mp]=cplexmex(sense_ 

mp,H,C_mp,A_mp,b_mp,ctype_mp',lb_mp,ub_mp,va 

rtype_mp',x0_mp,param,save); 

                end 

                store_LMP = [store_LMP; LMP']; 

            % Store UB 
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                store_UB = [store_UB ; new_UB]; 

                UB = min(store_UB); 

  

        % Update lambda's and mu's 

            store_mu = [store_mu; mu']; 

            mu = LMP(1+j+1:1+j+j,1); 

            t = toc; 

            time_mp = time_mp + t; 

             

        % Iteration Counter 

            iters = iters+1 

    end 
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