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Abstract 

Contact lens success is primarily driven by comfort of the lens in eye. Over the years, 

many modifications have been made to the lens surface and bulk material to improve comfort of 

the lens, however 50% of contact lens wearers still report dry eye symptoms while wearing their 

lenses.  

Wettability of the lens material plays a large role in lens comfort, primarily due to its 

influence in tear film stability. In vitro wettability of contact lenses has typically been assessed 

by measuring the water contact angle on the lens surface. Currently there are three techniques to 

measure the in vitro wettability of contact lenses, the sessile drop technique, captive bubble 

technique, and the Wilhelmy balance method. To date, there is much published on assessing 

wettability using the sessile drop and captive bubble technique, however there is no data 

published looking at the in vitro wettability of hydrogel contact lenses measured by the 

Wilhelmy balance method. 

Accumulation and deposition of tear components on the lens surface can also affect lens 

performance, by altering the wettability of the lens surface and causing lens spoilage. The 

majority of in vitro studies looking at deposition of tear components on the lens surface dope the 

lenses in tear solutions for a set period of time. None of these studies have investigated the 

impact of exposing the lenses to tear solutions, then exposing them to the air and then back into 

the tear solution, which mimics the process during blinking.  

In Chapter 2, an evaluation of the influence of lens preparation on the wettability of 

contact lenses measured by the sessile drop technique was conducted. The wettability of 6 

silicone hydrogel and one conventional lens material was assessed. Lenses were blot dried on 

either a microfiber cloth or lens paper for different drying periods and contact angles were 
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measured using the sessile drop technique. There were large variations in results using the 

microfiber cloth after all drying periods, but there was little variation in results after lenses were 

blot dried on lens paper for approximately 20 seconds. Thus, it was determined that for future 

contact angle analysis using the sessile drop technique that lenses should be blot dried for 

roughly 20 seconds on lens paper. This method was used consistently for the rest of the 

experiments in which the sessile drop technique was used to measure contact angles. The 

remainder of Chapter 2 compared the contact angles of different lens materials measured by the 

sessile drop technique and Wilhelmy balance method. The wettability of five different silicone 

hydrogel lens materials was assessed directly out-of-blister and after a 48 hour soak in saline. 

There were significant differences in contact angles for the lens materials between the two 

techniques. There were also significant differences in contact angles directly out-of-blister and 

after the 48 hour soak. Results from this study suggested that different methods of measuring 

wettability can produce different results and that blister pack solutions can alter the wettability of 

lens materials. 

Chapter 3 measured the physical properties of blister pack solutions of silicone hydrogel 

lenses. The pH, osmolality, surface tension, and viscosity of the blister solutions for 9 silicone 

hydrogel lenses, 2 conventional lenses, and 2 saline solutions were measured. The osmolality of 

the blister solutions followed a trend, in that blister solutions manufactured by the same company 

had the same osmolality. Products produced by Johnson & Johnson had the highest osmolality. 

Blister solutions that contained additional wetting agents had higher viscosities compared to 

blister solutions without added wetting agents. The main conclusion from this study was that 

adding wetting agents to blister solutions could alter the physical properties of the blister 

solutions. 
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The purpose of Chapter 4 was to measure the physical properties of the blister pack 

solutions of daily disposable lenses and to evaluate the wettability of the lens materials and 

substantivity of the blister solutions, using a method in which lenses were cycled through 5 

minute soaks in saline to mimic blinking. Five daily disposable lens materials were evaluated, 

one of which was shipped in a blister solution with added surfactants and wetting agents. The 

wettability of the lenses was assessed using the sessile drop technique and Wilhelmy balance 

method. The lens with the modified blister solution had a lower surface tension and higher 

viscosity compared to all the other blister solutions. The same trend in osmolalties as those 

reported in Chapter 3, were found with blister solutions made by the same manufacturer having 

the same osmolality. The wettability varied across lens materials. Overall, the lens material with 

the added components to the blister solution had the lowest contact angle.  

Chapter 5 investigated the deposition of tear components onto the surface of conventional 

and silicone hydrogel lens materials and looked at the impact of this on changes in wettability. 

Three lens materials used in Chapter 4 were exposed to a saline solution, lysozyme solution, and 

a complex tear solution for 5 minutes, 1 hour, 4 hours, and 8 hours. The wettability was assessed 

after each time point using the sessile drop and Wilhelmy balance methods. There was little to no 

deposition on the lens materials that had the highest in vitro CAs in Chapter 4, exemplified by no 

change in wettability after being soaked in the lysozyme and complex tear solutions. There was 

deposition on the lens materials with the lowest CAs in Chapter 4, exemplified by a significant 

increase in wettability after being soaked in the lysozyme and complex tear solutions. Results 

indicate that there is some deposition onto one lens material, as shown by the change in 

wettability of the lens surface. These results were further used to validate a method used in 

Chapter 6. 
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The experiment conducted in Chapter 6 was similar to the experiment in Chapter 5, 

except that the lenses were not soaked in the three solutions but rather exposed to the solutions in 

a “model blink cell”. The model blink cell moves lenses in and out of solution at a set time 

interval, in an attempt to mimic blinking. The interval was set so the lenses would be placed for 1 

second in solution and 5 seconds exposed to the air. The same lens materials used in Chapter 5 

were used in for this experiment. The lenses were exposed to a saline solution, lysozyme solution 

and complex tear solution for 5 minutes, 1 hour, 4 hours, and 8 hours. Much like in Chapter 5, 

deposition on the lens materials was determined by a change in the lens wettability. There were 

differences in the results of this chapter and that of Chapter 5, with deposition occurring on two 

of the lens materials rather than just one. This result indicates that the drying of the lens surface 

for 5 seconds out of solution has an effect on the deposition of tear components on certain lens 

materials. Thus, the model blink cell may be a useful tool for future deposition studies. 

Overall this thesis demonstrated that preparation of the lens material can cause variation 

in contact angles. Different methods of measuring in vitro wettability of contact lenses can 

produce different results and thus the method used to assess wettability should always be stated. 

The physical properties of blister pack solutions can change with added wetting agents and 

surfactants, and components from blister solutions can alter the initial wettability of contact 

lenses. In vitro deposition of proteins onto the lens surface can vary with techniques, and finally, 

deposition of tear components onto the surface of contact lenses can alter the lens wettability. 
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1. Chapter 1: Introduction 

Contact lens success has been primarily driven by comfort of the lens in eye. Comfort is a 

trivial qualitative component to assess in terms of contact lens wear, as comfort can be 

influenced by oxygen permeability of the lens material, lens design, modulus, wettability, and 

accumulation of deposits on the lens surface.1-6 Over the years, many modifications have been 

made to the lens surface and bulk material to improve comfort of the lens (discussed in detail 

later) however 50% of contact lens wearers still report dry eye symptoms while wearing their 

lenses.7, 8 

Wettability of the lens material plays a large role in lens comfort, primarily due to its 

influence on tear film stability. In addition, deposition of tear components on the lens surface can 

also affect lens performance by altering the wettability of the lens surface and producing lens 

spoilage 

1.1 Biomaterial Wettability 

The term “wettability” refers to the ease with which a fluid spreads across a solid surface, 

or more specifically how the fluid adheres to the solid surface.9-11 There are two general terms 

used to describe a solid’s surface wettability: hydrophilic and hydrophobic.12 A surface that is 

hydrophilic is a “fluid- loving” surface and will have the tendency to pull the fluid over its 

surface. A surface that is hydrophobic is “fluid-fearing” and will have the tendency to push the 

fluid away from the surface to minimize contact with the fluid. 

Wettability of a solid substrate is influenced by three forces: the surface tension of the 

solid, the surface tension of the liquid, and the interfacial tension. At the interior of the liquid 
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there are more neighbouring molecules, than at the liquid surface. The attractive forces between 

neighbouring molecules in the interior region are the same in every direction, generating a lower 

energy state. However, at the surface of the liquid there are only inward attractive forces 

generating a higher energy state at the surface of the liquid (Figure 1-1). 

 

Figure 1-1: Attractive forces of molecules within a liquid drop. 

Molecules have a tendency to remain at low energy states, thus molecules try to remain in 

the bulk of the liquid. This creates a tendency for liquids to maintain a minimum surface area by 

remaining as droplets, particularly on a hydrophobic surface.13 Liquids that have strong attractive 

forces in the bulk of the fluid have high surface tensions. Conversely, lowering the surface 

tension of a liquid will cause the liquid to spread more evenly over the surface of the solid. 

The surface tension of the solid is similar to that of a liquid; however, the intermolecular 

bonding of molecules in the solid is tighter and the inward pull is not enough to change the shape 

of the solid. A solid with a high surface tension acts to pull the liquid over the surface of the dry 

solid in an attempt to reduce the surface tension.14 

The surface tension of the solid is countered by a force at the solid-liquid interface which 

pulls the liquid away from the surface of the dry solid. This force is known as the “interfacial 

tension”. The force of the interfacial tension can be increased or lessened depending on the 
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attractive forces between the molecules in the liquid and the solid. The greater the attraction 

between the liquid and the solid, the lower the interfacial tension will be, and the more spreading 

of the liquid over the surface of the solid. 

1.1.1 Why is Wettability Important? 

Biomaterials, including tissue engineering substrates, blood-contacting medical devices, 

artificial joint replacements, dental impressions, breast implants, ocular implants, and contact 

lenses, are compounds of natural or artificial origin that can mimic, store, or come into close 

contact with living biological cells or fluids.12.  

The performance of a biomaterial is generally evaluated by its biocompatibility. 

Biocompatibility refers to the measured success of the interaction between the biomaterial and 

the biological cells for a specific biomedical task.12, 15 If the biomaterial retards or affects the 

natural biological process for which it is intended to assist, the biomaterial would be considered 

incompatible.16 For example, in tissue engineering, if a substratum is used which does not 

promote the growth of a smooth monolayer of cells on its surface, it would not be deemed 

biocompatible, as its “desired outcome” is to allow the growth of a tissue on its surface. If a 

contact lens is unable to support a stable tear film, it would not be deemed as being 

biocompatible. 

The surface of the biomaterial is the first component of the implant that comes into 

contact with the biological cells or fluids. Thus, biocompatibility will be influenced primarily by 

the surface characteristics of the biomaterial, particularly the surface chemistry of the exposed 

atoms, surface energy, surface topography, and the surface wettability.17, 18 
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Much work has been undertaken on measuring and reporting the wettability of a variety 

of biomaterials. It has long been assumed that enhanced wettability will result in improved 

biocompatibility.19, 20 For example, the material used for dental impressions is highly important, 

in that it needs to be able to form readily around the teeth and gums and be void of any bubbles 

or defects. The environment inside the mouth is moist due to the excretion of saliva, and 

therefore the material used for dental impressions must be hydrophilic to ensure compatibility 

with the environment inside the mouth.21 It is also important that the material is hydrophilic both 

before and after setting. The material should be hydrophilic before setting so that it can easily 

form around the teeth and gums, and needs to remain hydrophilic after setting so that no air 

bubbles are entrapped when the gypsum products are poured. If a surface is hydrophobic, water, 

saliva or any other fluid on the surface of the teeth or gums would create a small droplet and 

hence create a small void in the impression material or gypsum.22, 23 This was confirmed by 

Michalakis et al,21 who looked at the impact of wettability on void formation. The six materials 

examined were polyether, four poly(vinyl siloxanes) and one condensed silicone impression 

material. The results showed that the material with the lowest wettability, polyether, exhibited 

the fewest voids before setting.  

However, improved wettability does not necessarily lead to improved biocompatibility 

for all biomaterials.  Much research has been undertaken investigating the biocompatibility of the 

different materials used to make intraocular lenses (IOLs) and with differing surface 

wettabilities. Biocompatibility of IOLs is based on the proliferation of anterior lens epithelial 

cells (LECs) onto the surface of the IOL, anterior capsule opacification (ACO) and posterior 

capsule opacification (PCO). ACO is the opacification or clouding of the anterior portion of the 
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capsule which holds the lens of the eye. PCO is the opacification of the posterior portion of the 

capsule. ACO and PCO generally occurs after cataract surgery. 

In 2003, Tognetto et al24 compared the biocompatibility of a foldable hydrophobic acrylic 

IOL and a heparin surface-modified PMMA IOL. Biocompatibility was based on postoperative 

cell adhesion to the anterior surface of the IOL and ACO.24 Postoperative analysis showed that 

the mean cell density on the IOLs were lower for the acrylic IOL compared to the heparin 

surfaced-modified IOL, throughout the entire follow-up period. There was also little to no 

anterior capsule opacification on the acrylic IOL compared to the heparin surface-modified 

IOL.24 The researchers suggested that the results were due to a greater adhesion between the 

anterior surface of the acrylic IOL and the capsular margins, preventing cell migration, 

attachment, and proliferation.24 Thus, the results indicated that the more hydrophobic IOL had a 

greater biocompatibility than the more hydrophilic IOL (heparin surface-modified). 

In the contact lens literature, wettability in-eye is typically assessed by determining the 

ease with which the tear film spreads on the contact lens surface and how stable the tear film 

remains adherent to that surface. This is usually achieved by visible inspection of the lens at the 

slit lamp,25 measuring the non-invasive tear break-up time,1, 26-28 or determining the tear film 

thickness and stability using interference fringes.28-30 However, in the context of general 

biomedical materials the surface wettability is usually assessed by determining water contact 

angles at the material surface. 

1.1.2 Contact Angles 

Measuring wettability of biomaterials in vitro is evaluated by measuring the contact angle 

(CA) at the liquid-solid interface. CAs are usually calculated using the Young- Dupré equation: 
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cosθ = (γSV – γSL)/ γLV, where γ is the interfacial tension between the solid (S), liquid (L), and 

vapour (V) phase.31 A high CA or low adhesion of the fluid to the solid indicates low wettability 

or a hydrophobic solid surface (Figure 1-2a).32 A low CA, in which there is a smooth, continuous 

fluid film over the solid surface, signifies high wettability or a hydrophilic surface (Figure 1-2b). 

A surface that is completely wettable will have a CA of 0°. 

 

 

 

a)                 b)  

Figure 1-2: a) Schematic diagram of a hydrophobic surface with a high CA and b) 

schematic diagram of a hydrophilic surface with a low CA. 

There are two different CAs that can be measured: advancing CA and receding CA. The 

advancing CA is the angle at which the liquid spreads across the surface of the dry solid at first 

contact. The receding CA is measured when the drop of liquid is withdrawn from the surface of 

the solid. The receding angle is usually smaller than the advancing angle as it is measuring a 

liquid being withdrawn over a surface that is already moist.  

The difference between the advancing and receding CAs is known as the “hysteresis”.9 

Although hysteresis occurs because of withdrawing the droplet over an already wet surface, it is 

also thought to be caused by possible polymer reorientation at the material surface.33 Polymeric 
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surfaces are very mobile and the orientation of the molecules can change depending on the 

surrounding environment. When the materials are exposed to air or other hydrophobic 

environments, the hydrophobic groups within the polymers will migrate towards the surface of 

the material, making the surface less wettable. For example, when poly[2-hydroxyethyl 

methacrylate] is exposed to air, the methyl groups rotate towards the hydrophobic interface by 

chain rotation.33 This is a more favourable energetic state, thereby lowering the surface free 

energy. However, on exposure to polar liquids, the polymers will rotate so that the hydrophilic 

groups are pointing towards the polar phase (Figure 1-3). This increases the wettability of the 

solid surface. 

a) b)  

Figure 1-3: Schematic drawing of a) polymers within the bulk of a material due to 

hydrophobic outside environment and b) polymers rotating to outside of bulk material due 

to outside polar environment. 

There are two types of CA hysteresis: thermodynamic hysteresis and kinetic hysteresis. 

Thermodynamic hysteresis on a clean surface is due to surface roughness, surface heterogeneity, 

and possibly surface deformation.34 Kinetic hysteresis shows changes in a hysteresis loop as a 

function of time. In other words, kinetic hysteresis is usually caused by swelling of the material, 

liquid penetration into the surface of the material, and reorientation of the functional groups at 

the surface of the material.9, 35, 36 
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1.1.3 Techniques for Measuring Wettability In Vitro 

Currently there are three techniques for measuring in vitro wettability: sessile drop, 

captive bubble, and the Wilhelmy balance method,14 with sessile drop being the most commonly 

used technique.37-44 

The sessile drop technique involves placing a drop of liquid from a syringe onto the 

surface of the test material. After the drop is placed on the material the advancing CA can be 

measured directly using a goniometer. A goniometer captures an image of the drop on the test 

material and through data analysis the advancing angle at the liquid-solid interface is measured.  

The receding angle is measured by withdrawing the drop of liquid off the test material 

surface with the syringe and once again an image is taken as the drop is being withdrawn and the 

angle is measured between the liquid and the solid surface.39, 45 To analyze the image, five points 

are placed along the curved surface of the lens image. A solid line then appears which can be 

manipulated to sit perfectly along the curved surface of the lens. Similarly, five points are placed 

along the curved surface of the drop image and a hollow sphere appears which can be 

manipulated to fall along the surface of the drop. An algorithm is used by the respective CA 

analysis software, which determines the angle between the two intersecting lines on either side of 

the water drop. The two angles are averaged, and the averaged CA which is used for further 

analysis of the results. A syringe with a needle diameter that is small in proportion to the drop 

size needs to be used when measuring the CAs. If the diameter of the syringe exceeds a few tens 

of microns, the drop shape will be altered, thus inducing errors when measuring the CAs.46 

Although the sessile drop method is widely used in measuring wettability, there are two 

major problems with the method, namely evaporation of the liquid and dehydration of the solid 

surface. A small drop has a large surface area compared to the volume of the liquid and 
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evaporation will cause the drop to retreat on the surface of the solid and affect the measured 

CAs.14 Dehydration of the solid surface can also lead to altered CAs. As mentioned above, 

polymers may reorient themselves at the surface in respect to the surrounding environment. If the 

polymer is left in a dry environment, (e.g. air) the hydrophobic groups within the polymer will 

reorient themselves to the surface of the material, making the material less wettable. Both of 

these problems can be solved by placing the solid sample and liquid drop in a vapour-tight 

chamber with clear windows, so that the image can still be captured and the CAs measured.14 

The captive bubble technique eliminates the problem of the solid surface becoming 

dehydrated as in this technique the solid material is immersed in the probe liquid. A capillary is 

placed underneath the solid and an air bubble is dispensed from the capillary tip so that the 

bubble just touches the surface of the solid (Figure 1-4).47 As the air bubble becomes larger, it 

pushes the liquid away from the solid surface and at this point the angle between the solid and 

liquid is the receding angle. The air bubble is then retracted back into the syringe and the liquid 

spreads back onto the surface of the lens. This angle would be considered the advancing angle.39  

 

Figure 1-4: Schematic representation of the captive bubble technique. Syringe dispenses an 

air bubble onto the surface of the solid substrate creating a contact angle θ. 

probe fluid 
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The captive bubble technique also has some drawbacks. Firstly, because the sample is 

immersed in liquid it may retain an absorbed layer of fluid on its surface making it appear more 

wettable than it truly is in the natural environment. Secondly, the air bubble is a medium of low 

refractive index but is observed in a medium of high refractive index. This creates a light path 

that is from air to water, to air to water, and then back to air. This path makes it difficult to see 

where the bubble actually contacts the solid surface.14, 33 Thirdly, the amount of probe liquid 

required makes the captive bubble technique expensive to perform. 

The Wilhelmy balance method uses a plate or sample of test medium which is hung from 

a microbalance and slowly submerged and removed vertically from a test liquid. The advancing 

CA is the angle between the solid and the meniscus of the test liquid as the solid is dropped into 

the liquid (Figure 1-5a) and the receding angle is the angle between the solid and the liquid as the 

plate is moved out of the liquid (Figure 1-5b). 

 

Figure 1-5: Wilhelmy balance method measuring a) advancing CA θ when lens strip is 

immersed in the probe fluid and b) receding CA θ when lens is removed from the probe 

fluid. 

The main disadvantage of this technique is the cost of the equipment and the time it takes 

to prepare the test sample for immersion.35, 46 The cost of lenses is also significant as cutting a 

strip out of the center of each test lens eliminates further use of that particular lens. 
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The sessile drop technique, captive bubble, and Wilhelmy balance method have all been 

used to assess contact lens wettability as well as changes to lens wettability from deposition of 

tear components. As mentioned previously, deposition on lenses can cause complications such as 

lens spoilage and eye infections. To date there have been a number of studies reporting related 

eye complications due to deposition. 

1.2 Contact Lens Deposition 

1.2.1 The Tear Film 

The tear film is a physiological barrier between the anterior surface of the eye and the 

external environment. It has many functions including: lubricating the ocular surface and 

eyelids,48-51 supplying nutrients to the ocular surface,50 removing foreign material from the 

cornea and conjunctiva,52 supplying the cornea with nutrients,48 protecting the ocular surface 

from pathogens and bacterial contamination,48, 49 and promoting tissue maintenance and 

healing.48, 53, 54 Initially the composition of the tear film was described as being in three distinct 

layers: a mucin layer which was in direct contact with the epithelial cells of the cornea, an 

aqueous layer containing proteins, immunoglobulins, and electrolytes, and an outer lipid layer.55, 

56 However, further examination of the tear film indicated that the mucin layer may exist as a 

network within the aqueous layer forming what is now known as the mucin-aqueous layer. 

The mucin-aqueous layer is 98.2% water and 1.8% of solids, which are primarily 

proteins. The solids in the aqueous layer are dissolved mucin, lactoferrin, lysozyme, lipocalin, 

secretory immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), 

albumin, transferring, ceruloplasmin, glycoproteins, inorganic salts, and glucose.48, 54 There are 

also other substances such as magnesium, amino acids, bicarbonate, calcium, urea, and oxygen. 
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The lipid layer is a bilayer with an inner polar layer consisting of mainly phospholipids 

spreading over the aqueous layer and an outer nonpolar layer comprised mainly of cholesterol, 

and wax.55, 57-60 

1.2.2 In Vivo Contact Lens Deposition 

Deposition of tear film components is influenced by material surface charge, wettability, 

water content, wear time, and tear film composition.61-63 It has been found that the majority of 

hydrogel lenses accumulate a layer of deposits on the surface when worn for an extended period 

of time,64 and are the major cause of patients seeking contact lens aftercare in 30% of visits.65 

A study conducted by Leahy et al66 investigated the in vivo protein deposition on FDA 

group I (low water content, non-ionic) and group IV (high water content, ionic) lenses. 

Volunteers in the study wore the lenses contralaterally, with an FDA group I lens in one eye and 

an FDA group IV lens in the other eye. The lenses were worn for time periods of 1 minute, 15 

minutes, 1 hour and 8 hours after which they were removed and protein analysis conducted. 

SDS-Page analysis was conducted to differentiate between proteins deposited on the lens 

surfaces. Six groups of different proteins, including lysozyme, albumin, lactoferrin, 

immunoglobulins, and two unidentified proteins were detected. Total protein analysis at each 

time point indicated that the FDA group IV lens accumulated significantly more protein than the 

FDA group I lens material. When looking specifically at the deposition of lysozyme on the 

surface of the lens material, there was a significantly higher amount of lysozyme deposited on 

the FDA group IV material at all time points compared to the deposited lysozyme on the FDA 

group 1 material. It was suggested by the authors that the higher deposition of total protein and 

lysozyme on the surface of the FDA group IV lens material was due to the ionic-binding 
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capability at the lens surface.66 This work supported earlier findings by Sack et al,67 who also 

found that protein deposition was highly dependent on the ionic nature of the lens surface.67 

Lipid deposits are also detected on hydrogel contact lenses particularly FDA group II 

lenses (high water content, non-ionic).68, 69 Jones et al68 investigated the amount of lipid and 

protein deposition on FDA group II lenses after one group of patients wore the lenses for 3-

months and the other group wore the lenses for three 1-month periods. Results indicated a 

significant increase in visible deposits on the lenses that were worn for 3 months, as compared to 

deposits on lenses that were worn for the three 1-month periods. Protein deposits were also 

significantly higher on the lenses worn for 3 months. This was also the trend for lipid deposition, 

however, some patients showed little difference in lipid deposition when comparing wearing 

regimes. There was also an observed decrease in tear break-up time (reduced wettability) 

indicating tear instability from deposits on the lens surface. Overall, this study indicated that 

deposition on FDA group II lens materials increased over a longer wear time, which could 

subsequently lead to tear film instability and lens spoilage.68 

Studies looking at deposition on silicone hydrogel (SH) lenses indicate that deposition is 

considerably less than conventional lens materials, particularly FDA group IV lens materials. 

However, studies have also shown that deposits, more specifically lysozyme, on the SH lens 

materials is denatured. In a study by Boone et al70, the total lysozyme and lysozyme activity on 5 

different SH lens materials was measured. Participants were dispensed lotrafilcon A, lotrafilcon 

B, balafilcon A, and galyfilcon A lenses to wear for a 2-week period. Senofilcon A was 

dispensed as a control lens. Balafilcon A had the most deposited lysozyme, which was attributed 

to the ionic nature of the lens surface. Both lotrafilcon lens materials had the least amount of 

lysozyme deposited on the surface, however a large percentage of the lysozyme deposited was 
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denatured. A small percentage of lysozyme deposited on the balaficon A lens material was 

denatured.70 Early studies looking at complications in-eye due to deposition vs. complications in-

eye due to denatured proteins on the lens surface, indicated that inflammatory responses were 

more prevalent from denatured proteins on the lens surface rather than the amount of non-

denatured protein on the surface of the lens.71, 72 

1.2.3 In Vitro Contact Lens Deposition 

Early in vitro deposition studies focused on the deposition of tear proteins onto the 

surface of conventional hydrogel lenses. Much like the results above, in vitro data showed that 

deposition was highly dependent on the ionic nature of the lens surface. In other words, protein 

deposition (particularly lysozyme) tends to be greater on lenses that have a negatively charged 

surface.61, 66, 73-75 Again, there is some degree of deposition of tear proteins onto SH lenses in 

vitro, however this does not occur to the same extent as that seen on conventional polyHEMA-

based hydrogel lenses.31, 62 Santos et al62 found that regardless of surface treatment, all SHs 

absorbed smaller amounts of protein onto the surface than conventional hydrogel lenses. A study 

conducted by Jones et al61 looked at the deposition of lysozyme and lipids onto the surface of 

two SH lens materials (lotrafilcon and balafilcon) and a conventional hydrogel lens material 

(etafilcon). Results showed that lysozyme deposition was greatest on etafilcon and least on the 

balafilcon lens material. However, this study also demonstrated that the lysozyme that absorbed 

onto the surface of the SH lens materials was mostly denatured, particularly on the lotrafilcon 

lens material. Suggested reasons for protein denaturation were contact time with the substrate, 

chemical composition of the substrate, protein type, surrounding pH, and temperature.61 This 

study also showed that lipid deposition onto SHs was higher than that compared to lipid 



15 

 

deposition onto the etafilcon lens material. It was proposed that this result was due to the 

attraction of the lipids to the hydrophobic silicone and incorporated N-vinyl pyrrolidone (NVP) 

monomer (balafilcon) in the lens material.61  

The results of Jones et al61 were further supported by two more recent studies that 

investigated the kinetics of protein and lipid deposition. In 2006, Subbaraman et al76 investigated 

the deposition of lysozyme on PMMA, conventional (polymacon, alphafilcon A, omafilcon A, 

vifilcon A, and etafilcon A) and SH (lotrafilcon A, lotrafilcon B, balafilcon A, galyfilcon A, and 

senofilcon A) lenses as a function of time. Lenses were incubated in a lysozyme solution with 

the amount of deposition in µg/lens measured at specific time points over 28 days. As expected, 

etafilcon A had the highest amount of lysozyme deposition over all time points compared to all 

the other lenses with a plateau in deposition at the 14 day mark. Due to etafilcon A having a 

negative charge on the surface, the plateau at day 14 was an indication of a charge reversal on 

the lens surface. FDA Group I (polymacon) and II (alphafilcon A and omafilcon A) conventional 

lenses showed a gradual increase in lysozyme deposition over all time points, with no plateau as 

seen with etafilcon A. These results were suggested to be due to the neutral charge and 

zwitterionic properties of the surface of the Goup I and Group II lenses. SH lenses deposited 

significantly lower amounts of lysozyme compared to the conventional lenses at all time points. 

Over a 7 day period there was little lysozyme deposited on the surface of the lens, however after 

the 7 day mark there was a dramatic increase in the lysozyme deposited. Both lotrafilcon lens 

materials exhibited the lowest amount of deposited lysozyme. The lotrafilcon lens materials have 

a plasma surface coating which is impenetrable to lysozyme,77 resulting in the lower amounts of 

deposition. Galyfilcon A and senofilcon A do not have any surface treatment,78 thus lysozyme 

was able to penetrate into the pores of the lens materials.76, 79 Balafilcon A had the highest 
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amount of deposited lysozyme out of all the SH lenses. This result could be explained by the 

bulk properties of the lens material. Balafilcon A has a “glassy island” surface which causes the 

surface to be less wettable that the other SH materials.80 The hydrophobic glassy islands may 

attract more protein compared to the hydrophilic surfaces of the other lens materials. Balafilcon 

A also has larger pores, which could allow more lysozyme to penetrate the lens material and 

subsequently result in increased levels of protein deposition.79, 80 

A study conducted by Carney et al81 investigated the kinetics of lipid deposition, 

particularly, the deposition of a polar and nonpolar lipid on five SH lens materials and one 

conventional lens material. The polar lipid used was phosphatidylethanolamine (PE) and the 

nonpolar lipid used in the experiment was cholesterol (CH). Each lens type was exposed to the 

individual lipid solution for 20 days, with each day a reading for the amount of lipid deposited on 

each lens taken. There was significantly more CH adsorbed onto the lens surfaces as compared to 

the amount of PE adsorbed onto the lens surfaces. Both lotrafilcon lens materials exhibited lower 

amounts of lipid affinity over the 20 days for both PE and CH. The conventional lens material 

also exhibited a reduced amount of lipid adsorption for both lipids however, CH initially showed 

a higher degree of affinity than all lens types until day 8, at which that point, galyfilcon A, 

senofilcon A, and balafilcon A all had significantly higher amounts of CH on the surface. These 

differences in adsorption of the lipids between the SH materials was thought to be due to the 

water content of the lens materials, with a higher water content promoting a higher degree of 

lipid adsorption. It was also though that the differing surface and bulk properties of each lens 

contributed to the varying amounts of lipid adsorption. The smooth coating of the lotrafilcon 

materials may have acted like a barrier to the lipids, preventing adsorption and penetration as 

compared to the porous nature of the balafilcon A lens material. The senofilcon A and galyfilcon 
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A materials, which have no surface treatment at all, expose the bulk lens material to lipid 

penetration.  

Many manufacturers have altered the surface and bulk properties of contact lens materials 

to improve wettability and reduce deposition on the lens. 

1.3 Modifications of Modern Contact Lenses 

The ocular environment places huge demands on contact lenses as a biomaterial. The lens 

material must be able to support a continuous tear film for optimum visual clarity, must not 

dehydrate, and needs to resist sorption of tear components such as lipids, proteins and mucins, as 

build-up of deposition can lead to decreased visual clarity and reduced comfort.73 In addition, the 

cornea requires oxygen to maintain its clarity, structure, and function, thus the contact lens 

material must be permeable to oxygen.82 Contact lenses that transmit an insufficient amount of 

oxygen can induce hypoxic complications that include corneal swelling, epithelial microcysts, 

increased myopia, corneal neovascularization, epithelial thinning, and increased bacterial 

adhesion to corneal epithelial cells.83-91 It has been suggested that the oxygen transmissibility 

(Dk/t) of a contact lens worn overnight should exceed 125 × 10 -9 (cm · mL O2)/(sec · ml · mm · 

Hg) to prevent contact lens-induced corneal swelling.92-94 

Soft contact lenses were initially commercialised in 1970 and were composed of solely 

poly-hydroxyethyl methacrylate (pHEMA).95 These lenses were rapidly accepted by patients and 

practitioners due to their relative comfort over PMMA lenses and adequate wettability.96 

However, overnight wear of pHEMA-based lenses led to hypoxia and marked 

neovascularisation.83 Despite many attempts over the next 30 years to enhance the oxygen 

transmissibility of pHEMA-based materials, through the addition of various monomers and 
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changes in design, adequate oxygen transmissibility to support overnight wear was never 

possible, which led to the development of SH contact lenses. 

Silicone is a synthetic polymer with repeating silicon to oxygen bonds known as 

siloxanes.97 These siloxanes are usually bonded to an organic group such as a methyl, vinyl, or 

phenyl group. This structure of organic groups bonded to an inorganic backbone gives silicone 

unique properties, which allows it to be used for various applications, including breast implants 

and SH contact lenses. The organic groups have a relatively low surface energy compared to the 

siloxane groups, which have a high surface energy. Thus the typical conformation of silicone is 

with the siloxane backbone surrounded by the organic groups. The intermolecular interactions 

are quite low, which allows for diffusion of gases through the molecule and results in a very high 

permeability to oxygen.97 

SH contact lenses became commercially available in 1999. They incorporated silicon as 

siloxane (-Si(CH3)2-O-) polymers into the lens material to improve oxygen permeability. The 

increased oxygen permeability arises from the motility of the siloxane group to move to the 

surface of the lens material.98 Although siloxane is highly oxygen permeable, it is also highly 

hydrophobic. This results in poorly wettable surfaces, and in order for these materials to wet 

adequately in-eye they require some form of modification to enhance their surface wettability. 

Initially, companies surface-treated the lenses by either plasma surface treatment or plasma 

oxidation.95, 98, 99 

 Plasma is a highly reactive gas by activation of an electric field.16, 98 When plasma is 

placed in the presence of a contact lens, the surface of the lens and the plasma react. Depending 

on the gases and compounds that are present during the plasma treatment process, different 

results will occur after the reaction has taken place. In the case of plasma oxidation, as used by 
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Bausch & Lomb for the balafilcon A lens, oxygen is present in the plasma, which oxidizes the 

siloxane groups to silicate. This results in what resembles “islands of glass” on the surface of the 

lens,41, 80, 100, 101 which are “clumps” of silicate. These silicate islands do not cover the entire 

surface of the lens and do not affect the oxygen permeability of the underlying balafilcon A 

material, however their distribution is such that they increase the wettability of lens and thus 

support a stable tear film.80, 102 

The two CIBA Vision SH lenses, lotrafilcon A and lotrafilcon B, have a plasma coating 

in which volatile organic compounds are present in the plasma.41, 95 When a reaction occurs, 

these compounds can behave as monomers and polymerize onto the surface of the lens, creating 

a polymer film which is more wettable than the underlying lens surface. This polymer layer is 

ultrathin (25nm),77 does not affect the oxygen permeability of the underlying material and results 

in a surface that is smoother than that measured on the balafilcon A lens.79, 95 

Johnson & Johnson lens materials, galyfilcon A, senofilcon A, and narafilcon A, do not 

use plasma treatments to improve the wettability of their lenses. Instead they incorporate a high 

molecular weight wetting agent based on polyvinylpyrrolidone (PVP) into the polymer matrix of 

the lens. PVP in aqueous environments readily binds to water, retaining moisture for the lens. 

This treatment also helps to support a stable tear film and does not interfere with the oxygen 

permeability of the lens.78, 103 

Asmofilcon A (PremiO) is a relatively new SH material from Menicon. It uses a surface 

treatment known as Nanogloss™, which combines plasma oxidation and plasma surface 

treatment, creating a very smooth surface on the lens.104 To date, there is no published data on 

what monomers are incorporated into the lens material. 
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CooperVision manufactures two SH lenses, Biofinity™ and AVAIRA™. Neither of 

these lenses have any surface treatment or internal wetting agent. Rather, these lenses contain 

two silicone-based macromers that are incorporated into the lens material with hydrophilic 

monomers, resulting in a lens with a relatively high degree of wettability.105 

To date, there has been little correlation between contact lens comfort and wettability 

assessed in vitro by the sessile drop technique. In a recent study, Cheung et al106 compared a 

polyHEMA-based hydrogel (etafilcon A) to that of a SH (galyfilcon A) in terms of comfort, 

ocular performance and surface deposits. Participants wore the lens materials as a contralateral 

pair for 8-12 hours a day for 6 consecutive days. The results indicated that the lenses were 

comparable in comfort. However, our sessile drop CA measurements for galyfilcon A revealed a 

CA of 102° (internal data), as compared with 51º for etafilcon A (internal data), suggesting that 

the etafilcon A material should be substantially more comfortable if CA was an important factor 

affecting lens comfort.  

Keir et al107 conducted a study to determine if there was any correlation between lens 

comfort and both in vivo wettability (determined via pre-lens non-invasive tear break-up time) 

and ex vivo wettability (measured using the sessile drop technique). Participants were assigned 

to wear lotrafilcon B and senofilcon A lenses contralaterally for 14 days. As with the study by 

Cheung et al,106 the results showed no correlation between in-eye comfort and either in vivo or 

ex vivo wettability.107 In 2002, Morgan and Efron compared the comfort rating of balafilcon A 

(PureVision) and lotrafilcon A (Focus Night & Day).108 Subjects in this cross-over study wore a 

pair of each lens type for 8 weeks. Our sessile drop CA measurements (internal data) for 

balafilcon A revealed a CA of 84°, as compared with 42º for lotrafilcon A, suggesting that the 
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lotrafilcon A material should be substantially more comfortable. However, the results showed 

that there was no difference in comfort rating between the two lens materials.108 

Other studies have also found little correlation between lens wettability and hydration 

with comfort of the lens in eye indicating that other factors may influence lens comfort.8, 109 

Recently, manufacturers have added surfactants and wetting agents to the blister solutions in an 

attempt to improve comfort of the lens in-eye. 

1.4 Properties of Blister Pack Solutions 

The alterations made to the blister packaging solutions are to aid in preventing the lenses 

from sticking to the blister pack, enhance lens wettability, and improve initial comfort of the 

lenses in-eye.  

Ideally, the blister packaging solution should be designed to have similar physical 

properties to that of the human tear film, or could be slightly altered to enhance tear film 

stability. A variety of physical parameters of the blister pack solutions can be determined, 

including pH, surface tension, viscosity and osmolality, and these may impact initial comfort 

when lenses are removed from the packaging products and placed on the eye. The pH of the 

human tear film ranges between 6.6 and 7.8,110 and if contact lens solutions, lubricating drops, or 

blister packaging solutions that contact the eye have a pH outside of this range, the eye may 

experience sensations of discomfort or stinging.111, 112  

The surface tension of human tears is approximately 40-46 dynes/cm,113 and may be 

higher in dry eye patients, suggesting that surface tension plays an important role in tear film 

stability.113, 114 Rewetting drops function to lower the surface tension of tears to aid in enhanced 
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wetting of the contact lens surface. Adding surfactants to the blister pack solution can also lower 

the surface tension of tears on initial insertion of a contact lens from a blister pack.  

The contact time of solutions on the eye can increase by increasing the solutions’ 

viscosity.115, 116 However, increasing the viscosity too much may cause a “dragging” effect 

during blinking and lead to epithelial damage116 or visual blur.117 The viscosity of the human tear 

film is approximately 1.5cP116, 118 and it is likely that viscosities much higher than this would 

result in temporary reductions in acuity.  

“Osmolality” and “osmolarity” are two terms that are often used interchangeably. The 

osmolality of a solution is the concentration of particles in dry weight (mmol/kg).119 The 

osmolarity of a solution is the amount of pressure the particles in a solution exert on a semi-

permeable membrane (mmol/L). The osmolarity of a solution is dependent on the number of 

particles in the solution.119 The osmolality of human tears is approximately 305mmol/kg.120 

Fluids that come into contact with the eye that have osmolalities higher than the osmolality of 

human tears may contribute to discomfort in-eye.120  

While the recent interest from companies in altering the composition of blister-pack 

solutions shows that there is some belief that this will result in enhancements in clinical 

performance, to date there is little published information regarding the polymeric and molecular 

additions to the blister solutions and no data available on their physical properties. The physical 

properties of the blister pack solutions for SH and daily disposable lenses will be investigated in 

this thesis (Chapter 3: Physical Properties of Blister Pack Solutions of SH Contact Lenses). 
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1.5 Conclusion 

The ideal contact lens would be manufactured from a lens material that has excellent 

oxygen transmissibility, and that currently requires it to be made from a SH material. The lens 

would have adequate wettability, signified by relatively low advancing and receding CAs to 

allow the spreading of the tear film over the surface of the lens. The hysteresis of the lens 

material would also be minimal, as rapid wetting and drying of the lens may cause discomfort in 

eye. The blister solution which houses the lens material would have surfactants and incorporated 

wetting agents to improve initial comfort of the lens in-eye, by reducing the surface tension and 

increasing retention time of the tear film on the surface of the lens. Finally, the lens material 

would be resistant to tear component deposition to prevent inflammatory reactions in-eye and 

spoilage of the lens. 

In the following chapters, the author investigates the differences in CA analysis between 

the sessile drop and Wilhelmy balance methods. The analysis of advancing and receding CAs 

and the hysteresis of different lens materials will be explored. The physical properties of the 

blister pack solutions for SH and daily disposable lenses will be measured and recorded. Finally, 

the deposition of tear components onto the surface of three different lens materials after the 

lenses have been placed in a “model blink cell” will also be investigated. 
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2. Chapter 2: In Vitro Analysis of the Wettability of Silicone Hydrogel 

Lenses 

To date, there has been no data published on the in vitro wettability of hydrogel and 

silicone hydrogel contact lenses measured by the Wilhelmy balance method. As mentioned 

previously, the Wilhelmy balance method measures the force required to move the lens into and 

out of the probe fluid, which is then converted by the instrument software into a CA 

measurement. This is an indirect measurement of the CAs on the surface of the contact lens, and 

as a result this may lead to differences in the CAs measured when comparing different 

techniques. In addition, no work has been published comparing the CA results obtained with this 

method to the sessile drop method. In preparing lenses for CA analysis using this latter method, 

the lenses must be appropriately treated to remove any excess fluid from the material surface. 

This may impact the results obtained, but to date no work has been published on the most 

appropriate method to remove this fluid and which method would provide the most repeatable 

results. 

In literature, there has been speculation about the accuracy of CA analysis by the sessile 

drop technique due to variation in blotting methods. The purpose of this chapter is to firstly 

investigate the CAs determined using a variety of blotting methods to remove excess fluids when 

preparing lenses for sessile drop analysis, and secondly to report on the advancing CAs of five 

different silicone hydrogel lens materials using the sessile drop and Wilhelmy balance methods.  



25 

 

2.1 Comparison of Advancing CA After Various Blotting Methods 

The accuracy of the method chosen to quantify CA depends primarily on how efficiently 

the experimenter prepares the solid sample. A recent experiment determined the repeatability of 

CA measurements on contact lenses using the captive bubble and sessile drop techniques.121 The 

results showed that the CAs measured using the sessile drop technique were less repeatable than 

those measured using the captive bubble technique. This was thought to be primarily due to 

variability in the method used to blot dry the contact lens during the preparation of the lens 

material for analysis using the sessile drop technique.121 

The purpose of this experiment was to investigate if different methods of preparation of 

the lens would cause variations in CAs measured by the sessile drop technique. 

2.1.1 Materials:  

The lens materials used in this study were etafilcon A, galyfilcon A, senofilcon A 

(Johnson & Johnson), lotrafilcon A, lotrafilcon B (CIBA Vision), balafilcon A (Bausch & 

Lomb), comfilcon A (CooperVision). 

2.1.2 Methods: 

2.1.2.1 Sessile Drop Technique 

All lenses (n=3) were soaked in 5ml of preservative-free saline (Unisol, Alcon, Fort 

Worth, Texas) for 24 hours to remove the blister pack solution and prevent variations in CA 

analysis due to the blister solution on the lens surface. After the 24 hour soak, the lenses were 

blot dried for 5, 10, 15, 20, 25, and 30 second intervals on lens paper (Figure 2-1a) or a 

microfiber cloth (Figure 2-1b).  
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a) b)  

Figure 2-1: Blot drying contact lens on a) lens paper and b) microfiber cloth. 

After blot drying, each lens was placed posterior side down on a custom curved convex 

mantle and placed directly below the syringe of an Optical Contact Analyzer (OCA - 

Dataphysics Instruments GmbH, Filderstadt, Germany), as previously described.41 The lens was 

centered to make sure that the drop of probe fluid dispensed from the syringe was placed directly 

on the center of the lens. After the mantle was centered, a 5µl drop of high performance liquid 

chromatography (HPLC) grade water (EMD Chemicals, Gibbstown, New Jersey) was placed on 

the lens at a rate of 2µl/second. The drop was allowed to settle for approximately 2-3 seconds, 

after which a picture image was taken and saved to the computer hardware. Custom software 

(SCA 20 software, version 2.04, Build 4) was used to analyze the images and determine the 

advancing CAs for each lens. To analyze the image, the user placed fives points along the curved 

surface of the lens image. A solid line then appears which can be manipulated to perfectly sit 

along the curved surface of the lens. Similarly, five points are placed along the curved surface of 

the drop image and a hollow sphere appears which can be manipulated to fall along the surface 

of the drop. An algorithm in the SCA software determines the angle between the two intersecting 
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lines on either side of the water drop. The two angles are averaged, and it is the averaged 

advancing angle which is used for further analysis of the results (Figure 2-2).  

 

Figure 2-2: Analysis of advancing contact angle (CA) using the sessile drop technique, by 

the SCA software. The screen capture clearly shows the software analyzing the CA on the 

left side of the water droplet and the CA on the right side of water droplet, on the top left 

side of the image. These values are averaged and the mean CA recorded.  

2.1.2.2 Statistical Analysis 

Analysis of the advancing CAs measured after the lenses were blot dried on microfiber 

cloth and lens paper were all analyzed independently and compared by repeated measures 

ANOVA (analysis of equal variance). Further analysis of CAs was undertaken using a Tukey 

post-hoc test to see all significant or non-significant differences between individual 

measurements. A p-value of <0.05 was considered significant.  
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2.1.3 Results 

 The advancing CAs measured using the sessile drop technique after lenses were 

blot dried on a microfiber cloth for 5, 10, 15, 20, 25, and 30 seconds are shown below in Figure 

2-3. The analysis was undertaken sequentially, in which the lenses were blot dried for 5 secs, 

then the CA measured, rehydrated then dried for a further 10 secs and the CA measured, etc.  

 

Figure 2-3: Advancing CAs of etafilcon A, galyfilcon A, senofilcon A, lotrafilcon A, 

lotrafilcon B, balafilcon A, and comfilcon A measured using the sessile drop technique after 

lenses were blot dried on a microfiber cloth for time intervals of 5, 10, 15, 20, and 30 

seconds. 

CA analysis showed large variation in results, with substantial standard deviation bars. 

An overall analysis for each material averaged over all the time points revealed no statistically 

significant difference between any of the lens materials over time (p>0.05). This shows that 
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while there was a difference between materials, within each material, drying for longer periods 

of time did not statistically impact the CA measured.  

 

Figure 2-4: Advancing CAs measured using the sessile drop technique after lenses were 

blot dried on lens paper for time intervals of 5, 10, 15, 20, and 30 seconds. 

Figure 2-4 above shows the results of the advancing CAs measured for each lens material 

after the lenses were blot dried on lens paper for 5, 10, 15, 20, 25, and 30 seconds. Analysis of 

these results showed that there was no statistical difference between CAs measured after 

different drying times for the lotrafilcon A, lotrafilcon B, balafilcon A, and comfilcon A lens 

materials (p>0.05). CAs for etafilcon A were significantly lower after being blot dried for 5 and 

10 seconds (p<0.05) and significantly higher after being blot dried for 25 and 30 seconds 

(p<0.05). There was no statistical difference between CAs for galyfilcon A after being dried for 

10 seconds (p=1.00). For senofilcon A there was no statistical difference in CAs after the lenses 

were blot dried for 15 seconds (p>0.90).  
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Comparing CAs measured between the two drying methods, there was statistical 

difference at all drying times between the two methods for etafilcon A with CAs measured after 

blot drying on a microfiber cloth being statistically lower (p<0.05). The CAs measured after 

galyfilcon A was blot dried for 25 seconds on a microfiber cloth were statistically lower (p<0.05) 

than the CAs measured after galyfilcon A was blot dried on lens paper for 25 seconds. 

 Comparing CAs measured between the two methodologies for senofilcon A showed 

statistical difference when the lenses were blot dried for 15 seconds, with CAs after being blot 

dried on the microfiber cloth being lower (p<0.05). The CAs measured after lotrafilcon A lenses 

were blot dried on microfiber cloth for 5 seconds were statistically lower than all other CAs 

measured for either methodology. There was no statistical difference in CAs for lotrafilcon B 

and balafilcon A after the lenses were blot dried for 20 seconds on either the microfiber cloth or 

lens paper (p>0.10). For comfilcon A, there was statistical difference between CAs when the 

lenses were blot dried for 10, 20, and 25 seconds with CAs after being blot dried on the 

microfiber cloth being statistically lower (p<0.05). 

2.1.4 Discussion  

There was no statistical differences in CAs after lenses were blot dried on a microfiber 

cloth for drying durations of 5, 10, 15, 20, 25, and 30 seconds. However, there were significant 

standard deviation bars, indicating a large range in CAs. For example, the CAs for senofilcon A 

ranged from 50-100° after being blot dried for 25 seconds. Similar variations in CAs measured 

after being blot dried on a microfiber cloth were seen for galyfilcon A, balafilcon A, lotrafilcon 

B, and etafilcon A. Comfilcon A was the only lens material that had the least amount in variation 

in CAs over different drying periods.  
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There was little variation in CAs measured after lenses were blot dried on lens paper after 

20 seconds, except for etafilcon A. After blot drying for 20 second on lens paper, CAs for all the 

lens materials began to plateau, with little variation, as illustrated by the small standard deviation 

bars. Galyfilcon A and senofilcon A had average CAs of approximately 117° and 109° 

respectively after being blot dried for 20 seconds on lens paper. Lotrafilcon A and lotrafilcon B 

had average CAs of 51° and 60° respectively, and balafilcon A and comfilcon A had average 

CAs of 89° and 41° after being blot dried for 20 seconds. Thus, it would seem from this study 

that for the sessile drop technique, lenses should be blot dried for 20-30 seconds on lens paper, 

rather than on a microfiber cloth. Lenses that are blot dried for longer than 30 seconds may 

dehydrate and skew results. 

2.2 Comparison of Advancing CA’s Using Two Methods 

2.2.1 Materials: 

The lens materials used in this study were galyfilcon A (Johnson & Johnson), lotrafilcon B 

(CIBA Vision), balafilcon A (Bausch & Lomb), asmofilcon A (Menicon), and comfilcon A 

(CooperVision). 

2.2.2 Methods:  

2.2.2.1 Sessile Drop Technique 

Advancing CAs for each lens material were measured directly out of the blister pack. 

Each lens (n=4) was removed from the blister pack and blot dried on lens paper for 

approximately 20 seconds to remove any excess fluid from the blister pack solution, as this may 
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impact on the initial CA. After blot drying, CA analysis was conducted using the sessile drop 

technique (see section 2.1.2.1). 

After the CA was measured, the lens was immediately soaked in 5ml of preservative-free 

saline solution (Unisol, Alcon, Fort Worth, Texas) for 48 hours, in order to remove the blister 

pack components from the lens and to determine the CA of the material without the impact of the 

blister pack solution. After 48 hours had elapsed, the lens was removed from the saline and the 

advancing CA was measured exactly as described above.  

2.2.2.2 Wilhelmy Balance Method 

Advancing CAs for each lens material (n=4) were also measured directly out of the 

blister pack using the Wilhelmy Balance Method, using a similar method to that previously 

described.35 Each lens was removed from the blister pack, with the excess fluid shaken off the 

lens. A strip was cut from the center of the lens, 3mm in width and 14.0-14.2 mm in length and 

placed on a low energy surface (Parafilm, Menasha, Wisconsin). One end of the strip was 

pierced with a small fish hook with an attached weight and the opposite end attached to a micro-

crocodile clip. The clip was secured to the arm of the electrobalance of a Cahn Dynamic Angle 

Analyzer DCA-322 (CAHN Instruments, Madison, Wisconsin).35 

The lens strip was lowered into the probe liquid (HPLC grade water) until the attached 

weight was just below the meniscus of the probe liquid. Weights were added to the other end of 

the electrobalance to balance the weight of the lens strip, fish hook and weight, and micro-

crocodile clip. Immersion and emersion depth of the lens strip in and out of the probe liquid was 

7mm. Buoyancy effects are negated by the software detecting a “zero depth of immersion” 

(ZDOI) when the lens strip first touched the surface of the probe liquid. As the lens strip was 
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immersed into the probe liquid the force required to immerse the lens into the liquid was 

converted into the advancing CA by the customized software for the CAHN balance.35 As the 

lens was removed from the probe liquid, the force required to remove the lens was converted into 

the receding CA by the software. The CAs of each lens were measured directly out-of-blister and 

after a 48 hour soak in preservative-free saline (Unisol, Alcon, Fort Worth, Texas). 

2.2.2.3 Statistical Analysis 

Analysis of the advancing angles measured using the sessile drop technique and 

Wilhelmy balance method were all analyzed independently and compared between methods by 

repeated measures ANOVA (analysis of equal variance). Further analysis of the CAs were 

undertaken using a Tukey post-hoc test, to see all significant or non-significant differences 

between individual measurements. A p-value of <0.05 was considered significant. Values of 

statistical significance were indicated with “stars” on the graphs. 
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2.2.3 Results 

 The advancing CAs measured for each lens material using the sessile drop 

technique are shown in Figure 2-5.  

 

Figure 2-5: Advancing CAs measured using the sessile drop technique directly out-of-

blister and after a 48hr soak in preservative-free saline for asmofilcon A, galyfilcon A, 

balafilcon A, lotrafilcon B, and comfilcon A lens materials. 

The advancing CAs for asmofilcon A  and balafilcon A out-of-blister and after a 48hr 

soak were not statistically different from each other (p>0.05). The advancing CAs after the 48hr 

soak for galyfilcon A, lotrafilcon B and comfilcon A were statistically higher (p<0.03) than the 

advancing CAs measured directly out-of-blister. 

All of the advancing CAs were statistically different between lenses (p<0.05), with the 

exception of the CAs for asmofilcon A after the 48hr soak and balafilcon A out-of-blister 

* 

*
*
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(p>0.05). The CAs for lotrafilcon B out-of-blister and after 48 hour soak and the CAs for 

comfilcon A after a 48hr soak were not statistically different from each other(p>0.05). 

The advancing CAs measured directly out-of-blister and after a 48hr soak by the 

Wilhelmy balance method are shown in Figure 2-6.  

 

Figure 2-6: Advancing CAs measured using the Wilhelmy balance method directly out-of-

blister and after a 48hr soak in preservative-free saline for asmofilcon A, galyfilcon A, 

balafilcon A, lotrafilcon B, and comfilcon A lens materials. 

For all lens types, there was no statistical difference between advancing CAs measured 

out-of-blister and after a 48hr soak in saline (p>0.10). Comfilcon A CAs were statistically lower 

than all other CAs for the other lens materials (p<0.03). 

When comparing CAs measured between techniques the advancing CAs out-of-blister 

and after a 48 hour soak in saline for asmofilcon A and balafilcon A lenses were not statistically 

different from each other for both techniques (p>0.05). The advancing CAs out-of-blister and 

*
*
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after a 48 hour soak for galyfilcon A measured by the Wilhelmy balance method were 

statistically lower than the CAs measured using the sessile drop technique (p<0.05). The CAs 

out-of-blister and after a 48 hour soak measured using the Wilhelmy balance technique were 

statistically higher (p<0.05) than the CAs out-of-blister and after 48 hour soak measured by the 

sessile drop technique for the lotrafilcon B and comfilcon A materials.  

2.2.4 Discussion 

The results of this study indicated that there were differences in CAs measured between 

the sessile drop technique and the Wilhelmy balance method. Most lens materials, with the 

exception of lotrafilcon B and comfilcon A, exhibited lower CAs measured by the Wilhelmy 

balance method as compared to the sessile drop technique. These differences in CAs may have 

been due to differing methods in preparation of the lenses for both techniques. For the sessile 

drop technique the lenses are blot dried on lens paper before CA analysis. For the Wilhelmy 

balance method, the lenses are not blot dried but rather the excess blister or saline solution is 

shaken off. This is done instead of blot drying to prevent dehydration of the lenses during the 

process of attaching the lens strip to the microcrocodile clip and balancing the electrobalance. 

Thus, the lenses for the Wilhelmy balance method are more hydrated than compared to the lenses 

for the sessile drop technique, which may result in the lower CAs. However, the higher CAs 

measured by the Wilhelmy balance method for the lotrafilcon B and comfilcon A lens materials, 

is an indication that preparation of the lens is not the only factor that can be attributed to 

differences in CAs between the two techniques. Other factors may include surface tension of the 

lens surface, surface roughness, and surface treatments of the lenses. 
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Differences in measured CAs by different techniques were also seen in a similar study 

conducted by Maldonado-Codina and Morgan.39 In their study, the measurement of CAs on the 

surface of five different silicone hydrogel lens materials (galyfilcon A, senofilcon A, lotrafilcon 

A, lotrafilcon B, and balafilcon A) was conducted. The CAs were measured using the sessile 

drop technique and captive bubble technique. The results showed significant differences in CAs 

measured for the two techniques for the galyfilcon A, senofilcon A, and balafilcon A lens 

materials. The difference in CAs measured for both techniques was attributed to the captive 

bubble technique actually measuring the receding CA rather than the advancing CA.  

From the results of this experiment it can also be concluded that the blister pack solution 

acts to effectively improve the initial wettability of the lens materials when wettability is 

assessed by the sessile drop technique. This is further supported by the results of Maldonado-

Codina and Morgan, 39 which also showed that advancing CAs after the blister solution was 

washed off the lens surface were higher than CAs measured after the lens was removed from the 

blister pack solution. 

2.3 Overall Conclusions 

Overall, it can be concluded that different techniques of measuring contact lens CAs in 

vitro result in different measured CAs. Due to the differences between the CAs measured by the 

two techniques, both techniques were continued to be used for further in vitro analysis for the 

remainder of the experiments described in this thesis. Further, results indicated that lenses should 

be blot dried for approximately 20 seconds on lens paper to maintain repeatable CA 

measurements when using the sessile drop technique. 



38 

 

Lastly, blister packaging solutions do alter the initial wettabilities of contact lenses. To 

date, the physical properties of the blister solutions are unknown. Measurements of the physical 

properties of the blister pack solutions need to be conducted to investigate any correlations to the 

physical properties of the blister solutions and the initial wettability of contact lenses directly 

out-of-blister. 
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3. Chapter 3: Physical Properties of Blister Pack Solutions of SH Contact 

Lenses 

3.1 Introduction 

Silicone hydrogel contact lenses were initially developed to improve oxygen 

transmissibility to the eye95, 98 and since then have undergone modifications to the surface and 

bulk material to improve lens wettability and comfort.78, 98 80, 105 While the clinical performance 

of these materials with regards to hypoxia and neovascularization has been noteworthy,4, 83, 89, 122 

some 50% of subjects still complain of end of day dryness and discomfort even with modern lens 

materials.8 In an attempt to alleviate these complications a number of manufacturers have begun 

to incorporate a variety of wetting agents into both the lens material and also the packaging 

solutions.2, 78, 123-126 Such changes include incorporation of water soluble polymers, surfactants, 

and un-named “wetting agents” into the blister solution.127 The alterations made to the blister 

packaging solutions are to aid in preventing the lenses from sticking to the blister pack, enhance 

lens wettability, and improve initial comfort of the lenses in-eye.  

As mentioned previously, any solution that comes into contact with the eye, should have 

similar physical properties compared to the human tear film. To date there is little published 

information regarding the polymeric and molecular additions to the blister solutions and no data 

available on their physical properties. The purpose of this study is to measure the osmolality, pH, 

surface tension, and viscosity of the blister pack solutions for many of the commercially 

available silicone hydrogel lenses. 



40 

 

3.2 Materials: 

The blister pack solutions examined were from lotrafilcon A, lotrafilcon B, and 

lotrafilcon B with a “modified blister pack solution” (m-lotrafilcon B) (CIBA Vision, Duluth, 

Georgia), balafilcon A (Bausch & Lomb, Rochester, New York), galyfilcon A, senofilcon A and 

narafilcon A (Johnson & Johnson, Jacksonville, Florida), and comfilcon A and enfilcon A 

(CooperVision, Pleasanton, California). The various properties of the SH lenses are described in 

Table Table 3-1. 

Two conventional polyHEMA-based materials - etafilcon A (Johnson & Johnson, 

Jacksonville, Florida) and omafilcon A (CooperVision, Pleasanton, California) - were also 

examined to see if there were any systematic differences between the blister pack solutions used 

for conventional and silicone hydrogel lenses. 
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Table 3-1: Listing of SH lenses and their individual properties 

DMA (N,N-dimethylacrylamide); EGDMA (ethyleneglycol dimethacrylate); FM0411M (α-Methacryloyloxyethyl iminocarboxyethyloxypropyl-poly(dimethylsiloxy)-

butyldimethylsilane); HEMA (poly-2-hydroxyethyl methacrylate); HOB (2-Hydroxybutyl methacrylate); IBM (Isobornyl methacrylate); M3U (α ω-Bis(methacryloyloxyethyl 

iminocarboxy ethyloxypropyl)-poly(dimethylsiloxane)-poly(trifluoropropylmethylsiloxane)-poly(ω−methoxy-poly(ethyleneglycol)propylmethylsiloxane); MA (methacrylic acid); 

mPDMS (monofunctional polydimethylsiloxane); NVA (N-vinyl aminobutyric acid); NVP (N-vinyl pyrrolidone); PBVC (poly[dimethysiloxy] di [silylbutanol] bis[vinyl 

carbamate]); PC (phosphorylcholine); PVP (polyvinyl pyrrolidone); TAIC (1,3,5-Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione); TEGDMA (tetraethyleneglycol dimethacrylate); 

TPVC (tris-(trimethylsiloxysilyl) propylvinyl carbamate); TRIS (trimethylsiloxy silane); VMA (N-Vinyl-N-methylacetamide)  

 

  Proprietary name 
  

AIR OPTIX® 
NIGHT & 

DAY® AQUA 

 
AIR OPTIX™ 

AQUA 

 
AIR OPTIX™ 

 
Acuvue® 

Advance™ 

 
Acuvue® 
OASYS™ 

 
1-Day Acuvue® 

TruEye 

 
Biofinity 

 
AVAIRA™ 

 
PureVision™ 

USAN Lotrafilcon A Lotrafilcon B Lotrafilcon B Galyfilcon A Senofilcon A Narafilcon A Comfilcon A Enfilcon A Balafilcon A 
Manufacturer CIBA Vision CIBA Vision CIBA Vision Johnson & 

Johnson 
Johnson & 

Johnson 
Johnson & 

Johnson 
Cooper 
Vision 

Cooper 
Vision 

Bausch & 
Lomb 

Water Content 
(%) 

24 33 33 47 38 46 38 46 36 

Oxygen 
permeability 
(Dk) 

140 110 110 60 103 100 128 100 99 

Center 
thickness (mm) 
-3.00D 

0.08 0.08 0.08 0.07 0.07 0.085 0.08 0.08 0.09 

Oxygen 
transmissibility 
(Dk/t) 

175 138 138 86 147 118 160 125 110 

FDA group I I I I I I I I III 
Surface 
treatment 

25-nm plasma 
coating with 

high refractive 
index 

25-nm plasma 
coating with 

high refractive 
index 

25-nm plasma 
coating with 

high refractive 
index 

No surface 
treatment. 

Internal wetting 
agent (PVP) that 

also coats the 
surface 

No surface 
treatment. 

Internal wetting 
agent (PVP) that 

also coats the 
surface 

unpublished No surface 
treatment. 

No surface 
treatment. 

Plasma 
oxidation 

Principal 
monomers 

DMA + TRIS 
+ siloxane 
monomer 

DMA+ TRIS+ 
siloxane 
monomer 

DMA+ TRIS+ 
siloxane 

monomer 

mPDMS+ 
DMA+HEMA+ 

siloxane 
macromer+ 

PVP+EGDMA 

mPDMS+ DMA+ 
HEMA+ siloxane 
macromer+ PVP+ 

TEGDMA 

unpublished FM0411M+HOB
+IBM+M3U+NV
P+TAIC+VMA 

unpublished NVP + TPVC + 
NVA + PBVC 
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3.3 Methods: 

3.3.1 pH 

All pH measurements were taken using the VWR Model SB20 pH meter (Thermo 

Electron Corporation, Beverly, Massachusetts). The pH meter was calibrated using pH 4, 7, and 

10 standards. The pH of approximately 5ml samples of each blister pack solution (n=6 samples) 

were measured and recorded. 

3.3.2 Surface Tension 

 Surface tension (ST) measurements were taken with the Cahn Dynamic Contact Angle 

Analyzer DCA-322 (CAHN Instruments, Madison, Wisconsin). Calibration was carried out 

using high performance liquid chromatography grade water, which has a ST of 72 dynes/cm. 

Blister pack solutions for each contact lens were collected in 10ml glass jars (n=6 samples) and 

their ST measured. 

3.3.3 Osmolality 

The osmolality of each blister solution was measured using the Vapro 5520 Vapor 

Pressure Osmometer (Wescor, Logan, Utah). The osmometer was calibrated using 100, 290 and 

1000 mmol/kg standards. The osmolality of 10µl samples for each blister solution (n=6 samples) 

were measured and recorded. 

3.3.4 Viscosity 

Viscosity measurements of each blister packaging solution were obtained using the 

ViscoLab 3000 Viscometer (Cambridge Viscosity, Medford, MA). Calibration was conducted by 
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measuring the viscosity of high performance liquid chromatography grade water which has a 

viscosity of 1cP. Samples (1.5ml) of each blister pack solution (n=6 samples) were measured and 

recorded. 

3.3.5 Statistical Analysis 

All measurements were taken at room temperature (20.0°C) and analyzed by repeated 

measures ANOVA (analysis of equal variance). Further analysis was undertaken using a Tukey 

post-hoc test to determine all significant or non-significant differences between individual 

measurements. A p-value of <0.05 was considered significant. The researcher conducting the 

experiment was not masked. However, as all measurements undertaken were automated, they 

could not be influenced by the researcher. The statistical significance was indicated on the 

graphs by “star” symbols. 

3.4 Results 

The averages results of the ST, pH, osmolality, and viscosity of Unisol, Softwear Saline, 

and the blister pack solutions for etafilcon A, omafilcon A, narafilcon A, senofilcon A, 

galyfilcon A, comfilcon A, enfilcon A, balafilcon A, lotrafilcon B, m-lotrafilcon B, and 

lotrafilcon A are reported in Table 3-2. Graphical representations of the results are shown in 

Figure 3-1-Figure 3-4. 
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Table 3-2:Physical properties of the blister pack solutions investigated and control 

solutions. 

Saline and 
Blister Pack 
Solutions 

Surface Tension 
(dynes/cm) 

pH Osmolality 
(mmol/kg) 

Viscosity  
(cP) 

Unisol 64.05±1.49 7.42±0.01 290.0±1.67 0.94±0.03 
Softwear Saline 72.80±0.57 6.99±0.03 292.7±0.82 0.93±0.01 
Omafilcon A 60.24±0.37 7.42±0.11 320.3±3.93 0.93±0.01 
Etafilcon A  42.03±2.60 7.38±0.09 417.7±8.29 0.94±0.02 
Narafilcon A 45.26±0.98 7.36±0.16 425.2±1.94 0.93±0.05 
Senofilcon A 58.61±2.46 7.50±0.06 415.7±1.75 0.99±0.01 
Galyfilcon A 56.22±5.58 7.57±0.02 420.2±4.07 0.97±0.02 
Comfilcon A 58.30±1.71 7.40±0.01 315.5±2.66 0.92±0.04 
Enfilcon A 48.11±3.18 7.38±0.02 311.0±1.41 0.90±0.02 
Balafilcon A 65.93±1.75 7.11±0.09 325.0±2.61 0.92±0.02 
Lotrafilcon B 68.56±1.56 7.19±0.05 306.3±1.21 0.95±0.01 
m-Lotrafilcon B 64.06±2.09 7.21±0.07 306.8±2.25 1.30±0.03 
Lotrafilcon A 57.62±1.83 7.19±0.02 304.0±1.90 1.26±0.03 
p-value <0.00001 <0.00001 <0.0001 <0.00001 

 

ST results for all blister pack solutions and two saline solutions are reported in Figure 

3-1. 
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Figure 3-1: ST measurements in units of dynes/cm, for all blister pack solutions for 

etafilcon A, omafilcon A, narafilcon A, senofilcon A, galyfilcon a, comfilcon A, enfilcon A, 

balafilcon A, lotrafilcon B, m-lotrafilcon B, and lotrafilcon A, and two saline solutions, 

Unisol and Softwear Saline. 

 The ST of Unisol was statistically different from Softwear Saline and all blister 

pack solutions (p<0.05), with the exception of the blister solutions for etafilcon A, lotrafilcon B, 

m-lotrafilcon B, and balafilcon A (p>0.10). The ST of Softwear Saline (72.80dynes/cm) was 

statistically higher than all other solutions (p<0.001) with the exception of the blister solution of 

lotrafilcon B (p>0.10). The lowest ST value was that for etafilcon A (42.03dynes/cm), which was 

statistically lower than all other solutions (p<0.01), with the exception of narafilcon A (p>0.50). 

The ST of omafilcon A was statistically different from the ST of Softwear Saline, and blister 

solutions of etafilcon A, lotrafilcon B, balafilcon A, enfilcon A, and narafilcon A(p<0.02). The 

ST of lotrafilcon B, m-lotrafilcon B, and balafilcon A blister solutions were all statistically 

higher (p<0.01) than all other blister solutions but not statistically higher than the two saline 

*

*
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solutions (p>0.10). ST of blister solutions for lotrafilcon A, comfilcon A, galyfilcon A, and 

senofilcon A were all statistically different from all other blister solutions and the two saline 

solutions (p<0.05) but not statistically different from each other or the blister solution of 

omafilcon A (p>0.05). The ST for the enfilcon A blister solution (48.11dynes/cm) was 

statistically different from all other solutions, with the exception of narafilcon A. 

pH measurements for each blister pack solution are shown in Figure 3-2. 

 
Figure 3-2: pH measurements for all blister pack solutions for etafilcon A, omafilcon A, 

narafilcon A, senofilcon A, galyfilcon a, comfilcon A, enfilcon A, balafilcon A, lotrafilcon B, 

m-lotrafilcon B, and lotrafilcon A, and two saline solutions, Unisol and Softwear Saline. 

 
The pH range determined was relatively small, with Softwear Saline being the lowest 

(6.99) and galyfilcon A being the highest (7.57). The pH of lotrafilcon B, m-lotrafilcon B, 

lotrafilcon A, and balafilcon A were statistically lower than all other blister solutions (p<0.002), 

but they were not different from each other (p>0.30). Unisol, enfilcon A, comfilcon A, 

senofilcon A, narafilcon A, etafilcon A, and omafilcon A blister solutions had pH measurements 

*

*
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statistically different from all other solutions (p<0.05) but not from each other (p>0.05). The pH 

of galyfilcon A blister solution was statistically higher than all other blister solutions (p<0.05), 

except for senofilcon A (p>0.80) 

Osmolality (as show in Figure 3-3) of the blister solutions for all Johnson & Johnson 

products (etafilcon A, senofilcon A, galyfilcon A, and narafilcon A) were statistically higher than 

all other blister solutions (p<0.001). The osmolality measurements of the two saline solutions 

(Unisol and Softwear Saline) were statistically lower than the osmolality of all the blister pack 

solutions (p<0.001), but not statistically lower than each other (p>0.90). The osmolality of the 

blister solutions for all three lotrafilcon lens materials (CIBA Vision) were lower than all other 

products, but were not statistically different from each other (p>0.90). Osmolality of the blister 

solutions for the three CooperVision products (omafilcon A, comfilcon A, and enfilcon A) were 

statistically different from all other blister solutions (p<0.05), and were not different from each 

other (p>0.20). The osmolality of the blister solution for the single Bausch & Lomb product 

(balafilcon A) was also statistically different from all other blister solutions (p<0.01). 
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Figure 3-3: Osmolality measurements in units of mmol/kg, for all blister pack solutions for 

etafilcon A, omafilcon A, narafilcon A, senofilcon A, galyfilcon a, comfilcon A, enfilcon A, 

balafilcon A, lotrafilcon B, m-lotrafilcon B, and lotrafilcon A, and two saline solutions, 

Unisol and Softwear Saline. 

The viscosity measurements for all the blister solutions of the lens materials tested are 

shown in Figure 3-4. 

 

*
*

*
*
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Figure 3-4: Viscosity measurements in units of cP, for all blister pack solutions for etafilcon 

A, omafilcon A, narafilcon A, senofilcon A, galyfilcon a, comfilcon A, enfilcon A, balafilcon 

A, lotrafilcon B, m-lotrafilcon B, and lotrafilcon A, and two saline solutions, Unisol and 

Softwear Saline. 

 The viscosity of m-lotrafilcon B and lotrafilcon A blister solutions were statistically 

higher than the viscosity of all other blister solutions (p<0.001). The lowest viscosity (0.90cP) 

was measured for the enfilcon A lens material. The viscosity of the blister solution for senofilcon 

A was statistically higher than Softwear Saline, balafilcon A, enfilcon A, and comfilcon A 

(p<0.05). Viscosity of Unisol and the blister solutions for etafilcon A, lotrafilcon B, and 

narafilcon A were statistically different only from the blister solutions of m-lotrafilcon B and 

lotrafilcon A (p<0.001). 

3.5 Discussion and Conclusion 

Recently, manufacturers have added surfactants and wetting agents to the blister pack 

solutions of contact lens materials in attempt to improve initial on-eye comfort and tear film 

*
*
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stability. Physical properties of the blister pack solutions should have similar properties 

compared to that of tears. Adding components to the blister solutions may alter the physical 

properties and as mentioned previously, could potentially increase comfort in-eye. This 

experiment was conducted to measure the physical properties of the blister pack solutions, as to 

date, there has been no data published on their physical properties. 

As mentioned in chapter 1, ST is the inward attraction of molecules at the surface of a 

solid or liquid. Generally, when the ST of a liquid is reduced, it will have the tendency to spread 

more readily over a solid surface. The surface tension of human tears ranges between 40-46 

dynes/cm.114, 118 The ST of the blister solutions for narafilcon A and etafilcon A remained within 

the range of the surface tension of tears. Interestingly, the surface tension for the two saline 

solutions and the remainder of the blister solutions were all higher than the range of tears. The 

ST of Unisol and the blister solutions for lotrafilcon B, m-lotrafilcon B, and balafilcon A were 

close to that of water (72 dynes/cm), suggesting that very little surface active agent is added to 

the blister pack solution. The ST of Softwear Saline (72.8 dynes/cm) was the same as that of 

water.  

None of the solutions tested in this experiment had ST below that of tears and thus would 

have little impact on reducing the ST of tears to allow more spreading of the tear film over the 

contact lens surface or cornea. 

pH is the measure of acidity or basicity of a solution. A solution which is neutral has a 

pH of 7. A solution which has a pH of above 7 would be termed as being basic, and a solution 

which has a pH of less than 7 would be termed as being acidic. The pH of any solution that 

comes into contact of the human eye is very important. The pH range of the human tear film has 

been reported to be between 6.6 and 7.8.110 A solution that comes into contact with the eye with 
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a pH outside the range of the pH range of the human tear film may cause discomfort or even 

corneal damage at extremely low pH values.128 The pH of the solutions tested in this study 

ranged from 6.99-7.57, with Softwear Saline having the lowest pH and the blister pack solution 

of galyfilcon A the highest pH. The pH values of the solutions tested in this experiment all fell 

within the pH range of tears and would not be expected to cause any discomfort following 

insertion onto the ocular surface. 

The average osmolality of human tears is 305mmol/kg.120 Results indicated a trend in 

osmolality of solutions, with solutions made by the same manufacturer having similar 

osmolalities. The osmolalities of the two saline solutions, Unisol and Softwear Saline, were 

hypo-osmotic to that of tears, having osmolalties of 290mmol/kg and 293mmol/kg respectively. 

The osmolality of the blister solutions for lotrafilcon materials (CIBA Vision) were very similar 

to that of tears, ranging from 304-306mmol/kg. The osmolality of the blister solution for 

balafilcon A (Bausch & Lomb) was 325mmol/kg, residing in the midrange of osmolalities 

measured. The blister pack solutions for enfilcon A, comfilcon A, and omafilcon A 

(CooperVision) were 311mmol/kg, 316mmol/kg, and 320mmol/kg respectively. Interestingly, 

the osmolalities of the blister solutions for all Johnson & Johnson products (etafilcon A, 

senofilcon A, galyfilcon A, and narafilcon A) were hyper-osmotic to that of tears. The high 

osmolality of the blister solutions for the Johnson & Johnson products may be used to ensure 

parameter stability of the lenses, as placing an etafilcon A lens in hypotonic solution causes fluid 

to enter the lens material, resulting in a 20% increase in lens diameter (data not shown). 

However, when galyfilcon A, senofilcon A, and narafilcon A are placed in hypotonic solution, 

there is no significant change in lens parameters thus the reason for the blister solution having a 

high osmolality for those lenses remains unknown. Theoretically, the high osmolalities of the 
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blister solutions for etafilcon A, galyfilcon A, senofilcon A, and narafilcon A may cause 

discomfort upon initial insertion of the lens in-eye. However, the levels of clinical success of 

these materials and their high levels of initial comfort on immediate insertion demonstrates this 

to not be the case and demonstrates the ability of the tear film to buffer these high 

osmolalities.109  

The viscosity of a solution is the resistance of a fluid to flow. It has long been recognized 

that increasing the viscosity of a fluid increases its contact time on the surface of the cornea or 

contact lens. However, solutions with very high viscosities can cause visual blur and epithelial 

damage.116, 117, 129 The viscosities of the saline solutions and all the blister solutions except the 

blister solutions of m-lotrafilcon B and lotrafilcon A, were slightly lower than the viscosity of 

water (1.00cP) ranging from 0.90-0.99cP. The viscosities of the blister solutions for the m-

lotrafilcon B and lotrafilcon A materials were 1.30cP and 1.26cP respectively, which were closer 

to that of the viscosity of tears (1.5cP).116 The high viscosities are due to the incorporation of 

wetting agents polyethylene glycol (PEG) and hydroxypropyl methylcellulose (HPMC)130 and 

1% copolymer 845.127 The higher viscosities of these two blister pack solutions may contribute 

to an increase in initial comfort of the lens in-eye by increasing the retention time of the tear film 

over the surface of the contact lens. 

A study by Giles,131  compared the overall performance of the lotrafilcon B material 

compared to the m-lotrafilcon B materials. Performance of each lens materials was based on 

comfort after insertion, end of day comfort, and overall comfort. Results indicated subjective 

preference for the m-lotrafilcon B materials for initial comfort, end of day comfort and overall 

comfort. This results were attributed to the modified blister solution of m-lotrafilcon B with 

added moisturizing agents, and the high wettability of the lens material. 
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Although this experiment has successfully reported the physical properties of the blister 

solutions of silicone hydrogel lenses, the substantivity of the blister solutions for these lenses is 

only effective on the first day of wear, after which the blister solution is removed by storage in a 

multipurpose lens solution. Thus, the impact of blister solutions is likely more relevant in regards 

to daily disposable lenses and will be the focus of the next chapter. 
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4. Chapter 4: In Vitro CA Analysis and Physical Properties of Blister Pack 

Solutions of Daily Disposable Lenses 

4.1 Introduction 

In 2005, it was reported that approximately 2.8 million contact lens wearers in the US 

ceased to wear their lenses due to dryness, discomfort, and general dissatisfaction with their 

lenses.132 In an attempt to improve comfort and reduce dryness, many contact lens manufacturers 

have developed approaches to modify the lens surface or material in an attempt to make the lens 

more “wettable.”95, 96, 98, 133 

In-eye comfort, particularly initial comfort following insertion, could also be affected by 

the properties of the packing solution in which the lenses are stored. This is particularly relevant 

for daily disposable (DD) lenses, which are inserted directly from the blister pack solution each 

time they are worn. Historically, blister package solutions consisted of merely saline.134 

However, several contact lens companies have recently begun to modify the constituents of the 

packaging solutions to include a complex array of surfactants and wetting agents to the blister 

pack solution, in an attempt to improve initial in-eye comfort and support a stable tear film.124, 135 

The previous chapter described in depth the physical properties of the packaging solutions for 

silicone hydrogel contact lenses.  

The purpose of this study was to determine the CAs of five modern DD lenses and also to 

determine the surface tension, osmolality, viscosity, and pH of their respective blister pack 

solutions. It is our hypothesis that wetting agents incorporated into the lens material and 
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packaging solution will reduce the advancing CA and lower the surface tension of the packaging 

solution. 

4.2 Materials 

Five DD lenses were examined in this study: omafilcon A (CooperVision, Pleasanton, 

California), nelfilcon A and modified (m-) nelfilcon A (CIBA Vision, Duluth, Georgia), etafilcon 

A and narafilcon A (Johnson & Johnson, Jacksonville, Florida). The various properties of these 

materials are described in Table 4-1.  

Table 4-1: Listing of daily disposable lenses and their individual properties 

 Proprietary Name 

  
Proclear 1-Day 

 
Focus Dailies

 
Focus Dailies w/ 

AquaComfortPlus

 
1-Day Acuvue 

 
Acuvue 
TruEye 

Manufacturer CooperVision CIBA Vision CIBA Vision Johnson & 
Johnson 

Johnson & 
Johnson 

USAN Omafilcon A Nelfilcon A Nelfilcon A Etafilcon A Narafilcon A 
Water 
Content 

 
60.0 69.0 69.0 58.0 46.0 

Dk (oxygen 
permeability) 24 34 34 22 100 

Monomers HEMA + PC Modified 
PVA 

Modified PVA + 
various 

components 
within packaging 

solution 

HEMA + MA undisclosed 

FDA Group II II II IV I 
HEMA (2-hydroxyethyl methacrylate); PC (phosphorylcholine); MA (methacrylic acid); PVA (polyvinyl alcohol) 
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4.3 Methods 

4.3.1 Sessile Drop Technique 

Advancing CAs for each lens material were measured directly out of the blister pack. 

Each lens (n=4) was removed from the blister pack and briefly dabbed each side on lens paper 

(VWR Scientific Products, West Chester, Pennsylvania) for approximately 20 seconds, to 

remove any excess fluid from the blister pack solution, as this may impact on the initial CA. The 

lens was not blot dried any longer than 20 seconds, as preliminary data (see section 2.1) showed 

that blotting for longer than this could cause dehydration of the lens. After blot drying, each lens 

was placed posterior side down on a custom curved convex mantle and placed directly below the 

syringe of an Optical Contact Analyzer (OCA - Dataphysics Instruments GmbH, Filderstadt, 

Germany), and the CA was measured as described in section 2.1.2.1. 

 After the image of the lens removed from the blister pack was captured, the lens was 

immediately soaked in 5ml of unpreserved saline solution (Unisol, Alcon, Fort Worth, Texas), in 

order to remove the blister pack components from the lens and to determine the CA of the 

material without the impact of the blister pack solution. After a period of 5 minutes, the lens was 

removed from the saline and the advancing CA was measured exactly as described in section 

2.1.2.1. This process was repeated a further 7 times for each lens to determine the substantivity 

of the blister package solution on the lens surface.  
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4.3.2 Wilhelmy Balance Method 

Advancing and receding CAs for each lens material (n=4) were also measured directly 

out of the blister pack using the Wilhelmy Balance Method, as described in section 2.2.2.2. Each 

lens was taken through 8 cycles of being soaked in saline for 5 minutes and the advancing and 

receding angles measured after each cycle. Hysteresis (the difference between the advancing and 

receding CA) for each lens was also calculated.  

 

4.3.3 Osmolality  

The osmolality of the packaging solutions were measured as previously described (refer 

to section 3.3.3). 

 

4.3.4 Surface Tension 

Surface tension measurements of the packaging solutions were acquired using the same 

methods as previously described (refer to section 3.3.2). 

4.3.5 pH 

The pH of each blister pack solution was measured using the method previously 

described (refer to section 3.3.1). 
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4.3.6 Viscosity 

Viscosity measurements of each blister packaging solution were obtained using the same 

method previously described (refer to section 3.3.4). 

4.3.7 Statistical Analysis 

All measurements were taken at room temperature (20.0°C). It was not possible to mask 

the investigator from the lens types being examined. However, all of the physical measures of 

the packing solution were automated and determination of the CAs could not be influenced by 

the investigator, with the exception of sessile drop measurements due to variations in blot 

drying. However, the investigator followed exactly the same routine for all lenses when 

undertaking the blotting procedure. Thus, we feel that this lack of masking did not adversely 

influence the results. 

CAs, pH, osmolality, and surface tension measurements were analyzed by repeated 

measures ANOVA (analysis of equal variance). Analysis of the advancing angles measured 

using the sessile drop technique, advancing angles measured by Wilhelmy balance, and receding 

angles measured by Wilhelmy balance were all analyzed independently. Advancing CAs 

measured by sessile drop and Wilhelmy balance were compared and analyzed. The hysteresis 

values were also analyzed using repeated measures ANOVA. Further analysis of CAs, 

osmolality, pH, and surface tension measurements were undertaken using a Tukey post-hoc test 

to see all significant or non-significant difference between individual measurements. A p-value 

of <0.05 was considered significant.  
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4.4 Results 

Figure 4-1 shows the advancing CAs measured using the sessile drop technique for all 

lens types across all cycles, with cycle 0 being immediately out of the blister pack and the 

remaining cycles being those determined after progressive periods of soaking in saline.  

 

Figure 4-1: The average advancing contact angles (CAs) for all 5 lenses plotted for each 

cycle, as determined by the sessile drop technique. Cycle 0 reflects the measured CA 

immediately upon removal from the blister pack and each cycle thereafter is the measured 

advancing CA after soaking the lens for 5 minutes in unpreserved saline. 

The advancing CAs for omafilcon A and narafilcon A were statistically higher than the 

remaining three lens materials (p<0.02), but these were not statistically different from each other 

(p>0.05). The two nelfilcon A lens materials were not significantly different from each other at 

any cycle examined (p>0.10). Etafilcon A advancing CAs were statistically lower than omafilcon 

A and narafilcon A (p<0.001) immediately upon removal from the packaging products and then 
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remained lower until the final 3 cycles, when their CA became no different from omafilcon A 

and narafilcon A (p>0.60). Etafilcon A exhibited a higher advancing CA than both nelfilcon A 

products immediately upon removal from the packaging and at the majority of the various 

soaking cycles (p<0.05), with the exception of cycles 1 and 3 (p>0.05).  

Figure 4-2a-e are comparisons of the advancing CAs for each individual lens type 

measured by the sessile drop vs. the Wilhelmy balance method. Plots for nelfilcon A (Figure 

4-2b) and m-nelfilcon (Figure 4-2c) show no difference in advancing CAs for the two techniques 

after cycle 2 (p>0.05). Prior to that, the CAs are lower with both lens materials with the sessile 

drop method (p<0.05). Analysis of plots for omafilcon A (Figure 4-2a) and narafilcon A (Figure 

4-2e) show significant differences across all cycles (p<0.05) between the two methods, with 

lower CAs for the Wilhelmy method. Significant difference in CAs between the two methods for 

etafilcon A (Figure 4-2d) were seen after the 4th cycle (p<0.05), with advancing CAs measured 

using the sessile drop increasing until cycle 6 after which the CAs plateau. 

a)  

*
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b)  

c)  



62 

 

d)  

e)  

Figure 4-2: The advancing contact angle for each lens material upon removal from the 

packaging solution and after each progressive soaking period, as measured by sessile drop 

*
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and Wilhelmy balance methods for a) omafilcon A; b) nelfilcon A; c) modified-nelfilcon A; 

d) etafilcon A; and e) narafilcon A 

Figure 4-3a-e describe the advancing and receding CAs determined using the Wilhelmy 

balance method. Figure 4-3a and Figure 4-3d graphically demonstrate using the Wilhelmy 

balance method that omafilcon A and etafilcon A exhibit fairly substantial degrees of hysteresis, 

as shown by their significant differences between the advancing and receding CAs across all 

cycles (p<0.05). Figure 4-3b, Figure 4-3c and Figure 4-3e demonstrate that hysteresis is minimal 

for both nelfilcon A products and the narafilcon A material, with very little difference between 

the advancing and receding CAs for these products (p>0.05). 

When the Wilhelmy balance advancing CAs between products was directly compared 

(Figure 4-3a-e), it is seen that the CAs for omafilcon A remained statistically higher from all 

other lens types after the first two cycles (p<0.05). Etafilcon A, nelfilcon A and m-nelfilcon A 

advancing CAs were not statistically different from each other for any cycle (p>0.05).  

Receding CAs for etafilcon A were statistically lower than all other lens types (p<0.05). 

Omafilcon A, nelfilcon A, m-nelfilcon A, and narafilcon A lenses were not significantly different 

from each other at the same cycles (p>0.05). 
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a)  

b)  
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c)  

d)  

*
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e)  

Figure 4-3: The advancing and receding contact angles for each lens material upon 

removal from the packaging solution and after each progressive soaking period, as 

measured by the Wilhelmy balance method for a) omafilcon A; b) nelfilcon A; c) modified-

nelfilcon A; d) etafilcon A; and e) narafilcon A. 

All blister pack solutions had pH values that remained within the quoted pH range of 

human tears (6.6-7.8), as shown in Table 4-2. There was a statistically significant difference 

between the pH values measured (p=0.0003), with omafilcon A exhibiting the highest pH and m-

nelfilcon A the lowest. The pH values of the blister pack solutions for nelfilcon A, m-nelfilcon A 

and etafilcon A were not significantly different from each other (p>0.05).  
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Table 4-2: Average values for physical properties of blister pack solutions investigated 

Lenses pH 
Osmolality 

(mmol/kg) 

Surface Tension 

(dynes/cm) 

Viscosity 

(cP) 

omafilcon A 7.43±0.07 285.00±1.83 47.87±0.36 0.93±0.02 
nelfilcon A 7.15±0.03 282.50±8.58 46.98±1.28 0.94±0.03 
m-nelfilcon A 7.01±0.09 286.50±5.20 21.74±2.65 2.95±0.06 
etafilcon A 7.14±0.06 433.25±1.26 39.57±1.22 0.87±0.02 
narafilcon A 7.32±0.11 424.50±2.08 45.11±0.57 0.94±0.05 
p-value 0.0003 <0.00001 <0.00001 <0.00001 

 

The osmolality values (Table 4-2) exhibited a significant difference between products 

(p<0.00001) and these can be broadly separated into two groups. The osmolality of omafilcon A, 

nelfilcon A, and m-nelfilcon A blister pack solutions were all only slightly lower than that 

reported for human tears (305 mmol/kg)136 and were no different to each other (p>0.80). In 

comparison, the osmolality of the etafilcon A and narafilcon A blister pack solutions were much 

higher (p<0.005), but they were not significantly different from each other (p>0.10).  

Table 4-2 also reports the surface tension values of the packaging solutions, which also 

exhibited a significant difference between products (p<0.00001). The surface tension of the 

blister pack solution for m-nelfilcon A was significantly lower than all the other blister pack 

solutions (p<0.001). Surface tension for the etafilcon A blister pack solution was significantly 

lower (p<0.05) than the omafilcon A, nelfilcon A, and narafilcon A blister pack solutions, but 

significantly higher (p<0.05) than the blister pack solution of m-nelfilcon A. The surface tension 

of the blister pack solution for narafilcon A was significantly higher (p<0.05) than the surface 

tensions for the m-nelfilcon A and etafilcon A blister pack solutions, but was not significantly 

different (p>0.05) from the surface tensions of the omafilcon A and nelfilcon A blister pack 

solutions. 
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The viscosity of each blister pack solution is reported in Table 4-2. The viscosity of the 

m-nefilcon A blister solution (2.95cP) was significantly higher than the viscosity of all other 

blister solutions (p<0.0002). The viscosity of the blister solution for omafilcon A, nelfilcon A, 

etafilcon A, and narafilcon A were not statistically different from each other (p>0.05). 

4.5 Discussion and Conclusion 

DD lenses have a number of advantages compared to hydrogel lenses that are reused, 

including less deposit accumulation on the lens,137, 138 improved comfort and increased patient 

compliance due to the lack of a maintenance routine.137-141  

In certain countries around the globe, up to 50% of new patient fits are conducted with 

DD lenses.142 However, despite the latest developments in lens materials, patients still cease to 

wear their lenses due to discomfort and dryness.140, 143, 144 In an attempt to reduce this sensation 

of dryness many companies modify the lens material with internal wetting agents145-147 or 

include surfactants into the blister packaging solution.135, 146, 148 DD lenses do not require the use 

of multipurpose cleaning solutions thus, upon initial insertion of a DD contact lens onto the eye, 

the physical properties of the blister package solution and the wettability of the lens surface may 

jointly affect the comfort of the lens in-eye.  

One approach is that taken by CIBA Vision, who incorporate “excess” non-polymerized 

PVA into the nelfilcon A lenses and even more “free” PVA into the m-nelfilcon A lenses, which 

is gradually released from the surface of the lens over the course of the day.146, 149 In 

conventional nelfilcon A lenses, the PVA is polymerized into the lens material to N-

formylmethyl acrylamide and termed as being “functionalised.” The nelfilcon A lens material 

used in this study has functionalised PVA in the lens matrix as well as non-functionalised PVA 
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which floats free in the lens matrix, with additional non-functionalised PVA in the m-nelfilcon A 

lens material.149 This non-functionalised PVA is slowly released from the lens and helps stabilize 

the tear film and should, theoretically, improve comfort.149 The m-nelfilcon A material also 

incorporates another hydrophilic monomer (PEG) into the lens material and a wetting agent 

(HPMC) is additionally included in the packaging solution, in an attempt to enhance initial 

wettability and sustain surface wettability over the course of the day.124, 145 Figure 4-1, Figure 

4-2b and Figure 4-2c demonstrate that nelfilcon A and m-nelfilcon A had relatively low average 

advancing CAs over all cycles examined, averaging 53° (sessile drop) and 61° (Wilhelmy 

balance). The receding CA (Figure 4-3b and Figure 4-3c) of approximately 51° for both 

nelfilcon-based lenses, was also relatively low, and exhibited minimal hysteresis (Figure 4-3b 

and Figure 4-3c). Given our previous suggestion that lenses with low advancing CAs and 

minimal hysteresis should prove to exhibit excellent wettability, it would appear that the 

incorporation of leachable PVA does result in lenses with such properties. Figure 4-1 indicates 

that the two nelfilcon A products had very similar advancing CAs by the sessile drop technique 

and it would appear that the modifications made to the latest nelfilcon A product translate into 

relatively small differences between the two products. The osmolality of nelfilcon A 

(282.50mmol/kg) and m-nelfilcon A (286.50mmol/kg) blister pack solutions (Table 3-2) were 

lower than that reported for human tears,136 but would not be expected to induce any discomfort 

on insertion. The surface tension of nelfilcon A (46.98dynnes/cm) was close to that reported for 

human tears.136 The surface tension of the blister pack solution for m-nelfilcon A 

(21.74dynnes/cm) was significantly lower than that of human tears and the surface tension of the 

other blister pack solutions, including nelfilcon A (p<0.05). The likely reason for this is the 

incorporation of the HPMC and the presence of the excess leachable PVA into the packaging 
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solution, both of which are surface-active and will lower surface tension. The viscosity of the 

blister solution for the m-nelfilcon A material was higher than that of humans tears and the 

viscosities of the other blister pack solutions. This high viscosity is again likely due to the 

incorporation of HPMC into the blister solution. 

Omafilcon A lenses had relatively high advancing CAs (Figure 4-1and Figure 4-2a) 

measured by the sessile drop (average 101°) and Wilhelmy balance techniques (average 73°). 

The average receding CA for omafilcon A was approximately 47° over all 8 cycles (Figure 4-3a), 

exhibiting a relatively high hysteresis. This relatively high degree of hysteresis may be caused by 

the chain rotation of hydroxyethyl methacrylate (HEMA) within the omafilcon A lens material. 

When HEMA is exposed to air (when the eye is open), the methyl groups rotate towards the 

hydrophobic interface by chain rotation.33 This is a more favourable energetic state, thereby 

lowering the surface free energy of the lens surface. However, on exposure to polar liquids (ie. 

tears), the polymers will rotate so that the hydrophilic groups are pointing towards the polar 

phase. Thus, between blinks, the lens may have a tendency to exhibit reduced wettability relative 

to lenses which exhibit low degrees of hysteresis. As shown in Table 4-2, the osmolality 

(285mmol/kg) and the surface tension (47.87 dynes/cm) of the blister pack solution for 

omafilcon A was similar to the values reported for human tears. The viscosity (0.93cP) was close 

to the viscosity of water (1.00cP). 

 The etafilcon A material was the only one to exhibit progressively increasing advancing 

CAs over the 8 cycles when measured by sessile drop method (Figure 4-1 and Figure 4-2d), but 

had comparable advancing CAs to the nelfilcon A lenses when measured using the Wilhelmy 

balance (Figure 4-3d). Etafilcon A-based lenses had low receding angles (approximately 31°) 

compared to the other lenses (Figure 4-3d) but did exhibit a high degree of hysteresis. Etafilcon 
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A is also based on polyHEMA and the aforementioned chain rotation is the likely cause of the 

hysteresis determined. As shown in Table 4-2, the surface tension (39.57dynnes/cm) of the 

blister pack solution was slightly lower than that reported for human tears.136 The viscosity of the 

blister solution (0.87cP) was lower than that of tears and lower than the viscosity of water 

(1.00cP) One significant difference from that measured in the majority of the packaging 

solutions was that the osmolality (433.25mmol/kg) was very high compared to the osmolality of 

tears. It is believed that this high osmolality is required to maintain the parameters of the 

etafilcon A lenses when stored in the blister pack, as placement of the lenses in a hypotonic 

solution similar to that of the other lenses (around 285 mmol/kg) results in a marked expansion 

of the lens and dramatic changes in lens diameter (approximately 20% increase in diameter) and 

thickness (data not shown).  

 The newest DD lens material (narafilcon A) is the only silicone hydrogel lens and, as 

such, exhibits substantially higher oxygen permeability (Table 4-1). However, previous studies 

have shown that silicone hydrogel materials typically exhibit lower levels of wettability and 

higher CAs than that seen with hydrogel materials.31, 39, 150, 151 Advancing CAs were 

approximately 100° and 64° measured using the sessile drop and Wilhelmy balance methods 

respectively (Figure 4-1 and Figure 4-2e). The receding CA was approximately 52° degrees 

(Figure 4-3e), which interestingly was comparable to the receding angle for m-nelfilcon A 

(Figure 4-3c). The hysteresis (approximately 12°) of the narafilcon A lens was relatively low 

(Figure 4-3e). As would be predicted for a siloxane-based lens, the advancing CA was indeed 

quite high, but the hysteresis was relatively low. The surface tension (45.11 dynes/cm) was 

comparable to that of the surface tension of tears.136 The viscosity of the blister solution (0.94cP) 

was lower than the viscosity of human tears (1.5cP) and similar to the viscosity of water 
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(1.00cP). However, the osmolality of the narafilcon A blister pack solution (424.50mmol/cm) 

was almost as high as that measured for etafilcon A, and much higher than that of the tear film. 

Interestingly, when narafilcon A lenses were placed into an hypotonic solution (data not shown) 

their parameters remained fairly similar to that measured in the packaging solution (increase in 

diameter of 3%), so the reason for the high osmolality remains unknown. As shown in Figure 

4-2e, the narafilcon A material showed the greatest difference in advancing CA between the two 

methods, suggesting that it is most affected by methodological technique in its assessment of 

CA.  

 In addition to narafilcon A, the two polyHEMA-based lens materials omafilcon A and 

etafilcon A also show marked differences in the measurement of their advancing CAs (Figure 

4-2a and 4-2d). As described above, polyHEMA-based materials tend to reorient themselves 

depending on the surrounding environment. Narafilcon A contains polyvinylpyrolidone (PVP), a 

high molecular weight wetting agent incorporated into the lens material.126 PVP acts as a 

lubricant and a humectant, binding moisture and presenting a wettable lens to the ocular 

surface.78, 152 Thus, when the lens is in an aqueous environment, the PVP retains moisture at the 

surface of the lens, making it more wettable. Preparation of the lenses for CA measurements by 

sessile drop requires blot drying the lens, as opposed to just shaking off the excess blister pack 

solution during preparation of the lens for the Wilhelmy balance method. Blot drying the lens 

would cause the polyHEMA to orient in the lens so that the hydrophobic polymers are facing the 

lens surface, making the lens less wettable, which could account for the high CAs measured 

using the sessile drop technique. Preparation of the lens for the Wilhelmy balance is time 

consuming and the lens can become dehydrated if it is blot dried before attachment to the 

electrobalance. Hence, the lens is prepared by just shaking off the excess blister pack solution. A 
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small film of blister pack solution on the lens would cause the hydrophilic moieties of HEMA to 

be exposed to the outside surface of the lens, accounting for the lower CAs. Thus, it is important 

when reporting the in vitro CAs that the method by which the CAs were measured is accurately 

reported and the methods suitably described. 

The pH of all blister pack solutions was close to neutral (Table 4-2), and although there 

was a statistical difference, these differences were not considered clinically significant.136 

 Overall, the nelfilcon A and m-nelfilcon A lens exhibited low advancing and receding 

CAs, with minimal hysteresis, and the m-nelfilcon A blister pack solution had the lowest surface 

tension, which could be attributed to the HPMC in the blister pack and non-functionalised PVA 

released from the lens. The potential link between CA assessment and in eye comfort must be 

addressed. In 2007, Winterton et al.123 investigated the effect of the elution of PVA on comfort 

of the nelfilcon A material. This was carried out as a clinical trial with patients wearing nelfilcon 

A lenses with non-functionalised PVA and nelfilcon A lenses in which the PVA was extracted 

before wear. Severe or moderate lens awareness, increased stinging and reduced wear time was 

reported by patients wearing lenses with the extracted PVA.123 These results were attributed to 

the reduced amount of PVA in the extracted lenses. An additional experiment was also 

conducted looking at the rate of elution of PVA under in vitro and in vivo conditions. Results 

indicated an enhanced rate of elution of PVA from lenses worn in vivo compared to lenses tested 

in vitro. The hypothesis suggested by Winterton et al.123 to this phenomenon was that in-eye, 

blinking provided the additional “energy” needed to “squeeze” excess fluid and PVA from the 

lens, resulting in the higher elution rate.123  

A study by Peterson et al.149 compared in-eye comfort of conventional nelfilcon A vs. 

nelfilcon A with the non-functionalised PVA. Comparisons between the two lenses were made 
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with a comfort rating and measuring the non-invasive tear break-up time (NIBUT). Comfort 

rating for nelfilcon A with non-functionalised PVA was consistently higher than that of the 

conventional nelfilcon A lens over 16 hours of wear time, and the NIBUT was longer for 

nelfilcon A compared to the conventional nelfilcon A. Both results could be attributed to the 

non-functionalised PVA incorporated in the nelfilcon A lens. A year later, a clinical trial was 

conducted comparing the second generation nelfilcon A lens and the newest nelfilcon A lens 

material (m-nelfilcon A).153 The m-nelfilcon A lens material rated significantly higher than 

nelfilcon A in overall preference, overall comfort, all day comfort, lenses feeling fresh and clean 

throughout the day, lenses staying moist throughout the day, and clear vision.153 These results 

were suggested by the researchers to be due to the added wetting agents into the m-nelfilcon A 

lens material (PEG) and into the blister pack solution (HPMC). 

In 2008, Giles and Fahmy145 compared the performance of m-nelfilcon A with a newer 

etafilcon A lens material which incorporates a wetting agent based on PVP. Performance was 

based on less dryness, overall comfort, all day comfort, and ease of handling.145 The m-nelfilcon 

A lens rated significantly higher in all measured categories.145 They suggested that these finding 

were due to the incorporated wetting agent (PEG) into the lens material and the lubricating agent, 

HPMC in the blister packaging solution.  

This experiment effectively measured the physical properties of the blister pack solutions for 

the DD lenses used in this study and demonstrated the substantivity of the blister solutions 

through the 5 minute soak followed by blot drying method. As mentioned previously this method 

was conducted to mimic blinking, however drying the lens after a 5 minutes soak is not a true 

representation of the evaporation of the tear film off the surface of the contact lens after a blink 

that lasts less than a second. Therefore, a new technique which more effectively mimics blinking 
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needs to be developed. In Chapter 6, an experiment is described which investigates the effect of 

tear components on the wettability of contact lenses after lenses have been placed in a “model 

blink cell”. 
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5. Chapter 5: Validation of a Model Blink Cell 

5.1 Introduction 

In vitro experiments investigating the performance of a biomaterial are conducted to test 

the potential behaviour of the body to the biomaterials in vivo. As an example, blood contacting 

devices are generally exposed to plasma in vitro before human or animal testing commences.  

A number of experiments have looked at the performance of different contact lens 

materials when exposed to tear components.41, 61, 76, 79, 154 However, none of these studies have 

investigated the effect of tear components on the lens material when placed in an environment 

that mimics blinking. Typically, lens materials are merely “soaked” in a single protein solution 

for a set period of time. This is clearly very different to the true in vivo situation, in which lenses 

are bathed in a highly complex solution (the tear film) and intermittent drying of the lens surface 

takes place during the inter-blink period.  In the previous chapter, a method was used in which 

lenses were cycled through intervals of being soaked in saline for 5 minutes, after which the CA 

was measured. This method was conducted to mimic the hydration and drying of the lens by the 

tear film during blinking, however, this technique was not a realistic representation of blinking, 

as drying of the lens occurs much faster than at 5 minute intervals. 

In an attempt to mimic the complex in eye situation, a “model blink cell” was developed, 

which functions to mimic in eye blinking in an in vitro setting. It is composed of a pump/valve 

system, a “bath” which contains six pistons with convex surfaces, two sensors in the bath, a 

series of tubes for delivery of solutions, a container holding fresh solution, and a container which 

holds waste solution (Figure 5-1). 
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Figure 5-1: Picture of the model blink cell showing the pistons, valves, tubing series, pump, 

and sensors. 

Six contact lenses can be placed posterior side down on the top of the pistons at one time 

(Figure 5-1). A solution, such as saline or a complex mimic of the tears, is brought up from the 

container holding the fresh solution (this container is missing in Figure 5-1) and cycled through 

the model blink cell until a purge time is reached. The solution is pumped through the tubing, 

into the bath containing the pistons and contact lenses, and then back into the tubing. As solution 

is cycled through the model blink cell, the pistons move up and down, consequently moving the 

contact lenses in and out of the solution, to mimic blinking. The amount of time the contact 

lenses spend in and out of the solution is controlled by the experimenter, by setting the time 

intervals on the control box resting on top of the model blink cell (Figure 5-2). Other settings that 
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are set by the experimenter are the purge and refill time, as well as the temperature inside the 

model blink cell. 

 

Figure 5-2: Control box which controls temperature, purge and refill times, and amount of 

time lenses in and out of the fluid bath. 

In the experiment described in Chapter 6, lenses were placed on the pistons in the model 

blink cell and then exposed to a saline solution, a lysozyme solution, and an artificial tear 

solution (see section 5.3.1 for their exact composition) for 5 minutes, 1 hour, 4 hour, and 8 hour 

time intervals. During these time intervals the pistons moved in and out of the solution so the 

lenses would be in the solution for 1 sec and out of the solution for 5 seconds to mimic blinking. 

However, before that experiment was undertaken, an experiment in which the lenses were 

soaked in the three solutions for the respective time intervals rather than being placed in the 

model blink cell was conducted to validate whether or not the model blink cell was a useful tool 

to investigate the effects of tear components on the wettability of contact lens materials. 
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5.2 Materials 

Three DD lenses were examined in this study: omafilcon A (CooperVision, Pleasanton, 

California), modified (m-) nelfilcon A (CIBA Vision, Duluth, Georgia), and narafilcon A 

(Johnson & Johnson, Jacksonville, Florida). Please refer to Table 4-1 for the various properties 

of these materials.  

The solutions used in the study were a saline solution (Unisol, Alcon, Fort Worth, Texas), 

lysozyme solution, and a complex tear solution. The saline solution was used as a control 

solution. 

5.3 Methods 

5.3.1 Preparation of Tear Solutions 

The artificial lysozyme solution was prepared at a concentration of 1.9mg/ml by 

dissolving granular hen egg lysozyme (HEL) in sterilized phosphate buffered-saline (PBS) with a 

pH of 7.4. The HEL was purchased from Sigma (St. Louis, Missouri).  

The complex tear solution was composed of five lipids (triolein, cholesterol, oleic acid, 

oleic acid methyl ester, and cholesteryl oleate), three proteins (β- lactoglobulin, albumin, and 

lysozyme) and mucin. All complex tear components were purchased from Sigma (St. Louis, 

Missouri). 

A lipid stock solution was created by dissolving appropriate quantities of each lipid in 

2ml of a hexane/ether solution. The concentration of the triolein, cholesterol, oleic acid, oleic 

acid methyl ester, and cholesteryl oleate were added at concentrations of 0.016mg/ml, 

0.0018mg/ml, 0.0018mg/ml, 0.012mg/ml, and 0.024mg/ml respectively. Lipid stock solution 

was added to sterilized PBS that was heated to 37ºC. The hexanes and ether were allowed to 
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evaporate in a cell culture hood by repeatedly heating the solution to 37ºC until all the hexanes 

and ether evaporated. 

Bovine submaxillary mucin was placed on weighing paper and exposed to UV light for 

20 minutes to sterilize. After sterilization the mucin was added to the lipid solution at a 

concentration of 0.15mg/ml. 

Granular human albumin, HEL, and β-lactoglobulin were dissolved in the mucin/lipid 

solution. Β-lactoglobulin was used as a substitute for lipocalin which is naturally found in the 

human tear film. Albumin was added at a concentration of 0.20mg/ml, HEL was added at a 

concentration of 1.9mg/ml, and β-lactoglobulin was added at a concentration of 1.6mg/ml. 

Lactoferrin was not added to the complex tear solution due to cost. The complex tear solution 

was stored at 4ºC when not in use. 

Lenses (n=4) were soaked in 5ml of the control, lysozyme, and complex tear solution for 

5 minutes, 1 hour, 4 hours, and 8 hours in an incubator set at 37ºC. After lenses were soaked in 

each solution for the set time point the advancing CAs were measured using the sessile drop 

technique (see section 2.1.2.1.) and the Wilhelmy balance method (see section 2.2.2.2). The 

receding CAs were measured using the Wilhelmy balance method (see section 2.2.2.2). 

5.4 Results 

The advancing CAs measured by the sessile drop technique for omafilcon A, nelfilcon A, 

and narafilcon A after lenses were soaked in 5ml of the control solution, lysozyme solution and 

complex tear solution for 5 minutes, 1 hour, 4 hours, and 8 hours are shown in Figure 5-3a-c. 
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b)  
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c)  

Figure 5-3: Advancing CAs measured by the sessile drop technique for a) omafilcon A b) 

nelfilcon A and c) narafilcon A, after being soaked in 5ml of control solution, lysozyme 

solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours. 

 There was no statistical difference between advancing CAs for omafilcon A after being 

soaked in any of the three solutions at any time point (p>0.05). The advancing CAs for nelfilcon 

A after being soaked in the control solution were statistically higher (p<0.001) than all other 

CAs, except for the CAs measured after nelfilcon A was soaked in the complex tear solution for 

5 minutes (p>0.05). The CAs after nelfilcon A was soaked in the lysozyme solution for 5 

minutes were statistically lower than the CAs measured after being soaked in the control solution 

and complex tear solution for 5 minutes (p<0.001). The CAs measured after nelfilcon A was 

soaked in the lysozyme and complex tear solutions for 1 hour, 4 hours, and 8 hours were not 

statistically different from each other (p>0.90). There was no statistical difference in advancing 
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CAs measured after narafilcon A was soaked in any of the three solutions for any time point 

(p>0.05). 

 Comparing advancing CAs between lenses there was no statistical difference between the 

advancing CAs of omafilcon A and narafilcon A after either lens was soaked in the control 

solution, lysozyme solution, or complex tear solution at any time point (p>0.05). All advancing 

CAs for nelfilcon A were statistically lower than the CAs for nelfilcon A and omafilcon A 

(p<0.05) with the CAs after nelfilcon A was soaked in the lysozyme and complex tear solution 

for 1 hour, 4 hours and 8 hours, being the lowest CAs measured (p<0.001). 

The advancing CAs measured by the Wilhelmy balance method for omafilcon A, 

nelfilcon A, and narafilcon A after lenses were soaked in 5ml of the control solution, lysozyme 

solution and complex tear solution for 5 minutes, 1 hour, 4 hours, and 8 hours are shown in 

Figure 5-4a-c. 
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a)  

b)  
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c)  

Figure 5-4: Advancing CAs measured by the Wilhelmy balance method for a) omafilcon A 

b) nelfilcon A and c) narafilcon A, after being soaked in 5ml of control solution, lysozyme 

solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours 

 The advancing CAs measured by the Wilhelmy balance method for omafilcon A (Figure 

5-4a) after being soaked in each solution for any of the time points, were not statistically 

different (p>0.10). This trend was similar for nelfilcon A (Figure 5-4b) and narafilcon A (Figure 

5-4c). 

 Comparing CAs between lenses, the CAs for nelfilcon A after being soaked in the control 

solution were all statistically lower (p<0.05) than the CAs for omafilcon A and narafilcon A after 

being soaked in the control solution. The CAs for omafilcon A and narafilcon A after being 

soaked in the control solution were not statistically different from each other at any time point 

(p>0.90). 
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 The advancing CAs for omafilcon A and narafilcon A after being soaked in the lysozyme 

solution were not statistically different from each other at any time point (p>0.90). The CAs for 

nelfilcon A were statistically lower than the CAs for omafilcon A and narafilcon A after being 

soaked in lysozyme solution for 1 hour, 4 hours, and 8 hours (p<0.05).  

 After all three lens materials were soaked in the complex tear solution, again there was no 

statistical different in CAs for the omafilcon A and narafilcon A lens materials at anytime point 

(p>0.10). The CAs for nelfilcon A were significantly lower than the CAs for omafilcon A after 

being soaked in the complex tear solution for 5 minutes and 1 hour (p<0.01), and were 

significantly lower than all CAs for narafilcon A after being soaked in the complex tear solution 

for any time point (p<0.05). 

 The receding CAs measure for omafilcon A, nelfilcon A, and narafilcon A after each lens 

materials was soaked in the three solutions for 5 minutes, 1 hour, 4 hours, and 8 hours, are shown 

in Figure 5-5a-c respectively. 
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a)  

b)  
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c)  

Figure 5-5: Receding CAs measured by the Wilhelmy balance method for a) omafilcon A b) 

nelfilcon A and c) narafilcon A, after being soaked in 5ml of control solution, lysozyme 

solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours. 

 There was no significant difference in receding CAs for any of the lens materials after 

soaking in the control solution, lysozyme solution, and complex tear solution for 5 minutes, 1 

hour, 4 hours, and 8 hours (p>0.05). There was also no significant difference comparing the 

receding CAs between lenses at any time point after being soaked in any of the solutions 

(p>0.05). 

5.5 Discussion and Conclusion 

The very small change in advancing CAs measured by the sessile drop technique and 

Wilhelmy balance method for omafilcon A and narafilcon A after lenses were soaked in the three 

solutions for 5 minutes, 1 hour, 4 hours, and 8 hours suggest that there is little to no deposition of 

tear components on the surface of these lens materials. Advancing CAs measured by the sessile 
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drop technique for the omafilcon A lens material were slightly higher after the lens material was 

soaked in the complex tear solution, which may have been due to components from the complex 

tear solution depositing on the lens surface. However, these CAs were not statistically higher, 

which leads us to believe that whatever was deposited on the lens surface had little impact on the 

surface wettability of omafilcon A.  

There was a significant increase in wettability measured by the sessile drop technique for 

the nelfilcon A lens material after the lens was soaked in the lysozyme solution and complex tear 

solution. This was probably due to deposition of lysozyme from both solutions onto the lens 

surface. An increase in wettability after nelfilcon A was soaked in the complex tear solution was 

only detectable by the sessile drop technique after the lens was soaked in the solution for 1 hour. 

The little increase in wettability after 5 minutes in the complex tear solution may be due to 

competitive binding between the components in the solution. 

There were no detectable differences in wettability using the Wilhelmy balance method 

for any of the lens materials after they were soaked in the lysozyme and complex tear solutions. 

This may have been due to the lenses not being exposed to the tear components for a long 

enough period for a large enough amount of deposition to occur on the lens materials to further 

cause an effect of the surface wettability detectable by the Wilhelmy balance method. As will be 

discussed later, the majority of deposition studies dope lenses for periods of 48 hours to 2 weeks. 

These longer time periods would allow more deposition to occur on the lenses, which could lead 

to a greater impact on the surface wettability of the lens material. 

Although this study showed some changes to the wettability of the lens materials due to 

deposition of tear components, it is generally believed that deposit formation is more influenced 

by tear thinning and drying of the lens surface between blinks, thus a similar study was 
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conducted to investigate if there are any differences in wetting behaviours from this study 

compared to a study using the model blink cell. 
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6. Chapter 6: Effect of Tear Components on the CA of DD Lenses 

6.1 Introduction 

The purpose of this experiment was to investigate the effect of tear components on the 

surface wettability of contact lenses after placing lenses in a “model blink cell”. The model blink 

cell was used to see if there was an impact on the deposition of tear components from a 

technique in which the lenses were hydrated and then exposed to the open air, much like blinking 

in-eye as compared to just soaking the lenses in complex tear solutions (see Chapter 5: 

Validation of a Model Blink Cell). 

6.2 Materials 

Three DD lenses were examined in this study: omafilcon A (CooperVision, Pleasanton, 

California), modified (m-) nelfilcon A (CIBA Vision, Duluth, Georgia), and narafilcon A 

(Johnson & Johnson, Jacksonville, Florida). Please refer to Table 4-1 for the various properties 

of these materials.  

The solutions used in the study were a saline solution (Unisol, Alcon, Fort Worth, Texas), 

lysozyme solution, and a complex tear solution. The saline solution was used as a control 

solution. 

6.3 Methods 

6.3.1 Preparation of Tear Solutions 

The tear solutions used in this study were prepared exactly as described in Chapter 5 

(please refer to section 5.3.1). 
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6.3.2 Model Blink Cell 

Lenses were removed directly from the blister pack and placed posterior side down on the 

pistons and fastened into place with the anterior surface of the lens exposed to the solution in the 

model blink cell. One type of lens material was placed in the model blink cell at one time to 

prevent contamination of blister pack components from other lenses, which could potentially 

alter the wettability results.  

The model blink cell was set to expose the lenses to the control solution, lysozyme 

solution, and complex tear solution every 5 seconds, which is approximately the average blink 

rate in vivo.155, 156 Lenses were exposed to the solution for 1 second which is longer than the 

actual spreading of the tear film over the lens surface in vivo, however, this was the shortest 

exposure time available using the model blink cell. Wettability of each lens material was 

measured after lenses were placed in the model blink cell for 5 minutes, 1 hour, 4 hours, and 8 

hours.  

The model blink cell used in this study was designed by another graduate student (Holly 

Lorentz) and built by two Research Technicians within the School of Optometry (Robin Jones 

and Andrew Nowinski). 

6.3.3 Sessile Drop Technique 

The advancing CAs of each lens material was measured using the sessile drop technique 

as described previously (please refer to section 2.1.2.1). 

6.3.4 Wilhelmy Balance Method 

The advancing and receding CAs of each lens material were measured using the 

Wilhelmy balance method previously described (please refer to section 2.2.2.2). 



93 

 

6.4 Results 

The advancing CAs of each lens material after the lenses were exposed to the control 

solution, lysozyme solution, and complex tear solution in the model blink cell for 5 minutes, 1 

hour, 4 hours, and 8 hours are shown in Figure 6-1. The advancing CAs were measured using the 

sessile drop technique. 

a)   
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b)  

c)  

Figure 6-1: Advancing CAs measured by the sessile drop technique for a) omafilcon A b) 

m-nelfilcon A and c) narafilcon A, after being exposed to the control solution, lysozyme 

*

*

*
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solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours in the model 

blink cell. 

 The advancing CAs of omafilcon A after the lenses were exposed to the lysozyme 

solution for 1 hour were statistically lower than the CAs after the lenses were exposed to the 

control solution for 1 hour (p<0.01), but not statistically different to the CAs after the lenses 

were exposed to the complex tear solution for 1 hour (p>0.05). The remainder of the CAs for 

omafilcon A were not statistically different from each other after exposure to all three solutions 

for 5 minutes, 4 hours, and 8 hours (p>0.05). 

 The advancing CAs for m-nelfilcon A after the lenses were exposed to the lysozyme 

solution for 5 minutes, 1 hour, 4 hours, and 8 hours, were all statistically lower compared to the 

CAs after the lenses were exposed to the control solution and complex tear solution for 5 

minutes, 1 hour, 4 hours and 8 hours (p<0.001). The advancing CAs after m-nelfilcon A was 

exposed to the control solution and complex tear solution were not statistically different at the 5 

minute, 4 hour, and 8 hour time points (p>0.05), but were statistically different at the 1 hour time 

point (p<0.05).  

 The advancing CAs for narafilcon A after being exposed to the complex tear solution for 

5 minutes were statistically lower than the CAs after being exposed to the control solution and 

lysozyme solution for 5 minutes (p<0.01).There was no statistical difference in CAs after 

narafilcon A was exposed to any of the solutions for 1 hour (p>0.90). After 4 hours of exposure 

to the lysozyme solution the CAs were statistically lower than the CAs after narafilcon A was 

exposed to the control and complex tear solution for 4 hours (p<0.001). The CAs after narafilcon 

A was exposed to the control and complex tear solution for 4 hours were not statistically 

different from each other (p>0.10). The CAs after narafilcon A was exposed to each solution for 
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8 hours were all statistically different from each other with CAs after exposure to the control 

solution being statistically the highest (p<0.001) and CAs after exposure to the lysozyme 

solution for 8 hours being statistically the lowest (p<0.001). 

 The advancing CAs after m-nelfilcon A was exposed to the control solution were 

statistically lower at all time points compared to the CAs of narafilcon A and omafilcon A after 

exposure to the control solution (p<0.001). The CAs of narafilcon A and omafilcon A after 

exposure to the control solution were not statistically different from each other (p>0.05). 

 After lenses were exposed to the lysozyme solution, CAs for m-nelfilcon A were 

statistically lower at all time points compared to the CAs for omafilcon A and narafilcon A 

(p<0.001). CAs for narafilcon A and omafilcon A were also statistically different from each 

other at each time point after being exposed to the lysozyme solution (p<0.05). CAs for 

narafilcon A after being exposed to the lysozyme solution for 5 minutes and 1 hour were 

statistically higher than CAs after omafilcon A was exposed to the lysozyme solution for 5 

minutes and 1 hour (p<0.05). CAs for narafilcon A after being exposed to the lysozyme solution 

for 4 hours and 8 hours were statistically lower than CAs after omafilcon A was exposed to the 

lysozyme solution for 4 hours and 8 hours (p<0.001).  

 The CAs for m-nelfilcon A after exposure to the complex tear solution were statistically 

lower at all time points compared to CAs for omafilcon A and narafilcon A after exposure to the 

complex tear solution (p<0.001). The CAs for omafilcon A and narafilcon A after exposure to 

the complex tear solution were not statistically different from each other at any time point 

(p>0.30). 
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 Figure 6-2 shows the advancing CAs measured by the Wilhelmy balance method after 

lenses were exposed to the control, lysozyme, and complex tear solutions for 5 minutes, 1 hour, 4 

hours, and 8 hours. 

a)   

b)  
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c)  

Figure 6-2: Advancing CAs measured by the Wilhelmy balance method for a) omafilcon A 

b) m-nelfilcon A and c) narafilcon A, after being exposed to the control solution, lysozyme 

solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours in the model 

blink cell. 

 The advancing CAs for omafilcon A after exposure to the control, lysozyme, and 

complex tear solution for 5 minutes and 1 hour were not statistically different from each other 

(p>0.30). The CAs after omafilcon A was exposed to the control solution for 4 hours and 8 hours 

were statistically higher than the CAs after omafilcon A was exposed to the lysozyme and 

complex tear solutions for 4 hours and 8 hours (p<0.01). There was no statistical difference 

between CAs at any time point when omafilcon A was exposed to the lysozyme and complex 

tear solutions. 

 The CAs for m-nelfilcon A after exposure to the lysozyme solution for 4 hours were 

statistically lower than the CAs after m-nelfilcon A was exposed to the control and complex tear 
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solution for 4 hours (p<0.05). There was no statistical difference between CAs at any other time 

point after m-nelfilcon A was exposed to the control, lysozyme, and complex tear solutions 

(p>0.05).  

 The CAs of narafilcon A after the lenses were exposed to the control, lysozyme and 

complex tear solution were not statistically different from each other at any time point (p>0.05). 

 Comparing CAs between lens materials after exposure to the control solution, the CAs 

for m-nelfilcon A were statistically lower than the CAs for omafilcon A and narafilcon A at the 5 

minute and 4 hour time points (p<0.05). The CAs for omafilcon A and narafilcon A were not 

statistically different from each other after being exposed to the control solution for any time 

point (p>0.05). 

 After lenses were exposed to the lysozyme solution, the CAs for m-nelfilcon A were 

statistically lower than the CAs for narafilcon A at the 4 hour and 8 hour time points (p<0.001). 

There was no statistical difference between CAs at any time point after omafilcon A and 

narafilcon A were exposed to lysozyme solution (p>0.05). There was also no statistical 

difference between CAs at any time point after m-nelfilcon A and omafilcon A were exposed to 

the lysozyme solution. 

 There was no statistical difference in CAs at any time point after omafilcon A, narafilcon 

A, and m-nelfilcon A were exposed to the complex tear solution for 5 minutes, 1 hour, and 4 

hours (p>0.05). The CAs after m-nelfilcon A was exposed to the complex tear solution for 8 

hours were statistically lower (p<0.001) than the CAs after narafilcon A and omafilcon A were 

exposed to the complex tear solution for 8 hours. CAs after narafilcon A, and omafilcon A were 

exposed to the complex tear solution for 8 hours, were not statistically different form each other 

(p>0.05). 
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 The receding CAs measured by the Wilhelmy balance method after the lenses were 

exposed to the control, lysozyme and complex tear solution for 5 minutes, 1hour, 4 hours, and 8 

hours are shown in Figure 6-3. 

a)   

b)  
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c)  

Figure 6-3: Receding CAs measured by the Wilhelmy balance method for a) omafilcon A b) 

m-nelfilcon A and c) narafilcon A, after being exposed to the control solution, lysozyme 

solution, and complex tear solution for 5 minutes, 1 hour, 4hours, and 8 hours in the model 

blink cell. 

 There was no statistical difference in receding CAs at any time point after omafilcon A 

was exposed to the control, lysozyme, and complex tear solutions (p>0.30). 

 The receding CAs after m-nelfilcon A were exposed to the control solution for 5 minutes 

were statistically lower than the receding CAs after m-nelfilcon A was exposed to the lysozyme 

and complex tear solutions for 5 minutes (p<0.01). There was no statistical difference between 

CAs after m-nelfilcon A was exposed to the control, lysozyme, and complex tear solutions for 1 

hour, 4 hours, and 8 hours (p>0.05). 
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 There was no statistical difference between receding CAs after narafilcon A was exposed 

to control, lysozyme, and complex tear solutions for 5 minutes, 1 hour, 4 hours, and 8 hours 

(p>0.10). 

 Comparing receding CAs between lenses, the CAs for narafilcon A after exposure to the 

control solution for 5 minutes were statistically higher than the CAs for omafilcon A and m-

nelfilcon A after exposure to the control solution for 5 minutes (p<0.001). After lenses were 

exposed to the lysozyme solution, receding CAs for omafilcon A were significantly lower than 

the CAs for narafilcon A and m-nelfilcon A at all time points. Receding CAs for narafilcon and 

nelfilcon were not statistically different from each other (p>0.05). There was no statistical 

difference between the receding CAs at any time point when narafilcon A, m-nelfilcon A, and 

omafilcon A were exposed to the complex tear solution (p>0.05). 

 Comparing results from this study to the results from the validation study, there were 

some statistical differences between CAs measured in the two experiments.  
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Figure 6-4: Comparing the advancing CAs measured by the sessile drop technique after 

omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the control solution or 

exposed to the control solution in the model blink cell for 5 minutes, 1 hour, 4 hours, and 8 

hours. (Please note, in the legend, “narafilcon model blink cell” indicates the CAs after 

narafilcon was placed in the model blink cell, and “narafilcon soak” indicates the CAs after 

narafilcon was soaked in solution for the respective time. This is the same for the other lens 

materials.) 
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Table 6-1: The advancing contact angles measured by the sessile drop technique after each 

lens materials is soaked in the control solution or exposed to the control solution in the 

model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

100.3 97.1 98.6 101.2 

Narafilcon A- 
soak 

97.6 98.2 98.4 98.9 

p-value 0.3951 0.9773 1.0000 0.5588 
Omafilcon A- 
model blink cell 

94.5 96.1 94.4 93.8 

Omafilcon A- 
soak 

90.4 91.0 89.9 90.1 

p-value 0.6311 0.3949 0.5129 0.7375 
m-Nelfilcon A- 
model blink cell 

50.8 50.6 47.5 43.5 

m-Nefilcon A- 
soak 

47.3 48.3 53.1 52.7 

p-value 0.9739 0.9976 0.7970 0.3236 
 

 Figure 6-4 and Error! Reference source not found. compare the advancing CAs 

measured by the sessile drop technique after each lens material was soaked in the control 

solution for 5 minutes, 1 hour, 4 hours, and 8 hours (refer to section 5.4) and the CAs after the 

lenses were placed in the model blink cell and exposed to the control solution for 5 minutes, 1 

hour, 4 hours, and 8 hours (Figure 6-1). Comparing the CAs between the two methods for any of 

the lens materials, showed no statistical difference at any time point (p>0.30).  

 The advancing CAs after lenses were soaked in lysozyme solution or exposed to 

lysozyme solution in the model blink cell are compared graphically in Figure 6-5. 
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Figure 6-5: Comparing the advancing CAs measured by the sessile drop technique after 

omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the lysozyme solution or 

exposed to the lysozyme solution in the model blink cell for 5 minutes, 1 hour, 4 hours, and 

8 hours. 
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Table 6-2:The advancing contact angles measured by the sessile drop technique after each 

lens material was soaked in the lysozyme solution or exposed to the lysozyme solution in the 

model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

96.5 99.2 69.5 70.3 

Narafilcon A- 
soak 

97.8 96.8 97.0 97.2 

p-value 0.9979 0.9434 0.0002 0.0002 
Omafilcon A- 
model blink cell 

87.2 81.4 85.7 89.0 

Omafilcon A- 
soak 

88.5 89.1 90.0 91.7 

p-value 0.9987 0.1048 0.6306 0.9239 
m-Nelfilcon A- 
model blink cell 

18.9 20.8 21.6 26.9 

m-Nefilcon A- 
soak 

20.5 18.1 19.6 20.2 

p-value 0.9987 0.9682 0.9939 0.3479 
 

 The CAs measured by either technique were not statistically different at any time point 

for omafilcon A and m-nelfilcon A. CAs after narafilcon A was exposed to the lysozyme 

solution for 4 hours and 8 hours were statistically lower than when narafilcon A was soaked in 

lysozyme solution for 4 and 8 hours (p=0.0002). 
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Figure 6-6: Comparing the advancing CAs measured by the sessile drop technique after 

omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the complex tear solution or 

exposed to the complex tear solution solution in the model blink cell for 5 minutes, 1 hour, 

4 hours, and 8 hours. 
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Table 6-3: The advancing contact angles measured by the sessile drop technique after each 

lens material was soaked in the control solution or exposed to the control solution in the 

model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

87.8 92.9 95.2 81.0 

Narafilcon A- 
soak 

97.9 96.1 95.8 92.6 

p-value 0.3936 0.9936 1.0000 0.2642 
Omafilcon A- 
model blink cell 

81.6 86.7 92.2 88.7 

Omafilcon A- 
soak 

95.9 96.8 93.0 92.6 

p-value 0.0348 0.1766 1.0000 0.9143 
m-Nelfilcon A- 
model blink cell 

41.6 38.8 41.2 40.6 

m-Nefilcon A- 
soak 

40.8 15.9 17.8 16.8 

p-value 0.9991 0.0002 0.0002 0.0002 
 

 Figure 6-6 and Table 6-3 compares the advancing CAs measured by the sessile drop 

technique after lenses were soaked or exposed to the complex tear solution. There was no 

statistical difference in CAs at any time point between the two methods for narafilcon A 

(p>0.20). The CAs for omafilcon A after lenses were exposed to the complex tear solution for 5 

minutes in the model blink cell, were statistically lower than the CAs measured after omafilcon 

A was soaked in the complex tear solution for 5 minutes (p=0.0348). The CAs for m-nelfilcon A 

after being soaked in the complex tear solution for 1 hour, 4 hours, and 8 hours were statistically 

lower than the CAs after m-nelfilcon A was exposed to the complex tear solution in the model 

blink cell for 1 hour, 4 hours, and 8 hours (p=0.0002). There was no statistical difference in CAs 
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when m-nelfilcon A was soaked in the complex tear solution compared to being exposed to the 

complex tear solution for 5 minutes (p>1.00). 

 

Figure 6-7: Comparing the advancing CAs measured by the Wilhelmy balance method 

after omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the control solution or 

exposed to the control solution in the model blink cell for 5 minutes, 1 hour, 4 hours, and 8 

hours. 
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Table 6-4: The advancing contact angles measured by the Wilhelmy balance method after 

each lens materials was soaked in the control solution or exposed to the control solution in 

the model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

58.8 55.9 62.2 54.1 

Narafilcon A- 
soak 

57.2 58.2 58.8 57.7 

p-value 0.9994 0.9934 0.9403 0.9266 
Omafilcon A- 
model blink cell 

57.2 52.4 62.0 59.6 

Omafilcon A- 
soak 

55.8 58.7 59.4 57.7 

p-value 0.9964 0.0500 0.8558 0.9690 
m-Nelfilcon A- 
model blink cell 

47.4 50.3 49.5 52.7 

m-Nefilcon A- 
soak 

51.4 49.6 49.4 48.7 

p-value 0.3036 0.9999 1.0000 0.3083 
 

 Figure 6-7 and Table 6-4 compare the advancing CAs measured by the Wilhelmy balance 

method after each lens type is either soaked in the control solution or exposed to the control 

solution in the model blink cell. There was no statistical difference in CAs between methods for 

any of the lens types at any time point (p>0.30). 
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Figure 6-8: Comparing the advancing CAs measured by the Wilhelmy balance method 

after omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the lysozyme solution or 

exposed to the lysozyme solution in the model blink cell for 5 minutes, 1 hour, 4 hours, and 

8 hours. 
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Table 6-5: The advancing contact angles measured by the Wilhelmy balance method after 

each lens material was soaked in the lysozyme or exposed to the lysozyme solution in the 

model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

53.1 55.7 57.6 58.3 

Narafilcon A- 
soak 

57.3 58.9 56.7 58.2 

p-value 0.5437 0.8398 0.9999 1.0000 
Omafilcon A- 
model blink cell 

55.1 51.6 50.1 53.1 

Omafilcon A- 
soak 

58.9 59.0 57.2 59.4 

p-value 0.7624 0.0809 0.0995 0.1885 
m-Nelfilcon A- 
model blink cell 

46.5 53.6 45.4 47.8 

m-Nefilcon A- 
soak 

52.1 52.1 51.6 52.2 

p-value 0.1249 0.9930 0.0643 0.3560 
 

 Figure 6-8 and Table 6-5 compare the advancing CAs when each lens type is either 

soaked in the lysozyme solution or exposed to the lysozyme solution in the model blink cell. 

There was no statistical difference in CAs between methods for any of the lens types at any time 

point (p>0.06). 
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Figure 6-9: Comparing the advancing CAs measured by the Wilhelmy balance method 

after omafilcon A, narafilcon A, and m-nelfilcon A were soaked in the complex tear 

solution or exposed to the complex solution in the model blink cell for 5 minutes, 1 hour, 4 

hours, and 8 hours. 
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Table 6-6: The advancing contact angles measured by the Wilhelmy balance method after 

each lens material was soaked in the complex tear solution or exposed to the complex tear 

solution in the model blink cell 

 Contact Angles at each Time Point (degrees) 
Lens - Method 5mins 1hr 4hr 8hr 
Narafilcon A-
model blink cell 

58.4 50.1 50.0 55.2 

Narafilcon A- 
soak 

59.8 58.5 56.2 56.1 

p-value 0.9753 0.0002 0.0041 0.9986 
Omafilcon A- 
model blink cell 

53.4 51.6 51.1 55.4 

Omafilcon A- 
soak 

59.0 57.1 58.8 60.9 

p-value 0.4177 0.4370 0.0982 0.4605 
m-Nelfilcon A- 
model blink cell 

55.1 52.8 48.7 44.5 

m-Nefilcon A- 
soak 

52.9 52.3 53.4 52.1 

p-value 0.8223 0.9999 0.0597 0.0005 
 

 Figure 6-9 and Table 6-6 compare the advancing CAs between methods when each lens 

type is either soaked in the complex tear solution or exposed to the complex tear solution in the 

model blink cell. There was no statistical difference in CAs between methods for the omafilcon 

A lens material at any time point (p>0.10). Advancing CAs after narafilcon A was soaked in the 

complex tear solution for 1 hour and 4 hours were statistically higher than the CAs after 

narafilcon A was exposed to the complex tear solution for 1 hour and 4 hours (p<0.005). The 

CAs after m-nelfilcon A was soaked in the complex tear solution for 8 hours were statistically 

higher than the CAs after the lens materials was exposed to the complex tear solution in the 

model blink cell for 8 hours (p=0.0005). 
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 Comparing receding CAs between methods, there was no statistical difference in 

receding CAs for narafilcon A and m-nelfilcon A at any time point after lenses were soaked or 

exposed the control solution (p>0.05). The receding CAs for omafilcon A were statistically 

higher at all time points after being soaked in the control solution (p<0.05). There was no 

statistical difference in receding CAs for narafilcon A and m-nelfilcon A at any time point after 

lenses were soaked or exposed to the lysozyme solution (p>0.05). The receding CAs for 

omafilcon A were statistically higher at all time points after being soaked in the lysozyme 

solution (p<0.01). Again, there was no statistical difference between CAs for narafilcon A and 

m-nelfilcon A after the lenses were soaked or exposed to the complex tear solution for 5 minutes, 

1 hour, 4 hours, and 8 hours (p>0.05). The receding CAs after omafilcon A was soaked for 5 

minutes, 1 hour, 4 hours, and 8 hours, were statistically higher than the CAs after omafilcon A 

was exposed to the complex tear solution in the model blink cell for the same time points 

(p<0.05). 

6.5 Discussion and Conclusion 

Contact lens wear typically has a negative effect on the stability and integrity of the tear 

film, by affecting the remoistening of the cornea by the tear film, and altering pre and post lens 

tear exchange.5 Consequently these alterations to the tear film impact the performance 

characteristics of the contact lenses, resulting in reduced comfort, reduced visual acuity, and 

inflammation, all of which may be linked to deposition of tear components on the surface of the 

lens material.68, 157, 158  

As mentioned previously, the majority of in vitro studies looking at the deposition of tear 

components on the lens surface, dope the lenses in different tear solutions. These studies have 
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shown differences in deposition over time, however none of them have taken into account the 

drying and rehydrating effect of the tear film on the surface of the lens material that occurs in 

vivo. In this study, the lenses were placed in a system (model blink cell) in which the lens 

materials were exposed to different tear solutions and then quickly exposed to the air, much like 

what happens in-eye.  

The CAs after omafilcon A was exposed to the control solution were slightly higher 

compared to the CAs after omafilcon A was exposed to the other two tear solutions (Figure 

6-1a). The wettability increased slightly, exhibited by lower CAs, after omafilcon A was exposed 

to the lysozyme and complex tear solutions with CAs being the lowest with exposure to the 

lysozyme solution. Similar results for omafilcon A were found when measuring the advancing 

CAs using the Wilhelmy balance method (Figure 6-2a). These CAs were statistically lower than 

the CAs measured using the sessile drop technique which as discussed previously, was probably 

due to the differences in lens preparation between techniques before CA analysis. However, 

despite the differences in CAs by the two methods, there again was little impact of tear 

components on the wettability of the lens material at all time points. Similarly, with CA analysis 

by the sessile drop technique, CAs measured by the Wilhelmy balance method after omafilcon A 

was exposed to the control solution were higher compared to the CAs after omafilcon A was 

exposed to the lysozyme and complex tear solutions. Again, CAs were the lowest after omafilcon 

A was exposed to the lysozyme solution.  

The lower CAs measured by both methods after exposure to the lysozyme solution could 

be attributed to a small amount of lysozyme depositing onto the lens surface. Omafilcon A is a 

non-ionic lens material (FDA group II) thus the little attraction of lysozyme to the lens surface 

would not be due to a charge attraction. Lysozyme has outer hydrophilic moieties which would 
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be attracted to the hydrophilic HEMA polymers, which would be exposed at the lens surface 

when the lens was submerged into the solution, allowing the lysozyme to bind. This relatively 

small amount of lysozyme deposited on the lens surface is supported by results from other 

experiments looking at the deposition of proteins onto the surface of omafilcon A and other FDA 

group II lenses.73, 76 Looking at the receding CAs measured by the Wilhelmy balance method 

there was no statistical difference between CAs after omafilcon A was exposed to any of the 

three solutions (Figure 6-3a).  

The advancing CAs measured by the sessile drop technique for m-nelfilcon A were 

relatively lower than the advancing CAs for the other two lens materials (Figure 6-1b), which 

was similar to the results found in Chapter 4. The CAs after m-nelfilcon A was exposed to the 

lysozyme solution were significantly lower than the CAs after m-nelfilcon A was exposed to the 

control and complex tear solution, suggesting that lysozyme deposition onto the lens surface was 

maximal with the lysozyme only solution. The CAs after m-nelfilcon A was exposed to the 

complex tear solution were slightly lower than the CAs after m-nelfilcon A was exposed to the 

control solution, and slightly higher than CAs after exposure to the lysozyme solution. This 

result may have been due to competitive binding of the components in the complex tear solution 

to the lens surface, which would have limited the deposition of lysozyme on the material. 

Similarly to omafilcon A, the advancing CAs measured by the Wilhelmy balance method after 

m-nelfilcon A was exposed to all the solutions were not statistically differently from each other. 

The CAs after m-nelfilcon A were exposed to the lysozyme solution were slightly lower than the 

CAs after m-nelfilcon A was exposed to the other two solutions, once again probably due to 

deposition of lysozyme on the surface of the lens material. There was little effect of tear 

components on the receding angles of m-nelfilcon A. As mentioned in Chapter 4, m-nelfilcon A 
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is composed of PVA. A study by Wang et al159 investigated the interaction of PVA and lysozyme 

and found that PVA and lysozyme form a complex which did not alter the activity of lysozyme. 

This complex could also form with lysozyme and the PVA in the lens material, accounting for 

the significant increase in wettability of m-nelfilcon A after exposure to the lysozyme solution.  

The advancing CAs for narafilcon A measured by the sessile drop technique after the 

lenses were exposed to the control solution were higher than the CAs after narafilcon A was 

exposed to the lysozyme and complex tear solutions (Figure 6-1c). The CAs after narafilcon A 

was exposed to the lysozyme solution for 4 hours and 8 hours were significantly lower than the 

other CAs for narafilcon A. Again, this increase in wettability was probably due to lysozyme 

depositing onto the lens surface. The CAs after narafilcon A was exposed to the complex tear 

solution for 4 hours and 8 hours were lower than the CAs after exposure to the control solution 

but higher than the CAs after exposure to the lysozyme solution. The slight decrease in CAs is 

due to the deposition of proteins on the lens surface but not as low as the CAs after exposure to 

the lysozyme solution, due to the competitive binding of components in the complex tear 

solution. There was no statistical difference in advancing CAs (Figure 6-2c) or receding CAs 

(Figure 6-3c) measured by the Wilhelmy balance method after narafilcon A was exposed to the 

three solutions.  

Other in vitro deposition studies have reported significantly lower amounts of protein 

deposition on silicone hydrogel lens materials compared to deposition onto conventional 

hydrogel materials.61, 76, 160 Evaluating the results of CA analysis by the sessile drop technique 

(Figure 6-1), there appeared to more lysozyme deposition on the narafilcon A lens material 

compared to the omafilcon A lens material, which is interesting considering that results from 

deposition studies indicate that omafilcon A accumulates more protein on the lens surface 
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compared to deposition on materials similar to narafilcon A, galyfilcon A and senofilcon A.76, 160 

A study investigating the location of protein accumulation in the lens material indicated that tear 

components tend to accumulate in the bulk of omafilcon A rather than accumulate at the surface. 

This could account for the little change in surface wettability of omafilcon A.160 This study also 

demonstrated that the little amount of protein that deposited on galyfilcon A and senofilcon A 

accumulated at the surface of the lens materials.160 If deposition is similar for narafilcon A, then 

accumulation of proteins at the lens surface could account for the observed change in wettability. 

The change in wettability of narafilcon A could also be explained by the drying-hydrating effect 

of the model blink cell. Lysozyme has been reported to be primarily denatured onto the surface 

of silicone hydrogel lens materials.76, 79, 154, 161 During the drying of the lens surface in the model 

blink cell, lysozyme may denature and fix onto the surface of the narafilcon A lens, which would 

form a substrate for protein build-up, subsequently causing the observed change of surface 

wettability. However, when proteins denature, typically the interior hydrophobic moieties 

become exposed, which theoretically should lead to a decrease in wettability or higher CAs. 

Thus, the denaturing of proteins on the surface of narafilcon A leading to improved wettability 

appears unlikely.  

Interesting to note, there was very little difference in advancing CAs measured by the 

Wilhelmy balance method for any of the lens types after exposure to the tear solutions. All the 

lens materials were still hydrated before CA analysis which may be a reason for the little 

differences in CA analysis between lens materials. As seen in Chapter 4, there appears to be little 

impact of the surface characteristics of lenses on the force required to move the lens material in 

and out of probe fluid, and consequently little impact on the surface CA. This trend appears to be 

consistent when looking at the impact of tear components on the wettability of the lens materials 
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evaluated by the Wilhelmy balance method. The amount of time the lenses were exposed to the 

tear components may have been too short to allow enough accumulation of tear components onto 

the lens surfaces to be detectable by the Wilhelmy balance method. In the study by Subbaraman 

et al,76 after 12 hours of doping lenses in a lysozyme solution, there was approximately 11µg of 

lysozyme deposited onto or into omafilcon A lens material and less than 2µg of lysozyme 

deposited onto galyfilcon A and senofilcon A. Dramatic increases in deposited lysozyme on the 

lens materials was not seen until doping for approximately 7 days. If lenses were exposed to the 

tear solutions in the model blink cell for longer periods of time, accumulation of tear components 

on the lens surface may be detectable by a change in wettability measured by the Wilhelmy 

balance method. 

As mentioned in Chapter 4, the low advancing CAs, low hysteresis, and added wetting 

agents to the blister solution of the m-nelfilcon A lens material theoretically should enhance the 

comfort of the lens material compared to narafilcon A and omafilcon A lens materials. However, 

m-nelfilcon A appears to have more deposited protein on the surface compared to narafilcon A 

and omafilcon A. Studies have reported that deposition can lead to decreased visual acuity, 

decreased comfort, and inflammation in-eye,68, 162, 163 however all of these studies observed these 

adverse reactions after at least 1 month of lens wear. A study by Donshik and Porazinski71 

looked at the incidence of giant papillary conjunctivitis (GPC) due to contact lens wear. 

Participants wore lenses on a daily to 4 week replacement schedule. Results showed that the 

incidence of GPC was 36% in patients who wore their lenses for 4 weeks and <4.5% in patients 

who wore their lenses for less than 4 weeks.71 Based on the results of these studies, it would be 

unlikely that the deposition of tear components onto the surface of the m-nelfilcon A would 

cause adverse reactions in-eye, as it is worn as a daily disposable lens.   
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Comparing results of this chapter to those in Chapter 5, there were some differences in 

CAs between the soaking and model blink cell methods. There were no differences in CAs 

measured by the sessile drop technique between the two experimental methods using the control 

solution for omafilcon A, narafilcon A, and m-nelfilcon A. The CAs for omafilcon A and m-

nelfilcon A after exposure or soaking in the lysozyme solution were not statistically different. 

The CAs for narafilcon A after exposure to the lysozyme solution in the model blink cell for 4 

hours and 8 hours were lower than the CAs when narafilcon was soaked in lysozyme solution for 

4 hours and 8 hours. As mentioned previously, the lower CAs after being placed in the model 

blink cell may be due to the hydrating-drying effect in the model blink cell causing a layer of 

lysozyme to deposit on the lens surface. The CAs after narafilcon A was soaked in the lysozyme 

solution exhibited little to no deposition on the surface of the lens material which is further 

supported by other in vitro studies looking at deposition on silicone hydrogel lenses.61, 76, 79 

There was little impact of tear components on the surface wettability measured by the 

sessile drop technique, of narafilcon A and omafilcon A after the two lens materials were either 

soaked in the complex tear solution or exposed to the complex tear solution in the model blink 

cell. The CAs assessed by the sessile drop technique after m-nelfilcon A lenses were soaked in 

the complex tear solution was significantly lower at 1hour, 4 hour, and 8 hour time points, than 

the CAs after m-nelfilcon A was exposed to the complex tear solution in the model blink cell. 

Soaking of the lens in the solution allows a longer exposure time of the lens material to the tear 

components leading to enhanced deposition leading to the increased wettability. 

There was no difference in receding CAs for m-nelfilcon A and narafilcon A between the 

two experimental methods. Receding CAs for omafilcon A were significantly higher when the 

lenses were soaked in any of the three solutions over all time points. This indicates that 
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hysteresis is decreased after omafilcon A was soaked in each solution.  When omafilcon A was 

soaked in the two tear solutions, more protein may have accumulated in the lens material 

compared to the amount that may have accumulated after the lens was placed in the model blink 

cell. The more proteins accumulated after soaking, could have possibly prevented the rapid 

polymer rotation at the lens surface, thus reducing the amount of hysteresis. Similarly when 

omafilcon A was soaked in the control solution, disinfecting agents may have deposited on the 

lens surface, again prevented rapid polymer rotation and reducing the hysteresis of omafilcon A. 

However, there is no experimental evidence supporting these explanations and thus more 

research would need to be conducted exploring the reasoning behind the difference in hysteresis 

for omafilcon A after being soaked in solution compared to exposure to the solution in the model 

blink cell.  

Overall, tear components may alter the surface wettability of contact lenses depending on 

the lens material, time of exposure to the tear solutions, and method used to evaluate the lens 

wettability. In this study, deposition of tear components, particularly lysozyme, was higher on 

the m-nelfilcon A material, as exhibited by the enhanced wettability after exposure to the 

lysozyme and complex tear solutions. The differences from this experiment using the model 

blink cell and the experiment in Chapter 5 indicate that a drying-hydrating mechanism can alter 

the deposition of tear components on the lens surface. Thus, the model blink cell may be a useful 

tool in future in vitro deposition studies. 
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7. Summary and Future Work 

7.1 Overall Summary and Conclusions 

This thesis has provided some answers to questions regarding factors that can influence 

wettability analysis of contact lenses in vitro. It also validated another method that could be used 

to investigate the effect of deposition of tear components on the surface wettability of contact 

lenses. Chapter 2 first demonstrated that blot-drying contact lenses on different drying materials 

for a range of time points can cause variation in advancing CAs measured by the sessile drop 

technique. Results demonstrated that lenses that were blot dried for approximately 20 seconds on 

lens paper showed the least variation in CAs measured by the sessile drop technique. This drying 

method was used for the remainder of the CA analyses by the sessile drop technique in this 

thesis. Chapter 2 also demonstrated that different methods of measuring contact lens wettability 

in vitro can produce different CAs. There were statistical differences in the CAs measured using 

the sessile drop technique and the Wilhelmy balance method. These results emphasize that the 

method used to measure the wettability of contact lenses in vitro should always be stated. The 

second part of Chapter 2 also demonstrated that the advancing CAs of contact lenses can be 

influenced by components in the blister pack solution, more specifically, components in the 

blister solution can enhance the wettability of contact lenses. 

Chapter 3 looked at the physical properties of blister pack solution of silicone hydrogel 

lenses. The blister solutions that had added surfactants and wetting agents exhibited lower ST’s 

and higher viscosities compared the other blister solutions. These differences should theoretically 
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improve the wettability of the contact lenses by improving the spreading and retention time of 

the tear film on the surface of the lens. 

Chapter 4 looked at the wettability and physical properties of DD contact lenses.The 

effect of the blister solution on DD lenses is likely more important than it is for SH materials, as 

it is the primary component that will affect the comfort and stability of the tear film on initial 

insertion. Much like in Chapter 3, the blister solution with the added surfactants and wetting 

agents had a lower ST and higher viscosity, which should improve the initial wettability and 

subsequently initial comfort of the lens in-eye. The wettability of the DD lenses varied between 

lens materials. The lens material with the physically altered blister pack solution had the highest 

wettability among the lens materials tested. 

Chapters 5 and 6 looked at the deposition of tear components and the impact of 

deposition on the wettability of three of the DD lens materials investigated in Chapter 4. The lens 

materials were all soaked in a control, lysozyme, and complex tear solutions and the wettability 

of the lens materials measured after 4 different time points. The m-nelfilcon A lens materials was 

the only material that apparently deposited proteins on the lens surface, as shown by the lower 

CAs after the lens material was soaked in the lysozyme and complex tear solutions. A similar 

experiment was conducted in Chapter 6, except lenses were not soaked in the tear solutions but 

rather exposed to the tear solutions in a model blink cell to see if there was any difference in 

deposition of tear components from the drying-hydrating environment in the model blink cell. 

There were differences in deposition of the proteins on the lens surfaces after being placed in the 

model blink cell compared to being soaked in the tear solutions. This result demonstrated that 

drying of tear solutions on the lens surface does impact the deposition of tear components on the 

lens surface.  
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General conclusions from this thesis can be summarized in the following points: 

• Preparation of the lens material prior to CA analysis particularly by the sessile drop 

technique can lead to variation in results, thus the same procedure should be 

undertaken before CA measurement. 

• Different methods of measuring the wettability of contact lenses in vitro produce 

different results, thus the method used for CA analysis should always be stated. 

• Blister solutions can alter the wettability of contact lenses. 

• Adding surfactants and wetting agents to the blister solutions could alter the physical 

properties of the blister solutions, which can also alter the comfort of the lens in-eye. 

• Deposition of tear components on the lens surface can alter the wettability of contact 

lenses. 

• The model blink cell may be a useful tool to use for deposition studies, as there are 

differences in protein deposition on the lens surface in a hydrating-drying 

environment compared to just soaking the lenses in the solutions. 

7.2 Future Work 

As determined in this thesis, the model blink cell can be used for future deposition 

experiments. However, some improvements to the model blink cell needs to be conducted. The 

model blink cell is not a sterile system in that it opens to the outside air and contaminates the 

solution inside the model blink cell. Thus solutions that were sterile prior to being placed in the 

model blink cell were contaminated during use in the model blink cell. As well, the humidity 

inside the model blink cell varied which could potentially affect the resulting CAs and deposition 

of the tear components. However the study in this thesis which used the model blink cell, 
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humidity inside the model blink cell varied between 11% and 71% and had no impact on the 

resulting CAs. However, before use of the model blink cell for further use, the model blink cell 

should be remade to be a sterile system with controlled humidity in the system. 

It would be interesting to measure the wettability of lenses after they have been exposed 

to tear components in the model cell for longer periods of time than 8 hours. The etafilcon A lens 

material has been shown to accumulate large amounts of deposited protein on the lens surface in 

small amounts of time and it would be interesting to see if similar amounts of protein deposit on 

the lens surface after being placed in the model blink cell for varying time points 

The experiment in Chapter 6 only investigated the effect deposition had on the wettability 

of the lens materials. It would be interesting to actually quantify the amount of protein that 

accumulated on the lens material after lenses were placed in the model blink cell and even 

determine the activity of the protein accumulated on the lens surface. Another interesting 

experiment would be to place different lens materials in the model blink cell for varying time 

points, and then investigate where in the lens material the tear components accumulated (ie. at 

the lens surface of in the bulk of the lens material). This could be done by using confocal 

microscopy which has been used previously for investigation of deposition of tear components in 

lens materials.160, 164  

It would be interesting to compare the results of the experiments in Chapters 5 & 6 to 

results from an ex vivo study in which participants wore the m-nelfilcon A, omafilcon A, and 

narafilcon A and the wettability assessed after 5 minutes, 1 hour, 4 hours, and 8 hours of wear 

time. This could be taken even further and an in vivo experiment could be conducted in which 

again, participants wear m-nelfilcon A, omafilcon A, and narafilcon A lenses and wettability 

assessed in vivo. A method would need to be developed in which CAs would be assessed on the 
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lens surface in-eye. Currently there are techniques that have been developed to assess CAs of 

contact lenses in vivo, however these techniques are manual or use solutions with a higher 

viscosity to measure the CA (techniques not yet published). Using a solution with a different 

viscosity than that already used for in vitro studies negates the capacity of being able to compare 

the CA results in vivo with those already measured in vitro. Thus, a method measuring CAs in 

vivo in which is automated and uses HPLC water to drop on the lens surface would need to be 

developed. 
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