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Abstract 

The disturbances and abnormalities occurring in the components of the Acetylcholine (ACh) 

neurocycle are considered one of the main features of cholinergic sicknesses like Parkinson’s and 

Alzheimer’s diseases. A fundamental understanding of the ACh neurocycle is therefore very critical 

in order to design drugs that keep the ACh concentrations in the normal physiological range. 

In this dissertation, a novel two-enzyme-two-compartment model is proposed in order to explore the 

bifurcation, dynamics, and chaotic characteristics of the ACh neurocycle. The model takes into 

consideration the physiological events of the choline uptake into the presynaptic neuron and the ACh 

release in the postsynaptic neuron. In order to approach more realistic behavior, two complete kinetic 

mechanisms for enzymatic processes pH-dependent are built: the first mechanism is for the hydrolysis 

reaction catalyzed by the acetylcholinesterase (AChE) and the other is for the synthesis reaction 

catalyzed by the cholineacetyltransferase (ChAT). The effects of hydrogen ion feed concentrations, 

AChE activity, ChAT activity, feed ACh concentrations, feed choline concentrations, and  feed 

acetate concentrations as bifurcation parameters, on the system performance are studied. It was found 

that hydrogen ions play an important role, where they create potential differences through the plasma 

membranes.  The concentrations of ACh, choline and acetate in compartments 1 and 2 are affected by 

the activity of AChE through a certain range of their concentrations, where the activity of AChE is 

inhibited completely after reaching certain values. A detailed bifurcation analysis over a wide range 

of parameters is carried out in order to uncover some important features of the system, such as 

hysteresis, multiplicity, Hopf bifurcation, period doubling, chaotic characteristics, and other complex 

dynamics.  

The effects of the feed choline concentrations and the feed acetate concentrations as bifurcation 

parameters are studied in this dissertation. It is found that the feed choline concentrations play an 

important role and have a direct effect on the ACh neurocycle through a certain important range of 

the parameters. However, the feed acetate concentrations have less effect.  It is concluded from the 

results that the feed choline is a more important factor than the feed acetate in ACh processes.  

The effects of ChAT activity and the choline recycle ratio as bifurcation parameters, on the system 

performance are investigated. It was found that as the ChAT activity increases, ACh concentrations in 

compartments 1 and 2 increase continuously. The effect of the choline recycle ratio shows that 

choline reuptake plays a very critical role in the synthesis of ACh in compartment 1, where it supplies 

the choline as a substrate for the synthesis reaction by ChAT.  The concentrations of ACh, choline 

and acetate in compartments 1 and 2 are affected by the choline recycle ratio through a certain range 
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of the choline recycle ratio; then, they become constant as the choline recycle ratio increases further.  

It is concluded from our results that choline uptake is the rate limiting step in the ACh processes in 

both compartments in comparison to ChAT activity. Based on partial dissociation of the acetic acid in 

compartments 1, and 2 of the ACh cholinergic system, the two-parameter continuation technique has 

been applied to investigate the pH range to be closer to physiological ranges of pH values. In 

addition, static/dynamic solutions of the ACh cholinergic neurocycle system based on feed choline 

concentration as the main bifurcation parameter in both compartments have been investigated.  

The findings of the above studies are related to the real phenomena occurring in the neurons, like 

periodic stimulation of neural cells and non-regular functioning of ACh receptors. It was found that 

ACh, choline, acetate, and pH exist inside the physiological range associated with taking into 

consideration the partial dissociation of the acetic acid. The disturbances and irregularities (chaotic 

attractors) occurring in the ACh cholinergic system may be good indications of cholinergic diseases 

such as Alzheimer’s and Parkinson’s diseases.  The results have been compared to the results of 

physiological experiments and other published models. As there is strong evidence that cholinergic 

brain diseases like Alzheimer’s disease and Parkinson’s disease are related to the concentration of 

ACh, the present findings are useful for uncovering some of the characteristics of these diseases and 

encouraging more physiological research. 
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Chapter 1 

Introduction 

1.1 Background 

Acetylcholine (ACh) is the first neurotransmitter that was mentioned as early as 1921 (Loewi 

1921). It plays a central role in fundamental processes such as learning, memory, sleep (Bartus & 

Beer 1982, Aigner & Mishkin 1986) and muscle contraction in mammals [Combes et al.(2003), Jones 

et al., (2002)]. Understanding of the mechanisms for ACh regulation would provide some 

fundamental knowledge on the regulatory characteristics of the transmitter in the molecular processes 

of the chemical transmission. The regulatory mechanisms are obviously based on regulation of the 

enzymatic reactions for synthesis and degradation of transmitters. 

The electrochemical transmission of nervous signals is usually accompanied by the metabolic 

regulation of neurotransmitters at the synapse (Berl et al., 1975; Zimmermann, 1988). In order to keep 

the transmission activity, the biosynthesis of the ACh in the nerve endings and its removal from the 

synaptic cleft by hydrolysis, uptake and diffusion processes should be regulated in parallel with the 

release and processing. In order to supply enough and balanced products of metabolic pathways to 

resist different disturbances in the cellular metabolism, feedback control mechanisms is generally 

functioned (Stadtman 1970), and these control mechanisms operate basically for intimate regulations 

of the metabolites fluxes (Kacser and Burns 1973). 

Neurotransmitters generally are exposed to important disturbances due to their release and 

uptake of end products. Therefore, the feedback control mechanism is essentially for adjusting the 

metabolic systems. Since the electrochemical transmission of the ACh is known as a dynamic 

phenomenon and the involved fluxes of metabolites can be recognized as well, the feedback control 

mechanisms and the controlling roles of the fluxes in the mechanisms can be explained clearly based 

on the dynamic analysis of the responses of the metabolic systems to the transmitter release. 

The ACh neurocycle system consists of two compartments separated by a permeable 

membrane. The presynaptic neuron ending is the first compartment in which the biosynthesis reaction 

of ACh occurs catalyzed by the enzyme of cholineacetyltransferase (ChAT) by the acetyl-CoA and 

choline substrates. In the synaptic cleft as the other compartment, the ACh molecules are released 

from the first compartment to interact with the ACh receptor causing the signal transmission and a 

fast hydrolysis reaction into choline and acetate occurs and is catalyzed by the enzyme of 
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acetylcholinesterase (AChE). Each compartment is open with relevant influxes and effluxes.  The 

reaction products are reused in other metabolic reactions where CoA is utilized for production of 

Acetyl-CoA and choline is reuptaken from the synaptic cleft to the presynaptic neuron for resynthesis 

of ACh. The synthesis reaction occurs according to the following equation: 

 

 

Since the behavior of neurotransmitter mechanisms represents a great challenge for understanding 

cholinergic diseases such as Parkinson’s and Alzheimer’s diseases, it is very important to understand 

the cholinergic system behavior. In this dissertation, mathematical tools such as bifurcation analysis, 

well established nonlinear dynamics, and computer simulation are applied for modeling and 

prediction of complex behavior of the ACh neurocycle behavior.   

The method of bifurcation analysis and computer simulation are now established as an 

effective procedure for dynamic analysis and have been applied to obtain much knowledge of the 

dynamic behavior of metabolic pathways [Garfinkel (1975); Hayashi and Sakamoto (1986)]. Based 

on the regulating kinetic mechanisms of the enzymatic reactions, mathematical models can be 

established, and then the entire time course under different initial conditions and system environments 

and various flow rates of metabolites can be employed in terms of the change of system parameters 

by numerically integrating the rate equations [Sakamoto (1986) and Santos et al., (2006]]. 

Bifurcation theory is a mathematical discipline that deals with nonlinear phenomena. It 

investigates the stability and dynamics in non-linear systems. In bifurcation investigation a branch of 

solutions can be obtained by varying one parameter of the system and then the stability of the solution 

changes can be obtained. In the ACh cholinergic systems, numerical bifurcation analysis is well 

established with several software packages available like MATCONT [Dhooge et al., (2003)] and 

AUTO [Doedel et al., (2002)]. 

According to Chaos theory, chaos can be defined as the disorder of a system where it opposes 

relevant rules; this definition is consistent with the concept of instability of dynamical systems 

Acetyl-CoA Choline 

ACh 

ChAT 
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discovered primarily by the French physicist: Henri Poincare in the early 20th century. Chaos theory 

points to an apparent unpredictability. Edward Lorenz found that chaotic systems are very sensitive 

conditions and could perform the first experiment related to chaotic systems at 1960 [Abarbanet et al., 

(1996)]. Chaos theory started with some of ideas related to irregularities in the universe such as 

arrhythmic beats of a human heart and fluid turbulence, then it has developed with wide ideas and can 

be described by the term complexity as shown by Gleick  [Abarbanet et al., (1996); Sprott et al., 

(1993)]. 

 

1.2 Scope and objectives  

This dissertation is concerned with the dynamic behavior and the regulatory mechanism in 

ACh neurocycle system and the functioning of chemical transmission. Some dynamic aspects and 

kinetic regulatory mechanisms in the ACh neurocycle at the synapse are studied. In this dissertation a 

mathematical model is constructed to represent the fundamental processes in chemical transmission 

and dynamic analysis bifurcation and computer simulation are performed to reveal the dynamic 

aspects of regulation of ACh level in the presynaptic and postsynaptic terminals for signal 

transmission and the regulatory function of ChAT and AChE enzymes. 

The dynamic behavior of this ACh neurocycle system during nervous signal transmission is 

first examined for release of various amounts of ACh under the condition of constant influx rates of 

the substrates. A feedback mechanism for flux control is thus applied as a regulatory control action 

for adjusting ACh synthesis and hydrolysis and dynamic analysis is performed to explain 

characteristics of the ACh regulations mechanisms. The scope of the dissertation will cover the 

following stages: 

  The first stage is building two complete kinetic mechanisms for enzymatic processes hydrogen 

proton (which is relevant to pH) dependent and substrates dependent: The first mechanism is 

for synthesis of ACh in the presynaptic terminal from choline and acetyl Co-A catalyzed by 

the enzyme ChAT and the other is for hydrolysis of ACh in the postsynaptic cleft into choline 

and acetate by the enzyme AChE. These mechanisms are based on understanding the nature 

of interactions between both compartments and lead to deriving reasonable rate equations and 

describe synthesis and hydrolysis reactions accurately. In general, in this dissertation, the 

synthesis and hydrolysis of ACh are analyzed on the level of single vesicles, rather than at 

that of the whole nervous system. 
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  The second stage is building the dynamic process models where a complete neurocycle of the 

ACh is simulated as a simplified feedback two enzyme/two-compartment system. Each 

compartment is described as a constant flow, constant volume, isothermal, continuous stirred 

tank reactor (CSTR), and constant choline recycle ratio. The presynaptic and postsynaptic 

cells are represented by these two compartments separated by a permeable membrane 

assuming that all the events are homogeneous in all vesicles, and using the proper 

dimensionless state variables and parameters. Using dynamic mole balances for the chemical 

species involved in the enzymatic neurocycle of the neurotransmitter we obtain a set of 

differential equations to describe the system. Nonlinearity of this set of highly non-linear 

balance equations gives us preliminary insight into the bifurcation and chaotic behavior of 

this complex biological system. At high product concentration product inhibition is not 

considered because of the assumption of being compartments 1 and 2 as a CSTR, so each 

product will transport through both compartments [Athel et al., (2001)].   

 The third stage is studying bifurcation behavior using the feed parameters, enzyme activities 

and choline recycle ratio as bifurcation parameters and dynamics simulations are carried out 

for different parameter values. Therefore, many dynamic characteristics are obtained by 

studying the Poincare map and monitoring the periodic and chaotic behaviors. 

  The fourth stage is to use the two-parameter continuation technique based on partial 

dissociation of acetic acid in addition to a well established kinetic scheme and appropriate  

kinetic data to investigate the effect of pH transients on the dynamic and static solutions of 

the ACh cholinergic neurocycle system based on feed choline concentration as the main 

bifurcation parameter.  

 

The main objectives of this dissertation are as follows: 

1) Obtaining reasonable kinetic rate equations by building two complete kinetic mechanisms for 

enzymatic processes pH-dependent for ACh: The first is for the ACh synthesis in the 

presynaptic terminal from choline and acetyl Co-A by the enzyme ChAT and the other is for 

the hydrolysis of ACh in the postsynaptic cleft into choline and acetate by the enzyme AChE. 

2) Describing the metabolic processes of the ACh neurocycle by building the dynamic process 

models considering the physiological phenomena such as the choline uptake from the 

synaptic cleft to the presynaptic neuron where a complete neurocycle of the ACh as a 

neurotransmitter is simulated as a simplified feedback two enzyme/two-compartment system. 
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3)  Investigating the bifurcation behavior using the feed parameters such as feed ACh, feed 

choline, feed acetyl Co-A and feed hydrogen ions in addition to ChAT activity and AChE 

activity enzymes and choline recycle ratio as bifurcation parameters and performing 

dynamics simulations at different parameter values and obtaining dynamic characteristics by 

studying the Poincare maps and monitoring the periodic and chaotic behaviors and studying 

the interaction between these findings and Alzheimer’s and Parkinson’s diseases. 

4) Studying the dynamical behavior and investigating the parameters and initial conditions 

values which achieve point, periodic and chaotic attractors in addition to estimating the routes 

to fully developed chaos. 

5)  Investigating the rate limiting step and estimating the most important factors in the ACh 

processes from the parametric study. 

6) Investigating the effect of partial dissociation of acetic acid using a well established kinetic 

scheme and kinetic data on the dynamic and static solutions of the ACh cholinergic 

neurocycle system based on feed choline concentration as the main bifurcation parameter. 

1.3 Thesis Structure 

The thesis is composed of 7 chapters. The introductory chapter contains a brief background of the 

ACh processes, scope and objectives of the research.  

Chapter 2 presents two kinetic mechanisms: the first is for the synthesis reaction 

catalyzed by ChAT and the other is for the hydrolysis reaction catalyzed by AChE 

through non-linear feedback model. Chapter 2 studies the effect of hydrogen ion feed 

concentrations, AChE activity, and ACh feed concentrations, as bifurcation parameters, 

on the system performance.  Chapter 3 demonstrates how the substrates of feed choline 

concentrations and  feed acetate concentrations, as bifurcation parameters affect on ACh 

neurocycle and which of them is the rate limiting factor. Chapter 3 covers the model 

prediction for the effect of different feed parameters on dynamic behaviors and the 

different attractors in both compartments.  Chapter 4 explains the effect of ChAT activity 

and choline recycle ratio on the performance of ACh neurocycle and it answers with 

Chapter 5 the question what the rate limiting step in ACh processes is and what their 

interaction with Alzheimer’s and Parkinson’s diseases is. In Chapter 5, we investigate the 

application of two parameters continuation method on bifurcation for ACh neurocycle 
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considering partial dissociation of acetic acid based on feed choline concentration as the 

main bifurcation parameter. Chapter 6 presents a description of the kinetic and parameter 

constants used in the thesis. In addition, a sensitive analysis of the most important 

parameters used in theses is undertaken in Chapter 6. Chapter 7 highlights summary, 

conclusions, and contributions of the thesis and suggestions for future work. Chapters 2, 

3, 4 and 5 are arranged in publication format, each with its individual abstract, 

introduction, techniques, results and discussion as well as conclusion.   
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Chapter 2 

Non-Linear Feedback Modeling and Bifurcation of the 

Acetylcholine Neurocycle and its Relation to Alzheimer’s and 

Parkinson’s Diseases 

This chapter is based on the paper published (Mustafa et al., (2009a). In this chapter two-

enzyme-two-compartment model is proposed in order to explore the bifurcation, dynamics, and 

chaotic characteristics of the acetylcholine (ACh) neurocycle. The model takes into consideration the 

physiological events of the choline uptake into the presynaptic neuron and choline release in the 

postsynaptic neuron. The effects of hydrogen ion feed concentrations, acetylcholinesterase (AChE) 

activity, and feed ACh concentrations, as bifurcation parameters, on the system performance are 

studied. It is found that hydrogen ions play an important role, where they create potential differences 

through the plasma membranes.  The concentrations of ACh, choline and acetate were affected to be 

affected by the activity of AChE through a certain range of their concentrations, where the activity of 

AChE was inhibited completely after reaching certain values. A detailed bifurcation analysis over a 

wide range of parameters is carried out in order to uncover some important features of the system, 

such as hysteresis, multiplicity, Hopf bifurcation, period doubling, chaotic characteristics, and other 

complex dynamics. These findings are related to the real phenomena occurring in the neurons, like 

periodic stimulation of neural cells and non-regular functioning of ACh receptors. The results of this 

model are compared to the results of physiological experiments and other published models. As there 

is strong evidence that cholinergic brain diseases like Alzheimer’s disease (AD) and Parkinson’s 

disease are related to the concentration of ACh, the present findings are useful for uncovering some of 

the characteristics of these diseases and encouraging more physiological research.  

Keywords: Bifurcation, Acetylcholinesterase, Cholineacetyltransferase, Acetylcholine, Choline, 

Acetate,   Neurocycle, Hydrogen ions, Parkinson’s disease, Alzheimer’s disease, Dynamic behavior, 

Chaos. 

2.1 Introduction 

Acetylcholine (ACh) serves as the transmitter of nerve impulses at cholinergic synapses. In 

humans and homoeothermic animals, ACh influences synaptic transmission of neuromuscular 

junction from motor nerves to skeletal muscles, from preganglionic parasympathetic and sympathetic 
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fibers to neurons in the autonomic ganglia.  ACh plays a vital role in the memory excitations and such 

vital functions such as learning, thinking, sleep and cognition. It is released from the presynaptic 

neurons in  various concentrations. After ACh is released from the presynaptic neuron, it is received 

by ACh cholinergic receptors (AChr), located in the postsynaptic membrane, to induce chemical and 

electrical signals.  Consequences of events are resulted leading to inhibition and excitation of 

postganglionic cells [Quinn et al., 1995, Tucek 1978]. There are two substrates required for the 

biosynthesis of ACh: choline and acetyl coenzyme A (acetyl-CoA). There are two enzymes: the first 

one is the enzyme choline acetyltransferase (ChAT) which catalyzes the biosynthesis of ACh in the 

presynaptic neurons; the other is the enzyme acetylcholinesterase (AChE) which catalyzes the 

hydrolysis of ACh in the synaptic cleft. 

It is clear that the presynaptic neurons require three substances: ChAT, acetyl-CoA and 

choline. Acetyl-CoA is the only substance which is synthesized directly in the presynaptic terminals. 

ChAT is supplied from the cell bodies of cholinergic neurons by the mechanism of axonal transport 

(Tucek 1978). However, choline is the only product which is synthesized outside of the presynaptic 

neurons. It is supplied from the extracellular fluid and degradation of ACh (Tucek 1978).  

As shown in Figure (2-1), a complete neurocycle of ACh constitutes a coupled two-enzyme 

system with the following two simultaneous events (Guyton and Hall, 2000):  Firstly, in the 

presynaptic neuron, ChAT catalyzes the synthesis reaction from choline and acetyl CoA substrates, 

then ACh is stored in the vesicles which transport through the cytoplasm of the neuron to be fused 

with the presynaptic membranes to give the opportunity for ACh release in the synaptic cleft (Guyton 

and Hall, 2000; Tucek, 1978).  Secondly, as soon as ACh has been received by the postsynaptic 

receptors and finished its excitation job, the hydrolysis reactions catalyzed by the acetyl 

cholinesterase (AChE) to form choline and acetic acid starts (Tucek, 1985). 

Because choline cannot be synthesized inside brain, brain depends on other resources for 

getting choline. There are two sources for choline in the fluid existing in the environment outside 

neurons inside the brain: the first one is the free choline of the blood plasma and the second one is the 

brain cells, where it has been released from choline containing compounds (Tucek 1985). 

Tucek (1978) explained the fraction of free choline in the plasma required for the biosynthesis of 

ACh in the brain. This fraction is estimated based on species where ACh is synthesized. For 

instances, in rats, free choline represents 12%, in rabbits 50 %, and 80 % in mice (Tucek 1978). 

Choline produced in synaptic gaps by the hydrolysis of ACh is re-utilized for the synthesis of ACh in 
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presynaptic nerve endings (Tucek 1978). Therefore, choline recycled plays an important role in the 

synthesis of ACh. 

Because hydrogen protons are released in the enzymatic reactions, the pH is declined. Koch (1986) 

showed that because the density of the negative ion charges in the membrane is low, the pH becomes 

lower. Friboulet et al., 1981 illustrated that once ACh neurotransmitter compounds are thrown in a 

certain concentration inside a side of the synthesized AChE membrane, an electric potential 

difference is appeared. 

Friboulet et al., (1981) showed that a hysteresis and multiplicity behavior of stationary action 

potential is appeared since the enzyme function is influenced by varying substrate concentrations. 

Furthermore, the appeared hysteresis behavior is developed for a certain range of parameters due to  

the hydrogen protons production which will cause itself an auto- catalytic influence in addition to the 

presence of diffusion effects (Shen and Larter, 1994; Friboulet et al., 1981).   

 

Figure 2- 1: Schematic of synaptic neurons and cleft 

   

Elnashaie et al. (1995a), and Ibrahim and Elnashaie (1997) investigated the neurocycle of the 

ACh utilizing a two-compartment model with AChE as the only enzyme. Complex static and dynamic 

behaviors including bifurcation, instability, chaos and hyperchaos have been estimated.   Mahecha- 
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Botero et al. (2004) investigated a complete but simplified neurocycle for the ACh as a 

neurotransmitter in an AChE/ChAT system and found that complex dynamic bifurcations, hysteresis, 

multiplicity, period doubling and period halving, as well as period adding and period subtracting 

dominated the dynamics of the system.   Garhyan et al., (2006) presented a building of a diffusion- 

reaction model utilizing kinetic data to simulate the in vivo behavior of AChE and ChAT of the 

cholinergic ACh system to explore the bifurcation and chaotic behavior of this enzyme system 

simulating the ACh neurocycle in the brain.   

 In this chapter, two kinetic mechanisms are proposed: one is for the synthesis of ACh by the 

enzyme ChAT and the other is for the hydrolysis of ACh by the enzyme AChE. The mathematical 

expressions for both reactions are derived to obtain reasonable rate equations. These models try to 

analyze the synthesis and hydrolysis of ACh at the level of a single vesicle, rather than the whole 

nervous system. Consequently, the problems of ACh turnover such as action potential problems, and 

interaction between ACh and postsynaptic receptors in the brain have not been included in the present 

investigation. Nevertheless many of the dynamic phenomena discovered by Holden and Fan (1992a; 

1992b; 1992c) and Fan and Holden (1993) using the three-dimensional non-phenomenological action 

potential  model are also obtained using the present phenomenological  model.  

  In this chapter we employ novel diffusion-reaction models but improve upon previous 

investigations by Elnashaie and coworkers (Elnashaie et al., 1995, Mahecha- Botero et al., 2004, 

Garhyan et al., 2006). We build novel kinetic mechanisms to get more reasonable and precise kinetic 

synthesis and hydrolysis rate equations by considering realistic kinetic schemes. The model is built 

based on new considerations such as ChAT synthesis and AChE hydrolysis reactions in the first 

compartment and other physiological considerations such as the recycle effects of choline from the 

synaptic cleft to the presynaptic neurons. 

 

2.2  Formulation of the diffusion-reaction two-enzyme /two compartment 

model 

Figure 2.1 shows as simplified manner describing the diffusion- reaction two-enzyme two-

compartment system of the ACh cholinergic neurocycle. Figure 2.2 clarifies the two compartments of 

ChAT/AChE system. The first compartment represents the presynaptic terminal, and the second 

compartment represents the synaptic cleft and the postsynaptic neuron. Every compartment is 

assumed to be a continuous stirred tank reactor (CSTR), isothermal, constant volume, constant flow, 
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and the two compartments are divided by a permeable membrane. The ionization of the acetic acid is 

assumed to be completely in order to simplify the solution of the model.  All events and reactions are 

supposed to be in homogenous systems. All state variables and parameters are described in the 

dimensionless form.  All assumptions can be described in details as follows: 

 

Model Assumptions: 

In this section, we list all assumptions used in the work. All hypotheses and assumptions are clarified 

and the reasoning behind them is justified: 

1) Compartment 1 represents the presynaptic terminal neuron where ACh is synthesized from 

choline and acetyl CoA as substrates and catalyzed by the enzyme ChAT. However, compartment 2 

consists of two main parts:  the postsynaptic neuron and the synaptic cleft where both parts are 

lumped together into one homogeneous compartment representing a unified compartment which is 

compartment 2 instead of 3 or 4 or 5 compartments because both the synaptic cleft and the post-

synaptic neurons are harmonized and interactive. This in addition for the purpose of avoiding the 

expected complexity and difficulty in solving the model and analyzing the results when the 

dimensionality is too high. 

2) The concentrations of substances in compartment 2 represent the average concentrations in both 

the synaptic cleft and the post-synaptic neuron. 

3) Each compartment is assumed to be homogenous; this means we neglect the internal mass 

transfer limitations between the cytoplasm and the synaptic vesicles in compartment 1 and the 

diffusion between ACh and the postsynaptic receptors in compartment 2.  

4)  Both compartments are assumed to be separated by a completely permeable membrane. 

5) No product inhibition in both compartments. However, the synthesis reaction catalyzed by the 

enzyme ChAT in compartment 1 is assumed to be inhibited by the choline substrate as the limiting 

substrate and acetyl CoA. In addition, compartment 2 is assumed to be inhibited by ACh as the 

substrate. 

6) The transport of substances from compartment 1 to compartment 2 is via passive diffusion, 

however, the transport of choline from compartment 2 to compartment 1 is via facilitated diffusion.  

7) Changes in hydrogen proton concentrations in compartments 1 and 2 causing an autocatalytic 

effect between compartments 1 and 2 and is represented with a concentration gradient as the driving 

force for the transport from compartment 1 to compartment 2. The effects of potential differences 

occurred because of the unequal distribution of salts such as Na, K and Cl are ignored. 



 

  12

8) The system is isothermal, thus no effect with variation of temperature. 

9) The dissociation of acetic acid is ignored in chapters 3, 4, and 5, and is taken into consideration at 

equilibrium as shown in chapter 5. 

10) Both volumes of compartment 1 and 2 are assumed to be constant and equal V1 and V2 

respectively.  

11) Because compartment 1 includes the size of the presynaptic terminal and compartment 2 

represents both the synaptic cleft and the surface of the postsynaptic neurons. Thus, compartment 1 is 

assumed to be larger than compartment 2 with the ratio VR=V1/V2. 

12) The recycle ratio is taken from Tucek et al (1990, 1985 and 1978); where choline produced from 

the hydrolysis of ACh in compartment 2 supplies choline with a high percent around 40-80% of the 

required choline for the synthesis reactions catalyzed by ChAT in compartment 1. 

13) Each of the feed stream of axonal feed ACh (S1f), the feed stream of plasma choline and choline 

produced from the release of phospholipids (S2f), the feed stream of acetyl CoA coming from 

mitochondria (S3f), and the feed stream of hydrogen protons coming from the metabolic reactions and 

ionization of water (hf), are collected together in a constant flow rate (q) to meet the choline recycle 

stream before entering the presynaptic neuron. 

14)  Both the feed flow rate to compartment 1 and the exit flow rate from compartment 2 are assumed 

to be constant at q (m3/sec). 

15) The diffusion and reaction events occurring in both contacted cholinergic neurons are explained 

by the two-enzyme two-compartment model.  

 

In compartment 1, ACh is formed according to the following reaction catalyzed by ChAT: 

  CoAineAcetylcholCoAAcetylCholineR ChAT  :1                                 (2.1) 

In compartment 2, ACh is degraded according to the following reaction catalyzed by AChE 

 
  HAcetateCholineWaterineAcetylcholR AChE:2                (2.2) 

Each reaction R (1) or R (2) is assumed to be hydrogen ions based and substrate inhibited as shown in 

Appendix (A). This leads to a non-monotonic dependence of the reaction rates on the substrates and 

pH. The rates can be formulated by employing previous assumptions and basic biokinetics knowledge 

as explained in the following section.  The details of the derivation are given in appendix (A) and 

appendix (B). Appendix B provides a derivation of the dynamic model equations and the necessary 

dimensionalization.   All state variables, parameters, and rate equations are in the dimensionless form 
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as given in Table 2.1. The system is 8 dimensions, where there are non-linear eight ordinary 

differential equations. 

 

 

Figure 2- 2:  The two-enzyme/ two-compartment model 

Table 2-1: Dimensionless forms of the ordinary differential equations of the eight state 

variables 
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2.3 Proposed Mechanisms for Enzymatic Processes of ACh  

Figures A1 and A2 shown in appendix A and appendix B represent full mechanisms for the pH-

dependent substrate-inhibited enzyme hydrolysis and synthesis reactions, respectively. We present 

below the rates r1 and r2 for the synthesis and hydrolysis reactions. The details of the derivations are 

given in Appendix (A). 

 

Rate of Synthesis (r1) 

From Figure (A2) and appendix (A) the final dimensionless reaction rate equation in terms of 

dimensionless variables and parameters for the synthesis reaction catalyzed by the enzyme ChAT is 

given by: 
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Rate of Hydrolysis (r2) 

From Figure A1 and appendix (A) the final dimensionless reaction rate equation in terms of 

dimensionless variables and parameters for the hydrolysis reaction catalyzed by the enzyme AChE is 

given by: 
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 Thus the two-enzyme/two-compartment model is described by the set of eight ordinary non-

linear differential equations in Table 2-1 with the rate eqs (2.3, and 2.4). This highly non-linear set of 
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equations is used for the detailed dynamic investigation undertaken in this work. The model equations 

are in terms of 8 state variables namely:                23132212211121  and  , , , , , , sssssshh  and 25 

parameters (Tables 2.2 and 2.3). Because of the lack of experimental data for human brain this 

investigation is limited to the use of carefully chosen parameters (Hersh and Peet, 1977; Mahecha- 

Botero et al., 2004; Garhyan et al., 2006; Elnashaie et al., 1984, 1985).  All values of the parameters 

(with respective references) used in this investigation are given in Table 2.3. 

 

Table 2-2: Dimensionless state variables, parameters, and other terms. 
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Table 2- 3: Values of the kinetic Parameters 

:Parameter Value Reference 

 1 5.2(0.1) Hersh & Peet (1977) 

 2 12 Hersh & Peet (1977) 

 3 1000 Hersh & Peet (1977) 

 4 5 Hersh & Peet (1977) 

 5 1 Hersh & Peet (1977) 

  0.5 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

  1 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

Ka(kh) 1.066*10-6 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

 

Ks1 5.033*10-7 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 
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1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

S2ref 4100.1  kMole/m3(µMole/mm3) Guyton and Hall, (2000) 

S3ref 6100.1  kMole/m3(µMole/mm3) Guyton Hall, (2000) 

1B  510033.5  kMole/m3(µMole/mm3) Garhyan et al., (2006) 

2B  
510033.5  kMole/m3(µMole/mm3) Garhyan   et al., (2006) 

H
  2.25 Elnashaie et al., (1984) 

OH
  0.5 Elnashaie et al., (1984) 

1S  1 Elnashaie et al., (1984) 

2S  1 Elnashaie et al., (1984) 

3S  1 Elnashaie et al., (1984) 

RV  1.2 Elnashaie et al., (1984) 

fpH  8.2 Guyton, 2000 

fs1  15 Garhyan   et al., (2006) 

fs2  1.15 Garhyan et al., (2006) 

fs3  3.9 Garhyan et al., (2006) 

1  0.01 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

R 0.8 Tucek (1978) 

 

 

2.4  Solution Techniques and Numerical Tools 

The results of bifurcation diagrams for the system were obtained using XPPAUT and AUTO 

2000, a bifurcation and continuation software for ordinary differential equations.  Both static and 

dynamic bifurcations can be performed by this software package (Ermentrout 2002). The dynamics 
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results such as phase planes and time traces were obtained via FORTRAN programme. For the 

chaotic behavior, we used one- dimensional Poincare map to investigate the intersections in one 

direction between a hyperplan surface (Which is chosen at certain value of a state variable) and 

trajectories. (Garhyan et al., 2006; and Strogatz 1994). From discrete points of intersections, we are 

able to construct the bifurcation diagram of Poincare. Then we can investigate the dynamics behavior 

of the chaotic attractors. This is performed using IMSL libraries which contain DGEAR subroutine. 

Step size is chosen automatic based on the stiff differential equations during the investigations of the 

dynamics.  Sometimes we used matlab to ensure the solution quality. The Poincare diagram is plotted 

using a program employed by Ibrahim et al., (2002) [Garhyan et al., 2006; Elnashaie et al., 1984)].  

 

2.5 Physiological Validation Values  

To validate the results of the system with physiological and experimental results and with other 

models of previous investigators during the investigations of the change the system parameters, we 

should compare our system behavior with the following physiological values of ACh, choline, 

acetate, and pH. These values depend on experimental review and other models like that used by 

Garhyan et al., 2006 and Mahecha- Botero et al., (2004). The concentration are given in (kmol/m3) 

Human brain pH in a feline model is found in the range of 6.95-7.35. (Zauner and Muizelaar, 1997), 

and pH in a human brain was found by (Rae et al., 1996) in the range 6.95 - 7.15. Free ACh in rat 

brain was found around 51022.0   kmol/m3 and total ACh was in found around 51077.1   

kmol/m3. Tucek, 1990 and Garhyan et al., 2006 showed that in guinea pig cerebral cortex the range 

was 51031.0   (free ACh) to 51067.1   kmol/m3 (total ACh).  

Wessler et al., (2001) Mahecha- Botero (2004) reported that ACh concentration in human placenta in 

the range of 5100.3   to 5105.55   kmol/m3.  Mahecha- Botero (2004) showed that in the isolated 

rings of rat pulmonary artery ACh was measured to be in the range of 510001.0   to 5100.3    as 

pointed to (Kysela and Torok, 1996). Mahecha- Botero (2004) and Garhyan et al. (2006) reported that 

choline concentration in mouse rat brain is about 41015.1   kmol/m3. This range was confirmed by 

Tucek (1978) and choline concentration in human plasma is in the range of 41001.0   to 4107.0   

kmol/m3 (Chay and Rinzel, 1981; Mahecha – Botero (2004) and Garhyan et al., (2006)). 
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2.6 Results and Discussion 

The diffusion-reaction biosystem bifurcation and chaotic behavior is extensively investigated using 

three bifurcation parameters: (A) feed hydrogen ions concentration (hf), (B) AChE enzyme activity 

measure ( 2B ), and (C) feed ACh concentration ( fs1 ). All of these parameters are in the 

dimensionless form. 

2.6.1 Feed Hydrogen Ions Concentration (hf)  

The feed hydrogen ions concentration is expressed as the dimensionless value hf when it is 

used as a bifurcation parameter and the corresponding value of the pH feed will be given in ACh 

region; while the hydrogen ions concentration is reported as a state variable in terms of pH. The feed 

hydrogen ions are defined as the hydrogen ions coming to the nerve ending as a product of metabolic 

reactions occurring outside the presynaptic terminal. For example, the metabolic synthesis of acetyl 

CoA and metabolic reactions associated with ATP produce hydrogen ions. The concentrations of 

these feed hydrogen ions (hf) will influence pH of the ACh neurocycle. hf is an independent 

bifurcation parameter and will be investigated. Figures 2.3 and 2.4 show the bifurcation diagrams 

using the hydrogen ions feed concentration as the bifurcation parameter.  

In Figure 2.3(a) the bifurcation diagram is shown for a wide range of this bifurcation 

parameter (0 < hf < 0.02) corresponding to (7.6961 <pHf <14). As shown in the Figure 2-3(a); the 

ACh concentration in compartments 1   11s  increases in the range [0 < hf < 0.00373281] from 4.7 to 

5.35 (in the dimensionless form), then   11s  decreases in the range (0.00373281 < hf < 0.0065611) to 

3.88, then it increases again in the range (0.0065611 < hf < 0.0077) to the value 4.17 after that   11s  

remains constant.  Figure 2-3(c) proceeds in a similar fashion to Figure 2-3(a), where the choline 

concentrations in compartment (1)   12s  in the range [0 < hf < 0.00373281] decreases from 3.2205 to 

3.217 (dimensionless) then   12s  increases in the range [0.00373281 < hf < 0.0065611] to 3.234 then 

it decreases again in the range [0.0065611 < hf < 0.0077] to the value 3.232 after that in the range 

[0.0077 < hf],   11s  remains constant with increasing of hf. 
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Figure 2- 3: Bifurcation diagram hydrogen ions concentration (hf) as the bifurcation parameter: Overall 

diagrams: 

(a) effect on ACh in compartment (1) (s1(1) ); (b) effect on ACh in compartment (2) (s1(2) ); (c) effect on choline 

concentration in compartment (1) (s2(1) ); (d) effect on acetate concentration in compartment (2) (s3(2) ); and (e) 

effect on pH concentration in compartment (2) (pH(2) ). 
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Figure 2.3(b) shows the ACh concentration in compartment 2   21s  increases in the range [0 

< hf < 0.001182] from 2.41 to 2.44 (in the dimensionless form), then    21s  decreases in the range 

[0.001182 < hf < 0.007] to 0.1227, after that   21s  remains constant with the increasing of hf. The 

acetate concentration in compartment (2)   23s  is shown in Figure 2.3(d) where   23s  decreases in 

the range [0<hf<0.001182] from 3.90 to 3.889 (in dimensionless form), then decreases in the range 

[0.001182<hf<0.007] to 5.038,   after that   23s  remains constant with increasing hf. Figure 2-3(e) 

shows that the pH (2) decreases continually from 9.75 to 5.69 in the range [0<hf<0.02]then it remains 

constant as hf increases in the range [0.0077 < hf]. 

A possible explanation for the effect of hf is that when feed hydrogen ions concentration 

increases in the range [0.0077 < hf], the synthesis reaction catalyzed by ChAT is stopped completely, 

so this leads to a reduction of the concentration of ACh in compartment 1   11s and in compartment 2 

  21s  as well, but both choline and acetate concentrations are increasing due to accumulation not 

consumption. These results are in accordance with the experimental results of Iwamoto et al., (2006) 

who showed that at high hydrogen ions concentration (low pH), the permeation of human choline 

from the synaptic vesicles is inhibited. Iwamoto et al., (2006) showed also that the choline uptake is 

inactivated at low pH (here high concentration of hf ) and enhanced and becomes activated at high 

pH.  Figure 2-4 shows enlargements of the very narrower bifurcation regions denoted by rectangles in 

Figure 2-3. Six interesting regions are distinguished as follows:  

(1) The first region: (hf >0.006263; pHf < 8.2004). In this region a unique stable stationary steady 

state is exhibited in the ACh cholinergic system as shown in Figures 2-4; Figures 2-4(a) shows that 

  11s  decreases from 3.905 to 3.89 in the range [0.006254<hf<0.006258]. While in Figure 2-4(b), 

  21s decreases from 0.291849 to 0.280188. Figure 2-4(c) shows that   12s   increases from 3.233 to 

3.23392. In Figure 2-4(d),   23s increases from 4.95 to 4.9931 in the same range of hf. pH(2) decreases 

from 6.97 to 5.85, through the same range of hf. 

(2)  The second region: (0.006252<hf < 0.006263; [8.20036 < pHf < 8.201124). In this region, the 

phenomenon of bistability is appeared. It is observed that both point and periodic attractors coexist 

with unstable periodic attractors (appeared as empty circles) separating them. The significance of the 

bistability is that the system can approach to both attractors (either point or periodic) at the same value 
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of the bifurcation parameter hf based on the initial conditions. In this region as hf decreases to 

0.006252 the first Hopf bifurcation HB1 occurs. HB1 is defined as a “subcritical Hopf bifurcation” 

because a branch of unstable periodic orbits (appeared as empty circles) appears with a stable 

stationery branch at this point forming a separatrix between the basins of the attraction of the stable 

steady states.  Figure 2-4(e) shows that pH (2) oscillates between 6.25 and 8.13. In this region chaos 

may be developed via the well known Feigenbaum (1980) PD route. The first PD point is at hf 

=0.006263 

(3)  The third region: (0.006007 <hf < 0.006263; 5.57657 < pHf < 5.5945). This region contains a 

unique stable periodic branch (appeared as full circles), giving rise to sustained oscillations where the 

system demonstrates oscillatory behavior. Simulations for this oscillatory behavior are given as time 

traces and phase planes showing the behavior of a stable periodic orbits as the only system attractor as 

will be discussed later in Figures 2- 9  and 2-10. 

(4) The fourth region: (0.00598 <hf < 0.006007; 8.2185 < pHf <8.2204). This region contains a both 

a stable periodic branch and an unstable periodic branch. The only attractor in this region is periodic, 

where the second period doubling PD arises at hf=0.006007. 

(5) The fifth region (0.00578 <hf < 0. 0.00598; 8.2204< pHf < 8.2352). This region has two unstable 

periodic branches. In this region, there is no one definite attractor. Where the system can approach to 

the periodic attractor in the right direction giving rises to oscillations with a fast decreasing amplitude 

or can approach to the stable steady state in the left direction leading to the second Hopf bifurcation 

point (HB2), which appears at hf = 0.00578. As shown in Figure 2-4 (a) the ACh concentration in 

compartment (1)   11s  oscillates between 4.3 and 4.99 corresponding to 2.5165*10-6 and 2.51*10- 

(kmol/m3) corresponding to a low ACh concentration, while s1(2) oscillates between 0.76 and 1.765 

corresponding to 0.383*10-6 and 0.89*10-6 (kmol/m3) corresponding to a very low ACh concentration.  

pH (2) is between 6.7 and 7.25 (Figure 2-4 (e)) which is close to the expected physiological values. 

Figure 2-4(c) shows that the choline concentration in compartment (1)   12s  has very soft oscillations 

between 3.229 * 10-4 and 3.2247*10-4 (kmol/m3).   

(6)  The sixth region (0.0055<hf < 0 corresponding to 0.00578; 8.2352<pHf). A unique stable 

steady-state attractor is the only attractor appeared in this region. This region corresponds to pH (2) 

between 7.85 and 8.01 as shown in Figure 2-4(e). Figure 2-4(a) shows that  11s  is between 2.403 *10-6  



 

  23

 

 

 



 

  24

 

Figure 2- 4: Bifurcation diagram: hf (hydrogen ions concentrations) as the bifurcation 

parameter Enlargement for the boxes in Figure 2-3: (stable:—, unstable: -----), periodic branch (stable 

•, unstable ○): (a) enlargement of the box in Figure 2-3(a); (b) enlargement of the box in Figure 2.3 (b); (c) 

enlargement of the box in Figure 2.3 (c); (d) enlargement of the box in Figure 2.3 (d); (e) enlargement of the 

box in Figure 2.3 (e); and (f) enlargement of the box in Figure 2.4 (e); 

 

and 2.7*10-6 (kmol/m3) while  21s  oscillates between 0.86*10-6 and 1.21*10-6 (kmol/m3) as shown in 

Figure 2-4 (b)  12s  is between 3.222*10-4 and 3.2174 and 3.2247*10-4 (kmol/m3) with little possible 

physiological range as shown in Figure 2-4(c). In Figure 2-4 (d)  23s  oscillates between 4.31*10-6 and 

4.34*10-6 (kmol/m3). 

If we compare our results to those of Mahecha- Botero et al. (2004), we find that the range of the state 

variables values appears to be larger than those of Mahecha- Botero et al. For example ACh 

concentration in compartment (1)   11s  varies in the range (3.85<  11s  <5.38); as shown in Figure 2-4 

(a), however, Mahecha- Botero et al., (2004) predicted a change in the range (1.25<  11s  <2) only. Also 

the choline concentration in our results (  12s ) is about 3 times that in the results of Mahecha- Botero et 
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al., (2004) These discrepancies may be explained by the fact that the recycle of choline from the 

second compartment to the first compartment is considered in our model but not taken into 

consideration by Mahecha- Botero et al., (2004).  In addition, the rate of synthesis reaction is more 

reasonable and more precise than that used by Mahecha- Botero et al., (2004) or by Garhyan et al., 

(2006). In our model, we observe oscillations at low feed concentrations of feed hydrogen ions 

(0.00578053 <hf < 0.00625361), while the model of Mahecha- Botero et al. (2004) failed to do so. Our 

results are in accordance with those of Shen and Larter (1994). It can be suggested that the oscillatory 

behavior is resulted due to many reasons; the fist one is the autocatalytic effect which occurs because 

of the enzymatic reaction – pH dependent and leads to oscillatory behavior. Another factor leading to 

the complexity is the substrate inhibition and nonlinearity appearing the kinetic rate equations. The 

third reason for appearing the complexity is the choline recycle, where the feed back of information 

and choline recycle can be one of the main reasons leading to increase the oscillatory behavior. This 

can be helpful in explaining the oscillatory behavior in our model because our system of two 

compartment/diffusion model is also pH dependent, and it can be inhibited by the substrate (choline) 

in the first compartment or   by ACh as substrate in the second compartment. Furthermore; Shen and 

Larter (1994) confirmed the important role of the bell-shaped pH dependence of the AChE enzyme 

activity in the catalysis mechanism. H + protons are a product of the enzymatic reactions if an ester is a 

substrate, and this is occurring in the ACh reactions. Finally, at low hf (high pH) values, the system 

will be autocatalytic and characterized by oscillatory behavior.  

2.6.2 AChE Enzyme Activity (B2) 

AChE enzyme is the enzyme responsible for the hydrolysis of ACh in compartment (2) into 

choline and acetate after the interaction between ACh and postsynaptic receptors. It is involved in the 

nervous transmission. Therefore; it is very important to investigate the effect of the activity of AChE 

enzyme (B2) on the ACh neurocycle system. Wecker et al., (1978) investigated the effect of AChE 

inhibition on the synthesis of ACh and choline content in separated brain areas in animals using paraxon 

as a cholinesterase inhibitor. They found that AChE activity has been inhibited by about 90 % in the 

regions of hippocampus, cerebral cortex, and striatum. ACh concentrations increased to 125%, 150%, and 

150% of control values, respectively. Furthermore, free choline reduced to 75% of the control values in 

the same regions by the same inhibitor paraxon [Wecker et al., (1978)]. Garhyan et al., (2006) and 

Mahecha- Botero et al., (2004) indicated that there is a strong relation between the cholinergic diseases 

such as Alzheimer’s and Parkinson’s diseases and the disturbances in the activity of AChE enzyme  2B . 
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The bifurcation parameter  2B  is taken like that used by Garhyan et al., 2006 and three parameters. 

q

AChEVV
B M 22

2   Where 2MV  is the maximum rate of the ACh hydrolysis that incorporates kinetic 

constants that dominate the final reaction step, V2 = volume of compartment 2, AChE = AChE 

concentration in compartment 2, and q = the flow rate. The activity of AChE enzyme (B2) is a function of 

the AChE concentrations. The bifurcation parameter  2B  will be investigated in two cases. Both cases 

are investigated with new physiological phenomena taken in consideration such as choline recycle ratio 

from the synaptic cleft to the presynaptic neuron and the synthesis kinetic mechanism in the first 

compartment. Then the results will be compared with physiological results and with other models such as 

the models belonging Garhyan et al., (2006) and Mahecha- Botero et al., (2004). The first case explains 

the multiplicity phenomena which is called static bifurcation at the high values of the AChE enzyme 

activity. In the second case, the dynamic bifurcation at the low values of the AChE enzyme activity will 

be analyzed.  These cases are discussed in details below. 

 

(A) Case (1): Static Bifurcation  

 In this case the activity of AChE enzyme (B2) will be investigated as the main bifurcation parameter at 

certain values of the feed ACh ( 501 fs ) which is equivalent to 2.52 *10-5 kmol/m3 representing a high 

value on the basis of physiological measurement to investigate the ability of AChE enzyme to degrade the 

high concentration of ACh. Feed pHf=6.17 which represents a weak acidic ACh environment which is 

very close to the physiological range. The rest of the parameters are taken as mentioned in Table 2-3. As 

shown in Figure 2-5, the hysteresis phenomenon dominates the system. There are 3 main regions will be 

explained as follows:  

   

1. Region 1: In the region  4
2 1082.1 B  kmol/m3.  

In this region the AChE activity works in a high efficient way to degrade the ACh concentration in 

compartment 2.   21s . Figure 2-5(b) shows that   21s  is kept in the 

range   94.2003379.021 s corresponding to 9107.1  and 51015.0   kmol/m3, respectively. 

Figure 2-5(a) shows that   11s  is kept in the range   92.5174.5411 s  corresponding to 

51076.2  and 51061.2   kmol/m3, respectively.  Both choline concentration in compartment (1)  12s  
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and acetate concentration in compartment (2),  23s ,  remain  around 3.66 and 28.9 corresponding to 

41066.3  and 6109.28   kmol/m3, respectively. The explanation of the current results is that there is 

a competition between the diffusion process of ACh from compartment 1 to compartment 2 and the 

enzymatic processes catalyzed by the enzymes AChE and ChAT. Because the enzyme AChE works at 

the highest efficiency, we will find the enzymatic processes are much faster than the diffusion processes. 

This is much clear in the concentration of ACh in compartment 2 which is too small around in 

comparison to the concentration of ACh in compartment 1 which is around 52.  

Because hydrogen ions concentration is a product of the hydrolysis reaction in compartment 2, pH (2) will 

take the same behavior of  23s . As seen in Figure 2-5(e), pH (2) has its lowest value which is pH(2 

57.4 . This because acetic acid is ionized completely as assumed in the model into hydrogen protons 

and acetate. 

In comparison to the results of Mahecha- Botero et al., (2004) and Garhyan et al., (2006), ACh in 

compartment (1) and (2), and choline concentration in compartment (1) and acetate concentration in 

compartment (2) , here,  are higher than that in their model. This is because the choline recycle principle 

was not taken into consideration in their model where the choline produced from the postsynaptic neuron 

is the main source for the choline required for ACh synthesis in the presynaptic neuron or compartment 

(1). In addition; the rate of synthesis of ACh which is proposed as shown in the Appendices is more 

efficient than used their work. 

2. Region 2:  4
2

4 1082.110899.0   B  kmol/m3
 

In this range of AChE activity, a phenomenon appeared between static bifurcation points (SB1 and SB2) 

where there are two stable steady state and unstable steady state (known as saddle points) separating 

them. This phenomenon is known as hysteresis. The system exhibits steady state multiplicity without 

oscillations. The presence of the multiplicity region will have its effects on the behavior of the system to 

respond to external disturbances that may move the system into this multiplicity region [Elnashaie 

(1977), Garhyan et al., (2006)]. Static bifurcation is usually involved in multiplicity of steady states. 

Because hysteresis forces the system to exist in a wide range of the state variables, it will help the system 

to respond clearly when the bifurcation parameters change slightly away from the static bifurcation. As 

shown in Figure 2-5(d) when the bifurcation parameter (B2) changes less than 410899.0   , acetate  
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Figure 2- 5: Bifurcation diagram at s1f=50, hf =0.62682: B2 (linked to enzyme activity) as the bifurcation 

parameter: (stable: —, unstable: -----------): (a) effect on ACh in compartment (1) (  11s );  (b) effect on ACh in 

compartment (2) (  21s ),  c)  effect on choline concentration in compartment (1) (  12s ),  (d) effect on acetate 

concentration in compartment (2) (  23s ), and  (e) effect on pH concentration in compartment (2) (  2pH ) 
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concentration will decrease suddenly from 61029  kmol/ m3 to 6107  kmol/ m3 and the same for 

pH in compartment 2, where pH2 increases from 4.6 to 5.5 suddenly as shown in Figure 2-5(f). The 

hysteresis or multiplicity phenomenon helps the system to gain the flexibility property to respond to 

any external physiological changes, such as the inhibition of AChE by beta amyloid peptide 

aggregates or the medications used for treating Alzheimer’s disease which is based on inhibiting 

AChE to increase the ACh concentrations. If we compared the results to that got by Mahecha- Botero 

et al., (2004) and Garhyan et al., (2006), the hysteresis phenomena appeared in the range  

 4
2

4 1085.01039766.0   B  kmol/m3 which is smaller than our range. In addition, the ACh 

concentration in compartment (2)   21s  in their model was in the range 6104814.1   and 

51018.2   kmol/m3 which is closer to ours and the pH (2) which is out of the expected physiological 

range and it was varying between 4.6 and 5.35 so it is also close to the range of ours. 

3. Region 3: the range  4
2 10899.00  B  kmol/m3.  

In this very small range of B2, we find that the system is characterized by only point attractors or 

stable stationery state. Figure 2-5(a) shows that  11s  varies between 96 and 104 corresponding to  

61032.48   and 61035.52   kmol/m3 which is out of the physiological range according to Tucek 

(1978) , because we will find the rate of enzymatic processes is lower than the rate of diffusion.  21s  

confirms the explanation where it changes in the range 51018.2   - 51063176.2   kmol/m3 as 

shown in Figure 2-5 (b). pH(2) remains outside of the physiological range because of the fully 

dissociation of acetic acid assumption as shown in Figure 2-5(e) where it changes in the range 5.35- 

6.24. In comparison to and Garhyan et al., (2006), pH is in the range 6 and 8.24 and the ACh in the 

range 5101646.2   and 510506.2   kmol/m3, which is close to our range. 

 

Case (2): Dynamic Bifurcation 

Dynamic bifurcation is very important because it will help to learn how the ACh cholinergic system 

responds to the low values of the AChE enzyme activity, and how it changes with time. Dynamic 

bifurcation will clarify how state variables behave with the complexity. The dynamic bifurcation is 

investigated as shown in Figure 2- 6 at s1f =1.4 corresponding to 0.12 x10-5 kmol/m3
 which is the 

lowest value in the range given by Tucek (1978). The range given by Tucek (1978) and (1985) is 
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[ 51012.0  to 51077.1  ] kmol/m3. The dynamic bifurcation diagrams shown in Figure 2-6 exist in 

a small range of the AChE enzyme activity (B2) which is ( 5
2

5 105105.3   B ) kmol/m3.  

Based on the type of the qualitative behavior Figure 2-6 can be divided into 3 regions (AB, BC and 

CD). There are two Hopf bifurcations (HBs). The first one (HB1) appears at the point B where the 

AChE enzyme activity B2= 51091.4   kmol/m3, and the second HB2 appears at the point C where 

B2= 51093.3   kmol/m3. The main regions can be divided into two regions based on the type of the 

qualitative behavior of the dynamic ACh system: 

 

i) Stable Steady State (Point Attractor) 

This type of solution is represented by two regions: (AB) and the region (CD) 

1. Region AB: B2 in the range  5
2

5 100.51091.4   B  kmol/m3
 

 First of all in the range ( 5
2 100.5 B ) the system is characterized by only one type of solution 

which is point attractor which is stationary behavior. As shown in Figure 2-6 the ACh concentration 

in both compartments:  11s  and   21s  are small in comparison to their values in different ranges of 

B2 where the enzyme AChE works with high capacity. Figure 2-6(a) shows that s1(1) is between 

3.897 and 3.91  corresponding to 610961.1   and 61097.1   kmol/m3. However,  21s  changes in 

the range of 280188.0  to 303586.0  corresponding to 610141.0   and 610153.0   kmol/m3 as 

shown in Figure 2-6(b). Both  12s  and  23s  which are choline and acetate concentration increase at 

high values as shown in Figure 2-6(c) and Figure 2-6(d), respectively. Figure 2- 6(e) shows that pH 

(2) has its lowest value pH(2) = 6.84 (maximum hydrogen ions concentration) in this region because 

of the highest concentration of H+ ions due to the fully ionization of acetic acid, then in comparison 

to the physiological values, pH(2) does not agree with them. 

  Second, B2 in the range  5
2

5 1099.41091.4   B  kmol/m3. As the AChE activity 

decreases until the point B, HB1 appears at B2 = 51091.4   kmol/m3. Mathematically HB1 is 

appeared when the real parts of a pair of complex conjugate eigenvalues become negative, causing 

the system to undergo a bifurcation. In the the range:  5
2

5 1099.41093.4   B , Period 

doubling (PD) appears at 5
2 1099.4 B  as shown in Figure 2-6. In comparison to model of 

Mahecha- Botero et al., (2004), PD at   5
2 107784.1 B   which is smaller than the previous range 
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because our system is more stable than their system. However, in the range : 

 5
2

5 1093.41091.4   B  kmol/m3, the system is characterized by the behavior of bistability 

which means that both types of solution stationery and periodic solutions coexist at the same values 

of the bifurcation parameter B2. The bistability usually appears around HB1 where instable periodic 

orbits separated stationery (stable steady state) and the stable periodic orbits. So that HB1 is called 

subcritical hopf bifurcation. In this range of B2 which causes bistability, it is observed that s1(1)  

changes between 3.897 and 4.74 corresponding to 610961.1   and 61039.2   kmol/m3 as shown 

in Figure 2-6(a) and pH(2) changes  between 6.3 and 7.4, which is a region close to the expected 

physiological pH values according to Tucek (1990) (Figure 2-6(e)). It is observed that ACh levels in 

both compartments in this range change in a range close to the physiological range. As shown in 

Figure 2-6(a) and Figure 2-6(b). 

2. Region CD:  5
2 1093.3 B  kmol/m3 

In this region, the system is characterized by only a stationery state.  The physiological values in this 

region correspond to range of pH(2) around 7.75   which is close  to the range of Mahecha- Botero et 

al., (2004) as shown in(Figure 2-6(e)).  In Figure 2-6(a), s1(1) reaches the maximum value at very low 

values of B2, where s1(1) = 5.32 corresponding to ( 61067.2   kmol/m3) which is the highest value in 

Figures 2- 6(a). Figure 2- 6(b) shows that s1(2) reaches its maximum value ( 61066.1   kmol/m3) as 

the reaction that consumption by AChE is almost stopped in this region.  However, in the model of 

Mahecha- Botero et al., (2004), the maximum value of s1(2) reaches its ( 610258.1   kmol/m3). 

In Figure 2-6(c), s2(1) reaches the lowest value ( 41022.3   (kmol/m3) as the reaction that 

produces it almost stops. This value of s2 (1) is higher than that in the model of Mahecha- Botero et 

al., (2004), as discussed before because  the choline consumed in the presynaptic neuron which is 

compensated by recycling the choline produced by hydrolysis reactions was not taken into 

consideration by Mahecha- Botero et al., (2004), Therefore, the range of the dynamics of the results 

of Mahecha- Botero et al (2004) is larger than ours where HB1 and HB2 appear in the results of 

Mahecha- Botero et al., (2004),  in the range ( 51082.1  5
2 1043.4  B ) (kmol/m3)  and HB1 

and HB2 appear at B2= ,1082.1 5 and  51043.4  respectively; however, our model shows that 

HB1 and HB2 appear  in the  range  ( 51093.3   5
2 1091.4  B ). 

.  
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Figure 2- 6: Bifurcation diagram at s1f=2.4,   B2 (linked to enzyme activity) as the bifurcation 

parameter: stable: —, unstable: -----------), periodic branch (stable: •, unstable ◦) 

 (a) Effect on ACh in compartment (1) (  11s ); (b) effect on ACh in compartment (2) (  21s ); (c) effect on 

choline concentration in compartment (1) (  12s ),  (d)  effect on acetate concentration in compartment (2) 

(  23s ),  and (e) For pH in compartment 2 (  2pH ) 
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3.  Region CD:  5
2

5 1091.41093.3   B  kmol/m3.  

In this region, the oscillatory behavior is the only attractor and there is no  stable steady state 

attractor as shown in Figure 2-6. In this range of B2, pH(2) oscillates in the range  6.15-8.2 as 

illustrated in (Figure 2-6(e)) which is  close to the expected physiological pH values.  In Figure 2-

6(b), s1(2) changes between 710033.5    and 71081.8   kmol/m3 corresponding to very low ACh 

concentration. The results in this range of B2 is smaller than  the results of Gahyran et al.,  (2006) 

and Mahecha- Botero et al., (2004), which is  5
2

5 1026.41078.1   B  kmol/m3 because our 

system is more stabilized than their system due to the consideration of choline uptake. The results 

are in accordance qualitatively with the experimental results done by Santos et al., (2006).  One of 

the main explanations to the complexity phenomena is the competition between both enzymatic 

reactions (which are characterized by high non-linearity and pH dependent and substrate inhibition) 

and diffusion processes).  

2.6.3 Feed ACh Concentration  1fs  

Figure 2-7 illustrates the bifurcation diagrams with  fs1  as the main bifurcation parameter. 

In synaptic neurons there are two sources for the ACh content: the first is that synthesized by ChAT 

in the presynaptic neuron, and the other is that the mobile ACh in the nerve which is synthesized in 

other neurons and transported through the axons and represents about 20% of the total ACh content 

(Tuck, 1978). The feed ACh concentration (S1f ) here represents the ACh concentration synthesized in 

other neurons and transported to the presynaptic neurons by the mechanism of axonal transport. 

 

A)  Case 1: Static Bifurcation Analysis  

1) Region 1:  1008.31 1  fs  

In this region, the system is characterized by only a stationery state.  Due to the high 

concentration of s1f in this region, the rate of enzymatic processes will be slower than the rate of 

diffusion processes. The rate of hydrolysis reaction catalyzed by the AChE occurs in the second 

compartment may be inhibited by the excess levels of ACh. The concentration of ACh in 

compartment (1) is the resultant of that in the feed flow (s1f) and that produced by the synthesis 

reaction catalyzed by the enzyme ChAT in compartment (1).  
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The range of  1008.31 1  fs  is corresponding to  5
1

5 10*033.510*19.0   fs  

kmol/m3. This is a region of high feed ACh concentration causing substrate inhibition. Figure 2-

7(a) shows that  11s  is between 59.5 and 200 corresponding to 51099.2   and 51007.10   

kmol/m3. In Figure 2-7(b)  21s  is between 25.94 and 99.4 corresponding to 51031.1   and 

5105   kmol/m3. pH(2)  is between 5.75 and 8 (Figure 2-7(e)) and  12s is almost constant where 

it varies in the range ( 41032.3  - 41047.3  ) kmol/m3 (Figure 2-7(c)).  The range of ACh 

concentration in compartment 1 in this region is larger than that of Garhyan et al., (2006) and 

Mahecha- Botero et al., (2004). Because the rate of synthesis of ACh in compartment 1 is higher 

than their rate of synthesis because they ignored the physiological phenomena occurring in the 

system that in compartment (2) 

 

2) Region 2:  8.3134.24 1  fs .  

In this range the hysteresis or multiplicity phenomenon appears as s1f decreases to 8.311 fs  

where the first static bifurcation point (SB1). In this range there are two stable steady state 

solutions separated by unstable steady state solutions (which are called saddle node). The 

multiplicity dominates the system between the two static bifurcation points where the second 

static bifurcation appears at 34.241 fs as illustrated in (Figure 2-7).  The hysteresis 

phenomenon has a vital significance where it reflects the flexibility of the system to external 

disturbances as the shortage or excessive mobile ACh transported by axonal transport (s1f) close 

to the static bifurcation points. For example, (Figure 2-7(b)) illustrates that the ACh concentration 

in compartment 2 (  21s ) changes suddenly from 55.2)2(1 s  to 67.26)2(1 s  as the ACh feed 

concentration is slightly increased from SB1 which exists at 8.311 fs . This hysteresis 

phenomenon gives the ACh cholinergic a freedom to move through a big range of the state 

variables. For instance, Figure 2-7(b) illustrates that there are steady state solutions coexisting 

at 281 fs . Two of these three solutions, the system can approach where both of them are stable 

at 23.1)2(1 s  and 21)2(1 s . However; the third solution is unstable where the system cannot 

approach which is 64.5)2(1 s . This region of multiplicity is equivalent to a range of feed ACh 
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concentration between 51023.1   and 5106.1    kmol/m3 which fits well the expected 

physiological range. Figure 2-7(a) shows that the ACh concentration in compartment 1 (  11s ) is 

between  51082.1   and 510897.1   kmol/m3 and (  21s ) varies in the range 

  510585.0128.0   kmol/m3. This range is expected to fit the physiological behavior as well.  

In Mahecha- Botero et al., (2004) and Garhyan et al., (2006) results, the hysteresis phenomenon 

occurs through a range of s1f is from 510902.1  to 51002.3   kmol/m3 which is larger than 

our range. However; the range of (  21s ) is similar to that of Garhyan et al., (2006) because the 

variation in the range of the rate of ACh hydrolysis is limited. 

3) Region 3:  34.244.2 1  fs .   

In this range, the stationery state is the only solution or the point attractor is the only attractor.  

 Figure 2- 7(a) shows that (s1(1)) is  between 27.4 and 3.89 corresponding to 51038.1   and 

510196.0   kmol/m3 and Figure 2- 7(b) shows that (s1(2)) is between 0.21 and 0.82 corresponding 

to 510011.0   and 510045.0   kmol/m3. s2(1)  varies between  3.43 and 3.233 corresponding to 

41043.3   and 410233.3  kmol/m3 as shown in Figure 2- 7(c).  Figure 2- 7(e) shows that pH(2) 

varies between 5 and  6.85.  This region has a unique stable steady state as shown in Figure 2- 7. 

The physiological values of the feed ACh concentration  fs1  are between 510121.0   and 

51023.1   kmol/m3 which are within the range of the physiological values and fit the expected 

biological behavior. Physiological values of other state variables also correspond to the 

physiological values reported in literature.  For example, ACh concentration in compartment 1 

(s1(1)) changes  between 510196.0   and 510897.1   and in compartment 2 (s1(1))  changes in the 

range    51085.541.1   kmol/m3  as illustrated in (Figures 2- 7(a and b)). 
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Figure 2- 7: Bifurcation diagrams: feed ACh concentration (s1f) as bifurcation parameter 

(stable: —, unstable: -----------)  , (a) overall bifurcation diagram for ACh concentration in compartment 

1(  11s ), (b) overall bifurcation diagram for ACh concentration in compartment 2(  21s ), 

 (c) overall bifurcation diagram for choline concentration in compartment 1(  12s ),  

 (d) overall bifurcation diagram for acetate concentration in compartment 2(  23s ),  and  

 (e) overall bifurcation diagram for pH in compartment 2(  2pH ). 
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(f) 

 

Figure 2- 8: Bifurcation diagrams: feed ACh concentration (s1f) as bifurcation parameter 

(stable: —, unstable: --------), periodic branch (stable: •, unstable○) 

(a) enlargement of the box in Figure 2- 7(a),  (b) enlargement of the box in Figure 2- 7(b), 

(c ) enlargement of the box in Figure 2-7(c),  (d) enlargement of the box in Figure 2- 7(d),  and 

(e) enlargement of the box Figure 2- 7(e),      (f) enlargement of the box in Figure 2- 7(a) 

 

 

B)  Case 2: Dynamic Bifurcation Analysis  

In this case the complex behavior of the system will be investigated at the lower values of the mobile 

feed Ach concentration where  4.21 fs . The system can be decided into the following set of 

regions: 

1) Region 1:    4.239.2 1  fs  

In this range as shown in Figure 2-8, the first Hopf bifurcation (HB1) appears at 398.21 fs . It is 

observed that bistability phenomenon occurs around HB1. Both point attractors (stable steady state) 

and periodic attractor coexist at the same values of s1f  as illustrated in Figure 2-7(f).   
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Figure 2- 9: Dynamic characteristics: stable: —, unstable: ---------), phase plane (stable: •, 

unstable ◦) 

 (a) phase plane for ACh in compartment 2 (s1 (2)) vs. the ACh in compartment 1 (s1 (1)) 

 (b) phase plane for pH in compartment 2 (pH (2)) vs. the ACh in compartment 1 (s1 (1)) 

(c)  time traces of pH in compartment 2 (pH (2)), (d) time traces of ACh in compartment 2 (s1 (2)), (e) time traces 

of ACh in compartment 1 (s1 (1)), and  (f) Time traces of acetate in compartment 2(s3 (2)) 

 

. 
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Figure 2- 10: Dynamic characteristics: stable: —, unstable: -----), phase plane (stable: •, unstable ◦) 

 (a) phase plane for ACh in compartment 2(s1 (2)) vs. the ACh in compartment 1(s1 (1)) 

 (b) phase plane for pH in compartment 2 (pH (2))   vs. the ACh in compartment 1 (s1 (1)) 

(c) time traces of pH in compartment 2   (pH (2)),  (d) time traces of ACh in compartment 2 (s1 (2)),  (e) time 

traces of ACh in compartment 1 (s1 (1)), and (f) time traces of acetate in compartment 2 (s3 (2)) 

 

There are unstable periodic orbits (appeared as (empty closed circles) separate both solutions. This 

bistability leads to the condition, that at the same value of fs1  slightly different initial conditions lead 

to different types of attractors (Figure 2-9 and Figure 2-10 ). The first initial condition (Figure 2-10) 

leads to stable steady state (a point attractor) ; while the second initial condition (Figure 2-9) leads to 

a periodic attractor. The physiological values correspond to a range of feed ACh concentration 

between 51012.0   and 5101203.0   kmol/m3 which is a region of low ACh concentration. The 

pH in compartment 2(pH(2)) is close to the physiological expected range where it is between 6.25 and 

8.5. This region with low ACh concentration is thus characterized by the presence of bistability. The 
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PD occurs at s1f=2.393 close to the first Hopf bifurcation point HB1, however in Mahecha- Botero et 

al., (2004) and Garhyan  et al., (2006) model it is close to the second Hopf bifurcation point HB2.  

 

2.  Region 2:  39.2196.2 1  fs .  

The system in this range demonstrates oscillatory behavior where the periodic attractor is the only 

attractor existing in this range as shown in (Figure 2-8(a, b, c, d and e)).  Figure 2- 9(a, b, c, d and e) 

shows the oscillatory behavior of the system, it shows the phase planes and time traces as well at the 

corresponding initial conditions.  It is observed in Figure 2-9 that all state variables attempt to 

approach the periodic attractors.  Figure 2-8(a) shows that ACh concentration is very low. Figure 2-

9(c) illustrates that the pH in compartment 2 (pH (2)) oscillates between 6.26 and 8.14, which are close 

to the expected physiological range. The range of the feed ACh concentration is between 

5101105.0   and 5101203.0   kmol/m3 which represent a low ACh range.  Figure 2-8(c) shows 

that the choline concentration in compartment 1 (s2(1)) has very small range between 41022235.3   

and 41023285.3   kmol/m3.   Figure 2-9 and Figure 2-10 show that dynamic characteristics were 

performed at different initial conditions leading to different behaviors of the system.    Figure 2-9  

show the periodic attractors at the corresponding initial conditions.  Figure 2-9(c) show that pH (2) 

changes in the range 6.277- 8.14, which are close to the expected biological pH values. The ACh in 

compartment 1  11s oscillates between 4.5 and 3.9 corresponding to 2.265*10-6 and 1.963*10-6 

(kmol/m3) corresponding to a low ACh concentration as shown in Figure 2-9(e).  21s oscillates 

between 0.13 and 1.47 corresponding to 6.54*10-8 and 7.4*10-7 (kmol/m3) corresponding to a very 

low ACh concentration as shown in Figure 2-9(d).     However  23s  is close to the physiological 

range with soft oscillations between 4.46 and 5.01 corresponding to 4.46 *10-6 and 5.01 *10-6 

(kmol/m3) as shown in Figure 2-9(f).    Figure 2-10 shows the point attractors  when the initial 

conditions are slightly different  where pH (2),   21s ,  11s , and   23s  at 6.87, 0.295, 3.897 and 4.948 

respectively as shown in Figure 2-10.  

 

3. Region 3:  196.2999.1 1  fs  

This region corresponds to the feed ACh concentration (s1f) between 51010061.0   and 

5101094.0   kmol/m3 which represents a very low ACh concentration. As shown in Figure 2-8 this 
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region has unstable periodic orbits where the periodic oscillations decrease with small amplitudes as 

the bifurcation parameter decreases until it reaches  the second Hopf bifurcation point (HB2) 

at 999.11 fs . In this region there is no definite equilibrium, where the system can approach the 

stable periodic orbits in the right directions or approach the steady state in the left direction. 

 

 

(b)  

Figure 2- 11: (a) Bifurcation diagram at 22 fs , 23 fs , 002.0fh , 0001.01 B , 002.02 B  and 

the rest of the system parameters as in Table 2-3:  effect of  fs1  on )1(1s , (b) one dimensional Poincaré 

bifurcation diagrams (Poincaré plane is located at   305.021 s ) , 22 fs , 23 fs , 002.0fh , 

0001.01 B , 002.02 B and the rest of the system parameters a in Table 2- 3 for the corresponding initial 

conditions 

Initial conditions 

h(1) 0.000805984 

h(2) 0.004122 

s1(1) 5.4684 

s1(21) 0.31424 

s2(1) 5.6255 

s2(2) 2.018 

s3(1) 5.09 

s3(2) 3.833 

(a) 
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Figure 2- 12:  Dynamic characteristics at 95135.31 fs   , and 22 fs , 23 fs , 002.0fh , 

0001.01 B ,  002.02 B and the rest of the system parameters in Table 2- 3 for the corresponding 

initial conditions: 

(a) Phase plane for ACh in compartment 2(s1 (2)) vs. the ACh in compartment 1(s1 (1)) 

 (b) Phase plane for pH in compartment 2 (pH (2))   vs. the ACh in compartment 1 (s1 (1)) 
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(c) time traces of pH in compartment 2   (pH (2)),  (d) time traces of ACh in compartment 2 (s1 (2)), 

  (e) time traces of ACh in compartment 1 (s1 (1)), and (f) time traces of acetate in compartment 2 (s3 (2)) 

 

4. Region 4:  999.11 fs  

This region corresponds to feed ACh concentration lower than 51010061.0   kmol/m3. In this 

range, the stable stationary state is the only solution available in this region.  Figure 2-8(a) illustrates 

that s1(1) varies in the range 4.4-1 corresponding to   51005033.021.0   kmol/m3 

Figure 2-8(e) shows that the pH in compartment 2 (pH (2)) varies in a narrow range of 7.95 and 8.14. 

Figure 2-8(c) shows that the choline concentration in compartment 1(s2(1)) is lower than 41022.3   

kmol/m3. In comparison to the results of Garhyan et al., (2006) and Mahecha- Botero et al., (2004), 

their  dynamical behavior occurs in the range ( 64.1  43.21 fs ) which is wider than our range 

which is 99.1  39.21 fs ).  

Figure 2-11 (a) shows the static bifurcation diagram at 002.0fh , 002.02 B  and the rest of the 

system parameters are shown in Table 2.3. The effect of fs1 as the bifurcation parameter on )1(1s  is 

studied at the corresponding initial conditions, in order to investigate the fully developed chaotic 

behavior. In Figure 2-11(a) there are two Hopf bifurcation points, the first HB point is at 932.31 fs , 

and the other is at 453.71 fs . The periodic branch loses its stability giving rise to chaotic behavior 

at 5.872541 fs . 

In addition, this region is characterized by the presence of fully developed chaos (Figure 2-11(b)). 

Chaos may develop via the well known Feigenbaum period adding route (Feigenbaum, 1980). Period 

adding appears when 95115.31 fs .  In order to have a full picture about the evolution of the 

chaotic behavior, Pioncare abstracted the time trace and phase plan representations to a 

comprehensive map where a hypothetical hyperplane surface is assumed to cross the trajectory in the 

state space, the Pioncare map accounts only for the intersections of the plan with the trajectories.  

Figure 2-11(b) shows the Pioncare map of the region under consideration. It is clear that the evolution 

of chaotic behavior is via period adding sequence, the map is characterized also by wide regions of 

periodic windows of period adding. This map of Figure 2-11(b) is constructed using Pioncare plan 

at 305.0)2(1 s . The periodic bifurcation sequence is characterized by period adding sequence to 
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chaos; this may be summarized as follows:  Period one attractor – evolution of chaos via period 

adding– window of period two  -  evolution of chaos via period adding – window of period three - 

evolution of chaos via period adding – window of period four - evolution of chaos 

via period adding –  
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Figure 2-13: Dynamic characteristics at 3.95181 fs  and 22 fs , 23 fs , 002.0fh , 

0001.01 B , 002.02 B and the rest of the system parameters as in Table 2- 3 for the corresponding 

initial conditions 

((a) phase plane for ACh in compartment 2(s1 (2)) vs. the ACh in compartment 1(s1 (1)) 

Initial conditions 

h(1) 0.000805984 

h(2) 0.004122 

s1(1) 5.4684 

s1(21) 0.31424 

s2(1) 5.6255 

s2(2) 2.018 

s3(1) 5.09 

s3(2) 3.833 
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 (b) phase plane for pH in compartment 2 (pH (2))   vs. the ACh in compartment 1 (s1 (1)) 

(c) time traces of pH in compartment 2   (pH (2)),  (d) time traces of ACh in compartment 2 (s1 (2)),  (e) time 

traces of ACh in compartment 1 (s1 (1)), and (f) time traces of acetate in compartment 2 (s3 (2)). 

 

window of period five – evolution of chaos via period adding – window of period six and so on where 

a cascade of further period adding occurs as fs1 decreases until the map becomes chaotic and the 

attractor changes from a finite to an infinite set of points. Time traces and phase planes are shown in 

Figure 2-12 and in Figure 2-13 at 95135.31 fs and 3.95181 fs  respectively as chaotic 

intermittency attractors. In the intermittency route, periodic oscillations dominate for certain time 

intervals, and then they are interrupted by bursts of erratic oscillations of finite durations (Garhyan et 

al (2006).  Figure 2-12 illustrates that after an initial transient, the solution settles into an irregular 

oscillation that persists as time (T) approaches infinity. 

 

2.7 Summary and Conclusions 

Two kinetic mechanisms for both the synthesis reactions catalyzed by the enzyme ChAT and 

the hydrolysis reactions catalyzed by the enzyme (AChE) are proposed to obtain more reasonable rate 

equations for describing the synthesis and hydrolysis kinetics in the synapses and for simulating the 

ACh neurocycle in the brain. These rate equations are pH dependent and substrate inhibited. An 

eight-dimensional non-linear mathematical model (two-enzyme/two-compartment) is proposed for 

describing the metabolic events in the ACh neurocycle system considering the physiological reality of 

the choline uptake from the synaptic cleft into the presynaptic neuron. The concepts of complex 

nonlinear dynamics such as dynamic and static bifurcation, chaos and instability have been applied to 

predict and control the system performance.  The proposed model and kinetic mechanisms showed 

that they are important for understanding the behavior of the cholinergic ACh neurocycle.  

The results obtained from studying the effect of bifurcation parameters such as (the feed 

hydrogen ions concentrations and the AChE enzyme activity and feed ACh concentrations) assures  

the presence of oscillatory behavior at the low concentrations of these parameters. The ACh 

cholinergic system is characterized by the existence of complex dynamic phenomena such as chaotic 

behavior via a period adding sequence and instability around the subcritical hopf bifurcation points. It 

is found that the system is not influenced clearly at low pHf. The results are in accordance with the 

physiological and experimental and theoretical reviews. One of the main explanations is that the high 
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concentrations of H+ will inhibit choline diffusion into presynaptic membrane, another explanation is 

that the high concentrations may inhibit the synthesis and hydrolysis reaction and finally will cause 

the state variables to approach the plateau as illustrated in Figure 2-3 (a, b, c, d and e). The choline 

recycled from the postsynaptic neurons to be reused in the presynaptic neurons is taken into 

consideration and will help the system to control and regulate the levels of the state variables in both 

compartments.  Therefore, ACh and choline concentrations in compartment (1) are higher than that of 

Mahecha- Botero et al., (2004) because of the choline uptake considerations and the reasonable rate 

equation of synthesis of ACh. 

From investigating the static bifurcation  of the bifurcation parameters of the activity of AChE 

enzyme and mobile feed ACh concentrations, it is observed that the hysteresis and multiplicity 

control the system. This hysteresis phenomenon reflects flexibility of the system and its capability to 

respond to any forcing disturbances affecting the cholinergic ACh system to be able to regulate its 

components to adapt to any sudden changes.   The feed back mechanism of the system can work as a 

vital control device to control and regulate the transmission activity and the processes of the ACh in 

both compartments.  The findings of this research can be useful to be able to understand the 

characteristics and the behavior of the ACh cholinergic system and discover the disturbances in the 

enzymatic processes occurring in the system. In addition, the relation between the neurological 

sicknesses like Alzheimer’s and Parkinson’s disease and the complex dynamics and chaotic behavior 

of the ACh system can be helpful for enriching more research on  other disorders in living organisms.  
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Chapter 3 

Effect of Choline and Acetate Substrates on Bifurcation and 

Chaotic Behavior of Acetylcholine Neurocycle and Alzheimer's and 

Parkinson's Diseases 

This chapter is based on the paper published by Mustafa et al., (2009)b. In this chapter a novel two-

enzyme/ two-compartment model is developed in order to explore the dynamics, bifurcation, and 

chaotic characteristics of the acetylcholine neurocycle. The model takes into consideration the 

physiological events of the choline uptake into the presynaptic neuron and choline release in the 

postsynaptic neuron.   The effects of feed choline concentrations, feed acetate concentrations as 

bifurcation parameters are studied. It was found that feed choline concentrations play an important 

role and have a direct effect on the acetylcholine neurocycle through a certain important range of 

parameters. The feed acetate concentrations have less effect.  A detailed bifurcation analysis over a 

wide range of parameters is carried out in order to uncover some important features of the system, 

such as static bifurcation, dynamic bifurcation and chaotic behavior. These findings are related to the 

real phenomena occurring in the neurons, like periodic stimulation of neural cells and non-regular 

functioning of acetylcholine receptors. The results are compared to the results of physiological 

experiments and other published models. As there is strong evidence that cholinergic brain diseases 

like Alzheimer’s disease and Parkinson’s disease are related to the concentration of acetylcholine, the 

.present findings are useful for uncovering some of the characteristics of these diseases and 

encouraging well directed physiological research coupled to useful mathematical modeling. It is 

concluded from the results in this chapter that feed choline is more important factor than feed acetate 

in ACh processes.  

Keywords: Acetylcholinesterase  Cholineacetyltransferase, Acetylcholine, Choline, Acetate,   

Neurocycle, Hydrogen ions, Parkinson’s disease , Alzheimer’s disease, Dynamic behavior, 

Bifurcation,  Chaos. 

3.1  Introduction 

 The neurotransmitter acetylcholine (ACh) plays a vital role in both peripheral and central 

nervous systems where it is responsible for physical and mental activities [Brandon et al., (2004)].  
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ACh is essential for the regulation of the processes of consciousness, thinking, attention, sleeping, 

movement and memory excitation [Brandon et al., (2004)].  

The ACh neurocycle system is involved in the following main processes: Firstly, the biosynthesis of 

ACh occurring is performed in the presynaptic neurons and catalyzed by the enzyme 

Cholineacetyltransferase (ChAT); the required substrates are choline and acetyl coenzyme A (Acetyl-

CoA). Secondly, ACh is released by fusion of the membranes of the presynaptic neurons with 

synaptic vesicles storing ACh, where it reacts with the receptors of the postsynaptic neurons to cause 

the electrochemical signals. Thirdly, ACh is hydrolyzed by the enzyme acetylcholinesterase (AChE) 

in the synaptic cleft to produce acetate and choline. Fourthly, the choline which is produced from the 

hydrolysis reaction is recycled from the synaptic cleft to the presynaptic neurons to be reused in the 

synthesis of ACh [Brandon et al., (2004)]. 

Acetyl-CoA is a vital substance contributing  with the ATP in  most of the metabolic 

reactions as a source of  energy.  It is clear that there are three substances required for syntheis of 

ACh: acetyl-CoA, choline, and ChAT. Acetyl-CoA is the only component of these three substances 

that is synthesized in the ending terminals of the presynaptic neurons (Tucek 1978). However, ChAT 

is synthesized in the cell bodies of cholinergic neurons and transported to the presynaptic terminals by 

the axonal transport mechanism; and choline is supplied from the hydrolysis of ACh and other 

sources in the environment outside the presynaptic neurons (Tucek 1978).  

Choline required for the synthesis of ACh in the presynaptic terminals is given by the high 

affinity transporter from extra cellular fluid. There are two sources for choline in the environment of 

the brain: the first source is from the degradation of choline containing compounds existing in brain 

cells, and the second source is from the free choline of the blood plasma (Tucek 1985).  

The content of choline can be determined by the technique of steam pulse sequence which is 

used for diagnosis of the irregularities in brain. Dawn et al., (2006) measured the choline 

concentration  in the thalamus region and found it as 2.0±0.4 µ mol/g wet wt, and in the frontal lobe 

white matter, choline concentration was 1.9 ± 0.5 µ mol/g wet wt. Phosphatidylcholine and 

sphingomyelin in the extracellular fluid are considered as a basic resource of choline, where 

phospholipase catalyzed the degradation of phosphatidylcholine to produce free choline to be used for 

ACh production in the presynaptic neurons [Brandon et al., (2004); Lee et al., (1993); Zhao et al., 

(2001), Eugene et al., (2004)].   There is a scientific reality that the neurons in the nervous systems 

cannot synthesize choline in spite of its being as a vital compound for the life of neurons and very 

simple compound. The cells of nervous tissue can only release choline from its original compounds. 
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[Bussiere et al., (2001), Ballivet et al., (1996)].  In addition the surface membranes of the neurons are 

equipped with transporters for carrying choline from outside of the presynaptic neurons [Bussiere et 

al., (2001)]. The brain generally can obtain choline in the form of free choline and phospholipids via 

the blood stream [Glenn et al., (1983), Ballivet et al., (1996)].    

Liver in living organisms represents the man source of choline [Ballivet et al., (1996)]. 

Choline is synthesized not as a free compound, but as the choline moiety of phosphatidylcholine 

[Chiao-Kang (1988), Matthies, et al., (2006)]. It is released from phosphatidylcholine mainly via the 

steps of lysophosphatidylcholine to glycerylphosphorylcholine then to choline [Matthies, et al., 

(2006)].  It can be included that the brain cannot synthesize choline itself but it can produce free 

choline [Tucek (1985)]. It has been found that the blood stream leaving the brain contains free choline 

in a concentration higher than that the blood coming to the brain [Tucek, (1978), and Tucek, (1985); 

Bussiere et al., (2001) and Ballivet et al., (1996)].  

 We thus face a very intersting situation that an organ believed to  synthesize new choline in 

any form acts as a producer of  its unesterified variety, and that the only source of this compound for 

brain ACh or membrane biosynthesis is the choline or choline-containing phospholipids taken up 

from the circulation (Tucek 1985). Because it is oberved that the brian  is unable to synthesize 

choline, it is some kind hardly to agree with the concept  of its production [Jan et al., 1981]. 

According to Weckler (1988), the levels of the synthesized ACh concentration depend on the range of 

the free choline concentration as a substrate, for example, he found that the synthesis of ACh did not 

change although the concentrations of free choline increased in brain rats. Furthermore, both of the 

concentrations of the synthesized ACh and the concentration of the released free choline reduced 

much when the content of the choline diet decreased.  

The experimental reviews confirm that the brain cannot synthesize free choline. Alternatively 

it utilizes lysophosphatidylcholine as a bound choline for synthesizing ACh [Weckler (1988)]. 

Moreover, experimental findings indicate that the free choline of the blood plasma represents only a 

part of the total amount of choline which is supplied to the brain. Most of choline is supplied in a 

bound form such as lysophospahtetidylcholine and lipoproteins [Tucek (1985), Weckler (1988)]. In 

surface membranes of the cells, there are   low affinity transporters for choline such as high affinity 

transporters [Matthies, et al., (2006)]. 
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Figure 3-1: Schematic of synaptic neurons and cleft 

"This image has been reproduced from AnaesthesiaUK with permission  

(www.AnaesthesiaUK.com) 

The free choline in the blood plasma shares in a different fraction for supplying choline 

required for ACh synthesis based on the type of living beings. For example, Tucek (1978) showed 

that free choline contributes with 12% in rats, 50% in rabbits, and 80% in mice. Choline produced in 

synaptic gaps by the hydrolysis of   ACh is re-utilized for the synthesis of   ACh in presynaptic nerve 

endings (Tucek 1978). Therefore, choline recycled plays an important role in the synthesis of   ACh 

and represent with around 50% of the choline utilized in the synthesis of ACh. Because the blood-

brain barriers inhibit crossing plasma choline, the capillary endothelia of the brain overcomes this 

problem by choline carriers which work by facilitated diffusion similar to that for the neutral amino 

acids [Carl Faingold and Gerhard (1991)]. Although choline transports from blood to brain after the 
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consumption of high diet , the effluent of choline from brain to blood confirm the production of 

choline in brain by the hydrolysis of compounds containing choline such as phospholipids and ACh 

[Tucek (1985), Carl Faingold and Gerhard (1991)]. 

Several studies [Shawn et al., (2004), Pinthong, (2008), Mullen et al., (2007), Michel et al., 

(2006)] indicate that external choline in the environment outside the presynaptic terminal may play an 

important role for regulating the dynamics of ACh.  There are a lot of arguments about the source of 

choline required for ACh synthesis in brain, However, it is thought that the sources exist outside the 

cholinergic neuron and contain three main sources: the first is choline generated from the hydrolysis 

of ACh, the second source is choline in the form of phospholipids and the third sources is free choline 

in plasma [Wecker and Dettbarn (1978), Tucek (1978); Kewitz et al., (1975); Ansell and Spanner 

(1975)]. 

Acetyl-CoA is synthesized actually in the mitochondria of the presynapic neurons. Acetyl-CoA plays 

an important role in the metabolic reactions. It supplies the acetyl group for catabolism of the 

synthetic reactions, energy production, and cell growth.  However, the process of transport of acetyl 

CoA from inside of the mitochondria through the membranes to the cytoplasm of the presynaptic 

neuron is not understood [Tucek (1984); Carl Faingold and Gerhard (1991)]. Acetyl CoA is formed 

from acetate by the enzyme acetyl-CoA synthase. It has been found that acetate can influence the 

central nervous system (CNS) [Carmichael et al., (1991)]. In addition to the function of Acetyl CoA 

as a substrate for the synthesis of ACh, it can be used for energy generation [Yuri et al., (2003), 

Tucek (1978), Carmichael et al., (1991)]. 

 Kwok et al., (1982)  investigated the role of delivery of acetyl-CoA to obtain high levels of 

synthesied ACh in stimulated ganglia. They found that the high delivery acetyl-CoA was not affected 

when ACh release decreased. This leads to the strong possibility that it does not seem likely that 

acetyl-CoA delivery is the only factor involved in regulating ACh synthesis in ganglia [Yuri et al., 

(2003), Kwok et al., (1982)]. One of these factors is choline uptake from the synaptic cleft to the 

presynaptic neuron for ACh synthesis [Tucek (1990), Tucek, (1988); Cooper., (1994)]. 

To simulate the hydrolysis, excitation and synthesis processes of ACh, artificial membranes 

immobilized with the enzymes have been applied. Santos et al., (2006) found that an action potential 

difference in the form of hysteresis when they used artificial membranes immobilized with AChE and 

injected ACh in one side of the membranes. Because the enzymatic reactions were accompanied by 

production of H+, an auto-catalytic behavior will be dominated in the system (Santos et al., (2006); 
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Mustafa et al., a, b (2009)). Moreover, the hysteresis of the action potential differences will exist in 

the form the internal pH because of the amphoteric properties of the membrane. 

Elnashaie et al. (1995) studied the neurocycle of the ACh system utilizing with AChE as the 

only enzyme. They studied complexity phenomena including dynamic and static bifurcations and the 

different kinds of solutions existing in the system. Mahecha-Botero et al., (2004) investigated a 

simplified neurocycle for the ACh as a two compartment model in ChAT /AChE system and found 

that complex dynamic bifurcations, hysteresis, multiplicity, period doubling and period halving, as 

well as period adding and period subtracting dominated the dynamics of the system.   Garhyan et al., 

(2006) presented the formulation of a diffusion-reaction model  to simulate the behavior of AChE and 

ChAT coupled enzymes system.  However they ignored the consideration of choline uptake in the 

system in the system in addition to the importance of ChAT enzyme activity in the presynaptic 

neurons. Hence, a lot of their results were out of the physiological range [Garhyan et al., (2006), 

Mahecha-Botero et al., (2004), Elnashaie et al. (1995), Elnashaie et al. (2005)]. It is not clear from 

previous findings whether the rate-limiting step in the overall synthesis of ACh in the human placenta 

is the availability of choline or acetate.  

 

 

Figure 3-2: Two-enzyme/ two -compartment model 

In this chapter we investigate the effect of choline and acetyl- CoA substrates on the 

performance of the cholinergic ACh system undertaken to increase our understanding of the 
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cholinergic system.  We try to determine the role of each substrate and compare between them. The 

different solutions of the system at different feed choline and acetate concentration parameters will be 

analyzed. We will validate our results by comparing to physiological and experimental results and the 

results of previous models.  We will depend on the previous two kinetic mechanisms (Mustafa et al., 

(2009)a): the first was for the synthesis of ACh by the enzyme ChAT and the other was for the 

hydrolysis of ACh by the enzyme AChE. We attempt to analyze the synthesis of ACh at the level of 

single cells, rather than the whole nervous system and try to investigate the role of feed (external) 

choline and acetyl CoA on the ACh processes.  The present work extends up on our earlier 

investigation (Mustafa et al., 2009)a. Here we still employ a novel diffusion-reaction model but 

improve upon our previous investigation by considering realistic kinetic schemes and data for ChAT 

synthesis reaction, and account for the recycle effects of choline. 

 

3.2  Formulation of the Diffusion Reaction Two-Enzyme /Two-Compartment 

Model 

The (ChAT/AChE) enzymes system inside the neural synaptic cleft can be schematically 

described in a simplified manner as shown in Figure 3.1. All processes occurring in the ACh 

cholinergic system is treated as a two-enzyme/two-compartment system.  As shown in Figure 3.1, 

compartment 1 represents the presynaptic neuron, and compartment 2 represents both the 

postsynaptic neuron and the synaptic cleft. Figure 3.1 shows that there is another stream of ACh 

entering compartment 1 coming by axonal transport which is called mobile ACh. The diagram shows 

that the choline is recycled from the synoptic cleft (compartment 2) into the presynaptic neuron 

terminal (compartment 1).  Also Figure 3.1 shows that there are two resources of choline. The first 

one is produced by the hydrolysis of ACh, and then a part of it is recycled to the first compartment. 

The second stream is synthesized in the fluid environment outside the presynaptic neuron where 

choline in the latter stream comes either directly from the unbound choline in the blood plasma, or 

from the release of phospholipids in the brain cells (Tucek 1985). The choline produced in 

compartment 2 is the only component existing in the recycle stream. The physiological references 

such as Tucek et al., 1978 and 1985 confirmed this point where they did not refer to recycling of any 

other components such as ACh and acetyl CoA. As explained before, the acetyl CoA is synthesized in 

the mitochondria in a high quantity from pyruvate formed by the metabolism of glucose.  All of these 

streams (The stream of axonal transport of ACh + The stream of choline synthesized in extracellular 
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space of compartment 1 + the stream of acetyl-CoA coming from mitochondria) are lumped in one 

feed stream which meets the recycle stream of choline coming from the hydrolysis of ACh to enter 

compartment 1 as shown in Figure 3.2.   Figure 3.2 shows a simplified form of the feedback model of 

ACh neurocycle shown in Figure 3.1.    

Figure 3.1 indicates that the ACh hydrolysis reaction, catalyzed by acetycholinesterase 

(AChE), occurs on ACh receptors which are located on the top of the postsynaptic neurons.  Then the 

products of hydrolysis (Choline and Acetate) go through the synaptic cleft. We lumped those two 

areas together into one homogeneously stirred compartment which is compartment 2 instead of 3 or 4 

or 5 compartment model because both the synaptic cleft and the post-synaptic neurons are interactive; 

in addition to avoid the expected complexity and difficulty to solve the model and analyze the results 

when the dimensionality is too high. The concentrations of components in compartment 2 represent 

the average concentrations in both the synaptic cleft and the post-synaptic neurons. Furthermore, we 

assumed that the flow rate of the feed stream to compartment 1 and that of the exit stream from 

compartment 2 are equal. In summary, each compartment is defined as a constant flow; constant 

volume, isothermal, continuous stirred tank reactor (CSTR) and the two compartments are separated 

by a permeable membrane. The ionization of the acetic acid is assumed to be completely in order to 

simplify the solution of the model. The diffusion and reaction events occurring in two contacted 

cholinergic neurons are explained by the two-enzyme two-compartment model. We assume that all 

processes occurring in the presynaptic neurons are homogeneous. We neglect the internal mass 

transfer process occurring between the synaptic vesicles and the surrounding cytoplasm in the 

presynaptic neurons.  

The following rate equations explain both synthesis and hydrolysis reactions  catalyzed by 

ChAT  and AChE respectively, where R(1)  represents the rate of  synthesis and R(2) represents the rate 

of  hydrolysis(Tucek (1990), Garhyan et al., (2006))  as follows: 

R(1)   :      Choline + Acetyl - CA  ChAT  ACh + CoA                                                 (1) 

ACh is destroyed in compartment 2 by AChE by the degradation reaction as follows: 

R(2) :       ACh + Water   AChE  Choline + Acetate + H+                                          (2) 

Both R (1) and R (2) are considered to be substrate inhibited and pH-dependent. This leads to a non-

monotonic dependence of the reaction rates on the substrates concentrations and pH. The rates can be 

formulated by employing certain assumptions and basic biokinetics knowledge as explained in the 

following section.  The details of the derivation are given in our previous work (Mustafa et al., 

2009)a.  The final dimensionless forms of the ordinary differential equations of the eight state 
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variables are summarized in Table 3.1. The model equations are in terms of eight state variables: 

           23132212211121  and  , , , , ,h ,h ssssss  and twenty five parameters (Tables 3.2 and 3.3). All 

values of the parameters and rates and differential equations are in the dimensionless form. All values 

of the parameters (with respective references) used in this investigation are given in Table 3.3. 

 

3.3 Solution Techniques and Numerical Tools 

The results of bifurcation diagrams for the system were obtained using XPPAUT and AUTO 

2000, a bifurcation and continuation software for ordinary differential equations package (Ermentrout 

2002).  The software AUTO 2000 is able to perform bifurcation analysis, determining the stability of 

the solutions, and drawing the different solution branches.  It has a lot of applications in both 

mathematics and engineering research areas because of its flexibility, efficiency and its multiple 

facilities.  Both static and dynamic bifurcations can be performed by this software package 

(Ermentrout 2002). The eigenvalues of the differential equations determine the stability of the system. 

If all eigenvalues have negative real parts, the system will be stable otherwise, it will be unstable. It 

will undergo bifurcation, if there is an eigenvalue with zero real part. The dynamics results such as 

phase planes and time traces were obtained via FORTRAN programme. For the chaotic behavior, we 

used one- dimensional Poincare map to investigate the intersections in one direction between a 

hyperplan surface (Which is chosen at certain value of a state variable) and trajectories. (Garhyan et 

al., 2006; and Strogatz 1994). From discrete points of intersections, we are able to construct the 

bifurcation diagram of Poincare. Then we can investigate the dynamics behavior of the chaotic 

attractors. This is performed using IMSL libraries which contain DGEAR subroutine. Step size is 

chosen automatic based on the stiff differential equations during the investigations of the dynamics.  

Sometimes we used matlab to ensure the solution quality. The Poincare diagram is plotted using a 

program employed by Ibrahim et al., (2002) [Garhyan et al., 2006; Ibrahim et al., 1995, Elnashaie et 

al., 1984)].  
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Table 3-1: Dimensionless forms of the ordinary differential equations of the eight state 

variables 
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Table 3-2: Dimensionless state variables, parameters and other terms 

Dimensionless State Variables 
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Table 3- 3: Values of the kinetic Parameters 

:Parameter Value Reference 

 1 5.2(0.1) Hersh & Peet (1977) 

 2 12 Hersh & Peet  (1977) 

 3 1000 Hersh & Peet (1977) 
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 4 5 Hersh & Peet (1977) 

 5 1 Hersh & Peet  (1977) 

  0.5 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

  1 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

Ka(kh) 1.066*10-6 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

 

Ks1 5.033*10-7 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

S2ref 4100.1  kMole/m3(µMole/mm3) Guyton and Hall, 2000 

S3ref 6100.1  kMole/m3(µMole/mm3) Guyton Hall, 2000 

1B  510033.5  kMole/m3(µMole/mm3) Garhyan et al., (2006) 

2B  
510033.5  kMole/m3(µMole/mm3) Garhyan   et al., (2006) 

H
  2.25 Elnashaie et al., 1984 

OH
  0.5 Elnashaie et al., 1984 

1S  1 Elnashaie et al., 1984 

2S  1 Elnashaie et al., 1984 

3S  1 Elnashaie et al., 1984 

RV  1.2 Elnashaie et al., 1984 

fpH  8.2 Guyton, 2000 



 

  60

fs1  15 Garhyan   et al., (2006) 

fs2  1.15 Garhyan et al., (2006) 

fs3  3.9 Garhyan et al., (2006) 

1  0.01 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

R 0.8 Tucek (1978) 

 

 

3.4 Physiological Values of the Parameters 

To validate the results of the system with physiological and experimental results and with 

other models of previous investigators during the investigations of the change the system parameters, 

we should compare our system behavior with the following physiological values of ACh, choline, 

acetate, and pH. These values depend on experimental review and other models like that used by 

Garhyan et al. (2006) and Mahecha- Botero et al. (2004). The concentrations are given in (Kmol/m3). 

Human brain pH in a feline model is found in the range of 6.95-7.35 [Zauner and Muizelaar( 1997)] 

and pH in a human brain was found by (Rae et al., 1996) in the range 6.95 - 7.15. Free ACh in rat 

brain was found around 51022.0   kmol/m3 and total ACh was in found around 51077.1   

kmol/m3. Tucek, 1990 and Garhyan et al., 2006 showed that in guinea pig cerebral cortex the range 

was 51031.0   (free ACh) to 51067.1   kmol/m3 (total ACh) [Garhyan et al., (2006)].  

Wessler et al. (2001) and Mahecha- Botero et al. (2004) reported that ACh concentration in 

human placenta in the range of 5100.3   to 5105.55   kmol/m3.  Mahecha- Botero (2004) showed 

that in the isolated rings of rat pulmonary artery ACh was measured to be in the range of 

510001.0   to 5100.3    as pointed to Kysela and Torok, (1996). Mahecha- Botero (2004) and 

Garhyan et al. (2006) reported that choline concentration in mouse rat brain is about 41015.1   

kmol/m3. This range was confirmed by Tucek (1978) and choline concentration in human plasma is in 

the range of 41001.0   to 4107.0   kmol/m3 (Chay and Rinzel, 1981; Mahecha – Botero (2004) 

and Garhyan et al., (2006)). 
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The real concentration of ACh in cholinergic neurons of the brain is not known (Tucek 1978 and 

1990).  Despite the uncertainties associated with this estimate (the main being the proportion of 

cholinergic neurons in the total neuronal population of the brain), it is evident that, in the light of the 

present knowledge, the estimated equilibrium concentration of ACh (1.2 x 10-5 kmol/m3) and the 

estimated concentration of ACh in cholinergic neurons (36 x 10-5 kmol/m3) do not appear vastly 

different incompatible values. A higher concentration of ACh in presynaptic nerve endings might be 

achieved in two ways: by the accumulation of ACh in synaptic vesicles, and by higher concentration 

substrates in this part of neuron. 

3.5  Results and Discussion 

The diffusion-reaction biosystem bifurcation and chaotic behavior is extensively investigated 

using two bifurcation parameters: (A) Feed choline concentration ( fs2 ), (B) Feed acetate 

concentration ( fs3 ), All of these parameters are in the dimensionless form. The effects of each 

parameter are explained below:  

3.5.1 Feed Choline Concentrations   2fs   

We investigate static and dynamic bifurcation due to the change of feed choline concentration. 

We studied the static bifurcation at a high value of the feed ACh concentrations s1f =15 corresponding 

to 0.755 x10-5 kmol/m3 as a medium value in the range of ACh in rat brain given by Tucek (1978) and 

the dynamic bifurcation at s1f =2.4 corresponding to 0.12 x10-5 kmol/m3
 which is the lowest value in 

the range given by Tucek (1978). The range given by Tucek (1978) is [ 51012.0  to 51077.1  ] 

kmol/m3. The bifurcation parameter (S2f) is an independent parameter and represents the 

concentration of choline in the feed stream coming from either from the unbound choline in the blood 

plasma, or from the release of phospholipids in the brain cells or from both together before meeting 

the recycle stream. So that both of feed stream and recycle stream are independent and different. 

 

Case (1): Static Bifurcation at s1f  =15 (corresponding to 0.755 x10-5 kmol/m3) 

Figure 3.3 shows the bifurcation diagrams with fs2  as the bifurcation parameter for a very wide 

range of values using fixed values of .151 fs  and h1f = 0.0062682 equivalent to pH=8.2. Only a static 

bifurcation in the form of hysteresis controlling  system is found in this case. Figure 3.3 shows the 

static bifurcation through investigating the effect of changing the feed choline concentration (s2f) on 
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the ACh concentrations (s11 and s12) in compartments 1 and 2,  choline concentration in compartment 

1 (s21) and acetate concentration in compartment 2 (s32).  Figures 5.3(a) and (b) , respectively,  show 

that s11 and s12, respectively, are increasing with increasing s2f until certain a value of s2f then s11 and 

s12 remain constant with further increase of s2f. This is compatible with the experimental results done 

by Tucek (1990) and Lefresne (1973) who indicated that the content of ACh increases until it reaches 

a certain limiting value and then remains stable when the choline substrate concentration increases. 

However; s21 increases continuously as a function of s2f. If we investigated the effect of s2f on s22, s22 

will behave like s21 which will increase as s2f increases. The ACh concentrations synthesized in both 

compartments 1 and 2 (s11, s12) are increasing with a high rate at  8.132 fs , however; at a high feed 

choline concentration  fs213.8   corresponding to  fs2
3-4  /mkmole 10 x 13.8  , ACh is 

synthesized less efficiently from the feed choline concentration which accumulated in nervous tissue. 
This is in agreement with the results obtained by Schwartz et al., (1975) who indicated  that at  small 

concentrations of external choline, a big part of them was consumed to produce ACh and estimated in 

the range 60-75%, ; however, these valued reduced much when the external choline concentrations 

increased. Furthermore, our results are in agreement with the results obtained by Morel (1976) who 

found that when the available concentrations of choline in the cholinergic environment were plentiful, 

the fraction of acetate reacted with choline to produce ACh increased. Moreover, as choline was 

added highly, the ACh levels produced by the synthesis were unaltered.  Furthermore, these results 

are compatible with the experimental results done by Weckler (1988) who showed that the ACh 

content was not affected in the presence of high concentrations of free choline released from brain 

cells in rats although there was a high necessity for new synthesized ACh.   In addition; Weckler 

(1988) indicated that the capability of the brain neurons to synthesize new ACh decreased highly in 

the conditions of lack of available choline, where the brain cells become unable to release free 

choline.  

Our results are in complete agreements with that done by Schwartz et al., (1975) who also 

found that the fraction of choline consumed to produce ACh at low external choline concentrations is 

higher than that at high choline concentrations. Therefore, ACh was synthesized considerably less 

efficiently from the excess choline which accumulated in the nervous tissue at external choline 

concentrations greater than about 30x10-4 kmole/m3.  In our model ACh was synthesized less 

efficiently when external choline concentration s2f is about 25 corresponding to 25 *10-4 kmole/m3.  

From the constancy of ACh concentrations in both compartments in the presence of choline  
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Figure 3-3: Bifurcation diagrams with choline feed concentration fs2  as the bifurcation parameter 

 151 fs  and the rest of data as shown in Table 3.3: 

(a) Bifurcation diagram for ACh concentration in compartment 1( 11s ), (b) Bifurcation diagram for ACh 

concentration in compartment 2( 12s ).  (c)Bifurcation diagram for choline concentration in compartment 

1( 21s ),   (d) Bifurcation diagram for acetate concentration in compartment 2( 32s ), and (e) Bifurcation 

diagram for pH in compartment 2 (pH 2). 
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concentrations higher than the critical value, i.e.  fs213.8   we can conclude that the release rate of 

ACh varied in parallel and in accordance to the incorporation rate of the feed choline (s2f) to be 

catalyzed by the enzyme ChAT to produce ACh in compartment 1.  The released transmitter in 

compartment 2 is compensated by synthesizing a new ACh in compartment 1. Therefore, the rate of 

ACh synthesis must be equivalent to the rate of transmitter release. These results confirm that the 

ChAT is inhibited by the excess concentrations of choline as a substrate. Another explanation is that 

this excess choline might be converted to an unknown material which is unable to be consumed to 

produce to ACh. 

The results appearing in Figure 3.3 are in agreement with that obtained by Birks (1985) who 

showed that choline uptake from the synaptic cleft to the presynaptic neuron was the controlling 

factor for ACh synthesis where he has also shown that the relation between ACh synthesis and 

external choline fitted the Michaelis-Menten  equation. Figure 5.3 (d) shows that s32 decreases as s2f 

with increasing s2f until certain value of s2f then s32 remains constant with further increase of s2f.  

As the value of the bifurcation parameter fs2  increases while all other parameters are kept constant 

and shown in Table 3-3, different regions in the neurocycle are observed as shown in Figures 3.3 (a, 

b, c, d and e) as follows:   

1. Region 1: High feed choline concentration in the region  fs28.13  . In this region the system is 

characterized by a unique stable steady state and all the state variables except s21 change slightly 

while s21 increases continuously as shown in Figure 3.3 where s11 approaches a value close to 45 

corresponding to 2.26 x10-5 kmol/m3 and s12 close to 18(0.91x10-5 kmol/m3) and s32 close to 3 

corresponding to (3 x10-6 kmol/m3). Figure 3.3(e) shows that pH2 has its highest value of  4.5  which 

is close to the physiological values where Damsma et al., (1987) showed that the enzymatic 

conversion of choline and ACh was optimal between pH= 0.0 and pH= 5. However Mexel et al., 

(2006) showed that cortical brain pH across ranged from 5.80 to 6.95.  

2. Region 2:  9.139.7 2  fs   

As s2f is decreased, a hysteresis phenomenon occurs and a multiplicity of steady states is observed 

between the two static bifurcation points (SB1 and SB2). In this range there are two stable steady state 

solutions separated by unstable steady state solution (which is called saddle node). The multiplicity 

dominates the system between the two static bifurcation points where the second static bifurcation 

appears at s2f=7.9. Hysteresis causes the state variables to be very sensitive in the neighborhood of the 

static bifurcation points. The hysteresis phenomenon has a vital significance where it reflects the 
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flexibility of the system to external disturbances as the shortage or plentiful feed choline 

concentration transported close to the static bifurcation points. For example, Figure 3.3(b) illustrates 

the 12s  changes suddenly from 2.94345  to 18  corresponding to (0.15 and 0.91) x10-5 kmol/m3 

respectively with a slight increase in feed choline concentration near the static bifurcation point SB1. 

This region fits reasonably well to the expected physiological behavior. Figure 3.3(a) shows that 11s  

varies in the range 36 to 45 corresponding to 5108.1   and 51026.2   kmol/m3 while the 

dimensionless 12s  varies in the range 3.5 and 18 corresponding to  51075.1   and 6109   

kmol/m3.  Figure 3.3(e) shows that pH2 is out of the expected physiological range and it is varying 

between 4.64 and 5.57.  A reasonable explanation of this unexpected pH values is due to the 

assumption of fully ionization of acetic acid, i.e. one molecule of the acid gives a molecule of acetate 

ion and hydrogen ion , whereas, from 1-2% only of the acetic acid goes through ionization process. 

Hence, acetic acid may go through partial ionization not fully ionization process.  

 

3.   Region 3: Low feed choline concentration in the region  9.70 2  fs    

In this region there is a unique stable steady state. The values of the state variables in this region are 

close to the physiological values and follow the expected biological behavior Figure 3.3(a) shows that 

11s  vary between 15 and 27 corresponding to  6105.7   and 6105.13   kmol/m3. Figure 3.3(b) 

shows that 12s  varies between 0.002 and 2.98 corresponding to 5100001.0   and 510147.0   

kmol/m3. Figure 3.3(e) shows that pH2 varies from 4.75 to 5.23.    These results are in agreement with 

that of Schwartz et al., (1975) and Ismail et al., 1989. Schwartz et al., (1975) illustrated that at small 

concentrations of external choline, a big part of them was consumed to produce ACh and estimated in 

the range 60-75%; however, these valued reduced much when the external choline concentrations 

increased. Thus, the excessive choline which uptakes into the presynaptic neuron (compartment 1) 

becomes unavailable for the synthesis of ACh (Schwartz et al., (1975); Ismail et al., 1989). In our 

model, the ACh concentrations s11 increased about 67% due to increase of the s2f then s11 became 

constant as s2f increased. 

 

Case (2): Dynamic Bifurcation at s1f =2.4 

  Figure 3.4 shows the dynamic bifurcation diagrams using feed choline concentrations (s2f) as 

the bifurcation parameter but with a different value of mobile feed substrate  concentration 
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 4.21 fs which represents a very low feed ACh concentrations. Figure 3.4 shows the complex 

behavior of the system through various stages in the neurocycle for a narrow range of the bifurcation 

parameter ( 4
2

4 102.1106.0   fs ) kmol/m3. It is clear that the system has rich dynamics 

phenomena at low concentration of s2f where the feed choline concentrations are too small to start the 

synthesis reaction catalyzed by ChAT.    

Figure 3.4 shows that there are three main observed regions in the bifurcation diagram, each one 

corresponding to a different form of qualitative behavior. There are two Hopf bifurcations (HBs). The 

first HB1 appears at 69.02 fs  and the other HB2 at 14085.12 fs .  Mathematically HB point 

appears when the real parts of a pair of complex conjugate eigenvalues become negative, causing the 

system to undergo a bifurcation. HB2 is defined as a “subcritical Hopf bifurcation” because a branch 

of unstable periodic orbits (appeared as empty circles) appears with a stable stationery branch at this 

point forming a separatrix between the basins of the attraction of the stable steady states. It is clear in 

this range of fs2  values, that the system demonstrates oscillatory behavior between the HB points. 

Hence, the periodic solution is the only solution available and the stationary points are not attractors 

anymore but repellent, and the limit cycles are the only attractors (periodic attractors) as illustrated in 

Figure 3.5, in which the behavior of state variables  describe oscillatory solutions.  

The oscillatory behavior in the range of feed choline concentration (range between HB1 and HB2) 

may play a vital role in the synthesis of ACh according to Santos et al., (2006). Solid bold curves 

represent stable steady state solutions and dashed lines represent the unstable steady states. Closed 

circles are used for stable orbits and the open circles for the unstable orbits. The oscillatory behavior 

represented by the branch between HB1 and HB2 (unstable zone) is also easily visualized in Figure 

3.5 at s2f =1.142 for ( 1.146760.914833 2  fs ).  
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Figure 3-4: Bifurcation diagrams with choline feed concentration fs2  as the bifurcation parameter 

 4.21 fs  and the rest of data as shown in Table 3.3: 

(a)   Bifurcation diagram for ACh concentration in compartment 1 ( 11s ).,  

(b)  Bifurcation diagram for ACh concentration in compartment 2 ( 12s ).  

 (c)  Bifurcation diagram for choline concentration in compartment 1( 21s ),    

(d) Bifurcation diagram for acetate concentration in compartment 2 ( 32s ), and   

(e)  Bifurcation diagram for pH in compartment 2(pH 2). 
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Figure 3-5: Dynamic characteristics 142.12 fs , s1f=2.4, s3f=3.9, and 006268.0fh  for different 

initial conditions: 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1  

(c)  Time traces of pH in compartment 2   , (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1, and (f) Time traces of acetate in compartment 2 

 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s11 3.956 

s12 0.3 

s21 3.233 

s22 1.1606 

s31 8.2517318 

s32 4.9606 
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Figure 3-6:  Dynamic characteristics  142.12 fs  , s1f=2.4, s3f=3.9, and 006268.0fh  for the 

corresponding initial conditions. 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1 , 

(c)  Time traces of pH in compartment 2   , (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1, and (f) Time traces of acetate in compartment 2 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s11 3.956 

s12 0.25 

s21 3.233 

s22 1.1606 

s31 8.2517318 

s32 4.9606 
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Figure 3-7: Bifurcation diagram showing the effect of s2f on s11 at s1f=4.5, s3f=2, B1=0.0001, B2=0.002, 

hf=0.002 and the rest of parameters as shown in Table 5.3. 
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Figure 3-8: Poincare Bifurcation diagram: Poincare plane is located at s12 =0.3, s1f=4.5, s3f=2, 

hf=0.002 and the rest of parameters as shown Table 5.3. 
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In the range ( 1.1467614085.1 2  fs ) corresponding to ( 5
2

5 104676.111041.11   fs ) 

kmole / m3,  In this region, the phenomenon of bistability is appeared. It is observed that both point 

attractors and periodic attractors coexist with unstable periodic attractors (appeared as empty circles) 

separating them. The significance of the bistability is that the system can approach to both attractors 

(either point or periodic) at the same value of the bifurcation parameter s2f based on the corresponding 

initial conditions. 

Both periodic orbits and steady state stationery points exist together as shown in Figures 3.5 and 3.6. 

It is observed that the periodic orbits cease to exist when 1.146762 fs . The biochemical 

interpretation for the unstable waves in Figures 3.5 and 3.6 is that they occur as a consequence of the 

competition between diffusion processes from compartment 1 to compartment 2 and both enzyme 

reactions: the synthesis reactions catalyzed by the enzyme ChAT and the hydrolysis reactions 

catalyzed by the enzyme AChE. 

 The physiological values correspond to a range of feed choline concentration between   

51041.11   and 5104676.11  . The pH in compartment 2 (pH2) is inside the physiological 

expected range where it is between 6.75 and 8.2. This region with low choline concentration is thus 

characterized by the presence of bistability. The period doubling (PD) points occur at s2f = 0.913 and 

s2f =1.147. The period doubling is one of the routes leading to chaos. The first initial conditions 

(Figure 3.5) lead to a periodic attractor, while the second initial conditions (Figure 3.6) lead to a point 

attractor. In addition, when initial conditions are changed in certain range, chaos will appear as will 

be shown in Figures 3. 8 and 3.9.  

The amounts of choline and ACh associated with various times are also presented in Figure 

3.6. The rate of decrease in acetate levels s32 is also the highest during the early portion of the period 

(Figure 3.6(f)), but when 5T (corresponding to 62.5µseT ), s32 begins to plateau around 4.96. 

After 40T (corresponding to 500µsec) there is no further change in the intracellular levels of 

acetate s32. In contrast to the levels of acetate, the amount of ACh s11and s12 as shown in Figures 

3.6(e) and 3.6(d) increases in a high rate during the early portion of the incubation period then when 

T5  began to plateau. When T40  there was no significant change in the intracellular contents 

of s11 which approaches plateau around 3.898 (corresponding to 0.196 x 10-5 kmol/m3) and s12 which 

is constant around 0.299    (corresponding to   0.015 x 10-5 kmol /m3). Figure 3.6(c) shows that pH2 

increased rapidly during the early portion of the period, when T5  pH2 begins to plateau around 

6.88. These results are in agreement with Steven and Peter (1984) who found that the rate of choline 
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consumption was very fast during the earlier portion of the reaction period and decreased as the 

reaction progressed.  

In addition, our results are in accordance with Wecker and Dettbarn (1978)  who indicated 

that the steady state concentration of   ACh in discrete brain regions seems to be kept within small  

physiological ranges and the contents  of ACh will be unaltered even choline concentrations 

increased. The constancy concentrations of ACh in compartment 1 may refer to the inhibition of the 

synthesis reactions by the excess concentration of choline. 

 There are different views about the available multiple origins in brain  to be consumed for 

the synthesis of ACh, choline produced from the hydrolysis of ACh in compartment 2, plays a central 

role for supplying the presynaptic neurons with the required amount  of choline (Wecker and Dettbarn 

(1978)). 

Figure 3.5 shows that the amounts of choline and ACh at various times are also presented at 

the same values of the parameters such as Figure 3.6 but at different initial conditions. Figure 3.5 

illustrates that all of pH2, s11, s12, and s32 change periodically around the values that they arrived to 

plateau at in Figures 3.6. 

Figure 3.7 shows the static bifurcation diagram at 002.0fh  (pH=8.69), 002.02 B , 

B1=0.0001 , and 5.41 fs  and the rest of the system parameters are shown in Table 3.3. The effect 

of fs2 as the bifurcation parameter on s11 is studied at the corresponding initial conditions, in order to 

investigate the fully developed chaotic behavior. In Figure 3.7 there are two Hopf bifurcation points, 

the first HB1 point is at 094.12 fs , and the other is at 41.72 fs .  PD appears at s2f =1.25 where the 

periodic branch loses its stability giving rise to chaotic behavior at 16.12 fs  as will be shown in 

more details in Figure 3.7.  

In addition, the region 25.116.1 2  fs  is characterized by the presence of fully developed 

chaos (Figure 3.8). Chaos may develop via the well known Feigenbaum PD and period adding route 

(Feigenbaum, 1980) where PD appears at 25.12 fs .  In order to have a full picture about the 

evolution of the chaotic behavior, Pioncare abstracted the time trace and phase plan representations to 

a comprehensive map where a hypothetical hyperplane surface is assumed to cross the trajectory in 

the state space, the Pioncare map accounts only for the intersections of the plan with the trajectories 

in only one direction [Just and Kantz (2000)].    
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Figure 3-9: Dynamic characteristics at 1.15879999 2 fs  , 5.41 fs , 23 fs , 002.0fh , 0001.01 B , 

002.02 B and the rest of the system parameters as shown Table 3.3 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1  

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1 , and (f) Time traces of acetate in compartment 2 

 

Figure 3.8 shows the Pioncare map of the region under consideration. It is clear that the evolution of 

chaotic behavior is via a period adding sequence. A periodic solution (limit cycle) on the phase plane 

appears as one point on Poincaré map. When PD takes place, period 2 appears as two points on the 

map, period 4 as four points, and so on.  When chaos takes place, a complicated collection of points 

appears on Poincare map.  The map is characterized also by wide regions of periodic windows of 

period two and period three. This map of Figure 3.8 is constructed using a Pioncare plan at 3.012 s . 

The periodic bifurcation sequence is characterized by PD sequence to chaos and periods adding 

sequence of periodic windows; these are summarized below:  

 Figure 3.8 shows that period one attractor appears at s2f = 1.25 then evolution of chaos via 

PD appears as s2f decreases. When the feed choline concentrations decreases to s2f = 1.23, window of 

period two appears then evolution of chaos via PD follows. Window of period three at s2f = 1.21 
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followed by evolution of chaos via period adding. Furthermore, when s2f = 1.2 window of period four 

followed by evolution of chaos via period adding and window of period five appears at s2f = 1.19 

followed by evolution of chaos via period adding – window of period six at s2f = 1.17 and so on 

where a cascade of further period adding occurs as fs2 decreases until s2f = 1.16 the map becomes 

chaotic and the attractor changes from a finite to an infinite set of points. Time traces and phase 

planes are shown in Figure 3.9 and in Figure 3.10 at ,15879999.12 fs and ,158.12 fs  

respectively as chaotic attractors where it is shown that after an initial transient, the solution settles 

into an irregular oscillation that persists as time approaches infinity.  

 

 

 

Figure 3-10: Dynamic characteristics at 1.158 2 fs  , 5.41 fs , 23 fs , 002.0fh , 0001.01 B , 

002.02 B and the rest of the system parameters as shown Table 3.3. 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1  

(c)  Time traces of pH in compartment 2   , (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1, and (f) Time traces of acetate in compartment 2 
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3.5.2 Feed Acetate Concentrations (s3f)  

In the previous section it is well established that extracellular choline is returned into the 

presynaptic neurons to play a critical role to form the neurotransmitter ACh. The objective of the 

current section is to investigate the role of the feed acetate concentration and its effect on the levels of 

ACh, choline, and pH in both compartments.  A comparison between the role of feed acetate and feed 

choline will be held. 

We study static and dynamic bifurcations behaviors due to the change of feed acetate 

concentration as the bifurcation parameter.  Like the previous section of the feed choline 

concentration, the static bifurcation is taken at high value of the feed ACh concentrations s1f =15 and 

the dynamic bifurcation is at low value of the feed ACh concentrations s1f = 2.4.  The rest of 

parameter values are taken as shown in Table 3-3.  

 

Case (1): Static Bifurcation Behavior at s1f =15 

Figure 3.11 shows the bifurcation diagrams with fs3  as the bifurcation parameter for a very 

wide range of values using a fixed value of 0.151 fs  and the rest of the parameters as shown in 

Table 3.3. It is clear as shown in Figure 3.11 that the effect of (s3f) is very limited in comparison to 

that of (s2f). For example, in Figure 3.11(a) the ACh concentration in compartment 1 (s11) changes 

from 17.095 to 17.1071 corresponding to 8.6x10-6 and 8.61x10-6 kmol/m3 respectively through the 

period of changing s3f from very small concentrations (almost zero) to  0.303 fs  (corresponding to 

6
3 100.30  xs f kmole/m3). Also, Figure 3.11(c) shows that the change in s21 is so limited and seems 

to be constant around 3.345.  However, s32 increases continuously due to the incorporation of feed 

acetate as shown in Figure 3.11 (d). Figure 3.11 (e) shows that the change in pH2 is also limited and 

stays around 5.81. 
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Figure 3-11:  Bifurcation diagrams with acetate feed concentration fs3  as the bifurcation 

parameter  151 fs  and the rest of data as shown in Table 3.3 

(a)   Bifurcation diagram for ACh concentration in compartment 1  11s , (b)  Bifurcation diagram for 

ACh concentration in compartment 2( 12s ).  (c)   Bifurcation diagram for choline concentration in 

compartment 1( 21s ),   (d)   Bifurcation diagram for acetate concentration in compartment 2(s32)., and (e)  

Bifurcation diagram for pH in compartment 2 (pH2). 

 

These results are in agreement with the results of Morel (1976) who showed that as the feed 

acetate concentration increases, s11 increases then becomes constant when feed acetate concentrations 

reach 30x10-6 kmole/m3.  This means that for acetate concentrations equal to or higher than 30x10-6 

kmole/m3 , the maximal rate of incorporation is reached and they found that the total ACh was 

unchanged for a wide range of acetate concentrations in the incubation medium (0.01 to 30 x10-6 
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kmole/m3). One of the main reasons for this is that the limited concentration of choline is able to react 

with acetate to produce ACh. Another reason is the saturation of the enzyme ChAT with the excess 

concentration of feed acetate that transported into the presynaptic neuron.  This confirmed the 

stability of ACh levels during the incubation. Therefore the effect of feed acetate on the incorporation 

of choline occurred without significant changes in the ACh content.   In comparison to s3f, it can be 

said that the feed choline concentration has more critical effect on the ACh synthesis and therefore it 

can be considered as the limiting substrate which is responsible for the observed maximum in ACh 

levels.  Furthermore, our results agree with the experimental work of Kwok and Collier (1986) who 

investigated whether or not acetate plays a role in the supply of acetyl-CoA for ACh synthesis in the 

cat's superior cervical ganglion. They identified labeled ACh  in extracts of ganglia. They concluded 

that acetate is not the main physiological acetyl precursor for ACh synthesis in this sympathetic 

ganglion, and that during preganglionic nerve stimulation.    In their results,  Kwok and Collier (1986) 

found that the increase of acetate concentration did not cause an increase in the synthesis of the ACh 

and they assured that the role of acetate in the synthesis of ACh  appeared not understood. They could 

explain their results as the supply of acetate into the environment did not provide enough supply for 

acetyl-CoA to  react with choline catalyzed ChAT. This gives a proper clarification for the constancy 

levels of ACh despite the continuous increase in acetate [Kwok and Collier (1986)].  

From these findings, and our results, its can be concluded that it not enough to increase the 

concentrations of acetate to obtain high levels of ACh, and choline supply is the most important 

substrate in the ACh synthesis and it seems that feed choline (s2f) is limiting for the ACh synthesis. 

 

Case (2): Dynamic Bifurcation at s1f =2.4 

  Figure 3.12 shows the dynamic bifurcation diagrams using feed acetate concentrations (s3f) as 

the bifurcation parameter but with different values of feed ACh  concentrations  4.21 fs which 

represent very low feed ACh concentrations to study the dynamics of the ACh produced from the 

chemical reactions.   In Figure 3.12 different stages in the neurocycle for a small range of the 

bifurcation parameter )41( 3  fs corresponding to ( )104101( 6
3

6   xsx f  kmol/m3) are 

observed. It is clear that the system is in rich with the dynamics phenomena at low concentration of 

fs3 where the feed acetate concentrations are too small to start the synthesis reaction catalyzed by 

ChAT.    
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Figure 3-12: Bifurcation diagrams with acetate feed concentration  fs2  as the bifurcation 

parameter at  4.21 fs  dimensionless and rest of data as shown in Table 3.3. 

a)   Bifurcation diagram for ACh concentration in compartment 1  11s ,  (b)  Bifurcation diagram for 

ACh concentration in compartment 2( 12s ),  (c)   Bifurcation diagram for choline concentration in 

compartment 1( 21s ),   (d)   Bifurcation diagram for acetate concentration in compartment 2 s32, and (e)  

Bifurcation diagram for pH in compartment 2 (pH2). 
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Figure 3.12 shows that the system has a similar behavior like that in case (2) of changing of feed 

choline concentrations where three main regions appear in the bifurcation diagram each 

corresponding to a different qualitative behavior. As illustrated in Figure 3.12 there are two Hopf 

bifurcations (HBs): the first HB1 at s3f  = 3.78656 and the other HB2 appears at s3f  = 1.32614.  It is 

clear as shown in the Figure 3.12, oscillatory behavior dominates the system between HB1 and HB2 

where the steady state solutions (point attractor) are not an attractor and the periodic attractors are the 

only attractors. 

  In the range ( 865.3252.2 3  fs ) corresponding to ( 6
3

6 10865.31025.2   fs ) 

kmol/m3, the phenomena where both stable steady solutions and stable periodic solutions exist 

together at the same values of s3f but at different initial conditions known as bistability  is seen. Figure 

3.12(e) shows that pH2 in the range of s3f between 
61025.2   and 

610865.3   kmol/m3 is inside 

the expected physiological range where it is between 6.35 and 8.3. PD point occurs at s3f  = 3.865 

close to the first HB1 point. One of the main reasons leading to complexity is the high competition 

between the diffusion and the enzymatic processes in compartments 1 and 2. In addition; the recycle 

of choline contributes the complexity phenomena. In addition the high non-linearity of the reaction 

rates appeared due to the substrate inhibition and pH dependence contributes the complexity 

phenomena.   This phenomenon is compatible with that obtained experimentally by Santos et 

al.(2006); Friboulet and Thomas (1982 and 1985). 

3.6 Summary and Conclusions   

In this chapter, the effects of both feed choline and acetate substrate concentrations on a 

coupled ChAT/ AChE enzymes system were investigated considering the choline reuptake into the 

presynaptic neuron. It is found that as the feed choline concentrations increase, ACh levels in both 

compartments increase gradually until  6.252 fs  where ACh is synthesized less efficiently 

when  6.252 fs . Hence, the release of ACh in compartment 2 varies in parallel to the incorporation 

of the choline in compartment 1 to produce ACh.  The released ACh can be compensated by 

synthesizing new ACh in compartment 1 (s11). Therefore, the rate of ACh synthesis must be equal to 

the rate of transmitter release.  This is in agreement with the results obtained by Schwartz et al., 

(1975).  
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  At low concentrations of the feed choline concentrations, it is found that the system exhibits 

complex dynamics bifurcation including chaotic behavior via a period doubling and period adding  

sequence in the range ( 1.1467614085.1 2  fs ). A bistability behavior is observed where periodic 

and point attractors coexist with an unstable periodic orbit as the separatrix separating the domains of 

attraction of the periodic and point attractors. Both steady state and periodic solutions coexist at the 

same value of s2f in the previous range but at different conditions as shown in Figures 3.5 and 3.6. It 

can be concluded that the availability of choline into presynaptic neuron (compartment 1) at low 

external concentrations plays an effective role in synthesis of the transmitter. In addition, ACh was 

synthesized considerably less efficiently from the excess choline which accumulated in nervous tissue 

at external concentrations greater than about 30 x10-4 kmole/m3.   

The results are analyzed based on the physiological values in order to simulate the ACh 

hydrolysis in the synaptic cleft in compartment 2. The system in case of external disturbances such as 

the sudden change of feed choline concentration to the presynaptic neurons could be affected by the 

hysteresis with a sudden increase in ACh concentration in both compartments (especially in 

compartment 2 where ACh concentration increases 6 folds from 61076155.1   to 6101.9    

kmol/m3 near SB1 as shown in Figure 3.3(b) with a small variation in the input conditions thus 

simulating the sudden neural transmission.  

It is found that the feed acetate concentrations have less effect on the synthesis of ACh in comparison 

to the feed choline concentrations. The system is in rich with the dynamics at low concentration of 

fs3 where the feed acetate concentrations are too small to start the synthesis reaction catalyzed by 

ChAT. From these findings, it can be concluded that it not enough to increase the concentrations of 

acetate to obtain high levels of ACh, and choline supply is the most important substrate in the ACh 

synthesis and it seems that feed choline (s2f) is limiting for the ACh synthesis. The disturbances and 

irregularities appearing in the system in the form of chaotic behavior may be a good indication for the 

cholinergic diseases such as Alzheimer’s disease.  
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Chapter 4 

Effect of Cholineacetyltransferase Activity and Choline Recycle 

Ratio on Modelling, Bifurcation and Chaotic Behavior of 

Acetylcholine Neurocycle and Their Relation to Alzheimer’s and 

Parkinson’s Diseases 

This chapter is an extension of the previous two chapters on the modeling and analysis of bifurcation, 

dynamics, and chaotic characteristics of the acetylcholine (ACh) neurocycle. The two-compartment 

model that takes into consideration the physiological events of the choline uptake into the presynaptic 

neuron and choline release in the postsynaptic neuron is modified. The effects of 

cholineacetyltransferase (ChAT) activity and choline recycle ratio as bifurcation parameters, on the 

system performance are studied. It is found that as ChAT activity increases, ACh concentration in the 

model compartments increases continuously. The effect of choline recycle ratio shows that choline 

uptake plays an important role for supplying choline as a substrate for the synthesis reaction by ChAT 

in compartment 1.  The concentrations of ACh, choline and acetate in the compartments are affected 

by the choline recycle ratio through a certain range of the choline recycle ratio then they become 

constant as the choline recycle ratio increases further.   A detailed bifurcation analysis over a wide 

range of parameters is carried out in order to uncover some important features of the system, such as 

hysteresis, multiplicity, Hopf bifurcation, period doubling, chaotic characteristics, and other complex 

dynamics. These findings are related to the real phenomena occurring in the neurons, like periodic 

stimulation of neural cells and non-regular functioning of ACh receptors. The results of this model 

are compared to the results of physiological experiments and other published models. As there is 

strong evidence that cholinergic brain diseases like Alzheimer’s disease and Parkinson’s disease are 

related to the concentration of ACh, the present findings are useful for uncovering some of the 

characteristics of these diseases and encouraging more physiological research. It is concluded from 

our results that choline recycled is the most critical factor in ACh processes in comparison to ChAT 

activity. 

Keywords: Bifurcation, Acetylcholinesterase, Cholineacetyltransferase, Acetylcholine, Choline, 

recycle ratio,   Neurocycle, Parkinson’s disease, Alzheimer’s disease, Dynamic behavior, Chaos. 
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4.1  Introduction 

 Acetylcholine (ACh) as a neurotransmitter plays a central role in all mental and physical 

activities such as neuromuscular junction, memory excitation and thinking [Brandon et al., 2004]. The 

ACh neurocycle system is involved in the following main processes: Firstly, the biosynthesis of ACh 

occurring is performed in the presynaptic neurons and catalyzed by the enzyme 

Cholineacetyltransferase (ChAT); the required substrates are choline and acetyl coenzyme A (Acetyl-

CoA). Secondly, ACh is released by fusion of the membranes of the presynaptic neurons with 

synaptic vesicles storing ACh, where ACh reacts with the receptors of the postsynaptic neurons to 

cause the electrochemical signals. Thirdly, ACh is hydrolyzed by the acetylcholinesterase (AChE) 

enzyme in the synaptic cleft to produce acetate and choline. Fourthly, the choline which is produced 

from the hydrolysis reaction is recycled from the synaptic cleft to the presynaptic neurons to be 

reused in the synthesis of ACh [Brandon et al., (2004)]. 

ChAT is the enzyme responsible for the biosynthesis of the neurotransmitter ACh which was 

described by Nachmansohn and Machado in 1943. ChAT is supplied from the cell bodies of 

cholinergic neurons by the mechanism of axonal transport [Tucek (1978)].  ChAT is a globular 

protein with a molecular weight of about 68000 daltons. ChAT catalyses the synthesize reaction of 

ACh [Tucek (1978)]:  Choline + acetyl-CoA = ACh + CoA.  

The disorders in ChAT activity may result in various cholinergic diseases like Huntington's 

disease, Alzheimer disease, and multiple sclerosis (Nunes-Tavares et al., 2000). Because ChAT has a 

great value in the peripheral and central nervous systems and because of its role in problems related to 

the cholinergic systems, a lot of investigations have been concerned about ChAT (Waser et al., 1989, 

Nunes-Tavares et al., 2000). Many researchers investigated ChAT from different views. Some of 

them like Salvaterra (1987), and Malthe et al., (1978) took it from the view of molecular biology; 

however, others were concerned from the dynamics point of view  (Sakamoto et al., 1990) and others 

focused on  were interested it from cellular localization of ChAT like Nunes-Tavares et al., (2000), 

Levey et al., (1998)  and Docherty et al. (1987). 

 Leventer et al., (1982) investigated the effect of ChAT inhibitors on the levels of ACh in the 

placental tissues and the release of ACh into the medium. They found that the levels of ACh reduced 

by 61.3 % and 75% when BETA and 2- benzoylethyl trimethylammonium pyridine were used as 

inhibitors respectively. These results show the effect of ChAT activity inhibitors on ACh synthesis 

and reflect the importance of keeping the activity of the ChAT enzyme in the neurons. 
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The presynaptic neurons have ChAT enzyme with a high activity to supply the process of 

biosynthesis of ACh [Brandon et al (2004)]. ChAT normally exists in the neurons where other types 

of cells such as glial cells are free of ChAT. However, in abnormal pathologic conditions, glial cells 

can contain ChAT (Tucek 1978).  Furthermore, ChAT does not exist in all nerve cells. There is a 

view showing that ChAT is specific for cholinergic neurons, however; some researchers think that 

ChAT may be accompanied by other neurotransmitter- synthesizing enzymes [Tucek (1978); 

Eckenstein and Sofroniew (1983); Blusztajn and Wurtman (1983)]. Most of nervous parts such as 

caudate nuclei, putamen, retina and the spinal cords contain ChAT in a great activity [Kish et al., 

1999; Tucek, 1978;  Takeshi   and Kumiko   (2006)]. There is no strong indications proving that the 

blood platelets and corneal epithelium contain ChAT [Tucek (1978); Pedata (2006); Koichiro and 

Takeshi (2000)]. According to Chapter 2, acetyl-CoA is the only component in the presynaptic 

neurons which is synthesized in the nerve terminals, whereas ChAT is synthesized in the cell body of 

the neurons and transported into the presynaptic terminal by the axonal transport mechanism; choline 

is obtained from the environment outside the presynaptic neurons. 

Brains of Alzheimer’s disease are characterized by loss of ChAT activity. Hence, there is an 

observable reduction in ACh synthesis in presynaptic and postsynaptic neurons and ACh release. In 

addition, the extent of reduction in ChAT activity determines the extent of cognitive weakness 

[Keverne and Ray (2008); Perry et al., (1999); Keverne and Ray (2008)]. Milos et al., (2005) 

indicated that the deficit in ChAT activity leading to cognitive impairment can be considered as a 

differentiation between clinical and preclinical forms of Alzheimer’s disease.  

As indicated in Chapter 3, the brain is unable to synthesize choline. Hence it can obtain choline from 

many sources other such as free choline in blood plasma and choline produced from the release of 

choline-containing compounds such as phospholipids, and choline recycled produced from the 

hydrolysis of ACh.   

The free choline in the blood plasma share in a different fraction for supplying choline 

required for ACh synthesis based on the type of living beings. For example, Tucek (1978) showed 

that free choline contributes with 12% in rats, 50% in rabbits, and 80% in mice. Choline produced in 

synaptic gaps by the hydrolysis of   ACh is re-utilized for the synthesis of ACh in presynaptic nerve 

endings (Tucek 1978). Therefore, choline recycled plays an important role in the synthesis of   ACh 

and represent with around 50% of the choline utilized in the synthesis of ACh. Because the blood-

brain barriers inhibit crossing plasma choline, the capillary endothelia of the brain overcomes this 

problem by choline carriers which work by facilitated diffusion similar to that for the neutral amino 
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acids [Carl Faingold and Gerhard (1991)]. Although choline transports from blood to brain after the 

consumption of high diet , the effluent of choline from brain to blood confirm the production of 

choline in brain by the hydrolysis of compounds containing choline such as phospholipids and ACh 

[Tucek (1985); Carl Faingold and Gerhard (1991)]. 
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Figure 4-1: Schematic of synaptic neurons and cleft 

"This image has been reproduced from AnaesthesiaUK with permission  

(www.AnaesthesiaUK.com) 

 

Choline produced from the hydrolysis of ACh in the synaptic cleft is recycled to the 

presynaptic neurons. Approximately 50% of the choline utilized in the synthesis of ACh is believed to 

be recycled choline from ACh. Hence, choline uptake plays a significant role for supplying ChAT 

enzyme with the required amount of the substrate choline.  

There are some researchers like Ehrenstein et al., (1997) and (2000) who investigated the 

relation between the deficient of the recycled choline supply to the presynaptic neurons and 

cholinergic diseases like Alzheimer’s. They found that beta amyloid peptides aggregates can break 
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the membrane of the presyanptic membranes and cause leakage for choline outside. This leakage lead 

to a reduction of choline required for the enzyme ChAT resulting in a deficient of the synthesized 

ACh. There are other inhibitors such as hemicholinium-3 (HC-3) which inhibits choline transport 

(uptake) through the presynaptic membranes leading to reduction of the synthesized ACh levels in 

compartment 1 [Ferguson et al., (2004); Welsch (1976)]. 

 

 

Figure 4-2: Two-enzyme/ two-compartment model 

 

Elnashaie et al. (1995) studied the neurocycle of the ACh system utilizing with AChE as the 

only enzyme. They studied complexity phenomena including dynamic and static bifurcations and the 

different kinds of solutions existing in the system. Mahecha-Botero et al., (2004) investigated a 

simplified neurocycle for the ACh as a two compartment model in ChAT /AChE system and found 

that complex dynamic bifurcations, hysteresis, multiplicity, period doubling and period halving, as 

well as period adding and period subtracting dominated the dynamics of the system.   Garhyan et al., 

(2006) built a mathematical model using kinetic data to investigate the nature of the ACh neurocycle 

system. They carried out a detailed bifurcation analysis over a wide range of parameters   in order to 

uncover some important information related to the phenomena occurring in the physiological 

experiments, like periodic stimulation of neural cells and non-regular functioning of ACh receptors 

[Garhyan et al., (2006), Mahecha-Botero et al., (2004), Elnashaie et al. (1995), Elnashaie et al. 
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(2005)). However; they ignored the consideration of choline uptake in the system in addition to the 

importance of ChAT enzyme activity in the presynaptic neurons. Hence a lot of their results were out 

of the physiological range.  It is not clear from these findings whether the rate-limiting step in the 

synthesis of ACh is the availability of choline or its transacetylation by ChAT. Therefore, an analysis 

of the uptake of choline from the synaptic cleft and its conversion to ACh is investigated to 

understand well the system of the ACh neurocycle [Steven et al., (1984); Hartmann et al., (2008)]. 

In previous chapters, we investigated the effect of feed choline, feed acetate (Mustafa et al., 

2009b), and the effect of mobile ACh transport, feed hydrogen ions and AChE activity on the 

neurocycle effect (Mustafa et al., 2009a).  We could determine the role of each parameter and the 

dynamics that each one behaves. It was concluded that the feed choline plays a more effective role 

than feed acetate concentrations. Furthermore, it was found that mobile feed ACh plays a vital role to 

reach the optimum levels of ACh in both compartments. The significant effect for hydrogen ions 

appeared at low concentration of feed hydrogen ions. A detailed study of complex static and dynamic 

behavior including bifurcation, instability, and chaos has been presented for each parameter.  

In this chapter we investigate the effect of ChAT enzyme activity and choline recycle ratio on 

the ACh neurocycle based on the two kinetic mechanisms discussed in our previous work (Mustafa et 

al., 2009a).  We analyze the synthesis of ACh at the level of single neuron cell, rather than the whole 

nervous system and investigate the role of ChAT enzyme activity and choline recycle ratio based on 

the choline uptake considerations. Our model extends up on two investigations (Mustafa et al., 2009 

a, b) and the other investigations by Elnashaie and coworkers (Elnashaie et al., 1995; Mahecha-

Botero et al., (2004) et al., 2004; Gahyran et al., 2006). Here we still employ a novel diffusion-

reaction model but improve upon the previous investigations by considering realistic kinetic schemes 

and data for ChAT synthesis reaction, and account for the recycle effects of choline. 

4.2 Formulation of the Diffusion-Reaction Two-Enzyme /Two-Compartment 

Model 

The (ChAT/AChE) enzymes system inside the neural synaptic cleft can be schematically 

described in a simplified manner as shown in Figure 4.1. The complete neurocycle of the ACh as a 

neurotransmitter is simulated as a simplified two-enzyme/two-compartment model. As shown in 

Figure 4.1, compartment 1 refers to the presynaptic neuron, and compartment 2 refers to both the 

synaptic cleft and the postsynaptic neuron. The diagram shows that the choline is recycled from the 

synaptic cleft (compartment 2) into the presynaptic neuron terminal (compartment 1).  Figure 4.1 
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shows that there is another stream of ACh entering compartment 1 coming by axonal transport. Also 

Figure 4.1 shows that there are two resources of choline. The first one is produced by the hydrolysis 

of ACh, and then a part of it is recycled to the first compartment. The second stream is synthesized 

outside presynaptic terminal where choline in the latter stream comes either directly from the free 

choline of the blood plasma, or from the brain cells, where it has been released from choline 

containing compounds (Tucek 1985). The choline produced in compartment 2 is the only component 

existing in the recycle stream. The physiological references such as Tucek et al., (1978) and (1985) 

confirm this point where they did not refer to recycling of any other components such as ACh and 

acetyl CoA. As explained before. Acetyl-CoA is synthesized in the mitochondria. The acetyl CoA 

should be plentiful since it is provided from pyruvate formed by the metabolism of glucose.  All of 

these streams (the stream of axonal transport of ACh + the stream of choline synthesized in 

extracellular space of compartment 1 + the stream of Acetyl-CoA coming from mitochondria) are 

collected together in one feed stream which meets the recycle stream of choline coming from the 

hydrolysis of ACh to enter compartment 1 as shown in Figure 4.2.   Figure 4.2 shows a simplified 

form of the feedback model of ACh neurocycle shown in Figure 4.1.     

Figure 4.1 indicates that the ACh hydrolysis reaction, catalyzed by AChE, occurs on ACh 

receptors which are located on the top of the postsynaptic neurons.  Then the products of hydrolysis 

(Choline and Acetate) go through the synaptic cleft. We lumped those two areas together into one 

homogeneously stirred compartment which is compartment 2 instead of 3 or 4 or 5 compartment 

model because both the synaptic cleft and the post-synaptic neurons are interactive ; in addition to 

avoid the expected complexity and difficulty to solve the model and analyze the results when the 

dimensionality is too high. The concentrations of components in compartment 2 represent the average 

concentrations in both the synaptic cleft and the post-synaptic neurons. Furthermore, we assumed that 

the flow rate of the feed stream to compartment 1 and that of the exit stream from compartment 2 are 

equal. In summary, each compartment is defined as a constant flow; constant volume, isothermal, 

continuous stirred tank reactor (CSTR) and the two compartments are separated by a permeable 

membrane.   

The ionization of the acetic acid is assumed to be completely in order to simplify the solution 

of the model. The diffusion and reaction events occurring in two contacted cholinergic neurons are 

explained by the two-enzyme two-compartment model. We assume that all processes occurring in the 

presynaptic neurons are homogeneous. We neglect the internal mass transfer process occurring 

between the synaptic vesicles and the surrounding cytoplasm in the presynaptic neurons.  
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The following rate equations explain both synthesis and hydrolysis reactions  catalyzed by 

ChAT  and AChE respectively, where R(1)  represents the rate of  synthesis and R(2) represents the rate 

of  hydrolysis(Tucek (1990), Garhyan et al., (2006))  as follows: 

R(1)   :      Choline + Acetyl - CA  ChAT  ACh + CoA                                                 (1) 

ACh is destroyed in compartment 2 by AChE by the degradation reaction as follows: 

R(2) :       ACh + Water   AChE  Choline + Acetate + H+                                          (2) 

Both R (1) and R (2) are considered to be substrate inhibited and pH-dependent. This leads to a non-

monotonic dependence of the reaction rates on the substrates concentrations and pH. The rates can be 

formulated by employing certain assumptions and basic biokinetics knowledge as explained in the 

following section.  The details of the derivation are given in our previous work (Mustafa et al., 

2009)a.  The final dimensionless forms of the ordinary differential equations of the eight state 

variables are summarized in Table 4.1. The model equations are in terms of eight state variables: 

           23132212211121  and  , , , , ,h ,h ssssss  and twenty five parameters (Tables 4.2 and 4.3). All 

values of the parameters and rates and differential equations are in the dimensionless form. All values 

of the parameters (with respective references) used in this investigation are given in Table 4.3. 

4.3 Solution Techniques and Numerical Tools 

The results of bifurcation diagrams for the system were obtained using XPPAUT and AUTO 

2000, a bifurcation and continuation software for ordinary differential equations package (Ermentrout 

2002).  The software AUTO 2000 is able to perform bifurcation analysis, determining the stability of 

the solutions, and drawing the different solution branches.  It has a lot of applications in both 

mathematics and engineering research areas because of its flexibility, efficiency and its multiple 

facilities.  Both static and dynamic bifurcations can be performed by this software package 

(Ermentrout 2002). The eigenvalues of the differential equations determine the stability of the system. 

If all eigenvalues have negative real parts, the system will be stable otherwise, it will be unstable. It 

will undergo bifurcation, if there is an eigenvalue with zero real part. The dynamics results such as 

phase planes and time traces were obtained via FORTRAN programme. For the chaotic behavior, we 

used one- dimensional Poincare map to investigate the intersections in one direction between a 

hyperplan surface (Which is chosen at certain value of a state variable) and trajectories. (Garhyan et 

al., 2006; and Strogatz 1994). From discrete points of intersections, we are able to construct the 

bifurcation diagram of Poincare. Then we can investigate the dynamics behavior of the chaotic 
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attractors. This is performed using IMSL libraries which contain DGEAR subroutine. Step size is 

chosen automatic based on the stiff differential equations during the investigations of the dynamics.  

Sometimes we used matlab to ensure the solution quality.  

 

Table 4-1: Dimensionless forms of the ordinary differential equations of the eight state 

variables 
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Table 4-2: Dimensionless state variables, parameters and other terms. 

Dimensionless State Variables 
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Other Terms Used in Dimensionless Form 
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Table 4- 3: Values of the kinetic Parameters 

:Parameter Value Reference 

 1 5.2(0.1) Hersh & Peet (1977) 

 2 12 Hersh & Peet (1977) 

 3 1000 Hersh & Peet (1977) 

 4 5 Hersh & Peet (1977) 

 5 1 Hersh & Peet (1977) 

  0.5 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

  1 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

Ka(kh) 1.066*10-6 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

 

Ks1 5.033*10-7 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 
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S2ref 4100.1  kMole/m3(µMole/mm3) Guyton and Hall ( 2000) 

S3ref 6100.1  kMole/m3(µMole/mm3) Guyton Hall ( 2000) 

1B  510033.5  kMole/m3(µMole/mm3) Garhyan et al., (2006) 

2B  
510033.5  kMole/m3(µMole/mm3) Garhyan   et al., (2006) 

H
  2.25 Elnashaie et al., (1984) 

OH
  0.5 Elnashaie et al., (1984) 

1S  1 Elnashaie et al., (1984) 

2S  1 Elnashaie et al., (1984) 

3S  1 Elnashaie et al., (1984)  

RV  1.2 Elnashaie et al., (1984) 

fpH  8.2 Guyton (2000) 

fs1  15 Garhyan   et al., (2006) 

fs2  1.15 Garhyan et al., (2006) 

fs3  3.9 Garhyan et al., (2006) 

1  0.01 Garhyan et al., (2006), Elnashaie et al., 

1983a; Elnashaie et al., 1983b; Elnashaie et 

al., 1984; Elnashaie et al., 1995; Ibrahim et 

al., 1997) 

R 0.8 Tucek (1978) 

 

4.4 Physiological Values of the Parameters 

To validate the results of the system with physiological and experimental results and with 

other models of previous investigators during the investigations of the change the system parameters, 

we should compare our system behavior with the following physiological values of ACh, choline, 

acetate, and pH. These values depend on experimental review and other models like that used by 

Garhyan et al., (2006) and Mahecha- Botero et al., (2004). The concentrations are given in 

(Kmol/m3). Human brain pH in a feline model is found in the range of 6.95-7.35. (Zauner and 

Muizelaar, 1997), and pH in a human brain was found by (Rae et al., 1996) in the range 6.95 - 7.15. 
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Free ACh in rat brain was found around 51022.0   kmol/m3 and total ACh was in found around 

51077.1   kmol/m3. Tucek, 1990 and Garhyan et al., 2006 showed that in guinea pig cerebral cortex 

the range was 51031.0   (free ACh) to 51067.1   kmol/m3 (total ACh) [Garhyan et al., (2006)].  

Wessler et al., (2001) Mahecha- Botero (2004) reported that ACh concentration in human 

placenta in the range of 5100.3   to 5105.55   kmol/m3.  Mahecha- Botero (2004) showed that in 

the isolated rings of rat pulmonary artery ACh was measured to be in the range of 510001.0   to 

5100.3    as pointed to Kysela and Torok, (1996). Mahecha- Botero (2004) and Garhyan et al. 

(2006) reported that choline concentration in mouse rat brain is about 41015.1   kmol/m3. This 

range was confirmed by Tucek (1978) and choline concentration in human plasma is in the range of 

41001.0   to 4107.0   kmol/m3 (Chay and Rinzel, 1981; Mahecha – Botero (2004) and Garhyan 

et al., (2006)). 

 

4.5 Results and Discussion 

The behavior of the cholinergic ACh system is difficult to predict as it is related with cholinergic 

diseases such as Alzheimer’s and Parkinson’s diseases. Hence, it is very important to understand the 

system behavior. Now we investigate bifurcation and chaotic behavior extensively using two 

bifurcation parameters: (i) ChAT enzyme activity ( 1B ), and (ii) Choline recycle ratio (R). The effects 

of these parameters are explained below:  

4.5.1 ChAT enzyme activity (B1) as the bifurcation parameter 

It is very important to study the effect of alterations in the activity of ChAT enzyme (B1) as a 

bifurcation parameter catalyzing the ACh synthesis reactions occurring in compartment 1 on the 

behavior of the cholinergic ACh system in both  compartment 1 and compartment 2 as well  and to be 

able to predict their complex behavior.  The bifurcation parameter ChAT enzyme activity  1B  

incorporates the following parameters (ChAT concentration in compartment 1, volume of 

compartment 1 and the flow rate): 
q

ChATVV
B M 11

1   where 1MV  is the maximum rate of ACh 

synthesis that contains kinetic constants that dominate the synthesis reaction.  Hence, changing the 

bifurcation parameter  1B  gives the effect of the changing the enzymatic activity of the enzyme 
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ChAT. The disturbances in the activity of ChAT enzyme can cause cholinergic diseases like 

Alzheimer’s and Parkinson’s.  

The effect of the bifurcation parameter (B1) will be investigated through two cases: the first case 

investigates the static bifurcation including the hysteresis (or short term memory) phenomenon. This 

phenomenon is related to a big range of the activity ChAT enzyme. This case is taken at high value of 

the feed ACh concentrations s1f =15 corresponding to 0.755 x10-5 kmol/m3 as a medium value in the 

range of ACh in rat brain given by Tucek (1978). The second case discusses the dynamic bifurcation 

associated with variation of ChAT enzyme activity at s1f =2.4 corresponding to 0.12 x10-5 kmol/m3
 

which is the lowest value in the range given by Tucek 1978. The range given by Tucek (1978) is 

[ 51012.0   to 51077.1   ] kmol/m3. These cases are discussed in details below.  

 

Case (1): Static Bifurcation at s1f =15 

Figure 4-3 illustrates the effect of B1 (related to the activity of ChAT enzyme) as the 

bifurcation parameter for a certain range of values using a fixed value of 151 fs  and other 

parameters values are kept constant as shown in Table 4-3.  Generally it is observed that as B1 

increases, both s11 and s12 increase but s21 decreases due to the synthesis reactions catalyzed by the 

enzyme ChAT.  It is clear that the state variables are characterized by hysteresis. As shown in Figure 

4-3 ,there are various regions appearing in state variables due to changing the bifurcation parameter 

B1 as below:  

  

1) Region 1: High enzyme activity in the region  1
41078.9 B   kmol/m3

 

In this region the system is characterized by a unique stable steady state. It is clear that ChAT activity 

(B1) which is involved in a wide range  works with the highest efficiency leading to consumption of 

choline as a substrate in compartment (1) where  the dimensionless  21s  is less than 2.7 as shown in 

Figure 4-3 (c).  Figures 4-3 (a) and (b) show that both  11s and  12s  increase continuously more than 

55 and 26 respectively corresponding to 27.682*10-6 and 18.11*10-6 kmol/m3 respectively. Figure 4-

3(d) shows that pH2 increases more than 5.5. ACh in compartment (1) and (2), and choline 

concentration in compartment (2) are corresponding to the physiological range Kysela and Torok 

(1996). It is observed that pH2 is involved a wide change because of the high ChAT enzyme activity. 

These results reflect the high efficiency of both synthesis reaction in compartment 1 and the transport 

of components from compartment 1 to compartment 2.  
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2)  Region 2:  4
1

4 1078.91053.7   B  kmol/m3
 

As ChAT enzyme activity (B1) decreases to 4
1 1078.9 B , the system is dominated by a 

hysteresis phenomenon occurring between the two static bifurcation points (SB1 and SB2). In this 

range there are two stable steady state solutions separated by unstable steady state solution (which is 

called saddle node). ). The multiplicity dominates the system between the two static bifurcation 

points where the second static bifurcation appears at B1=7.53x 10--4 kmol/m3.  Hysteresis causes the 

state variables to be very sensitive in the neighborhood of the static bifurcation points. For example, 

in Figure 4-3(b) the dimensionless  12s jumps from 2.412 s  to 4.2612 s  with a slight increase 

in the enzyme activity near the static bifurcation point SB1. However, as shown in Figure 4-3(a), 

when ChAT enzyme activity is decreased to less than 4
1 1078.9 B  kmol/m3, s11 will decrease 

through a small range from 33 to 26 reflecting the ability of the pressynaptic neuron to keep the 

gradual synthesis reaction of ACh with a  high efficiency  even the reduction of  ChAT enzyme 

activity. This will be more clarified if we compare the effect hysteresis behavior in s11 due to change 

of ChAT activity with the hysteresis behavior due to change in AChE activity (Mustafa et al., 

(2009)b). We will find there is a sudden change in s11 with AChE activity and gradual change in s11 

with the reduction of ChAT activity in the range 4
1 1053.7 B  kmol/m3. 

  This region fits reasonably well the expected physiological behavior.  Figure 4-3(a) shows 

that 11s  varies in the range 26 and 54.74 corresponding to 61013   and 61002.27   kmol/m3 

while the dimensionless 12s  varies in the range 2 and 32 corresponding to  6101   and 61016   

kmol/m3. This region fits the expected physiological behavior where ACh in a rat brain was found to 

be in the range of ( 6102.2  - 6107.17  ) kmol/m3 to (Tucek, 1978).   

 Figure 4-3(d) shows that pH2 is out of the expected physiological range and it varies between 4.64 

and 5.57 where pH was measured in the range of 6.95 - 7.15 human brain (Rae et al., 1996) and in a 

feline model pH was reported in the range of 6.95-7.35 (Zauner and Muizelaar, 1997), this is because of 

the assumption of the fully ionization of acetic acid. In reality, the acetic acid should be dissociated in a 

very small fraction, where 2-3% only of the original acetic acid as a product in the second 

compartment. In this case pH will change within a small range and can work as an accelerator or as an 

inhibitor and will control the transport process between both compartments.   Figure 4-3(c) shows that 

21s  changes between 410264.3   and 41066.3   kmol/m3.  21s is out of the expected physiological 
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range where choline concentration in mouse rat brain is about 41015.1   kmol/m3 (Tucek, 1978) and 

choline concentration in human plasma is in the range of 41001.0   to 4107.0   kmol/m3 (Chay and 

Rinzel, 1981). This is due to that we started in the model with high feed choline concentrations s2f = 

1.15 corresponding to 41015.1   kmol/m3. 

 

3) Region 3: Low enzyme activity in the region  4
1 1053.70 B  kmol/m3.  In this region there 

is only a unique stable steady state. Figure 4-3(a) shows that 11s  varies between 1 and 20 corresponding 

to  6105.0   and 61007.10   kmol/m3. Figure 4-3(b) shows that 12s  varies between 6101.0   and 

6101   kmol/m3. The values of the variables in this region are out of the physiological values and do 

not follow the expected biological behavior where ACh in a rat brain was found to be in the range of 

6102.2   kmol/m3 to 6107.17    (Tucek, 1978).  This region of B1 shows that the low activity of 

ChAT leads to reduction of the synthesized ACh in compartment 1, 11s then the release of ACh  will be 

decreased  in terms of ACh concentration in compartment 2, 12s . The process of ACh release in synaptic 

cleft during the high activity of mammalian cholinergic neurons will be accompanied by a new 

synthesis of ACh by the enzyme ChAT in compartment 1 to compensate the released ACh [Nunes-

Tavares (2000)]. 

 These results showing an observable reduction in ACh synthesis in presynaptic and postsynaptic 

neurons and ACh release due to reduction of ChAT activity are considered as the main features of 

Alzheimer’s disease.  The results are in agreement with the results of Keverne and Ray (2008) who 

indicated the extent of reduction in ChAT activity determines the extent of cognitive weakness 

[Keverne and Ray (2008); Perry et al., (1999); Keverne and Ray (2008)]. Milos et al., (2005) indicated 

that the deficit in ChAT activity leading to cognitive loss can be considered as a differentiation between 

clinical and preclinical forms of Alzheimer’s disease.  

 Figure 4-3(d) shows that pH2 has a wide variation in the range 5.35 and 8.2. In this region, the 

hydrogen proton concentration is still high due to the low activity of ChAT enzyme. As mentioned 

earlier, a reasonable explanation of this big range of pH values is due to the assumption of fully 

ionization of acetic acid, i.e. one molecule of the acid gives a molecule of acetate ion and hydrogen ion 
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Figure 4-3: Bifurcation diagrams: ChAT activity  1B  as the bifurcation parameter at  151 fs  

dimensionless and rest of data as shown in Table 4-3: 

(stable: —, unstable: -----), periodic branch (stable ●, unstable ○) 

(a) Effect on ACh in compartment (1) (s11); (b) Effect on ACh in compartment (2) (s12), (c) Effect on 

choline concentration in compartment (1) (s21), and (d) Effect on pH concentration in compartment 

(2) (pH2). 

 

whereas, from 1-2% only of the acetic acid goes through ionization process. Hence, acetic acid may go 

through partial ionization not fully ionization process. This region is close to the expected physiological 

range where pH was measured in the range of 6.95 - 7.15 human brain (Rae et al., 1996) and in a feline 

model pH was reported in the range of 6.95-7.35 (Zauner and Muizelaar, 1997).  
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The continuous increase of s11 and s12 as shown in Figure 4-3 (a) and Figure 4-3(b) respectively due 

to the increase of B1 shows that there are other factors that can affect the ChAT activity and ACh 

processes and play an important role for controlling and regulating ACh concentrations in the both 

compartments.  

One of the main factors is the increase of substrates concentrations of feed choline and feed acetate. 

Therefore, ChAT is not the most important factor in controlling and regulating the ACh neurocycle.  

According to Chapter 3 (Mustafa et al., 2009b) feed acetate concentrations does not play the crucial role 

and feed choline concentrations may play this role. The study of choline recycle ratio will highlight the 

importance of choline uptake for ACh synthesis. 

 

Case (2): Dynamic Bifurcation at s1f =2.4 

Figure 4- 4 shows the dynamic bifurcation diagrams using the ChAT enzyme activity parameter 1B  

as the bifurcation parameter but with a different value of feed ACh concentration  4.21 fs  which 

represent a very low feed mobile ACh concentrations coming by axonal transport mechanism.  Figure 

4- 4 illustrates that there are three main observed regions in the bifurcation diagram; each one has a 

determined qualitative behavior. There are two Hopf bifurcations (HBs). The first HB1 appears at 

5
1 1099.4 B  and the other HB2 at 5

1 1003.3 B .  Mathematically HB point appears when the 

real parts of a pair of complex conjugate eigenvalues become negative, causing the system to undergo a 

bifurcation. HB2 is defined as a “subcritical Hopf bifurcation” because a branch of unstable periodic 

orbits (appeared as empty circles) appears with a stable stationery branch at this point forming a 

separatrix between the basins of the attraction of the stable steady states Figure 4.4 indicates that the 

system in the range of ( 5
1

5 105.5103   B ) complex behavior between the HB points. Hence, 

the periodic solution is the only solution available and the stationary points are not attractors, and the 

limit cycles are the only attractors (periodic attractors) as illustrated in Figure 4.4 in which the behavior 

of state variables describe oscillatory solutions.  

The oscillatory behavior in the range of B1 (range between HB1 and HB2) may play a vital role in the 

synthesis and release of ACh according to Santos et al., (2006). Solid bold curves represent stable 

steady state solutions and dashed lines represent the unstable steady states. Closed circles are used for 

stable orbits and the open circles for the unstable orbits. The qualitative behavior due to change of 

ChAT activity in the range ( 5
1

5 105.5103   B  ) kmol/m3 can be explained as shown in Figure 

4-4 as follows: 
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1) Region 1:  1
5105 B   kmol/m3 

In this region, Figure 4-4 shows that there is a unique stable steady state where ChAT activity 

operates with a high activity.  Figure 4-4(a) indicates that s11 changes around 3.9 corresponding to 

61095.1   kmol/m3 while Figure 4-4(b) illustrates that s12 changes around 0.3 corresponding to 

61015.0   kmol/m3.  It is clear   that  233.321 s  as shown in Figure 4-4(c). In Figure 4-4(d), pH2 

changes around 6.5. On analyzing the physiological values, pH2  is close to the physiological values 

varying between 6.95 and 7.15 in human brain (Rae et al., 1996). However, ACh does not agree with 

the physiological values because of the low ChAT activity according to Wessler et al., (2001) who 

reported that ACh concentration in human placenta is in the range of 5100.3   to 5105.55   

kmol/m3
 and Kysela and Torok, (1996) who showed that ACh in the isolated rings of rat pulmonary 

artery was around 5100.3   kmol/m3.  

2) Region 2: Enzyme activity in the range  5
1 1003.3 B  kmol/m3  

Figure 4-4 shows that the ACh cholinergic system is dominated but  a unique stable steady state 

(point attractor), where B1  works with  a very low activity, thus producing a small range of s12 which 

exists the range 2.1  to 35.1  corresponding to 6106.0   and 610675.0   kmol/m3
 as shown in 

Figure 4-4(b). Figure 4-4(a) shows that s11 is between 4.461 and 4.8 corresponding to 610231.2   

and 6104.2   kmol/m3. The choline concentrations has low values in this region as shown in Figure 

4-4(c) where the dimensionless choline concentration in compartment 1 (s21) is almost constant 

through (3.22623-3.22635) corresponding to (3.22623-3.22635) 410  kmol/m3. In Figure 4-4(d) pH2 

has a high value pH2 = 7.94 (low hydrogen protons concentration) in this region. On analyzing the 

physiological values, pH2 does not agree with the physiological values varying between 7.14 and 7.16 

(Rae et al., 1996; Zauner and Muizelaar, 1997). It is clear that as ChAT activity decreases, the values 

of state variables will decrease continuously. These results agree with the experimental results 

obtained by Nunes-Tavares 2002; Blusztajn and Wurtman, 1983 who showed that as ChAT is 

available in the cholinergic neurons, the levels of ACh will change clearly. Therefore, ChAT activity 

does not represent the rate-limiting factor for ACh biosynthesis. The results are in accordance with 

the results obtained by Brandon et al., (2004) who indicated that the loss of ChAT activity will cause 

a reduction in the rate of ACh synthesis in compartment 1. The reduction of ChAT activity needs 

other alternative effects to keep normal levels of ACh.  According to Brandon et al., (2004), increased  
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Figure 4-4: Bifurcation diagram: B1 (ChAT activity) as the bifurcation parameter at  4.21 fs  

(stable: —, unstable: -----------), periodic branch (stable ●, unstable ○): 

(a) Effect on ACh in compartment (1) (s11); (b) Effect on ACh in compartment (2) (s12), (c)  Effect on choline 

concentration in compartment (1) (s21), and  (d) Effect on pH concentration in compartment (2) (pH2). 

 

 

uptake of choline to ChAT in compartment 1 may be the alternative solution for keeping the high 

efficiency of ACh and the rate-limiting factor in the synthesis of ACh. 

3) Region 3:  5
1

5 1051003.3   B  kmol/m3 

This region is characterized by the complex behavior. The system demonstrates oscillatory behavior 

between HB1 and HB2. As the enzyme activity decreases to 5
1 1098.4 B , the first HB1 occurs 

at 5
1 1099.4 B . In this region chaos may develop via the Feigenbaum (1980) PD route which 

appears at 5
2 10983.4 B  as shown in Figure 4-4. Mathematically HB1 is called subcritical HB. In 
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the range of  5
1

5 1099.410.98.4   B  kmol/m3, the bistability behavior appears. It is 

observed that both point attractors and periodic attractors coexist with unstable periodic attractors 

(appeared as empty circles) separating them. The significance of the bistability is that the system can 

approach to both attractors (either point or periodic) at the same value of the bifurcation parameter B1 

if the initial conditions are different. In this small range, Figure 4-4 (a) shows that s11 oscillates 

between 3.68 and 4.5 corresponding to 61084.1   and 61025.2   kmol/m3 respectively.  pH2 

oscillates between 6.3 and 8.2, which is a region near to the expected physiological pH values (Figure 

4-4(d)). Figure 4-4 (b) shows that s12 oscillates between 7105.0  and 71057.6   kmol/m3 

corresponding to a low ACh concentration. Figure 4-4(c) shows that s21 is close to the expected 

physiological range (Chay and Rinzel, 1981) with soft oscillations between 4102265.3    and 

410233.3   kmol/m3.  

In the range of  5
1

5 1098.4104   B  kmol/m3, the system is characterized by unique stable 

periodic orbits showing sustained oscillations. This range shows that pH2 changes between 6.3 and 8.1 

as shown in Figure 4-4(d) and exists inside the expected physiological pH values (Rae et al., 1996).  In 

Figure 4-4(b) s12 oscillates between 7105.0  and 71057.6   kmol/m3 corresponding to very low 

ACh concentration. The choline concentration in compartment 1 is out of the expected physiological 

range (Chay and Rinzel, 1981) with soft oscillations around 410223.3   and 410233.3  kmol/m3 

as shown in Figure 4-4(c).   

However, in the range of   5
1

5 1041003.3   B  kmol/m3, the system is characterized 

unique unstable periodic orbits as shown in Figure 4-4. As the enzyme activity decreases 

to 5
1 1003.3 B , the second Hopf bifurcation (HB2) occurs.  

The bistability behavior observed in the region  5
1

5 109999.41098.4   B  where 

periodic and point attractors coexist with an unstable periodic orbit as the separatrix separating the 

domains of attraction of the periodic and point attractors can more clarified when dynamic 

characteristics are investigated at different initial conditions as shown in Figure 4-5 and Figure 4-6. 

Figure 4-5 illustrates that periodic solution is the only solution at the corresponding initial 

conditions and at B1=4.999 x 10-5 and the rest of parameter values as shown in Table 4-3.  Figure 4-

5(a) shows the phase plane between s11 and s12 and Figure 4-5(b) shows the phase plane between s11 

and pH2. The phase planes are closed orbits indicating that the solutions are completely periodic. In 
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Figure 4-5 (c) pH2 oscillates between 6.3 and 8.2, which is a region near to the expected physiological 

pH values (Rae et al., 1996; Zauner and Muizelaar, 1997). Figure 4-5(d) shows that s12 oscillates 

between 0.25 and 1.45 corresponding to a very low ACh concentration  71025.1    and 7107   

kmol/m3. Figure 4-5 (e) shows that s11 oscillates between 3.68 and 4.5 corresponding to 61084.1   

and 61025.2   kmol/m3.  In addition, Figure 4-5(f) shows that s32 oscillates between 4.6 and 5.2 

corresponding to 6106.4   and 6102.5   kmol/m3. 

Figure 4-6 shows the dynamics at the same value of ChAT activity like Figure 4-5 where 

B1=4.999 x 10-5 but at different initial conditions. In Figure 4-6 the point attractor is the only solution.  

The amounts of choline and ACh associated with various times are also presented in Figure 4-6. The 

rate of decrease in acetate levels s32 is also the highest during the early portion of the period (Figure 

4-6 (f)), but when T5 (corresponding to T62.5µsec ), s32 begins to plateau around 4.96. After 

40T (corresponding to 500 µsec.) there was no further change in the intracellular levels of acetate 

s32. In contrast to the levels of acetate, the amount of ACh (s11and s12 )as shown in Figure 4-6(e) and 

(d) increased in a high rate during the early portion of the incubation period then when T5   it 

began to plateau. When T40  there was no further change in the intracellular levels of s11which 

stabilized around 3.898 (corresponding to 0.196 x 10-5 kmol/m3) and s12 which stabilized around 

0.299 (corresponding to 0.015 x 10-5 kmol /m3). Figure 4- 6(c) shows that pH2 increased rapidly 

during the early portion of the period, when T5  pH2 begins to plateau around 6.88. These results 

are in agreement with the results of Leventer et al., (1984) who found that the rate of choline 

consumption was very fast during the earlier portion of the reaction period and decreased as the 

reaction progressed. In addition, our results are in accordance with Wecker and Dettbarn (1978)  who 

indicated that the steady state concentration of   ACh in discrete brain regions seems to be kept within 

small  physiological ranges and the contents  of ACh will be unaltered even choline concentrations 

increased. The constancy concentrations of ACh in compartment 1 may refer to the inhibition of the 

synthesis reactions by the excess concentration of choline. The results are in agreement with the 

results obtained by Nunes-Tavares (2000) who pointed to the constancy of ACh levels in cholinergic 

cells. This because once ACh release is consumed due to high synaptic transmission, ACh is replaced 

by synthesizing new amount of ACh in compartment 1. 
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Figure 4- 5: Dynamic characteristics at B1=4.999*10-5 and, s1f=2.4, s3f=3.9,  

s3f=3.9, 006268.0fh : for the relevant initial conditions. Time trace (stable: —, unstable: ------

---), phase plane (stable: •, unstable ◦) 

 (a) Phase plane for ACh in compartment 2 (s12) vs. the ACh in compartment 1 (s11) 

 (b) Phase plane for pH in compartment 2 (pH 2) vs. the ACh in compartment 1 (s11) 

(c) Time traces of pH in compartment 2 (pH2), (d) time traces of ACh in compartment 2 (s12), (e) time traces of   

ACh in compartment 1 (s11), and (f) Time traces of acetate in compartment 2(s32) 

 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s11 3.956 

s12 0.3 

s21 3.233 

s22 1.1606 

s31 8.2517318 

s32 4.9606 
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Figure 4- 6: Dynamic characteristics at B1=4.999*10-5 and, s1f=2.4, s3f=3.9, 006268.0fh : for 

the relevant initial conditions. Time trace (stable: —, unstable: ---------), phase plane (stable: •, 

unstable): 

 (a) phase plane for ACh in compartment 2 (s12) vs. the ACh in compartment 1 (s11) 

 (b) phase plane for pH in compartment 2 (pH 2) vs. the ACh in compartment 1 (s11) 

(c) time traces of pH in compartment 2 (pH2), (d) time traces of ACh in compartment 2 (s12), (e) time traces of 

ACh in compartment 1 (s11), and  (f) Time traces of acetate in compartment 2(s32) 

 

Figure 4-7 shows the static bifurcation diagram at 002.0fh  (pH = 8.69), 002.02 B , 

5.41̀ fs  , s2f = 2, and  s3f  = 2   and the rest of the system parameters are given as shown in Table   

4-3. The effect of B1 as the bifurcation parameter on s11 is studied at the corresponding parameter 

values and initial conditions, in order to investigate the fully developed chaotic behavior. In Figure 4-

7 there are two Hopf bifurcation points, the first HB1 point is at B1=5.68*10-5, and the other is at B1 = 

0.0003707. It is clear as shown in Figure 4-7  the periodic branch loses its stability giving rise to 

chaotic behavior at B1 = 0.000062487.  

Initial conditions 

h1 0.006268 

h2 0.0096807 

s11 3.1971322 

s12 0.628643 

s21 1.1557 

s22 1.614 

s31 4.4695 

s32 5.039 
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Figure 4-7: Bifurcation diagram at 5.41 fs , 22 fs , 23 fs , 002.0fh  , 002.02 B and the 

rest of the system parameters a in Table 4-3, effect of  B1 on 11s  

 In addition, it is characterized by the presence of fully developed chaos as shown in Figure 4-

8(a). Chaos may develop via the well known Feigenbaum PD and period adding route (Feigenbaum, 

1980). PD appears when B1 = 0.000066925.  In order to have a full picture about the evolution of the 

chaotic behavior, one-dimensional and one-directional Pioncare abstracted the time trace and phase 

plane representations to a comprehensive map where a hypothetical hyperplane surface is assumed to 

cross the trajectory in the phase space.  Pioncare map describes the intersection between the hyper 

plan surface and the trajectories. Therefore, it converts the problem of orbits which are difficult to 

deal with to problems of points which are easier to handle. For example, a periodic solution (limit 

cycle) on the phase plane appears as one point on Poincaré map. When PD takes place, period 2 

appears as two points on the map, period 4 as four points, and so on. When chaos takes place, a 

complicated collection of points appears on Poincare map. Figure 4-8(a) shows the Pioncare map of 

the region under consideration. It is clear that the evolution of chaotic behavior is via a period adding 
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sequence. This map of Figure 4-8(a) is constructed using a Pioncare plan at 31.012 s . The map is 

characterized also by wide regions of periodic windows of period two and period three. The periodic 

bifurcation sequence is characterized by period adding sequence to chaos and periods adding 

sequence of periodic windows; these are summarized below 

Figure 4.8 shows that period one attractor appears at B1 = 6.8x10-5 then evolution of chaos via 

PD appears as B1 decreases. When ChAT activity decreases to B1 = 6.58x10-5, window of period two 

appears then evolution of chaos via period adding sequence follows. Window of period three at B1 = 

6.48x10-5 followed by evolution of chaos via period adding. Furthermore, when B1 = 6.43x10-5 

window of period four followed by evolution of chaos via period adding and window of period five 

appears at B1 = 6.38x10-5 followed by evolution of chaos via period adding – window of period six at 

B1 = 6.35x10-5 and so on where a cascade of further period adding occurs as B1 decreases until 

40.00006244 1 B  the map becomes chaotic and the attractor changes from a finite to an infinite set of 

points as infinite irregular windows.  

Time traces and phase planes are shown in Figure 4-9 at 40.00006244 1 B  as chaotic 

attractors where it is shown that after an initial transient, the solution settles into an irregular 

oscillation that persists as time approaches infinity. Figure 4-9(a) and (b) show phase planes where 

the orbits behave irregularly between s12 vs. s11 and between pH2 vs. s11 respectively.  The chaotic 

solutions are shown in Figures 4-9(c), (d), (e), and (f) where the chaotic attractors solutions repeat 

irregularly in an intermittency mechanism.  In Figures 4-9(c), (d), (e), and (f) finite intervals of 

irregular oscillations are interrupted by intermittent bursts of irregular oscillations. The regular 

oscillations are similar to those seen in Figures 4-5(c), (d), (e), and (f) at the corresponding initial 

conditions.  The bursts of irregular oscillations are more prominent in Figures 4-10(c), (d), (e), and (f) 

with the duration of regular oscillations decreasing in size and the bursts becoming more frequent as 

the initial conditions are different showing that the chaotic attractors are very sensitive to the initial 

conditions. 

4.5.2  Choline Recycles Ratio (R) as the Bifurcation Parameter 

We investigate static and dynamic bifurcations due to the variation of choline recycle ratio 

(R) which represents the ratio between the amount of choline recycled from compartment 2 

(postsynaptic neuron), resulted from the hydrolysis of ACh by AChE, to the amount of feed choline  
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Figure 4-8: (a) One dimensional Poincaré bifurcation diagrams (Poincaré plane is located at 31.012 s  

, 5.41 fs , 22 fs , 23 fs , 002.0fh , 002.02 B and the rest of the system parameters a in Table 

4-3 for the corresponding initial conditions 

(b) Magnification of the box in Figure 4-8 a 

 

(b) 
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Figure 4-9: Dynamic characteristics at B1=0.000062444, 5.41 fs , 22 fs , 23 fs , 002.0fh , 

002.02 B and the rest of the system parameters a in Table 4-3 for the corresponding initial 

conditions:  

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1  

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1, and (f) Time traces of acetate in compartment 2

Initial conditions 

h1 0.000805984 

h2 0.004122 

s11 5.74684 

s12 0.31 

s21 5.6255 

s22 2.018 

s31 5.09 

s32 3.833 
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 Figure 4-10: Dynamic characteristics at B1=0.000062444, 5.41 fs , 22 fs , 23 fs , 002.0fh , 

002.02 B and the rest of the system parameters a in Table 4-3 at the corresponding initial conditions 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1. 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1  

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh in compartment 2 

 (e) Time traces of ACh in compartment 1, and (f) Time traces of acetate in compartment 2 

 

Initial conditions 

h1 35 

h2 15.5 

s11 5.74684 

s12 0.9 

s21 5.6255 

s22 2.018 

s31 5.09 

s32 3.833 
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(s2f) coming from the blood and the environment outside compartments 1 and 2. The ratio (R) reflects 

the importance of the hydrolysis of ACh in compartment 2 to produce choline to be recycled to 

presynaptic neuron to provide the needed choline for the ACh synthesis reaction catalyzed by ChAT. 

It represents the role of choline uptake and its effect on the synthesis and release of ACh.  It is very 

important to investigate the effect of choline uptake on the ACh system behavior. It will give us a 

clear picture about the role choline uptake which can play. 

We study the static bifurcation at a high value of feed mobile ACh concentrations s1f =15 

corresponding to 0.755 x10-5 kmol/m3 as a medium value in the range of ACh in rat brain given by 

Tucek (1978) and the dynamic bifurcation at s1f =2.4 corresponding to 0.12 x10-5 kmol/m3
 which is 

the lowest value in the range given by Tucek (1978). The range given by Tucek (1978) is 

[ 51012.0  to 51077.1   ] kmol/m3. 

 

Case (1): Static Bifurcation at s1f  =15 (corresponding to 0.755 x10-5 kmol/m3) 

Figure 4-11 shows the bifurcation diagrams with R as the bifurcation parameter at 

151 fs and other parameter values are shown in Table 4-3. Figure 4-11 illustrates the static 

bifurcation through studying the effect of varying R on the state variable: s11, s12, s21, s32, and pH2 

respectively.  In Figure 4-11, it is clear that s11and s12 increase as R increases until certain value then 

s11 and s12 remain constant with further increase of R. This is compatible with the experimental results 

done by (Tucek 1990 and Lefresne 1973) who indicated that the levels of ACh increase continuously 

until reaching plateau and then remain stable with further increase of choline substrate concentration. 

However; s21 increases linearly with increase of R. If we investigated the effect of R on s22, we will 

find that s22 behaves the same like s21. The ACh concentrations synthesized in both compartments 1 

and 2 (s11, s12) are increasing with a high rate in the range of  30R , however; at high choline 

recycle ratio concentration  R30 , ACh is synthesized less efficiently from the substrate choline 

concentration which accumulated in nervous tissue.  
This is in agreement with the results obtained by Schwartz et al., (1975) who indicated that 

the rate of ACh synthesis depends on the concentration of the substrate choline.  They found that the 

ratio of choline consumed for ACh synthesis was high around 60-75 % when the concentration of 

external choline was small, however; when the choline concentration increased, the ratio of choline 

consumption declined. Therefore, the levels of ACh in the presynaptic terminals are expected not be 

influenced by the high recycle ratio of choline. As the excess choline will contribute less efficiently in 
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the process of ACh synthesis because the enzyme ChAT may be inhibited by the excess choline in 

compartment 1. Furthermore, the results are compatible with the experimental results obtained by 

Weckler (1988) who indicated that the ACh content was not affected in the presence of high 

concentrations of free choline released from brain cells in rats although there was a high necessity for 

new synthesized ACh.   In addition; Weckler (1988) indicated that the capability of the brain neurons 

to synthesize new ACh decreased highly in the conditions of lack of available choline, where the 

brain cells become unable to release free choline. 

From the constancy of ACh levels in both compartments in the presence of choline 

concentrations higher than the critical value,  R30 , we can conclude that the process of ACh 

release from compartment 1 to compartment 2  proceeded  in parallel to the incorporation of uptake of 

choline to compartment 1 to be catalyzed by the enzyme ChAT to produce ACh. In other words, the 

released ACh in compartment 2 is compensated by the synthesizing new ACh in compartment 1. 

Therefore, the rate of ACh release is in accordance with the rate of choline uptake.  Another 

explanation is that this excess choline might be converted to an unknown material which is unable to 

be consumed to produce to ACh.  

Figure 4-11 (d) shows that s32 decreases with increasing R until certain value of R then s32 

remains constant with further increase of R.  According to Figure 4-11 there are three main regions 

appearing as R increases while all other parameters maintained constant. These regions will be 

explained as follows:   

1. Region 1: High choline recycle ratio in the region  R03  

In this region the system is characterized by a unique stable steady state and all the state variables 

except s21 reach plateau while s21 increases continuously as shown in Figure 4-11 where s12 approaches 

a value close to 45 corresponding to 2.26 x10-5 kmol/m3 and s12 close to 18 (0.91x10-5 kmol/m3) and s32 

close to 3 corresponding to (3 x10-6 kmol/m3). Figure 4-11(e) shows that pH2 has its highest value of  

4.5 5 which is close to the physiological values where Damsma et al., (1987) showed that the 

enzymatic conversion of choline and ACh was optimal between pH= 4 and pH= 5.5. However, Mexel 

et al., (2006) showed that cortical brain pH across ranged from 5.8 to 6.95.  

 

2.  Region 2:  3018.17  R   

As R decreases to 17.18, a hysteresis phenomenon occurs and a multiplicity of steady states is observed 

between the two static bifurcation points (SB1 and SB2). In this range there are two stable steady state 
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solutions separated by unstable steady state solution (which is called saddle node).  The multiplicity 

dominates the system between the two static bifurcation points. Hysteresis causes the state variables to 

be very sensitive in the neighborhood of the static bifurcation points. The hysteresis phenomenon has a 

vital significance where it reflects the flexibility of the system to external disturbances as the shortage 

or plentiful choline uptake for R values close to the static bifurcation points. For example, in Figure 4-

11(b) the 12s  jumps from 2.94345  to 18  corresponding to (0.15 and 0.91) x10-5 kmol/m3 respectively 

with a slight increase in R near the static bifurcation point SB1. This region fits reasonably well to the 

expected physiological behavior. Figure 4-11 (a) shows that 11s  varies in the range 36 to 45 

corresponding to 5108.1   and 51026.2   kmol/m3.  Figure 4-11(e) shows that pH2 is out of the 

expected physiological range and it is varying between 4.64 and 5.57.  A reasonable explanation of this 

unexpected pH values is due to the assumption of fully ionization of acetic acid, i.e. one molecule of the 

acid gives a molecule of acetate ion and hydrogen ion , whereas, from 1-2% only of the acetic acid goes 

through ionization process. Hence, acetic acid may go through partial ionization not fully ionization 

process.     

3.    Region 3: Low   choline recycle ratio in the region  18.170 R    

 In this region there is a unique stable steady state. The values of the variables in this region are close to 

the physiological values and follow the expected biological behavior Figure 4-11(a) shows that s11 varies 

between 15 and 27 corresponding to 7.5 x10-6  and 13.5 x10-6  kmol/m3. Figure 4-11(b) shows that s12 

varies between 0.002 and 2.98 corresponding to 0.0001x10-5 and 0.147x10-5   kmol/m3. Figure 4-11 (e) 

shows that pH2 varies from 4.75 to 5.23.   These results except pH2 are in agreement with the 

experimental results obtained by Schwartz et al., (1975) and Ismail et al., (1989) where Schwartz et al., 

(1975) indicated that the incorporation of choline to produce ACh was very high at small choline 

concentration. However, small choline concentration the incorporation of choline was low. Ismail et al., 

(1989) illustrated that the excess choline might not be ready for conversion into ACh. 
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Figure 4-11: Bifurcation diagrams: Choline recycle ratio (R) as the bifurcation parameter at  151 fs  

dimensionless and rest of data as shown in Table 4-3. stable: ——, unstable: ---------), periodic branch 

(stable ●, unstable ○):  

(a)Effect on ACh in compartment (1) (s11); (b) Effect on ACh in compartment (2) (s12), (c) Effect on choline 

concentration in compartment (1) (s21), (d) Effect on acetate concentration in compartment (2) (s32), and (e) 

Effect on pH concentration in compartment (2) (pH2). 

 

 



 

  114

Case (2): Dynamic Bifurcation at s1f =2.4 

  Figure 4-12 illustrates the dynamic bifurcation diagrams using R as the bifurcation parameter 

but with a different value of feed ACh concentrations  4.21 fs which represents a very low feed 

ACh concentration and the other parameter values are shown in Table 4-3.  Figure 4-12 shows the 

complex behavior of the system through various stages in the neurocycle for a narrow range of the 

bifurcation parameter ( 8.00 R ). It is clear that the system has rich dynamics phenomena at a 

very low range of R which is too small to start the synthesis reaction catalyzed by ChAT.   

 Three main regions in the bifurcation diagram are observed, each one corresponding to a 

different form of qualitative behavior. The HB appears at 778.0R .  

In the range of ( 8.00  R ): The system demonstrates oscillatory behavior in the range 

( 8.00  R ). In this range, the equilibrium points are not attractors anymore but repellent, and the 

limit cycles are the only attractors (periodic attractors). 

The first region: in the range of ( 0.7945778.0  R ), the bistability phenomena occurs where 

both periodic and point attractors coexist with an unstable periodic orbit as the separatrix separating 

the domains of attraction of the periodic and point attractors. This bistability leads to the condition 

that at the same value of R slightly different initial conditions lead to different types of attractors.   It 

is noticed that after this range the periodic orbits cease to exist when ( R0.7945  ). The pH2 is 

inside the physiological expected range where it is between 6.25 and 8.2. This region with low 

choline uptake is thus characterized by the presence of bistability. The PD point occurs at R=0.7948 

where PD is one of the routes leading to chaos.  

The second region: in the range of ( 0.77821.0  R ), the system oscillates periodically, where the 

periodic attractor are the only attractor in this range. However, in the third region: in the range of 

( 0.21R ), the system exhibits unstable periodic orbits. It is clear ACh concentrations in 

compartments 1 and 2: s11 , and s12 respectively is out of the physiologic range, because the range of 

the choline recycle ratio is very small, this means that choline uptake will be very low, hence the rate 

of ACh synthesis is very small. 

There are many factors contributing to the rise of the complexity in the ACh system: the first 

factor is the competition between the diffusion and transport processes, from compartment 1 to 

compartment 2 and the enzymatic processes either the synthesis process catalyzed by ChAT and the 

hydrolysis process catalyzed by AChE. The high nonlinearity in the rate of reactions and their 

dependence on pH and their inhibition by substrates plays a role for giving rise for the oscillatory  
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Figure 4- 12: Bifurcation diagram: Choline recycle ratio (R) as the bifurcation parameter at  4.21 fs  

(stable: —, unstable: -----------), periodic branch (stable ●, unstable ○): 

(a)Effect on ACh in compartment (1) (s11); (b) Effect on ACh in compartment (2) (s12), (c)  Effect on choline 

concentration in compartment (1) (s21),  (d) Effect on acetate concentration in compartment (2) (s32), and (e) 

Effect on pH concentration in compartment (2) (pH2). 
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behavior. Finally, the choline recycle from compartment 2 to compartment 1 contributes the rise of 

complex behavior in the system.   

 The small levels of ACh in both compartments s11 and s12 as shown in  Figure 4-12 because 

of the small values of the bifurcation parameter R confirm that choline stream produced from the  

hydrolysis of ACh in compartment 2 contributes with a significant portion of the choline used for 

ACh synthesis in compartment 1 (Wecker et al., (1979), Iwamoto (2006), Tucek et al., (1985)). 

Therefore, it is possible that under conditions of AChE inhibition, choline uptake in the recycle 

stream is diminished leading to lack of the synthesis of ACh [Wecker et al., (1979), Iwamoto (2006)]. 

The effect of choline recycle ratio shows that choline uptake plays an important role, for supplying 

the required choline as a substrate for the synthesis reaction catalyzed by ChAT in compartment 1. 

The concentrations of ACh, choline and acetate were affected by the choline recycle ratio through a 

certain range of R then they become constant as R increases. These results confirm the role of 

recycled choline produced from ACh hydrolysis and choline uptake in the ACh neurocycle. The 

results of this section resemble the results produced from studying the effect of feed choline 

concentrations in Chapter 3 (Mustafa et al., 2009b). 

 

4.6 Summary and Conclusions   

In this chapter, the effects of ChAT activity and choline uptake in terms of choline recycle 

ratio on a coupled ChAT/AChE enzyme system are investigated. It is found that as ChAT activity 

increases, ACh concentrations in compartments 1 and 2 increase continuously. In the range 

 4
1

4 1078.91053.7   B  kmol/m3; a hysteresis phenomenon is noticed between the two static 

bifurcation points (SB1 and SB2) in this range. Hysteresis generally expresses the capability of the 

system to respond for any sudden change in  a  range around the static bifurcation points of  the 

bifurcation points as shown in Figure 4-3(b). 

  At the low values of ChAT activity, the system exhibits complex dynamics bifurcation 

including chaotic behavior via period doubling and period adding sequence in the range 

 5
1

5 1051098.4   B  kmol/m3. A bistability behavior is observed in a range close to the 

subcritical HB where periodic and point attractors coexist with an unstable periodic orbit as the 

separatrix separating the domains of attraction of the periodic and point attractors. This bistability 

leads to the condition, that at the same value of B1 slightly different initial conditions lead to different 



 

  117

types of attractors. Both periodic orbits and steady stationery states co-exist together as shown in 

Figure 4-5 and Figure 4-6.  

 It can be concluded that ACh was synthesized considerably less efficiently at low values of 

B1 which gives the opportunity for the system complexity. In addition, the increase of ChAT activity 

(B1) can be considered satisfactory for fast synthesis of ACh in compartment 1 to compensate for the 

released ACh in compartment 2.  Therefore, ChAT activity is a good key to cure the disturbances of 

ACh levels in cholinergic disorders such as Alzheimer’s and Parkinson’s diseases. It is found that the 

decline of ChAT activity will cause an observable reduction in the ACh synthesis s11 and ACh release 

s12 which represents one of the main symptoms of Alzheimer’s disease. 

The choline uptake in terms of choline recycle ratio affects greatly the ACh concentrations in 

both compartments which increase until a certain value of R=30 then they become constant in the 

range of  30R .  The system is dominated by the complexity and oscillatory behavior at low 

values of R where the reduction of R causes deficiency in choline supplied to the compartment 1. 

Therefore, choline uptake in terms of choline recycle ratio represents a limiting factor for controlling 

ACh cholinergic system and regulating the processes of ACh and adjusting the levels of the state 

variables in the system.  ACh is synthesized less efficiently when  30R . This is because the ChAT 

enzyme is inhibited by the excess of choline substrate which occur with the increase in choline uptake 

(R ).  This is in agreement with the results obtained by Schwartz et al., (1975). At the low values of 

choline recycle ratio, the system exhibits oscillatory behavior including chaotic behavior via a PD and 

period adding sequence in the range ( 0.8R ). 

From studying the effects of ChAT activity and R, our model results agree with the 

experimental results of Steven et al., 1982; Levnter et al., 1982; Krell and Goldberg, 1975 who 

observed that when ChAT inhibitors are injected into animals, a significant inhibition of brain ChAT 

activity is observed, but there is no significant reduction in the ACh levels in the brain.  These 

experiments, coupled with others that investigated the effects of choline uptake inhibition (Yamamura 

and Snyder, 1973; Kuhar and Murrin, 1978) confirm that in the nervous tissue high-affinity choline 

uptake is the rate limiting for ACh synthesis. This is in agreement with our results that show that the 

choline is the most important factor in ACh processes and from the effect of choline recycle ratio, it is 

clear  that choline uptake plays an important role, where it supplies choline as a substrate for the 

synthesis reaction catalyzed by ChAT in compartment 1.   
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Furthermore, the results are in accordance with the results obtained by Brandon et al., (2004) 

who indicated that the loss of ChAT activity will cause a decline in the rate of ACh synthesis in 

compartment 1. The reduction of ChAT activity needs other alternative effects to keep normal ACh 

concentrations.  According to Brandon et al., (2004), increased uptake or recycle of choline to ChAT 

in compartment 1 may be the alternative solution for keeping the high efficiency of ACh and the rate-

limiting factor in the synthesis of ACh. 

 Our results are also in accordance with the experimental results of other researchers who 

investigated both choline uptake coupled with ChAT in the presynaptic neurons [Sterling et al; 2006].  

They found that inhibition ChAT activity did not block the synthesis of ACh in compartment 1. 

However, the inhibition of choline transport into compartment 1 blocked ACh synthesis completely in 

compartment 1 Barker and Mittag, 1973; Guynet et al, 1973; Yamamura and Snyder, 1973; Kuhar 

and Murrin, 1978, Sterling et al; 2006].  One of the explanations of these results is the existence of 

ChAT in the presynaptic terminals in a very higher activity than necessary for ACh synthesis 

[Trabucchi et al, I975; Haubrich, I976]. Finally, it can be concluded that choline recycled thereby 

choline uptake plays the role of rate limiting factor in the control of ACh synthesis.  
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Chapter 5 

Application of Continuation Method and Bifurcation for the 

Acetylcholine Neurocycle Considering Partial Dissociation of 

Acetic Acid 

In this chapter, bifurcation and chaotic behavior of the two-enzyme-two- compartment Acetylcholine 

(ACh) neurocycle model developed earlier (Mustafa et al., 2009 a, b)  are investigated allowing for  

partial dissociation of acetic acid. The two-parameter continuation technique is used to investigate 

static and dynamic solutions of the ACh cholinergic neurocycle system based on feed choline 

concentration as the main bifurcation parameter. A detailed bifurcation analysis is carried out in order 

to uncover some important features of the system, such as static bifurcation, dynamic bifurcation and 

chaotic behavior. These findings are related to the real phenomena occurring in the neurons, like 

periodic stimulation of neural cells and non-regular functioning of ACh receptors. It is found that pH 

does exist in the range of [7.05- 7.75] which is inside the physiological range of pH of the brain 

associated with taking into consideration the partial dissociation of the acetic acid. The disturbances 

and irregularities (chaotic attractors) occurring in the ACh cholinergic system may be good 

indications to cholinergic diseases such as the Alzheimer’s and Parkinson’s diseases. 

Keywords:  Acetylcholine, Choline, Acetic acid, Hydrogen ions, period doubling, Dynamic behavior, 

Bifurcation, Chaos, Alzheimer’s and Parkinson’s diseases. 

 

5.1 Introduction 

Hydrogen ion (H+) is a very simple element because it contains only one proton and its size is very 

small [Kaila and Ransom (1998)].  However, H+ ions play an extremely vital role in all metabolic 

processes, and ion transport occurring in the living organisms. For example, the function of protein 

components can be altered from hydrophobicity to hydrophilicity because of its ability to release or 

bind H+ ions [Karel  and Milan (1997)].  It is observed that most pathological environments and ions 

diffusion are accompanied by observed pH alteration changes [Obara et al., (2008)]. Kaila and 

Ransom (1998) indicated that imbalance of neural excitability which occurs due to irregular changes 

in pH of neuronal environment and hence disturbances in action potentials generations, can cause 

some diseases such as epileptic seizures. Moreover, neural excitability can be increased during 
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alkalosis and decreased during acidosis. Scientists discovered that the response of cholinergic 

receptors can be reduced with the reduction of pH. Coma can be occurred due to improper response 

of nervous system. Any irregular alterations in induced pH of metabolic and nervous processes will 

affect the performance of receptors, transporters, and channels and will influence nervous excitability 

and communications and the performance of nervous functions of the brain [Kaila et al., (1998); Jaak 

(2007)].  H+ ions play a vital role in signaling in the different parts of brain where the action 

potentials and the functions in both glial cells and neurons can be affected easily with any alterations 

in pH of the cells, so that transformation of information within the brain and between brain and other 

parts of the body will be affected [Kaila et al., (1998)].   According to Kaila et al.,(1998), based on 

pH regulations living organism cells keep their pH at a resting level which is more alkaline than 

acidic.   

In the presynaptic neurons where ACh is synthesized by the enzyme ChAT, the internal 

organs such as the mitochondria and synaptic vesicles have the capability to keep pH gradient to 

regulate all the diffusion processes between the interior and exterior of the cells [Paulsen et al., 

(1996); Kaila et al., (1998); Diering et al., (2009)]. Because glial cells are very close to neurons and 

supply them with salts and nutrients, the extracellular pH of neurons will be affected by any slight 

change in the intracellular pH of glial cells [Claudia R. et al., (2007); Amato et al., 1994; Boron W.F 

(2004)].  Usually the extracellular pH of glial cells exists in the range 7.2-7.5, and their intracellular 

pH exists in the range of 6.9-7.6 [Christine et al., (1998)]. Walter (2004) showed that the mechanism 

of pH regulation via acid/base transport mechanisms is much complicated because there is a complex 

mutual effect between signal processing and pH effects [Walter (2004); Boron and Boulpaep (2002)]. 

Acetic acid as a weak acid and its conjugate as a weak base constitute a buffer pair. The components 

of this buffer power can bind and release ions and thereby affecting the functions of neurons and glial 

cells [Boron (2004); Zaniboni et al., (2003)].  

H+ may be stored in the vesicles and released with ACh leading to acidification of the 

synaptic cleft. This means that postsynaptic interactions between the ACh transmitters and the 

cholinergic receptors and synaptic transmission will be controlled and modulated by pH changes in 

the synaptic cleft [Abdrakhmanova et al., (2004); Mozrzymas et al., (2003)]. All the functions of the 

nervous system such as synaptic transmission, enzymatic processes, and all metabolic activities are 

influenced by any alterations in pH (Deitmer et al., 1996).  So that pH changes represent a critical 

necessity for all biological functions (Deitmer et al., 1996).   
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5.2 Hydrogen Ions and Cholinergic Diseases  

There is a lot of research proposing that there is a great relation between cholinergic diseases 

(such as  Parkinson’s disease and Alzheimer’s disease) and pH disturbances in neurons and glial cells 

(Kaila et al., (1998); Claudia et al., (2007)). One of the main aspects for these diseases is that pH 

irregularities can cause changes in proliferation of glial cells. Glial cells are usually existent in plenty 

in nervous systems; hence, cellular proliferation can be affected by alterations in pH, thereby 

affecting neurons and transmitters. Therefore, it will helpful to control pH changes in glial and 

neurons to cure brain diseases (Kaila et al., (1998)).    
Most of diseases (e.g., head injury, epilepsy, cancer, and stroke) are accompanied with severe 

pH alterations which cause imbalance in acid/base diffusion (Kaila et al., (1998)). According to Mario 

et al. (2005), brain afflicted by diseases is accompanied by disturbances in pH. For example, acute 

head injury is associated with chronic acidification causing neurological abnormalities such as lack of 

consciousness (Kaila et al., (1998)).; Mario et al., (2005)). 

5.3 ACh Neurotransmitter and Partial Dissociation of Acetic Acid  

  ACh neurotransmitter can affect intracellular pH (pH of the presynaptic neurons) in several 

ways. ACh release is associated with opening of channels in asrtocytes can, therefore, lead to efflux 

of H+ from the cells and cause an acidification of the postsynaptic neurons and synaptic cleft, 

however, it will cause  alkalinization in the presynaptic neurons(Christine et al 1998; Boron (2004)). 
Neurons actively extrude acid to maintain intracellular pH at more alkaline levels than dictated by the 

H+ equilibrium potential (Christine et al 1998; Gregory Zoppo 2009). Il'in et al., (1975) investigated 

how isolated neurons during the processes of ACh were influenced by changes in pH. They found that 

the sensitivity of the cholinergic receptor membrane reduced as pH reduced. In addition they found 

that the sensitivity to ACh inhibited in the acidic environment where pH in the range 5.8–6.0 and had 

not been responded even the pH increased to 10.6.  

To simulate the hydrolysis and excitation processes of ACh, artificial membranes 

immobilized with the enzymes have been applied. Santos et al. (2006) found that an action potential 

difference in the form of hysteresis when they used artificial membranes immobilized with AChE and 

injected ACh in one side of the membrane. Because the enzymatic reactions were accompanied by 

production of H+, an auto-catalytic behavior will be dominated in the system [Santos et al., (2006); 

Mustafa et al., a, b (2009)]. 
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In the pervious three chapters the rate-limiting step in the ACh neurocycle was found to be  

the uptake of choline and that the feed choline is the most important substrate in ACh neurocycle. It 

was found that both acetyl-coA and ChAT activities are not the rate limiting factors in the neurocycle. 

However; we have found that the pH in compartments 1 and 2 are out of the physiological range in 

many cases. This is because of the fact that our previous model assumption considered that each mole 

of acetic acid produced during hydrolysis process gives one mole of hydrogen ions. In fact for the 

fully ionized acetic acid, this is not realistic.  In this work we deal with this problem by considering 

the partial ionization of acetic acid. This will affect the H+ protons concentration in both 

compartments leading to more realistic values of pH.  In addition, we will consider the rate of 

formation of Acetyl CoA from acetate ions (A-) and CoA, which will make the model more realistic. 

We will use  the continuation method to investigate the dynamic bifurcation and  chaotic behavior of 

the system based on these new considerations in addition to kinetic mechanisms for synthesis and 

hydrolysis reaction we  considered  earlier (Mustafa et al., 2009 a, b).  

We will investigate the phenomena of complex dynamic and static behavior including 

bifurcation, period doubling (PD) instability, and chaos by developing the previous two-enzyme/two-

compartment model considering partial dissociation of acetic acid and link these phenomena with the 

physiological behaviors relating to the cholinergic ACh neurocycle system. 

 

5.4 Formulation of Diffusion-Reaction Two-Enzyme /Two-Compartment Model 

Based on Partial Dissociation of Acetic Acid  

Figure 5-1 describes the ACh neurocyle system at the contact between two neurons. As illustrated by 

the figure, the presynaptic neuron represents compartment 1 and both the postsynaptic neuron and the 

synaptic cleft represent compartment 2. The choline is re-uptaken from the synaptic cleft into the 

presynaptic neuron terminal.  Figure 5-1 shows that there is another stream of ACh which is called 

mobile ACh and enters compartment 1 coming by axonal transport. Also Figure 5-1 shows that there 

are two resources of choline. The first one is produced by the hydrolysis of ACh, and then a part of it 

is recycled to the first compartment. The other source is synthesized in the environment outside 

compartment 1 where choline in the latter stream comes either directly from the free choline of the 

blood plasma, or from the brain cells, where it has been released from choline-containing compounds 

(Tucek 1985, Mustafa et al., 2009 b). The choline produced in compartment 2 is the only component 

existing in the recycle stream. The physiological references such as Tucek et al. (1978) and (1985) 
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confirm this point where they do not refer to recycling of any other components such as ACh and 

acetyl CoA (Mustafa et al., 2009 b), as explained before. Acetyl-CoA is synthesized in the 

mitochondria with a certain rate (r(3)) as will be explained. The acetyl CoA should be plentiful since it 

is provided from pyruvate formed by the metabolism of glucose.  All of these streams (the stream of 

axonal transport of ACh, the stream of choline synthesized in extracellular space of compartment 1, 

the stream of Acetyl-CoA coming from mitochondria) are collected together in one feed stream which 

meets the recycle stream of choline coming from the hydrolysis of ACh to enter compartment 1 as 

shown in Figures 5-2 which shows a simplified form of the feedback model of ACh neurocycle 

shown in Figure 5-1. 

 

  

Compartment 1 

Compartment 2 

 ACh 

Choline

Choline

ACh

ACh

 

Figure 5-1 Schematic of synaptic neurons and cleft 

"This image has been reproduced from Anesthesia with permission  

(www.AnaesthesiaUK.com) 
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Figure 5-2: Two-enzyme/ two-compartment model 

 

 

As shown in Figure 5-1 ACh hydrolysis reaction, catalyzed by acetylcholinesterase (AChE), occurs 

on ACh receptors which are located on the top of the postsynaptic neuron.  Then the products of 

hydrolysis (choline and acetate) go through the synaptic cleft. As explained in Mustafa et al. (2009b), 

both regions of the synaptic cleft and postsynaptic neurons are unified together into one 

homogeneously stirred compartment (compartment 2) instead of more compartments because both the 

synaptic cleft and the postsynaptic neurons are homogeneous and interactive. In addition, this avoids 

the expected complexity and difficulty in solving the model and analyzing the results when the 

dimensionality of the system is too high. The concentrations of the components in compartment 2 

represent the average concentrations in both the synaptic cleft and the postsynaptic neurons. 

Furthermore, we assumed that the flow rate of the feed stream to compartment 1 and that of the exit 

stream from compartment 2 are equal. In summary, each compartment is defined as a constant flow; 

constant volume, isothermal, continuous stirred tank reactor (CSTR) and the two compartments are 

separated by a permeable membrane. The behavior for a single synaptic vesicle is described by this 

R(3)
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simple two-compartment model, assuming that all the events are homogeneous in all vesicles and 

using the proper dimensionless groups.  

The rate of acetyl CoA synthesis from acetate and CoA catalyzed by the enzyme acetyl CoA 

synthase occurring in compartment (1) will be considered. The rate of dissociation of acetic acid (Ac) 

will be considered on the level of equilibrium. The acetate ion (Ac-) produced from the ionization of 

Ac will contribute to the formation of Acetyl-CoA.  In both compartments, there are two sources of 

hydrogen ions, the first one comes from the dissociation of Ac and the other comes from the 

ionization of water molecules. In order to illustrate the effect of partial hydrolysis of acetic acid in the 

model we can start with these proposed sets of chemical reactions in the two compartments as 

follows:   

Compartment (1): 

In compartment (1), acetyl CoA is synthesized by the Acetyl-CoA synthase and ACh is synthesized 

by the enzyme ChAT; acetic acid is hydrolyzed as follows (Tucek 1990, Mustafa et al., (2009) a, b): 

R(1)   :      Ch + Acetyl - CoA  ChAT  ACh + CoA                                                    (5.1) 

R(3)   :     Ac- + CoA   SynthaseAcetylCoA  Acetyl - CoA                                                (5.2) 

Rd      :      Ac  dR  Ac- + H+                                                                                     (5.3) 

Rw   :               H2O  WR   H+ +OH-                                                                              (5.4) 

Where Rd is the rate of acetic acid dissociation, and Rw is the rate of water hydrolysis/formation. 

Compartment (2): 

After ACh causes the electrochemical (synaptic) signals   by interaction with the postsynaptic 

receptors, ACh is destroyed in compartment 2 by AChE by the degradation reaction as follows: 

R(2) : ACh + Water  AChE  Choline + [Ac]  [acetic acid]                                        (5.5) 

Rd    :      Ac  dR  Ac- + H+                                                                                         (5.3) 

Rw   :          H2O  WR   H+ +OH-                                                                                    (5.4) 

The reactions R (1), and R (2) are considered to be substrate inhibited and in addition to R (3), all 

of them are hydrogen ions affected. This leads to a non-monotonic dependence of the reaction rates 

on the substrate concentrations and pH. The rates can be formulated by employing certain 

assumptions and basic biokinetics knowledge as explained in the following section.  The details of the 

derivation are given in our chapters 2-4.  The final dimensionless forms of the ordinary differential 

equations of the tenth – dimensional system are summarized in Table 5.1. The model equations are in 
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terms of ten state variables                  13221221112121  , , , , a ,a ,h ,h sssss  23 and s  and 36 parameters 

(Tables 5.2 and 5.3). All values of the parameters (with respective references) used in this 

investigation are given in Table 5.3. 

Table 5-1: Dimensionless forms of the ordinary differential equations of the eight state 

variables 
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Table 5-2: Dimensionless state variables, parameters and other terms.  

Dimensionless State Variables 

 
  

1h

j
j K

H
h



  Dimensionless hydrogen ion concentration in compartment j  

 
  

1

1

1
s

j
j K

S
s   Dimensionless ACh concentration in compartment j  

 
  

 reference

j
j S

S
s

2

2
2   Dimensionless choline concentration in compartment j  

 
  

 reference

j
j S

S
s

3

3

3   Dimensionless acetyl CoA concentration in compartment j  

 
  

 reference

j
j A

A
a   Dimensionless acetate concentration in compartment j  

Dimensionless Membrane Permeabilities 

q

AMH
H









  
q

AMOH
OH









  
q

AMS
S

1

1





  

q

AMS

S
3

3





  

q

AMS
S

2

2





  

q

AMAC
AC





  

q

AMA
A





  

Dimensionless Kinetic Parameters for ChAT Catalyzed Reaction  

Kh

a
F ref

y   
Ka

Kh
  

Other Terms Used in Dimensionless Form 

 

 2

1

V

V
VR   

1

1
i

W

K

K
  

 1V

tq
T   

q

ChATVV
B M 11

1   
q

AChEVV
B M 22

2   
q

SynthaseACoAVV
B M 31

3   

 

 

 



 

  129

Table 5-3: Parameters Values: 

Parameter Value Reference 

C5 5.2(0.1) Hersh & Peet (1977) 

C1 2.4 Hersh & Peet (1977) 

C4 1000 Hersh & Peet (1977) 

C2 5 Hersh & Peet (1977) 

C3 1 Hersh & Peet (1977) 

  0.5 Garhyan   et al., (2006), Elnashaie et al., 1983a; 

Elnashaie et al., 1983b; Elnashaie et al., 1984; 

Elnashaie et al., 1995; Ibrahim et al., 1997) 

  1 Garhyan et al., (2006), Elnashaie et al., 1983a; 

Elnashaie et al., 1983b; Elnashaie et al., 1984; 

Elnashaie et al., 1995; Ibrahim et al., 1997) 

Ka(kh) 1.0*10-6 kMole/m3(µMole/mm3) Garhyan et al., (2006), Elnashaie et al., 1983a; 

Elnashaie et al., 1983b; Elnashaie et al., 1984; 

Elnashaie et al., 1995; Ibrahim et al., 1997) 

Ks1 4.5*10-7 kMole/m3(µMole/mm3 Garhyan et al., (2006), Elnashaie et al., 1983a; 

Elnashaie et al., 1983b; Elnashaie et al., 1984; 

Elnashaie et al., 1995; Ibrahim et al., 1997) 

S2ref 1.4*10-5 kMole/m3(µMole/mm3) Guyton and Hall (2000) 

S3ref 1.5*10-6 kMole/m3(µMole/mm3) Guyton and  Hall (2000) 

Aref 1.0*10-5 kMole/m3(µMole/mm3)  Tucek (1985) 

ACref 5.0*10-6 kMole/m3(µMole/mm3) Tucek (1985) 

1B  2.0*10-5 kMole/m3(µMole/mm3) Garhyan et al., (2006) 

2B  3.0*10-5 kMole/m3(µMole/mm3) Garhyan et al., (2006) 

3B  4.0*10-5 kMole/m3(µMole/mm3) Assumed 

H
  2. Elnashaie et al., (1984) 

OH
  0.5 Elnashaie et al., (1984) 

1S  2 Elnashaie et al., (1984) 

2S  2 Elnashaie et al., (1984) 

A  0.6 Assumed 



 

  130

AC  2 Assumed 

3S  2 Elnashaie et al., (1984) 

RV  1.2 Elnashaie et al., (1984) 

fpH  8.0 Guyton and Hall (2000) 

fs1  1.11 Garhyan    et al., (2006) 

 

fs2  4.6514 Garhyan    et al., (2006) 

fs3  1.1 Garhyan    et al., (2006) 

a f 3 Tucek (1985) 

  0.01 Garhyan    et al., (2006), Elnashaie et al., 1983a; 

Elnashaie et al., 1983b; Elnashaie et al., 1984; 

Elnashaie et al., 1995; Ibrahim et al., 1997) 

Kd 0.000018 Golovanenko et al., (2006) 

R 0.8 Tucek (1978) 

 

5.5 Solution Techniques and Numerical Tools 

The results of bifurcation diagrams for the system were obtained using XPPAUT and AUTO 

2000, a bifurcation and continuation software for ordinary differential equations.  Both static and 

dynamic bifurcations can be performed by this software package (Ermentrout 2002). The dynamics 

results such as phase planes and time traces were obtained via FORTRAN programme. For the 

chaotic behavior, we used one- dimensional Poincare map to investigate the intersections in one 

direction between a hyperplan surface (Which is chosen at certain value of a state variable) and 

trajectories [Garhyan et al. (2006); and Strogatz (1994)]. From discrete points of intersections, we are 

able to construct the bifurcation diagram of Poincare. Then we can investigate the dynamics behavior 

of the chaotic attractors. This is performed using IMSL libraries which contain DGEAR subroutine. 

Step size is chosen automatic based on the stiff differential equations during the investigations of the 

dynamics.  Sometimes we used matlab to ensure the solution quality. The Poincare diagram is plotted 

using a program employed by Ibrahim et al., (2002) [Garhyan et al. (2006); Elnashaie et al. (1984)].  
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5.6 Physiological Values of the Parameters 

To validate the results of the system with physiological and experimental results and with 

other models of previous investigators, we will compare our system behavior with the following 

physiological values of ACh, choline, acetate, and pH. These values depend on experimental results 

and other models like that used by Garhyan et al. (2006) and Mahecha- Botero et al. (2004). The 

concentrations are given in (Kmol/m3). Human brain pH in a feline model is found to be in the range 

of 6.95-7.35 [Zauner and Muizelaar (1997)], and pH in a human brain was found by [Rae et al. 

(1996)] to be in the range 6.95 - 7.15. Free ACh in rat brain was found to be around 51022.0   

kmol/m3 and total ACh was found to be around 51077.1   kmol/m3. Tucek (1990) and Garhyan et 

al. (2006) showed that in guinea pig cerebral cortex the range was from 51031.0   (free ACh) to 

51067.1   kmol/m3 (total ACh).  

Wessler et al. (2001) and Mahecha- Botero et al. (2004) reported that ACh concentration in 

human placenta in the range of 5100.3   to 5105.55   kmol/m3.  Mahecha- Botero (2004) showed 

that in the isolated rings of rat pulmonary artery ACh was measured to be in the range of 

510001.0   to 5100.3    see also [Kysela and Torok (1996)]. Mahecha- Botero et al. (2004) and 

Garhyan et al. (2006) reported that choline concentration in mouse rat brain is about 41015.1   

kmol/m3. This range was confirmed by Tucek (1978) and choline concentration in human plasma is in 

the range of 41001.0   to 4107.0   kmol/m3 [Chay and Rinzel (1981); Mahecha – Botero et al. 

(2004) and Garhyan et al. (2006)]. 

The real concentration of ACh in cholinergic neurons of the brain is not known [Tucek (1978) 

and (1990)].  The content of ACh in the rat brain will be taken as 1.2 x10-5 kmol/m3 [Tucek et al. 

(1978)].  On the assumption that the neurons represent 1/3 of the weight of the brain (the rest being 

attributable to glial cells and extracellular fluid), that the ACh is confined to cholinergic neurons, and 

that cholinergic neurons represent 10% of the total volume of all neurons, the concentration of ACh in 

the cholinergic neurons will be equal to 1.2 x10-5 kmol/m3 x 30=36 x10-5 kmol/m3.  Despite the 

uncertainties associated with these estimates (the main being the proportion of cholinergic neurons in 

the total neuronal population of the brain), it is evident that, in the light of the present knowledge, the 

estimated equilibrium concentration of ACh (12 x10-5 kmol/m3) and the estimated concentrations of 

ACh in cholinergic neurons (36 x10-5 kmol/m3) do not appear vastly different incompatible values. A 

higher concentration of ACh in presynaptic nerve endings might be achieved in two ways: by the 
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accumulation of ACh in synaptic vesicles, and by higher concentration of the substrates in this part of 

neuron. There is a wide range of H+ and OH- ions permeabilities; this range starts at 0.1 cm/s up to 

0.0001 cm/s [Boron and Boulpaep (2002)]. The permeability of ACh is taken to be the same as the 

values used by Garhyan et al. (2006). 

5.7 Results and Discussion 

Because of the importance of the feed choline concentration s2f as shown in chapters 3 and 4, it is 

selected as the main bifurcation parameter for a very narrow range ( 85.44.4 2  fs ) in the 

dimensionless form corresponding to ( 5
2

5 1079.61016.6   fs ) kmol/m3.  Figure 5-3 shows 

the dynamic bifurcation diagrams at the set of system parameters as shown in Table 5-2 at the 

dimensionless feed acetate concentration Af = 3 corresponding to 4.5x10-5 kmol/m3.   At low 

concentration of s2f where the feed choline concentrations are in a very small range, the ACh 

cholinergic system is characterized by a lot of complexity.  

As shown in Figure 5-3, the system demonstrates oscillatory behavior between the two Hopf 

bifurcation (HB) points where periodic or chaotic solutions appear. The first Hopf point is at s2f  = 

4.442, the second Hopf point is at s2f = 4.771 and the PD point is at s2f  = 4.674 where the periodic 

branch emanating loses its stability through period doubling cascade rout leading to chaos which will 

be analyzed in details later and the TR point exists at s2f  = 4.767.  There are two static limit points 

(SLP).  

The second HB point (s2f = 4.771) is called a subcritical HB because a branch of unstable periodic 

orbits is extracted and separates the stable periodic orbits from the stable steady state. Hence, a 

bistability phenomenon exists around the second HB where both steady state and periodic solutions 

exist at the same values of the bifurcation parameter s2f around a certain range of the second HB 

point.  However, the first HB point at s2f = 4.442 is called a supercritical HB. The dynamic bifurcation 

diagrams in Figure 5-3 can be divided into three main regions, each one corresponding to a different 

form of qualitative behavior and shown as follows:  



 

  133

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85
1.8

1.9

2

2.1

2.2

2.3

S2f

S1
1

HB1

HB2
LP

LP

TR

PD

PD

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85
0.2

0.4

0.6

0.8

1

S2f

S
12

HB1

HB2LP

LP

TR

PD

PD

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85
8

8.5

9

9.5

S2f

S
21 HB1

HB2

PD

PD
LP

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8
2

2.5

3

3.5

4

4.5

S2f

S
32

HB1
HB2

LP

LP

TR

PD

PD

(a)

(d)(c)

(b)

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85
6.6

6.8

7

7.2

7.4

7.6

7.8

8

S2f

p
H

2 LP

LP

TR

PD

PD

4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

S2f

A
ce

ta
te

2

LP

LP

TR

PD

PD

HB1

HB2

HB1

HB2

(e) (f)

 

Figure 5-3: Bifurcation diagrams with choline feed concentration fs2  as the bifurcation parameter 

(a) Bifurcation diagram for ACh concentration in compartment 1( 11s ), (b) Bifurcation diagram for ACh 

concentration in compartment 2( 12s ).  (c)Bifurcation diagram for choline concentration in compartment 

1( 21s ),   (d) Bifurcation diagram for Acetyl- CoA concentration in compartment 2( 32s ), and (e) Bifurcation 

diagram for pH in compartment 2 (pH 2), and (f) Bifurcation diagram for Acetate concentration in compartment 

2. 
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1) Region 1:  4.4420 2  fs    

In this range which represents very low feed choline concentrations, the system is dominated by only 

a stable steady state (point) attractor. Figure 5-3(a) shows that s11 varies between 1.8 and 2.1 

corresponding to  7101.8   and 
71045.9   kmol/m3. Figure 5-3(b) shows that s12 varies between 

0.63 and 0.73 corresponding to 710835.2   and 710825.3   kmol/m3. Both of s11 and s12 are out 

of the physiological range.  Figure 5-3 (d) shows that acetyl CoA (s32) is around 2.25.  Figure 5-3 (e) 

shows that pH2 varies around 7.57 which is close to the physiological range due to consideration of 

the partial dissociation of acetic acid. Figure 5-3(f) shows that a2 is around 2.63 which is close to the 

physiological range also.   

2)  Region 2: feed choline concentration in the region  771.44.442 2  fs  corresponding to 

( 51022.6   and 51068.6  ) kmole/m3. There are two Hopf bifurcations (HBs). The first HB1 

appears at 442.42 fs  and the other HB2 at 771.42 fs  in which the behavior of state variables 

describes periodic solutions or oscillatory behavior. The unstable waves in the substrate make the 

system approach to either the periodic solutions on the right or the steady state solution to the left. 

Solid bold curves represent stable steady state solutions and dashed lines represent the unstable steady 

states. Closed circles are used for stable orbits and the open circles for the unstable orbits. The 

oscillatory behavior represented by the branch between HB1 and HB2 (unstable zone) is also easily 

visualized in Figure 5-3. 

In the range ( 674.4442.4 2  fs ), the system is characterized only by stable periodic 

orbits; however, in the range  771.44.674 2  fs  a bistability phenomenon is observed (periodic 

and point attractors coexisting with an unstable periodic orbit separating the domains of attraction of 

the periodic and point attractors). This bistability leads to the conditions that at the same value of fs2  

slightly different initial conditions lead to different types of attractors. Also there is a sequence of  PD 

which is one of the main ways leading to chaos. There are many PD points at s2f =4.766 and 4.674 

and there is a torous bifurcation (TR) point at s2f =4.767.   
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Figure 5-4: Two parameter continuation where Hopf is in blue color and SLP is in red. Feed choline (s2f) 

is the horizontal in all figures vs. the following 

(a)   Feed choline concentrations (s2f) vs. permeability of Hydrogen ions (αH).  

(b)  Feed choline concentrations (s2f) vs. permeability of ACh (αS1). 

 (c)  Feed choline concentrations (s2f) vs. permeability of choline (αS2). 

(d) Feed choline concentrations (s2f) vs. AChE activity (B2). 

(e)  Feed choline concentrations (s2f) vs. CoA activity (B3), and  

(f)  Feed choline concentrations (s2f) vs. Hydrogen ions concentrations 

 

The bistability can be explained by the competition between the diffusion process from 

compartment 1 to compartment 2 and the enzymatic reaction catalyzed by the enzymes ChAT and 

AChE in compartments 1 and 2.  Figure 5-3(e) shows that pH2 exists in the range of [7.05- 7.75] 

between the two HB points. This range of pH2 is inside the physiological range of the brain because 

of the partial dissociation of the acetic acid consideration. 

3) Region 3: feed choline concentration in the region  85.44.771 2  fs . In this region there is a 

unique stable steady state. The diagrams are characterized by steady state solutions where the point 

attractor is the only attractor as shown in Figure 5-3. 
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The two-parameter continuation technique has been used to investigate the influence of 

variation of the system parameters on the qualitative behavior of the system. By this technique both 

static and dynamic behavior can be elucidated with the changing of system parameters such as (s1f, s3f, 

vr, Af,  αH, αs1, αs2, αs3, B2, B3,  and H+ ions),  as shown in Figures 5-4(a)–(f ) and   Figures 5-5(a)–(e ). 

In Figures 5-4(a)–(f) and Figures 5-5(a)–(e ) the loci of the HB points (the blue color) and the loci of 

the static limit points (red color) have been shown as the system parameters vary with feed choline 

concentration (s2f) as the main parameter. In these figures if a horizontal or vertical line is drawn 

inside the curves and  if these lines cross the HB curves at  two  pints, oscillatory behavior will 

dominate between these HB points.  

Figure 5-4(a) shows the two-parameter continuation diagram s2f versus αH. It is clear that at 

the given set of system parameters, all the qualitative changes in bifurcations are between the values 

of αH = 0 and 33. The diagram is characterized by the existence of two different loops, the first which 

is plotted using blue lines is HB points and the bigger one is the SLP points.  The diagram shows that 

there are two regions of periodic or chaotic attractors, the lower region where αH < 13.5 is 

characterized by presence of Hopf and SLPs bifurcation points. In addition, it is characterized by a 

wider span of the Hopf points (on s2f scale) as αH approaches zero and a narrow span as αH  approaches 

13.5. The upper region is characterized by existence of SLPs bifurcation points where the hopf 

bifurcation disappears completely when αH is larger than 13.5. It is observed that both regions exist in 

the range of s2f among 5 and 3.3. 

Figure 5-4(b) illustrates the two-parameter continuation αs1 versus s2f. The results are 

different from the results in Figure 5-4(a). The figure shows that there are no effects of changing s2f 

on the qualitative behavior in bifurcations when (αs1 > 2). Both SLP and HB changes vertically so that 

there are always two HB bifurcation points and two SLPs bifurcation points inside the same range of 

s2f when (αs1 < 2). The HB points disappear and only the two SLPs exist.    

Figure 5-4(c) shows the two-parameter continuation diagram αs2 versus s2f.  There are two 

HB bifurcation points and two SLPs bifurcation points.  All HB and SLP points exist in the range of 

s2f  between 0 and 9. As shown in the figure, the spans of HB and SLP points are very narrow in the 

range (0 < s2f < 7) and these spans become wider in the range of (7 < s2f  < 9). In addition, both HB 

and SLP disappear as (αs2 < 2). It is clear that there is no any influence of changing s2f on the 

qualitative changes when (s2f  >  9). 

Figure 5-4(d) illustrates the two-parameter continuation diagram B2 versus s2f.    The figure 

shows that HB and SLP points lie in the range of B2 between 0.5 x 10-5 and 4 x 10-5 kmol/m3. Figure 
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5-4(d) illustrates that HB points exist only in a very narrow span of (5 < s2f < 8.5) and (B2 > 1.5 x 10-5) 

kmol/m3. The HB points disappears in the range (B2 < 1.5 x 10-5) kmol/m3. The span of SLP becomes 

narrower as s2f increases where B2 changes in a very small range (0.6-0.7) x 10-5 kmol/m3 as s2f > 40. 

Figure 5-4(e) shows the two-parameter continuation diagram B3 versus s2f.  There are two HB 

bifurcation points and two SLPs bifurcation points.  The figure illustrates that the SLP disappears 

completely in the range (s2f < 4.7) and (B3 > 0.00006). The span of HB points decreases as s2f > 4.7 

where B3 exists in the range (0.000001 < B3 < 0.00006). 

Figure 5-4(f) illustrates the two-parameter continuation diagram feed H+ versus s2f.  There are 

two HB bifurcation points in a very small range of (3.4 < s2f  < 5.51) and only one HB in the range of 

(5.51 < s2f  < 15.4). HB exists in the range of feed H+ protons (0.007 <H+ < 11.03) x10-3. There is only 

one SLPs bifurcation point the range of (4.41 < s2f  < 100). As shown in the figure, both HB and SLP 

disappear (s2f   < 3.4). 

Figure 5-5(a) represents the two-parameter continuation diagram Af versus s2f.  According to 

the figure the range of HB and SLP exists in the range (4.5<s2f <8.6) and (Af <4.3).  The SLP exists 

only as (4.7 < s2f < 8.6) and in the range of (Af < 3.7). There are two HB points in the range of 

(4.7<s2f<5.3) and only one HB point in the range of (5.3<s2f<8.6). 

Figure 5-5(b) illustrates the two-parameter continuation diagram s1f versus s2f.  The figure 

shows that there are two HB bifurcation points and two SLPs bifurcation points. The range of HB and 

SLP exist in the range (0 <s2f < 9.5) and (0 < s1f < 2.7).  The SLP exists only as (4 < s2f  < 9.5) and 

disappears in the range of (0 <s2f  < 4). The HB exists in the range of (0 < s2f < 8) and disappears 

completely (8 < s2f). The span of HB deceases as s2f is less than 8 and the span of SLP increases in the 

range (4<s2f). 

Figure 5-5(c) shows the two-parameter continuation diagram s3f versus s2f.  There are two HB 

points and two SLPs points. The range of HB and SLP exist in the range (2.5 < s2f  < 9) and (s3f  > 0).  

The SLP exists only as (4.7 < s2f < 6.3) and disappears in the range of (s2f < 4.7).   there are two  HB 

points  in the range of (2.5<s2f <4.7) and HB disappears completely (s2f <2.5). The span of HB 

decreases as s2f increases in the range (2.5 < s2f) and the span of SLP increases in the range (4.7 < s2f < 

6.3).  

Figure 5-5(d) illustrates the two-parameter continuation diagram VR versus s2f.  There are two 

HB bifurcation points and two SLPs bifurcation points. The range of HB and SLP exists in the range 

(2 <s2f <90) and (0.2 < VR < 1.635). The SLP exists only as (2.5 <s2f < 90) and disappears in the range 
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of (s2f  < 2).   The HB exists in the range of (2.5 < s2f  < 10) and disappears completely (s2f > 10). The 

span of HB   is very small where the range of VR is (0.58 < VR < 1.635). 
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Figure 5-5: Two parameter continuation where Hopf in blue color and SLP in red. Feed choline (s2f) is 

the horizontal in all figures vs. the following: 

(a)   Feed choline concentrations (s2f) vs. feed acetate concentrations (Af).  

(b)  Feed choline concentrations (s2f) vs. feed ACh concentrations  (s1f). 

 (c)  Feed choline concentrations (s2f) vs. Acetyl CoA concentrations  (s3f). 

(d) Feed choline concentrations (s2f) vs. the ratio (Vr) and 

 

The two-parameter continuation diagram which relates feed acetate concentration Af to feed 

choline concentration s2f is shown in Figure 5-5(a). To understand well the significance of the two-

parameter continuation diagrams, Figure 5-5(a) showing the two-parameter continuation between Af 

and s2f is divided into 3 different regions according to the existence of SLPs and HB points.  We will 

investigate the static and dynamic bifurcations based on the value of the parameter Af  in each region 

as follows: 
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(iii)
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Region (1):  

This region extends above the value of Af that corresponds to the end of the HB curve at about Af = 

4.5 as indicated by the horizontal dashed line (i) in Figure 5-5(a). It is observed that there is no any 

HB or SLP. It is more clarified when studying the dynamic bifurcation diagram as shown in Figure 5-

6(a) at Af=4.5. The bifurcation diagram illustrates that there is only one stable branch.  

 

Region (2):  

This region corresponds to a value of Af = 3.3–4.258. It is characterized by the presence of two HB 

points as indicated by the horizontal dashed line (ii) in Figure 5-5(a). The presence of HB means that 

the system demonstrates oscillatory behavior and the periodic solution is the only available solution 

as shown in the dynamic bifurcation diagram as shown in Figure 5-6(b). 

 

 Region (2):  

Figure 5-5(a) shows that at Af =1 indicated by the dashed horizontal line (iii), there are only one HB 

point and two SLP points. Figure 5-6(c) shows the dynamic bifurcations where the HB exists at s2f = 

5.373 and the first SLP is at s2f = 5.8 and the second SLP is at s2f = 4.87. In this range, the system is 

characterized by multiplicity, where there are two stable steady states in the range (4.87 < s2f < 

5.373). In addition there is a periodic solution in the range of (5.27<s2f <5.4). 

To investigate the chaotic attractors of the system as the feed choline concentration as a 

bifurcation parameter, one-dimensional Poincare map is investigated. In Poincare map, we measure 

the intersections between a hypothetical hyperplan surface taken at certain value of a state variable 

and the trajectories in one direction. Poincare map has an advantage is that it converts the problems 

of closed orbits which is hard to deal with them into a problem of points which are easy to handle.  

Figure 5-7(a) shows the Pioncare bifurcation map taken at Af = 2.8 and the rest of the 

parameters as shown in Table 5-3. Poincare map measure the intersections between the trajectories 

and surface taken at s11 = 2.04. The feed choline concentration (s2f) is the main bifurcation parameter 

taken in the range of (4.665 < s2f < 4.72). Figure 5-7(a) shows that PD is the route leading to fully 

chaotic behavior. Figure 5-7(b) is a magnification for the zoom shown in Figure 5-7 (a). 
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Figure 5-6: Bifurcation diagrams with choline feed concentration fs2  as the bifurcation parameter 

(a) s2f vs. s11 at Af=4.5 (no HB no SLP) 

(b) s2f vs. s11 at Af=3.75 (two HB points and no SLP) 

(c)  s2f vs. s11 at Af=1  (one HB and 2 SLP) 
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It is clear that the evolution of chaotic behavior is via PD sequence. This map of Figure 5-7(a) 

was constructed using Pioncare plan at s11 = 2.04 and Af = 2.8.  Figure 5-7(b) is a magnification for 

the zoom shown in Figure 5-7 (a). Figure 5-7(a) presents the period one bifurcation to chaos in the 

range of (4.665<s2f<4.72).  The hydrogen protons as state variable is in the range 

 33 10735.4103.4   xhx  corresponding to  398.8325.8  pH  which is close to the physiological 

range. The evolution of the chaotic behavior as shown in Figure 5-7(a) and Figure 5-7(b) is described 

by PD sequence and can be summarized as follows:  

 Period one attractor; window of period two; window of period four; window of period eight; 

window of period sixteen;  evolution of chaos via PD route as shown in Figure 5-7(b). Then period 

one returns again s2f  = 4.715 where the chaotic behavior disappears. The torus bifurcation (TR) point 

appearing at s2f = 4.766 as shown (Figure 5-3) may contribute the chaotic behavior of the system in 

the corresponding range of s2f as the main bifurcation parameter. 

  Figures 5-8, 5-9 and 5-10 show the phase plans and the time traces of three kinds of 

attractors. Figures 5-8 (a)–(h) show the phase plans and the time traces of a chaotic attractors at s2f = 

4.71. Figures 5-9 (a)–(h) show period two attractor at s2f = 4.7014.  Figures 5-10 (a)–(h) show period 

four attractor at s2f = 4.7038. It has been observed there are big disturbances in the ACh 

concentrations, choline, acetyl-coA in compartments as shown in Figures 5-8, 5-9, and 5-10. These 

disturbances and irregularities may be a good indication to the cholinergic diseases like Alzheimer’s 

and Parkinson’s diseases.  

  It is observed in Figures 5-8(g), 5-9(g) and 5-10(g) that pH2 exists in the range 7.1 -7.55 

which is a narrow range and exists in the physiological range. It is different from the value of pH in 

previous work done by (Mustafa et al., a, b, and c) because here the partial dissociation of acetic acid 

is considered.  It is observed that the range of pH1 [8.1-8.4] in compartment 1 is larger than that in 

compartment 2 (pH2) which is in the range [7.1-7.55]. This is because of the higher concentration of 

hydrogen ions in compartment 2 due to the excess production of hydrogen ions due to the hydrolysis 

of ACh in addition to efflux of H+ because of the partial dissociation of acetic acid. 
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Figure 5-7: a) Poincare bifurcation diagram (Poincare plane is located at s12 =2.04, hF=.01, s1F=1.11,  s3F=1.1,  

AF=2.8  and the rest of parameters as shown Table 5-3. (b) Enlargement for the zoom in (a) 
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Figure 5-8: Dynamic characteristics at 4.71 2 fs  , hF =.01, s1F =1.11, , s3F =1.10, AF=2.8 and the rest of the 

system parameters as shown Table 5-3. 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1, 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1 , 

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh  in compartment 2, 

 (e) Time traces of ACh  in compartment 1 , (f) Time traces of acetyl CoA in compartment 2, 

(g) Time traces of Phase plane for pH in compartment 2, and  

(h) Time traces of acetate in compartment 2 
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Figure 5-9: Dynamic characteristics at 4.7014 2 fs  , hF =0.01, s1F =1.11, s3F =1.10, AF=2.8 and the rest of 

the system parameters as shown Table 5-3. 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1, 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1 , 

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh  in compartment 2, 

 (e) Time traces of ACh  in compartment 1 , (f) Time traces of acetyl CoA in compartment 2, 

(g) Time traces of Phase plane for pH in compartment 2, and (h) Time traces of acetate in compartment 2 
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Figure 5-10: Dynamic characteristics at 4.709 2 fs  , hF =.01, s1F =1.11, , s3F =1.10, AF=2.8 and the rest of 

the system parameters as shown Table 5-3. 

(a) Phase plane for ACh in compartment 2 vs. the ACh in compartment 1, 

 (b) Phase plane for pH in compartment 2 vs. the ACh in compartment 1 , 

(c)  Time traces of pH in compartment 2   ,   (d) Time traces of ACh  in compartment 2, 

 (e) Time traces of ACh  in compartment 1 , (f) Time traces of acetyl CoA in compartment 2, 

(g) Time traces of Phase plane for pH in compartment 2, and  

(h) Time traces of acetate in compartment 2 
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5.8 Summary and Conclusions 

The complexity behavior of the ACh neurocycle system was investigated considering the 

partial dissociation of acetic acid in the presynaptic and postsynaptic. The two-parameter continuation 

technique enabled us to study the qualitative behavior of the system due to changing the system 

parameters. Based on the feed choline concentrations (s2f) as the main bifurcation parameter and at 

different values of the feed acetate concentrations (Af), we were able to study various static and 

dynamic bifurcation diagrams and obtain different solutions such as steady state, periodic and chaotic 

solutions. The results were compared to the results of physiological experiments and other published 

models. The pH values of both compartments were reasonable and were close to the physiological 

range. The chaotic behavior is obtained via PD sequence. The chaotic behavior expresses the 

disturbances and irregularities occurring in the cholinergic system and may be a good indication to 

the cholinergic disorders such as Alzheimer’s and Parkinson’s diseases.  So considering the partial 

dissociation of acetic acid in this study enhanced the model prediction for the pH values and made it 

very close to the practical physiological range. In addition, it gives a reasonable explanation to such 

transients of pH in pre and postsynaptic regions.  The competition between reactions and diffusion 

processes through the compartments, in addition to the three enzymatic processes, substrate inhibited 

and pH dependent, and finally the high nonlinearity in the rate of synthesis reaction catalyzed by 

ChAT and the rate of hydrolysis reaction catalyzed by AChE represent enough reasons for the 

complexity behavior appearing in the ACh system. 
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Chapter 6 

Kinetic and Parameter Constants & Sensitivity Analysis 

 

          In this section, we present a detailed description of the kinetic parameter constants. We 

highlight the discrepancy in measuring the kinetic parameters and the different factors affecting the 

measurements. We focus on the molecular weight of ChAT, ACh, and choline concentrations. In 

addition, a sensitivity analysis is presented for some of the parameters used in this work. 

 

6.1) Kinetic and Parameter Constants 

Before explaining the kinetic and parameter constants, it is pointed out here that there are different 

ranges for the values of the kinetic parameters and even the state variables related to the ACh 

neurocycle. The observed discrepancy in measuring these values are due to different reasons: (1) the 

type of the tissue used for measurement, (2) the techniques used for measurement, and (3) the 

conditions of measurements such as temperature, pH and the type of experiment either in vitro or in 

vivo and type of animal, the tissues has been taken.  

Three examples are given below to illustrate this point even though they are not discussed further in 

the thesis.  The first example is the different ranges used in measuring the molecular weight of the 

enzyme ChAT; and the second one is related to the big range for the concentration of ACh. The last 

one is related to choline concentrations.  

 

     Molecular Weight of ChAT 

If we look at the molecular weight of ChAT in Tucek (1987), we will find very large different ranges.  

Based on the tissue or the source and based on methods of measurements. Even if different methods 

of measurements are used for the same tissue, one will find different ranges of molecular weights.  

For example: The molecular weight of ChAT in rat brain by sedimentation analysis technique was 

67,000 daltons; however, in human placenta by the same technique, it was 59,000 daltons. Another 

example, using gel filtration, the molecular weight of ChAT in the tissue of bovine caudate nuclei 

was found as 100,000 daltons or more in one measurement, and in another measurement, for the same 

tissue using the same method it was found as 65,000 daltons. There are two other measurements for 
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the same tissue and using the same gel filtration method, ChAT molecular weight was found as 

12,000 daltons in one measurement, and in the range of 60,000-1,500,000 daltons in another 

measurement. However, using another method which is polyacrylamide gel electrophoresis, the 

molecular weight of ChAT was in a narrow range:  60 000-67000 daltons. 

The observed discrepancy in measuring important properties such as the molecular weight of ChAT 

and ChAT activity reflects the differences in the methods of measurements and conditions of 

experiments in addition to the type of tissue. The reviewers accepted these discrepancies between 

these readings because there is no a strong evidence explaining the biophysical or biochemical 

aspects of these differences.  The reason might be the existence of more than one form of the ChAT 

enzyme. 

 

   ACh concentrations:  

Another example of discrepancies in the nervous systems is that of ACh concentrations. Free ACh in 

rat brain was found to be around 51022.0   kmol/m3 and total ACh was found to be around 

51077.1   kmol/m3. Tucek, 1990 and Garhyan et al., 2006 showed that in guinea pig cerebral cortex 

the range was 51031.0   (free ACh) to 51067.1   kmol/m3 (total ACh). However, Wessler et al., 

(2001) indicated that ACh concentration in human placenta is in the range ( 5100.3   - 5105.55  ) 

kmol/m3 which represents around 33 folds more than the concentration existing in cerebral cortex.  

Furthermore, Kysela and Torok (1996) illustrated that the concentration of ACh in rat pulmonary 

artery was in the range of 510001.0   to 5100.3    kmol/m3. Bellier and Kimura (2007), in Table 

2: showed that the concentration of ACh in ventral root intact around 16.3±2.4 pmol/mg which is 

equivalent to 1 (16.3±2.4) x
3

610
m

kmol  which represents a different range1. 

 

Choline:  

Llcol   et al., (2005) indicated that a very big range exists for both serum free choline and serum 

phospholipids-bound choline. For serum free choline, the range was from 10.3 to 36.2 μmol/l 

corresponding to (10.3 to 36.2) x10-6 kmol/m3 or (1.03 to 3.62) x10-4 kmol/m3.   For serum 
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phospholipids-bound choline, the range 1927 to 2672 μmol/l corresponding to (1927 -2672) x10-6 

kmol/m3 or (19.27 - 26.72) x10-4 kmol/m3. Furthermore, Persike et al. (2010) obtained a range of 

choline in microdialysis samples of 0.1−50 pmol/μl equivalent to 1-50 μmol/l or to 0.01-0.5 x10-4 

kmol/m3. 

Now, we will present the most important aspects for the kinetic constants and parameters we used in 

our system.  

1) Feed ACh concentration used in our analysis is S1f = 2.4 (in the dimensionless from) which is 

equivalent to 0.12* 10-5 kmol/m3. This lies in the range of ACh in isolated rings of the rat pulmonary 

artery and was measured to be in the range of 0:001 × 10−5  to 3 × 10−5 kmol/m3 according to (Kysela 

and Torok, 1996). 

2)  Feed Choline concentration the feed choline concentration we used is S2f= 1.15 (in the 

dimensionless from) which is equivalent to 1.15* 10-4 kmol/m3 in mouse brain. This range already 

should be higher than the range in human plasma which is in the range (0.01-0.7) * 10-4 kmol/m3 

according to Marriot (1994). 

3)  Feed pH: We used various ranges for the feed pH. Kaila and Ransom (1998) indicated that that 

“the physiologically relevant pH range (from 6.5 to 8) corresponding to a big H+ activity range at very 

low absolute values from 10 to 300 nM”, however, according to Rae et al., (1996), intracellular pH 

was measured in human brain using magnetic resonance spectroscopy and found to be in the range of 

6.95–7.15. Oldendorf et al., (1979) did their experiments of brain uptake of nicotine and other 

components and found a very big range of pH in the range from 6.1 until 8.4. They found that 

nicotine uptake declined when pH reduced through a very big range of 8.3-4.2. 

4)  Ks: was used as a reference to convert ACh concentrations into the dimensionless form, it was 

also used for describing the dissociation constants for ACh hydrolysis. Radic and Taylor (2001) 

described the dependence of   Ks on the pH values (
1

1

k

k
Ks

 ). They   found that in the pH range (5.5-

11), Ks was in the range of (0.035-0.26) µM equivalent to (0.35-2.6) x 10-7 Kmol/m3.  Rosefeld and 

Sultatos (1986) found that Ks =0.339 µM which is equivalent to 3.39 x10-7 Kmol/m3 which includes 

our range. However, Ringdahl (1986) measured Ks for AChE and got a different range which was 

(1.7-2) µM equivalent to (17-20) x10-7 Kmol/m3. Our value of Ks of 5.033 x10-7 Kmol/m3 lies 

between the range of Radic and Taylor (2001) and the range of Ringdahl (1986). 
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5)   r1 constants for the rate of ChAT synthesis: 

Most of the kinetic parameters used in describing the rate of ACh synthesis are based on the kinetic 

constants for choline acetyltransferase (ChAT) reaction used by Hersh and Peet (1977). However, 

they assumed that acetyl CoA is the main effective substrate. From our model and based on various 

physiological, biophysical, and chemical reviews, we found that choline is the most important 

substrate. Brain is unable to synthesize choline, however, acetyl CoA is synthesized in plenty in the 

mitochondria and available much in the presynaptic neurons. This leads to that there is a certain 

difference in our range for only θ2 and θ3. Other parameters exist in the same range of   Hersh and 

Peet (1977). Even there are some other references mentioned by Hersh and Peet (1977) like Sastry 

and Henderson (1972) that have a very big difference in θ3 and θ4 as shown below: 

 

 Constants in our model 
Constants by Hersh  

and Peet  (1977) 

Constants by Sastry   

and  Henderson (1972) 

Θ1 5.2 5.2(0.1)  

θ2 12 16-28  

θ3 1000 410(28) 3-5 

Θ4 5 11.9 (0.7) 113-150 

Θ5 1 1  

 

Sastry and Henderson (1972) and Hersh and Peet (1977) made their measurements based on human 

placenta. What I mean from the table is that I would like to point to the big discrepancy for 

measuring the kinetic parameter experimentally as shown between the Sastry and Henderson (1972) 

and Hersh and Peet (1977) although they used the same tissue which is human placenta.  Hersh and 

Peet (1977) pointed to inconsistency of their measurements with others and explained in terms of 

what they called “random binding mechanism”. 

 

6) Ki (inhibition constants for AChE) This constant was found to be dependent on the 

concentration of inhibitor and operating conditions used in the experiments, so there was a very big 

range from (0.18 to 30) as shown by Rosenfeld and Sultatos (2006). It was found by Eastman et al. 

(1996) that the range of Ki is from 0.02 to 0.31 µM which is equivalent to (0.2 -3.1) x10-7 Kmol/m3. 
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Thus, our value is very close to this range. In our model, we got the value of Ki from the inhibition 

constant 
i

s
i K

K 1  which was obtained from the continuation technique of Elnashaie et al., (1994). 

 7) Kh. This is a reference constant used to convert the concentration of hydrogen ions into the 

dimensionless form and was taken as Kh = 1.0066x10-6. We used Ka = Kb = Kh Where each of the 

active enzyme species exists in equilibrium with inactive protonated and de-protonated forms. The 

equilibria are driven by the pH of the system. In the first of my study, I could not find reasonable 

values for Ka and Kb; where there are many different ranges used in ACh research. Like that used 

by Shen and Larter (1994) and because each of the active enzyme species exists in equilibrium with 

inactive protonated and de-protonated forms where the equilibria are driven by the pH of the 

system. We assumed that Ka = Kb = Kh where Kh = 1.0066x10-6. 

 

8)  Permeability Constants: 

We take the dimensionless permeability (α) for hydrogen, hydroxyl, ACh, choline, and acetate 

according to the following equation: 
q

AM



   Where  '  is membrane permeability for 

substances (m/s), AM is the area of membrane separating compartments 1 and 2 (m2), and q is the 

volumetric flow rate (m3/s).  

We obtained the values of the dimensionless permeability based on the continuation technique by 

Elnashaie et al (1995).  This is because the area of membrane, thickness of the membrane, and 

partition coefficients and volumetric flow rates are unknown. In addition, there is a big different rage 

for the diffusivity of components. For example, the diffusivity of ACh is in the range (0.5-4)x10-4 

cm2/sec. This continuation method gives an overview for the effect of a big range for the permeability 

of each state variable in the system. Then the value of each permeability is chosen based on its effect 

on the system stability. Each substance of the system has a different mechanism for transport from one 

compartment to another as shown below: 

1)   The mechanism of transport of ACh from compartment 1 to compartment 2 is somewhat 

complex. It is called biologically “kiss and run model” where ACh in the cytoplasm of compartment 

1 after the synthesis reaction is transported into the vesicles in unknown mechanism, then the vesicles 

are transported until they reach certain pores existing in the membrane of the presynaptic neuron by 

fusion. The value of the pore diameter is changed and accompanied by a change in the volume of 

synaptic vesicle during the fusion with membrane. The final result is that ACh is released into the 
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cleft. The mechanism of “kiss and run model” is regulated by Ca ions. We assumed that ACh is 

transported from compartment 1 to compartment 2 by “kiss and run model” and passive diffusion 

mechanism; this means the direction of transport down the concentration gradient from the high 

concentration in compartment 1 to the lower concentration region in compartment 2 (Hannah – 1999 

and 2003). We assumed also choline, acetate, and hydrogen ions are transported by the same 

mechanism. There is another mechanism explaining the release of ACh. This mechanism is related to 

ion exchange where it is related to the diffusion of salts such as Na, H, K, Cl, and Ca in specific 

channels existing in the membrane of the presynaptic neurons to regulate the diffusion and reaction 

inside compartment 1. The unbalance in concentrations of these ions on both sides of the cell 

membrane causes potential difference leading to the release of substances. These channels are 

selective for these ions. 

2) The mechanism of choline transport from compartment 2 to compartment 1 in the recycle stream 

is different. Choline is transported via a facilitated diffusion mechanism. In this mechanism choline is 

carried by transporters based on Na ions from the synaptic cleft to the presynaptic neuron. The 

transporter is called high affinity choline transporter (HACT). Finally, because the complicated 

mechanisms explaining the transport of the neurocycle components, and the uncertainty of most of the 

constants describing the dimensions of the compartments and flow rate either in or out of them, we 

depend on the continuation technique to select proper values of the permeability of each component. 

 

9) R: This constant is taken to be 80% based on Tucek (1987) who explained the fraction of free 

choline in the plasma required for the biosynthesis of ACh in the brain. This fraction is estimated 

based on species where ACh is synthesized. For instances, in rats free choline represents 12%, in 

rabbits 50 %, and 80 % in mice (Tucek 1978). Choline produced in synaptic gaps by the hydrolysis of 

ACh is re-utilized for the synthesis of ACh in presynaptic nerve endings (Tucek 1978). Therefore, 

choline recycled plays an important role in the synthesis of ACh. 

 

10)  AChE Activity 

According to Chuiko et al. (2003), Plasma AChE activity varies on average in the range 1.2 - 18.6 

μmol/ml per h corresponding to (0.033 - 0.52) × 10−5 kmol/m3sec.  However, brain AChE activity 

varied among fish species approximately 15-fold, ranging from 138 to 2011 μmol/ml per h  

corresponding to (3.83 -55.86)× 10−5 kmol/m3sec. We will find (2011 μmol/ml per h) equivalent to  
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(2011 × 10−6× 103 /3600 (mol/l sec). Hence, our AChE activity value 5.033 × 10−5 kmol/m3 will be 

within the range [3.83-55.86] × 10−5 kmol/m3.  

 

11) ChAT Activity: 

Bellier and Kimura (2007) showed very different ranges for total ChAT activity and AChE activity 

based on the type of tissue. For example, they showed that total ChAT activity in intact dorsal root 

ganglion was in the range (1.6-42.3) nmol/min/mg) which is equivalent to (2.67-70.5) x10-5(kmol / 

(m3 sec). Hence our ChAT activity values which 5.033 × 10−5 kmol/m3 will be within this relevant 

range. Furthermore, Bellier and Kimura (2007) indicated that AChE activity in intact dorsal root 

ganglion was in the range (1.4-36.2) nmol/min/mg which is equivalent to (2.33-60.33) x10-5(kmol / 

(m3 sec)). Hence our AChE activity value which is 5.033 × 10−5 kmol/m3 within this relevant range. 

Tucek (1978) showed that ChAT activity can be measured in terms of ACh synthesized 

concentrations (nmol Ach synthesized /mg) as follows: ChAT activity in Cerebral hemisphere in 

frontal lobe was 4.4, then it increased 3 times to be 18.6 in pyriform cortex, then it increased 6-fold to 

reach 26.2, and 18 times to be 72.8 in Caudate nucleus (head) in Extra-pyramidal area, and finally is 

multiplied around 26 times to be 111 in Putamen tissues.  

 

12) Dissociation of acetic acid:  

Partial dissociation of acetic acid plays a vital role in determining the pH values in both 

compartments. For example the channels existing in the membrane of the presynaptic neurons and the 

receptors of postsynaptic neurons can be opened and blocked based on the values of pH in both 

compartments. Landau and Nachsgen (1975) investigated that the influence of variation of acidic pH 

on the release of ACh. They found that H+ protons interact with acidic sites of the presynaptic 

membranes to regulate the release of ACh. Therefore, there is a strong relation between the 

dissociation of the acid and the release of the ACh which is enhanced by protonation of the acetic 

acid which inhibits the release of Ca ions into the synaptic cleft. Acetic acid as a weak acid 

dissociates in a very low per cent when it dissolves in water. Hence the concentration of hydrogen 

ions as a product is very low.  
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6.2) Sensitivity Analysis of Parameters 

In this section we present a sensitivity analysis study on certain parameters in order to investigate 

their effects on the state variables of the system. Although the bifurcation analysis presented in the 

previous chapters gives a good indication about the parametric sensitivity analysis, we highlight again 

the different influences of the system parameters. The most important parameters to be investigated 

are: Feed mobile ACh concentrations (S1f), Feed choline concentration (S2f), Feed acetate 

concentrations (S3f), Feed hydrogen ions concentrations (hf), ChAT activity (B1), and AChE activity 

(B2).   We study the effects of these parameters on the state variables:  ACh concentrations in 

compartments 1 and 2, acetate concentrations and pH. The compatibility of the results with the 

bifurcation diagrams of the previous chapters will be highlighted. 

 

6.2.1) Effect of Mobile Feed ACh Concentrations (S1f) 

Figure 6-1 shows the evolution of the ACh system as a function of time at different mobile feed 

ACh concentrations (S1f) for a given initial conditions. All the parameters are taken constant as shown 

in Table (2-3) except S1f. Figures 6-1 (a, b, c, and d) illustrate that all state variable approach steady 

state solutions (point attractors) at S1f = 0, 4, and 10 in the dimensionless form. However, the 

oscillatory behavior is indicated at S1f = 2.2. This is completely compatible with the dynamic 

bifurcation shown in Figure 2-8 of chapter 2 where  we observed that the periodic orbits exist in the 

range (1.99 < S1f < 2.39). This range is confirmed by the oscillatory behavior of Figure (6-1) at S1f = 

2.2. The oscillatory behavior ceases to exist outside this range (1.99 < S1f < 2.39), where the system of 

ACh recovers its stability as shown in Figure 6-1 at S1f = 0, 4, and 10. Figure 6-1a shows that the ACh 

concentration in compartment 1 (S11) increases proportional to the increase of S1f. However S12 does 

not take the same behavior reflecting the competition between the reaction of hydrolysis in 

compartment 2 catalyzed by the enzyme AChE and the diffusion of ACh from the presynaptic terminal 

to the synaptic cleft. It is clear that both acetate concentration in compartment 2 (Figure 6-1 c) and 

hydrogen ion concentration in terms of pH in compartment 2 (Figure 6-1 d) undergo the same kind of 

change with the ACh concentration in compartment 1. 
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Figure 6-1: ACh system evolution as a function of time at different mobile feed ACh concentrations (S1f): 

 a) Evolution of ACh concentration in compartment 1 (S11) 

b) Evolution of ACh concentration in compartment 2 (S12) 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

d) Evolution of pH in compartment 2 (pH2) 

 

 

 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 
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6.2.2) Effect of Feed Choline Concentrations (S2f) 

In this section, we will investigate the effect of changing feed choline concentration (S2f) on the 

evolution of ACh cholinergic system as a function of time as shown in Figure 6-2. All the parameters 

are taken constant as shown in Table 3.3 except S2f. Figure 6-2 indicates that the system goes to 

steady state solution (point attractor) at S2f = 0, 0.7, and 1.5 in the dimensionless form. However, the 

oscillatory behavior is clearly shown at S2f =1.  

The results are completely compatible with the dynamic bifurcation results as shown in Figure 3-4 in 

Chapter 3 where  we observed that the periodic orbits exist in the range (0.69 < S2f < 1.141). This 

range is confirmed by the periodic orbits of Figure 6-2 at S2f = 1. The oscillatory behavior ceases to 

exist outside this range (0.69 < S2f < 1.141), where the system of ACh recovers its stability at S2f = 0, 

0.7, and 1.5.  

Figure 6-2a shows that the ACh concentration in compartment 1 (S11) increases proportional to the 

increase of S2f as S2f increases from 0 to 1.5. 

However S12 does not take the same behavior reflecting the competition between the hydrolysis 

reaction in compartment 2 and the diffusion of ACh from the presynaptic terminal to the synaptic 

cleft. This competition is considered as one of the main reasons for the appeared complex phenomena 

such as bifurcation and oscillatory behavior. It is clear that acetate concentration in compartment 2 

(Figure 6-2 c) is very small at S2f = 0, however it increases as S2f = 0.7, then it decreases again as S2f 

increases to be 1.5, this reflects the mutual effects between the reactions in both compartments and 

the diffusion from compartment 1 to compartment 2.  
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 Figure 6-2: ACh system evolution as a function of time at different  

feed choline concentrations (S2f): 

 a) Evolution of ACh concentration in compartment 1 (S11)  

b) Evolution of ACh concentration in compartment 2 (S12) 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

d) Evolution of pH in compartment 2 (pH2) 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 
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6.2.3) Effect of Feed Acetate Concentrations (S3f) 

Figure 6-3 illustrates the evolution of ACh system as a function of time at different feed acetate 

concentrations (S3f) at the corresponding initial conditions. All the parameters are taken constant as 

shown in Table 3-3 except S3f. Figure 6-3 illustrates that the system approaches steady state solutions 

(point attractors) at S3f = 0, 10, and 20 in the dimensionless form. However, the oscillatory behavior 

(periodic attractor) exists at S3f =2.5.  

These results are completely compatible with the dynamic bifurcation as shown in Figure 3-12 in 

Chapter 3 which indicates that the oscillatory behavior exists in the  feed acetate range of (1.32 < S3f < 

3.79). This range is confirmed by the periodic orbits of Figure 6-3 at S3f = 2.5. Then the oscillatory 

behavior ceases to exist outside this range (1.32 < S3f < 3.79), where the system of ACh recovers its 

stability as shown in Figure 6-3 for S3f = 0, 10, and 20. 

Figure 6-3 a shows that the ACh concentration I compartment 1 (S11) increases at the fist transient at 

S3f = 0 then it reaches a plateau where S11 = 3.8. However, as S3f increases to 10 and 20, S11 will 

increase to the plateau to reach 4.07 and 4.15. If we compared these results with those of the effect of 

changing feed choline concentration (S2f), we will find that S11 will increase from 4 to 19 (around 4-

fold) as S2f increases from 0 to 1.5. However, as S3f increases from 0 to 20, the steady state plateau of 

S11 will increase only from 3.8 to 4.15. This confirms the limited effect of the feed acetate as a 

substrate on the system in comparison with the feed choline concentration as a substrate. These 

results agree with the bifurcation results of Chapter 3 and this confirms that S2f is the most important 

substrate in comparison to feed acetate concentration (S3f). 

Figure 6-3a shows that the ACh concentration in compartment 1 (S11) increases in parallel with the 

increase of S3f where S11 increases as S3f increases from 0 to 20.  However, S12 does not take the same 

behavior reflecting the competition between the hydrolysis reaction in compartment 2 and the 

diffusion of ACh from the presynaptic terminal to the synaptic cleft. This competition is considered 

as one of the main reasons for giving rise to the bifurcation and oscillatory behavior. It is clear that 

acetate concentration in compartment 2 (Figure 6-3c) increases dramatically proportional to the feed 

acetate concentrations (S3f). However, Figure (6-3 d) shows that pH in compartment 2 increases as S3f 

decreases. pH2 decreases from 7.9 at S3f  = 0 to 6.5 at S3f = 10, then the decrease of pH2 is very limited 

as it decreases to pH2 = 6.47 at S3f   is doubled. 
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Figure 6-3: ACh system evolution as a function of time at different feed acetate concentrations (S3f): 

 a) Evolution of ACh concentration in compartment 1 (S11)  

 b) Evolution of ACh concentration in compartment 2 (S12) 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

 d) Evolution of pH in compartment 2 (pH2)

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 
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6.2.4) Effect of feed hydrogen ions concentrations (hf ) 

 

Figure 6-4 shows the evolution of ACh system as a function of time at different feed hydrogen ions 

concentrations (hf) at the corresponding initial conditions. All the parameters are taken constant as 

shown in Table 2-3 except hf. Figure 6-4 illustrates that all state variables go to a steady state solution 

(point attractor) at pHf = 6.65, 7.69, and 8.39 corresponding to hf = 0.22, 0.02, and 0.004 respectively 

in the dimensionless form. However, the oscillatory behavior is clear at a pHf = 8.2 corresponding to hf 

= 0.006. This is completely compatible with the dynamic bifurcation results as shown in Figures 2-3 

and 2-4 in Chapter 2 where  we observed that the periodic orbits exist in the range (0.00578 < hf < 

0.006263) corresponding to (8.2 < pHf <  8.24). This range is confirmed by the oscillatory behavior of 

Figure 6-4 at pHf = 8.2, The oscillatory behavior ceases to exist outside this range (8.2 < pHf  < 8.24) 

where the system of ACh recovers its stability as shown in Figure 6-4 at pHf  = 6.65, 7.69, and 8.39. 

     Figure 6-4 shows that all the state variables in compartment 1 are constant even if pHf changes from 

6.65 to 7.69 (corresponding to an hf from 0.22 to 0.02). This is in complete agreement with the 

dynamic bifurcations results shown in Figure 2-3.  However, as pHf increases to 8.39 (corresponding 

to hf=0.004), both ACh concentration in compartment 1 (S11), and compartment 2 (S12) increases as 

shown in Figures 6-4 a and b respectively. However, Figure 6-4c indicates that acetate concentrations 

in compartment 2 decrease as pHf increases since acetate is produced from the hydrolysis of ACh in 

compartment 2. Figure 6-4d shows that pH2 increases proportional to pHf.. It is clear that both pHf. = 

6.65 (corresponding to hf = 0.22) and pHf. = 7.69 (corresponding to hf = 0.02) have the same effect on 

the state variables of the system and this is again in agreement with the results shown in Figure 2-3. 
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Figure 6-4: ACh system evolution as a function of time at feed hydrogen ions concentrations (hf): 

 a) Evolution of ACh concentration in compartment 1 (S11)  

b) Evolution of ACh concentration in compartment 2 (S12), 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

d) Evolution of pH in compartment 2 (pH2) 

  According to the dimensionless form: 

hf=0.02    is corresponding to pHf=7.69,        

hf=0.004 is corresponding to pHf=8.39,       

hf=0.006 is corresponding to pHf=8.2  , and     

hf=0.22 is corresponding to pHf= 6.65     

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 



 

  162

 

6.2.5) Effect of AChE Activity (B2) 

In this section, the effect of varying the AChE activity (B2) on the evolution of ACh cholinergic 

system as a function of time is investigated as shown in Figure 6-5. All the parameters are taken 

constant as shown in Table 2-3 except B2. 

Figure 6-5 indicates that the system approaches steady state solutions (point attractor) at B2 = 0, 

5.2x10-5, and 20x10-5 kmol/m3. However, the oscillatory behavior is clearly indicated at B2 = 4.5 x10-5 

kmol/m3. This is completely compatible with the dynamic bifurcation results as shown in Figure 2-6 

of chapter 2 where we noticed that periodic orbits exist in the   range (3.93x  10-5 < B2 < 4.99x10-5) 

kmol/m3. This range is confirmed by the periodic orbits of Figure 6-5 at B2 = 4.5x10-5 kmol/m3. Then 

the oscillatory behavior ceases to exist outside this range (3.93x10-5 < B2 < 4.99x10-5) kmol/m3, where 

the system of ACh recovers its stability as shown in Figure 6-5 at B2 = 0, 5.2x10-5, and 20x10-5 

kmol/m3. 

Figure 6-5 a shows that the ACh concentration in compartment 1 (S11) increases as B2 decreases, 

where the highest value of S11 exists at B2=0. Furthermore, S12 as shown in Figure 6-5b decreases as 

B2 increases where S12 decreases to the lowest value at the highest value of B2 = 20x10-5 kmol/m3. The 

results in Figures 6-5 a and b reflect the mutual effect between the diffusion and reaction. This can be 

explained as  B2 decreases, ACh concentration in compartment 2 (S12)  increases to a limit  leading to 

decreasing the rate of diffusion of ACh from compartment 1 to compartment 2, thereby accumulating  

ACh concentration in compartment 1. Because acetate in compartment 2 is produced from the 

hydrolysis of ACh, it is clear from Figure 6-5(c) that acetate concentration increases as B2 increases. 

The same happens with hydrogen ions which are produced from he hydrolysis of ACh, we find that 

pH2 increases as B2 decreases as shown in Figure 6-5 (b). 
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Figure 6-5: ACh system evolution as a function of time at different AChE activities 

(B2): 

 a) Evolution of ACh concentration in compartment 1 (S11)  

b) Evolution of ACh concentration in compartment 2 (S12), 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

d) Evolution of pH in compartment 2 (pH2)

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 
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6.2.6) Effect of ChAT Activity (B1) 

 

The influence of changing the ChAT activity (B1) on the dynamics of the state variables as a 

function of time is studied as indicated in Figure 6-6. All the parameters are taken constant as shown 

in Table 4-3 except B1. 

It is clear from Figure 6-6 that at B1 = 0, 3x10-5, 8x10-5 and 70x10-5  ) kmol/m3, all state variables 

approach steady state solutions (point attractors), however; at B1 = 4x10-5 kmol/m3, the oscillatory 

behavior dominates the system. These results are in complete agreement with the dynamic 

bifurcation results shown in Figure 4-4 of Chapter 4 where the periodic orbits  exist in the range 

(3.03x  10-5 < B1 < 5x10-5) kmol/m3. The periodic orbits in Figure 6-6 at B1 = 4x10-5 kmol/m3 lie in 

the same range. It is observed that there is no periodic orbits outside this range (3.03x 10-5 < B1 < 

5x10-5) kmol/m3, where the stationary state behavior dominates all the state variables of the 

cholinergic system of ACh as indicated in Figure 6-6 at B1 = 0, 3 x10-5, 8x10-5 and 70x10-5 kmol/m3. 

As shown in Figure 6-6a, the ACh concentration in compartment 1 (S11) increases as B1 increases, 

where the highest value of S11 is at the highest value of B1 which is 70x10-5 kmol/m3.  

Figure 6-6b indicates that S12 increases as B1 increases from 0 to 3x10-5 kmol/m3. However, S12 

decreases as B1 increases from 3x10-5 to 8x10-5 kmol/m3. In addition, S12 increases again as B1 

increases from 8 x10-5 to 70x10-5 kmol/m3. These results reflect the competition between the 

diffusion and reaction terms. This coupling is considered as one of the main reasons leading to the 

appearance of the complex phenomena. Figure 6-6c shows that acetate concentration in 

compartment 2 behaves like S12. However, Figure 6-6d shows that pH2 takes the lowest values at the 

highest value of B1 = 70x10-5 kmol/m3, and changes inversely with B1.  
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Figure 6-6: ACh system evolution as a function of time at different ChAT activities (B1) 

 a) Evolution of ACh concentration in compartment 1 (S11)  

b) Evolution of ACh concentration in compartment 2 (S12), 

c) Evolution of Acetate concentration in compartment 2 (S32) or acetate 2 

d) Evolution of pH in compartment 2 (pH2 

 

 

 

 

 

Initial conditions 

h(1) 0.003796824 

h(2) 0.1405804 

s1(1) 3.956 

s1(21) 0.3 

s2(1) 3.233 

s2(2) 1.1606 

s3(1) 8.2517318 

s3(2) 4.9606 
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Chapter 7 

Conclusions and Future Work 

The work described in this dissertation has concentrated on the synthesis, release, and hydrolysis 

processes of ACh neurocycle. These processes have been modeled mathematically and complex non-

linear phenomena are discovered. These complex behaviors like (multiplicity, bifurcation, and chaotic 

behavior) are exploited to explain the abnormalities occurring in he cholinergic ACh neurocycle leading 

to cholinergic disorders such as Alzheimer’s and Parkinson’s diseases.  The discussion that follows will 

summarize the  main  conclusions  of  this  work   and will compare the main results to  what  had  been  

previously  reported  in  the  literature.   

7.1 Conclusions 

In Chapter 2 two kinetic mechanisms are proposed: the first is for AChE and the other is for ChAT to 

get more fundamental and reasonable rate equations pH-dependent and substrate inhibited for describing 

the synthesis and hydrolysis kinetics in the synapses and simulating the ACh neurocycle in the brain.  

A novel eight-dimension non-linear mathematical (two-enzyme/two-compartment) model is developed 

for a coupled ChAT/AChE enzyme system where the physiological phenomena of the choline uptake 

from the synaptic cleft to the presynaptic neuron and fully ionization of acetic acid assumption are 

considered. In Chapter 2, the effect of three bifurcation parameters on the system performance have been 

investigated. These bifurcation parameters are: hydrogen ions feed concentrations, AChE activity, and 

mobile feed ACh concentrations. The complex static and dynamic phenomena such as bifurcation, 

oscillatory, instability and chaotic behavior of the system are extensively investigated with comparison to 

the actual physiological values to predict and control the system performance. The proposed model and 

kinetic mechanisms showed that they are important for understanding the behavior of the cholinergic ACh 

neurocycle.   

It is found that the system is not influenced noticeably at high feed hydrogen ion concentration (low 

pHf). The results are in accordance with the physiological and experimental and theoretical reviews. One 

of the main explanations is that the high concentrations of H+ will inhibit choline uptake into presynaptic 

membrane, another explanation is that the high concentrations may inhibit the synthesis and hydrolysis 

reaction and finally will cause the state variables to approach the plateau as illustrated in Figure 2-3. The 

choline recycled from the postsynaptic neurons to be reused in the presynaptic neurons is taken into 
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consideration and will help the system to control and regulate the levels of the state variables in both 

compartments.  Therefore, ACh and choline concentrations in compartment (1) are higher than that of 

Mahecha- Botero et al., (2004) because of the choline uptake considerations and the reasonable rate 

equation of synthesis of ACh. It was found that the system exhibit complex dynamics at low feed 

hydrogen ion concentrations.  

From investigating the static bifurcation of the activity of AChE enzyme and mobile feed ACh 

concentrations as bifurcation parameters, it is observed that the hysteresis and multiplicity control the 

system. This hysteresis phenomenon reflects flexibility of the system and its capability to respond to any 

forcing disturbances affecting the cholinergic ACh system to be able to regulate its components to adapt 

to any sudden changes. The range of hysteresis for AChE enzyme activity is 

(  410899.0 4
2 1082.1 B ) which is larger than that of Mahecha – Botero et al., (2004). At 

relatively low mobile feed ACh concentrations and AChE enzyme activity, complex dynamic phenomena, 

and period adding to chaos to destroy chaos are observed. Fully developed chaos with multiple windows 

is also observed. It is found that ACh and choline concentrations in compartment (1) are higher than that 

of Mahecha – Botero et al., (2004) because the choline recycled from the postsynaptic neurons to be 

reused in the presynaptic neurons is taken into consideration in addition to the rate equation of synthesis 

of ACh which is concluded according to the enzymatic reactions. The mobile feed ACh concentrations 

play an important role for keeping ACh concentrations at high levels in both compartments 1 and 2 and 

for maintaining synaptic transmission efficiently. This means that the process of ACh synthesis in one 

neuron only without supply of mobile ACh from other neurons is not satisfactory to compensate for the 

released amount and mobile feed ACh coming from other neurons is necessary for performing the balance 

between the processes of release and synthesis of ACh.   

    The feed back mechanism of the system can work as a vital control device to control and regulate the 

transmission activity and the processes of the ACh in both compartments.  The findings of this research 

can be useful to be able to understand the characteristics and the behavior of the ACh cholinergic system 

and discover the disturbances in the enzymatic processes occurring in the system. In addition, the 

relation between the neurological sicknesses like Alzheimer’s and Parkinson’s disease and the complex 

dynamics and chaotic behavior of the ACh system can be helpful for doing more research on  other 

disorders in living organisms.  

 In Chapter 3, the effects of both feed choline and acetate substrates concentrations on ACh 

cholinergic system have been investigated where the physiological phenomena of the choline uptake from 

the synaptic cleft to the presynaptic neuron and fully ionization of acetic acid assumption have been taken 
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in consideration. It is found that the feed acetate concentrations have less effect on the synthesis of ACh in 

both compartments in comparison to the feed choline concentrations. The system is in rich with the 

dynamics at low concentration of fs3 where the feed acetate concentrations are too small to start the 

synthesis reaction catalyzed by ChAT. 

It is found that as the feed choline concentrations increase, ACh levels in both compartments 

increase gradually until  6.252 fs  where ACh is synthesized less efficiently when  6.252 fs . Hence, 

the release of ACh in compartment 2 varies in parallel to the incorporation of the choline in compartment 1 

to produce ACh.  The released ACh can be compensated by synthesizing new ACh in compartment 1 (s11). 

Therefore, the rate of ACh synthesis must be equal to the rate of transmitter release.  This is in agreement 

with the results obtained by Schwartz et al., (1975). At low concentrations of the feed choline 

concentrations as shown   in Figures 3.5 and 3.6, it was found that the system exhibits complex dynamics 

bifurcation including chaotic behavior via a PD and period adding sequence in the range 

( 1.1467614085.1 2  fs ). A bistability behavior is observed where periodic and point attractors coexist 

with an unstable periodic orbit as the separatrix separating the domains of attraction of the periodic and 

point attractors. The system in case of external disturbances such as the sudden change of feed choline 

concentration to the presynaptic neurons could be affected by the hysteresis with a sudden increase in ACh 

concentration in both compartments (especially in compartment 2 where ACh concentration increases 6 

folds from 61076155.1   to 6101.9    kmol/m3 near SB1 as shown in Figure 3.3(b) with a small 

variation in the input conditions thus simulating the sudden neural transmission.  

From these results, it can be concluded that it not enough to increase the concentrations of acetate 

to obtain high levels of ACh, and choline supply is the most important substrate in the ACh synthesis and 

it seems that feed choline (s2f) is limiting for the ACh synthesis. The disturbances and irregularities 

appearing in the system in the form of chaotic behavior may be a good indication for the cholinergic 

diseases such as Alzheimer’s disease.  

In Chapter 4, the effects of ChAT activity and choline uptake in terms of choline recycle ratio as 

bifurcation parameters, on the system performance have been studied. It is found that as ChAT activity 

increases, ACh concentrations in compartments 1 and 2 increase continuously. It is found in the range 

 4
1

4 1078.91053.7   B  kmol/m3; a hysteresis phenomenon is noticed between the two static 

bifurcation points (SB1 and SB2) in this range. Hysteresis generally expresses the capability of the system 

to respond for any sudden change in  a  range around the static bifurcation points of  the bifurcation points 

as shown in Figure 4-3(b). 
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At the low values of ChAT activity, it is found that the system exhibits complex dynamics bifurcation 

including chaotic behavior via PD and period adding sequence in the range 

 5
1

5 1051098.4   B  kmol/m3. A bistability behavior is observed in a range close to the 

subcritical HB where periodic and point attractors coexist with an unstable periodic orbit as the 

separatrix separating the domains of attraction of the periodic and point attractors. 

It is concluded that ACh was synthesized considerably less efficiently at low values of B1 

which giving the opportunity for the system complexity. In addition, the increase of ChAT activity 

(B1) can be considered satisfactory for fast synthesis of ACh in compartment 1 to compensate for the 

released ACh in compartment 2.  Therefore, ChAT activity is a good key to cure the disturbances of 

ACh levels in cholinergic disorders such as Alzheimer’s and Parkinson’s diseases. It is found that the 

decline of ChAT activity will cause an observable reduction in the ACh synthesis s11 and ACh release 

s12 which represents one of the main symptoms of Alzheimer’s disease. 

It is found that choline uptake in terms of choline recycle ratio affects greatly on ACh 

concentrations in both compartments which increase until certain value of R=30 then they become 

constant in the range of  30R .  The system is dominated by the complexity and oscillatory 

behavior at low values of R where the reduction of R causes deficient in choline supplied to the 

compartment 1. Therefore, choline uptake in terms of choline recycle ratio represents a limiting factor 

for controlling ACh cholinergic system and regulating the processes of ACh and adjusting the levels 

of the state variables in the system.  ACh is synthesized less efficiently when  30R . This is 

because that ChAT enzyme is inhibited by the excess of choline substrate which occurs with the 

increase in choline uptake (R).  This is in agreement with the results obtained by Schwartz et al., 

(1975). At the low values of choline recycle ratio, it is found that the system exhibits oscillatory 

behavior including chaotic behavior via a PD and period adding sequence in the range ( 0.8R ). 

From studying the effect of ChAT activity and R, our model results agree with the experimental 

results of Steven et al., 1982; Levnter et al., 1982; Krell and Goldberg, 1975 who illustrated that when 

ChAT inhibitors are injected into animals, a significant inhibition of brain ChAT activity is observed, 

but there is no significant reduction in the ACh levels in the brain was observed.  These experiments, 

coupled with others who investigated the effects of choline uptake inhibition by Yamamura and 

Snyder, 1973; Kuhar and Murrin, 1978 who confirmed that, in nervous tissue, high-affinity choline 

uptake is the rate limiting for ACh synthesis. This is in agreement with our results that show that the 

choline is the most important factor in ACh processes and from the effect of choline recycle ratio, it is 
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clear  that choline uptake plays an important role, where it supplies choline as a substrate for the 

synthesis reaction catalyzed by ChAT in compartment 1.   

Furthermore, the results are in accordance with the results obtained by Brandon et al., (2004) 

who indicated that the loss of ChAT activity will cause a decline in the rate of ACh synthesis in 

compartment 1. The reduction of ChAT activity needs other alternative effects to keep normal ACh 

concentrations.  According to Brandon et al., (2004), increased uptake or recycle of choline to ChAT 

in compartment 1 may be the alternative solution for keeping the high efficiency of ACh and the rate-

limiting factor in the synthesis of ACh. 

 Our results are in accordance with the experimental results of other researchers who 

investigated both choline uptake coupled with ChAT in the presynaptic neurons [Sterling et al; 2006].  

They found that inhibition ChAT activity did not block the synthesis of ACh in compartment 1. 

However, the inhibition of choline transport into compartment 1 blocked ACh synthesis completely in 

compartment 1 Barker and Mittag, 1973; Guynet et al, 1973; Yamamura and Snyder, 1973; Kuhar 

and Murrin, 1978, Sterling et al; 2006].  One of the explanations of these results is the existence of 

ChAT in the presynaptic terminals in a very higher activity than necessary for ACh synthesis 

[Trabucchi et al, I975; Haubrich, I976]. Finally, it is concluded that choline recycled thereby choline 

uptake plays the rate limiting factor in the control of ACh synthesis.  

 In Chapter 5, the complexity behavior of the ACh neurocycle system was investigated 

considering the partial dissociation of acetic acid in the presynaptic and postsynaptic. The two-

parameter continuation technique enabled us to study the qualitative behavior of the system due to 

changing the system parameters. Based on the feed choline concentrations (s2f) as the main bifurcation 

behavior and at different values of the feed acetate concentrations (Af), we could study various static 

and dynamic bifurcation diagrams and obtain different solutions such as steady state, periodic and 

chaotic solutions. The results are compared to the results of physiological experiments and other 

published models. The pH values of both compartments were reasonable and were close to the 

physiological range. The chaotic behavior obtained via PD sequence. The chaotic behavior expresses 

the disturbances and irregularities occurring in the cholinergic system may be an indication to the 

cholinergic disorders such as Alzheimer’s and Parkinson’s diseases.  Hence, considering the partial 

dissociation of acetic acid in this study enhanced the model prediction for the pH values and made it 

very close to the practical physiological range. In addition, it gives a reasonable explanation to such 

transients of pH in pre and postsynaptic regions.  The competition between reactions and diffusion 

processes through the compartments, in addition to the three enzymatic processes, substrate inhibited 
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and pH dependent, and finally the high nonlinearity in the rate of synthesis reaction catalyzed by ChAT 

and the rate of hydrolysis reaction catalyzed by AChE represent enough reasons for the complexity 

behavior appearing in the ACh system. 

  This dissertation shows that the brain disorders such as Alzheimer’s and Parkinson’s diseases.  are 

strongly related to the concentrations ACh in the brain.  The compartments diffusion-reaction models 

are formulated to stimulate in-vivo experiments in ChAT and AChE system. These eight/ten 

dimensional models are used to investigate the complex bifurcation/chaotic behavior, effect of 

inhibitors/activators and external disturbances on the ACh neurocycle. The disturbances and 

irregularities in terms of (chaotic attractors) occurring the ACh cholinergic system may be a good 

indication to help new diagnostic and treatment techniques for the cholinergic diseases like Alzheimer’s 

and Parkinson’s diseases.   

 

7.2 Contributions 

1) On the level of kinetics, we modified two kinetic mechanisms in order to obtain reasonable rate 

equations for describing the rate of synthesis of ACh in the presynaptic neurons (compartment 1) 

catalyzed by the enzyme ChAT and the rate of ACh hydrolysis in the synaptic cleft catalyzed by the 

enzyme AChE. Both rate equations are characterized by non-monotonic kinetics due to pH 

dependence and substrate inhibition. 

2) On the level of modeling, we improved previous models by considering new physiological 

phenomena such as choline uptake from the synaptic cleft to the presynaptic neurons in addition to 

the partial dissociation of acetic acid and the rate of formation of acetyl CoA (as shown in Chapter 5) 

which is synthesized inside the mitochondria synthesized by the enzyme acetyl CoA synthase to give 

us eight non-linear ordinary differential equations in the first part of the work (Chapters 2, 3, and 4) 

and 10 non-linear ordinary differential equations in the second part (Chapter 5)  describing the 

diffusion-reaction processes in terms of a two-enzyme/ two compartment model. 

3)  On the level of analysis, we investigated bifurcation in the thesis to cover a wide range of static 

bifurcation (including multiplicity of point attractors) as well as dynamic bifurcation (including Hopf 

bifurcation for periodic attractors and also multiplicity of the periodic attractors and co-existence of 

periodic and point attractors).  The work also includes chaotic attractors, with a different approach to 

chaos (e.g.: PD to chaos). The analysis also includes complex non-chaotic attractors discovered 

during this bifurcation investigation.  Bifurcation analysis in this very general form is implicitly a 
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parametric  study with the bifurcation parameter. The collection of all figures in the thesis is a very 

detailed parametric investigation. More than one model has been used to investigate certain 

phenomenon which is neglected in one model and included in the other model such as the 

phenomena of partial dissociation of acetic acid which is neglected in Chapters 2, 3, 4 and 

considered in Chapter 5. The work also includes relating the results to some published experimental 

and clinical results making a novel connection between bifurcation and chaos of this system and 

both Parkinson Disease and Alzheimer Disease From our bifurcation analysis, we could determine 

the role of each bifurcation parameter in the ACh neurocycle as follow: 

a) The effect of mobile feed ACh concentration (S1f) has been determined; we found that mobile feed 

ACh synthesized in other neurons and transported to the synaptic terminal by the axonal transport 

mechanism plays a very important role in obtaining the optimum levels of ACh. It contributes with the 

newly synthesized ACh in regulating and controlling the synaptic transmission and metabolic reaction 

and achieving the highest efficiency of the ACh neurocycle. The chaotic behavior appears due to the 

low concentrations of mobile feed ACh and contributes in arising irregularities and disturbances in the 

oscillation of ACh leading to cholinergic disorders particularly Alzheimer Disease. 

b) The effect of feed choline (S2f) as a substrate coming from both the blood plasma and the release 

of phospholipids was studied. It is found that choline as substrate plays a vital role in the ACh 

neurocycle. In comparison with the effect of acetyl CoA, it is found that choline is the most important 

substrate although brain is unable to synthesize choline. At the high concentrations of choline 

substrate, it is found that the system will be affected very slightly. This is because choline will be 

converted to an unidentified material which cannot be consumed to produce ACh. In addition, the 

high concentration of feed choline will inhibit the enzyme of ChAT, so that the synthesis process will 

be inhibited completely in compartment 1. At low and medium concentrations of feed choline, it is 

found that the rate of choline conversion to ACh was high because the enzyme ChAT works 

efficiently. However, the very low concentrations of feed choline cause the appearance of chaotic 

behavior leading to oscillations and instability of the system. This is one of the main reasons leading 

to Alzheimer’s and Parkinson’s diseases. 

c) The effect of feed acetyl CoA (S3f) as a substrate was investigated extensively. It is found that feed 

acetyl CoA has a very limited effect on all state variables. This means that the change of feed acetyl 

CoA only is not enough to reach the optimum levels of ACh in both compartments. Acetyl CoA is 
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existent an excess amount because it is synthesized in the mitochondria of the presynaptic neurons. 

These results are completely compatible with the experimental and physiological results.  

d) The effect of feed hydrogen ions (hf) on the ACh neurocycle system was studied. It is found that the 

system is not influenced clearly at low pHf. The results are in accordance with the physiological and 

experimental reviews. One of the main explanations is that the high concentrations of hf will inhibit 

choline diffusion into presynaptic membrane; another explanation is that the high concentrations of hf 

may inhibit the synthesis and hydrolysis reaction and finally will cause the state variables to approach 

the plateau as illustrated in Figure 2-3.  

e) The effect of choline uptake in terms of choline recycle ratio (R ) was investigated. It is found that 

choline uptake is the rate limiting step in the synthesis of ACh. It contributes to reaching optimum levels 

of ACh in both compartments. The impairments occurring in choline returning from the synaptic cleft to 

the presynaptic neuron because of hemicholinum or beta amyloid aggregates which inhibit choline 

transport thereby causing deficiency in choline content in the presynaptic neuron leading to shortage of 

ACh synthesized.  The low value of R gives rise to the irregularities and disturbances in terms of chaotic 

attractor 

f)  The effect of ChAT activity on the system is studied. It is found that ChAT in a high activity is 

necessary to obtain high contents of ACh in the system. The low activity of the enzyme ChAT leads to 

disturbances and may lead to irregularity leading to instability of the system. Thus keeping the enzyme 

in a high activity is very necessary to obtain an efficient ACh system. However, in comparison with 

effect of choline uptake and choline substrate, it is found that ChAT activity is not the limiting factor. 

g) For the effect of AChE activity, it is found that the high activity of AChE, the concentrations of ACh 

in both compartments reach the lowest range leading to lowest efficiency of synaptic transmission. 

However, the medium concentration causes the system to undergo hysteresis phenomena and the very 

low AChE activity results in the system instability and give the opportunity to the chaotic behavior. 

h)  It is found that the ACh concentrations in both compartments are compatible with the experimental 

results in the medium concentrations and the hysteresis concentrations of feed choline and during the 

medium range of the choline recycle ratio and through the hysteresis range of AChE and ChAT 

activity. 
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i) From our results of Chapters 3 and 4 the feed choline concentrations and choline recycle ratio 

should be kept in the medium range before reaching the plateau level to get the highest efficiency 

of the system.  

4) On the level of Pharmacology, it is known that the principle of medications used for treating 

Alzheimer’s disease is based on the inhibition of AChE in compartment (2), hence the 

concentration of ACh in compartment 2 increases and causes the synaptic transmission. However 

after some time, ACh in compartment 2 is decreased due to the diffusion with the post synaptic 

receptors. The drugs do not deal with the problem of deficient synthesis of ACh occurring in 

compartment 1. One of the main reasons leading to loss of ACh in compartment 1 is that the 

reduction of choline substrate from the recycle stream required for the ACh synthesis. The loss of 

choline occurred due to the inhibition of choline uptake.  To deal with the deficiency in choline is 

the key role as mentioned previously choline uptake is the rate limiting step in the synthesis of 

ACh and choline substrate is the most important substrate in the system. Any medications that 

cannot treat the deficiency in choline content in compartment 1 will not be effective. 

7.3 Future Work 

      The development of the present work can be extended as follows:  

7.3.1 Future improvements in the developed model   

1) In our model we assumed that the feed streams of the substrates of choline and acetyl CoA and 

the recycle stream of choline are all gathered in one feed stream and we assumed that the influx 

rates of the substrates of choline and acetyl- CoA are equal and constant with time. We found that 

the ACh concentrations in both compartments (s(1(1), and s1(2)) reach a plateau after a transient 

period using appropriate initial conditions as was shown in chapters 2, 3, and 4 (see for example  

Figures 2.8 c, d, e, and f). However, one wonders what happens if a rapid synthesis of ACh is 

required as a response to the physiological functions such as neuromuscular junctions or memory 

excitations. For fast synthesis rates of ACh in the presynaptic terminals, it will be effective if we 

considered the influx rates of choline and acetyl CoA substrates changing with time to be able to 

replace released quantities of ACh and to meet needs for rapid ACh synthesis and keeping 

synaptic transmission [Kacser and Burns (1973); Sakamoto (1990); Gerald et al., (1996); Fadel et 

al., (2005)]. 
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2) ACh neurotransmitters after being released from the presynaptic neurons interact with the 

postsynaptic neurons to cause electric and chemical messages. Then they are hydrolyzed by the 

enzyme AChE. It is a valuable addition if the interaction with postsynaptic receptors is taken as 

additional compartment. 

3)  Since ACh neurons are lost in Alzheimer’s disease, it has been of interest to increase ACh 

synthesis in brains of the effected patients.  It is important to study the effect of the inhibitors such 

as hemicholinium concentrations (HC-3) and β-amyloid aggregates as bifurcation parameters on the 

system performance and investigating the complex behavior, the dynamics, and chaos behaviors in 

the system. A mathematical approximation for the interaction between β-amyloid protein and 

choline uptake can be created. 

 

7.3.2 Characterizing β-amyloid protein aggregates 

1) It is observed that the brains of patients with Alzheimer's disease are characterized by β-amyloid 

protein, tangles, plaques, death of neurons, and lack of ACh. Some researchers proposed that 

amyloid plaques play a central role due to interaction with neurons leading to tangles and loss of 

neurons [Ariel et al., (2004), Hardy and Higgins, 1992)]. Furthermore, it has been proposed that 

β-amyloid protein aggregated causes leakage in the membranes of the presynaptic neurons 

leading to the loss of choline required for ACh synthesis [Wurtman, (1992), Laura et al., 

(2004)]. It is very important to investigate the factors affecting β-amyloid protein aggregation 

such as protein concentration, ionic strength, pH, and temperature in order to understand the 

aggregation phenomena and to determine the most important factor leading to Alzheimer’s 

disease.  The mechanisms involved the aggregation of amyloid β peptide represent an important 

challenge in the comprehension of inhibition of aggregation. Therefore, a better understanding 

of the nature of peptide aggregation and the interaction between β-amyloid protein and ACh 

neurocycle forming complexes is mandatory. 

2)  Designing artificial membranes immobilized with ChAT and AChE enzymes is important to 

simulate ACh neurocycle and investigate the effect of changing pH, concentration of ACh and 

concentration of enzymes, and other factors on excitability and oscillations in artificial 

membranes. The effect of the same parameters on the action potential difference of the 

membranes can be investigated. This investigation can be carried out theoretically and 

experimentally as well.  
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Appendices 

    Appendix (A): Proposed Mechanisms for Enzymatic Processes of ACh 

A.1 Mechanism of hydrolysis of ACh in compartment (2) 

S1=ACh concentration, E1= AChE, and P=Ch +AcCo-A 

 

Figure A-1: Hydrolysis reaction model 

 

The full mechanism for the pH dependent AChE kinetics is shown in Figure A-1.  The vertical 

direction represents the main reaction path. The active enzyme species presents in equilibrium with 

inactive protonated and de-protonated forms. The pH controls the system. E1 is the active form of the 

enzyme; E1H
* and E1

- are the protonated and de-protonated inactive enzyme forms. E1S1 and E1* are 

enzyme intermediate complexes. The substrate can combine with E1S1 to form another complex E1* 

that cannot react further to give product. Hence, the reaction mechanism is inhibited by substrate.  

E1, S1, and E1S1 are related by: 
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A.2 Mechanism of synthesis of ACh in compartment (1) 

Figure A2 shows a full mechanism for the pH-dependent enzyme synthesis reaction model.   

 

Figure A-2: Synthesis reaction model 

 

 The full mechanism for the pH dependent ChAT kinetics is shown in Figure A-2. The main reaction 

route occurs in the vertical direction. The active enzyme species exists in equilibrium with inactive 

protonated and de-protonated forms. The equilibria are driven by the pH of the system. E2H, is the 

active form of the enzyme; E2H
* and E2

- are the protonated and de-protonated inactive enzyme 

forms.X1, X2, and X3 are enzyme intermediate complexes.  

The rate of synthesis can be written as: 
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 X1 and X2 are related through the following expressions: 
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      Appendix (B): Dynamic Model Equations 

Figure 2-2 illustrates a simplified description for the two-enzyme/two-compartment system. It 

is clear that the recycle stream of choline is from compartment 2 to compartment 1. the outflow of 

compartment 1 represent the inflow of compartment 1 and via the diffusion. The derivation of 

dynamic model equations is performed via component unsteady state mole balance of all substances 

leading to eight ordinary differential equations as shown below. The reaction rates are as formulated 

in Appendix A. 

 

Hydrogen ions 

              For compartment (1): 

 
                 )1(1121

1
1 BRVHHAHq

dt

Hd
V WMHf  



  

Where 

 fH   is the concentration of hydrogen ions in the feed 

For compartment 2 

 
             
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Hydroxyl ions 

 For compartment (1): 

 
                 )3(1121
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Where 

  fOH   is the concentration of hydroxyl ions in the feed  

For compartment (2): 

 
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ACh: 

For compartment (1)    

 
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  fS1  is the feed acetylcholine concentration 

Choline 

For compartment 1: 

 
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For compartment (2) 

 
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Where:  fS2  is the concentration of feed choline.    

 

Acetate 

For compartment 1: 

 
                  )9(1122122
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Where   fS3  is the concentration of acetate in the feed 

For compartment (2) 
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The pseudo-steady state assumption for hydroxyl ions gives, 
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 

0


dt

OHd
                                                                                                     B(11)

 Assuming that the hydrogen and hydroxyl ions are at equilibrium gives, 

    OHHKW                                                                                                   B(12)  

WK  is the equilibrium constant for water reversible dissociation. 

Using the differential equations for  H  and  OH  together with relations (B (1)) and (B (3)) gives 

the following differential equations. 

For compartment 1, it becomes 
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We proceed in a similar fashion for compartment 2 to get:   
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The pseudo-steady state assumption for hydroxyl ions is employed here also 

 
 

0


dt

OHd
          

The assumption that the hydrogen and hydroxyl ions are at equilibrium still holds, i.e. 

    OHHKW          

Using the differential equations (B (1) and B (3) for  H  and  OH  together with relations   B (1) 

and B (3) give the rise to the following additional differential equations.   
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