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Abstract

We consider a mean-variance portfolio optimization problem, namely, a problem of mini-
mizing the variance of the final wealth that results from trading over a fixed finite horizon in
a continuous-time complete market in the presence of convex portfolio constraints, taking
into account the cost imposed by margin requirements on trades and subject to the further
constraint that the expected final wealth equal a specified target value. Market parameters
are chosen to be random processes adapted to the information filtration available to the
investor and asset prices are modeled by Itô processes.

To solve this problem we use an approach based on conjugate duality: we start by
synthesizing a dual optimization problem, establish a set of optimality relations that de-
scribe an optimal solution in terms of solutions of the dual problem, thus giving necessary
and sufficient conditions for the given optimization problem and its dual to each have a
solution. Finally, we prove existence of a solution of the dual problem, and for a particular
class of dual solutions, establish existence of an optimal portfolio and also describe it ex-
plicitly. The method elegantly and rather straightforwardly constructs a dual problem and
its solution, as well as provides intuition for construction of the actual optimal portfolio.
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Chapter 1

Introduction

In this thesis we study a classical asset-allocation problem, namely the problem of mean-
variance portfolio selection. The mean-variance approach to portfolio optimization was
originally introduced by Markowitz [19], [20] and ever since then, together with the general
approach of maximizing expected utility, has become one of the most popular ways to look
at the problem of efficient asset-allocation. Mean-variance optimization has its roots in the
highly intuitive idea of risk and reward tradeoff. As such, the mean-variance investor wishes
to minimize the variance of his final wealth subject to achieving a desired minimum level
of return. It is assumed that the investor starts with some initial level of wealth and trades
continuously over a fixed finite horizon in a complete market. To make the problem more
challenging various additional assumptions and restrictions can be added: for example,
market parameters can be chosen to be random, there can be restrictions on the dollar
amounts allocated to each stock, or short-selling might be prohibited; alternatively, we
might wish to include transaction costs or payments into a margin account. In this thesis,
with an attempt to consider a rather general problem, we include the following features,
which make the problem quite non-trivial:

(a) we consider random market parameters;

(b) we account for margin payments by including a nonlinear term in the wealth dynamics;

(c) we consider numerous trading restrictions, such as prohibition of short selling, or dollar
limitation on asset holdings, by constraining the portfolio to be in a fixed convex set.

Similar problems within a complete market framework have been previously discussed by,
among others, Lim and Zhou [18] and Li, Zhou, and Lim [17]. The original work [18]
considers the problem with random market parameters but for unconstrained portfolios
using the approach of stochastic linear-quadratic (LQ) control. The follow-up work [17]
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included a no-short selling constraint, however, is restricted to the case of nonrandom
market coefficients. Works by Korn and Trautmann [14], Korn [13], and Bielecki et al [2]
instead consider a nonnegativity constraint on the wealth process but fail to incorporate
convex portfolio constraints, or margin payment requirements.

In our attempt to solve the problem, we turn to the method of conjugate duality: the
mean-variance optimization problem is intrinsically convex, and therefore is often amenable
to the method of conjugate duality. According to this method, we treat the original problem
as primal and formulate an associated dual optimization problem. If, as often happens,
the dual problem is easier to solve, our next step is first to show the existence of a solution,
and second, to construct an optimal portfolio, i.e. solution to primal problem, in terms
of the solution of the dual problem. For the “weak duality principle” to hold, the sum of
the primal and dual cost functionals must be nonnegative, while the infimal values of the
primal and dual problems must sum to zero. In this thesis we are motivated by earlier
works of Labbé and Heunis [15] and [16], which were in turn motivated by a recent approach
to conjugate duality of Rogers [22] and, especially, by the definitive work of Bismut [3] on
stochastic optimal control.

Conjugate duality methods have been previously applied to problems of optimal in-
vestment by, among others, Karatzas et al [9], Xu and Shreve [23], Cvitanic and Karatzas
[5], Cuoco and Liu [4], Karatzas, Lehoczky and Shreve [8]. All of these authors focused
on maximizing the expected utility of terminal wealth and showed the amazing effective-
ness of the duality methods for a considerable variety of challenging optimal investment
problems. The duality idea, however, was cleverly but non-transparently used by these
authors, in such a way, that it is often difficult for the reader to get the intuition behind
the formulation of a dual problem. Indeed, it is apparent that in these works the dual
functional has essentially been arrived at by a process of patient experimentation, guess-
work, and generalization from simpler cases. A synthetic approach of Rogers [22] and
Klein and Rogers [12], which has its roots in a classic work of Bismut [3], offers an ap-
proach for constructively synthesizing a candidate dual cost function which to some extent
eliminates this guesswork. However, the approach in these works ([22] and [12]) is limited
to problems without any portfolio constraints and establishes only equality of the primal
and dual values without any construction of the actual optimal portfolios. Accordingly,
we turn for motivation to the classic work of Bismut [3], whose basic approach yields an
elegant way of arriving at a dual problem and optimality relations by converting the given
optimization problem into a Bolza problem in the stochastic calculus of variations. The
optimality relations are then used to establish existence of a solution and to characterize
the optimal portfolio and corresponding wealth process.

To summarize, we consider a mean-variance optimization problem with random market
parameters, convex portfolio constraints and taking into account the cost imposed by
margin requirements. It is this feature, namely the cost imposed by margin requirements,
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which distinguishes the problem of the thesis from the mean-variance problem studied
by Labbé and Heunis [15], in which this cost is not taken into account. As we shall
see, accounting for margin payments gives rise to serious technical challenges, which were
not present in [15], and which we have been able to only partially resolve in the present
thesis. Our basic approach is to establish a set of optimality relations that describe an
optimal solution in terms of solutions of the dual problem, and give necessary and sufficient
conditions for the problem and its dual to each have a solution. We then prove existence of
a solution of the dual problem, and for a particular class of dual solutions, we tentatively
establish existence of an optimal portfolio and describe it explicitly. We briefly discuss the
possibility of constraining the problem studied in [15] even further: we not only consider
margin requirements, but also require the wealth process to stay nonnegative throughout
the trading period.

The thesis is organized as follows. In Chapter 2 we look at the mean-variance problem
in the presence of convex portfolio constraints and considering margin requirements. In
Chapter 3 we modify the original problem discussed in Chapter 2 to include an additional
constraint that specifies that wealth should stay nonnegative over the trading interval.
Chapter 4 ends the thesis with some concluding remarks.
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Chapter 2

Mean-Variance Optimization with
Convex Constraints

In this chapter we attack the classical problem of mean-variance portfolio optimization with
convex portfolio constraints and taking into consideration margin requirements on trades.
As such, the problem is similar to that addressed in [15], but includes the additional
feature of accounting for margin payments in the course of trades, something that was not
considered in [15]. As will become clear, this feature makes the problem quite challenging
as compared with that of [15]. The chapter is organized as follows: we start by describing
the market model in Section 2.1, then introduce the class of square integrable processes
that will be used throughout this thesis in Section 2.2. We then formulate the optimization
problem, including a weaker, partially constrained problem, in Section 2.3, synthesize the
dual problem and optimality relations in Section 2.4, and show existence of a solution to
the dual problem in Section 2.5. In Sections 2.6 - 2.8 we tentatively construct a solution of
the optimality relations derived in Section 2.4, and use this solution to propose a candidate
optimal portfolio for the constrained mean-variance problem with margin payments.

2.1 Market Model

Throughout the thesis we assume that we are given a complete probability space (Ω,F , P )
on which is defined some RN -valued standard Brownian motion {W (t), t ∈ [0, T ]} with a
finite horizon T ∈ (0,∞). We put

Ft := σ{W (τ), τ ∈ [0, t]} ∨ N (P ), (2.1.1)

where N (P ) denotes the collection of all P -null events in (Ω,F , P ). We interpret {Ft, t ∈
[0, T ]} as information available to investors at instant t, in a sense that the true state of
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nature is completely determined by the sample paths of W on [0, T ]. Since, as we shall see
next, all assets are progressively measurable with respect to {Ft, t ∈ [0, T ]}, this implies
that at time t ∈ [0, T ] investors have complete knowledge about asset price movements up
to and including instance t.

We choose market parameters to be random processes adapted to the information
filtration available to the investor and we model asset prices by Itô processes. We assume
the market consists of N + 1 assets that are traded continuously on the interval [0, T ],
including a money market (or bond) with price {S0(t)} given by

dS0(t) = r(t)S0(t) dt, t ∈ [0, T ], S0(0) = 1, (2.1.2)

and N stocks with prices {Sn(t)}, n = 1, 2, ..., N , given by

dSn(t) = Sn(t)

[
bn(t) dt+

N∑
m=1

σnm(t) dWm(t)

]
, 0 ≤ t ≤ T, (2.1.3)

with initial values Sn(0), n = 1, 2, ...., N , given by strictly positive constants. We will
always assume the following conditions, which are standard in most work on portfolio
optimization:

Condition 2.1.1. In (2.1.2) and (2.1.3) the interest rate {r(t)}, the entries {bn(t)} of the
RN -valued process {b(t)} of the mean rates of return on stocks, and the entries {σnm(t)}
of the N × N matrix-valued volatility process {σ(t)} are uniformly bounded and {Ft}-
progressively measurable scalar processes on Ω× [0, T ]. There exists a constant κ ∈ (0,∞)
such that

z′σ(w, t)σ′(w, t)z ≥ κ‖z‖2, ∀(z, w, t) ∈ RN × Ω× [0, T ]. (2.1.4)

/

Remark 2.1.2. It follows from Condition 2.1.1 and Problem 5.8.1 of [10] (p. 372), there
exists a constant κ1 ∈ (0,∞) such that

max{‖(σ(w, t))−1z‖, ‖(σ′(w, t))−1z‖} ≤ κ1‖z‖, ∀(z, w, t) ∈ RN × Ω× [0, T ]. (2.1.5)

The bound (2.1.5) will be frequently used throughout the thesis. /

Remark 2.1.3. We define the market price of risk

θ(t) := (σ(t))−1[b(t)− r(t)1], (2.1.6)

in which 1 ∈ RN has all unit entries. From Condition 2.1.1 and Remark 2.1.2 follows that
the process {θ(t)} is uniformly bounded on Ω× [0, T ]. /
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Remark 2.1.4. To simplify notation, we will use F∗ to denote the σ-algebra of Ft-
progressively measurable sets on Ω × [0, T ] and we will write η ∈ F∗ to indicate that
η is F∗-measurable. /

To account for margin payments in the course of trading we introduce a function g as
follows (see Remark 2.1.6 for further discussion on this):

Condition 2.1.5. The function g : Ω × [0, T ] × RN → R is F∗×B(RN)-measurable and
such that g(w, t, 0) = 0 and g(w, t, ·) is concave and continuous on RN for each (w, t) ∈
Ω × [0, T ]. Further, for each (w, t) ∈ Ω × [0, T ] function g(w, t, ·) is globally Lipshitz-
continuous on RN with a Lipshitz constant ζ ∈ [0,∞) that is uniform with respect to
(w, t). /

Now consider a small investor with initial wealth x0 and no further capital inflows
throughout trading period. At any moment of time t ∈ [0, T ], based only on the information
Ft available at the time, he can invest πn(t) dollars of his current wealth in asset with price
Sn(t). We assume that investor’s actions do not affect market prices. More formally, given
some non-random initial wealth x0 ∈ (0,∞), and some {Ft}-progressively measurable
process π : Ω× [0, T ]→ RN of the set

Π :=

{
π : Ω× [0, T ]→ RN

∣∣∣∣ π ∈ F∗ and

∫ T

0

{ |g(t, π(t))|+‖π(t)‖2}dt <∞ a.s.

}
,

there exists a scalar-valued, continuous, and {Ft}-progressively measurable process {Xπ(t),
t ∈ [0, T ]} such that

dXπ(t) = [r(t)Xπ(t) + π′(t)σ(t)θ(t) + g(t, π(t))] dt+ π′(t)σ(t)dW (t), Xπ(0) = x0,
(2.1.7)

which is unique to within indistinguishability, P -strictly positive, and given by

Xπ(t) = S0(t)

{
x0 +

∫ t

0

S−1
0 (τ)[π′(τ)σ(τ)θ(τ) + g(τ, π(τ))]dτ

+

∫ t

0

S−1
0 (τ)π′(τ)σ(τ)dW (τ)

}
.

(2.1.8)

Thus Xπ(t) = π0(t) + π′(t)1 gives the investor’s wealth at instant t ∈ [0, T ], where π0(t)
denotes investor’s wealth put into riskless asset at time t ∈ [0, T ].

Remark 2.1.6. The role of function g in (2.1.7) is to model the presence of margin
requirements on trades, which oblige an investor to make payments to the broker when
borrowing to buy securities or short selling assets. Cuoco and Liu [4] present a detailed
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discussion of the modelling of various types of margin payments, including examples of
typical expression for margin function g, and show that Condition 2.1.5 formulates natural
properties that one would expect of a term which modifies the wealth equation to account
for margin payments. One example of such a function is given by

g(t, π(t)) := −r(t)(1 + λ−)
N∑
i=1

π−i (t), for all t ∈ [0, T ], (2.1.9)

where λ− > 0 is the proportional margin requirement on short positions and π−(t) :=
max(0,−π(t)) denote the negative part of π(t). In other words, a cash amount equal to
the 100(1 + λ−)% of the market value of the total short position of the portfolio should be
deposited with a broker at any time instant t ∈ [0, T ]. /

2.2 A Class of Square Integrable Itô Processes

In the following section we define a class of square integrable Itô processes that will be
used in future sections. Since we are interested in minimizing the variance of the terminal
wealth Xπ(T ), it is essential for this variance to be defined, in other words, we need to
ensure that E[Xπ(T )2] < ∞. The goal of this section is to identify conditions on the
portfolio π that would guarantee square integrability of the terminal wealth Xπ(T ).

Recall Remark 2.1.4 and put

H1 :=

{
v : Ω× [0, T ]→ R

∣∣∣∣∣ v ∈ F∗ and E
[∫ T

0

|v(t)|dt
]2

<∞

}
, (2.2.1)

H2 :=

{
ξ : Ω× [0, T ]→ RN

∣∣∣∣ ξ ∈ F∗ and E
∫ T

0

‖ξ(t)‖2dt <∞
}
, (2.2.2)

I := R×H1 ×H2. (2.2.3)

Then set I is a collection of square integrable Itô processes with respect to the Brownian
motion {W (t)} in the following sense: let (X0, Ẋ,ΛX) ∈ I and write X ≡ (X0, Ẋ,ΛX) ∈ I
to indicate that {(X(t),Ft), t ∈ [0, T ]} is a continuous semimartingale of the form

X(t) = X0 +

∫ t

0

Ẋ(τ)dτ +

∫ t

0

Λ′X(τ)dW (τ). (2.2.4)

It is clear that the integrands Ẋ and ΛX are uniquely determined a.e. for each X ∈ I on
Ω× [0, T ]. This useful representation of square integrable Itô processes was used in Labbé
and Heunis [15] and is originally due to Bismut [3]. The next result shows the sense in
which the process at (2.2.4) is square integrable:
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Proposition 2.2.1. If X ∈ I, then

E[ sup
0≤t≤T

|X(t)|2] <∞, ∀X ∈ I. (2.2.5)

Proof. The statement follows directly from Doob’s L2-inequality, see [3], p.390.

The following proposition gives the necessary and sufficient conditions for wealth pro-
cess Xπ to be member of I (recall (2.1.7)):

Proposition 2.2.2. Assume Condition 2.1.1 and Condition 2.1.5 and let π ∈ Π. Then
Xπ ∈ I if and only if π ∈ H2.

Proof. Suppose Xπ ∈ I, then from the dynamics (2.1.7) of Xπ we have Λ′Xπ(t) = π′(t)σ(t)
for all t ∈ [0, T ], therefore from the uniform boundedness of σ it follows that π ∈ H2.

Now suppose π ∈ H2. From Lipschitz-continuity of g(w, t, ·) (recall Condition 2.1.5)
follows that |g(t, π)| ≤ ζ‖π‖ for all π ∈ RN and t ∈ [0, T ], hence,

E
[∫ T

0

|g(t, π(t))|dt
]2

<∞. (2.2.6)

Thus from (2.1.8), uniform boundedness of market parameters (Condition 2.1.1), (2.2.6),
and Doob’s L2-inequality it follows that

E[ sup
0≤t≤T

|Xπ(t)|2] <∞. (2.2.7)

Therefore, r(t)Xπ(t) + π′(t)σ(t)θ(t) + g(t, π(t)) ∈ H1 and π′(t)σ(t) ∈ H2 due to uniform
boundedness of the parameters. It follows that Xπ ∈ I.

From Proposition 2.2.2 it follows that we should choose π ∈ H2 to ensure that Xπ(T )
is square integrable.

2.3 Formulation of Optimization Problem

2.3.1 Fully Constrained Problem

In this chapter we consider an investor who is interested in achieving an expected predeter-
mined level of terminal wealth d while minimizing its variance V ar(Xπ(T )). This problem
was previously addressed by Labbé and Heunis [15] but for the case where there are no
margin requirements (that is g(t, π(t)) = 0 at (2.1.7)). As we follow the general approach
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of [15], it turns out that the presence of the nonlinear term g in (2.1.7) poses substantial
additional challenges that were not present in [15]. These challenges will be pointed out
specifically later in the thesis, at this point, we wish to emphasize that adding this addi-
tional term for margin requirements makes the problem non-trivial and not just a routine
generalization of problem discussed in [15]. Before we attempt to solve this problem, we
need to present it mathematically. We start by postulating

Condition 2.3.1. We are given a closed convex set K ∈ RN with 0 ∈ K, a random
variable a on (Ω,F , P ) which is FT -measurable with

0 < inf
w∈Ω

a(w) ≤ sup
w∈Ω

a(w) <∞,

a constant d ∈ (0,∞), and FT -measurable square integrable random variable c0 on
(Ω, F , P ). /

Now define

A := {π ∈ H2 | π(t) ∈ K a.e.}, (2.3.1)

Ĵ(w, x) :=
1

2
[a(w)x2 + 2c0(w)x], (w, x) ∈ Ω× R, (2.3.2)

G(π) := E[Xπ(T )]− d, π ∈ H2, (2.3.3)

υ̂ := inf
π∈A

G(π)=0

E[Ĵ(Xπ(T ))]. (2.3.4)

We view set A as the set of all admissible portfolios, in other words, portfolios characterized
by a closed convex set K and satisfying the square integrability condition of Proposition
2.2.2. Constraint G(π) = 0 represents a requirement on terminal wealth, guaranteeing the
investor terminal wealth of d dollars on average. Thus the investor wishes to solve problem
(P̂), i.e.

(P̂) : determine some π̂ ∈ A such that G(π̂) = 0 and υ̂ = E[Ĵ(X π̂(T ))]. (2.3.5)

To make the problem meaningful we impose

Condition 2.3.2. The constant d and the set K are such that the set {G(π) | π ∈ A} ⊂ R
has nonempty interior which includes 0. /

Remark 2.3.3. If 0 /∈ {G(π) | π ∈ A}, then the constraints in (2.3.4) are mutually
contradictory and the problem (2.3.5) is meaningless. Condition 2.3.2 ensures that such
a situation is avoided and moreover allows us to use the Lagrange Multiplier Theorem in
Section 2.8 in order to deal with the constraint on the expected terminal wealth represented
by G(π) = 0 at (2.3.4). /
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Remark 2.3.4. Set a = 2 and c0 = 0, then E[Ĵ(Xπ(T ))] − d2 = Var(Xπ(T )) when
G(π) = 0. In other words, problem (P̂) becomes a problem of constrained mean-variance
optimization, where we wish to minimize variance of terminal wealth subject to the terminal
wealth constraint E[Xπ(T )] = d. /

2.3.2 Partially Constrained Problem

In order to solve the constrained problem (P̂) defined at (2.3.5) we introduce a simpler
surrogate problem, namely a partially constrained optimization problem similar to (2.3.5)
but simplified in the sense that the constraint on the expected value of the terminal wealth
is removed from the problem. Later, in Section 2.8 we shall use the solution of the surrogate
partially constrained problem introduced here, together with standard Lagrange multiplier
methods, to deal with the fully constrained problem (2.3.5) in which there is a constraint
on the expected terminal wealth. To define the partially constrained problem, we postulate

Condition 2.3.5. We are given a constant q ∈ R and an FT -measurable square integrable
random variable c on (Ω,F , P ). /

Using the ingredients postulated at Condition 2.3.5 put

J(w, x) :=
1

2
[a(w)x2 + 2c(w)x] + q, (w, x) ∈ Ω× R, (2.3.6)

υc,q := inf
π∈A

E[J(Xπ(T ))]. (2.3.7)

We now define the partially constrained optimization problem (Pc,q) as:

(Pc,q) : determine some π̄ ∈ A such that υc,q = E[J(X π̄(T ))]. (2.3.8)

Remark 2.3.6. It easily follows from the form of x 7→ J(w, x) in (2.3.6), Conditions 2.3.1,
2.3.5, and Proposition 2.2.2, that −∞ < υc,q < +∞. /

Remark 2.3.7. Condition 2.3.1 still holds with respect to parameter a and set K. Note
that we distinguish between c0 and c in the definitions of problems (2.3.5) and (2.3.8) to
avoid confusion, as these coefficients play different roles. Notice also that the condition
G(π) = 0 is missing from the definition of the value at (2.3.7) for the partially constrained
problem, reflecting the fact that this constraint has been discarded (in contrast with the
value at (2.3.4) for the fully constrained problem where the condition G(π) = 0 is present).
We shall see in Section 2.8 how we can use the solution of the partially constrained problem
(2.3.8) to address the fully constrained problem (2.3.5). /
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Remark 2.3.8. The partially constrained problem (2.3.8) can also be interpreted in the
following way: suppose an investor wishes to replicate some contingent claim with payoff
B, but is unable to find a perfect hedge because either the market is incomplete, or,
the investor has limitations on initial capital available for the purchase of the replicating
portfolio. To determine a suitable hedging alternative the investor might choose to use
quadratic hedging, that is to minimize the L2-distance E[B−Xπ(T )]2 under all attainable
strategies. The L2-hedging problem is achieved by setting a ≡ 2, c ≡ −2B, q ≡ E[B2] at
(2.3.8). /

2.4 Dual Problem and Optimality Relations

2.4.1 Redefining the Primal Problem

From now on we will put aside the constrained problem (2.3.5) and focus on solving the
partially constrained problem (2.3.8). In this subsection we eliminate the portfolio π from
the problem (2.3.8) to get an optimization problem over the set I defined in Section 2.2.
The advantage of this reformulation is that the latter optimization problem is really a
Bolza poblem in the calculus of variations to which we can apply a duality approach that
is motivated by Bismut [3]. To do so, we introduce a number of penalty terms on I which
account for the initial wealth and portfolio constraints: these terms give a zero penalty
when constraints hold and infinite penalty otherwise.

Let X ≡ (X0, Ẋ,ΛX) ∈ I and define U(X) as

U(X) :=

{
π ∈ A

∣∣∣∣ Ẋ(t) = r(t)X(t) + π′(t)σ(t)θ(t) + g(t, π(t))

and ΛX(t) = σ′(t)π(t) a.e.

}
.

(2.4.1)

Then, recalling (2.1.7), it follows that for each X ≡ (X0, Ẋ,ΛX) ∈ I we have

X(t) = Xπ(t) a.e. for some π ∈ A ⇐⇒ X0 = x0 and U(X) 6= ∅, (2.4.2)

from which, together with (2.3.7), we conclude that

υc,q = inf
X ∈ I
X0 = x0
U(X) 6= ∅

E[J(X(T ))]. (2.4.3)

Moreover, from (2.4.1) it is also clear that

U(X) 6= ∅ ⇐⇒ Ẋ(t) = r(t)X(t) + Λ′X(t)θ(t) + g(t, [σ′(t)]−1ΛX(t))
and [σ′(t)]−1ΛX(t) ∈ K a.e.

(2.4.4)
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We now define penalty terms on I:

l0(x) :=

{
0 if x = x0,
∞ otherwise,

(2.4.5)

for each x ∈ R to account for the initial wealth constraint and, motivated by (2.4.4), we
also define a mapping L : Ω× [0, T ]× R× R× RN → {0,∞} by

L(w, t, x, v, ξ) :=


0 if v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ)

and [σ′(w, t)]−1ξ ∈ K,
∞ otherwise.

(2.4.6)

It is clear from (2.4.6) that L(t,X(t), Ẋ(t),ΛX(t)) is F∗-measurable, and

E
∫ T

0

L(t,X(t), Ẋ(t),ΛX(t)) =

{
0 if U(X) 6= ∅,
∞ otherwise.

(2.4.7)

Finally, for each X ≡ (X0, Ẋ,ΛX) ∈ I define (recall (2.3.6))

Φ(X) := l0(X0) + E[J(X(T ))] + E
∫ T

0

L(t,X(t), Ẋ(t),ΛX(t))dt. (2.4.8)

Remark 2.4.1. With help of (2.4.5) and (2.4.7) we have successfully “encoded” constraints
X0 = x0 and U(X) 6= ∅, which represent constraints on initial wealth and admissibility

of portfolio defined by π := [σ′]−1ΛX . Thus when l0(X0) = 0 and E
∫ T

0
L(t,X(t), Ẋ(t),

ΛX(t))dt = 0, we have Φ(X) = E[J(X(T ))], with Φ(X) = +∞ otherwise. Hence, from
(2.4.5), (2.4.6), and (2.4.7) it follows that

inf
X ∈ I
X0 = x0
U(X) 6= ∅

E[J(X(T ))] = inf
X∈I

Φ(X), (2.4.9)

and combining (2.4.9) with (2.4.3), we have

υc,q = inf
X∈I

Φ(X). (2.4.10)

Moreover, if X̄ ≡ (X̄0,
˙̄X,ΛX̄) ∈ I is such Φ(X̄) = infX∈I Φ(X), then π̄ := [σ′]−1ΛX̄

is a solution to problem (2.3.8). From (2.4.10) we conclude that solving the partially
constrained problem (2.3.8) is equivalent to minimizing functional Φ defined at (2.4.8)
over the set I. /

Remark 2.4.1 thus shows that we have successfully eliminated portfolio π from the
optimization problem, instead introducing a new optimization problem over set I that we
shall name the primal problem, namely determining some X̄ ∈ I such that vc,q = Φ(X̄). In
the following sub-section 2.4.2 we shall see that the optimization problem over processes
given by the right-hand side of (2.4.10) is ideally suited to the introduction of a dual
problem.
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2.4.2 Dual Problem

With the reformulated primal problem (2.4.10) in place, in this subsection we formulate
an optimization problem that is dual to the primal problem (2.4.10). We start by defining
the convex conjugate functions according to Definition A.1.1:

m0(y) := l∗0(y) := sup
x∈R
{xy − l0(x)}, (2.4.11)

mT (w, y) := J∗(w,−y) := sup
x∈R
{x(−y)− J(w, x)}, (2.4.12)

M(w, t, y, s, γ) := L∗(w, t, s, y, γ) := sup
x,v∈R,
ξ∈RN

{xs+ vy + ξ′γ − L(w, t, x, v, ξ)}, (2.4.13)

for each y ∈ R, s ∈ R, γ ∈ RN , w ∈ Ω and t ∈ [0, T ]. From definitions (2.4.5) and (2.3.6)
we easily obtain

xy − l0(x) :=

{
x0y if x = x0,
−∞ otherwise,

(2.4.14)

and

x(−y)− J(w, x) =
−a(w)

2

[
x+

(y + c(w))

a(w)

]2

+
(y + c(w))2

2a(w)
− q. (2.4.15)

From (2.4.14) and (2.4.15) together with Condition 2.3.1 it then follows that

m0(y) = x0y, ∀y ∈ R, (2.4.16)

mT (w, y) =
(y + c(w))2

2a(w)
− q, ∀(w, y) ∈ Ω× R. (2.4.17)
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For M(w, t, y, s, γ) of (2.4.13) from (2.4.6) we find

M(w, t, y, s, γ) := sup
x,v∈R,
ξ∈RN

{xs+ vy + ξ′γ − L(w, t, x, v, ξ)}

= sup
x∈R, ξ∈RN ,

[σ′(w,t)]−1ξ∈K

{xs+ y[r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ)] + ξ′γ}

= sup
x∈R, ξ∈RN ,

[σ′(w,t)]−1ξ∈K

{x[s+ yr(w, t)] + yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t) + γ]}

= sup
x∈R
{x[s+ yr(w, t)]}+ sup

ξ∈RN ,
[σ′(w,t)]−1ξ∈K

{yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t) + γ]}

=

{
sup ξ∈RN ,
[σ′(w,t)]−1ξ∈K

{yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t)+γ]} if s+r(w, t)y=0,

∞ otherwise.

(2.4.18)

Recall Condition 2.1.5 and define

δ(w, t, y,Θ) := sup
u∈K
{yg(w, t, u)− u′Θ}, (w, t, y,Θ) ∈ Ω× [0, T ]× R× RN (2.4.19)

and
Θy(w, t) := −σ(w, t)[yθ(w, t) + γ], (w, t) ∈ Ω× [0, T ]. (2.4.20)

Take u := σ′(w, t)]−1ξ and recall that K ∈ RN , hence,

sup
ξ∈RN ,

[σ′(w,t)]−1ξ∈K

{yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t)+γ]} = sup
u∈K
{yg(w, t, u) +u′σ(w, t)[yθ(w, t) + γ]}.

(2.4.21)
Then from (2.4.18) and (2.4.21) together with (2.4.19) and (2.4.20) we obtain

M(w, t, y, s, γ) =

{
δ(w, t, y,Θy(w, t)) if s+ r(w, t)y = 0,
∞ otherwise.

(2.4.22)

Now for each Y = (Y0, Ẏ ,ΛY ) ∈ I (recall (2.2.1) - (2.2.4)) put

Ψ(Y ) := m0(Y0) + E[mT (Y (T ))] + E
∫ T

0

M(t, Y (t), Ẏ (t),ΛY (t))dt (2.4.23)

and define the dual problem as

determine some Ȳ ∈ I such that Ψ(Ȳ ) = inf
Y ∈I

Ψ(Y ). (2.4.24)
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The motivation behind the definition of the function Ψ(·) at (2.4.23) and the dual problem
at (2.4.24) will be given in sub-section 2.4.3 which follows.

Remark 2.4.2. At this point we would like to emphasize the importance of derivations
in the present sub-section: it is the explicit formulae obtained in (2.4.16), (2.4.17) and
(2.4.22) that allow us to define the dual problem (2.4.24) without preliminary guesswork
and then derive optimality relations in the following sub-section. /

Remark 2.4.3. For future developments it is useful to state some of the properties of
function δ : Ω × [0, T ] × R × RN → R defined in (2.4.19). From Condition 2.3.1 and
Condition 2.1.5 follows that δ(w, t, y,Θ) ≥ 0 for all (w, t, y,Θ) ∈ Ω× [0, T ]×R×RN since
0 ∈ K. Further, δ is convex and lower semi-continuous, as well as positively homogeneous
and subadditive. /

Remark 2.4.4. From lower semi-continuouty of δ and (2.4.22) it follows that the mapping
M(t, Y (t), Ẏ (t), ΛY (t)) is F∗-measurable on Ω × [0, T ] (recall Remark 2.1.4) and Ψ(Y ) ∈
(−∞,+∞] for each Y ≡ (Y0, Ẏ ,ΛY ) ∈ I. /

2.4.3 Necessary and Sufficient Optimality Conditions

We are now ready to attempt to solve the partially constrained problem (2.3.8). In this
section we determine necessary and sufficient conditions for the portfolio to be a solution
to problem (2.3.8). To this end we need the following basic result on square integrable Itô
processes due to Bismut [3]:

Proposition 2.4.5. Recall (2.2.1) - (2.2.4) and let X ≡ (X0, Ẋ,ΛX) ∈ I, Y ≡ (Y0, Ẏ ,ΛY )
∈ I and define

M(X, Y )(t) := X(t)Y (t)−X0Y0−
∫ t

0

{X(τ)Ẏ (τ) + Ẋ(τ)Y (τ) + Λ′X(τ)ΛY (τ)}dτ (2.4.25)

for each t ∈ [0, T ]. Then {(M(X, Y )(t),Ft), t ∈ [0, T ]} is a continuous martingale with
M(X, Y )(0) = 0.

Proof. See Proposition I-1 in [3] (p. 387).

Propositition 2.4.5 is in fact our primary motivation for the introduction of the sets
H1, H2, and I at (2.2.1) - (2.2.3).

Proposition 2.4.6. Suppose Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5. Functions Φ and Ψ
given by (2.4.8) and (2.4.23) respectively are well-defined, with values in (−∞,+∞] for
each X ≡ (X0, Ẋ,ΛX) ∈ I, Y ≡ (Y0, Ẏ ,ΛY ) ∈ I, and satisfy the “weak duality” relation

Φ(X) + Ψ(Y ) ≥ 0, ∀(X, Y ) ∈ I× I. (2.4.26)
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Further, for arbitrary X̄ ≡ (X̄0,
˙̄X,ΛX̄) ∈ I and Ȳ ≡ (Ȳ0,

˙̄Y,ΛȲ ) ∈ I, we have the equality
Φ(X̄) + Ψ(Ȳ ) = 0 if and only if all of the following conditions hold:

(A) l0(X̄0) +m0(Ȳ0) = X̄0Ȳ0,

(B) J(X̄(T )) +mT (Ȳ (T )) = −X̄(T )Ȳ (T ) a.s.,

(C) L(t, X̄(t), ˙̄X(t),ΛX̄(t)) +M(t, Ȳ (t), ˙̄Y (t),ΛȲ (t))

= X̄(t) ˙̄Y (t) + ˙̄X(t)Ȳ (t) + Λ′
X̄

(t)ΛȲ (t) a.e. on Ω× [0, T ].

Proof. The proof is identical to that of Proposition 5.2 of [15] (p. 84) and is therefore
omitted.

Similarly to definition (2.4.20) of Θy, put

ΘY (t) := −σ(t)[θ(t)Y (t) + ΛY (t)], ∀ Y ≡ (Y0, Ẏ ,ΛY ) ∈ I. (2.4.27)

Proposition 2.4.6 is a general and abstract result which relies only on the convex conjugates
at (2.4.11) - (2.4.13), and does not make any use of the explicit formulae that we have
available for l0, m0, J , mT , L, and M (see (2.4.5), (2.3.6), (2.4.6), (2.4.16), (2.4.17), and
(2.4.22)). We now shall refine Proposition 2.4.6 by taking into account these explicit
expressions in the next proposition:

Proposition 2.4.7. Assume Condition 2.1.1, 2.1.5, 2.3.1, 2.3.5. For arbitrary (X̄, Ȳ ) ∈
I× I with X̄ ≡ (X̄0,

˙̄X,ΛX̄) and Ȳ ≡ (Ȳ0,
˙̄Y,ΛȲ ), we have

Φ(X̄) = inf
X∈I

Φ(X) = sup
Y ∈I

[−Ψ(Y )] = −Ψ(Ȳ ) (2.4.28)

if and only if

(1) X̄0 = x0,

(2) X̄(T ) = − Ȳ (T )+c
a

a.s.,

(3) ˙̄Y (t) + r(t)Ȳ (t) = 0 a.e.,

(4) π̄ ∈ U(X̄) and δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)) a.e.

for π̄(t) := [σ′(t)]−1ΛX̄(t).

Proof. From (2.4.5) and (2.4.16) follows that for arbitrary x, y ∈ R

l0(x) +m0(y) = xy if and only if x = x0.
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Similarly, from (2.3.6) and (2.4.17) we find that for arbitrary x, y ∈ R and w ∈ Ω

J(w, x) +mT (w, y) = −xy if and only if x = −y + c(w)

a(w)
.

Hence, conditions (A) and (B) of Proposition 2.4.6 hold if and only if X̄0 = x0 and X̄(T ) =

− Ȳ (T )+c
a

a.s. Further, for arbitrary (w, t) ∈ Ω× [0, T ], and (x, v, ξ), (y, s, γ) ∈ R×R×RN ,
we have:

L(w, t, x, v, ξ) +M(w, t, y, s, γ) = xs+ vy + ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y = 0,

and δ(w, t, y,Θy) = xs+ vy + ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y = 0,

and δ(w, t, y,Θy) = x(−r(w, t)y)+(r(w, t)x+ ξ′θ(w, t)+g(w, t, [σ′(w, t)]−1ξ))y+ ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y = 0,

and δ(w, t, y,Θy) = ξ′[θ(w, t)y + γ] + yg(w, t, [σ′(w, t)]−1ξ).

Hence, condition (C) of Proposition 2.4.6 holds if and only if ˙̄Y (t) + r(t)Ȳ (t) = 0 a.e., π̄ ∈
U(X̄) and δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)) a.e. for π̄(t) := [σ′(t)]−1ΛX̄(t)
(recall definition (2.4.1) of U(X̄)).

Combining, we conclude that for arbitrary (X̄, Ȳ ) ∈ I× I

(A) - (C) of Proposition 2.4.6 hold ⇐⇒ (1) - (4) hold.

From inequality (2.4.26) then follows that equality Φ(X̄) + Ψ(Ȳ ) = 0 is equivalent to
(2.4.28), and hence, (2.4.28) holds if and only if conditions (1) - (4) are satisfied.

Remark 2.4.8. From Proposition 2.4.7 we find that if the pair (X̄, Ȳ ) ∈ I × I satisfies
conditions (1) - (4), then X̄ minimizes functional Φ and hence, as follows from Remark
2.4.1, π̄ := [σ′]−1ΛX̄ defines the solution to the partially constrained problem (Pc,q) at
(2.3.8). Thus Proposition 2.4.7 gives us necessary and sufficient conditions for portfolio
π̄ (with associated wealth process X̄) to be the solution to problem (2.3.8), providing us
with a dual approach to solving the problem (2.3.8):

Step I : find some solution Ȳ to the dual problem (2.4.24);

Step II : construct some X̄ related to Ȳ through items (1) - (4) of Proposition 2.4.7;

Step III : ensure constructed X̄ belongs to the set I and corresponding π̄ to the set H2;

Step IV : ensure constructed X̄ satisfy items (1) - (4) of Proposition 2.4.7.

(2.4.29)

/
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Remark 2.4.9. Items (1) - (4) of Proposition 2.4.7 are quite similar to those in Labbé
and Heunis [15], but there is an essential difference in item (4), namely the complementary
slackness relation

δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)).

Although this is a perfectly natural complementary slackness relation expressing the usual
“Pontryagin maximum condition” that one expects (recall (2.4.19)), the presence of the
margin-payment term g (recall (2.1.7)) nevertheless makes it a good deal more complicated
than the corresponding complementary slackness condition in [15] (for which g = 0), and
in fact this relation will pose the main challenge when we construct a tentative solution to
the primal problem in Section 2.6. /

2.5 Solution to the Dual Problem

From Proposition 2.4.7 it follows that to solve problem (2.3.8) we need to construct a
pair (X̄, Ȳ ) ∈ I × I that satisfies the optimality relations (1) - (4) of Proposition 2.4.7.
Motivated by item (3) of Proposition 2.4.7, define

I1 := {Y ≡ (Y0, Ẏ ,ΛY ) ∈ I | Ẏ (t) = −r(t)Y (t) a.e.}, (2.5.1)

then from (2.4.22) and (2.4.23) follows that Ψ takes the value +∞ on I− I1, hence,

inf
Y ∈I

Ψ(Y ) = inf
Y ∈I1

Ψ(Y ), (2.5.2)

and thus we can restrict our choice of Y to Y ∈ I1. This is useful because, as we shall
see (in Remark 2.5.1 forthcoming) members of the set at (2.5.1) have a simple and explicit
parameterization. To establish this parameterization recall (2.1.2) and define

J (γ)(t) :=

∫ t

0

S0(τ)γ′(τ)dW (τ), γ ∈ H2, t ∈ [0, T ], (2.5.3)

and a mapping Ξ(·) : R×H2 → I1 defined by

Ξ(y, γ)(t) := S−1
0 (t) [y + J (γ)(t)], (y, γ) ∈ R×H2, t ∈ [0, T ], (2.5.4)

which establishes a linear bijection between R × H2 and the set I1. Indeed, from Y ≡
(Y0, Ẏ ,ΛY ) ∈ I1 together with (2.2.4) it follows that Y satisfies

Y (t) = Y0 −
∫ t

0

r(τ)Y (τ)dτ +

∫ t

0

Λ′Y (τ)dW (τ), t ∈ [0, T ], (2.5.5)
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and then, from an easy calculation using (2.5.5), (2.1.2) and Itô’s formula, we obtain

Y (t)S0(t) = Y0 +

∫ t

0

S0(τ)Λ′Y (τ)dW (τ), t ∈ [0, T ]. (2.5.6)

Combining (2.5.6) with (2.5.3) and (2.5.4) we see that Y ≡ (Y0, Ẏ ,ΛY ) ∈ I1 has the form

Y (t) = Ξ(y, γ) with y = Y0 and γ = ΛY . (2.5.7)

On the other hand, let Y := Ξ(y, γ) for some fixed pair (y, γ) ∈ R×H2, then

Y (t)S0(t) = y +

∫ t

0

S0(τ)γ′(τ)dW (τ),

and from Itô’s formula it follows that Y satisfies (2.5.5), while Doob’s L2-inequality yields
E[sup0≤t≤T |Y (t)|2] <∞ (since γ ∈ H2), thus combining with (2.5.5), we have Y ∈ I1.

Remark 2.5.1. With (y, γ) ∈ R × H2 and Y := Ξ(y, γ) we have an equivalent way to
write I1 as

I1 = {Ξ(y, γ) | (y, γ) ∈ R×H2}. (2.5.8)

Further note that for Y = Ξ(y, γ), we have

Y0 = y, Ẏ (t) = −r(t)Ξ(y, γ)(t), ΛY (t) = γ(t),

and ΘY (t) = −σ(t)[θ(t)Ξ(y, γ)(t) + γ(t)] a.e.
(2.5.9)

/

With the new representation for I1 at (2.5.8) in place, define

Ψ̃(y, γ) := Ψ(Ξ(y, γ)), (y, γ) ∈ R×H2, (2.5.10)

then from (2.4.16), (2.4.17), (2.4.22), and (2.4.23) we have

Ψ̃(y, γ) = x0y + E
[

(Y (T ) + c)2

2a

]
+ E

∫ T

0

δ(t, Y (t),ΘY (t))dt− q (2.5.11)

for each (y, γ) ∈ R×H2 and Y := Ξ(y, γ). From (2.5.10) and (2.5.8) it follows that

inf
(y,γ)∈R×H2

Ψ̃(y, γ) = inf
Y ∈I1

Ψ(Y ). (2.5.12)
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Remark 2.5.2. It is immediate from (2.5.12) and (2.5.2) that

inf
Y ∈I

Ψ(Y ) = inf
(y,γ)∈R×H2

Ψ̃(y, γ),

in other words, the dual problem (2.4.24) can be alternatively viewed as a minimization
problem of Ψ̃ over (y, γ) ∈ R ×H2. From Remark 2.5.1 it follows that if (ȳ, γ̄) ∈ R ×H2

are such that inf(y,γ) ∈ R×H2 Ψ̃(y, γ) = Ψ̃(ȳ, γ̄), then Ȳ := Ξ(ȳ, γ̄) defined as in (2.5.9) solves
the dual problem (2.4.24). /

Motivated by Remark 2.5.2 we next give the following essential result which guarantees
existence of a minimizer in the dual problem:

Proposition 2.5.3. Assume Condition 2.1.1, 2.1.5, 2.3.1, 2.3.5. Then functional Ψ̃(y, γ)
is proper, convex, lower semi-continuous and coercive. Hence, there exists some (ȳ, γ̄) ∈
R×H2 such that

inf
(y,γ) ∈ R×H2

Ψ̃(y, γ) = Ψ̃(ȳ, γ̄) ∈ R. (2.5.13)

Proof. From Remark 2.4.3 follows that function δ(w, t, y,Θ) is non-negative, convex, and
semi-continuous for all (ω, t, y,Θ) ∈ Ω× [0, T ]×R×RN . Thus the proof is identical to the
proof of Proposition 5.4 of [15] (p. 86), with substitution of (2.4.19) for δ(·) in [15], which
in its turn first shows that Ψ̃ is proper, convex, lower semi-continuous and coercive and
then uses Theorem A.1.3 to assert existence of the optimal solution (ȳ, γ̄) ∈ R×H2.

Corollary 2.5.4. Let (ȳ, γ̄) ∈ R×H2 be given by Proposition 2.5.3 and put

Ȳ (t) := Ξ(ȳ, γ̄)(t), ∀t ∈ [0, T ]. (2.5.14)

Then Ȳ ∈ I1 ⊂ I and from Remark 2.5.2 follows that

Ψ(Ȳ ) = inf
Y ∈I

Ψ(Y ),

in particular, Ȳ solves the dual problem (2.4.24).

2.6 Construction of the Optimal Portfolio

In the previous section we have successfully completed the first step of our plan outlined
in Remark 2.4.8, namely, we have shown that a solution Ȳ to the dual problem exists and
identified it in Corollary 2.5.4. In this section we focus on the second step of our plan,
that is constructing some X̄ ∈ I that together with above-mentioned Ȳ satisfies optimality
relations (1) - (4) of Proposition 2.4.7. While relations (1) - (4) give useful information
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about optimal X̄, they do not provide us with an explicit “recipe” for constructing one,
therefore, some “educated guesswork” is needed. Solving the rather complicated optimality
relations (1) - (4), in a way, is analogous to solving a complicated differential equation:
we start by making an informed guess or assumption about the solution, and then try to
prove that our assumption was indeed correct.

We will now focus our attention on particular class of optimal dual solutions Ȳ ∈ I+,
where we define

I+ :=

{
Y ∈ I1

∣∣∣∣ inf
t∈[0,T ]

{Y (t)} > 0 or inf
t∈[0,T ]

{−Y (t)} > 0

}
, (2.6.1)

in other words, optimal solutions that are either strictly positive or strictly negative pro-
cesses that satisfy item (3) of Proposition 2.4.7. From now on we are going to make the
simplifying assumption that

Condition 2.6.1. The optimal solution (ȳ, γ̄) ∈ R×H2 of Proposition 2.5.3 is such that
Ȳ = Ξ(ȳ, γ̄) ∈ I+. /

Remark 2.6.2. Effectively Condition 2.6.1 amounts to the assumption that the solution
Ȳ of the dual problem (recall Corollary 2.5.4) is either a strictly positive or strictly negative
process. /

Now define

H(y, ν)(t) := y exp

{
−
∫ t

0

r(τ)dτ

}
· E(−[θ + σ−1ν]′ •W )(t), (y, ν) ∈ {R− {0}} × G,

(2.6.2)
where we use

E(M)(t) := exp

{
M(t)− 1

2
〈M〉(t)

}
for a continuous {Ft}–local martingale M , and

G :=
{
ν : Ω× [0, T ]→ RN

∣∣ ν ∈ F∗ and H(y, ν)[θ + σ−1ν] ∈ H2

}
. (2.6.3)

Lemma 2.6.3. Assume Conditions 2.1.1, 2.1.5. Then

Y ≡ (Y0, Ẏ ,ΛY ) ∈ I+ ⇐⇒ Y = H(y, νY ) for some (y, νY ) ∈ {(−∞, 0) ∪ (0,∞)} × G,
(2.6.4)

in which case Y0 = y and ΘY (t) = Y (t)νY (t) a.e.

Proof. Fix some Y ≡ (Y0, Ẏ ,ΛY ) ∈ I+ ⊂ I1 and define (recall (2.4.27))

νY (t) :=
ΘY (t)

Y (t)
= −σ(t)

[
θ(t) +

ΛY (t)

Y (t)

]
, (2.6.5)
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then
ΛY (t) = −Y (t)[θ(t) + σ−1(t)νY (t)], (2.6.6)

from which combining with (2.2.4) and (2.5.1) it follows that Y (t) has dynamics

dY (t) = −Y (t){r(t)dt+ [θ(t) + σ−1(t)νY (t)]′dW (t)} (2.6.7)

and thus can be written as Y = H(y, νY ) with y := Y0. From (2.6.6), (2.6.3) and fact that
ΛY ∈ H2 we easily conclude that νY ∈ G.

Now let Y (t) = H(y, νY )(t) for some (y, νY ) ∈ {(−∞, 0) ∪ (0,∞)} × G. Expanding
(2.6.2) using Itô’s formula, we obtain

dH(y, νY )(t) = −H(y, νY )(t){r(t)dt+ [θ(t) + σ−1(t)νY (t)]′dW (t)}, (2.6.8)

from which follows that Y0 = y, Ẏ (t) = −r(t)Y (t) and ΛY (t) = −Y (t)[θ(t) + σ−1(t)νY (t)].
From definition (2.6.3) of G and the fact that νY ∈ G, we have ΛY = −H(y, νY )[θ+σ−1νY ] ∈
H2, from which together with uniform boundedness of θ and r (recall Condition 2.1.1) we
see that E

[
sup0≤t≤T |Y (t)|2

]
< ∞, hence, Ẏ = −rY ∈ H1 and from non-negativity of

exponentials in (2.6.2) it follows that Y ∈ I+.

Remark 2.6.4. Recall that Remark 2.5.1 established that members of the set I1 defined
at (2.5.1) have a simple and explicit parameterization defined through (y, γ) ∈ R × H2.
Lemma 2.6.3 shows that the set I+ ⊂ I1 also has an alternative parameterization

I+ = {H(y, νY ) | (y, νY ) ∈ {(−∞, 0) ∪ (0,∞)} × G}. (2.6.9)

Moreover, for Ȳ defined in Corollary 2.5.4 we have an equivalence

Ξ(ȳ, γ̄) ≡ H(ȳ, νȲ ) with

γ̄(t) ≡ −H(ȳ, νȲ (t))[θ(t) + σ−1(t)νȲ (t)] ∈ H2 and νȲ (t) ≡ ΘȲ (t)

Ȳ (t)
∈ G

(2.6.10)

whenever Condition 2.6.1 is satisfied. /

Our goal is now to construct some X̄ ≡ (X̄0,
˙̄X,ΛX̄) ∈ I that satisfies conditions (1),

(2), and (4) of Proposition 2.4.7 together with Ȳ ∈ I1 defined in Corollary 2.5.4. Since
we already know that Ȳ satisfies condition (3), it then follows from Proposition 2.4.7 that
such X̄ minimizes the functional Φ over I, and therefore, π̄ := [σ(t)]−1ΛX̄ ∈ U(X̄) solves
the partially constrained problem (Pc,q) defined at (2.3.8).

We motivate the construction of X̄ in the following way: take π̄ ∈ U(X̄) (recall 2.4.1))
for some X̄ ∈ I (as required by item (4) of Proposition 2.4.7) and let Ȳ ∈ I1 be as defined
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in Corollary 2.5.4, then recalling (2.4.27) and item (4) of Proposition 2.4.7, particularly,
δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)), we find

X̄(t) ˙̄Y (t) + ˙̄X(t)Ȳ (t) + Λ′X̄(t)ΛȲ (t) = −r(t)X̄(t)Ȳ (t) + Ȳ (t)[r(t)X̄(t) + ū′(t)σ(t)θ(t)

+ g(t, ū(t))] + ū′(t)σ(t)ΛȲ (t)

= ū′(t)σ(t)[θ(t)Ȳ (t) + ΛȲ (t)] + Ȳ (t)g(t, ū(t))

= −ū′ΘȲ (t) + Ȳ (t)g(t, ū(t))

= δ(t, Ȳ (t),ΘȲ (t)).

(2.6.11)

Since we assumed that X̄ is a member of the set I, we can then use Proposition 2.4.5
together with (2.6.11) to conclude that {(M(X̄, Ȳ ),Ft), t ∈ [0, T ]} defined at (2.4.25), or,{(

X̄(t)Ȳ (t)− X̄0Ȳ0 −
∫ t

0

δ(τ, Ȳ (τ),ΘȲ (τ))dτ, Ft
)
, t ∈ [0, T ]

}
(2.6.12)

is a continuous martingale. Then we must have

X̄(t)Ȳ (t)−
∫ t

0

δ(τ, Ȳ (τ),ΘȲ (τ))dτ = E
[
X̄(T )Ȳ (T )−

∫ T

0

δ(τ, Ȳ (τ),ΘȲ (τ))dτ

∣∣∣∣ Ft] ,
which is equivalent to

X̄(t)Ȳ (t) = E
[
X̄(T )Ȳ (T )−

∫ T

t

δ(τ, Ȳ (τ),ΘȲ (τ))dτ

∣∣∣∣ Ft] . (2.6.13)

Condition 2.6.1 together with (2.6.13) and item (2) of Proposition 2.4.7 motivate the
following definition of X̄ in terms of Ȳ := Ξ(ȳ, γ̄) defined in Corollary 2.5.4:

X̄(t) := − 1

Ȳ (t)
E
[
Ȳ (T )(Ȳ (T ) + c)

a
+

∫ T

t

δ(τ, Ȳ (τ),ΘȲ (τ))dτ

∣∣∣∣ Ft] . (2.6.14)

Observe that the FT -measurable random variable Ȳ (T )(Ȳ (T )+c)
a

is square integrable since
Ȳ ∈ I, a has a strictly lower bound and c is square integrable as follows from Conditions
2.3.1 and 2.3.5, therefore conditional expectation in (2.6.14) is well defined. Further, from
the martingale representation theorem applied to (2.6.12) it follows that there exists some

RN -valued and a.e.-unique process ψ ∈ F∗, with
∫ T

0
‖ψ(t)‖2dt <∞ a.s., such that

X̄(t)Ȳ (t)−
∫ t

0

δ(τ, Ȳ (τ),ΘȲ (τ))dτ = X̄(0)Ȳ (0) +

∫ t

0

ψ′(τ)dW (τ). (2.6.15)
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Remark 2.6.5. Observe that the process X̄ defined at (2.6.14) is determined entirely by
the solution Ȳ of the dual problem (2.4.24) (recall Corollary 2.5.4). Likewise the integrand
ψ ∈ F∗ given by the martingale representation theorem (MRT) is also determined entirely
by Ȳ . Our goal is to establish that X̄ defined at (2.6.14) is actually the optimal wealth
process for the problem (Pc,q) defined at (2.3.8). To this end the expansion at (2.6.15)
given by the MRT turns out to be very useful. /

Remark 2.6.6. Condition 2.6.1 enables us to define X̄ as in (2.6.14). Without Condition
2.6.1 we would not be able proceed beyond (2.6.13) and at this point we see no way to
avoid imposing Condition 2.6.1. /

2.7 Verifying Optimality

In the previous section we have restricted our attention to a particular class of optimal dual
solutions Ȳ ∈ I+ and constructed a tentative optimal wealth process X̄ through optimality
relations (1) - (4) of Proposition 2.4.7. Following the plan outlined in Remark (2.4.8), the
goal of this section is to complete steps III and IV, in particular, verify that proposed X̄
satisfies set membership I and optimality relations (1) - (4) of Proposition 2.4.7, hence,
π̄ ∈ U(X̄) solves the partially constrained problem (Pc,q) defined at (2.3.8).

For future developments it is important, however, to identify the explicit formula for
π̄ ∈ U(X̄). To this end, we start by showing that X̄ satisfies the wealth dynamics (2.1.7),
in other words for some π̄ ∈ U(X̄) we have

dX̄(t) =
[
r(t)X̄(t) + π̄′(t)σ(t)θ(t) + g(t, π̄(t))

]
dt+ π̄′(t)σ(t)dW (t). (2.7.1)

Observe that (2.6.14) expresses X̄ as a quotient of two semimartingales, so that X̄ is also
a semimartingale (by Itô’s formula which guarantees that a quotient of semimartingales is

again a semimartingale), hence, there exist some ˙̄X and ΛX̄ such that X̄ has representation

X̄ ≡ (X̄0,
˙̄X,ΛX̄), or (2.2.4) with

X̄0 := X̄(0). (2.7.2)

From Itô’s formula and the fact that Ȳ ≡ (ȳ,−rȲ , γ̄) (as follows from Remark 2.5.1) we
find

d(X̄Ȳ )(t) = [X̄(t) ˙̄Y (t) + ˙̄X(t)Ȳ (t) + Λ′X̄(t)ΛȲ (t)]dt+ [X̄(t)ΛȲ (t) + Ȳ (t)ΛX̄(t)]′dWt

= [−r(t)X̄(t)Ȳ (t) + ˙̄X(t)Ȳ (t) + Λ′X̄(t)γ̄(t)]dt+ [X̄(t)γ̄(t) + Ȳ (t)ΛX̄(t)]′dWt.

24



Rearranging the terms, as well as subtracting and adding Ȳ (t)Λ′
X̄

(t)θ(t) we obtain

d(X̄Ȳ )(t) = Ȳ (t)

(
−r(t)X̄(t) + ˙̄X(t)− Λ′X̄(t)θ(t) +

1

Ȳ (t)
Λ′X̄(t)[Ȳ (t)θ(t) + γ̄(t)]

)
dt

+ [X̄(t)γ̄(t) + Ȳ (t)ΛX̄(t)]′dWt,

from which together with definition (2.4.27) of ΘȲ we find

d(X̄Ȳ )(t) = Ȳ (t)

(
−r(t)X̄(t) + ˙̄X(t)− ΛX̄(t)θ(t)− 1

Ȳ (t)
Λ′X̄(t)[σ(t)]−1ΘȲ (t)

)
dt

+ [X̄(t)γ̄(t) + Ȳ (t)ΛX̄(t)]′dWt. (2.7.3)

From (2.7.3) and (2.7.2) it then follows that

X̄(t)Ȳ (t)−
∫ t

0

δ(τ, Ȳ (τ),ΘȲ (τ))dτ = X̄0ȳ

+

∫ t

0

Ȳ (τ)

(
− r(τ)X̄(τ) + ˙̄X(τ)− Λ′X̄(τ)θ(τ)− 1

Ȳ (τ)

[
Λ′X̄(τ)[σ(τ)]−1ΘȲ (τ)

+ δ(τ, Ȳ (τ),ΘȲ (τ))

])
dτ +

∫ t

0

[X̄(τ)γ̄(τ) + Ȳ (τ)ΛX̄(τ)]′dWτ . (2.7.4)

Comparing terms of (2.7.4) with (2.6.15) and recalling that Ȳ (t) 6= 0 a.e. for all t ∈ [0, T ]
(Condition 2.6.1) we find

˙̄X(t) = r(t)X̄(t) + Λ′X̄(t)θ(t) +
1

Ȳ (t)

[
Λ′X̄(t)[σ(t)]−1ΘȲ (t) + δ(t, Ȳ (t),ΘȲ (t))

]
(2.7.5)

and

ΛX̄(t) :=
ψ(t)

Ȳ (t)
− X̄(t)γ̄(t)

Ȳ (t)
. (2.7.6)

Motivated by (2.4.1), we let
π̄(t) := [σ(t)]−1ΛX̄(t), (2.7.7)

in other words define

π̄(t) := [σ(t)]−1

[
ψ(t)

Ȳ (t)
− X̄(t)ΛȲ (t)

Ȳ (t)

]
. (2.7.8)

Observe that (2.7.5) then becomes

˙̄X(t) = r(t)X̄(t) + π̄′(t)σ(t)θ(t) +
1

Ȳ (t)

[
π̄′(t)ΘȲ (t) + δ(t, Ȳ (t),ΘȲ (t))

]
. (2.7.9)
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Remark 2.7.1. We have shown that the process X̄ defined by (2.6.14) necessarily satisfies
(2.7.9) for π̄ defined at (2.7.8). This means that once we have verified that item (4) of
Proposition 2.4.7 holds, namely the complementary slackness relation

δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)), (2.7.10)

then from (2.7.10) and (2.7.9) we obtain

˙̄X(t) = r(t)X̄(t) + π̄′(t)σ(t)θ(t) + g(t, π̄(t)). (2.7.11)

This shows that (2.7.9) is consistent with optimality relations (1) - (4) of Proposition 2.4.7.
/

Remark 2.7.2. In view of Remark 2.7.1 our goal is to show that the pair (X̄, Ȳ ) given
by Corollary 2.5.4 and (2.6.14) satisfies conditions (1) - (4) of Proposition 2.4.7. From the
definition of Ȳ in Corollary 2.5.4 it follows that Ȳ ∈ I1, hence, item (3) of Proposition
2.4.7 is verified (recall (2.5.1)). Moreover, it is immediate from (2.6.14) with t := T that

X̄(T ) = − Ȳ (T ) + c

a
a.s. (2.7.12)

(since the r.h.s. of (2.7.12) is FT -measurable), thus (2) of Proposition 2.4.7 is also verified.
It therefore remains to verify items (1) and (4) of Proposition 2.4.7 as well as the function-
space memberships X̄ ∈ I and π̄ ∈ H2.

We will by-pass checking the function-space memberships; assuming these to be true,
we procede with verifying items (1) and (4) of Proposition 2.4.7, that is we will suppose
that

X̄ ∈ I and π̄ ∈ H2. (2.7.13)

/

The next result, which is attained by use of a variational analysis of the dual cost
function Ψ̃ around the optimal pair (ȳ, γ̄) (recall Proposition 2.5.3), will be used to show
that items (1) and (4) of Proposition 2.4.7 are satisfied.

Proposition 2.7.3. Assume Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5, 2.6.1. Let (ȳ, γ̄) be given
by Proposition 2.5.3 and Ȳ := Ξ(ȳ, γ̄) be the solution of the dual problem as established in
Corollary 2.5.4. Then for arbitrary (α, η) ∈ R×H2 and R := Ξ(α, η) we have

0 ≤ lim
ε↘0

Ψ̃(ȳ + εα, γ̄ + εη)(t)− Ψ̃(ȳ, γ̄)(t)

ε
= (x0 − X̄0)α

+ lim
ε↘0

E
∫ T

0

{
δ(t, Ȳ (t) + εR(t),ΘȲ (t) + εΘR(t))− δ(t, Ȳ (t),ΘȲ (t))

ε

+ π̄′(t)ΘR(t)− R(t)

Ȳ (t)

[
δ(t, Ȳ ,ΘȲ (t)) + π̄′(t)ΘȲ (t)

]}
dt,

(2.7.14)
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with Ξ defined at (2.5.4), ΘȲ and ΘR as in Remark 2.5.1, π̄ := [σ′]−1ΛX̄ and Ψ̃ given at
(2.5.11).

Proof. Define Ȳ ε = Ξ(ȳ+ εα, γ̄+ εη) then from (2.5.4) and (2.4.27) one can easily see that
Ȳ ε(t) = Ȳ (t) + εR(t) and ΘȲ ε(t) = ΘȲ (t) + εΘR(t). Hence, from (2.5.11) we find

Ψ̃(ȳ + εα, γ̄ + εη)(t)− Ψ̃(ȳ, γ̄)(t)

ε
= x0α + E

[
(Ȳ ε(T ) + c)2

2aε
− (Ȳ (T ) + c)2

2aε

+

∫ T

0

δ(t, Ȳ ε(t),ΘȲ ε(t))− δ(t, Ȳ (t),ΘȲ (t))

ε
dt

]

= x0α + E
[(

Ȳ (T ) + c

a

)
R(T )

]
+ εE

[
R2(T )

2a

]

+E
∫ T

0

δ(t,Ȳ (t)+εR(t),ΘȲ (t)+εΘR(t))−δ(t,Ȳ (t),ΘȲ (t))

ε
dt.

Recall Ȳ (T )+c
a

= −X̄(T ) (as follows from definition (2.6.14) when t = T ), then taking limit
as ε↘ 0 we obtain

lim
ε↘0

Ψ̃(ȳ + εα, γ̄ + εη)(t)− Ψ̃(ȳ, γ̄)(t)

ε
= x0α− E[X̄(T )R(T )]

+ lim
ε↘0

E
∫ T

0

δ(t, Ȳ (t) + εR(t),ΘȲ (t) + εΘR(t))− δ(t, Ȳ (t),ΘȲ (t))

ε
dt.

(2.7.15)

From definition of R := Ξ(α, η) ∈ I along the lines of Remark 2.5.1 follows that R0 = α,
Ṙ(t) = −r(t)R(t), and ΛR(t) = η(t). Since X̄ ∈ I according to (2.7.13), for M(X̄, R) of
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Proposition 2.4.5 we have (recall (2.7.2), (2.7.9) and (2.7.7))

M(X̄, R)(t) = X̄(t)R(t)− X̄0R0 −
∫ t

0

{
X̄(τ)Ṙ(τ) + ˙̄X(τ)R(τ) + Λ′X̄(τ)ΛR(τ)

}
dτ

= X̄(t)R(t)− X̄0α−
∫ t

0

{
− r(τ)X̄(τ)R(τ)+

(
r(τ)X̄(τ) + π̄′(τ)σ(τ)θ(τ)

+
1

Ȳ (τ)
[δ(τ, Ȳ (τ),ΘȲ (τ)) + π̄′(τ)ΘȲ (τ)]

)
R(τ) + π̄′(τ)σ(τ)η(τ)

}
dτ

= X̄(t)R(t)− X̄0α +

∫ t

0

{
− π̄′(τ)σ(τ)[θ(τ)R(τ) + η(τ)]

− R(τ)

Ȳ (τ)

[
δ(τ, Ȳ (τ),ΘȲ (τ)) + π̄′(τ)ΘȲ (τ)

]}
dτ.

(2.7.16)

With ΘR as in Remark 2.5.1, (2.7.16) becomes

M(X̄, R)(t)= X̄(t)R(t)−X̄0α+

∫ t

0

{
π̄′(τ)ΘR(τ)−R(τ)

Ȳ (τ)

[
δ(τ,Ȳ (τ),ΘȲ (τ))+π̄′(τ)ΘȲ (τ)

]}
dτ.

(2.7.17)

From Proposition 2.4.5 it follows that E[M(X̄, R)(t)] = 0 for each t ∈ [0, T ], therefore,

E[X̄(T )R(T )] = X̄0α− E
[∫ T

0

{
π̄′(τ)ΘR(τ)−R(τ)

Ȳ (τ)

(
δ(τ, Ȳ (τ),ΘȲ (τ))+ π̄′(τ)ΘȲ (τ)

)}
dτ

]
.

(2.7.18)
Substituting (2.7.18) in the limit expression (2.7.15) we finally obtain (2.7.14).

We now are ready to show that item (1) of Proposition 2.4.7 holds.

Proposition 2.7.4. Suppose Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5, 2.6.1. Then item (1)
of Proposition 2.4.7 holds, i.e. X̄0 = x0.

Proof. Take some ε ∈ (0, 1). Now set α = ȳ and η = γ̄, then R(t) = Ȳ (t) and from
Proposition 2.7.3 together with positive homogeneity of δ we obtain

0 ≤ (x0 − X̄0)ȳ + E
∫ T

0

δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t)−
[
δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t)

]
dt

= (x0 − X̄0)ȳ.
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Alternatively, set α = −ȳ and η = −γ̄, then R(t) = −Ȳ (t) and once again from positive
homogeneity of δ (note 1− ε > 0) we find

0 ≤ (x0−X̄0)(−ȳ) + E
∫ T

0

−δ(t, Ȳ (t),ΘȲ (t))−π̄′(t)ΘȲ (t)+
[
δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t)

]
dt

= (x0 − X̄0)(−ȳ).

From this we conclude that either X̄0 = x0 or ȳ = 0. From Condition 2.6.1 it follows that
ȳ 6= 0, hence, X̄0 = x0.

The following simple result from Karatzas and Shreve [11] will be used to show that
π̄ ∈ K a.e., that is, π̄ satisfies the portfolio constraint in problem (2.3.8) (recall (2.3.1)).

Lemma 2.7.5. Define
δ̃(v) := sup

π∈K
{−π′v}, v ∈ RN , (2.7.19)

and
B := {(w, t) ∈ Ω× [0, T ] | ū(w, t) ∈ K},

for some F∗-measurable process ū : Ω×[0, T ]→ RN . Then there exists some F∗-measurable
mapping ξ : Ω× [0, T ]→ RN , such that

‖ξ(t)‖ ≤ 1, |δ̃(ξ(t))| ≤ 1, a.e. on Ω× [0, T ]

δ̃(ξ(t)) + ū′(t)ξ(t) = 0, a.e. on B

δ̃(ξ(t)) + ū′(t)ξ(t) < 0, a.e. on {Ω× [0, T ]} −B.

Proof. See Lemma 5.4.2 of [11] (p. 207).

Remark 2.7.6. To save ourselves from writing out two sets of proofs for cases when the
dual solution is strictly positive or strictly negative, recalling Condition 2.6.1, we introduce
a simple “book-keeping” variable Υ defined by

Υ :=

{
1 if Ȳ (t) > 0 for all t ∈ [0, T ],
−1 if Ȳ (t) < 0 for all t ∈ [0, T ],

(2.7.20)

in other words, Υ specifies whether Ȳ of Corollary 2.5.4 is a strictly positive or a strictly
negative process. From (2.7.20) it is immediate that ΥȲ > 0 a.e. Further, recall Remark
2.6.4, and define

νȲ :=
ΘȲ

Ȳ
, (2.7.21)
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then νȲ ∈ G and Ȳ = H(ȳ, νȲ ) (recall (2.6.2)), as follows from Remark 2.6.4. Now let
R := H(ȳ, νR) for arbitrary νR ∈ G and set

η(t) := −H(ȳ, νR(t))[θ(t) + σ−1(t)νR(t)], (2.7.22)

then η ∈ H2 and R = Ξ(ȳ, η) by Remark 2.6.4, moreover,

νR ≡
ΘR

R
(2.7.23)

for ΘR(t) := −σ(t)[θ(t)R(t) + η(t)] as in (2.4.27). Observe that R(0) = ȳ (recall (2.6.2)),
thus R is strictly positive or negative whenever Υ is positive or negative respectively, hence,
ΥR > 0 and Ȳ R > 0 a.e. /

With the preceding preparations in place we are finally ready to prove that π̄ satisfies
the portfolio constraint:

Proposition 2.7.7. Suppose Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5, 2.6.1. Then π̄(t) ∈ K
for all t ∈ [0, T ] a.e.

Proof. Let ε > 0. From subadditivity and positive homegeneity of function δ mentioned
in Remark 2.4.3 it follows that

δ(t, Ȳ (t) + εR(t),ΘȲ (t) + εΘR(t)) ≤ δ(t, Ȳ (t),ΘȲ (t)) + εδ(t, R(t),ΘR(t)). (2.7.24)

Therefore, from (2.7.24) together with Propositions 2.7.3 and 2.7.4 we conclude that

0 ≤ E
∫ T

0

{
δ(t, R(t),ΘR(t))− R(t)

Ȳ (t)
δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)

[
ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)

]}
dt.

(2.7.25)
Since the inequality (2.7.25) holds for arbitrary (α, η) ∈ R × H2, we can always restrict
our choice to R, such that R(t)Ȳ (t) > 0 a.e. Therefore, take R as in Remark 2.7.6, then
R(t)/Ȳ (t) > 0 a.e. and using positive homogeneity of δ again we transform (2.7.25) into

0 ≤ E
∫ T

0

{
δ(t, R(t),ΘR(t))− δ(t, R(t),

R(t)

Ȳ (t)
ΘȲ (t)) + π̄′(t)

[
ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)

]}
dt.

(2.7.26)
Further, from subadditivity of supremums we see that

sup
π∈K
{g(t, π)R(t)− π′ΘR(t)} ≤ sup

π∈K

{
g(t, π)R(t)− π′R(t)

Ȳ (t)
ΘȲ (t)

}

+ sup
π∈K

{
−π′

[
ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)

]}
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which is equivalent to (recall (2.4.19) and (2.7.19))

δ(t, R(t),ΘR(t)) ≤ δ(t, R(t),
R(t)

Ȳ (t)
ΘȲ (t)) + δ̃(ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)). (2.7.27)

From (2.7.27) then follows that we can rewrite the inequality (2.7.26) as

0 ≤E
∫ T

0

{
δ̃(ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)) + π̄′(t)

[
ΘR(t)− R(t)

Ȳ (t)
ΘȲ (t)

]}
dt. (2.7.28)

With help of (2.7.20) and positive homogeneity of δ̃ with respect to ΥR > 0 (as mentioned
in Remark 2.7.6), (2.7.28) becomes

0 ≤E
∫ T

0

ΥR(t)

{
δ̃

(
Υ

ΘR(t)

R(t)
−Υ

ΘȲ (t)

Ȳ (t)

)
+ π̄′(t)

[
Υ

ΘR(t)

R(t)
−Υ

ΘȲ (t)

Ȳ (t)

]}
dt. (2.7.29)

Finally, recalling definitions (2.7.21) and (2.7.23) of νȲ and νR of Remark 2.7.6, with the
new reparameterization (2.7.29) is equivalent to

0 ≤ E
∫ T

0

ΥR(t)
{
δ̃ (Υ [νR(t)− νȲ (t)]) + π̄′(t) (Υ [νR(t)− νȲ (t)])

}
dt. (2.7.30)

Now put
B := {(w, t) ∈ Ω× [0, T ] | π̄(w, t) ∈ K}. (2.7.31)

By Lemma 2.7.5, there exists some F∗-measurable mapping ξ: Ω× [0, T ] 7→ RN such that
‖ξ(t)‖ is bounded on Ω× [0, T ], and

δ̃(ξ(t)) + π̄′(t)ξ(t) = 0, a.e. on B

δ̃(ξ(t)) + π̄′(t)ξ(t) < 0, a.e. on {Ω× [0, T ]−B}.

Now suppose that (P ⊗ λ){(Ω× [0, T ])−B} > 0 and put (recall (2.7.20))

νRξ(t) := νȲ (t) + Υξ(t). (2.7.32)

Then νRξ ∈ G since νȲ ∈ G and ξ is uniformly bounded (recall (2.6.3)). Moreover, rear-
ranging (2.7.32), we obtain

Υ
[
νRξ(t)− νȲ (t)

]
= ξ(t) (2.7.33)

and for Rξ := H(ȳ, νRξ) we have ΥRξ(t) > 0 a.e., as evident from Remark 2.7.6. Hence,
from (2.7.33) and choice of ξ it follows

E
∫ T

0

ΥRξ(t)
{
δ̃
(
Υ
[
νRξ(t)− νȲ (t)

])
+ π̄′(t)

(
Υ
[
νRξ(t)− νȲ (t)

])}
dt

= E
∫ T

0

ΥRξ(t){δ̃(ξ(t)) + π̄′(t)ξ(t)}dt < 0. (2.7.34)
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The last inequality (2.7.34) contradicts (2.7.30) and therefore (P⊗λ){(Ω× [0, T ])−B} = 0
as evident from definition of the set B at (2.7.31). It follows then that π̄(t) ∈ K a.e.

Recall definitions (2.4.19) and (2.7.20) and set

δ̌K(w, t,Υ, ν) := δ(w, t,Υ,Υν) = sup
π∈K
{Υg(w, t, π)−Υπ′ν}. (2.7.35)

Remark 2.7.8. Recall δ defined at (2.4.19) and Remark 2.7.6, particularly, (2.7.21), and
observe that from positive homogeneity of δ̌K at (2.7.35) it follows that

ΥȲ (t)δ̌K(t,Υ, νȲ (t)) = δ(t, Ȳ (t),ΘȲ (t)), (2.7.36)

since
ΥȲ (t) sup

π∈K
{Υg(t, π)−Υπ′νȲ (t)} = sup

π∈K
{Ȳ (t)g(t, π)− π′ΘȲ (t)}.

/

The following lemma will be used to show that X̄ and π̄ satisfy condition (4) of Propo-
sition 2.4.7.

Lemma 2.7.9. There exists some R∗ := Ξ(ȳ, η∗) with η∗ ∈ H2 such that R∗(t)Ȳ (t) > 0 for
all t ∈ [0, T ] a.e. and δ̌K(t,Υ, νR∗(t)) = Υg(t, π̄(t))−Υπ̄′(t)νR∗(t) a.e. for Ȳ of Corollary
2.5.4, Υ defined at (2.7.20) and ν∗R := ΘR∗

R∗
.

Proof. Fix an arbitrary pair (w, t) ∈ Ω× [0, T ] and let

f(u) := ψK(−Υu)−Υg(w, t,−Υu), u ∈ RN , (2.7.37)

where
ψK(u) = 0 if u ∈ K and ψK(u) = +∞ if u /∈ K. (2.7.38)

The convex conjugate of function f is then given by (recall definition (2.7.20) of Υ)

f ∗(η) : = sup
u∈RN
{u′η − [ψK(−Υu)−Υg(w, t,−Υu)]}

=

{
supu∈RN{u′η − [ψK(−u)− g(w, t,−u)]} if Υ = 1,
supu∈RN{u′η − [ψK(u) + g(w, t, u)]} if Υ = −1

=

{
supu∈RN{−u′η − [ψK(u)− g(w, t, u)]} if Υ = 1,
supu∈RN{u′η − [ψK(u) + g(w, t, u)]} if Υ = −1

= sup
u∈RN
{Υg(w, t, u)−Υu′η − ψK(u)}

= sup
u∈K
{Υg(w, t, u)−Υu′η}, for all η ∈ RN .

(2.7.39)
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Recalling definition (2.7.35), we see that (2.7.39) is in fact

f ∗(η) := δ̌K(w, t,Υ, η), for all η ∈ RN . (2.7.40)

From Proposition I.5.1 and I.5.6 of [7] (p. 21 and p. 26), (2.7.37) and (2.7.40) it follows

∂f(u) = {η ∈ RN : f ∗(η) + f(u) = u′η}

= {η ∈ RN : δ̌K(w, t,Υ, η) = −ψK(−Υu) + Υg(w, t,−Υu) + u′η},
(2.7.41)

and at the same time

∂f(u) =

{
(−1)∂ψK(−u) + (−1)∂(−g)(w, t,−u) if Υ = 1,
∂ψK(u) + ∂g(w, t, u) if Υ = −1

= (−Υ)∂ψK(−Υu) + (−Υ)∂(−Υg)(w, t,−Υu)

(2.7.42)

for each u ∈ RN and where ∂ψK(u) and ∂(−Υg)(w, t, u) denote the subgradients at u ∈ RN

of the convex functions ψK(·) and −Υg(w, t, ·). Hence, together (2.7.41) and (2.7.42) give

(−Υ)∂ψK(u) + (−Υ)∂(−Υg)(w, t, u)

= {η ∈ RN : δ̌K(w, t,Υ, η) = −ψK(u) + Υg(w, t, u)−Υu′η}. (2.7.43)

From Condition 2.1.5 and Corollary I.5.1 and Proposition I.5.2 of [7] (p.21 and p.22) it
follows that ∂(−Υg)(w, t, u) is non-empty, convex and closed for each (w, t, u) ∈ Ω×[0, T ]×
RN . Further, since 0 ∈ ∂ψK(u) whenever u ∈ K, choose u := π̄, then π̄ ∈ K as follows
from Proposition 2.7.7 and from (2.7.43) we have

(−Υ)∂(−Υg)(w, t, π̄(w, t))⊂{η ∈ RN : δ̌K(w, t,Υ, η) = Υg(w, t, π̄(w, t))−Υπ̄′(w, t)η} a.e.
(2.7.44)

From Condition 2.1.5 we then conclude that −Υg(·) is a normal convex integrand, and
from Corollaries 4.6 and 1.1 of [21] (p. 23 and p. 8) follows that the mapping (w, t) →
∂(−Υg)(w, t, π̄(w, t)) is measurable and there exists some F∗-measurable mapping (w, t)→
νR∗(w, t) : Ω× [0, T ]→ RN such that

νR∗(t) ∈ (−Υ)∂(−Υg)(t, π̄(t)) a.e., (2.7.45)

and
δ̌K(t,Υ, νR∗(t)) = Υg(t, π̄(t))−Υπ̄′(t)νR∗(t) a.e. (2.7.46)

as a consequence of (2.7.44). From Condition 2.1.5 it follows that ‖η‖ ≤ ζ for each
η ∈ (−Υ)∂(−Υg)(w, t, u) and (w, t, u) ∈ Ω × [0, T ] × RN , hence, ‖νR∗(t)‖ ≤ ζ a.e and
therefore νR∗ ∈ G (recall (2.6.3)).
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Finally, recall definition (2.6.2) and set

η∗ := −H(ȳ, νR∗(t))[θ(t) + σ−1(t)νR∗(t)], (2.7.47)

then from Remark 2.6.4 it follows that η∗ ∈ H2, and for R∗ := Ξ(ȳ, η∗) we have νR∗ ≡ ΘR∗
R∗

,
as well as R∗(t)Ȳ (t) > 0 and ΥR∗(t) > 0 for each t ∈ [0, T ] a.e., and

δ̌K(t,Υ, νR∗(t)) = Υg(t, π̄(t))−Υπ̄′(t)νR∗(t) a.e.

as follows from (2.7.46).

We now are ready to complete the program outlined in Remark 2.7.2:

Proposition 2.7.10. Suppose Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5, 2.6.1. Then for π̄
defined at (2.7.8) item (4) of Proposition 2.4.7 holds, particularly, π̄ ∈ U(X̄) and

δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)) a.e.

for Ȳ of Corollary 2.5.4 and ΘȲ as in Remark 2.5.1.

Proof. Take R := Ξ(ȳ, η) with η ∈ H2 as in Remark 2.7.6, then with help of (2.7.20) and
using positive homogeneity of δ with respect to ΥR > 0 a.e. we rewrite (2.7.25) as

0 ≤ E
∫ T

0

ΥR(t)

{
δ

(
t,Υ,Υ

ΘR(t)

R(t)

)
− δ

(
t,Υ,Υ

ΘȲ (t)

Ȳ (t)

)
+ Υπ̄′(t)

[
ΘR(t)

R(t)
− ΘȲ (t)

Ȳ (t)

]}
dt.

(2.7.48)
Recalling definitions (2.7.21) and (2.7.23) of νȲ and νR of Remark 2.7.6, as well as (2.7.35)
of δ̌K , we find (2.7.48) to be equivalent to

0 ≤ E
∫ T

0

ΥR(t){δ̌K(t,Υ, νR(t))− δ̌K(t,Υ, νȲ (t))+Υπ̄′(t)νR(t)−Υπ̄′(t)νȲ (t)}dt. (2.7.49)

Since π̄ ∈ K (as follows from Proposition 2.7.7), we know that

δ̌K(t,Υ, νȲ (t)) + Υπ̄′(t)νȲ (t) ≥ Υg(t, π̄(t)) a.e. (2.7.50)

and from Lemma 2.7.9 follows that there exists some R∗ such that R∗(t)Ȳ (t) > 0 a.e. for
all t ∈ [0, T ] and δ̌K(t,Υ, νR∗(t)) + Υπ̄′(t)νR∗(t) = Υg(t, π̄(t)). From (2.7.49) and (2.7.50)
then follows

0 ≤ E
∫ T

0

ΥR∗(t){ δ̌K(t,Υ, νR∗(t))− δ̌K(t,Υ, νȲ (t)) + Υπ̄′(t)νR∗(t)−Υπ̄′(t)νȲ (t)}dt

= E
∫ T

0

ΥR∗(t){Υg(t, π̄(t))− δ̌K(t,Υ, νȲ (t))−Υπ̄′(t)νȲ (t)}dt

≤ E
∫ T

0

ΥR∗(t){Υg(t, π̄(t))−Υg(t, π̄(t))}dt = 0. (2.7.51)
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From (2.7.51) it is immediate that

E
∫ T

0

ΥR∗(t){Υg(t, π̄(t))− δ̌K(t,Υ, νȲ (t))−Υπ̄′(t)νȲ (t)}dt = 0. (2.7.52)

Moreover, from (2.7.50) and strict positivity of ΥR∗(t) for all t ∈ [0, T ] a.e. (recall Remark
2.7.6) it follows that (2.7.52) implies

Υg(t, π̄(t))− δ̌K(t,Υ, νȲ (t))−Υπ̄′(t)νȲ (t) = 0, for all t ∈ [0, T ]. (2.7.53)

Multiplying both side of (2.7.53) by ΥȲ (t) > 0 (recall (2.7.20)) and rearranging we obtain
(recall Remark 2.7.8 and (2.7.21))

δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)).

This together with Proposition 2.7.7 shows that π̄ ∈ U(X̄) (recall (2.4.1)) and therefore
we conclude that item (4) of Proposition 2.4.7 holds.

Remark 2.7.11. Observe the crucial role of Condition 2.6.1 in Propositions 2.7.4, 2.7.7
and 2.7.10 and note that Proposition 2.7.10 completes step IV outlined in Remark 2.4.8. /

We conclude this section by summarizing the preceding results in Theorem 2.7.12:

Theorem 2.7.12. Suppose Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5. Then there exists a pair
(ȳ, γ̄) ∈ R×H2 that minimizes the proper convex functional Ψ̃(·, ·) over R×H2. Moreover,
if (ȳ, γ̄) are such that Condition 2.6.1 holds, then Ȳ , X̄, π̄ defined by (2.5.14), (2.6.14),
(2.6.15), (2.7.8) satisfy

inf
π∈A

E[J(Xπ(T ))] = E[J(X π̄(T ))] = − inf
(y,γ)∈R×H2

Ψ̃(y, γ) = −Ψ̃(ȳ, γ̄)

with π̄ ∈ A, X̄ = X π̄ a.e., and in particular, π̄ solves the partially constrained problem
(Pc,q) defined at (2.3.8).

Proof. Proposition 2.5.3 establishes existences of the optimal dual pair (ȳ, γ̄) ∈ R × H2,
Propositions 2.7.4, 2.7.7, and 2.7.10 show that the proposed π̄ and X̄ satisfy conditions (1)
- (4) of Proposition 2.4.7 whenever (ȳ, γ̄) satisfy Condition 2.6.1,which in its turn shows
that π̄ solves problem (Pc,q) defined at (2.3.8).
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2.8 Fully Constrained Optimization Problem

In this section we return to the main goal of the paper, that is solving the fully constrained
problem (P̂) defined at (2.3.5). In this section we postulate Conditions 2.1.1, 2.1.5, 2.3.1,
2.3.2. Then

(i) A is a convex subset of H2 (Condition 2.3.2);

(ii) G (defined in (2.3.3)) is an affine functional on H2 (as follows from (2.1.8));

(iii) mapping π → E[Ĵ(Xπ(T ))] (with Ĵ defined in (2.3.2)) defines an R-valued convex
mapping on A ⊂ H2 (as follows from Proposition 2.2.2, Conditions 2.3.1, 2.3.2, convexity
of Ĵ and (2.1.8)).

Now define the Lagrangian function which enforces the constraint G(π) = 0 on the
expected terminal wealth. We recall that this constraint is the critical additional feature
of the fully constrained problem (P̂) defined at (2.3.5):

L(µ; π) := E[Ĵ(Xπ(T ))] + µG(π), π ∈ H2, µ ∈ R. (2.8.1)

Theorem A.1.4 and Condition 2.3.2 establish existence of a Lagrange multiplier µ̄ ∈ R such
that

v̂ = sup
µ∈R

inf
π∈A
L(µ; π) = inf

π∈A
L(µ̄; π). (2.8.2)

Put

J1(µ;w, x) :=
1

2
[a(w)x2 + 2cµ(w)x]− µd, cµ(w) := c0(w) + µ, (2.8.3)

and observe that
E[Ĵ(Xπ(T ))] + µG(π) = E[J1(µ;Xπ(T ))],

hence,
L(µ; π) = E[J1(µ;Xπ(T ))], π ∈ H2, µ ∈ R. (2.8.4)

Since for every fixed µ ∈ R function J1(µ; ·, ·) is identical to function J of (2.3.6), problem
(2.8.2) corresponds to problem (2.3.8) with c := cµ and q := −µd. Define

Ψ̃µ(µ; y, γ) := x0y + E
[

(Y (T ) + cµ)2

2a

]
+ E

∫ T

0

δ(t, Y (t),ΘY (t))dt+ µd, (2.8.5)

for each (µ; y, γ) ∈ R×R×H2 with Y := Ξ(y, γ) by analogy with (2.5.11) in the partially
constrained case. By Proposition 2.5.3 for each µ ∈ R there exists a pair (ȳ(µ), γ̄(µ)) ∈
R×H2 that minimizes the function (2.8.5). Following Theorem 2.7.12, for each µ ∈ R and

36



t ∈ [0, T ] we introduce

Ȳ (µ; t) := Ξ(ȳ(µ), γ̄(µ))(t), (2.8.6)

ΛȲ (µ; t) := γ̄(µ)(t), ΘȲ (µ; t) := −σ(t)[θ(t)Ȳ (µ; t) + ΛȲ (µ; t)], (2.8.7)

X̄(µ; t) := − 1

Ȳ (µ; t)
E
[
Ȳ (µ;T )(Ȳ (µ;T ) + cµ)

a
+

∫ T

t

δ(τ, Ȳ (µ; τ),ΘȲ (µ; τ))dτ

∣∣∣∣ Ft] ,
(2.8.8)

π̄(µ; t) := [σ(t)]−1

[
ψ(µ; t)

Ȳ (µ; t)
− X̄(µ; t)ΛȲ (µ; t)

Ȳ (µ; t)

]
, (2.8.9)

where process ψ(µ; t) in (2.8.9) is the a.e. unique RN -valued F∗-measurable process such
that ∫ T

0

‖ψ(µ; t)‖2dt <∞ a.s.

and

X̄(µ; t)Ȳ (µ; t) = X̄(µ; 0)Ȳ (µ; 0) +

∫ t

0

δ(τ, Ȳ (µ; τ),ΘȲ (µ; τ))dτ +

∫ t

0

ψ′(µ; τ)dW (τ).

(2.8.10)

Lemma 2.8.1. We have G(π̄(µ̄)) = 0.

Proof. Proof is identical to that on p. 93 of [15] and therefore is omitted.

With Lemma 2.8.1 in place, we now are ready to present the main result of this Chapter,
Theorem 2.8.2:

Theorem 2.8.2. Suppose the market as described in Section 2.1 and assume Conditions
2.1.1, 2.1.5, 2.3.1, 2.3.2. Then for each µ ∈ R, there exists a pair (ȳ(µ), γ̄(µ)) ∈ R ×H2

such that
h(µ) := Ψ̃µ(µ; ȳ(µ), γ̄(µ)) = inf

(y,γ)∈R×H2

Ψ̃µ(µ; y, γ). (2.8.11)

Further, there exists some µ̄ ∈ R such that

h(µ̄) = inf
µ∈R

h(µ) = inf
µ∈R

Ψ̃µ(µ, ȳ(µ), γ̄(µ)) (2.8.12)

and if the optimal pair (ȳ(µ̄), γ̄(µ̄)) is such that it satisfies Condition 2.6.1, then π̂ := π̄(µ̄),
given by (2.8.9) and (2.8.10), is solution of problem (P̂) defined at (2.3.5).
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Proof. Proposition 2.5.3 establishes existence of optimal pairs (ȳ(µ), γ̄(µ)) ∈ R×H2, The-
orem A.1.4 establishes existence of an optimal Lagrange multiplier µ̄ ∈ R, Lemma 2.8.1
ensures constraint is fulfilled, and finally, Theorem 2.7.12 specifies that π̂ is a solution of
problem (P̂) whenever (ȳ(µ̄), γ̄(µ̄)) satisfy Condition 2.6.1.
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Chapter 3

Nonnegative Wealth Case

3.1 Introduction to the Problem

In the previous chapter we have not imposed any additional constraints on the optimal
wealth process X̄. In reality, however, an investor would most likely prefer the wealth
process to be nonnegative, thus avoiding bankruptcy over the trading interval. In this
chapter we modify the original optimization problem (P̂) defined at (2.3.5) to include this
additional requirement and use the same approach as in Chapter 2 to address the problem.
We must stress at the outset that adding a non-negativity constraint on the wealth to
the problem of Chapter 2 results in a stochastic control problem with both a portfolio
constraint (or “control” constraint) and an almost-sure constraint on the wealth process
(that is a “state” constraint). Such problems, with combined state and control constraints,
are known to be particularly challenging, even in the setting of purely deterministic control
problems. In the stochastic case these challenges are compounded, to the extent that there
are effectively no results of any kind in the established literature on stochastic control
problems with a combination of state and control constraints. As we shall see, in the
present chapter we do not succeed in solving this problem either, but our efforts at least
suggest the next natural step in achieving a complete solution to this problem. The matter
is discussed at greater length in Remark 3.2.4.

We postulate Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.2, 2.3.5 and start by modifying definition
(2.3.1) of the set A and put

A+ := {π ∈ H2 | π(t) ∈ K a.e. and Xπ(t) ≥ 0 a.e.}, (3.1.1)

υ̂ := inf
π∈A+

G(π)=0

E[Ĵ(Xπ(T ))]. (3.1.2)
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and now we wish to solve the following constrained problem (P) (recall definitions (2.3.3)
and (2.3.2)):

(P) : determine some π̂ ∈ A+ such that G(π̂) = 0 and υ̂ = E[Ĵ(X π̂(T ))]. (3.1.3)

Once again we first introduce a partially constrained problem (P+
c,q) (recall definition

(2.3.6)):
(P+

c,q) : determine some π̄ ∈ A+ such that υc,q = E[J(X π̄(T ))], (3.1.4)

where
υc,q := inf

π∈A+
E[J(Xπ(T ))]. (3.1.5)

Remark 3.1.1. The only difference between problems (2.3.5) and (3.1.3) and (2.3.8) and
(3.1.4) respectively is in the definition of the sets A and A+, particularly, condition Xπ ≥ 0
a.e. We will soon see how this new constraint affects the primal and dual problems defined
in the following section. /

3.2 Solving Partially Constrained Problem

We now closely follow the steps of Sections 2.3 - 2.5 and try to solve the partially constrained
problem 3.1.4. We start as in Chapter 2 by introducing set U(X). So letX ≡ (X0, Ẋ,ΛX) ∈
I, and recalling (2.1.7) define

U(X) :=

{
π ∈ A+

∣∣∣∣ Ẋ(t) = r(t)X(t) + π′(t)σ(t)θ(t) + g(t, π(t))

and ΛX(t) = σ′(t)π(t) a.e.

} (3.2.1)

for A+ defined at (3.1.1). It then follows that for each X ≡ (X0, Ẋ,ΛX) ∈ I

X(t) = Xπ(t) a.e. for some π ∈ A+ ⇐⇒ X0 = x0, X(t) ≥ 0 a.e., and U(X) 6= ∅,
(3.2.2)

from which, together with (3.1.5), it follows that

υc,q = inf
X∈I
X0=x0
X≥0 a.e.
U(X)6=∅

E[J(X(T ))]. (3.2.3)

We now define penalty functions for the constraints in (3.2.3):

l0(x) :=

{
0 if x = x0,
∞ otherwise,

(3.2.4)
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for each x ∈ R to account for the initial wealth constraint and (recall (2.3.6))

lT (w, x) :=

{
J(w, x) if x ≥ 0,
∞ otherwise,

(3.2.5)

to account for the nonnegativity of wealth constraint. Finally, motivated by (3.2.1) we
define a mapping L : Ω× [0, T ]× R× R× RN → {0,∞} by

L(w, t, x, v, ξ) :=


0 if v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ),

x ≥ 0, and [σ′(w, t)]−1ξ ∈ K,
∞ otherwise.

(3.2.6)

From (3.2.6) it follows that L(t,X(t), Ẋ(t),ΛX(t)) is F∗-measurable, and

E
∫ T

0

L(t,X(t), Ẋ(t),ΛX(t)) =

{
0 if X(t) ≥ 0 a.e. and U(X) 6= ∅,
∞ otherwise.

(3.2.7)

Now put

Φ(X) := l0(X0) + E[lT (X(T ))] + E
∫ T

0

L(t,X(t), Ẋ(t),ΛX(t))dt, (3.2.8)

for each X ≡ (X0, Ẋ,ΛX) ∈ I, then combining (3.2.3), (3.2.4), (3.2.5), (3.2.6), and (3.2.7),
we have

υc,q = inf
X∈I

Φ(X). (3.2.9)

Remark 3.2.1. Recall (2.4.8) and (2.4.10) of Chapter 2 and observe that (3.2.8) together
with (3.2.9) define the primal problem associated with (3.1.4). /

With the primal problem in place, we now define the convex conjugate functions. From
(2.4.11) we find

m0(y) = x0y, (3.2.10)

for each y ∈ R. Analogous to (2.4.12) and recalling (3.2.5) define

mT (w, y) := sup
x∈R
{x(−y)− lT (w, x)}

=

{
(y+c(w))2

2a(w)
− q if y + c(w) ≤ 0,

−q otherwise

(3.2.11)
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for each y ∈ R and w ∈ Ω. For M(w, t, y, s, γ) of (2.4.13) from (3.2.6) for each y ∈ R, s ∈
R, γ ∈ RN , w ∈ Ω and t ∈ [0, T ] we find

M(w, t, y, s, γ) = sup
x,v∈R,
ξ∈RN

{xs+ vy + ξ′γ − L(w, t, x, v, ξ)}

= sup
x∈R, x≥0, ξ∈RN ,
[σ′(w,t)]−1ξ∈K

{xs+ y[r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ)] + ξ′γ}

= sup
x≥0, ξ∈RN ,

[σ′(w,t)]−1ξ∈K

{x[s+ yr(w, t)] + yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t) + γ]}

= sup
x≥0
{x[s+ yr(w, t)]}+ sup

ξ∈RN ,
[σ′(w,t)]−1ξ∈K

{yg(w, t, [σ′(w, t)]−1ξ) + ξ′[yθ(w, t) + γ]}

=

{
sup ξ∈RN ,

[σ′(w,t)]−1ξ∈K
{yg(w, t, [σ′(w, t)]−1ξ)+ξ′[yθ(w, t)+γ]} if s+r(w, t)y ≤ 0,

∞ otherwise.

(3.2.12)

Combining (3.2.12) with definitions (2.4.19) and (2.4.20) of δ and Θy we find

M(w, t, y, s, γ) =

{
δ(w, t, y,Θy(w, t)) if s+ r(w, t)y ≤ 0,
∞ otherwise.

(3.2.13)

We can easily see from lower semi-continuouty of δ and (3.2.13) that M(t, Y (t), Ẏ (t),ΛY (t))
is F∗-measurable. Now for each Y = (Y0, Ẏ ,ΛY ) ∈ I define

Ψ(Y ) := m0(Y0) + E[mT (Y (T ))] + E
∫ T

0

M(t, Y (t), Ẏ (t),ΛY (t))dt, (3.2.14)

and note that Ψ(Y ) ∈ (−∞,+∞] for each Y ≡ (Y0, Ẏ ,ΛY ) ∈ I.

Remark 3.2.2. Observe that (3.2.10) stayed unchanged, while (3.2.11) and (3.2.13) are
slightly different from (2.4.17) and (2.4.22). It is the new form of (3.2.11) that will become
a crucial challenge when we attempt to show that the dual problem corresponding to (3.2.9)
has a solution. /

We now turn to determining necessary and sufficient conditions for the portfolio to be
a solution to problem (P+

c,q) defined at (3.1.4) by presenting a result similar to that of
Proposition 2.4.7:
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Proposition 3.2.3. Assume Conditions 2.1.1, 2.1.5, 2.3.1, 2.3.5. For arbitrary (X̄, Ȳ ) ∈
I× I with X̄ ≡ (X̄0,

˙̄X,ΛX̄) and Ȳ ≡ (Ȳ0,
˙̄Y,ΛȲ ), we have

Φ(X̄) = inf
X∈I

Φ(X) = sup
Y ∈I

[−Ψ(Y )] = −Ψ(Ȳ ) (3.2.15)

if and only if

(1) X̄0 = x0,

(2) X̄(T ) =

{
− Ȳ (T )+c

a
if Ȳ (T ) + c ≤ 0,

0 otherwise
a.s.,

(3) X̄(t) [ ˙̄Y (t) + r(t)Ȳ (t)] = 0 a.e.,

(4) X̄(t) ≥ 0 a.e.,

(5) π̄ ∈ U(X̄) and δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)) a.e.

for π̄(t) := [σ′(t)]−1ΛX̄(t).

Proof. From (3.2.4) and (3.2.10) it follows that for arbitrary x ≥ 0, y ∈ R one has

l0(x) +m0(y) = xy if and only if x = x0.

Similarly, from (2.3.6), (3.2.5), and (3.2.11) we find that for arbitrary x ≥ 0, y ∈ R and
w ∈ Ω

lT (w, x) +mT (w, y) = −xy if and only if x =

{
−y+c(w)

a(w)
if y + c(w) ≤ 0,

0 otherwise.

Hence, conditions (A) and (B) of Proposition 2.4.6 hold if and only if items (1) and (2)
hold. Further, for arbitrary (w, t) ∈ Ω × [0, T ], and (x, v, ξ), (y, s, γ) ∈ R × R × RN , we
have:

L(w, t, x, v, ξ) +M(w, t, y, s, γ) = xs+ vy + ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y ≤ 0,

x ≥ 0, and δ(w, t, y,Θy) = xs+ vy + ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y ≤ 0,

x ≥ 0, and δ(w, t, y,Θy) = xs+ (r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ))y+ ξ′γ

⇐⇒ v = r(w, t)x+ ξ′θ(w, t) + g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, s+ r(w, t)y ≤ 0,

x ≥ 0, and δ(w, t, y,Θy) = x(s+r(w, t)y)+ξ′[θ(w, t)y+γ]+yg(w, t, [σ′(w, t)]−1ξ).

⇐⇒ v = r(w, t)x+ξ′θ(w, t)+g(w, t, [σ′(w, t)]−1ξ), [σ′(w, t)]−1ξ ∈ K, x(s+r(w, t)y) = 0,
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x ≥ 0, and δ(w, t, y,Θy) = ξ′[θ(w, t)y + γ] + yg(w, t, [σ′(w, t)]−1ξ),

where the last equivalence comes from the fact that x(s+ r(w, t)y) ≤ 0 and

δ(w, t, y,Θy) ≥ ξ′[θ(w, t)y + γ] + yg(w, t, [σ′(w, t)]−1ξ)

for all [σ′(w, t)]−1ξ ∈ K as follows from definition of δ (recall (2.4.19)).

Hence, condition (C) of Proposition 2.4.6 holds if and only if X̄(t) ≥ 0 a.e., X̄(t)[ ˙̄Y (t)+
r(t)Ȳ (t)] = 0 a.e., π̄ ∈ U(X̄), and δ(t, Ȳ (t),ΘȲ (t)) + π̄′(t)ΘȲ (t) = Ȳ (t)g(t, π̄(t)) a.e. for
π̄(t) := [σ′(t)]−1ΛX̄(t) (recall definition (3.2.1) of U(X̄)).

Combining, we conclude that for arbitrary (X̄, Ȳ ) ∈ I× I

(A) - (C) of Proposition 2.4.6 hold ⇐⇒ (1) - (5) hold.

It is clear that Proposition 2.4.6 also holds for Φ and Ψ defined by (3.2.8) and (3.2.14),
therefore from inequality (2.4.26) then follows that equality Φ(X̄)+Ψ(Ȳ ) = 0 is equivalent
to (3.2.15), and hence, (3.2.15) holds if and only if conditions (1) - (5) are satisfied.

Again, as in Chapter 2 we see from Proposition 3.2.3 that to solve problem (3.1.4) we
need to construct a pair (X̄, Ȳ ) ∈ I × I that satisfies the optimality relations (1) - (5) of
Proposition 3.2.3. Motivated by Proposition 3.2.3 we now focus our attention on solving
the dual problem:

determine some Ȳ ∈ I such that Ψ(Ȳ ) = inf
Y ∈I

Ψ(Y ). (3.2.16)

We notice that similarly to derivations in Chapter 2 we can restrict our choice of Y to
those from the set

I1 := {Y ≡ (Y0, Ẏ ,ΛY ) ∈ I | Ẏ (t) = −r(t)Y (t) a.e.}, (3.2.17)

since from (3.2.13), (3.2.14) and item (3) of Proposition 3.2.3 it follows that

inf
Y ∈I

Ψ(Y ) = inf
Y ∈I1

Ψ(Y ). (3.2.18)

Recall from Chapter 2 (Remark 2.5.1) that members of set I1 have the parameterization

Y (t) = Ξ(y, γ) with y = Y0 and γ = ΛY . (3.2.19)

Thus define
Ψ̃(y, γ) := Ψ(Ξ(y, γ)), (y, γ) ∈ R×H2, (3.2.20)
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then from (3.2.10), (3.2.11), (3.2.13), and (3.2.14) follows that for each (y, γ) ∈ R × H2

and Y := Ξ(y, γ) we find

Ψ̃(y, γ) = x0y + E
[

(Y (T ) + c)2

2a
1Y (T )+c≤0

]
+ E

∫ T

0

δ(t, Y (t),ΘY (t))dt− q. (3.2.21)

Moreover, by arguments exactly as in Remark 2.5.2 we obtain

inf
(y,γ)∈R×H2

Ψ̃(y, γ) = inf
Y ∈I

Ψ(Y ). (3.2.22)

Remark 3.2.4. Comparing (3.2.21) to its analogue (2.5.11) of problem (Pc,q) in Chapter
2, we see that while Ψ̃ of (3.2.21) is still proper, convex, and lower semi-continuous, it is
no longer coercive (recall Definition A.1.2). Indeed, comparing the dual function (3.2.21)
with the dual function (2.5.11) (for the problem without a nonnegative wealth constraint)
we see that there is one small but crucial difference, namely the indicator of the event
Y (T ) + c ≤ 0 occurring at the second term on the right side of (3.2.21), but which is
not present at the second term on the right of (2.5.11). This indicator function completely
ruins the coercivity of the dual function (3.2.21); since coercivity of the dual function is the
entire basis of the proof of existence of a dual solution at Proposition 2.5.3 using Theorem
A.1.3 (for the case where there is no constraint on the wealth process), we cannot expect
to establish an analog of Proposition 2.5.3 which guarantees existence of a minimizer of
the dual function (3.2.21). Without this minimizer we have nothing in terms of which to
construct a solution of the primal problem in terms of a minimizer of the dual function using
the optimality relations (in this case given by Proposition 3.2.3). What is at the root of this
rather fundamental difficulty? In Chapter 2 we used the space of dual variables I (recall
(2.2.1) - (2.2.3)) to provide the Lagrange multipliers which enforce the portfolio constraint
in problem (2.3.8). In the present chapter we are trying to use the same space of dual
variables to provide Lagrange multipliers which enforce not only the portfolio constraint
but also the nonnegativity constraint on the wealth process as well. This is simply asking
too much, as is demonstrated by non-existence of a dual solution within this space of dual
variables. The way out of this impasse seems to be to pair the space I with another vector
space of variables for enforcing the wealth constraint, and then take the space of dual
variables to be the product of these spaces. A classic work of Dubovitskii and Milyutin [6]
on deterministic optimal control with combined control and state constraints - which is one
of the very few works to make definite progress on this problem, albeit in a deterministic
setting - suggests that the vector space of variables appropriate to the wealth constraint
is the adjoint of the space of essentially bounded functions. A goal of future research is to
try to adapt this idea to the considerably more challenging setting of a stochastic (instead
of a deterministic) control problem such as the one studied in the present chapter.

/
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Chapter 4

Conclusion

In this thesis we consider the problem of quadratic hedging and mean-variance portfolio
selection in the presence of margin requirements and pointwise portfolio constraints. Our
approach and goals can be summarized as follows:

(i) identify a set of optimality relations that describe an optimal solution in terms of
solutions of the dual problem, in other words, determine the necessary and sufficient
conditions for the problem and its dual to each have a solution;

(ii) show existence of a solution of the dual problem;

(iii) use the solution of the dual problem established in (ii) to characterize the solution of
the original (or primal) problem.

In this thesis we have followed the same general approach used in Labbé and Heunis [15],
originally motivated by works of Rogers [22] and Bismut [3], and have successfully com-
pleted steps (i) and (ii): Proposition 2.4.7 introduces optimality relations and Proposition
2.5.3 establishes existence of a solution to the dual problem. The method allowed us to
essentially eliminate the necessity for guesswork and systematically arrive at the dual prob-
lem (2.4.24) and then derive necessary and sufficient optimality conditions for Proposition
2.4.7.

The optimality relations (1) - (4) of Proposition 2.4.7 are quite different from the
optimality relations of [15], this difference arising from the presence of a nonlinear term
in the wealth equation which accounts for margin payments (recall Remark 2.1.6), a term
which was not present in the corresponding wealth equation of [15], where margin payments
are not included in the model. A consequence of this difference is that the optimality
relations are in fact considerably more difficult to solve than the corresponding optimality
relations of [15]. In particular, in order to solve these relations (that is complete step (iii))
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we have to resort to introducing simplifying assumptions (none of which are necessary in
[15]). Specifically, these assumptions are Condition 2.6.1, as well as the function-space
membership assumptions at (2.7.13). At this point we see no way of proceeding without
Condition 2.6.1, which essentially asserts that the optimal dual process is either strictly
positive or strictly negative, since this assumption is essential to our solution method. The
situation may be compared, for example, with assumptions made when trying to solve a
partial differential equation analytically, where one often assumes at the outset that the
solution is actually in special product form, and without this assumption one cannot go
any further. On the other hand, we feel that it may be possible to actually demonstrate
the function-space memberships at (2.7.13), as was done in [15]. However, the methods
used in [15] simply do not extend to our case, and the establishment of methods which
do cover our case seems to present challenges which we cannot resolve at present. Thus
showing that (2.7.13) indeed holds and removing Condition 2.6.1 can be viewed as possible
extensions of the present work.

In Chapter 3 we add another feature to the problem studied in Chapter 2 by restricting
the wealth process to stay nonnegative, effectively inducing a no-bancruptcy restriction.
We are able to complete step (i) and derive optimality relations (1) - (5) in Proposition
3.2.3 that are very close to those of Proposition 2.4.7. This again demonstrates the power
of the basic approach used in the thesis for synthesizing optimality relations and a dual
problem. We are not able, however, to complete step (ii) and derive a result analogous to
Proposition 2.5.3 of Chapter 2 since it is impossible to establish existence of a dual solution
for a class of square integrable dual processes Y ∈ I (recall (2.2.1)-(2.2.3)). To overcome
this situation, one would have to expand the class of dual solutions beyond I.

To conclude, in this thesis we have studied a very difficult problem of quadratic hedging
with pointwise portfolio constraints and margin requirements. We were able to derive the
necessary and sufficient conditions for the problem of interest and its dual to each have
a solution and constructed a tentative optimal portfolio for a particular class of dual
solutions.
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Appendix A

Background

A.1 Elements of Convex Analysis

In this appendix we recall a few important definitions and results from classical convex
analysis.

Definition A.1.1. Consider the functional f : Rm 7→ R ∪ {±∞}. Its conjugate function
f ∗: Rm 7→ R ∪ {±∞} is defined as

f ∗(y) := sup
x∈Rm
{x′y − f(x)}.

Definition A.1.2. Consider the functional f : T 7→ R∪{±∞}. We say that f is coercive
if f(x)→∞ whenever ‖x‖ → ∞.

The following theorem is stated and proved in Ekeland and Temam [7], p. 35:

Theorem A.1.3. Let T be a reflexive Banach space (with norm ‖·‖) and f some functional
defined on T . Suppose that f is proper (that is f(x) ∈ R∪{∞} for all x ∈ T and F(x̃ ∈ T ),
convex, lower semi-continuous and coercive. The there exists x̄ ∈ T such that

f(x̄) = inf
x∈T

f(x).

The following result is stated and proved in Aubin [1], p.36:

Theorem A.1.4. (Lagrange Multiplier Theorem). Let T be a vector space and
suppose that (i) A is a convex subset of T ;

(ii) f : A 7→ R is a convex function;
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(iii) G : T 7→ Rm is an affine mapping;

(iv) 0 is in the interior of {G(u) | u ∈ A}.

Define L(µ;u) := f(u) + µG(u). then there is a Lagrange multiplier µ̄ ∈ R such that

inf
u∈A

G(u)=0

f(u) = sup
µ∈R

inf
u∈A
L(µ;u) = inf

u∈A
L(µ̄;u).
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