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Abstract

Data showing a trend that characterizes a change due to a shock to the system are

a type of changepoint data, and may be referred to as shock-through data. As a result

of the shock, this type of data may exhibit one of two types of transitions: gradual or

abrupt. Although shock-through data are of particular interest in many areas of study

such as biological, medical, health and environmental applications, previous research has

shown that statistical inference from modeling the trend is challenging in the presence

of discontinuous derivatives. Further complications arise when we have (1) longitudinal

data, and/or (2) samples which come from two potential populations: one with a gradual

transition, and the other abrupt.

Bent-cable regression is an appealing statistical tool to model shock-through data due

to the model’s flexibility while being parsimonious with greatly interpretable regression co-

efficients. It comprises two linear segments (incoming and outgoing) joined by a quadratic

bend. In this thesis, we develop extended bent-cable methodology for longitudinal data in

a Bayesian framework to account for both types of transitions; inference for the transition

type is driven by the data rather than a presumption about the nature of the transition. We

describe explicitly the computationally intensive Bayesian implementation of the method-

ology. Moreover, we describe modeling only one type of transition, which is a special case

of this more general model. We demonstrate our methodology by a simulation study, and

with two applications: (1) assessing the transition to early hypothermia in a rat model,

and (2) understanding CFC-11 trends monitored globally.

Our methodology can be further extended at the cost of both theoretical and compu-

tational extensiveness. For example, we assume that the two populations mentioned above

share common intercept and slopes in the incoming and outgoing phases, an assumption

that can be relaxed for instances when intercept and slope parameters could behave dif-

ferently between populations. In addition to this, we discuss several other directions for

future research out of the proposed methodology presented in this thesis.
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Chapter 1

Introduction

Longitudinal data naturally arise in many areas of study, where measurements taken over

time are nested within observational units drawn from some population of interest. (For

convenience, in this thesis we will always use the term “individual” or “subject” to refer

to the observational unit in the longitudinal study, including inanimate objects such as

a geographical location.) In particular, data showing a trend that characterizes a change

due to a system shock are commonly observed over time in biological, medical, health and

environmental applications. In this thesis, we refer to such data as shock-through data.

An example of shock-through data is an experiment on rats (Reynolds and Chiu [63];

also see Chapter 6) conducted with an objective to collect information about the state of

hypothermia and resuscitation strategy immediately after a 60% hemorrhage (the shock)

that appears to best promote survival for 3 hours without conventional large-volume crys-

talloid support. Note that hypothermia — a fatal condition which can occur when core

body temperature (Tc) falls below 35oC — is used as a therapeutic tool for cardiac arrest,

stroke and brain injury. Since Tc is typically associated with a critical threshold associated

with a breakdown in the compensatory homeostatic mechanisms following severe hemor-

rhage (Connett et al. [17]), quantification of the transition of Tc to early hypothermia is

of clinical interest.

Figure 1.1 shows 5 representative Tc profiles out of a study sample size of 38 rats. In

addition to roughly linear incoming and outgoing phases at either end of each profile, we

see that some rats may exhibit a gradual transition in Tc, while others, perhaps an abrupt

transition. That is, we have samples potentially coming from two different populations,

1
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Figure 1.1: Core body temperature (Tc) of 5 representative rats out of 38, recorded during
hemorrhage in a study to collect information about the state of hypothermia and resusci-
tation strategy.

say, G (gradual) and A (abrupt), respectively, according to the type of transition for the

underlying Tc trend. Accounting for this possibility, we develop statistical methodologies

2



in this thesis for modeling such data to address questions of broad interest, for example,

q1. How long did it take for the trend to show an obvious change because of the shock?

q2. What were the rates of increase/decrease before and after the change?

q3. What was the time point at which the trend went from increasing to decreasing, or

vice versa?

Our modeling approach, which is a substantial generalization of a special changepoint

model, the bent cable (Chiu et al. [16]), will provide a flexible methodology, where inference

for the type of transition is data driven, rather than pre-assumed as a specific type.

Data exhibiting only one type of transition are also common in many areas. An example

is the atmospheric concentration of chloroflurocarbons (CFCs) (The Columbia Encyclope-

dia [72]) in response to the Montréal Protocol’s (The Columbia Encyclopedia [73]) ban

(the shock) on CFC products. Figure 1.2 shows a rather gradual transition in the CFC-11

concentrations monitored from 2 of many stations around the globe. One appealing feature

of our new approach in this thesis is that it encompasses the case of a single transition

type as illustrated in Figure 1.2.
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Figure 1.2: Two monthly mean profiles of CFC-11 in parts-per-trillion (ppt), monitored at
different geographical locations.
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The so-called broken-stick is a popular piece-wise linear model, and is a natural can-

didate to describe a continuous trend with an abrupt change (Hall et al. [39], Lang et al.

[47], Kiuchi et al. [45], Slate and Turnbull [68]). Broken-stick models, however, may not

be realistic in many applications where data may exhibit gradual changes, e.g., CFC-11

data (Figure 1.2), or are believed to exhibit gradual changes, e.g., a smooth change agrees

with the clinical belief of a progressive decline of cognitive test scores in the pre-diagnosis

phase of dementia (Jacqmin-Gadda et al. [41]). So, it is desirable to relax the assumption

of abruptness beforehand, and to formulate a model that is flexible enough to handle either

type of changes, gradual or abrupt. One such methodology is the bent-cable regression, as

we now describe.

Chiu et al. [16] and Chiu and Lockhart [15] developed the bent-cable regression method-

ology to analyze shock-through data for a single profile showing roughly three phases: in-

coming and outgoing, both of which are linear, joined by a quadratic bend (Figure 1.3(a)).

The model is parsimonious, and appealing due to its simple structure, great flexibility and

interpretability. Because an extremely sharp bend reduces the bent-cable to a broken-stick

(Figure 1.3), it also encompasses the broken-stick model as a special case.

There are other modeling approaches that handle gradual changes, such as penalized

spline regression (e.g., Ruppert et al. [65]), but the added flexibility in terms of the

potential shape of the fitted model can come at a cost of interpretability. For the data we

are considering, we aim to provide a flexible modeling approach that additionally allows

for interpretability of fitted parameters, which is important in many practical contexts.

Motivated by this, our main methodological contribution presented in this thesis is to

account for either type of transition through a mixture model extension of the bent-cable

regression technique, as well as to incorporate a mixed-effects structure to accommodate

the repeated measurements observed for each individual (see below). Specifically, our

main methodological contribution is an extension of the existing single-profile bent-cable

regression in two directions:

Ext 1. extension of the bent-cable regression for longitudinal data (i.e., multiple pro-

files); and

Ext 2. accounting for either type of transition — gradual or abrupt — in addition to

Ext 1.

4
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Figure 1.3: The bent-cable function. (a) A gradual quadratic transition joining two linear
segments (incoming and outgoing). The transition period ranges from τ − γ to τ + γ. If
the slope changes sign, then it takes place at the critical time point (CTP). (b) An abrupt
transition with γ = 0 yields a broken-stick. The change in slope takes place at the CTP.

From a statistical point of view, in analyzing longitudinal data, we would like to answer the

questions (Singer and Willett [67]): (1) How does the response change over time? and (2)

Do different individuals experience different patterns of change? The first question char-

acterizes each individual’s pattern of change over time (commonly called within-individual

variation), and the second question addresses the association between patterns of change

(commonly called between-individual variation). Mixed-effects models (Laird and Ware

[46]), which unify information from each individual to answer the above two questions, are

well suited for the analysis of longitudinal data and provide useful information regarding
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the above questions.

Therefore, we accomplish Ext 1 through a mixed-effects model extension of bent-cable

regression for time series by introducing multi-level random effects to combine information

available from the data from each individual. Ext 2 is accomplished through a mixture

model extension of Ext 1 by allowing a mixture of distributions to model the abruptness

parameter of bent-cable regression. We focus our work in the scenario of an autoregressive

(AR) process of order p (Box et al. [8]), p ≥ 0, for the within-individual noise. As a

special case, we also describe the modeling approach for the existence of a single transition

type. Henceforth, we will refer to our extended bent-cable methodology simply as mixed

bent-cable regression.

As an illustration, Figure 1.4 shows the fitted curves/sticks of the 5 rat profiles of

Figure 1.1 by an application of the mixed bent-cable regression (see Chapter 6 for details).

It demonstrates that our methodology picks up the two types of transitions adequately.

The estimated transitions for Rats 1, 13 and 34 reflect a slow (gradual) change in Tc and a

linear decrease thereafter, while those for Rats 9 and 17 show an abrupt transition followed

by a linear decrease. That is, we estimate that the former 3 are from Population G whereas

the latter 2 are from Population A.

Although modeling the trend of changepoint data is challenging in the presence of

discontinuous derivatives, it is common practice (e.g. Dominicus et al. [20], Lang et al.

[47], Morrell et al. [52]) to overcome the non-differentiability problem at the modeling

and/or estimation and inference stage(s). We precede in Chapter 2 with a review of some

of these methods including the mathematical formulation of the bent-cable regression of

Chiu et al. [16] and Chiu and Lockhart [15]. There we preview the difference between

bent-cable regression and other works.

We introduce our mixed bent-cable model in Chapter 3. Specifically, we present the

hierarchical formulation of our unifying modeling framework with its underlying assump-

tions, and introduce additional assumptions which are adjustable to alter the complexity

of the model.

The existence of two variance components (within-individual and between-individual) in

mixed-effects models complicate inference on the (fixed) population effect of interest. Chiu

et al. [16] and Chiu and Lockhart [15] describe the complexity of the frequentist estimation

method and asymptotics of bent-cable regression for one profile only. Since the second
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Figure 1.4: Observed data (black lines) and the corresponding individual-specific fitted
curves (red lines) for 5 representative rats. Estimated transitions are marked by the vertical
lines with estimated CTPs (for Population G) by the dotted lines; The CTP estimate is
not marked for Rat 3 because the estimated slope of its cable does not change signs.

7



derivative of the likelihood function does not exist everywhere, the highly complicated

asymptotics are developed under non-standard regularity conditions. In this thesis, we

employ the Bayesian method of inference (Chapter 4) for our mixed bent-cable regression,

which avoids the substantial additional complexity of asymptotics due to mixed-effects

and mixture modeling. All the derivations and computational tools associated with the

Bayesian implementation are presented in that chapter. In Chapter 5, we describe a special

case of our mixed bent-cable methodology, namely, modeling one transition type only.

The next few chapters are very technical, and the readers interested in the practical

aspects of our methodology may immediately go to Chapter 6, where our proposed method

is illustrated with applications to the aforementioned rat and CFC-11 data. In Chapter 7,

we demonstrate the performance of our methodology under various scenarios through a

simulation study. We conclude the thesis in Chapter 8 by presenting some additional

considerations relevant to this work and possible extensions.
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Chapter 2

Changepoint Modeling: A Review

The choice of the model framework for longitudinal data often depends on the nature

of the data. The most simple framework is the linear mixed-effects model (Laird and

Ware [46], Verbeke and Molenberghs [80]). However, longitudinal data trajectories are

frequently nonlinear in nature. In some settings, an appropriate nonlinear function may

be derived on the basis of the theoretical considerations, and in other settings, a nonlinear

relationship may be employed to provide an empirical description of the data (Davidian

and Giltinan [19]). In either case, the use of a suitable nonlinear function is very important

to appropriately describe the data.

One of the most intriguing nonlinear models seen in the environmental and biologi-

cal applications is the piecewise model, also known as the segmented regression model or

changepoint model, to analyze shock-through data as described in Chapter 1. A change-

point model is continuous if the segments join at the changepoint, and discontinuous if at

the changepoint a sudden jump or drop occurs in the mean response (Piegrosh and Biler

[57]). Moreover, the segmentation can be smooth (gradual transition) or abrupt (e.g.,

broken-stick) in a continuous changepoint model. In this thesis, we do not consider dis-

continuous changepoint model, because shock-through data as shown in Figures 1.1 and

1.2 for the rat and CFC-11 data, respectively, usually do not exhibit a sudden jump at

the changepoint. This type of data can also arise very naturally in other applications

where the changes can occur at known times (e.g., taxation or policy changes) or unknown

times (e.g., cognition and behavior changes due to transient ischemic attack (mini-stroke)).

Henceforth, we will only refer to a continuous changepoint model and simply call it a

changepoint model.
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In the presence of discontinuous derivatives, modeling the trend of changepoint data,

even for a single profile is challenging, especially at the inference stage (Chiu et al. [16],

Chiu and Lockhart [15], Kelly et al. [43], Tishler and Zang [75]). The common approach to

overcome this difficulty is to reformulate the model so that the derivative with respect to

each parameter is a continuous function of time (t) and/or to utilize an inference procedure

that does not depend on the derivatives, e.g. Bayesian inference. We now present some of

these modeling techniques common in the literature.

Broken-stick models are extensively used in many applications of changepoint data,

e.g. Lang et al. [47] and Kiuchi et al. [45] to analyze longitudinal series of the number

of T4 cells which is considered a marker of disease progression for persons infected with

human immunodeficiency virus (HIV); Bellera et al. [5], and Slate and Turnbull [68] to

analyze data sets concerning prostate specific antigen (PSA) as a serial marker for prostate

cancer; and Dominicus et al. [21] to analyze cognitive functions at older ages. A general

representation of such models for one profile is

yj = β0 + β1(tj − τ) + β2(tj − τ)sgn(tj − τ) + εj (2.1)

where τ is the unknown join point of the two sticks; β0, β1 and β2 are the linear regression

coefficients with β1−β2 and β1 +β2 being the slopes of the incoming and outgoing phases,

respectively; β1 is the average of the two slopes; β2 is the half of the difference of the two

slopes; β0 is the expected value of the response at τ ; εj is a random variable accounting

for error; and sgn(.) is a sign function where

sgn(tj − τ) =


−1, if tj < τ

0, if tj = τ

+1, if tj > τ

. (2.2)

A graphical description of the parameters is presented in Figure 2.1. Note that in all of

the above examples, the inference is carried out by the Bayesian approach.

Although broken-stick models are used in many applications of longitudinal changepoint

data, modeling gradual transition has not been studied extensively so far. Bacon and Watts

[4] propose to use a smooth function to appropriately model the transition from one regime

to another by replacing the sign function (2.2) of (2.1) by a transition function trn(dj/γ),

where dj = tj − τ , and γ is a parameter whose value determines the type of transition

(abrupt or gradual). To make this function behave like a sign function, they propose the

10



 

 

 

 

 

 

 

 

 

 

 

y 

t 

β0 

τ 

Slope = β1 

Slope = β1 − β2 

Slope = β1 + β2 

Figure 2.1: A graphical description of the parameters for the changepoint model (2.1).

following conditions to be satisfied by trn(dj/γ).

1. limdj→∞ trn(|dj|/γ) = 1 so that trn(dj/γ) behaves like sgn(dj) for large dj;

2. trn(0) = 0 so that trn(dj/γ) = sgn(dj) for dj = 0;

3. limγ→0 trn(dj/γ) = sgn(dj) so that trn(dj/γ) behaves like sgn(dj) for small γ; and

4. limdj→∞ dj trn(dj/γ) = dj so that dj trn(dj/γ) behaves like dj sgn(dj) = |dj| for large

dj; this condition is necessary because of the way the transition function enters into

the model (2.1).

Examples of two such functions are the cumulative distribution function of any symmetric

probability density function and the hyperbolic tangent. They originally propose this to

analyze a single profile by an implementation of a Bayesian analysis procedure in which

the variance parameter var(εj) = σ2 and the linear parameters β0, β1 and β2 are integrated

out so that attention may be focused on the transition parameters. Bacon and Watts’s

development is later applied by others in piece-wise nonlinear mixed models (see below).

Morrell et al. [52] propose a changepoint model with a linear incoming and an exponen-

tial outgoing phase to analyze longitudinal PSA data. To overcome the nondifferentiability
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problem, they use a transition function as per Bacon and Watts to provide a smooth tran-

sition between the phases. This enables them to use frequentist’s estimation and inference

based on some approximations as detailed by Lindstrom and Bates [49]. Dominicus et al.

[20] consider a hyperbolic tangent function to smooth out the changepoint model, and they

demonstrate a Bayesian approach for inference.

Jacqmin-Gadda et al. [41] propose a slightly different approach in which they consider

a linear trend before the changepoint and a polynomial trend thereafter, resulting in a

smooth transition at the changepoint. The proposed model has the property that the

derivative with respect to each parameter is a continuous function of t. They consider

a likelihood-based approach for statistical inference. However, choosing the order of the

polynomial is judgemental, and the model is not parsimonious in case of higher order

polynomials.

There are also case-based methods that can handle changepoint data with complex

trajectories, such as penalized splines (e.g., Ruppert et al. [65]) and local polynomial (Fan

and Gijbels [23]), though the added flexibility can come at a cost of interpretability.

As introduced briefly in Chapter 1, bent-cable regression is first proposed by Chiu

et al. [16] to model changepoint data for a single profile. The model is parsimonious

and flexible in that under a single mathematical formulation, it combines the gradual

and abrupt transitions using only 5 regression coefficients. For the types of data under

consideration, in light of the apparent three phases — linear incoming and outgoing, and

the adjoining curved transition — an individual profile is characterized by the bent-cable

regression model as follows:

yj = f(tj, β0, β1, β2, γ, τ) + εj (2.3)

where f(tj, β0, β1, β2, γ, τ) = β0 + β1tj + β2 q(tj, γ, τ), (2.4)

q(tj, γ, τ) =
(tj − τ + γ)2

4γ
1{|tj − τ | ≤ γ}+ (tj − τ)1{tj − τ > γ}, (2.5)

with β0, β1 and β2 characterizing the linear incoming and outgoing phases, and γ and τ

characterizing the transition. Here, β0 and β1 are, respectively, the intercept and slope of

the incoming phase; β2 is a scaling factor associated with the location of the transition;
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β1 +β2 is the slope of the outgoing phase; and γ and τ represent the center and half-width

of the bend, respectively. Note that γ = 0 reduces the bent cable to a broken-stick model

for which

q(tj, 0, τ) = (tj − τ)1{tj − τ > 0}. (2.6)

Chiu and Lockhart [15] define the critical time point (CTP) as the time at which the

slope of the bent-cable changes sign. Thus, for a gradual transition (γ > 0), the CTP

is τ − γ − 2β1γ/β2 at which f(tj, β0, β1, β2, γ, τ) has slope zero. Note that this formula

does not represent anything meaningful when the slope of the cable does not change signs.

When γ = 0, any sign change of the slope occurs at the point τ , and therefore τ is the

CTP for an abrupt transition.

For time series data, Chiu and Lockhart [15] develop estimation theory under quite

general conditions of the correlation structure of the error terms εj’s. Under some design

conditions, they show that the regression model (2.3)-(2.5) is regular in the sense that the

usual results of consistency and asymptotic normality are valid for the least squares estima-

tor, as well as asymptotic χ2 distribution for the deviance statistic. The design conditions

also guarantee the identifiability of the regression problem. An R (R Development Core

Team [61]) library “bentcableAR” is developed by Chiu [14] to fit the bent-cable regression

under autoregressive noise of order p ≥ 0.

The three appealing features — flexibility, greatly interpretable regression coefficients

and characterization of the transition period through the parameters γ, τ and CTP — dis-

tinguish the bent-cable regression model from those other works described earlier. There-

fore, the extension of the bent-cable regression for longitudinal data (Ext 1 and Ext

2, Chapter 1) would perceivably provide a powerful longitudinal modeling approach for

changepoint data. We proceed in Chapter 3 with the modeling framework of our new

approach, and with a detailed description for inference in Chapter 4.
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Chapter 3

The Mixed Bent-Cable Model

In this chapter, extension of the bent-cable regression model for longitudinal data, namely,

the mixed bent-cable model is introduced. In Section 3.1, we develop a hierarchical for-

mulation of the model on the basis of the assumptions presented in Section 3.1.2. We

describe the rationale behind our assumptions and possible extensions of the model by

relaxing some of those assumptions in Section 3.2. A discussion of our modeling approach

is presented in Section 3.3, and the chapter ends in Section 3.4 with some mathematical

details underlying the development of the hierarchy.

3.1 Hierarchical Formulation of the Model

As briefly mentioned in Chapter 1, the hierarchical formulation of a mixed-effects model

generally involves two levels (Davidian and Giltinan [19]). The first level, called Level

1 or within-individual level, characterizes an individual trajectory, and the second level,

called Level 2 or between-individual level, specifies whether different individuals manifest

different patterns and what may influence these differences. Additionally, there is a third

level (Level 3) for Bayesian inference, which quantifies prior information about the random

quantities in Levels 1 and 2. In this section, we present a description of these three levels

for our mixed bent-cable model. In Chapter 2, we presented the bent-cable regression

model to analyze data from a single individual. For completeness of this chapter, and an

introduction of our notation for longitudinal data, we re-introduce in Section 3.1.1 the bent-

cable model for one individual but in the context of having multiple individuals. Then,
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we present assumptions of our hierarchical mixed bent-cable model in Section 3.1.2, and

develop the three levels mathematically in Section 3.1.3. A summary of the hierarchical

formulation is presented in Section 3.1.4.

3.1.1 The Model for One Individual

When individuals can be regarded as having been randomly selected from some popula-

tion, and repeated measurements are collected for each individual, it is useful to unify

information from each individual to aid the understanding of the population as well

as subject-specific behavior. Suppose we have m individuals. For the ith individual

(i = 1, 2, . . . ,m), let there be ni measurements, and let tij denote the jth measurement

occasion, j = 1, 2, . . . , ni, with yi = (yi1, yi2, . . . , yini) and ti = (ti1, ti2, . . . , tini). We model

the corresponding response at time tij, denoted by yij, by the relationship

yij = f(tij,θi) + εij (3.1)

where θi is a vector of regression coefficients for the ith individual, f(·) is a flexible function

of tij and θi to characterize the trend of the subject-specific data over time, and εij rep-

resents the random error component, which accounts for measurement error and possibly

additional within-individual error structure.

In light of the apparent three phases as described in Chapters 1 and 2 — linear incoming

and outgoing, and the adjoining curved transition — we characterize the individual profiles

by the bent-cable function (Chiu et al. [16]), given by

f(tij,θi) = β0i + β1itij + β2iq(tij,αi), (3.2)

where q(tij,αi) =
(tij − τi + γi)

2

4γi
1{|tij − τi| ≤ γi}+ (tij − τi)1{tij − τi > γi} (3.3)

with βi = (β0i, β1i, β2i)
′ and αi = (γi, τi)

′ being the vectors of linear and transition coeffi-

cients, respectively, and θi = (β′i,α
′
i)
′. Henceforth, we will denote f(tij,θi) and q(tij,αi)

simply by fij and qij, respectively. Recall that γi = 0 reduces the bent cable to a broken-

stick model for which

qij = (tij − τi)1{tij − τi > 0}. (3.4)
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Moreover, the CTP (see Chapter 2) for the ith individual is given by (τi − γi − 2β1iγi/β2i)

if γi > 0 (gradual transition), and τi if γi = 0 (abrupt transition).

Having specified a model to characterize an individual profile, we now focus on the

assumptions upon which our hierarchical model is based.

3.1.2 Assumptions

If all individuals are assumed to exhibit the same type of transition – be it abrupt or

gradual – then shrinkage towards the population may force an observed profile resembling

a broken stick to take on a bent-cable fit, and vice versa. Therefore, we have the following:

T. Assumptions Regarding the Transition:

T1. Each individual i potentially comes from one of two populations: Population

A for which γi = 0 and Population G for which γi > 0; and

T2. each individual has probability ω to have come from Population G (and, hence,

probability 1− ω to come from Population A).

Besides T, additional assumptions are made as follows, but they can be adjusted to alter

the complexity of the model:

A. Level 1 Assumptions:

A1. Each profile has a unique amount of scatter around the stick/cable;

A2. εij’s follow a stationary AR(p) structure (Box et al. [8]) with a common p;

and

A3. θi and εi = (εi1, εi2, . . . , εini)
′ are independent.

B. Level 2 Assumptions:

B1. The vector of responses yi for the m individuals are independent of each other;

B2. βi and αi are independently distributed random variables;
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B3. between-individual variation is due entirely to unexplained phenomena;

B4. Populations A and G share common intercept and slopes, that is, βi has the

same distribution between the two populations; and

B5. Populations A and G do not share a common parameter for the center of the

bend, that is, the distribution of τi varies between the populations.

C. Assumption for All 3 Levels:

C1. The relevant quantities have certain probability distributions (see Sections 3.1.3

and 3.2.4).

The hierarchical formulation of our mixed bent-cable model is based on the above

assumptions, and is described in the following sub-section.

3.1.3 The Hierarchy

Specification of a model for εij of (3.1) completes the description of the within-individual

variation, whereas the between-individual variation is taken into account by the individual

parameter vectors θi’s which are, by T1, assumed to arise from either Population A or G.

Now we present below our modeling approach for εij and θi and the prior specifications in

Level 3.

Level 1: within-individual variation

Within-individual level of the hierarchy takes into account two components: correlation

and variation among the repeated measurements over time. Under Assumptions A1, A3

and C1, the most simple model for the within-individual variation is

[εij|σ2
i ] ∼ N (0, σ2

i ) for all j = 1, 2, . . . , ni, (3.5)

which is considered a conditionally independent specification of the within-individual vari-

ation. Under this model, the correlation of the repeated measures from the same individual

is induced by the individual-specific random coefficients θi’s. Though, for some data, θi’s

may adequately account for this correlation, quite often there is additional serial correlation
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remaining that can be accounted for by the εij’s. Therefore, specific correlation structures

(e.g. time series models) are often used for a description of the within-individual variation

(Fitzmaurice et al. [24], Pinheiro and Bates [58]). One such model is the autoregressive

process of order p > 0 (Box et al. [8]) which is well-suited in many types of longitudinal

data where measurements are made at equal (or approximately equal) intervals of time

(Fitzmaurice et al. [24]). Therefore, we consider here an AR(p) process for describing the

within-individual variation.

Thus, by A2, we have at Level 1

εij = φ1εi,j−1 + φ2εi,j−2 + . . .+ φpεi,j−p + vij (3.6)

where φ = (φ1, φ2, . . . , φp)
′ is the vector of AR(p) parameters. For A1, A3 and C1, we

assume that the innovations vij’s in (3.6) are independent and identically normal with

mean 0 and variance σ2
i , that is

[vij|σ2
i ] ∼ N (0, σ2

i ) for all j = 1, 2, . . . , ni. (3.7)

Furthermore, we consider a conditional likelihood framework, where the initial p ob-

servations for each i, y
(1)
i = (yi1, yi2, . . . , yip)

′, are treated as known, whereas y
(2)
i =

(yi,p+1, yi,p+2, . . . , yi,ni)
′ are random. This assumption is common, and was considered by

Chiu and Lockhart [15] for frequentist bent-cable regression of a single profile, and by Chib

[11] in a Bayesian approach for linear regression.

Now, it can be verified from (3.1), (3.6) and (3.7) that the first level of the hierarchy

(see appendix (Section 3.4.1)) is

[y
(2)
i | y

(1)
i ,θi,φ, σ

2
i ] ∼ Nni−p(µi, σ2

i Ii), (3.8)

where µi(θi,φ) ≡ µi = (µi,p+1, µi,p+2, . . . , µi,ni)
′, µij = β0i+β1ixij +β2irij +

∑p
k=1 φkyi,j−k,

xij = tij −
∑p

k=1 φkti,j−k, rij = qij −
∑p

k=1 φkqi,j−k, Ii is an identity matrix of order ni − p,
and Nni−p denotes a (ni − p)-variate normal distribution.

Level 2: between-individual variation

The between-individual variation is accounted for by specifying models for the individual-

specific regression coefficients θi’s. This, in turn, requires distributional assumptions for

these parameters (Assumption C1). Note that θi has two components: βi and αi, and
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by B2, they are independent. Therefore, we model these two components separately.

Moreover, we assume that the differences in the θi’s are due entirely to unexplained phe-

nomena (Assumption B3). In Section 3.3, we describe a possible direction of relaxing this

assumption.

Since (i) the dependence structure can be fully specified by the covariance matrix

through assuming a multivariate normal distribution, and (ii) multivariate normal distri-

butions are convenient theoretically and computationally, we assume

[βi|µβ,Σβ] ∼ N3(µβ,Σβ) (3.9)

for both populations A and G (Assumption B4), where µβ = (µ0, µ1, µ2)
′ and Σβ are,

respectively, the mean vector and covariance matrix of βi, and N3 denotes a trivariate

normal distribution. Note that µβ summarizes the linear coefficients of the populations

and Σβ quantifies the association among the random coefficients β0i, β1i and β2i.

We now consider modeling αi = (γi, τi)
′. First note that since αi is positive, it is

reasonable to assume a lognormal (LN ) distribution for C1. To accommodate T1 and T2,

we model γi by a delta-lognormal distribution (Aitchison and Brown [1]), which assumes a

non-zero probability, 1− ω, that γi = 0, and a probability ω that γi > 0; and a lognormal

distribution for γi given γi > 0, that is,

g(γi) = 1(γi = 0) (1− ω) + 1(γi > 0) ω LN (γi) (3.10)

where LN (γi) is the probability density function of a lognormal distribution. To accom-

modate B5, we assume a LN distribution for τi given γi with different sets of parameters

for the two populations. Then, denoting a Bernoulli distribution by BER, it can be shown

that (see appendix (Section 3.4.2)) the probability density function of αi is

g(αi|Ii) = (1− Ii) LN (τi|µτA , σ2
τA

) + Ii LN 2(αi|µα,Σα),

[Ii|ω] ∼ BER(ω)

 , (3.11)

where LN 2 stands for bivariate lognormal distribution; µτA and σ2
τA

are, respectively, the

mean and variance of log (τi) for Population A (for which Ii = 0); and µα = (µγ, µτ )
′ and

Σα are, respectively, the mean vector and the covariance matrix of log (αi) for Population

G (for which Ii = 1). Note that Ii is a latent allocation variable (Ii = 0 if γi = 0 and Ii = 1

if γi > 0), and marginalizing over it in (3.11) gives
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g(αi) = 1(γi = 0) (1− ω) LN (τi|µτA , σ2
τA

) + 1(γi > 0) ω LN 2(αi|µα,Σα), (3.12)

which is the delta bivariate mixed lognormal distribution (Shimizu [66]) for αi. Writ-

ing the delta bivariate mixed lognormal distribution hierarchically as in (3.11) facilitates

implementing the Bayesian approach (Chapter 4).

Level 3: prior specifications

We employ a Bayesian approach for statistical inference (Chapter 4). The main idea of

Bayesian inference is to combine data and prior knowledge on a parameter to determine its

posterior distribution (the conditional density of the parameter given the data). The prior

knowledge is supplied in the form of a prior distribution of the parameter, which quantifies

information (or uncertainty) about the parameter prior to any data being gathered. For

example, recall B5 which states that βi and αi are independent of each other for all i.

Now, our choice of distributions for C1 leads to

[µβ|h1,H1] ∼ N3(h1,H1), [µα|h2,H2] ∼ N2(h2,H2),

[µτA|a0, a1] ∼ N (a0, a1),
[
Σ−1
β |ν1,A1

]
∼ W

(
ν1, (ν1A1)

−1
)
,

[Σ−1
α |ν2,A2] ∼ W

(
ν2, (ν2A2)

−1
)
,
[
σ−2
τA
|b0, b1

]
∼ G( b0

2
, b1

2
),

[ω|c0, c1] ∼ B(c0, c1), [φ|h3,H3] ∼ Np(h3,H3),[
σ−2
i |d0, d1

]
∼ G(d0

2
, d1

2
)


, (3.13)

where W , G and B stand for Wishart, gamma and beta distributions, respectively, with

the gamma parameterization in terms of the shape and rate parameters. Here, the hyper-

parameters are h1, H1, h2, H2, a0, a1, ν1, A1, ν2, A2, b0, b1, c0, c1, h3, H3, d0 and d1, all of

which assumed known. Below in this section, we present the rationale behind the choices

of the distributions in (3.13) along with some common choices of the hyperparameters.

The choice of the distributions for C1 in developing the three-level hierarchical model

leads to conditional conjugacy (conditional on everything else including the data) for all

the parameters except for αi. We prefer conjugacy here because of extensive computations

involved in Bayesian inference. In general, Bayesian inference is based on the posterior

distributions of the relevant parameters. However, computations of the posteriors often in-

volve evaluation of multi-dimensional integrals that cannot be done analytically. Therefore,
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special techniques are employed to approximate a posterior density. One such technique

is the Monte Carlo integration which is convenient and straightforward to implement for

hierarchical nonlinear models. However, this technique involves extensive computations,

and works through generating random samples from the full conditionals (distribution of

a parameter conditioned on all the remaining ones and the data). Conditional conjugacy

leads to closed-form full conditionals from which drawing random samples is computation-

ally easier. Therefore, conjugacy is an important consideration in Bayesian inference as it

facilitates implementing the Monte Carlo integration; see Chapter 4 for details.

Values of the hyperparameters in (3.13) reflect our prior knowledge. When little is

reliably known about the individual trajectories beyond its functional form of the bent-

cable, it is reasonable to choose the hyperprior values that lead to fairly vague, minimally

informative priors (Carlin [9]).

For us, the most convenient choices of the priors for µβ, µα, φ and µτA are normal dis-

tributions: [µβ|h1,H1] ∼ N3(h1,H1), [µα|h2,H2] ∼ N2(h2,H2), [φ|h3,H3] ∼ Np(h2,H2)

and [µτA|a0, a1] ∼ N (a0, a1), which lead to conditional conjugacy. The choice of a mean

vector (e.g., h1, h2 or h3) has very little effect on Bayesian estimation, as long as the

respective variance parameters (diagonal elements of H1, H2 or H3, respectively) are taken

to be very large which lead to flat priors. Therefore, a common practice is to choose a zero

mean vector and a covariance matrix, say, H1 such that H−1
1 ≈ O, where O is a matrix with

all its elements zero (Davidian and Giltinan [19]). According to Song [70], the diagonals

of such a covariance matrix should be as large as 106. Similarly, a0 = 0 and a−1
1 ≈ 0 lead

to a flat prior for µτA .

The reader may refer to Gelman [27] and Spiegelhalter et al. [71] for a discussion on

the prior distributions for variance parameters such as σ2
i and σ2

τA
. For conjugacy, here we

choose inverse gamma distributions for σ2
i and σ2

τA
(or equivalently, gamma distributions

for σ−2
i and σ−2

τA
). We use the parameterization of the gamma distribution as given in Chib

[11]. For example, [σ−2
i |d0, d1] ∼ G(d0

2
, d1

2
) has mean d0/d1 and variance 2d0/d

2
1. Small

values of the hyperprior parameters lead to a flat prior. According to Song [70], d0 and

d1 can be as small as 10−4. Dominicus et al. [20] used d0 = 0.1 and d1 = 0.1 to analyze

cognitive decline by a changepoint model.

The conjugate prior of a covariance matrix such as Σβ or Σα is the inverse Wishart

distribution, or equivalently, Wishart for the inverse of the covariance matrix that is Σ−1
β
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or Σ−1
α . We use the parameterization of the Wishart distribution as given in Carlin [9] and

Wakefield et al. [83]. For example, [Σ−1
β |ν1,A1] ∼ W (ν1, (ν1A1)

−1) has degrees of freedom

ν1 and expectation A−1
1 . Setting the degrees of freedom equal to the order of the scale

matrix (e.g. 3 for the prior of Σ−1
β ) makes a Wishart prior nearly flat (Wakefield et al.

[83]). Under the parameterization of the Wishart distribution as above, the matrix A1

(or A2) is chosen to be an approximate prior estimate of Σβ (or Σα). In the absence of

such prior knowledge, one may use the sample covariance matrix of the individual-specific

estimates of the regression coefficients; the R (R Development Core Team [61]) library

“bentcableAR” [14] for single profile bent-cable regression can be useful in this regard.

Note that the choice of A1 (or A2) often has very little effect on the result except for cases

with very few individuals (Lindley [48]).

Since 0 < ω < 1, the obvious choice of the prior for ω is either a beta distribution or

an uniform distribution in the interval (0, 1). We choose the beta distribution [ω|c0, c1] ∼
B(c0, c1) in our model as it is conditionally conjugate. In the absence of prior information,

one may choose c0 = c1 = 1 which leads to U(0, 1) distribution.

3.1.4 Summary of the Hierarchy

We developed a 3-level hierarchical model for our mixed bent-cable model in Sections 3.1.1-

3.1.3. In summary, these are

[y
(2)
i | y

(1)
i ,θi,φ, σ

2
i ] ∼ Nni−p(µi, σ2

i Ii), (3.14)[
βi|µβ,Σβ

]
∼ N3(µβ,Σβ),

g(αi|Ii) = (1− Ii) LN (τi|µτA , σ2
τA

) + Ii LN 2(αi|µα,Σα),

[Ii|ω] ∼ BER(ω)

 , (3.15)

[µβ|h1,H1] ∼ N3(h1,H1), [µα|h2,H2] ∼ N2(h2,H2),

[µτA|a0, a1] ∼ N (a0, a1),
[
Σ−1
β |ν1,A1

]
∼ W

(
ν1, (ν1A1)

−1
)
,

[Σ−1
α |ν2,A2] ∼ W

(
ν2, (ν2A2)

−1
)
,
[
σ−2
τA
|b0, b1

]
∼ G( b0

2
, b1

2
),

[ω|c0, c1] ∼ B(c0, c1), [φ|h3,H3] ∼ Np(h3,H3),[
σ−2
i |d0, d1

]
∼ G(d0

2
, d1

2
)


, (3.16)
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where the first two levels are (3.14) and (3.15), and the third level is (3.16) with the

hyperparameters h1, H1, h2, H2, a0, a1, ν1, A1, ν2, A2, b0, b1, c0, c1, h3, H3, d0 and

d1. Statistical assumptions T1, T2, A1-A3, B1-B5 and C1, together with Equations

(3.14)-(3.16), constitute our mixed bent-cable model.

3.2 Rationale Behind the Assumptions and Possible

Further Extension of the Model

Thus far in this chapter, we developed the mixed bent-cable regression model in a hi-

erarchical framework. The underlying assumptions of our methodology are presented in

Section 3.1.2. In this section, we discuss the rationale of those assumptions, and possible

further extensions of the mixed bent-cable regression by relaxing some of the underlying

assumptions. Note that we developed the mixed bent-cable model in Section 3.1 keeping

in mind our motivating examples — the rat and CFC-11 data (Chapter 1). In Chapter 6,

we will see that the proposed model is capable of characterizing those two data sets reason-

ably well. Because of that, and since relaxing the underlying assumption(s) may involve

both theoretical and computational complications, we do not pursue these in this thesis.

However, depending on the context, relaxation of some the assumptions may be more com-

patible for other data sets, and therefore, we present a discussion about such possibilities

in the following sub-sections.

3.2.1 Assumption T

We take into account through T that the sample potentially comes from two populations.

Our flexible methodology should be used when there is strong reason to believe that this

assumption is reasonable. Recall from Section 3.1.3 that the Bayesian inference is based on

the posterior distributions of the parameters, and we employ the Monte Carlo integration

technique to approximate those via generating random samples from the full conditionals.

However, drawing random samples from some of the full conditionals for the mixture

model may produce an indeterminate value, and that can ultimately break down the whole

computational process; see Section 4.6 for details. In contrast, data exhibiting only one

type of transition is common in many areas and the above computational problem is
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irrelevant in modeling such data, we present in Chapter 5 special cases of the mixed-bent

cable regression where all the individuals exhibit only one of type of transition (abrupt or

gradual).

3.2.2 Assumption A

Assumption A1 implies a constant variance among the repeated measurements for an

individual. Although this assumption could be reasonable in a wide range of applications, it

may be somewhat restrictive for some particular types of longitudinal data. For example, a

phenomenon frequently observed in pharmacokinetics studies is that variability in measured

concentrations increases with the predicted concentrations, reflecting the fact that assay

precision is greater at lower concentrations (Wakefield [82]). On the other hand, prostate

specific antigen (PSA) laboratory assays are known to have lower precision at lower PSA

concentrations (Bellera et al. [6], Carter et al. [10], Eastham et al. [22]). Therefore,

a possible extension of our methodology lies in relaxing A1 to incorporate non-constant

variance among the repeated measurements at Level 1. This possibility could be modeled

by a variance function which may depend on (a) tij, or the individual-specific regression

coefficients θi through the function f(tij,θi), and (b) an additional variance parameter

vector to represent an increasing/decreasing variance over time. Readers may refer to

Pinheiro and Bates [58] for a description of some of these variance functions. Note that

sometimes a change of scale (e.g., logarithmic scale) rather than relaxing A1 can help to

deal with increasing/decreasing variances.

Assumption A2 accounts for additional serial correlation among the repeated measure-

ments remaining after what has been accounted for by the individual-specific regression

coefficients θi. Our methodology is based on a stationary AR(p) model for A2. Note that

assuming {vij, j = 1, 2, . . . , ni} in (3.6) are independent and identically distributed random

variables with mean 0 and constant variance σ2
i (i.e., A1 holds), an AR(p) model is sta-

tionary if and only if the roots of the AR polynomial φ(w) = 1−φ1w−φ2w
2 + . . .+φpw

p all

lie outside the unit circle (Box et al. [8]), a condition which can be evaluated numerically

using the Schur’s theorem for any p ≥ 1 (readers may refer to Cryer [18] for a description

of the algorithm). Thus, nonstationarity can arise if

(a) A1 is relaxed to incorporate non-constant variance as described above; or

24



(b) A1 holds, but at least one root of the AR polynomial lies inside the unit circle.

We remark here that in case of nonstationarity, if φk’s satisfy the unit root condition∑p
k=1 φk = 1, the intercepts β0i’s are not identifiable (Chib [11], Zellner [84]). Address-

ing the non-stationarity caused by either (a) or (b) could be an area of future research.

Moreover, a more general time series model (e.g., autoregressive moving average (ARMA)

model (Box et al. [8])) could be employed to account for more general types of serial

correlation. Readers may refer to Chib and Greenberg [12] for a Bayesian approach of

modeling the within-individual noise by an ARMA process for linear regression. Note that

the AR and ARMA models are appropriate when the measurements are made at equal (or

approximately equal) intervals of time. Since the continuous autoregressive (CAR) process

(Pinheiro and Bates [58]) can be used for non-equidistant repeated measurements, another

useful extension of our methodology could be based on considering the CAR process to

model within-individual noises.

Assumption A3 is a consequence of A1 and A2, which states that the within-individual

noise does not depend on the individual-specific regression coefficients θi.

3.2.3 Assumption B

Assumption B1 is a standard assumption for longitudinal studies (Davidian and Giltinan

[19], Fitzmaurice et al. [24], Vonesh and Chinchilli [81]), and facilitates the writing down

of the joint density compactly (see Section 4.7.1). This assumption simply refers to the

fact that repeated measurements for a particular individual are not expected to predict

or influence the responses for another individual. For example, it may be reasonable to

assume in the rat experiment (Chapters 1 and 6) that effects due to hemorrhage for a

particular rat do not predict or influence those for another rat. However, for the CFC-

11 data, this assumption could be in question because of the possible spatial effects, if

any. Extension of our methodology to incorporate spatial effects through, for example, a

conditional autoregressive model (Pettitt et al. [56]) could be an area of future research.

Assumption B2 may be reasonable in the sense that there is generally no way to infer

about αi from a prior knowledge of βi, without first seeing the data. For example, suppose

the two linear phases are very steep. This information alone is not sufficient to answer the
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question “what is the chance of αi being, say, (30, 40)′ versus (35, 50)′?” Therefore, we

developed our model in Section 3.1 by assuming that βi and αi are independent.

The degree of complexity for modeling θi depends on the nature of the data. In general,

θi can be modeled by assuming that Level 2 variation is due to (a) entirely unexplained

phenomena (Assumption B3), or (b) both random and systematic components. The former

is reasonable when experimental procedures are consistent from individual to individual,

so that it is unlikely for a systematic, identifiable basis for Level 2 variation (Davidian

and Giltinan [19]). For example, as the rats are matched with respect to species, gender,

age, weight and temperature, and the experiment is conducted in a laboratory setting

(Chapter 6), (a) might be reasonable for the rat experimental model. On the other hand,

(b) might be more reasonable for the CFC-11 data because of the potential effects due

to change in the instrumentation over time (Chapter 6) to monitor the atmospheric con-

centration of CFC-11. Note that since Level 2 variation under (a) is accounted for, at

least partially, by the random components, ignorance of the systematic components may

not seriously affect the results. However, an extension via incorporating covariates (e.g.,

different types of instruments to monitor CFC-11 data) in a linear additive fashion in the

model for θi is straightforward, although the technical details are difficult (Davidian and

Giltinan [19]).

Although Assumption B5 is natural to characterize the transition differently for the

two populations, B4 can be relaxed to account for different βi’s for the two populations,

i.e., when intercept and slope parameters could behave differently between populations.

However, the extension would be at the cost of increased computational burden.

3.2.4 Assumption C

The choice of the distributions at levels 1-3 (Section 3.1) leads to conditional conjugacy

for all the parameters except for αi because of its nonlinearity in the regression function.

As mentioned in Section 3.1.3, we prefer conjugacy because of extensive computations

involved in Bayesian inference. These types of priors under the assumptions of (i) samples

coming from a single population, and (ii) AR(0) model for the εij’s, were used by many

other authors, e.g., Bennett et al. [7], Carlin [9], Dominicus et al. [21], Wakefield et

al. [83]. Note that a multivariate t distribution can be considered for βi and φ for
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theoretical modeling (Wakefield et al. [83], Chib [11]), but this would require estimation of

m additional parameters for each of βi and φ. This consideration might be a future topic.

For φ, the specification of prior normality can readily deal with higher-order AR pro-

cesses without extra complications, and is flexible in terms of incorporating prior informa-

tion about stationarity of the error process by truncating the prior distribution (see Chib

[11]). For an unrestricted normal prior for φ as we have chosen here, Chib suggests to

retain a draw from the full conditional (Chapter 4) if the stationarity condition for the

AR process is satisfied. The proportion of draws thus accepted provides the conditional

probability that the process is stationary.

An alternative prior for σ2
i (and σ2

τA
) is a uniform distribution on log σi on the real line.

This is equivalent to π(σ2
i ) ∝ 1/σ2

i . However, σ2
i = 0 is theoretically possible, and the

improper prior π(σ2
i ) ∝ 1/σ2

i goes to infinity at zero at a rate sufficiently quickly to give a

posterior distribution that is also improper (Spiegelhalter et al. [71]). For this reason, and

because of conditional conjugacy, we choose gamma priors for σ2
i and σ2

τA
in our modeling

approach.

3.3 Discussion

To develop our hierarchical model, we take into consideration both feasibility and prac-

ticality. Here, feasibility is accomplished by taking into account (1) the possibility of a

sample being drawn from two populations: one is characterized by a gradual transition

and the other by an abrupt transition, and (2) a model which is parsimonious, and ap-

pealing due to its simple structure and greatly interpretable regression coefficients. On the

other hand, practicality is accomplished by specifying our priors so that they are condition-

ally conjugate. Bayesian inference (Chapter 4) generally involves extensive computations

that may require a very long time for evaluation even with high-speed computational fa-

cilities. In this regard, conditional conjugacy is an important consideration in developing

a hierarchical Bayesian model.
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3.4 Chapter Appendix

3.4.1 Level 1

We can write the first level of our hierarchical model as in Equation (3.8). This is for-

mulated from the regression model represented by Equations (3.1), (3.6) and (3.7), i.e.

yij = fij + εij, εij =

p∑
k=1

φk εi,j−k + vij, [vij|σ2
i ] ∼ N (0, σ2

i ).

Here,

yij = fij + εij

= β0i + β1i tij + β2i qij + εij

= β0i + β1i tij + β2i qij + φ1 εi,j−1 + φ2 εi,j−2 + . . .+ φ1 εi,j−p + vij

= β0i + β1i tij + β2i qij + φ1 (yi,j−1 − β0i − β1i ti,j−1 − β2i qi,j−1)+

φ2 (yi,j−2 − β0i − β1i ti,j−2 − β2i qi,j−2) + . . .+

φp (yi,j−p − β0i − β1i ti,j−p − β2i qi,j−p) + vij

= β0i

(
1−

p∑
k=1

φk

)
+ β1i

(
tij −

p∑
k=1

φk ti,j−k

)
+ β2i

(
qij −

p∑
k=1

φk qi,j−k

)
+

p∑
k=1

φk yi,j−k + vij

= β0i

(
1−

p∑
k=1

φk

)
+ β1i xij + β2i rij +

p∑
k=1

φk yi,j−k + vij

= µij + vij.

Now, since [vij|σ2
i | ∼ N (0, σ2

i ) for all j, the first level of the hierarchy is

[y
(2)
i | y

(1)
i ,θi,φ, σ

2
i ] ∼ Nni−p(µi, σ2

i Ii).

3.4.2 Delta Bivariate Mixed Lognormal Distribution

As discussed in Section 3.1, we model γi by a delta-lognormal distribution (Aitchison and

Brown [1]), which assumes a non-zero probability, 1− ω, that γi = 0, and a probability ω
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that γi > 0; and a lognormal distribution for γi given γi > 0, that is,

g(γi) = 1(γi = 0) (1− ω) + 1(γi > 0) ω LN (γi).

Next, for the center of the bend, since τi may vary with the two populations (As-

sumption B5), we account for this by conditioning τi on γi. More specifically, we assume

[τi|γi = 0] and [τi|γi > 0] are both lognormally distributed, but with different sets of pa-

rameters. We denote the probability density functions of these two lognormal distributions

by LN (τi|γi = 0) and LN (τi|γi > 0), respectively. Then, the joint distribution of αi is

denoted by

g(αi) = g(γi) g(τi|γi)
= 1(γi = 0) (1− ω) g(τi|γi = 0) + 1(γi > 0) ω LN (γi) g(τi|γi > 0)

= 1(γi = 0) (1− ω) LN (τi|γi = 0) + 1(γi > 0) ω LN (γi) LN (τi|γi > 0). (3.17)

Here LN (τi|γi = 0) = LN (τi|µτA , σ2
τA

) and LN (γi) × LN 1(τi|γi > 0) = LN 2(αi|µα,Σα),

the probability density function of a bivariate lognormal distribution. Therefore, (3.17)

becomes

g(αi) = 1(γi = 0) (1− ω) LN (τi|µτA , σ2
τA

) + 1(γi > 0) ω LN 2(αi|µα,Σα) (3.18)

which is the probability density function of a delta bivariate mixed lognormal distribution

(Shimizu [66]). Now, (3.18) can be expressed hierarchically as in (3.11). Note that using

(3.11), we can write the joint density of αi and Ii as follows:

g(αi, Ii) = [(1− Ii) LN (τi|µτA , σ2
τA

) + Ii LN 2(αi|µα,Σα)]× [ωIi (1− ω)1−Ii ]

As mentioned in Section 3.1.3, marginalizing over Ii gives

g(αi) =
1∑

Ii=0

[(1− Ii) LN (τi|µτA , σ2
τA

) + Ii LN 2(αi|µα,Σα)]× [ωIi (1− ω)1−Ii ].

= 1(γi = 0) (1− ω) LN (τi|µτA , σ2
τA

) + 1(γi > 0) ω LN 2(αi|µα,Σα),

which is the probability density function of a delta bivariate mixed lognormal distribution.
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Chapter 4

Bayesian Inference for the Mixed

Bent-Cable Model

In this chapter, we describe the inference method of the mixed bent-cable regression pro-

posed in Chapter 3. Statistical inference is carried out via the Bayesian technique. Until

recently, evaluating integrals in Bayesian computation has been the source of most of the

practical difficulties in its application, especially in high dimensions. In most cases, ana-

lytic evaluation of the integrals is impossible. Alternative approaches (Gilks [34]) include

(1) numerical evaluation; (2) Laplace approximation; and (3) Monte Carlo integration,

including Markov chain Monte Carlo (MCMC). MCMC methods are straightforward to

implement and provide a unifying framework for approximate the integrals. It is therefore

the preferred means of implementation in this thesis.

In Section 4.1, we describe the Bayesian inference technique. There, we introduce

the posterior distribution for the mixed bent-cable model based on which the statistical

inference is made. In Section 4.2, we present how the MCMC method comes into play

in Bayesian inference for our model, and how it works. Generation of Markov chains to

implement the Monte Carlo method is described in Section 4.3. In Section 4.4, we discuss

some common issues of mixing and convergence of the Markov chain to its stationary

distribution, and commonly used diagnostics for them. Computational extensiveness is a

common concern to the implementation of the MCMC method. We describe our approach

of carrying out the computations in Section 4.5. In Section 4.6, we discuss a few cautionary

remarks about using our methodology. We present all the mathematical derivations and

other technical materials related to this chapter in the chapter appendix (Section 4.7).
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4.1 Bayesian Inference

Statistical inference for our mixed bent-cable model is carried out via a Bayesian approach.

The main idea of Bayesian inference is to combine data and prior knowledge on a parameter

(or a vector of parameters) to determine its posterior distribution (the conditional density

of the parameter given the data). The prior knowledge is supplied in the form of a prior

distribution (see Section 3.1.3), which quantifies information and uncertainty about the

parameter prior to any data being gathered.

Bayesian inference is made based on the posterior distribution of a parameter. Ideally,

one might report the entire posterior distribution, which provides the behavior of the

parameter given the data. A graphical display of the posterior density could be useful in

this regard. However, it is often more practical to report several numerical characteristics

describing the posterior. For example, the posterior mean or median can be considered a

point estimate of the parameter. For a symmetric posterior density, the mean and median

are identical. For an asymmetric posterior, the median is preferred over the mean because

the mean often gives too much weight to extreme values. Note that the mean minimizes the

expected posterior squared-error loss function, whereas the median minimizes the expected

posterior absolute-error loss function. Thus, other point estimates may be defined using

different loss functions. Another important quantity is the posterior standard deviation

which measures the uncertainty of the parameter a posteriori. The Bayesian analogue of

a frequentist confidence interval is usually referred to as a credible interval or Bayesian

confidence interval. A 100(1 − 2a)% credible interval is (p1, p2), where p1 and p2 are the

ath and (1− a)th quantiles of the posterior density, respectively. This credible interval has

a probabilistic interpretation. For example, for a = 0.025, the conditional probability that

the parameter falls in the interval (p1, p2) given the data is 0.95.

4.1.1 Posterior Density

Recall from Chapter 3 that we let y
(1)
i = (yi1, yi2, . . . , yip)

′ and y
(2)
i = (yi,p+1, yi,p+2, . . . , yi,ni)

′

be the initial p and the next ni − p observations for the ith individual, respectively, where

p is the order of the AR process to model the within-individual noises εij’s. Then, we

denote the observed data from all m individuals by y =
(
y(1)′ ,y(2)′

)′
, where y(1) =(

y
(1)′

1 ,y
(1)′

2 , . . . ,y
(1)′
m

)′
and y(2) =

(
y

(2)′

1 ,y
(2)′

2 , . . . ,y
(2)′
m

)′
. Also recall we consider a con-
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ditional likelihood framework, where the initial p observations for each i, y
(1)
i , are treated

as known, whereas y
(2)
i are random.

Next, recall the model parameters from page 22; letting β = (β′1,β
′
2, . . . ,β

′
m)′, α =

(α′1,α
′
2, . . . ,α

′
m)′ and σ−2 = (σ−2

1 , σ−2
2 , . . . , σ−2

m )′, we denote all the model parameters

collectively by Θ =
(
β,α,µβ,µα, µτA ,Σ

−1
β ,Σ−1

α , σ−2
τA
, ω,σ−2,φ

)
. Now, denoting a density

function by π(.), the joint density of the model parameters and the data can be written as

π
(
Θ,y(2)

)
= π

(
y(2)|Θ

)
π
(
Θ
)

= π
(
y(2)|β,α,µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
× π

(
β|α,µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
× π

(
α|µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
× π

(
µβ,µα, µτA ,Σ

−1
β ,Σ−1

α , σ−2
τA
, ω,σ−2,φ

)
(4.1)

where the last term on the right-hand side of Equation (4.1) represents the prior specifi-

cations at Level 3 for our mixed bent-cable regression (see Section 3.1.3). The expression

of this joint density (4.1) under our assumptions for the probability distributions of the

relevant quantities (Assumption C1, Section 3.1.2) is given in the chapter appendix (Sec-

tion 4.7.1).

Now, the posterior density for our model specified in Section 3.1.4 can be written using

Bayes’ theorem as follows:

π
(
Θ|y(2)

)
=
π
(
Θ,y(2)

)
π
(
y(2)
) =

π
(
y(2)|Θ

)
π
(
Θ
)

π
(
y(2)
) (4.2)

where π
(
y(2)|Θ

)
π
(
Θ
)

is given by (4.1), and π
(
y(2)
)

=
∫ ∫

. . .
∫
π
(
y(2)|Θ

)
π
(
Θ
)
dΘ is the

normalizing factor in Bayes’ theorem. Note that calculation of π
(
y(2)
)

requires evaluation

of multi-dimensional integrals as Θ represents all the model parameters as described above.

To make inference about a particular parameter (or a vector of parameters), we now

need to work out its marginal posterior distribution. For example, inference about the

population slope parameter µβ is based on its marginal posterior density given by
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π
(
µβ|y(2)

)
=∫ ∫

. . .
∫
π
(
y(2)|Θ

)
π
(
Θ
)
dβ dα dµα dµτA dΣ−1

β dΣ−1
α dσ−2

τA
dω dσ−2 dφ∫ ∫

. . .
∫
π
(
y(2)|Θ

)
π
(
Θ
)
dβ dα dµβ dµα dµτA dΣ−1

β dΣ−1
α dσ−2

τA
dω dσ−2 dφ

.

Thus, the main obstacle of Bayesian inference is to evaluate multi-dimensional inte-

grals as illustrated above. However, development of MCMC methods and computational

advances in recent decades designed to overcome this obstacle have led to considerable

interest in the application of Bayesian techniques to complex modeling problems. The rest

of this chapter describes the MCMC methods for the mixed bent-cable regression model,

and our approach to implement those techniques.

4.2 Bayesian Inference and MCMC Methods

Though our prior specifications lead to conditional conjugacy for all the parameters except

for αi, conjugate priors in the sense that the marginal posteriors are in the same family of

distributions as the respective priors, in general, do not exist for a three-level hierarchical

nonlinear model. Therefore, the following typically intractable integration problems arise

in Bayesian inference, and can be solved by the MCMC techniques (Andrieu et al. [3]):

(a) Normalization: to obtain the posterior (4.2) given the prior π
(
Θ
)

and conditional

likelihood π
(
y(2)|Θ), the normalizing constant π

(
y(2)), which involves evaluation of

multi-dimensional integrals, needs to be computed.

(b) Marginalization: we need to compute the marginal posterior distribution for a par-

ticular parameter (or a vector of parameter) of interest from the posterior (4.2) to

make inference about it.

(c) Expectation: one of the main objectives in any statistical problem is to obtain sum-

mary statistics to summarize a distribution of interest. As mentioned in Section 4.1,

the posterior mean can be one such summary measure in Bayesian statistics, and

the distribution of interest may be for a certain function of a parameter. Thus, we

may wish to evaluate an integral to compute the expectation of this function of the

parameter. For example, for µβ, we would evaluate the integral of the form
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E
[
h(µβ)|y(2)

]
=

∫
h(µβ)π(µβ|y(2))dµβ,

where, for instance, h(µβ) = µ1 (population incoming slope), or h(µβ) = µ1 + µ2

(population outgoing slope), or h(µβ) =
{
µ1 − E

[
µ1|y(2)

]}2
(posterior variance of

the population incoming slope).

Note that once we have a Monte Carlo simulated version of the posterior, we need not do

anything analytic, and it is straightforward to carry out the statistical inference through

the MCMC principles as we will now present in the subsequent sections.

4.2.1 MCMC Methods

The key idea of MCMC methods is as follows. Let {Θ(s), s = 1, 2, . . . , T, . . .} be a real-

ization from an appropriately constructed Markov chain with stationary distribution π(.).

Also, let {Θ(s)} be (1) irreducible, (2) positive recurrent, and (3) aperiodic. Then, under

these three regularity conditions,

Θ(s) d−→ Θ ∼ π(Θ|y(2)) and
1

T

T∑
s=1

h
(
Θ(s)

) a.s.−→ E
[
h(Θ)|y(2)

]
as T −→∞

where the latter result is known as the ergodic theorem. If regularity holds, then after a

sufficiently long burn-in (see Section 4.4), say S iterations, the chain gradually “forgets” the

initial state, and eventually converges to the stationary distribution, which does not depend

on s. Note that, by the ergodic theorem, the sample mean computed from the Markov

chain can be considered a point estimate of h(Θ). Moreover, since the chain converges in

distribution to its stationary distribution, it is also legitimate to use the sample median

as an estimate of h(Θ). As described at the beginning of this section (Page 31), the mean

and the median are identical for a symmetric distribution, whereas the median is preferred

for an asymmetric distribution.

The regularity conditions as mentioned above are required for {Θ(s)} to converge to its

stationary distribution because of the following reasons as described by Roberts [64].

1. The irreducible condition ensures that the Markov chain can reach any state in a

finite number of iterations from any starting point with a positive probability;
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2. the positive recurrent condition ensures that if the starting value Θ(0) is sampled

from π(.), then all subsequent iterations will be generated from π(.); and

3. the aperiodic condition prevents the Markov chain from oscillating between different

sets of states in a regular periodic movement.

Note that although a Markov chain converges under regularity conditions, in practice, such

conditions are hard to verify but convergence diagnostics help us identify nonconvergence

(see Section 4.4).

In summary, one needs to first construct a Markov chain that necessarily converges

to π(.). To summarize π(.), one can produce the marginal posterior density plot us-

ing kernel density estimation; then, the posterior mean, median, standard deviation and

other summaries can be approximated by their sample equivalents in the MCMC output

{Θ(s), s = 1, 2, . . . , T}; and the 100(1−2a)% credible interval (p1, p2), where p1 and p2 are

the ath and (1− a)th quantiles of the marginal posterior density, respectively, is produced

also using the MCMC quantiles.

For example, the population incoming and outgoing slopes, and the CTP for Population

G are common parameters of interest, for which h(Θ) = µ1, h(Θ) = µ1 + µ2, and h(Θ) =

exp {µτ} − exp {µγ} − 2µ1 exp {µγ}/µ2, respectively. Note that exp {µγ} and exp {µτ} are

the medians of the individual-specific random coefficients γi and τi, respectively, as our

Level 2 assumption for the αi’s involves lognormal distributions. Now, discarding the

burn-in samples, marginal posterior means of these quantities are approximated by

µ̂1 =
1

T − S

T∑
s=S+1

µ
(s)
1 ,

µ̂1 + µ2 =
1

T − S

T∑
s=S+1

(
µ

(s)
1 + µ

(s)
2

)
,

and ĈTP =
1

T − S

T∑
s=S+1

(
exp {µ(s)

τ } − exp {µ(s)
γ } − 2µ

(s)
1 exp {µ(s)

γ }/µ
(s)
2

)
.

Similarly, we can use Level 2 theoretical medians, exp {µγ} and exp {µτ} for Population

G and exp {µτA} for Population A, to describe the transition locations. For Population
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G, we can also use Level 2 theoretical standard deviations of γi and τi with the formulas(
exp {2µγ + (Σα)11} × [exp {(Σα)11} − 1]

)1/2
and

(
exp {2µτ + (Σα)22} × [exp {(Σα)22} −

1]
)1/2

, respectively, and the theoretical correlation between γi and τi with the formula(
exp {(Σα)12} − 1

)
/
(
[exp {(Σα)11} − 1] × [exp {(Σα)22} − 1]

)1/2
to describe the between-

individual variability of these transition parameters, where (Σα)11, (Σα)22 and (Σα)12 are,

respectively, the (1, 1), (2, 2) and (1, 2) elements of Σα. All these quantities can be esti-

mated easily from the MCMC output {Θ(s), s = 1, 2, . . . , T}.

Keeping in mind that each parameter has its own posterior distribution in Bayesian

statistics, and thus there are many ways to produce point and interval estimates for each

parameter, we now summarize our approach of making inference for the mixed bent-cable

model:

(a) use posterior means/medians as estimates of the parameters of interest, and the ath

and (1− a)th quantiles of the posteriors for the corresponding 100(1− 2a)% credible

intervals;

(b) since the estimates cannot be worked out analytically, approximate those by the

MCMC counterparts; and

(c) produce individual-specific and population fitted values.

To explain our approach for (c), first consider the ith individual. Note that the param-

eter vectors βi and αi have their own posterior distributions, so the bent-cable func-

tion f(tij,βi,αi) ≡ fij itself has a posterior distribution at each observed time point tij,

j = 1, 2, . . . , ni. Now, the question is: are we interested in the posterior of fij at every

observed tij, or in a general impression of the function f(t,βi,αi) over t ∈ [0,∞) based

on the posteriors of βi and αi? There is certainly no single right answer to this ques-

tion. In this thesis, we consider the posterior of the bent-cable function to produce the

fitted values by taking the MCMC sample means of the bent-cable function (we describe

the other approach based on the posteriors of βi and αi in the chapter appendix in Sec-

tion 4.7.2). In our approach, the bent cable for the ith individual at observed time tij is

h(Θ) = fij = β0i + β1itij + β2iqij, where qij is given by (3.3), and the corresponding fitted

values are

f̂ij =
1

T − S

T∑
s=S+1

(
β

(s)
0i + β

(s)
1i tij + β

(s)
2i q

(s)
ij

)
, j = 1, 2, . . . , ni, (4.3)
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where

q
(s)
ij =

(
tij − τ (s)

i + γ
(s)
i

)2

4γ
(s)
i

1
{
|tij − τ (s)

i | ≤ γ
(s)
i

}
+
(
tij − τ (s)

i

)
1
{
tij − τ (s)

i > γ
(s)
i

}
.

Similarly, the population fitted value at time t ∈ [0, C], where C is the maximum time

point observed in the data set, is

f̂t =
1

T − S

T∑
s=S+1

(
µ

(s)
0 + µ

(s)
1 t+ µ

(s)
2 q

(s)
t

)
,

where for Population G

q
(s)
t =

(
t− exp {µ(s)

τ }+ exp {µ(s)
γ }
)2

4 exp {µ(s)
γ }

1
{
|t− exp {µ(s)

τ }| ≤ exp {µ(s)
γ }
}

+
(
t− exp {µ(s)

τ }
)

1
{
t− exp {µ(s)

τ } > exp {µ(s)
γ }
}
,

and for Population A

q
(s)
t =

(
t− exp {µ(s)

τ }
)

1
{
t− exp {µ(s)

τ } > 0
}
.

Individual-specific and population fitted curves can then be interpolated based on the f̂ij

and f̂t values, respectively.

4.3 Construction of a Markov Chain

We now describe our approach to form a Markov chain for the mixed bent-cable model.

We employ the Metropolis within Gibbs algorithm (Smith and Roberts [69]), a form of

the Markov chain schemes which is convenient for nonlinear hierarchical regression mod-

els (Davidian and Giltinan [19], Wakefield et al. [83]). We first give a preview of the

Metropolis-Hastings algorithm in a general context, and then describe the Gibbs sampler

in the context of our mixed bent-cable model pointing out the problem in its implemen-

tation, and finally the Metropolis within Gibbs algorithm to complete the description of

our technique. Note that the Gibbs and Metropolis within Gibbs samplers are based
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on the full conditionals of each of the components of Θ, where a full conditional refers

to the distribution of a parameter conditioned on all the remaining ones and the data.

For example, the full conditional for βi, denoted by π
(
βi|β1,β2, . . . ,βi−1,βi+1, . . . ,βm,α,

µβ,µα, µτA ,Σ
−1
β ,Σ−1

α , σ−2
τA
, ω,σ−2,φ,y(2)

)
, is the distribution of βi given y(2) and all the

remaining components of Θ.

4.3.1 Metropolis-Hastings Algorithm

Suppose that ζ ∼ k(.), where k(.) can be evaluated but not easily sampled. Here, k(.) is

often referred to as the target distribution, and could be a full conditional in implementing

the Gibbs algorithm that may or may not have a closed form expression. The Metropolis-

Hastings algorithm can be used to generate a draw from a distribution that approximates

k(.). Description of this algorithm can be found in Hastings [40] and Metropolis et al. [51].

To implement the algorithm, a proposal distribution (see below in this section) is needed

from which to sample a candidate point. Let ζ(0) be an arbitrary starting point and g denote

the proposal distribution. Given ζ(s) at the sth iteration, the algorithm generates ζ(s+1) as

follows:

1. Draw a candidate point ζ∗ from g
(
.|ζ(s)

)
;

2. compute the Metropolis-Hastings ratio

R
(
ζ(s), ζ∗

)
=

k
(
ζ∗
)
g
(
ζ(s)|ζ∗

)
k
(
ζ(s)
)
g
(
ζ∗|ζ(s)

) ;

3. if U ≤ min
{

1, R
(
ζ(s), ζ∗

)}
, accept ζ∗ with probability min

{
1, R

(
ζ(s), ζ∗

)}
and set

ζ(s+1) = ζ∗, otherwise ζ(s+1) = ζ(s), where U is a random variable from U(0, 1);

4. increment s and return to step 1.

Clearly, a chain constructed in such a way is Markov as ζ(s+1) depends on the history only

through ζ(s). A proposal distribution can have any form. The rate of convergence to the

stationary distribution, however, depends largely on the choice of the proposal distribution.

A good proposal distribution should well approximate the target distribution (the full

conditional for a Gibbs sampler), so that it produces candidate values that (a) cover the
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support of the stationary distribution in a reasonable number of iterations, and (b) are not

accepted or rejected too frequently (Chib and Greenberg [13]). A reasonable acceptance

rate is in the range [0.15, 0.50] for high-dimensional target distributions (Roberts [64]).

There are several variants of the Metropolis-Hastings algorithm. The Metropolis algo-

rithm (Metropolis et al. [51]) considers only symmetric proposal distributions of the form

g
(
ζ∗|ζ(s)

)
= g
(
ζ(s)|ζ∗

)
so that the Metropolis-Hastings ratio reduces to

R
(
ζ(s), ζ∗

)
=

k
(
ζ∗
)

k
(
ζ(s)
) .

A special case of the Metropolis algorithm is the random-walk Metropolis (see Gilks et

al. [35], Givens and Hoeting [37]), for which the candidate point is generated from ζ∗ =

ζ(s) + u where u is a point drawn from a symmetric proposal density g(.). In this case,

g(ζ∗|ζ(s)) = g(|ζ∗ − ζ(s)|) (Gilks et al. [35]).

Tierney [74] and Gelman [25] propose another variant of the Metropolis-Hastings algo-

rithm to sample from approximate full conditionals whilst maintaining exactly the required

stationary distribution of the Markov chain. Their approach uses an approximate full

conditional as a proposal distribution g(.) in an independence-type Metropolis-Hastings

algorithm, for which g
(
ζ∗|ζ(s)

)
= g(ζ∗). The Metropolis-Hastings ratio for this method

reduces to

R
(
ζ(s), ζ∗

)
=
k(ζ∗)g(ζ(s))

k(ζ(s))g(ζ∗)
.

4.3.2 Gibbs Sampler

Recall that Θ denotes the model parameters for our mixed bent-cable regression. It is often

convenient and computationally efficient to break down Θ into components of possibly dif-

fering dimensions, and then update each of these components one by one. This framework

was originally proposed by Metropolis et al. [51] for MCMC, and often referred to as the

single-component Metropolis-Hastings algorithm. The Gibbs sampler (Geman and Geman

[31]), a method for obtaining the marginals of interest from the set of full conditionals, is a

special case of this single-component Metropolis-Hastings algorithm where the acceptance

probability (probability of accepting the candidate in a Metropolis step) is one (Gilks et

al. [34]).

39



The breakdown of Θ into components depends on practical considerations. In some

applications, it may be convenient to break down Θ into its scalar components, while in

other cases, the components could be vectors or matrices. From a practical point of view,

one important consideration in choosing the components is to have full conditionals that

have closed form expressions, since the MCMC method is computationally expensive, es-

pecially when generating samples from a distribution that can be expressed only up to a

proportionality constant. Another important consideration is the correlation structure in

the sequence of Θ(s) at different iteration lags. Smith and Roberts [69] indicated that if

highly correlated components are treated individually, there could be painfully slow con-

vergence of the chain to equilibrium as a result of very little movement at each conditional

random variate generation step. They also pointed out that if, on the other hand, corre-

lated components are blocked together, the problem is avoided, but perhaps at the expense

of having to perform a draw from a multivariate conditional distribution.

The Gibbs algorithm proceeds as follows. Pick an arbitrary starting point Θ(0). Then

generate an instance from the full conditional of each of the components of Θ conditional

on the current values of the remaining components. This completes a transition from Θ(0)

to Θ(1). Iterating through this cycle of generating data from the full conditionals gives a

sequence Θ(0),Θ(1), . . . ,Θ(T ). A sequence thus generated is a Markov chain with stationary

distribution π
(
Θ|y(2)

)
under the regularity conditions as described in Section 4.2.1 (Da-

vidian and Giltinan [19]). Monte Carlo integration can now be applied to the converged

Markov chain for Bayesian inference. See Section 4.4 for a discussion of the convergence

issues of a Markov chain.

Note that the usual context of a Gibbs sampler refers to all full conditionals having

closed form. We work out the full conditionals in Section 4.7.3 (appendix) for all the

components of Θ, and show that all of those have a closed form expression except for αi.

For this reason, the usual context of Gibbs sampler does not hold for the mixed bent-cable

model.

4.3.3 Metropolis within Gibbs Algorithm

Recall that each step in the Gibbs sampler is a Metropolis-Hastings step with acceptance

probability one. So, it is permissible to use different Metropolis-Hastings variants in a Gibbs

step (Givens and Hoeting [37]). Such an algorithm is called Metropolis within Gibbs. This
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algorithm is particularly useful when any of the full conditionals does not have a closed

form expression like the one for αi for our mixed bent-cable model. In implementing the

algorithm, we therefore employ the Gibbs steps for all the components of Θ except for αi

for which a Metropolis step is considered.

Now, we present the steps involved in the construction of the Markov chain. Noting that

the full conditional π(.|.) for a particular component is a function of only some components

of Θ but not all, we omit the irrelevant components from the condition in the expression

of π(.|.). For example, in addition to the data y
(2)
i , the full conditional for βi depends only

on αi, σ
−2
i , µβ, Σ−1

β and φ, and hence we use the notation π
(
βi|αi, σ−2

i ,µβ,Σ
−1
β ,φ,y

(2)
i

)
to denote it. Now, recall from Section 3.1.3 that Ii is a latent allocation variable such that

Ii = 0 when γi = 0, and Ii = 1 when γi > 0. Letting I = (I1, I2, . . . , Im), suppose that

{Θ(0), I(0)} is an arbitrary starting point, and {Θ(s), I(s)} is its update at iteration s. Given

{Θ(s), I(s)}, our choice of order to update the components leads to the following sequence

to achieve the new set {Θ(s+1), I(s+1)} in one iteration:

1. For i = 1, generate β
(s+1)
i ∼ π

(
βi| α

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
via a Gibbs

step, where π
(
βi| α

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
is a trivariate normal distribu-

tion;

2. for i = 1, generate α
(s+1)
i ∼ π

(
αi| β(s+1)

i , σ
−2(s)
i ,µ

(s)
α , µ

(s)
τA ,Σ

−1(s)
α , σ

−2(s)
τA ,φ(s),y

(2)
i

)(
and hence I

(s+1)
i

)
via a Metropolis step, where π

(
αi| β(s+1)

i , σ
−2(s)
i ,µ

(s)
α , µ

(s)
τA ,Σ

−1(s)
α ,

σ
−2(s)
τA ,φ(s),y

(2)
i

)
can be expressed only up to a proportionality constant;

3. for i = 1, generate σ
−2(s+1)
i ∼ π

(
σ−2
i | β

(s+1)
i ,α

(s+1)
i ,φ(s),y

(2)
i

)
via a Gibbs step,

where π
(
σ−2
i | β

(s+1)
i ,α

(s+1)
i ,φ(s),y

(2)
i

)
is a gamma distribution;

4. repeat 1–3 for i = 2, 3, . . . ,m; these complete updating the individual-specific pa-

rameters, that is, we now have β(s+1), α(s+1)
(
and hence I(s+1)

)
and σ−2(s+1);

5. generate Σ
−1(s+1)
β ∼ π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
via a Gibbs step, where π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
is a Wishart distribution;

6. generate Σ
−1(s+1)
α ∼ π

(
Σα| α(s+1), I(s+1),µ

(s)
α

)
via a Gibbs step, where π

(
Σα| α(s+1),

I(s+1),µ
(s)
α

)
is a Wishart distribution;
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7. generate σ
−2(s+1)
τA ∼ π

(
σ−2
τA
| α(s+1), I(s+1), µ

(s)
τA

)
via a Gibbs step, where π

(
σ−2
τA
| α(s+1),

I(s+1), µ
(s)
τA

)
is a gamma distribution;

8. generate µ
(s+1)
β ∼ π

(
µβ| β(s+1),Σ

−1(s+1)
β

)
via a Gibbs step, where π

(
µβ| β(s+1),

Σ
−1(s+1)
β

)
is a trivariate normal distribution;

9. generate µ
(s+1)
α ∼ π

(
µα|α(s+1), I(s+1),Σ

−1(s+1)
α

)
via a Gibbs step, where π

(
µα|α(s+1),

I(s+1),Σ
−1(s+1)
α

)
is a bivariate normal distribution;

10. generate µ
(s+1)
τA ∼ π

(
µτA|α(s+1), I(s+1), σ

−2(s+1)
τA

)
via a Gibbs step, where π

(
µτA|α(s+1),

I(s+1), σ
−2(s+1)
τA

)
is normal distribution;

11. generate φ(s+1) ∼ π
(
φ| β(s+1),α(s+1),σ−2(s+1)

)
via a Gibbs step, where π

(
φ| β(s+1),

α(s+1),σ−2(s+1)
)

is a p-variate normal distribution;

12. generate ω(s+1) ∼ π
(
ω| Is+1

)
via a Gibbs step, where π

(
ω| Is+1

)
is a beta distribution.

The Bayesian inference can now be made using the monte carlo integration described

in Section 4.2.

4.4 Mixing and Convergence

The efficiency of an MCMC algorithm is reflected by good mixing of a chain. The mixing

property of a chain includes how quickly a chain “forgets” its initial values and how quickly

it fully explores the support and the shape of the target distribution. Besides good mixing,

we must also be concerned about the convergence of the chain, that is, whether the chain

has approximately reached its stationary distribution.

Since there is substantial overlap between the goals of diagnosing convergence to the

stationary distribution, and investigating the mixing property of a chain (Givens and Hoet-

ing [37]), we combine the discussion of mixing and convergence based on existing works on

these topics in the following sub-sections. In this regard, although the discussion is given

in the context of our mixed bent-cable regression model, the underlying material in this

section is mainly review – much of the material can be found in Gilks et al. [36] and Givens

and Hoeting [37].
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4.4.1 Number of Chains

When a chain at some point reaches around the mode of the target distribution, it is

possible that it may stay there forever. If this is the case, even though the chain does not

fully explore the support and the shape of the target distribution, a convergence diagnostic

may indicate that the chain has converged to the stationary distribution. A partial solution

to this problem is to run several independent chains, and then investigate the within-chain

and between-chain behavior. However, recommendation concerning running one chain or

multiple chains is conflicting in the literature ranging from several long chains (Gelman and

Rubin [29], [30]) to one very long one (Geyer [32]), each with its own merits and demerits

(see Gilks et al. [35], Givens and Hoeting [37]).

The motivation for running multiple chains is the hope that at least one of them will

explore the features (e.g., modes) of the target distribution, and to detect the wash out

of the influence of the starting values (Givens and Hoeting [37]). On the other hand, as

pointed out by Gilks et al. [35], running several very long chains is not practical because

(1) one very long run has the best chance to explore the features of the target distribution,

and (2) comparison between chains can never prove convergence. Moreover, some of the

chains may carry the same information as that of some of the others. To balance between

running a single very long chain and running multiple long chains, we consider two very

long independent chains (5,000,000 MCMC iterations for each) to analyze both the rat

and CFC-11 data introduced in Chapter 1. However, in our simulation study, due to

computational extensiveness, we consider one chain with 100,000 MCMC iterations to

analyze each simulated data set.

4.4.2 Burn-in and Stopping Time

The MCMC method can yield marginal posterior distributions only in the limits; thus, in

practice, the dependence of the chain on the starting value may remain strong even after

running the chain for a sufficiently long time. If a chain starts with an initial value that

is far from the posterior mode, this dependence may make the chain converge slowly. To

reduce the severity of this problem, an initial S iterations are discarded as a burn-in period

from a chain.

For stopping time T , in general, the aim is to run a chain sufficiently long to obtain

good mixing. One informal way (Gilks et al. [35]) of deciding the stopping time is to run
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several long chains and to compare the estimates (posterior means/medians) from each

chain. If the estimates from the different chains do not agree adequately, then the run

length, L = T − S, should be increased.

A popular technique for determining the burn-in and run length is the Gelman-Rubin

statistic R [30]. The technique is based on a comparison of within-chain and between-chain

variances (readers may refer to the reference manual for the “coda” package (Plummer et

al. [59]) in R for a description of this technique). Values of R substantially above 1 indicate

lack of convergence (some authors suggest that R < 1.2 is acceptable, e.g., Gelman et al.

[28]). Now, if the chosen S does not yield an acceptable R, then S or L or preferably both

should be increased.

To analyze the rat and CFC-11 data, we examine both the Gelman-Rubin statistic and

the graphical approach to choose the burn-in and stopping time.

4.4.3 Thinning

A chain that has poor mixing properties generally exhibits slow decay of autocorrelation.

Therefore, it is good practice for the inference to be based on every lth iteration of a chain,

with l set to some value high enough that successive draws are approximately independent

(Gelman [26]). This strategy is known as thinning. Gelman [26] also points out that

thinning can be useful when the set of simulated MCMC values is so large that reducing the

number of simulations by a factor of l gives important savings in storage and computation

time. Examining the autocorrelation plots, we take l = 200 in analyzing both the rat and

CFC-11 data, and l = 20 in the simulation study.

4.4.4 Graphical Diagnostics

In Sections 4.4.2, we describe the Gelman-Rubin statistic, a formal statistical tool for

examining the mixing and convergence of a Markov chain. In this section, we present

three widely used graphical diagnostics, which we take into consideration in addition to

the Gelman-Rubin statistic to examine the mixing and convergence for the rat and CFC-11

data.

Recall that good mixing implies that the chain quickly “forgets” its initial values and

fully explores the support and shape of the target distribution. One obvious diagnostic tool
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is a trace plot, where one plots the realization of the chain versus the iteration number.

A trace plot can be useful to see if a chain is mixing rapidly. In addition, a clear trend

in the trace plot indicates that stationarity has not been achieved. This in turn suggests

that a longer run is necessary. A chain that is mixing well will quickly move away from its

starting value, no matter where it started, and the samples will wiggle about vigorously in

the region supported by the posterior density (Givens and Hoeting [37]). Visual inspection

of a trace plot can also be useful to determine the burn-in as well as stopping time.

Another useful graphical diagnostic is the autocorrelation plot. An autocorrelation plot

displays the serial correlation in the chain at different lags of iteration. For a highly auto-

correlated chain, the Gibbs sampler is slow to explore the entire support of the posterior

distribution. Typically, the autocorrelation declines as the lag increases. If this is not the

case, thinning can be explored.

The kernel density plot of the chain is another useful diagnostic tool. In the absence of

high autocorrelation, nonconvergence is sometimes reflected in multimodal distributions,

which is especially true if the density plot displays not only multiple modes but also

lumpiness rather than a smooth curve. Note that high autocorrelation within a converged

chain can also reveal such behavior in the density plot. In such cases, it may be necessary

to run the chain for longer and/or with heavier thinning.

4.5 Software Implementation

We wrote our computer code in R (R Development Core Team [61]) and MATLAB, but

found them inefficient in terms of computational speed. Then, we wrote our own code in C

to generate MCMC samples. The functions for random sample generation from standard

univariate distributions such as uniform, normal, chi-square, gamma, beta and Bernoulli,

and matrix algebra such as Cholesky decomposition and inversion of a symmetric positive

definite matrix, are countered by interfacing C with R. We have written other functions

required to generate samples from the full conditionals such as calculations of zi, xi, ri,

residual sum of squares and likelihood function, data generation from multivariate normal

and Wishart distributions, extracting a column from a matrix, and so on.

In implementing the Metropolis within Gibbs algorithm, we follow the updating order of

Θ to maximize the computational speed, which is a common concern for MCMC methods.
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That is, we first update the individual-specific components (βi, αi, and σ−2
i ) one by one,

and calculate the required terms to update the population components within a single loop

over all individuals i’s (i = 1, 2, . . . ,m). These calculations are done through steps 1-4 of

our chosen updating algorithm described in Section 4.3.3. After completing the loop, we

update the population components in an appropriate order by noting the dependency of a

particular component on the remaining ones in the full conditionals. This procedure saves

a considerable amount of time when running and constructing the desired Markov chain.

We write a function “update” for one MCMC iteration. Then, another function uses

this “update” to perform the required number of iterations with given burn-in and thinning

criteria, and stores the MCMC samples in external text files, which we subsequently analyze

using the “coda” package (Plummer et al. [59]) in R.

4.6 Discussion

Since some standard regularity conditions do not hold, frequentist inference is complicated

for bent-cable regression, even for a single profile (Chiu et al. [16], Chiu and Lockhart [15]).

Our proposed Bayesian approach for inference makes no special regularity assumptions;

the trade-off is the need to evaluate high-dimensional integrals. Although computationally

intensive, its implementation is straightforward through the use of MCMC numerical inte-

gration. Moreover, in Bayesian inference, the full behavior of a parameter can be readily

investigated via its posterior distribution, rather than relying on the parameter estimator’s

asymptotic distribution that may be far off from the actual distribution in a finite-sample

setting.

In practice, some caution is required for the following reason. If a particular MCMC

iteration yields Ii = 0 or 1 for all i, then the full conditionals for some parameters depend

only on their priors; in the case of very diffuse priors, a draw in the Gibbs algorithm may

yield an indeterminate value, rendering a computational breakdown of the MCMC. As an

example, we see that the full conditional for σ−2
τA

(Section 4.7.3) reduces simply to its prior

G
(
b0
2
, b1

2

)
when Ii = 1 for all i. So, if Ii = 1 for all i at a particular iteration, a diffuse prior

for σ−2
τA

(e.g., b0 = b1 = 0.01) may lead to a near-zero sample point, and this may break

down the whole process of generating samples to construct a Markov chain. Similarly, if

Ii = 0 for all i, the full conditional for µα reduces to its prior, and therefore, a similar

problem may arise. To avoid this problem, one may specify informative priors if prior
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information is available. Note that this problem is irrelevant for certain special cases of

our methodology: Model A for which Ii = 0 for all i, and Model G for which Ii = 1 for

all i.

47



4.7 Chapter Appendix

4.7.1 Joint Density

Under the assumption that the priors are independent, and using B1, the joint density of

the model parameters and the data as given in (4.1) can be rewritten as

π
(
Θ,y(2)

)
= π

(
y(2)|β,α,µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
×

m∏
i=1

π
(
βi|α,µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
×

m∏
i=1

π
(
αi|µβ,µα, µτA ,Σ−1

β ,Σ−1
α , σ−2

τA
, ω,σ−2,φ

)
×
{
π
(
µβ
)
π
(
µα
)
π
(
µτA
)
π
(
Σ−1
β

)
π
(
Σ−1
α

)
π
(
σ−2
τA

)
π
(
ω
)
π
(
σ−2

)
π
(
φ
)}
.

(4.4)

For our model specifications in (3.14)-(3.16), and under the assumptions T1, T2, A1-A3,

B1-B5 and C1 (Section 3.1.2), the joint density (4.4) becomes

π
(
Θ,y(2)

)
=

m∏
i=1

Nni−p(y(2)|µi, σ2
i Ii)×

m∏
i=1

N3

(
βi|µβ,Σβ

)
×

m∏
i=1

∆
(
αi|µα,Σα, µτA , σ

2
τA
, ω
)
×N2

(
µβ|h1,H1

)
×N2

(
µα|h2,H2

)
×N

(
µτA|a0, a1

)
×W

(
Σ−1
β |ν1, (ν1A1)

−1
)
×W

(
Σ−1
α |ν2, (ν2A2)

−1
)

× G
(
σ−2
τA

∣∣∣b0
2
,
b1
2

)
× B(ω|c0, c1)×

m∏
i=1

G
(
σ−2
i

∣∣∣d0

2
,
d1

2

)
×Np

(
φ|h3,H3

)
,

where ∆
(
αi|µα,Σα, µτA , σ

2
τA
, ω
)

denotes the pdf of the delta bivariate mixed lognormal dis-

tribution given in (3.12). Now, recalling the latent allocation variables I = (I1, I2, . . . , Im)′,

we get

π
(
Θ, I,y(2)

)
=

m∏
i=1

Nni−p(y(2)|µi, σ2
i Ii)×

m∏
i=1

N3

(
βi|µβ,Σβ

)
×

m∏
i=1

{
(1− Ii) LN (τi|µτA , σ2

τA
) + Ii LN 2(αi|µα,Σα)

}
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×
m∏
i=1

BER(Ii|ω)×N3

(
µβ|h1,H1

)
×N2

(
µα|h2,H2

)
×N

(
µτA|a0, a1

)
×W

(
Σ−1
β |ν1, (ν1A1)

−1
)
×W

(
Σ−1
α |ν2, (ν2A2)

−1
)

× G
(
σ−2
τA

∣∣∣b0
2
,
b1
2

)
× B(ω|c0, c1)×

m∏
i=1

G
(
σ−2
i

∣∣∣d0

2
,
d1

2

)
×Np

(
φ|h3,H3

)
=

m∏
i=1

Nni−p(y(2)|µi, σ2
i Ii)×

m∏
i=1

N3

(
βi|µβ,Σβ

)
×

m∏
i=1

{[
LN (τi|µτA , σ2

τA
)
]1−Ii × [LN 2(αi|µα,Σα)

]Ii}
×

m∏
i=1

BER(Ii|ω)×N3

(
µβ|h1,H1

)
×N2

(
µα|h2,H2

)
×N

(
µτA|a0, a1

)
×W

(
Σ−1
β |ν1, (ν1A1)

−1
)
×W

(
Σ−1
α |ν2, (ν2A2)

−1
)

× G
(
σ−2
τA

∣∣∣b0
2
,
b1
2

)
× B(ω|c0, c1)×

m∏
i=1

G
(
σ−2
i

∣∣∣d0

2
,
d1

2

)
×Np

(
φ|h3,H3

)
,

(4.5)

which is the basis of deriving the full conditionals to implement the Metropolis within

Gibbs algorithm for our mixed bent-cable regression.

4.7.2 Approximating Fitted Values

We described our approach to approximate the individual-specific and population fitted val-

ues based on the posteriors of the respective bent-cable functions in Section 4.2.1. As men-

tioned there, the fitted values can also be produced based on the posterior means/medians

of the regression coefficients, denoted by β̂i and α̂i for i = 1, 2, . . . ,m. For example, the

fitted values for the ith individual are then

f̂ij =
1

T − S

T∑
s=S+1

(
β̂0i + β̂1i tij + β̂2i q̂ij

)
, j = 1, 2, . . . , ni, (4.6)

where

q̂ij =

(
tij − τ̂i + γ̂i

)2
4γ̂i

1
{
|tij − τ̂i| ≤ γ̂i

}
+
(
tij − τ̂i

)
1
{
tij − τ̂i > γ̂i

}
.
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Note that the first two terms of (4.3) and (4.6) are exactly the same. However, there can

be small differences between the two approaches due to averaging qij as a quantity over

the MCMC iterations as in (4.3), which is different from treating qij() as a function, and

plugging in the means/medians of the other quantities into qij() as in (4.6).

Continuing with the idea of (4.6), the population fitted value at time t ∈ [0, C] is

f̂t =
1

T − S

T∑
s=S+1

(
µ̂0 + µ̂1 t+ µ̂2 q̂t

)
,

where for Population G

q̂t =

(
t− exp {µ̂τ}+ exp {µ̂γ}

)2
4 exp {µ̂γ}

1
{
|t− exp {µ̂τ}| ≤ exp {µ̂γ}

}
+
(
t− exp {µ̂τ}

)
1
{
t− exp {µ̂τ} > exp {µ̂γ}

}
,

and for Population A

q̂t =
(
t− exp {µ̂τ}

)
1
{
t− exp {µ̂τ} > 0

}
.

4.7.3 Full Conditionals

In general, full conditionals are derived from the joint distribution (4.5). To construct

the full conditional for, say, βi, we need only to pick out the terms in the joint density

which involves βi. Note that any term which does not depend on βi can be taken as a

proportionality constant in the full conditional.

An appealing feature of the bent-cable function is that it is partially linear – given

αi, fij as defined by Equation (3.2) is linear – and we can exploit this fact to derive a

closed-form full conditional for βi. However, the full conditional of αi can be expressed

only up to a proportionality constant, and is given by

π(αi|.) ∝ exp
{
− 1

2σ2
i

(zi − Xi βi)
′(zi − Xi βi)

}
×
[ 1

τi
exp

{
− 1

2σ2
τA

(κi − µτA)2
}]1−Ii

×
[ 1

γiτi
exp

{
− 1

2
(ξi − µα)′ Σ−1

α (ξi − µα)
}]Ii

(4.7)
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where zij = yij−
∑p

k=1 φk yi,j−k, xij = tij−
∑p

k=1 φk ti,j−k, rij = qij−
∑p

k=1 φk qi,j−k, zi =

(zi,p+1, zi,p+2, . . . , zi,ni)
′ and

Xi =



1−
∑p

k=1 φk xi,p+1 ri,p+1

1−
∑p

k=1 φk xi,p+2 ri,p+2

...
...

...

1−
∑p

k=1 φk xi,ni ri,ni


.

For the full conditionals of the remaining components of Θ, let

• mA =
∑m

i=1 (1− Ii) and mG =
∑m

i=1 Ii;

• ξi = logαi = (log γi, log τi)
′ and κi = log τi;

• β̃ =
∑m

i=1 βi, ξ̃ =
∑m

i=1 Ii ξi, and κ̃ =
∑m

i=1 (1− Ii) κi;

• M−1
i = σ−2

i X′i Xi + Σ−1
β , U−1

1 = m Σ−1
β + H−1

1 , and U−1
2 = mG Σ−1

α + H−1
2 ; and

• εij = yij−β0i−β1i tij−β2i qij for j = p+1, p+2, . . . , ni, εi = (εi,p+1, εi,p+2, . . . , εi,ni)
′, and

V−1 =
∑m

i=1 σ
−2
i W′

i Wi + H−1
3 , where Wi is a (ni − p)× p matrix given by

Wi =



εi,p εi,p−1 εi,1

εi,p+1 εi,p εi,2
...

...
...

εi,ni−1 εi,ni−2 εi,ni−p


.

Then one can verify (see below) that the full conditionals are

[βi|.] ∼ N3

(
Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)
, Mi

)
,

[µβ|.] ∼ N3

(
U1

(
Σ−1
β β̃ + H−1

1 h1

)
, U1

)
,
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[µα|.] ∼ N2

(
U2

(
Σ−1
α ξ̃ + H−1

2 h2

)
, U2

)
,

[µτA|.] ∼ N
(
σ−2
τA

κ̃+ a−1
1 a0

mA σ−2
τA

+ a−1
1

,
1

mA σ−2
τA

+ a−1
1

)
,

[Σ−1
β |.] ∼ W

(
m+ ν1,

[ m∑
i=1

(βi − µβ) (βi − µβ)′ + ν1A1

]−1
)
,

[Σ−1
α |.] ∼ W

(
mG + ν2,

[ m∑
i=1

Ii(ξi − µα) (ξi − µα)′ + ν2A2

]−1
)
,

[σ−2
τA
|.] ∼ G

(
mA + b0

2
,

∑m
i=1 (1− Ii)(κi − µτA)2 + b1

2

)
,

[σ−2
i |.] ∼ G

(
ni − p+ d0

2
,

(zi − Xi βi
)′

(zi − Xi βi
)

+ d1

2

)
,

[φ|.] ∼ Np
(

V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
, V
)
,

[ω|.] ∼ B(mG + c0,mA + c1).

Derivations of the above results are presented as follows.

Full Conditional for βi

Picking out the terms in the joint density (4.5) which involves βi, we get

π(βi|.) ∝ exp
{
− 1

2σ2
i

(
y

(2)
i − µi

)′(
y

(2)
i − µi

)
− 1

2
(βi − µβ)′Σ−1

β (βi − µβ)
}
.

From Section 3.4, we have

yij − µij = yij − β0i

(
1−

p∑
k=1

φk

)
− β1i xij − β2i rij −

p∑
k=1

φk yi,j−k

= zij − β0i

(
1−

p∑
k=1

φk

)
− β1i xij − β2i rij for j = p+ 1, p+ 2, . . . , ni.
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Therefore, In vector-matrix notation, y
(2)
i − µi = zi − Xi βi. Using this result, we get

π(βi| .) ∝ exp
{
− 1

2

[
σ−2
i

(
zi − Xi βi

)′(
zi − Xi βi

)
+ (βi − µβ)′ Σ−1

β (βi − µβ)
]}

= exp
{
− 1

2

[
σ−2
i z′i zi − σ−2

i z′i Xi βi − σ−2
i β′i X′i zi + σ−2

i β′i X′i Xi βi+

β′i Σ−1
β βi − β′i Σ−1

β µβ − µ′β Σ−1
β βi + µ′β Σ−1

β µβ
]}

∝ exp
{
− 1

2

[
− σ−2

i z′i Xi βi − σ−2
i β′i X′i zi + σ−2

i β′i X′i Xi βi+

β′i Σ−1
β βi − β′i Σ−1

β µβ − µ′β Σ−1
β βi

]}
[
proportionality follows because σ−2

i z′i zi and µ′β Σ−1
β µβ do not depend on βi

]
= exp

{
− 1

2

[
− 2 σ−2

i β′i X′i zi + σ−2
i β′i X′i Xi βi + β′i Σ−1

β βi − 2 β′i Σ−1
β µβ

]}
[
σ−2
i z′i Xi βi and µ′β Σ−1

β βi are scalars
]

= exp
{
− 1

2

[
− 2β′i

(
σ−2
i X′i zi + Σ−1

β µβ
)

+ β′i
(
σ−2
i X′i Xi + Σ−1

β

)
βi
]}

= exp
{
− 1

2

[
− 2β′i

(
σ−2
i X′i zi + Σ−1

β µβ
)

+ β′i M−1
i βi

]}
∝ exp

{
− 1

2

[
− β′i

(
σ−2
i X′i zi + Σ−1

β µβ
)
−
(
σ−2
i X′i zi + Σ−1

β µβ
)′
βi+

β′i M−1
i βi +

(
σ−2
i X′i zi + Σ−1

β µβ
)′ Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)]}

[
β′i
(
σ−2
i X′i zi + Σ−1

β µβ
)

is a scalar, and so is β′i
(
σ−2
i X′i zi + Σ−1

β µβ
)

=(
σ−2
i X′i zi + Σ−1

β µβ
)′
βi; proportionality follows because

(
σ−2
i X′i zi + Σ−1

β µβ
)′ Mi(

σ−2
i X′i zi + Σ−1

β µβ
)

does not depend on βi

]
= exp

{
− 1

2

[
βi −Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)]′ M−1

i

[
βi −Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)]}

,

which is proportional to the pdf of a trivariate normal distribution with mean vector

Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)

and covariance matrix Mi. Therefore,
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[βi|.] ∼ N3

(
Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)
, Mi

)
.

Full Conditional for αi

Picking out the terms in the joint density (4.5) which involves αi, it is easy to see that the

full conditional for αi is given by (4.7).

Full Conditional for µβ

Picking out the terms in the joint density (4.5) which involve µβ, we get

π(µβ|.) ∝
m∏
i=1

exp
{
− 1

2
(βi − µβ)′ Σ−1

β (βi − µβ)
}

exp
{
− 1

2
(µβ − h1)

′ H−1
1 (µβ − h1)

}
= exp

{
− 1

2

[ m∑
i=1

(βi − µβ)′ Σ−1
β (βi − µβ) + (µβ − h1)

′ H−1
1 (µβ − h1)

]}
= exp

{
− 1

2

[ m∑
i=1

(β′i Σ−1
β βi − β′i Σ−1

β µβ − µ′β Σ−1
β βi + µ′β Σ−1

β µβ)+

(µ′β H−1
1 µβ − µ′β H−1

1 h1 − h′1 H−1
1 µβ + h′1 H−1

1 h1)
]}

∝ exp
{
− 1

2

[ m∑
i=1

(−β′i Σ−1
β µβ − µ′β Σ−1

β βi + µ′β Σ−1
β µβ)+

µ′β H−1
1 µβ − µ′β H−1

1 h1 − h′1 H−1
1 µβ

]}
[
proportionality follows because β′i Σ−1

β βi and h′1 H−1
1 h1 do not depend on µβ

]
= exp

{
− 1

2

[
− 2µ′β Σ−1

β

m∑
i=1

βi +m µ′β Σ−1
β µβ + µ′β H−1

1 µβ − 2µ′β H−1
1 h1

]}
[
β′i Σ−1

β µβ and h′1 H−1
1 µβ are scalars, and so are β′i Σ−1

β µβ = µ′β Σ−1
β βi and

h′1 H−1
1 µβ = µ′β H−1

1 h1

]
= exp

{
− 1

2

[
− 2 µ′β

(
Σ−1
β

m∑
i=1

βi + H−1
1 h1

)
+ µ′β (m Σ−1

β + H−1
1 ) µβ

]}
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= exp
{
− 1

2

[
− 2 µ′β (Σ−1

β β̃ + H−1
1 h1) + µ′β U−1

1 µβ
]}

∝ exp
{
− 1

2

[
− µ′β (Σ−1

β β̃ + H−1
1 h1)− (Σ−1

β β̃ + H−1
1 h1)

′ µβ + µ′β U−1
1 µβ +

(Σ−1
β β̃ + H−1

1 h1)
′ U1 (Σ−1

β β̃ + H−1
1 h1)

]}
[
µ′β (Σ−1

β β̃ + H−1
1 h1) is a scalar, and so is µ′β(Σ−1

β β̃ + H−1
1 h1) =

(Σ−1
β β̃ + H−1

1 h1)
′µβ; proportionality follows because (Σ−1

β β̃ + H−1
1 h1)

′ U1

(Σ−1
β β̃ + H−1

1 h1) does not depend on µβ

]
= exp

{
− 1

2

[
µβ − U1(Σ

−1
β β̃ + H−1

1 h1)]
′ U−1

1 [µβ − U1(Σ
−1
β β̃ + H−1

1 h1)
]}
,

which is proportional to the pdf of a trivariate normal distribution with mean vector

U1

(
Σ−1
β β̃ + H−1

1 h1

)
and covariance matrix U1. Therefore,

[µβ|.] ∼ N3

(
U1

(
Σ−1
β β̃ + H−1

1 h1

)
, U1

)
.

Full Conditional for µα

Picking out the terms in the joint density (4.5) which involve µα, and recalling ξi =

(log γi, log τi)
′, we get

π(µα|.) ∝
m∏
i=1

exp
{
− Ii

2
(ξi − µα)′ Σ−1

α (ξi − µα)
}

exp
{
− 1

2
(µα − h2)

′ H−1
2 (µα − h2)

}
= exp

{
− 1

2

[ m∑
i=1

Ii(ξi − µα)′ Σ−1
α (ξi − µα) + (µα − h2)

′ H−1
2 (µα − h2)

]}
= exp

{
− 1

2

[ m∑
i=1

Ii(ξ
′
i Σ−1

α ξi − ξ′i Σ−1
α µα − µ′α Σ−1

α ξi + µ′α Σ−1
α µα)+

(µ′α H−1
2 µα − µ′α H−1

2 h2 − h′2 H−1
2 µα + h′2 H−1

2 h2)
]}

∝ exp
{
− 1

2

[ m∑
i=1

Ii(−ξ′i Σ−1
α µα − µ′α Σ−1

α ξi + µ′α Σ−1
α µα)+

µ′α H−1
2 µα − µ′α H−1

2 h2 − h′2 H−1
2 µα

]}
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[
proportionality follows because ξ′i Σ−1

α ξi and h′2 H−1
2 h2 do not depend on µα

]
= exp

{
− 1

2

[
− 2µ′α Σ−1

α

m∑
i=1

Iiξi +mG µ
′
α Σ−1

α µα + µ′α H−1
2 µα − 2µ′α H−1

2 h2

]}
[
ξ′i Σ−1

α µα and h′2 H−1
2 µα are scalars, and so are ξ′i Σ−1

α µα = µ′α Σ−1
α ξi

and h′2 H−1
2 µα = µ′α H−1

2 h2

]
= exp

{
− 1

2

[
− 2 µ′α

(
Σ−1
α

m∑
i=1

Iiξi + H−1
2 h2

)
+ µ′α (mG Σ−1

α + H−1
2 ) µα

]}
= exp

{
− 1

2

[
− 2 µ′α (Σ−1

α ξ̃ + H−1
2 h2) + µ′α U−1

2 µα
]}

∝ exp
{
− 1

2

[
− µ′α (Σ−1

α ξ̃ + H−1
2 h2)− (Σ−1

α ξ̃ + H−1
2 h2)

′ µα + µ′α U−1
2 µα +

(Σ−1
α ξ̃ + H−1

2 h2)
′ U2 (Σ−1

α ξ̃ + H−1
2 h2)

]}
[
µ′α (Σ−1

α ξ̃ + H−1
2 h2) is a scalar, and so is µ′α(Σ−1

α ξ̃ + H−1
2 h2) =

(Σ−1
α ξ̃ + H−1

2 h2)
′µα; proportionality follows because (Σ−1

α ξ̃ + H−1
2 h2)

′ U2

(Σ−1
α ξ̃ + H−1

2 h2) does not depend on µα

]
= exp

{
− 1

2

[
µα − U2(Σ

−1
α ξ̃ + H−1

2 h2)]
′ U−1

2 [µα − U2(Σ
−1
α ξ̃ + H−1

2 h2)
]}
,

which is proportional to the pdf of a bivariate normal distribution with mean vector

U2

(
Σ−1
α ξ̃ + H−1

2 h2

)
and covariance matrix U2. Therefore,

[µα|.] ∼ N2

(
U2

(
Σ−1
α ξ̃ + H−1

2 h2

)
, U2

)
.

Full Conditional for µτA

Picking out the terms in the joint density (4.5) which involve µτA , and letting κi = log τi,

we get

π(µτA|.) ∝
m∏
i=1

exp
{
− 1− Ii

2σ2
τA

(κi − µτA)2
}

exp
{
− 1

2a1

(µτA − a0)
2
}
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= exp
{
− 1

2

[ m∑
i=1

(1− Ii) σ−2
τA

(κi − µτA)2 + a−1
1 (µτA − a0)

2
]}

= exp
{
− 1

2

[ m∑
i=1

(1− Ii)(σ−2
τA

κ2
i − 2σ−2

τA
κi µτA + σ−2

τA
µ2
τA

)+

(a−1
1 µ2

τA
− 2a−1

1 a0 µτA + a−1
1 a0)

]}
∝ exp

{
− 1

2

[ m∑
i=1

(1− Ii)(−2σ−2
τA

κi µτA + σ−2
τA

µ2
τA

) + (a−1
1 µ2

τA
− 2a−1

1 a0 µτA)
]}

[
proportionality follows because σ−2

τA
κ2
i and a−1

1 a0 are constants with respect to µτA
]

= exp
{
− 1

2

(
mA σ

−2
τA

µ2
τA
− 2σ−2

τA
κ̃ µτA + a−1

1 µ2
τA
− 2a−1

1 a0 µτA
)}

= exp
{
− 1

2

[
(mA σ

−2
τA

+ a−1
1 )µ2

τA
− 2µτA(σ−2

τA
κ̃+ a−1

1 a0)
]}

∝ exp
{
−
mA σ

−2
τA

+ a−1
1

2

[
µ2
τA
− 2µτA

(σ−2
τA

κ̃+ a−1
1 a0

mA σ−2
τA

+ a−1
1

)
+
(σ−2

τA
κ̃+ a−1

1 a0

mA σ−2
τA

+ a−1
1

)2]}
[
proportionality follows because (σ−2

τA
κ̃+ a−1

1 a0)/(mA σ−2
τA

+ a−1
1 ) is constant

]
= exp

{
−
mA σ

−2
τA

+ a−1
1

2

(
µτA −

σ−2
τA

κ̃+ a−1
1 a0

mA σ−2
τA

+ a−1
1

)2
}
,

which is proportional to the pdf of a normal distribution with mean (σ−2
τA
κ̃+a−1

1 a0)/(mA σ
−2
τA

+

a−1
1 ) and variance 1/(mA σ

−2
τA

+ a−1
1 ). Therefore,

[µτA|.] ∼ N
(
σ−2
τA

κ̃+ a−1
1 a0

mA σ−2
τA

+ a−1
1

,
1

mA σ−2
τA

+ a−1
1

)
.

Full Conditional for Σ−1
β

Picking out the terms in the joint density (4.5) which involve Σβ, we get

π(Σ−1
β |.) ∝

m∏
i=1

N3(βi| µβ,Σβ) W(Σ−1
β | ν1, (ν1A1)

−1)

∝
m∏
i=1

1

|Σβ|1/2
exp

{
− 1

2
(βi − µβ)′Σ−1

β (βi − µβ)
}
|Σ−1

β |
ν1−3−1

2 exp
{
− ν1

2
tr(A1Σ

−1
β )
}
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=
1

|Σβ|m/2
exp
{
− 1

2

m∑
i=1

(βi − µβ)′ Σ−1
β (βi − µβ)

}
|Σ−1

β |
ν1−3−1

2 exp
{
− ν1

2
tr(A1Σ

−1
β )
}

= |Σ−1
β |

m+ν1−3−1
2 exp

{
− 1

2

[ m∑
i=1

(βi − µβ)′ Σ−1
β (βi − µβ) + tr(ν1A1Σ

−1
β )
]}

= |Σ−1
β |

(m+ν1)−3−1
2 exp

{
− 1

2

[ m∑
i=1

tr
(
(βi − µβ) (βi − µβ)′ Σ−1

β

)
+ tr(ν1A1Σ

−1
β )
]}

[
if we let d1i = (βi − µβ)′ Σ−1

β and d2i = (βi − µβ), then d1id2i = tr(di1di2) =

tr(d2id1i) by the property of the trace of a matrix
]

= |Σ−1
β |

(m+ν1)−3−1
2 exp

{
− 1

2

[
tr
( m∑
i=1

(βi − µβ) (βi − µβ)′ Σ−1
β

)
+ tr(ν1A1Σ

−1
β )
]}

= |Σ−1
β |

(m+ν1)−3−1
2 exp

{
− 1

2

[
tr
( m∑
i=1

(βi − µβ) (βi − µβ)′ + ν1A1

)
Σ−1
β

]}
,

which is proportional to a Wishart pdf with degrees of freedom m + ν1 and scale matrix[∑m
i=1 (βi − µβ) (βi − µβ)′ + ν1A1

]−1
. Therefore,

[Σ−1
β |.] ∼ W

(
m+ ν1,

[ m∑
i=1

(βi − µβ) (βi − µβ)′ + ν1A1

]−1
)
.

Full Conditional for Σ−1
α

Picking out the terms in the joint density (4.5) which involve Σα, we get

π(Σ−1
α |.) ∝

m∏
i=1

[LN 2(αi| µα,Σα)]Ii W(Σ−1
α | ν2, (ν1A2)

−1)

∝
m∏
i=1

1

|Σα|Ii/2
exp

{
− Ii

2
(ξi − µα)′Σ−1

α (ξi − µα)
}
|Σ−1

α |
ν2−2−1

2 exp
{
− ν2

2
tr(A2Σ

−1
α )
}

=
1

|Σα|mG/2
exp
{
− 1

2

m∑
i=1

Ii(ξi − µα)′ Σ−1
α (ξi − µα)

}
|Σ−1

α |
ν2−2−1

2 exp
{
− ν2

2
tr(A2Σ

−1
α )
}
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= |Σ−1
α |

mG+ν2−2−1

2 exp
{
− 1

2

[ m∑
i=1

Ii(ξi − µα)′ Σ−1
α (ξi − µα) + tr(ν2A2Σ

−1
α )
]}

= |Σ−1
α |

(mG+ν2)−2−1

2 exp
{
− 1

2

[ m∑
i=1

tr
(
Ii(ξi − µα) (ξi − µα)′ Σ−1

α

)
+ tr(ν2A2Σ

−1
α )
]}

[
if we let d1i = (ξi − µα)′ Σ−1

α and d2i = Ii(ξi − µα), then d1id2i = tr(di1di2) =

tr(d2id1i) by the property of the trace of a matrix
]

= |Σ−1
α |

(mG+ν2)−2−1

2 exp
{
− 1

2

[
tr
( m∑
i=1

Ii(ξi − µα) (ξi − µα)′ Σ−1
α

)
+ tr(ν2A2Σ

−1
α )
]}

= |Σ−1
α |

(mG+ν2)−2−1

2 exp
{
− 1

2

[
tr
( m∑
i=1

Ii(ξi − µα) (ξi − µα)′ + ν2A2

)
Σ−1
α

]}
,

which is proportional to a Wishart pdf with degrees of freedom mG + ν2 and scale matrix[∑m
i=1 Ii(ξi − µα) (ξi − µα)′ + ν2A2

]−1
. Therefore,

[Σ−1
α |.] ∼ W

(
mG + ν2,

[ m∑
i=1

Ii(ξi − µα) (ξi − µα)′ + ν2A2

]−1
)
.

Full Conditional for σ−2
τA

Picking out the terms in the joint density (4.5) which involve στA , we get

π(σ−2
τA
|.) ∝

m∏
i=1

[LN (τi| µτA , σ2
τA

)]1−Ii G
(
σ−2
τA

∣∣∣ b0
2
,
b1
2

)
∝

m∏
i=1

1

(σ2
τA

)(1−Ii)/2
exp

{
− 1− Ii

2σ2
τA

(κi − µτA)2
}

(σ−2
τA

)b0/2−1 exp
{
− b1

2
σ−2
τA

}
= (σ−2

τA
)mA/2 exp

{
− 1

2σ2
τA

m∑
i=1

(1− Ii)(κi − µτA)2
}

(σ−2
τA

)b0/2−1 exp
{
− b1

2
σ−2
τA

}
= (σ−2

τA
)
mA+b0

2
−1 exp

{
−
∑m

i=1 (1− Ii)(κi − µτA)2 + b1
2

σ−2
τA

}
which is proportional to a gamma pdf with shape and rate parameters (mA + b0)/2 and{∑m

i=1 (1− Ii)(κi − µτA)2 + b1
}
/2, respectively. Therefore,
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[σ−2
τA
|.] ∼ G

(
mA + b0

2
,

∑m
i=1 (1− Ii)(κi − µτA)2 + b1

2

)
.

Full Conditional for σ−2
i

Picking out the terms in the joint density (4.5) which involve σi, we get

π(σ−2
i |.) ∝ Nni−p(y

(2)
i |µi, σ2

i Ii) G
(
σ−2
i

∣∣∣ d0

2
,
d1

2

)
∝ 1

|σ2
i Ii|1/2

exp
{
− 1

2σ2
i

(
y

(2)
i − µi

)′(
y

(2)
i − µi

)}
G
(
σ−2
ui

∣∣ d0

2
,
d1

2

)
=

1

|σ2
i Ii|1/2

exp
{
− 1

2σ2
i

(
zi − Xi βi

)′(
zi − Xi βi

)}
G
(
σ−2
ui

∣∣ d0

2
,
d1

2

)
∝
(
σ−2
i

)(ni−p)/2 exp
{
− 1

2σ2
i

(
zi − Xiβi

)′(
zi − Xiβi

)}(
σ−2
i

)d0/2−1
exp
(
− d1

2
σ−2
i

)
=
(
σ−2
i

)ni−p+d0
2

−1
exp

{
−
(
zi − Xi βi

)′(
zi − Xi βi

)
+ d1

2
σ−2
i

}
,

which is proportional to a gamma pdf with shape parameter (ni − p + d0)/2 and rate

parameter
{(

zi − Xi βi
)′(

zi − Xi βi
)

+ d1

}
/2. Therefore,

[σ−2
i |.] ∼ G

(
ni − p+ d0

2
,

(zi − Xi βi
)′

(zi − Xi βi
)

+ d1

2

)
.

Full Conditional for φ

Picking out the terms in the joint density (4.5) which involve φ, we get

π(φ|.) ∝
m∏
i=1

Nni−p(y
(2)
i | µi, σ2

i Ii) Np(φ| h3, H3)

∝
m∏
i=1

exp
{
− 1

2σ2
i

(
y

(2)
i − µi

)′ (
y

(2)
i − µi

)}
exp
{
− 1

2
(φ− h3)

′ H−1
3 (φ− h3)

}
.

Here, for j = p+ 1, p+ 2, . . . , ni,

yij − µij = yij − β0i

(
1−

p∑
k=1

φk

)
− β1i xij − β2i rij −

p∑
k=1

φk yi,j−k
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= (yij − β0i − β1i tij − β2i qij)− φ1 (yi,j−1 − β0i − β1i ti,j−1 − β2i qi,j−1)−

· · · − φp (yi,j−p − β0i − β1i ti,j−p − β2i qi,j−p)

= εij − φ1 εi,j−1 − φ2 εi,j−2 − . . . − φp εi,j−p

which can expressed in vector-matrix notation as y
(2)
i − µi = εi −Wiφ. Therefore,

π(φ|.) ∝
m∏
i=1

exp
{
− 1

2σ2
i

(
y

(2)
i − µi

)′ (
y

(2)
i − µi

)}
exp
{
− 1

2
(φ− h3)

′ H−1
3 (φ− h3)

}
=

m∏
i=1

exp
{
− 1

2σ2
i

(
εi −Wi φ

)′ (
εi −Wi φ

)}
exp
{
− 1

2
(φ− h3)

′ H−1
3 (φ− h3)

}
= exp

{
− 1

2

[ m∑
i=1

σ−2
i

(
εi −Wi φ

)′ (
εi −Wi φ

)
+ (φ− h3)

′ H−1
3 (φ− h3)

]}

= exp

{
− 1

2

[ m∑
i=1

σ−2
i

(
ε′i εi − ε′i Wi φ− φ′ W′

i εi + φ′ W′
i Wi φ

)
+

(
φ′ H−1

3 φ − φ′ H−1
3 h3 − h′3 H−1

3 φ+ h′3 H−1
3 h3

)]}
∝ exp

{
− 1

2

[ m∑
i=1

σ−2
i

(
− 2 φ′ W′

i εi + φ′ W′
i Wi φ

)
+ φ′ H−1

3 φ− 2φ′ H−1
3 h3

]}
[
ε′i Wi φ and h′3 H−1

3 φ are sclars, and so are ε′i Wi φ = φ′ W′
i εi and

h′3 H−1
3 φ = φ′ H−1

3 h3; proportionality follows because σ−2
i ε′i εi and h′3 H−1

3 h3

do not depend on φ
]

= exp

{
− 1

2

[
− 2 φ′

m∑
i=1

σ−2
i W′

i εi + φ′
( m∑
i=1

σ−2
i W′

i Wi

)
φ +

φ′ H−1
3 φ− 2φ′ H−1

3 h3

]}
= exp

{
− 1

2

[
− 2 φ′

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
+ φ′

( m∑
i=1

σ−2
i W′

i Wi + H−1
3

)
φ
]}

= exp

{
− 1

2

[
− 2 φ′

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
+ φ′ V−1 φ

]}
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∝ exp

{
− 1

2

[
− φ′

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
−
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)′
φ +

φ′ V−1 φ+
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)′
V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)]}
[
φ′
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
=
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)′
φ because

φ′
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
is a scalar; proportionality follows because

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)′
V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
does not depend on φ

]
= exp

{
− 1

2

[
φ− V

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)]′
V−1

[
φ− V

( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)]}
,

which is proportional to the pdf of a p-variate normal distribution with mean vector

V
(∑m

i=1 σ
−2
i W′

i εi + H−1
3 h3

)
and covariance matrix V. Therefore,

[φ|.] ∼ Np
(

V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
, V
)
.

Full Conditional for ω

Picking out the terms in the joint density (4.5) which involve ω, we get

π(ω|.) ∝
m∏
i=1

{
ωIi (1− ω)1−Ii

}
ωc0−1 (1− ω)c1−1

= ω
∑m
i=1 Ii (1− ω)

∑m
i=1 (1−Ii) ωc0−1 (1− ω)c1−1

= ωmG+c0−1 (1− ω)mA+c1−1

which is proportional to the pdf of a beta distribution with parameters mG+c0 and mA+c1.

Therefore

[ω|.] ∼ B(mG + c0,mA + c1).
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4.7.4 Metropolis Step for αi

As shown in Section 4.7.3, the full conditional for αi can be expressed only up to a pro-

portionality constant. Letting

L(αi) = exp
{
− 1

2σ2
i

(zi − Xi βi)
′(zi − Xi βi)

}
,

the full conditional for αi can be re-written as follows:

π(αi|.) ∝ L(αi)×
[
LN (τi|µτA , σ2

τA
)
]1−Ii × [LN 2(αi|µα,Σα)

]Ii . (4.8)

Generating a candidate point α∗i = (γ∗i , τ
∗
i )′ involves two steps (Johnson et al. [42]): (1)

draw a candidate I∗i from a Bernoulli distribution with parameter ω; and (2)(a) if I∗i = 0,

set γ∗i = 0 and draw τ ∗i from the proposal density, but (2)(b) if I∗i = 1, draw α∗i from

the proposal density. Our choices of the proposal densities depend on two cases, and are

described next.

Let
(
α

(s)
i , I

(s)
i

)
be the draw at the sth MCMC iteration. We consider two variants

of the Metropolis-Hastings algorithm to update
(
α

(s)
i , I

(s)
i

)
: an independence Metropolis-

Hastings step when I
(s)
i = 1 and I∗i = 0 or vice versa, i.e., when there is a jump from one

population to another; and a random-walk Metropolis step when I
(s)
i = I∗i = 0 (or 1), i.e.,

when the proposed draw remains in the same population. The algorithmic procedure is

described as follows.

Case I: I
(s)
i = 0 and I∗i = 1 or vice versa

We take the delta bivariate mixed lognormal distribution ∆(µα,Σα, µτA , σ
2
τA
, ω) as our

proposal density with pdf

g(αi) = 1(γi = 0) (1− ω) LN (τi|µτA , σ2
τA

) + 1(γi > 0) ω LN 2(αi|µα,Σα),

where µα, Σα, µτA , σ2
τA

, ω are at their current states. Note that drawing a random point

from ∆(.) involves two steps: draw I∗i ∼ BER(ω) first, and then set γ∗i = 0 and draw

τ ∗i ∼ LN (µτA , σ
2
τA

) if I∗i = 0, but draw α∗i ∼ LN 2(µα,Σα) if I∗i = 1.

First, consider the case I(s) = 0 and I∗ = 1. The Metropolis-Hastings ratio for the
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independence Metropolis-Hastings step is

R01 =

{
L
(
α∗i
)
× LN 2

(
α∗i |µα,Σα

)}
×
{

(1− ω)× LN
(
τ

(s)
i |µτA , σ2

τA

)}{
L
(
α

(s)
i

)
× LN

(
τ

(s)
i |µτA , σ2

τA

)}
×
{
ω × LN 2

(
α∗i |µα,Σα

)}
=

L
(
α∗i
)

L
(
α

(s)
i

) 1− ω
ω

.

Next, consider I(s) = 1 and I∗ = 0. The Metropolis-Hastings ratio for this case is

R10 =

{
L
(
α∗i
)
× LN

(
τ ∗i |µτA , σ2

τA

)}
×
{
ω × LN 2

(
α

(s)
i |µα,Σα

)}{
L
(
α

(s)
i

)
× LN 2

(
α

(s)
i |µα,Σα

)}
×
{

(1− ω)× LN
(
τ ∗i |µτA , σ2

τA

)}
=

L
(
α∗i
)

L
(
α

(s)
i

) ω

1− ω
.

Case II: I
(s)
i = I∗i = 0 or 1

For this case, we choose a random-walk Metropolis with proposal densities N
(
τ

(s)
i , c σ2

τA

)
and N2

(
α

(s)
i , c Σα

)
for I

(s)
i = I∗i = 0 and I

(s)
i = I∗i = 1, respectively, where σ2

τA
and Σα

are at their current states in the MCMC simulation, and c is called a tuning parameter

which is adjusted to a value in such a way to achieve a reasonable acceptance probability

(may need to do so by trial-and-error). Metropolis-Hastings ratios for these two cases are,

respectively,

R00 =
L
(
α∗i
)
× LN

(
τ ∗i |µτA , σ2

τA

)
L
(
α

(s)
i

)
× LN

(
τ

(s)
i |µτA , σ2

τA

)
and

R11 =
L
(
α∗i
)
× LN 2

(
α∗i |µα,Σα

)
L
(
α

(s)
i

)
× LN 2

(
α

(s)
i |µα,Σα

) .
Now, For both Case I and Case II, if the candidate is accepted, we take α

(s+1)
i = α∗i

and I
(s+1)
i = I∗i , otherwise α

(s+1)
i = α

(s)
i and I

(s+1)
i = I

(s)
i .
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Chapter 5

Special Cases of the Mixed

Bent-Cable Model

An AR(0) process for the within-individual noise is a special case of the methodology

described in Chapters 3 and 4, where p = 0 and φ is degenerate. Statistical inference for

this model can be carried out following the same lines as for the general mixed bent-cable

model: the full conditionals take the same form as given in Section 4.7.3, but with p = 0

and φ degenerate so that zi = yi, xi = ti and ri = qi; and omitting Step 11 in the updating

order of constructing a Markov chain described in Section 4.3.3. There are two other special

cases irrespective of the value of p: a model for an abrupt transition (Population A) only,

and another for a gradual transition (Population G) only. Henceforth, we will refer to these

two by Model A and Model G, respectively. The underlying assumption for each of these

two models is that the sample comes only from that population, and therefore the mixture

probability ω is degenerate. It is easy to reduce the mixed bent-cable model to involve

only one type of transition. Moreover, the statistical inference for these two models can be

carried out following the same lines as for the general model (Chapter 4). We describe the

models and inference techniques for Models A and G in Sections 5.1 and 5.2, respectively.

We conclude this chapter with a discussion in Section 5.3, and the derivations of the full

conditionals in the chapter appendix (Section 5.4).

65



5.1 Model A

For Model A, the transition parameter αi = (γi, τi) has γi = 0 for all i, and the bent

cable function for the ith individual is given by Equations (3.2) and (3.4). Though Level 1

and modeling βi at Level 2 are as in Section 3.1, we require only a lognormal distribution

to model τi in this case since γi = 0. Therefore, µα and Σα are degenerate as these are

associated only with gradual transition for which γi > 0. The three levels of the hierarchy

from Section 3.1.4 are

[y
(2)
i | y

(1)
i ,θi,φ, σ

2
i ] ∼ Nni−p(µi, σ2

i Ii), (5.1)[
βi|µβ,Σβ

]
∼ N3(µβ,Σβ),[

τi|µτA , σ2
τA

]
∼ LN (µτA , σ

2
τA

),

 , (5.2)

[µβ|h1,H1] ∼ N3(h1,H1), [µτA|a0, a1] ∼ N (a0, a1),[
Σ−1
β |ν1,A1

]
∼ W

(
ν1, (ν1A1)

−1
)
,
[
σ−2
τA
|b0, b1

]
∼ G( b0

2
, b1

2
)

[φ|h3,H3] ∼ Np(h3,H3),
[
σ−2
i |d0, d1

]
∼ G(d0

2
, d1

2
)

 , (5.3)

where the first two levels are (5.1) and (5.2), and the third level is (5.3) with the hyperpa-

rameters h1, H1, a0, a1, ν1, A1, b0, b1, h3, H3, d0 and d1.

Letting τ = (τ1, τ2, . . . , τm)′, we denote the parameters for Model A by ΘA =
(
β, τ ,µβ,

µτA ,Σ
−1
β , σ−2

τA
,σ−2,φ

)
. The full conditionals to implement the Metropolis within Gibbs

algorithm can be derived following the same lines as for the general mixed bent-cable

model, and are given in the chapter appendix (Section 5.4). Now, given Θ
(s)
A at iteration

s, we update using the following sequence to achieve the new set Θ
(s+1)
A in one iteration:

1. For i = 1, generate β
(s+1)
i ∼ π

(
βi| τ

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
via a Gibbs step,

where π
(
βi| τ

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
is a trivariate normal distribution;

2. for i = 1, generate τ
(s+1)
i ∼ π

(
τi| β(s+1)

i , σ
−2(s)
i , µ

(s)
τA , σ

−2(s)
τA ,φ(s),y

(2)
i

)
via a random-

walk Metropolis step with the proposal distribution N
(
τ

(s)
i , c σ

2(s)
τA

)
with c being the

tuning parameter, where π
(
τi| β(s+1)

i , σ
−2(s)
i , µ

(s)
τA , σ

−2(s)
τA ,φ(s),y

(2)
i

)
can be expressed

only up to a proportionality constant;
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3. for i = 1, generate σ
−2(s+1)
i ∼ π

(
σ−2
i | β

(s+1)
i , τ

(s+1)
i ,φ(s),y

(2)
i

)
via a Gibbs step, where

π
(
σ−2
i | β

(s+1)
i , τ

(s+1)
i ,φ(s),y

(2)
i

)
is a gamma distribution;

4. repeat 1–3 for i = 2, 3, . . . ,m; these complete the update for the individual-specific

parameters, that is, we now have β(s+1), τ (s+1) and σ−2(s+1);

5. generate Σ
−1(s+1)
β ∼ π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
via a Gibbs step, where π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
is a Wishart distribution;

6. generate σ
−2(s+1)
τA ∼ π

(
σ−2
τA
| τ (s+1), µ

(s)
τA

)
via a Gibbs step, where π

(
σ−2
τA
| τ (s+1), µ

(s)
τA

)
is a gamma distribution;

7. generate µ
(s+1)
β ∼ π

(
µβ| β(s+1),Σ

−1(s+1)
β

)
via a Gibbs step, where π

(
µβ| β(s+1),

Σ
−1(s+1)
β

)
is a trivariate normal distribution;

8. generate µ
(s+1)
τA ∼ π

(
µτA| τ (s+1), σ

−2(s+1)
τA

)
via a Gibbs step, where π

(
µτA| τ (s+1),

σ
−2(s+1)
τA

)
is a normal distribution;

9. generate φ(s+1) ∼ π
(
φ| β(s+1), τ (s+1),σ−2(s+1)

)
via a Gibbs step, where π

(
φ| β(s+1),

τ (s+1),σ−2(s+1)
)

is a p-variate normal distribution.

The Bayesian inference can now be made by applying Monte Carlo integration on

the Markov chain constructed via the above steps, and the same diagnostics discussed in

Section 4.4 can be employed to check the convergence of the Markov chain.

5.2 Model G

For Model G, the transition parameter αi = (γi, τi) has γi > 0 for all i, and the bent cable

function for the ith individual is given by Equations (3.2) and (3.3). Like Model A, Level

1 and modeling βi at Level 2 are as before (Section 3.1). However, we require a bivariate

lognormal distribution to model αi in this case. Note that µτA and σ2
τA

are degenerate as
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these are associated only with an abrupt transition for which γi = 0. The three levels of

the hierarchy are

[y
(2)
i | y

(1)
i ,θi,φ, σ

2
i ] ∼ Nni−p(µi, σ2

i Ii), (5.4)[
βi|µβ,Σβ

]
∼ N3(µβ,Σβ),

[αi|µα,Σα] ∼ LN 2(µα,Σα),

 , (5.5)

[µβ|h1,H1] ∼ N3(h1,H1), [µα|h2,H2] ∼ N2(h2,H2),[
Σ−1
β |ν1,A1

]
∼ W

(
ν1, (ν1A1)

−1
)
, [Σ−1

α |ν2,A2] ∼ W
(
ν2, (ν2A2)

−1
)

[φ|h3,H3] ∼ Np(h3,H3),
[
σ−2
i |d0, d1

]
∼ G(d0

2
, d1

2
)

 , (5.6)

where the first two levels are (5.4) and (5.5), and the third level is (5.6) with the hyperpa-

rameters h1, H1, h2, H2, ν1, A1, ν2, A2, h3, H3, d0 and d1.

We denote the parameters for Model G by ΘG =
(
β,α,µβ,µα,Σ

−1
β ,Σ−1

α ,σ−2,φ
)
, and

their full conditionals are given in the appendix (Section 5.4). Now, given Θ
(s)
G at iteration

s, we use the following sequence to achieve the new set Θ
(s+1)
G in one iteration:

1. For i = 1, generate β
(s+1)
i ∼ π

(
βi| α

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
via a Gibbs

step, where π
(
βi| α

(s)
i , σ

−2(s)
i ,µ

(s)
β ,Σ

−1(s)
β ,φ(s),y

(2)
i

)
is a trivariate normal distribu-

tion;

2. for i = 1, generate α
(s+1)
i ∼ π

(
αi| β(s+1)

i , σ
−2(s)
i ,µ

(s)
α ,Σ

−1(s)
α ,φ(s),y

(2)
i

)
via a random-

walk Metropolis step with the proposal distributionMVN
(
α

(s)
i , c Σ

(s)
α

)
with c being

the tuning parameter, where π
(
αi| β(s+1)

i , σ
−2(s)
i ,µ

(s)
α ,Σ

−1(s)
α ,φ(s),y

(2)
i

)
can be ex-

pressed only up to a proportionality constant;

3. for i = 1, generate σ
−2(s+1)
i ∼ π

(
σ−2
i | β

(s+1)
i ,α

(s+1)
i ,φ(s),y

(2)
i

)
via a Gibbs step,

where π
(
σ−2
i | β

(s+1)
i ,α

(s+1)
i ,φ(s),y

(2)
i

)
is a gamma distribution;

4. repeat 1–3 for i = 2, 3, . . . ,m; these complete the update for the individual-specific

parameters, that is, we now have β(s+1), α(s+1) and σ−2(s+1);
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5. generate Σ
−1(s+1)
β ∼ π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
via a Gibbs step, where π

(
Σ−1
β | β

(s+1),µ
(s)
β

)
is a Wishart distribution;

6. generate Σ
−1(s+1)
α ∼ π

(
Σ−1
α | α(s+1),µ

(s)
α

) (
and hence Σ

(s+1)
α

)
via a Gibbs step, where

π
(
Σ−1
α | α(s+1),µ

(s)
α

)
is a Wishart distribution;

7. generate µ
(s+1)
β ∼ π

(
µβ| β(s+1),Σ

−1(s+1)
β

)
via a Gibbs step, where π

(
µβ| β(s+1),

Σ
−1(s+1)
β

)
is a trivariate normal distribution;

8. generate µ
(s+1)
α ∼ π

(
µα| α(s+1),Σ

−1(s+1)
α

)
via a Gibbs step, where π

(
µα| α(s+1),

Σ
−1(s+1)
α

)
is a bivariate normal distribution;

9. generate φ(s+1) ∼ π
(
φ| β(s+1),α(s+1),σ−2(s+1)

)
via a Gibbs step, where π

(
φ| β(s+1),

α(s+1),σ−2(s+1)
)

is a p-variate normal distribution;

The Bayesian inference can now be carried out using the techniques described in Chap-

ter 4.

5.3 Discussion

In this chapter, we have presented the special cases of the mixed bent-cable regression.

We recommend using the flexible methodology (Chapters 3 and 4), with 0 < ω < 1,

only when there is a strong reason to believe that the sample potentially comes from two

populations (Populations A and G), a scenario that exists for the rat study (Chapters 1

and 6); otherwise, depending on the context, either Model A or G (ω is 0 or 1, respectively)

should be used. For example, since the CFC-11 profiles exhibit gradual transition all over

the globe (Chapter 1), Model G should be the preferred method to analyze this data set.
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5.4 Chapter Appendix: Full Conditionals

Recall that Ii = 0 and 1 (for all i) for Models A and G, respectively, and that fij =

β0i + β1itij + β2iqij is the bent-cable function, with qij = (tij − τi)1{tij − τi > 0} for Model

A, and qij = (tij − τi + γi)
2 1{|tij − τi| ≤ γi}/4γi + (tij − τi)1{tij − τi > γi} for Model G.

Also recall our notation from Page 51. Note that ξ̃ and U−1
2 are associated with Model

G only for which Ii = 1 for all i, so that mG =
∑m

i=1 Ii = m, U−1
2 = mG Σ−1

α + H−1
2 =

m Σ−1
α + H−1

2 and ξ̃ =
∑m

i=1 Ii ξi =
∑m

i=1 ξi. Also, since κ̃ is associated with Model A

only for which Ii = 0 for all i, κ̃ =
∑m

i=1 (1− Ii) κi =
∑m

i=1 κi

Now, following the same lines as for the general mixed bent-cable regression in Sec-

tion 4.7.3, one can verify that the full conditionals for Model A are

[βi|.] ∼ N3

(
Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)
, Mi

)
,

π(τi|.) ∝ exp
{
− 1

2σ2
i

(zi − Xi βi)
′(zi − Xi βi)

}
×
[ 1

τi
exp

{
− 1

2σ2
τA

(κi − µτA)2
}]

[µβ|.] ∼ N3

(
U1

(
Σ−1
β β̃ + H−1

1 h1

)
, U1

)
,

[µτA|.] ∼ N
(
σ−2
τA

κ̃+ a−1
1 a0

m σ−2
τA

+ a−1
1

,
1

m σ−2
τA

+ a−1
1

)
,

[Σ−1
β |.] ∼ W

(
m+ ν1,

[ m∑
i=1

(βi − µβ) (βi − µβ)′ + ν1A1

]−1
)
,

[σ−2
τA
|.] ∼ G

(
mA + b0

2
,

∑m
i=1 (κi − µτA)2 + b1

2

)
,

[σ−2
i |.] ∼ G

(
ni − p+ d0

2
,

(zi − Xi βi
)′

(zi − Xi βi
)

+ d1

2

)
,

[φ|.] ∼ Np
(

V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
, V
)
,

and those for Model G are

[βi|.] ∼ N3

(
Mi

(
σ−2
i X′i zi + Σ−1

β µβ
)
, Mi

)
,
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π(αi|.) ∝ exp
{
− 1

2σ2
i

(zi − Xi βi)
′(zi − Xi βi)

}
×
[ 1

γiτi
exp

{
− 1

2
(ξi − µα)′ Σ−1

α (ξi − µα)
}]
,

[µβ|.] ∼ N3

(
U1

(
Σ−1
β β̃ + H−1

1 h1

)
, U1

)
,

[µα|.] ∼ N2

(
U2

(
Σ−1
α ξ̃ + H−1

2 h2

)
, U2

)
,

[Σ−1
β |.] ∼ W

(
m+ ν1,

[ m∑
i=1

(βi − µβ) (βi − µβ)′ + ν1A1

]−1
)
,

[Σ−1
α |.] ∼ W

(
m+ ν2,

[ m∑
i=1

(ξi − µα) (ξi − µα)′ + ν2A2

]−1
)
,

[σ−2
i |.] ∼ G

(
ni − p+ d0

2
,

(zi − Xi βi
)′

(zi − Xi βi
)

+ d1

2

)
,

[φ|.] ∼ Np
(

V
( m∑
i=1

σ−2
i W′

i εi + H−1
3 h3

)
, V
)
.
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Chapter 6

Data Analyses

Two applications of our methodology are presented in this chapter. In the first exam-

ple (Section 6.1), we apply our flexible mixed bent-cable methodology to data from an

experimental rat model. The second example (Section 6.2) uses Model G to address

the global concern of atmospheric concentration of CFC-11. Any parameter estimate

in the following two examples is based on the posterior mean or median, depending on

the extent of asymmetry of the corresponding marginal posterior density; a fitted curve

is then produced based on the instances of the regression coefficients in the Markov

chain as described in Section 4.2.1. For example, since the CTP for Population G is

exp {µτ} − exp {µγ} − 2µ1 exp {µγ}/µ2 (see Section 4.2.1), we use the mean from the pos-

terior of this expression for inference. Estimates for the other parameters for Level 2

Population A/G medians/standard deviations are produced similarly. In both the exam-

ples, we choose flat priors (see Section 3.1.3). We conclude this chapter with a few general

remarks about the performance of our methodology in Section 6.3.

6.1 Rat Data

6.1.1 Background of the Study

Recall from Chapter 1 that hypothermia is a fatal condition which can occur when core

body temperature (Tc) falls below 35oC. Recall also that hypothermia is used as a thera-

peutic tool for cardiac arrest, stroke and brain injury. By reducing a patient’s Tc, systematic
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metabolism, and therefore tissue oxygen demand, can be lowered. This is believed to at-

tenuate the effects of ischemia at the cellular level (Gordon [38]). In contrast, when the

body becomes very cold, all physiological systems begin to slow down, eventually to the

point that threatens survival. Treatment priorities in such situations include prevention of

further cooling and resuscitation. Therefore, as mentioned in Chapter 1, quantification of

the transition of Tc to early hypothermia is of great clinical interest.

6.1.2 Data

Motivated by the above, 38 approximately 8-week-old male Long-Evans rats were used in

an experiment conducted by Reynolds et al. [62]. Rats were anesthetized, and their core

temperature Tc was logged by remote data collection every 15 seconds for the duration of

the trial. We denote time for subject i by tij, j = 1, 2, . . . , ni, where ti1 = 0 refers to the

starting point of the study for rat i, and each subsequent time increment is 15 seconds.

Eight representative Tc profiles were shown in Figure 1.1. There we pointed out that in

addition to roughly linear incoming and outgoing phases at either end of each profile, some

rats may exhibit a gradual transition in Tc, while others, seemingly an abrupt transition.

That is, we have samples potentially coming from two different populations, G (gradual)

and A (abrupt), respectively, according to the type of transition for the underlying Tc trend.

Therefore, we analyze this data set using our flexible mixed bent-cable methodology.

Note that there are 4 rat profiles that exhibit neither a gradual nor an abrupt transition,

but rather a linearly decreasing trend. Extension of our methodology to incorporate those

profiles as coming from another population is straightforward (see Section 8.2). However,

since only 4 profiles are not expected to provide enough information to make inference

about the underlying population, taking into account that population in analyzing the rat

data may not be worthwhile. Also note that those 4 profiles are not expected to create any

problem in model fitting because of shrinkage towards the population. However, since they

must belong to one of the two populations A and G by Assumption T1 (Section 3.1.2), the

mixture probability ω is no longer the actual proportion of profiles that belong to G under

the assumption of the existence of a third population. Nonetheless, 4 profiles only are not

expected to contribute anything significant to the estimation, and hence, interpretation of

the actual ω.
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6.1.3 Results

Reynolds and Chiu [63] use broken sticks and bent cables to model the data, treating each

rat profile as an individual time series. Here, we unify the inference from all 38 rats with our

more general mixed bent-cable methodology incorporating random effects. Like Reynolds

and Chiu, we consider data from the start of hemorrhage until resuscitation intervention.

Note that our longitudinal context allows pooling of information from multiple individu-

als, overcoming apparent violation of linearity of the incoming and outgoing phases that

prevented model convergence for certain rat profiles in the case of Reynolds and Chiu, who

truncate “problematic” profiles to achieve convergence.

We construct two Markov chains each of 5,000,000 iterations to approximate the pos-

terior density. The initial 200,000 iterations are discarded as burn-in, and the inferences

are based on every 200th iteration of the chains (thinning), resulting in a total of 24,000

iterations per chain.

Preliminary analysis reveals that the data exhibit nonstationarity when assuming AR(p),

p > 0, for the εij’s. As our current methodology is intended only for stationary AR

processes (see Section 4.6), we analyze the data in two ways: assuming AR(0), and as-

suming AR(1) by imposing stationarity through a restrictive prior for φ: we consider

φ ∼ N (0, 0.00005) (Prior 1) and φ ∼ N (0, 0.0001) (Prior 2). However, imposing stationar-

ity leads to poor mixing for some parameters as illustrated by the trace plots. Moreover,

the estimates of φ vary considerably depending on the actual prior (the estimates are 0.52

and 0.91, respectively, from Priors 1 and 2). On the other hand, we observe reasonable

mixing for all the parameters under an AR(0) assumption (Figure 6.1 displays the trace

plots for population transition parameters µγ, µτ and µτA as examples). Therefore, we

report here the results for AR(0). Note that our main goal is to make inference about the

populations, and our simulation study (Section 7.4.1) reveals that the flexible methodology

can perform well with respect to the population regression coefficients even for a misspec-

ified correlation structure for the εij’s. Note also that in Section 7.4.1, we consider more

general p (up to p = 2) in our simulation study.

The trace, density and autocorrelation plots of each of the population parameters µβ,

µα and µτA , and the mixture probability ω are shown in Figures 6.2, 6.3 and 6.4, respec-

tively. Here, the lack of any trend in the trace plot and low autocorrelations in the two

chains indicate good mixing. The density plots in Figure 6.3 display no signs of multi-
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Figure 6.1: Rat data analysis – trace plots for the posteriors of parameters µγ, µτ and
µτA from two chains for AR(0), and for AR(1) with φ ∼ N (0, 0.00005) (Prior 1) and
φ ∼ N (0, 0.0001) (Prior 2); poor mixing is seen for the latter two cases.
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Figure 6.2: Rat data analysis – trace plots for the posteriors of the population parameters
µβ = (µ0, µ1, µ2)

′, µα = (µγ, µτ )
′ and µτA , and the mixture probability ω from two chains

assuming AR(0) noise.
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Figure 6.3: Rat data analysis – kernel density estimate plots for the posteriors of population
parameters µβ = (µ0, µ1, µ2)

′, µα = (µγ, µτ )
′ and µτA , and the mixture probability ω from

two chains assuming AR(0) noise.
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Figure 6.4: Rat data analysis – autocorrelation plots for the two chains for population
parameters µβ = (µ0, µ1, µ2)

′, µα = (µγ, µτ )
′ and µτA , and the mixture probability ω,

assuming AR(0) noise.
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modality. These three sets of plots show stationarity of the Markov chains. We also test

the stationarity by the Gelman-Rubin statistic (Section 4.4.2), which provides no evidence

against stationarity of the chains. Having reasonable mixing and convergence, we next

proceed to interpret the results.

Table 6.1: Posterior summaries for the two populations of rats assuming AR(0) noise:
posterior means for the population slope parameters (µ1 and µ2) are in “per 15 seconds”
and those for the population transitions are in minutes.

Posterior mean 95% credible interval

ω 0.39 (0.23, 0.55)

µ0 37.38 (37.21, 37.56)

µ1 0.003 (0.001, 0.006)

µ2 −0.016 (−0.020,−0.011)

exp {µτA} 13.89 (10.59, 17.34)

(Population CTP for A)

exp {µτ} ± exp {µγ} 10.11 to 29.03 −
(Transition period for Population G)

exp {µτ} − exp {µγ} − 2µ1 exp {µγ}/µ2 14.28 (6.33, 21.84)

(Population CTP for G)

Some posterior characteristics of parameters for the two populations are given in Ta-

ble 6.1, and the population fitted curves are displayed in Figure 6.5. We see a significant

linear increase in population Tc at the rate of 0.003oC per 15 seconds in the incoming phase(
95% credible interval of the incoming slope is (0.001, 0.006) which excludes 0

)
. We also see

virtually identical metabolic thresholds associated with a breakdown in the compensatory

mechanisms for the two populations: posterior means for population CTP and exp {µτA}
are 14.28 and 13.89 minutes, respectively. Thus, for G, the drop in Tc started at approxi-

mately 14.28 minutes after hemorrhage, and 13.89 minutes for A. Moreover, the posterior

mean for ω is 0.39, which suggests that about 39% of the rats belong to Population G who
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Figure 6.5: Observed data (black lines) and fitted curves (red and green curves) for the two
populations of rats assuming within-individual independence. The estimated transition for

Population G
(
i.e. ̂exp {µτ} ± exp {µγ}

)
is marked by solid red vertical lines, and that

for Population A
(
i.e. ̂exp {µτA}

)
by the green vertical line. The estimated CTP for

Population G is indicated by the dotted vertical line, which virtually coincides with the
estimated transition point of Population A.

exhibit a slow (gradual) change in Tc, and a significant linear decrease thereafter at the

rate of 0.013oC per 15 seconds. Since the posterior means for exp {µτ} − exp {µγ} and

exp {µτ}+exp {µγ} are 10.11 and 29.03 minutes, respectively, the population transition for

those rats begins approximately 10.11 minutes from the time of hemorrhage and lasts for

about 18.92 minutes. The remaining 61% of the rats are estimated to arise from Population
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A, and exhibit an abrupt linear decrease, assumed through Assumption B4 (Section 3.1.2)

to be at the same rate as that for the linear decrease for Population G.

Individual fitted curves for 5 representative rats were presented in Figure 1.4. For

convenience of reference, we reproduce the plot here again as Figure 6.6. In general, the

fits look reasonable as the observed data closely agree with the respective fitted lines. The

estimated transitions also demonstrate that our methodology picks up the two types of

transition adequately.

The posterior characteristics of the standard deviations and correlations associated with

Σβ, Σα and σ2
τA

(priors for the random regression coefficients) are given in Table 6.2. We

see small posterior variations in the linear regression coefficients, especially for the slope

parameters β1i and β2i. Since the biological conditions of different rats should vary to

some extent, we can expect some variation in the core body temperatures at the time

of administering hemorrhage. This is reflected in the estimate of the standard deviation

for the intercept β0i, which is 0.535. After administering hemorrhage, we see very little

variation in the slope parameters (the estimated standard deviations for β1i, β2i and β1i +

β2i are 0.008, 0.123 and 0.011, respectively), that is, all the rats exhibit very similar

rates of increase/decrease in the core body temperatures before/after the transition period.

Significant negative correlation between β1i and β2i

( ̂corr(β1i, β2i) = −0.476 with 95%

credible interval (−0.711,−0.204) which excludes 0
)

indicates that the transition starts to

take place sooner if the rate of increase in Tc in the incoming phase is high, and vice versa.

Let us turn now to the behavior of the transition in the Tc profiles. We see considerable

variability in the times to maximal Tc and the variability in the times to transition zones

(Table 6.2). This fact is reflected in the posterior medians for the standard deviations of

γi and τi for Population G (7.643 and 10.172 minutes, respectively), and of τi for Pop-

ulation A (9.312 minutes). We also see significant negative correlation between γi and

τi
( ̂corr(γi, τi) = −0.132 with 95% credible interval (−0.186,−0.025) which excludes 0

)
,

which implies that the wider the transition zone, the sooner the transition takes place, and

vice versa. Relating this finding to the negative correlation between β1i and β2i, we can

infer that if the rate of increase in Tc in the incoming phase is higher, then the transition

takes place sooner with a wider transition zone so that there will be a delayed linear drop

in the outgoing phase. On the other hand, if the rate of increase in Tc in the incoming

phase is lower, then the transition takes place later with a narrower transition zone so that

there will be an early linear drop in the outgoing phase.
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Figure 6.6: Observed data (black lines) and the corresponding individual-specific fitted
curves (red lines) for 5 representative rats. Estimated transitions

(
i.e. τ̂ and τ̂ ± γ

)
are

marked by the vertical lines with estimated CTPs (for Population G) by the dotted lines;
The CTP estimate is not marked for Rat 3 because the estimated slope of its cable does
not change signs.
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Table 6.2: Rat data analysis – posterior summaries of the standard deviations and cor-
relations associated with Σβ, Σα and σ2

τA
(priors for the random regression coefficients);

posterior summaries for the standard deviations of γi and τi are in minutes.

Posterior median 95% credible

interval√
(Σβ)11 0.535 (0.423, 0.669)

(S.D. of the intercept β0i)√
(Σβ)22 0.008 (0.006, 0.010)

(S.D. of the incoming slope β1i)√
(Σβ)33 0.123 (0.010, 0.016)

(S.D. of the scaling factor β2i)√
(Σβ)22 + (Σβ)33 + 2(Σβ)23 0.011 (0.009, 0.014)

(S.D. of the outgoing slope β1i + β2i)

(Σβ)12/
√

(Σβ)11 × (Σβ)22 0.023 (−0.296, 0.343)
(Correlation between β0i and β1i)

(Σβ)13/
√

(Σβ)11 × (Σβ)33 −0.001 (−0.323, 0.319)
(Correlation between β0i and β2i)

(Σβ)23/
√

(Σβ)22 × (Σβ)33 −0.476 (−0.711,−0.204)
(Correlation between β1i and β2i)√

exp {2µγ + (Σα)11} × [exp {(Σα)11} − 1] 7.643 (2.967, 19.068)
(S.D. of the half-width parameter γi for Population G)√

exp {2µτ + (Σα)22} × [exp {(Σα)22} − 1] 10.172 (4.728, 20.928)
(S.D. of the center of the bend τi for Population G)

[exp {(Σα)12} − 1]/
√

[exp {(Σα)11} − 1]× [exp {(Σα)22} − 1] −0.132 (−0.186,−0.025)
(Correlation between γi and τi for Population G)

√
exp {2µτA

+ σ2
τA
} × [exp {σ2

τA
} − 1] 9.312 (5.030, 16.200)

(S.D. of the CTP τi for Population A)
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In summary, under the assumptions that both populations share the same linear slopes

and that each rat’s Tc measurements are independent over time, our analysis yields the

following points of clinical interest: (i) about 61% of the rats exhibit an abrupt linear drop

in Tc during hemorrhage, whereas the remaining 39% exhibit a gradual transition followed

by a linear drop; (ii) all rats are from populations that show approximately the same

metabolic threshold (about 14 minutes after hemorrhage) associated with a breakdown in

the compensatory mechanisms; (iii) during hemorrhage, either population shows a signifi-

cant increase of Tc followed by a significant decrease; (iv) all the rats exhibit very similar

rates of increase and decrease in Tc before and after the transition period, respectively

(the estimated standard deviations for β1i, β2i and β1i + β2i are 0.008, 0.123 and 0.011,

respectively); (v) there is a considerable amount of between-rat variability in the times to

maximal Tc and transition zones – the posterior medians for the standard deviations are

large for γi and τi for both populations (all three values are between 7.6 and 10.2 minutes);

(vi) there are significant negative correlations between the slope parameters β1i and β2i

and the transition parameters γi and τi.

6.2 CFC-11 Data

Much of the material of this section can be found in our published article (Khan et al. [44]),

but it is repeated in this thesis for the sake of completeness. Specifically, the background of

the study, data description and analysis assuming AR(1) within-individual noise are taken

from that article, and then we extend the analysis by assuming a higher-order AR process

for the within-individual noises.

6.2.1 Background of the Study

Many biological consequences such as skin cancer and cataracts, irreversible damage to

plants, and reduction of drifting organisms (animals, plants, archaea, bacteria) in the

ocean’s photic zone may result from the increased ultraviolet (UV) exposure due to ozone

depletion. According to the U.S. Environmental Protection Agency (U.S. EPA) [79], each

natural reduction in ozone levels has been followed by a recovery, though there is convincing

scientific evidence that the ozone shield is being depleted well beyond changes due to
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natural processes. In particular, ozone depletion due to human activities is a major concern,

and may be controlled. One such human activity is the use of CFCs. As cited in “The

Ozone Hole Tour” by the University of Cambridge [76], the catalytic destruction of ozone

by atomic chlorine and bromine is the major cause of the forming of polar ozone holes,

and photodissociation of CFC compounds is the main reason for these atoms to be in the

stratosphere.

CFCs are nontoxic, nonflammable chemicals containing atoms of carbon, chlorine and

fluorine. CFC-11 is one such compound. CFCs were extensively used in air condition-

ing/cooling units, and as aerosol propellants prior to the 1980’s. While CFCs are safe to

use in most applications and are inert in the lower atmosphere, they do undergo significant

reaction in the upper atmosphere. Chlorine from CFCs is one of the most important free

radical catalysts to destroy ozone. The destruction process continues over the atmospheric

lifetime of the chlorine atom (one or two years), during which an average of 100,000 ozone

molecules are broken down (The Columbia Encyclopedia [72]). Because of this, CFCs were

banned globally by the 1987 Montréal Protocol on Substances That Deplete the Ozone

Layer (The Columbia Encyclopedia [73]). Since this protocol came into effect, the atmo-

spheric concentration of CFCs has either leveled off or decreased.

The effects of CFCs in ozone depletion is a global concern. Although exploratory data

analyses reveal a decrease of CFCs in the earth’s atmosphere since the early 1990’s, so

far no sophisticated statistical analysis has been conducted to evaluate the global trend.

In addition, there are several other important questions regarding the CFC concentration

in the atmosphere that could be useful not only to policy makers, but also for human

awareness. For example, (q1) How long did it take for the CFC concentration to show

an obvious decline? (q2) What were the rates of change (increase/decrease) in CFCs

before and after the transition period? (q3) What was the critical time point (CTP) at

which the CFC trend went from increasing to decreasing? In Section 6.2.3, we will address

these questions statistically by fitting Model G for CFC-11 data. We focus on CFC-11,

because it is considered one of the most dangerous CFCs to reduce the ozone layer in the

atmosphere. In fact, it has the shortest lifetime of common CFCs, and is regarded as a

reference substance in the definition of the ozone depletion potential (ODP). The ODP of

a chemical is the ratio of its impact on ozone compared to the impact of a similar mass of

CFC-11. Thus, the ODP is 1 for CFC-11 and ranges from 0.6 to 1 for other CFCs. (These

facts about CFCs are taken from the U.S. EPA websites [77], [78].)
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In a broader sense, we will comment in Section 6.2.3 on (1) the global trend of CFC-11,

and (2) the effectiveness of the Montréal Protocol on preserving the ozone level by reducing

the use of CFC-11. Our findings will also provide a rough idea of how long it may take to

diminish CFC-11 from the earth’s atmosphere.

6.2.2 Data

CFCs are monitored from different stations all over the globe by the Global Monitoring

Division of the National Oceanic and Atmospheric Administration (NOAA/GMD [54]),

and Atmospheric Lifetime Experiment/Global Atmospheric Gases Experiment/Advanced

Global Atmospheric Gases Experiment (ALE/ GAGE/AGAGE [2]) sponsored by NASA.

Henceforth, we will refer to these two programs simply as NOAA and AGAGE.

In general, the sites for the stations were chosen to ensure as much as possible that

clean air is sampled to determine the concentrations of CFCs in clean air in the lower

troposphere, where the troposphere begins at the surface and extends to between 7 km at

the poles and 17 km at the equator. Gas chromatographs with Electron Capture Detectors

(ECDs) were installed in each station to measure CFCs from air drawn through a sampling

line using a pump (readers may refer to the NOAA website [55] and Prinn et al. [60] for

details about the analytic techniques to measure CFCs).

Under the Radiatively Important Trace Species (RITS) program, NOAA began measur-

ing CFCs using in situ gas chromatographs at their four baseline observatories — Pt. Bar-

row (Alaska) located on the northern most point of the U.S. with its intake about 11

meters above sea level (masl), Cape Matatula (American Samoa) located in the middle of

the South Pacific with its intake about 42 masl and 50 meters from the shore, Mauna Loa

(Hawaii) located around the Big Island of Hawaii with its intake about 3397 masl, and

South Pole (Antarctica) located at the geographic South Pole on the Antarctic plateau

with its intake about 2810 masl — and, in collaboration with the University of Colorado,

at Niwot Ridge (Colorado) located in the alpine research area of the Institute for Arctic and

Alpine Research with the site’s intake about 3013 masl. We will label these five stations

from 1 to 5 respectively. During the period of 1988-1999, a new generation of gas chro-

matography called Chromatograph for Atmospheric Trace Species (CATS) was developed

and has been used to measure CFC concentrations ever since.
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The AGAGE program consists of three stages corresponding to advances and upgrades

in instrumentation (Prinn et al. [60]). The first stage (ALE) began in 1978, the second

(GAGE) began during 1981-1985, and the third (AGAGE) began during 1993-1996. The

current AGAGE stations are located in Mace Head (Ireland) with its intake about 25 masl

and 10 meters from the shore, Cape Grim (Tasmania) with two intakes about 110 and

160 masl and 50 and 100 meters from the shoreline, respectively, Ragged Point (Barbados)

with its intake about 42 masl and 20 meters from the ocean, Cape Matatula (American

Samoa) located at the NOAA site, and Trinidad Head (California) with its intake about

140 masl and 50 meters from the shoreline. These five stations will be labeled from 6 to

10 respectively.

We consider monthly mean data for our statistical analysis. Ideally, we wish to have

(a) full data for all stations, (b) a long enough period to capture all three phases of the

CFC trend, and (c) no change in instrumentation to avoid the elements of non-stationarity

and biased measurement, if any. However, we do not have the same duration of consecu-

tive observations for all stations. Moreover, data were recorded by instrumentation that

switched from one type to another. Table 6.3 summarizes the availability of the consecutive

observations, and the instrumentations used to record data.

Thus, ideal statistical conditions are not achievable in this case. As a compromise, we

remove Stations 9 and 10 from our analysis due to insufficient data, and choose a study

period in such a way that it can reflect the changing behavior of the CFC-11 concentration

in the atmosphere. The Montréal Protocol came into force on Jan 1, 1989. So, we expect

an increasing trend in CFC-11 prior to 1989 because of its extensive use during that period.

After the implementation of the protocol, we expect a change (either decreasing or leveling

off) in the CFC-11 trend. To characterize this change, we wish to have a study period

starting from some point before the implementation of the protocol. Moreover, we must

have sufficient data to observe the change, if any. Thus, we settle for a relatively long

study period of 152 months from Jan, 1988 to Aug, 2000, which is perhaps the most

reasonable to satisfy (a)-(c) as much as possible. In particular, it covers Stations 3-4 with

a single measuring device, RITS. Stations 2 and 5 have RITS data until April, 2000, at

which point we truncate their data so that only RITS is present for all of Stations 2-5

throughout the study period. Data for the remaining four stations during this period

were recorded by two measuring devices – RITS and CATS for Station 1, and GAGE

and AGAGE for Stations 6-8 – each device occupying a substantial range of the 152
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Table 6.3: CFC-11 data summary

Station Available consecutive observations Instrumentation

Barrow, Alaska Nov, 1987 - Feb, 1999 RITS

(Station 1) Jun, 1998 - Aug, 2008 CATS

Cape Matatula, American Samoa May, 1989 - Apr, 2000 RITS

(Station 2) Dec, 1998 - Aug, 2008 CATS

Mauna Loa, Hawaii Jul, 1987 - Aug, 2000 RITS

(Station 3) Jun, 1999 - Aug, 2008 CATS

South Pole, Antarctica Jun, 1990 - Nov, 2000 RITS

(Station 4) Feb, 1998 - Aug, 2008 CATS

Niwot Ridge, Colorado Feb, 1990 - Apr, 2000 RITS

(Station 5) May, 2001 - Jul, 2006 CATS

Mace Head, Ireland Feb, 1987 - Jun, 1994 GAGE

(Station 6) Mar, 1994 - Sep, 2007 AGAGE

Cape Grim, Tasmania Dec, 1981 - Dec, 1994 GAGE

(Station 7) Aug, 1993 - Sep, 2007 AGAGE

Ragged Point, Barbados Aug, 1985 - Jun, 1996 GAGE

(Station 8) Jun, 1996 - Sep, 2007 AGAGE

Cap Matatula, American Samoa Jun, 1991 - Sep, 1996 GAGE

(Station 9) Aug, 1996 - Sep, 2007 AGAGE

Trinidad Head, California – GAGE

(Station 10) Oct, 1995 - Sep, 2007 AGAGE

months. Figure 6.7 shows the 8 profiles of the corresponding CFC-11 data. Specifically,

each station constitutes an individual curve showing an initial increasing trend (incoming

phase), a gradual transition period, and a decreasing trend after the transition period

(outgoing phase), which is different from the others due to actual CFC-11 levels during

measurement, exposure to wind and other environmental variables, sampling techniques,
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Figure 6.7: CFC-11 profiles of 8 stations (monthly mean data)

Some remarks are required to explain tij. Recall that some stations do not have data for

all 152 months. We employ the following system for defining tij. For example, the first and

last months with recorded data by Station 3 are Jan, 1988 and Aug, 2000, respectively;

thus, t3,1 = 1, t3,2 = 2, . . . , t3,152 = 152. In contrast, Station 2 had its first and last

recordings in May, 1989 and Apr, 2000, respectively; hence, t2,1 = 17, t2,2 = 18, . . . , t2,132 =

148. The same approach is used to define tij’s for other i’s. Note that a few observations

(from 1 to 5) were missing between the first and last months for a given station. We

replace them by observations from another data set (e.g. CATS or AGAGE) or by mean

imputation based on neighboring time points if not available from another data set. As
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and so on. Our objective is to assess the global CFC-11 concentration in the atmosphere,

as well as station-specific characterization of the trends.

Some remarks are required to explain tij. Recall that some stations do not have data for

all 152 months. We employ the following system for defining tij. For example, the first and

last months with recorded data by Station 3 are Jan, 1988 and Aug, 2000, respectively;

thus, t3,1 = 1, t3,2 = 2, . . . , t3,152 = 152. In contrast, Station 2 had its first and last

recordings in May, 1989 and Apr, 2000, respectively; hence, t2,1 = 17, t2,2 = 18, . . . , t2,132 =

148. The same approach is used to define tij’s for other i’s. We remark here that stations

with complete data can help with inferences for the stations with incomplete data by

sharing information under a longitudinal modeling setup. Note that a few observations

(from 1 to 5) were missing between the first and last months for a given station. We

89



replace them by observations from another data set (e.g. CATS or AGAGE) or by mean

imputation based on neighboring time points if not available from another data set. As

noted by McKnight et al. [50], if just a few missing values are replaced by the mean,

the deleterious effect of mean substitution is reduced. So, we expect our findings to be

minimally affected by this replacement for so few time points.

6.2.3 Results

Since we observe a gradual transition in the CFC-11 profiles, we use Model G (Section 5.2)

to analyze this data set. Like the rat data analysis, we construct two Markov chains each

of 5,000,000 iterations with the initial 200,000 iterations as burn-in. Inference is based on

every 200th iteration of the chains (thinning), resulting in a total of 24,000 iterations per

chain.

Analysis Assuming AR(1) Within-Individual Noise

Table 6.4 shows the posterior characteristics of the global concentrations of CFC-11. The

global drop took place between Jan, 1989 and Sep, 1994 approximately. The 95% credi-

ble intervals for µ1 and µ2 indicate significant slopes (neither interval includes 0) for the

global incoming and outgoing phases, for which the posterior means are 0.65/month and

−0.12/month, respectively. Thus, the average increase in CFC-11 was about 0.65 ppt for

a one-month increase during the incoming phase (Jan, 1988 - Dec, 1988), and the average

decrease was about 0.12 ppt during the outgoing phase (Oct, 1994 - Aug, 2000). The pos-

terior mean for the global CTP is Nov, 1993, which may be interpreted as, overall CFC-11

went from increasing to decreasing around this time across all stations. The corresponding

95% credible interval ranged from Aug, 1992 to Jan, 1995.

The posterior mean for the AR(1) parameter φ is 0.81 with 95% credible interval

(0.77, 0.85). To see if a higher order AR process could be more appropriate to account for

serial correlation in the repeated measures from the same individual, we next fit a model

for each value of p ∈ {1, 2, . . . } until the pth AR coefficient is statistically insignificant in

the sense that the associated 95% credible interval includes zero (also see simulations in

Section 7.4.1). This process leads us to a model with AR(2) within-individual noise; we

now present our results assuming AR(2).
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Table 6.4: Posterior summaries of the global concentrations of CFC-11 assuming AR(1)
within-individual noise: posterior means for the population slope parameters (µ1 and µ2)
are in “per 1 month”.

Posterior mean 95% credible interval

µ0 243.66 (234.10, 253.16)

µ1 0.65 (0.50, 0.80)

µ2 −0.76 (−0.93,−0.60)

exp {µτ} ± exp {µγ} Jan, 1989 to −
(Transition period) Sep, 1994

exp {µτ} − exp {µγ} − 2µ1 exp {µγ}/µ2 Nov, 1993 (Aug, 1992, Jan, 1995)

(CTP)

Analysis Assuming AR(2) Within-Individual Noise

Our analysis assuming AR(2) within-individual noise gives the posterior means of the

AR(2) parameters to be φ̂1 = 0.87 and φ̂2 = −0.08 with 95% credible intervals (0.81, 0.94),

and (−0.14,−0.01), respectively.

The trace, density and autocorrelation plots of each of the population coefficients µ0,

µ1, µ2, µγ and µτ are given in Figures 6.8, 6.9 and 6.10, respectively. The lack of any trend

in the trace plot and low autocorrelations in the two chains indicate good mixing. We

also see no signs of multimodality in the density plots. That is, those three sets of plots

show stationarity of the Markov chain. Moreover, the Gelman-Rubin statistics provide no

evidence against the stationarity of the chains.

Table 6.5 shows the posterior characteristics of the global concentrations of CFC-11,

whereas Figure 6.11 displays the global fitted curve. Findings for the global concentrations

of CFC-11 assuming an AR(2) within-individual noise are very similar to those reported

above assuming an AR(1): posterior means for the population slopes are virtually identical,

whereas those for the transitions are very close — a global drop occurred between Jan,

1989 and Aug, 1994, while we found between Jan, 1989 and Sep, 1994 assuming AR(1).
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Figure 6.8: CFC data analysis – trace plots for the posteriors of the population parameters
µ0, µ1, µ2, µγ and µτ from two chains assuming AR(2) noise.

 

Figure 6.9: CFC data analysis – kernel density estimate plots for the posteriors of popu-
lation parameters µ0, µ1, µ2, µγ and µτ from two chains assuming AR(2) noise.
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Figure 6.10: CFC data analysis – autocorrelation plots for the two chains for population
parameters µ0, µ1, µ2, µγ and µτ , assuming AR(2) noise.

The station-specific fits are displayed in Figure 6.12. It shows that our Model G fits

the data well, with the observed data and individual fits agreeing quite closely. Table 6.6
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Table 6.5: Posterior summaries of the global concentrations of CFC-11 assuming AR(2)
within-individual noise: posterior means for the population slope parameters (µ1 and µ2)
are in “per 1 month”.

Posterior mean 95% credible interval

µ0 244.30 (235.34, 253.37)

µ1 0.65 (0.48, 0.81)

µ2 −0.76 (−0.92,−0.60)

exp {µτ} ± exp {µγ} Jan, 1989 to −
(Transition period) Aug, 1994

exp {µτ} − exp {µγ} − 2µ1 exp {µγ}/µ2 Oct, 1993 (Aug, 1992, Dec, 1994)

(CTP)

summarizes the fits numerically, while Table 6.7 gives the posterior characteristics of the

standard deviations and correlations associated with Σβ and Σα (priors for the station-

specific random regression coefficients). From Table 6.6, we see some variation in the

estimates of the intercepts across the stations. We also observe significant increase/decrease

of CFC-11 in the incoming/outgoing phases for all the stations separately. The rates

at which these changes occur (Columns 3 and 4) agree closely for the stations. These

phenomena are also evident in the estimate of Σβ (Table 6.7), showing large variation of

the deviations between the global and station-specific intercept parameters, while small

variation for the slope parameters (the estimated standard deviations for β0i, β1i, β2i

and β1i + β2i are 11.190, 0.165, 0.161 and 0.182, respectively). Note that unlike the rat

data, no significant association between any pair of linear coefficients is observed for the

CFC-11 data. This suggests that the transition location does not depend on the CFC-11

concentrations around the globe, as well as on the rates of increase and decrease in the

incoming and outgoing phases, respectively.

The above findings support the notion of constant rates of increase and decrease, re-

spectively, before and after the enforcement of the Montréal Protocol, observable despite

a geographically spread-out detection network. They also point to the success of the
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Figure 6.11: Observed data (black lines) and the corresponding population (global) fit (red)
of the CFC-11 data assuming AR(2) within-individual noise. Estimate of the transition is
marked by the solid vertical lines and that of the CTP by the dotted vertical line.

widespread adoption and implementation of the Montréal Protocol across the globe. How-

ever, the rate by which CFC-11 has been decreasing (about 0.12 ppt per month, globally)

suggests that it will remain in the atmosphere throughout the 21st century, should current

conditions prevail.

Let us turn now to the behavior of the transition of CFC-11 over time. Although

γi and τi are not significantly associated ( ̂corr(γi, τi) = 0.245 with 95% credible interval

(−0.484, 0.847) which excludes 0), the transition periods and critical time points varied

somewhat across stations (Table 6.6), a fact which is also reflected in the estimate of Σα

given in Table 6.7 (the estimated standard deviations for γi and τi are 5.191 and 7.646,

respectively). This may be due to the extended CFC-11 phase-out schedules contained in
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Figure 6.12: Observed data (black lines) and the corresponding station-specific fitted curves
(red curves) of the CFC-11 data assuming AR(2) within-individual noise. Estimate of the
transition is marked by the solid vertical lines and that of the CTP by the dotted vertical
line.
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Table 6.6: Estimated station-specific concentrations of CFC-11: posterior means for the
slope parameters (β1i and β2i) are in “per 1 month”.

β0i β1i β2i Transition period† CTP‡

(95% credible (95% credible (95% credible (Duration) (95% credible
interval) interval) interval) interval)

Barrow, 256.83 0.63 −0.82 Dec, 1988 - Jan, 1993
Alaska (253.18, 260.46) (0.45, 0.81) (−1.00,−0.65) May, 1994 (Aug, 1992 to
(σ̂2

1 = 0.88) (65 months) Jul, 1993)

Cap Matatula, 239.40 0.70 −0.79 Apr, 1989 - May, 1994
American Samoa (234.56, 244.40) (0.50, 0.90) (−0.99,−0.60) Feb, 1995 (Nov, 1993 to
(σ̂2

1 = 0.33) (70 months) Nov, 1994)

Mauna Loa, 247.64 0.67 −0.79 Feb, 1989 - Jul, 1993
Hawaii (244.38, 250.89) (0.50, 0.84) (−0.96,−0.63) May, 1994 (Jan, 1993 to
(σ̂2

1 = 0.66) (63 months) Feb, 1994)

South Pole, 241.52 0.58 −0.71 Apr, 1989 - Sep, 1994
Antarctica (236.32, 246.85) (0.39, 0.76) (−0.88,−0.51) Nov, 1995 (May, 1994 to
(σ̂2

1 = 0.10) (79 months) Dec, 1994)

Niwot Ridge, 254.28 0.54 −0.64 Nov, 1988 - Jul, 1993
Colorado (246.86, 261.44) (0.30, 0.79) −0.89,−0.41 Jun, 1994 (Dec, 1992 to
(σ̂2

1 = 0.29) (67 months) Jan, 1994)

Mace Head, 248.77 0.59 −0.70 Sep, 1988 - Feb, 1993
Ireland (245.90, 251.63) (0.43, 0.76) (−0.86,−0.54) Nov, 1993 (Jul, 1992 to
(σ̂2

1 = 0.43) (62 months) Aug, 1993)

Cape Grim, 228.42 0.76 −0.83 Mar, 1989 - May, 1994
Tasmania (226.69, 230.18) (0.65, 0.90) (−0.97,−0.72) Nov, 1994 (Feb, 1994 to
(σ̂2

1 = 0.10) (68 months) Aug, 1994)

Ragged Point, 241.44 0.69 −0.79 Dec, 1988 - Jul, 1993
Barbados (238.04, 244.91) (0.51, 0.86) (−0.96,−0.62) Mar, 1994 (Dec, 1992 to
(σ̂2

1 = 0.81) (63 months) Feb, 1994)

† τi ± γi
‡ τi − γi − 2β1iγi/β2i
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Table 6.7: CFC-11 data analysis – posterior summaries of the standard deviations and
correlations associated with Σβ and Σα (priors for the random regression coefficients).

Posterior median 95% credible

interval√
(Σβ)11 11.190 (6.416, 19.073)

(S.D. of the intercept β0i)√
(Σβ)22 0.165 (0.089, 0.285)

(S.D. of the incoming slope β1i)√
(Σβ)33 0.161 (0.086, 0.278)

(S.D. of the scaling factor β2i)√
(Σβ)22 + (Σβ)33 + 2(Σβ)23 0.182 (0.107, 0.306)

(S.D. of the outgoing slope β1i + β2i)

(Σβ)12/
√

(Σβ)11 × (Σβ)22 −0.340 (−0.871, 0.363)

(Correlation between β0i and β1i)

(Σβ)13/
√

(Σβ)11 × (Σβ)33 0.210 (−0.494, 0.815)

(Correlation between β0i and β2i)

(Σβ)23/
√

(Σβ)22 × (Σβ)33 −0.382 (−0.891, 0.297)

(Correlation between β1i and β2i)√
exp {2µγ + (Σα)11} × [exp {(Σα)11} − 1] 5.191 (2.294, 10.154)

(S.D. of the half-width parameter γi)√
exp {2µτ + (Σα)22} × [exp {(Σα)22} − 1] 7.646 (3.886, 14.265)

(S.D. of the center of the bend τi)

[exp {(Σα)12} − 1]/
√

[exp {(Σα)11} − 1]× [exp {(Σα)22} − 1] 0.245 (−0.484, 0.847)

(Correlation between γi and τi)

the Montréal Protocol – 1996 for developed countries and 2010 for developing countries.

Thus, many countries at various geographical locations continued to contribute CFCs to
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the atmosphere during the 152 months in our study period, while those at other locations

had stopped. Overall, the eight transitions began between Sep, 1988 and Apr, 1989, a

period of only 8 months. This reflects the success and acceptability of the protocol all over

the globe. Durations of the transition periods are very similar among stations except for

South Pole. Thus, it took almost the same amount of time in different parts of the world

for CFC-11 to start dropping linearly with an average rate of about 0.12 ppt per month.

Transition for South Pole is estimated to take place over 79 months, an extended period

compared to the other stations. This could be due to the highly unusual weather conditions

specific to the location. CFCs are not disassociated during the long winter nights in the

South Pole. Only when sunlight returns in October does ultraviolet light break the bond

holding chlorine atoms to the CFC molecule (“Ozone Hole Watch”, NASA [53]). For this

reason, it may be expected for CFCs to remain in the atmosphere over the South Pole for

a longer period of time, and hence, an extended transition period. Indeed, our findings

for South Pole are very similar to those reported by Ghude et al. [33]. To evaluate the

trend, the authors used the NASA EdGCM model – a deterministic global climate model

wrapped in a graphical user interface. They found the average growth rate to be 9 ppt per

year for 1983 – 1992, and about −1.4 ppt per year for 1993 – 2004, turning to negative in

the mid 1990’s. With our statistical modeling approach, we estimate a linear growth rate

of 0.58 ppt per month (6.96 ppt per year) prior to Apr, 1989, a transition between Apr,

1989 and Nov, 1995, and a negative linear phase (−0.13 ppt per month, or −1.56 ppt per

year) after November, 1995.

The estimates of the innovation variances (σ2
i ’s) are given in the first column of Ta-

ble 6.6. One noticeable fact from the profile plot (Figure 6.7) is that Barrow measurements

are more variable, whereas Cape Grim and South Pole show little variation over time. This

is reflected in their innovation variance estimates of 0.88, 0.10, and 0.10, respectively.

In summary, since the Montréal Protocol came into effect, a global decrease in the

CFC-11 has been observed, a finding confirmed by our analysis. A gradual transition in

the CFC-11 profiles makes scientific sense due to the fact that CFC molecules can stay

in the upper atmosphere for about a century, and their breakdown does not take place

instantaneously. The substantial decrease in global CFC-11 levels after the gradual change

shown by our analysis suggests that the Montréal Protocol can be regarded as a successful

international agreement to reduce the negative impact of CFCs on the ozone layer.
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6.3 Discussion and Conclusion

In this chapter, we illustrated our methodology via two examples. In general, our method-

ology performed well for the two examples as the respective fitted lines closely resemble

the observed data. Moreover, the population fit well represented the individual profiles

and provided useful information about the study of interest. In particular, the general

methodology (mixed bent-cable regression) used to analyze the rat data picked up the two

types of transitions adequately as desired.

We have noticed from the two analyses that the general methodology requires relatively

long Markov chains for good mixing and convergence to the stationary distribution. This

may be due to the fact that when the sample potentially comes from two populations, the

type of transition (abrupt or gradual) for some individual profiles may not be so obvious,

and can almost be equally well-fitted by both the broken stick and bent cable models. This

ultimately necessitates longer runs for such profiles to converge.
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Chapter 7

Simulation Study

In this chapter, we present three scenarios with simulated data to illustrate the efficacy of

our mixed bent-cable methodology. In Section 7.1, we describe the three scenarios, and in

Section 7.2, our choices of the parameters for the simulations. Our approach of generating

data is presented in Section 7.3, and simulation results in Section 7.4. We conclude this

chapter with a discussion in Section 7.5.

7.1 Scenarios

We present two scenarios (Scenarios 1 and 2 ) that differ in the within-individual depen-

dence structure. In Scenario 1, we consider an AR(1) process with φ = 0.7. In Scenario

2, we have an AR(2) process with φ = (0.8,−0.1)′. In each of these scenarios, we then

analyze the data assuming AR(0), AR(1) and AR(2) to evaluate the performance of our

methodology under misspecified assumptions for the within-individual dependence struc-

ture.

It may not be possible to be absolutely certain that a sample arises from a single

population (either A or G). Therefore, to evaluate the performance of our methodology

under a misspecified assumption regarding the type of transition, we present here one more

scenario (Scenarios 3 ), where we model the data assuming only Population G (i.e., Model

G), when in reality, both populations A and G exist with ω = 0.90 (Scenario 3a), and

ω = 0.95 (Scenario 3b). Note that ω equals, say, 0.90 implies that each individual has
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probability 0.90 to have come from Population G (and, hence, probability 0.10 to come

from Population A). In both Scenarios 3a and 3b, we consider an AR(1) process with

φ = 0.7 for the within-individual noise.

7.2 Parameters in the Simulations

Parameters in the simulations are chosen to approximately mimic the CFC-11 data. How-

ever, we assume here that the samples come from two potential populations (A and G):

ω = 0.50 in Scenarios 1 and 2, and ω = 0.90 and 0.95 in Scenarios 3a and 3b, respectively.

For all the scenarios, we consider

m = 20, n ≡ ni = 150 for i = 1, 2, . . . ,m, tij = j − 1, for j = 1, 2, . . . , n,

µβ = (244, 0.5,−0.75)′, µα = (3.00, 4.00)′, µτA = 4.50, σ2
τA

= 0.05,

Σβ =

125.00 −1.00 0.50

−1.00 0.03 −0.01

0.50 −0.01 0.03

 , Σα =

[
0.020 0.005

0.005 0.030

]
,

and σ2
i ’s are 0.34, 1.12, 1.75, 0.42, 0.74, 2.06, 1.16, 1.28, 0.16, 0.77, 0.04, 0.03, 0.91, 1.95,

0.32, 2.02, 0.89, 0.90, 0.82 and 2.89 (randomly drawn from the G(1, 1) distribution).

7.3 Data

Given the above parameters, we generate yij’s for each i according to the following steps:

1. draw βi from MVN (µβ,Σβ);

2. draw Ii from BER(ω); if Ii = 0, take γi = 0 and τi to be a random point from

LN (µτA , σ
2
τA

), otherwise draw αi from LN 2(µα,Σα);

3. given tij, βi and αi, calculate fi = (fi1, fi2, . . . , fini)
′, where fij is as in Equation

(3.2);
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4. given φ and σ2
ui, simulate εi according to an AR(p) process;

5. then, set yi = fi + εi, where fi and εi are from steps 3 and 4, respectively.

7.4 Results

For each simulation, 500 data sets are generated, and 100, 000 MCMC iterations with post-

burnin 90,000 (an initial 10,000 iterations are discarded) are used to analyze each set. We

calculate the posterior characteristics for each of the 500 data sets, after which posterior

summaries are averaged over the 500 sets for each parameter, and the coverage probability

of 95% credible intervals (the proportion of such credible intervals out of 500 that capture

the truth) is calculated.

7.4.1 Scenarios 1 and 2

Results for Scenarios 1 and 2 are summarized in Tables 7.1 to 7.3. Table 7.1 suggests

that our methodology performs well for both scenarios with respect to the population

characteristics: the average of posterior means for each parameter is close to the true

parameter value, and coverage probabilities (from 0.92 to 0.99) are all reasonably close to

the nominal 0.95.

Consider the case of analyzing a data set generated with AR(1) noise (φ = 0.7) but

assuming AR(2) in the inference. Note that the true value of φ2 is zero. We see from

Table 7.1 that the average of the posterior means for φ2 comes out close to zero with

coverage probability 0.92 (calculated assuming the true value of φ2 is 0), whereas the

average of the posterior means for φ1 is 0.7, coinciding with the true value of φ for the

AR(1) process, with coverage probability 0.94 (calculated assuming the true value of φ1

is 0.7). The above results indicate that analyzing a data set generated with AR(p) noise

but assuming AR(p+ 1) in the inference gives (1) the averages of the posterior means for

the AR parameters are all close to their true values, that is, the averages for the first p

parameters are close to their respective values used to generate the data, and the average

for the (p+1)th parameter is close to zero; and (2) coverage probabilities are all reasonably

close to the nominal 0.95. These two results support the technique we employed in selecting

p for the CFC-11 data in Section 6.2.3.
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Table 7.1: Simulation study with ni = 150 for all i and m = 20: average of 500 pos-
terior means of the mixing proportion ω, population regression coefficients and the AR
parameters; also coverage of 95% credible intervals.

Simulated εij ’s: AR(1) Simulated εij ’s: AR(2)
Analysis assuming Analysis assuming

AR(2) AR(1) AR(0) AR(2) AR(1) AR(0)
Mean, Mean, Mean, Mean, Mean, Mean,

True Coverage Coverage Coverage Coverage Coverage Coverage

ω 0.50 0.52, 0.98 0.52, 0.99 0.52, 0.97 0.52, 0.97 0.51, 0.95 0.52, 0.96

µ0 244.00 243.94, 0.97 244.45, 0.94 244.37, 0.96 244.64, 0.96 244.30, 0.95 244.45, 0.96

µ1 0.50 0.50, 0.97 0.48, 0.94 0.49, 0.95 0.48, 0.94 0.48, 0.95 0.48, 0.93

µ2 −0.75 −0.75, 0.95 −0.77, 0.92 −0.78, 0.92 −0.77, 0.95 −0.78, 0.93 −0.77, 0.92

µγ 3.00 2.95, 0.95 2.94, 0.95 2.95, 0.93 2.97, 0.96 2.95, 0.97 2.96, 0.93

µτ 4.00 4.02, 0.98 4.02, 0.97 4.04, 0.96 4.01, 0.99 4.02, 0.96 4.04, 0.92

µτA
4.50 4.50, 0.94 4.50, 0.96 4.47, 0.94 4.49, 0.95 4.49, 0.97 4.47, 0.94

φ for 0.70 − 0.71, 0.93 − − 0.74,− −
AR(1) -

φ1 for 0.80 0.70, 0.94 − − 0.80, 0.95 − −
AR(2) -

φ2 for −0.10 0.005, 0.92 − − −0.10, 0.95 − −
AR(2)

Table 7.2 refers to the results for the variances and covariances in the priors of the

random regression coefficients. Coverage probabilities are all close to 0.99 (over-coverage)

except for poor coverage for (Σα)11 (variance of γi for Population G): 0.78 and 0.80 for

data sets generated from AR(1) and AR(2), respectively, but using an AR(0) fit. For

such model misspecification, we also see a slight under coverage for (Σα)22 (variance of τi

for Population G) and overestimation of (Σα)11, (Σα)22 and σ2
τA

(variability of τi or γi).
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Table 7.2: Simulation study with ni = 150 for all i and m = 20: average of 500 posterior
means (medians for the variance parameters) of the variances and covariances (σ2

τA
, Σβ

and Σα) in the priors for the random regression coefficients; also coverage of 95% credible
intervals.

Simulated εij ’s: AR(1) Simulated εij ’s: AR(2)
Analysis assuming Analysis assuming

AR(2) AR(1) AR(0) AR(2) AR(1) AR(0)
Mean, Mean, Mean, Mean, Mean, Mean,

True Coverage Coverage Coverage Coverage Coverage Coverage
(Σβ)11 125.00 126.13, 0.98 126.78, 0.97 124.32, 0.98 124.39, 0.97 123.11, 0.98 125.52, 0.98

(Σβ)22 0.03 0.03, 0.99 0.03, 0.99 0.03, 0.98 0.03, 0.97 0.03, 0.98 0.03, 0.98

(Σβ)33 0.03 0.03, 0.98 0.03, 0.99 0.03, 0.97 0.03, 0.98 0.03, 0.97 0.03, 0.99

(Σβ)12 −1.00 −1.05, 0.98 −0.97, 0.95 −0.98, 0.97 −0.97, 0.96 −0.93, 0.97 −0.97, 0.97

(Σβ)13 0.50 0.49, 0.99 0.60, 0.98 0.53, 0.99 0.54, 0.98 0.53, 0.99 0.49, 0.99

(Σβ)23 −0.01 −0.01, 0.97 −0.01, 0.98 −0.01, 0.98 −0.01, 0.98 −0.01, 0.99 −0.01, 0.98

(Σα)11 0.020 0.021, 1.00 0.020, 0.99 0.059, 0.78 0.021, 0.99 0.036, 1.00 0.058, 0.80

(Σα)22 0.030 0.031, 0.99 0.031, 0.99 0.045, 0.91 0.032, 0.99 0.032, 0.99 0.043, 0.93

(Σα)12 0.005 0.0002, 1.00 0.001, 1.00 −0.007, 0.95 0.001, 0.99 0.0003, 1.00 −0.006, 0.95

σ2
τA

0.050 0.57, 0.97 0.059, 0.98 0.069, 0.98 0.059, 0.95 0.059, 0.97 0.073, 0.97

This suggests that underspecifying p as zero may result in overestimation of transition

parameter prior variances. Though, in practice over-coverage, as we have observed in our

simulation study, is of much less concern than under-coverage; investigating the source of

it could be a future research topic.

We see in Table 7.3 noticeable differences in the estimates (average of the posterior

medians) of σ2
i ’s for different p’s. In general, an underspecified p leads to overestimation

of σ2
i . We observe a very poor coverage for σ2

i if we incorrectly analyze a data set by an

AR(0) assumption when, in reality, it exhibits serial correlation over time. However, the

problem is much less severe for an underspecified p that is positive.
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Table 7.3: Simulation study with ni = 150 for all i and m = 20: average of 500 posterior
medians of the innovation variances; also coverage of 95% credible intervals.

Simulated εij ’s: AR(1) Simulated εij ’s: AR(2)
Analysis assuming Analysis assuming

AR(2) AR(1) AR(0) AR(2) AR(1) AR(0)
Mean, Mean, Mean, Mean, Mean, Mean,

True Coverage Coverage Coverage Coverage Coverage Coverage

σ2
1 0.34 0.35, 0.96 0.35, 0.96 0.58, 0.11 0.35, 0.96 0.36, 0.95 0.65, 0.02

σ2
2 1.12 1.12, 0.94 1.13, 0.97 1.89, 0.10 1.12, 0.94 1.16, 0.95 2.09, 0.02

σ2
3 1.75 1.77, 0.95 1.76, 0.95 2.95, 0.09 1.76, 0.94 1.80, 0.94 3.27, 0.03

σ2
4 0.42 0.41, 0.94 0.42, 0.95 0.71, 0.08 0.42, 0.96 0.43, 0.92 0.78, 0.02

σ2
5 0.74 0.75, 0.95 0.74, 0.95 1.26, 0.08 0.74, 0.94 0.76, 0.96 1.43, 0.02

σ2
6 2.06 2.08, 0.96 2.08, 0.94 3.52, 0.09 2.09, 0.95 2.10, 0.94 3.86, 0.03

σ2
7 1.16 1.16, 0.94 1.16, 0.95 1.95, 0.09 1.16, 0.94 1.18, 0.94 2.19, 0.03

σ2
8 1.28 1.29, 0.95 1.30, 0.96 2.17, 0.08 1.28, 0.95 1.30, 0.96 2.43, 0.03

σ2
9 0.16 0.16, 0.94 0.16, 0.94 0.27, 0.08 0.16, 0.93 0.16, 0.95 0.30, 0.02

σ2
10 0.77 0.78, 0.97 0.79, 0.95 1.32, 0.08 0.78, 0.95 0.79, 0.95 1.44, 0.03

σ2
11 0.04 0.04, 0.94 0.04, 0.95 0.06, 0.07 0.04, 0.95 0.04, 0.94 0.07, 0.03

σ2
12 0.03 0.03, 0.95 0.03, 0.96 0.06, 0.09 0.03, 0.94 0.03, 0.95 0.07, 0.02

σ2
13 0.91 0.92, 0.96 0.92, 0.95 1.55, 0.09 0.91, 0.95 0.93, 0.95 1.70, 0.04

σ2
14 1.96 1.99, 0.94 1.95, 0.95 3.36, 0.06 1.96, 0.96 1.99, 0.94 3.62, 0.04

σ2
15 0.32 0.32, 0.96 0.33, 0.95 0.55, 0.07 0.33, 0.95 0.33, 0.94 0.61, 0.03

σ2
16 2.02 2.03, 0.97 2.03, 0.94 3.40, 0.07 2.04, 0.96 2.05, 0.95 3.85, 0.03

σ2
17 0.89 0.90, 0.94 0.89, 0.94 1.52, 0.09 0.89, 0.95 0.91, 0.94 1.68, 0.04

σ2
18 0.90 0.90, 0.94 0.90, 0.94 1.53, 0.09 0.91, 0.96 0.92, 0.96 1.70, 0.04

σ2
19 0.82 0.83, 0.93 0.84, 0.95 1.41, 0.07 0.82, 0.96 0.84, 0.94 1.54, 0.04

σ2
20 2.89 2.92, 0.93 2.92, 0.94 4.86, 0.10 2.93, 0.96 2.99, 0.95 5.47, 0.03
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7.4.2 Scenario 3

Table 7.4 refers to the results for the population regression coefficients and the AR pa-

rameter for Scenario 3. We see that Model G performs well with respect to all but one

parameter: the average of the posterior means for each parameter except µγ is close to the

true parameter value, and the corresponding coverage probabilities are all reasonably close

to the nominal 0.95. When ω = 0.90, we see underestimation and under coverage for µγ.

We can explain this fact by noting that the average of the posterior means for each γi are

expected to be close to zero for profiles that originate for Population A, which, in turn,

leads to underestimation of the population counterpart µγ. Note that if we would model

this data set using our flexible methodology, µγ would represent only the profiles that orig-

inate from Population G, and hence, as we observed in Scenarios 1 and 2, underestimation

for µγ would not occur, and coverage for µγ would be close to the nominal 0.95; these facts

are also evident from the simulation results for ω = 0.95 (i.e., fewer abrupt profiles than

for the case ω = 0.90): the average of the posterior means for µγ which is 2.94 is closer to

the true value 3.00, and also the coverage which is 0.92 is closer to the nominal 0.95.

Table 7.4: Simulation study assuming an AR(1) within-individual noise, and with ni = 150
for all i and m = 20: average of 500 posterior means of the population regression coefficients
and the AR parameters; also coverage of 95% credible intervals.

Simulated ω = 0.90 Simulated ω = 0.95
Analysis using Model G Analysis using Model G

True Mean, Coverage Mean, Coverage
µ0 244.00 244.33, 0.95 244.51, 0.96

µ1 0.50 0.49, 0.93 0.49, 0.94

µ2 −0.75 −0.78, 0.91 −0.78, 0.92

µγ 3.00 2.88, 0.86 2.94, 0.92

µτ 4.00 4.04, 0.92 4.02, 0.95

µτA
4.50 − −

φ 0.70 0.71, 0.93 0.71, 0.93
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Table 7.5: Simulation study assuming an AR(1) within-individual noise, and with ni = 150
for all i and m = 20: average of 500 posterior means (medians for the variance parameters)
of the variances and covariances (Σβ and Σα) in the priors for the random regression
coefficients; also coverage of 95% credible intervals.

Simulated ω = 0.90 Simulated ω = 0.95
Analysis using Model G Analysis using Model G

True Mean, Coverage Mean, Coverage
(Σβ)11 125.00 123.65, 0.99 123.38, 0.98

(Σβ)22 0.03 0.03, 0.98 0.03, 0.97

(Σβ)33 0.03 0.03, 0.99 0.03, 0.99

(Σβ)12 −1.00 −0.95, 0.96 −0.94, 0.97

(Σβ)13 0.50 0.57, 0.99 0.57, 0.99

(Σβ)23 −0.01 −0.01, 0.99 −0.01, 0.99

(Σα)11 0.020 0.114, 0.69 0.067, 0.82

(Σα)22 0.030 0.054, 0.62 0.043, 0.78

(Σα)12 0.005 −0.051, 0.68 −0.024, 0.83

σ2
τA

0.050 − −

Simulation results for Σβ and Σα are summarized in Table 7.5. Like Scenarios 1 and 2,

we see that coverage probabilities for the elements of Σβ are all close to 0.99 (over-coverage).

Now, since Σα takes into account both abrupt and gradual transitions, large variabilities

among the γi’s and τi’s are expected – to explain why we expect large variability among

the γi’s, consider one set of simulated γi’s in Scenario 3a (i.e., ω = 0.90): 21.45, 0.00,

19.34, 17.10, 21.24, 18.63, 21.30, 0.00, 0.00, 0.00, 18.28, 17.56, 18.75, 14.43, 14.78, 17.64,

19.79, 21.16, 18.13, 16.18. For Model G, (Σα)11 represents the variability among all the

γi’s including the zeros that originate from Population A. Now, in the presence of those
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Table 7.6: Simulation study assuming an AR(1) within-individual noise, and with ni = 150
for all i and m = 20: average of 500 posterior medians of the innovation variances; also
coverage of 95% credible intervals.

Simulated ω = 0.90 Simulated ω = 0.95
Analysis using Model G Analysis using Model G

True Mean, Coverage Mean, Coverage

σ2
1 0.34 0.35, 0.97 0.35, 0.94

σ2
2 1.12 1.14, 0.95 1.12, 0.94

σ2
3 1.75 1.78, 0.95 1.76, 0.96

σ2
4 0.42 0.42, 0.95 0.42, 0.96

σ2
5 0.74 0.76, 0.94 0.74, 0.94

σ2
6 2.06 2.08, 0.95 2.08, 0.95

σ2
7 1.16 1.16, 0.94 1.16, 0.93

σ2
8 1.28 1.29, 0.93 1.27, 0.93

σ2
9 0.16 0.16, 0.95 0.16, 0.96

σ2
10 0.77 0.78, 0.96 0.77, 0.94

σ2
11 0.04 0.04, 0.96 0.04, 0.95

σ2
12 0.03 0.03, 0.96 0.03, 0.94

σ2
13 0.91 0.92, 0.96 0.92, 0.95

σ2
14 1.96 1.97, 0.94 1.96, 0.95

σ2
15 0.32 0.33, 0.96 0.32, 0.96

σ2
16 2.02 2.02, 0.95 2.05, 0.95

σ2
17 0.89 0.90, 0.95 0.90, 0.96

σ2
18 0.90 0.90, 0.94 0.91, 0.95

σ2
19 0.82 0.83, 0.95 0.83, 0.95

σ2
20 2.89 2.93, 0.97 2.91, 0.96
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zeros, we have large variability in the γi’s, and therefore, the actual (Σα)11 which excludes

zeros from Population A would be overestimated if we analyze this data set using Model

G. Note that if we would use our flexible methodology to analyze this data set, (Σα)11

would represent the variability among the non-zero γi’s only, and therefore, we would not

expect overestimation. Now, recall the true values of µα = (µγ, µτ )
′, µτA , σ2

τA
and Σα from

Section 7.2. Since τi’s are simulated from N (µτA , σ
2
τA

) and N2(µα,Σα) for Populations A

and G, respectively, we expect more variability among the τi’s as well. However, we do

not expect this variability to be as large as that for the γi’s, since µτA and µτ , as well as

σ2
τA

and (Σα)22 are not very different. In our simulation study, large variabilities among

the γi’s and τi’s are indeed reflected through the overestimation for each of the variance

parameters (Σα)11 and (Σα)22: the true values of (Σα)11 and (Σα)22 are 0.020 and 0.030,

respectively, whereas, for ω = 0.90, the averages of the posterior medians for these two

parameters are 0.114 and 0.054, respectively. Note that because of the overestimation,

we see low coverage probabilities for each of those two parameters. We also see that the

average of the posterior medians for each of (Σα)11 and (Σα)22 gets closer to the true value

as ω approaches 1.00 (e.g., the true value of (Σα)11 is 0.020, whereas the average of the

posterior medians for (Σα)11 is 0.114 when ω = 0.90, and is 0.067 when ω = 0.95).

We see in Table 7.6 that the average of the posterior medians for each σ2
i is close to the

true parameter value, and coverage probabilities are all close the the nominal 0.95. That

is, misspecifying the model as Model G, when in reality both populations A and G exist,

does not affect the estimates of the innovation variances σ2
i ’s.

7.5 Discussion

Of course, our simulation study cannot be used to demonstrate the efficiency of our method-

ology in all cases. They are based on only a small number of models. Scenarios 1 and

2, however, reveal that the proposed methodology can perform well with respect to the

population regression coefficients even for a misspecified correlation structure for the εij’s.

Also, since the mean of the mixture probabilities over the simulated data sets agrees closely

with the true value ω = 0.50 in each of those two scenarios, we can infer that our method-

ology can pick up both types of transitions adequately, at least for the two scenarios we

considered. However, an underspecified model with respect to the order of the AR process
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tends to overestimate the innovation variances and give biased estimates for other variance

parameters ((Σα)11, (Σα)22 and σ2
τA

) in the priors of the random regression coefficients.

Simulation results for Scenarios 3 demonstrate that an incorrect choice of the model

as Model G, when in reality both populations A and G exist, affects the estimate of

µγ: in the presence of Population A, the true µγ describes Population G only, for whose

the γi’s are positive; yet, by mistakenly ignoring the presence of A, the µγ in Model G

necessarily incorporates the profiles with γi = 0 that arise from Population A. This type of

misspecification also tends to overestimate (Σα)11 and (Σα)22 as described in Section 7.4.2.

However, the biases observed for all those parameters become smaller as ω approaches

1.00.
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Chapter 8

Concluding Remarks and Future

Work

The most appealing feature of the bent-cable model may be its greatly interpretable pa-

rameters, and that useful information can be obtained at the cost of estimating only five

(four in the case of an abrupt change) regression coefficients. Moreover, pooling infor-

mation from many individuals leads to shrinkage, so that mild to moderate deviations of

observed profiles from the assumed stick/cable structure does not hinder model fitting;

in contrast, deviations considered mild to moderate can render the regression method in-

feasible when analyzing single profiles (e.g., see Reynolds and Chiu [63]). Therefore, our

extension of single-profile bent-cable regression to model longitudinal data for many units

provides a desirable statistical tool to characterize a special type of continuous temporal

trend — one showing a change due to a shock, which is common in many areas of science.

Moreover, modeling gradual and abrupt transitions for longitudinal data under a single

flexible framework makes our methodology applicable in a wide variety of situations. We

have also shown how the approach can be further simplified for the important special case

of gradual transition only or abrupt transition only.

Since some standard regularity conditions do not hold, frequentist inference is com-

plicated for bent-cable regression, even for a single profile (Chiu et al. [16], Chiu and

Lockhart [15]). Our proposed Bayesian approach for inference makes no special regular-

ity assumptions; the trade-off is the need to evaluate high-dimensional integrals. Although

computationally intensive, its implementation is straightforward through the use of MCMC
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numerical integration. Moreover, in Bayesian inference, the full behavior of a parameter

can be readily investigated via its posterior distribution, rather than relying on the param-

eter estimator’s asymptotic distribution that may be far off from the actual distribution

in a finite-sample setting.

We mentioned some cautionary remarks and potential future research topics in various

places in this thesis. In addition to adding a few more remarks, we summarize those in

Sections 8.1 and 8.2, respectively. We present in Section 8.3 a brief description of journal

articles out of this thesis.

8.1 Cautionary Remarks

Because of the flexibility and appealing features (see above) of our methodology, it could

serve as a powerful statistical tool in analyzing shock-through data, which may arise in

many areas such as biological, medical, health and environmental applications. However,

some caution is required for the following reasons.

1. The bent-cable methodology is intended for data which exhibit only one transition

period over time. Note that our methodology can be used for multiple transition

periods by separating the data into portions so that each portion has only one tran-

sition period, although it is unclear how one should combine the inference from the

individual portions.

2. As described in Section 4.6, the flexible mixture methodology should be used when

there is strong reason to believe that the sample potentially comes from the two pop-

ulations mentioned above. Diffuse priors may result in a computational breakdown

in constructing a Markov chain. However, this problem is irrelevant to the special

cases of the mixture methodology: Models A and G.

3. Our methodology is intended for only stationary AR(p), p ≥ 0, process for within-

individual noise (Section 3.2.2). Nonstationarity can result if (a) Assumption A1 is

relaxed to incorporate non-constant variance, or (b) A1 holds, but at least one root of

the AR polynomial φ(w) = 1−φ1w−φ2w
2+. . .+φpw

p lies inside the unit circle. Note

that in case of (b), forcing stationarity by specifying restrictive priors for φmay result
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in poor mixing (see Section 6.1.3). However, the rat data analysis (Section 6.1.3)

and the simulation study (Section 7.4) suggested that under A1 but a misspecified

correlation structure for the within-individual noise, the proposed methodology can

perform well with respect to characterizing the populations. Therefore, if the main

goal is to make inference for the populations, one may assume AR(0) to analyze a

data set for which A1 is reasonable but exhibits nonstationarity. Proper handling of

nonstationary processes could be a topic for future research.

4. Slow-mixing may result from a poor choice of starting values Θ(0) for a Markov chain.

Therefore, starting values may need to be chosen carefully to avoid lengthy runs.

5. The flexible methodology compared it its special cases – Models A and G – may

require relatively long Markov chains to overcome poor mixing and to achieve con-

vergence to the stationary distribution.

8.2 Future Work

There is scope to extend the mixed bent-cable regression and its special cases (Models A

and G) to a more general framework, presented as follows.

1. One possibility is to incorporate non-constant variance among the repeated measure-

ments (a type of nonstationarity) at Level 1.

2. A more general time series model (e.g., ARMA, CAR) could be employed to account

for serial correlation.

3. Extension of our methodology to incorporate spatial effects through, for example,

a conditional autoregressive model (Pettitt et al. [56]) could be an area of future

research; this would be useful for the CFC study and others that involve spatial

data.

4. The framework described in this thesis can be extended to account for different βi’s

for the two populations, i.e. when intercept and slope parameters could behave

differently between populations.
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5. Some profiles in a particular data set may follow neither a bent cable nor broken

stick, but exhibit another population trend, for example a strictly linearly increasing

or decreasing trend. If we have very few such profiles in the data set, those can

be regarded as outliers. Note that shrinkage towards the population is expected to

overcome any problem in model fitting that may arise due to their existence. We can

exploit this aspect and use our methodology as a diagnostic for outliers if our main

goal is to make inference for the populations. However, if our main goal is to make

inference at the individual level, we should take into account those profiles as coming

from another population, that is, we would consider samples potentially coming from

three populations: Populations A and G, and a third, say, L which is characterized

by a linear trend over time. We can account for L by taking β2i = 0 in the bent-cable

function (3.2). This extension can be achieved by modeling βi using a mixture of

normal distributions as follows:

π(βi|µβL ,ΣβL ,µβ,Σβ) = 1(β2i = 0) (1− δ) N2(βiL|µβL ,ΣβL)

+ 1(β2i 6= 0) δ N3(βi|µβ,Σβ)
(8.1)

where βiL = (β0i, β1i)
′, and µβL and ΣβL are the parameters that characterize Pop-

ulation L. Note that (8.1) assumes a non-zero probability, 1− δ, that β2i = 0, and a

probability δ that β2i 6= 0.

6. Variation in the individual profiles could be due to both random and systematic

components (covariates). This can be accounted for by modeling the individual-

specific regression coefficients as a function of covariates at Level 2. This extension

is straightforward for Models A and G as long as the covariates enter in a linear

fashion (see Davidian and Giltinan [19]). However, since the flexible model involves

a mixture distribution, technical difficulties may arise when incorporating covariates,

and can be another direction in which to extend our methodology.

7. Developing a diagnostic tool for goodness of fit of our hierarchical mixture model can

be another area of future research.
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8.3 Publications

As mentioned above, our article based on the application of Model G to the CFC-11

data has been published in CHANCE (Khan et al. [44]). We submitted another article

describing our methodological contribution. We intend to write two more articles out of this

thesis. One is on the computational aspects and software implementation of the MCMC

algorithm, possibly in a journal in computational statistics. The other one is based on an

application of our methodology to PSA profiles (for prostate cancer patients), possibly in

a journal of applied statistics.
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