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Abstract

The problem of reconstruction of digital images from their degraded measurements is re-

garded as a problem of central importance in various fields of engineering and imaging

sciences. In such cases, the degradation is typically caused by the resolution limitations

of an imaging device in use and/or by the destructive influence of measurement noise.

Specifically, when the noise obeys a Poisson probability law, standard approaches to the

problem of image reconstruction are based on using fixed-point algorithms which follow

the methodology proposed by Richardson and Lucy in the beginning of the 1970s. The

practice of using such methods, however, shows that their convergence properties tend to

deteriorate at relatively high noise levels (which typically takes place in so-called low-count

settings). This work introduces a novel method for de-noising and/or de-blurring of digital

images that have been corrupted by Poisson noise. The proposed method is derived using

the framework of MAP estimation, under the assumption that the image of interest can be

sparsely represented in the domain of a properly designed linear transform. Consequently,

a shrinkage-based iterative procedure is proposed, which guarantees the maximization of

an associated maximum-a-posteriori criterion. It is shown in a series of both computer-

simulated and real-life experiments that the proposed method outperforms a number of

existing alternatives in terms of stability, precision, and computational efficiency.
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Chapter 1

Introduction

1.1 Background and Motivation

A two dimensional image can be defined by a function f (x,y), where the coordinates x,y

represent the spatial position of each picture element (pixel). The value of f at any pair

of coordinates x,y is referred to as intensity or gray level. When the values of f and the

coordinates x,y are finite and discrete (e.g. when I = fn,m for I ∈ {0,1,2, . . . ,255} and

n = 0,1, . . . ,N−1,m = 0,1, . . . ,M−1) the image is referred to as a digital image. In cases

where digital images are acquired by an imaging device (e.g. CCD camera) the measure-

ment is typically obtained as a degraded version of the underlying (aka original/true) image.

Accordingly, digital image restoration methods attempt to recover a close approximation

of the original images from their degraded version. The image restoration is usually per-

formed based on some assumption regarding the nature of the degradation phenomenon.

The most conventional degradation model assumes that the measured image is formed as

a blurred version of the original image contaminated by noise. The blurring artifact is

typically caused by the resolution limitations of an imaging device in use and/or by the

destructive affect of a turbulent medium [1]. Moreover, in many applications, the blur can

be described by an integral operator with a kernel representing the response of the imaging

device. In the special case where this linear device is translation-invariant, the blur reduces

to a convolution operator. [2]. Expressed formally, let g ∈ RN×M denote an acquired data

image and f ∈RK×L be its corresponding original counterpart. The image formation model
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then becomes

g = H [ f ]+ e (1.1)

where H : RK×L → RN×M denotes the operator of convolution and e ∈ RN×M stands for

additive noise. The restoration of digital images based on the model of (1.1) has been

addressed in numerous works, with a particular emphasis on the case where N can be as-

sumed to be Gaussian noise [3, 4, 2, 5, 6, 7, 8]. In many cases of practical importance,

however, the noise contamination process is not additive, as it is common for the case of

imaging modalities which rely on the notion of event counts. This notion relates to a very

specific type of data images, in which every pixel value is formed as an outcome of a dis-

crete counting process. The latter, for example, quantifies the number of gamma photons

which pass though a single slit of the collimator of a gamma camera in positron emission

tomography (PET) and single photon emission computer tomography (SPECT) [9, 10, 11].

As well, statistical models of the same type are routinely used in optics to account for the

process of “counting” the number of optical photons registered by a sensor of a (CCD)

camera [12, 13]. Confocal microscopy [14], astronomical imaging [15], and turbulent

imaging [1] are examples of additional important applications where the notion of event

counts is standardly used.

In what follows, let R+ denote the nonnegative real values and Z+ denote the nonnega-

tive integers. Conventionally, the image formation model of the above-mentioned imaging

modalities assumes that a data image is formed as a blurred version of the original image

contaminated by Poisson noise, which is used to model the discrete counting process men-

tioned above. More specifically, if g ∈ ZN×M
+ denotes the observed Poisson counts image

and f ∈ RK×L
+ is its corresponding original counterpart, then the image formation model

can be formally expressed as given by [16, Section 7.3]

g = P
{

H [ f ]
}

, (1.2)

where P stands for the operation of contamination of H [ f ] by Poisson noise and H :

RK×L→ RN×M denotes the operator of convolution with a (known) point spread function

(PSF), which is assumed to be positive and mean preserving, viz,

(H {y})n,m ≥ 0 and ∑
n,m

yn,m = ∑
n,m

(H {y})n,m,∀y ∈ RK×L
+ , (1.3)

The normalization in (1.3) should not be regarded as a serious limitation, as most of the

practically relevant blurs are essentially low pass filters and thus can be normalized.
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Thus, in order to recover the original image f from g, the combined effect of P{H [·]}
in (1.2) has to be inverted.

1.2 Contribution

Restoration of digital images from their degraded measurements has long been known as

a problem of central importance in imaging sciences. In this thesis, a novel method for

the reconstruction of digital images from their measurements described by (1.2) is pro-

posed. As opposed to many alternative approaches, the proposed method is exceptional for

it concurrently fulfills a number of essential objectives, viz.

1. Exactness: No auxiliary transformations and/or approximations are applied to the

data image g to modify the properties of measurement noise, and therefore the method

is applied under realistic statistical assumptions regarding the noise nature.

2. Generality: The image formation model employed by the proposed method is de-

signed to accommodate a number of reconstruction scenarios, namely sparse recon-

struction, de-noising and de-blurring. As a result, the very same procedure can be

applied to recover an image of interest for a spectrum of different degradations.

3. Versatility: The proposed reconstruction is carried out under the assumption that the

original image f can be sparsely represented in the domain of a linear transform.

This assumption is currently recognized to be superior to many alternative models,

including the Tikhonov-Miller and total variation models [8].

4. Efficiency: The proposed solution is based on the concept of iterative shrinkage [17,

8, 18], which is a modern, computationally efficient, and stable procedure for solving

diverse inverse problems. In this way, the present contribution extends the theory of

iterative shrinkage (aka thresholding) to the case of problems concerned with Poisson

noises.

5. Uniqueness: The proposed algorithm is guaranteed to converge to the global maxi-

mizer of a MAP criterion, thereby providing a unique solution to the reconstruction

problem at hand.
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Moreover, in the experimental part of this thesis, it is shown that the proposed recon-

struction method outperforms a number of alternative algorithms in terms of normalized

mean-square error (NMSE), structural similarity (SSIM) quality index [19], as well as its

stability and computational efficiency.

1.3 Organization

The thesis is organized as follows:

Chapter 2

This chapter provides an overview of the Poisson distribution, as well as its relevance to mi-

croscopic, medical and astronomical imaging. The review is followed by a comprehensive

literature review of the existing techniques for recovery of Poissonian images.

Chapter 3

This chapter introduces the statistical framework of maximum-a-posteriori (MAP) estima-

tion, which lies in the basis of the proposed method. The chapter also details the assumption

that the original image can be sparsely represented in the domain of a linear transform. The

later assumption and the Poissonian model of the noise are incorporated into the MAP es-

timation framework, and the proposed estimator is shown to accommodate a number of

reconstruction scenarios, namely sparse reconstruction, de-noising and de-blurring. It is

also shown that this estimation amounts to solving a convex minimization problem.

Chapter 4

This chapter presents a novel approach for the solution of the minimization problem derived

in Chapter 3. The proposed solution method is based on the theory of optimization transfer

(also known as majorization-minimization (MM) framework), which results in a particu-

larly efficient way of computing the MAP estimate using an iterative shrinkage procedure.

A proof of convergence of the proposed method is also provided in this section.
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Chapter 5

This chapter summarizes the result of experimental comparison of the proposed method-

ology with a number of alternative approaches. The comparison is performed for both

computer-simulated and real-life data, as well as for a number of restoration scenarios, viz.

sparse reconstruction, de-noising and de-blurring.

Chapter 6

The last chapter finalizes this thesis with a detailed discussion and conclusions, followed by

outlining a number of possible ways to further improve the performance and computational

efficiency of the proposed method.
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Chapter 2

Preliminaries and Literature Review

2.1 Preliminaries

2.1.1 The Poisson Distribution

The Poisson distribution is a discrete probability law which determines the probability with

which a positive integer is observed, given a positive real parameter which is equal to both

the mean and variance of the distribution. In practice, the Poisson probability law can be

interpreted as defining a probability measure for a counting process of events (sometimes

called arrivals), which took place at a specified time interval [20]. In this interpretation,

the parameter of the distribution is equal to the the product of the temporal duration of the

interval and a specific arrival rate. The distribution, which was originally formalized by

Simon-Denis Poisson (1781−1840), is given by

Pr(k) =
e−λT (λT )k

k!
k ≥ 0, (2.1)

where e is the base of the natural logarithm (e = 2.71828...), λ
[events

time

]
is the arrival rate

of the events, T [time] is the time interval of the counting process and k is the number of

occurrences of the event.

The Poisson distribution can be derived from either a binomial distribution or an ex-

ponential probability density function. The derivation from the binomial distribution is as

follows. Consider the binomial probability mass function [20]

Pr(k) =

(
N

k

)
pk(1− p)N−k 0≤ k ≤ N, (2.2)
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which defines the probability of k successes out of N experiments, where each experiment

has a probability p for success and 1− p for failure. This distribution can be used to

define the probability of the event in which a time interval of duration T is divided into

N subintervals, which are chosen to be short enough to accommodate very few events. If

the average number of occurrences in an interval T is equal to λT , then, using the fact that

the mean of the binomial distribution (2.2) is N p, one should have N p = λT . Hence, the

corresponding value of p can be determined as

p =
λT
N

. (2.3)

Next, consider a random variable X which counts the number of occurrences of an event in

a given time interval. The probability of the case where no occurrences of the event have

been observed within all N subintervals is given by

Pr(k = 0) = (1− p)N = (1− λT
N

)
N

(2.4)

and hence for large N one has

lim
N→∞

(1− λT
N

)
N

→ e−λT . (2.5)

In addition, using the properties of the binomial probability mass function, one can show

that
Pr(k)

Pr(k−1)
=

λ−P(k−1)
k(1− p)

, (2.6)

which converges to λ

k as N → ∞ and p→ 0. At this point, it is straightforward to deduce

that X is a Poisson random variable with its probability described by (2.1), by recursively

multiplying Pr(k) = Pr(k−1)λ

k , where Pr(k = 0) is given by (2.5).

Based on the above derivation, the Poisson distribution can be considered to be a special

case of the binomial distribution with many trials (N → ∞) on one hand and a negligibly

low probability p, on the other hand (p→ 0). The latter limit is known as the law of rare

events, since each of the individual events rarely triggers.

Another way to derive the Poisson distribution is from the exponential distribution. The

latter, whose probability density function (pdf) is given by

Pr(x) =

{
e−λx x > 0

0 otherwise
. (2.7)
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The exponential distribution is commonly used to represent the arrival time of elementary

particles, where λ > 0 is a parameter that represents a duration of the arrival time, with

small λ corresponding to short arrivals.

Consider N independent and identically distributed (i.i.d) random variables {Xi}N
i=1 that

follow the exponential distribution (2.7), where Xi represents the time interval between the

occurrence of the (i−1)th and ith events. If Y denotes the total number of arrivals in a time

interval T and Sk = ∑
k
i=1 Xi then

Pr(Y = k) = Pr(Sk ≤ T ∩Sk+1 > T ) = Pr(Sk ≤ T )−Pr(Sk+1 ≤ T ). (2.8)

An explicit expression for the distribution of the random variable Sk can be evaluated using

the convolution formula [20] and is given by

fx(x) =

 λ
(λx)N−1

(N−1)! e−λx x > 0

0 otherwise
. (2.9)

Furthermore, it is easy to show by induction on k that the cumulative distribution function

of Sk is given by

Fx(x) =

 1− e−λx(1+ λx
1! + · · ·+ (λx)N−1

(N−1)! e−λx) x > 0

0 otherwise
. (2.10)

Substituting (2.10) into (2.8) yields the Poisson distribution (2.1), which means that the

Poisson distribution can be interpreted as the probability of a number of events occurring

in independent time intervals that is described by a exponential distribution.

Another important property of the Poisson distribution consists in the fact that its mean

and variance are both equal to λT . In cases where the distribution is used to model noises,

each value of the true image is assumed to be equal to the mean value of the corresponding

Poisson noise. The fact that the mean value of the noise is equal to its variance implies that

the higher the values of the original image, the more severe is their contamination by noise.

This fact creates the major difficulty in restoration of Poissonian images.

2.1.2 Poisson Noise in Imaging Devices

Confocal microscopy

Introduced by Marvin Minsky [21], the confocal microscope is a laser scanning system

which focuses its excitation light source onto a single point within a specimen. If the
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specimen contains a fluorescent dye, it will re-emit the light isotropically, which will then

pass through a pinhole (very small aperture), and reach extremely sensitive detectors of

light called photomultipliers. Fig.2.1 depicts the general arrangement of such a setup.

The main advantage of the confocal microscope stems from the use of a pinhole, which

does not exist in conventional microscopes. More specifically, it reduces the contribution of

the photons emanating from the out-of-focus parts of the specimen thereby allowing only

the focused regions to be detected in full intensity. This results in a substantial decrease of

the blurring affect, allowing a substantial increase in imaging resolution. Unfortunately, the

confocal pinhole drastically reduces the amount of light detected by the photomultipliers,

leading to image contamination by Poisson noise. [22].

Figure 2.1: Confocal laser scanning microscope

It should be noted that despite the significant increase in imaging resolution, the out-of-

focus blurring artifacts cannot be fully ignored. As a result, in the case when the required

resolution is smaller in comparison with the support of the system response (which is also

known as the point spread function (PSF)), the de-noising procedure should be combined

with a de-blurring procedure to achieve the desired resolution.

Emission tomography

In medical imaging, the term emission tomography (ET) encompasses two leading medi-

cal imaging techniques: positron emission tomography (PET) and single-photon emission

computed tomography (SPECT). In PET, a positron-emitting tracer is administered into
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the patient’s blood stream. The emitted positrons, encounter electrons residing within the

tissue of interest, which results in their mutual annihilation producing a pair of gamma

photons propagating in opposite directions. Subsequently, the photons can be detected by

the collimators of a PET scanner. SPECT is very similar to PET in terms of the detection

of gamma photons. However, the tracer used in SPECT emits gamma photons that are

measured directly (i.e. no positron-electron annihilation is required).

In both PET and SPECT, the registered gamma photons are used to produce a set of

projections, which in turn are used by a tomographic reconstruction algorithm to reproduce

the 3-D distribution of the tracer. The randomness of the number of registered gamma-

photons can be modeled as a noise which is known to follow a Poisson distribution [23].

Accordingly, the problem of image restoration in ET amounts to estimation of the emission

density from the acquired data [24]. In addition to the Poisson noise contaminating the

measurement, it is further corrupted by the fact that emissions from certain locations can be

diverted and detected by collimators at any location. The latter results in a linear blurring

affect to the data, and the image formation corresponds to the model described in (1.2),

which raises the need for Poisson de-blurring techniques.

Computed tomography

CT scans are generated by X-ray cross-sectional illumination of an object from many dif-

ferent directions. Specifically, tomographic imaging considers reconstructing an image

from its projections, which are obtained as integrals of the image along the lines specified

by different angles and translations, as depicted in Fig.2.2. Reconstructing an image from

such projections is performed by the Radon transform [25].

In a practical setting, a “fan” of X-ray beams is projected through a patient’s body, and

an attenuated version of the them are measured by an array of detectors. The degree of X-

ray attenuation depends on the medium itself, e.g., bones are relatively strong attenuators.

Mathematically, the integral of a density (or, more generally, an attenuation) function

µ(x,y) along a path defined by angle θ and translation t can be defined as [26]

P(θ, t) =
∫

Ω

µ(x,y)δ(xcos(θ)+ ysin(θ)− t)dxdy. (2.11)

(See Fig.2.2 for an illustration of the setup).

Applying the principles of quantum physics to X-ray CT imaging lead to a model in
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Figure 2.2: An X-ray beam traveling through a cross section of a human body.

which X-ray photons are registered at the CT scanner. Moreover, such a model can be sta-

tistically formulated by using the Poisson distribution [26], which suggests that the quality

of CT scans can be improved by means of image de-noising. It should be also noted that the

finite width of the X-ray beams used in real-life scanners causes a blurring artifact, which

make the CT projection data adhere to the model of (1.2).

Astronomical imaging

Weak celestial bodies of steady and constant luminance, emit very few photons and hence

are relatively difficult to detect. The two main imaging devices that are used in astronomical

imaging for such observations are photomultipliers and charge-coupled devices (CCD),

which can be briefly specified as follows.

• Photoelectric devices called photomultiplier tubes were commonly used in the early

1950’s in the field of astronomy for the measurement of starlight. Photons that strike

the surface of such device respond by emitting an electron according to the pho-

toelectric effect. The electron is then accelerated by an electrical field, and then

hits another surface called a dynode which generates three electrons. The process

is repeated until a pulse of electrons is generated, hence leading to a pulse-counting
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procedure in a given time interval. Since the measurement depends on the number of

photons counted, it follows a Poisson distribution. [27].

• Charge-coupled device (CCD) is an array of microscopic square-shaped light-sensitive

cells, referred to as photosites, which converts photons to electricity linearly, i.e. the

more photons strike a photosite, the more charge is produced by it, thereby lead-

ing to an increased brightness at the corresponding pixel. The linearity property of

CCD arrays has made them widely used in astronomical imaging [27], covering a

wide range of frequencies, nearly all ultra-violet to X-ray applications. As the pixel

values generated by a CCD array are proportional to the number of photons that

reach its photosites, the grey-levels of resulting images have to follow a Poisson pro-

cess [12, 13, 15].

Both the aforementioned methods can also suffer from additional degradation intro-

duced by blurring artifacts. In particular, before reaching the imaging device, the EM

waves have to penetrate the Earth atmosphere. Differences in the temperature distribution

and the speed of wind across different layers of the atmosphere result in a random distribu-

tion of its diffraction index which, in turn, results in a linear blurring effect [1]. Therefore,

de-blurring procedures can potentially improve the quality of such measurements.

2.2 Related Works

The model of (1.2) has long been in use in a variety of different applications. Generally,

the model can be used in two common reconstruction scenarios, namely

• Setting 1: The blur is negligible and hence H [·] is the identity operator. In this case,

the image restoration problem becomes that of Poisson image de-noising.

• Setting 2: H [·] can not be neglected. In this case, the image restoration problem

becomes that of Poisson image de-blurring, in which both de-blurring and de-noising

are performed simultaneously.

It should be noted that an image de-noising procedure (Setting 1) can be used as a

preprocessing stage that precedes an image de-blurring stage (Setting 2) [28]. More specif-

ically, a blurred and noised image can be first de-noised by one of the methods for Poisson
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image de-noising and then de-blurred by any of the common deconvolution techniques, e.g.

Wiener filtering [2]. In practice, however, this approach might not perform satisfactorily.

The PSF, which is assumed to be known, might be altered by the de-noising procedure.

Moreover, the nature of the residual noise is undetermined after the Poisson de-noising

stage, which makes it difficult to reject the noise in an optimal way. Changing the or-

der of the above two stages is also possible, with the de-blurring stage being followed by

de-noising. Unfortunately, this arrangement tends to suffer from similar problems as well.

Another possible approach to combine a de-noising with a de-blurring method was sug-

gested in [29], based on an Expectation-Maximization (EM) procedure. Specifically, this

method performs the image restoration by recursively applying the following steps. The

first (expectation) step follows the standard Richardson-Lucy [30, 31] or Shepp-Vardi [24]

update that estimates the number of events emitted from the source given a current esti-

mate of the original image. The second (maximization) step applies a Poisson de-noising

procedure that estimates the original image given an estimate of the number of events.

2.2.1 Poisson image de-noising

The principal methods that have been proposed so far for de-noising of Poissonian images

are summarized below.

• Variance stabilization techniques (VST): The methods of this class subject the

data images to a nonlinear transformation which causes the noise to become approx-

imately Gaussian. After such transform is applied, the image can be de-noised by

using any of the Gaussian de-noising methods [4, 17, 8]. The idea of the variance

stabilization transform was initially proposed in [32]. The latter, which is known as

the Anscombe transform, can be employed according to

Y =
√

g+3/8 (2.12)

where g is as defined in (1.2). It can be rigorously shown that, the transformed image

Y approaches a Gaussian distribution, i.e. Y D→N (2
√

f ,1), as the number of events

N increases. In other words, Y converges in distribution to a normal random variable

with mean 2
√

f and unit variance, with f being the original image. Accordingly, for

example, the Anscombe transform was used as a first preprocessing step in the de-

blurring procedure proposed in [33], where it is followed by the Gaussian de-noising

13



method suggested in [17]. An extension of the Anscombe transform was proposed

by [34], in which the acquired images are pre-filtered to reduce the reconstruction

error in low-count settings.

Another transform that can be used for Gaussianization of the Poisson noises is the

Haar-Fisz transform [35, 36], which is based on the Haar wavelet transform. Un-

fortunately, the applicability of the Haar-Fisz transform to the problem of image

de-noising has been limited due to the property of the Haar transform to produce

“staircase” artifacts in the vicinity of image discontinuities. To overcome this de-

ficiency, a more general transform was suggested by [37] which is based on using

smoother wavelet functions.

It should be noted that the successful application of the VST for Gaussianization

of Poissonian images requires the original images to be piecewise constant in na-

ture - the assumption whose applicability is clearly questionable in a general setting.

Moreover, it was argued [38] that, in general, the VST-based methods tend to overly

smooth (or even destroy) the fine details of recovered images due to the approxima-

tions involved.

• Wavelet shrinkage: Wavelet shrinkage techniques [4, 8] are based on the fact that

many natural images are sparsely representable in the domain of a wavelet trans-

form, e.g. the image can be represented by a few wavelet coefficients of relatively

high magnitudes. Additive Gaussian noise, on the other hand, does not share this

property, and has its energy distributed evenly at the entire wavelet domain. The lat-

ter property makes it possible to recover the wavelet coefficients of the original image

by thresholding the data coefficients [39]. The fact that the variance of the Poisson

noise is proportional the intensity of the original image suggests that, rather than us-

ing a single threshold for all wavelet coefficients, an adaptive threshold should be

used in different regions of the image where different noise levels are present. Such

wavelet shrinkage approaches were proposed in [40, 38], in which the wavelet trans-

form of a data image is subjected to a filtering process which sets to zero wavelet

coefficients of low signal to noise ratio (SNR). The method has been shown to be

asymptotically optimal in the mean square error (MSE) sense and, for this reason, it

is often regarded as wavelet Wiener filtering method (due to the fact that the classical

Wiener filter is optimal in the same sense [2]).
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• A-trous wavelet transform: As detailed in [41], translation-invariant redundant

wavelet transforms can be efficiently computed by using the a trous algorithm. Specif-

ically, the a trous algorithm can be used to represent an image f as

fi = c0,i +
J

∑
j=0

w j,i (2.13)

where fi is the estimated image at pixel i, c0,i is the ith scaling coefficient of the

coarsest resolution scale and w j,i is the ith wavelet coefficient at scale j. In applica-

tion to the problem of Poissonian de-noising, [42] suggested combining the a trous

transform with a VST transform in high-count cases, when the photon arrival rate is

sufficiently large. When photon counts are relatively low, however, the combination

of the a trous transform and the VST can be problematic. To address this issue, [43]

presented a method for performing the VST on each of the wavelet coefficients in-

dependently, while using the empirical distribution of the coefficients to distinguish

significant coefficients from those that should be excluded from the approximation

of the original image.

• Hypothesis testing: A different approach to wavelet thresholding in the presence

of Poisson noise was suggested by [44]. This method (which is also referred to as

the Haar corrected thresholds) performs a hypothesis testing procedure to determine

whether or not a given wavelet coefficient is consistent with a predefined background

emission rate. In this case, the wavelet coefficients are shrunk towards zero according

to a user specified false positive rate (FPR). However, for smooth underlying intensi-

ties, the Haar wavelet transform has a disadvantage of creating blocking artifacts in

recovered images. To resolve this problem, [45] suggested using the bi-orthogonal

Haar wavelet transform which provide smoother estimation results.

• Bayesian framework: The applicability of Bayesian methods to the problem of

Poissonian de-noising was advocated in [46, 47, 29] based on the multiplicative

multiscale innovations (MMI) model. These methods dyadically partition the data

signal in a binary tree, each node of which is described as a Poisson random vari-

able equal to the sum of its Poissonian “children”. At the same time the “splits”

of the tree, are modeled using a prior probability distribution whose parameters are

either assumed to be known or regarded as tuning parameters to be set by the user.
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The image reconstruction is then performed by recursively estimating the mean of

each node, based on either an MSE or MAP criterion. Moreover, it was empirically

demonstrated in [48] that the Bayesian estimators outperform the methods proposed

in [35, 40, 38], in cases of inhomogeneous sources f . The method of [48] was further

improved in [49] via incorporating the information on prior distributions of the un-

known parameters pertaining to the “splits” parameters which have been previously

assumed to be known or set by the user.

The algorithm proposed in [50] is based on the assumption that the wavelet coeffi-

cients of the original image follow a Laplacian distribution. An objective function is

then obtained by applying the MAP estimation framework, which leads to solution

of a associated convex optimization problem by means of the interior point algo-

rithm [51]. An approach that combines the dyadic partition of data images and max-

imizing a MAP objective was described in [52]. This approach takes advantage of

the so-called Platelet transform [53] which can produce highly accurate, approxima-

tions of images consisting of smooth regions separated by regular (e.g. Lipschitzian)

boundaries. This fact constitutes a critical advantage over traditional wavelet-based

methods, which cannot adequately approximate boundaries and edges of natural im-

ages.

A comparative study of several multiscale approaches to the problem of photon-limited im-

age reconstruction, including wavelet-based methods combined with VST’s, corrected Haar

wavelet transforms, MMI, platelets, and a trous wavelet transform was presented in [54].

The main conclusion in [54] is that, in high-count situations, computationally efficient VST

transforms should be preferred over more computationally expensive methods such as, e.g.,

the Bayesian estimation based on the MMI model. On the other hand, if the original image

is piece-wise smooth and has discontinuous edges, then wavelet-based methods should be

considered as an optimal tool to use, as opposed to the case where the piecewise smooth

regions of original images are known to be separated by smooth boundaries. In the lat-

ter case, using the platelet transform can result in better restoration, as supported by the

theoretical guarantees of their nearly optimal performance.
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2.2.2 Poisson image de-blurring

A classical approach to the problem of reconstruction of the original image f from its

blurred measurements g goes as far back as to the beginning of the 70s [30, 31], and it

is nowadays known as the Richardson-Lucy (RL) algorithm. This method belongs to the

family of maximum likelihood (ML) estimators, which approximates the true image f in

(1.2) by f̂ML computed as

f̂ML = argmin
f
{E( f )}, (2.14)

E( f ) = 〈1,H { f}〉−〈g, log(H { f})〉. (2.15)

The RL algorithm recovers f as a stationary point of the sequence of solutions produced

according to

f (t+1) = f (t) ·H ∗
{

g
H { f (t)}

}
, (2.16)

where H ∗ denotes the adjoint of the convolution operator1, while the dot and the fraction

line stands for point-wise multiplication and division, respectively.

The RL algorithm has proven to be a useful reconstruction tool in the field of nuclear

imaging, where it has been employed for the recovery of PET and SPECT scans [24, 55].

The same model and the same reconstruction was used for the restoration of microscopic

images in [14], in which the RL algorithm is used to estimate both the original image and

the PSF in a sequential manner.

It was argued in several studies (e.g. [56, 33]), however, that the RL algorithm tends

to diverge in the case of poorly conditioned operators H . The latter behavior has been

known as a noise enhancement tendency of the algorithm, which was mitigated by its early

termination. Although some attempts to determine an appropriate number of iterations

were made [31, 56], the above limitation of the RL method is still considered as a serious

drawback.

In order to regularize the the RL procedure, algorithms exploiting the MAP estimation

framework have been proposed. As opposed to ML methods, MAP estimates have an

intrinsic ability to incorporate a priori knowledge on the properties of the original image

f . Thus, for example, under the assumption on f to obey a Poisson distribution, the MAP

1For the definition of the adjoint operator, see equation (B.5) of Appendix-B.
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estimate derived in [57] has the form of

f (t+1) = f (t) · exp
{

H
[

g
H { f (t)}

−1
]}

, (2.17)

Unfortunately, the above algorithm has an impractically slow convergence rate. Moreover,

it has also been observed to provide unsatisfactory reconstruction results in the case of

poorly conditioned blurs H .

Several methods attempted to incorporate a priori smoothness assumptions on the orig-

inal image f . Thus, for example, in [58] the correlation between neighboring pixels is

accounted for by using the Gaussian prior probability function

p f ( f ) ∝ exp

{
−α

2 ∑
i, j
〈 f ,φi, j · f 〉

}
, (2.18)

where α is a regularization parameter and φi, j is a matrix whose entries are inversely propor-

tional to their spatial distance from the pixel indexed by (i,j). Applying the MAP framework

has led [58] to proposed the following iterative scheme

f (t+1) = µ(t) f̄ (t) +[1−µ(t)] f (t) ·

[
H ∗
{

g
H
{

f (t)
}}] , (2.19)

where f̄ (t) denotes a linearly smoothed version of f (t).

Another possible way to incorporate smoothness assumptions is known as the Tikhonov-

Miller regularization [59], which assumes the first variation of the original image to have

Gaussian statistics. The method suggests the following iterative procedure

f (t+1) =
f (t)

1+2λT M∆ f (t) ·H
∗
{

g
H { f (t)}

}
, (2.20)

where λT M is a positive regularization parameter and ∆ denotes the Laplacian operator.

Alas, the a priori assumption associated with the method substantially limits its applicabil-

ity, as many images of interest do not follow a Gaussian distribution.

For the specific case of SPECT imagery, a different a priori model for the original image

f was suggested in [55]. In this work, the image was assumed to be composed of three

observation fields, which are described as “cerebrospinal fluid”, “white matter” and “grey

matter”. Note that while the former accounts for the distribution of image background,

the latter two represent the gray-levels pertaining to the two principal regions of the brain.
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Furthermore, the values of the background was modeled using an exponential pdf, while

the white and gray matters were modeled using a Gaussian pdf. Note that the Gaussian

assumption has been made based on the central limit theorem - in high-count areas each

pixel value can be represented as a sum of a large number of random variables, which can be

approximately described as a Gaussian random variable. Based on the prior model above,

the reconstruction in [55] was carried out using an iterative procedure consisting of the

following two steps: at the first step, the original image is estimated given the parameters

of the three prior distributions and, while at the second step, the parameters are updated

using an ML estimator. To overcome some stability issues of the above scheme, it was

proposed to terminate the iterations once the parameters of the three prior distributions

have stabilized within a certain threshold.

Many natural images are piecewise smooth in appearance, and hence have bounded

total variation (TV). This fact lies in the basis of the widely used Rudin-Osher-Fatemi

(ROF) model [3], according to which the first variation of BV images can be assumed to

follow a Laplacian distribution. Under the ROF model, the image f can be recovered using

the following iterative procedure

f (t+1) =
f (t)

1−λTV div
(

∇ f (t)

|∇ f (t)|

) ·H ∗{ g
H { f (t)}

}
, (2.21)

where λTV is a regularization parameter, div(·) is the divergence operator and |∇ f | denotes

the magnitude of the gradient of f .

Unfortunately, as will be shown in the experimental part of this thesis, the above al-

gorithms cannot fully alleviate the instability problem intrinsic in the inversion of (1.2),

and hence it has to be terminated when the first signs of instability begin to show up. To

overcome this deficiency, the work in [60] suggested a different approach also based on

the bounded variation model which leads to a minimum total-variation (TV) solution for

the true image. In this case, to find the solution a variable splitting procedure of [61] was

employed. Despite a substantial improvement in the stability of reconstruction, the method

of [60] requires considerable computational resources to execute, since it requires the iter-

ative solution of a subproblem at each iteration. The latter fact undermines its applicability

for processing large data sets. Moreover, the algorithm of [60] may produce non-positives

solutions, unnatural in the case of Poissonian imaging. To overcome the computational in-

efficiency of [60], a modification of the variable splitting method was proposed in [62]. The
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proposed procedure did not require the solution of a subproblem at each iteration and was

constrained to provide nonnegative estimations. Unfortunately, this modification seems to

“restore” the instability concerns.

A different class of reconstruction methods has been recently proposed based on the

assumption of compressibility of the true image f . This assumption suggests that f can be

sparsely represented either in the spatial domain or in the domain of a certain linear trans-

form. Thus, for example, [63] analyzes three different penalty functions, whose role is to

impose the sparsity constraint on the estimated images. Although the proposed algorithms

have exceptional stability and computation properties, they require the original image to be

sparse in the spatial domain – the assumption which obviously restricts the applicability of

this method. In this regard, a more general assumption has been used in [64], where the

true images are supposed to be sparsely represented in the domain of a tight frame. This

method, however, is based on Gaussianization of the Poisson noise by means of a VST [32]

that is known to perform inadequately in low-count settings. Another work that employed

the assumption of f to be sparsely representable in the domain of an orthonormal trans-

form is detailed in [65], where the sparsity-constrained Poisson inverse problem is solved

approximately by minimizing a sequence of `2− `1 objective functions. However, as ac-

knowledged by the authors of [65], their algorithm has a drawback of slow convergence,

which should be addressed in future research.
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Chapter 3

Estimation Framework

3.1 Maximum A Posteriori Estimation

The framework of MAP estimation [66] considers estimating a random variable (RV) from

its noised measurement by maximizing the posterior probability of the RV given the mea-

surement. Expressed formally, if X is a RV that follows a prior probability law Pr(x) and

Y is a RV that follows a likelihood probability law Pr(y |x), then the MAP estimator of X ,

denoted as x̂, is given by

x̂ = argmax
x

Pr(x |y) = argmax
x

Pr(y |x)Pr(x)
Pr(y)

, (3.1)

where the second equality follows from Bayes theorem.

Since Pr(y) does not depend on x, (3.1) can be re-formulated as

x̂ = argmax
x

Pr(y |x)Pr(x). (3.2)

Since the natural logarithm is monotonically increasing, a common practice is to max-

imize the natural logarithm of (3.2) to consider the following maximization

x̂ = argmax
x

log(Pr(y |x))+ log(Pr(x)), (3.3)

which simplifies the maximization problem in cases where the probabilities of (3.2) belong

to the exponential family.

It is interesting to note that in case where there is no prior assumption of X , all of its

values can be assumed to be equally probable. In this case, the inference on x can only be
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based on the observed information alone (due to the fact that Pr(x) is constant for all x),

which results in

x̂ = argmax
x

Pr(y |x), (3.4)

which is the maximum-likelihood (ML) estimator. A qualitative interpretation of (3.4)

would be to find the hypothesis x which makes the measurement of y the most proba-

ble one. The MAP estimator incorporates the prior assumptions in the ML estimator by

weighting the likelihood probability with a prior distribution and the resulting estimate is

the most probable one in terms of the measurement y and the a priori knowledge of x.

Quantitatively, (3.2) can be shown to be optimal in the sense of minimizing the error

probability. To show that, assume, without loss of generality, that X is a discrete RV,

which takes its values from the finite set of S ≡ {x1,x2, · · · ,xN}. As well, let Y be a RV

that represents the measured (contaminated) version of X , such that Y takes values over

a set Ω ≡ {y1,y2, · · ·}, S ⊂ Ω. Finally, define R ≡ {1,2, · · ·} to be a set of indexes i that

correspond to yi in Ω.

Given a set of measurements yr, define an estimator x̂ for X according to

x̂ =


x1 i f r ∈ A1

x2 i f r ∈ A2
...

xN i f r ∈ AN

, (3.5)

where {A j}N
j=1 are arbitrary disjoint sets of indexes, such that

⋃N
j=1{A j}= R. The goal in

this example will be to show that in order to minimize the error probability, the index sets

A j will be necessarily chosen according to (3.2).

The probability to classify a measurements erroneously, Pr(error), can be written by

Pr(error) = ∑
j

Pr(error|X = x j)Pr(X = x j). (3.6)

Let Φ j denote a set of indexes that satisfies Φ j ≡
⋃

i6= j{Ai}. The case where X = x j was

the original value of an erroneous estimation corresponds to r ∈ Φ j. The measured value

yr will result in an incorrect estimation with probability

Pr(error |X = x j) = ∑
i∈Φ j

Pr(Y = yi |X = x j), (3.7)
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Using (3.7), it is possible to re-write (3.6) as

Pr(error) =
N

∑
j=1

∑
i∈Φ j

Pr(Y = yi |X = x j)Pr(X = x j). (3.8)

Next, the expression that corresponds to j = 1 is extracted from the first summation in (3.8)

and written as

∑
i∈Φ1

Pr(Y = yi |X = x1)Pr(X = x1) = (3.9)

= ∑
i∈R

Pr(Y = yi |X = x1)Pr(X = x1)− ∑
i∈A1

Pr(Y = yi |X = x1)Pr(X = x1) =

=Pr(X = x1)− ∑
i∈A1

Pr(Y = yi |X = x1)Pr(X = x1),

where the first equality uses the fact that R = Φ1∪A1 and the second uses ∑i∈R Pr(yi|X) = 1.

Accordingly, (3.8) can be re-written as

Pr(error) = Pr(X = x1) + (3.10)
N

∑
j=2

∑
i∈Φ j

Pr(Y = yi |X = x j)Pr(X = x j)− ∑
i∈A1

Pr(Y = yi |X = x1)Pr(X = x1).

Due to the fact that the summation over the indexes included in {Φ j}N
j=2 all include the

indexes of A1, one can obtain

Pr(error) = Pr(X = x1) + (3.11)
N

∑
j=2

∑
i∈Φ j\A1

Pr(Y = yi |X = x j)Pr(X = x j)+

∑
i∈A1

Pr(Y = yi |X = x j)Pr(X = x j)−Pr(Y = yi |X = x1)Pr(X = x1),

where Φ j\A1 excludes all indexes in A1 from the summation.

Finally, to minimize the error probability, one should choose the indexes i of A1 which

satisfy

Pr(Y = yi |X = x1)Pr(X = x1) > Pr(Y = yi |X = x j)Pr(X = x j) (3.12)

∀ j = {2, · · · ,N},
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It is straightforward to see that applying a similar equality to (3.9) for any l = {1,2, · · · ,N}
will result in choosing indexes i of Al which satisfy

Pr(Y = yi |X = xl)Pr(X = xl) > Pr(Y = yi |X = x j)Pr(X = x j) (3.13)

∀ j = {1, · · · ,N}\l,

which leads to the estimator as described in (3.2). This important result concludes that the

MAP estimator minimizes the error probability, hence optimal in this sense.

It should be added that the error probability can be interpreted in terms of a “hit-or-

miss” cost function, which equally penalizes the estimator for false alarms. Specifically,

if W (i, j) denotes the cost for erroneously estimating x̂ = xi while X = x j was the original

value, such that

W (i, j) =

{
1 f or i 6= j

0 f or i = j
, (3.14)

then the overall cost function is defined as an expected value of W (i, j), which is given by

E{W (i, j)}=
N

∑
j=1

N

∑
i=1

W (i, j)Pr(x̂ = xi |X = x j)Pr(X = x j) (3.15)

=
N

∑
j=1

∑
i 6= j

Pr(x̂ = xi |X = x j)Pr(X = x j).

The latter results in the definition of the error probability, which is minimized by the MAP

estimator.

3.2 A priori model

As described in the previous section, the MAP estimator takes advantage of additional in-

formation on the image of interest which is available in the form of a prior pdf. This section

details the prior chosen in this work, its related analysis, applications and corresponding

MAP criterion. By incorporating the prior in the problem of (1.2), the proposed solution

is shown to be adequate for three different settings, viz. sparse reconstruction, de-noising

and de-blurring.
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3.2.1 Prior assumptions

The proposed method is based on the assumption that f in (1.2) can be sparsely represented

in the domain of a linear transform. In particular, let Φ[·] denote a linear invertible operator

which corresponds to the set of matrices {ϕk}k∈I , I ≡ {1,2, · · · ,NI}, and c ∈ `2(I ) denote

a set of representation coefficients, then there exists

f = Φ[c] : f 7→ ∑
k∈I

ckϕk, (3.16)

where c is assumed to be sparse, which means that most of the elements of c are zero.

Consequently, since the `2 energy of such a signal needs to be encoded in a relatively small

number of coefficients, the coefficients should be of relatively large magnitude. It should

be noted that the set of matrices {ϕk}k∈I is commonly referred to as a dictionary, and the

elements of the set ϕk are referred to as atoms.

It should be noted that, in many cases, dictionaries may not lead to sparse represen-

tations, as many of the representation coefficients may exhibit small magnitudes. In such

cases, a proper dictionary would be such that thresholding all the small magnitude coeffi-

cients will result in a small approximation error. These cases are commonly referred to as

sparse approximations, and images approximated by the dictionaries are said to be com-

pressible. Accordingly, finding a sparse approximation for a signal amounts to solving the

following minimization problem [67]

min
c
‖c‖0 sub ject to ‖ f −Φ[c]‖2 ≤ ε, (3.17)

where the `0 norm counts the number of non-zero entries in the set of representation co-

efficients, and ε is a small nonnegative number. Clearly, the difficulty lies in the assump-

tion that a dictionary that results in a sparse representation/approximations for underlying

signals exists. Accordingly, such dictionaries has long been of major interest among re-

searches due to the growing interest in the use of sparse representations/approximations

for discrete signals. The next subsection overviews common existing dictionaries and their

properties.

3.2.2 A dictionary tour

One of the most popular transforms in signal/image processing applications is the wavelet

transform [41]. The idea behind the transform is to decompose a signal over dilated and
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translated mother wavelets function ψ(t) ∈ L2(R), viz

W f (u,s) =
∫

∞

−∞

f (t)
1√
s
ψ
∗(

t−u
s

)dt, (3.18)

where f (t) represents the original signal and u,s ∈ R are translation and dilation parame-

ters, respectively. Hence, the transform measures the variation of f (t) in a neighborhood

of u, whose size is proportional to s. Consequently, since smaller/larger values of s will re-

sult in narrower supported wavelets in the spatial/frequency domain, the wavelet transform

possesses the ability to localize both spatial and frequency characterizations of the signal

f (t). Furthermore, an orthonormal wavelet basis can be generated by substituting u = 2 jk

and s = 2 j, where j,k ∈ Z. Consequently, a signal f (t) can then be represented by

f (t) =
∞

∑
j=−∞

∑
k

d j
k2− j/2

ψ(2− jt− k), (3.19)

where d j
k denotes the wavelet coefficients, given by d j

k = 〈 f (t),2− j/2ψ(2− jt− k)〉. It turns

out that space spanned by all translations k and dilations j = J + 1, · · · ,∞ of ψ(t) can be

spanned by the translations of a corresponding scaling function or father wavelet φ(t).

Accordingly, the representation in (3.19) can be expressed by

f (t) = ∑
k

cJ
k2−J/2

φ(2−Jt− k)+
J

∑
j=−∞

∑
k

d j
k2− j/2

ψ(2− jt− k), (3.20)

where cJ
k denotes the scaling coefficients, given by cJ

k = 〈 f (t),2−J/2φ(2−Jt − k)〉. The

translations of the scaling function φ(t) and translations and dilations of the wavelet func-

tion ψ(t) in 3.20 form an orthonormal basis with a multiresolution property: The scaling

function constructs the low frequencies of the signal, thus the first term in (3.20) is referred

to as approximation, while the wavelet function constructs finer scales of the signal, thus

the second term in (3.20) is referred to as detail. Needless to say, such wavelet and scaling

functions must satisfy a set of essential constraints. Expressed formally, if m,n ∈ Z and

h[k] denotes a discrete sequence, the scaling function φ(t) has to obey

〈φ(t−m),φ(t−n)〉=

{
1 f or m = n

0 f or m 6= n
(3.21)

and

φ(
t
2
) =
√

2
∞

∑
k=∞

hkφ(t− k). (3.22)

26



These conditions are referred to as the orthonormality and two-scale relation conditions,

respectively. In addition, the discrete time Fourier transform of hk, denoted as ĥ(ω), must

satisfy |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 and ĥ(0) =
√

2. Accordingly, it can be shown that the

wavelet function ψ(t) has to obey

ψ(
t
2
) =
√

2
∞

∑
k=∞

gkφ(t− k), (3.23)

where gk is a discrete sequence given by gk = (−1)1−kh1−k. Furthermore, the scaling and

wavelet coefficients can be shown to be computed by using the following recursion

c j+1
k = ∑

n
h2k−nc j

n (3.24)

d j+1
k = ∑

n
g2k−nc j

n,

which can be efficiently computed by using digital filter banks and decimators. This recur-

sion leads to the discrete wavelet transform (DWT) in which a discrete signal f (k),k ∈ Z
initializes the recursion by defining c0

k .

It should be noted that the one dimensional wavelet analysis can be simply extended

to two dimensional functions (images) via a separate construction [68], which is known as

the separable wavelet transform.

An interesting property of the wavelet transform is that the wavelet coefficients tends

to be zero for piece-wise smooth signals. More specifically, a wavelet is said to possess p

vanishing moments if

〈tk ,ψ(t)〉=
∫

∞

−∞

tk
ψ(t)dt = 0 0≤ k < p, (3.25)

which means that polynomial portions of signals that are of degree less than p will be result

in zero wavelet coefficient, or better yet, a sparse representation. Therefore, it seems that

a choice of wavelet with maximal number of vanishing moments will result in the sparsest

representation possible. However, it turns out that the support of the wavelet function

and its number of vanishing moments are closely related. Specifically, a wavelet function

with p vanishing moments will have a support size of at least 2p− 1. Thus, a wavelet

with a many vanishing moments will exert a very large support, which will weaken its

ability to localize discontinuities in the spatial domain, limiting its ability to produce a

sparse representation. A short supported wavelet, on the other hand, will exert a small

27



number of vanishing moments, which will produce non-zero representation coefficients

for segments of the signal that are modeled as high-degree polynomial signals. A famous

wavelet which has the minimal support possible (which can be shown to be 2p− 1 for

p vanishing moments) was discovered by I.Daubechies, which was accordingly named -

Daubechies wavelet.

Indeed, one of the most important properties of the orthogonal wavelet transform is

its ability to provide sparse representation for piecewise regular signals [41], making it

popular among various fields (see the section that follows). However, a growing realization

is that orthogonal wavelets are weak in describing singularities found in two dimensional

data [69]. The separability of the two dimensional transform results in the inability to

efficiently represent edges with different directivities which commonly appear in real-life

images. In addition, the loss of translation invariance (meaning that translated versions

of the original image will not result in corresponding translations of the representation

coefficients) stemming from the mandatory decimation results in ambiguous representation

for translated versions of the original image. The latter fact raises many difficulties in

applications that require the existence of translation invariance.

The latter fact led to the representations of images by frames [70] which are comprised

of vectors that span a linear space, such that the number of vectors is greater than the di-

mensionality of the space itself. An accurate definition of a frame is as follows.

Definition Let {ϕk}k∈I , I ≡ {1,2, · · · ,NI}, denote a countable collection of elements in a

vector space U. This collection is regarded as a frame if there exist A > 0 and B < ∞ such

that

A|| f ||2 ≤ ∑
k∈I
|〈ϕk, f 〉|2 ≤ B|| f ||2 ∀ f ∈ U, (3.26)

where 〈·, ·〉 stands for the standard inner product in U.

A practical consequence that follows naturally from (3.26), is that a frame may contain

more elements than needed to be a basis for U, due to the lower bound which compels the

frame to span U. As a results, vectors in U are not uniquely represented by a frame that

is not a basis. In the latter case, the frame is said to be overcomplete or redundant. When

a frame is overcomplete, a unique representation for vectors in U can be achieved only by

adding a constraint for the representation coefficients. In the case that concerns this thesis,

the goal would be to find a sparse representation, i.e. a representation that minimizes the
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`0 norm of c.

Due to their ability to enlarge the number of atoms that participate in a representation,

such overcomplete frames were shown to be very effective in sparsely representing images.

In addition, they allowed designing dictionaries that can efficiently represent directivities

and singularities that are commonly found in images. A few of them are briefly described

next:

• The stationary wavelet transform

The transform is similar to the DWT except that all integer shifts of scaling and

wavelet functions (i.e. {φ(2− j(t − k))}k∈Z and {ψ(2− j(t − k))}k∈Z) are included

in the representation. Unlike the DWT, the stationary wavelet transform possesses

the property of translation invariance, which is desirable in many applications. In

addition, the analysis and synthesis operators of the transform can be efficiently im-

plemented using the a trous algorithm [41]. The transform has been used by [71, 8]

and proved to be very efficient in applications that assume sparsity for de-blurring.

• The curvelet transform

The fact that the wavelet transform exhibits large wavelet coefficients along edges

at almost all fine scales, led to the development of this transform, which is designed

to represent curved singularities by using very few coefficients. The transform uses

ridges of different lengths, rotations and translations and was shown to be useful in

many applications [72].

• The contourlet transform

Described in [73], the transform conducts a flexible multi-resolution, local, and direc-

tional image expansion using contour segments. With sufficient directional vanishing

moments, the transform was shown to achieve a sparse representation for piecewise

smooth functions along twice continuously differentiable curves.

• The KSVD algorithm

A different approach which produces a dictionary for specific pool of images was

presented in [67]. This work that a set of training images is available, and suggests

to adaptively create a dictionary that will incorporate the a priori information that

lies within the training sequence. The proposed procedure was designed to produce a
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dictionary that will provide a sparse representation for images that resemble the ones

used for training.

3.2.3 Applications

The mentioned sparsity of c is a fundamental assumption in the theory of sparse represen-

tations which has firmly reserved a leading position among the modern tools of signal and

image processing. The value of sparse representations has been demonstrated in numerous

fields and applications, which include:

• De-noising: In stead of attempting to recover the original image from its distorted

version in the spatial domain, the recovery is to place in the transform domain [4, 7].

The transform will map the degraded image to the representation coefficients of the

original image plus the transform of the noise contaminating the measurement. If

the representation coefficients form a sparse representation, the transform will result

in many low SNR coefficients, mostly representing the noise, and very few high

SNR coefficients, mostly representing the image. By this, noise and signal can be

effectively separated by discarding the low SNR coefficients.

• De-blurring: The works of [17, 5] considered a similar setup to the one mentioned

above, except that the image formation model included a linear degrading operator

that was employed to the original signal ahead of adding the measurement noise.

The solution led to a thresholding iterative procedure, in which un-discarded repre-

sentation coefficients are “shrinked” by a multiplicative factor, leading to the name

iterative shrinkage.

• Compression: A sparse representation for a signal allows storing or transmitting

only the non-zero coefficients along with their indexes [41], yielding high compres-

sion rates. By further thresholding low magnitude coefficients (causing a slight loss

of information) compression rates can be further improved.

• Compressed sensing: Suppose that a sampled and compressed version of a signal

f ∈RN is given by y = Q f , where Q∈RP×N and P << N. Under this setup, when the

sampled and compressed version is given, only P projections of the original are avail-

able for the reconstruction of f [39, 74]. The original signal is assumed to be sparsely
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represented by a set of coefficients c ∈ RM and a dictionary D ∈ RN×M M >> N in

the reconstruction procedure, which attempts to find a sparse set of coefficients such

that y≈ QDc.

• Morphological component analysis: Suppose that a mixture of signals g = f1 +

f2 + n is given, where f1 and f2 are signals of interest and n represents additive

noise. In an attempt to separate the measured signal g into its components, the works

in [75, 76] suggested a recovery process which uses two different dictionaries, D1

and D2 to sparsely represent the signals f1 and f2, respectively.

• Independent component analysis and blind source separation: Consider a vector

y ∈RP that represents the output of P sensors at certain time point and let the matrix

Y ∈ RP×T be comprised of T measured sensor outputs. Let F ∈ RN×T represent T

instances of the underlying source signals and Q ∈ RP×N be a mixing matrix, such

that Y = QF , where both Q and F are unknown. The reconstructions of F , suggested

by [77, 78], rely on the assumption that the underlying signals are sparse in nature.

Yet, when the signals do not satisfy this assumption, sparsity can still be achieved by

realizing the separation in a sparser transformed domain.

3.2.4 A stochastic model

The sparsity assumptions that were previously detailed are to be statistically represented

by a prior pdf. Accordingly, the coefficients of c = {ck}k∈I are assumed to be identically

distributed according to a Generalized Gaussian (GG) probability law [79]. As a result, the

joint probability of c can be defined by the product of GG probabilities as given by

P(c) = ∏
k∈I

p
2βΓ(p−1)

e−(|ck|/β)p
. (3.27)

It should be pointed out that β > 0 controls the variance of ck and the value of 0 < p < ∞

determines the appearance of c in terms of its sparsity. As can be seen in Fig.3.1, smaller

values of p will result in “heavier” tails of the corresponding pdf, thereby allowing larger

values of ck to be occasionally drawn, and, accordingly, more adequate for sparse represen-

tations. Fig.3.2 depicts two vectors drawn from a GG distribution with p = {1,2}, where

is can be seen that p = 1 is more sparse in nature. In particular, the choice of p = 1 results
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in a Laplacian distribution, which is commonly used to describe the behavior of sparse rep-

resentation coefficients [4, 80], since the distribution is “heavy” tailed and, after applying

the MAP framework, leads to the `1 norm, which preserves the convexity of the overall

objective. The latter fact will be presented in the next section, and the `1 norm will be

used in the experimental chapter of this work from the same reason mentioned above. It

should be noted in this context, however, that p = 1 is not necessarily the optimal choice of

p. The statistical study conducted in [81] has shown 0 ≥ p < 1 may be more appropriate

at certain situations. However, setting 0 ≥ p < 1 does not lead to a convex minimiza-

tion problem, and, therefore, no guarantee of convergence to the optimal solution can be

provided. Accordingly, p values that are less than one are usually avoided, and p = 1 is

commonly chosen as a compromise between the convexity of the minimization problem

and the statistical model.

Figure 3.1: The Generalized Gaussian pdf for p = {1,2}.
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Figure 3.2: Two instances of Generalized Gaussian random vectors with p = {1,2}.

3.2.5 Image modeling

When expressed as a function of the representation coefficients c, the image formation

model (1.2) becomes

g = P
{

H [Φ(c)]
}

= P {A[c]} , (3.28)

where A = H ·Φ is a composition map from `2(I ) to the signal space, which represents

the combined effect of image synthesis and blur. This model results in the following three

settings

• Setting 1: The basis Φ is the canonical (Dirac) basis (i.e. Φ = I) and hence A≡ H .

In this case, the image f is identified with its representation coefficients c (i.e. the

image itself is sparse), and the problem becomes that of sparse reconstruction.

• Setting 2: The blur is negligible and hence A≡Φ. In this case, the problem becomes

that of image de-noising.

• Setting 3: Neither H nor Φ can be simplified/neglected. In this case, the estimation

problem at hand becomes that of image de-blurring.
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For the sake of generality, in what follows the specific nature of A will not be specified until

Chapter 5 (experimental results), where different reconstruction examples are presented. In

particular, A is considered to be a linear map from the discrete domain of the representation

coefficients c ∈ `2(I ) to the space of blurred images.

It is well known that in the case of a poorly conditioned operator A, the problem of

recovering c ∈ `2(I ) from noisy measurements of A[c] can be highly unstable (in the sense

that there will not be a continuous dependency between the data and an estimate of c).

Therefore, the framework of MAP estimation, which provides the most likely solution

given the observed data and a reasonable assumption regarding the statistical nature of the

true coefficients c, is employed in the next section.

3.3 Cost Functional

The model in (3.28) and the prior that was suggested in (3.27) can be next used in applying

the MAP framework, as described in (3.2).

For the sake of simplicity, an integer i ∈ {0,1, · · · ,MN− 1} is used to index the mea-

sured image such that gi = g[i mod N,
⌊ i

N

⌋
] (where mod represents the modulus operation

and b·c returns the greatest integer that is less than its argument), i.e. the index sequentially

goes over the columns of the image.

The derivation of the MAP framework begins with formulating the likelihood function

Pr(gi |c) for an element of the measured image. By using the Poisson probability law, one

can obtain

Pr(gi |c) =
e−H [ f ]i ·H [ f ]i

gi

gi!
=

e−(A[c])i(A[c])gi
i

gi!
, (3.29)

where (A[c])i denotes the i-th coordinate of A[c] and gi ∈Z+ is interpreted as the measured

“number of counts” (e.g. the number of gamma photons registered by a gamma camera in

nuclear imaging). Assuming that the values of gi are independent and identically distributed

(i.i.d.), the joint probability of the observed image g is given by

Pr(g |c) =
MN−1

∏
i=0

e−(A[c])i(A[c])gi
i

gi!
(3.30)

To complete the model, the coefficients of c = {ck}k∈I are assumed to be identically

distributed according to a GG probability law, as discussed in subsection 3.2.4.
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Subsequently, the final expression for the MAP estimate becomes

cMAP =argmax
c

Pr(g |c)Pr(c) = (3.31)

argmax
c

MN−1

∏
i=0

{
e−(A[c])i(A[c])gi

i
gi!

}
∏
k∈I

{
κ · e−(|ck|/β)p

}
,

where κ = p/2βΓ(p−1). It is conventional to convert the maximization problem (3.31)

into a minimization problem through applying the log-transform to the posterior probability

in (3.31) (see subsection 3.1), followed by inverting the sign of the expression thus obtained

cMAP = argmax
c

MN−1

∏
i=0

{
e−(A[c])i(A[c])gi

i
gi!

}
∏
k∈I

{
κ · e−(|ck|/β)p

}
(3.32)

= argmin
c
− log

(
MN−1

∏
i=0

{
e−(A[c])i(A[c])gi

i
gi!

}
∏
k∈I

{
κ · e−(|ck|/β)p

})

= argmin
c
−

MN−1

∑
i=0

log

(
e−(A[c])i(A[c])gi

i
gi!

)
−∑

k∈I
log
(

κ · e−(|ck|/β)p
)

= argmin
c
−

MN−1

∑
i=0

[−(A[c])i +gi log((A[c])i)− log(gi!) ]−∑
k∈I

[ log(κ)− (|ck|/β)p ]

= argmin
c

MN−1

∑
i=0

[ (A[c])i−gi log((A[c])i) ]+1/β
p
∑
k∈I

log(|ck|p) ,

where multiplications turn into summations and terms that does not depend on c (which

are merely constants in the objective) are removed from the expression. Using the inner

product notation, the MAP estimate can be re-expressed as given by

cMAP = argmin
c
{E(c)} , (3.33)

E(c) = 〈1,A[c]〉−〈g, log(A[c])〉+ γ‖c‖p
p, γ , 1/β

p,

where 1 stands for an N×M matrix of ones, 〈 · , · 〉 stands for the standard inner product in

RN×M and ‖c‖p
p = ∑

k∈I
|ck|p is the `p-norm (raised to the power of p) of the representation

coefficients.

Interestingly, the first two terms in (3.33) form the I-divergence measure (up to a con-

stant), which is given by

I(u‖v) = 〈v, log(v/u)〉+ 〈1,u〉−〈1,v〉, (3.34)
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with u,v ∈ RN×M
+ and the “slash” representing element-wise division. Introduced by [82],

the measure generalizes the Killback’s divergence (also known as information for discrim-

ination or cross-entropy) which is a measure of difference between two pdf’s. One can

easily realize that the I-divergence satisfies I(u,v) ≥ 0 with an equality for u = v only. A

two dimensional illustration of the latter property appears in Fig.3.3. The fact that (3.33)

forms the I-divergence measure can be easily proved by simply adding the constant term

〈g,g〉−〈1,g〉 to (3.33) (clearly, constants will not change the solution to the minimization

process), resulting in

cMAP = argmin
c
{E(c)+ 〈g,g〉−〈1,g〉} (3.35)

= argmin
c
{〈g, log(g/A[c])〉+ 〈1,A[c]〉−〈1,g〉+ γ‖c‖p

p}

= argmin
c
{I(A[c]‖g)+ γ‖c‖p

p},

which allows to interpret the problem at hand as minimizing the I-divergence measure

between the acquired and recovered image, such that the acquired image is sparse in a

predefined transform domain.

Figure 3.3: I-divergence of two dimensional vectors u,v with v = [1 1]T . The left subplot

presents a mesh of the I-divergence, while the right subplot presents its corresponding

contour map. One can see that the I-divergence admits a unique minimizer at u = [1 1]T .

As can be understood from the context, the I-divergence is a measure for nonnegative

entities, which corresponds to the case at hand: the acquired data g is nonnegative, as it
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was measured as an outcome of a Poissonian counting process. It should be noted that the

likelihood model of (3.30) interprets the true image value fi as the mean value of the cor-

responding random observation gi. Moreover, since in the case of the Poisson distribution,

the first and the second moments of the distribution are equal, the values fi are normally

assumed to be nonnegative. The latter assumption restricts the domain of E(c) in (3.33) to

be defined as

dom E = {c ∈ `2(I ) |Φ[c]� 0} . (3.36)

An important property of the set in (3.36) is that a line segment between any two points in

dom E lies in dom E, which defines a convex set. To show that, consider any c1,c2 ∈ dom E

and θ such that 0 ≤ θ ≤ 1. To check if any line segment between c1,c2 is in the domain,

apply

Φ[θc1 +(1−θ)c2] = θΦ[c1]+ (1−θ)Φ[c2]� 0, (3.37)

and therefore θc1 +(1−θ)c2 ∈ dom E ∀ 0≤ θ≤ 1.

Yet another significant property is the convexity of E(c) in dom E. The latter property

is defined as follows [51].

Definition A function f : RN →R is convex if and only if dom f is a convex set and if for

all x1,x2 ∈ dom f and θ such that 0≤ θ≤ 1, there exists

f (θx1 +(1−θ)x2)≤ θ f (x1)+(1−θ) f (x2), (3.38)

where a function is said to be strictly convex if strict inequality holds for x1 6= x2 and

0 < θ < 1.

Accordingly, the convexity of E(c) in (3.33) is next examined. The first term is obvi-

ously convex, since it is linear in c. The second term is comprised of a minus logarithm

that is applied to a linear function of c, which, due to the strict convexity of the minus

logarithm, is convex. Moreover, the logarithmic term exhibits strict convexity if g� 0 and

A is non-degenerate. The last term, which is comprised of |ck|p terms is strictly convex for

p > 1 and convex for p = 1. Furthermore, when E(c) is strictly convex, the minimization

problem (3.33) possesses a unique minimizer in (3.36) [51, Ch. 11], and convergence to

the unique minimizer of the method proposed in this thesis is guaranteed, since (as will be
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shown in the next chapter) it provides an estimate c∈ dom E that reduces E(c) at each iter-

ation of the proposed procedure. In cases where E(c) is not strictly convex, it is possible to

replace the `1 norm of the representation coefficients with 〈1,
√

c2 + ε〉, for some ε� 1 [5]

to attain strict convexity. However, applying the latter might be unnecessary since it was

empirically found that the proposed method provides a unique (initialization-independent)

reconstruction in such cases.

It should be noted that the problem of minimizing E(c) over the set defined by (3.36)

does not necessarily have to be formulated as a constrained minimization problem. This is

because, for positive-valued data images, the term −〈g, log(A[c])〉 in (3.33) works similar

to a log-barrier function which forces the solution to stay within the feasible region defined

by the condition Φ[c] � 0. In fact, strong theoretical guarantees for the existence and

attainability of a unique minimizer of E(c) follow directly from the theory of interior-point

methods [51, Ch.11].

A possible solution to computing cMAP could be by means of standard optimization

techniques, such as gradient-based methods [83]. It was recently argued, however, that

such general purpose tools might be ineffective when applied to the problem at hand, since

for the case of p = 1 (which employs the required sparsity assumption) the absolute value

terms it consists are not differentiable at zero. Replacing those terms by an approximation,

such as |c| ≈
√

c2 + ε where ε is very small, does not mitigate the problem, since different

values of ε can significantly affect alter the solution to minimization problem, which makes

the choice ε somewhat ambiguous.

Approximating the derivative of |c|, e.g. by the sign(·) function defined by

sign(c) =


1 c > 0

0 c = 0

−1 c < 0

(3.39)

will not suffice either, since it will improperly affect the sparse structure of the desired

solution [8]. The latter stems from the fact that the approximation occurs at a value of c = 0,

which frequently appears in sparse vectors of coefficients. In the next chapters, a different

approach to finding cMAP is detailed based on the methodology of iterative shrinkage [17,

5, 8, 18].
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Chapter 4

Poisson Iterative Shrinkage

As described in the last section of the previous chapter, the minimization problem of

(3.35) can not be solved using the conventional gradient-based approaches. However, a

more effective solution to the problem can be derived using the method of majorization-

minimiztion [84] (MM), also known as the method of bound optimization [71]. The first

step in applying such a method consists of replacing the original problem of minimiz-

ing a convex functional E(c) by a problem of minimizing a different surrogate functional

Q(c,ct) (where ct ∈ `2(I ) is an arbitrary set of coefficients). The functional Q(c,ct) is said

to majorize a real-valued functional E(c) at the point ct provided

1) Q(c,ct)≥ E(c), ∀c ∈ domE (4.1)

2) Q(ct ,ct) = E(ct)

with ct being an arbitrary but fixed reference point in domE. The first inequality in (4.1),

in which the majorizer Q(c,ct) is shown to bound the objective E(c), explains the name

“bound optimization”.

Fig.4.1 depicts a one dimensional illustration of (4.1), which clarifies the next step

in the minimization process: minimizing the majorizer Q(c,ct) in domE and obtaining

ct+1 ∈ domE will result in a decrease in the objective E(c) (hence the name majorization-

minimiztion). Subsequently, the process will repeat with ct+1 defining the new majorizer,

until convergence.

The decrease in E(c) that occurs in each iteration of the process can be shown analyti-

cally. To this end, let ct+1 denote a minimizer of Q(c,ct), i.e. ct+1 = argminc Q(c,ct). For
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Figure 4.1: Exemplification of the MM method: The minimizer ct+1 of Q(c,ct) reduces the

value of the objective E(c).

such a ct+1 and Q(c,ct) obeying (4.1), one obtains

E(ct+1) = Q(ct+1,ct)+E(ct+1)−Q(ct+1,ct) (4.2)

≤ Q(ct ,ct)+E(ct)−Q(ct ,ct)

= E(ct),

resulting in

E(ct+1)≤ E(ct), (4.3)

with an equality if and only if ct+1 = ct and ct = argminc E(c). Thus, the bound-optimization

method guarantees a reduction in the value of E(ct) at each iteration until convergence, pro-

vided that Q(c,ct) obeys the conditions in (4.1). It should be noted, however, that for the

value of E(ct+1) to decrease, it is sufficient to require that

Q(c,ct)≥ E(c)
∣∣
c=ct+1

, (4.4)

for ct+1 ∈ domE, instead of the more strict demand of the first equality in (4.1). An

example of this case is illustrated in Fig.4.2, where a decrease in E(c) occurs with the

much less restrictive condition, which will be used in section 4.2.

It should be noted that in the case where E(c) is not convex in domE, the above method

guarantees neither convergence to a global minimizer nor to a local minimizer, as the pro-

cedure can possibly terminate at a saddle point or at a local maxima. In the case at hand,
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Figure 4.2: Exemplification of the MM method with a less restrictive condition: The ma-

jorizer Q(c,ct) is greater than the objective E(c) only at c = ct+1.

however, (3.31) is always convex in the convex set domE. Moreover, it is strictly convex

under a few attainable conditions (described in Section 3.3) which guarantees the conver-

gence of the above procedure to the global minimizer.

Yet another important note is that the MM method can be applied to a maximization

problem in a similar way: a surrogate functional will bound the objective from below

and its maxima will be sought at each iteration, resulting in a minorization-maximization

procedure 1. As an example to an algorithm that is based on a minorization-maximization

procedure is the well known expectation maximization (EM) algorithm [85].

4.1 Surrogate Functional

To apply the MM method to the problem (3.31), let the surrogate functional Q(c,ct) have

the following form

Q(c,ct) = E(c)+Ψ(c,ct), (4.5)

where

Ψ(c,ct) = 〈g, log(A[c]/A[ct ])〉−〈A∗ [g/A[ct ]] ,c− ct〉`2(I ) +
µ
2
‖c− ct‖2

2, (4.6)

1the acronym MM is used to generalize both majorization-minimiztion and minorization-maximization.
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with the “slash” to be interpreted as an element-wise division, A∗ being the adjoint of A,

and 〈·, ·〉`2(I ) standing for the inner product in `2(I ). The motivation behind the specific

choice of each term in Ψ(c,ct) will be exposed in the analysis of the current and the next

subsections.

It goes without saying that the surrogate functional in (4.5) has to obey the constraints in

(4.1). The analysis in this section relies on the assumptions that Q(c,ct) is convex in domE

and that the constraints in (4.1) are met. These assumptions will be rigorously confirmed

in the next section.

According to the previous section, Q(c,ct) should next be minimized to obtain ct+1 ∈
domE. Due to the fact that Q(c,ct) is non-differentiable for p = 1, the first order optimality

condition states {
∂Q(c,ct)

∣∣
c=ct+1

3 0 f or p = 1

∇Q(c,ct)
∣∣
c=ct+1

= 0 f or p > 1
(4.7)

where ∂Q(c,ct)|c=ct+1 denotes the subdifferential, which is the set of all subgradients2 of

Q(c,ct) at c = ct+1 . In fact, the two cases in (4.7) can be formulated by the expression for

p = 0, due to the fact that the subdifferential set contains only the gradient in the differen-

tiable case. Using this formulation for both cases, one can obtain3

∂Q(c,ct) = A∗[1]−A∗ [g/A[c]]+ γ ·∂‖c‖p
p+ (4.8)

+A∗ [g/A[c]]−A∗ [g/A[ct ]]+µ(c− ct) 3 0.

where the subdifferential ∂‖c‖p
p is a vector comprised all of subdifferentials of its elements

of c, viz,

∂‖c‖p
p =


∂|c1|p

∂|c2|p
...

∂|c|I ||p

 , (4.9)

where ∂|ck|p , 1≤ k ≤ |I | is given by

∂|ck|p = p ·


(ck)p−1 ck > 0

(−|ck|p−1,+|ck|p−1) ck = 0

−(−ck)
p−1 ck < 0

. (4.10)

2For a short discussion of subdifferential and subgradients, refer to Appendix-A.
3A detailed derivation appears in Appendix-B.
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Note that the case p = 1 yields an interesting case where the subdifferential is a set of all

values in the range (−1,1) for ck = 0. For all other combinations of p and ck, namely p = 1

and ck 6= 0 or p > 1 for all ck, the subdifferential merely contains the gradient, given by

∇‖c‖p
p = p|c|p−1 · sign(c), as Q(c,ct) is differentiable in domE.

Subsequently, canceling the similar terms with opposite signs and applying a few alge-

braic manipulations to (4.8) yields

c+
γ

µ
∂‖c‖p

p 3 ct +
1
µ

A∗ [g/A[ct ]−1] . (4.11)

Equations (4.8) and (4.11) reveal the motivation behind the specific choice of the first and

last terms in Ψ(c,ct). The first term was designed to cancel out the gradient of the sec-

ond term in E(c), which can not be separated to |I | identical functions of ck, k ∈ I . Such

cancellation is desirable, since, as will be shown next, it leads to a very simple and com-

putationally efficient solution. The last term in Ψ(c,ct) was added so that the left side of

(4.11) will be monotonically increasing in c for p ≥ 1. The latter leads to the remarkable

fact that the condition in (4.11) has a closed form solution for p≥ 1.

As the subdifferential is a set that contains only the gradient for p > 1, the left-hand

side of the condition is a monotonically increasing function which is given by

Tp,γ,µ(c) , c+
γ

µ
p · |c|p−1sign(c). (4.12)

As such, its inverse can be computed empirically, which is done one time, off-line. Fig.4.3

illustrates Tp,γ,µ(c) in this case for p = {1.25,1.5}.
For p = 1, the inverse can be determined analytically as follows. Elements of the

vector in the right-hand side of (4.11) that are in the range (− γ

µ , γ

µ) satisfy the condition

in (4.11) for corresponding values in c that are equal to zero. In all other cases c 6= 0,

the inverse can be simply derived, as the relation is an affine function. These facts can be

simply understood by observing the curve in Fig.4.3 that corresponds to p = 1. The inverse,

denoted as Sp,γ,µ(c), is then given by

S1,γ,µ(c) =

(|c|− γ/µ)sign(c), if |c| ≥ γ/µ

0, otherwise,
(4.13)

which is the well known soft thresholding [4] function. Fig.4.4 illustrates the inverse for

p = {1,1.25,1.5}, where one can observe the following property. For 1 ≤ p < 2 and for
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Figure 4.3: Tp,γ,µ(c) for p = {1,1.25,1.5}. In the case of p = 1, the subdifferential is a set

of all values between (− γ

µ , γ

µ).

a given input argument c0, the inverse returns s0 , Sp,γ,µ(c0), such that |s0| < |c0|, which

implies that the input argument becomes “sparser” after applying Sp,γ,µ(c) to it. The latter

fact brought researchers to adopt the name iterative shrinkage for the processes which uses

the soft thresholding function to “shrink” its argument at each iteration.

Finally, given the inverse Sp,γ,µ(c), the optimal ct+1 that minimizes Q(c,c0) can be

defined in a closed form as

ct+1 = Sp,γ,µ

(
ct +

1
µ

A∗
[

g−A[ct]
A[ct]

])
, (4.14)

The procedure in (4.14) is analogous to the procedure used in the existing iterative shrink-

age methods, which have been derived under the assumption of Gaussian noises [17, 5, 8,

18]. One can see that the computational cost of the algorithm is very low: each iteration

constitutes of three vector-matrix products, point-wise devision and the shrinkage operation

which is simple mapping of values (especially trivial in the case of p = 1).

Hence, the computational cost in (4.14) is mainly determined by the cost of applying

the composition transform A = H ·Φ and its adjoint. While the convolution operator can

be computed efficiently, e.g., by means of the fast Fourier transform [2], the application of

Φ and Φ∗ depends on the type of transformation in use. Fortunately, most of the relevant
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Figure 4.4: Sp,γ,µ(c) for p = {1,1.25,1.5}.

transforms (such as wavelet [41], ridgelet [86], and curvelet [74] transforms) admit com-

putationally efficient implementations, which are typically of a logarithmic complexity at

most. A formal comparison between the computational efficiencies of the proposed and

reference methods is given in Chapter 5.

The convergence of the above iteration scheme to a global minimizer of (3.33) is proven

in the next section. Before turning to the proof, it is noted that setting p = 1 seems to be a

reasonable choice in practice, since it guarantees the strict convexity of E(c) on one hand,

and leads to a sparse solution on the other.
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4.2 Convergence Analysis

To demonstrate that the proposed algorithm constitutes a viable alternative to traditional

approaches, its convergence properties need to be analyzed next. The previous section

suggested a surrogate functional Q(c,ct), which was assumed to be convex and to satisfy

the constraints in (4.1). Its convexity can be easily observed from its expression

Q(c,ct) = E(c)+Ψ(c,ct) (4.15)

= 〈1,A[c]〉+ γ‖c‖p
p−〈g, log(A[ct ])〉−〈A∗

g
Act

,c− ct〉+
µ
2
‖c− ct‖2

2

where all of the terms that depend on c are convex, and as a sum of convex functionals,

Q(c,ct) is convex. The fact that Condition 2 in (4.1) is satisfied by the proposed surrogate

functional Q(c,ct) can be verified by direct substitutions

Q(ct ,ct) = E(ct)+Ψ(ct ,ct) = E(ct) (4.16)

Moreover, it is important to point out that the functional Ψ in (4.6) was designed to

obey

Ψ(ct ,ct) = 0 and ∇Ψ(c,ct)
∣∣
c=ct

= 0, (4.17)

which suggests that Ψ(c,ct) has an extremum at c = ct that is equal to zero. Consequently,

if Ψ(c,ct) is a convex functional, Condition 1 and the convexity assumption of Q(c,ct)

will automatically be fulfilled. This fact reveals the motivation behind the choice of the

second term in Ψ(c,ct), which leads to the second equality in (4.17). The convexity, on the

other hand, can be determined from the properties of the Hessian operator corresponding

to Ψ(c,ct), which is equal to4

∇
2
Ψ(c) = µI−A∗ diag

(
g

(A[c])2

)
A. (4.18)

Note that, in the expression above, I stands for the identity operator, while diag
(
g/(A[c])2)

is given by

diag
(

g
(A[c])2

)
[y] =

g
(A[c])2 · y, (4.19)

where y ∈Ω is of the same size as g.

4A detailed derivation appears in Appendix-B.
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The minimial eigenvalue λmin of the Hessian operator ∇2Ψ(c) can be shown to be

bounded by5

λmin ≥ µ−
∥∥∥g/(A[c])2

∥∥∥
∞

λmax(A∗A), (4.20)

where ‖ · ‖∞ stands for the supremum norm and λmax(A∗A) denotes the maximum eigen-

value (in absolute value) of A∗A. Thus, as long as

µ≥
∥∥∥g/(A[c])2

∥∥∥
∞

λmax(A∗A), (4.21)

the Hessian ∇2Ψ(c) is positive definite, in which case Ψ(c,ct) is convex, and hence Con-

dition 1 of (4.1) is satisfied. It should be pointed out that that the finiteness of µ is always

guaranteed by the fact that c is chosen reduce the value of E(c) in domE. The value of µ in

(4.21), however, is defined as a function of c, and therefore it would be quite problematic

(if possible at all) to determine µ from (4.21), if it was decided to do so. In this sense, the

condition (4.21) should be regarded as merely a “proof of existence”.

It turns out that in practical cases there are much simpler means to determine a value

of µ that guarantees a reduction in the value of E(c) with respect to E(ct). First, it is noted

that according to (4.4), it is required that

Q(ct+1,ct)≥ E(ct+1) (4.22)

⇔ E(ct+1)+Ψ(ct+1,ct)≥ E(ct+1)

⇔Ψ(ct+1,ct)≥ 0,

which results in a search for µt that satisfies6

µt

2
‖ct+1− ct‖2

2 ≥ 〈A∗ [g/A[ct ]] ,ct+1− ct〉`2(I )−〈g, log(A[ct+1]/A[ct ])〉, (4.23)

thereby guaranteeing that Ψ(ct+1,ct)≥ 0, and therefore E(ct+1)≤ E(ct).

This implies the following practical way to find an acceptable µt . Let the right-hand side

of (4.23) be denoted by F(ct+1,ct), which is a computable quantity provided the values of

ct and ct+1. Consequently, a suitable value of µt can be found using the algorithm 1.

5A rigorous proof appears in Appendix-C.
6The subscript t is added intentionally in µt to indicate that its value can be iteration-dependent.
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Algorithm 1 Finding a suitable scaling parameter µt
1: Preset: ν = 1, 0 < α < 1

2: Compute: ct+1 = S1,γ,1 (ct +A∗ [g/A[ct]−1])

3: if ‖ct− ct+1‖2
2 ≥ 2F(ct+1,ct) then

4: while ν‖ct− ct+1‖2
2 ≥ 2F(ct+1,ct) do

5: ν⇐ αν

6: ct+1 = S1,γ,ν

(
ct + 1

ν
A∗ [g/A[ct]−1]

)
7: end while
8: µt = ν/α

9: else
10: while ν‖ct− ct+1‖2

2 < 2F(ct+1,ct) do
11: ν⇐ ν/α

12: ct+1 = S1,γ,ν

(
ct + 1

ν
A∗ [g/A[ct]−1]

)
13: end while
14: µt = ν

15: end if
16: return µt

Algorithm 1 has been designed to find a minimal possible µ (with the accuracy of logα

in the logarithmic scale) that guarantees that7 E(ct+1) ≤ E(ct). It should be emphasized

that the proof of existence in (4.21) assures that an acceptable value of µt can always be

found.

The form of the shrinkage operator in (4.14) suggests that smaller values of µt result

in more substantial shrinkage, which, in turn, leads to more sizable changes in ct+1 with

respect to ct . The idea of maximizing the effect of shrinkage through minimizing the value

of µt lies in the heart of the method proposed in [69]. In the present case, the minimality of

µt is guaranteed by the design of Algorithm 1, whose only downside is in the extra calcu-

lations required. In practical scenarios, however, it was found that executing Algorithm 1

can be avoided by simply predefining µ to be equal to a fixed positive value, which is easy

to find empirically (see the next chapter for more results on this subject).

7The accuracy can be improved via choosing β to be close to 1, which has a drawback of slowing down

the convergence.
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Chapter 5

Experimental Results

5.1 Reference methods and implementation details

5.1.1 Reference methods

In the experimental part of this thesis, the proposed method is referred to as Poisson It-

erative Shrinkage (PIS). As was argued in Chapter 4, PIS is conceptually parallel to the

iterative shrinkage method developed in [17, 5] under the assumption of Gaussian noises,

in which case the iterative shrinkage (referred to below as Gaussian Iterative Shrinkage

(GIS)) has the form of

ct+1 = Sp,γ,µ

(
ct +

1
µ

A∗ [g−A[ct]]
)

(5.1)

with γ = σ2/β where β is the bandwidth parameter of the GG pdf in (3.27) and σ2 is the

variance of the i.i.d. Gaussian noise contaminating the (blurred) measurements of the true

image. The GIS algorithm is known to converge to the global minimizer of a MAP criterion

provided µ > ‖A∗A‖.
Another reference method used in the comparison is the Richardson-Lucy (RL) algo-

rithm, which is represented by the following iterative scheme

ft+1 = ft H ∗
[

g
H [ ft ]

]
. (5.2)

Note that, as opposed to the GIS and PIS methods, the iterations in RL are performed on

an estimated image ft rather on the coefficients of its representation in a basis/frame. The
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iteration procedure in (5.2) is derived from a maximum-likelihood (ML) model under the

assumption of Poisson noises. ML estimators, however, are known to result in degraded

performance in the case of poorly conditioned H . To alleviate this deficiency, [33] pro-

posed to use the MAP framework to regularize the convergence in (5.2). This method

assumes the true f belongs to the space of bounded-variation images and, thus, the result-

ing iterative scheme minimizes the total variation (TV) norm of the estimate of f . Using

the methodology of RL, the iterative scheme can be derived to be

ft+1 =
ft

1− γdiv
(

∇ ft
‖∇ ft‖

) H ∗
[

g
H [ ft ]

]
, (5.3)

where γ is a regularization parameter that must obey 1− γdiv
(

∇ ft
‖∇ ft‖

)
� 0 in order for

the nonnegativity of the estimated image to be preserved. Below, the above algorithm is

referred to as the Richardson-Lucy total variation (RLTV) method.

A different reference method that also takes advantage the TV regularization is [62].

This method is based on minimizing the same objective function as RTLV, subject to a

non-negativity constraint on f . The solution in [62] uses the variable splitting technique

of [61], which allows reducing the minimization problem to a few simpler subproblems.

The technique introduced a new parameter λ, which, as in [62], was set to λ = 50
γ

. In

what follows, the method is referred to as PIDSplit+ (which stands for Poisson image

deconvolution by variable splitting with a positivity constraint).

Another reference approach used in the present study is that of [64]. Similarly to the

method proposed in the present paper, [64] assumes f to be sparsely representable in the

domain of a linear transform. Subsequently, the algorithm is initialized by applying a VST

(namely, the Anscombe transform) to the data image g, followed by recovering f as a solu-

tion to a standard `2−`1 minimization problem. In the present study, the above method has

been implemented using a publicly available code (see http://www.greyc.ensicaen.fr/∼fdupe/).

Due to the fact that [64] incorporates a VST with the theory sparse representations, in the

discussion that follows, this method is referred to as VSTSR.

The last reference method used in our comparative study is the one described in [65].

The method employes the sparsity assumption in the domain of an orthogonal wavelet

transform. Subsequently, [65] solves the minimization problem of (3.33) by minimizing a

sequence of quadratic approximations to a log penalty function. Following [65], the above

method is referred to as sparse Poisson intensity reconstruction algorithm (SPIRAL).
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Since RL, RLTV and PIDSplit+ tend to become unstable in the case of poorly con-

ditioned H , a common practice is to terminate their execution after a predefined num-

ber of iterations. In our experiments, their termination was performed at the point where

the normalized mean-squared error (NMSE) (defined below) reached its minimum value.

Needless to say that such termination is only possible under the conditions of controlled

simulation studies, when the original images are known. In practical scenarios, however,

the NMSE-optimal termination is generally impossible, which suggests that real-life re-

constructions obtained with RL, RLTV and PIDSplit+ may be actually worse than the re-

constructions demonstrated in the present paper. The proposed PIS algorithm, on the other

hand, remains stable in the course of its convergence, which makes it possible to terminate

the algorithm simply after a relative change in the value of E(c) drops below a predefined

threshold (e.g., 10−6).

It is worthwhile noting that the reference methods above have been derived using differ-

ent statistical approaches and assumptions. The motivation behind choosing these methods

has been to compare the proposed method to the approaches based on the Poisson model

(i.e. RL, RLTV, PIDSplit+, VSTSR, SPIRAL) as well as to those exploiting the idea of

iterative shrinkage (i.e. GIS). The main properties of all the reconstruction methods under

consideration are summarized in Table 5.1.

Table 5.1: Properties of the reconstruction methods under comparison

Statistical framework Prior model Noise model

RL ML N/A Poisson

RLTV MAP BV image f Poisson

PIDSplit+ MAP BV image f Poisson

VSTSR MAP GG coefficients c Poisson

SPIRAL MAP Laplacian coefficients c Poisson

GIS MAP GG coefficients c Gaussian

PIS MAP GG coefficients c Poisson

To examine the performance of the proposed algorithm in de-noising applications (i.e.

when the effect of the blurring operator H is negligible), the experimental study presented

in this work includes three methods that were developed particularly for the problem of

Poisson de-noising. The first two are VST-type methods which transform the acquired data
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to a domain where the noise can be modeled as a Gaussian RV. Consequently, the noise is

removed by one of the Gaussian de-noising techniques and then the inverse of the VST is

applied to obtain the recovered image. Specifically, the Anscombe transform [32], which

is given by

Y =
√

g+3/8, (5.4)

can be shown to produce a RV Y which is approximately distributed according to Y ∼
N (2
√

f ,1). After the removal of Gaussian noise is performed, the data is divided by two

and squared to produce the recovered image.

The second VST applied was the Haar-Fitz transform [35, 36] which is given by the

following procedure

1. Take the Haar DWT of the Poisson noised data g and obtain the scaling coefficients

c j
k and wavelet coefficients d j

k at each resolution level j and translation k.

2. Produce q j
k by

q j
k =

 0 i f c j
k = 0

d j
k/
√

c j
k otherwise

. (5.5)

3. Apply the inverse Haar DWT to the modified transform (cJ,qJ,qJ−1, · · · ,q1).

The procedure can be shown to result in a nearly Gaussian noised data with unit vari-

ance. After applying a Gaussian de-noising method to the transformed data, it is inverse-

transformed by simply reversing the steps in (5.5): apply the Haar DWT to produce (cJ,qJ,qJ−1, · · · ,q1)

, undo the effect of he second step in (5.5) and apply the inverse Haar DWT.

The third and last method used for Poisson de-noising is the one in [40], which proposed

to mask the wavelet transform of the acquired image in order to discard low signal to

noise ratio (SNR) wavelet coefficients. Specifically, the method proposed that each wavelet

coefficient will be multiplied by

hI =

(
θ2

I − σ̂2
I

θ2
I

)
+

, (5.6)

where θ2
I is the squared value of the Ith wavelet coefficient of the acquired image and σ̂2

I

estimates the variance of the Ith wavelet coefficient by

σ̂2
I = ∑

m,n
w2

I (m,n) f (m,n), (5.7)
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where wI(m,n) is the wavelet used to generate the Ith wavelet coefficient. As can be inferred

from (5.6), hI is a number between zero and one (the plus sign in the bottom of the right

parenthesis indicate that negative values in the argument are clipped to zero), such that hI is

small when the SNR is low and vice versa. Due to the fact that the method can be shown to

be optimal in the MSE sense, it is commonly referred to as wavelet Wiener filtering, hence,

the acronym WWF will be used in the discussions that follows.

5.1.2 Computational complexity

The most computationally demanding operations used in the proposed and reference meth-

ods are related to the convolution H and frame Φ operators along with their adjoint counter-

parts. The convolution operator H and its adjoint can be efficiently implemented by using,

e.g., the FFT algorithm, which requires n logn MAC operations, with n = NM representing

the total number of pixels. Since the implementation of convolution and its related com-

plexity depend on H itself, let C(n) represent the total number of MAC operations required

by computing H and H ∗. In a similar manner, let R(n) represent the total number of MAC

operations required by applying the frame operator Φ and its adjoint. (Thus, for example,

R(n) ∼ O(n) in the case of Φ∗ being an orthogonal wavelet transform). Consistent with

the notations above, Table 5.2 summarizes the computational complexities required by one

iteration of the proposed and reference methods. Needless to say, the overall complexity of

the above methods will depend on the number of iterations required till their convergence.

These numbers will be provided below for specific examples of image reconstruction. Fi-

nally, it is noted that the complexity of each of the de-noising methods is very low, and,

hence, is excluded from the table. Moreover, it was empirically found that, in de-noising

settings, PIS converges after a few iterations, which further justifies the insignificance in

comparing the computational complexity of de-noising procedures.

5.1.3 Comparison measures

The proposed and reference methods have been compared in terms of the NMSE defined

as follows. Let f be a true image and f̃ be an estimate of f . Then the NMSE is defined as

NMSE = E
{
‖ f − f̃‖2

F

‖ f‖2
F

}
, (5.8)
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Table 5.2: Computational complexity of the reconstruction methods under comparison

Computational operations per iteration

PIS 2C(n)+2R(n)+O(n)

GIS 2C(n)+2R(n)+O(n)

RL 2C(n)+O(n)

RLTV 2C(n)+O(n)

PIDSplit+ 4C(n)+O(n)

VSTSR 2C(n)+O(R(n))

SPIRAL 2C(n)+O(n)

with ‖ · ‖F being the Frobenius matrix norm, and E being the operator of expectation. In

the current study, the latter is approximated by sample mean based on the results of 200

independent trials.

It has been recently argued that the NMSE may not be an optimal comparison measure

as long as human visual perception is concerned. For this reason, the NMSE-based com-

parison has been complimented by comparing the reconstruction algorithms in terms of the

structural similarity index (SSIM) as suggested in [19], which compares local patterns of

pixel intensities that have been normalized to zero mean and unit variance.

5.2 Sparse Reconstruction

The first example is concerned with the problem of sparse deconvolution1, in which case

A ≡ H. In this task, the main intension is to demonstrate the importance of regularization

and correct modeling of the Poisson noise for successful reconstruction of f in (1.2). Con-

sequently, in this subsection, the performance of the PIS algorithm is compared to those of

RL and GIS.

The assumption of sparsity suggests that f consists of a small number of bright sources

scattered over a black background. An example of such an image is shown in the upper-

right subplot of Fig. 5.1, where the non-zero samples of f have been generated by taking

the absolute value of an i.i.d. Gaussian random variables.
1In this case, the image f is identified with its coefficients c, i.e. f ≡ c.
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The blurring artifact was simulated by convolving the test images with an isotropic

Gaussian kernel whose -3 dB cut-off frequency was set to be equal to 0.2π. As the next

step, the resulting images were contaminated by Poisson noise. In this regard, it should be

noted that the level of Poisson noise is defined by the corresponding value of the blurred

image H [ f ]. Since real-life images are always contaminated by background noises, the

minimum value of H [ f ] should be strictly positive. In this study, a set of three different

minimum (background) values, namely 15, 30, and 50, were used. Note that since the

variance of Poisson noise is equal to its mean value, higher background values will result

in more severe noises. In this case, it seems to be reasonable to define the SNR as a ratio of

the maximum value of H [ f ] (i.e. 255) to its background value. According to this definition,

the SNR values used in the present study were 17, 8.5, and 5.1. Two examples of simulated

data images for SNR=17 and SNR=5.1 are shown in the upper-left subplots of Fig. 5.1 and

Fig. 5.2, respectively.

In the case of low-pass blurs, the only possibility for the model H [ f ] to reproduce a

constant background value is to require f 6= 0. This obviously contradicts the assumption

on f to be sparse. To alleviate this deficiency, we suggest to modify the image formation

model via replacing H and f by H̃ , [H 1] and f̃ , [ f f0]T , respectively, where f is

assumed to be sparse, and f0 is positive scalar defining the background value. In this case,

the image formation model of (1.2) can be redefined as

g = P
{

H̃ [ f̃ ]
}

= P

{
[H 1]

[
f

f0

]}
= P

{
H [ f ]+ f0

}
. (5.9)

Consequently, the reconstruction is applied with H̃ to recover f̃ , in which case the true

image is considered to be equal to the sum f + f0. Note that while the latter cannot be

regarded as a sparse object, f̃ is obviously sparse.

The above model adjustment was applied only for the cases of GIS and PIS reconstruc-

tion, which are based on the sparsity assumption. The regularization parameter γ in (3.33)

and (5.1) was defined to be 1/β and σ2/β, respectively, with β = 4.5 and σ2 equal to the

sample variance of the background noise. In the case of GIS, the parameter µ was set to

be equal to 1.1 · ‖H̃ ∗H̃ ‖, while in the case of PIS it was chosen using Algorithm 1 with

α = 0.8.

Typical reconstruction results are demonstrated in Fig. 5.1 and Fig. 5.2 for SNR=17 and

SNR=5.1, correspondingly. In particular, the middle row of subplots of the figures show
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Figure 5.1: (First row of subplots) Original image, blurred image, and noisy image

(SNR=17); (Second row of subplots) RL reconstruction, GIS reconstruction, and PIS re-

construction; (Third row of subplots) Zoomed segments of the original and reconstructed

images as indicated by the dashed rectangles.
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Figure 5.2: (First row of subplots) Original image, blurred image, and noisy image

(SNR=5.1); (Second row of subplots) RL reconstruction, GIS reconstruction, and PIS re-

construction; (Third row of subplots) Zoomed segments of the original and reconstructed

images as indicated by the dashed rectangles.
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the reconstructions obtained by the (from left to right) RL, GIS, and PIS algorithms. For

the convenience of the reader, the bottom row of subplots in Fig. 5.1 and Fig. 5.2 show

zoomed fragments of the original and recovered images as indicated by the dashed boxes

and letters A, B, C, and D. One can see that PIS outperforms all the reference methods in

terms of the resolution improvement and noise reduction.

Figure 5.3: (Upper row of subplots) The NMSE of GIS reconstruction as a function of the

number of iterations for SNR=17, 8.5 and 5.1; (Middle row of subplots) The NMSE of RL

reconstruction as a function of the number of iterations for SNR=17, 8.5 and 5.1; (Lower

row of subplots) The NMSE of PIS reconstruction as a function of the number of iterations

for SNR=17, 8.5 and 5.1.

A quantitative comparison of the reconstruction algorithms is presented in Fig. 5.3,

which shows the NMSE as a function of the number of iterations for (from up to down)

GIS, RL, and PIS, and for different values of SNR, namely (from left to right) 17, 8.5, and

5.1. It should be noted that each value of the NMSE in Fig. 5.3 is a result of averaging

the errors obtained in a series of independent trials, where both the true images and noises

were drawn randomly.

As was mentioned earlier, the RL method tends to become unstable in the case of poorly
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conditioned operators H . In such a case, it is common to terminate the execution of RL

after a predefined number of iterations. In our experiments, the termination was performed

at the point where the NMSE reached its minimum value (i.e. after 200 iterations, on

average). Needless to say that such termination is only possible under the conditions of

controlled simulation studies.

Observing Fig. 5.3, one can see that PIS results in considerably lower values of the

NMSE as compared to the reference methods. As well, it converges to a steady-state solu-

tion after a much smaller number of iterations as compared to the GIS algorithm (i.e. 500

vs. 104). Unlike the RL method, which is non-monotonely convergent in NMSE (which

can not be seen in Fig. 5.3 since the method was terminated before the algorithm diverged),

the convergence of PIS is monotone in both E(c) and NMSE.

5.3 Image De-noising

This section is concerned with the problem of Poisson de-noising, in which case the blur-

ring operator effect is negligible, i.e. H ≈ I, and hence the the measured image g is a

Poisson noised version of the underlying image f . As a dictionary, the proposed method

used the separable, stationary (inverse) wavelet transform (with three resolution levels) cor-

responding to the minimum-phase wavelet of I.Daubecheis having 2 vanishing moments

concatinated with a constant vector that allows to represent the background process using

a single element of the frame. The regularization parameter γ = 1/β was chosen to by

β = 3.5 and the parameter α was set to 0.8 as in the previous section.

The reference methods used in this section were Anscombe, Haar-Fitz and WWF, where

in the case of the Anscombe and Haar-Fitz methods, the Gaussian de-noising step was

conducted by the method described in [4]. The latter is based on the fact that many images

of interest, unlike Gaussian noise, can be sparsely represented in a wavelet domain. The

method is applied by a simple soft-thresholding of the transformed data, where, in this

study, the orthogonal symlet transform with three vanishing moments and three resolution

levels was chosen. The threshold, which is given by σ2/β (similarly to the case of GIS), was

set according to σ2 = 1 (as both VST methods result in unit variance Gaussian noised data)

and β equal to 0.3 and 1.5 for the Anscombe and Haar-Fitz transforms, respectively. As the

WWF method is applied in a transformed domain, the same symlet with three vanishing

59



moments and three resolution levels was chosen to be applied to the acquired image g.

The SNR values chosen in this section were 8 and 4, where the original image f had a

maximum value of 256 and 128 for high and low SNR cases respectively. The de-noising

results for the high and Low SNR cases are depicted in Fig.5.4 and Fig.5.5 respectively.

One can clearly see that PIS has the ability to better remove the Poisson noise from the

satellite than other reference method. A quantitative comparison appears in Table 5.3 where

the proposed method is shown to outperform all reference methods by means of the NMSE

and SSIM measures.

Table 5.3: NMSE and SSIM values of the reconstruction methods under comparison.

SNR=8 SNR=4

NMSE SSIM MNSE SSIM

Anscombe 0.192 0.791 0.267 0.719

Haar-Fitz 0.144 0.845 0.548 0.499

WWF 0.135 0.853 0.352 0.554

PIS 0.109 0.908 0.176 0.830
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Figure 5.4: Satellite reconstruction results for SNR = 8: (Upper row of subplots) Original

and noised images; (Middle row of subplots) Anscombe and Haar-Fitz estimates; (Lower

row of subplots) WWF and PIS estimates.
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Figure 5.5: Satellite reconstruction results for SNR = 4: (Upper row of subplots) Original

and noised images; (Middle row of subplots) Anscombe and Haar-Fitz estimates; (Lower

row of subplots) WWF and PIS estimates.

5.4 Image De-blurring

In the third part of the experimental study, the PIS method was tested in application to the

problem of sparse image reconstruction, where the combined operation of image synthesis

and blur is represented by the operator A = H Φ. In this case, the blur model was defined

by the convolution kernel h[i, j] = (i2 + j2 +1)−1, with i, j =−D, . . . ,D and D∈ {2,7} [8].

The frame operator Φ was defined to describe the translation invariant (TI) wavelet trans-
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form corresponding to the Haar wavelet. The number of wavelet resolutions was set to be

equal to 4. As in the case with sparse deconvolution, the wavelet frame was extended by

adding a constant vector so as to allow the image background to be modeled by a single

element of the frame.

In this subsection, image reconstructions produced by the proposed and reference meth-

ods are tested using a microscopic image of glomerulus and the standard Shepp-Logan

phantom, which are shown in Subplots A of Fig. 5.6 and Fig. 5.7, respectively. Similar to

the case of sparse reconstruction, the images have been offset by a constant (background)

value to give rise to different values of SNR. In particular, the value was adjusted to result

in SNR equal to 32 (moderate noises) and 8 (strong noises). The original, blurred, and con-

taminated images of the glomerulus and Shepp-Logan phantom are summarized in Fig. 5.6

and Fig. 5.7 for all the tested values of D and SNR.

Table 5.4: NMSE and SSIM values of the reconstruction methods under comparison using

the Shepp-Logan phantom.

L=2, SNR=32 L=7, SNR=8

NMSE SSIM NIT MNSE SSIM NIT

RL 0.101 0.68 10 0.368 0.54 10

RLTV 0.141 0.72 10 0.400 0.71 10

PIDsplit+ 0.123 0.85 5 0.872 0.68 5

VSTSR 0.189 0.65 300 0.377 0.65 300

SPIRAL 0.132 0.76 20,000 0.378 0.72 20,000

PIS 0.09 0.88 2500 0.377 0.84 2500

The reference methods used in this section were RL, RLTV, PIDsplit+, VSTSR and

SPIRAL. It should be noted that the GIS method has been excluded from the current ex-

periment, whose inappropriateness of statistical model makes it a poor candidate for com-

parison (as demonstrated by the results of the Section 5.2). The regularization parameters

of VSTSR, SPIRAL and PIS were set empirically to be equal to 0.05, 0.1 and 0.02, respec-

tively. The regularization parameters of RLTV and PIDsplit+ were set to be equal to 0.002

and 0.01 according the guidelines provided in [33] and [62].

The SPIRAL algorithm was applied with the orthogonal Haar wavelet transform (as

opposed to its stationary version used by PIS), according to the requirements specified in
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Figure 5.6: (Subplot A) Original image of glomerulus; (Subplot B) Blurred image of

glomerulus with D=2; (Subplot C) Blurred and noisy image of glomerulus with D=2 and

SNR=32; (Subplot D) Blurred image of glomerulus with D=7; (Subplot E) Blurred and

noisy image of glomerulus with D=7 and SNR=8.
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Figure 5.7: (Subplot A) Original image of the Shepp-Logan phantom; (Subplot B) Blurred

image of the Shepp-Logan phantom with D=2; (Subplot C) Blurred and noisy image of the

Shepp-Logan phantom with D=2 and SNR=32; (Subplot D) Blurred image of the Shepp-

Logan phantom with D=7; (Subplot E) Blurred and noisy image of the Shepp-Logan phan-

tom with D=7 and SNR=8.
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Table 5.5: NMSE and SSIM values of the reconstruction methods under comparison using

a glomerulus image; NMSE values appear after multiplication by 102.

L=2, SNR=32 L=7, SNR=8

NMSE SSIM NIT MNSE SSIM NIT

RL 0.280 0.86 10 0.772 0.77 10

RLTV 0.275 0.87 10 0.755 0.78 10

PIDsplit+ 42.54 0.90 4 47.51 0.78 4

VSTSR 9.150 0.78 300 9.593 0.62 300

SPIRAL 0.303 0.86 50,000 0.737 0.81 50,000

PIS 0.210 0.92 400 0.729 0.86 400

[65]. In this case, to alleviate the artifacts caused by the property of the orthogonal wavelet

transform being translational variant, the cycle-spinning algorithm of [87] was employed,

with a total number of cycles set to be equal to 20.

In the case of the VSTSR, SPIRAL and PIS algorithms, their execution was terminated

automatically at the point when the relative change ‖ ft+1− ft‖F/‖ ft‖F between iterations t

and t +1 was observed to drop below a threshold of 10−6. Unfortunately, the same stopping

criterion could not be applied to the RL, RLTV, and PIDsplit+ methods, whose steady-state

estimation was found to be unacceptably noisy. For this reason, these algorithms were

terminated earlier, at the point when their corresponding NMSE reached their minimum

values. It should be noted that, since the computation of NMSE requires the knowledge of

a true image, the “NMSE-optimal” convergence cannot be considered as a practical tool.

Therefore, the results of RL, RLTV, and PIDsplit+ methods reported in this section may

not be reproduced in a real-life scenario.

For the case of glomerulus, the reconstructions obtained with the proposed and refer-

ence methods are summarized in Fig. 5.8 (for D = 2, SNR=32) and Fig.5.9 (for D = 7,

SNR=8). Moreover, Fig. 5.10 and Fig. 5.11 depict the reconstructions of the Shepp-Logan

phantom for the cases of D = 2, SNR=32 and D = 7, SNR=8, respectively. Analyzing these

results, one can clearly see that, in all the above cases, the PIS algorithm yields reconstruc-

tions of superior quality (in terms of the resolution and contrast gain), as compared to the

reference methods. This observation is further supported by the quantitative measures of

Tables 5.4 and 5.5, which compare the estimation results in terms of the NMSE, SSIM
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Figure 5.8: Image reconstruction results corresponding to Fig.5.6 with D=2 and SNR=32.

(Upper row of subplots) RL, RLTV and PIDsplit+ estimates; (Lower row of subplots)

VSTSR, SPIRAL and PIS estimates.
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Figure 5.9: Image reconstruction results corresponding to Fig.5.6 with D=7 and SNR=8.

(Upper row of subplots) RL, RLTV and PIDsplit+ estimates; (Lower row of subplots)

VSTSR, SPIRAL and PIS estimates.
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Figure 5.10: Image reconstruction results corresponding to Fig.5.7 with D=2 and SNR=32.

(Upper row of subplots) RL, RLTV and PIDsplit+ estimates; (Lower row of subplots)

VSTSR, SPIRAL and PIS estimates.
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Figure 5.11: Image reconstruction results corresponding to Fig.5.7 with D=7 and SNR=8.

(Upper row of subplots) RL, RLTV and PIDsplit+ estimates; (Lower row of subplots)

VSTSR, SPIRAL and PIS estimates.
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index, and the number of iterations. As evidenced by the tables, the PIS method produces

the lowest NMSE and the largest SSIM index among all the methods under comparison.

As to the number of iterations required by PIS, one can see (with a reference to Table 5.2)

that the method has a computational complexity either comparable or lower than that of the

reference methods.

To examine the quality of the estimates at different spatial locations, SSIM maps (which

provide SSIM values for all local neighborhoods of size 11× 11 in the estimated images)

were generated for all the methods used in this section. The maps are depicted in Fig. 5.12,

Fig. 5.13, Fig. 5.14 and Fig. 5.15 for both the glomerulus and Phantom cases. These maps

reveal that the method of PIS provided exhibits high SSIM quality in most of the spatial

locations of the estimated image.

Figure 5.12: SSIM maps corresponding to Fig.5.6 with D=2 and SNR=32. (Upper row of

subplots) RL, RLTV and PIDsplit+ SSIM maps; (Lower row of subplots) VSTSR, SPIRAL

and PIS SSIM maps.
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Figure 5.13: SSIM maps corresponding to Fig.5.6 with D=7 and SNR=8. (Upper row of

subplots) RL, RLTV and PIDsplit+ SSIM maps; (Lower row of subplots) VSTSR, SPIRAL

and PIS SSIM maps.

Figure 5.14: SSIM maps corresponding to Fig.5.7 with D=2 and SNR=32. (Upper row of

subplots) RL, RLTV and PIDsplit+ SSIM maps; (Lower row of subplots) VSTSR, SPIRAL

and PIS SSIM maps.
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Figure 5.15: SSIM maps corresponding to Fig.5.7 with D=7 and SNR=8. (Upper row of

subplots) RL, RLTV and PIDsplit+ SSIM maps; (Lower row of subplots) VSTSR, SPIRAL

and PIS SSIM maps.
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Chapter 6

Conclusions and Future Work

6.1 Discussion and Conclusions

This work presented a new approach to the problem of de-noising/de-blurring of digital

images. The method has been derived based on the framework of MAP estimation, under

the assumption of Poisson noise contamination. Such noise models are known to be stan-

dard in many important image modalities, including optical, microscopic, turbulent, and

nuclear imaging, just to name a few. Moreover, whilst many of the existing solutions to

the problem of enhancement of Poissonian images take advantage of certain simplifying

assumptions about the noise nature, the proposed technique is optimized to deal with the

realistic noise model at hand.

Another advantage of the proposed method consists in the generality of its formula-

tion. The latter allows applying the same reconstruction procedure to a number of different

settings, such as image de-noising or image de-blurring through deconvolution. Further-

more, the prior assumptions made by the method regarding the nature of recovered images

are general as well. Specifically, the images are assumed to admit a sparse representation

in the domain of a properly chosen linear transform. Note that the reasonability of the

above a priori modeling is firmly supported by the recent advances in the theory of sparse

representation.

Yet another critical advantage of the proposed PIS algorithm is in its algorithmic struc-

ture, which exploits the idea of iterative shrinkage. The latter allows solving non-smooth

optimization problems at the computational cost of a steepest descent procedure. Conse-
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quently, the computational load required by the proposed method is relatively small, which

allows the method to be applied for the solution of large-scale problems and/or for process-

ing of large data sets.

It was shown both conceptually and experimentally that the performance of the PIS

algorithm is superior to a number of alternative approaches. A series of comparison tests

have been performed, in which PIS was shown to outperform the reference methods in

terms of both NMSE and SSIM index measures. Moreover, as opposed to the alternative

methods, the PIS algorithm has always been capable of converging in a stable and robust

manner to a useful reconstruction result.

Finally, it is noted that the sparseness of representation coefficients appears to be a

rather weak constraint to be used in the case of poorly conditioned convolution operators

H . More specifically, if the atoms of the used dictionary concentrate their energy in differ-

ent frequency bands (as in the case of many wavelet transforms) then the recovery process

will not retrieve lost frequency components of the underlying signal. To see this, consider

the objective used in this work

I(H ·Φ[c]‖g)+ γ‖c‖p
p. (6.1)

If a certain coefficient corresponds to an atom which has most of its energy concentrated in

a high frequency band that is diminished by the blurring operator H , then its presence will

hardly effect the value of I(H ·Φ[c]‖g). On the other hand, the value of γ‖c‖p
p will increase,

which means that a solution containing such coefficients will necessarily not emerge (as the

cost increases). This phenomenon can be prevented by using atoms that does not concen-

trate their entire energy around a frequency bands (e.g. the Haar wavelet transform), i.e.

atoms that contain high frequency information should also contain low frequencies such

that adding them to the representation of the recovered image will cause a reduction in the

value of I(H ·Φ[c]‖g).

6.2 Future Work

To further improve the theoretical background and the performance of the proposed method

in terms of its accuracy and convergence speed, the following options are potentially promis-

ing:
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• More sparsifying multiresolution transforms as compared to separable wavelets can

be used, as suggested by [88, 72, 73]. The latter are anticipated to significantly

improve the accuracy of the proposed method. Moreover, in cases where training

data is at hand, a dictionary that is better suited for the acquired data (in the sense

that it will result in a sparse representation for the data) can be generated by a suitable

procedure, e.g. the KSVD algorithm [67].

• Line search strategies can be further employed to increase the convergence speed of

the algorithm as follows. A search direction can be defined by the current coefficient

vector ct+1 and last coefficient vector ct that were generated by the algorithm, namely

ct+1− ct , and the optimal point can be sought along that direction. Moreover, a

search can be employed over a subspace spanned by the current search direction and

directions of few previous steps. The latter has been proposed in [89], and proved to

significantly accelerate minimization processes.

• The proposed method was developed under the assumption that the set of represen-

tation coefficients are independent and identically distributed. The assumption of

statistical independence is commonly made to simplify the expression of the MAP

estimator, and to result in a simple solution. However, incorporating a-priori knowl-

edge of the statistical dependence between coefficients should further enhance the

performance of the proposed method (such model was suggested in [90] for the ad-

ditive Gaussian noise case, and was shown to significantly improve the results).

• The algorithm itself can be slightly altered to increase its convergence rate. Specifi-

cally, the scalar µ that is determined at each iteration for a reduction in the objective

function can be replaced by a vector that will allow different convergence rate for

each representation coefficient, as opposed to the choice of the worst-case (largest)

value, as done in the scalar case. An appropriate choice of such vector at each itera-

tion, however, is a subject that is to be further investigated.

• How sparse is sparse? - The theoretical background of the proposed algorithm can be

further expanded to derive sparsity constraints which will guarantee the convergence

of the procedure to the desired solution. More specifically, the questions raised are:

what is the maximal value of the `0 norm of the representation coefficients of the

original image that will allow convergence to it in the presence of Poisson noise? Is
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there a specific relation between the sparsity of the representation coefficients and

the similarity between the desired solution and the `1 approximated solution? These

questions were raised and answered by [6] for the case of Gaussian noise (`2 norm

instead of the I-divergence measure) and the writer of this work currently believes

that the same questions can be answered for the case of Poisson noise.
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Appendix A

Subgradients and Subdifferentials

Let a differentiable functional f : RN → R : f (X)→ x be defined over a convex set dom f .

f (X) is convex if and only if

f (X)≥ f (X0)+∇ f (X0)T (X−X0), (A.1)

where X0 is a fixed point in dom f . Indeed, the right side of (A.1) is the first order Taylor

approximation of f (X), and the inequality states that the approximation lies below f(X), as

illustrated by Fig.A.1 (for the one dimensional case).

Figure A.1: A convex function f (X) and its first order Taylor approximation at X0.

The approximation provides global information about the functional f by using local

information (its gradient at a certain point), and, accordingly, it is referred to as a global

underestimator of f . A rigorous proof of (A.1) can be found in [51].
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In a non-differentiable case, a subgradient is defined by an inequality which is simi-

lar to the one in (A.1). Specifically, let f be a non-differentiable continuous and convex

functional, defined over convex a set dom f . g is a subgradient of f at a point X0 ∈ dom f

if

f (X)≥ f (X0)+gT (X−X0) ∀X ∈ dom f (A.2)

Fig.A.2 depicts a convex function which is non-differentiable at the point X1. Furthermore,

two possible global underestimators corresponding to two subgradient values (g1 and g2)

are shown at X1.

Figure A.2: A non-differentiable convex function f (X) and three of its global underesti-

mators.

As can be inferred from Fig.A.2, a convex function that is non-differentiable at a certain

point will result in more than one global underestimators, while in the differentiable case,

there will be only one underestimator, defined by the gradient at that point. In addition, if a

convex functional has only one subgradient at a point, it is necessarily differentiable at that

point and its subgradient is equal to gradient at that point. The fact that the subgradient at

a point is not unique for a non-differentaible convex function, leads to the definition of a

subdifferential

Definition The set of all subgradients of a functional f (X) is called the subdifferential of

X at f (X), and is denoted by ∂ f (x).

80



It is worthwhile noting that for a convex function, the subdifferenttial can be shown to

be non-empty, closed and a convex set [91].

Before describing the first order optimality condition for a non-differentiable con-

vex functional, recall the first order optimality condition for a differentiable convex func-

tion [51]

f (X∗) = inf
X

f (X)⇐⇒ 0 = ∇ f (X). (A.3)

A similar definition can be made, using the definition of the subdifferential

f (X∗) = inf
X

f (X)⇐⇒ 0 ∈ ∂ f (X), (A.4)

which mean that the subdifferential will include the zero subgradient at the optimal point

X∗.

The latter can be proved simply by using the definition in (A.2): if a subgradient g that

is equal to zero is found, then

f (X)≥ f (X0)+gT (X−X0) = f (X0), (A.5)

which necessarily makes x0 the optimal solution.
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Appendix B

Gradient and Hessian Derivations

This appendix is concerned with the derivations of the gradient of the functional E(c) (3.33)

and the gradient and Hessian of the functional Ψ(c,ct) (4.6) that are used in the analysis

presented in Chapter 4. To this end, the procedures that were applied in this work to derive

gradients and Hessians are first described. Define a functional f (x) : RN → R : x→ y with

a Tayler expansion of

f (x+dx) = f (x)+∇ f (x)T dx+O(dx2), (B.1)

where O(dx2) represents dx orders of two and higher and ∇ f (x) represents the gradient

vector. By subtracting f (x) from both sides of the equation, one can obtain

f (x+dx)− f (x) = ∇ f (x)T dx+O(dx2)≈ ∇ f (x)T dx = 〈 f (x),dx〉, (B.2)

where the approximation neglected the O(dx2) terms assuming that dx is small, and the

last equality re-writes the approximation by using the standard inner product in RN . Con-

sequently, if f (x + dx) can be approximated by using the Tayler expansion to the form of

〈g,dx〉, where g ∈ RN then g is necessarily the gradient of f (x).

A similar process can be employed to obtain the Hessian ∇2 f (x). Specifically, ∇ f (x)

can be approximated by

∇ f (x+dx)≈ ∇ f (x)+∇
2 f (x)dx, (B.3)

resulting in

∇ f (x+dx)−∇ f (x)≈ ∇
2 f (x)dx, (B.4)

82



which leads to the conclusion that if ∇ f (x+dx) can be approximated by the Tayler expan-

sion to the form of Gdx, where G ∈ RN×N then G is necessarily the Hessian of f (x).

A important notion that will be used excessively in the derivations below is the one

of the adjoint operator. Specifically, let x1 ∈ H1 , x2 ∈ H2, where H1 and H2 are Hilbert

spaces, and let the operator A be defined by the mapping A : x2→ x1. The adjoint operator

A∗ satisfies

〈x1,A[x2]〉H1 = 〈A∗[x1],x2〉H2. (B.5)

A simple example for the latter is the matrix adjoint operator. If x1 ∈ RN , x2 ∈ RM and

A ∈ RN×M, then A∗ = AT . The latter can be easily proved as follows

〈x1,Ax2〉= xT
1 (Ax2) = (AT x2)x1 = 〈AT x1,x2〉. (B.6)

Armed with the above, the discussion now turns to the calculation of the gradient and

Hessian for E(c) and Ψ(c,ct), beginning with the former. According to (3.33)

E(c) = 〈1,A[c]〉−〈g, log(A[c])〉+ γ‖c‖p
p. (B.7)

Note that the last term in the expression is non-differentiable for p = 1, which is treated

by calculating its subdifferential. The latter was evaluated in section 4.1 and therefore this

section will focus on p values that satisfy p > 1. To have all the terms consistent with

the inner product formulation, the last term will be re-formulated as ‖c‖p
p = 〈1, |c|p〉`2(I ),

where 1 stands for a vector of ones that is of the same dimension as c. To calculate the

gradient, an expression for E(c+dc) should be first devised

E(c+dc) = 〈1,A[c+dc]〉−〈g, log(A[c+dc])〉+ γ〈1, |c+dc|p〉`2(I ) (B.8)

≈ 〈1,A[c]+A[dc]〉−〈g, log(A[c])+
1

A[c]
·A[dc])〉

+ γ〈1, |c|p + p|c|p−1sign(c) ·dc〉`2(I ),

with the “slash” to be interpreted as an element-wise division. It should be noted that the

the approximation sign is due to the first order Taylor approximation applied to the log

function. Next, the difference E(c+dc)−E(c) yields

E(c+dc)−E(c) = 〈1,A[dc]〉−〈g,
1

A[c]
·A[dc]〉+ γ〈1, p|c|p−1sign(c) ·dc〉`2(I ) (B.9)

= 〈A∗[1]−A∗[g/A[c]]+ γ p|c|p−1sign(c),dc〉`2(I ),
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where the second equality was derived using the adjoint operator and the linearity of the

inner product. Since the latter result is an inner product with dc, the gradient of E(c) is

given by ∇E(c) = A∗[1]−A∗[g/A[c]] + γ p|c|p−1sign(c) as it appears in the first line of

(4.8).

The exact same procedure is used to compute the gradient of Ψ(c,ct). According to

(4.6)

Ψ(c,ct) = 〈g, log(A[c]/A[ct ])〉−〈A∗ [g/A[ct ]] ,c− ct〉`2(I ) +
µ
2
‖c− ct‖2

2. (B.10)

To have all the terms consistent with the inner product formulation, the last term will be

re-formulated as 〈1,(c− ct)2〉`2(I ), where (c− ct)2 stands for element-wise squared value

of c− ct . As before, Ψ(c+dc,ct) is evaluated

Ψ(c+dc,ct) = 〈g, log(A[c+dc]/A[ct ])〉−〈A∗ [g/A[ct ]] ,c+dc− ct〉`2(I ) (B.11)

+
µ
2
〈1,(c+dc− ct)2〉`2(I )

≈ 〈g, log(A[c])+
1

A[c]
·A[dc]〉−〈g, log(A[ct ])〉

−〈A∗ [g/A[ct ]] ,c− ct〉`2(I )−〈A∗ [g/A[ct ]] ,dc〉`2(I )

+
µ
2
〈1,(c− ct)2〉+ µ

2
〈1,2(c− ct) ·dc〉

(B.12)

It should be noted that the the approximation sign is due to the first order Taylor ap-

proximation applied to the log and the squared value functions. Next, the difference

Ψ(c+dc,ct)−Ψ(c,ct) yields

Ψ(c+dc,ct)−Ψ(c,ct) = 〈g,
1

A[c]
·A[dc]〉−〈A∗ [g/A[ct ]] ,dc〉`2(I ) (B.13)

+µ〈1,(c− ct) ·dc〉`2(I )

= 〈A∗[g/A[c]]−A∗ [g/A[ct ]]+µ · (c− ct),dc〉`2(I )

where the second equality was derived using the adjoint operator and the linearity of the

inner product. Since the latter resulted with an inner product with dc, the gradient of

Ψ(c,ct) is given by ∇Ψ(c,ct) = A∗[g/A[c]]−A∗ [g/A[ct ]]+µ · (c− ct) as it appears in the

second line of (4.8).
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To determine the Hessian of Ψ(c,ct), ∇Ψ(c+dc,ct) is next evaluated

∇Ψ(c+dc,ct) = A∗[g/A[c+dc]]−A∗ [g/A[ct ]]+µ · (c+dc− ct) (B.14)

≈ A∗[g/A[c]−g/(A[c])2 ·A[dc]]−A∗ [g/A[ct ]]+µ · (c− ct)µ ·dc

It should be noted that the the approximation sign is due to the first order Taylor approxi-

mation applied to 1/A[c]. Next, the difference ∇Ψ(c+dc,ct)−∇Ψ(c,ct) yields

∇Ψ(c+dc,ct)−∇Ψ(c,ct) = µ ·dc−A∗[g/(A[c])2 ·A[dc]]. (B.15)

The Hessian operator is the operation that is applied to dc, which is

∇
2
Ψ(c) = µI−A∗ diag

(
g/(A[c])2

)
A, (B.16)

where I is the identity operator and diag
(
g/(A[c])2) denotes the element-wise product with

g/(A[c])2, as described in (B.15). The expression for the Hessian appears in (4.18)
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Appendix C

Bounding the Eigenvalues of the Hessian

Section 4.2 of Chapter 4 used a lower bound for the minimal eigenvalue of a matrix with

the following form

W = µI−AT
ΛA, (C.1)

where µ is a scalar, I ∈ RN×N is the identity matrix, Λ ∈ RM×M is a diagonal matrix with a

positive diagonal and A ∈ RM×N is a general matrix.

To derive the bound used in the analysis, it is first noted that B , AT ΛA is a symmetric

matrix, and, as such, it can be decomposed as B =UΛ1UT , where Λ1 ∈RN×N is a diagonal

matrix holding the eigenvalues of B on its diagonal and U ∈ RN×N is a unitary matrix that

satisfies UUT = I. By using the latter decomposition one can obtain

W = µI−AT
ΛA

= µI−B

= µI−UΛ1UT

= µUUT −UΛ1UT

= U(µI−Λ1)UT ,

which means that the minimal eigenvalue of W can be bounded from below by µ minus the

maximal eigenvalue of B.

The latter can be determined by using the singular value decomposition (SVD), which

states that every matrix, say H ∈ RM×N , can be decomposed by H = SV DT where S ∈
RM×N and D ∈ RN×N both contain orthonormal columns and V ∈ RN×N is a diagonal

matrix that holds the (positive) singular values on its diagonal. A possible interpretation for
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a matrix vector multiplication using the SVD is that the vector is projected unto the column

space of D, the projections are multiplied by the singular values and then reconstructed

by the column space of S. In the case where matrix multiplications are concerned, say

H = H1H2, a vector multiplying the product of matrices obviously be first decomposed

multiplied and reconstructed by H1 and then decomposed multiplied and reconstructed by

H2. The latter leads to the conclusion that the maximal singular value of the product will

be no more than the multiplication of the two maximal singular values of each matrix.

Therefore, since AT Λ1A is comprised of three matrixes, the maximum singular value can

be bounded by the product of singular values of each matrix: The maximal singular value

of Λ1 is simply the maximal diagonal value, denoted as max{Λ1}, and since A,AT have the

same singular values one can obtain that the maximal singular value of AT Λ1A satisfies

λ̂max{AT
Λ1A} ≤ max{Λ1} · (λ̂max{A})2 = max{Λ1} · λ̂max{AT A}, (C.2)

where λ̂max{·} returns the maximum singular value of its argument and the last equality

results from the fact that the singular values of AT A are simply the singular values of A

squared (can be easily proved using SVD).

Last, it is noted that the absolute value of the eigenvalues of a symmetric matrix is equal

to the absolute value of its singular values (since the both decompositions are identical, up

to the sign of eigenvalues). Hence, it is concluded that the maximal eigenvalue of AT Λ1A

is no more than max{Λ1} ·λmax{AT A} where λmax{·} returns the maximum eigenvalue of

its argument. The minimal eigenvalue of W can be therefore bounded by

λmin{W} ≥ µ−max{Λ1} ·λmax{AT A}, (C.3)

where λmin{·} returns the minimal eigenvalue of its argument. The result of (C.3) matches

the bound used in (4.20).
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