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Abstract

Light may traverse a turbid material, such as blood, without encountering any of its

pigment particles, a phenomenon known as sieve effect. This phenomenon may result in a

decrease in the amount of light absorbed by the material. Accordingly, the corresponding

sieve factor needs to be accounted for in optical investigations aimed at the derivation of

blood biophysical properties from light transmittance measurements. The existing proce-

dures used for its estimation either lack the flexibility required for practical applications or

are based on general formulas that incorporate other light and matter interaction phenom-

ena. In this thesis, a ray optics framework is proposed to estimate the sieve factor for blood

samples using a first principles approach. It consists in applying ray-casting techniques

to determine the probability that light can traverse a blood sample without encountering

any of the pigment (hemoglobin) containing cells. The thickness of the samples as well

as the distribution, orientation and shape of the red blood cells are taken into account by

the simulation algorithm employed in this framework. The predictive capabilities of the

proposed approach are demonstrated through a series of in silico experiments. Its effective-

ness is further illustrated by visualizations depicting the different blood parameterizations

considered in the simulations.
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Chapter 1

Introduction

The understanding of the optical properties of blood is essential for a wide range of biomed-

ical applications, from the assessment of hemoglobin concentration and oxygenation levels

[2] to the measurement and interpretation of photobiophysical responses of tissues, such

as human skin [1], characterized by the presence of this fundamental biological fluid. Ac-

cordingly, the investigation of light interactions with blood has always been one of the

focal points of biomedical optics research [47]. In the last decades, computer simulations

or in silico experiments, paired with traditional “wet” experiments, are increasingly being

employed in these investigations. The information derived from these simulations, in turn,

is being used to support the noninvasive measurement of tissue optical properties required

for the diagnosis [44] and treatment of diseases [41].

One of the main components of these in silico investigations refers to the modeling of

light absorption by organic pigments or absorbers, such as hemoglobin, in order to derive

biophysical properties through inversion procedures [38, 7, 23]. The pigments’ absorption

spectra used in this task are usually obtained under in vitro conditions, i.e., their extinction

coefficients are computed using light transmission measurements performed in homoge-

neous solutions in which these pigments (or chromophores) are uniformly distributed [13].

However, in their native (in situ) state, natural pigments (e.g., hemoglobin and chlorophyll)
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are found in cells or organelles. As a result, when light traverses the material, refractive

index differences between cell walls and intercellular medium may cause multiple internal

reflections that increase the light optical pathlength, which, in turn, increases the proba-

bility of light absorption. This lengthening of the optical pathlength is referred to as the

detour effect [9]. To account for changes in the lengthening of the optical pathlength under

in situ conditions when using in vitro absorption (or extinction) curves, several researchers

choose to employ a parameter, known as the differential pathlength factor [11, 25], to scale

these curves.

The distribution of absorbers within a target material can also have an opposite effect

on the light absorption. More specifically, light traversing the material may not encounter

any of its absorbers, a phenomenon known as sieve effect [33], which reduces the probability

of light absorption. It has been well documented [35, 16, 6] that detour and sieve effects

not only have opposite influences in the absorption profile of turbid materials, but they

are also more pronounced in different regions of the light spectrum. While a higher or

increased rise in absorption values caused by the detour effect is more noticeable in bands

of absorption minima [17], the lower or decreased rise in absorption values caused by the

sieve effect is more noticeable in bands of absorption maxima [33]. For this reason, the

sieve effect is also known as the absorption flattening effect [12] since the peaks in the

absorption spectra of the pigments in their native state are depressed relative to the peaks

for a homogeneous solution with the same average pigment concentration [31].

Several formulas have been proposed to estimate a factor that can be used to quantify

this effect [12, 31, 15, 35]. However, these formulas usually lack the flexibility to efficiently

account for variations in the sieve effect caused by changes in the shape and orientation of

the pigment containing structures, and rely on measured values that may be unavailable.

McClendon and Fukshansky (1990) suggested that a direct and more accurate estimation of

the sieve effect factor of an organic tissue could be possible through a detailed examination

of its anatomy. To the best of our knowledge, however, such a direct approach has not
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been yet presented in the biomedical literature.

In this thesis, we propose a novel ray optics framework for the computation of the

sieve effect factor for blood samples. It overcomes the practical constraints of previous

methods by using a first principles approach, which consists in geometrically modeling the

main pigment containing structures, namely the red blood cells (RBCs) or erythrocytes,

and applying ray-casting techniques to compute the probability of a light ray intersecting

these cells as it traverses a blood sample. A more realistic three dimensional represen-

tation for the biconcave disk shaped red blood cells is proposed in order to increase the

accuracy of the computations. We remark that these cells are the primary absorbers and

scatterers within whole blood [42], and they are largely responsible for its optical behavior

[24, 28]. We computed the sieve effect factor for several blood samples with varying thick-

ness and hematocrit (percentage of blood volume occupied by red blood cells) using the

proposed framework to demonstrate its predictability and effectiveness. In addition, we

employed different cell shapes and orientations in our in silico experiments to illustrate the

dependence of sieve effect factors on the geometry and distribution of the erythrocytes.

The remainder of this thesis is organized as follows. Chapter 2 gives necessary biophysi-

cal background information on blood and discusses previous work related to the estimation

and computation of the sieve effect factor. Chapter 3 describes the algorithm of our pro-

posed sieve effect factor estimation framework. Chapter 4 presents experimental results

of the proposed framework. Finally, the thesis concludes in Chapter 5 with a summary of

contributions and directions for future work.
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Chapter 2

Biophysical Background

2.1 Blood

Blood is essential to human life. It transports oxygen and nutrients to tissues, plays a role

in the immune system, and aids in homeostasis1. Blood is composed of “formed elements”

(a combination of cells and cell particles), and plasma (a straw-coloured saline solution)

[29, 39, 5].

2.1.1 Formed Elements

Formed elements, namely erythrocytes, leukocytes, and thrombocytes, compose 45% of

blood [29]. Erythrocytes or red blood cells are the most abundant of these elements. Per

cubic millimeter, as many as 6.5 million erythrocytes are present in blood [39].

Healthy erythrocytes can be described as biconcave disks (pinched spheres) [47]. They

aid in respiration by carrying oxygen through the blood stream [39, 29]. Oxygen permeates

red blood cells and binds with hemoglobin, and it is hemoglobin which gives blood its red

colour.

Leukocytes, also known as white blood cells, are the least abundant element. Per cubic

1Homeostasis is a term used to describe the tendency of an organism to maintain a condition of equil-
librium. For example, the body’s ability to maintain a constant temperature and pH [29, 39, 5].
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millimeter as few as 9000 cells may be present in blood [29]. Leukocyte describes a group

of cells (eosinophils, basophils, neutrophils, monocytes and lymphocytes) [29]. As a group,

leukocytes are responsible for finding infectious organisms (e.g., bacteria, fungus, etc), then

destroying them a process known as phagocytosis [5].

Thrombocytes or platelets are not true cells but fragments of cells from bone marrow2.

Per cubic millimeter approximately 360 thousand may be present in blood [29]. Platelets

aid in blood clotting and the formation of scabs3.

2.1.2 Plasma

Plasma composes 55% of blood [29]. It is a nutrient-rich saline solution that consists of

water (90%), proteins (10%), salts, carbohydrates, amino acids, vitamins and hormones

[29]. Plasma maintains the electrolyte-fluid balance and pH, and transports nutrients,

gasses and vitamins.

2.1.3 Hemoglobin

Hemoglobin is contained within erythrocytes at an average concentration of 319− 411g/L

[47]. It is a conjugated protein formed by four globin proteins and four chromophore

molecules of heme [39]. The chromophore heme is red, resulting from an Fe2+ cation which

is capable of binding oxygen. Ninety-eight percent of oxygen carried by blood is bound to

hemoglobin within erythrocytes [39].

2Bone marrow is the soft tissue found inside bones that produces red blood cells.
3A scab is the crust that forms over a wound to protect and aid in healing.
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2.2 Optical Background

The transmittance of light traversing a homogeneous solution at a wavelength λ can be

obtained using the Beer-Lambert law [16]:

T (λ) =
Φt(λ)

Φi(λ)
= e−ε(λ)cd, (2.1)

where Φt/Φi corresponds to the ratio of incident to transmitted flux, ε and c are the

extinction coefficient and the concentration (g/L) of the absorbing substance (pigment)

respectively, and d is the optical pathlength through the sample.

The absorptance or optical density4 of such a solution can be obtained by solving

Equation 2.1:

D(λ) = ln

(

Φi(λ)

Φt(λ)

)

= ε(λ)cd. (2.2)

In order to compute the optical density of a turbid material such as blood, one can

employ a modified version of the Beer-Lambert law:

D(λ) = ln

(

Φi(λ)

Φt(λ)

)

= β(λ)ε(λ)cd, (2.3)

where β corresponds to a scale factor to account for sieve and detour effects.

The scale factor denoted by β is called differential pathlength factor in studies involving

human tissues [11] and ratio or factor of intensification in studies involving plant tissues

[35]. While in the former it is usually associated only to the lengthening of the optical

pathlength due to detour effects, in the latter it also includes the influence of possible sieve

effects that could decrease light absorption [35]. For completeness, we adopt the latter

description in this thesis, i.e., we define β as βsβd, where βd
5 corresponds to the detour

factor and βs
6 corresponds to the sieve factor, the main focus of this investigation. It is

4Absorptance or optical density is a measure of how a material transmitts light.
5βd ≥ 1
60 ≤ βs ≤ 1
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important to note that the detour factor has a wavelength dependence [21] which does not

apply to the sieve factor [33]. This is explained by the fact the detour effects can result

from interactions of light with the absorbers, while the sieve effects are directly associated

to the absence of such interactions (Figure 2.1).

Figure 2.1: Sketches illustrating detour (left) and sieve (right) effects.

2.3 Computing the Sieve Effect

In the literature, several formulas exist for the computation of the sieve factor. For example,

Duysens (1956) and Pittman (1986) proposed the following expression:

βs =
Dsus(λ)

Dsol(λ)
, (2.4)

where Dsus and Dsol correspond to the optical densities of the pigment in suspension7

and in solution8 respectively. If a measured value for Dsus is unknown, it is replaced

by an approximated value. For example, Duysens (1956) provided approximations for

suspensions composed of cubical, spherical and arbitrary shaped particles, and Pittman

(1986) provided the following formula to approximate the optical density of red blood cells

in suspension and hemoglobin in solution:

Dsus(λ) = m log10

[

1 − aH(1 − 10−ǫ(λ)chb)
]

, (2.5)

7When a pigment is contained within a cell or small container distributed throughout a volume, it is
referred to as “pigment in suspension”.

8A homogeneous solution of pigment is referred to as “pigment in solution”
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and

Dsol(λ) = ǫ(λ)chHd, (2.6)

where ch is the concentration of hemoglobin in a red blood cell, H is the hematocrit, a is

the cellular shape factor, m is the number of cell layers, and b is the average pathlength

through a red blood cell.

Another formula to estimate the sieve effect factor was provided by Fukshansky (1978):

βs =
Dsol(λ) − Dsus(λ)

Dsol(λ)
, (2.7)

where

Dsus(λ) = − ln
(

(1 − γ) + γe−
1

γ
D(λ)sol

)

, (2.8)

and γ corresponds to the fractional area occupied by the pigments containing structures.

We remark that these sieve factor estimation formulas rely on the availability of mea-

sured data. Furthermore, the approximations for optical density given in Equations 2.5

and 2.8 do not account for changes in shape, distribution or orientation of the pigment

containing structures. Finally, recall that the sieve factor corresponds to the probability

that light does not encounter the absorbers, i.e., 0 ≤ βs ≤ 1. However, if Dλsus ≥ Dλsol

(which may be true for blood [24, 22]), then βs = Dsus(λ)/Dsol(λ) ≥ 1. This indicates that

the estimation provided by Equation 2.4 may also include the detour effect. Similar ob-

servations with respect to other natural pigments (e.g., chlorophyll) have been reported in

the literature [35]. In the proposed framework, which is described in the following section,

the limitations outlined above are addressed through the application of a first principles

approach.
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Chapter 3

Experimental Materials and Methods

The proposed framework combines ray optics concepts with ray casting techniques to obtain

an estimate for the sieve effect factor of blood samples contained in a testing volume. In

this section, we describe the general algorithm and blood-specific parameterizations used

in our simulations, and outline relevant implementation issues.

3.1 General Algorithm

Our framework operates on the idea of generating a geometrical blood sample and a ray,

then testing for intersections between sample blood cells and the ray.

A Monte Carlo based algorithm is employed in our in silico experiments, and its basic

steps are summarized as follows:

1. initialize no-hits counter n = 0

2. generate and randomly distribute cells within the test volume according to user-

specified parameters defining the experimental conditions

3. compute the number of cells intersecting a ray sent through the volume

4. if no cells are intersected by the ray, increment n
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5. repeat steps 1-4 N times

6. compute sieve factor βs = n/N

The ray-cell intersection procedures employed in this thesis are outlined in Appendix A.

3.2 Testing Volume

Volume size affects algorithm performance since cell count is proportional to volume. For

example, a 1.0mm3 sample of human blood contains five million red blood cells (47%

hematocrit) [47]. It would be impractical to consider such a volume since 5 × 106 ray-

cell intersection tests would be required per iteration. Hence, to reduce cell count, we

selected a rectangular prism volume with dimensions given by 0.1mm×0.1mm× t, where

t corresponds to the blood sample thickness.

3.3 Cell Geometry

Although red blood cells (RBC) resemble biconcave disks [47], they are usually approxi-

mated by simpler shapes like volume or surface area equivalent spheres [47, 42]. In our in

silico experiments, we employed a closer approximation to the RBCs. It consists in the

union of a torus with a cylinder, herein referred to as a TUC-cell (Figure 3.1). It is impor-

tant to note that not all erythrocytes have exactly the same shape, and small deviations

from the standard biconcave disk shape are expected specially due to micro and macro en-

vironmental changes. For example, during certain flow conditions [40], these cells change

into a parachute like shape without large variations in their overall length or forward end

during acceleration from rest. To the best of our knowledge, however, data quantitatively

describing these shape deviations is not readily available in the literature. Hence, for the

purpose of this investigation, it is assumed that all cells have the same shape, and the

10



Figure 3.1: Dimensions of a TUC-cell. On the left, raytraced views of the final shape.
On the right, a cross-section of the TUC-cell showing the dimensions of the torus and
cylinder. Cylinder has radius R = 2.62µm, and height h = 0.81µm. Torus has major
radius R = 2.62µm, and minor radius r = 1.29µm (diameter 2r = 2.58µm). The radius of
the TUC-cell is given by R + r = 3.91µm.

propagation of light through the samples is perfomed under steady-state environmental

conditions.

The volume of a TUC-cell was computed taking into account the geometry described

in Figure 3.1, and considering the volume of the torus added to a volume of revolution

defined by the volume of the cylinder not inside the torus. Derivation details are provided

in Appendix B. The resulting expression is given by:

VTUC = 2π2Rr2 + 2π

[

rR2 sin x − r2R

(

1

2
x +

1

4
sin(2x)

)

+ r3

(

1

3
(2 + cos2 x) sin x

)]

,

(3.1)

where

x = sin−1

(

h/2

r

)

. (3.2)

The dimensions of a TUC-cell, given by r = 1.29µm, R = 2.62µm and h = 0.81µm, were

selected according to physiological limits provided in the literature [47]. As a result, the

volume computed for the TUC-cell (90.7µm3) using Equation 3.1 is within the physiological

range provided for the volume of an actual red blood cell, namely 94 ± 14µm3 [47, 42].
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3.4 Generation and Distribution of TUC-Cells

Given the testing volume (Vprism) and hematocrit (H), the number of TUC-cells (K) to

be generated is computed using:

K = H
Vprism

VTUC

. (3.3)

The generated TUC-cells are randomly distributed throughout the volume obeying the

following rules:

1. a TUC-cell must exist entirely within the volume, and

2. TUC-cells cannot overlap.

Collision detection is performed for each TUC-cell prior to placement, preventing over-

laps. This operation is simplified by encompassing each cell in a bounding volume, and

then testing for intersections between bounding volumes. After the TUC-cells are dis-

tributed, their bounding volumes are removed and play no part in the actual computation

of the sieve factor.

The procedure employed for collision detection has two main phases. Phase 1 tests for

collision between bounding spheres (with radius R + r). If a collision between bounding

spheres is detected, then phase 2 is executed. In phase 2, collision detection is performed

using a bounding shape for the TUC-cell, henceforth referred to as “sphere pack” (Fig-

ure 3.2). Implementation details are provided in Appendix C. This shape was selected due

its higher accuracy and cost ratios (compared to cylinders or torii) with respect to collision

computations. The sphere pack consists of three circular planes or “plates” (top, middle

and bottom with radii equal to R, R + r and R respectively), and a ring of spheres (with

radius r).
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Figure 3.2: Images describing the “sphere pack” bounding shape used to detect collisions
between TUC-cells. On the left, 12 spheres are used; in the middle, 20 spheres; and on the
right, 100 spheres. Top and bottom images represent the same object viewed from different
angles. Note that by increasing the number of spheres forming the ring, the smoother the
bounding shape becomes. However, increasing sphere count decreases the performance of
the collision detection procedure.

3.5 Implementation Issues

The stochastic nature of the proposed simulation algorithm requires a large numbers of

iterations, i.e., N has to be large enough to guarantee asymptotically convergent results.

In our experiments, we used N = 105. Hence, the estimation of the sieve factor may

become computationally expensive. However, the algorithm iterations are independent

(Section 3.1), and therefore parallelizable. Accordingly, we implemented the proposed algo-

rithm on the CUDA platform [10], a massively multi-threaded computational environment

in which thousands of ray-cell intersection tests can be done in parallel. Implementation

details are provided in Appendix D.

We also generated images to further illustrate our in silico experiments and to broaden

the analysis of their results. These images were rendered using the open-source ray-tracing

simulation package “POV-Ray 3.6” [30].

3.6 Experimental Setup

Three sets of experiments were conducted. In each set, a different sample thickness (0.1mm,

0.25mm and 1.0mm) was adopted, and three representations for the erythrocytes, namely
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volume equivalent spheres, randomly oriented TUC-cells (simulating agitated blood) and

flow oriented TUC-cells, were used to compute the sieve factor for samples with hematocrits

varying between 1% and 10%. The values selected for these experimental parameters are

consistent with blood optical investigations described in the literature (Table 3.1).

Table 3.1: Summary of biophysical parameters employed to describe the different in silico

experimental conditions considered in this investigation.

Parameter Default Value Range Source
Sample Thickness 0.1mm 0.1mm–1.0mm [42, 3, 4, 27, 48, 14, 18]
Hematocrit 5% 1–10% [42, 14, 18, 34, 27]
Orientation random random, flow [40, 32]

The light incidence direction is assumed to be perpendicular to the top face of testing

volume1, i.e., it is parallel to the main axis of the flow oriented TUC-cells2. It is important

to note that a flow oriented TUC-cell is characterized by having the plane containing its

main axis perpendicular to the flow direction [32, 40]. We remark that this orientation

only affects TUC-cells since volume equivalent spheres are symmetrical.

1Light enters at the top, and exits at the bottom of the testing volume.
2The main axis of a flow-oriented TUC-cell is the axis of largest radius.
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Chapter 4

Results

An increase in the number of erythrocytes decreases the amount of unoccupied space within

the volume of blood sample, which, in turn, increases the probability of light intersecting

these cells. Hence, the sieve factor is expected to decrease as hematocrit increases [31]. As

can be observed in the plots presented in Figures 4.1 to 4.3, the results provided by the

proposed framework are consistent with this trend.

Similarly, the sieve factor is expected to be higher for volume equivalent spheres because

their surface area and profile are smaller than those of a TUC-cell. Visually, a cell profile

corresponds to the area occupied by a cell when projected onto a plane, i.e., the area

of an orthographically projected TUC-cell lying flat on a table is larger than the area of

an orthographically projected volume equivalent sphere. As can be observed in the plots

depicted in Figures 4.1 to 4.3 the results provided by the proposed framework are also

consistent with this trend.

It has long been determined that the sieve effect is smaller when the absorbers have

an uniform (parallel) random distribution with respect to the light incidence direction

[33]. Accordingly, the sieve factor is expected to be higher for flow oriented TUC-cells in

comparison with randomly oriented (agitated) TUC-cells. As it can be observed in the

plots presented in Figures 4.1 to 4.3, the results provided by proposed framework agree
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Figure 4.1: Plots of sieve effect factors computed for blood samples with thickness equal
to 0.1mm. Three representation for the erythrocites were considered in these experiments:
volume equivalent spheres, randomly oriented TUC-cells and flow oriented TUC-cells.
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Figure 4.2: Plots of sieve effect factors computed for blood samples with thickness equal
to 0.5mm. Three representation for the erythrocites were considered in these experiments:
volume equivalent spheres, randomly oriented TUC-cells and flow oriented TUC-cells.
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Figure 4.3: Plots of sieve effect factors computed for blood samples with thickness equal
to 1.0mm. Three representation for the erythrocites were considered in these experiments:
volume equivalent spheres, randomly oriented TUC-cells and flow oriented TUC-cells.

with this expectation. This difference can be visualized in the simulation images provided

in Figure 4.4. Note the increased visibility of the face below the blood cells (which is

perpendicular to the light incidence direction) in a flow orientation in comparison with a

random orientation. The increased visibility resulting from a flow orientation is associated

to a higher sieve effect factor, i.e., a higher probability of light traversing the sample

without encountering any of the erythrocytes.

In order to extend our scope of observations, we also generated images depicting the

different cell geometries taken into account in our silico experiments. As it can be observed

in the images presented in Figure 4.5, volume equivalent spheres occupy less cross-sectional

area than randomly oriented TUC-cells. Moreover, these images show how an increase

in hematocrit affects the cell count and distribution. More specifically, the increase in

hematocrit increases cell count, and reduces the visibility of the face below the blood

sample.

It has been suggested in the literature [16] that the sieve effect is independent of the

sample thickness. In fact, if one replaces d by t in Equation 2.2, t can be eliminated from

Equations 2.4 and 2.7. We remark, however, that such estimations may incorporate both
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Figure 4.4: Images illustrating different TUC-cell profiles as observed from viewing di-
rection coincident with the light incidence direction. Left: flow oriented TUC-cells. Right:
randomly oriented TUC-cells. These images correspond to simulations involving samples
with a thickness equal to 0.1mm and hematocrit equal to 5%. Note the amount of space
each appears to take looking down into the volume.

sieve and detour effects [35, 26]. As can be observed in the images presented in Figure 4.6,

the visibility of the face below the blood sample is reduced when the sample thickness

is increased and the hematocrit is kept constant. These visual simulations intuitively

demonstrate that the probability of light traversing the medium without encountering the

erythrocytes is reduced under these conditions, i.e., the sieve effects decrease as the sample

thickness is increased.

Supplementary results related to the implementation of proposed framework are pre-

sented in Appendix E.

4.1 Limitation

Through experimentation, a limitation in the proposed framework was discovered. Let’s

assume N cells have been distributed within the volume. It is possible that even though

there is enough volume space, the next cell cannot be inserted due to the fact that this

space is fragmented by the distribution of the N cells. When this occurs, the algorithm

loops (until stopping criteria is met) because no valid (collision free) position for cell N +1

can be found.

The experimental results presented in this thesis were not affected by this limitation
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Figure 4.5: Images illustrating the different blood geometries considered in the compu-
tation of the sieve effect factor. Left column: volume-equivalent spheres. Middle column:
randomly-oriented TUC-cells. Right column: flow-oriented TUC-cells. Hematocrit of top
row is 1%; middle row, 5%; and bottom row, 10%. These images correspond to simula-
tions involving samples with a thickness equal to 0.1mm and assuming the light incidence
direction to be perpendicular to the top face of the testing volume, which was removed to
facilitate the visualization of the testing (sample) volume.
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Figure 4.6: Ortographic projections (perpendicular to the light incidence direction) of
three blood samples with different thicknesses and the same hematocrit (1%). Left: 0.1mm.
Middle: 0.5mm. Right: 1.0mm.

because their hematocrit values (and therefore cell count) are sufficiently low. Increasing

hematocrit beyond 10% increases the probability of encountering this limitation. However,

this only presents an issue when sample thickness is thin and resulting sieve effect is

greater than zero at H = 10%. For example, this limitation occurs when we attempt to

compute sieve effect for a 0.1mm sample considering either randomly-oriented TUC-cells

with H > 10% or flow-oriented TUC-cells with H > 20%. We remark that these thickness

and hematocrit values are not routinely employed in blood optical experiments.
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Chapter 5

Conclusions

5.1 Contributions

We have presented a ray optics framework to estimate the sieve factor for blood samples.

It employs ray-casting techniques to compute the probability that light does not intersect

any erythrocyte in a sample simulating the anatomical characteristics of blood. Its predic-

tive capabilities were demonstrated through a series of in silico experiments whose results

qualitatively agree with observations reported in the literature.

We remark that a predictive in silico experimental framework may also be used to

accelerate the hypothesis generation and validation cycles of research involving the behavior

of biological systems [45]. Accordingly, the results of our investigation have demonstrated

that the sieve factor is affected not only by cell shape and orientation, but also by the

sample thickness.

5.2 Future Work

The presented simulation framework is generalizable and, therefore, applicable to other

natural materials with similar pigment containing structures such as melanosomes (human

tissues) and chloroplasts (plant tissues). As future work, we intend to explore this research
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avenue and integrate the outcomes of this investigation into comprehensive models of light

interaction with organic materials.

As discussed in Section 4.1, the proposed framework encounters a limitation in the

generation of cell distrubtions with hematocrits greater than 10%. In our future work,

we also intend to explore alternatives to overcome this limitation. Such alternatives may

include distribution techniques such as weighted Voronoi diagrams [37], or circuit placement

algorithms [20].
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Garćıa-Rubio, L. H. Quantitative interpretations of visible-nir reflectance spectra

of blood. Opt. Express 16, 22 (2008), 18215–18229.

[39] Sherman, I. W. Biology: A Human Approach, 4th ed. Kendall/Hunt, Iowa, 1989.

[40] Skalak, R., and Branemark, P. I. Deformation of Red Blood Cells in Capillaries.

Science 164, 3880 (1969), 717–719.

[41] Star, W. M. Light dosimetry in vivo. Physics in Medicine and Biology 42, 5 (1997),

763–787.

[42] Steinke, J. M., and Shepherd, A. P. Comparison of mie theory and the light

scattering of red blood cells. Appl. Opt. 27, 19 (1988), 4027–4033.

[43] Stewart, J. Calculus, 4 ed. Brooks/Cole Publishing Company, New York, 1999.

[44] Tuchin, V. V. Tissue Optics Light Scattering Methods and Instruments for Medical

Diagnosis. The International Society for Optical Engineering, Bellingham, 2000.

27



[45] Ventura, B. D., Lemerle, C., Michalodimitrakis, K., and Serrano, L.

From in vivo to in silico biology and back”. Nature 443 (2006), 527–533.

[46] Wagner, M., and Hanson, J. Ray/torus intersection. Class Notes: CS400, 2004.

[47] Yaroslavsky, A. N., Priezzhev, A. V., Rodriquez, J., Yaroslavsky, I. V.,

and Battarbee, H. Optics of Blood. SPIE-Press, Bellingham, 2002.

[48] Yaroslavsky, A. N., Yaroslavsky, I. V., Goldbach, T., and Schwarz-

maier, H. J. Influence of the scattering phase function approximation on the optical

properties of blood determined from the integrating sphere measurements. Journal of

Biomedical Optics 4, 47 (1999), 47–53.

28



Index

absorptance, see optical density

Beer-Lambert law, 6

biconcave disk, 10

blood, 1, 4

cell geometry, 10

cellular shape factor, 8

chlorophyll, 1

chromophore, 1

collision detection, 12, 39, 48

plate-sphere, 43

plates, 41

sphere packs, 12, 40

spheres, 39, 43

CUDA, 13, 45

collision implementation, 46

setup, 45

sieve implementation, 47

detour, 6, 8

differential pathlength factor, see detour, see

detour

erythrocytes, 3, 4

biconcave disk, 3, 4

count, 4

respiration, 4

extinction coefficient, 1

flux, 6

framework limitations, 18

hematocrit, 3, 8, 14

hemoglobin, 1, 4, 5, 7

composition, 5

concentration within erythrocytes, 5

purpose of, 5

homeostasis, 4

human skin, 1, 6

iteration techniques, 51

iterations, 48

leukocytes, 4

count, 5

purpose of, 5

modified Beer-Lambert law, 6

Monte Carlo, 9

optical density, 6

29



optical pathlength, 2, 6

plasma, 5

components of, 5

purpose of, 5

platelets, see thrombocytes

POV-Ray, 13

ray casting, 9

ray-object intersection, 31

ray-circle, 32

ray-sphere, 31

ray-torus, 32

red blood cells, see erythrocytes

rouleaus, 40

sample thickness, 13

sample volume, 10, 12

sieve, 6

computation, 7, 8

factor, 6

sieve effect, 2

thrombocytes

purpose of, 5

thrombocytes., 5

TUC-cell, 10

cell count, 12

dimensions, 11

orientation, 14

volume, 11

derivation, 34

white blood cells, see leukocytes

30



Appendix A

Ray-Object Intersections

The ray casting framework detailed in this thesis uses three types of ray-object intersec-

tions. They are:

1. ray-sphere,

2. ray-circle, and

3. ray-torus.

A.1 Ray-Sphere Intersection

Let S be a sphere with center P and radius r, and let v = Q + s~u be a ray. Then if v

intersects S, the points of intersection are defined by [19]:

s = ~u ◦ (PQ) ±
√

(~u ◦ (PQ))2 − |PQ|2 + r2, (A.1)

where PQ = P − Q, and ~u ◦ (PQ) represents the dot product of vectors ~u and PQ. If

there are no roots (no real values for s), then there is no intersection.
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A.2 Ray-Circle Intersection

Let C be a circle with center Cc on the plane defined by
∏

: n◦Cc = d, and let v = Q+ s~u

be a ray. Then if v intersects the plane, the point of intersection is defined by [19]:

s = −
d + ~n ◦ Q

~n ◦ ~u
. (A.2)

The point defined as P0 = Q + s~u represents the intersection of the ray v with the

plane. If the point satisfies x2 + y2 ≤ r2, then the point lies on the circle, thus the ray

intersects the circle (assuming the circle is on the xy-plane).

A.3 Ray-Torus Intersection

The equation of a torus on the xy-plane is [19, 46]:

(x2 + y2 + z2 − R2 − r2)2 + 4R2(z2 − r2) = 0 (A.3)

To determine if a ray v = Q + s~u intersects the torus, substitute x = Qx + s~ux,

y = Qy + s~uy, and z = Qz + s~uz into (A.3):

(

(Qx + s~ux)
2 + (Qy + s~uy)

2 + (Qz + s~uz)
2 − R2 − r2

)2
+ 4R2

(

(Qz + s~uz)
2 − r2

)

. (A.4)

Substituting in the dot product where appropriate yields:

(

Q ◦ Q + 2sQ ◦ ~u + s2~u ◦ ~u − R2 − r2
)2

+ 4R
(

(Qz + s~uz)
2 − r2

)

. (A.5)

Then, after simplification an equation in terms of s is found as A0s
4 +A1s

3 +A2s
2 +A3s+
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A4 = 0, where:

A0 = (~u ◦ ~u)2 (A.6)

A1 = 4(~u ◦ ~u)(Q ◦ ~u) (A.7)

A2 = 4(Q ◦ ~u)2 + 2(~u ◦ ~u)((Q ◦ Q) − r2 − R2) + 4R2~u2
z (A.8)

A3 = 4(Q ◦ ~u)((Q ◦ Q) − r2 − R2) + 8R2Qz~uz (A.9)

A4 = ((Q ◦ Q) − r2 − R2)2 + 4R2Q2
z − 4R2r2. (A.10)

An algorithm to solve this quartic system is provided by Schwarze [36]. If there are no

roots, then there is no intersection. Otherwise, there may be one, two or four points of

intersection.
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Appendix B

Derivation of TUC-cell Volume

A TUC-cell is the union of a torus and a cylinder. The radius of the cylinder (R) is the

same as the major radius of the torus. Therefore, a portion of the cylinder’s volume is

contained within the torus. This provides an upper bound for the volume of the TUC-cell:

V = 2π2Rr2 + πR2h, (B.1)

which is the sum of torus and cylinder volumes (h = 2t is the height of the cylinder).

The exact volume of the TUC-cell can be computed by summing the volumes of the

torus and the ”dented” cylinder formed by the gray area in Figure B.1.

The volume of the dented cylinder is computed by the integrating disks method [43].

Since the cylinder is symetric, we can solve for the half dented cylinder case, then double

this volume to find the full cylinder’s volume.

Considering t = h/2, the volume of a disk is given by: A disk has volume given by:

Vdisk = π[w(t)]2dt. (B.2)
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Figure B.1: Dimensions of the dented cylinder.

Hence, the volume of the half dented cylinder is given by:

Vhalfcyl = π

∫ t

0

w(t)2dt. (B.3)

This can be simplified by integrating over θ instead of t. To do this, a change of variable

is performed. Considering the geometry described in Figure B.1, one can obtain:

h/2 = t = r sin θ → θ = sin−1

(

t

r

)

, (B.4)

which corresponds to the upper bound of integration.

Also noting that w(θ) = w(t) one can obtain:

R = w(θ) + r cos θ → w(θ) = R − r cos θ. (B.5)

Substituting Equations B.4 and B.5 into Equation B.3 yields:

Vhalfcyl = π

∫ sin−1( t
r
)

0

[w(θ)]2dt

= π

∫ sin−1( t
r
)

0

[R − cos θ]2dt (B.6)
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Finally, one can represent dt as:

dt = dt
dθ

dθ
=

dt

dθ
dθ = r cos θdθ. (B.7)

Substituting Equation B.7 into Equation B.6 completes the change of variable:

Vhalfcyl = π

∫ sin−1( t
r
)

0

[R − cos θ]2dt

= π

∫ sin−1( t
r
)

0

[R − cos θ]2
dt

dθ
dθ

= π

∫ sin−1( t
r
)

0

[R − cos θ]2(r cos θ)dθ. (B.8)

The volume of the half cylinder (Equation B.8) expands to become:

Vhalfcyl = π

∫ sin−1( t
r)

0

[R2r cos θ − 2r2R cos2 θ + r3 cos3 θ]dθ. (B.9)

Therefore, the volume of the TUC-cell is given by:

VTUC = Vtorus + 2Vhalfcyl

= 2π2Rr2 + 2π

{

∫ sin−1 t
r

0

rR2 cos θ − 2r2R cos2 θ + r3 cos3 θdθ

}

. (B.10)
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B.1 Computing the Volume of a TUC-cell with

Erythrocyte Dimensions

The volume of a TUC-cell with erythrocyte dimensions (r = 1.29µm, R = 2.62µm and

h = 2t = 0.81µm → t = 0.405µm), is computed as:

VTUC = 2π2Rr2 + 2π

{

∫ sin−1 t
r

0

rR2 cos θ − 2r2R cos2 θ + r3 cos3 θdθ

}

= Vtorus + 2

[

πrR2

∫ sin−1 t
r

0

cos θdθ

]

− 2

[

2πr2R

∫ sin−1 t
r

0

cos2 θdθ

]

+2

[

πr3

∫ sin−1 t
r

0

cos3 θdθ

]

, (B.11)

which can be simplified to:

VTUC = Vtorus + 2(A − B + C). (B.12)

Let x = sin−1( t
r
), one obtains:

A = πrR2

∫ x

0

cos θdθ = πrR2 (sin θ)

∣

∣

∣

∣

x

0

= 9.056663752, (B.13)

B = 2πr2R

∫ x

0

cos2 θdθ = 2πr2R

(

1

2
θ +

1

4
sin(2θ)

)
∣

∣

∣

∣

x

0

= 8.758250701, (B.14)

C = πr3

(

1

3
(2 + cos2 θ) sin θ

)
∣

∣

∣

∣

x

0

= 2.117992028 (B.15)

and

2(A − B + C) = 4.649079728. (B.16)

Recall the volume of a torus is given by:

Vtorus = 2π2Rr2. (B.17)
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Therefore, the volume of the TUC-cell is

VTUC = Vtorus + 2Vhalfcyl = 90.71088523µm. (B.18)
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Appendix C

Collision Detection

In this appendix several methods for collision detection are discussed. These methods are:

1. sphere collisions,

2. randomly-oriented sphere-pack collisions,

3. flow-oriented TUC-cell collisions.

C.1 Spheres

Collision detection between spherical bounding volumes is the simplest, and fastest method

to detect intersection between cells.

To test for collision between two TUC-cells with centerpoints p0 = (x0, y0, z0) and

p1 = (x1, y1, z1), and radius ρ = R + r = 3.91µm, on can start by computing:

δ =
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2, (C.1)

which is the distance between the centerpoints of the cells.

Bounding spheres for these cells are centered at p0 and p1 and have radius ρ. If these
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Figure C.1: Side view of a sphere pack approximation to cell shape illustrating the layout
of circular plates and the sphere ring.

spheres collide, then:

δ ≤ 2ρ. (C.2)

The primary advantage to using this method for collision testing is its simplicity. Addi-

tionally, this method ensures the minimum distance between any two cells is

2ρ = 2(R + r) = 7.82µm.

However, this method prevents certain cellular arrangements such as rouleaus, where

cells appear stacked like coins. It also wastes a large amount of space (63.8% per sphere),

which means that as the number of cells increases, the harder it is to find an available

space for the cell. We remark that for the hematocrit range used in our experiments this

was not an issue.

C.2 Cylindrical Cell Approximation

To test for collisions between cells, approximations to their shape may be used.

We use an approximation called the ”sphere-pack”. A sphere-pack consists of three

plates (circles in 3-space), and a ring of spheres (Fig. C.1). The top and bottom plates

have radius R (the major radius of the torus), and the radius of the center plate is ρ = R+r,

the radius of the cell. The radius of the spheres is r, which corresponds to the minor radius

of the torus. The center of the shape is C = (x0, y0, z0), and ~n = (x, y, z) is the normal of

the plates (a unit vector indicating shape orientation).

The center points for the spheres comprising the ring sit on the center plate. If there
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are k spheres, then a sphere is placed every 2π
k

radians. Given an orthonormal basis

ϑ : {~n, ~u,~v}, where ~u and ~v are vectors on the plane, the center point of a sphere Ci is

given by:

Ci = C + R~w, (C.3)

where C is the center of the plane, and

~w = sin

(

2πi

k

)

~u + cos

(

2πi

k

)

~v. (C.4)

It is important to normalize ~w prior to computing Ci. If ~w is not normalized prior to

computing Ci, then there is no guarantee that Ci will sit on the edge of the center plate.

C.2.1 Intersection Testing

Detection of intersection between two sphere-packs consists of three parts:

1. plate-plate intersection

2. sphere-sphere intersection

3. plate-sphere intersection

Plate-Plate Intersection

Let x ◦ y represent the dot product of vectors x and y. And let Ca and Cb be the center

points of plates a and b respectively. Recall that a plate is a circular region of a plane.

A plane is defined by the equation [19]:

a0x + a1y + a2z + α = 0, (C.5)

which we can expressed as:

~n ◦ C = α, (C.6)
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where ~n is the plane’s normal, and C is a point on the plane.

Given two planes ~na ◦ Ca = αa, and ~nb ◦ Cb = αb the line of intersection is:

~l = ~na × ~nb. (C.7)

If ~l has magnitude 0, then the planes are parallel and therefore they do not intersect (or

are coincident). If planes are coincident, then intersection will be caught by sphere-sphere

testing, therefore the case of coincident planes is ignored.

The next step involves finding a point p coincident with both planes and ~l by solving

the system of equations:

~na ◦ p = αa (C.8)

~nb ◦ p = αb, (C.9)

yielding the line m = p + s~l, which represents the intersection of the planes.

One then needs to find the shortest distance from plate centers (Ca, and Cb) to the line

m = p + s~l. The shortest distance is found by first finding s (assuming ~l is a unit vector):

s = ~l ◦ (Ca − p), (C.10)

then computing the distance δline as:

δline =
∣

∣

∣
Ca − (p + s~l)

∣

∣

∣
. (C.11)

If the circle centered at Ca, with radius ra sitting on plane a intersects the circle centered

at Cb, with radius rb sitting on plane b then first, the line m must be coincident which is

true if:

δlinea
=

∣

∣

∣
Ca − (p + sa

~l)
∣

∣

∣
≤ ra, (C.12)

42



and

δlineb
=

∣

∣

∣
Cb − (p + sb

~l)
∣

∣

∣
≤ rb. (C.13)

Then, if the distance between

∣

∣

∣
(p + sa

~l) − (p + sb
~l)

∣

∣

∣
≤ ra + rb, (C.14)

the circles intersect.

Sphere-Sphere Intersection

This is described in Appendix B.

Plate-Sphere Intersection

Given a sphere with center Cs and radius r, and a plane ~n ◦ p = α (recall from Section

C.2.1), the distance between Cs and the plane is:

δplane = |~n ◦ Cs − α|, (C.15)

assuming ~n is a unit vector. If δplane ≤ r, the sphere intersects the plane.

To find the point q where the line through Cs with direction ~n intersects plane
∏

,

compute:

s = α − (~n ◦ Cs), (C.16)

assuming ~n is a unit vector. Then point q = Cs + s~n is a point on the plane.

If the sphere intersects the plane, the region of intersection forms a circle whose radius

0 ≤ r0 ≤ r. The radius r0 is computed as:

r0 =
√

r2 − δ2
plane. (C.17)
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The circular plate on the plane is centered at p and has radius R. If the circle centered

at q with radius r0 intersects the plate, then:

|p − q| ≤ (R + r0), (C.18)

and therefore the sphere intersects the circular plate.

C.2.2 Collision Detection Shortcut for Flow-Oriented Cells

The plane of a flow-oriented TUC-cell is parallel to the xy-plane. A quick intersection

test for this orientation is to first check if the bounding spheres intersect. If the bounding

spheres intersect, the cells intersect if:

|z0 − z1| ≤ 2r, (C.19)

where r is the minor radius of the torus, and z0, z1 are the z-coordinates of the cell center

points.
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Appendix D

CUDA Implementation

Considerations

This appendix provides an implementation overview of the proposed framework for CUDA

(a massively multi-threaded platform).

D.1 Embarrasingly Parrallel Algorithms

The proposed sieve factor estimation framework presented in this thesis is a stochastic

algorithm, with each repetition identical and independent of the others. Algorithms with

these properties lend themselves to parallelization with little difficultly. Likewise, they are

often referred to as “embarrasingly parallel” [8].

D.2 CUDA Specifications and Machine Setup

The sieve framework presented in this thesis was implemeted with the CUDA 2.0 platform

for Linux. The maximum number of threads per block is 128, and the maximum number

of blocks per grid is 128 (a maximum of 16384 threads per function call) [10]. These values

were selected to maximize performance while avoiding the limitations of the Graphics
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Processing Unit (GPU) used (GeForce 88000M GTX).

D.3 Implementation Details

The proposed framework for the estimation of the sieve effect factor can be divided into

two parts: cell generation/distribution, and sieve test.

D.3.1 Cell Generation/Distribution

A cell is generated randomly as two points: the center C = (x, y, z) and the orientation

θ = (θx, θy, θz). To determine if a cell Ci is valid1, collision testing is performed between Ci

and Cj for all j 6= i. Since collision tests are independent2, this portion of the algorithm

can be pushed onto the GPU.

The centerpoints and orientations of all generated cells is copied to the GPU’s global

memory space. One thread is created for each already-generated cell, and each thread tests

for collision between Ci and one other cell (i.e., thread 0 tests for collision between Ci and

C0, and thread j tests for collision between Ci and Cj). If a collision occurs, a counter is

incremented.

Since access to the collision counter must be protected3, each thread is given its own

collision counter. After all threads have completed, the collision counters (array) is copied

from the GPU to the CPU, and summed. If the sum of counters is zero, the cell defined

by Ci and θi is valid and generation continues. Otherwise, the process is repeated until a

valid cell is found.

1A valid cell is one that does not collide with existing cells.
2Testing for a collision between Ci and Cj is independent of Ci and Cj+1.
3Only one thread can attempt a write at a time.
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D.3.2 Sieve Test

The sieve test computes the number of intersections between a ray v and the generated cells

C. These intersection tests are independent, like the algorithm in Section D.3.1. Therefore,

they are pushed onto the GPU.

The centerpoints and orientations of all cells is copied into the GPU’s global memory

space. One thread is created for each cell, and each thread tests for intersection of the

ray v with one cell (i.e., thread 0 tests for intersection of v with C0, thread j tests for

intersection of v and Cj , etc.). Each thread is given its own counter (as in Section D.3.1)

and the intersection results are summed by the CPU after all threads have completed. This

sum represents the number of intersections between the ray v and the cells, and it is used

to compute the sieve effect factor.
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Appendix E

Supplementary Results

This appendix presents results which detail the effects of certain implementation decisions

on the estimation of sieve effect factor.

E.1 Iterations to Achieve Convergence of Results

The ray casting framework presented in this thesis is based on a stochastic algorithm. To

find asymptoticaly convergent results (Section 3.6), many iterations are performed.

We selected N = 10000 as the number of iterations to execute, because it balances

accuracy with execution time. Figures E.1 and E.2 illustrate the how the number of

iterations affects both the sieve effect value and execution time. Note that while N =

100000 produces as slightly smoother sieve effect curve, the execution time is 10× higher

than N = 10000.

E.2 Effect of Collision Detection on Sieve Effect

Red blood cells cannot overlap in in vivo or in vitro blood samples, but this is possible for

in silico simulations where cells are not physical objects, but numbers. In the ray casting

framework presented in this thesis, collision detection is used to prevent overlap. However,
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Figure E.1: The effect of iterations on the computation of the sieve effect factor. A
0.01mm sample of randomly-oriented TUC-cells is used in this experiment.
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Figure E.2: Execution time versus hematocrit. A 0.01mm sample of randomly-oriented
TUC-cells is used in this experiment.
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Figure E.3: The effect of collision detection on the computation of the sieve effect factor.
A 0.1mm sample of randomly-oriented TUC-cells is used in this experiment.

collision detectection increases execution time. Therefore, an experiment was conducted

to determine the effect of collision detection on the sieve effect factor.

When collisions occur, the total volume occupied by the cells is reduced (lower hema-

tocrit). We observed that lower hematocrits have higher sieve effect factors, likewise we

expected that collisions would also increase the factor. Figure E.3 illustrates the effects

of collisions on the sieve effect factor. Lower hematocrits correspond to fewer cells and a

lower probability of a cell collision, thus the difference in sieve effect factor is small. As

hematocrit increases, the number of cells also increases, which, in turn, increases the prob-

ability of cell collisions. This behaviour can be observed in the plot presented in Figure

E.3.

E.2.1 Spherical versus Approximated Collision Detection

Two methods of collision detection were discussed in Appendix B, spherical and cylindrical-

approximation. Bounding spheres is the simplest form of collision testing, but they prevent

the formation of rouleaus by enforcing a minimum distance between cells: cylindrical-

approximation collision testing does not prevent the formation of rouleaus. This subtle

difference in distribution may affect the sieve effect factor, therefore an experiment was
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sphere collisions, random
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Figure E.4: The effect of different collision detection algorithms on the computation of
the sieve effect factor. A 0.1mm sample of randomly-oriented, and flow-oriented TUC-cells
are used in this experiment.

conducted to quantify it.

The experiment generates 0.1mm samples of random and flow-oriented TUC-cells using

spherical collision testing and cellular collision testing. Then, the sieve effect factor is

computed for these samples and compared.

The collision detection algorithms were found to have no influence on sieve effect factor

for hematocrit less than 5%. However, beyond H = 5% it can be observed in Figure E.4

that spherical collision testing produces slightly higher values for the sieve factor.

E.3 Methods of Iteration

The stochastic framework for computing the sieve effect factor can execute repetitions in

a variety of ways. One is to generate a unique blood sample for each iteration, another is

to use a unique ray position, and a third uses a combination of the previous ideas. This

section details the effects of these iteration techniques on the estimation of seive effect.
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E.3.1 Unique Sample Iteration

The unique sample iteration technique generates a new blood sample for each iteration and

holds the position of the ray constant. It ensures iterations are independent, and therefore

this technique is considered the most accurate implementation. However, the generation

of a new sample for each ray is costly, which causes this technique to be the slowest of all

those tested.

E.3.2 Unique Ray Iteration

The unique ray iteration generates a new ray position for each iteration and uses only one

blood sample. This technique does not guarantee that iterations are independent (as it is

possible for rays to be near each other and therefore intersect the same cells). However,

this technique is the fastest of all tested techniques.

E.3.3 Hybrid Iteration

The hybrid iteration technique generates a new ray position for each iteration and uses

unique blood samples. Specifically, if N iterations are performed then N/1000 unique

blood samples are generated. This technique provides a greater level of independence than

the unique ray technique. Performance wise, it is faster than the unique sample technique

but slower than the unique ray technique.

E.3.4 Iteration Results

Prior to the selection of an iteration technique, an experiment was conducted to determine

the effects of these techniques on the computation of sieve effect factor. The results of this

experiment are shown in Figure E.5. Note that the unique sample and hybrid iteration

techniques produce similar results for all hematocrit. However, the unique ray iteration

technique produces results which decrease faster (as hematocrit increases) than the other
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Figure E.5: The effect of different iteration techniques on the computation of the sieve
effect factor. A 0.01mm sample of randomly-oriented TUC-cells is used in this experiment.

iteration techniques.

The results presented in the main thesis body were obtained using the hybrid iteration

technique. This choice was motivated by the fact that hybrid iteration technique results

agree with the results provided by the unique sample technique, while exhibiting a faster

execution time.
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