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Abstract 

 As fish cell cultures continue to be explored as alternatives to whole fish for 

evaluating the toxicity of environment chemicals, technical issues have emerged that 

influence results and thus need to be understood and standardized.  These include carrier 

solvents, dosing protocols, exposure vessel, exposure media, viability endpoints, and cell 

lines.  Some of these factors have been explored in this thesis for eight reactive contaminants 

exhibiting varied physicochemical properties using the rainbow trout cell lines RTgill-W1 

and RTL-W1.  Sodium dodecyl sulphate (SDS) was used as a reference (control) chemical.  

Cell viability was evaluated with alamar Blue, carboxyfluoroscein diacetate acetoxymethyl 

ester and neutral red as measures respectively of metabolic activity, plasma membrane 

integrity, and lysosomal function. Experimental in vitro EC50 values were compared to 1) 

pre-existing in vivo LC50s from the fathead minnow database and 2) pre-existing in vitro 

EC50s from the Halle database.  Results point to good in vitro/in vivo correlations for 

menadione, dichlorophene, hexachlorophene, and acrolein.  Poor correlations were observed 

for allyl alcohol, 4-fluoroaniline, acetaldehyde, and 2,3-dimethyl-1,3-butadiene due to a 

combination of solubility and volatility problems.  Overall, the results suggest that the impact 

of different technical approaches on the evaluation of acute toxicity in vitro depends very 

much on the chemical class being investigated and less on the characteristics of the cell line. 

The in vitro cytotoxicity of reactive chemicals is challenging due to the nature of the 

chemicals’ physicochemical properties. Further improving the in vitro toxicity of reactive 

chemicals is a prerequisite for the ultimate goal of using fish cell cultures as acceptable, 

standard alternatives to the use of fish acute lethality assays.    
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Chapter 1 

INTRODUCTION 

  

  

 As the world’s population continues to grow in the midst of a globalization 

movement, our reliance on industrial and synthetic chemicals for purposes ranging from 

pesticides to pharmaceuticals grows as well. Surely most of these chemicals have helped 

mankind in many ways that eventually revolutionized the way we live. But consequently, 

many of these chemicals become of environmental concern as they reach levels that pose 

serious threats to living systems in ways that may threaten their survival, ultimately 

disrupting the balance of ecosystems. These chemicals may reach species from both point 

and nonpoint sources of discharge, but in order for these chemicals to cause toxicity, they 

must first come into contact with an organism.  

 Contaminants must first be taken up by organisms to initiate toxicity. Absorption first 

takes place at an organ-level: gills, lungs, gut, and/or skin, depending on the organism and 

the exposure route. General routes of absorption at the cellular level depend on the chemical 

nature of the compound(s). Lipid compounds diffuse across the plasma membrane through 

both passive and facilitated diffusion; those aqueous ones are taken up by carrier and channel 

proteins; larger molecules can enter via endocytosis (Newman & Unger, 2003). Once inside, 

contaminants can now be transported all over the body via the circulatory system. 

Interestingly, all blood leaving the digestive system heads directly to the liver, which is the 

major detoxifying organ in vertebrates (Boelsterli, 2003). The lungs and gut act as secondary 

sites of metabolism. The series of reactions, known as Phase I and Phase II, involved in the 
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metabolism of a compound from toxic to non-toxic is known as biotransformation, and is 

mainly mediated in the liver by the hepatocytes (Mothersill & Austin, 2003; Newman & 

Unger, 2003). Phase I reactions are concerned with the addition of various functional groups 

to xenobiotics to essentially increase their hydrophilicity for their eventual elimination. This 

functionalization is done by the large, diverse family of Cytochrome P450 (CYP450) 

enzymes; when needed, the induction of these enzymes can be many-fold higher than basal 

levels. Phase II reactions act on Phase I metabolites by conjugating endogenous compounds 

with them, allowing for xenobiotic elimination; glutathione-S-transferase is one of the main 

players involved. Interestingly, some already-hydrophilic xenobiotics bypass Phase I 

reactions, conserving energy and resources (Boelsterli, 2003; Mothersill & Austin, 2003; 

Newman & Unger, 2003). These reactions, however, can sometimes biotransform a 

xenobiotic into a more toxic metabolite; this is known as bioactivation. For example, 

parathion induces toxicity when first bioactivated to paraoxon (Pope, 1999). Ideally, once 

detoxified, the now-hydrophilic xenobiotic can be excreted via urine, bile, lungs, and/or gills.  

1.1 The Problem: identify toxicity of environmental contaminants 

 The US EPA’s Toxic Substances Control Act (TSCA) covers more than 83,000 

chemicals, but it is estimated that 500-1000 new chemicals are submitted to TSCA each year 

(http://www.epa.gov/oppt/newchems/pubs/invntory.htm). The traditional way of assessing 

the impact of these contaminants on the aquatic environment has been through the use of 

single species tests involving fish (fathead minnow, zebrafish, and rainbow trout), small 

invertebrates (Daphnia magna), bacteria, and algae (Fentem & Balls, 1993). The most 

common of these is the 96h fish acute lethality test. It is standardized under the Organization 

for Economic Co-operation and Development (OECD testing protocol 203, 1992) and is also 



 

3 

used for the environmental assessment of industrial effluents. The test requires the exposure 

of 10 fish per chemical concentration, with a minimum of 5 concentrations in addition to a 

control. The preferred species are fathead minnow (Pimephales promelas), rainbow trout 

(Oncorhynchus mykiss), and zebrafish (Danio rerio) (Weyers et al., 2000). The endpoint of 

this in vivo test is aimed at identifying the concentration that is lethal to 50% of the exposed 

fish, referred to as LC50.  

 This approach, however, has numerous limitations. It is too laborious, expensive, and 

is also limited to a few species. Whereas it is well-documented that ecosystems encompass a 

great range of species that may differ in their sensitivity to environmental contaminants 

(Cairns, 1986; Chapman, 1981). Additional factors such as behaviour, food preference and 

nutritional status, and life stage may further influence the sensitivity of these species to toxic 

agents (Mothersill & Austin, 2003). Since the endpoint of the test represents integrative 

toxicity, it lacks the ability of identifying a chemical’s potentially unique mode(s) of action. 

It also requires the use of a large number of fish, which contradicts the strong societal desire 

to reduce the use of fish/animals in toxicity testing (Schirmer, 2006). According to EU 

directive 86/609/EEC, the use of animals in toxicity testing should be avoided provided that 

an alternative, scientifically satisfactory, method is available. Lethality itself as an endpoint 

is also of concern. Many contaminants maybe present in the aquatic environment at sublethal 

concentrations, but they may however be present at high enough levels to cause sublethal 

adverse effects that may not always be associated with overt symptoms (Mothersill & Austin, 

2003). It is for these political, financial, and technological reasons that the use of fish cell 

cultures as alternatives to the use of whole fish has been widely explored in environmental 

toxicology. Such in vitro technique was initially slow at catching scientists’ attention, but 
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world-wide efforts using multiple cell lines and chemical classes greatly picked up in the 

1980s with the advancement of culturing techniques and cell line availability. 

1.2 A solution: in vitro toxicity testing   

 In 1968 Rachlin and Perlmutter first used a fish cell line in the toxicity testing of 

individual chemicals. Advancements in culturing techniques and availability of cell lines 

have took in vitro toxicology a long way since. In 1979, Barker and Rackham first used a fish 

cell line for genotoxic studies. Ahne, in 1985, was the first to propose the use of fish cell 

lines as alternatives to the use of whole fish in the toxicity testing of industrial effluents. Fish 

cell cultures from rainbow trout positively identified toxic effluent samples from a pulp and 

paper mill and nitrogen product producer when compared to whole fish toxicity tests (Dayeh 

et al., 2002, 2009). Toxicity is first manifested or initiated at the cellular level, before going 

on to disrupt tissues and/or organs, ultimately impacting the whole organism. The type of cell 

line used should not make a difference in its sensitivity to a given chemical based on 

Ekwall’s basal cytotoxicity concept (Ekwall, 1983a). It is now clear, however, that 

exceptions to this concept include chemicals that are species and/or organ-specific. An 

example is carbon tetrachloride (CCl4), which must first be metabolized by CYP2E1 

enzymes of liver cells into the trichloromethyl radical (CCl3
.
). This metabolite initiates a 

series of lipid peroxidation reactions ultimately causing toxicity in the organism (Boelsterli, 

2003). This example of chemical-organ selectivity in animals highlights the need of grouping 

the various environmental contaminants out there into well-defined, organized classes. The 

classification system used for this thesis is described in section 1.3.    

 In general terms, cytotoxicity can be defined as adverse effect(s) observed in a cell 

involving structural and/or functional processes essential for survival, proliferation, and 



 

5 

function due to exposure with an exogenous chemical (Freshney, 2001; Seibert et al., 1996). 

One can divide cytotoxicity into three categories. Basal cytotoxicity refers to chemicals that 

attack cellular structures and/or functions that are essentially common to all cell types, 

regardless of their origin. Examples of basal cytotoxicity include effects on energy 

metabolism, plasma membrane integrity, and ion regulation. Thus, all cell types would be 

expected to react with equal sensitivity to such basally-acting toxic agents (Ekwall, 1983a; 

Ekwall & Ekwall, 1988).  Selective cytotoxicity refers to those chemicals that are 

preferentially more toxic to certain cell types than others due to their unique, differentiated 

properties. The biotransformation capabilities of specific cell types and the specificity of 

membrane receptors to their ligands is an example (Mothersill & Austin, 2003; Seibert, 

1996). Functional cytotoxicity refers to chemicals that interfere with cellular processes in 

ways that threaten the survival of a particular organ or even the organism as a whole. The 

disruption in cell-to-cell communication and/or widespread hormonal imbalance is an 

example (Mothersill & Austin, 2003).       

When confronted with xenobiotics, cells employ four main strategies in dealing with 

the chemical (Sheehan et al., 1995). 1) Sequestration takes place when a cell actively 

concentrates a chemical in a particular subcellular compartment. Hydrophobic chemicals are 

typically sequestered in biological membranes, which allows for their bioaccumulation over 

time. 2) Scavenging takes place when a xenobiotic is detoxified or neutralized by non-

enzymatic reactions with endogenous chemicals (Mothersill & Austin, 2003). Examples 

include the conjugation of Reactive Oxygen Species (ROS) with various antioxidants (e.g. 

glutathione, GSH) that render them harmless. 3) Proteins such as the metallothioneins allow 

for the binding of many metallic xenobiotics, preventing them from binding at other places 
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that may otherwise be toxic. 4) The most versatile way is enzymatic detoxification of a 

xenobiotic by specialized systems such as the CYP450 systems employed by hepatocytes. 

One should keep in mind, however, that a particular xenobiotic may actually be metabolized 

(bioactivated) into a more toxic form when going through one or more of the above 

mentioned strategies (Mothersill & Austin, 2003).      

 Cytotoxicity assays using fish cell cultures can be performed using both primary 

cultures and cell lines. Primary cultures are directly initiated from a tissue or organ. Their 

main advantage is that they retain many of their differentiated in vivo properties (albeit for 

short amount of time, ~ 48h), and as such can be used to screen chemicals that are known to 

be tissue or organ-selective (Castaño et al., 2003; Mothersill & Austin, 2003). However, 

there are disadvantages to primary cultures, including fluctuating sensitivity to chemicals, 

which depends on the status of the source fish and the nature of culture initiation, and 

difficulty in initiation.  Provided optimal culture conditions are followed, it is thought that 

primary cultures can be initiated from a wide range of tissues and organs. These have 

included hepatocytes, respiratory cells, and neuronal cells (Castaño et al., 2003; Mothersill & 

Austin, 2003).   

 Cell lines, in contrast, are made up of primary cells that are further subcultivated (or 

passaged) to give rise to new cells. Many species give rise to finite cell lines that, by 

definition, undergo a limited number of subcultivations before their growth is arrested 

(Mothersill & Austin, 2003). Some mammalian and fish species, however, give rise to 

continuous cell lines that appear to immortalize spontaneously, and as such can be 

subcultivated indefinitely (Castaño et al., 2003; Mothersill & Austin, 2003). To date, more 

than 150 continuous cell lines have been established from 74 fish species, representing 34 
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families, most of which have fibroblastic or epithelial-like morphologies (Fryer & Lannan, 

1994). Also, most of them are anchorage dependent, requiring a substrate for attachment, and 

grow in media initially intended for mammalian cell lines (Bols & Lee, 1994; Segner, 1998). 

Some of these cell lines can be purchased from the American Type Culture Collection 

(ATCC) and/or the European Collection of Cell Cultures (ECACC). In addition to greatly 

reducing our dependence on whole fish, the use of fish cell lines offers rapid, reproducible, 

and much more economic means of toxicological assessment than traditional in vivo systems. 

And by utilizing various endpoints, one can possibly elucidate cellular modes of action; this 

is especially important for emerging contaminants. Mechanistic studies would be better to 

interpret because of the lack of in vivo complexities such as bioaccumulation and depuration.  

Further, one can also manipulate experimental conditions by modifying exposure conditions 

and the external environment in a way that is more representative of the natural environment 

(Baksi & Frazier, 1990). Cell lines also offer us with a stable source of cells since they can be 

cryopreserved for long periods of time, which allows for the continued availability of a 

homogeneous supply of cells. Endpoints of in vitro toxicology are aimed at identifying the 

effective concentration of a chemical that impacts cellular functions by 50%, referred to as 

EC50. It is important to note however, that the use of cell lines also comes with 

disadvantages. Over time, the many cell divisions may cause the cells to lose their 

differentiation in a way that may make them unrepresentative of their parent tissue (Castaño 

et al., 2003; Mothersill & Austin, 2003). Another problem is that the genomes of cell lines 

may deviate from the normal diploid karyotype.  Finally, a cell line may overestimate the 

toxicity of a compound (false positives) due to the absence of compensatory, repair, and/or 

feedback mechanisms that would otherwise offer protection in vivo. But likewise, the use of 
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cells may underestimate (false negatives) the toxicity of a given chemical due to its rapid 

volatility and/or poor solubility in the test system (Castaño et al., 2003; Mothersill & Austin, 

2003).      

1.2.1 Cell line selection for in vitro toxicity testing 

 Selected cell lines should be widely available, characterized, and relevant (Riddell et 

al., 1986a; Schirmer, 2006; Stark et al., 1986). To assess the cytotoxicity of reactive 

chemicals, a gill (RTgill-W1) and a liver (RTL-W1) cell line from rainbow trout 

(Oncorhynchus mykiss) were chosen because their respective organs execute paramount roles 

in vivo due to the first line of exposure and metabolizing capabilities, respectively.      

 Gill damage is often the primary cause of death in many acute lethal fish toxicity 

tests, perhaps a reflection of gills’ functional complexity. The epithelia are involved in 

transport of respiratory gases, electrolytes and essential ions, acid-base equivalents, and 

nitrogenous waste (Mothersill and Austin, 2003). There are two major types of cells in gill 

epithelia. The respiratory (pavement) cells make up the most at 90-95% of cell population 

and are involved mostly for gas exchange. The remaining are mostly chloride cells that are 

involved in iono-regulation and are characteristic with a multitude of mitochondria, 

endoplasmic reticulum (ER), and Na
+
/K

+
 ATPase.  Due to complexity of gill organ, gill cell 

cultures have been used for many physiological and toxicological studies, including 

regulation of cell volume and intracellular pH, electrochemical coupling via cell connections, 

detoxification via Phase I and Phase II metabolism of steroids and lipophilic xenobiotics 

(Mothersill and Austin, 2003).  

 RTgill-W1, initiated from the gills of rainbow trout, was chosen because of the role 

the gill has as the first line of exposure and a major route of uptake for many chemicals in the 
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aquatic environment. The cells in the RTgill-W1 culture exhibit an epithelial-like 

morphology, predominantly taking on irregular polygonal shapes.  

 The RTL-W1 cell line, initiated from rainbow trout liver, was chosen because unlike 

most liver cell lines it is able to induce cytochrome P450 enzymatic systems, which are a 

body’s main detoxifying agents (Lee et al., 1993). The cells in the RTL-W1 culture exhibit 

an epithelial-like morphology and are polygonal in shape.  

1.2.2 Selection of exposure medium for in vitro toxicity testing 

 The nature of the exposure medium in a cytotoxicity assay is of great significance 

since it can greatly influence the bioavailability of a given chemical to cells, potentially 

increasing or decreasing the cellular response (Schirmer et al., 2006; Seibert et al., 2002; 

Stark et al., 1986). For example, the addition of serum to exposure media was found to 

reduce fluoranthene uptake by cells because most of the fluoranthene was being bound to 

serum proteins and as a result the chemical’s toxicity to cells may have been underestimated 

(Schirmer et al., 1997). On the other hand, cytotoxicity assays aimed at identifying CYP1A-

inducing chemicals were found to be more effective when serum is added to exposure media 

(Schirmer et al., 1997). Thus, a simplified exposure medium containing essential salts, 

pyruvate, and galactose at concentrations matching those found in L-15, known as L-

15/exposure or L-15/ex, has been selected for investigating the cytotoxicity of reactive 

chemicals (Schirmer et al., 2004). This simplicity in incubation medium is meant to 

maximize the bioavailable fraction of the toxicant in question to the cells, so that any 

protection observed would be intrinsic to the cells. Thus, protective molecules such as 

toxicant-binding serum proteins and antioxidants would be absent. L-15/ex is also easy to 

prepare and is significantly less expensive than complete culture media.  
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1.2.3 Method of dosing for in vitro toxicity testing 

There are two main ways of exposing cells in culture to a given chemical: 1) direct dosing 

and 2) indirect dosing.  

 Direct dosing refers to the direct addition of a small volume of the chemical that is 

200 times concentrated to microplate wells that would already contain confluent cells along 

with their exposure medium (Figure 1-1 – Panel A). This is done by letting the desired 

chemical volume to mix with the exposure medium right at the surface to prevent the 

disruption of the underlying cells. Indirect dosing refers to the addition of 200 times 

concentrated chemical to a volume of exposure medium to make up the final concentration of 

the chemical in the well. The diluted chemical in exposure medium is then added directly to 

the wells of a microplate containing a confluent layer of cells (Figure 1-1 – Panel B).  

 

 

 

 

                       

 

 

Figure 1-1: Schematic representation of cell culture dosage.  

Cells were initially plated in 24-well microplates and then incubated for 24h to allow for cell 

attachment. After which, cells were either directly (A) or indirectly (B) dosed with a selected 

chemical. In direct dosing, the chemical dilutions were separately prepared in their carrier solvent at a 

concentration that is 200 times more concentrated than the desired final concentration. After vigorous 

vortexing, a small volume of each dilution was then directly added to its respective microplate well(s) 

that already contained a confluent layer of cells along with their exposure medium. In indirect dosing, 

the chemical dilutions were also prepared separately, but the desired final concentration was then 

achieved by further diluting the chemicals in the exposure medium L-15/ex. After vigorous vortexing, 

the chemical-L-15/ex mixture was then added to its respective microplate well(s).           

  

B A 
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1.2.4 In vitro toxicity testing cell viability endpoints  

 The nature of the endpoint used to measure cell viability after toxicant exposure is 

also of significance because it can have a profound impact on the derivation of effective 

concentrations (Fotakis & Timbrell, 2006; Gulden et al., 2005; Schirmer, 2006). To date, 

most of the endpoints of the in vitro assays deal with cellular changes at the molecular, 

biochemical, histological, or physiological level (Mothersill & Austin, 2003). These cellular 

changes are numerous and cover a wide range of responses, ranging from subtle molecular 

alterations, for example CYP induction and GSH depletion to cell death.  Additional criteria 

should be taken into account before a particular endpoint is chosen to evaluate a specific 

cellular response. The ideal endpoint should not only be relevant, reliable, and sensitive, but 

also simple, rapid, and cost-effective (O’Brien et al., 2000).   

 The most common endpoint of in vitro assays is cell death as measured by a single 

indicator dye 24h after exposure of cells to a chemical, usually targeting a single cellular 

response (Schirmer, 2006). Clearly, this would be inappropriate for the cytotoxicity testing of 

reactive chemicals since, as previously mentioned, these chemicals act through various 

modes of action. Thus, in this thesis, a battery of three fluorescent indicator dyes has been 

employed: alamar Blue (AB) tests for metabolic activity (O’Brien et al., 2000), 5-

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) tests for cell membrane 

integrity (Schirmer et al., 1997), and neutral red (3-amino-7-dimethylamino-2-

methylphenazine hydrochloride; NR) tests for lysosomal function (Borenfreund & Puerner, 

1985). An economic advantage to using these three dyes is that they can all be used on the 

same set of cells, but their use has also been shown to help deduce possible cellular modes of 

action (Boaru et al., 2006; Dayeh et al., 2009).       
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 Alamar Blue, a commercial preparation of the resazurin dye, was initially believed to 

be reduced by mitochondrial enzymes of viable cells, but it is now known to be reduced more 

generally by diaphorases, enzymes that can found in both mitochondria and cytoplasm 

(O’Brien et al., 2000). Thus, the dye is a measure of cellular metabolism as opposed to 

mitochondrial function. Alamar Blue added to cells in the oxidized form, resazurin, becomes 

reduced by cellular diaphorases of viable cells into resorufin, which is fluorescent and pink in 

colour. The resulting relative fluorescence can be quantified using a variety of fluorescence 

microwell plate readers.  

 CFDA-AM dye is an esterase substrate used to measure cell membrane integrity. The 

initial non-polar, non-fluorescent 5-carboxyfluorescein diacetate acetoxymethyl ester 

(CFDA-AM) is added to cells which diffuses into cells rapidly and is converted by non-

specific cellular esterases of viable cells into the polar, fluorescent 5-carboxyfluorescein 

(CF), which then diffuses out of cells slowly (Schirmer et al., 1997). The resulting relative 

fluorescence can be quantified using a fluorescence microwell plate reader.     

 The Neutral Red dye accumulates in the lysosomes of viable cells, which upon 

extraction can be quantified using a fluorescence microwell plate reader. The accumulation 

of NR in lysosomes, however, requires an intact plasma membrane, sufficient energy (ATP) 

levels, and a functioning lysosome. Accordingly, the assay can also be thought of as a 

general endpoint against all three cellular parameters (Borenfreund & Puerner, 1985). 

Nonetheless, it can still be used to detect damage specific to lysosomes. For example, 

Schirmer et al. (1998) found that acenaphthylene, acenaphthene, and phenanthrene were 

photocytotoxic to RTgill-W1 cells immediately after their UV irradiation as measured by the 

NR assay, whereas no such toxicity was detected by other indicator dyes.    
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1.3 Classifying environmental contaminants 

In order to be able to predict the nature of the impact of different types of chemical 

contaminants on the environment, they have been classified according to structure and/or 

function in various ways. One such classification system, used in this thesis, was detailed by 

Verhaar et al. (1992) where environmental contaminants have been divided into four distinct 

classes that are dependent on the presence or absence of certain functional groups. 

 

A) Inert chemicals. These chemicals bring about toxicity through narcosis, defined as a non-

specific interaction between a chemical and the cell plasma membrane. As such, the 

potency of an inert chemical is directly related to its hydrophobicity, which is a function 

of logP. Interestingly, because these chemicals do not have specific modes of action, they 

act as models of baseline (or minimum) toxicity. This means that in the absence of 

specific modes of action all chemicals are as toxic as their hydrophobicity suggests. It is 

estimated that 80% of all chemicals exhibit baseline or basal toxicity (Ekwall, 1983a,b) 

and the results from the international Multicenter Evaluation of In Vitro Cytotoxicity 

(MEIC) study support this estimation (Clemedson et al., 1996). Common examples of 

inert chemicals include ethanol, acetone, benzene, and toluene (Verhaar et al.,1992).    

B) Less inert chemicals. These chemicals bring about toxicity at slightly lower levels than 

predicted by baseline toxicity, making them slightly more toxic. They typically posses 

hydrogen bond donor acidity and thus tend to have polar functional groups. Hence, their 

mechanism of action is polar narcosis. Common examples of less inert chemicals include 

phenols (e.g. phenol and its derivatives) and aromatic amines (e.g. aniline and many of its 

derivatives) (Verhaar et al., 1992).     
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C) Specifically acting chemicals. Such chemicals belong to a varied set of chemicals, but 

they all essentially interact with specific cellular receptors to induce toxicity. Examples 

include the inhibition of acetylcholinesterase activity by the organophosphate pesticides 

(e.g. parathion) and CYP450 induction by polycyclic aromatic hydrocarbons and other 

dioxin-like compounds that act as ligands for the aryl hydrocarbon receptor (e.g. rifampin) 

(Verhaar et al., 1992).         

 

D) Reactive chemicals. Such chemicals attack biomolecules in various targets by employing 

various modes of action. Also in this class are chemicals that require conversion to more 

toxic products in order to exhibit toxicity; this phenomenon is known as bioactivation. 

One of the main differences in the toxicity of narcotic chemicals and those reactive is the 

fact that the interaction of reactive (alkylating) chemicals with the target is typically 

irreversible, while narcosis is due to a reversible interaction. As opposed to reversible 

interactions, in an irreversible interaction it is not just the concentration at the target site 

that is of relevance, but also the amount of target that is occupied or depleted (Freidig et 

al., 1999). Examples of reactive chemicals include many epoxides (e.g. propylene oxide 

and 1,2-epoxybutane) and aldehydes (e.g. propanal or acrolein and benzaldehyde) 

(Verhaar et al., 1992).  
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1.3.1 Selected reactive chemicals  

 The reactive class of chemicals is of special interest since it has been greatly 

underrepresented in in vitro toxicology. For this thesis, eight reactive chemicals that exhibit a 

wide range of physicochemical properties are all of environmental concern and have been 

chosen for analysis (Schirmer et al., 2008). In the following section a brief overview is given, 

where possible, for each of the reactive chemicals with respect to their in vitro toxicity, their 

in vivo toxicity, and why they are of environmental concern.  

 

 Menadione (2-methyl-1,4-naphthoquinone; MD) is a vitamin K3 analog that belongs 

to the quinone class of chemicals (Figure 1-2). As a bifunctional quinone, it causes 

cytotoxicity via two distinct pathways 

(Scott et al., 2005). The first is through 

oxidative stress that follows the cyclic 

pattern known as redox cycling, 

generating ROS such as superoxide (O2
.
-), 

hydrogen peroxide (H2O2), and the highly 

damaging hydroxyl radical (OH
.
). In fact, 

it is used as a model chemical for studies focusing on ROS-related toxicity in vitro (Scott et 

al., 2005). The second pathway is by covalently modifying cellular nucleophiles, such as the 

case with sulphur-containing cysteine residues that go on to form dangerous protein arylation 

adducts. Many of these proteins are enzymes involved in glutathione (GSH) and ATP 

metabolism, and thus menadione toxicity is typically preceded by GSH depletion and great 

ATP loss; eventual cell death is mainly mediated by apoptosis (McAmis et al., 2003; Shi et 

 

Figure 1-2: Molecular structure of menadione. 
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al., 1994). Menadione can also modify plasma membrane proteins, thereby altering a 

membrane’s permeability to ions and other unwanted molecules. 

 Menadione can be highly toxic to mammals in vivo. The problem is that a body’s 

endothelial cells are especially sensitive to ROS; hence, enhanced ROS production due to 

menadione toxicity alters vascular endothelial barriers, which can lead to inflammation, 

oedema, and overall organ dysfunction (Stevens et al., 2000). In fact, the US Food and Drug 

Administration banned the use of menadione from over-the-counter supplements and from 

most food intended for human consumption. Menadione toxicity causes haemorrhages in 

kidneys, lungs, livers, and can lead to severe haemolytic anaemia. Moreover, menadione’s 

pathways of toxicity had been explored for their chemotherapeutic potential to treat various 

cancers, but its use has now been largely replaced with safer agents (McAmis et al., 2003).  

 Menadione is of environmental concern because of its widespread use in several 

human activities.  As vitamin K itself is essential for proper blood coagulation and bone 

strength, synthetic forms of the vitamin, namely menadione and its derivatives, are being 

used as nutritional supplements in several industries.  These include the pet food industry and 

aquaculture feed industry.  In aquaculture, the additive is used in fish feed (in the form of 

menadione sodium bisulfite) but mainly in feed for shrimp in Asian countries (Shiau & Liu, 

1994; Udagwa, 2001).   
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 Dichlorophene [2,2’-methylenebis(4-chlorophenol); DCP] is a halogenated phenolic 

compound (Figure 1-3). DCP causes toxicity by inhibiting the activity of a key enzyme 

involved in the metabolic pentose 

phosphate pathway, glucose-6-

phosphate dehydrogenase (G6PD). 

Dichlorophene caused 50% inhibition 

of G6PD under in vitro conditions at a 

concentration of 34μM forty to fifty 

seconds after reaction initiation. G6PD deficiency can lead to haemolytic anaemia (Yamarik 

& Andersen, 2004). The hydrophobic nature of dichlorophene allows it to freely diffuse 

through cell membranes, attracting and transporting protons on its way in by its hydroxyl 

groups, which leads to disruptions in proton gradients. Dichlorophene alters the permeability 

of erythrocytes to K
+
 ions ultimately causing anaemia (Yamarik & Andersen, 2004). 

Previous in vitro studies have demonstrated a 50% inhibition of phosphorus uptake and a 

50% increase in ATPase activity at concentrations of 7.9 and 2.7μM dichlorophene, 

respectively (Nakaue et al., 1972). When orally administered, most of this compound is 

metabolized by the gut wall and liver cells into more soluble forms for excretion via the 

kidneys (Dixon, 1982; Yamarik & Anderson, 2004). Nonetheless, with a logP of 4.34, 

dichlorophene would be expected to bioconcentrate in adipose tissue.   

 Dichlorophene poses serious threats to humans in vivo. Symptoms of dichlorophene 

poisoning include nausea, diarrhoea, vomiting, and liver, renal, and myocardial failures. 

Irritation of the respiratory tract is one of the first overt symptoms. Dichlorophene has also 

been reported as a developmental toxicant, causing low birth rates, birth defects, and 

Figure 1-3: Molecular structure of dichlorophene. 
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psychological and behavioural deficits. It has even been recognized as an immunotoxicant, 

hindering the ability of the body to response to infectious substances (Yamarik & Anderson, 

2004).  

 Dichlorophene is of environmental concern because of its widespread use by many 

industries. It is mainly used as a bacteriocide and fungicide in cosmetics, but it can also be 

found in deodorants, hair sprays, hair growth formulations, toothpaste, dermatologic 

preparations, construction material, and paper mill products (Schorr, 1971). Because of its 

biocidal properties, it is also the main ingredient in such formulations as that against 

Athlete’s foot and is commonly used against infestations of intestinal worms in veterinary 

medicine, namely those infecting cats and dogs (Kintz et al., 1997). It is also considered an 

indirect food additive because it can be found in some adhesives (Rothschild, 1990). 

Overtime, most of this utilized dichlorophene eventually makes its way into aquatic 

environments (Toxnet Hazardous Substance Data Bank).  

 Dichlorophene has been recognized as very toxic to aquatic organisms and may cause 

long-term effects in the aquatic environment (EC Directive 2001/58/EC). This property stems 

from the inherent hydrophobicity of dichlorophene (logP of 4.34). Once released to the 

environment, it adsorbs strongly to sediments. An important degradation pathway in natural 

water is that of phototransformation because of its absorption of sunlight (Mansfield & 

Richard, 1996). DCP’s hydrophobicity allows it to bioconcentrate in marine organisms, 

bioaccumulate, and eventually biomagnify in potentially ecosystem-disruptive ways, 

although none of these properties have been studied in the field.  
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 Hexachlorophene [2,2’-methylenebis(3,4,6-trichlorophenol); HCP] is a halogenated 

neurotoxic phenol (Figure 1-4). HCP poisoning inhibits central and peripheral nervous 

systems metabolism by uncoupling 

the oxidative phosphorylation 

responsible for the many glycolytic 

and oxidative pathways taking 

place in various tissues (Rajendra et 

al., 1992). But the chemical can 

also attack extraneuronal targets, specifically the erythrocytes. It has been shown to inhibit 

both the Na
+
/K

+
 pump and acetylcholinesterase activity located within erythrocyte 

membranes. In fact, an HCP concentration of 50 µM can cause 50% haemolyses within a 

matter of a couple of hours (Matsumura, 1997; Miller & Buhler, 1974). Moreover, several 

studies have reported on the inhibitory action of hexachlorophene on various 

dehydrogenases. One study focusing on a key player in the citric acid cycle reported a 

hexachlorophene-induced IC50 on brain succinate dehydrogenase activity of 0.65mM 

(Lokanatha, 1999).     

 Hexachlorophene can be highly toxic to mammals and other vertebrates in vivo. HCP 

toxicity causes brain oedema, characterized by intracellular fluid influx, increase in 

intracranial pressure, and vacuolation of myelin that results in a spongy degeneration of 

white matter (Andreas, 1993). Symptoms of HCP poisoning are in accordance with other 

uncoupling phenols such as 2,4-dinitrophenol (Kaiser, 1964) and pentachlorophenol (Kehoe 

et al., 1939), namely depression, diarrhoea, increased respiratory rate, and fever, but unlike 

them, HCP can also cause convulsions and paralysis (Nakaue et al., 1973).  

 

Figure 1-4: Molecular structure of hexachlorophene. 
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 Hexachlorophene is of great concern because of its widespread use by many 

industries. As is typical of hydroxychloroaromatic chemicals, HCP is known for its biocidal 

properties. As such, it had been widely used as a disinfectant in various gels, soaps, 

deodorants, shampoos, mouthwashes, toothpaste products, hospital equipment, cosmetics, 

and many other personal care products (Lockhart, 1972). It was even widely applied by the 

pesticide industry for many years (Lockhart, 1972). In the early 1970s, however, many 

regulatory agencies, including the US FDA, limited the use of hexachlorophene in consumer, 

medical, and agricultural products as the toxicological implications of its use over three 

decades were widely being reported. Today, HCP is used as a model to study demyelinating 

diseases, by hospitals to control for Staphylococcus aureus infections, and by some countries 

as a biocide in cosmetics (Allen et al., 1994; Nicolas & Taylor, 1994).  

 Hexachlorophene is of significant environmental concern. In fact, it has been 

characterized as a very toxic substance to aquatic organisms (EU directive R24/25-50/53). 

Much of HCP from the various human activities eventually makes its way to the aquatic 

environment (Toxnet Hazardous Substance Data Bank). The environmental concern stems 

from hexachlorophene’s inherent hydrophobicity (logP of 6.92). Once released into soil, it 

adsorbs very strongly to soil particles. It does not leach to groundwater, hydrolyze, or 

evaporate to any appreciable extent. Similarly, HCP released to water adsorbs very strongly 

to sediments, and does not hydrolyze or evaporate to any appreciable extent (Toxnet 

Hazardous Substance Data Bank). It may, however, undergo slow photodegradation due to 

its absorption of light above 290 nm. Crucially, its hydrophobic nature allows it to 

bioconcentrate in many aquatic organisms, bioaccumulate, and eventually biomagnify in 

potentially ecosystem-disruptive ways. The half-life for the biodegradation of 
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hexachlorophene in river sediments has been estimated to be ~290 days (Toxnet Hazardous 

Substance Data Bank).  

 

 4-fluoroaniline (1-amino-4-fluorobenzene) is a halogenated aromatic amine (Figure 

1-5). 4-fluoroaniline is metabolized by CYP450 systems to various hydroxylated products, 

some of which are destined for 

excretion via the kidneys (Rietjens & 

Vervoort, 1991); flavin-containing 

monooxygenases may also help 

catalyze such compounds (Boersma 

et al., 1993). These hydroxylated 

metabolites, however, can be toxic to 

spleens, livers, and kidneys (Hong et al., 2000; Okazaki et al., 2003; Rankin et al., 1995). 4-

fluoroaniline toxicity is similar to that of aniline and its derivatives. It can be highly 

destructive to tissues of the mucous membranes and upper respiratory tract, eyes, and skin. 

Inhalation may result in spasm, inflammation, and oedema of the larynx and bronchi, 

chemical pneumonitis, and pulmonary oedema. Absorption into a body may lead to the 

formation of methaemoglobinaemia and eventually cyanosis. Symptoms include headache, 

nausea, confusion, vertigo, ataxia, weakness, drowsiness and coma (Gosselin, 1976; US 

EPA, 1994).  

 4-fluoroaniline is a widely used intermediate in the synthesis of dyes, perfumes, plant 

growth factors, drugs, and preservatives (Okazaki et al., 2003). It is also used in the synthesis 

of some pesticides, but it is also a common metabolic product of pesticide breakdown (Lyons 

 

Figure 1-5: Molecular structure of 4-fluoroaniline. 
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et al., 1995). It is also a metabolic product of aromatic amine breakdown by many species 

(Ehlhardt, 1991). Along with other haloanilines, it gets discharged as industrial waste to the 

environment (Games & Hites, 1977).      

 Haloanilines in general, including 4-fluoroaniline, are of great concern because not 

much is known about the ecotoxicological impact of these haloanilines on both organisms 

and the environment. The problem is not so much because of their toxic potency, but rather 

because of their widespread abundance in the environment. In other words, 4-fluoroaniline 

and other aniline derivatives pose threats to both terrestrial and aquatic organisms because of 

their increased potential of coming into contact with these organisms. 4-Fluoroaniline may be 

released to the environment in waste effluents generated from its commercial production or 

use as chemical intermediate. When released to the atmosphere, 4-fluoroaniline degrades 

rapidly by reacting with photochemically-produced hydroxyl radicals with a half-life of 

~6.5h. When released to soil or water, adsorption to humic materials and sediments may 

occur, but leaching is also possible (Toxnet Hazardous Substance Data Bank).  
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 Allyl alcohol (2-propen-1-ol) is the smallest representative of the allylic alcohols 

(Figure 1-6). Alcohol dehydrogenases (ADHs) are metabolic enzymes that specialize in the 

oxidation of an alcohol’s hydroxyl group into an aldehyde. The problem is that the resulting 

aldehydes are much more reactive than their parent compounds. For example, methanol gets 

bioactivated to formaldehyde, ethanol to 

acetaldehyde, and in the case of allyl 

alcohol to acrolein (Koerker et al., 

1976; Reid, 1972). The metabolism to 

acrolein is mediated by the hepatic class I isoform of alcohol dehydrogenase, which is found 

to localize in post-mitochondrial fractions of the periportal regions of liver lobules (Serafini-

Cessi, 1972). The nature of the subsequent events leading to cell death is poorly understood. 

What is known is that the ADH involved strictly uses NAD
+
 as a cofactor (Arslanian et al., 

1971) and that the activation of protein kinase C seems to be critical for the cytotoxicity of 

hepatocytes (Jaeschke et al., 1987; Maddox et al., 2003; Maddox et al., 2004; Rikans & 

Moore, 1987; Serafini-Cessi, 1972).  Acrolein is a potent electrophile that depletes GSH 

levels, forms many covalent adducts, and causes oxidative stress (Belinsky et al., 1986; 

Miccadei et al., 1988).   

 Allyl alcohol is widely used in the manufacture of food flavourings, perfumes, 

pharmaceuticals, pesticides, organic chemicals, plastics, various polymers, and other allylic 

compounds. Exposure to allyl alcohol is toxic to mammals in vivo. It is primarily a potent 

hepatotoxin due to its conversion to the highly reactive, unstable acrolein, and thus can lead 

to liver failure. But the parent compound itself is also toxic. It can readily be absorbed 

through skin, causing severe irritation of the eyes (at concentrations as low as 25ppm) and 

 

Figure 1-6: Molecular structure of allyl alcohol. 
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nose (10-15ppm). If absorbed deep enough, can cause muscle spasms and aching. Other 

symptoms include abdominal pain, nausea, vomiting, and diarrhea (Jaeschke et al., 1987; 

Maddox et al., 2003).  

 Not much is known about the ecotoxicological impact of allyl alcohol, but it has been 

recognized as dangerous for the environment. Once released into the aquatic environment, it 

does not volatilize quickly due to its high solubility in water (but it tends to concentrate in 

surface waters since it is lighter than water, d=0.845), nor does it photooxidize. 

Biodegradation is expected to be the major route of allyl alcohol elimination. Release of allyl 

alcohol into soil is expected to leach and possibly enter groundwater (Toxnet Hazardous 

Substance Data Bank).     

 

 Acrolein (2-propenal) is a potent α, β-unsaturated aldehyde (Figure 1-7). Acrolein’s 

electrophilic, reactive nature is attributed to the conjugation of a vinyl group with a carbonyl 

group within its structure. In fact, 

compared to other α, β-unsaturated 

aldehydes, acrolein is by far the strongest 

electrophile. It rapidly attacks nucleophilic 

sites such as the sulfhydryl group of 

cysteine, imidazole group of histidine, and 

the amino group of lysine (Esterbauer et al., 1991; Marnett et al., 2003). Accordingly, 

enzymes with such amino acids in their active site are particularly sensitive to acrolein 

toxicity. One such enzyme is O6-MeG-DNA methyltransferase, which is crucial for DNA 

repair (Krokan et al., 1985). In fact, acrolein is known for its genotoxicity and mutagenecity. 

It causes DNA single strand breaks (Graftstrom, 1988), chromosome aberrations, and sister 

 

Figure 1-7: Molecular structure of acrolein. 
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chromatic exchanges (Au, 1980). Acrolein forms covalent adducts with proteins. It causes a 

rapid depletion of cellular GSH levels by forming glutathionylpropionaldehyde adducts.  In 

fact, in vitro studies have shown that an increase in GSH levels could attenuate acrolein 

toxicity (Tanel & Averill-Bates, 2007). Both acrolein and its GSH adduct have been 

associated with further production ROS, which go on to attack lipid membranes and thus 

produce more lipid peroxidation products; thus, acrolein also acts as a redox cycler (Krokan 

et al, 1985). Metabolic products of acrolein metabolism include mercapturic acids, acrylic 

acid, and glyceraldehydes.  

 Acrolein is a ubiquitous pollutant in the environment. It is commonly used as a 

herbicide against aquatic weeds, as a rodenticide fumigant, and as a microbiocide by oil and 

paper mill industries. It is also used in large amounts in the synthesis of polymers and 

industrial chemicals (acrylate polymers and acrylic acid) (Eisler, 1994; Ghilarducci & 

Tjeerdema, 1995). Acrolein is also a major by-product of forest fires, fossil fuels, car 

exhaust, overcooked fats and oil, cigarette smoke, and, biologically, of lipid peroxidation and 

the breakdown of allyl compounds. It is also a product of cyclophosphamide metabolism, and 

is thought to be responsible for the toxic side effects from this anti-tumour drug (US EPA, 

1993).    

 Acrolein is very toxic to humans in vivo. It has been associated with the development 

of Alzheimer’s disease (Calingasan et al., 1999), atherosclerosis, diabetic nephropathy 

(Suzuki & Miyata, 1999), and many respiratory diseases; its genotoxic properties have been 

linked with many respiratory tract cancers. It is also teratogenic and embryolethal (Slott & 

Hales, 1986). 

 



 

26 

 Acrolein is of environmental concern because of its highly toxic nature to fish and 

aquatic invertebrates. A 96h LC50 of 22 µg/L has been determined for bluegill sunfish, <31 

for rainbow trout, whereas an LC50 of only 14 µg/L has been determined for white sucker and 

fathead minnow (US EPA, 2003). The EC50 for many aquatic plants and algae, however, are 

typically higher (ranging from ~30 µg/L to 26 mg/L), and thus the use of acrolein as a 

herbicide is of concern for the many sensitive fish species (US EPA, 2003). The 

environmental fate of acrolein follows two major routes: volatilization and hydration.   The 

major hydration product of acrolein is 3-hydroxypropanal, with other aldehydes also being 

formed (WHO, 1991). Eisler (1994) summarizes the half-time persistence of acrolein in 

freshwater as usually less than 50h; in seawater it is less than 20h and in the atmosphere less 

than 3h. Accordingly, acrolein poses the greatest risk to aquatic organisms at or near sites of 

industrial discharges, spills, and biocidal use within the first few days of its release (Toxnet 

Hazardous Substance Data Bank). 
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 Acetaldehyde (ethanal) is a toxic short-chain aldehyde (Figure 1-8). Acetaldehyde is 

the principal metabolic product of ethanol, catalyzed primarily by alcohol dehydrogenase and 

to a less extent by CYP2E1 in the 

liver, but also in extrahepatic tissues 

such as in the oesophagus 

(Quertemont, 2004; Yokoyama & 

Omori, 2003). The resulting 

acetaldehyde is much more reactive 

than its parent compound, and thus 

this enzymatic catalysis is more of a bioactivation step. But in attempt to keep acetaldehyde 

levels in check, the chemical itself is further oxidized to acetate by aldehyde dehydrogenase 

(ALDH) (Quertemont, 2004; Yokoyama & Omori, 2003). 

 Reports on acetaldehyde’s genotoxic effects are well-documented (Singh & Khan, 

1995). Acting as an electrophile, its attacks on DNA causes both single and double strand 

breaks, gene mutations, and increases in chromosomal aberrations and sister-chromatid 

exchanges. The xenobiotic also forms covalent adducts and crosslinks with DNA, proteins, 

and lipids, all of which alter cellular structure and function (Jennett et al., 1990; Ristow & 

Obe, 1978). Its reactions also generate free radicals that go on to attack lipid membranes and 

release lipid peroxidation products. In fact, acetaldehyde has been recognized as a carcinogen 

(Woutersen et al., 1984) and as a teratogen (Oshea & Kaufman, 1979).  

 Clearly, exposure to acetaldehyde poses serious threats to mammals in vivo. 

Nonetheless, it is of widespread use by many industries. It is used in the synthesis of food 

flavourings, dyes, perfumes, resins, plastics, rubbers, and as an intermediate in the synthesis 

 

Figure 1-8: Molecular structure of acetaldehyde. 
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of many organic chemicals. Additionally, acetaldehyde itself is a natural product of 

combustion, photooxidation of commonly found hydrocarbons in the atmosphere and surface 

water, and as natural ingredient in many fruits. But the most common route of exposure to 

acetaldehyde by humans is through their consumption of alcoholic beverages. It is worth 

noting, however, that, with the exception of livers, most tissues of the body do not have the 

ADH necessary to convert ethanol into the real hangover chemical, acetaldehyde (Olivares et 

al., 1997). This would explain the hepatotoxicity associated with the overuse of alcoholic 

beverages.      

 Not much is known about the ecotoxicological effects of acetaldehyde as most of its 

studies have been conducted on mammals in vivo or mammalian cell lines in vitro.  

Nonetheless, acetaldehyde is of environmental concern to both terrestrial and aquatic life due 

to its adverse interactions with common cellular structures and functions. Once released into 

water, it rapidly biodegrades and volatilizes with a half-life ranging from 3-9h for a typical 

river (Toxnet Hazardous Substance Data Bank). Once released into soil or ground, it may 

leach into groundwater, but would also be expected to rapidly biodegrade and evaporate. As 

for its release in the atmosphere, it degrades within hours by reacting with hydroxyl radicals 

and photolysis (Toxnet Hazardous Substance Data Bank). After all, acetaldehyde has a 

boiling point of 21°C, or room temperature.  
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 2,3-dimethyl-1,3-butadiene (diisopropenyl; DMBD) is used as an intermediate in the 

synthesis of many organic and industrial chemicals (Chiang et al., 1998; Mikhael et al., 1996) 

(Figure 1-9). Not much is known about its toxicity to biological systems or its 

ecotoxicological impact. A close relative of 2,3-dimethyl-1,3-butadiene is the shorter 1,3-

butadiene (BD). It is a 

well-known hazardous air 

pollutant and carcinogen 

(Doyle et al., 2004). Of the 

top 50 most produced 

chemicals within the 

United States, BD ranks 36
th

 with levels reaching 3000 tonnes per year; the chemical is 

mainly used for the synthesis of polymers (International Agency for Research on Cancer, 

1992; Occupational Safety and Health Administration, 2002). It also ranks within the top 33 

in the US Toxic Release Inventory (Doyle et al., 2004; US EPA, 2001). Although forest fires 

are the only natural source of BD production, many anthropogenic sources include exhaust 

emissions, cooking oils, and cigarette smoke (Doyle et al., 2004; Hughes et al., 2001; 

International Agency for Research on Cancer, 1992). BD is a photochemically-active 

chemical that reacts in the atmosphere with hydroxyl and other radicals to produce a 

multitude of known respiratory irritants. These photochemical degradation products include 

acrolein, formaldehyde, acetaldehyde, butadiene monoxide, CO, CO2, ozone, glycolaldehyde, 

and malonaldehyde (Doyle et al., 2004). Another close relative of 2,3-dimethyl-1,3-butadiene 

is isoprene. It is thought that the three mentioned dienes (1,3-butadiene, 2,3-dimethyl-1,3-

butadiene, and isoprene) all follow similar reaction pathways (Skov et al., 1992). 

Figure 1-9: Molecular structure of 2,3-dimethyl-1,3-butadiene. 
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Accordingly, one can conclude that 2,3-dimethyl-1,3-butadiene’s environmental concern 

stems from its ability to generate hazardous photochemical degradation products in the 

atmosphere.               

1.4 Selection of reference chemical and established databases 

 The toxicity of the chosen reactive chemicals has to be compared with a control 

chemical. For this, sodium dodecyl sulphate (SDS) has been selected as a positive control for 

several reasons. Its high solubility (logP of 1.60) eliminates the need of using a special 

solvent; serial dilutions can thus be prepared using the exposure medium itself. It is also of 

low volatility (logHLC of -6.74) and so loss of the compound to evaporation is of no 

concern. The mode of action of SDS, cell membrane damage, allows for easy observation 

using simple phase-contrast microscopy. Accordingly, SDS toxicity can be easily measured 

using any nonspecific bioassay (Schirmer et al., 2008). An additional advantage is that SDS 

itself is also of environmental concern as it is heavily used in many industrial processes as an 

anionic surfactant (Cserhati et al., 2002). 

 In order to evaluate the effectiveness of the modified in vitro approach, experimental 

EC50s for each chemical will be compared with 1) previously recorded in vitro EC50s and 2) 

previously recorded in vivo LC50s. For acute fish lethality data, the US EPA fathead minnow 

database (http://www.epa.gov/med/Prods Pubs/fathead minnow.htm) was chosen as it was 

found to be the most comprehensive and appropriate. Listed LC50 values are all based on 

flow-through exposures of fathead minnow to analytically-determined chemical 

concentrations for 96h. As for cell line data, the Halle Registry of Cytotoxicity is the chosen 

database (Halle, 2003). A limitation of this database, however, is that its listed chemical 

http://www.epa.gov/med/Prods%20Pubs/fathead%20minnow.htm
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EC50s are all based on mammalian (mouse, rat, human) cell lines that had been assayed by 

various endpoints (Schirmer et al., 2008). 

1.5 Physicochemical properties and cytotoxicity data of selected chemicals 

 As a general rule, the uptake of xenobiotics from the aquatic environment into 

biological membranes requires these chemicals to be available in a dissolved form in the 

surrounding water. But many environmental factors influence the availability, transport, and 

eventual uptake of these chemicals by aquatic organisms (Rand, 1995). Table 1-1 

summarizes key parameters that are of ecotoxicological relevance along with Halle in vitro 

and fathead minnow in vivo cytotoxicity data and is followed by a detailed discussion. 
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Table 1-1: Physicochemical properties and cytotoxicity data of selected chemicals 

Chemical LogP* 
LogHLC* 

(atm-m
3
/mol) 

LogKoc* 
LogBCF* 

(L/kg wet-wt) 
Halle EC50

1
 (µM) FHM LC50

2
 (µM) 

Sodium dodecyl 

sulphate 
1.60 -6.74** 1.97 1.85 230.9 23.4 

Menadione 2.21 -8.51 3.04 0.53 7.94 0.65 

Dichlorophene 4.34 -11.54 3.62 2.48 8.32 1.15 

Hexachlorophene 6.92 -12.07 5.57 3.86 7.94 0.051 

4-fluoroaniline 1.28 -5.65 1.54 0.43 unknown 151.36 

Allyl alcohol 0.21 -5.25 0.61 0.50 8511.38 5.50 

Acrolein 0.19 -4.45 0.69 0.50 46.77 0.36 

Acetaldehyde -0.17 -4.17 0.51 0.50 2454.7 691.8 

2,3-dimethyl-1,3-

butadiene 
3.13 -0.72 2.72 1.73 unknown 83.2 

*   Calculated with EPI Suite http://www.epa.gov/oppt/exposure/pubs/episuite.htm. 

** Taken from PhysProp database http://www.syrres.com/esc/physdemo.htm 
1
   Halle in vitro database summarizes toxicity tests with mammalian cell lines using various endpoints and exposure conditions.  

    EC50 = effective concentration of test chemical that reduces cellular functions by 50%.  
2
   Fathead minnow (FHM) in vivo database summarizes toxicity tests using fathead minnow.  

    LC50 = concentration causing death in 50% of fish after 96h.  

http://www.epa.gov/oppt/exposure/pubs/episuite.htm
http://www.syrres.com/esc/physdemo.htm
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LogP (logKow): Hydrophobic chemicals can easily pass through cellular lipid membranes 

whereas those hydrophilic require active uptake processes. The logP parameter is a function 

of hydrophobicity: it measures the extent of a chemical’s ability to partition between water 

and octanol at equilibrium. Octanol is used as a surrogate for lipids (fats). The greater the 

logP of a chemical, the more likely it is to partition to octanol and thus it is more 

hydrophobic. LogP is also used to predict a chemical’s ability to bioaccumulate in aquatic 

organisms. The US EPA uses the following logP ranges in its prediction of a chemical’s 

tendency to bioaccumulate:  

 

< 2.7   = Low  

2.7 – 3  = Moderate 

> 3   = High 

 

 

 

LogKoc: Although hydrophobic chemicals can diffuse easily through lipid membranes, their 

actual availability in water is usually limited due to their tendency to adsorb to suspended 

solids and sediments. The parameter logKoc measures the extent of a chemical’s ability to 

partition between organic carbon and water at equilibrium. The higher the logKoc of a 

chemical, the more likely it is to adsorb to solids and sediments than remain in water. 

According to the National Technical Information Service (Review of Exposure Assessment 

Guidelines, September 1996), a chemical’s potential to adsorb to soil particles can be 

predicted using the following logKoc ranges:   

 

0-2  = low 

> 2-4  = moderate 

> 4-7  = high 
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LogHLC: The availability of chemicals in aqueous media is also influenced by their ability 

to volatilize out of solution. The parameter logHLC (Henry’s law Constant) measures the 

extent of a chemical’s ability to partition between air and water at equilibrium. The higher 

the logHLC of a chemical, the more likely it is to volatilize than remain in water. According 

to the National Technical Information Service (Review of Exposure Assessment Guidelines, 

September 1996), logHLCs in atm-m
3
/mol can be interpreted as follows:    

 

< -6.5   = non-volatile 

 -6.5 – -5  = slow volatilization 

>-5 – -3  = significant volatilization 

> -3   = rapid volatilization 

 

 

 

LogBCF: Each of the above three parameters essentially influences a chemical’s availability 

for uptake by aquatic organisms. Specifically, logBCF (bioconcentration factor) measures a 

chemical’s ability to partition between an organism (organic phase) and water (aqueous 

phase). The higher the logBCF of a chemical, the more likely it is to bioconcentrate in 

organisms’ tissues and thus bioaccumulate and eventually biomagnify up the food chains. 

The following logBCF threshold ranges are used by the US EPA to predict a chemical’s 

potential to bioconcentrate in organisms: 

  

< 2    = Low  

2 – 3.7   = Threshold for concern 

> 3.7    = High  
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1.6 Objectives 

 

The objectives of my thesis are the following: 

 

1) Do reactive chemicals posses any unique problems for in vitro toxicology? In 

other words, do reactive chemicals have their own special concerns, or do they 

share the same problems posed by other classes of environmental chemicals? 

 

2) How repeatable is our proposed in vitro approach, and how well can it predict in 

vivo toxicity? Can we reliably use it to investigate the cytotoxicity of reactive 

chemicals? 

 

These objectives will be explored by manipulating some of the basic, yet essential techniques 

in in vitro toxicology, with special emphasis on the following: 

 

a) Cell line selection 

b) Selection of exposure medium 

c) Method of dosing 

d) Selection of cell viability endpoints 
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Chapter 2 

MATERIALS AND METHODS 

 

 

2.1 Material for cell culture 

The following were purchased from BD Falcon, NJ, USA: 75cm
2
 tissue culture flasks 

(catalogue no. 353110), and both 15mL (352096) and 50mL (352070) centrifuge tubes. 

Purchased from Sigma-Aldrich in Oakville, ON: Leibovitz’s L-15 media (L-15), Fetal 

Bovine Serum (FBS), penicillin-streptomycin solution, tissue-culture grade water, 

Dulbecco’s Phosphate Buffered Saline (DPBS), trypsin from bovine pancreas, all L-15/ex 

salts, pyruvate, galactose, dimethyl sulfoxide (purity of ≥99.9%; catalogue no. D8418), and 

neutral red solution (3.3g/L in DPBS; N2889). Alamar blue (DAL1100) and CFDA-AM 

(C1354) were purchased from Molecular Probes, Eugene, OR, USA. TrypLE (12604021) 

was purchased from Invitrogen Corporation, Carlsbad, California, USA. The 24-well 

microplates (3527), CellBIND plates, and plate sealants (6575) were purchased from Corning 

Life Sciences (Costar
®
), NY, USA.  

2.2 Reactive chemicals and sodium dodecyl sulphate 

All of the following chemicals were purchased from Sigma-Aldrich in Oakville, ON: sodium 

dodecyl sulphate (purity of ≥99.0%; catalogue #71725), menadione (98%; M57405), 

dichlorophene (95%; 133221), hexachlorophene (Pestanal; 45526), 4-fluoroaniline (≥99%; 

F3800), allyl alcohol (≥99%; 240532), acrolein (Supleco; 5S06230), acetaldehyde (99.5%; 

≥402788), and 2,3-dimethyl-1,3-butadiene (≥98%, containing 100ppm butylated 

hydroxytoluene as inhibitor of polymerization; 145491).   
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2.3 Cell lines and maintenance of cells in culture 

RTgill-W1 was initiated from the gill epithelium of rainbow trout (Oncorhynchus mykiss) 

(Bols et al., 1994). It is available from the American Type Culture Collection (ATCC 

#CRL2523). RTL-W1 was initiated from the livers of rainbow trout (Oncorhynchus mykiss) 

(Lee et al., 1993).    

Cultures of both RTgill-W1 and RTL-W1 were routinely maintained in 75cm
2
 tissue-culture 

treated flasks. The cultures were left to grow for 7-10 days at room temperature in L-15 

medium supplemented with 10% FBS (v/v) and 1% penicillin-streptomycin solution (v/v). 

Once confluent, defined by a cell monolayer covering 80-90% of the flask, the cultures were 

passaged (1:2) into new flasks as described in Dayeh et al., 2003. Flasks were routinely 

checked for contamination using an inverted phase contrast microscope (Nikon Eclipse 

TS100, Nikon Instruments Inc., Melville, NY). Briefly, under sterile conditions, the old 

medium was aspirated out and replaced by 2mL of trypLE and placed on an orbital shaker for 

5-7 minutes to allow for cell dissociation. The addition of 6mL of complete L-15 medium 

arrested the enzymatic action of TrypLE. Cell clumps were loosened by gently pipetting the 

solution in and out several times. The cell suspension was then transferred to a 15mL 

eppendorf tube and centrifuged at 440 relative centrifugal force (RCF) units for five minutes.  

Fresh complete medium (6 mL) was added to each of the old flask and a new flask. After 

centrifugation, the supernatant was replaced with 8mL of complete medium and gently 

pipetted to resuspend the cells. The cell suspension was equally divided into the two flasks 

that were labelled and stored at room temperature for later use.      
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2.4 Methodology of the in vitro assay 

The endpoint of cell viability as measured with three cytotoxicity assays were conducted on 

RTgill-W1 and RTL-W1. The following is a general outline of the common procedures 

involved in performing the assay (Figure 2-1). Cells were plated in 24-well microplates 

(Corning Life Sciences, NY) at a density of 1.5 x 10
5
 cells/well in 1mL L-15 medium 

supplemented with 10% FBS and 1% Pen/Strep solutions. The cells were allowed to attach 

and form a monolayer for 24h at room temperature. Afterwards, the media was removed by 

inverting the plate over a catch basin and subsequently blotted on paper towel. The plates 

were then either directly or indirectly dosed with various concentrations of the reactive or 

reference chemicals.  

For direct dosing, the plates were washed with 1mL of L-15/ex per well, which was then 

removed by inversion. After which each well received 2mL of fresh L-15/ex to which 10 µL 

of a 200x concentrated stock solutions of the reactive toxicants (or control chemical) were 

added to achieve the final desired concentration. For indirect dosing, the plates were also 

washed with 1mL of L-15/ex per well, which was then removed by inversion. But each well 

then received 2mL of L-15ex that already contained the chemical at its desired final 

concentration.  

With the exception of the control chemical, DMSO was used as the solvent always at a final 

concentration in the exposure medium of 0.05% (v/v). After 24h of exposure at room 

temperature and in the dark, cells were assayed using a battery of three fluorescent indicator 

dyes. Alamar blue and CFDA-AM were used concurrently and prepared in PBS (total 

volume of 400 µL/well) to give final concentrations of 5% (v/v) and 4 µM, respectively. 

After the AB/CFDA-AM exposure the cells were then treated with NR also prepared in PBS 
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(total volume of 400 µL/well) at a final concentration of 1.5% (v/v). Cells were incubated in 

the AB/CFDA-AM or the NR solution for 1h in the dark at room temperature after which 

fluorescence was quantified using a SPECTRAmax
®
 GEMINI XS microplate reader 

(Molecular Devices, Sunnyvale, CA). Excitation and emission wavelengths for AB were 

530nm and 595nm, 485nm and 530nm for CFDA-AM, and 530nm and 645nm for NR, 

respectively. Fluorescence was also quantified using the CytoFluor Series 4000 microplate 

reader (PerSeptive Biosystems, Burlington, ON, Canada). 

Variations of the above general outline include: the use of L-15/ex as the solvent, extending 

the duration of exposure of cells to toxicants as needed, the sealing of plates with specialized 

sealants after the addition of test chemicals, and/or the use of microplates coated with 

alternative surfaces.  
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Figure 2-1: Schematic representation of the cytotoxicity assay. 

RTgill-W1 and RTL-W1-W1 cells at a density of 1.5x10
5
 were plated in 24-well microplates 

in L-15 complete medium (10% FBS and 1% P/S) for 24h. After which, plates were washed 

with L-15/ex, which was then replaced with fresh L-15/ex for chemical exposure. Cells were 

either directly or indirectly dosed with various concentrations of each chemical before their 

incubation in the dark and at room temperature for 24h (or as desired). After which, cell 

viability was assayed by each of the three indicator endpoints: alamar Blue, CFDA-AM, and 

neutral red.      
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2.5 Analysis of data 

  

 The cytotoxicity of each chemical was expressed in terms of its EC50, which is the 

effective concentration of test agent that reduced the viability of treated cells to 50% of the 

untreated controls. Raw data was first compiled and analyzed using Microsoft Excel. To 

account for the background fluorescence of the indicator dyes, raw florescent units (RFUs) 

from no-cell control plates were subtracted from the treated plates. The corrected RFUs from 

the treated plates were averaged (three wells per concentration) and then expressed as a 

percentage of the average fluorescent readings of the DMSO (or solvent) controls. Data are 

presented as mean EC50 ± standard deviation. Unless otherwise noted, each experiment was 

repeated at least three independent times, where wells were exposed to each chemical 

concentration (or reference chemical) in triplicates. To test for significance in EC50 values 

between the two cell lines, an unpaired t-test was used (p≤0.05). An Analysis of Variance 

(ANOVA) was used to compare the three EC50 values for each cell line (one for each cell 

viability endpoint). Significance was set at p≤0.05. If significance was found, the data were 

further examined by the Tukey-Kramer multiple comparisons test. All graphs, statistical 

analyses and EC50 values were calculated using GraphPad Prism and GraphPad InStat 

version 4.00 (GraphPad Software, San Diego, California, USA). 
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Chapter 3 

RESULTS  

 

 

3.1 Cytotoxicity of reference chemical: sodium dodecyl sulphate (SDS) 

 SDS was used as a positive control and therefore it was important to first establish its 

EC50 values using both RTgill-W1 and RTL-W1. SDS was cytotoxic to both cell lines in a 

dose-dependent fashion; an increase in SDS concentration led to a decrease in cell viability 

as measured by all three endpoints (Figure 3-1). For both cell lines the cell membrane 

integrity seemed to be the least affected by SDS toxicity as evident by the relatively higher 

CFDA-AM EC50 values (Table 3-1). A one-way ANOVA was performed to test for 

significance among the three endpoints for each cell line. For RTgill-W1, the CFDA-AM 

EC50 was significantly higher than that of AB and NR (p<0.05). The same was true for RTL-

W1 where the CFDA-AM EC50 was significantly higher than that of AB and NR (p<0.05). 

Overall, RTL-W1 was significantly more sensitive to SDS toxicity than RTgill-W1 as 

measured by AB (p<0.05), CFDA-AM (p<0.05), and NR (p<0.05). Morphologically, the 

liver cells appeared to be more sensitive to SDS than the gill cells when exposed to 

concentrations higher than ~108 µM. The difference in sensitivity was most evident at the 

highest concentration tested of 216 µM, where the liver cells were completely lysed and 

disintegrated whereas the gill cells seem to have left some remnants behind. When compared 

to Halle’s EC50 database, EC50s for both RTgill-W1 and RTL-W1 cell lines were much closer 

to the LC50 recorded in the FHM database.   
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 The cytotoxicity of SDS using RTL-W1 cells seeded in CellBIND plates was also 

investigated (Table 3-1). When compared to the EC50 values of RTL-W1 seeded in 

conventional plates, the resulting CellBIND EC50 values were significantly higher for AB 

(p<0.05) and NR (p<0.05), but not for CFDA-AM (p>0.05). The EC50s for the three 

endpoints were significantly different from each other with the order of sensitivity being NR, 

AB, and CFDA-AM. All values, however, were still comparable to FHM’s LC50. 
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Figure 3-1: Viability of RTgill-W1 and RTL-W1 exposed to sodium dodecyl sulphate (SDS) for 

24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to SDS in L-15/ex for 24h in conventional plates for 

RTgill-W1 (Panel A), RTL-W1 (B), and RTL-W1 in CellBIND plates (C). Cell viability was 

measured with fluorescent indicator dyes: alamar Blue, CFDA-AM, and neutral red. Results were 

expressed as a percentage of the readings in L-15/ex control wells. Results shown are representative 

graphs of 3-5 independent experiments. The data points represent the mean of three culture wells with 

standard deviation. Appearance of control RTgill-W1 (D) and RTL-W1 (E) cells and those exposed to 

the highest concentration of 216 µM SDS (F and G, respectively) are shown. Cells were 

photographed with an inverted phase contrast microscope at 100x magnification. 

D E 

F G 

A B C 

100µm 

100µm 

100µm 

100µm 
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Table 3-1: Comparing the cytotoxicity of sodium dodecyl sulphate as evaluated with RTgill-W1 and RTL-W1 with the toxicity as 

summarized in Halle and Fathead Minnow databases.     

Cell line 
Culture 

surface 

Mean EC50
1
 (µM) with standard deviation Halle EC50

2
 

(µM) 
FHM LC50

3
 

(µM) AB CFDA-AM NR 

RTgill-W1 

(n=5) 
normal 

 

36.55
*,a

 ± 4.95 

 

 

64.53
*,b

 ± 5.37 

 

 

29.67
*,a

 ± 6.92 

 

230.9 23.4 
RTL-W1 

(n=5) 
normal 

 

23.82
**,a

 ± 5.60 

 

 

45.33
 **,b

 ± 12.65 

 

 

18.80
**,a

  ± 3.52 

 

RTL-W1 

(n=3) 
CellBIND 

 

35.06
*,a 

± 2.51
 

 

 

52.72
**,b

 ± 3.14 

 

 

26.86
*,c

 ± 3.74 

 
1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), carboxyfluorescein diacetate 

acetoxymethyl ester (CFDA-AM), neutral red (NR). 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

*EC50 means within a column with a different number of superscript * are statistically different from one another by Tukey-Kramer multiple 

comparison test (p <0.05).  No * indicates no difference. 
a
EC50 means within a row with a different superscript letter are statistically different from one another by Tukey-Kramer multiple comparison 

test (p <0.05). 
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3.2 Cytotoxicity of menadione  

 

 RTgill-W1 and RTL-W1 were exposed to menadione for 24 hours in microwell 

culture plates after which cell viability was measured with three fluorescent indicator dyes: 

AB, CFDA-AM and NR (Figure 3-2 – Panels A & B). Results indicated that menadione was 

cytotoxic to both cell lines in a dose-dependent fashion; as the concentration of the toxicant 

increased, cell viability decreased as measured by all three endpoints. No significant 

difference between the two cell lines was observed (p>0.05). There was also no significant 

difference in EC50 values between the three viability endpoints for RTgill-W1 (p>0.05). As 

for RTL-W1, the only difference was for AB being significantly lower than that of CFDA-

AM and NR (p<0.05).  

 When compared to LC50 in vivo FHM database, the experimental EC50 values were 

much closer to the reported in vivo value than that in vitro value reported in the Halle 

database (Table 3-2). Morphologically, menadione toxicity was manifested in cultures by 

causing breaks in cellular monolayers and subsequent detachment of cells into the medium 

(Figure 3-2 – Panels C & D).  
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Figure 3-2: Viability of RTgill-W1 and RTL-W1 exposed to menadione for 24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to menadione in L-15/ex for 24h for both RTgill-W1 

(A) and RTL-W1 (B). Cell viability was measured with fluorescent indicator dyes: alamar Blue, 

CFDA-AM, and neutral red. Results were expressed as a percentage of the readings in DMSO control 

wells. Results shown are representative graphs of three independent experiments. The data points 

represent the mean of three culture wells with standard deviation. Appearance of control RTL-W1 

cells (C) and those exposed to the highest concentration of 5.5 µM menadione (D) are shown. Cells 

were photographed with an inverted phase contrast microscope at 100x magnification. 

A B 

100µm 100µm 

C D 
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Table 3-2: Comparing the cytotoxicity of menadione as evaluated with RTgill-W1 and RTL-W1 

with the toxicity as summarized in Halle and Fathead Minnow databases. 

Cell line 
Mean EC50

1
 (µM) with standard deviation Halle EC50

2
 

(µM) 

FHM 

LC50
3
 (µM) AB CFDA-AM NR 

RTgill-W1 

(n=3) 
0.58

a
 ± 0.12    0.71

a
 ± 0.17 0.59

a
 ± 0.13 

7.94 0.65 

RTL-W1 

(n=3) 
0.35

a
 ± 0.10 0.63

b
 ± 0.07 0.81

b
 ± 0.06 

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), 

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), neutral red (NR). 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

a
EC50 means within a row with a different superscript letter are statistically different from one another 

by Tukey-Kramer multiple comparison test (p <0.05). 

No EC50 means within a column were significantly different from one another. 
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3.3 Cytotoxicity of dichlorophene 

  

 The cytotoxicity of dichlorophene was examined using both direct and indirect 

dosing. For both dosing methods results indicated that dichlorophene was cytotoxic to both 

RTgill-W1 and RTL-W1 cell lines in a dose-dependent fashion; as the concentration of the 

toxicant increased, cell viability decreased as measured by all three endpoints (Figure 3-3). 

For direct dosing, there was no significant difference (p>0.05) in toxicity between the two 

cell lines as measured by all three endpoints (Welch correction applied for CFDA-AM); the 

same is true for the indirect dosing of dichlorophene (Table 3-3). One-way ANOVA tests 

were conducted to test for significance between the three endpoints for each cell line and 

dosing condition. The only difference was for the indirect dosing of dichlorophene, where the 

resulting CFDA-AM EC50 values were significantly higher than that of AB and NR (p<0.05). 

Experimental EC50s were much closer to the LC50 value for FHM than the EC50 value in the 

Halle database. This was true for both direct and indirect dosing methods (Table 3-3). 

 One-way ANOVA tests were also conducted to analyze the effect of direct versus 

indirect dosing on the cytotoxicity of dichlorophene. For RTgill-W1, there was no significant 

difference between the two dosing conditions (p>0.05). As for RTL-W1, the direct dosing of 

dichlorophene led to significantly lower EC50 values as measured by all three endpoints 

(p<0.05). Note that Welch correction was applied where appropriate.         
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Figure 3-3: Viability of RTgill-W1 and RTL-W1 exposed to dichlorophene, either directly or 

indirectly, for 24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to dichlorophene in L-15/ex for 24h either directly 

for both RTgill-W1 (A) and RTL-W1 (B), or indirectly (C & D, respectively). Cell viability was 

measured with fluorescent indicator dyes: alamar Blue, CFDA-AM, and neutral red. Results were 

expressed as a percentage of the readings in DMSO control wells. Results shown are representative 

graphs of three independent experiments. The data points represent the mean of three culture wells 

with standard deviation

A B A B 

C D 
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Table 3-3: Comparing the cytotoxicity of dichlorophene as evaluated with RTgill-W1 and RTL-W1 with the toxicity as summarized 

in Halle and Fathead Minnow databases. 

Cell line 
Dosing 

method 

Mean EC50
1
 (µM) with standard deviation  Halle EC50

2
 

(µM) 

FHM LC50
3
 

(µM) AB CFDA-AM NR 

RTgill-W1 

(n=3)  
Direct 0.52

*,a
 ± 0.11 0.86

*,a
 ± 0.39 0.52

*,a
 ± 0.11 

8.32 1.15 

RTL-W1 

(n=3) 
Direct 0.47

*,a
 ± 0.06 0.28

*,a
 ± 0.08 0.59

*,a
 ± 0.26  

RTgill-W1 

(n=3) 
Indirect 1.17

a
 ± 0.47 5.22

b
 ± 2.38 1.30

a
 ± 0.44 

RTL-W1 

(n=3) 
Indirect 1.53

**,a
 ± 0.23 7.85

**,b
 ± 3.81 1.53

**,a
 ± 0.47  

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), carboxyfluorescein diacetate acetoxymethyl ester 

(CFDA-AM), neutral red (NR). 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

*EC50 means within a column with a different number of superscript * are statistically different from one another by Tukey-Kramer multiple comparison 

test (p <0.05).  No * indicates no difference. 
a
EC50 means within a row with a different superscript letter are statistically different from one another by Tukey-Kramer multiple comparison test (p <0.05).
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3.4 Cytotoxicity of hexachlorophene  

 

 Results indicated that hexachlorophene decreased the viability of RTgill-W1 and 

RTL-W1 in a dose-dependent fashion as measured by both AB and NR (Figure 3-4). There 

was no significant difference between the two cell lines in their response to hexachlorophene 

toxicity as measured by both AB and NR (p>0.05). There was also no significant difference 

between the AB and NR EC50 values for each of the two cell lines (p>0.05; Table 3-4). The 

drop in cell viability as measured by CFDA-AM was much less pronounced in both cell lines 

to the extent that associated EC50s could not be reliably calculated (Figure 3-4). Note that due 

to the non-sigmoidal shape of the viability curves, constraints were used in the EC50 

calculations so that the maximum (top) response is defined as 100% and the minimum 

(bottom) response is defined as 0%. Both cell lines however led to EC50s that are much closer 

to the LC50 for FHM than those in the Halle database (Table 3-4).          

 For both cell lines, the morphology of cells exposed to the highest concentration of 

hexachlorophene (0.19 µM) for 24h was comparable to the morphology of control cells. The 

cells in both conditions appeared healthy and each monolayer in the well was confluent and 

intact without signs of detachment or structural alterations (Figure 3-4, Panels C & D).
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Figure 3-4: Viability of RTgill-W1 and RTL-W1 exposed to hexachlorophene for 24h in L-

15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to hexachlorophene in L-15/ex for 24h for both 

RTgill-W1 (A) and RTL-W1 (B). Cell viability was measured with fluorescent indicator dyes: alamar 

Blue, CFDA-AM, and neutral red. Results were expressed as a percentage of the readings in DMSO 

control wells. Results shown are representative graphs of two or three independent experiments. The 

data points represent the mean of three culture wells with standard deviation. Appearance of control 

RTL-W1 cells (C) and those exposed to the highest concentration of 0.19 µM hexachlorophene (D) 

are shown. Cells were photographed with an inverted phase contrast microscope at 100x 

magnification. 
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Table 3-4:Comparing the cytotoxicity of hexachlorophene as evaluated with RTgill-W1 and 

RTL-W1 with the toxicity as summarized in Halle and Fathead Minnow databases. 

Cell line 
Mean EC50

1
 (µM) with standard deviation Halle EC50

2
 

(µM) 

FHM LC50
3
 

(µM) AB CFDA-AM NR 

RTgill-W1 

(n=2) 
0.033

a
 ± 0.024 

not 

calculable 
0.026

a
 ± 0.013 

7.94 0.051 

RTL-W1 

(n=3) 
0.093

a
 ± 0.082 

not 

calculable 
0.069

a
 ± 0.027 

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), 

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), neutral red (NR). 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

a
EC50 means within a row with a different superscript letter are statistically different from one another 

by Tukey-Kramer multiple comparison test (p <0.05). 

No EC50 means within a column were significantly different from one another. 
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3.5 Cytotoxicity of 4-fluoroaniline  

  

 Results indicated that 4-fluoroaniline was cytotoxic to both cell lines in a dose-

dependent fashion; an increase in concentration of 4-fluoroaniline led to a decrease in cell 

viability (Figure 3-5). Initial cytotoxicity assays of this chemical at a concentration range that 

encompassed the expected LC50 value of 151.36 µM (3.125-200 µM) did not lead to any 

appreciable decrease in cell viability (Figure 3-5, Panel A). In fact, a dose-response curve 

was not obtained with any of the three dyes and the values for each endpoint hovered around 

the 100% viability mark (Figure 3-5, Panel A). As the range of concentrations was shifted to 

higher values in relatively small increments, cell viability also started to decrease in small 

increments. This was done until cells exposed to the highest concentration of 4-fluoroaniline 

approached 0% viability. The chemical, however, became insoluble at the higher 

concentrations so that crystals formed in the medium as illustrated by the arrows in Figure 3-

5, Panels B, C, & E. The EC50 values were 16-40 times higher the LC50 for FHM (Table 3-5). 

 There was no significant difference between the two cell lines in their response to 4-

fluoroaniline toxicity (p>0.05). Also, for each of the cell lines, there was no significant 

difference in viability between the three indicator endpoints (p>0.05; Table 3-5).    
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Figure 3-5: Viability of RTgill-W1 and RTL-W1 exposed to 4-fluoroaniline for 24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to 4-fluoroaniline in L-15/ex for 24h for RTgill-W1 

at a lower range of concentrations (A), RTgill-W1 at a higher range of concentrations (B), and RTL-

W1 at that same high range of concentrations (C). Cell viability was measured with fluorescent 

indicator dyes: alamar Blue, CFDA-AM, and neutral red. Results were expressed as a percentage of 

the readings in DMSO control wells. Results shown are representative graphs of two independent 

experiments. The data points represent the mean of three culture wells with standard deviation. 

Appearance of control RTL-W1 cells (D) and those exposed to the second highest concentration of 

13,195 µM (E) are shown. Cells were photographed with an inverted phase contrast microscope at 

100x magnification. Arrows indicate concentration at which significant chemical crystallization is 

first observed. 
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Table 3-5: Comparing the cytotoxicity of 4-fluoroaniline as evaluated with RTgill-W1 and RTL-

W1 with the toxicity as summarized in Halle and Fathead Minnow databases. 

Cell line 
Mean EC50

1
 (µM) with standard deviation  Halle EC50

2
 

(µM) 

FHM LC50
3
 

(µM) AB CFDA-AM NR 

RTgill-W1 

(n=2) 
3522

a
 ± 1744 2763

a
 ± 1388 4031

a
 ± 3125 

unknown 151.36 

RTL-W1 

(n=2) 
4712

a
 ± 1100 6122

a
 ± 861 5937

a
 ± 3715 

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), 

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), and neutral red (NR) after 24h. 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

a
EC50 means within a row with a different superscript letter are statistically different from one another 

by Tukey-Kramer multiple comparison test (p <0.05). 

No EC50 means within a column were significantly different from one another. 
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3.6 Cytotoxicity of allyl alcohol 

3.6.1 Exposure to allyl alcohol for 24h 

 

 Initial range-finding tests that were based on the expected LC50 value for allyl alcohol 

of 5.495 µM (0.3-9.0 µM) had no effect on RTL-W1 cell viability as measured by all three 

endpoints (Figure 3-6, Panel A). As the range of tested concentrations was shifted to higher 

values in relatively small increments, cell viability started to decrease also in small 

increments. This was done until cells exposed to the highest concentration of allyl alcohol 

approached 0% viability or until pure allyl alcohol was used as the highest concentration 

(73,345 µM). Even at the highest concentration tested, all three viability curves for RTgill-

W1 hovered around the 100% viability mark at the end of the 24h incubation period; thus, 

EC50s could not be calculated for RTgill-W1 (Figure 3-6, Panel B). In contrast, RTL-W1 was 

responsive to allyl alcohol (Figure 3-6, Panel C), but the resulting EC50s were many orders of 

magnitude (365-1500 times) higher than the LC50 for FHM. There was also no significant 

difference between the three viability endpoints (p>0.05) in their response to the toxicity of 

allyl alcohol (Table 3-6). Nonetheless, they were still lower than the EC50 reported in the 

Halle database (Table 3-6).   
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Figure 3-6: Viability of RTgill-W1 and RTL-W1 exposed to allyl alcohol for 24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to allyl alcohol in L-15/ex at lower concentrations 

for RTL-W1 (A), or at higher concentrations (7,735-73,345 µM) for both RTgill-W1 (B) and RTL-

W1 (C). Cell viability was measured with fluorescent indicator dyes: alamar Blue, CFDA-AM, and 

neutral red. Results were expressed as a percentage of the readings in DMSO control wells. Results 

shown are representative graphs of two independent experiments. The data points represent the mean 

of three culture wells with standard deviation.  
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Table 3-6: Comparing the cytotoxicity of allyl alcohol as evaluated with RTgill-W1 and RTL-

W1 with the toxicity as summarized in Halle and Fathead Minnow databases. 

Cell line 
Mean EC50

1
 (µM) with standard deviation Halle 

EC50
2
 (µM) 

FHM LC50
3
 

(µM) AB CFDA-AM NR 

RTgill-W1 

(n=2) 
Not calculable Not calculable Not calculable 

8511.38 5.495 

RTL-W1 

(n=2) 
1968

a
 ± 1135 8538

a
 ± 12018 2976

a
 ± 3766 

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), 

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), neutral red (NR). 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

a
EC50 means within a row with a different superscript letter are statistically different from one another 

by Tukey-Kramer multiple comparison test (p <0.05). 
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3.6.2 Further exploring the cytotoxicity of allyl alcohol on RTgill-W1 

 

 In an attempt to further investigate the cytotoxicity of allyl alcohol on the gill cells, 

further trials were conducted so that the exposure period was lengthened to both 48 and 120h. 

The 48h exposure to RTgill-W1 caused a sharp drop in the viability of cells exposed mainly 

to the highest concentration of allyl alcohol (73,345 µM) as measured by all three endpoints 

(Figure 3-7, Panel A). As seen in Figure 3-7, Panels B & C, the decrease in viability was due 

to the detachment of cells from their underlying substratum. For 120h of exposure, the drop 

in viability as measured by all three endpoints was relatively more pronounced (Figure 3-7, 

Panel D). A significant number of cells were detached and floating in the medium at the 

higher concentrations, including, albeit to a less extent, some in the control wells (Figure 3-7, 

Panels E & F).  

 

 

 

 

 



 

62 

Figure 3-7: Viability of RTgill-W1 exposed to allyl alcohol for both 48 and 120h in L-15/ex. 

RTgill-W1 cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and 

incubated for 24h in complete L-15 medium and then exposed to allyl alcohol in L-15/ex for 48h (A), 

or 120h (D). Cell viability was measured with fluorescent indicator dyes: alamar Blue, CFDA-AM, 

and neutral red. Results were expressed as a percentage of the readings in DMSO control wells. 

Results shown are representative graphs of one independent experiment. The data points represent the 

mean of three culture wells with standard deviation. The diagrams at the top are for the appearance of 

control RTgill-W1 cells (B) and those exposed to the highest concentration of 73,345 µM allyl 

alcohol for 48h (C). The diagrams at the bottom are for the appearance of control RTgill-W1 cells (E) 

and those exposed to the highest concentration of 73,345 µM allyl alcohol for 120h (F). Cells were 

photographed with an inverted phase contrast microscope at 100x magnification.  
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3.7 Cytotoxicity of acrolein  

  

 Initial range-finding tests using acrolein at concentrations between 50-100 µM 

decreased RTL-W1 cell viability, but not in a defined pattern as cells exposed to all chemical 

concentrations resulted in low RFUs that were comparable to those of the controls (Figure 3-

8, Panel A). Morphological assessment of cells using a phase-contrast microscope showed 

that cells from all chemical concentrations, including those of solvent controls, were either 

severely impaired or dead to a comparable extent (Figure 3-8, Panels D & E).       

 Due to the extent of the impact of acrolein on neighbouring culture wells due its 

volatility alternative exposure strategies were tested. Separate microwell culture plates, 

where each concentration was tested in an individual plate, and plate sealers, where a sealing 

film covered each well, were examined. Exposure of RTL-W1 to acrolein in both sealed and 

separated culture plates resulted in a decrease of cell viability in a dose-dependent fashion as 

measured by all three endpoints (Figure 3-8, Panels B & C). The only significant difference 

between the two experimental conditions was for CFDA-AM being significantly higher in 

the separate plates condition (p<0.05). The sealing of plates did not lead to significant 

differences between the three viability endpoints (p>0.05). The use of separate plates, 

however, led to a significantly lower NR value than that of AB and CFDA-AM (p<0.05; 

Table 3-7).   

 Note that due to the non-sigmoidal shape of the viability curves, constraints were 

used in the EC50 calculations so that the maximum (top) response is defined as 100% and the 

minimum (bottom) response is defined as 0%. Both experimental conditions, however, led to 

EC50s that are much closer to FHM’s LC50 than that obtained from the Halle database (Table 

3-7).          
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Figure 3-8: Viability of RTL-W1 exposed to acrolein for 24h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to acrolein in L-15/ex at concentrations higher than 

50 µM in unsealed plates (A), at lower concentrations in sealed plates (B), and at lower 

concentrations where a separate plate was used for each concentration (C). The appearance of control 

RTL-W1 cells (D) and those exposed to the highest concentration of acrolein at 82.69 µM (E) from 

the initial unsealed-plate trials are shown. Cells were photographed at 100x magnification. Cell 

viability was measured with fluorescent indicator dyes: alamar Blue, CFDA-AM, and neutral red. 

Results were expressed as a percentage of the readings in DMSO control wells. Results shown are 

representative graphs of two independent experiments. The data points represent the mean of three 

culture wells with standard deviation.  
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Table 3-7: Comparing the cytotoxicity of acrolein as evaluated with RTL-W1 with the toxicity 

as summarized in Halle and Fathead Minnow databases. 

Condition 
Mean EC501 (µM) with standard deviation Halle 

EC502 (µM) 

FHM LC503 

(µM) AB CFDA-AM NR 

Sealed 

(n=2) 
0.144

a
 ± 0.042 0.165

*,a
 ± 0.015 0.109

a
 ± 0.013 

46.77 0.36 
Separate 

plates 

(n=2) 

0.247
a
 ± 0.007 0.229

**,a
 ± 0.005 0.141

b
 ± 0.005 

1
EC50 = concentration causing a 50% reduction in cell viability as measured with alamar Blue (AB), 

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), and neutral red (NR) after 24h. 
2
Halle database summarizes toxicity tests with mammalian cell lines using various endpoints.  

3
FHM (fathead minnow) database; LC50 = concentration causing death in 50% of fish after 96h. 

*EC50 means within a column with a different number of superscript * are statistically different from 

one another by Tukey-Kramer multiple comparison test (p <0.05).  No * indicates no difference. 
a
EC50 means within a row with a different superscript letter are statistically different from one another 

by Tukey-Kramer multiple comparison test (p <0.05). 
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3.8 Cytotoxicity of acetaldehyde  

 

 RTgill-W1 and RTL-W1 cells were exposed to acetaldehyde for 48h in sealed 

microwell culture plates. Acetaldehyde did not reduce cell viability in either RTgill-W1 or 

RTL-W1 (Figure 3-9, Panels A & B). Cell viability as measured by all three endpoints 

remained at DMSO control levels.  At the highest concentration of acetaldehyde (2270.3 

µM), RTgill-W1 cells were comparable in morphology to those of the control (Figure 3-9, 

Panels C & D). Both conditions had cell monolayers that were intact without any overt signs 

of cell shape changes or death.      
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Figure 3-9: Viability of RTgill-W1 and RTL-W1 exposed to acetaldehyde in sealed plates for 

48h in L-15/ex. 

 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to acetaldehyde in L-15/ex in sealed plates for 48h 

for both RTgill-W1 (A) and RTL-W1 (B). Cell viability was measured with fluorescent indicator 

dyes: alamar Blue, CFDA-AM, and neutral red. Results were expressed as a percentage of the 

readings in L-15/ex control wells. Results shown are representative graphs of one independent 

experiment. The data points represent the mean of three culture wells with standard deviation. 

Appearance of control RTgill-W1 cells (C) and those exposed to the highest concentration of 2,270.3 

µM acetaldehyde (D) are shown. Cells were photographed with an inverted phase contrast 

microscope at 100x magnification.  
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3.9 Cytotoxicity of 2,3-dimethyl-1,3-butadiene  

 

 RTgill-W1 and RTL-W1 were exposed to 2,3-dimethyl-1,3-butadiene for 72 hours in 

sealed microwell culture plates. A 72h exposure to 2,3-dimethyl-1,3-butadiene did not reduce 

the viability in cultures of either RTgill-W1 or RTL-W1 (Figure 3-10, Panels A & B). Cell 

viability as measured by all three endpoints was similar to the DMSO control levels. Cells in 

the highest concentration (109.5 µM) were comparable in morphology to those of the control 

(Figure 3-10, Panels C & D). Both conditions had cell monolayers that were intact without 

any overt signs of cell shape changes or death. 
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Figure 3-10: Viability of RTgill-W1 and RTL-W1 exposed to 2,3-dimethyl-1,3-butadiene in 

sealed plates for 72h in L-15/ex. 

Cells at a density of 1.5x10
5
 cells per well were seeded into 24-well microplates and incubated for 

24h in complete L-15 medium and then exposed to 2,3-dimethyl-1,3-butadiene in L-15/ex in sealed 

plates for 72h for both RTgill-W1 (A) and RTL-W1 (B). Cell viability was measured with fluorescent 

indicator dyes: alamar Blue, CFDA-AM, and neutral red. Results were expressed as a percentage of 

the readings in L-15/ex control wells. Results shown are representative graphs of one independent 

experiment. The data points represent the mean of three culture wells with standard deviation. 

Appearance of control RTgill-W1 cells (C) and those exposed to the highest concentration of 109.5 

µM 2,3-dimethyl-1,3-butadiene (D). Cells were photographed with an inverted phase contrast 

microscope at 100x magnification.  
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Chapter 4 

DISCUSSION 

 

 

 Screening chemicals for their toxicity in vitro using cells in culture offers many 

advantages over traditional in vivo methods that use whole fish. In this thesis, a total of eight 

reactive chemicals have been investigated for their cytotoxicity using modified dosing and 

exposure conditions on the rainbow trout RTgill-W1 and RTL-W1 cell lines. Some of the 

chemicals were straight forward to analyze, with EC50 values being well comparable to 

previously established in vivo LC50 values using fathead minnow fish. Challenges, however, 

were faced when investigating some of the other chemicals. Results were also compared with 

previously conducted in vitro assays by others in the field. It is worth noting at this stage that 

caution is warranted in our attempt to compare our experimental in vitro EC50 values with 

those in vivo LC50 values from the fathead minnow database. This is because 1) the selected 

contaminants were evaluated for their cytotoxicity (EC50 values) using two rainbow trout cell 

lines, whereas the LC50s from the FHM database were based on, as the name suggests, whole 

fathead minnow fish, 2) the default exposure time of each contaminant in our in vitro 

approach was 24h, whereas the FHM database values were based on exposure times of 96h, 

3) experimental EC50 values were based on nominal concentrations, whereas the FHM 

database values were based on analytically-determined concentrations, and 4) the cell 

viability endpoints employed in this thesis were not necessarily reflective of lethality on part 

of the cells, whereas the FHM database values were based on lethality.   
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4.1 Reference chemical: sodium dodecyl sulphate     

 Sodium dodecyl sulphate was cytotoxic to both RTgill-W1 and RTL-W1 in a dose-

dependent fashion; an increase in SDS concentration led to a decrease in cell viability as 

measured by all three endpoints (Figure 3-1). The observation that the liver cells were 

significantly more sensitive to SDS toxicity than those of the gill can be explained by the 

suggestion that these liver cells do not secrete as much basal lamina (extracellular matrix 

proteins) as the gill cells; accordingly, the liver cells would be more likely to let go (detach) 

of their underlying plastic surfaces during the experimental manipulations and subsequent 

chemical insult as they do not adhere to them as strongly as the gill cells. After all, the 

toxicity of SDS is attributed to its disruption of cell membranes and eventual cell lysis. Thus, 

detachment of RTL-W1 cells from their substratum was likely accelerated due to their 

weaker ability to attach to it, and that observation can partly explain RTL-W1’s higher 

sensitivity. Another contributing factor to RTL-W1’s lower EC50s lies within cell 

morphology. As seen in figure 3-1 (Panels D-G), liver cells exposed to the highest SDS 

concentration of 216 µM were completely disintegrated after the 24h exposure period, 

whereas those of the gill cells died, but left their remnants behind; in other words, the gill 

cells died on their feet.         

 To help explain the role of cell detachment (or quantify), cytotoxicity assays of RTL-

W1 cells exposed to SDS were conducted using microplates optimized for cell attachment 

(CellBIND plates). The plates were specially treated by the manufacturers in such a way that 

increases the oxygen content of a well’s polymer surface, which was previously 

demonstrated to improve hydrophilicity and wettability, both of which are thought to 

improve cell attachment and spreading (Dupont-Gillain et al., 2000; Van Kooten et al., 
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2004). By using these alternative plates, RTL-W1 EC50 values were significantly increased 

for AB and NR so that they approached those of the gill cells; in fact, there was no 

significant difference between them (Table 3-1). Accordingly, RTL-W1 cells’ apparent 

increase in sensitivity can be primarily attributed to their weaker ability to bind to their 

substratum.          

 Nonetheless, calculated EC50 values for both cell lines (including those done using 

CellBIND plates) were much closer to FHM’s in vivo LC50 value than that obtained from the 

Halle in vitro database, suggesting our experimental approach is more reliable and suitable 

for the cytotoxicity testing of SDS in vitro (Table 3-1). Although Halle’s averaged EC50 is 

~10 times higher than FHM’s LC50, there are other in vitro experiments within the database 

that achieved comparable in vitro/in vivo results. For instance, Gueniche & Ponec (1993) 

exposed human SVK-14 skin cells to SDS. After 24h, cell detachment as measured by the 

neutral red uptake (NRU) assay led to an EC50 of 37.2 µM.  Contrastingly, another study by 

Riddell et al. (1986a) exposed mouse 3T3-L1 cells also to SDS for 24h and used NRU as 

their endpoint. Their resulting EC50, however, was much higher at 346.7 µM. Therefore, SDS 

may exhibit differential toxicity to certain cell types, an observation that should be kept in 

mind.         
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4.2 Menadione 

  The mechanism of menadione cytotoxicity to human and rodent cell lines has been 

intensively studied because of its potential as a chemotherapeutic agent (Calderon et al., 

2002). At the most general level, menadione acts in two ways separately or together to cause 

cell death. The most studied way, and perhaps the most important one, is the disturbance of 

redox homeostatsis, resulting in oxidative stress. Metabolism of menadione involves redox 

cycling of the parent quinone molecule and liberates reactive oxygen species (ROS), 

including hydrogen peroxide (Sata et al., 1997). Secondly, menadione can form adducts with 

sulfhydryls and primary amines (Grant et al., 1988). The cytotoxicity of menadione depends 

on the exposure medium. Vitamin C (ascorbate) is an example of a medium component that 

potentiates redox cycling and cell killing. In this case the redox imbalance and killing is 

greater for cancer cells (Calderone et al., 2002).  Other medium components can actually 

protect the cells. N-acetylcysteine (NAC) is a precursor of glutathione and blocks killing by 

menadione (Calderone et al., 2002). The glutathione/glutathione disulfide (GSH/GSSG) 

system protects cellular thiol groups and redox balance.  For example, GSH reduces 

hydrogen peroxide to water. Menadione normally lowers GSH but NAC prevents this, aiding 

cell survival. 

 As for in vitro approaches using mammalian cell lines, a couple of studies 

investigating the effects of oxidative stress vascular injury have exposed human endothelial 

cells (from HUVEC and IVEC cell lines) to menadione for 24h (Schleger et al., 2004). 

Viability as assayed by both alamar Blue and ATP content was found to be ~10 µM, which is 

in agreement with Halle’s overall reported value of 7.94 µM. What is common to all of these 
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studies is the use of exposure media that suppress, to some extent, menadione’s ability to 

redox cycle.    

 One study investigating the effect of dietary vitamin E on the modulation of 

menadione-induced oxidative stress using neutral red as an endpoint and DMEM as exposure 

medium for 48h has reported an EC50 of 10 µg/mL (~59.1 µM) using the fathead minnow 

(previously carp)  EPC cell line (George et al., 2000). Interestingly, the addition of 25 µM 

vitamin E shifted the EC50 to >1,000 µg/mL (>5,900 µM), which greatly highlights the role 

of oxidative stress in menadione’s mode of toxic action. Accordingly, much of the 

improvement achieved in our cytotoxicity testing of menadione can be attributed to the 

elimination of antioxidants and vitamins from the exposure medium, L-15/ex. No other 

relevant studies using piscine cell lines have been found in the literature.  

 The sensitivity and cell death mode of mammalian cells to menadione appears to depend 

on the dose, exposure time, and cell type.  Menadione has been reported to cause either 

apoptosis, necrosis, or autoschizis, which is a mode of death showing both apoptotic and 

necrotic characteristics (Verrax et al., 2004).  In some cases the menadione concentration 

clearly dictates the mode of death. With the rat pancreatic acinar cell line, AR4-21, 10-20M 

menadione caused apoptosis, but at 100M cell death was by necrosis (Sata et al., 1997). A 

similar pattern has been seen with hepatocytes, but the concentrations were different. For 

hepatocytes, menadione at 50-100M caused apoptosis, and at 200M necrosis took place 

(McConkey et al., 1988).   

  The rainbow trout cell lines of this study appeared to be more sensitive to menadione 

than mammalian cell lines. Regardless of the endpoints, the EC50 values for RTgill-W1 and 

RTL-W1 were less than 1M. For mammalian cells the EC50 values are approximately 10M 
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(Schleger et al., 2004).  In the Halle database, the value is listed at 7.94M. The most likely 

explanation for the greater sensitivity of RTgill-W1 and RTL-W1 is that exposure was done 

in a simple buffered solution. Whereas in most mammalian studies exposure has been done 

in basal or even complete medium. Another possible explanation is that the antioxidant 

defence systems are different and/or stronger in mammalian cells. Others have found that the 

rat hepatoma cell line (H4IIE) was more protected from oxidative stress than the topminnow 

hepatoma cell line (PLHC-1) (Rau et al., 2004).  Relative to mammals, fish have slightly 

lower GSH levels and subtle differences in GSH regulation (Filho, 1996; Filho et al., 2000; 

Leggatt & Iwama, 2009; Leggatt et al., 2007). Whether the rainbow trout cell lines are dying 

of apoptosis, necrosis or some other mechanism will be an interesting study for the future. 

  Regardless of the reasons for the greater sensitivity of the rainbow trout cell lines to 

menadione or the mechanism of cell death, the sensitivity of the cell lines does match well 

with the results with whole fish (Table 3-2). In the FHM database, the LC50 for menadione is 

0.65M. This correlation suggests that the protocols used here will be valuable for predicting 

the toxicity of compounds like menadione to fish.  

4.3 Dichlorophene  

 Experimental EC50 values for DCP were also much closer to FHM’s LC50 than that 

obtained from the Halle database (Table 3-3). Much of this improvement can be attributed to 

the elimination of serum from the chosen exposure medium L-15/ex. Serum albumins are 

known to bind to hydrophobic chemicals such as dichlorophene, thereby effectively reducing 

their bioavailability to cells (Yamarik & Anderson, 2004).   

 The liver cell line was more sensitive to dichlorophene toxicity than that of the gill as 

the range of concentrations tested for RTL-W1 is lower than that for RTgill-W1 (Figure 3-3). 
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This was necessary because detachment of the liver cells from their underlying substratum 

became problematic when tested at the same concentrations used for the gill cells in a way 

that prevented the outcome of reliable EC50 values. This increase in sensitivity can be 

explained by the earlier suggestion that RTL-W1 cells secrete lower amounts of basal lamina 

(extracellular matrix) proteins, which would weaken their attachment to their substratum, 

thereby making them more vulnerable to detachment by chemical insults. And since 

dichlorophene’s main mode of action is by disrupting cellular membranes (Yamarik & 

Anderson, 2004), it would make sense for the liver cells to be more sensitive to 

dichlorophene exposure. To further support this conclusion, studies using plates with 

alternative cell binding surfaces (e.g. CellBIND) should be explored and compared with 

current results.    

 The effect of indirect dosing on dichlorophene cytotoxicity has also been explored. 

Indirect dosing has the advantage of evenly distributing a chemical in its exposure medium 

before its addition to cells. Interestingly, doing so led to AB and NR EC50 values that were 

even closer to that of FHM’s LC50 value. What’s puzzling, however, is the apparent greater 

insensitivity of the cell membrane integrity of both cell lines, especially RTL-W1, to 

dichlorophene’s toxic action as measured by CFDA-AM (Figure 3-3 & Table 3-3). A 

plausible explanation is that at the concentrations tested dichlorophene requires more time to 

fully exert its effects on lipid bilayers. The lack of in vitro cytotoxicity studies on 

dichlorophene by others makes further conclusions more difficult.        

 One comprehensive study by Freese et al. (1979) looking into the effect on growth 

inhibition by lipophilic acids after a 72h exposure reported a dichlorophene-induced IC50 of 

3.9 µM for human HeLa cells and 5.5 µM for the L132 human lung cells. These outcomes 
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are a little higher, but still comparable enough to our experimental EC50s using the rainbow 

trout cell lines of ~0.5-1.5 µM. The slight difference from these values, along with Halle’s 

averaged value of 8.32 µM, can be attributed to the fact that the authors exposed their cells in 

“growth medium”, even though there is enough evidence that serum proteins are able to bind 

to dichlorophene in a way that would effectively reduce its bioavailability to the cells 

(Yamarik & Anderson, 2004).    

 With a logP value of 4.34 and a logKoc of 3.62, dichlorophene in vitro toxicity runs 

into problems of solubility and adsorption to plastic surfaces that can vary between trials. 

Additionally, much of this contaminant was likely partitioning into lipid phases as in cells’ 

lipid bilayers. The rather low lethal and effective concentrations for dichlorophene on aquatic 

organisms, coupled with its tendency to strongly adsorb to sediments and biomagnify makes 

this contaminant a cause of concern. More attention by regulatory agencies should be paid to 

the chemical’s actual availability in ecosystems, and efforts should be taken to keep its levels 

in check.  

4.4 Hexachlorophene  

 Hexachlorophene’s possession of six chlorine atoms per molecule makes it an 

excellent disinfectant, but its bisphenol group makes it more than 2x10
5
 times more 

hydrophobic than the reference chemical SDS. With a logP of 6.92 and a logKoc of 5.57, 

much of this contaminant was likely partitioning into cellular lipid membranes or adsorbing 

to plates’ well surfaces, a combination that would be expected to greatly reduce the 

chemical’s bioavailable fraction to the cells. Cell binding of chemicals due to their 

partitioning into cellular membranes increases in importance as the chemicals’ 

hydrophobicity increases (Gulden et al., 1994).      
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 Before commenting on hexachlorophene’s cell viability curves and their associated 

EC50 values, a review of other in vitro studies on the chemical is necessary. Hexachlorophene 

is one of the MEIC chemicals and thus has been numerously investigated in vitro using 

mammalian cell lines and primary cultures (Halle, 2003). In summary, the main players 

found to significantly affect the cytotoxicity of HCP in vitro are: solubility of the compound, 

serum concentration in the test system, lipid content of the cells being studied, and the 

absolute cell density used.  

 Gulden et al. (2001) investigated the effect of cell density on the in vitro cytotoxicity 

of selected chemicals using a bovine sperm cytotoxicity assay. The sperm cells were exposed 

for 1h to varying concentrations of each chemical and then viability was assayed using ATP 

content. The greatest change in sensitivity was for p,p’-dichlorodiphenyl dichloroethylene 

(p,p’-DDE). Its EC50 jumped from 7.4±1 µM when at a density of 15x10
6
 cells/mL to 

>146±64 µM when at 120x10
6
 cells/mL, a decrease in sensitivity by ~20 times. 

Comparatively, hexachlorophene’s EC50 jumped from 0.094±0.03 µM to 0.39±0.2 µM, a 

decrease in sensitivity by a factor of ~4 times; note the large standard deviation associated 

with the EC50 values, which was also observed in our results. The authors attributed the 

rather large standard deviation to solubility problems. 

  An extensive study by Gulden & Seibert (2005) looked into the impact of FBS and 

cellular lipid content on the cytotoxicity of hydrophobic chemicals and their relation to 

predict in vivo acute fish toxicity. The study’s in vitro system used the fibroblast-like 

embryonic mouse Balb/c 3T3 cells and assayed for protein content (a measure of cell growth) 

72h after exposing the cells to varying concentrations of each chemical in DMEM medium 

supplemented with 5% FBS (equivalent to 1.2g/L or 18 µM). They calculated EC50s for each 
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of their chemicals that were based on 1) nominal concentrations and 2) the bioavailable (free) 

chemical concentrations as determined by a well-defined mathematical model. They 

illustrated how some hydrophobic chemicals have a strong tendency to bind to serum 

albumin proteins. For instance, more than 95% of pentachlorophenol (PCP) was found to 

bind to serum albumins, whereas 2,4,5-trichlorophenol and nonylphenol bound at 68 and 

44%, respectively. In the case of hexachlorophene, its fraction bound to serum albumins was 

62%. And its nominal-EC50 was 4.06 µM, whereas it dropped to only 0.027 µM when 

corrected for chemical loss, a drop of ~150 times. Importantly, based on the 22 chemicals 

tested, the authors concluded that their in vitro system (based on nominal concentrations) was 

17.5 and 5.6 times less sensitive than the acute fish toxicity assays previously done using 

rainbow trout and fathead minnow, respectively. The same parameter, however, is reduced to 

4.2 and 1.8, respectively, if in vivo LC50s are compared to those EC50s corrected for chemical 

loss.   

 Another study by Gulden et al. (2005) investigated the impact of the exposure 

duration on the cytotoxicity of hydrophobic chemicals also using Balb/c 3T3 cells but instead  

assaying for protein content (measure of cell growth) after 24 and 72h. They found that many 

of the compounds exhibited significant differences in viability between the two incubation 

periods tested. For instance, the EC50 for PCP was dropped from 133 µM after 24h of 

incubation to 39 µM after 72h, an increase in sensitivity by a factor of ~3.5. As for 

hexachlorophene, its EC50 dropped from 55 µM after 24h to 4.1 µM after 72h, a factor of ~13 

times. This observation suggests that the cytotoxicity of hexachlorophene requires multiple 

days to fully manifest; in other words, 24h may not be long enough.      
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    Another important study by Shrivastava et al. (1992) compared the cytotoxicity of 

hexachlorophene using McCoy (human epithelial synovial cells) and MDBK (bovine kidney 

cells) cell lines with that of rat primary hepatocytes. EC50s were 18 and 11 µM for McCoy 

and MDBK cells, respectively, but only 2 µM by the hepatocytes. The authors attributed this 

difference to the fact that hepatocytes are more fragile to pressure forces than the cell lines or 

because of their increased metabolic capacity.  

 Although the studies listed in the Halle database for HCP in vitro toxicity have an 

average EC50 of 7.94 µM, the individual values range from 0.93 to 25 µM, which is a 

reflection of the various factors noted above. Comparatively, calculated AB and NR EC50s 

from the current thesis for both cell lines are in good agreement with FHM’s in vivo LC50. 

They are closer to it than that documented in the Halle database (Table 3-4), but the 

associated standard deviation is large. Although care was taken to fully replicate the 

experimental trials, many factors could have acted in an additive manner to lead to the SD 

observed. These include 1) the variation in the absolute number of cells seeded to each well 

(within a plate and between trials), which would affect the cell density and total lipid content, 

and 2) the variable loss of the chemical due to adsorption to the various plastics used such as 

pipette tips and microplate surfaces. Although these factors are usually not considered 

significant, hexachlorophene’s high hydrophobicity makes them more relevant.  

      Although much of this contaminant was likely partitioning into lipid phases as in 

cells’ lipid bilayers, note that CFDA-AM’s dose-response curves hovered around the 50% 

viability mark after the 24h of exposure (Table 3-4), which indicates that, relative to cell 

metabolism and lysosomal activity, the integrity of cell membranes stays intact, at least for 

24h post exposure. This observation was verified morphologically as seen in Figure 3-4, 
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panels C & D, suggesting that hexachlorophene toxicity is manifested from the inside-out, so 

that much of the chemical that freely diffuses to the inside of the cells impairs certain 

intracellular functions before proceeding to act on the enclosing cell membrane.   

4.5     4-fluoroaniline  

 The cytotoxicity of 4-fluoroaniline to both cell lines also followed a dose-dependent 

fashion, but there were many issues to consider. As referred from Table 3-5, the obtained 

EC50 values are 16-40 times higher than that of FHM’s expected LC50 value. But one should 

keep in mind, however, that 4-fluoroaniline became more and more insoluble in its solvent 

(DMSO) as its tested concentrations were increased; in fact, crystals of 4-fluoroaniline 

became visible with the naked eye beginning at the second lowest concentration, but were 

more pronounced at the second highest concentration of 13,195 µM as indicated by arrows 

on the graphs and their representative diagrams (Figure 3-5). This observation would clearly 

decrease the bioavailable fraction of 4-fluoroaniline to the cells, further contributing to the 

cells’ apparent insensitivity to this haloaniline contaminant.  

 The story of 4-fluoroaniline toxicity does not end here. Although, until now, the in 

vitro cytotoxicity of 4-fluoroaniline has not been studied using any cell line system (neither 

have other ubiquitous haloaniline pollutants like chloroaniline and 3,4-dichloroaniline), the 

parent compound aniline has been investigated rather extensively both in vitro and in vivo 

(Bhunia et al., 2003; Cravedi et al., 1999; Dady et al., 1991; Hong et al., 2000; Kalsch et al., 

1991; Leguen et al., 2000; Ramos et al., 2002).  Perplexing conclusions from those aniline 

studies help shed some light on the clear ineffectiveness of 4-fluoroaniline toxicity in vitro 

using our system.  



 

82 

 The in vivo intraspecies sensitivity to aniline has been well-documented (Bhunia et 

al., 2003; Ramos et al., 2002). For instance, aniline’s 96h-LC50 for rainbow trout is 10.60 

mg/L, for goldfish 187 mg/L, and for fathead minnow 134 mg/L (Bhunia et al., 2003; 

Nielsen et al., 1993). Accordingly, rainbow trout is ~13 times more sensitive to aniline 

toxicity than the fathead minnow, which is a rather troubling finding since in vitro 

cytotoxicity studies do not usually take intraspecies differences into account.  

 Assuming that aniline’s mode of toxic action is comparable to 4-fluoroaniline, our 

approach ends up underestimating the cytotoxicity of 4-fluoroaniline to rainbow trout by ~56 

times, whereas it would underestimate its toxicity to fathead minnow by ~5 times. But since 

we investigated the cytotoxicity of 4-fluoroaniline using two rainbow trout cell lines, it 

would be more appropriate to compare our in vitro results with rainbow trout’s in vivo value 

as opposed to fathead minnow’s. Regardless, looking at it from our original perspective, our 

exposure of rainbow trout cell lines to 4-fluoroaniline underestimated the chemical’s toxicity 

by ~36 times when compared to FHM’s 4-fluoroaniline-induced LC50 (Table 3-5).  

 In any case, the dominant story here is that there is a poor correlation between in 

vivo-in vitro tests of haloanilines.  It is true that insolubility is a contributing factor, but a 

more biological explanation stems from previous work by Cravedi et al. (1999) that looked 

into in vivo-in vitro correlations in aniline toxicity using primary cultures of rainbow trout 

hepatocytes. Their big conclusion is that the hepatocytes, unlike the intact fish, were unable 

to biotransform aniline all the way to its hydroxylated metabolites, which are thought to be 

the key players in aniline toxicity (Hong et al., 2000; Rankin et al., 1995; Okazaki et al., 

2003). Accordingly, we can conclude that the insensitivity of our cell lines may be further 
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attributed to their inability (or relatively weak ability) to bioactivate 4-fluoroaniline to its 

reactive hydroxylated metabolites.  

4.6 Allyl alcohol  

 It is clear from the dose-response curves in Figure 3-6 that the two cell lines differ in 

their sensitivity to allyl alcohol toxicity. RTgill-W1’s complete lack of sensitivity supports 

previous findings that allyl alcohol exhibits organ-selective toxicity, which we now know to 

be the liver (Koerker et al., 1976). RTL-W1’s response further supports those earlier findings 

that allyl alcohol first requires its metabolism by a liver-specific alcohol dehydrogenase into 

the more toxic form acrolein in order to express toxicity (Jaeschke et al., 1987; Koerker et al., 

1976; Maddox et al., 2003; Maddox et al., 2004; Rikans & Moore, 1987; Serafini-Cessi, 

1972). Those studies have excluded the involvement of other hepatic enzymes (such as 

CYP450s) in the bioactivation of allyl alcohol by their additions of ADH inhibitors that 

effectively rendered their cell systems insensitive to allyl alcohol. To achieve the same 

conclusion for RTL-W1, it would be necessary to conduct further experiments using ADH 

inhibitors.   

 Although RTL-W1 was responsive to allyl alcohol toxicity, calculated EC50 values 

were higher than that of FHM’s LC50 by 365-1500 times (Table 3-6). This observation can be 

attributed to two phenomena acting in parallel. 1) It’s true that RTL-W1 is a liver cell line 

(Lee et al., 1993), but these liver cells seem to exhibit low and weak ADH activity, which 

would effectively reduce their production of the real toxic culprit acrolein throughout the 24h 

exposure period. 2) A logHLC of -5.25atm-m
3
/mol and a density of 0.854g/mL (at 25°C) 

make allyl alcohol highly volatile and its liquid lighter than water, thereby allowing it to 

evaporate out of solution in a multitude of steps: A) preparation of its dilution series, B) 
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dosing into the cells, and C) throughout the 24h incubation period. This additive loss greatly 

reduced the chemical’s bioavailable fraction to our cell systems, which then led to the 

relatively high EC50 values that underestimated the chemical’s toxicity in vitro.     

 Gill cells are not expected to carry the hepatic form of alcohol dehydrogenase, which 

explains their insensitivity to the alcohol after 24h. Nonetheless, the story with RTgill-W1 

and allyl alcohol was further investigated. Doubling the time of allyl alcohol exposure for the 

gill cells to 48h seemed to make a difference at the highest concentration possible, that of 

pure allyl alcohol (Figure 3-7, Panel A). While the involvement of an ADH cannot be ruled 

out, it is unlikely that it did because a decrease in viability due to allyl alcohol exposure was 

not observed after 24h and because gill cells would not be expected to carry the hepatic form 

of ADH. Hence, the decrease in viability can be attributed to the direct action of allyl 

alcohol. After all, it is a severe irritant and has the ability to disrupt cellular membranes 

(Belinsky et al., 1986; Jaeschke et al., 1987; Miccadei et al., 1988). Our exposure system, 

however, would still be subject to chemical loss through volatility. Taking the story further, a 

5-day (120h) exposure of the gill cells was also conducted (Figure 3-7, Panel D). Even 

though the decrease in viability was more pronounced than after 48h, most of the drop can be 

attributed to cumulative adverse effects from the absence of growth factors, changes in pH 

and osmolarity, and the buildup of metabolic waste over the 120h of incubation. This 

observation was supported by the morphological changes where even the control cells ended 

up fighting for their lives after the 120h (Figure 3-7, Panels E & F). A similar 5-day 

experiment where the plate was sealed did not make a difference on cell viability (data not 

shown).     
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 Until currently, the in vitro cytotoxicity of allyl alcohol has not been investigated 

using fish cell lines. Most in vitro systems have used either mammalian cell lines or primary 

cultures of hepatocytes. Of those, a considerable number have focused on mechanistic studies 

underlying the conversion of allyl alcohol to acrolein and subsequent liver pathogenesis 

(Koerker et al., 1976; Reid, 1972; Serafini-Cessi, 1972). The lowest in vitro EC50 reported in 

the Halle database on allyl alcohol cytotoxicity is 690 µM, which is still much higher (by 

~125 times) than FHM’s reported LC50 of ~5.5 µM. The authors in that study exposed mouse 

3T3 cells to allyl alcohol and used protein content after 24h as their toxicity endpoint (Halle, 

2003; Spielmann et al., 1992, unpublished results).  

 Another study that also exposed 3T3 cells to allyl alcohol combined the use of neutral 

red and kenacid blue (protein content) as their toxicity endpoint after sealing their plates for 

24h, after which they determined an EC50 of 860 µM (Spielmann et al., 1991). Yet another 

study used a related 3T3-L1 cell line to investigate the effect of sealing a plate’s wells after 

allyl alcohol exposure using paraffin oil versus those left unsealed (Smith et al., 1992). The 

unsealed trials yielded an EC50 of 9470 µM, whereas the EC50 from those sealed dropped by 

50% to 4650 µM, both of which are still much higher than FHM’s LC50. These relatively 

high in vitro EC50s can be attributed to the absence (or weak) ADH activity in the chosen cell 

lines. Support for this claim comes from a study that used rat hepatocytes to investigate allyl 

alcohol’s ability to oxidize pyridine nucleotides when at a concentration of 500 µM (Rikans 

et al., 1996). Cytotoxicity as measured by lactate dehydrogenase leakage was evident after a 

60min incubation of the hepatocytes with the chemical. In fact, relative to controls, LDH 

leakage reached 40% of total activity after 90mins and 80% after 120mins. Interestingly, the 

addition of 200 µM of an ADH inhibitor, dithiothreitol, to the reaction mixture 30mins after 
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allyl alcohol administration was enough to fully protect the cells against viability loss, which 

acts as a testament to how important acrolein generation is to full allyl alcohol toxicity.  

4.7 Acrolein  

 A simple comparison of logHLC values between acrolein and the reference chemical 

SDS shows that acrolein is ~200 times more volatile than SDS. Acrolein’s volatility coupled 

with its potency has led to rather interesting results. Although Figure 3-8, panel A is a 

reflection of RTL-W1’s response to acrolein, the trend seen can be disregarded. It became 

clear that when most wells of a plate are dosed with acrolein concentrations of ~40 µM and 

above, enough of the chemical would evaporate out of solution where it would eventually 

land in other wells, including those of the control, causing widespread cell impairment and 

death after 24h of exposure (compare Figure 3-8, Panels D & E). In fact, there was no 

significant difference in raw fluorescent units (RFUs) when comparing those given by 

control cells and those exposed to the highest concentration of acrolein at 82.69 µM as based 

on a visual observation. This phenomenon whereby cytotoxicity is observed in control cells 

due to a chemical’s volatility is known as cross-contamination and is well-documented in the 

literature (Blein et al., 1991; Smith et al., 1992). Several alternative experimental conditions 

for a number of volatile chemicals have been explored with various degrees of success. Some 

of these alternatives have been investigated in this thesis. 

  One experimental way of minimizing cross-contamination by a chemical’s volatility 

is by covering the plate with a specialized sealant right after dosing. The sealant used 

(Corning Inc.) is meant to close all gaps that can potentially transport a chemical from one 

well to another. In the case of acrolein, the sealing of wells proved effective. Acrolein 

became cytotoxic to RTL-W1 cells in a dose-dependent fashion, whereas the control cells 
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remained viable as measured by all three endpoints (Figure 3-8, Panel B). Although the 

associated EC50s are lower than FHM’s LC50, they are still much more comparable to it than 

that recorded in the Halle database (Table 3-7).  

 The effect of plate sealing on acrolein toxicity has not been investigated before. 

However, Smith et al. (1992) have investigated the effect of sealing wells of a plate using 

paraffin oil on a number of volatile chemicals using 3T3-L1 cells and assayed by the Kenacid 

Blue method (total protein content of cells after 72h). The study concluded that the 

cytotoxicity of many of the volatile chemicals greatly increased by sealing the plate. For 

instance, acetaldehyde’s EC50 dropped from 270 µg/mL (unsealed plate) to 36 µg/mL 

(sealed), a drop of 87%. Similarly, acetone’s cytotoxicity increased by 68%, allyl alcohol by 

51%, and ethyl acetate by 29%.    

 Another study by Riddell et al. (1986b) investigated the effect of exposure period 

(24h vs. 72h) on the cytotoxicity of various chemicals. Acrolein’s 24h-EC50 dropped from 

660 µM to <0.178 µM after 72h, which reflects an increase in sensitivity by >3700 times. 

The difference in sensitivity was even more pronounced for 6-mercaptopurine that reported 

an increase in sensitivity by >100,000 times. Hence, the study’s conclusion stressed the 

importance of exposure period when investigating the cytotoxicity of chemicals in vitro. Yet 

another study using NBP2 cells (clone of C1300 mouse neuroblastoma cells) has reported an 

acrolein-induced EC50 of 1 µM based on the sloughing of cells from the flask, but the 

resulting EC50 was found to increase to 30 µM if attachment of the cells to the underlying 

substratum was used as an endpoint (Koerker et al., 1976).        
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 Another way of protecting control cells from cross-contamination is by using a 

separate plate for each chemical concentration. By doing so in this thesis, the control cells 

did remain viable, and those exposed to various toxicant concentrations also showed toxicity 

in a dose-dependent fashion (Figure 3-8, Panel C), but their resulting EC50 values are about 

twice as high as those obtained by sealing the plate. Nonetheless, both conditions led to 

EC50values that are much closer to FHM’s LC50 than that obtained from the Halle database 

(Table 3-7).    

4.8 Acetaldehyde  

 Although acetaldehyde’s cell viability curves indicate that the chemical is nontoxic to 

both cell lines after 48h of exposure in sealed plates (Figure 3-9, Panels A & B), many 

practical problems were faced in our handling of the chemical. The major limitation can be 

attributed to the chemical’s highly volatile nature. It has a boiling point of 21°C (or room 

temperature), a density of 0.785g/mL (at 25°C), and based on its logHLC is ~400 times more 

volatile than the control chemical SDS. Thus, loss of the chemical throughout its preparation 

and subsequent exposure in multiwell plates may help explain the eventual nontoxicity of the 

chemical.   

 Although acetaldehyde is highly soluble in water (1x10
6
 mg/L at 25°C), a pre-stock 

solution of only 100 mg/L was first prepared from the pure form of the chemical in an 

attempt to contain its loss due to its rapid volatilization. But because of the chemical’s 

relatively weak cohesive and adhesive forces (when compared to water), an unknown volume 

kept dripping back out (lost) from the pipette’s tip during its initial preparatory step. The best 

way of minimizing the volume of chemical loss was by working with relatively small 

volumes. Specifically, 25.48 µL of acetaldehyde was added to 200 µL of distilled water to 
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form the desired 100 mg/L solution of acetaldehyde. This act of diluting the pure form of the 

chemical is similar to the idea behind the preparation of formaldehyde solutions at 37% (v/v). 

The pre-stock solution was further diluted by 1000 times to reach the desired range of 

chemical concentrations for the cytotoxicity assays (70.9-2270.3 µM) and left overnight to 

make sure the chemical is well mixed in the water. Acetaldehyde’s LC50 to fathead minnow 

is 691.83 µM; thus, RTgill-W1’s and RTL-W1’s complete insensitivity to acetaldehyde after 

48h of exposure is likely due to significant loss of the chemical throughout its preparation 

and subsequent exposure in multiwell plates.        

  Acetaldehyde’s average EC50 as reported in the Halle database is 2454.71 µM, 

ranging from as low as 540 µM to as high as 9000 µM. Interestingly, these low and high 

EC50s were obtained from the same set of experiments that differ only in the nature of 

toxicity endpoint used (Koerker et al., 1976): NBP2 cells were exposed to acetaldehyde for 

24h where cell viability was then measured by either the sloughing of cells into the medium 

(lower EC50) or the attachment of cells to their substratum (higher EC50). From this outcome 

one can conclude that the toxicity of acetaldehyde in vitro causes significant monolayer 

breaks and subsequent cell detachment. The study’s outcome, however, is contradictory to 

what we observed in the current thesis. Not only were we unable to establish acetaldehyde 

EC50s, but we were also unable to observe any morphological changes even in cells exposed 

to 2270 µM (Figure 3-9, Panels C & D).    

 In another study, Smith et al. (1992) exposed 3T3-L1 cells to acetaldehyde and other 

volatile chemicals in order to investigate the effect of sealing a plate’s wells with paraffin oil 

versus those left sealed. The toxicity endpoint was protein content after a 72h exposure of the 

cells to acetaldehyde. Plates unsealed led to an acetaldehyde-induced EC50 of 6130 µM, 
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whereas those sealed led to an EC50 of 820 µM, which is ~13% of the former condition. 

Although plates were sealed in the current thesis (albeit in a different way), no toxicity was 

observed after 48h of exposure using any of the three indicator dyes nor were there any 

morphological signs of toxicity (Figure 3-9). Having said that, a study by Künstler & Bartnik 

(1987) did use the neutral red uptake assay as their toxicity endpoint after exposing BALB/c-

3T3 cells to acetaldehyde for 24h and were able to determine an EC50 of 3650 µM (See also 

Halle, 2003). Accordingly, one could conclude that our highest acetaldehyde concentration of 

2270 µM is simply nontoxic to both RTgill-W1 and RTL-W1. In any case, the insensitivity 

of our cell lines seems to be due to the combination of 1) acetaldehyde loss through 

volatility, 2) the use of insufficiently toxic levels of the chemical, and 3) the use of highly 

resistant cell types to acetaldehyde toxicity, though the latter in unlikely. The downside to 

using a higher range of acetaldehyde concentrations is the associated acceleration in the 

chemical’s volatility.    

4.9      2,3-dimethyl-1,3-butadiene  

 Similar to the case of acetaldehyde, 2,3-dimethyl-1,3-butadiene’s cell viability curves 

indicated that the chemical is nontoxic to both cell lines after 72h of exposure in sealed plates 

(Figure 3-10), but likewise many practical problems were faced in our handling of this 

chemical. Initial attempts to solubilize DMBD in each of L-15/ex, DMSO, and ethanol 

proved unsuccessful as the chemical was observed to be completely immiscible in each of the 

solvents; it formed two layers and eventually settled on top. Subsequent vigorous vortexing 

did not emulsify the solution mixture either. At a density of 0.726g/mL (at 25°C) and a 

logHLC of -0.72atm-m
3
/mol, the chemical is more than 1x10

6
 times more volatile than SDS; 

hence, the major limitation in the cytotoxicity of DMBD can also be attributed to its highly 
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volatile nature.  Loss of the chemical throughout its preparation and subsequent exposure in 

multiwell plates may help explain the eventual nontoxicity of the chemical.   

 It is worth noting that the cytotoxicity of 2,3-dimethyl-1,3-butadiene has never been 

tested in vitro before. In our attempt to deal with the solubility and volatility of DMBD, a 

solution was prepared in L-15/ex that took into account the chemical’s known solubility of 

300 mg/L (~3612 µM) in water and was then left overnight to make sure the chemical is well 

mixed in the water. The problem with this set up is that once added to a well’s exposure 

medium as part of the cytotoxicity assay (the working solutions were 200x concentrated), the 

highest tested concentration would be ~18 µM, which is much less than FHM’s LC50 of 83.2 

µM. In fact, cells exposed to this high concentration of 18 µM remained healthy without 

signs of adverse effects after 24h of exposure. The same was observed when cells were later 

exposed to concentrations up to 109 µM for 72h (Figure 3-10, Panels C & D). Therefore, 

RTgill-W1’s and RTL-W1’s complete insensitivity to 2,3-dimethyl-1,3-butadiene after 72h 

of exposure is likely due to the combination of 1) significant loss of the chemical throughout 

its preparation and subsequent exposure in multiwell plates, 2) the use of insufficiently toxic 

levels of the chemical, and 3) the use of highly resistant cell types to DMBD toxicity, though 

the latter is unlikely.         

 In contrast to 2,3-dimethyl-1,3-butadiene, the cytotoxicity of 1,3-butadiene has been 

evaluated using smog chamber-cell in vitro assays (Doyle et al., 2007). Smog chambers are 

commonly used in air quality research to investigate the toxicity of photochemically-active 

contaminants under ambient environmental conditions. A549 cells, a human pulmonary type 

II epithelial-like cell line, were exposed to 1,3-butadiene at concentrations that resemble 

those in the atmosphere in a serum-free F12K medium (Doyle et al., 2007). After 9 hours of 



 

92 

exposure, cytotoxicity as measured by lactate dehydrogenase release was ~6-fold higher in 

exposed cells than those exposed to clean air (control condition). Since 2,3-dimethyl-1,3-

butadiene is also an atmospheric toxicant, it may be more appropriate to evaluate its toxicity 

using similar chamber-cell in vitro assays.       
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Chapter 5 

CONCLUSION 

 

 

 It has become clear after a close examination of each of the reactive chemicals that 

many of them have not been investigated for their ecotoxicological effects, which is rather 

unacceptable since we know that the environment acts as the ultimate sink for contaminants. 

Additionally, all eight contaminants have been studied for their toxicity using model 

mammalian systems, namely rats and mice, but the effect of these xenobiotics on aquatic 

species is more important because of their increased likelihood of coming into contact with 

the chemicals. Aquatic organisms are an integral part of nature and so the impact of these 

chemicals on the aquatic environment is a serious issue that deserves more attention from 

both scientists and environmentalists.  

 The realization that toxicity is first manifested at the cellular level, coupled with other 

important factors such as the large number of chemicals in commerce, time, and the 

associated cost of screening these chemicals for toxicity has helped pave the way for the use 

of animal cells in culture as alternatives to the use of whole animals for such purposes. The 

use of animals cells is rapid, inexpensive, and thus much more economical. But the use of 

mammalian primary cultures and cell lines for the cytotoxicity testing of anthropogenic 

chemicals is simply insufficient to allow us to accurately depict or extrapolate the findings to 

fish species. Fish cell lines are an obvious alternative to the use of mammalian cells in 

culture for our understanding of the toxicity of these chemicals to aquatic organisms, or even 

the aquatic environment as a whole.   
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 It is true that the use of cells in culture for toxicological purposes has not been 

perfected as of yet. After all, both RTgill-W1 and RTL-W1 failed to accurately predict the 

cytotoxicity of four of the studied reactive chemicals of concern. But a closer look would 

blame the nature of the chemicals themselves as opposed to the choice of cell line or even 

cell viability endpoint. Whereas most (if not all) inert chemicals can be reliably tested in vitro 

for their toxicity, each reactive chemical seems to present its own challenge, namely that of 

volatility or solubility. But that should not detract our attention from further improving the 

use of cells in culture. After all, ~80% of xenobiotics belong to the inert class of chemicals. 

And many studies have reported on good correlations between their in vitro EC50 values and 

those done in vivo using intact animals. For instance, Borenfreund and Borerro (1984) 

investigated the cytotoxicity of 34 toxicants on many cell types, such as 2nd to 9th passages 

of primary explants of rabbit corneal cells and various established cell lines. Irrespective of 

the cell type used, their results correlated well with eye irritancy as measured by the Draize 

test. In fact, the Draize test has now been replaced with cell lines in many European 

countries. And so it is only a matter of time before the full potential of the use of cells in 

culture is fully understood. 

 One must always keep in mind the three Rs that guide the discipline of in vitro 

toxicology: Replace, Reduce, and Refine the use of animals whenever possible (Gad, 1990). 

The use of in vivo fish lethality tests will always be limited by staff, cost, and available space, 

but the successful application of cell lines within the realm of toxicology would eventually 

allow for designing automated ways for the high-throughput screening of chemicals. Such 

automation should serve as further incentive to invest in more ways to improve our in vitro 

screening of chemicals. The successful application of cell lines will also help improve and 
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contribute more to our understanding of the ecology and biochemistry of the many 

environmental contaminants.   
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