
Quantum Snake Walk on Graphs

by

Ansis Rosmanis

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Ansis Rosmanis 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Quantum walks on graphs have been proven to be a useful tool in quantum algorithm
construction for various problems. In this thesis we introduce a new type of continuous-
time quantum walk on graphs called the quantum snake walk, the basis states of which are
fixed-length paths (snakes) in the underlying graph.

We first consider the quantum snake walk on the line. The analysis of the eigenvalues
and the eigenvectors of the Hamiltonian governing the walk reveals that most states initially
localized in a segment on the line always remain in that same segment. However, there are
exponentially small (in the length of the snake) fraction of states which move on the line
as wave packets with momentum inversely proportional to the length of the snake.

Next we show how an algorithm based on the quantum snake walk might be able to
solve an extended version of the glued trees problem which asks to find a path connecting
both roots of the glued trees graph. No efficient quantum algorithm solving this problem
is known yet. For that reason we consider a specific extension of the glued trees graph
and analyze how the quantum snake walk behaves on it. In particular we show that the
quantum snake walk on the infinite binary tree, restricted to certain superpositions, in
many aspects is very similar to the quantum snake walk on the line. We also argue why
the quantum snake walk, initialized in certain superpositions on one side of the glued trees
graph, after certain amount of time is likely to be found on the other side of the graph.
This seems to be crucial if we want our algorithm to work.

iii

Acknowledgements

I would like to thank my supervisor John Watrous for his invaluable support, advice
and guidance throughout my Master’s studies. It was his idea to consider quantum walks
whose states are paths in graphs. I would also like to thank Richard Cleve for introducing
me to the pathfinding problem in the glued trees graph. I am also grateful to Andrew
Childs for numerous helpful discussions regarding my research. I would also like to thank
my fellow graduate students at the Institute for Quantum Computing, especially Robin
Kothari for his comments on my work.

I would like to thank all my friends who have made my stay at Waterloo an exciting
experience. In particular, I would like to thank my dear friends Rina Baba and Rajasekhar
Sappidi, without them this would not have been possible.

Last but not least, I would like to thank my family for their support and patience.

iv

Dedication

In memory of Ināra Rosmane, a loving mother and the strongest supporter of my
education since the first grade.

v

Contents

List of Figures viii

1 Introduction 1

2 Continuous-time quantum walk 3

2.1 Continous time quantum walk on the line 4

2.1.1 Precise analysis using Bessel functions 4

2.1.2 A wave packet as an initial state 5

2.2 Glued trees problem . 7

2.2.1 The extended glued trees problem - a motivation for quantum snake
walks . 9

2.3 The definition and simulation of quantum snake walk 10

3 Snakes on line 12

3.1 The Hamiltonian . 12

3.1.1 Change of basis . 15

3.1.2 k-dependent eigenvalues . 17

3.1.3 k-independent eigenvalues . 19

3.2 Even n and the median eigenvalue . 20

3.2.1 Holomorphy and some general results 20

3.2.2 Median eigenvalue for asymptotically large n 23

3.2.3 Perturbed eigenvalues and eigenvectors 26

3.3 A wave packet of snakes . 31

3.3.1 Short-time approximation . 32

3.3.2 Asymptotic approximation . 34

3.3.3 Span of a snake . 37

3.3.4 Other momenta and other eigenvalues 38

vi

4 Snakes on the glued trees graph 40

4.1 Potential approaches . 40

4.1.1 Glued trees graph alone . 41

4.1.2 Glued trees graph with semi-infinite lines attached 42

4.1.3 Expanded glued trees graph . 42

4.2 Reduction to a simpler walk . 45

4.3 Quantum snakes on infinite binary trees 49

4.3.1 Analogies to snakes on line . 50

4.3.2 Wave packets and the span length 53

4.4 Reflection and transmission coefficients . 55

4.4.1 Potential algorithm for the extended glued trees problem 58

5 Conclusion 61

Bibliography 65

vii

List of Figures

2.1 A glued trees graph of height 3. 8

2.2 A walk on a glued trees graph reduced to a line segment. 9

3.1 The graph corresponding to the adjacency matrix H (for n = 3). 14

3.2 The graph corresponding to the adjacency matrix Φk. 17

3.3 k-dependent eigenvalues for n = 8. 21

3.4 Derivatives of k-dependent eigenvalues for n = 8. 22

3.5 (n+ 2)λ(k) (solid line), (n+ 2)λ′(k) (dashed line) and (n+ 2)λ′′(k) (dotted
line) for n = 500. 25

3.6 4 arctan
(

2 cos k
sin2 k

)
(solid line) and its first and second derivatives (dashed and

dotted lines, respectively). 26

4.1 Tree T1 when M −N = 4. 43

4.2 An expanded glued trees graph GM for N = 2 and M = 4. A copy of the
original glued trees graph G is shown using thick edges. 44

4.3 k-dependent eigenvalues in the case of the tree for n = 8. 52

4.4 Derivatives of k-dependent eigenvalues in the case of the tree for n = 8. . . 53

4.5 The absolute value of the transmission coefficient Tk squared. 57

4.6 The effective length βl,k of the center part for n ∈ [1 .. 7], l ∈ [1 .. n+ 1] and
k = 3π

2
. The value of βl,k is the same for l = l0 and l = n+ 2− l0. 58

viii

Chapter 1

Introduction

In the beginning of the last century scientists realized that the Universe does not quite
behave as was believed. A new set of laws of physics was required in order to explain
experimental observations made at the microscopic scale, and so the groundwork for a new
theory called quantum mechanics was laid. Yet the principles of physical computational
devices we use in practice today can be completely explained using our knowledge about
the Universe before the discovery of quantum effects. Indeed, already in 1837 Charles
Babbage described a design for a mechanical computer theoretically capable of computing
all Turing-computable functions, long before Alan Turing was even born. So a couple of
decades ago scientists started to ask why not to exploit our new knowledge of the reality
around us to make possibly superior computational devices, and in 1985 Deutsch introduced
the notion of a quantum computer as a universal computational device [17].

In 1994 Shor showed that quantum computers, once built, will be able to factor integers
efficiently [28]. Integer factorization is a problem of great importance in cryptography, since
the security of the most widely used cryptosystems is based on the assumption that we
cannot factor integers efficiently. However, the true potential of quantum computers is still
unclear. One step toward understanding it is to consider what are the differences between
quantum and classical computers in a setting where we are given the input via a black-box
oracle. Since we cannot know the inner workings of the oracle, it is easier to prove lower
bounds in this model and therefore in many cases it is easier to show a separation between
the best quantum and classical algorithms.

Ever since Deutsch presented a simple oracle problem that can be solved on a quantum
computer using fewer oracle queries than on any classical computer [17], scientists have tried
to come up with more and more problems for which quantum computers outperform their
classical counterparts; some very artificial, some quite natural. Bernstein and Vazirani gave
the first example of an oracle problem which can be solved in polynomial time on a quantum
computer, but requires superpolynomial time on a classical computer [8]. Shortly after that
Simon gave an example in which this separation is exponential [29]. Yet it is unclear what
are the best methods for the construction of efficient quantum algorithms. While quantum
Fourier sampling is probably the most popular such method so far, many algorithms are
also based on the concept of quantum walk. In particular, continuous-time quantum walks

1

on graphs, introduced by Farhi and Gutmann [20], give rise to fast algorithms for NAND
tree evaluation [18] and unstructured search [19, 14]. Continuous-time quantum walks are
also known to be able to perform universal quantum computation [11], and they can solve
some oracle problems exponentially faster than any classical algorithm [12, 16].

In this thesis we introduce a new type of continuous-time quantum walk on graphs,
the basis states of which are not vertices of the graph, but paths in it of a fixed length n.
We define this new walk on a unweighted undirected graph G as a regular continuous-time
quantum walk (the one introduced by Farhi and Gutmann) on a more complex weighted
undirected graph Gn which is constructed from the original graph G. Since to the author of
this thesis the discrete-time classical counterpart of this walk in some sense resembles the
behavior of a ‘snake’ of length n which is placed on a graph along its edges and which makes
random decisions in which direction to go next, we call this new walk the continuous-time
quantum snake walk. We analyze in detail the continuous-time quantum snake walk on the
line and show its similarities to the regular continuous-time quantum walk on the line.

We do not introduce the continuous-time quantum snake walk just for the sake of
introducing something new. As we discuss later, an algorithm based on this walk might be
able to solve an extended version of the glued trees problem for which no efficient classical
algorithm exists and no efficient quantum algorithm is known. Childs et al. introduced
the glued trees graph consisting of two complete binary trees of the same height which are
connected by a random cycle that alternates between the leaves of the trees [12]. Given a
glued trees graph via a black-box oracle and the label of the root of one tree, the glued trees
problem is to determine the label of the root of the other tree. While there is an efficient
quantum algorithm based on the continuous-time quantum walk which solves this problem
[12], no efficient quantum algorithm which finds a path connecting these two roots is known.
This yet unsolved problem is the main motivation for the continuous-time quantum snake
walk.

This thesis is a report on ongoing research, and, since the analysis of the continuous
quantum snake walk is somewhat technically involved, we make certain assumptions in
some parts of it. Wherever necessary, we point out assumptions we make and why it is
reasonable to make them.

The structure of the thesis is as follows. In Chapter 2 we discuss some already known
results about continuous-time quantum walks. These results in later chapters help us to
analyze the continuous-time quantum snake walk, which we precisely define at the end of
this chapter. Chapter 3 is completely devoted to the analysis of the quantum snake walk
on the line. We use a similar analysis in Chapter 4 to analyze the quantum snake walk on
the glued trees graph. There we also intuitively sketch an algorithm which might efficiently
find a path connecting the roots of the glued trees graph. Finally, we conclude in Chapter
5 with comments and potential future work.

2

Chapter 2

Continuous-time quantum walk

Let G = (V,w) be a weighted undirected graph, where V is a set of vertices and w is a
weight function, which assigns a weight w(v1, v2) ∈ R to every pair (v1, v2) ∈ V 2. Since G
is undirected, we have w(v1, v2) = w(v2, v1) for all v1, v2 ∈ V . Unweighted graphs can be
considered as a special case when each weight is either 1, if there is an edge, or 0, if there
is not. Let CV be a Hilbert space having an orthonormal basis {|v〉 : v ∈ V } called the
standard basis. Let HG be a linear operator acting on CV such that 〈v1|HG|v2〉 = w(v1, v2)
for all v1, v2 ∈ V . Since G is undirected with all weights being real, HG is Hermitian. The
continuous-time quantum walk on G is defined as a quantum evolution in the space CV

governed by the Hamiltonian HG according to the Schrödinger equation. If we fix an initial
state of the walk to be |ψ(0)〉 ∈ CV , then we can look on the walk as a function which
maps time t ≥ 0 to the state |ψ(t)〉 = e−iHGt|ψ(0)〉 ∈ CV .

It is not always possible to simulate a continuous-time quantum walk by a quantum
circuit efficiently, simply because there are too many graphs to consider. Still, as the
theorem below states, it is always possible to do so for sparse graphs.

We call a graph G = (V,w) sparse if for all vertices v1 ∈ V the number of vertices
v2 ∈ V such that w(v1, v2) 6= 0 is bounded by poly(log |V |). Suppose all vertices are
labeled by bit strings, and let v̄ denote the label of a vertex v. We call the graph G
computable if there exists an efficient algorithm that, given v̄1 as an input, outputs a list
{ (v̄2, w(v1, v2)) : v2 ∈ V,w(v1, v2) 6= 0 }. Lemma 1 in [2] states the following:

Theorem 2.1. If a graph G = (V,w) is sparse and computable, and all its weights are
bounded by poly(log |V |), then we can simulate the continuous-time quantum walk on G
efficiently, that is, we can implement a unitary transformation U such that ||U−e−iHGt|| < ε
using poly(log |V |, t, 1/ε) elementary quantum operations for all ε > 0.

Better techniques for simulating sparse Hamiltonians were later given by [10, Section
1.3] and [9].

3

2.1 Continous time quantum walk on the line

One of the simplest examples of how the continuous-time quantum walk works is the walk
on the line. The behavior of both the continuous-time and the discrete-time quantum
walks on the line are similar and well understood [3, 5, 7, 25]. However, we repeat the
analysis of the continuous-time case here because it helps us to analyze the more complex
model of the continuous-time quantum snake walk later.

By the line we mean the graph G = (V,E), where V = Z is the set of vertices and
E = {(x, x ± 1) : x ∈ Z} is the set of edges. In this case the Hamiltonian governing the
continuous-time quantum walk is H =

∑
x∈Z (|x− 1〉〈x|+ |x+ 1〉〈x|) (for convenience we

omit the subscript G for HG and denote it just by H).

Let us start by finding the eigenvalues and the eigenvectors of H. For any real number
k let us define |k̃〉 = 1√

2π

∑
x∈Z e

ikx|x〉. We have∑
x∈Z

|x− 1〉〈x| · |k̃〉 =
1√
2π

∑
x∈Z

eikx|x− 1〉 = eik 1√
2π

∑
x∈Z

eik(x−1)|x− 1〉 = eik|k̃〉 (2.1)

and similarly
∑

x∈Z |x+ 1〉〈x| · |k̃〉 = e−ik|k̃〉. Hence

H|k̃〉 = eikx|k̃〉+ e−ikx|k̃〉 = 2 cos k|k̃〉. (2.2)

We have 〈k̃2|k̃1〉 = δ(k1 − k2 mod 2π), where δ is the Dirac delta function, (see [11]) and

H =

∫ 2π

0

2 cos k |k̃〉〈k̃| dk. (2.3)

Here we demonstrate two types of approaches for the analysis. In the first case we
analyze a walk starting from a standard basis state. This analysis, which uses the Bessel
function, is precise. In the second case we consider a wave packet as an initial state of the
walk, and then, using approximate analysis, we see how the wave packet moves.

2.1.1 Precise analysis using Bessel functions

Now we show how the walk works if the initial state of it is a standard basis state |x〉,
where x ∈ Z. Let us consider what is the probability (or the amplitude, to be precise) that
we start from the state |x〉 and after time t we are in a state |y〉, where y ∈ Z. That is,
what is the value of 〈y|e−iHt|x〉. We get

〈y|e−iHt|x〉 =〈y|
(∫ 2π

0

e−2it cos k|k̃〉〈k̃| dk
)
|x〉

=
1

2π

∫ 2π

0

e−2it cos keiky−ikx dk

=
(−1)y−x

π

∫ π

0

e2it cos k (eik(y−x) + eik(x−y))

2
dk

=(−i)y−xJy−x(2t),

(2.4)

4

where Jm(z) denotes the Bessel function of the first kind, which for integer order m can
be defined as

Jm(z) =
i−m

π

∫ π

0

eiz cos θ cos(mθ) dθ (2.5)

[1, Chapter 9]. By the properties of the Bessel function, this implies that the state |x〉
evolves as two, left and right moving wave packets, each propagating with momentum 2
[10, Section 3.3.2]. The same conclusion can be achieved using the method of stationary
phase approximation [3].

2.1.2 A wave packet as an initial state

As shown in the previous section, we can analyze the continuous-time quantum walk on
the line precisely. We are able to do so because we know the full eigenspectrum of the
operator H. However, later we consider a walk governed by a Hamiltonian for which we do
not know how to obtain the full eigenspectrum, therefore it is important to explore good
approximation methods.

Let p(µ,σ) be the probability density function of a normal distribution with a mean µ
and a variance σ2. That is

p(µ,σ)(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 . (2.6)

For some values of parameters µ and σ let the initial state of the walk be

|ξµ,σ〉 = cσ

∫ ∞
−∞

√
p(µ,σ)(k) |k̃〉 dk, (2.7)

where cσ > 0 is the normalization factor. In order to see that the initial state looks like a
Gaussian-shaped wave packet, we need to cover some mathematical background first.

The error function is defined as

erf(z) =
2√
π

∫ z

0

e−θ
2

dθ, (2.8)

and therefore d(erf(z))/dz = 2e−z
2
/
√
π. This allows us to see that∫

eaz
2+bzdz =

−i
√
π

2
√
a
e−

b2

4a erf

(
i
b+ 2az

2
√
a

)
(2.9)

and ∫
eaz

2+bzz dz =
1

2a
eaz

2+bz +
ib
√
π

4a3/2
e−

b2

4a erf

(
i
b+ 2az

2
√
a

)
(2.10)

(the latter integral we use only later in Section 3.3). It is known that erf(−z) = −erf(z),
erf(z) = erf(z) and erf(z)→ 1 as z →∞ in | arg z| < π

2
[1, Chapter 7]. Hence, if Re(a) < 0,

then from (2.9) we get ∫ ∞
−∞

eaz
2+bzdz =

√
π

−a
e−

b2

4a . (2.11)

5

Let κ = k − µ. (2.11) gives us

|ξµ,σ〉 =cσ

(∑
x∈Z

|x〉〈x|

)∫ ∞
−∞

√
1

σ
√

2π
e−

(k−µ)2

2σ2 |k̃〉 dk

=
cσ√

σ(2π)3/4

∑
x∈Z

(∫ ∞
−∞

e−
κ2

4σ2 ei(µ+κ)x dκ

)
|x〉

=cσ
4

√
2σ2

π

∑
x∈Z

eiµxe
− x2

2(1/2σ2) |x〉.

(2.12)

Therefore we can see that the amplitudes of |ξµ,σ〉 correspond (up to some global factor
and a local phase eiµx) to the normal distribution in x with mean 0 and variance 1/2σ2.
We can also see that the larger σ we choose, the more localized the state |ξµ,σ〉 becomes,
and vice versa. We are interested in the case when σ is small because it makes a couple of
approximations possible. For small σ (how small σ must be we specify later) we have

〈ξµ,σ|ξµ,σ〉 = c2
σ

1

(1/2σ)
√

2π

∑
x∈Z

e
− x2

2(1/2σ)2 = c2
σ

∑
x∈Z

p(0, 1/2σ)(x) ≈ c2
σ, (2.13)

which gives us cσ ≈ 1. The approximation in (2.13) is due to the fact that for large variances
(which is (1/2σ)2 in our case) the binomial distribution with the success probability 1/2 is
very well approximated by the normal distribution [26, Part II].

Now let us see how the state |ξµ,σ〉 evolves in time. We choose σ to be small enough
so that most of the contribution to the integral (2.7) comes from values of k close to µ.
We also have to assume that the time t is small enough to use the approximation below.
Using the first three terms from the Taylor series of cos k around µ we have

eit cos k ≈ eit(cosµ−κ sinµ−κ
2

2
cosµ). (2.14)

This approximation gives us

e−iHt|ξµ,σ〉 =cσ

(∑
x∈Z

|x〉〈x|

)∫ ∞
−∞

e−2it cos k

√
1

σ
√

2π
e−

(k−µ)2

2σ2 |k̃〉 dk

≈cσ
1√

σ(2π)3/4

∑
x∈Z

(∫ ∞
−∞

e−2it(cosµ−κ sinµ−κ
2

2
cosµ) e−

κ2

4σ2 ei(µ+κ)x dκ

)
|x〉

=cσ
e−2it cosµ

√
σ(2π)3/4

∑
x∈Z

eiµx

(∫ ∞
−∞

e(it cosµ− 1
4σ2)κ2+i(x+2t sinµ)κ dκ

)
|x〉

=cσ
e−2it cosµ

√
σ(2π)3/4

∑
x∈Z

eiµx

√
π

1
4σ2 − it cosµ

e
− (x+2t sinµ)2

(1
σ2−4it cosµ) |x〉

=f(t, µ, σ)
∑
x∈Z

eig(x,t,µ,σ) · p(−2t sinµ,
√

1
2σ2 +8σ2t2 cos2 µ

)(x) |x〉,

(2.15)

where f and g are real-valued functions and we assume t cosµ < 1
4σ2 in order to use the

integral (2.11). f(t, µ, σ) is a global normalization factor, while eig(x,t,µ,σ) is a local phase,

6

and here we do not care about their exact values. If we choose µ ∈ [π
2
, 3π

2
], the condition

t cosµ < 1
4σ2 is always satisfied.

From (2.15) we see that e−iHt|ξµ,σ〉 has the highest amplitudes for the basis states
corresponding to integers close to −2t sinµ. That implies that the walk propagates as
a wave packet moving with momentum −2 sinµ. Also we can see that the wave packet
becomes more diffused as the variance (1

2σ2 + 8σ2t2 cos2 µ) increases in time - the front of
the wave packet moves a bit faster than the rear. This diffusion can be explained by the
Heisenberg uncertainty principle: we cannot know both the position and the momentum
of the walk to arbitrary precision. It is known that the same behavior remains even when
the time t is large and we cannot use the approximation (2.14) anymore [11]. It can be
shown using the method of stationary phase approximation, an application of which we
demonstrate later in Section 3.3.

These wave packets, which, as (2.15) shows, can move with any chosen momentum
up to 2, are useful in algorithm construction. Even though one might guess that the
faster wave packet we choose, the better an algorithm works, this in not the case: while
the continuous-time quantum walk algorithm for NAND tree evaluation indeed uses wave
packets of momentum 2 [18], the universal computation using continuous-time quantum
walk presented in [11] requires wave packets of momentum

√
2. This is because, when

we put an ‘obstacle’ (a modification of the line graph) in the way of a wave packet, the
probabilities of the packet either going though or being reflected from the obstacle depend
on its momentum. When later in Chapter 4 we discuss how the continuous-time quantum
snake walk behaves on the glued trees graph, we have to consider which momenta are good
for our purposes as well.

2.2 Glued trees problem

It was an important development in the area of quantum algorithm design when Childs
et al. showed that quantum algorithms using quantum walks can solve certain black-box
problems exponentially faster than any classical algorithm [12]. For this purpose they
introduced the glued trees graph. The glued trees graph consists of two complete binary
trees of height N , which are connected by a random cycle that alternates between the
leaves of the two trees. An example of the graph is shown in Figure 2.1 (for N = 3). Let
us also call N and the roots of both trees, respectively, the height and the roots of the
glued trees graph.

Suppose we are given a glued trees graph via a black-box oracle (given the label of a
node as an input, the oracle outputs labels of all its neighbors) and the label of one root
r1. The glued trees problem is to determine the label of the other root r2 (see Figure 2.1).
Childs et al. show that, if we start a continuous-time quantum walk at the root r1, the walk
quickly (in polyN time) traverses the graph and ends up in a superposition state which
has a large overlap on the root r2 [12]. According to Theorem 2.1, we can implement this
walk efficiently in the quantum circuit model which uses the black-box oracle of the graph.
It is also shown in [12] that no classical query algorithm can solve this problem efficiently.

7

r1 r2

Figure 2.1: A glued trees graph of height 3.

The first step used in [12] to analyze the quantum walk on the glued trees graph is to
reduce it to a walk on a much smaller and simpler graph. Let us demonstrate this method,
because it is also useful for us later in Chapter 4.

Suppose we have two disjoint finite sets X and Y , and a complex Euclidean space Z
such that span{|z〉 : z ∈ X ∪ Y } is its subspace. We also have an Hermitian operator A
acting on Z satisfying a promise that there are two non-negative numbers m(X, Y) and
m(Y,X) such that

∑
y∈Y 〈y|A|x〉 = m(X, Y) for all x ∈ X and

∑
x∈X〈x|A|y〉 = m(Y,X)

for all y ∈ Y . Let |X〉 and |Y 〉 be uniform superpositions over elements of X and Y
respectively.

Lemma 2.2. A|X〉 =
√
m(X, Y) ·m(Y,X)|Y 〉+ |Y ⊥〉, where 〈y|Y ⊥〉 = 0 for all y ∈ Y .

Proof. For every y ∈ Y we have 〈y|A|X〉 = 〈X|A|y〉 =
∑

x∈X
1√
|X|
〈x|A|y〉 = m(Y,X)√

|X|
. Hence

A|X〉 =
√
|Y |
|X|m(Y,X)|Y 〉+|Y ⊥〉, where |Y ⊥〉 satisfies the required condition. 〈Y |A|X〉 ∈ R

implies 〈Y |A|X〉 = 〈X|A|Y 〉, and therefore by symmetry
√
|Y |
|X|m(Y,X) =

√
|X|
|Y |m(X, Y).

The lemma holds trivially if m(Y,X) = 0, therefore let m(Y,X) > 0. We get |Y ||X| = m(X,Y)
m(Y,X)

,

which gives A|X〉 =
√
m(X, Y) ·m(Y,X)|Y 〉+ |Y ⊥〉.

In terms of graphs, we can consider X and Y to be disjoint subsets of vertices of an
unweighted graph and A to be the adjacency matrix of the graph. Then the condition∑

y∈Y 〈y|A|x〉 = m(X, Y) for all x ∈ X means that every vertex in X is connected to
m(X, Y) vertices in Y . (This would be just slightly more complicated for weighted graphs.)

Now consider a glued trees graph of height N and its adjacency matrix A. For l ∈
[0 .. 2N + 1] let Xl be the set of all vertices which are at distance l from the root r1. First
of all, we can see that m(Xl1 , Xl2) = 0 whenever |l1 − l2| 6= 1, because, obviously, there

8

is no edge connecting any two vertices for which distance from r1 differs by at least 2.
For l ∈ [0 .. N − 1], each vertex in Xl is connected to two vertices in Xl+1 while each
vertex in Xl+1 is connected to one vertex in Xl. This gives us that 〈Xl|A|Xl+1〉 =

√
2 for

l ∈ [0 .. N − 1]. By symmetry, 〈Xl|A|Xl+1〉 =
√

2 also for l ∈ [N + 1 .. 2N]. For the glued
part we have that each vertex in XN is connected to two vertices in XN+1 and vice versa,
giving us 〈XN |A|XN+1〉 =

√
4 = 2. Note that this holds independently of which random

cycle we have. Now, by Lemma 2.2 we can see that, if we start a walk from a state in the
subspace X = span{|Xl〉 : l ∈ [0 .. 2N + 1]}, the system will always remain in a state in
this subspace. That is, X is invariant under A, and in X the operator A acts the same
way as the operator

AX = 2(|XN〉〈XN+1|+ |XN+1〉〈XN |) +
∑
l 6=N

l∈[0 .. 2N]

√
2(|Xl〉〈Xl+1|+ |Xl+1〉〈Xl|). (2.16)

Since |r1〉 = |X0〉 ∈ X , the walk on the glued trees graph starting from r1 can be reduced
to the walk on the line segment of length 2N + 1 with all weights

√
2 except the middle

weight being 2 (see Figure 2.2). Then, analyzing the eigenspectrum of this simplified graph
and using the concept of the quantum mixing time, Childs et al. show that in a polynomial
time we can obtain a state having a large overlap with |X2N+1〉 = |r2〉.

! X0 " ! X1 " ! X2 " ! XN!1 " ! XN " ! XN"1 " ! XN"2 " ! X2#N " ! X2#N"1 "2 2 2 2 2 2

Figure 2.2: A walk on a glued trees graph reduced to a line segment.

2.2.1 The extended glued trees problem - a motivation for quan-
tum snake walks

Given a glued trees graph via a black-box oracle and the label of one of its two roots r1,
the extended glued trees problem is to find a path in the graph connecting r1 to the opposite
root r2. As Childs et al. mention in their paper, even though the algorithm starting from
the root r1 finds the root r2, it does not find a path connecting r1 and r2 [12]. As far as I
know, there is still no quantum algorithm known which would find such a path efficiently.
Even more, it is not even known if such an efficient algorithm exists [10, Section 5.4].

If we want to find such a path efficiently, we obviously cannot simply take the quan-
tum walk solving the regular glued trees problem and measure in which state it is after
some fixed time intervals (and store the results of measurements in a classical memory).
Such measurements would destroy a quantum interference, which is a key feature why the
algorithm finds r2 quickly.

An algorithm solving the extended glued trees problem efficiently most likely would
have to employ quantum interference of some sort. In order for constructive interference
to take place, we might have to avoid measurements, which, in turn, means that we must

9

store any information about path connecting r1 and r2 in quantum, not classical, memory.
This is the main motivation why we consider quantum snakes, which, in principle, are
arrays of registers, where each register contains a label of a vertex, satisfying a particular
promise.

2.3 The definition and simulation of quantum snake

walk

Suppose G = (V,E) is an undirected unweighted graph, where V is a set of vertices and
E ⊂ V 2 is a set of edges. Let Sn(G) be the set of all paths in G which have length n. Here
we assume that a path can visit a vertex multiple times. Let us call an element of Sn(G) a
snake of length n. That is, a snake of length n is a vector s = (v0, . . . , vn) ∈ V n+1 such that
(vl−1, vl) ∈ E for all l ∈ [1 .. n]. Note that we assume all paths are directed ((v0, v1, . . . , vn)
and (vn, vn−1, . . . , v0) are not the same snake).

Let s = (v0, . . . , vn) ∈ Sn(G) be a snake of length n. We say that s can move forward
to a snake t ∈ Sn(G) if there exists a vertex vn+1 ∈ V such that t = (v1, . . . , vn+1),
and we write mf (s, t) (we think of mf as a predicate). Similarly, we say that s can
move backward to t ∈ Sn(G) if there exists v−1 ∈ V such that t = (v−1, . . . , vn−1), and
we write mb(s, t). We also consider mf (s, t) as a binary function on Sn(G)2 taking a
value 1 if and only if the predicate mf is true for a pair (s, t), and similar for mb. Let
as,t = mf (s, t) + mb(s, t) ∈ {0, 1, 2}, and let An(G) be a matrix whose rows and columns
are labeled by the elements of Sn(G) and An(G)s,t = as,t for all s, t ∈ Sn(G).

Clearly mf (s, t) if and only if mb(t, s), and therefore An(G) is a symmetric matrix. We
can look on An(G) as the adjacency matrix of a graph having Sn(G) as the set of vertices,
and possibly some edges having weight 2 instead of 1. As a matter of fact, An(G)s,t = 2
if and only if there are two adjacent vertices u and v such that s = (u, v, u, v, . . .) and
t = (v, u, v, u, . . .).

Definition. Let Gn be a weighted graph with the set of vertices Sn(G) and the matrix of
weights An(G). The continuous-time quantum snake walk on the graph G is defined as a
continuous-time quantum walk on the weighted graph Gn.

Since we consider only continuous-time walks, we often refer to continuous-time quan-
tum walks and continuous-time quantum snake walks, respectively, as quantum snake walks
and regular quantum walks. Let S be a quantum register corresponding to the Hilbert space
CSn(G). Sometimes we use the word snake to refer to the content of the register S, and we
call the elements of Sn(G) the positions of the snake. In some sense, we can think of the
snake as being a path which can move form one position in the graph to another. In what
sense the word snake is used should be clear from the context.

If we want to simulate a quantum snake walk using the quantum circuit model, the
most reasonable way to store a snake in quantum memory seems to be by using an array

10

of n + 1 quantum registers each containing a label of a vertex. Suppose for every vertex
v ∈ V a unique L bit label v̄ is assigned and we assume that the label w∅ = 1 . . . 1 is
not assigned to any vertex. Let d be the maximum vertex degree in G. For each vertex
v ∈ V having dv adjacent vertices let u1(v), . . . , udv(v) be the labels those vertices (here we
assume that these vertices are sorted according to some fixed, but not necessarily known,
ordering). Let all udv+1(v), . . . , ud(v) be w∅. The quantum black-box oracle for G is the
unitary transformation O which maps |v̄〉|b1, . . . , bd〉 to |v̄〉|b1 ⊕ u1(v), . . . , bd ⊕ ud(v)〉 for
v ∈ V , where b1, . . . , bd are arbitrary L bit strings, and when v̄ is not the label of any
vertex O works as the identity operator.

It is known that given an access to a quantum black-box oracle of a graph G having
the vertex degree d ∈ O(polyL), one can simulate the continuous-time quantum walk on
G efficiently (Theorem 2.1). Here we show that in the sparse case the continuous-time
quantum snake walk can also be efficiently implemented.

Given a snake s = (v0, . . . , vn) ∈ Sn(G) and the quantum black-box oracle of G, we can
quickly obtain the list of vertices adjacent to vn and therefore, assuming n ∈ O(polyL), also
the list of all snakes t ∈ Sn(G) satisfying mf (s, t). The same way we obtain the list of all
t ∈ Sn(G) satisfying mb(s, t). This allows us to compute the list of pairs {(t, as,t) : as,t > 0}
efficiently. This list has at most 2d pairs (independent of the length of the snake). Note
that, since O is its own inverse, we can carry this computation without producing any
‘garbage’ bits (see [27, Section 3.2.5] on reversible computation). Therefore the weighted
graph Gn with the set of vertices Sn(G) and the adjacency matrix An(G) is computable
according to the definition given on page 3. Thus, Theorem 2.1 implies that the continuous-
time quantum walk on Gn, which is the snake walk on G, can be simulated efficiently.

11

Chapter 3

Snakes on line

As an example of a continuous-time quantum snake walk, let us consider the quantum
snake walk on the line. This example is relatively simple compared to quantum snake
walks on other graphs. Nonetheless, understanding this walk later helps us to analyze
snake walks on more complex graphs.

In Section 3.1 we present the Hamiltonian governing the continuous-time quantum
snake walk on the line and describe its eigenspectrum. As it turns out, only an exponen-
tially small (in the length of the snake) portion of its eigenvalues and their corresponding
eigenvectors are useful in the sense that they give rise to an interesting behavior of the walk.
Unfortunately, these eigenvalues are exactly the ones for which we do not have closed-form
expressions. However, in Section 3.2 we are able to obtain some nice properties of those
eigenvalues, which later in Section 3.3 allow us to demonstrate an interesting instance of
that walk. That is, we give a specific initial state and show that, under some reasonable
assumptions, it moves as a wave packet with constant momentum.

3.1 The Hamiltonian

The graph of our consideration is G = (V,E), where V = Z and E = {(x, x± 1) : x ∈ Z}.
It is convenient to think of the line also as X-axis. For every snake (v0, . . . , vn) ∈ V n+1 on
G of length n let x = v0 be the start vertex of the snake and for l ∈ [1 .. n] let jl = 0 if
the l-th edge of the snake is pointed in the negative direction of X-axis and jl = 1 if it is
pointed in the positive direction, that is, jl ∈ {0, 1} is such that vl = vl−1 − (−1)jl . This
gives a one-to-one relation between the set of snakes Sn(G) and the set Z× {0, 1}n. From
now on let us consider any snake s to be given as a pair (x, j1 . . . jn) ∈ Z×{0, 1}n, and let
|x〉|j1 . . . jn〉 denote |s〉.

Since each vertex of G has two adjacent vertices, every snake can move forward to two
other snakes, and it can move backward to two other snakes. If a snake (x, j1 . . . jn) moves
forward, then the start vertex of the new snake is determined by j1. Its end vertex can
either move in the positive or the negative direction of X-axis. In other words, we have

mf ((x, j1 . . . jn), (x−(−1)j1 , j2 . . . jn0)) & mf ((x, j1 . . . jn), (x−(−1)j1 , j2 . . . jn1)) (3.1)

12

for each j ∈ {0, 1}n. If a snake moves backward, a direction in which its start vertex moves
is opposite to the direction of the first edge of the new snake. That is,

mb((x, j1 . . . jn), (x− 1, 1j1 . . . jn−1)) & mb((x, j1 . . . jn), (x+ 1, 0j1 . . . jn−1)) (3.2)

for each j ∈ {0, 1}n. Notice that on any graph there is no conceptual difference between
forward and backward motion of a snake, and the only reason why (3.1) and (3.2) look
different is because we choose x to represent the start vertex of a snake, not the end
vertex. The Hamiltonian governing the quantum snake walk on the line An(G), which for
convenience we denote by H, is therefore

H =
∑

x′∈Z, j′∈{0,1}n

∑
mf ((x′,j′),(j′′,j′′))

x′′∈Z, j′′∈{0,1}n
|x′′, j′′〉〈x′, j′|

+
∑

x′∈Z, j′∈{0,1}n

∑
mb((x

′,j′),(j′′,j′′))

x′′∈Z, j′′∈{0,1}n
|x′′, j′′〉〈x′, j′|

=
∑
x∈Z

∑
j∈{0,1}n−1

(|x− 1, j0〉〈x, 0j|+ |x− 1, j1〉〈x, 0j|)

+
∑
x∈Z

∑
j∈{0,1}n−1

(|x+ 1, j0〉〈x, 1j|+ |x+ 1, j1〉〈x, 1j|)

+
∑
x∈Z

∑
j∈{0,1}n−1

(|x− 1, 1j〉〈x, j0|+ |x+ 1, 0j〉〈x, j0|)

+
∑
x∈Z

∑
j∈{0,1}n−1

(|x− 1, 1j〉〈x, j1|+ |x+ 1, 0j〉〈x, j1|);

(3.3)

H =
∑
x∈Z

|x− 1〉〈x| ⊗
∑

j∈{0,1}n−1

(|j0〉〈0j|+ |j1〉〈0j|+ |1j〉〈j0|+ |1j〉〈j1|)

+
∑
x∈Z

|x+ 1〉〈x| ⊗
∑

j∈{0,1}n−1

(|j0〉〈1j|+ |j1〉〈1j|+ |0j〉〈j0|+ |0j〉〈j1|).
(3.4)

It might be helpful to understand a structure of H by thinking of it as an adjacency matrix.
For example, for n = 3 the H is the adjacency matrix of the graph given in Figure 3.1,
where each vertex corresponds to a snake.

In order to analyze the quantum snake walk on G it is helpful to understand the
eigenspectrum of H. One can see that H is invariant under the translation

∑
x∈Z |x −

1〉〈x| ⊗ I, where I is the identity operator on the space C{0,1}n . We already know the
eigenvalues and eigencevtors of

∑
x∈Z |x− 1〉〈x| and

∑
x∈Z |x+ 1〉〈x| from Section 2.1: for

k ∈ R and |k̃〉 = 1√
2π

∑
x∈Z e

ikx|x〉 we have∑
x∈Z

|x− 1〉〈x| · |k̃〉 = eik|k̃〉 &
∑
x∈Z

|x+ 1〉〈x| · |k̃〉 = e−ik|k̃〉. (3.5)

13

x ! 1 x x " 1 x " 2 x " 3

000

001

010

011

100

101

110

111

Figure 3.1: The graph corresponding to the adjacency matrix H (for n = 3).

This together with (3.4) give us

H(|k̃〉 ⊗ I) = |k̃〉 ⊗Hn,k, (3.6)

where

Hn,k =
∑

j∈{0,1}n−1

eik(|j0〉〈0j|+ |j1〉〈0j|+ |1j〉〈j0|+ |1j〉〈j1|)

+
∑

j∈{0,1}n−1

e−ik(|j0〉〈1j|+ |j1〉〈1j|+ |0j〉〈j0|+ |0j〉〈j1|).
(3.7)

From (3.6) we get that for any value k, if |ψ〉 is an eigenvector of Hn,k with an eigenvalue λ,
then |k̃〉|ψ〉 is an eigenvector of H with the same eigenvalue λ. Because of the periodicity,
we can restrict k to be in [0, 2π). For example,

H3,k =

eik + e−ik e−ik 0 0 e−ik 0 0 0
eik 0 e−ik e−ik e−ik 0 0 0
0 eik 0 0 e−ik 2e−ik 0 0
0 eik 0 0 0 e−ik e−ik e−ik

eik eik eik 0 0 0 e−ik 0
0 0 2eik eik 0 0 e−ik 0
0 0 0 eik eik eik 0 e−ik

0 0 0 eik 0 0 eik eik + e−ik

, (3.8)

where rows and columns are labeled by 000, 001, 010 etc.

14

3.1.1 Change of basis

Now let us fix k and focus on finding the eigenvalues and eigenvectors of Hn,k. This
task becomes much easier if we express Hn,k in a different basis. Consider two pairs of
orthonormal vectors: |u0,k〉 = 1√

2

(
e−ik|0〉+ eik|1〉

)
and |u1,k〉 = 1√

2

(
e−ik|0〉 − eik|1〉

)
, and

|v0〉 = 1√
2

(|0〉+ |1〉) and |v1〉 = 1√
2

(|0〉 − |1〉). For m ∈ [0 .. 2n − 1] and a fixed k let us

define a unit vector |m̂〉 as follows. First, let |0̂〉 = −i|u0,k〉⊗n. For m ∈ [1 .. 2n − 1], let m
written in binary using blog2(m)c+ 1 bits be 1mblog2(m)c . . .m1. Then for m ∈ [1 .. 2n − 1]
we define

|m̂〉 = |u0,k〉⊗n−blog2(m)c−1|u1,k〉|vmblog2(m)c〉 . . . |vm1〉. (3.9)

It is not hard to see that Bn,k = {|0̂〉, . . . , |2̂n − 1〉} is an orthonormal basis of C{0,1}n , and
we call Bn,k the hat basis. Let us keep in mind that these basis vectors depend on the
value of k. As an example, for n = 3 we have

|0̂〉 = −i|u0,k〉|u0,k〉|u0,k〉,
|1̂〉 = |u0,k〉|u0,k〉|u1,k〉,
|2̂〉 = |u0,k〉|u1,k〉|v0〉,
|3̂〉 = |u0,k〉|u1,k〉|v1〉,
|4̂〉 = |u1,k〉|v0〉|v0〉,
|5̂〉 = |u1,k〉|v0〉|v1〉,
|6̂〉 = |u1,k〉|v1〉|v0〉,
|7̂〉 = |u1,k〉|v1〉|v1〉.

(3.10)

Let us express Hn,k in the hat basis. We start by rewriting Hn,k: using (3.7) and the
definitions of |u0,k〉 and |v0〉 we get

Hn,k =
√

2
∑

j∈{0,1}n−1

(|u0,k〉|j〉〈j0|+ |u0,k〉|j〉〈j1|+ |j0〉〈u0,k|〈j|+ |j1〉〈u1,k|〈j|)

= 2
∑

j∈{0,1}n−1

(|u0,k〉|j〉〈j|〈v0|+ |j〉|v0〉〈u0,k|〈j|).
(3.11)

Therefore, for arbitrary |φn〉, |φ1〉 ∈ C2 and |φn−1 .. 2〉 ∈ C2n−2
we have

Hn,k|φn〉|φn−1 .. 2〉|φ1〉 = 2〈v0|φ1〉 |u0,k〉|φn〉|φn−1 .. 2〉+ 2〈u0,k|φn〉 |φn−1 .. 2〉|φ1〉|v0〉. (3.12)

This equality turns out to be very useful if we consider how Hn,k acts on the vectors of

15

Bn,k. For |0̂〉 and |1̂〉 it gives

Hn,k|0̂〉 = −iHn,k|u0,k〉⊗n

= −i(2 (eik + e−ik)/2 |u0,k〉⊗n + 2 |u0,k〉⊗n−1|v0〉)
= −i((eik + e−ik) |u0,k〉⊗n + 2 |u0,k〉⊗n−1((eik + e−ik)/2 |u0,k〉+ (eik − e−ik)/2 |u1,k〉))
= 2(eik + e−ik) (−i|u0,k〉⊗n) + i(e−ik − eik) |u0,k〉⊗n−1|u1,k〉
= 4 cos k |0̂〉+ 2 sin k |1̂〉, (3.13)

Hn,k|1̂〉 = Hn,k|u0,k〉⊗n−1|u1,k〉
= 2 i(e−ik − eik)/2 (−i|u0,k〉⊗n) + 2 |u0,k〉⊗n−2|u1,k〉|v0〉
= 2 sin k |0̂〉+ 2 |2̂〉. (3.14)

For the rest of the basis vectors |m̂〉, where m ∈ [2 .. 2n−1], let us distinguish the following
four cases and use (3.12) for all of them.

1. m is odd and m ≥ 2n−1. Then |m̂〉 = |u1,k〉|Ψm〉|v1〉 for some |Ψm〉 ∈ C2n−2
. Thus

Hn,k|m̂〉 = Hn,k|u1,k〉|Ψm〉|v1〉 = 0.

2. m is even and m ≥ 2n−1. Then |m̂〉 = |u1,k〉|Ψm〉|v0〉 for some |Ψm〉 ∈ C2n−2
. Thus

Hn,k|m̂〉 = Hn,k|u1,k〉|Ψm〉|v0〉 = 2 |u0,k〉|u1,k〉|Ψm〉 = 2 |m̂/2〉.

3. m is odd and m < 2n−1. Then |m̂〉 = |u0,k〉|Ψm〉|v1〉 for some |Ψm〉 ∈ C2n−2
. Thus

Hn,k|m̂〉 = Hn,k|u0,k〉|Ψm〉|v1〉 = 2 |Ψm〉|v1〉|v0〉 = 2 |2̂m〉.

4. m is even and m < 2n−1. Then |m̂〉 = |u0,k〉|Ψm〉|v0〉 for some |Ψm〉 ∈ C2n−2
. Thus

Hn,k|m̂〉 = Hn,k|u0,k〉|Ψm〉|v0〉 = 2 |u0,k〉|u0,k〉|Ψm〉+2 |Ψm〉|v0〉|v0〉 = 2 |m̂/2〉+2 |2̂m〉.

To summarize: for all m ∈ [2 .. 2n − 1], Hn,k maps |m̂〉 to 2|2̂m〉 if 2m ≤ 2n − 1 and to

2|m̂/2〉 if m is even. Hence,

Hn,k = 4 cos k |0̂〉〈0̂|+ 2 sin k (|1̂〉〈0̂|+ |0̂〉〈1̂|) + 2
2n−1−1∑
m=1

(|2̂m〉〈m̂|+ |m̂〉〈2̂m|). (3.15)

From (3.15) we see that 〈m̂1|Hn,k|m̂2〉 = 0 whenever m1 and m2 have different greatest
odd divisors, where we assume that the greatest odd divisor of 0 is 1. Therefore we can block
diagonalize Hn,k with respect to Bn,k into 2n−1 blocks. To be more precise, let us define

2n−1 orthogonal projectors Π1 = |0̂〉〈0̂| +
∑n−1

j=0 |2̂j〉〈2̂j| and Πl =
∑n−dlog2 le

j=0 |l̂ · 2j〉〈l̂ · 2j|
for odd l ∈ [3 .. 2n − 1]. We have Πl1Hn,kΠl2 = 0 whenever l1 6= l2. Therefore, in order to
get the full eigenspectrum of Hn,k, we consider the eigenvalues of each block separately.

16

3.1.2 k-dependent eigenvalues

We start with the first block Π1Hn,kΠ1. Consider a linear k-dependent isometry

Uk =
n∑
y=1

|2̂n−y〉〈y|+ |0̂〉〈n+ 1|, (3.16)

where {|1〉, . . . , |n+ 1〉} is some fixed, k-independent basis (we use the k-independence
later, when we talk about derivatives of eigenvectors). We have

Φk = U∗kHn,kUk =2
n−1∑
y=1

(|y + 1〉〈y|+ |y〉〈y + 1|)

+ 2 sin k (|n+ 1〉〈n|+ |n〉〈n+ 1|) + 4 cos k |n+ 1〉〈n+ 1|,

(3.17)

which is the adjacency matrix of the graph given in Figure 3.2.

! 1 " ! 2 " ! 3 " ! n! 1 " ! n " ! n" 1 "
2 2 2 2 sin #k$ 4 cos #k$

Figure 3.2: The graph corresponding to the adjacency matrix Φk.

If k ∈ {0, π} then sin k = 0 and thus Φk is the sum of two orthogonal operators 2Mn−1

and ±4|n+ 1〉〈n+ 1|, where we define

Ml =
l∑

y=1

(|y + 1〉〈y|+ |y〉〈y + 1|). (3.18)

Ml is basically the adjacency matrix of the line segment of length l and its eigenvalues and
eigenvectors are well known (for example, see [3]). That is, for p ∈ { π

l+2
, 2π
l+2
, . . . , (l+1)π

l+2
}

and |p〉 =
√

2
l+2

∑l+1
y=1 sin yp |y〉 we have

Ml|p〉 = 2 cos p |p〉 and 〈p|p〉 = 1. (3.19)

Therefore for k ∈ {0, π} the eigenvalues of Φk are 4 cos π
n+1

, 4 cos 2π
n+1

, . . . , 4 cos nπ
n+1

and
4 cos k. Note that all of them are distinct. Next we show that all the eigenvalues are
distinct for any value of k. Without loss of generality, we assume all eigenvectors of Φk are
in reals with a non-negative amplitude of |1〉.

Lemma 3.1. Let k /∈ {0, π} and let |φ〉 ∈ Rn+1 be a unit vector such that Φk|φ〉 = λ|φ〉
for some eigenvalue λ ∈ R. Then there exist unique p ∈ (0, π) and c > 0 such that

|φ〉 = c
∑n

y=1 sin yp|y〉+ c sin(n+1)p
sin k

|n+ 1〉 and λ = 4 cos p.

17

Proof. The maximum absolute column sum norm of (3.7) is at most 4 (it is exactly 4 unless
n = 1), which implies that all the eigenvalues of Hn,k are at most 4 by the absolute value,
and therefore so are the eigenvalues of Φk. That is, |λ| ≤ 4. It can be easily shown that
|λ| = 4 only in the case when |φ〉 = |n+ 1〉 and k ∈ {0, π}. It is also the only case when
〈1|φ〉 = 0.

Hence let |λ| < 4 and let p ∈ (0, π) be the unique value such that λ = 4 cos p. Let
|φ〉 =

∑n+1
y=1 ay|y〉 for some real numbers a1, . . . , an+1. We have

λa1 = λ〈1|φ〉 = 〈1|Φk|φ〉 = 2〈2|φ〉 = 2a2. (3.20)

Since sin p > 0, we have a unique c > 0 satisfying a1 = c sin p. From (3.20) we get
a2 = 2 cos p · c sin p = c sin 2p. Now let us use induction. Let 2 ≤ l < n, and let us assume
ay = c sin yp for all y ∈ [1 .. l]. We have

λal = λ〈l|φ〉 = 〈l|Φk|φ〉 = (2〈l − 1|+ 2〈l + 1|)|φ〉 = 2al−1 + 2al+1, (3.21)

4 cos p · c sin lp = 2c sin(l − 1)p+ 2al+1, (3.22)

al+1 = 2c cos p sin lp− c(cos p sin lp− cos lp sin p) = c sin(l + 1)p. (3.23)

Therefore, by the induction, ay = c sin yp for y ∈ [1 .. n]. Finally,

λan = λ〈n|φ〉 = 〈n|Φk|φ〉 = (2〈n− 1|+ 2 sin k 〈n+ 1|)|φ〉 = 2an−1 + 2an+1 sin k (3.24)

similarly as above gives us

an+1 = c
sin((n+ 1)p)

sin k
. (3.25)

From Lemma 3.1 we see that an eigenvalue of Φk uniquely determines the eigenvector
corresponding to it. This implies that all the eigenvalues of Φk are distinct.

Let us see what properties p must satisfy in order for 4 cos p to be an eigenvalue
of Φk. By Lemma 3.1, the eigenvector corresponding to the eigenvalue 4 cos p is |φ〉 =

c
∑n

y=1 sin yp|y〉+ c sin(n+1)p
sin k

|n+ 1〉 for some c > 0. Similarly as in the proof of the lemma,
we can see that 〈y|Φk|φ〉 = 4 cos p〈y|φ〉 for all values of p and all y ∈ [1 .. n], so any value
of p for which 〈n+ 1|Φk|φ〉 = 4 cos p〈n+ 1|φ〉 holds gives a valid eigenvalue. We have

4 cos p · csin(n+ 1)p

sin k
= 4 cos p〈n+ 1|φ〉 = 〈n+ 1|Φk|φ〉 = (2 sin k〈n|+ 4 cos k〈n+ 1|)|φ〉

= 2 sin k · c sinnp+ 4 cos k · csin(n+ 1)p

sin k
,

(3.26)

which gives us the necessary and sufficient condition

2(cos p− cos k) sin((n+ 1)p) = sin2 k sinnp. (3.27)

Note that even in the case k ∈ {0, π} this condition is both necessary and sufficient for
4 cos p to be an eigenvalue. We sometimes refer to (3.27) as the p-equation or the p-
condition. Unfortunately we do not know how to solve the p-equation (it possibly does not
even have a closed for solution). Nevertheless, in Section 3.2 we show that it helps us to
obtain some useful information about the eigenvalues.

18

3.1.3 k-independent eigenvalues

Let us consider the rest of the blocks of Hn,k expressed in the hat basis. Recall that for odd
l ∈ [1 .. 2n − 1] we have Hn,k =

∑
l ΠlHn,kΠl, where {Πl : l is odd} is a set of orthogonal

projectors (see page 16). So far we have considered eigenvalues only of the block Π1Hn,kΠ1.

For odd l ≥ 3 we have Πl =
∑n−dlog2 le

j=0 |l̂ · 2j〉〈l̂ · 2j|, and therefore from (3.15) we get that

ΠlHn,kΠl = 2

n−dlog2 le−1∑
j=0

(|l̂ · 2j+1〉〈l̂ · 2j|+ |l̂ · 2j〉〈l̂ · 2j+1|) = 2Vk,lMn−dlog2 leV
∗
k,l, (3.28)

where Vk,l =
∑n−dlog2 le+1

y=1 |̂l · 2y−1〉〈y| is a linear isometry and Mn−dlog2 le is defined in (3.18)
as the adjacency matrix of the line segment of length n − dlog2 le. We already know the
eigenvalues of Mn−dlog2 le (see page 17), but, even more importantly, we know that they
are k-independent. And therefore, so they are for every block ΠlHn,kΠl with l ≥ 3. This
means that only n + 1 out of all 2n eigenvalues of Hn,k depend on k. Next we show that
those n+ 1 are the ones we care about.

Every eigenvector |φ〉 of Mn−dlog2 le is also k-independent. Vk,l|φ〉 is an eigenvector of
ΠlHn,kΠl and, since each vector of the hat basis can be expressed in the form

1√
2n

∑
j∈{0,1}n

(eikmj)|j〉, (3.29)

where mj ∈ [−n .. n] for all j, we have

Vk,l|φ〉〈φ|V ∗k,l =
∑

j′,j′′∈{0,1}n

(
2n∑

m=−2n

α(j′,j′′,m)e
ikm

)
|j′′〉〈j′|, (3.30)

where α(j′,j′′,m) ∈ R for all j′, j′′ and m. For m ∈ Z we have∫ 2π

0

|k̃〉〈k̃| ⊗Hn,k dk = H and

∫ 2π

0

eikm|k̃〉〈k̃| dk =
∑
x∈Z

|x−m〉〈x|. (3.31)

Hence,

Lemma 3.2. Let Λ be the set of the eigenvalues of M0,M2, . . . ,Mn−2. There exists a
(unique) complete set of orthogonal projectors {Π′′K} ∪ {Π′λ : λ ∈ Λ} such that H =

K +
∑

λ∈Λ λΠ′λ, where Π′′K =
∫ 2π

0
|k̃〉〈k̃| ⊗ Π1 dk and K = Π′′KHΠ′′K. Let I be the identity

operator on C{0,1}n. We have (〈x + ∆x| ⊗ I)Π′λ(|x〉 ⊗ I) = 0 for all λ ∈ Λ and all x ∈ Z
whenever |∆x| > 2n.

Let K, Λ and {Π′λ : λ ∈ Λ} be such as in Lemma 3.2. Then for all j′, j′′ ∈ {0, 1}n we
have

〈x′′, j′′|e−iHt|x′, j′〉 =〈x′′, j′′|

(
e−iKt +

∑
λ∈Λ

e−iλtΠ′λ

)
|x′, j′〉

=〈x′′, j′′|e−iKt|x′, j′〉
(3.32)

19

whenever |x′ − x′′| > 2n. This means that, if we want the snake to move further than
2n units on the line, we need to consider only how the operator K acts on it. And K is
exactly the part of H which corresponds to k-dependent eigenvalues of Hn,k.

3.2 Even n and the median eigenvalue

We do not know how to solve the p-equation (3.27), the solution of which would give us
the full eigenspectrum of Hn,k. Despite that, the p-equation allows us to obtain good
approximations of eigenvalues and their derivatives. But let us first show that we can treat
k-dependent eigenvalues (and therefore all eigenvalues) as differentiable functions of k.

3.2.1 Holomorphy and some general results

Definition. A complex-valued function is holomorphic if it is complex-differentiable in a
neighborhood of every point in its domain.

Holomorphic functions are known to be infinitely differentiable, and their Taylor series
converge at every point of their domain (the radius of convergence being the distance
between the point and its nearest singularity) [23, Section 81]. The class of holomorphic
functions include polynomials, the exponential function, sine and cosine [23, Chapter 7].
The notion of holomorphic functions can be generalized to vector-valued and operator-
valued functions in an obvious way. From [22, Chapter II, §6.2] we have the following
lemma

Lemma 3.3. Let X be a finite complex Euclidean space of dimension m. Consider a
holomorphic operator-valued function T which maps complex numbers to linear operators
over X such that T (k) is Hermitian for all k ∈ R. Then for k ∈ R there exist a family
of orthonormal basis {φl(k) : l ∈ [1 ..m]} of X consisting of eigenvectors of T (k) and a
family {λl(k) : l ∈ [1 ..m]} consisting of eigenvalues of T (k) such that λl(k) and φl(k) are
holomorphic functions of k for all l ∈ [1 ..m].

Let λl(k) be the l-th largest eigenvalue of Φk. Since all the eigenvalues of Φk are
distinct and Φk is holomorphic in k (which can be easily seen from (3.17)), then according
to Lemma 3.3 λl(k) is a holomorphic function in k for all l ∈ [1 .. n + 1]. In order to give
some intuition about the eigenspectrum of Φk, we show how the eigenvalues of Φk (Figure
3.3) and their derivatives (Figure 3.4) depend on k ∈ [0, 2π) in the case when n = 8. These
plots are obtained via numerical computation.

The plots suggest some interesting properties of λl(k). Let us use a prime to denote
derivatives with respect to k. For example, it seems that:

1. the range of the functions λl1(k) and λl2(k), where l1 6= l2, do not overlap, except for
the endpoints when |l1 − l2| = 1;

20

Π

2
Π 3 Π

2
2 Π

k

"4

"3

"2

"1

0

1

2

3

4
Λ

Figure 3.3: k-dependent eigenvalues for n = 8.

2. for every l the function λ′l(k) is negative for all k ∈ (0, π) and positive for all k ∈
(π, 2π);

3. there exists a constant c > 0 such that maxl |λ′l(k)| is ‘closely’ bounded from above
by c| sin k| for all values of k;

4. for every l there are unique kl,1 ∈ (0, π) and kl,2 ∈ (π, 2π) such that λ′′l (kl,1) =
λ′′l (kl,2) = 0.

We prove below that observation 2 is true, and it easily implies that observation 1 also
holds. As we see in Section 3.3.2, it is important for observation 4 to be true. So far we
are not able to prove it, but in Section 3.2.2 we argue why it should hold for one specific
choice of l.

The following lemma shows that by using the p-equation for some values of k we can
calculate the derivatives of eigenvalues precisely. Lemma 3.4 was originally intended as a
part of the proof of Theorem 3.5, but turned out not to be necessary. However, it still well
exhibits usefulness of the p-equation.

Lemma 3.4. λ′l(
π
2
) = − 8

n+2
sin2 lπ

n+2
for every l ∈ [1 .. n+ 1].

Proof. Let λl(k) = 4 cos pl(k), and therefore pl(k) = arccos(λl(k)/4). One can verify that

k = π
2

and every p ∈ { π
n+2

, 2π
n+2

, . . . , (n+1)π
n+2
} satisfies the p-condition. Hence, pl(

π
2
) = lπ

n+2

and λl(
π
2
)/4 6= ±1, which means that pl(k) is differentiable at k = π

2
. For short, let

21

Π

2
Π 3 Π

2
2 Π

k

"1

" 1
2

0

1
2

1
Λ$

Figure 3.4: Derivatives of k-dependent eigenvalues for n = 8.

p
(1)
l = p′l(

π
2
). By taking the derivatives of both sides of the p-equation we obtain

2 (−p′l(k) sin pl(k) + sin k) sin((n+ 1)pl(k))

+ 2(n+ 1)p′l(k)(cos pl(k)− cos k) cos((n+ 1)pl(k))

= 2 sin k cos k sinnpl(k) + np′l(k) sin2 k cosnpl(k),

(3.33)

which for k = π
2

is

2

(
−p(1)

l sin
lπ

n+ 2
+ 1

)
sin

(n+ 1)lπ

n+ 2
+ 2(n+ 1)p

(1)
l cos

lπ

n+ 2
cos

(n+ 1)lπ

n+ 2
= np

(1)
l cos

nlπ

n+ 2
.

(3.34)

Then sin (n+1)lπ
n+2

= −(−1)l sin lπ
n+2

, cos (n+1)lπ
n+2

= (−1)l cos lπ
n+2

and cos nlπ
n+2

= (−1)l cos 2lπ
n+2

,

and some simple derivations give us p
(1)
l = 2

n+2
sin lπ

n+2
. Finally,

λ′l(π/2) = (4 cos pl(k))′|k=π/2 = 4p′l(π/2)(− sin pl(π/2)) = − 8

n+ 2
sin2 lπ

n+ 2
. (3.35)

Theorem 3.5. For every l ∈ [1 .. n+ 1] the eigenvalue function λl(k) is strictly decreasing
in the interval (0, π) and strictly increasing in the interval (π, 2π).

Proof. Fix l. We know that λl(π) < λl(0) = λl(2π) (see page 17), therefore it is enough
to show that the derivative of λl(k) is non-zero whenever k /∈ {0, π}. Now suppose the
contrary: there exists k0 ∈ (0, π) ∪ (π, 2π) such that k0 is the stationary point of λl(k).

22

Since k0 is the stationary point of pl(k) = arccos(λl(k)/4) too, when we take the derivatives
of both sides of the p-equation, we get

2 sin k0 sin((n+ 1)pl(k0)) = 2 sin k0 cos k0 sinnpl(k0). (3.36)

If sin((n + 1)pl(k0)) = 0, then pl(k0) = mπ
n+1

for some m ∈ [1 .. n] (recall that |λl(k0)| 6= 4),
which, in turn, implies sinnpl(k0) 6= 0 and sin k0 = 0 by the p-equation. We know that
sin k0 6= 0, thus (3.36) gives that all sin((n + 1)pl(k0)), cos k0 and sinnpl(k0) are nonzero.
Hence, by combining the p-equation and (3.36) we have

2(cos pl(k0)− cos k0) cos k0 = sin2 k0, (3.37)

cos pl(k0) =
1

2

(
1

cos k0

+ cos k0

)
. (3.38)

Therefore k0 must be either 0 or π for cos pl(k0) to be in [−1, 1], which is a contradiction.

It seems likely that an argument similar to one used in the proof of Theorem 3.5 might
prove that λ′′l (k) = 0 for only two values of k ∈ [0, 2π).

3.2.2 Median eigenvalue for asymptotically large n

For the rest of the chapter we consider only the case when n is even because it makes some
calculations easier. Also, out of all n+ 1 k-dependent eigenvalues of Hn,k, let λ(k) be the
middle one, that is, the n+2

2
-th largest; we consider only this particular eigenvalue. The

reasons for considering this particular eigenvalue is the fact that it can be well approximated
for values of k close to π

2
and it seems to have the largest derivative, which is good for

a fast-moving snake. We know λ(0) = 4 cos
n
2
π

n+1
and λ(π) = 4 cos

(n
2

+1)π

n+1
, therefore a

corollary of Theorem 3.5 is that |λ(k)| ≤ 4 sin π
2n+2

. Let p(k) ∈ [nπ
2n+2

, (n+2)π
2n+2

] be such
that λ(k) = 4 cos p(k). By Lemma 3.3 λ(k) is holomorphic, therefore p(k) is infinitely
differentiable.

From the definition of Hn,k (3.7) one can easily see that Hn,−κ is the transpose of Hn,κ,
where κ ∈ R, while Hn, π

2
−κ is minus the transpose of Hn, π

2
+κ. Hence, the eigenspectra of

Hn,−κ and Hn,κ are equal, while the eigenspectrum of Hn, π
2
−κ is minus the eigenspectrum

of Hn, π
2

+κ (each eigenvalue of Hn, π
2
−κ multiplied by −1). By a little thought, this implies

that λ(−κ) = λ(κ) and λ(π
2
− κ) = −λ(π

2
+ κ) for all κ ∈ R. Obviously, λ(2π + κ) = λ(κ).

The function λ(k) is holomorphic, and therefore it has a convergent Taylor series at
every point k ∈ R. In particular, let us consider the point k = π

2
. Let λ(0) denote

λ(π
2
) and let λ(m) denote the value of m-th derivative of λ(k) at k = π

2
; similarly we use

p(0) and p(m). Since λ(k) = 4 cos p(k), and p(k) is infinitely differentiable, we can easily
obtain λ(m) for any order m, assuming we know p(0), p(1), . . . , p(m). Luckily enough, getting
derivatives of p(k) at π

2
is not a problem: from Lemma 3.4 and its proof we already know

that p(0) = π
2

and p(1) = 2
n+2

, and the values of further derivatives can be obtained from

the p-equation (3.27). That is, since n is even, we have sinnp(0) = cos(n + 1)p(0) = 0 and

23

cosnp(0) = sin(n+ 1)p(0) 6= 0. In order to get p(m), we compute values p(0), p(1), . . . , p(m−1)

first, and then substitute them and k = π
2

in them-th derivative of the p-equation. This way
we end up with a linear equation for p(m), whose coefficients can be shown (by induction)
to be rational functions in n.

Since λ(k) and p(k) are n-dependent functions, for a moment let us denote them by,
respectively, λ[n](k) and p[n](k) instead, and let T[n](k) denote the Taylor series of λ[n](k)
at k = π

2
. We do not know what is the convergence radius of T[n](k) since we do not know

how λ[n](k) can be defined for complex k. Because of λ[n](
π
2
−κ) = −λ[n](

π
2

+κ), for even m

we have λ
(m)
[n] = 0 (and p

(m)
[n] = 0 if m 6= 0). Carrying out symbolic computation which uses

the method described in the previous paragraph we obatin that for odd m ∈ {1, 3, . . . , 29}
both p

(m)
[n] and λ

(m)
[n] are rational functions with denominator (n+2)m and some polynomials

of degree m − 1 as numerators. For example, for m = 1, m = 3, m = 5 and m = 7 we
have:

p
(1)
[n] =

2

n+ 2
, λ

(1)
[n] = − 8

n+ 2
,

p
(3)
[n] = − 6n2

(n+ 2)3
, λ

(3)
[n] =

8(3n2 + 4)

(n+ 2)3
,

p
(5)
[n] =

10(9n4 − 16n3 − 16n2)

(n+ 2)5
, λ

(5)
[n] = −8(45n4 − 80n3 + 40n2 + 16)

(n+ 2)5
, (3.39)

and

p
(7)
[n] = −14(249n6 − 976n5 − 208n4 + 1536n3 + 768n2)

(n+ 2)7
,

λ
(7)
[n] =

8(1743n6 − 6832n5 + 4844n4 + 4032n3 + 336n2 + 64)

(n+ 2)7
. (3.40)

Assuming this pattern holds for derivatives of all orders, limn→∞(n + 2)λ
(m)
[n] = αm exists,

and it is nonzero for odd m. Therefore the sequence of series 4T[2](k), 6T[4](k), 8T[6](k), . . .
converge to a series

T∞(π/2+κ)=
∑
m∈N

αm
m!

κm=−8κ+
24

3!
κ3− 360

5!
κ5+

13944

7!
κ7− 1005000

9!
κ9+

116437464

11!
κ11−. . .

(3.41)
The coefficients of T∞ seem to increase, so it might be the case that the convergence radius
of T∞, if non-zero, is at least less than 1.

Even though T∞(k)/(n + 2) may not be a good approximation of λ[n](k), numerical
results suggest that 4λ[2](k), 6λ[4](k), 8λ[6](k), . . . converge to some function λ∞(k). When
we plot the values of (n + 2)λ[n](k), (n + 2)λ′[n](k) and (n + 2)λ′′[n](k) for k ∈ [0, 2π), the

plots change less and less as n increases. In Figure 3.5 we plot (n + 2)λ[n](k) and its first
and second derivatives in the case when n = 500. This plot looks hardly different if we
choose n = 20, n = 50 or n = 200, therefore it seems likely that, if the function λ∞(k)
exists, Figure 3.5 well represents λ∞(k) and its first two derivatives.

24

Π

2
Π 3 Π

2
2 Π

k

"8

"6

"4

"2

0

2

4

6

8
!n # 2" Λ

Figure 3.5: (n + 2)λ(k) (solid line), (n + 2)λ′(k) (dashed line) and (n + 2)λ′′(k) (dotted
line) for n = 500.

This plot suggests that the second derivative of λ(k) is 0 only if k = {π
2
, 3π

2
}. Plus,

which is also important in our analysis later: λ′′(k) is bounded, but also it is not close to
0 for many values of k, and, when it is, it changes rapidly. The existence of λ∞(k) would
suggest that this hold for all n, therefore let us assume the following hypothesis.

Hypothesis 3.6. Consider k ∈ [0, 2π) and an arbitrary even n. λ′′(k) = 0 if and only if
k = {π

2
, 3π

2
}, and for all values of k: (n + 2)|λ′′(k)| ≤ 8 and, if (n + 2)|λ′′(k)| < 4, then

(n+ 2)|λ′′′(k)| > 4
√

3.

Similarly as we get derivatives of λ(k) at k = π
2
, at k = π we get

λ′′(π) =
4
(
cos π

4n+4
+ sin π

4n+4

)
cos π

2n+2

(n+ 1)
(
cos π

4n+4
− sin π

4n+4

) ; (3.42)

therefore the constant 4 in Hypothesis 3.6. The bounds 4
√

3 and 8 come from the case
n = 2: for n = 2 we have λ(k) = 2 cos k, λ′′(2π/3) = 1 and λ′′′(2π/3) =

√
3.

The following rough approximation favors the existence of λ∞(k). Assume that n is

large (and even), and let p(k) = π
2

+ θ(k)
n+1

, where θ(k) ∈ [−π
2
, π

2
]. By substituting this in the

p-equation and doing some trivial trigonometric derivations we get

2

(
− sin

(
1

n+ 1
θ(k)

)
− cos k

)
cos θ(k) = sin2 k sin

(
n

n+ 1
θ(k)

)
. (3.43)

Since n is large, we can roughly approximate sin
(

1
n+1

θ(k)
)

by 0 and sin
(

n
n+1

θ(k)
)

by
sin θ(k). Therefore

− 2 cos k cos θ(k) ≈ sin2 k sin θ(k), (3.44)

25

which gives us

θn,k ≈ arctan

(
−2 cos k

sin2 k

)
. (3.45)

Hence

λ(k) = 4 cos

(
π

2
+

θ(k)

n+ 1

)
= −4 sin

θ(k)

n+ 1
≈ −4θ(k)

n+ 1
≈ 4

n+ 1
arctan

(
2 cos k

sin2 k

)
. (3.46)

The plot for 4 arctan
(

2 cos k
sin2 k

)
and its first two derivatives (see Figure 3.6) very well resembles

Figure 3.5, the plot for (n+2)λ(k) and its first two derivatives when n = 500. This indicates
that Hypothesis 3.6 might indeed be true. However, more precise analysis must be done
in the future.

Π

2
Π 3 Π

2
2 Π

k

"8

"6

"4

"2

0

2

4

6

8

Figure 3.6: 4 arctan
(

2 cos k
sin2 k

)
(solid line) and its first and second derivatives (dashed and

dotted lines, respectively).

3.2.3 Perturbed eigenvalues and eigenvectors

Recall that for any k ∈ [0, 2π)

U(k) =
n+1∑
y=2

|2̂y−2(k)〉〈n+ 2− y|+ |0̂(k)〉〈n+ 1| (3.47)

and

Φ(k) = 2
n−1∑
y=1

(|y + 1〉〈y|+ |y〉〈y + 1|)

+ 2 sin k (|n+ 1〉〈n|+ |n〉〈n+ 1|) + 4 cos k |n+ 1〉〈n+ 1|

(3.48)

26

as they are, respectively, defined in (3.16) and (3.17), where { |y〉 : y ∈ [1 .. n + 1] } is an
orthonormal k-independent basis, and the orthonormal k-dependent basis { |m̂(k)〉 : m ∈
[0 .. 2n−1] } is defined on page 15 (here we write (k) to stress dependence on k). Let n still
be even and λ(k) be the n+2

2
-th largest eigenvalue of Φ(k). Lemma 3.3 states that there

is a holomorphic vector-valued function |φ0(k)〉 such that Φ(k)|φ0(k)〉 = λ(k)|φ0(k)〉 and
〈φ0(k)|φ0(k)〉 = 1. For any holomorphic function a(k) let a(0) = a(π

2
) and a(1) = a′(π

2
),

which is a notation common in perturbation theory. From

(〈φ0(k)|φ0(k)〉)′ = 〈φ′0(k)|φ0(k)〉+ 〈φ0(k)|φ′0(k)〉 = 0 (3.49)

we get that 〈φ(0)
0 |φ

(1)
0 〉 = ib for some b ∈ R. Let |φ(k)〉 = e−ibk|φ0(k)〉, for which we have

〈φ(0)|φ(1)〉 = 0. And finally, let |ψ(k)〉 = U(k)|φ(k)〉. The functions λ(k) and |φ(k)〉 are
holomorphic, and therefore all the functions mentioned above are holomorphic.

Note that |ψ(k)〉 is an eigenvector of Hn,k corresponding to the eigenvalue λ(k). Our
aim here is to express |ψ(0)〉 and |ψ(1)〉 in the orthonormal basis { |m̂(0)〉 : m ∈ [0 .. 2n−1] },
and show that they are orthogonal. Vectors |ψ(0)〉 and |ψ(1)〉 are important in Section 3.3,
where we talk how the continuous-time quantum snake walk behaves for one specific initial
state. We have

|ψ(0)〉 = U (0)|φ(0)〉 and |ψ(1)〉 = U (1)|φ(0)〉+ U (0)|φ(1)〉. (3.50)

U (0) is already known. We obtain U (1) by considering the values of the derivatives of
hat vectors at k = π

2
. |φ(0)〉 is an eigenvector of Φ(0), which is simply twice the adjacency

matrix of the line segment of length n, whose eigenvalues and eigenvectors are well known.
Then we use the perturbation theory for the operator Φ(k) to obtain |φ(1)〉.

Let us start by |ψ(0)〉. We have Φ(0) = 2
∑n

y=1 (|y + 1〉〈y|+ |y〉〈y + 1|), and for every p ∈
P = { π

n+2
, 2π
n+2

, . . . , (n+1)π
n+2
} the operator Φ(0) has an eigenvalue 4 cos p with corresponding

eigenvector

|p〉 =

√
2

n+ 2

n+1∑
y=1

sin yp |n+ 2− y〉 (3.51)

(which is equal to
√

2
n+2

∑n+1
y=1 sin yp |y〉 up to a global phase). The n+2

2
-th largest eigenvalue

of Φ(0) corresponds to the n+2
2

-th smallest element in P , which is π
2
. Therefore we have

λ(0) = 4 cos(π
2
) = 0 and

|φ(0)〉 =

√
2

n+ 2

n+1∑
y=1

sin(yπ/2) |n+ 2− y〉 =

√
2

n+ 2

n+1∑
y is odd

y=1

(−1)
y−1
2 |n+ 2− y〉. (3.52)

When we multiply this with U (0), we get

|ψ(0)〉 =

√
2

n+ 2

|0̂ (0)〉+
n∑

y is even

y=2

iy |2̂y−1 (0)〉

 (3.53)

27

Next, let us obtain |φ(1)〉 by using the perturbation theory. We have

Φ′(k) + 2 cos k (|n+ 1〉〈n|+ |n〉〈n+ 1|)− 4 sin k |n+ 1〉〈n+ 1|, (3.54)

from which we get that Φ(1) = −4 |n+ 1〉〈n+ 1|. Then, according to [21, Section 1.2], we
have

λ(1) = 〈φ(0)|Φ(1)|φ(0)〉 = − 8

n+ 2
(3.55)

(which we already know from Lemma 3.4) and

|φ(1)〉 =
∑

p∈P\{π/2}

〈p|Φ(1) |φ(0)〉
λ(0) − 4 cos p

|p〉

=
2

n+ 2

∑
p∈P\{π/2}

sin p

cos p
|p〉

=

(
2

n+ 2

)3/2 n+1∑
y=1

 ∑
p∈P\{π/2}

sin p sin yp

cos p

 |n+ 2− y〉.

(3.56)

Lemma 3.7. For y ∈ [0 .. n+ 1] let Sn(y) =
∑

p∈P\{π/2}
sin p sin yp

cos p
. Then we have Sn(y) = 0

for odd y and Sn(y) = −(−1)y/2(n+ 2− y) for positive even y.

Proof. If y is odd, then∑
p∈P\{π/2}

sin p sin yp

cos p
= −

∑
p∈P\{π/2}

sin(π − p) sin y(π − p)
cos(π − p)

= −
∑

p∈P\{π/2}

sin p sin yp

cos p
,

(3.57)
which implies Sn(y) = 0. Suppose y is even. One can verify that

sin p sin yp

cos p
= 2 sin p sin(y − 1)p− sin p sin(y − 2)p

cos p
(3.58)

holds, which gives us

Sn(y) = −Sn(y − 2) + 2
∑

p∈P\{π/2}

sin p sin(y − 1)p. (3.59)

Using the facts that sin x = i(e−ix−eix)/2 and sin p sin(y−1)p = sin(π+p) sin((y−1)(π+p))
for even y, we can evaluate the sum on the right. For even y ∈ [2 .. n] :∑
p∈P\{π/2}

sin p sin((y − 1)p) =(−1)y/2 +
∑

p∈{0}∪P

sin p sin((y − 1)p)

=(−1)y/2 +
1

2

∑
ρ∈[0 .. 2n+3]

sin
ρπ

n+ 2
sin

(y − 1)ρπ

n+ 2

=(−1)y/2 − 1

8

∑
ρ∈[0 .. 2n+3]

(
e−i yρπ

n+2 + ei yρπ
n+2 − e−i

(y−2)ρπ
n+2 − ei

(y−2)ρπ
n+2

)
=(−1)y/2 +

n+ 2

2
δy,2.

(3.60)

28

Obviously Sn(0) = 0. From (3.59) and (3.60) we have Sn(2) = −2 + n + 2 = n and
Sn(y) = 2(−1)y/2 − Sn(y − 2) for other even values of y. Then the lemma follows by
induction.

Hence

|φ(1)〉 = −
(

2

n+ 2

)3/2 n∑
y is even

y=2

(−1)y/2(n+ 2− y)|n+ 2− y〉. (3.61)

All that is left is to find U (1). In order to do that we need to find the derivatives of the
hat vectors which span the range of the operator U(k). The derivatives of vectors

|u0,k〉 =
1√
2

(e−ik|0〉+ eik|1〉), |u1,k〉 =
1√
2

(e−ik|0〉 − eik|1〉),

|v0〉 = |+〉 =
1√
2

(|0〉+ |1〉), |v1〉 = |−〉 =
1√
2

(|0〉 − |1〉)
(3.62)

are, respectively,

|u′0,k〉 = −i|u1,k〉, |u′1,k〉 = −i|u0,k〉, |v′0〉 = 0, |v′1〉 = 0. (3.63)

Note that |u0,π
2
〉 = −i|−〉 and |u1,π

2
〉 = −i|+〉. The hat vectors we care about in the context

of U (0) and U (1) turns out to be

|0̂(k)〉 = −i|u0,k〉⊗n,

|2̂l1(k)〉 = |u0,k〉⊗n−l1−1|u1,k〉|v0〉⊗l1 ,

| ̂2l2 − 2l1(k)〉 = |u0,k〉⊗n−l2|u1,k〉|v1〉⊗l2−l1−1|v0〉⊗l1 ,

(3.64)

where 0 ≤ l1 < l2 ≤ n. Thus

|0̂ (0)〉 = (−i)n+1|−〉⊗n,

|2̂l1 (0)〉 = (−i)n−l1|−〉⊗n−l1−1|+〉⊗l1+1,

| ̂2l2 − 2l1 (0)〉 = (−i)n−l2+1|−〉⊗n−l2|+〉|−〉⊗l2−l1−1|+〉⊗l1 .

(3.65)

Now, for l ∈ [0 .. n− 1] we have

|0̂ ′(k)〉 = −
n−1∑
j=0

|u0,k〉⊗n−1−j|u1,k〉|u0,k〉⊗j,

|2̂l ′(k)〉 = −i|u0,k〉⊗n−l|v0〉⊗l − i
n−l−2∑
j=0

|u0,k〉⊗n−l−2−j|u1,k〉|u0,k〉⊗j|u1,k〉|v0〉⊗l.

(3.66)

29

It is convenient to define |2̂−1(k)〉 = |0̂(k)〉, |2̂−2 (0)〉 = 0 and |2̂n (0)〉 = 0. From (3.65) and
(3.66) we get

|2̂−1 (1)〉 =|0̂ (1)〉 = −(−i)n
n−1∑
j=0

|−〉⊗n−1−j|+〉|−〉⊗j

=|2̂−1−1 (0)〉 − |2̂−1+1 (0)〉 −
n−(−1)−2∑

j=1

i−j| ̂2−1+1(2j+1 − 1) (0)〉,

|2̂l (1)〉 =(−i)n−l+1|−〉⊗n−l|+〉⊗l + (−i)n−l+1

n−l−2∑
j=0

|−〉⊗n−l−2−j|+〉|−〉⊗j|+〉⊗l+1

=|2̂l−1 (0)〉 − |2̂l+1 (0)〉 −
n−l−2∑
j=1

i−j| ̂2l+1(2j+1 − 1) (0)〉.

(3.67)

Therefore

U (0) =
n+1∑
y=1

|2̂y−2 (0)〉〈n+ 2− y| (3.68)

and

U (1) =
n+1∑
y=1

(
|2̂y−3 (0)〉 − |2̂y−1 (0)〉 −

n−y∑
j=1

i−j| ̂2y−1(2j+1 − 1) (0)〉

)
〈n+ 2− y|. (3.69)

By combining the expressions for |φ(0)〉, |φ(1)〉, U (0) and U (1) we get

|ψ(1)〉 =

√
2

n+ 2

n+1∑
y is odd

y=1

(−1)
y−1
2

(
|2̂y−3 (0)〉 − |2̂y−1 (0)〉 −

n−y∑
j=1

i−j| ̂2y−1(2j+1 − 1) (0)〉

)

−
(

2

n+ 2

)3/2 n∑
y is even

y=2

(−1)y/2(n+ 2− y)|2̂y−2 (0)〉

=

√
2

n+ 2

n∑
y is even

y=0

(−1)y/2|2̂y−2 (0)〉+

√
2

n+ 2

n+2∑
y is even

y=2

(−1)y/2|2̂y−2 (0)〉

−
√

2

n+ 2

n∑
y is even

y=0

(−1)y/2
n−y−1∑
j=1

i−j| ̂2y(2j+1 − 1) (0)〉

−
(

2

n+ 2

)3/2 n∑
y is even

y=2

(−1)y/2(n+ 2− y)|2̂y−2 (0)〉 =

30

=

√
2

n+ 2

 2

n+ 2

n∑
y is even

y=2

iy y |2̂y−2 (0)〉 −
n−2∑

y is even

y=0

n−y−1∑
j=1

iy−j| ̂2y(2j+1 − 1) (0)〉

. (3.70)

Since all vectors in this sum are distinct, we have

〈ψ(1)|ψ(1)〉 =
2

n+ 2

 4

(n+ 2)2

n∑
y is even

y=2

y2 +
n−2∑

y is even

y=0

n−y−1∑
j=1

1

=
n(3n2 + 14n+ 8)

6(n+ 2)2
. (3.71)

One can easily see that |ψ(0)〉 and |ψ(1)〉 are superpositions over disjoint subsets of { |m̂(0)〉 :
m ∈ [0 .. 2n − 1] }, and therefore they are orthogonal.

3.3 A wave packet of snakes

In Section 2.1.2 we have already shown that in the case of the regular continuous-time
quantum walk on the line we can prepare a specific initial state which then propagates as a
Gaussian-shaped wave packet with any momentum up to 2. Here we show that something
very similar is possible in the case of the continuous-time quantum snake walk on the line.

Our main obstacle is that we do not know all the eigenvalues of Hn,k, that is, we
do not know the eigenvalues that depend on k, which are the ones we care about. We
know even less about the corresponding eigenvectors. Therefore later we have to do some
approximations and make some assumptions.

Again, let n be even and let λ(k) be the n+2
2

-th largest k-dependent eigenvalue of Hn,k.
From the discussions in the beginning of Section 3.2.2 and Section 3.2.3 we know that λ(k)
is holomorphic, and there exists a holomorphic function |ψ(k)〉 such that H(|k̃〉⊗|ψ(k)〉) =
λ(k) |k̃〉 ⊗ |ψ(k)〉 and 〈ψ(k)|ψ(k)〉 = 1 for all k ∈ R, and 〈ψ(π

2
)|ψ′(π

2
)〉 = 0. In this section

we lift the restriction that k is in [0, 2π).

For z ∈ Z, consider the state

|ξz〉 = cσ

∫ 3π
2

−π
2

e−
(k−π2)2

2σ2 e−ikz |k̃〉 ⊗ |ψ(k)〉 dk, (3.72)

where cσ > 0 is the normalization factor and we assume that the parameter σ > 0 is
small (we should think of σ2 as a variance). Other than 〈ψ(π

2
)|ψ′(π

2
)〉 = 0, we have no

information about the global phases of vectors |ψ(k)〉 at all. It is not obvious that the
integral in (3.72) even converges. However, we show later that it does, assuming that σ2

is small enough and we can use certain approximations.

We claim that the state |ξz〉 under the evolution governed by H behaves as a wave
packet moving in the negative direction of X-axis (the line) with momentum 8

n+2
. In order

to show that, we consider two cases: one, when the time of the evolution is small, and
other, when the time is asymptotically large.

31

3.3.1 Short-time approximation

The time evolution of |ξz〉 is given by

e−iHt|ξz〉 = cσ

∫ 3π
2

−π
2

e−
(k−π2)2

2σ2 e−ikze−itλ(k) |k̃〉 ⊗ |ψ(k)〉 dk. (3.73)

When σ is small, the most contribution to the integral in (3.73) comes from the values k
which are close to π

2
. Because of that, we choose to use a first order approximation and

approximate |ψ(k)〉 by |ψ(π
2
)〉+ (k− π

2
)|ψ′(π

2
)〉 and λ(k) by λ(π

2
) + (k− π

2
)λ′(π

2
). (We could

use a second order approximation instead, and it would not complicate things too much
since we already know that λ′′(π

2
) = 0. Careful, but relatively simple derivations similar

to those in Section 3.2.3 can give us the expression for |ψ′′(π
2
)〉.) Our approximation is

valid when the time t is not too large and we still have eitλ(k) ≈ eit(λ(π
2

)+(k−π
2

)λ′(π
2

)) for the
values of k which give considerable contribution to (3.73). The upper bound for such t is
yet unknown.

Let |ψ(0)〉 = |ψ(π
2
)〉, |ψ(1)〉 = |ψ′(π

2
)〉, λ(0) = λ(π

2
) and λ(1) = λ′(π

2
). Similarly, for

a hat vector |m̂〉, which is k-dependent, let |m̂(0)〉 denote its value at k = π
2

and let
|m̂(1)〉 denote the value of its derivative at k = π

2
, where m ∈ [0 .. 2n − 1]. Note that

{ |m̂(0)〉 : m ∈ [0 .. 2n − 1] } is an orthonormal basis. In Section 3.2.3 we showed λ(0) = 0,
λ(1) = − 8

n+2
,

|ψ(0)〉 =

√
2

n+ 2

|0̂ (0)〉+
n∑

y is even

y=2

iy |2̂y−1 (0)〉

 (3.74)

and

|ψ(1)〉 =

√
2

n+ 2

 2

n+ 2

n∑
y is even

y=2

iy y |2̂y−2 (0)〉 −
n−2∑

y is even

y=0

n−y−1∑
j=1

iy−j| ̂2y(2j+1 − 1) (0)〉

, (3.75)

for which we have

〈ψ(0)|ψ(0)〉 = 1, 〈ψ(0)|ψ(1)〉 = 0 and 〈ψ(1)|ψ(1)〉 =
n(3n2 + 14n+ 8)

6(n+ 2)2
≈ n

2
. (3.76)

32

Let κ = k − π
2
. Hence

e−iHt|ξz〉 ≈ cσ

∫ 3π
2

−π
2

e−
(k−π2)2

2σ2 e−ikzeit(k−π
2

) 8
n+2 |k̃〉 ⊗

(
|ψ(0)〉+

(
k − π

2

)
|ψ(1)〉

)
dk

=
cσ√
2π

∑
x∈Z

ix−z|x〉 ⊗
∫ π

−π
e−

κ2

2σ2 ei(x−z+ 8
n+2

t)κ
(
|ψ(0)〉+ κ|ψ(1)〉

)
dκ

=
cσ√
2π

∑
x∈Z

ix−z
√

2πσe
−

(x−z+ 8
n+2 t)

2

2/σ2 erf
(π√

2σ

)
|x〉 ⊗ |ψ(0)〉

− cσ√
2π

∑
x∈Z

ix−z2iσ2e−
π2

2σ2 sin
(
π
(
x− z +

8t

n+ 2

))
|x〉 ⊗ |ψ(1)〉

+
cσ√
2π

∑
x∈Z

ix−zi
√

2πσ3
(
x− z +

8t

n+ 2

)
e
−

(x−z+ 8
n+2 t)

2

2/σ2 erf
(π√

2σ

)
|x〉 ⊗ |ψ(1)〉

≈ cσ
∑
x∈Z

ix−zσe
−

(x−z+ 8
n+2 t)

2

2(1/σ)2 |x〉 ⊗
(
|ψ(0)〉+ iσ2

(
x− z +

8t

n+ 2

)
|ψ(1)〉

)
,

(3.77)

where we use integrals (2.9) and (2.10), and the last approximation is due to the fact

that e−
π2

2σ2 and 1 − erf(π√
2σ

) rapidly decreases as σ decreases; for σ = 1 we already have

e−
π2

2 = 0.0072 and erf(π√
2
) = 0.9983.

We can see that for small σ the state |ξz〉 corresponds to the superposition of snakes
which are concentrated around the position z on the line, and then, as time passes,
this superposition moves in the negative direction of X-axis with momentum 8

n+2
. Since

〈ψ(0)|ψ(1)〉 = 0, 〈ψ(0)|ψ(0)〉 = 1 and 〈ψ(1)|ψ(1)〉 ≈ n
2
, we have

〈ξz|ξz〉 ≈ σ2c2
σ

∑
x−z∈Z

e−(x−z)2σ2

(1 + (x− z)2σ4n/2)

≈ σ2c2
σ

∫ ∞
−∞

e−x
2σ2

(1 + x2σ4n/2) dx

= σ2c2
σ(
√
π/σ + n

√
πσ/4),

(3.78)

which gives us cσ ≈ 1/
√
σ(1 + nσ2/4)

√
π. We choose σ ∈ Ω(1/ poly n) small enough so

that we can ignore the term corresponding to the vector |ψ(1)〉 in (3.77). In that case,
|ξz〉 looks like a Gaussian-shaped wave packet of length c/σ ∈ O(poly n), where c is a

constant; that is, |ξz〉 can be well approximated with a state
∑z+c/σ

x=z−c/σ αx|x〉 ⊗ |ψ(0)〉 for
some amplitudes αx. The fact that this state ‘occupies’ only a polynomial length interval
of the line is important for algorithmic purposes.

33

3.3.2 Asymptotic approximation

Now we want to show that the same type of motion with momentum 8
n+2

remains even
when we do not restrict ourselves to small values of the time t. A good way how to
describe a location of the snake after time t would be to calculate the norm of the vector
(〈x| ⊗ I)e−iHt|ξz〉 for every value x ∈ Z. Unfortunately, this seems to be a hard thing
to do because we do not know the value of 〈ψ(k1)|ψ(k2)〉 for k1 6= k2 (and this value
depends on how we choose the global phase of |ψ(k)〉). We already know that the state
|ξx〉 is concentrated on the line around the position x, therefore we choose to calculate
〈ξx|e−iHt|ξz〉, where x ∈ Z, instead.

Let x = z + ωt, and let us think of ω as the momentum. We have the following:

〈ξz+ωt|e−iHt|ξz〉 =cσ

∫ 3π
2

−π
2

e−
(k1−

π
2)2

2σ2 eik1(z+ωt)〈k̃1| ⊗ 〈ψ(k1)| dk1

· cσ
∫ 3π

2

−π
2

e−
(k2−

π
2)2

2σ2 e−iλ(k2)te−ik2z|k̃2〉 ⊗ |ψ(k2)〉 dk2

=c2
σ

∫ 3π
2

−π
2

e−
(k−π2)2

σ2 eit(ωk−λ(k)) dk. (3.79)

When t is large, eit(ωk−λ(k)) rapidly changes as f(k) = ωk − λ(k) changes. This means
that in an interval where f(k) changes the contribution from adjacent subintervals to the
integral (3.79) nearly cancels out [25]. Therefore the most contribution to the integral
comes from values of k where the function f(k) is stationary, that is, where f ′(k) = 0. The
method of stationary phase approximation makes this statement more rigorous, therefore
let us present this method here.

Consider an integral

I(k) =

∫ b

a

g(k)eitf(k) dk, (3.80)

where g(k) and f(k) are smooth real-valued functions in the interval [a, b], g(a) 6= 0, and t is
some large argument. We call k0 a stationary point of f(k) of order q if f ′(k0) = f ′′(k0) =
. . . = f (q)(k0) = 0 and f (q+1)(k0) 6= 0. The method of stationary phase approximation
states [3, 25]:

• if there are no stationary points of any order in the interval [a, b], then

I(k) ∈ o(1/td) (3.81)

for any d ∈ R;

• if a is a stationary point of order q − 1 and there are no other stationary points in
the interval [a, b] of order q − 1 or higher, then

I(k) ≈ g(a) eitf(a)±i π
2q q

√
q!

±tf (q)(a)

Γ(1/q)

q
, (3.82)

where Γ is the Gamma function and f (q)(a) = ±|f (q)(a)|.

34

Any integral of form (3.80) may be expressed as a sum of multiple integrals such that for
each of them one of the two above cases applies.

Now let us use the method of stationary phase approximation for (3.79), the integral of

our interest; we have fω(k) = ωk−λ(k) and g(k) = e−
(k−π2)2

σ2 , where we use the subscript ω
to clarify which momentum we are talking about and we ignore the normalizing constant

c2
σ. From Section 3.2.2 we have λ′(±π

2
) = ∓ 8

n+2
and λ′′′(±π

2
) = ±8(3n2+4)

(n+2)3
≈ ±24

n
. Because

we do not know much about the function λ(k), let us assume Hypothesis 3.6, which, first
of all, implies that λ′(k) ∈ [− 8

n+2
, 8
n+2

] for all k ∈ R. Since λ(k) = λ(−k), we have

fω(k) = ωk − λ(k) and fω(−k) = −ωk − λ(k),
f ′ω(k) = ω − λ′(k) and (fω(−k))′ = −ω − λ′(k),
f ′′ω(k) = −λ′′(k) and (fω(−k))′′ = −λ′′(k),
f ′′′ω (k) = −λ′′′(k) and (fω(−k))′′′ = −λ′′′(k).

(3.83)

We consider four following cases.

• If ω /∈ [− 8
n+2

, 8
n+2

], then f ′ω(k) 6= 0 for all k, and therefore fω(k) has no stationary
points. This, according to (3.81), implies that∫ 3π

2

−π
2

g(k) eitfω(k) dk ∈ o(1/td) (3.84)

for any d ∈ R, which basically means that no part of the wave packet moves faster
than with momentum 8

n+2
. To be more precise, there might be a part which moves

faster, but stays orthogonal to |ξy〉 for all y ∈ Z.

• If ω = − 8
n+2

, then k = π
2

is the unique stationary point of fω(k) in the interval

[−π
2
, 3π

2
], having order 2. (3.82) and (3.83) give us∫ 3π
2

−π
2

g(k) eitfω(k) dk =

∫ π
2

−π
2

g(−k) eitfω(−k) dk +

∫ 3π
2

π
2

g(k) eitfω(k) dk

≈ eit 24
n

+iπ
6 3

√
3!

t24
n

Γ(1/3)

3
+ e−it 24

n
−iπ

6 3

√
3!

t24
n

Γ(1/3)

3

≈ 1.125 cos

(
24t

n
+
π

6

)
1

3
√
t/n

.

(3.85)

• If ω = 8
n+2

, then k = −π
2

and k = 3π
2

are the only two stationary points of fω(k) in

the interval [−π
2
, 3π

2
], both having order 2. Similarly as for ω = − 8

n+2
we get∫ 3π

2

−π
2

g(k) eitfω(k) dk =

∫ π
2

−π
2

g(k) eitfω(k) dk +

∫ −π
2

− 3π
2

g(−k) eitfω(−k) dk

≈ 1.125 e−
π2

σ2 cos

(
24t

n
+
π

6

)
1

3
√
t/n

,

(3.86)

35

which is almost 0, because the factor e−
π2

σ2 is very small for small σ (for σ = 1 it is
already 5.172 · 10−5).

• If ω ∈ (− 8
n+2

, 8
n+2

), then f ′ω(k) = ω − λ′(k) = 0 has exactly two solutions in the

interval [−π
2
, 3π

2
]: they are π

2
+κω and π

2
−κω for some κω > 0, and the order of these

two stationary points is 1. That is so due to the fact that, according to Hypothesis 3.6,
λ′(k) strictly decreases in the interval (−π

2
, π

2
) and increases in the interval (π

2
, 3π

2
), and

λ(π
2
−κ) = −λ(π

2
+κ) implies λ′(π

2
−κ) = λ′(π

2
+κ) for all κ. Let λ

(2)
ω = λ′′(π

2
+κω) > 0.

Since λ′′(−π
2
− κω) = λ′′(π

2
+ κω) = −λ′′(π

2
− κω) = −λ′′(−π

2
+ κω), we have∫ 3π

2

−π
2

g(k) eitfω(k) dk

=

∫ π
2

−π
2

+κω

g(−k) eitfω(−k) dk +

∫ π
2

π
2
−κω

g(k) eitfω(k) dk

+

∫ −π
2

−π
2
−κω

g(−k) eitfω(−k) dk +

∫ 3π
2

π
2

+κω

g(k) eitfω(k) dk

≈ 5.013 e
−κ2

ω
σ2 cos(tλ(2)

ω + π/4)
1√
tλ

(2)
ω

.

(3.87)

In order to analyze this quantity, it is useful to look at Figure 3.5 on page 25. When
ω is close to − 8

n+2
, κω is close to 0 and so is λ

(2)
ω . Thus, the value of (3.87) is likely to

be close to the value of (3.85). However, λ
(2)
ω increases as ω moves further from − 8

n+2

because λ′′′(k) is relatively large for k close to π
2

(see Hypothesis 3.6). Also, since
(n + 2)|λ′′(k)| ≤ 8 by Hypothesis 3.6, we have κω > (ω − (− 8

n+2
))/ 8

n+2
= n+2

8
ω + 1.

Therefore, the value of the integral (3.87) exponentially decays as ω+ 8
n+2

increases.

Hence, if we restrict our interest to the projection of the state e−iHt|ξz〉 on the space
X = span{|ξx〉 : x ∈ Z}, then we see a wave packet which moves in the negative direction
of X-axis with momentum 8

n+2
. Let us call this projection |ξz〉t,X . The norm of |ξz〉t,X can

be shown to be in Ω(1/ poly n) assuming that σ ∈ Ω(1/ poly n) and that we can use the

approximation cos2(tλ
(2)
ωx + π/4) ≈ 1/2 in the sum

x=− 8
n+2

t∑
∆x |x

x=− 8
n+2

t

5.013 e
−κ2

ωx
σ2 cos(tλ(2)

ωx + π/4)
1√
tλ

(2)
ωx

2

≤ || |ξz〉t,X ||2, (3.88)

where ∆x ∈ N is a constant and ωx = (x− z)/t, which seems a reasonable approximation
to make since t is large. The gap ∆x appears in the sum (3.88) because we cannot sum
over all consecutive values of x due to the fact that {|ξx〉 : x ∈ Z} is not an orthogonal

basis of X . Hence, assuming Hypothesis 3.6 and that we can use cos2(tλ
(2)
ωx +π/4) ≈ 1/2 in

(3.88), a substantially large part of the initial state |ξz〉 propagates as a wave packet with
momentum 8

n+2
.

36

However, it might as well be the case that the norm of |ξz〉t,X is 1. That would be

the case if Π =
∫ 2π

0
|k̃〉〈k̃| ⊗ |ψ(k)〉〈ψ(k)| dk were the projector on the space X , because it

can be easily seen that Π e−iHt|ξz〉 = e−iHt|ξz〉. We could also consider what are the inner
products between e−iHt|ξz〉 and elements of the set{∫ µ+π

µ−π
e
− (k−µ)2

2σ2
2 e−ikx |k̃〉 ⊗ |ψ(k)〉 dk : x ∈ Z, σ2 ∈ R, µ ∈ [−π/2, 3π/2]

}
, (3.89)

because it seems that vectors from this set span the space Π projects to (consider σ2 → 0).

3.3.3 Span of a snake

Definition. Let s = (v0, . . . , vn) ∈ Zn+1 be a snake on the line. We define the span of s
to be the pair µ(s) = (sm, sM) = (min(v0, . . . , vn),max(v0, . . . , vn)), and the span length of
s to be µ̄(s) = sM − sm.

This definition easily generalizes to superpositions over snakes: for a unit vector |χ〉 ∈
CSn(G) let the span of |χ〉 be a random variable µ(|χ〉) which for every pair (tm, tM) ∈ Z2

assigns the probability that in the event of measuring |χ〉 in the standard basis {|s〉 : s ∈
Sn(G)} we obtain a snake s such that µ(s) = (tm, tM). Similarly we define µ̄(|χ〉), the
span length of |χ〉, which is an integer-valued random variable. For algorithmic purposes
described in Chapter 4 we are interested that the span length of |ξz〉 is large. To be more
precise, we want that with probability Ω(1/ poly n) we have n ∈ O(poly µ̄(|ξz〉)).

Now again let us consider every snake s to be given as a pair s = (x, j) ∈ Z× {0, 1}n.
The span length of s is determined by j alone. That is,

µ̄(j) = µ̄(s) =

(
max

{
−

l∑
b=1

(−1)jb : l ∈ [0 .. n]

}
−min

{
−

l∑
b=1

(−1)jb : l ∈ [0 .. n]

})
.

(3.90)
Hence, µ̄(j) ≥ | 2||j||1 − n | holds for every j ∈ {0, 1}n. Again, let us generalize it for
superpositions: for |ψ〉 ∈ C{0,1}n let us define µ̄(|ψ〉) = µ̄(|υ〉 ⊗ |ψ〉), where |υ〉 ∈ CZ can
be chosen arbitrarily.

In Section 3.3.1 we show that we can choose σ small enough, but still in Ω(1/ poly n),
so that |ξz〉 ≈ |υz〉 ⊗ |ψ(0)〉, where |υz〉 ∈ CZ and |ψ(0)〉 is given on page 27. We have

|ψ(0)〉 =

√
2

n+ 2

|0̂ (0)〉+
n∑

y is even

y=2

iy |2̂y−1 (0)〉

= (−i)n+1

√
2

n+ 2

n/2∑
l=0

(|−〉 ⊗ |−〉)⊗
n
2
−l(|+〉 ⊗ |+〉)⊗l

(3.91)

(the expressions for |0̂ (0)〉, |2̂ (0)〉, |8̂ (0)〉 etc. are from (3.65)).

37

Let p(j) = |〈j|ψ(0)〉|2 and q(j) = 1/2n be two probability distributions. Numerical
results suggest that the trace distance between them ||p − q||1 is quite precisely 1, which
which would mean that E(µ̄(|ψ(0)〉)) ∈ Ω(

√
n). Instead of trying to prove that this holds,

let us do something easier which is still sufficient for our purposes: in the case where 4
divides n, we have |〈j|ψ(0)〉|2 ≥ 1

2n
2

n+2
for all j ∈ {0, 1}n; therefore with probability at least

1
n+2

we have µ̄(|ψ(0)〉) ≥ c
√
n for some constant c (

√
n comes from the standard deviation

of the binomial distribution). Since µ̄(|ξz〉) ≈ µ̄(|ψ(0)〉), with probability Ω(1/n) the span
length µ̄(|ξz〉) is large enough.

It might be the case that a more general result holds, that is, it might be that
E(µ̄(|ψ(k)〉)) ∈ Ω(

√
n) for all k. That, in turn, (using the partial trace) would imply

that E(µ̄(|ξz〉)) ∈ Ω(
√
n) for an arbitrary choice of σ (when we cannot make certain ap-

proximations). However, we do not try to prove it here.

3.3.4 Other momenta and other eigenvalues

We have shown that there is an initial state of the continuous-time quantum snake walk
on the line which, under certain assumptions, propagates as a wave packet moving with
momentum − 8

n+2
in the positive direction (therefore the minus sign) of X-axis, assuming

n is even. However, it seems that for any chosen ω in [− 8
n+2

, 8
n+2

] there is an initial state
which propagates with momentum ω, similarly as it is in the case of the regular continuous-
time quantum walk on the line (see Section 2.1.2). At least, when the time of the evolution
is small. Indeed, choose kω ∈ [π

2
, 3π

2
] such that λ′(kω) = ω, and for small σ consider a state

|ξω〉 = cσ

∫ kω+π

kω−π
e−

(k−kω)2

2σ2 |k̃〉 ⊗ |ψ(k)〉 dk (3.92)

and its time evolution

e−iHt|ξω〉 ≈ cσ

∫ kω+π

kω−π
e−

(k−kω)2

2σ2 e−it(λ
(0)
ω +(k−kω)ω) |k̃〉 ⊗

(
|ψ(0)
ω 〉+

(
k − kω

)
|ψ(1)
ω 〉
)

dk

=
cσe
−itλ

(0)
ω

√
2π

∑
x∈Z

eikωx|x〉 ⊗
∫ π

−π
e−

κ2

2σ2 ei(x−ωt)κ
(
|ψ(0)
ω 〉+ κ|ψ(1)

ω 〉
)

dκ

(3.93)

where κ = k − kω and we use approximations λ(k) ≈ λ
(0)
ω + (k − kω)ω and |ψ(k)〉 ≈

|ψ(0)
ω 〉 + (k − kω)|ψ(1)

ω 〉, λ(0)
ω = λ(kω), |ψ(0)

ω 〉 = |ψ(kω)〉 and |ψ(1)
ω 〉 = |ψ′(kω)〉. By doing

similar derivations to (3.93) as we do in (3.77) we can see that |ξω〉 propagates as a wave
packet moving in the positive direction of X-axis with momentum ω. (Without loss of

generality we can assume that |ψ(0)
ω 〉 and |ψ(1)

ω 〉 are orthogonal, yet we do not know what

is the norm of |ψ(1)
ω 〉.) This analysis is far from being rigorous, and more work is required

in the future.

We also do not need to restrict ourselves to the median eigenvalue and restrict n to be
even. We can easily use (3.92) and (3.93) for any of n + 1 k-dependent eigenvalues and
their corresponding eigenvectors, as far as the derivative of this eigenvalue has the value

38

ω at some point kω. The reason why we consider the median eigenvalue in more detail in
the case when n is even is not only because it makes calculations easier, but also because
this eigenvalue seems to have the largest range for the value of its derivative (see Figure
3.4), therefore we can construct initial states having highest momenta.

Regarding the span length: it is not clear what the span length of |ξω〉 is. We know
that an eigenvector of Hn,k corresponding to a k-dependent eigenvalue is a superposition

of k-dependent vectors |0̂〉, |1̂〉, |2̂〉, |4̂〉, |8̂〉, etc. That would be really useful if we could
show that for any such superposition the expected value of the span length is in Θ(

√
n),

since it would imply E(µ̄(|ξω〉)) ∈ Θ(
√
n). So far we can neither prove nor disprove it.

This concludes our discussion about quantum snakes on the line. Later in Chapter 4 we
show how the analysis of the quantum snake walk on the line can be useful for analyzing
the quantum snake walk on the glued trees graph.

39

Chapter 4

Snakes on the glued trees graph

In this chapter we discuss how the continuous-time quantum snake walk might lead to an
efficient algorithm solving the extended glued trees problem defined in Section 2.2. We say
‘might’ because we do not have an algorithm which provably works efficiently yet.

Recall that in the extended glued trees problem we are given a glued trees graph
G = (V,E) via a black-box oracle. The graph G consists of two complete binary trees of
height N having roots r1 and r2, and the leaves of the trees are connected by a randomly
chosen cycle of length 2 · 2N . We are also given the label of the root r1. Our aim is to
obtain a path connecting r1 to r2. The complexity of the computation is measured in terms
of how many oracle queries the algorithm makes, and we want it to be in O(polyN).

In Section 4.1 we discuss several approaches how to solve the extended glued trees
problem using the quantum snake walk. We also explain how to construct the initial
state of the walk so that the behaviour of the walk does not depend on which cycle in
particular glues the trees. This allows us to reduce the continuous-time quantum snake
walk on a graph of our consideration (a slight modification of the glued trees graph) to the
regular continuous-time quantum walk on some simpler graph. In Section 4.2 we present
the Hamiltonian governing this simpler walk. Then in Sections 4.3 and 4.4 we show how
this walk behaves under certain circumstances, and point out multiple similarities to the
quantum snake walk on the line. We conclude by presenting an algorithm solving the
extended glued trees problem, but without knowing anything about its efficiency.

Due to technical difficulties, the analysis used in Sections 4.3.2 and 4.4 are very ap-
proximate.

4.1 Potential approaches

The way we plan to tackle the extended glued trees problem is by running the continuous-
time quantum snake walk started from some easily constructable initial superposition over
snakes. What we hope for is that after running the quantum snake walk for a certain
amount of time t ∈ O(polyN) and measuring the state of the snake, with a high probability

40

we obtain a path which includes both r1 and r2, from which we then can extract a solution
to the problem. Thus, we require that the length of the snake n is at least 2N + 1.

One choice we have to make is which state to use as the initial state for the walk. First
of all, not all states can be prepared efficiently, because preparing any superposition over
snakes requires us to know the labels of all of their vertices. Plus, the evolution of many
states depends on the structure of the cycle gluing the trees. In this section we show how
to choose the initial state so that we do not need to worry about the latter, the dependence
on the random cycle. After that we discuss how we can modify our graph, still using the
same black-box oracle, so that we have more freedom in terms of which initial states we
can choose from.

4.1.1 Glued trees graph alone

As we see in the Section 2.2, the regular quantum walk solving the glued trees problem
always remains in a subspace spanned by certain superpositions. Therefore it is possible
to reduce that walk to a walk on a much simpler graph, and the analysis of the walk does
not have to depend on which cycle in particular glues the trees. Now we show that we can
do the same for the quantum snake walk on the glued trees graph.

For every vertex v ∈ V let δ(v) ∈ [0 .. 2N + 1] denote the distance between v and the
root r1. Similarly as in the case of quantum snakes on the line (see Section 3.1), for every
snake s = (v0, . . . , vn) ∈ V n+1 on G let us assign a pair η(s) = (x, j) ∈ Z2N+2 × {0, 1}n
such that x = δ(v0) and for l ∈ [1 .. n] let jl ∈ {0, 1} be such that δ(vl) = δ(vl−1)− (−1)jl .
The difference form the case of the line is that in this case every pair (x, j) corresponds to
more than one snake. Let S(x, j) = {s ∈ Sn(G) : η(s) = (x, j)}, and let |x, j〉 denote the
uniform superposition over the snakes of S(x, j) (assuming S(x, j) 6= ∅).

Due to the symmetry among the snakes in a set S(x′, j′), for any snake s ∈ S(x′, j′) the
number of snakes t in a set S(x′′, j′′) for which mb(s, t) holds depends only on the values
of x′, x′′, j′ and j′′, but not on which particular snake in S(x′, j′) we consider (here primes
do not denote derivatives as in the previous chapter). The same is true for mf (s, t). This,
according to Lemma 2.2, implies that the subspace Z = span({|x, j〉 : S(x, j) 6= ∅}) is
invariant under An(G). As we can see, if we choose the initial state to be in the subspace
Z, the walk always stays in this subspace, and it proceeds exactly the same way for all
possible cycles gluing the trees.

However, it is not obvious for which values of x and j we can prepare the superposition
|x, j〉 efficiently. For a snake s = (v0, . . . , vn) ∈ S(x, j) let δm = min(δ(v0), . . . , δ(vn)) and
δM = max(δ(v0), . . . , δ(vn)). It is easy to see that both δm and δM depend only on the
values of x and j. We say that the snake is stretched if δM − δm ∈ Ω(N) and folded if
δM − δm ∈ O(poly(logN)). Let Xq be the set of vertices which are at the distance q from
the root r1. Since all the vertices of the snake s are connected, for every q ∈ [δm .. δM] there
is a vertex of s which is in Xq. Therefore, it is not clear if there is a way how to prepare
the state |x, j〉 other than learning the labels of all the vertices in the sets Xδm , Xδm+1,
. . . , XδM . But we can do it efficiently only if δM or 2N + 1− δm is in O(poly(logN)). This
highly restricts which initial superpositions we can start form. For example, for a state

41

|x, j〉 to be constructed in this manner efficiently we require snakes in S(x, j) to be folded

and therefore
∣∣∣∑b

l=a (−1)jl
∣∣∣ ∈ O(poly(logN)) for all 1 ≤ a ≤ b ≤ n. But, in the end, we

need to obtain a stretched snake, that is, a snake connecting r1 to r2. Nonetheless, these
restrictions on the initial j can be lifted if we consider the glued trees graph being a part
of a larger graph.

4.1.2 Glued trees graph with semi-infinite lines attached

There is a way to make the initial state of the walk be stretched. This requires us to
introduce ancillary vertices. Let us attach a semi-infinite line to the root r1, for which we
can choose labels of vertices as we like. (In practice, we attach a finite line segment which
is much longer than both the length of the snake n and the time for which we intend to
run the walk, but length of which is still in O(polyN).) In order for labels of the original
and the ancillary vertices not to overlap, we can add 0 and 1 in front of them, respectively.
Then we can make any initial state on the semi-infinite line we like, including ones which
correspond to stretched snakes, without querying the black-box oracle at all. (Technically
we have defined what it means for a snake to be stretched only on the glued trees graph,
but this definition can be generalized in the obvious way.)

We can make a wave packet described in Section 3.3, and make to move towards the
glued trees graph with the momentum 8

n+2
(again, under certain assumptions). Since we

already have an efficient algorithm which finds the label of r2, we can attach a semi-infinite
line to the root r2 as well, therefore making the graph more symmetric. Our hope is that
the packet would propagate through the glued trees graph giving us a snake which connects
r1 and r2.

In order to simulate the continuous-time quantum snake walk on this new graph we
need an oracle which for every its vertex v, given as an input, outputs the list of vertices
adjacent to v. But, since we already know the labels of r1, r2 and the ancillary vertices, we
can implement such an oracle efficiently by using the black-box oracle of the glued trees
graph as a subroutine.

The problem with this graph is that it seems to be hard to analyze how the snake walk
behaves on it. The reason for that is that the attached lines introduces some irregularities.
While each vertex in the glued trees graph has the degree 3, each vertex in the semi-
infinite lines has the degree 2. It is not even clear if the wave packet (or another initial
state we decide to use) gets through the part where the line connects to the tree; it might
be reflected back. To overcome these problems we propose a bit more complex graph, but
which seems to be much easier to analyze.

4.1.3 Expanded glued trees graph

For every vertex v of the glued trees graph G let v̄ denote its label, which we assume is a
bit string of length L ∈ Ω(N). We also assume that w∅ = 1 . . . 1 is not the label of any
vertex. Suppose we have run the algorithm solving the original glued trees problem, and

42

now we know r̄1 and r̄2, the labels of both roots. Let n ∈ O(polyN), as usual, be the
length of the snake, n ≥ 2N + 1, and let M ∈ O(polyN) be such that M � n+N .

Now step by step we are going to construct a graph each vertex of which has a unique
M −N + 1 + L bit label. Let Ttmp be a complete binary tree of height M −N − 1. The
unique M − N + 1 bit label of each vertex of Ttmp is assigned as follows. For an integer
a ∈ [1 .. 2M−N+1− 1] let (a)2 be its binary representation using M −N + 1 bits. We assign
the label (1)2 to the root, and then, recursively, for every node having label (a)2 we assign
label (2a)2 to one of its children, and (2a+ 1)2 to the other. Therefore the vertices of Ttmp

have labels (1)2, (2)2, . . . , (2
M−N − 1)2, and the distance between the root and the vertex

with a label (a)2 is blog2(a)c. Let T1 also be a complete binary tree of height M −N − 1
obtained from Ttmp by simply adding r̄1 at the end of each label of Ttmp. (As an example,
T1 is shown in Figure 4.1 for the case when M −N = 4.) The same way we define a tree
T2, just by adding r̄2 instead of r̄1. The vertices of T1 and T2 have M − N + 1 + L bit
labels.

00001 r!1

00010 r!1

00011 r!1

00100 r!1

00101 r!1

00110 r!1

00111 r!1

01000 r!1

01001 r!1

01010 r!1

01011 r!1

01100 r!1

01101 r!1

01110 r!1

01111 r!1

Figure 4.1: Tree T1 when M −N = 4.

For every a ∈ [2M−N .. 2M−N+1−1] let G(a) be the same as G just with a difference that
we add (a)2 in front of each label of G. This gives us 2M−N graphs of this form. Now for
every a ∈ [2M−N−1 .. 2M−N − 1], let us connect:

• the leaf of T1 having the label (a)2r̄1 to the root of G(2a) having the label (2a)2r̄1,

• the leaf of T1 having the label (a)2r̄1 to the root of G(2a+1) having the label (2a+1)2r̄1,

• the leaf of T2 having the label (a)2r̄2 to the other root of G(2a) having the label
(2a)2r̄2,

• the leaf of T2 having the label (a)2r̄2 to the other root of G(2a+1) having the label
(2a+ 1)2r̄2.

43

This way we have obtained a graph GM consisting of two complete binary trees of height
M which are connected by 2M−N cycles that alternates between the leaves of the two trees.
We call GM the expanded glued trees graph. For example, for the case N = 2 and M = 4,
a glued trees graph G and the expanded graph GM are shown in Figure 4.2.

001 r!1

010 r!1

011 r!1

100 r!1

101 r!1

110 r!1

111 r!1

100 u1

100 u2

101 u1

101 u2

110 u1

110 u2

111 u1

111 u2

100 u3

100 u4

100 u5

100 u6

101 u3

101 u4

101 u5

101 u6

110 u3

110 u4

110 u5

110 u6

111 u3

111 u4

111 u5

111 u6

100 u7

100 u8

100 u9

100 u10

101 u7

101 u8

101 u9

101 u10

110 u7

110 u8

110 u9

110 u10

111 u7

111 u8

111 u9

111 u10

100 u11

100 u12

101 u11

101 u12

110 u11

110 u12

111 u11

111 u12

100 r!2

101 r!2

110 r!2

111 r!2

010 r!2

011 r!2

001 r!2

Figure 4.2: An expanded glued trees graph GM for N = 2 and M = 4. A copy of the
original glued trees graph G is shown using thick edges.

We need to implement the oracle which, given the label w̃ ∈ {0, 1}M−N+1+L of a vertex
w of GM , returns the list of three labels corresponding to vertices adjacent to w. In case w̃ is
either (1)2r̄1 or (1)2r̄2, w has only two adjacent vertices, but this case can be easily checked
and handled. Another special case is when w̃ = (a)2r̄ for some a ∈ [2M−N .. 2M−N+1 − 1]
and r ∈ {r1, r2}. The occurrence of this case can also be checked efficiently: it occurs
whenever the first bit of w̃ is 1 and the last L bits are either r̄1 or r̄2. Let v1 and v2

44

be the two vertices adjacent to r in G. The oracle simply returns (ba/2c)2r̄, (a)2v̄1 and
(a)2v̄2. For the rest of the vertices we can distinguish two following cases. If the first bit
of w̃ is 0, then w̃ = (a)2r̄ for some a ∈ [2 .. 2M−N − 1] and r ∈ {r1, r2}, and the oracle
returns (ba/2c)2r̄, (2a)2r̄ and (2a+ 1)2r̄. But if the first bit is 1, then w̃ = (a)2v̄ for some
a ∈ [2M−N .. 2M−N+1 − 1] and a vertex v of G. The oracle uses the black-box oracle of G
to find the three vertices v1, v2 and v3 adjacent to v, and returns (a)2v̄1, (a)2v̄2 and (a)2v̄3.
Hence, we can implement the oracle for GM efficiently. This also allows us to simulate the
continuous-time quantum snake walk on GM efficiently.

The advantage of considering the walk on GM rather than one on G is that, first of all,
we do not need to worry what happens close to the roots of both trees, since we can choose
M to be much larger than the time for how long we intend to run the walk. The exact
value of M , as we show later, does not matter as long as we assume it is very large, and
for analytical purposes it is useful to work in the limit M → ∞. But most importantly,
we know the labels of all vertices which are at distance up to M − N from either root of
GM , that is, from a vertex with the label (1)2r̄1 or (1)2r̄2. This allows us to prepare a
large variety of initial states efficiently. For that reason, from now on let us consider the
continuous-time quantum snake walk on GM .

4.2 Reduction to a simpler walk

Let R1 be the root of GM having the label (1)2r̄1. The same way as for G, for any vertex
w of GM let δ(w) denote its distance from R1 and let Xq be the set of all vertices w having
δ(w) = q. The structure of GM is basically the same as the structure of G, except that
instead of one cycle gluing the trees now we have many. However, the important thing is
that cycles still connect each vertex in XM to two vertices in XM+1 and vice versa (a vertex
in XM+1 to two in XM). This means that the subspace Z = span({|x, j〉 : S(x, j) 6= ∅}) ⊂
CSn(GM), where S(x, j) and |x, j〉 are defined the same way as for G (see Section 4.1.1),
is invariant under An(GM). If we restrict ourselves to this subspace, the continuous-time
quantum snake walks on the graph GM and on a glued trees graph of height M are equal.

What we need to achieve here is that after a polynomial amount of time with a high
probability we can obtain a snake for which at least one vertex is in XM−N , and one in
XM+N+1. For every such a snake s there is a subgraph G(a), where a ∈ [2M−N .. 2M−N+1−1],
such that s goes through G(a) connecting both its roots having labels (a)2r̄1 and (a)2r̄2.
Thus, knowing such a snake reveals us a path in G connecting r1 and r2.

Both the start vertex and the end vertex of a snake s ∈ Sn(GM) have 3 adjacent vertices;
unless one of the two is a root of GM , but we assume this is not the case for now. This means
that there are three distinct snakes t such that mf (s, t) and three distinct snakes t such
that mb(s, t) (two out of those six snakes can be equal, which is the case if and only if s =
(u, v, u, v, . . .) for some vertices u and v). Let x ∈ [1 .. 2M] and j1, . . . , jn ∈ {0, 1} be such
that s ∈ S(x, j1 . . . jn). The snake s can move backward to one snake in S(x−1, 1j1 . . . jn−1)
and two in S(x + 1, 0j1 . . . jn−1) or, vice versa, two in S(x − 1, 1j1 . . . jn−1) and one in
S(x + 1, 0j1 . . . jn−1). Which of those two is the case is determined by whether x ≤ M or

45

x ≥M+1. That is, if x ≤M , then the start vertex w0 (which is at distance x from R1) has
one adjacent vertex closer to R1 than w0 (in terms of the distance) and two adjacent vertices
which are further than w0. The opposite happens if x ≥M+1. For x′, x′′ ∈ [0 .. 2M+1] and
j′, j′′ ∈ {0, 1}n let mb[(x′, j′), (x′′, j′′)] be the number of snakes s′′ ∈ S(x′′, j′′) for which
mb(s

′, s′′), where s′ is an arbitrary snake in S(x′, j′) (due to symmetry, such a number
always exists). The same way we define mf [(x′, j′), (x′′, j′′)] using mf (s

′, s′′) instead of
mb(s

′, s′′). We define mb[(x′, j′), (x′′, j′′)] = mf [(x′, j′), (x′′, j′′)] = 0 if S(x′, j′) = ∅ or
S(x′′, j′′) = ∅, or both. We have

mb[(x, j1 . . . jn), (x− 1, 1j1 . . . jn−1)] =

{
1 if x ≤M

2 if x ≥M + 1,
(4.1)

mb[(x, j1 . . . jn), (x+ 1, 0j1 . . . jn−1)] =

{
2 if x ≤M

1 if x ≥M + 1.
(4.2)

If x were 0 or 2M + 1, then the start vertex of the snake would have only two adjacent
vertices, and only, respectively, (4.2) or (4.1) would hold.

For a binary vector j ∈ {0, 1}l of length l let |j|± = −
∑l

y=1 (−1)jy . Note that for all
snakes in S(x, j) the distance between their end vertices and R1 is x + |j|±. Something
very similar as for backward motion also holds for forward motion: the snake s can move
forward to one snake in S(x − (−1)j1 , j2 . . . jn0) and two in S(x − (−1)j1 , j2 . . . jn1) or
vice versa. Which is the case now is determined by whether x + |j1 . . . jn|± ≤ M or
x+ |j1 . . . jn|± ≥M + 1. That is,

mf [(x, j1 . . . jn), (x− (−1)j1 , j2 . . . jn0)] =

{
1 if x+ |j1 . . . jn|± ≤M

2 if x+ |j1 . . . jn|± ≥M + 1,
(4.3)

mf [(x, j1 . . . jn), (x− (−1)j1 , j2 . . . jn1)] =

{
2 if x+ |j1 . . . jn|± ≤M

1 if x+ |j1 . . . jn|± ≥M + 1.
(4.4)

Again, if x + |j1 . . . jn|± were 0 or 2M + 1, then the end vertex of the snake would have
only two adjacent vertices, and only (4.4) or (4.3) would hold, respectively. Therefore we
have described all the possible ways how the snake s can move.

Let H be the operator An(GM) reduced to the subspace Z = span({|x, j〉 : S(x, j) 6=
∅}) ⊂ CSn(GM), and let S(x′, j′) and S(x′′, j′′) be two non-empty sets. According to Lemma
2.2 and the definition of An(GM) (see Section 2.3 for latter) we have

〈x′′, j′′|H|x′, j′〉 =
√
mb[(x′, j′), (x′′, j′′)] +mf [(x′, j′), (x′′, j′′)]

·
√
mb[(x′′, j′′), (x′, j′)] +mf [(x′′, j′′), (x′, j′)].

(4.5)

Since for any two snakes s′ and s′′ we have mb(s
′, s′′) if and only if mf (s

′′, s′), we have
mb[(x′, j′), (x′′, j′′)] 6= 0 if and only if mf [(x′′, j′′), (x′, j′)] 6= 0. Also, similarly as mb(s

′, s′′)
and mb(s

′′, s′) both hold simultaneously if and only if there are two vertices u and v such

46

that s′ = (u, v, u, v, . . .) and s′′ = (v, u, v, u, . . .), one can see that both mb[(x′, j′), (x′′, j′′)]
and mb[(x′′, j′′), (x′, j′)] are non-zero simultaneously if and only if j′ = (1010 . . .), x′′ =
x′ + 1 and j′′ = (0101 . . .) or vice versa. Hence, if this in not the case, then√
mb[(x′, j′), (x′′, j′′)] +mf [(x′, j′), (x′′, j′′)] ·

√
mb[(x′′, j′′), (x′, j′)] +mf [(x′′, j′′), (x′, j′)]

=
√
mb[(x′, j′), (x′′, j′′)] ·mf [(x′′, j′′), (x′, j′)] +

√
mb[(x′′, j′′), (x′, j′)] ·mf [(x′, j′), (x′′, j′′)].

(4.6)

Suppose for now that (4.6) holds even if we have j′ = (1010 . . .), x′′ = x′ + 1 and j′′ =
(0101 . . .) (we show later on page 48 that it indeed does hold). Then

H =
∑

x′, j′, x′′, j′′

(√
mb[(x′, j′), (x′′, j′′)] ·mf [(x′′, j′′), (x′, j′)]

+
√
mb[(x′′, j′′), (x′, j′)] ·mf [(x′, j′), (x′′, j′′)]

)
· |x′′, j′′〉〈x′, j′|

=
∑

x′, j′, x′′, j′′

√
mb[(x′, j′), (x′′, j′′)] ·mf [(x′′, j′′), (x′, j′)] · (|x′′, j′′〉〈x′, j′|+ |x′, j′〉〈x′′, j′′|) ,

(4.7)

where the summation is over all x′, x′′ ∈ [0 .. 2M+1] and j′, j′′ ∈ {0, 1}n such that S(x′, j′) 6=
∅ and S(x′′, j′′) 6= ∅.

We can split the sum (4.7) into four sums for each of which particular values of the last
bit of j′ and the first bit of j′′ are required. For example, suppose we require j′n = 0 and
j′′1 = 0. Then mb[(x′, j′1 . . . j

′
n−10), (x′′, 0j′′2 . . . j

′′
n)] according to (4.1) and (4.2) is 0 unless

j′l = j′′l+1 for all l ∈ [1 .. n− 1] and x′′ = x′ + 1, in which case

mb[(x′, j′1 . . . j
′
n−10), (x′ + 1, 0j′1 . . . j

′
n−1)] =

{
2 if x′ ≤M

1 if x′ ≥M + 1
(4.8)

assuming S(x′, j′) 6= ∅ and S(x′′, j′′) 6= ∅. From (4.3) we get

mf [(x′ + 1, 0j′1 . . . j
′
n−1), (x′, j′1 . . . j

′
n−10)] =

{
1 if x′ + 1 + |0j′1 . . . j′n−1|± ≤M

2 if x′ + 1 + |0j′1 . . . j′n−1|± ≥M + 1.

(4.9)
To make following equations shorter, let Ifc[q1; q0] be q1, if the condition c is true, and q0, if
it is false. For the sake of convenience let us define |x, j〉 to be 0, if S(x, j) = ∅. Therefore,
according to (4.8) and (4.9), we have∑
j′n=0, j′′1 =0

x′, j′, x′′, j′′

√
mb[(x′, j′), (x′′, j′′)] ·mf [(x′′, j′′), (x′, j′)] · (|x′′, j′′〉〈x′, j′|+ |x′, j′〉〈x′′, j′′|) =

47

=
∑

j∈{0,1}n−1

√2

M−max(|j|±,0)∑
x=0

(|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

+ If|j|±>0[2; 1]

M−min(|j|±,0)∑
x=M+1−max(|j|±,0)

(|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

+
√

2
2M+1∑

x=M+1−min(|j|±,0)

(|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

 .

(4.10)

(For some values of x ∈ [0 .. 2M+1] and j ∈ {0, 1}n−1 either or both of |x, j0〉 and |x+1, 0j〉
can be 0. For example, |2, 000111〉 = 0 because the distance between the middle vertex of
a snake in S(2, 000111) and R1 should be −1, which is clearly not possible, and therefore
this set S(2, 000111) is empty.)

For the three remaining sums, when (j′n, j
′′
1) = (0, 1), (j′n, j

′′
1) = (1, 0) and (j′n, j

′′
1) =

(1, 1), similar derivations can be done. In the end we get

H =
∑

j∈{0,1}n−1

(
M−max(|j|±,0)∑

x=0

(
2 (|x+ 1, 0j〉〈x, j1|+ |x, j1〉〈x+ 1, 0j|)

+ (|x− 1, 1j〉〈x, j0|+ |x, j0〉〈x− 1, 1j|)
+
√

2 (|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

+
√

2 (|x− 1, 1j〉〈x, j1|+ |x, j1〉〈x− 1, 1j|)
)

+

M−min(|j|±,0)∑
x=M+1−max(|j|±,0)

(√
2 (|x+ 1, 0j〉〈x, j1|+ |x, j1〉〈x+ 1, 0j|)

+
√

2 (|x− 1, 1j〉〈x, j0|+ |x, j0〉〈x− 1, 1j|)
+ If|j|±>0[2; 1] (|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

+ If|j|±>0[1; 2] (|x− 1, 1j〉〈x, j1|+ |x, j1〉〈x− 1, 1j|)
)

+
2M+1∑

x=M+1−min(|j|±,0)

(
(|x+ 1, 0j〉〈x, j1|+ |x, j1〉〈x+ 1, 0j|)

+ 2 (|x− 1, 1j〉〈x, j0|+ |x, j0〉〈x− 1, 1j|)
+
√

2 (|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)

+
√

2 (|x− 1, 1j〉〈x, j1|+ |x, j1〉〈x− 1, 1j|)
))

.

(4.11)

What is left to do is to show that (4.6) holds even if j′ = (1010 . . .), x′′ = x′ + 1 and

48

j′′ = (0101 . . .). For the backward motion from (4.1) and (4.2) we get

mb[(x+ 1, 0101 . . .), (x, 1010 . . .)] =

{
1 if x ≤M − 1

2 if x ≥M,
(4.12)

mb[(x, 1010 . . .), (x+ 1, 0101 . . .)] =

{
2 if x ≤M

1 if x ≥M + 1.
(4.13)

For the forward motion, however, we need to consider two cases. If n is odd, then (4.3)
and (4.4) give

mf [(x, 1010 . . . 1), (x+ 1, 0101 . . . 0)] =

{
1 if x ≤M − 1

2 if x ≥M,
(4.14)

mf [(x+ 1, 0101 . . . 0), (x, 1010 . . . 1)] =

{
2 if x ≤M

1 if x ≥M + 1,
(4.15)

while, if n is even, we have

mf [(x+ 1, 0101 . . . 01), (x, 1010 . . . 10)] =

{
1 if x ≤M − 1

2 if x ≥M,
(4.16)

mf [(x, 1010 . . . 10), (x+ 1, 0101 . . . 01)] =

{
2 if x ≤M

1 if x ≥M + 1.
(4.17)

Using (4.12-4.17) one can verify that (4.6) holds for all values of x and n.

Now that we have found the Hamiltonian (4.11) which governs the continuous-time
quantum snake walk on GM restricted to subspace Z, we can start to examine how this
walk behaves for specific initial states.

4.3 Quantum snakes on infinite binary trees

The description of the Hamiltonian H is quite complex, and it is not clear how the quan-
tum evolution governed by H behaves. Because of that, let us restrict our attention to
superpositions |x, j〉 such that 0� x− n and x+ n�M .

Consider an operator

Ĥ =
∑

j∈{0,1}n−1

∑
x∈Z

(2 (|x+ 1, 0j〉〈x, j1|+ |x, j1〉〈x+ 1, 0j|)

+ (|x− 1, 1j〉〈x, j0|+ |x, j0〉〈x− 1, 1j|)
+
√

2 (|x+ 1, 0j〉〈x, j0|+ |x, j0〉〈x+ 1, 0j|)
+
√

2 (|x− 1, 1j〉〈x, j1|+ |x, j1〉〈x− 1, 1j|)),

(4.18)

49

where, unlike in the definition of H, we assume { |x, j〉 : (x, j) ∈ Z × {0, 1}n } is an
orthonormal basis (|x, j〉 is not defined to be 0 of S(x, j) 6= ∅).

On our states of interest both operators H and Ĥ act equally. Therefore, similarly as
the continuous-time quantum walk on a finite line segment can be approximated by the
continuous-time quantum walk on the infinite line (see [20]), assuming the time of evolution

t is not too large, e−iĤt well approximates how e−iHt acts on the states of our interest.
(Indeed, if we neglect the higher terms starting from the same degree of both Taylor series

Ut = e−iHt = I− iHt− (Ht)2

2!
+ i (Ht)3

3!
+ . . . and Ũt = e−iĤt = I− iĤt− (Ĥt)2

2!
+ i (Ĥt)3

3!
+ . . .,

which can be done without causing significant errors, we obtain two operators which act
equally on our states of interest.) Ĥ can be thought of as a Hamiltonian governing the
walk on infinite binary tree restricted to certain superpositions, where each vertex has two
children and one parent (there is no root). In this section let us analyze the operator Ĥ.

4.3.1 Analogies to snakes on line

It turns out that the structure of Ĥ is very similar to the Hamiltonian (3.4) governing the
continuous-time quantum snake walk on the line. Here we present many similar results as
in Chapter 3, but without going into too much details explaining them.

Note that we can rewrite Ĥ as

Ĥ =
∑
x∈Z

|x− 1〉〈x| ⊗
∑

j∈{0,1}n−1

(
√

2 |j0〉〈0j|+ 2 |j1〉〈0j|+ |1j〉〈j0|+
√

2 |1j〉〈j1|)

+
∑
x∈Z

|x+ 1〉〈x| ⊗
∑

j∈{0,1}n−1

(|j0〉〈1j|+
√

2 |j1〉〈1j|+
√

2 |0j〉〈j0|+ 2 |0j〉〈j1|)

=

∫ 2π

0

|k̃〉〈k̃| ⊗ Ĥn,k dk,

(4.19)

where |k̃〉 = 1√
2π

∑
x∈Z e

ikx|x〉 as usual and

Ĥn,k =
∑

j∈{0,1}n−1

eik(
√

2 |j0〉〈0j|+ 2 |j1〉〈0j|+ |1j〉〈j0|+
√

2 |1j〉〈j1|)

+
∑

j∈{0,1}n−1

e−ik(|j0〉〈1j|+
√

2 |j1〉〈1j|+
√

2 |0j〉〈j0|+ 2 |0j〉〈j1|).
(4.20)

Hence, eigenvalues and eigenvectors of Ĥn,k give us eigenvalues and eigenvectors of Ĥ.
For unit vectors |u0,k〉 = 1√

3

(√
2e−ik|0〉+ eik|1〉

)
, |u1,k〉 = 1√

3

(
e−ik|0〉 −

√
2eik|1〉

)
, |v0〉 =

1√
3

(
|0〉+

√
2 |1〉

)
and |v1〉 = 1√

3

(√
2 |0〉 − |1〉

)
we have

Ĥn,k = 3
∑

j∈{0,1}n−1

(|u0,k〉|j〉〈j|〈v0|+ |j〉|v0〉〈u0,k|〈j|). (4.21)

Similarly as before, we define |0̂〉 = |u0,k〉⊗n (here we do not use the factor−i because, unlike
in the case of the line, it does not make any expressions simpler) and for m ∈ [1 .. 2n − 1]

50

we define
|m̂〉 = |u0,k〉⊗n−blog2(m)c−1|u1,k〉|vmblog2(m)c〉 . . . |vm1〉, (4.22)

where 1mblog2(m)c . . .m1 is m written binary using blog2(m)c+ 1 bits. Since 〈u0,k|u1,k〉 = 0

and 〈v0|v1〉 = 0, Bn,k = {|0̂〉, . . . , |2̂n − 1〉} is an orthonormal basis. By proceeding in the
same way as in the case of the line (see Section 3.1.1), we obtain

Ĥn,k =2
√

2(eik + e−ik) |0̂〉〈0̂|+ (eik − 2e−ik)|1̂〉〈0̂|+ (e−ik − 2eik)|0̂〉〈1̂|

+ 3
2n−1−1∑
m=1

(|2̂m〉〈m̂|+ |m̂〉〈2̂m|).
(4.23)

Again we can show that only n+ 1 eigenvalues of Ĥn,k depend on k and those are the

eigenvalues we care about. k-dependent eigenvalues of Ĥn,k are the eigenvalues of

Φk = U∗k Ĥn,kUk =3
n−1∑
y=1

(|y + 1〉〈y|+ |y〉〈y + 1|) + 2
√

2(eik + e−ik) |n+ 1〉〈n+ 1|

+ (e−ik − 2eik)|n+ 1〉〈n|+ (eik − 2e−ik)|n〉〈n+ 1|,

(4.24)

where Uk is a linear isometry defined as

Uk =
n∑
y=1

|2̂n−y〉〈y|+ |0̂〉〈n+ 1|. (4.25)

Now let us state the analogue of Lemma 3.1 and the p-condition (3.27) for the case of the
binary tree. Without loss of generality let 〈1|φ〉 ≥ 0 for all eigenvectors of Φk.

Lemma 4.1. For any k let |φ〉 ∈ Rn+1 be a unit vector such that Φk|φ〉 = λ|φ〉 for some
eigenvalue λ ∈ R. There exist unique p ∈ (0, π) and c > 0 such that |φ〉 = c

∑n
y=1 sin yp|y〉+

c3 sin(n+1)p
eik−2e−ik |n+ 1〉, λ = 6 cos p, and p satisfies

6(3 cos p− 2
√

2 cos k) sin(n+ 1)p = (1 + 8 sin2 k) sinnp. (4.26)

Proof. First let us show that |λ| < 6. Suppose λ = 6. It can be easily shown that 〈1|φ〉 6= 0
(for any value of λ), therefore 〈1|φ〉 = b for some constant b > 0. We have

6b = λ〈1|φ〉 = 〈1|Φk|φ〉 = 3〈2|φ〉, (4.27)

which gives us 〈2|φ〉 = 2b. Then, the induction used in a similar fashion as in the proof of
Lemma 3.1 gives us 〈y|φ〉 = by for y ∈ [1 .. n]. By combining this with

λ〈n|φ〉 = 〈n|Φk|φ〉 = 3〈n− 1|φ〉+ (eik − 2e−ik)〈n+ 1|φ〉 (4.28)

and

λ〈n+ 1|φ〉 = 〈n+ 1|Φk|φ〉 = (e−ik − 2eik)〈n|φ〉+ 2
√

2(eik + e−ik)〈n+ 1|φ〉 (4.29)

51

we get
(6− 4

√
2 cos k)(3n+ 3)b = (9− 8 cos2 k)nb, (4.30)

which has solutions cos k = 3
√

2(n + 1 ± 1)/(4n) /∈ [−1, 1]. This contradiction gives us
λ 6= 6 for any value of k; similarly λ 6= −6. It can be shown quite easily that for k = π

2
we

have λ ∈ {6 cos π
n+2

, 6 cos 2π
n+2

, . . . , 6 cos (n+1)π
n+2
}, therefore the continuity of eigenvalues as a

functions of k implies |λ| < 6.

Let p be a unique value in (0, π) satisfying λ = 6 cos p and let c > 0 be such that
〈1|φ〉 = c sin p. By using induction in the same way as in the proof of the Lemma 3.1 we
get

|φ〉 = c
n∑
y=1

sin yp|y〉+ c
3 sin(n+ 1)p

eik − 2e−ik
|n+ 1〉. (4.31)

Finally, the condition (4.26) comes from substituting the expression (4.31) for |φ〉 and
λ = 6 cos p in (4.29).

Since each eigenvalue of Φk uniquely determines its corresponding eigenvector, Lemma
4.1 implies that all the eigenvalues of Φk are distinct. If using numerical computation we
plot how k-dependent eigenvalues of Ĥn,k and their derivatives depend on k (see Figures
4.3 and 4.4 for the case when n = 8), we see that they behave very similarly as in the case
of the line (Figures 3.3 and fig:deigenvalues).

Π

2
Π 3 Π

2
2 Π

k

"6

"4

"2

0

2

4

6
Λ

Figure 4.3: k-dependent eigenvalues in the case of the tree for n = 8.

52

Π

2
Π 3 Π

2
2 Π

k

" 3
2

"1

" 1
2

0

1
2

1

3
2

Λ$

Figure 4.4: Derivatives of k-dependent eigenvalues in the case of the tree for n = 8.

4.3.2 Wave packets and the span length

As long as the derivative of any eigenvalue is ω at some point k = kω, we can prepare a
wave packet which for at least some amount of time moves with momentum ω up or down
the tree. The technique to show this is very similar to one used in Section 3.3 for the case
of the line, and still requires us to do some approximations.

For every x ∈ Z and j ∈ {0, 1}n let us define the span length of the state |x, j〉, which
can be thought of as a superposition over snakes, to be µ̄(|x, j〉) = µ̄(j), where µ̄(j) is
defined in (3.90) on page 37. In some sense it means that all snakes in |x, j〉 connect two
levels of tree which are apart from each other by the distance µ̄(|x, j〉). We also define
µ̄(|ψ〉) for |ψ〉 ∈ CZ×{0,1}n to be the random variable which for every m ∈ Z assigns the
probability that the measurement of |ψ〉 in the standard basis results in a pair (x, j) such
that µ̄(|x, j〉) = m.

In Section 3.3.3 we mention that we are interested in wave packets which have a large
span length with a substantial probability, and now we see why: if such a wave packet is
placed on the expanded glued trees graph and it goes down the tree, the hope is that it
does not lose too much of its span length once it hits the center part of the graph. By the
center part we mean the part of GM which corresponds to the copies of the original glued
trees graph G, that is, the part which is at distance at most N from the glued part. Then
with a probability high enough we would get a snake which reveals the roots r1 and r2 of
G.

However, there are still many issues we need to address. First of all, it might be the
case that the wave packet is reflected form the center part, and it never ‘reaches’ levels deep
enough to give a path connecting the roots r1 and r2 with substantially large probability.

53

And second, even if the wave packet propagates through the center part, while doing so
it might lose its span length a lot (meaning that the span length is outside O(log n) with
exponentially small probability). Whether it happens or not is not clear yet. Anyhow, let
us consider a span length of one particular wave packet, which seems to be the one of the
greatest importance.

Consider n to be even. Let λ(k) be the n+2
2

-th largest eigenvalue of Φk, and |φ(k)〉 and

|ψ(k)〉 = Uk|φ(k)〉 be its corresponding eigenvectors of Φk and Ĥn,k, respectively. Operator
Φk is holomorphic in k, therefore due to the Lemma 3.3 so are λ(k), |φ(k)〉 and |ψ(k)〉
(to be more precise, we can choose the eigenvectors to be holomorphic, because there is
obviously some choice of global phases for which they are not). Let us consider the initial
state

|ξz〉 = cσ

∫ 5π
2

π
2

e−
(k− 3π

2)2

2σ2 e−ikz |k̃〉 ⊗ |ψ(k)〉 dk, (4.32)

where cσ > 0 is a normalization factor. Let λ′(k) and Φ′k denote the derivatives of λ(k)
and Φk respectively. We assume that σ is small enough so that we can approximate λ(k)
by λ(3π

2
) + (k − 3π

2
)λ′(3π

2
) and |ψ(k)〉 simply by |ψ(3π

2
)〉. Similarities to the case of the

line (see page 33) suggests that choosing σ ∈ Ω(1/ poly n) might be enough for the latter
approximation to be accurate. We have

Φ3π/2 = 3
n−1∑
y=1

(|y + 1〉〈y|+ |y〉〈y + 1|) + 3i|n+ 1〉〈n| − 3i|n〉〈n+ 1|, (4.33)

for which the median eigenvalue is λ(3π
2

) = 0 with corresponding eigenvector

|φ(3π/2)〉 =

√
2

n+ 2

(
n−1∑

y is odd

y=1

(−1)
n+y−1

2 |y〉+ i|n+ 1〉

)
. (4.34)

We have Φ′3π/2 = −|n+ 1〉〈n| − |n〉〈n+ 1| + 4
√

2 |n+ 1〉〈n+ 1|, and perturbation theory

gives us λ(3π
2

) = 〈φ(3π
2

)|Φ′3π/2|φ(3π
2

)〉 = 8
√

2
n+2

[21, Section 1.2]. As similar analysis (with

similar assumptions) to the case of the line in Section 3.3.2 implies that |ξz〉 evolves under

Ĥ as a wave packet moving with momentum 8
√

2
n+2

.

Since |u0,3π/2〉 = 1√
3

(√
2i|0〉 − i|1〉

)
= i|v1〉 and |u1,3π/2〉 = 1√

3

(
i|0〉+

√
2i|1〉

)
= i|v0〉,

we get

|ψ(3π/2)〉 = U3π/2|φ(3π/2)〉 = in+1

√
2

n+ 2

n/2∑
l=0

(|v1〉 ⊗ |v1〉)⊗
n
2
−l(|v0〉 ⊗ |v0〉)⊗l. (4.35)

It is not clear what is the span length µ̄(|υ, ψ(3π
2

)〉), where |υ〉 ∈ CZ can be chosen ar-
bitrarily. On a positive note, numerical results suggest that E(µ̄(|υ, ψ(3π

2
)〉)) ∈ Ω(

√
n).

However, even if it indeed holds, it does not mean that the span length of the snake
remains sufficiently large when it hits the center part.

54

4.4 Reflection and transmission coefficients

Let us still assume that M is very large and M ∈ O(polyN). In Section 4.3 we restrict
our attention to superpositions |x, j〉 satisfying 0� x− n and x+ n� M , and therefore

we can approximate H by Ĥ =
∫ 2π

0
|k̃〉〈k̃| ⊗ Ĥn,k, where Ĥn,k is given in (4.20). Similarly,

if we place the restriction that M � x− n and x+ n� 2M , then we can approximate H
by Ȟ =

∫ 2π

0
|k̃〉〈k̃| ⊗ Ȟn,k, where

Ȟn,k =
∑

j∈{0,1}n−1

eik(
√

2 |j0〉〈0j|+ |j1〉〈0j|+ 2 |1j〉〈j0|+
√

2 |1j〉〈j1|)

+
∑

j∈{0,1}n−1

e−ik(2 |j0〉〈1j|+
√

2 |j1〉〈1j|+
√

2 |0j〉〈j0|+ |0j〉〈j1|).
(4.36)

We can see that Ȟn,k is the conjugate of the operator Ĥn,k with its rows and columns
reversed. That is not a big surprise since the expanded glued trees graph is symmetric
and the same properties should hold for the both binary trees (asymmetries in the glued
part have no effect since we are working only over certain superpositions). Therefore Ĥn,k

and Ȟn,k have the same eigenspectrum. Also note that Ĥn,k and Ĥn,−k have the same
eigenspectrum as well.

Now let us consider superpositions |x, j〉 such that 0� x−n and x+n� 2M . In this
case we may approximate the HamiltonianH governing the continuous-time quantum snake
walk on the expanded glued trees graph by one which we obtain by changing summation
boundaries in (4.11) for x from 0 and 2M + 1 to −∞ and +∞, respectively, where now
we assume { |x, j〉 : (x, j) ∈ Z × {0, 1}n } is an orthonormal basis, that is, we sum over
all values of j ∈ {0, 1}n−1 and x ∈ Z (the argument why we can do it is similar to one in
the beginning of Section 4.3 for approximating H by Ĥ). Let us call this new operator H̃.
The eigenspectrum of H̃ does not depend on the value of M because for different values
of M this operator differs only up to some power of the translation

∑
x∈Z |x + 1〉〈x| ⊗ I,

where I is the identity operator on the space C{0,1}n . Even though the eigenvectors depend
on the value of M , this dependence is trivial. Because of this M -independence, we choose
to analyze the operator H̃ instead of H.

Let us fix l ∈ [1 .. n+ 1], let λ(k) be l-th largest k-dependent eigenvalue of Ĥn,k, and let

|ψ̂k〉, |ψ̂−k〉 and |ψ̌k〉 be the eigenvectors of Ĥn,k, Ĥn,−k and Ȟn,k, respectively, corresponding

to the eigenvalue λ(k). This means that |χ̂k〉 = |k̃〉 ⊗ |ψ̂k〉 and |χ̂−k〉 = |−̃k〉 ⊗ |ψ̂−k〉 are
eigenvectors of Ĥ and |k̃〉⊗|ψ̌k〉 is an eigenvector of Ȟ. Finally, let Π̂ =

∑
x≤M−n+1 |x〉〈x|⊗I

and Π̌ =
∑

x≥M+n |x〉〈x| ⊗ I be two projectors. We look for eigenvectors of H̃ in the from

|θk〉 = Π̂(|χ̂k〉+Rk|χ̂−k〉) + Π̌(Tk|χ̌k〉) +
M+n−1∑

x=M−n+2

∑
j∈{0,1}n

αx,j|x, j〉 (4.37)

with corresponding eigenvalue λ(k), where Rk, Tk, αx,j ∈ C for all j ∈ {0, 1}n and x ∈
[M−n+2 ..M+n−1]. In some sense the vector |θk〉 represents a wave packet which moves
towards the center part of the expanded glued trees graph with momentum λ′(k), then

55

hits the center part, and then gets reflected with the probability |Rk|2 or gets transmitted
through the center part with the probability |Tk|2 (numerical results agree with |Rk|2 +
|Tk|2 = 1); the wave packet maintains its previous momentum λ′(k) after being reflected
or transmitted (see [11] for a similar argument about the scattering on graphs).

Since Π̂H̃Π̂ = Π̂ĤΠ̂, Π̌H̃Π̌ = Π̌ȞΠ̌ and (〈x1|⊗I)H̃(|x2〉⊗I) = 0 whenever |x1−x2| 6= 1,
we already know that 〈x, j|H̃|θk〉 = λ(k)〈x, j|θk〉 for all x ∈ Z \ [M − n + 1 ..M + n] and
all j ∈ {0, 1}n no matter what the values of Rk and Tk are. Hence, |θk〉 is an eigenvector
of H̃ if and only if Π̃1H̃|θ〉 = Π̃1|θ〉, where Π̃1 =

∑M+n
x=M−n+1 |x〉〈x| ⊗ I.

Let Π̃2 =
∑M+n+1

x=M−n |x〉〈x| ⊗ I, and note that Π̃1H̃|θ〉 = Π̃1H̃Π̃2Π̃2|θ〉. Let us think of

Π̃1|θ〉 and Π̃2|θ〉 as column vectors of the dimension n2n+1 and (n + 1)2n+1, respectively,
and of Π̃1HΠ̃2 as a matrix with dimensions n2n+1× (n+ 1)2n+1. The both vectors and the
matrix do not depend on the value of M . Assuming that we know |ψ̂k〉, |ψ̂−k〉 and |ψ̌k〉,
we can get the coefficients Rk, Tk and αx,j for all x ∈ [M − n+ 1 ..M + n] and j ∈ {0, 1}n
by solving the system of linear equations

(Π̃1H̃Π̃2)(Π̃2|θ〉) = Π̃1|θ〉. (4.38)

The problem is that we do not know the how to calculate |ψ̂k〉 (the other two vectors
|ψ̂−k〉 and |ψ̌k〉 can be easily obtained from |ψ̂k〉). If we run symbolic computations for
the two simplest cases when n = 1 and n = 2, what we get is that the system (4.38) has
a unique solution satisfying |Rk|2 + |Tk|2 = 1. There is also one even more interesting
observation: |Tk|2 = 8 sin2 k

1+8 sin2 k
, and it holds in both cases for all n + 1 values of l (that is,

it does not matter which k-dependent eigenvalue of Ĥn,k we consider). Numerical results
for n = 3, 4, 5, 6, 7 also agree with this (up to the precision of order 10−12), which suggests
that it might be true in general.

The function 8 sin2 k
1+8 sin2 k

reaches its maximal value 8
9

at k = π
2

and k = 3π
2

(see Figure 4.5).
That is good because from Section 4.3.2 we already know that in case n is even we can
prepare a wave packet |ξz〉, satisfying 0� z−n and z+n�M and being a superposition
mostly over vectors |k̃〉 ⊗ |ψ̂k〉 such that k is close to 3π

2
, which (for at least some amount

of time) moves with momentum 8
√

2
n+2

on the expanded glued trees graph GM towards the

center part. Let us choose |ψ̂k〉, |ψ̂−k〉 and |ψ̌k〉 to be holomorphic. Assuming that arg(Rk)
is differentiable and the derivative of arg(Rk) is not too large, the state

|ξ∗z〉 = c∗σ

∫ 5π
2

π
2

e−
(k− 3π

2)2

2σ2 e−ikz |θk〉 dk (4.39)

most likely has a large overlap with the state |ξz〉 (given in (4.32)), therefore it seems
that the wave packet |ξz〉 propagates through the center part with high probability. This
statement is vague because of the fact that we do not know even approximately the values of
arg(Rk) and arg(Tk), which highly determine the value of the integral in (4.39). Note that,
even though the absolute values of Tk and Rk seem not to depend on l, their arguments
do.

Assuming that the wave packet |ξz〉 propagates through the center part, which seems
to be the case, it is important to know how much time it takes for the wave packet do so.

56

Π

2
Π 3 Π

2
2 Π

k0

1
2

1
!Tk!2

Figure 4.5: The absolute value of the transmission coefficient Tk squared.

This is why we talk about the effective length of the center part defined below. Since we
do not know for what global phases |ψ̂k〉, |ψ̂−k〉 and |ψ̌k〉 can be considered as holomorphic
functions in k, we define the effective length in a way which is useful for the numerical
computation.

Definition. Let us fix l ∈ [1 .. n + 1] and k ∈ [0, 2π). Suppose that the first elements of
vectors |ψ̂k〉, |ψ̂−k〉 and |ψ̌k〉 (i.e., the amplitudes corresponding to |0 . . . 0〉) are non-zero.
Then there exists ε > 0 such that for all δ < ε we may uniquely choose the global phases
of vectors |ψ̂k±δ〉, |ψ̂−k∓δ〉 and |ψ̌k±δ〉 so that the first elements of all ei(M−n+1)k|ψ̂k±δ〉,
e−i(M−n+1)k|ψ̂−k∓δ〉 and ei(M+n)k|ψ̌k±δ〉 are strictly positive; let us choose the global phases
in this way and, in turn, obtain states |θk+δ〉 and |θk−δ〉 having transmission coefficients
Tk−δ and Tk+δ, respectively. We define the effective length of the center part for k and l to

be βl,k = limδ→0
arg(Tk+δ)−arg(Tk−δ)

2δ
if this limit exists.

Let us explain a possible meaning of the effective length by talking about a simpler
walk first. Suppose we have an arbitrary finite graph W , and we obtain another graph by
attaching a semi-infinite line to two vertices of W . For k ∈ [0, 2π) the effective length βk
of W can be defined similarly as we have defined it above (detailed description about the
scattering on graphs and, in particular, how precisely we define βk can be found in [11]).
As described in Section 2.1, we can prepare a wave packet on one of the two semi-infinite
lines which moves towards W with momentum νk = 2 sin k (here we are talking about
the regular continuous-time quantum walk). The time it takes for this wave packet to
propagate through the graph W , assuming it is not reflected, is βk/νk; therefore the name
the effective length.

Not enough analytical work has been done yet to tell whether the effective length of
the center part βl,k has exactly the same meaning, but it might be so. Numerical results
for n ∈ [1 .. 7] and l ∈ [1 .. n + 1] indicates that the effective length of the center part for
k = 3π

2
grows linearly in n (see Figure 4.6). That suggests that there are wave packets

which traverse the center part in time Θ(n2), since the wave packets corresponding to
k = 3π

2
and the median eigenvalue move with momentum Θ(1

n
).

57

1 2 3 4 5 6 7
n0

5

10

15

20
Β

Figure 4.6: The effective length βl,k of the center part for n ∈ [1 .. 7], l ∈ [1 .. n + 1] and
k = 3π

2
. The value of βl,k is the same for l = l0 and l = n+ 2− l0.

Not all eigenvectors of H̃ can be written in form |θk〉 given in (4.37), but it seems that
those other eigenvectors are not as important.

4.4.1 Potential algorithm for the extended glued trees problem

Now that we have seen that we can prepare a wave packed which moves on the expanded
glued trees graph toward the center part with momentum Θ(1

n
) and most likely propagates

through it with high probability, let us present a sketch of an algorithm that might solve
the extended glued trees problem efficiently. We say ‘might’ mostly because of the fact
that we do not know what happens with the span length of the wave packet once it hits
the center part. It seams to be Ω(

√
n) on average before and after that (see Section 4.3.2),

but there might be some interesting reason why the span length decreases exponentially
around the center part. Hopefully there is not.

Let N be the height of the original glued trees graph G which we have an access to
via the black-box oracle, and we know the label of one of its two roots r1. Our algorithm
is going to be parametrized by seven following parameters which all may depend on the
value of N :

• n ∈ N, the length of the snake, satisfying n ≥ 2N + 1 and n ∈ O(polyN);

• l ∈ N, the number which determines which k-dependent eigenvalue of Ĥn,k we con-
sider, satisfying l ∈ [1 .. n+ 1];

• k0 ∈ [0, 2π), σ ∈ R and z ∈ Z, the parameters determining the initial state of the
walk, satisfying z ∈ O(polyN), σ ∈ Ω(1/ polyN), z � −n − 1/σ and λ′(k0) ∈
Ω(1/ polyN), where λ′(k) is the derivative of l-th largest k-dependent eigenvalue of
Ĥn,k;

58

• M ∈ N, the height of the expanded glued trees graph, satisfying M ∈ O(polyN) and
M � z + n+ 1/σ;

• τ ∈ R, the time of evolution, satisfying τ ∈ O(polyN) and being approximately
z/λ′(k0).

The algorithm for solving the extended glued trees problem then consists of four following
steps.

1. Run the algorithm which solves the original glued trees problem, and obtain the label
of the second root r2. This can be done efficiently [12]. Then construct the oracle
for the expanded glued trees graph GM as shown in Section 4.1.3.

2. Prepare the initial state

|ξz〉 = cσΠ

∫ k0+π

k0−π
e−

(k−k0
2σ2 e−ikz |k̃〉 ⊗ |ψ̂(k)〉 dk, (4.40)

where Π =
∑M−N−n

x=0 |x〉〈x| ⊗ I is a projector, I is the identity operator on the space

C{0,1}n , and |ψ̂(k)〉 is the eigenvector of Ĥn,k corresponding to its l-th largest k-
dependent eigenvalue. Here we already restrict our attention to superpositions |x, j〉.
Note that we can construct the state |ξz〉 without any oracle queries.

3. Using |ξz〉 as the initial state, run the continuous-time quantum snake walk on GM

for time τ . This walk can be simulated efficiently using the circuit model and the
oracle for GM we have just constructed. Then measure the state of the walk in the
standard basis, thus obtaining a list of labels of vertices, which corresponds to a path
in GM of length n.

4. If the list produced in Step 3 or its reverse contains a sub-list (1ar̄1, 1aw̄1, 1aw̄2, . . . ,
1ar̄2), where a ∈ {0, 1}M−N , then return (r̄1, w̄1, w̄2, . . . , r̄2); otherwise go back to
Step 2.

If this algorithm returns an answer, then it is obviously correct. The algorithm is also
efficient, assuming it has to execute Steps 2, 3 and 4 only O(polyN) times in order to
terminate with a high probability. The question is: is this assumption true?

If transmission coefficients really are as given in Figure 4.5, then for most of the values
of k0 their corresponding wave packets propagate throught the center part with probability
at least Ω(1/ polyN). It is not clear for which values of k0 and l the momentum λ′(k0)
of the wave packet is in Ω(1/ polyN), but it seems that we can choose k0 and l in a wide
range to satisfy that. This gives us the hope that for some choice of the parameters of the
algorithm the span length of the wave packet is sufficiently large during its traversal of the
center part of the graph. Then again, it might as well be the case that choosing even n,
l = n+2

2
and k0 = 3π

2
is good enough.

Another issue we must address is the precision of our approximations. That is, we
have shown that the states of form |ξz〉 behaves as wave packets moving with momentum

59

λ′(k0) only when we assume that the time of evolution is small enough. We do not know
how small this time should be in order for the approximations to be precise, plus, what
kind of disturbances the irregularities at the center part causes to the behavior of the wave
packet.

60

Chapter 5

Conclusion

In this thesis we have introduced a new type of quantum walk on graphs which we call
the continuous-time quantum snake walk. We have analyzed the behavior of this walk on
the line and the glued trees graph. Even though there are still caveats left to consider,
the quantum snake walk has a potential to become a useful tool in quantum algorithm
construction at least for some black-box oracle problems. Solving those caveats is the first
problem we should address in the future.

Assuming the algorithm described in Chapter 4 indeed finds a path connecting both
roots of the glued trees graph, it almost certainly does not find a shortest path. It would be
interesting to see if there exists another algorithm which can efficiently do that. The prob-
lem of finding the shortest path connecting two vertices of a graph is known as pathfinding,
and it has applications in many fields, for example, computer networking. It seems unreal-
istic that quantum methods can give us much faster algorithms for pathfinding in general
weighted graphs than already known classical algorithms, because quantum algorithms
generally perform better only on structures which feature some symmetry. Probably one
can relatively simply prove this claim using some of quantum lower bound proving tech-
niques (such as the adversary method [4]). However, superpolynomial separations might
be possible for some specific classes of graphs.

The glued trees problem can also be easily turned into a decision problem (see [12]).
One obvious way how to do that is to ask what is the first bit of the label of the root r2,
instead of asking the whole label. Another way would be to consider the following graph
reachability problem. Suppose we are given a graph which consists of two copies of a same
glued trees graph and we are given the labels of all four roots v1, v2, v3 and v4 without
specifying which two of them belong to one copy of the glued trees graph and which two
to the other. The problem is to find whether v1 and v2 are connected. Even though an
algorithm solving the original glued trees problem also solves this problem, it does not
necessarily provide a proof of the correctness of the answer which can be verified efficiently
by a classical algorithm. On the other hand, an algorithm solving the extended glued trees
problem efficiently would provide such a proof.

The reason why we care about such proofs can be understood by considering the fol-
lowing setting. Suppose are given a physically implemented quantum computer which we

61

do not trust. We would like this computer to be able to provide certificates that the results
of its computations are correct which we then can verify with a trusted classical device (if
BQP*NP, this is not generally possible). For example, we can classically and efficiently
verify results of Shor’s factoring algorithm [28]. While integer factoring is not yet proven
to be classically hard, the glued trees problem is [12]. The quantum snake walk might
be able to provide an algorithm which efficiently produces a required certificate for the
version of the glued trees problem described in the previous paragraph. It would also be
interesting, if it were impossible for a quantum computer to find a certificate efficiently.

Another potential direction for the future research is to consider discrete-time analogues
of the continuous-time quantum snake walk and their applications. A recent paper by
Mc Gettrick defines a discrete-time walk on the line similar to the continuous-time quantum
snake walk on the line defined here, although snakes (according to our terminology) are
allowed to move only forward (or, equivalently, only backward) [24].

62

Bibliography

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. U.S. Department of Commerce, 10th
edition, 1972. 5

[2] D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical
zero knowledge. In Proc. 35th ACM symposium on Theory of Computing, pages 20–29,
2003. 3

[3] A. Ambainis. Quantum algorithms and complexity. Lecture notes, University of
Waterloo, 2005. Available at www.math.uwaterloo.ca/∼ambainis/CO781.htm. 4, 5,
17, 34

[4] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer
and System Sciences, 64:750–767, 2002. 61

[5] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional
quantum walks. In ACM Symposium on Theory of Computing, pages 37–49, 2001. 4

[6] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any AND-OR
formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. In Proc.
48th IEEE Symposium on Foundations of Computer Science, pages 363–372, 2007.

[7] D. ben Avraham, E. M. Bollt, and C. Tamon. One-dimensional continuous-time
quantum walks. Quantum Information Processing, 3:295–308, 2004. 4

[8] E. Bernstein and U. Vazirani. Quantum complexity theory. In Proc. 25th ACM
Symposium on Theory of Computing, pages 11–20, 1993. 1

[9] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders. Efficient quantum algo-
rithms for simulating sparse Hamiltonians. Communications in Mathematical Physics,
270(2):359–371, 2007. 3

[10] A. M. Childs. Quantum Information Processing in Continuous Time. PhD thesis,
Massachusetts Institute of Technology, 2004. 3, 5, 9

[11] A. M. Childs. Universal computation by quantum walk. Physical Review Letters,
102(180501), 2009. Also available at arXiv:0806.1972v1. 2, 4, 7, 56, 57

63

http://www.math.uwaterloo.ca/~ambainis/CO781.htm
http://arxiv.org/abs/0806.1972

[12] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman.
Exponential algorithmic speedup by a quantum walk. In Proc. 35th ACM symposium
on Theory of Computing, pages 59–68, 2003. 2, 7, 8, 9, 59, 61, 62

[13] A. M. Childs, R. Cleve, S. P. Jordan, and D. Yeung. Discrete-query quantum algorithm
for NAND trees. Theory of Computing, 5:119–123, 2009.

[14] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Physical Review A,
70(022314), 2004. 2

[15] A. M. Childs and R. Kothari. Limitations on the simulation of non-sparse Hamilto-
nians. Available at arXiv:0908.4398v1.

[16] A. M. Childs, L. J. Schulman, and U. V. Vazirani. Quantum algorithms for hidden
nonlinear structures. In Proc. 48th IEEE Symposium on Foundations of Computer
Science, pages 395–404, 2007. 2

[17] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. Roy. Soc. London, 400:97–117, 1985. 1

[18] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian
NAND tree. Theory of Computing, 4:169–190, 2008. 2, 7

[19] E. Farhi and S. Gutmann. Analog analogue of a digital quantum computation. Physical
Review A, 57:2403–2406, 1998. 2

[20] E. Farhi and S. Gutmann. Quantum computation and decision trees. Physical Review
A, 58:915–928, 1998. 2, 50

[21] F. M. Fernández. Introduction to Perturbation Theory in Quantum Mechanics. CRC
Press, 2001. 28, 54

[22] T. Kato. A Short Introduction to Perturbation Theory for Linear Operators. Springer,
1982. 20

[23] A. Markushevich and R. A. Silverman. Theory of Functions of a Complex Variable,
volume I. Prentice Hall, 1965. 20

[24] M. Mc Gettrick. One dimensional quantum walks with memory. Available at
arXiv:0911.1653v1. 62

[25] A. Nayak and A. Vishwanath. Quantum walk on the line (extended abstract). Avail-
able at arXiv:quant-ph/0010117v1. 4, 34

[26] H. T. Nguyen and G. S. Rogers. Fundamentals of Mathematical Statistics, volume I:
Probability for Statistics. Springer-Verlag, 1989. 6

[27] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000. 11

64

http://arxiv.org/abs/0908.4398
http://arxiv.org/abs/0911.1653
http://arxiv.org/abs/quant-ph/0010117

[28] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proc. 35th IEEE Symposium on Foundations of Computer Science, pages 124–134,
1994. 1, 62

[29] D. R. Simon. On the power of quantum computation. In Proc. 35th IEEE Symposium
on Foundations of Computer Science, pages 116–123, 1994. 1

[30] R. Wong. Asymptotic Approximations of Integrals. SIAM, 2001.

65

	List of Figures
	Introduction
	Continuous-time quantum walk
	Continous time quantum walk on the line
	Precise analysis using Bessel functions
	A wave packet as an initial state

	Glued trees problem
	The extended glued trees problem - a motivation for quantum snake walks

	The definition and simulation of quantum snake walk

	Snakes on line
	The Hamiltonian
	Change of basis
	k-dependent eigenvalues
	k-independent eigenvalues

	Even n and the median eigenvalue
	Holomorphy and some general results
	Median eigenvalue for asymptotically large n
	Perturbed eigenvalues and eigenvectors

	A wave packet of snakes
	Short-time approximation
	Asymptotic approximation
	Span of a snake
	Other momenta and other eigenvalues

	Snakes on the glued trees graph
	Potential approaches
	Glued trees graph alone
	Glued trees graph with semi-infinite lines attached
	Expanded glued trees graph

	Reduction to a simpler walk
	Quantum snakes on infinite binary trees
	Analogies to snakes on line
	Wave packets and the span length

	Reflection and transmission coefficients
	Potential algorithm for the extended glued trees problem

	Conclusion
	Bibliography

