
Fault Detection and Identification

in Computer Networks: A Soft Computing Approach

by

Abduljalil Mohamed

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2009

©Abduljalil Mohamed 2009

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abduljalil Mohamed

iii

Abstract

Governmental and private institutions rely heavily on reliable computer networks for

their everyday business transactions. The downtime of their infrastructure networks may

result in millions of dollars in cost. Fault management systems are used to keep today’s

complex networks running without significant downtime cost, either by using active

techniques or passive techniques. Active techniques impose excessive management

traffic, whereas passive techniques often ignore uncertainty inherent in network alarms,

leading to unreliable fault identification performance. In this research work, new

algorithms are proposed for both types of techniques so as address these handicaps.

Active techniques use probing technology so that the managed network can be

tested periodically and suspected malfunctioning nodes can be effectively identified and

isolated. However, the diagnosing probes introduce extra management traffic and storage

space. To address this issue, two new CSP (Constraint Satisfaction Problem)-based

algorithms are proposed to minimize management traffic, while effectively maintain the

same diagnostic power of the available probes. The first algorithm is based on the

standard CSP formulation which aims at reducing the available dependency matrix

significantly as means to reducing the number of probes. The obtained probe set is used

for fault detection and fault identification. The second algorithm is a fuzzy CSP-based

algorithm. This proposed algorithm is adaptive algorithm in the sense that an initial

reduced fault detection probe set is utilized to determine the minimum set of probes used

for fault identification. Based on the extensive experiments conducted in this research

both algorithms have demonstrated advantages over existing methods in terms of the

overall management traffic needed to successfully monitor the targeted network system.

Passive techniques employ alarms emitted by network entities. However, the fault

evidence provided by these alarms can be ambiguous, inconsistent, incomplete, and

random. To address these limitations, alarms are correlated using a distributed Dempster-

Shafer Evidence Theory (DSET) framework, in which the managed network is divided

into a cluster of disjoint management domains. Each domain is assigned an Intelligent

Agent for collecting and analyzing the alarms generated within that domain. These agents

iv

are coordinated by a single higher level entity, i.e., an agent manager that combines the

partial views of these agents into a global one. Each agent employs DSET-based

algorithm that utilizes the probabilistic knowledge encoded in the available fault

propagation model to construct a local composite alarm. The Dempster‘s rule of

combination is then used by the agent manager to correlate these local composite alarms.

Furthermore, an adaptive fuzzy DSET-based algorithm is proposed to utilize the fuzzy

information provided by the observed cluster of alarms so as to accurately identify the

malfunctioning network entities. In this way, inconsistency among the alarms is removed

by weighing each received alarm against the others, while randomness and ambiguity of

the fault evidence are addressed within soft computing framework. The effectiveness of

this framework has been investigated based on extensive experiments.

 The proposed fault management system is able to detect malfunctioning behavior

in the managed network with considerably less management traffic. Moreover, it

effectively manages the uncertainty property intrinsically contained in network alarms,

thereby reducing its negative impact and significantly improving the overall performance

of the fault management system.

v

Acknowledgements

First and foremost, I am deeply indebted to my supervisor Dr. Otman Basir for his

continuous encouragement, helpful discussions, and insightful guidance throughout the

research presented in this thesis. Without his continuous support and invaluable

supervision this work would not have been possible.

 I would like to extend my sincere gratitude to the members of my doctoral

committee, Dr. Simon Yang, Dr. Keith Hipel, Dr. Ramadan El-Shatshat, and Dr. Eihab

Abdel-Rahman for the time they spent to read this thesis and for their significant remarks

and comments.

 I also acknowledge Dr. William Philips of DalTech, Dalhousie University for his

valuable help during my initial stage of graduate studies.

 I would like to thank the faculty, staff, and students of the Pattern Analysis and

Machine Intelligence (PAMI) research laboratory for the friendly atmosphere they have

created. My special thanks go to Mr. Khaled Hammouda for his technical support with

my various needs. Also I am very grateful to my friends Naser Younis, Ahmad Husein,

Akrem Elgazel, Fathi Idris, Naji Al-Amrouni and the rest of the Libyan community in

Waterloo for their support.

 Last, but not least, I thank my family. I owe great deal of gratitude to my mother,

the source of my strength. I express my great appreciations to all my brothers, Mohamed,

Hassan, Ali, and Abdul-Salam for their continuous understanding and unlimited

encouragement. I would not have come this far without their moral and physical support.

 vi

To my beloved brother
Dr.

Ali Abdul-Rahman Mohamed Netfa

vii

Contents

List of Tables xiii

List of Figures xiv

List of Notations xvii

1 Introduction 1

 1.1 Preface………………………………………………..……………………………1

 1.2 Open Systems Interconnection Model ……………..…………….……………….2

 1.3 Network Fault Management Terminologies……………………..………………..3

 1.4 Motivations…………………………………………………….………………….4

 1.4.1 Intelligent Probing…………………………………………………………5

 1.4.2 Uncertainty Management of the Fault Evidence…………………………..5

 1.4.3 Distributed Fault Management System Architecture………………………7

 1.4.4 Automated Network Fault Management System…………………………..8

 1.5 Contributions……………………………………………………………………...9

 1.6 Thesis Outlines…………………………………………………………………...12

2 Fault Detection and Identification in Computer Networks 13

 2.1 Introduction………………………………………………………………………13

 2.2 Network Fault Management Schemes…………………………………………...14

 2.2.1 Model-Based Techniques…………………………………………………15

 2.2.2 AI Techniques…………………………………………………………….15

 2.2.3 Fault Propagation Techniques…………………………………………….17

 2.2.4 Probing-Based Techniques……………………………………………….20

 2.3 Summary…………………………………………………………………………21

viii

3 FPM Techniques and Evidential Reasoning 22

 3.1 Introduction ……………………………………………………………………...22

 3.2 Alarm Correlation Architecture………...………………………………………..26

 3.2.1 Knowledge Base …………………………………………………………23

 3.2.2 Alarm Correlation Unit ………………………...………………………...26

 3.3 Fault Propagation Models …………………………………………………….…24

 3.3.1 Object-Oriented Based Fault Propagation Model ………………………..25

 3.3.2 Fault Propagation Modeling Using the MODEL Language ……………..25

 3.3.3 Layered Fault Propagation Model ……………………………………….28

 3.3.4 Fault Propagation Model Based on Dependency Matrix ………………...30

 3.4 Formulation of Network Alarm Correlation Problem in the DSET Framework...31

 3.4.1 Network Faults as Frame of Discernment ……………………………….32

 3.4.2 Mass Function and Local Elements ……………………………………...33

 3.4.3 Evidence Structure ……………………………………………………….33

 3.4.4 Evidential Measures and Belief Interval …………………………………34

 3.4.5 Combining Agents Evidence Structures …………………...…………….35

 3.5 Summary ………………………………………………………………………...35

4 A Novel CSP Model for Probe Selection 36

 4.1 Introduction ……………………………………………………………………...36

 4.2 Probing System Architecture ……………………………………………………37

 4.3 Problem Description and Notation ………………………………………………38

 4.4 CSP Model for Probe Selection …………………………………………………41

 4.4.1 Definitions ……………………………………….……………………….41

 4.4.2 Defining Testing Probes as CSP Variables ………………………………43

 4.4.3 Construction of the Problem Boolean Constraints …………………….…45

 4.5 K-Consistency and Constraint Propagation ……………………………………..49

 4.5.1 Domain Reduction Rules ………………………………………………...50

 4.5.2 Backtracking Search Algorithm ………………………………………….54

 4.6 Breaking Symmetries………………...…………………………………………..54

 4.7 Summary ………………………………………………………………………...58

ix

5 A New Fuzzy CSP Probing Algorithm 59

 5.1 Introduction ……………………………………………………………………...59

 5.2 System Architecture and Notations ……………………………………………..60

 5.2.1 Fault Detection Probe Set ……………………………………………..…61

 5.2.2 Dynamic CSP-Model for Fault Identification …………………………...61

 5.3 Problem Description …………………………………………………………….64

 5.4 A Fuzzy CSP Framework ………………………………………....…………….68

 5.4.1 Fuzzy Constraint Satisfaction Problem (FCSP) ………………………….68

 5.4.2 Probing Fuzzy CSP Formulation ………………………………………...69

 5.4.3 The Satisfaction of the Fuzzy Constraints …………………………….....73

 5.5 Constraint Propagation …………………………………………………………..79

 5.5.1 Domain Reduction Rules ………………………………………………...79

 5.5.2 Maintaining Arc Consistency (MAC) Algorithm ………………………..80

 5.6 Branch and Bound Search Algorithm …………………………………………...83

 5.6.1 Constructing a Best Solution ……….……………………………………83

 5.6.2 Heuristic Search Mechanism …………………………………………….84

 5.7 Summary ………………………………………………………………………...87

6 Distributed Alarm Correlation Algorithm 88

 6.1 Introduction ……………………..……………………………………………….88

 6.2 Distributed Fault Management Systems………………………….. …………….89

 6.2.1 Issues in Distributed Systems …………………………………………....89

 6.2.2 Assumptions and Notations………………………………………………91

 6.3 Distributed Fault Propagation Model…………………………………………….92

 6.3.1 Belief Networks ……………………….………………………………....93

 6.3.2 Mapping Dependency Model into a Belief Network ………………….....94

 6.3.3 Correlation Graph as a Distributed Fault Propagation Model……………96

 6.4 Distributed Alarm-Correlation Based Approach ………………………………..96

 6.4.1 Intelligent Agent (IA)……. ……………………………………..……….97

 6.4.1.1 Intelligent Agent Structure……………………………………….98

 6.4.1.2 Alarm’s Belief Assessment Set......………………………………99

x

 6.4.1.3 Constructing Evidence Structures …………………………….102

 6.4.1.4 Local Composite Alarm………...…………………………….105

 6.4.2 Agent Manager ………………………………………………………....106

 6.4.2.1 The Agent Manager Structure…………………………………107

 6.4.2.2 Global Composite Alarm……………………………………...107

 6.5 Summary ……………………………………………………………………….111

7 Adaptive Fuzzy Alarm Correlation Algorithm 113

 7.1 Introduction ….. ………………………………………………………………..113

 7.2 Definitions and Notations…………………………………………………..…..114

 7.2.1 Domains of Alarms…. ………………………………………………….114

 7.2.2 Clusters of Alarms ……………………………………………..……….116

 7.2.3 Domains of Network Faults ………………………………………...…..118

 7.2.4 Alarm Correlation Problem ……………………………………………..118

 7.3 Composite Alarm Representation……………………………………………...120

 7.3.1 Local Fuzzy Composite Alarm ………………………...……………….121

 7.3.2 Global Fuzzy Composite Event ………………………………………...123

 7.4 Adaptive Fuzzy Alarm Correlation Algorithm ……………......................…….125

 7.4.1 Intelligent Agent ………………………………………………….…….126

 7.4.1.1 Modifying the Fault Hypothesis Space………………………..126

7.4.1.2 Local Composite Alarm…………………………...…………..128

7.4.1.3 Local Fuzzy Composite Alarm..………………………..……..129

 7.4.2 The Agent Manager……………………………………………………..134

7.4.2.1 Intelligent Agent Discounting Factor…………………………135

7.4.2.2 Correlating Local Fuzzy Composite Alarms………………….139

 7.5 Summary ………………………………………….……………………………139

8 Simulation and Experimental Results 141

 8.1 Introduction …………………………………………………………………….141

 8.2 CSP-based Model for Optimal Selection of Probes………………………..…...142

 8.2.1 Simulation Model ……………………………………………………….142

xi

8.2.2 Initial Variables …………………………………………………………145

 8.2.3 Optimal Probes for Different Network Sizes ……………………...……146

 8.2.4 Varying Number of Probing Stations …………………………………..148

 8.3 FCSP-Based Probing Algorithm…………………………...………………..….150

 8.3.1 Simulation Model ……………………………………………………….150

 8.3.2 Results by the Fuzzy CSP Algorithm……………..………….…………151

 8.4 Distributed Alarm Correlation and Fault Identification Algorithms …………..154

 8.4.1 Case Study ……………………………………………………...………154

 8.4.2 Simulation Model ……………………………………………………….157

 8.4.2.1 Generating Random Network Topologies …………………….157

 8.4.2.2 Obtaining Fault Propagation Models ………………………….159

 8.4.3 Results by the DSET-Based Alarm Correlation Algorithm …………….161

 8.4.4 Results by the Adaptive Alarm Correlation Algorithm …………….......176

 8.5 Summary ……………………………………...………………………………..175

9 Conclusions and Future Work 176

 9.1 Conclusions …………………………………………………………………….176

 9.2 Future Work ……………………………………………………………………179

APPENDICES 181

A MODEL: Event Modeling Language 182

 A.1 Overview ………………………………………………………………………182

 A.2 Multimedia Quality of Service (QoS) Domain ………………………………..183

 A.2 QoS Management …………………………………………...…………………184

 A.3 Class Libraries in MODEL ……………………………………………………188

B Belief Updating Algorithm 191

C Simulation Software 195

xii

 C.1 Class Libraries………………………………………………………………….195

 C.2 The Components Class…………………………………………………………196

 C.3 The Network Class……………………………………………………………..199

 C.4 The Manager Class……………………………………………………………..201

Bibliography 205

xiii

List of Tables

 4.1 The dependency matrix of the network of Fig. 4.3…………………………… 40

 5.1 The Dependency matrix of the network in Fig. 5.4…………………………... 66

 8.1 Initial set of active variables for different network sizes…………………….. 146

 8.2 Average number of probes for different probing stations……………….……. 149

 8.3 Average number of probes required by each scheme……………………...….. 152

 8.4 Management domains…………………………………………………………. 160

 8.5 Codebook obtained from the fault propagation model of Fig. 8.11………...…. 162

 8.6 Accuracy averages of the three algorithms for alarm loss 10%.......................... 172

 8.7 Accuracy averages of the three algorithms for alarm loss 20%.......................... 172

 8.8 Accuracy averages of the three algorithms for alarm loss 30%.......................... 172

 9.1 Main features of the proposed algorithms... 178

xiv

List of Figures

 2.1 Proposed network fault management systems……………………………..… 14

 2.2 A simple network configuration and its corresponding dependency graph…. 18

 2.3 Correlation matrix derived from a causality graph…………………………... 19

 3.1 Alarm correlation system structure………………...………………………… 24

 3.2 Network element class hierarchies…………………………………………… 26

 3.3 Direct and indirect dependency class………………………………………… 26

 3.4 Dependency relationships between network components……………………. 29

 3.5 Bipartite graph………………………………………………………………… 31

 4.1 Configuration Example of two Probing Stations……………………………… 37

 4.2 System Architecture…………………………………………………………… 38

 4.3 Simple Network Graph………………………………………………………… 39

 4.4 CSP model of the probe selection problem……………………………………. 43

 4.5 Backtracking main algorithm………………………………………………….. 55

 4.6 The backtrack search procedure……………………………………………….. 56

 4.7 Constraint propagation algorithm……………………………………………… 57

 5.1 Probe-Based System architecture……………………………………………… 60

 5.2 Probe selection by the greedy algorithm.……………………………………… 62

 5.3 Schematic diagram of Probing-Based algorithm……………………………… 63

 5.4 Simple Network Graph………………………………………………………... 66

 5.5 Low, Med, and High membership functions for the constraint C4)20|(| =
t

F .. 77

 5.6 Low, Med, and High membership functions for the constraint C5)12|(| =
t

G

 K=1... 77

 5.7 Arc algorithm………………………………………………………………….. 81

 5.8 Bound and branch main algorithm…………………………………………….. 85

xv

 5.9 The search engine of the proposed algorithm……………………………..…… 86

 5.10 Overloading constraint propagation function…………………………………. 87

 6.1 Belief network of the dependency graph in Figure 3.4……………………….. 95

 6.2 Alarm correlation causality graph ……………………………………….…… 97

 6.3 Distributed fault management system…..……………………………….……. 98

 6.4 Structure of intelligent agent k.………………………………………………... 100

 6.5 Message passing in Pearl’s belief propagation………………………………... 102

 6.6 Constructing the local composite alarm k

comp
A by an intelligent agent.………... 108

 6.7 The agent manager structure………………………………….……………….. 109

 7.1 FPM of a simple network configuration………………………………………. 115

 7.2 Simple network configuration divided into two domains…………………….. 123

 7.3 Intelligent agent structure……………………………………………………... 127

 7.4 VL, L, UL Membership functions…………………………………………….. 131

 7.5 The agent manager structure…………………………………………………... 135

 8.1 Obtaining a dependency matrix………………………………………………. 143

 8.2 A simple network configuration of size 5……………………………………. 144

 8.3 The resultant of spanning tree algorithm run on the network of Fig. 8.2……. 144

 8.4 Comparisons of CSP-based model with greedy and subtractive algorithm…. 148

 8.5 Number of probes obtained by the CSP model for different probing stations. 149

 8.6 The simulation model………………………………………………………... 151

 8.7 Comparisons of the fuzzy CSP-based, Min, and Max search algorithms……. 152

 8.8 The average number of probes obtained by the modified fuzzy CSP algorithm 153

 8.9 The topology of the campus network of University of Waterloo……………. 155

 8.10 Path-to-link relationship resulted from the topology of the campus network

 of Fig. 8.9……………………………………………………………..…. 156

 8.11 Partial view of the fault propagation model of the network of Fig. 8.9…….…. 158

 8.12 Failure detection rate of both algorithms with loss ratio 10%........................... 163

 8.13 Failure detection rate of both algorithms with loss ratio 20%........................... 164

 8.14 Failure detection rate of both algorithms with loss ratio 30%........................... 164

 8.15 Failure positive rate of both algorithms with loss ratio 10%............................. 167

 8.16 Failure positive rate of both algorithms with loss ratio 20%............................. 167

xvi

 8.17 Failure positive rate of both algorithms with loss ratio 30%............................ 168

 8.18 Failure detection rate of all algorithms with loss ratio 10%............................. 170

 8.19 Failure detection rate of all algorithms with loss ratio 20%............................. 170

 8.20 Failure detection rate of all algorithms with loss ratio 30%............................. 171

 8.21: False positive rate of all algorithms with loss ratio 10%.................................. 173

 8.22 False positive rate of all algorithms with loss ratio 20%.................................. 174

 8.23 Failure positive rate of all algorithms with loss ratio 30%............................... 174

 A.1 Multimedia over a multi-domain network…………………………………… 182

 A.2 Netmate calss hierarch………………………………………………………. 188

 A.3 Multimedia Class Hierarchy………………………………………………… 189

 B.1 A typical node X in a Bayesian network…………………………………….. 191

 C.1 The main classes of the simulation software…………..…………………….. 195

xvii

List of Notations

compA Local composite alarm

Fcomp
A Local fuzzy composite alarm

k
A The alarm space of intelligent agent k

k
A Set of observed alarms received by intelligent agent k

AC Alarm Correlation

AM Agent manager

ANN Artificial neural network

AS Autonomous system

Bayes Bayesian approach

Bel(A) Belief measure of A

BGP Border gateway protocol

0
B The support set of fuzzy set B

C Cluster of alarms

ave
C Average satisfaction of individual constraints

CSP Constraint satisfaction problem

()
C

dom Domain of a fuzzy constraint

DAG Directed acyclic graph

)(
i

aD Domain of alarm
i

a

)(
j

fD Domain of network failure
j

f

DSET Dempster-Shafer evidence theory, or

 Dempster-Shafer evidence theory based reasoning

xviii

t
F The set of the suspected nodes, at iteration t

X
F The set of failures at node X

r
F Fault hypotheses of alarm cluster Cr

FCSP Fuzzy constraint satisfaction problem

FPM Fault propagation model

FSM Finite state machine

t
G The set of passed nodes, at iteration t

IA Intelligent agent

ISO International Standard Organization

k Number of intelligent agents

MAC Maintaining arc consistency

MAP Maximum a posterior principal

MCD Maximum commonality decision rule

MIB Management Information Base

MODEL Modeling Event Language

n Number of network alarms

NDG Network Dependency Graph

NE Network entity

OSI Open Systems Interconnection

)(
j

fp Prior probability of network failure
j

f

)|(
j

fsp Conditional probability function of symptom s given network failure
j

f

t
P The set of the available probes

PDES Proportional difference evidence structure scheme

PDU Protocol data unit

Pl(A) Plausibility measure of A

Ppig(A) Pignistic probability of A

Q(A) Commonality measure of A

SNMP Simple Network Management Protocol

SOM Kohonen self-organizing Map

TCP/IP Transmission control/internet protocol

xix

UDP User data protocol

V The set of random variables at Bayesian network

⊕
 Dempster’s combination operator

F
Σ The domain of the variable of the suspected nodes

P
Σ The domain of the variable of the available probes

α Normalizing constant

B
µ Membership function of the fuzzy set B

Ω Frame of discernment

 || ⋅ Cardinality

)(⋅δ Dirac’s delta function. 1)(=⋅δ if the inside condition is satisfied;

otherwise 0

 1

Chapter 1

Introduction

1.1 Preface

As computer networks continue to grow in size and complexity, effective network

management is expected to become even more crucially important and more challenging.

Simply stated, the aim of a typical network management system is to monitor the

managed system and to ensure that it is running as smoothly as possible. In order for the

management systems to successfully manage the network a large amount of diagnostic

information needs to be obtained and processed. This information can be either acquired

using certain monitoring tools [1, 2, 3, 4, 5], or received from network entities in the form

of network alarms [6, 7, 8, 9]. As such, fault management systems can be divided into

two paradigms: (1) fault management systems that actively sample performance data

from the managed network, commonly referred to as probe-based systems or active

systems; and (2) fault management systems that utilize network alarms, commonly

referred to as alarm correlation-based systems or passive systems. Both paradigms

address certain challenges and offer alternative solutions to the fault network

management problem and as such they may have their own merits and bear their own

 2

CHAPTER 1. INTRODUCTION .

shortcomings. In this chapter, we present a brief review of the challenges and motivations

of network fault management systems in the context of both paradigms.

1.2 Open Systems Interconnection Model

In order to appreciate the importance and complexity of fault management systems one

needs to understand the more general topic of network management. According to the

International Standard Organization (ISO), effective management of highly complex

networks should be approached with respect to five main objectives, as described in the

Open Systems Interconnection (OSI) model [10]: Configuration Management, Fault

Management, Performance Management, Security Management, and Accounting

Management. The objective of configuration management function is to initialize the

network components and establish relationships among these components and to keep the

manager informed about the status of these components. It is also responsible for

reconfiguring the network resources (such as create new paths between network nodes) in

case of changes in network topology. The performance management objective is

dedicated for monitoring the network resources and controls their behavior (such as

keeping track of current activities in the network and adjusting network component

parameters to improve network performance). Furthermore, it collects and analyzes

crucial information about network traffic to locate any bottleneck along network paths.

The security management objective ensures restrict access to sensitive information and

also generates and stores encryption keys. Users of the network can be charged for using

the network resources and services through the accounting function which is also

responsible for the user billings.

 In this thesis, we are concerned with a central aspect of the OSI network

management model, namely, fault management. Existing network fault management

systems utilize widely available monitoring tools (such as ping, trace route, web page

access, etc.) to examine the health status of network components. Furthermore, modern

network devices are highly instrumented and configured to send diagnostic information

 3

CHAPTER 1. INTRODUCTION .

to their manager once they encounter some network failures. This diagnostic information

is analyzed to identify faults and their root causes, if possible. However, due to their

dependency nature, a faulty component may cause a state of malfunctioning in one or

more other system components [11]. As a result of this phenomenon, a huge amount of

diagnostic information is generated by these dependent entities and delivered to the

network management stations. As this information is overwhelming, it is not possible for

a human expert to analyze and process this information in a reasonable time frame.

Therefore, human experts tend to rely on their experience and intuition to examine the

network behavior and in due course may overlook some valuable diagnostic information

obtained from network entities.

1.3 Network Fault Management Terminologies

Any exceptional state that may take place in a given network layer is referred to as

network event [12]. Network faults (a special class of network events) manifest

themselves in the form of alarms (or symptoms). Thus, dedicated software agents are

installed in the network to monitor, collect and process traffic data. These agents send

network alarms (such as SNMP traps [12, 13] or CMIP EVENT_REPORTs [10]) as

notifications of possible malfunctioning if one (or more) of their monitored network

parameters exceeds a predefined thresholds. Other alarms may be obtained by other

means such as a trace rout utility, ping commands, system log files, etc. However, some

network faults may not be directly observable due to the lack of a management function

that can provide indications of their existence. Network fault management systems rely

on network alarms to infer the main causes. In general, network faults are classified based

on their time duration in the managed network [14]:

• Permanent faults,

• Intermittent faults,

• Transient faults.

Permanent faults are self-explanatory and exist in a network until they are repaired.

 4

CHAPTER 1. INTRODUCTION .

Examples of such faults include: a broken cable, malfunctioning interface card.

Intermittent faults occur in a discontinuous and periodic manner and tend to cause a

failure of current processes, and therefore result in a maximum degradation in the service

level for a short period of time. Transient faults momentarily cause minor degradation in

the service, and as they are often masked by management utilities are not observable to

the user.

The main tasks of fault management systems can be divided into three stages:

• Stage 1: Fault detection – the process by which network fault indicators, in the

form of alarms generated by faulty network components, are captured on-line

[15].

• Stage 2: Fault identification – the process of identifying the most likely causes of

the received alarms [8, 15].

• Stage 3: Testing operation – the process of determining the actual faults that

caused the network to malfunction [8].

The main focus of this research work will be on Stage 1 and Stage 2. The work is

divided into two main parts. In the first part, we introduce a new approach based on

Constraint Satisfaction Problem (CSP) to find an appropriate and optimal collection of

probes for the purpose of fault detection. Furthermore, we introduce a fuzzy CSP-model

that can adaptively select the most appropriate probes. In the second part, we concentrate

on the second stage of fault management to exploit the availability of network alarms that

are observed by the management system in order to identify the root causes that may be

responsible of their occurrence.

1.4 Motivations

In this section, the motivations behind the proposed intelligent fault management system

are described in light of critical examination of the current fault management research

 5

CHAPTER 1. INTRODUCTION .

activities and directions. Important areas pertaining to network management systems are

reviewed.

1.4.1 Intelligent probing

Dedicated software tools used for monitoring network components are commonly known

as probes [1]. These probes (e.g., pinging, trace routing, etc.) are widely available.

Network management systems that are based on such tools make them an appealing

alternative to the alarm based (passive) systems due to their ability capture faults more

effectively. In probes based fault management probing stations are first determined and

located in different parts of the network. A set of probes emitted by these probing stations

is then sent to network management on periodical basis. These probes are collectively

analyzed to determine whether a failure has been detected. To effectively isolate the

malfunctioning network component, the set of probes must cover all the nodes in the

managed network [1, 2]. Depending on the number and locations of available probing

stations this set has to include a large number of probes to be of practical use. Employing

a large number of these probes for fault identification tasks certainly increases the

accuracy of locating network malfunctioning components; nevertheless, the fault

identification task will become more time-consuming. Furthermore, a large set of probes

entails excessive management traffic injected into the managed network which may in

fact exacerbate the situation. Hence it is desirable to minimize the negative impact of the

extra management traffic induced by these probes.

One of the main motivations in this research work is to explore the use of

intelligent probing techniques that can help in reducing the number of these probes while

preserving the quality of the diagnostic power of the original set.

1.4.2 Uncertainty Management of Fault Evidence

Another motivation of this research work revolves around the management of uncertainty

associated with fault evidence, as it pertains to network alarms. One of the widely used

 6

CHAPTER 1. INTRODUCTION .

approaches for network fault management systems is based on network alarms generated

by network entities as a response to network failures. An alarm correlation mechanism is

often implemented to infer a fault hypothesis that is considered as an explanation for the

observed alarms. The alarm correlation mechanism views these alarms as fault evidence

[16, 17, 18]. However, networks are such complex systems and their unreliability and

non-determinism clearly affect the quality of the obtained fault evidence. This

unavoidable distortion of information may lead to the wrong conclusion as a fault

hypothesis. Network alarms that constitute fault evidence may contain high degree of

uncertainty with respect to the following aspects:

• Fault evidence ambiguity

Different network faults may cause a set of alarms to be generated. However, in many

practical situations, the monitoring systems may generate the same alarm as an

indication of many different faults [17]. That is, the domain of a single alarm may

include a set of different fault hypotheses. Hence, it is up to the management system

to determine which particular fault may have caused the alarm.

• Fault evidence inconsistency

Monitoring software agents residing in the network devices (managed objects) have

their own view regarding the operation state of the managed network. In the event of

a fault occurrence, and based on their internal network parameters, a managed object

may indicate a certain network entity as the source of network malfunctioning and

thus generate a corresponding alarm accordingly. However, another managed object

may have different opinion and determine that the same network entity is working

properly [17]. These conflicting assessments by different network objects are not

unusual and seem to be the result of the heterogeneity nature of computer networks.

• Fault evidence incompleteness

The set of alarms triggered by a fault occurrence in the managed network is often

transmitted from the managed objects to network managers over unreliable

transport protocols. SNMP agents, for example, send their traps (alarms) to

management stations using the user data protocol (UDP) as their transmission

 7

CHAPTER 1. INTRODUCTION .

mechanism. UDP utilizes a best effort policy and does not guarantee that the SNMP

message reach their destinations. As a result, the SNMP messages that were lost

during transmission will not be recovered. Therefore, the fault management system

should have the ability to conduct inference with incomplete information [16, 19].

• Fault evidence inaccuracy

Alarms that are generated by transient faults are called spurious alarms. Management

systems are often equipped with error recovery procedures to repair transient faults.

However, network alarms triggered by such faults should be discarded and not be

taken into account in the diagnosis process since their main cause has been removed

by the network management system. Avoiding and reducing the effects of these

spurious alarms in the alarm correlation process is required [18, 19].

• Fault and symptom non-deterministic relationship

The majority of fault diagnosis techniques adopted by network management systems

are expert-based. Their appeal stems from the fact that the reasoning process of a

diagnostic system is intuitively similar to that of a human expert. Thus the realization

of a fault management system is the transfer of the human expert knowledge to an

automated system. Most of these systems are based on ad-hoc, unstructured

deterministic network models; and the cause-and-effect relationship between network

faults and their corresponding alarms is inherently non-deterministic [16, 18, 19, 20].

A probabilistic model is considered as a more accurate representation for the network

fault models.

1.4.3 Distributed Fault Management System Architecture

Traditionally, network fault management systems consist of two main components:

agents and managers. Agents are basically monitoring software components that are

installed in every monitored entity in the computer network. They are responsible for

collecting network traffic, storing it in ASN format, and monitoring some particular

variables and sending traps to their managers when one or more of these variables exceed

 8

CHAPTER 1. INTRODUCTION .

some predefined thresholds [12, 13].

The fault management activities are performed by the managers, upon retrieving

some of these variables from their subordinate agents using the Simple Network

Management Protocol (SNMP). This centralized framework of management system

architecture can be tolerated in small size networks. As networks grow larger and

become more heterogeneous, the centralized model creates a bottleneck at network

management centers and introduces significant amounts of traffic, a considerable part of

which is not important or necessary for the diagnosis process. Recently, more advanced

fault management techniques have adopted a distributed approach by which the managed

network is partitioned into distinct management domains, each managed by an

independent management center [21, 22]. In this way, faults may be handled locally; thus

reducing the amount of traffic that should be transmitted across the network. However,

existing distributed techniques focus more on local view in the sense that the domain

managers can only rely on its local information to identify the root cause of the network

failure. Valuable global information is discarded in their fault analysis process. An

effective fault management system should make this information available to all domain

managers.

1.4.4 Automated Network Fault Management System

The complexity and heterogeneity of modern computer networks contribute, to a great

extent, to the shear amount of information that floods the managed network when it

experiences a malfunctioning behavior in one of its managed objects. A single fault may

cause a large set of alarms to be generated and delivered to their corresponding domain

manager. The occurrence of numerous alarms is highly attributed to, among others, the

manager. The occurrence of numerous alarms is highly attributed to, among others, the

following factors [6, 17]:

• Fault re-occurrence

• Multiple invocations of a service provided by a faulty component

 9

CHAPTER 1. INTRODUCTION .

• Repetitive alarm generation by the same device

• Fault propagation to other network components

Managing all this information by human experts is almost impossible. Therefore, an

efficient fault management system that facilitates an effective and appropriate level of

automation is greatly needed.

1.5 Contributions

Based on the above motivations, this dissertation is devoted to the design of an

automated, intelligent, distributed fault management system for computer networks. The

main objectives of the proposed network fault management system are:

• To reduce the overall management traffic (i.e., probes) required to periodically

examine the components of the managed network without compromising

diagnostic power,

• To alleviate the negative impact of the uncertainty problem that inherently exists

in the fault evidence (i.e., network alarms) on the performance of the fault

management system.

This research work introduces new methods for intelligent probing that can minimize

the size of the probe set required for fault detection and identification. A distributed

intelligent-agent-based fault management system is proposed. The proposed distributed

system is based on the constraint satisfaction problem (CSP) formulation and the

Dempster-Shafer Evidence Theory (DSET) [23]. The capabilities of DSET in dealing

with imprecision and conflict that network alarms inherently possess make it suitable and

appealing as a framework for knowledge representation and evidence propagation in

computer networks. Fuzzy reasoning is employed to make the CSP more adaptive and to

handle the positive alarms in the fault identification process.

This dissertation makes the following contributions to the field of network fault

management:

 10

CHAPTER 1. INTRODUCTION .

• To minimize the number of alarms (symptoms) processed by network

management systems an appropriate and effective method of selecting network

probes should be developed. Probing technology is widely used as an end-to-end

transaction that provides information about the availability of the nodes of the

managed network. One such probing program used for determining network

availability is the ping program. Other probing techniques include email

messages, web-access requests, invoking a service from a database server, etc.

Moreover, each probing transaction incurs cost to the network in terms of

additional network management traffic. Considering the selection of an optimal

number of available probes for diagnosis purposes as an optimization problem, we

propose a novel constraint satisfaction problem (CSP) based model. The powerful

search algorithms offered by the CSP techniques have been used to reduce the

search space and produce an optimal set of probes in a very reasonable time.

• We propose a novel fuzzy CSP-based model to further reduce the number of

probes required for the fault detection and identification tasks. In this new

approach, instead of sending all the probes obtained by the dependency matrix,

only a few informative probes are sent for fault detection purposes. If these probes

returned successfully then the managed network is assumed to work properly and

no further action is needed. The network manager waits for a fixed time interval

and then sends these same probes again. Only if one or more of these probes fails

to report back does the fault identification process proceeds. Using the

information carried by the failed probe or probes, the fuzzy CSP model selects a

new probe from the dependency matrix. The new probe is selected based on some

criteria formulated as a set of fuzzy constraints. In contrast to the standard CSP,

the fuzzy CSP (FCSP) implies that constraints need not be fully satisfied. Some

instantiations of the problem variables may satisfy the problem constraints more

than other instantiations. The FCSP model provides some flexibility in the probe

selection process that is not achievable by the standard CSP. For instance, a

 11

CHAPTER 1. INTRODUCTION .

candidate probe is selected only when the information inferred by its success or

failure proves to be more valuable than other candidate probes. As such, the

proposed scheme is adaptive in the sense that different outcomes of previous

testing probes may yield different probes in the current probe selection process.

• Network elements often emit alarms in response to a fault. Each alarm represents

the fault from the network element‘s point of view. We propose a DSET based

approach for alarm correlation and fault identification. In the view of DSET,

alarms emitted by a specific network element may only provide partial

information about the fault. Our proposed technique collects partial

observations of the network and infers the main cause of these alarms. It considers

each received network alarm as a piece of evidence and a source of information.

And as such, different alarms emitted by different network entities might have

different assessment regarding the fault. The new technique constructs an

evidence structure for each received alarm using the fault propagation model.

DSET’s rule of combination is employed to fuse alarms represented as evidence

structures.

• Treating each received network alarm as a source of information entails the

recognition that different network alarms possess different diagnostic capabilities.

To take these capabilities into considerations, we propose an adaptive fuzzy

evidential reasoning based fault identification approach. Domain managers

construct fuzzy evidence structures for each received network alarm using both

fault propagation models and alarm domains (not to be confused with

management domains). Hybrid entropy, as an information measure, is used for

evaluating the overall uncertainty contained in the alarm fuzzy evidence structure.

The new proposed algorithm utilizes two discounting schemes based on the

obtained fuzzy evidence structures to achieve adaptive reasoning capabilities. For

each network alarm, a local discounting scheme takes place during the

 12

CHAPTER 1. INTRODUCTION .

decomposition of pieces of fuzzy evidence. A global discounting scheme is

performed on the derived crisp evidence structures of the received alarms.

• Finally, to demonstrate the efficiency and effectiveness of the proposed network

fault management system, extensive simulations are carried out for networks with

simple network topologies and for networks with more complicated network

topologies.

1.6 Thesis Outlines

The outline of the thesis is as follows: the existing state-of-the-art network fault

management systems reported in the literature are discussed in Chapter 2, where we

highlight their advantages and shortcomings. Since our proposed methods for the alarm-

correlation based approaches demand the availability of fault propagation models which

are used to build alarm evidence structures, we briefly discuss the different techniques

used by network management systems to obtain these fault propagation models in

Chapter 3. In Chapter 4, we introduce a novel approach for the selection of an optimal set

of probes based on the technology of constrained satisfaction problem. In Chapter 5, an

adaptive probe selection scheme based on a fuzzy CSP model is proposed by which

outcomes of previous testing probes dynamically and adaptively influence the probe

selection process. A new DSET based fault identification approach is proposed and

discussed in Chapter 6. In Chapter 7, we present an adaptive fuzzy evidential reasoning

based fault identification approach. In Chapter 8, we conduct extensive simulations to

compare the proposed techniques with other popular approaches. We present our final

thoughts regarding the research subject by including some suggestions for future work in

Chapter 9.

 13

Chapter 2

Fault Detection and Identification in

Computer Networks

2.1 Introduction

A network fault management system may passively monitor the targeted network system

by being on the look for indications of malfunctioning behavior; it can also proactively

and periodically test network entities to determine the occurrence of a malfunctioning

behavior. Modern networks are highly instrumented that when a failure occurs, several

symptoms (alarms) are generated and sent to the network manager from different

dependent network components. Fault management systems receive these alarms as input

and produce an output in the form of a set of fault hypotheses (network failures)

regarding these observed alarms. Furthermore, probes (such as, ping, trace route, etc.) can

also be considered as symptoms. For example, a failed probe can be viewed as a negative

observation of a symptom, which in this case may indicate that certain components in the

failed probe path are not working properly. In this chapter, we provide a brief

 14

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

review of techniques reported in the literature with respect to both actual network alarms

and monitoring probes.

2.2 Network Fault Management Schemes

 As shown in Fig. 2.1, a fault management system analyzes symptoms such as network

alarms or probe outcomes received during the period of a fault occurrence using different

techniques and methods. In this section, we discuss well known existing approaches for

the network fault detection and identification problem.

Figure 2.1: Proposed network fault management systems.

 A network fault management system can be categorized based on the approach that it is

built on, which is typically derived from one of the following paradigms:

• Control theory,

• Artificial Intelligence,

 15

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

• Probability theory,

• Pattern Recognition theory.

Some fault management systems combine different approaches. For example, Hood

and Ji present a hybrid approach in which they combine a probabilistic method in the

form of Bayesian model of the managed network, with a proactive learning system to set

auto regression parameters [24]. Broadly speaking, fault management system approaches

can be divided into four categories, namely, model-based, AI, fault propagation model,

and probing-based techniques.

2.2.1 Model-Based Techniques

In Model-Based Techniques an abstract model of the managed network that describes the

functional and physical properties of the network components is first constructed using

different techniques from logic to differential equations. This model represents failure

inter-dependency among the network elements. Based on some input network parameters,

the model predicts the network performance status. A network fault is detected once a

discrepancy between the observations obtained from the managed network and the

predictions produced by the model. In [8, 25, 26, 27, 28], finite state machine (FSM)

models have been proposed. The managed network and its behavior in the existence of a

fault is represented as a set of states, and the transition between these states is dictated by

input events such as alarms coming from the network. The advantage of these algorithms

is that they do not require learning and can cope with incomplete information.

Nevertheless, it is well recognized that developing a fault model for a complex network is

a daunting task.

2.2.2 AI Techniques

Among the commonly used techniques in network fault management systems are expert

systems [29, 30, 31]. Expert systems use a rule-based representation to imitate the human

 16

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

knowledge of an expert. This knowledge can be either surface–resulting from experience,

or deep-resulting from understanding of the system behavior from its principal. The

purpose of these rules is to associate a network fault hypothesis with network alarms. The

rules typically take the following form:

if alarm x then fault hypothesis is y

Sometimes several fault hypotheses are produced due to the received large number of

alarms. To identify the most likely fault, a heuristic search is performed on the obtained

fault hypothesis.

The expert system presented in [29] is comprised of four loosely coupled

components: a monitor, a problem-clearing advisor, a trouble-ticket creation system, and

a collection of network databases. The aim of the monitor sub-system is to respond to

events and alarms as they occur on the network. It reads and formats alarms, filters out

irrelevant information and redundant alarms, and then clusters together all alarms

pertaining to a single network fault. In [30], a real-time interactive expert system is

developed to simplify the task of fault identification based on a symptom description. The

expert behavior is modeled by a knowledge base which is formulated using a knowledge

engineering process. The targeted network components constitute the initial domain

knowledge obtained from in-house data communication experts through a series of

interviews. The resultant knowledge was coded in the form of complex condition-action

production rules. In the case of fault occurrence, the system begins by attending to the

symptom description, narrows the search to a relatively few suspicious components.

Using its prior experience, the system determines the relative likelihood of each of the

suspicious components and then focuses on the most likely fault locations. The expert

system proposed in [31] implements all the network management functions. For the fault

management part, it collects alarms generated by both predefined SNMP traps and user-

defined internal threshold traps. Upon receiving a set of alarms, it first sorts and filters

them, and then correlates the alarms to automatically diagnose the network fault. In [32],

to identify problems at the TCP/IP level, an expert system, adopting the primary

technique used by human experts, is designed to analyze static traces of TCP/IP packets

 17

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

and packets of some related protocols (e.g., ARP, ICMP). Heuristics used for reasoning

about the cause of network failures are represented as production rules. Objects

representing packets are manipulated by these rules. While the expert systems are

effectively capable of modeling the human experience, the process required to form this

experience into a set of production rules has proven to be difficult. Furthermore, this

process tends to be sensitive to network topological changes which take place frequently

and as a result the knowledge base has to be changed accordingly.

Artificial neural network (ANN)-based fault management systems have also been

proposed in the literature. In [7], a kohonen self-organizing Map (SOM) neural network

is trained for alarm clustering. Neural networks are considered black box systems that do

not require the managed network to be explicitly modeled. However, the training process

to tune its weights may take long sessions. Moreover, there are no particular rules to

guide the selection of number of layers and the number of neurons in each layer.

Therefore, a trial and error process is expected to be performed during the training period

until the neural network finally stabilizes.

In [33], a mobile agent-based approach has been proposed. The hierarchical

structure provided by the Internet model is exploited as a fault propagation model and

used as an event correlation scheme.

2.2.3 Fault Propagation Techniques

Fault propagation (FP) refers to the fact that a fault in one network entity is able to affect

the state of other network entities. Due to the hierarchal structure of computer networks, a

malfunctioning component that affects the services and functions provided by lower

layers may be observed in higher layers (vertical propagation) and it could also be

observable in other hosts distant from the location where the fault originated (horizontal

propagation). Based on this intrinsic property of computer networks, a graphical model of

the managed computer network can be constructed in which the relationship between its

entities is clearly specified. This graphical model is referred to in the literature as Fault

Propagation Model (FPM). The FPM represents all faults and their respective symptoms

 18

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

that may occur in a managed network as nodes. Fault propagation models are often

expressed using dependency or causality graphs.

A dependency graph is a directed graph G = (O, D), where O is a finite, non-

empty set of nodes representing network entities and D is a set of edges between these

nodes. The directed edge (oi, oj) is an element of the set D denoting that a node oi may

depend on another node oj. Every edge is assigned a certain weight. This weight indicates

the strength of the relationship between the nodes in a given proposition. For example,

given the network configuration of Fig. 2.2 (a), its dependency graph can be obtained as

shown in Fig. 2.2 (b). The conditional probabilities assigned for each edge represent the

relationship strength between the given nodes.

A causality graph can then be obtained from the dependency graph by simply

reversing the directions of its edges. Most of the inference techniques reported in the

literature utilize causality graphs using either OR model or AND model. An OR model

combines possible causes (network failures) of a symptom using logical operator OR,

meaning that at least one of the possible causes has to exist for the considered symptom

to occur.

Figure 2.2: A simple network configuration and its corresponding dependency graph.

 19

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

To simplify the fault identification problem, the reported techniques assume that only one

fault exists in the network at a time or restrict the number of simultaneous faults to a

certain number. Moreover, the symptom analysis process is often performed in a

window-based fashion (i.e., a fault management system works with a group of

symptoms observed only over a certain time-window).

The codebook, an FPM-based alarm correlation algorithm, utilizes a matrix of

fault codes that represents a bipartite causality graph to distinguish faults from one

another [6]. A fault code is a sequence of values from the set {0, 1}. The value of 1 at ith

position of a code, constructed for a fault fj, indicates cause-effect implication between

fault fj and symptom si . As shown in Fig. 2.3, this technique allows for network faults to

be uniquely coded by a given set of symptoms. The codebook approach uses minimum

symbol distance as a decision making scheme.

Figure 2.3: Correlation matrix derived from a causality graph [6].

Other popular FPM-based approaches are known as belief networks. A belief network is

a Directed Acyclic Graph (DAG) whose nodes represent random variables, the edges

denote the existence of direct causal influences between the linked variables, the

 20

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

strength of these influences are expressed by forward conditional probabilities. In the

context of fault network management systems, these variables represent states of the

network entities or the occurrence of symptoms. Hood et al. [24] reported an application

of Bayesian network theory to proactive fault detection. The belief network is a tree-

shaped based on the structure of the SNMP MIB’s [13, 33]. In [20], this algorithm was

adopted as an approximation scheme for performing fault identification in an obtained

FPM. More fault identification techniques, based on the belief network theory, were

reported in [9, 19, 34, 35].

2.2.4 Probing-Based Techniques

The main component of Probing-Based Techniques is a sample measurement called

probe. A probe is basically a dedicated program (such as ping or trace route) or a network

application (such as web access or email) installed in one of the network nodes, called a

probing station. A probe is sent to examine a subset of nodes in the managed network on

a periodic basis. Once a probe is sent to the network it either successfully returns to its

probing station, signifying that all the network nodes in its path are in working order, or it

fails to return to its probing station, indicating that one node or more in its path are in a

failure state. In [1, 2, 3], a special matrix, called a dependency matrix, is first constructed

based on the location and number of the available probing stations. One of the advantages

of such techniques is that a subset of nodes of the managed network can be tested and

examined at any time. Hence, fault localization can be restricted to a very limited number

of nodes based on the results of the testing probes. The set of testing probes used for fault

identification tasks may contain a large number of these probes. Since all the probes in

the probe set have to be utilized this may entail an extra burden on the managed network

in terms of bandwidth usages. Moreover, the extra management traffic may actually

exacerbate the situation when a congestion problem detected in the managed network. To

address these issues, several algorithms have been proposed in the literature. In [1], a new

algorithm is proposed to minimize the number of these testing probes. In [2, 3], active

approaches reduce these probes even further by selecting a small subset of probes based

 21

CHAPTER 2. FAULT DETECTION AND IDENTIFICATION IN COMP. NET. .

on the outcomes of previously used probes. In [4], a heuristic-based approach is

introduced. The outcomes of previous probes are utilized to select the new probe. The

probing-based techniques are still in their infancy and new rigorous techniques are

definitely needed.

2.3 Summary

This chapter presents a brief review of some of the existing network fault management

techniques. Each of these techniques has at least one of the following limitations:

1. Excessive management traffic is introduced to the managed network.

2. Uncertainty properties inherently contained in the fault evidence are often ignored

during the alarm correlation process.

Inadequate work has been done in the past to effectively address these two important

issues. The discussion has been focused on the reasoning algorithms not on the

representation model of the managed system. The underlying knowledge representation

of the managed system adopted by our alarm-based proposed algorithms utilizes fault

propagation models. These models in turn are used to build evidence structures for the

received network alarms. In the following chapter, some of the techniques used to obtain

such models are reviewed. Furthermore, the Dempster-Shafer Evidence Theory as it

constitutes the framework of the reasoning process of the distributed management system

is introduced.

 22

Chapter 3

FPM Techniques and Evidential

Reasoning

3.1 Introduction

Alarm correlation schemes can be viewed as two-component systems. The first

component is a model of the underlying managed system represented by a fault

propagation model (FPM). The second component is a reasoning mechanism that actually

performs the alarm correlation process. The purpose of a FPM is to clearly describe the

causal relationship between network failures and their corresponding alarms. Upon

receiving a set of alarms, the reasoning mechanism utilizes this relationship to identify

their root causes. The alarm correlation techniques proposed in this thesis are based on

the assumption that fault propagation models do exist and available to fault management

systems. In this chapter, we provide a brief review of the systematic methods used to

obtain such models. The Dempster-Shafer evidence theory is also introduced since it

constitutes the framework of the proposed reasoning mechanism.

 23

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

3.2 Alarm Correlation Architecture

The structure of alarm correlation systems is usually composed of two basic units (see

Fig. 3.1): a knowledge base which includes a fault propagation model, and an alarm

correlation unit. The reasoning mechanism performed by the alarm correlation unit

utilizes the information presented by the knowledge base and provides a fault hypothesis

set that may explain the observed alarms [36].

3.2.1 Knowledge Base

For network fault management systems to efficiently perform their tasks, they need to

store knowledge about the managed network itself (such as network components and

network topology). This knowledge can be acquired by interviewing human experts and

saved in a typical relational database file or stored in a MIB (management information

base). The knowledge base is also expected to contain important information about

network events (network failures and their corresponding alarms). The most important

component of the knowledge base is the fault propagation model which describes how

these events propagate between objects in the supervised network [6, 9, 11, 15, 18, 36].

This propagation is due to the hierarchal nature of computer networks, and a fault

propagation model is usually obtained from a dependency relationship model that reflects

this hierarchy.

Fault propagation models show which alarms may be observed if a certain

network failure occurs. For example, IP connection failure alarms over a specific router

could be caused by a power failure in that router. Moreover, empirical information

(obtained from a log that stores a history of activity of the network) is used to develop a

probabilistic model of the managed network. This probabilistic model may also be

included in the FPM [20].

3.2.2 Alarm Correlation Unit

 24

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

Figure 3.1: Alarm correlation system structure.

To correlate the observed alarms, alarm correlation units utilize different techniques.

Some correlation techniques exploit the probabilistic knowledge provided by the fault

propagation models to infer the most probable network failure. In these techniques, fault

propagation models basically take the form of Bayesian networks [18]. Other correlation

techniques rely on coding schemes by which a set of failure codes is constructed using

the given fault propagation models. Upon receiving network alarms, they construct an

alarm vector and compare it to a set of the predefined failure codes [6]. The closest

failure code to the observed alarm vector is identified as the root cause of the problem. In

Chapters 6 and 7, we propose new alarm correlation techniques. These algorithms utilize

the probabilistic knowledge provided by the fault propagation model to create local

composite events. A local composite event represents the alarm correlation performed

locally by an intelligent agent in its domain. These local composite events are then

combined by a higher level management entity into a global composite event.

3.3 Fault Propagation Models

A fault propagation model is essentially a representation of the cause-effect relationship

 25

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

that may exist among network events. Several methods have been proposed in the

literature to capture this relationship. In what follows we review some of these methods.

We then present a case study on obtaining a fault propagation model for the Campus

network of the University of Waterloo in Chapter 8.

3.3.1 Object-Oriented Based Fault Propagation Model

The Object-Oriented Fault Propagation model has been introduced by Jackbson and

Weisman. In this model the object-oriented paradigm is used to represent the network

topology and the relationship among its entities [37]. The structural and behavioral

abstract classes constitute the framework of the managed system. The network entities

(NEs) and the network topology are described by the structural class. It contains two

major subclasses namely, network element class and element relationship class. The

network element class represents the network entity types such as switch, router, bridge,

link, etc. The network element relationship class describes the dependency relationship

between the managed objects as depicted in Fig 3.2. Objects created from the same class

maintain similar types of relationship. The behavior abstract class as shown in Fig 3.3

should capture the mechanism by which network events are propagated. The major unit

of this class is the network message class in which the alarm messages generated by

different network entities (NEs) are hierarchically represented. Each dependency model

may have two kinds of basic dependency:

• Direct dependency: one object is used/referenced directly by anther object.

• Indirect dependency: a chain of one or more direct dependencies joins two

objects.

3.3.2 Fault Propagation Modeling Using the MODEL

Language

One of the most appealing techniques used to model the cause-effect relationship among

network events is a modeling language called MODEL [38]. It provides the following

 26

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

Figure 3.2: Network element class hierarchies.

Figure 3.3: Direct and indirect dependency class.

advantages over other existing techniques:

• object-oriented data model capabilities,

• causality graph construction features,

• independent of reasoning algorithms.

 27

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

Furthermore, it also extends the functionality of the underlying SNMP protocol. To better

explain the basics of the MODEL language, let us examine the congestion fault that a

router may experience [38]. To model the causal relationship between a congestion

failure and its alarm indicating lost packets, the total number of discarded packets can be

measured. Using SNMP commands [12], the corresponding MIB variables are retrieved:

interface IPRouter: IP

 {

 instrumented attribute long ipInDiscards;

 instrumented attribute long ipOutDiscards;

 attribute long discardsThreshold;

 event PacketDiscardsHigh “The level of discarded

 packets is high” =

 (delta ipInDiscards + delta ipOutDiscards) /

 delta _time > discardsThreshold;

 instrument SNMP;

}

The keyword attribute is used here to define measurable properties of the IP

protocol. The keyword event defines the condition necessary for the packets loss alarm to

occur. Therefore, it only occurs when the sum of the two measured IP MIB variables

namely ipInDiscards and ipOutDiscards is over a predefined threshold

(discardThreshold). The delta statement calculates the difference between the old and

new values of the corresponding MIB variables. The keyword _time indicates the time at

which the two MIB variables were pulled. Thus, this alarm is triggered when the discard

rate reaches the threshold. The causal relationship between the congestion failure and the

high packet discard alarm (with probability 1.0) can be expressed as:

 28

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

 Problem Congestion “High congestion“=

 PacketDiscardsHigh 1.0;

The above is a semantic declaration in the form of a rule. The rule that should be included

in a single class to reflect the fault/alarm relationship is as follows:

 Congestion (IPRouter(x)) ->

 PacketDiscardsHigh(IPRouter(x));

This way, a local alarm which indicates the network congestion failure is

modeled. Network failures in one object propagate to related objects via relationships. In

this example, the congestion failure would propagate to higher level connections which

layered over the congested IP node. To express the fact that the congestion failure causes

both local alarms PacketDiscardsHigh and ConnectionPacketLossHigh and propagates

those alarms to higher level connections, we can write:

 Problem Congestion “High congestion“=

 PacketDiscardsHigh 1.0;

 ConnectionPacketLossHigh 0.8;

 Propagate symptom ConnectionPacketLossHigh =

 TransportConn, Underlying, PacketLossHigh;

Now the alarm ConnectionPacketLossHigh of the network congestion failure has been

added with a causal probability of 0.8, where a value 1.0 indicates complete certainty. For

further details about the MODEL language, you may refer to appendix A.

3.3.3 Layered Fault Propagation Model

In [11], a layered fault propagation model is presented. It captures the hierarchal

characteristic of computer networks where the relationship among network layers on

 29

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

a single host and between network nodes within a single protocol layer are clearly

defined. In this layered fashion, protocols provided by a specific layer are implemented

by the network functions and services provided by the next lower layer. Even though the

physical connectivity is established in the lowest layer, components of above layers have

logical connectivity with their counter-part components in some other node within the

same layer. This dependency among network components can be efficiently used for fault

analysis. The Network Dependency Graph (NDG) may then be constructed as a

representation of the recursive dependencies among the network components (protocols,

services, functions). In this NDG, the services, protocols, and functions correspond to the

graph nodes as depicted in Fig. 3.4 [11].

Figure 3.4: Dependency relationships between network components [11].

The edges among the graph nodes describe the dependency relationship among these

nodes. The dependency relationship may represent the dependency between a service and

network functions and protocols at a specific layer, between functions at adjacent layers,

 30

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

or between a protocol and services and network functions at the next lower layer. As

shown in Fig. 3.4, service S at layer L, defined between any two network nodes a and b

may be dependent on the set of all protocols between nodes a and b at layer L, the set of

all network functions at layer L for node a, and on the set of all network functions at layer

L for node b. From the perspective of Service S(a,b)
L
, indications of malfunctioning

behavior at Network Function(a)
L
, Network Function (b)

L
, and S(a,b)

L-1
 are considered

network failures. While indications of malfunctioning behavior at Service S(a,b)
L
 are

considered alarms.

3.3.4 Fault Propagation Model based on Dependency

Matrix

Probing-based schemes often represent the available probes in the form of dependency

matrix as shown in Table 4.1. The dependency matrix describes a set of network entities

and which probes that each entity may affect in case of their failure. Treating probes as

network alarms, a fault propagation model can be obtained from the given dependency

matrix. For example, a fault propagation model in the form of a bipartite graph is

extracted from the dependency matrix of Table 4.1, as shown in Fig. 3.5. If we view the

bipartite graph of Fig. 3.5 as a two-layer Bayesian network, then a probabilistic model

can be built in terms of a joint distribution as follows [2]. Let us assume that the variable

X represents the set of the network failures },,,{ 21 rverDatabaseSeWebServerRouterRouter
ffffX = , P

is the set of the available probes, and)(
j

pY is the set of parents of the probe
j

p . Then,

the joint probability distribution can be stated as follows:

))(|()(),(
1 1

j

n

i

m

j

jrirr
pYpPxPpxP ∏ ∏

= =

=

Network failures are assumed to be independent, and the outcome of each probe

depends only on the components examined by this probe.)(
ir

xP represents network

failure probabilities and conditional probability)(|(
jjr

pYpP represents the dependency

 31

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

of probe outcomes on its components.

Figure 3.5: Bipartite graph.

3.4 Formulation of the Alarm Correlation Problem in the

DSET Framework

Since we utilize the Dempster-Shafer evidence theory (DSET) as an inference engine for

the alarm correlation unit, we introduce the necessary background of DSET in this

section. Dempster-Shafer theory has continuously been gaining increasing attention

among the researchers especially in expert systems and information fusion communities

where reasoning under uncertainty is an active area of research. The evidence theory

(developed by Glenn Shafer which is based on the earlier work of Arthur Dempster [23])

is considered a generalization of the Bayesian theory since it allows for manipulation of

non-necessary exclusive events in a way that can explicitly represent computer networks

status of uncertainty. From the evidence theory point of view, an observed alarm

constitutes a piece of evidence regarding certain network failures. For example, the

 32

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

congestion failure at IP layer manifests itself as packet loss alarms in upper layers, as

shown in section 2.2. However, the packet loss alarms may also be triggered by a whole

set of failures other than the congestion failure. The non-deterministic nature of the

relationship between the observed alarms and their potential network failures makes the

application of the evidence theory as a correlation mechanism very appealing. For

instance, let us say alarm a1 is usually caused by network congestion (F1) in a particular

link, while another alarm, a2, may be caused by either F1 or link down (F2). The evidence

theory allows distributing support for a particular event (e.g., the network failure is F1) as

well as to the union of events (e.g., the network failure is either F1 or F2). The following

sections discuss modeling notions of faults in the context of evidence theory.

3.4.1 Network Faults as Frame of Discernment

In the context of evidence theory, a frame of discernment Ω is a finite set and consists of

the exhaustive and exclusive events [23]. 2
Ω
 is the power set composed of all possible

subsets of Ω. To frame the alarm correlation problem in the context of evidence theory in

the context, the frame of discernment represents singletons of all the possible network

failures that may occur in the managed network. For example, if the abnormal behavior

of a given managed network is caused by four different exclusive faults, F1,F2 (as

described earlier), a server crash (F3), and broadcast storm (F4), then the network failures

can be represented by the frame of discernment as Ω = {F1, F2, F3, F4}. A belief measure

over Ω, called a mass function, can assign a partial belief to every network failure in this

frame of discernment. In this research work, an intelligent agent utilizes the message

passing algorithm [39], also called Pearl’s belief updating algorithm, to calculate a belief

value for each network failure. The belief value is computed based on the observed

alarms and the given fault propagation model of the managed network. After it assigns

belief values for each network failure in its frame of discernment, the intelligent agent

constructs an evidence structure and propagates the evidence structure to the

network manger.

 33

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

3.4.2 Mass Function and Focal Elements

The mass function (a basic probability assignment (bpa)) over a frame of discernment Ω

is a mapping function []1,02: →
Ω

m , such that the following two conditions hold:

 ∑
Ω⊆

=

A

Am 1)(, (3.1)

 () 0=φm

A is the set of network failures and Ω⊆A . The quantity ()Am is a measure of belief that

is assigned to exactly the set A (not to any proper set of A). It expresses a partial belief

that a certain network failure of Ω belongs to the set A. For example, let us assume that

A is given as A = {F1, F2}. Upon receiving a set of alarms, an intelligent agent may assign

the belief value () 4.0=Am to the subset A. A value of 0.4 signifies that 40% of the

intelligent agent’s total belief that the current network failure is due to either F1 or F2.

Different set of observed alarms may cause the intelligent agent to have different belief

values regarding certain network failures. Subsets of network failures with belief values

greater than zero are called focal elements.

3.4.3Evidence Structure

An evidence structure represents a collection of pieces of evidence and takes the

following form:

 ()()AmA, (3.2)

Where A is a focal element that represents a set of network failures and ()Am is its mass

quantity. The piece of evidence is distributed among all subsets of Ω rather than among

elements of Ω as is the case in probability theory. The collection of all these pieces of

evidence by an intelligent agent involved in the alarm correlation process constitutes the

evidence structure of the intelligent agent. If the evidence structure contains only

singleton focal elements, then, their mass values can be understood as their probabilities;

and hence, the evidence structure of that alarm is called the Bayesian structure.

 34

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

3.4.4 Evidential Measures and Belief Interval

Let A and B refer to certain sets of failure hypotheses, such that Ω⊆A and Ω⊆B . An

intelligent agent may use one of the following functions to calculate a belief value for

each fault hypothesis set:

Belief function:

 ()∑
⊆

=

AB

BmABel)((3.3)

Plausibility function:

 () () 0,)(== ∑
≠∩

φ

φ

PlBmAPl

AB

 (3.4)

Commonality function:

 ()∑
⊆

=

BA

BmAQ)((3.5)

Pignistic probability function:

 ()

()

∑
Ω⊆

×∩

=

B B

BmBA
APpig (3.6)

The belief function is used to measure the total belief in a proposition (a failure

hypothesis set) which takes into account the measures of belief assigned to the subsets of

that proposition. It represents the total amount of probability that must be distributed

among the network failures of that proposition. In a diagnostic context, if A = {F1, F2},

then Bel (A) is the sum of all the pieces of evidence (m(F1), m(F2), and m(F1, F2)) that

support A (i.e., it supports the claim that, based on the observed alarms, the network

failure is either F1 or F2). On the other hand, the plausibility function measures the

maximal amount of belief that a proposition can take. It represents the maximal amount

of probability that can be distributed among the network failures of that proposition. In a

diagnostic interpretation, Pl(A) is the sum of all pieces of evidence that do not rule out

that the network failure is either F1 or F2. Together the total belief and plausibility in a

proposition constitute a confidence interval of that proposition. The probability that the

network failure is either F1 or F2 is indicated by the confidence interval [Bel(A),

 35

CHAPTER 3. FPM TECHNIQUES AND EVIDENTIAL REASONING .

Pl(A)], where Bel(A) and Pl(A) are the lower and upper bounds of the confidence interval

respectively and Bel(A) - Pl(A) expresses the ignorance regarding the proposition A.

3.4.5 Combining Agents Evidence Structures

After these evidence structures have been constructed by each intelligent agent involved

in the alarm correlation process, the agent manager combines all of them into a single

evidence structure using the combination rule, introduced by Dempster, as follows:

 () ()∑ ∏⊕

=
=

=

∩

=

=

AA

n

i

i

ii

n

i
in

i

AmAm

1
1

1
 (3.7)

where A is defined as before. This combination can be normalized as:

 ()

()









=

∩

≠

=

∑ ∏

⊕ =
=

= =

0,0

0,

1
1

1

Aif

AifAmiT

Am AA

n

i

i

i

n

i
in

i

KK

KK

 (3.8)

 with
t

T
−

=

1

1
, and ()∑ ∏

=
=

∩

=

=

φ
in

i
A

n

i

i

i
Amt

1
1

,

3.5 Summary

In this chapter, we present a brief review of techniques used by different management

systems to obtain and model the underlying topology of the managed network. The basics

of Dempster-Shafer Evidence Theory are also reviewed, along with the formulation of

the alarm correlation problem within its framework. However, to employ the DSET, a

mass function has first to be defined. The definition of mass functions has been

considered a largely unsolved problem. In essence, a mass is referred to as a basic

probability assignment [23], which is often associated with a probability distribution.

 36

Chapter 4

A Novel CSP Approach for Probe

Selection

4.1 Introduction

The number of generated alarms in a network of a moderate size can be overwhelming,

while a considerable subset of these alarms can be redundant with little diagnostic value.

As such, these alarms should not be considered in the fault analysis stage. Therefore, a

sensible approach is needed to remove these alarms and consider only the most relevant

alarms when performing the alarm correlation process. In this regard, we view probes

(such as ping and trace route utilities) as active alarms. In contrast to regular alarms,

active alarms are generated by pre-assigned nodes (called probing stations) and

periodically sent to the network for node-availability testing tasks. In this chapter, we

introduce a new approach, based on the constraint satisfaction problem (CSP) techniques,

that is able to find an optimal number of active alarms. The powerful search techniques

provided by the CSP technology make it an appealing alternative to the existing

approaches. CSP-based approaches have been proposed and applied in other areas of

 37

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

network management, however, limited effort has been made to investigate their use for

the purpose of fault detection and identification in computer networks.

4.2 Probing System Structure

In contrast to the passive (event-correlation based) approaches, the new CSP-based

approach is an active approach in which certain and limited number of measurements are

obtained and analyzed. These measurements are often referred to in the literature as

probes. A probe is basically a test transaction (such as ping and trace-route) whose

outcome depends on the health status of the network components that exist in its path.

As shown in Fig. 4.1, a probing station is a dedicated system that sends these probes to

test different network elements according to a predefined schedule. Depending on the

size of the managed system, the number of the probing stations varies from one network

to another. To use probes, probing stations must be first selected and installed at different

locations in the managed network. The total number of probes issued by these probing

Figure 4.1: Configuration Example of two Probing Stations.

 38

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

stations and used by the network management system is called the probe set. This probe

set is often large. Since probes are basically embedded code and are installed, operated,

and maintained in probing stations, they may impose a certain cost.

The objective is to obtain a subset of the probe set that is both small and

exhaustive (i.e., it should cover all the network nodes). The new probe set is called the

solution probe set. Moreover, the solution probe set must have the same diagnostic power

as the original probe set. Figure 4.2 shows the necessary steps required to realize the

active probing scheme.

Figure 4.2: System Architecture.

Using the network topology information stored in the knowledge base and

knowing the locations of the pre-assigned probing stations, we can identify all possible

probes originated from the dedicated probing stations. The only pre-request here is that

the obtained probes must be able to reach each network element at least once. The result

of the first step is the probe set (also known as the dependency matrix). Using the

dependency matrix, the objective of the proposed CSP-based approach is to find the

solution probe set.

4.3 Problem Description and Notation

For the sake of simplicity, let us assume that the network to be managed is composed of

six nodes and has the topology of Fig. 4.1, with the assigned probing stations. The

possible probes that can be obtained form the depicted configuration are shown in Fig.

 39

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

4.3. The probing stations and their respective probes are marked by the same color. A

probe may effectively be represented using the coding approach to alarm correlation.

According to this scheme, each probe is represented by a binary string of length that is

equal to the network size. The value of one in position j in the binary string denotes that

the given probe passes through the node Nj. If the probe does not test the considered

node, then its position in the binary string is assigned the value of zero. Using this

representation, the obtained dependency matrix for the network configuration shown in

Fig. 4.1 is shown in Table 4.1.

Figure 4.3: Simple Network Graph.

The superscript notation used to describe a probe indicates both its probing station

from which it is issued and its final destination for which it is going. For example, the

probe
WebServer

P _1 , shown in the fourth row of the dependency matrix, means that this probe

is originated at probing station 1 and terminating at the server (WebServer) hosting the

web site. The path that this probe should go through to reach the WebServer node is

WebServerRRobing →→→ 211Pr . Usually, the routes that these probes take during

their transitions are determined by the routing information pertained in the routing tables.

 40

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Of course such routing configuration will be taken into consideration when designing and

determining the required probes.

Table 4.1: The dependency matrix of the network of Fig. 4.3

Once a probe is generated by a probing station, it is expected to return two

possible outcomes. The probe either succeeds at reaching its final destination or it fails. If

the probe succeeds, then all the nodes and links that comprise its path are presumed up

and functioning properly. If the probe fails, then at least one component of its path is

assumed to be in a failure state. A single probe may only be used as a fault detection

signal of the network entities in its path. However, to identify a malfunctioning entity,

multiple probes are needed. For instance, if the initial solution set contains only the

probes
WebServer

P _1 and
rverDatabaseSe

P _1 , then the fault management system can only identify

problems pertaining to the web and database servers. However, it may not be able to

locate failures in the routers. The information contained in these two probes simply is not

enough to be used for comprehensive diagnostic tasks. This diagnostic deficiency is

evident and can be seen from their respective undistinguishable columns in the

dependency matrix. Moreover, the node Probing Station 2 can not be tested by the

 41

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

two probes as both probes have value of zero in their code at the node’s position. The

incompleteness characteristic exhibited by the initial solution set can be resolved by

considering more probes from the dependency matrix. Hence, more probes are needed

and must be added to the solution set. Before adding a new probe to the solution probe

set, its diagnostic abilities should be first examined. For all the network nodes to be

uniquely identified, the solution probe set must have non identical columns.

 Let N refer to the network size, D to the dependency matrix,
i

X to the th
i row in

D, and R to the total number of rows in D. Each row in D represents a unique probe.

Therefore, for each DX
i
∈ , the entry 1)(=jX

i
 if the probe

i
X passes through the node

j. 0)(=jX
i

 otherwise, where Ri ,...,1= and Nj ,...,1= . The size of the dependency

matrix D is determined by R-by-N.

4.4 CSP Model for Probe Selection

To model the probing problem in the framework of constraint satisfaction problems, three

major components have to be identified namely the problem variables, their domains, and

a set of constraints that govern the relationship among the problem variables. In order to

facilitate the problem formalization, we will discuss and provide the definitions of

various concepts relating to the constraint satisfaction problem paradigm.

4.4.1 Definitions

The constraint satisfaction research community introduces extremely diverse

terminologies. In our study, we adopt Freuder’s definitions of a standard CSP, variable

instantiations (or value assignment), consistent instantiation, and solution to a CSP [40],

as the basis for our formalization.

Definition 4.1 (constraint satisfaction problem) A constraint satisfaction problem P is

a tuple ()CDX ,, , where

• { }
n

xxX ,...,1= is a finite set of variables,

 42

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

• { }
n

DDD ,....,1= is a set of domains. Each variable Xx
i
∈ is associated with a

finite domain of possible values,
i

D .

• { }
m

ccC ,...,1= is a finite of m constraints or relations. Each constraint Cc
i
∈ is

defined on a subset of k variables, { } Xxxc
k

iii
⊆= ,...,)var(

1
, and allows specified

combinations of values that are subset of the Cartesian product of the domains of

constraint variables)var(
i

c , that is
k

iii
xDxDc ...

1
⊆ .

Definition 4.2 (Variable instantiation or value assignment) An instantiation of a

variable
i

x is the assignment to
i

x of a value d from the variable domain of values
i

D ,

that is,
ii

Dddx ∈= , We denote a variable instantiation or value assignment by the

assignment dx
i

= or the variable pair),(dx
i

. An instantiation of a set of variables

{ }
k

xx ,...,1=χ is the simultaneous instantiation of all variables in the set χ with values

from their associated domains, that is,

{ } kiDdXxdxdx
iiikk

≤≤∈∈== 1,,,,...,11

We denote an instantiation of a set of variables by the set of ordered

pairs)},(),...,,{(11 kk
dxdx , or, simply, by the k-tuple of assigned values),...,(1 k

dd .

Definition 4.3 (Consistent instantiation or satisfied constraint) An instantiation
χ

I of a

set of variables χ is consistent with or satisfies a constraint c defined on the same set of

variables χ , χ=)var(c , if and only if cI ∈
χ

.

Definition 4.4 (Solution to a CSP) A solution to a constraint satisfaction problem P is a

consistent instantiation of all variables in P.

Based on the above definitions, we present in detail the formulation of the probing

problem in the framework of the constraint satisfaction problem. Using definition 4.1, the

CSP representation of the probing problem is composed of three main components as

shown in Fig. 4.4 [40]:

• A set of CSP variables that represent the selected probes,

• Their associated domains in terms of the dependency matrix,

 43

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

• A set of constraints that governs the mechanism of the probe selection process.

Figure 4.4: CSP model of the probe selection problem.

Clearly, the system probes provided by the dependency matrix represent the system

to be modeled. Each CSP variable,
i

x , will represent a selected probe from its domain

i
D . In essence, the set of constraints should capture the dynamic behavior of the probe

selection process. Therefore, the imposed constraints will guarantee that a selected probe

does not introduce undesirable features (such as identical columns) to the solution probe

set. This, of course, implies that the set of constraints must be well-defined and

accurately reflect the strict conditions under which the selection process is to be

performed.

4.4.2 Defining Testing Probes as CSP Variables

The probing problem can be modeled as a CSP problem by first defining an initial

 44

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

finite set of variables. The cardinality of the initial variable set depends on the size of the

dependency matrix. Let P refer to the number of the probing stations and N to the number

of the network nodes. Hence, the total number of probes, R can be determined by the

following equation:

 PNPR −= * (4.1)

That means the obtained dependency matrix consists of R rows of probes. The initial set

of the CSP variables may be determined using the lower bound restriction. To cover all

the nodes of the managed network by the solution probe set, the number of the initial

variables should not be less than the lower bound.

Let K refer to the number of probes to be selected from the dependency matrix.

Since it is not known in advance how many of these probes are sufficient for the fault

detection and identification task, K can not be determined beforehand. However, there is

a lower bound, L, on the value that K may take at the start of the selection process. L can

be computed using the following formula:

 N
L

≥2 (4.2)

Hence, L can be calculated as:

 ZLNL ∈≥);2log(/)log((4.3)

Therefore, K initially assumes the value of L as determined by (4.3). Logically, it should

not, however, exceed the maximum number of the available probes. This can be stated as

follows:

 RKL ≤≤ (4.4)

We will refer to the K CSP variables as the active variables. If there are no K

probes in the dependency matrix that can satisfy the imposed constraints, then the

algorithm will dynamically modify the initial variable set by activating another variable.

This can be done simply by increasing K by one (i.e., 1+= KK). As soon as the search

algorithm finds K probes that satisfy all the imposed constraints, the K probes will be

considered as the solution probe set and the search process terminates. Hence, the set of

the CSP variables can be generally defined as:

 { }
K

xxxX ,...,, 21= ; RLK ,...,= (4.5)

 45

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

As shown in Fig. 4.4, each active variable may take any probe from the dependency

matrix. Hence, the set of domains associated with the set of active variables will be a set

of dependency matrices:

 { }
k

DDDD ,....,, 21= (4.6)

The possible values that an active variable, xi may take are defined in its domain,
i

D such

that dx
i

= where
i

Dd ∈ . In order to find an optimal set of K probes, the search algorithm

should find an instantiation,
X

I for the set of active variables, { }
K

xxxX ,...,, 21= , from

their domains that satisfy certain constraints, which will be discussed in detail next

section.

4.4.3 Construction of the Problem Boolean Constraints

The objective of the proposed algorithm is to find a solution probe set that possesses

some distinctive properties. These properties constitute the bases upon which the imposed

constraints will be constructed. In what follows, we provide more elaboration on these

properties and present the constraints that capture their inferred principals. Also, the

advantages of adhering to these principals will be pointed out. During the discussion of

the proposed constraints, the individual elements of the available probes are of binary

form, and hence their possible values are restricted to the set {0, 1}. Moreover, the

solution probe set will constitute a corresponding solution matrix, similar to the

dependency matrix, except that it should contain smaller number of probes.

Property 1 The number of selected probes contained in the solution probe set should be

kept minimal.

The purpose of the first property is to reduce the amount of management traffic imposed

by the original probe set which is represented by the dependency matrix. Less

management traffic means that more network bandwidth will be available for network

users. Furthermore, in case of network difficulties (for example, network congestion), not

 46

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

eliminating this extra traffic may worsen these difficulties. To achieve this objective,

we view the solution probe set as a cost function in terms of the number of its probes.

Hence, the cost function may take the following form:

 ||min K (4.7)

The realization of this crucial property lies in the use of the concept of the active

variables. Since the number of active variables is paramount to an optimal number of

selected probes, we should keep the value of K as low as possible. K is actually the

cardinality of the solution probe set. Setting K initially to the lower bound and increasing

it only when the chosen K probes are unable to successfully locate network problems is in

fact guaranteeing that K will always maintain an optimal number of probes.

Theoretically, of course, K can not have a value that is less than the lower bound L. This

fact can be summarized by the following definition.

Definition 4.5 The cardinality of the solution set, K, must be at least equal to L and less

than P*N-P.

The other properties will be ensured in the form of strict Boolean constraints and

the cost function presented in (4.7) will be subject to these constraints. A violation of one

of these constraints means that these properties are not being met by the current variable

instantiations. During the search process, the probe committing these constraint violations

will be replaced by a new one. Since the representation of the testing probes is in the

form of binary string, Boolean manipulations of these probes make the realization of

these properties simple. We will refer to a new probe being considered for the solution

probe set as a candidate probe. Therefore, in order for a candidate probe to be added to

the solution probe set, the following properties must hold.

Property 2 Every node in the managed network should be covered by the solution set at

least once.

 47

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

We should avoid selecting probes that may lead to creating a solution matrix in which

one or more of its columns are zero columns. That is, for any column in the solution

matrix, all its entries should not be equal to zero. To preserve this property in the solution

probe set, the following definition can be used.

Definition 4.6 The new probe set can be considered a solution probe set if and only if,

each column of its corresponding solution matrix includes the value of 1 in their entries,

at least once.

Based on definition 4.6, property 2 can be captured by the following constraint:

)(...)(: 11 jxjxC
K

∨∨ (4.8)

 Nj ,...,1=∀

The conjunctive normal form of this constraint ensures that C1 is only true when an entry

of value 1 exists in each column of the solution matrix. Each column in the solution

probe set represents a distinctive network node. A column, that only containing zeros as

its entries indicates that the node represented by that column is not covered by the current

solution probe set. This constraint is extremely useful in pruning the search tree as will be

explained in more detail later. An instantiation IX =)},(),...,,{(11 kk
dxdx may satisfy this

constraint, 1C if and only if 1CI
X

∈ .

Property 3 Each node covered by the solution probe set should be uniquely identified.

In order for a fault management system to be able to identify any malfunctioning network

node, the selected probes should have differentiating capabilities by which a failed node

can be efficiently isolated and identified. Hence, candidate probes that introduce

identical columns to the solution probe set should not be selected. Identical columns

confuse the management system as which node (represented by an identical column) is

actually responsible for the malfunctioning behavior. The essence of this property can be

captured by the following definition.

 48

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Definition 4.7 The found set can be considered a solution probe set if and only if, each

column of its corresponding solution matrix has a different value from each other column

in at least one of their entries.

Using definition 4.7, property 3 can be realized by the following constraint:

))()(())()((:2 jxjxjxjxC
iiii

¬∨¬∧∨ (4.9)

 { }Ki ,..,1∈∀

 { }1,...,1 −∈∀ Nj

 { }Njj ,...,1(+∈∀

This constraint can only be violated by the solution probe set if two of its columns in its

corresponding solution matrix are exactly the same. For this constraint to be satisfied, any

two corresponding entries of two columns must have different values at the same row,

regardless of what values the rest of their other entries may take.

Property 4 Identical probes should not be included in the solution probe set.

The purpose of this property is to avoid redundant probes. Since candidate probes are

represented by active variables that have the same domain, it is possible that more than

one of these variables may be instantiated by the same value. This can be summarized in

the following definition.

Definition 4.8 The found set can be considered a solution probe set if and only if, each

row of its corresponding solution matrix has a different value from each other row in at

least one of their entries.

Using definition 4.8, the following constraint may capture property 4 as follows:

)))()((....))1()1(((:3 NxNxxxC
KiKi

⊕∨∨⊕¬ (4.10)

 for 1,...,1 −= Ki .

 49

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

The purpose of the exclusive disjunction ⊕ is to examine the similarity of the individual

elements of the candidate probe with their corresponding elements in the probes of the

solution probe set. Two active variables are presumed to have different instantiations if

any two of their corresponding elements have opposite values.

 Any violation of one or more of these constraints prompts the search algorithm to

discard the current instantiation of the last active variable
k

x and selects a new one. If no

instantiation is available for
k

x from its domain
k

D such that these properties hold, then a

backtracking is performed in which a new instantiation of the previous active variable

1−k
x will be chosen from its domain 1−k

D .

4.5 K-Consistency and Constraint Propagation

In this section, we consider some consistency techniques that can be utilized to remove

inconsistent values from the domains of the active variables without removing any

solutions to the probing problem. That is, an instantiation of one of the active variables

that may violate one or more of the constraints described in Equations (4.8), (4.9), and

(4.10) should be removed from their domains. Since our constraints are expected to

include K active variables, we adopt the following definition of K-arc consistency

developed by Freuder [41].

Definition 4.9 (K-consistency) A CSP is k-consistent if and only if consistent partial

solution over k-1 distinct variables, there exist an instantiation of
th

K variable such that

the partial solution plus that instantiation is consistent.

The K-consistency and propagation techniques are used to improve the efficiency

of the backtracking search algorithm by detecting failures earlier in the search process.

The constraint propagation is embedded in the backtracking algorithm and performed to

reduce the domains of the unassigned active variables. If a domain of any variable

becomes empty after propagation, the current CSP can not produce a valid solution

 50

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

and backtracking should be carried out. The domain values removed due to the

propagation activity are returned when a backtracking is performed and another

assignment for the variable is made by the search algorithm. The backtracking and

constraint propagation continue until a solution is found or the backtracking process is

out of active variables.

4.5.1 Domain Reduction Rules

The proposed CSP is considered as a Boolean CSP since its constraints are defined using

Boolean expressions. In this framework, the Boolean constraints are divided into two

classes, namely, simple form and compound form. In order to achieve K-arc consistency

defined in 4.9, the compound constraints should first be transformed into simple forms

which will be dealt with directly using domain reduction rules. Some auxiliary variables

are introduced in the preprocessing stage before identifying the domain reduction rules

for each constraint. A Boolean constraint is called a simple constraint if it is in one of the

following forms:

•)()(jxjx
li

= ; we call it the equality constraint,

•)()(jxjx
li

=¬ ; we call it the NOT constraint,

• zjxjx
li

=∧)()(; we call it the AND constraint,

• zjxjx
li

=∨)()(; we call it the OR constraint.

Where zjxjx
li

),(),(denote different Boolean variable, NjjliKli ...1,;,,...,1, =≠= .

 To apply the domain reduction rules on constraint 1C defined in Equation (4.8),

we first transform the constraint,

)(...)(: 11 jxjxC
K

∨∨

 Nj ,...,1=∀

into the following simple Boolean constraints:

 121)()(zjxjx =∨ (4.11)

 231)(zjxz =∨ (4.12)

 51

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

M

 12)(
−−

=∨
KKK

zjxz (4.13)

For constraint 1C to be satisfied, one of its simple Boolean expressions, defined in (4.11),

(4.12), and (4.13), has to be true. The following domain reduction rules can be applied on

the simple constraint defined in Equation (4.11) as follows:

{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

121

121121

=∩∈=

=∈==∨

zjxjx

zjxjxzjxjx
 (4.14)

or

{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

121

121121

==∩∈

==∈=∨

zjxjx

zjxjxzjxjx
 (4.15)

If 1z is true, then the first constraint 1C is satisfied. These domain reduction rules simply

state that for 1z to be true, the following rule should hold:

1)(1 11 =→= jxz or 1)(2 =jx (4.16)

 That is for the simple constraint defined in Equation (4.11) to be true, then either)(1 jx

or)(2 jx must be equal to 1. If 1z is not true, then we apply the same reduction rules on

the second simple Boolean constraint defined in Equation (4.12). In this, case 1z will

assume the value of 0. Applying the previous domain reduction rules on this constraint,

the following rule can be deduced:

 1)(1 32 =→= jxz (4.17)

And so on, until the last rule of last simple constraint is obtained. Thus,

1)(11 =→=
−

jxz
kk

 (4.18)

The constraint 1C may only be violated if all of its simple Boolean constraints are

violated, that is 0..... 121 ====
−K

zzz . If one of its simple Boolean constraints is true

then 1C is satisfied.

The second constraint 2C defined in Equation (4.9),

))()(())()((:2 jxjxjxjxC
iiii

¬∨¬∧∨

 52

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

 { }Ki ,..,1∈∀

 { }1,...,1 −∈∀ Nj

 { }Njj ,...,1(+∈∀

can be transformed into these simple Boolean constraints:

1)()(
iii

zjxjx =∨ (4.19)

2)()(
iii

zjxjx =¬∨¬ (4.20)

 321 iii
zzz =∧ (4.21)

Where jji ,, are as defined above. For the constraint 2C to be satisfied, then the simple

Boolean constraint defined in Equation (4.21) must be true. Since this constraint is an

AND constraint, it means that the other two simple constraints defined in Equations

(4.19) and (4.20) must also be true. The following domain reduction rules can be applied

on the simple constraint defined in Equation (4.19) as follows:

{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

1

11

=∩∈=

=∈==∨

iii

iiiiii

zjxjx

zjxjxzjxjx
 (4.22)

or

{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

1

11

==∩∈

==∈=∨

iii

iiiiii

zjxjx

zjxjxzjxjx
 (4.23)

These domain reduction rules simply state that for 1iz to be true, the following rule should

hold:

1)(1 11 =→= jxz
ii

 or 1)(=jx
i

 (4.24)

 The following domain reduction rules may also be applied on the simple constraint

defined in Equation (4.20) as follows:

{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

2

22

=∩∈¬=¬

=∈¬=¬=¬∨¬

iii

iiiiii

zjxjx

zjxjxzjxjx
 (4.25)

{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

2

22

==¬∩∈¬

==¬∈¬=¬∨¬

iii

iiiiii

zjxjx

zjxjxzjxjx
 (4.26)

 53

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

These domain reduction rules simply state that for 2i
z to be true, the following rule

should hold:

1)(12 =¬→= jxz
ii

 or 1)(=¬ jx
i

 (4.27)

Moreover, for the constraint 3i
z to be true the following rule should hold:

11 13 =→=
ii

zz and 12 =
i

z (4.28)

Hence, for 2C to be violated only one of its simple constraints has to be violated.

The last constraint 3C defined in Equation (4.10),

)))()((....))1()1(((:3 NxNxxxC
KiKi

⊕∨∨⊕¬

 for 1,...,1 −= Ki .

can be transformed into these simple Boolean constraints:

 1)1()1(zxx
Ki

=⊕ (4.29)

 2)2()2(zxx
Ki

=⊕ (4.30)

 M

NKi

zNxNx =⊕)()((4.31)

For constraint 3C to be satisfied, one of its simple Boolean expressions, defined in (4.29),

(4.30), and (4.31), has to be true. The following domain reduction rules can be applied on

the simple constraint defined in Equation (4.29) as follows:

{ }

{ } 1},1{1,0)1(;0)1(;

1,1,0)1(,0)1(;)1()1(

1

11

=∩∈=

=∈==⊕

zxx

zxxzxx

Ki

KiKi

 (4.32)

{ }

{ } 1,0)1(};1{1,0)1(;

1,0)1(,1,0)1(;)1()1(11

==∩∈

==∈=⊕

iKi

KiKi

zxx

zxxzxx
 (4.33)

These domain reduction rules simply state that for 1iz to be true, the following rule should

hold:

 1)1(11 =→=
i

xz and 0)1(=
K

x , or 0)1(=
i

x and 1)1(=
K

x (4.34)

Similar reduction rules can be applied for the other simple constraints defined in (4.30)

and (4.31) and the following rules can be obtained:

 54

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

 1)2(12 =→=
i

xz and 0)2(=
K

x , or 0)2(=
i

x and 1)2(=
K

x (4.35)

 1)(1 =→= Nxz
iN

 and 0)(=Nx
K

, or 0)(=Nx
i

and 1)(=Nx
K

 (4.36)

Therefore, for the constraint 3C to be satisfied, then any one of the simple

constraints 21 , zz … or
N

z must be true. Hence, for 3C to be violated all the simple

constraints must be violated, that is 0....21 ====
N

zzz .

4.5.2 Backtracking Search Algorithm

The domain reduction rules developed in the last section will be embedded in the search

algorithm as constraint propagation methods. Fig. 4.5 shows the main algorithm that calls

the backtracking search with constraint propagation shown in Fig. 4.6. The main

algorithm starts with constraint propagation for all the CSP problem variables. Then it

calls the backtracking search if the constraint propagation function does result in an

empty domain for one of the problem variables. The backtracking search is a recursive

algorithm in which every time before it calls itself with a new variable, constraint

propagation is performed once again for the new variable. It only calls itself if the

constraint propagation was successful for the new variable.

The function cost () is to check whether the new value assignment for the current

variable is consistent. The propagate () function is to apply the domain reduction rules

developed in the previous section. In its first call, the propagate () function will apply the

domain reduction rules on all the problem variables. After an active variable is

instantiated with a value from its domain, it applies them with the new assignment for the

current variable and the rest of the problem variables. A simple checking forward

algorithm can be utilized as constraint propagation algorithm as shown in Fig. 4.7.

4.6 Breaking Symmetries

Since the proposed CSP model is based on backtrack search algorithm, symmetrically

equivalent states in the search tree may be explored more than once. Among these states,

 55

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Figure 4.5: Backtracking main algorithm.

either all of them lead to a solution, or none of them lead to one. Exploring one of these

equivalent states is enough to determine if a solution can be found for the CSP model.

Hence, the backtrack search algorithm should limit itself to visit only one of these

symmetrical states. The advantage of breaking these symmetries is that the search space

can be reduced even further. The proposed CSP model introduces the following two

forms of symmetry:

• Probes can be permuted among the K! combinations,

• Probes can be exchanged.

/*ALGORITHM BACKTRACKING SEARCH WITH CONSTRAINT PROPAGATION

PROCEDURE MAIN

BEGIN

/*Initialization for global variables

]..1[KarrayD ← ; /* D contains the domain of individual variables.

]..1[KarraySolution ← ; /* The solution set.

FALSEfailure ← ;

FALSESuccess ←

/*End of initializations

propagate (0, D, failure);

IF NOT failure THEN

 BACKTARCK_PROP (1, D, Solution, Success)

 END

END

 56

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Figure 4.6: The backtrack search procedure.

The first symmetry may occur when a particular probe is being selected more than once.

In fact, this symmetry will be avoided by the search algorithm because of the

constraint 3C . The constraint 3C will always make sure that identical probes will be

discarded. However, we have not introduced a constraint that may break the second

symmetry. The second symmetry can be avoided using lexicographical ordering [42]. A

sequence
n

xxx ,....,1=

r
 is lexicographically smaller than or equal to another

sequence
n

yyy ,....,1=

r
, written as yx

lex

rr
≤ , if and only if:

PROCEDURE BACKTRACK_PROP(i: INTEGER, D: DOMAINS, Success:

BOOLEAN);

BEGIN

 WHILE D[j] <> {} AND NOT Success DO

];[; iDddx
i

∈=

 };{][][diDiD −=

 IF const (Solution, i, d) THEN

 Solution [i] = d;

 Success = (i==K);

 IF NOT Success THEN

 propagate (i+1, D, failure);

 IF NOT failure THEN

 BACKTRACK_PROP (i, D, Success)

 END

 END

 END

END PROCEDURE BACKTRACK_PROP

 57

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Figure 4.7: Constraint propagation algorithm.

11 yx ≤ and
iiii

ii

yxyx ≤→=Λ

<≤

)(
1

for ni ≤≤2 .The sequence x
r

 is lexicographically smaller than y
r

, written as yx
lex

rr
< if

and only if yx
lex

rr
< and

iini
yx ≠∨

≤≤1 .

 In general, a variable symmetry σ can be broken by the lexicographical ordering

constraint [41]

)(xx
lex

rr
σ≤ ,

where x
r

 is a sequence of the variables in the CSP. The following symmetry breaking

constraints then can be used to break the variable symmetry as follows:

Klex
xxx ,...,21 ≤

Klex
xxxx ,...,, 321 >≤<

--

KlexK
xxxx >≤<

−121 ,...,,

PROCEDURE propagate (D: DOMAINS, failure: BOOLEAN)

BEGIN

 failure = FALSE;

 FOR i=1:K

 D[i] = { }constentaisiddiDd][{|][∈∈

 Failure = (D[i] == {};

 END

END propagate

 58

CHAPTER 4. A NOVEL CSP APPROACH FOR PROBE SELECTION .

Using a constraint for each variable symmetry (σ), all symmetrical solutions in each

symmetry class except the lexicographically smallest, with respect to the sequence x
r

,

would be removed.

4.7 Summary

In this chapter, we present a novel approach for the probing problem. The CSP-based

model can capture the dynamic nature of the selection process in the form of Boolean

constraints. The objective is to choose a subset of the available testing probes in which

the solution subset has to have three crucial features:

i. The cardinality of the solution set should be as minimum as possible,

ii. It has to cover all the nodes in the managed network,

iii. Every network node should be uniquely identified.

The proposed scheme dynamically changes the number of active variables that are

involved in the selection process. Experiments have been conducted and the effectiveness

of the proposed approach in terms of minimizing the number of the selected probes has

been demonstrated and compared with other existing approaches.

 59

Chapter 5

A New Fuzzy CSP Probing Algorithm

5.1 Introduction

Though the CSP-based model developed in the previous chapter tremendously reduces

the total number of probes required for fault detection and identification tasks, there is

still an imposed overhead. The fault identification process still can not be performed

unless all the probes contained in the solution probe set are utilized. This unavoidable

cost may be tolerated in small networks. However, as managed networks grow larger, this

problem may become a serious issue and a more adaptive probe-selection mechanism is

needed to alleviate its negative impact. In this chapter, we develop a novel Fuzzy CSP-

based algorithm. Instead of selecting a group of probes at once, the new algorithm only

considers a single probe at a time. To be eligible for the fault identification task, an

informative probe should possess some diagnostic abilities. The most informative probe

is recognized as a probe that may help reduce the set of the suspect nodes more

efficiently than other competing probes. Since the competing probes may satisfy this

essential requirement with different degrees, the standard CSP may not be suitable. Thus,

 60

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

a fuzzy CSP model is developed, in which a probe that satisfies the formulated fuzzy

constraints the most is identified as the most informative probe.

5.2 System Architecture and Notations

The proposed approach is divided into two major components. As shown in Fig. 5.1, the

first component performs the fault detection task. In this stage, a small number of probes

are sent periodically to the managed network. If one or more of these probes fail, then the

managed network is considered to be in an anomaly state.

Figure 5.1: Probe-based system architecture.

Since, the fault detection probes may not be sufficient to identify the

malfunctioning node, the task of the second component is to perform the fault

identification process. During this stage, further analysis of the failed and successful

probes is carried out. Taking advantage of the valuable diagnostic knowledge provided

by the current status of the fault detection probes, the most appropriate probe is singled

 61

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

out for the fault identification task and sent to the managed network. Careful fault

analysis is then conducted on the outcome of the probe. This step may result in either the

failed node being identified or a new informative probe being selected.

5.2.1 Fault Detection Probe Set

The fault detection probe set may be obtained manually by the network administrator. A

simple greedy approach applied on the dependency matrix (the probe set) can also be

employed to attain this set. It has to cover all the nodes in the managed network with as

minimum number of probes as possible. Naturally, the first selected probe should be the

probe with the maximum number of network nodes in its path. This probe should be then

eliminated from the probe set. A second probe is selected from the remaining probes such

that it covers as many network nodes that have not been covered by the first probe. This

probe selection process continues until all the network nodes are represented by the

selected probes or no available probes are left.

 Let us assume that the set N represents the set of nodes of the network under

investigation, P represents the probe set, and S the set of the selected probes from P. The

greedy approach can be implemented as shown in Figure 5.2. The greedy algorithm is

simple enough to be self-explanatory. If sufficient testing probes are available, then a

small set of fault detection probes can be found. However, if such set is not found, then

more testing probes can be created and added to the probe set and the probe selection

process starts over.

5.2.2 Dynamic CSP-Model for Fault Identification

The central premise of the proposed algorithm is that a failed probe gives a valuable clue

on the set of nodes that may contain the malfunctioning node. Moreover, successful

probes may indicate a set of nodes that should be ruled out as likely suspects of the

malfunctioning behavior. The constituents of the failed probe, therefore, comprise a

special node set called the suspect set (referred to by F), while the constituents of the

 62

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Figure 5.2: Probe selection by the greedy algorithm.

successful probes constitute another special node set called the healthy set (referred to by

G). Furthermore, probes whose constituents are subset of the set G are considered

 /*Greedy Algorithm for the selection of the fault detection

 /*probe set

1. Inputs: N and P.

2. Outputs S.

3. Select a probe P from P such that it has the maximum number of non-

covered nodes and the least number of covered nodes.

4. Add P to S.

5. Remove P from P.

6. Remove the nodes expected to be probed by P from N.

7. if (NULLN ≠) and (NULLP ≠) then

 Repeat steps 3 to 6.

 end if

 8. if (NULLN =) then

 Return S.

 Exit.

 end if

9. if (NULLN ≠) and (NULL=P) then

 Report “insufficient probes in P.”

 Exit.

 end if

 63

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

healthy probes and removed from P. Using F and G sets, the proposed fuzzy CSP-based

algorithm selects a new probe from the modified probe set P. Based on the response of

the new selected probe, it may either locate the malfunctioning node or dynamically

adjusts the suspect, healthy, and probe sets. It should be noted that the fault identification

task is an iteration process. In this process, probes will be temporally removed from the

probe set P and nodes will be deleted or added from and to the suspect and healthy sets.

This iteration stops only when the failure set F becomes a singleton set. A general

schematic diagram of the iteration process is depicted in Fig. 5.3.

Figure 5.3: Schematic diagram of probing-based algorithm.

The objective of the new algorithm is to identify the malfunctioning node with as

little management traffic (probes) as possible. To achieve the intended objective, the

algorithm should meaningfully reduce the size of the suspect node set F. However,

 64

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

choosing less capable probes may result in an opposite effect and enlarge the suspect set.

This could prolong the fault identification process causing more management traffic to be

sent to the managed network. Therefore, the conditions with which testing probes are

selected should be carefully examined and well represented in the problem formulation.

The dynamic mechanism of the selection procedure should be captured by a set of well-

defined constraints. These constraints must ensure that only the most informative probes

are qualified for the fault identification task. Consequently, the domains of the problem

variables will be effectively modified.

5.3 Problem Description

Assuming only a single node failure may occur in the managed network, let
i

p
R refer to

the response of the probe
i

p , where i=1… K. K is the number of probes in the fault

detection probe set. The probe
i

p is defined by its constituent set (the network nodes in

its path).
i

p
R may take a value only from the set {0, 1}. If the probe

i
p fails, then 0=

pi
R ;

otherwise 1=
pi

R .

• If a single probe fails (0=
pi

R) and the other probes succeed (1=
pj

R), then the

initial suspect and healthy sets are constructed as follow:

(){ })(|
jii

pppnnF ∩−∈= (5.1)

(){ })()(|
jii

pppNnnG ∩∪−∈= (5.2)

• If multiple probes fail, that is 0.... ===
ji

pp
RR , then:

{ },)....(|
ji

ppnnF II∈= (5.3)

{ }))....((|
ji

ppNnnG II−∈= (5.4)

where jikji ≠= ,...1, .

If the result of Equation (5.1) or (5.3) is a singleton set F, then F identifies the

malfunctioning node. However, if F contains more than one element, then further fault

analysis will be carried out. The fuzzy CSP-based fault identification algorithm picks

 65

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

another probe according to some features described in detail next section.

 Let
m

p be the newly selected probe. The new probe is expected to contain a subset of

suspect nodes or both suspect and healthy nodes in its path. The response of
m

p will

impact the elements in both F and G as follows:

• If 0=
m

p
R , then

(){ }FpnnF
m

∩∈= | (5.5)

 (){ })(| FpNnnG
m

∩−∈= (5.6)

• If 1=
m

p
R , then

 (){ })(| FpFnnF
m

∩−∈= (5.7)

 { })(| GpnnG
m

∪∈= (5.8)

If the probe
m

p fails, then obviously the suspect nodes presented by the probe will

become even more suspicious and should be singled out for more testing. Equation (5.5)

suggests that the suspect set F will hold only the suspected nodes in the probe
m

p . The

other suspected nodes will be removed from F and added to the healthy set G as implied

by Equation (5.6). However, if the probe
m

p succeeds, its suspected nodes should be

removed from the suspect set F as indicated by Equation (5.7) and added to the healthy

set G as shown in Equation (5.8). If the suspect set F is not a singleton set then another

probe is selected and the whole process will be conducted once again in the same manner.

Depending on the status of the sets of F and G, the probe set P may also go through some

refinement where probes of healthy nodes will be ignored from the probe selection

process.

This problem can be best explained by the following example. The dependency

matrix, D, obtained from the network configuration of Fig. 5.4, is presented in table 5.1.

For the sake of convenient notations, it is summarized as follows:

D = {P12, P13, P14, P15, P16, P42, P43, P45, P46}

The network nodes are represented by the set N = {N1, N2, N3, N4, N5, N6}. The set of

probes are defined in terms of their constituent nodes as follows:

 66

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Figure 5.4: Simple Network Graph.

Table 5.1: The Dependency matrix of the network in Fig. 5.4.

Probes Nodes N1 N2 N3 N4 N5 N6

P12 1 1 0 0 0 0

P13 1 0 1 0 0 0

P14 1 0 1 1 0 0

P15 1 1 0 0 1 0

P16 1 0 1 0 0 1

P42 0 1 1 1 0 0

P43 0 0 1 1 0 0

P45 0 1 1 1 1 0

P46 0 0 1 1 0 1

 P = {P12 = {N1, N2}, P13 = {N1, N3}, P14 = {N1, N3, N4}, P15 = {N1, N2, N5},

 P16 = {N1, N3, N6}, P42 = {N2, N3, N4}, P43 = {N3, N4}, P45 = {N2, N3, N4, N5},

 P46 = {N3, N4, N6} }

 67

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

In this new representation, any node that is not covered by a given probe will not

be reported by the node set of the probe. According to the new approach, the greedy

scheme is first applied on the probe set. Consequently, the following two probes are

selected:

P45 = {N2, N3, N4, N5}

 P16 = {N1, N3, N6}

It is apparent that P45 and P16 can completely cover the nodes in the managed network.

Should one or both of these probes report the occurrence of a failure, the fault

identification function will be invoked promptly. The information carried by the detection

probes will be fully exploited as follows:

• If P16 has failed and P45 has succeeded, then, according to Equations (5.1) and

(5.2), the node sets F and G will be constructed as follows:

 F = {N1, N6}

G = {N2, N3, N4, N5}

 Naturally, nodes reported by the successful probe should be included in

the healthy

 set G, as well as any node covered by both the failed probe and the successful

probe simultaneously. Thus, faults pertained to node 3, N3, is not included in the

suspected set F.

• If P45 has failed and P16 has succeeded, following the same Equations, the sets F

and G will formed as follows:

F = {N2, N4, N5}

G = {N1, N3, N6}

• If both probes have failed, then according to the Equations (5.3) and (5.4), the

suspect and healthy sets will be formed as follows:

 F = P45 ∩ P5 = {N3}

 G = N - (P45 ∩ P5) = {N1, N2, N4, N5, N6}

 68

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

The fundamental presumption behind this reasoning is that the outcomes of the probes

force certain assignments to the problem variables, namely F and G. Note here, since the

suspect set F has been adjusted and turned into a singleton set, no further fault analysis is

needed.

5.4 A Fuzzy CSP Framework

Since the constraints imposed by the probing problem need not be fully satisfied, the

crisp CSP formulation will not be flexible enough to accommodate them. The fuzzy CSP

(FCSP) methodologies seem more appropriate to tackle this kind of problems. The main

concept is to generalize the notion of crisp constraints [43], in which different tuples may

satisfy a particular constraint with different degrees. Once the fuzzy constraints have

been defined and constructed, standard search techniques to solve CSP problems can be

adapted to solve fuzzy CSP problems. To formally define the probing problem in a fuzzy

CSP framework, a basic definition of a fuzzy CSP is first presented.

5.4.1Fuzzy Constraint Satisfaction Problem (FCSP)

Definition 5.1 A fuzzy constraint satisfaction problem (FCSP) is defined as a 3-

tuple ()
f

CDX ,, , where:

• { }niXX
i

,...,1| == is a finite set of variables.

• { }niDD
i

,...,1| == is the set of domains. Each domain
i

d is a finite set

containing the possible values for the corresponding variable
i

x in X.

• f
C is a set of finite fuzzy constraints. That is,

 []













=→














= ∏

∈

midRC
f

ij

f

i

Rx

jR

f

i

f
,...,1,1,0:|

)var(

µ , (5.9)

Where)var(f

i
R denotes the set of variables of fuzzy constraint f

i
R . The main concept of a

fuzzy CSP revolves around a fuzzy constraint. A fuzzy constraint is a mapping from the

 69

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Cartesian product of the domains)....(21 k
xDxxDD of the constraint variables

k
xxx ,...,, 21 ,

into the interval [0, 1]. The value assigned to c for the constraint),...,,(21 k
xxxc is the

degree of satisfaction that the instantiations of the variables
k

XXX ,...,, 21 may present

to the constraint. A fuzzy constraint corresponds to a membership function of a fuzzy

set. If 1),...,,(21 =
k

xxxc , then we say that the constraint is fully satisfied by this

instantiation. Conversely, If 0),...,,(21 =
k

xxxc , then the constraint is fully violated by

this instantiation. The support set is formed by the instantiations of the variables for

which c > 0.

5.4.2 Probing Fuzzy CSP Formulation

Formally, the fuzzy CSP-based probing problem can be defined as follows: Let
t

F ,
t

G ,

and
t

P refer to the sets of the suspect nodes, the healthy nodes, and the probes,

respectively, at iteration t, where ,....1,0=t . Let { }pf , be the set of the probing problem

variables. Let
F

Σ and
P

Σ refer to the domains of f and p , respectively. The

domain
t

F
Σ is basically a superset of

t
F and

P
Σ =

t
P , and the empty set, Φ , and the whole

set are excluded from the domain
t

F
Σ . Therefore, to find a solution to the fuzzy CSP

probing, we have to assign an instantiation for each variable
Fi

f ∑∈ and
Pl

p ∑∈ ,

where)12,...,1(−=

ΣF

i , and),...,1(
t

ml = , and subject to a set of binary constraints, C.

The binary constraints ensure that certain properties hold during the selection

process. We will refer to a competing probe in the selection process as candidate probe,

the nodes in its path as the test set, and the suspect and healthy sets as the diagnostic sets.

In what follows we discuss these properties and their impact on the formulation of these

binary constraints [44].

Property 1 A candidate probe should be able to test at least one suspect node.

 70

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Clearly that probes which contain only healthy nodes in their test set are not going to be

useful in the fault analysis process. However, as network entities continuously are added

or removed from both diagnostic sets, a probe may change its status in later stages of the

fault analysis process. To preserve this property in the selected probe, the following

definition can be used.

Definition 5.2 The test set of a candidate probe
Pl

p ∑∈ , should contain at least one

element from the current diagnostic set
t

F .

Based on definition 5.2, property 1 can be captured by the following constraint:

C1: l
p I

t
F ≠ Φ (5.10)

The purpose of this constraint is to temporarily eliminate from the search space all the

healthy probes since we are only interested in testing the suspect nodes represented by the

diagnostic set
t

F .

Property 2 A candidate probe should be able to test a suspect node currently under

investigation.

Not all the suspect nodes are investigated at once. Only a selected subset of the diagnostic

set
t

F will be targeted for testing. A candidate probe should contain in its test set the

targeted node. This property can be defined as follows.

Definition 5.3 The test set of a candidate probe
Pl

p ∑∈ , should contain the targeted

suspect node
Fi

f ∑∈ from the current diagnostic set
t

F .

Based on definition 5.3, property 2 can be captured by the following constraint:

C2: l
p I

i
f =

i
f (5.11)

 71

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

This constraint can only be consistent if the current instantiation of the problem variable

i
f is clearly included in the test set of the candidate probe.

Property 3 A candidate probe should not aim to test all the suspect nodes at once.

Probes that contain all the suspect nodes in their test sets should also be avoided. Since

one or more of the suspicious nodes in the diagnostic set
t

F is the main cause of the

malfunctioning behavior, a candidate probe that contains all the suspect nodes in its test

set is doomed to fail, regardless of how many healthy nodes presented in its test set. We

use the following definition to capture the essence of this property.

Definition 5.4 The test set of a candidate probe
Pl

p ∑∈ should not contain all the

elements in the current diagnostic set
t

F .

Based on definition 5.4, property 3 can be captured by the following constraint:

 C3: l
p I

t
F ≠

t
F (5.12)

The consequences of such failed probe is that the non-suspect nodes in its test set will be

wrongly added to the current diagnostic set
t

F and eliminated from the diagnostic set
t

G .

This of course will further complicate the diagnosis process and introduce unnecessary

management traffic into the managed system. This may also result in removing more

capable probes from the probe search space.

Property 4 A candidate probe targeting a certain number of suspicious nodes is

considered more desirable than other probes with more or less suspicious nodes.

A high priority should be given to a candidate probe that is able test a certain number in

the current suspect set. The following definition can be used to preserve this property.

 72

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Definition 5.5 A candidate probe
Pl

p ∑∈ , with a certain number of suspect nodes from

the diagnostic set
t

F in its test set, which yields a higher value output of a continuous

function in the range of (0, 1) is considered more eligible than other probes .

Based on definition 5.5, property 4 can be captured by the following constraint:

C4: (| pl I
t

F |) ⇒ (0, 1) (5.13)

Hence, the candidate probe should be examined with the current diagnostic set
t

F rather

that a subset of it. The extreme function values of 0 and 1 are excluded from the function

range. A value of 0 means that the candidate probe’s test set may not include any of the

suspect nodes in F which contradicts the constraint C1. A value of 1 means that the

candidate probe’s test set could contain all the nodes of the suspect set F which

contradicts the constraint C3. Whether the preference will be given to candidate probes

with more or less suspected nodes in their test set will be discussed in detail in the

following section.

Property 5 A candidate probe traversing a certain number of healthy nodes is

considered more desirable than other probes with more or less of healthy nodes.

Another factor that may play a major role in a candidate probe selection is the number

of healthy nodes present in its test set. This property can be defined as follows.

Definition 5.6 A candidate probe
Pl

p ∑∈ , with a certain number of healthy nodes from

the diagnostic set
t

G in its test set, which yields a higher value output of a continuous

function in the range of [0, 1], is considered more desirable that other probes .

A candidate probe with a certain number of healthy nodes in its test set is given high

priority than other candidate probes. Based on definition 5.6, property 5 can be captured

by the following constraint:

 73

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

C5: (|pl I t
G |) ⇒ [0, 1] (5.14)

The evaluation of this constraint can break a tie between competing probes and the

preference will be considered based on the situation at hand. The value of zero implies

that the candidate probe may not have a single healthy node in its test set. This probe

should be given the highest priority since the probe test set is basically a subset of the

suspect set. The success or failure of this probe can positively have a huge impact on the

suspect set and radically modify its size. On other hand, a candidate probe whose test set

include all the healthy nodes of the current G should be given the lowest priority.

Clearly the constraints C1, C2, and C3 are crisp ones and they could be either fully

satisfied or fully violated. However, the constraints C4 and C5 are fuzzy in the sense that

some probes will satisfy these two constraints with different degrees of satisfaction. The

domains of the fuzzy constraints C4 and C5 are also fuzzy sets with membership functions

4C
dom and

5C
dom , respectively, where [21]:

{ }
PltllC

pFpCpdom Σ∈∀= |),(max)(44
 (5.15)

{ }
PltllC

pGpCpdom Σ∈∀=),(max)(55
 (5.16)

During the search process for a best solution, problem constraints will be evaluated

individually. These membership functions can be used to find an instantiation for a

certain constraint that can satisfy it the best.

5.4.3 The Satisfaction of the Fuzzy Constraints

The eligibility of a given probe for the fault identification task may depend on two crucial

factors:

1. The ratio of the suspect nodes represented in its test set,

2. The ratio of healthy nodes represented in its test set.

Recognizing the importance of this knowledge is essential in order to make a

better judgment pertaining to the probe selection. Therefore, the contributions of the

fuzzy constraints to the selection process play a vital role in this regard. One way to

extract this significant piece of information from a candidate probe is by obtaining the

 74

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

intersection set of the candidate probe test set with both diagnostic sets and then

calculating their cardinalities. That is, the cardinality of the set {
l

p I
t

F }, specified by

the constraint C4, determines the number of the suspected nodes that the candidate

probe
l

p may have. On the other hand, the cardinality of the set {
l

p I
t

G }, specified by

constraint C5, gives the number of the healthy nodes it has. Based on this obtained

information, the next step is to determine what probes are more appropriate for the fault

identification task.

One approach is to iteratively select a probe that covers a large number of suspect

nodes. The success of such a probe gives a large amount of information as its entire

suspect nodes will be removed from the suspect set. However, if the probe fails then the

its healthy nodes will be added to the suspect set. Furthermore, because the probe test set

has a large number of suspect nodes, it will be more likely that this probe will fail, risking

its perfectly good nodes to be added to the suspect set. This approach can be very

effective if the candidate probe has no healthy nodes in its test set. That is, the probe test

set is actually a subset of the suspect set. In this case, if the probe fails, then the suspect

set will be reduced to the test set of this probe, which will be less than the original one. If

the probe succeeds, then all the nodes of the probe test set will be removed from the

suspect set. Thus, the new suspect set will be much less than the original one.

The other approach is to select a probe with the least number of the suspect nodes.

Not much information may be gained if the probe succeeds, as the suspect set will be

slightly reduced. However, if it fails, there are two possible scenarios:

• If the probe test set contains only a single suspect node, then the malfunctioning node

has been identified. This is the best scenario as the fault analysis terminates.

• If the probe set contains more than a single suspect node and no healthy nodes, then

the suspect set will be significantly reduced to that of the probe test set. Otherwise,

the healthy nodes will also be added to the suspect set.

It is clear from the above discussion that a better probe has no or few healthy

nodes in its test set. In case of failure, the candidate probe will not expand the suspect set

dramatically. It may, however, have a large or small number of suspect nodes as each

 75

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

approach has their own merits and shortcomings. In this study, probes with the lowest

number of both suspect and healthy nodes are given the highest priority.

Let p refer to the cardinality of the set {
l

p I
t

F }, (i.e., ||
tl

Fpp I=), and p
)

refer to the cardinality of the set {
l

p I
t

G }, (i.e., ||
tl

Gpp I
)

=). The constraints

4C and 5C are treated as fuzzy variables that are empirically associated with three

linguistic terms (fuzzy sets): Low, Med, and High. Depending on the constraint at hand,

each linguistic variable is semantically different from its counterpart. For example, the

fuzzy set Low represents low number of suspect nodes in a given probe, according to

constraint 4C . It also refers to the low number of healthy nodes in a given probe,

according to constraint 5C . These fuzzy sets assume half-triangular, full-triangular, and S-

shaped membership functions, respectively.

Given p , the fuzzy set Low member function of 4C is defined as follows:











>

≤<

−

−

=

=

bp

bp
b

pb

p

bp
LowC

;0

1;
1

1;1

),(4µ (5.17)

The fuzzy set Med membership function of 4C is defined as follows:















>

≤<

−

−

≤<

−

−

−

≤

=

cp

cpb
bc

pc

bpa
ab

pb

ap

cbap
MedC

;0

;

;1

;0

),,,(4µ (5.18)

The fuzzy set High membership function of 4C is defined as follows:











>

≤<

−

−

−

≤

=

cp

cpb
bc

pc

bp

cbp
HighC

;1

;1

;0

),,(4µ (5.19)

 76

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

where the parameters ||25.0
t

Fa = , ||50.0
t

Fb = , and ||75.0
t

Fc = . The shapes of the

membership functions of the fuzzy constraint 4C are shown in Fig. 5.5.

Given p
)

, the fuzzy set Low member function of 5C is defined as follows:













>

≤<

−

−

≤

=

fp

fpK
f

pf

Kp

fp
LowC

)

)
)

)

)

;0

;
1

;1

),(5µ (5.20)

The fuzzy set Med membership function of 5C is defined as follows:
















>

≤<

−

−

≤<

−

−

−

≤

=

gp

gpf
fg

pg

fpe
ef

pf

ep

gfep
MedC

;0

;

;1

;0

),,,(5
)

)

)
)

)

)
µ (5.21)

The fuzzy set High membership function of 5C is defined as follows:













>

≤<

−

−

−

≤

=

gp

gpf
fg

pg

fp

gfp
HighC

)

)
)

)

)

;1

;1

;0

),,(5µ (5.22)

where the parameters ||25.0
t

Ge = , ||50.0
t

Gf = , and ||75.0
t

Gg = . The shapes of

the membership functions of the fuzzy constraint 5C are shown in Fig. 5.6.

Based on the previous discussion, simple fuzzy rules can be obtained as follows.

For the constraint 4C , we have the following rules:

R1: if p is Low Then 4C is 1A

R2: if p is Med Then 4C is 2A

R3: if p is High Then 4C is 3A

For the constraint 5C , we have the following rules:

 77

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

R4: if p
)

 is Low Then 5C is 1B

R5: if p
)

 is Med Then 5C is 2B

R6: if p
)

 is High Then 5C is 3B

The fuzzy consequents in the proposed rules are defined to reflect the desirable

characteristics required in a given probe. For example, if probes with less number of both

suspect and health nodes in their paths should be given high priorities over other probes,

then the fuzzy consequents can be defined as follows: { }41 /9.0 CA = , { }42 /5.0 CA = ,

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of suspect nodes in a given probe

S
a

ti
s

fa
c

ti
o
n

 d
e

g
re

e
 o

f
c

o
n

s
tr

a
in

t
C

4

Low membership function
Med membership function
High membership function

Control parameters:
 a = 0.25*|Ft| =5
 b = 0.50*|Ft| =10
 c = 0.75*|Ft| =15

 Figure 5.5: Low, Med, and High membership functions for the constraint

 C4)20|(| =
t

F .

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of healthy nodes in a given probe

S
a
ti
s
fa

c
ti
o
n
 d

e
g
re

e
 o

f
c
o
n
s
tr

a
in

t
C

5 Low membership fucntion
Med membership function
High membership function

Contro parameters:
 e = 0.25*|Gt| = 3
 f = 0.50*|Gt| = 6
 g = 0.75*|Gt| = 9

 Figure 5.6: Low, Med, and High membership functions for the constraint

 5C)12|(| =
t

G . K=1.

 78

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

{ }41 /2.0 CA = , { }51 /9.0 CB = , { }52 /5.0 CB = , and { }53 /2.0 CB = . Different probe

selection criteria require different fuzzy consequent definitions.

To determine the satisfaction degree of the fuzzy constraints 4C and 5C , we group

the relevant fuzzy rules for each constraint and apply the Mamdani inference mechanism

on each group. By applying the Mamdani mechanism on the fuzzy rules (R1, R2, and

R3), the satisfaction degree of the constraint 4C is obtained as follows:

1. Calculate the firing level for each rule in the fuzzy rules group of 4C :

)(41 p
LowC

µτ =

)(42 p
MedC

µτ =

)(43 p
HighC

µτ =

2. Calculate the output of each rule as follows:

))(,min()(4141 1
CC

A
µτµ =

))(,min()(4242 2
CC

Aj
µτµ =

))(,min()(4343 3
CC

A
µτµ =

3. Aggregate individual rule outputs to obtain overall fuzzy set 4C with membership

defined by:

))(()(4

3

1

4 max CC
r

r

µµ

=

=

)(4Cµ represents the satisfaction degree of the constraint 4C given the number of the

suspect nodes, p , in its path.

Similarly, we apply the same inference mechanism on the second group of the fuzzy

rules, (R4, R5, and R6), to obtain the satisfaction degree of the constraint 5C , as follows:

1. Calculate the firing level for each rule in the fuzzy rules group of 5C :

)(54 p
LowC

)
µτ =

)(55 p
MedC

)
µτ =

 79

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

)(56 p
HighC

)
µτ =

2. Calculate the output of each rule as follows:

))(,min()(5451 1
CC

B
µτµ =

))(,min()(5552 2
CC

B
µτµ =

))(,min()(5653 3
CC

B
µτµ =

3. Aggregate individual rule outputs to obtain overall fuzzy set 5C with membership

defined by:

))(()(5

3

1

5 max CC
r

r

µµ

=

=

)(5Cµ represents the satisfaction degree of the constraint 5C given the number of the

healthy nodes, p
)

, in its path.

5.5 Constraint Propagation

The arc consistency takes the form of domain reduction rules. By removing the

inconsistent values from the domains of the set variables{ }pf , , the constraint

propagation techniques narrow down the search space without ruling out any solution. If

one of the domains is reduced to an empty set, then a solution to the probing problem can

not be found from the given probes. The constraint propagation techniques are embedded

within the branch and bound search algorithm.

5.5.1 Domain Reduction Rules

In order to perform the constraint propagation, certain domain reduction rules should be

developed. Let C be the set of the problem constraints { }54321 ,,,, CCCCCC = . Since the

problem constraints are binary, the following reduction rules can be applied to achieve

the required arc consistency:

Arc Consistency rule 1

 80

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

pf

pf

pfc

pfCc

Σ∈Σ′∈

Σ∈Σ∈∈

,;

,;
 (5.23)

Where (){ }cpfpf
pff

∈Σ∈∃Σ∈=Σ′ ,|:

Arc Consistency rule 2

pf

pf

pfc

pfCc

Σ′∈Σ∈

Σ∈Σ∈∈

,;

,;
 (5.24)

Where (){ }cpffp
fpp

∈Σ∈∃Σ∈=Σ′ ,|:

The first domain reduction rule simply modifies the domain
f

Σ in a way that for

each instantiation of the variable f with a subset of suspect nodes, there exist

corresponding probes in the domain
p

Σ . The notation
f

Σ′ refers to the new domain. The

second reduction rule behaves in the same manner but operates on the probe variable of

the constraint and results in the following new domain
p

Σ′ .

5.5.2 Maintaining Arc Consistency (MAC) Algorithm

The domain reduction rules described in the previous section are used by the arc

consistency algorithm developed in this section. The following definition may help us

formulate the arc consistency algorithm.

Definition 5.7

• Consider a binary constraint C on the variables x and y with the domains
x

D

and
y

D , that is
x

DC ⊆ X
y

D . We call C arc consistent if

 - ,),(CbaDbDa
yx

∈∈∃∈∀

 - .),(CbaDaDb
xx

∈∈∃∈∀

• We call a CSP arc consistent if all its binary constraints are arc consistent

 81

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

According to this definition a binary constraint is arc consistent if every value in each

domain has a support in the other domain. In the literature, MAC is alternatively called

Arc Consistency Look Ahead or Full Look Ahead and summarized in Fig. 5.7.

To explain the algorithm of arc consistency, let us suppose that the following two

probes were chosen for the fault detection as shown in section 5.2 and sent to test the

healthy status of the running network:

P45 = {N2, N3, N4, N5}

 P16 = {N1, N3, N6}

 Figure 5.7: Arc algorithm.

S0: ={ }54321 ,,,, CCCCC ;

 S: = S0;

WHILE φ≠S DO

 choose SC ∈ ;

(){ }Cpfpf
pff

∈Σ∈∃Σ∈=Σ ,|: ;

(){ }Cfpfp
fpp

∈Σ∈∃Σ∈=Σ ,|: ;

 IF
f

Σ changed THEN

 ∪= SS : { CSC ′∈′ |0 is on f ′ }

 ELSE IF
p

Σ changed THEN

 ∪= SS : { CSC ′∈′ |0 is on p′ }

 ELSE IF

 { }CSS −=:

 END

END

 82

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Let us further assume that the probe P16 fails and probe P45 succeeds. The outcomes of

both probes will have the following effect:

t

F = {N1, N6}

t
G = {N2, N3, N4, N5}

As a result the domain
t

F
∑ of the variable f is constructed as follows:

t
F

∑ = {{N1}, {N6}, {N1, N6}}

The domain of variable
P

p ∑∈ is the set of the available probes without the successful

probe sent during the fault detection process:

P
∑ = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5}, {N1, N3, N6}, {N2, N3, N4},

 {N3, N4}, {N3, N4, N6}}

During the constraint propagation, maintaining arc consistency can be achieved as

follows:

1. The element {N1, N6} will be removed from the variable domain
F

∑ as a direct result

of applying the reduction rule 1 on the second constraint C3. Hence, the new domain

will be as follows:

t

F
∑ = {{N1}, {N6}}

 Using the same reduction rule on the same constraint will also result in

 modifying the second domain
P

∑ in which the element {N1, N3, N6} will be removed

 and the new domain will be as follows:

P

∑ = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5} {N2, N3, N4}, {N3, N4},

 {N3, N4, N6}}

2. Applying the domain reduction rule 2 on the first constraint C1, the elements {{N2, N3,

N4}, {N3, N4}} will be removed from the variable domain
P

∑ . Hence, the resulted new

domain will be as follows:

P

∑ = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5}, {N1, N3, N6}, {N3, N4, N6}}

 83

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

For the fuzzy constraints C4 and C5, local consistency can be achieved by removing

elements from the variable domains which can not satisfy the constraints better than a

given thresholdα . Estimating an appropriate value forα will depend on various factors

which discussed on the previous section (10 ≤< α).

5.6 Branch and Bound Search Algorithm

In the literature, there are several methods reported for determining the joint satisfaction

of the problem fuzzy constraints. One of these methods is based on the average

combination principal. It is more intuitive than the others since it looks at the joint

satisfaction as the accumulative satisfaction of the individual constraints.

Definition 5.8 The degree of joint satisfaction of the constraints
i

C , 5,...,1=i , by the

instantiation, ()
lj

pfd ,= ,
fj

f Σ∈ and
Pl

p Σ∈ is the average of the satisfaction of the

individual constraints. That is:

()() ()dCdCCC

i

iave ∑
=

=

5

1

51
5

1
,,..., (5.25)

During the search process, a best solution is an instantiation d ′ if the degree of the

satisfaction of all the constraints is maximal. That is:

 ()() ()()dCCCCCdCCCCCC ,,,,,max,,,,, 5432154321 =′ (5.26)

For a given instantiation, the degree of satisfaction is calculated using Equation (5.25)

and will be compared with another degree of satisfaction yielded by another instantiation

(saved in a special variable called bound). To choose the best instantiation, Equation

(5.26) is employed.

5.6.1 Constructing a Best Solution

The adopted measure of joint degree of satisfaction is characterized by two important

aspects:

 84

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

• The proportional contribution of each constraint to the joint satisfaction may be

calculated independent of each other. The appropriateness of particular initiation

for a given variable may be evaluated using the domains of the fuzzy constraints

offered by Equations (5.15) and (5.16).

• The joint satisfaction is monotone with respect to the satisfaction to the individual

constraints, that is, if 1d and 2d are such that

 () ()21 dCdC
ii

=

() ()21 dCdC
jj

≥

 for 6,...,1=i and ji ≠ . Then,

 ()() ()()254321154321 ,,,,,,,,,, dCCCCCCdCCCCCC ≥ (5.27)

In constructing the best solution, the monotonic aspect described by Equation (5.27) will

be proven useful in the search process. When exploring the search space, we first

compute the upper bound for the degree of satisfaction of the best possible extension of a

given partial solution. The monotonic characteristic of the joint satisfaction permits a

partial solution to provide an upper bound in terms of its degree of satisfaction. Any

extension of the partial solution that may yield a degree of satisfaction lower than the

upper bound will be excluded from further considerations.

 5.6.2 Heuristic Search Mechanism

The main procedure of the search algorithm is shown in Fig. 5.8. The main algorithm is

to initialize the domains of each variable, based on the responses of the chosen probes. It

then performs simple constraint propagation on the formed domains to eliminate any

inconsistencies that may be found in the variable domains. If the constraint propagation

yields an empty set for any of the variable domains, then a solution can not be found.

Otherwise, it invokes the bound and branch function. Since the variable p is the most

constrained variable, the search for a best solution starts by initiating it from its domain

first as shown in Fig. 5.9. After assigning a value for the variable f , the consistency

 85

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Figure 5.8: Bound and branch main algorithm.

is checked. If this instantiation is consistent, then the degree of satisfaction will be

calculated using Equation (5.24) and examined with the bound variable. Initially, the

bound variable is set to 0. This ensures that the first consistent instantiation will be saved

by the search algorithm and examined along with other consistent instantiations during

the search operation. Only instantiations with higher degree of satisfaction will be saved

in the solution variable. If the current instantiation is inconsistent, the constraint

propagation will be performed for the p domain with the value of the variable f being

fixed. If the constraint propagation yields an empty set for one or both variables, then the

/* ALGORITHM BRANCH AND BOUND

PROCEDURE MAIN

BEGIN

/* Initializations of global variables*/

F

Σ = {superset of the suspect set F};

P

Σ ={superset of the probe set P};

 solution = array[1..3];

 bound = 0;

 failure = FALSE;

/*End of initializations

 propagate(
F

Σ ,
P

Σ , failure);

 IF NOT failure THEN

 BOUND_AND_BRANCH (
F

Σ ,
P

Σ , solution, bound);

 ELSE IF

 Report “solution can not be found”

 END

END

 86

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Figure 5.9: The search engine of the proposed algorithm.

current value of the variable f will be discarded and a new value will be assigned to f .

The search for a best solution starts again in the same manner. The overloading

propagate function is shown in Fig. 5.10.

PROCEDURE BOUND_AND_BRANCH (
F

Σ ,
P

Σ , solution, bound)

BEGIN

{ }

{ }

;

;

p

frompchoose

DOWHILE

f

fromfchoose

DOWHILLE

PP

P

P

FF

F

F

−Σ=Σ

Σ

<>Σ

−Σ=Σ

Σ

<>Σ

 THENpfconstIF),(

 boundpfonsatisfactiIF >),(

);,(pfonsatisfactibound =

 };,{ pfsolution =

 (){ }boundpfonsatisfactiCC >∪= ,

 END IF

 ELSE IF

fnewachooseTHENfailureIF

failurefpropagate
P

);,,(Σ

 END

 END

 END

END BOUND_AND_ BRANCH

 87

CHAPTER 5. A NEW FUZZY CSP PROBING ALGORITHM .

Figure 5.10: Overloading constraint propagation function.

5.7 Summary

In this chapter, we present a new fuzzy CSP-based technique for probe selection. Instead

of sending all probes, a small subset of these probes is utilized for the purpose of fault

detection. If one or more of these probes fail, then a fault has been detected. Thus, the

fault identification function is invoked. It starts by analyzing the responses of the fault

detection probes, and based on the information gained by the fault analysis, it creates two

special sets for the most suspect and healthy nodes. The new sets, along with well-

defined crisp and fuzzy constraints, are used to choose an appropriate probe that satisfies

the imposed constraints the most. The effectiveness of the proposed scheme is reported in

Chapter 8.

PROCEDURE propagate (
PF

ΣΣ , , failure)

BEGIN

 failure = false;

 }{|{
FFF

ff Σ∈Σ∈=Σ ; is a consistent instantiation};

 failure = (
F

Σ = {}?);

 },{|{
ppP

pfp Σ∈Σ∈=Σ ; is a consistent instantiation};

 failure = (
P

Σ = {} ?);

END Propagate;

PROCEDURE propagate (
P

f Σ, , failure)

BEGIN

 failure = false;

 },{|{
ppP

pfp Σ∈Σ∈=Σ ; is a consistent instantiation};

 failure = (
P

Σ = {}?);

END Propagate;

 88

Chapter 6

Distributed Alarm Correlation

Algorithm

6.1 Introduction

Network components are often equipped with monitoring tools that are able to detect any

network abnormalities. These tools are configured to send appropriate notifications

(alarms) to their assigned managers, in case of network failure. In order to identify the

source of the problem, the majority of fault managements systems analyze these alarms

using deterministic approaches such as codebooks and expert systems. However,

computer networks are such complex and noisy environment that the information carried

by these alarms is often imperfect. Thus, taking into account this intrinsic property of

network alarms has been considered crucial for achieving effective alarm correlation

performance.

In this chapter, we propose a novel distributed, alarm-correlation based approach.

The network is divided into disjoint management domains and each domain is assigned

an intelligent agent. Network entities within each domain are configured to direct their

 89

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

alarms to the dedicated intelligent agent. Within the framework of the Dempster-Shafer

evidence theory, the network alarms are viewed as pieces of evidence by the intelligent

agent. Using a given fault propagation model, each intelligent agent correlates these

alarms into a new alarm and sends the new alarm to its agent manager. The new alarm

constitutes the view point of the intelligent agent regarding the current status of the

managed network. To form a global and cohesive view point, these partial views are,

therefore, fused by a higher management entity called the agent manager.

6.2 Distributed Fault Management Systems

 One of the most important objectives of fault management systems is developing

effective distributed fault management approaches [6, 21, 22]. The distributed approach

is realized by dividing the network into management domains and each domain is

assigned a dedicated manager. Generally speaking, distributed fault management

approaches can be classified into two main categories, namely, the hierarchical

localization and the decentralized localization. The first approach, the hierarchical

localization, assumes the existence of a central manager that supervises all the domain

managers and has a global view of the network. If a network failure affects only a single

domain, then the alarm correlation process will be performed locally by the respective

domain manager to identify the network failure. If the network failure spans over several

domains, then the central manager will perform the alarm correlation as if there were no

domain managers. On the other hand, the decentralized approach eliminates the role of

the central manager altogether. Each domain manager separately identifies the network

failure based on the alarms observed in their domain. The domain managers then

cooperate with each other to form a global view of the network status. In the following

section, we review some issues pertaining to each approach.

6.2.1Issues in Distributed Systems

Clearly, each distributed approach discussed above employs a different strategy to

 90

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

identify the source of the network problem. As such, each has its own merits and

shortcomings. The hierarchical approach is considered technically simpler to implement.

However, the fact that a central manager takes the responsibility of resolving a multi-

domain network failure defeats the purpose of the distributed approach. Because the

central manager exclusively performs the fault identification task, it has to collect and

analyze the network alarms issued by all the management domains. This means that the

workload is not being effectively distributed among the management domain managers.

The second approach requires the collaboration among the domain managers to reach a

global view. This requirement, however, is complicated by the fact that domain managers

have a limited view and lack global information of the network as a whole. Without this

knowledge, a domain manager may not be able to establish a causal relationship between

alarms observed in its domain and their potential causes in other domains. Based on the

above discussion, an effective distributed fault management approach has to address the

following two fundamental issues:

• The availability of global information about the network topology and state. Due

to the hierarchical nature of computer networks, alarms do propagate from one

domain to another. Furthermore, the main cause of a certain alarm, observed in a

particular domain, may not be visible in the same domain. Hence, while a domain

manager can locate the source of alarms observed in its domain, it may not be

able to identify potential sources that reside outside of its domain.

• Coordination among the domain managers. A failure in a network component in

one domain can affect other components in other domains. Though the affected

components will respond to the same failure by sending alarms to their respective

managers, each domain manager can only correlate alarms observed in its domain

to identify the same failure. Therefore, it is recommended that the managers of the

affected domains cooperate with each other and collectively identify the failed

entity and its domain.

The proposed distributed approach addresses these two issues as follows. First, a fault

propagation model for the whole network is constructed using one of the methods

 91

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

described in chapter 3. Secondly, the central manager and each domain manager are

required to have a copy of the same model. Consequently, not only will a domain manger

be able to correlate its alarms to network failures in its domain, but it can also correlate

them to failures in other domains. The domain manager need not know the exact location

of the network failure responsible for its observed alarms. The network failure will be

localized by the central manager. This way, while the alarm correlation is performed

locally, it may indicate the source of the problem globally. The alarm correlation process

results in a new alarm representing the view of the domain manager of the network status.

The manager’s view, however, is still incomplete as only local alarms are being

considered in the alarm correlation.

Since the central manager has the same fault propagation model, it can globally

correlate the new alarms constructed by the domain managers and more accurately

identify the network failure. The global alarm correlation performed by the central

manager eliminates the need for the domain managers to directly communicate with each

other and exchange information about the status of their domains. They are simply

required to communicate their new alarms to the central manager. Thus, excessive

management traffic can also be avoided.

6.2.2 Assumptions and Notations

Alarms generated by network entities are called primitive alarms. The purpose of the

local alarm correlation is to combine the primitive alarms into a new alarm. The new

combined alarm is called a composite alarm. Each primitive alarm in the set

},...,1|{ nia
i

=>< is expected to provide probabilistic evidence regarding each network

failure
j

f in the fault hypothesis space },...,{ 1 c
ff=Ω . The probabilistic evidence is

represented by a set of belief assessments in the following form:

)}(),...,({ 1

ai

c

aiai
fbelfbelB = (6.1)

ai
B represents the belief set given by the primitive alarm

i
a and)(ai

j
fbel denotes the its

belief assessment of the given fault hypothesis. The fault hypotheses, in the belief

 92

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

set, are arranged in a non-increasing order. },...,{ 1

ai

c

ai

ai
ff=Ω is a permutation of Ω . To

simplify the probabilistic model accompanied by the distributed fault propagation model,

the following dependency assumptions are made:

• Failures in the given fault propagation model, which are perceived as symptoms

and observed as network alarms, are not directly dependent, since these symptoms

may occur as a result of the same underlying problem. Therefore, given known

states of antecedent nodes in the model, the failure nodes (corresponding to

symptoms) of dependent node are independent of each other [18, 20].

• Failures that may contribute to the occurrence of a particular symptom (alarm)

and which perceived as faults are considered independent. This assumption is

commonly reported in the literature [19, 20, 21, 22, 34, 45].

Based on the above assumptions, network alarms, representing the evidence set, are

considered independent. Furthermore, hypotheses in the frame of discernment Ω ,

representing network failures, are assumed to be mutually exclusive and exhaustive.

6.3 Distributed Fault Propagation Model

Since computer networks are usually modeled in layered approach, the distributed fault

propagation model can be constructed based on the dependency relationship among the

network components. As shown in Fig. 3.4, a dependency relationship among the

network components in different layers is usually modeled as a dependency graph. The

dependency relationship may represent the dependency between network functions

provided by the lower layers such the physical and data link layers and services provided

by the higher layers such the transport and application layers. Due to this intrinsic

property, failures can only propagate from components of lower to components of higher

layers or between components on the same layer. Thus, a failure in a network function of

the physical or data link layer is expected to manifest itself as a failure in the services

provided by the application layers. In the dependency graph, failures in lower layers are

 93

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

considered faults; while failures in higher layers are considered symptoms or alarms.

Since these dependencies among the network entities are non-deterministic in nature, the

uncertainties about these dependencies are represented by assigning probabilities to the

links and nodes in the given dependency model.

 In a dependency graph, a weight assigned to a dependency link represents the

probability that the node at the tail of the edge fails given the node at the head of the edge

fails. The dependency graph, in turn, can then be easily mapped into a Bayesian (Belief)

network. Therefore, the belief network theory can be utilized to calculate belief

assessments for each fault hypothesis. Furthermore, the obtained Bayesian network of the

whole managed network is then simplified into a correlation graph (bipartite graph). The

resultant correlation graph is considered the distributed fault propagation model and

stored in the knowledge base of each intelligent agent and the agent manager. The

process of obtaining the distributed fault propagation model of the managed network is

described in the subsequent sections. However, we next present a formal definition of the

Belief network.

6.3.1 Belief Networks

Formally, a belief network is a pair PG, , where G is a directed acyclic graph, in which

each node represents a random variable over a multi-valued domain and is denoted by iV .

The set of all nodes is denoted by V . Let iD represent the domain of the variable iV . The

set of directed edges represented by E indicates causal relationships between the

variables. }{
i

PP = , the conditional probability matrix associated with a random

variable iV , reflects the strengths of casual influences among these variables. Let

}..V,V ,{V)(ini2i1 …=
i

vPar be the set of parents of the variable
i

V .
i

P is a

)1|)((| +
i

VPar -dimensional matrix of size ||.....|||| 1 inii
DxxDxD ;

where }v..V,v{V|vP(V),...,,(inini1i1ii1 =…===
iniii

vvvP . An assignment of variables

in set V is denoted by }vV,...,vV ,v{V nn2211 ====A where each
jj

Dv ∈ . Given a

 94

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

subset of random variables VVVU
kmkk

⊆= },....,{ 1 , an assignment of A

K
U is consistent

with assignment A. Evidence set e is an assignment A

o
U , where VU

o
⊆ a set of variables

whose values are known, and for each
ooj

UV ∈ , A

oj
v is its observed value.

 Given evidence set e, belief networks can be used to calculate belief assignment.

The belief assignment task is to calculate e)|vP(V)vV(iiii ===bel to variable iV . A

belief updating algorithm, polynomial with respect to |V|, is available for poly-trees, i.e.,

directed graphs without undirected cycles [39].

6.3.2 Mapping Dependency Graph to a Belief Network

A dependency graph of a managed network is often obtained from the network topology.

The dependency graph is then transformed into a Bayesian network simply by reversing

its edges. For instance, the Bayesian network of the dependency graph shown in Fig. 3.4

is illustrated in Fig. 6.1. Each node in the belief network may represent a dependency

graph node in one of its failure modes. The belief network corresponding to the layered

dependency graph is constructed using the following steps [11].

• A random variable in the belief network will be created for each failure mode in

the dependency graph. Let iV be belief network node corresponding to a failure

mode that represents a particular entity in the dependency graph (for example,

ServiceL(a,b), NetworkFunctionL, ProtocolL, etc.) Its corresponding domain, iD ,

may take the values of {true, false} to indicate whether their corresponding failure

has occurred or not.

• Let iV and Vj represent two belief network nodes that correspond to node X in

failure mode iF and node Y in failure mode jF , in the dependency graph,

respectively. If a dependency relationship exists in the dependency graph between

X and Y in the form of YX → , and iV is contributing to the occurrence of jV ,

then add an edge from iV to jV in the belief network.

 95

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

• Using the independency assumptions made in the previous section, the probability

matrix jP associated with node jV represents the following conditional probability

distribution:

 1)|P(Vj === falseVfalse
i

),(1)|P(Vj jii
FFPtrueVfalse −===

0)|P(Vj === falseVtrue
i

),()|P(Vj jii
FFPtrueVtrue ===

where YPFFP
ji

{),(= is in failure mode
j

F | X is in failure mode }
i

F .

Figure 6.1: Belief network of the dependency graph in Figure 3.4.

 96

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

 6.3.3 Correlation Graph as a Distributed Fault Propagation

Model

A causality graph may include information that does not contribute to the alarm

correlation process. Certain alarms are not directly caused by any network failures. They

are simply manifestations of other network alarms. These indirect manifestations may be

eliminated without loss of information. Alarms may form many-to-one relation; e.g.

1321 ,, afff → , or inference relation; e.g. 211 aaf →→ . All these relations represent

causal equivalence. Consequently, all involved alarms can be aggregated into a single

alarm. Therefore, the last step is to transform the obtained causality graph into a

correlation graph. The detailed causality graph of the Belief network of Fig. 6.1 is shown

in Fig. 6.2(a). Here, the failures in the lowest layer are considered faults; and the failures

at higher layers are considered alarms. A causality graph can be converted into a

correlation graph as follows [46]. If
kj

aaf →→ ...1 in the causality graph, then in the

correlation graph there is an edge from
j

f to the first of
k

aa ...,1 that is an alarm, i.e.,

there is an edge
ij

af → where 11..., −i
aa are not alarms. Hence, the correlation graph

corresponding to the causality graph given in Fig. 6.2(a) is shown in Fig. 6.2(b).

6.4 Distributed Alarm-Correlation Based Approach

The managed network supposedly has a tree-shaped topology and is logically partitioned

into K disjoint management domains. K depends on the size and complexity of the given

network. In this dissertation, we adopt a hierarchical structure for the fault management

system. The lower-level domain managers referred to as intelligent agents, locally collect

and analyze network alarms in their respective domains. They report to a higher-level

manger, referred to as the agent manager, as shown in Fig. 6.3 [47]. The intelligent

agents and the agent manger have the same distributed fault propagation model in the

form of a bipartite causality graph as shown in Fig. 6.2(b).

 97

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

6.4.1Intelligent Agent (IA)

Primitive alarms are generated by network components. The intelligent agents perceive

these network components in their domains as sources of information. As such, the

information carried by their primitive alarms may in fact be imperfect and exhibit a high

degree of uncertainty. The intrinsic uncertainty properties are attributed to many factors

including complexity, unreliability, and non-determinism in computer networks. As has

(a)

(b)

Figure 6.2: Alarm correlation causality graph.

 98

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

been shown in [19, 47], the fault evidence (presented by the primitive alarms) may be

ambiguous and inconsistent due to the following conditions:

• A primitive alarm may indicate a non-singleton set of fault hypotheses

(ambiguity),

• Two or more of these primitive alarms may have disagreement regarding the main

fault hypothesis (inconsistency).

Figure 6.3: Distributed fault management system.

To reduce their negative impact on the local alarm correlation process, the intelligent

agents carefully manage these uncertainty aspects. In this sense, the alarm correlation

process is viewed as reasoning under uncertainty.

6.4.1.1 Intelligent Agent Structure

Given the uncertainty problem imposed by the set of the observed primitive alarms, the

 99

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

reasoning mechanism employed by an intelligent agent k should be capable of answering

the following two questions:

1. What is the likely fault hypotheses that can explain the observed alarms?

2. If disagreement occurs among the primitive alarms, how can this conflict be

resolved?

To deal with both aspects of the uncertainty issue, the intelligent agent performs

the alarm correlation utilizing a hybrid combination of the probability theory and the

Dempster-Shafer evidence theory. Using the given fault propagation model and the

Pearl’s belief propagation scheme, the intelligent agent constructs a belief assessment

set
ai

B for every primitive alarm
i

a . Taking the form given in Equation (6.1), the belief

assessment set identifies the most likely fault hypotheses from the view point of
i

a .

Within the framework of the evidence theory, the intelligent agent then constructs an

evidence structure ai
ES for every belief set

ai
B . To resolve any conflict among the

primitive alarms, the intelligent agent fuses the obtained evidence structures into a single

composite alarm k

comp
A using the Dempster’s rule of combination. The structure of an

intelligent agent k is shown in Fig. 6.4.

 Thus, the intelligent agent‘s composite alarm is basically formed using the

following three main steps:

• A belief assessment set is first obtained for each primitive alarm,

• An evidence structure is then constructed for each belief assessment set,

• Finally, the evidence structures are combined to form a new composite alarm.

The first step is discussed in detail next and the remaining two steps are discussed in the

subsequent sections.

6.4.1.2 Alarm’s Belief Assessment Set

To construct an evidence structure for each received network alarm, the intelligent agent

needs first to determine the belief assessment for each primitive alarm. To accomplish

this task, the intelligent agent uses its propagation fault model stored in its knowledge

 100

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

Figure 6.4: Structure of intelligent agent k.

database and the iterative belief updating proposed in [39]. The belief network (the fault

propagation model) is viewed by the belief updating scheme as a noisy-OR model of

probability distribution. In such networks, the belief assessment query calculated using

the Pearl’s message schema produces the posterior probability distribution.

According to Pearl’s algorithm, the belief network nodes exchange λ and

π messages (see Fig. 6.5). Message)(
jX

vλ that node X sends to its parent
j

V for every

valid sV
j
' value

j
v , denotes a posterior probability of the entire body of evidence in the

sub-graph obtained by removing link XV
j

→ that contains X , given that
jj

vV = .

Message)(x
i

U
π , that node X sends to its child

i
U , denotes a probability that xX = (for

every valid value of X) given the entire body of evidence in the sub-graph containing X

created by removing edge
i

UX → . The complete description of the message passing

 101

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

created by removing edge
i

UX → . The complete description of the message passing

algorithm is presented in Appendix B.

 In a noisy-OR poly-tree, the term
i

XU
q refers to the probability of activating the

inhibitor controlling the link
i

UX → . The possible values that the random variables may

have are {0, 1}, where 1 denotes the occurrence of the corresponding event and 0 means

that the event did not occur. The probability that
i

U occurs given that X occurs

is
ii

XUXU
qc −= 1 . Based on messages received from parents and children, node

X computes)(xλ ,)(xπ and)(xbel as follows [39]:

∏
=

=

n

i

U
xx

i

1

)()(λλ (6.2)








=−−

=−

=

∏

∏

=

=

m

j jj

m

j jj

xifxxcv

xifxxcv

x

1

1

1))1(1(

0)1(
)(

πα

πα

π (6.3)

)()()(xxxbel παλ= (6.4)

The messages)(xλ and)(xπ are computed using the following equations [39]:

 ∏

≠

−−−=

jk

kxxv

v

xVjX k

j

j

cqv))1())0()1(()1(()(πλλλβλ (6.5)

)()()(xxx

ik

UU ki

πλαπ ∏
≠

= (6.6)

where for 1=
j

v ,)(
jj

vx ππ = ; α is a normalizing constant, and β is any constant.

Initially)(xλ will assume the value of 1 if x is indeed the observed value of X, for

all observed nodes X. Otherwise,)(xλ is set to 0. For all unobserved nodes)(xλ is set to1

for all values of x. For all parentless nodes)(xπ will be set to their corresponding prior

probabilities. Once an intelligent agent receives one or more primitive alarms from its

constituent entities, it consults its fault propagation model and assigns their

corresponding belief network nodes with the value of 1. For those primitive alarms,

which were not observed by the intelligent agent their corresponding belief nodes will be

left unassigned (i.e., their 1)1()0(== λλ). It then computes the belief assessments for all

 102

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

)(
1

x
U

λ

)(x
i

U
λ

)(x
n

U
λ

)(
1

x
U

π

)(x
i

U
π

)(
1

x
U

π

)(1v
X

λ

)(
jX

vλ

)(
mX

vλ

)(1v
x

π

)(
jx

vπ

)(
mx

vπ

Figure 6.5: Message passing in Pearl’s belief propagation.

the unobserved nodes (the fault hypotheses) for each primitive alarm using the belief

updating algorithm. It starts from the evidence node (i.e., the belief network node

representing the observed network alarm) and propagates the changed belief along the

belief network edges by computing)(xbel ,)(
ix

vλ , and)(
ix

uπ in every visited node. For

every network alarm, a certain ordering is defined that is equivalent to the breadth-first

order started from the evidence node. Thus, the belief propagation performed after

receiving a network alarm
i

a yields the following belief assessment set
ai

B :

)}(),...,({ 1

ai

c

aiai
fbelfbelB = (6.7)

6.4.1.3 Constructing Evidence Structures

The obtained belief assessment vector (Equation (6.7)) will be utilized by the intelligent

agent to construct an evidence structure for each observed primitive alarm. The evidence

structure takes the following form:

()()AmA,

where A and)(Am are the focal element and its mass, respectively as defined in section

3.5. We adopt the evidence model proposed by [48], which is called the Proportional

 103

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

Difference Evidence Structure (PDES). One of the advantages of the PDES model is that

it produces consonant focal elements; thus, the number of combined focals is reduced

tremendously during the alarm correlation process. According to this model, the belief

assessments obtained by the updating belief algorithm introduced in the previous section,

are arranged in non-decreasing order such that the following relationship hold:

)(...)()(21

ai

c

aiai
fbelfbelfbel ≥≥≥

where
ia

ai

j
f Ω∈ and

ai
Ω is a permutation of .Ω

Thus, a primitive alarm can be assigned to a certain network failure as follows:

 IF)()(21

aiai
fbelfbel ≥ then the network alarm,

i
a , can be assigned to fault

 hypothesis class }{ 1

ai
f ;

 ELSE IF)()(32

aiai
fbelfbel ≥ then the network alarm,

i
a , can be assigned to

 fault hypothesis class },{ 21

aiai
ff ;

 ELSE IF)()(43

aiai
fbelfbel ≥ then the network alarm,

i
a , can be assigned to

 fault hypothesis class },,{ 321

aiaiai
fff ;

 M

 ELSE IF)()(1

ai

c

ai

c
fbelfbel ≥

−
 then the network alarm,

i
a , can be assigned to

 fault hypothesis class },...,,{ 21

ai

c

aiai
fff ;

If the primitive network alarm,
i

a , yields an equal belief assessment to different fault

hypotheses, then the above decision rule produces a compound set that contains all the

fault hypotheses undistinguishable by
i

a . Furthermore, this decision rule can be utilized

to construct an evidence structure for each network alarm in four steps as follows:

1. The interval [0,)(1

ai
fbel] is divided into c portions by means of the split points at

)(ai

j
fbel , cj ,...,2= , which lead to c discrete values (let 0)(1 =

+

ai

c
fbel),

.,...,2,1),()(1 cjfbelfbelm
ai

j

ai

jj
=−=

+

2. The quantity
j

a is associated with one of consonant class sets as follows:

 104

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

}{ 11

ai
fm → ,

},{ 212

aiai
ffm → ,

M

},...,,{ 1211

ai

c

aiai

c
fffm

−−
→ ,

 },...,,{ 21

ai

c

aiai

c
fffm → ;

 where },...,,{ 21

ai

j

aiai
fff the is the union of ai

f1 through ai

c
f .

3. To obtain mass,
j

m is normalized as follows:

)(

)()(
)(/

1

1

1 ai

ai

j

ai

jai

jj

fbel

fbelfbel
fbelmm

+
−

== .

 for all cj ,...,2,1= .

4. Given a network alarm
i

a , its evidence structure can be formed as:

{ }













=

−

=

+

cj
fbel

fbelfbel
ffES

ai

ai

j

ai

jai

j

aiai ,...,2,1|
)(

)()(
,,...,

1

1

1 (6.8)

The above process is intended to assign different weights to different fault

hypothesis sets. The weight magnitude reflects the confidence about how much a

particular hypothesis supports the received alarm. For example, the value

)()(211

aiai
fbelfbelm −= signifies numerically the commitment that the received alarm

i
a

exactly belongs to the singleton fault hypothesis set }{ 1

ai
f . If the belief assessment is the

same for two different hypotheses, then logically the weighted confidence should be

assigned to a compound hypothesis set in which both fault hypotheses are included. For

instance, if)()(21

aiai
fbelfbel = then it is reasonable, since both hypotheses are not

distinguishable given the received alarm
i

a , to assign
i

a to the union set of both fault

hypotheses },{ 21

aiai
ff . The union set indicates that both network faults are equally

suspicious of the current network abnormality and a further analysis is needed to isolate

a single cause.

 105

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

6.4.1.4 Local Composite Alarm

The essence of the alarm correlation is to assign a new meaning to a set of observed

alarms that can be explained by a certain set of fault hypotheses [49]. This is done so that

the amount of information reaching the central manager is reduced and the network

failure is more easily identified. Thus, the local alarm correlation is viewed as a fusion

process by which the observed primitive alarms are combined into a new alarm. The new

alarm resulted from the fusion process is called a composite alarm. The local composite

alarm is obtained as follows. Let us assume that an intelligent agent k receives the

following set of alarms:

 },...,{ 1 n

k
aaA = (6.9)

their associated belief assessment sets ia
B for ni ,...,1= , are presented as follows:

 },...,1{ an
B

a
B

k
B = (6.10)

where each ia
B has the form given in (6.7) and its elements are ranked in a non-

increasing order. Their associated evidence structures are represented as follows:

 },...,1{ an
ES

a
ES

k
ES = (6.11)

where each ai
ES has the form given in (6.8).

 Considering the local alarm correlation as a fusion process, it can be defined as

follows.

Definition 6.1 Given a set of primitive alarms },...,,{ 21 n
aaa , a set of their associated

belief assessments in the form of Equation (6.10) is obtained. Based on the obtained set

of belief assessments, the set of evidence structures is then constructed, which has the

form of Equation (6.11). A local composite alarm of the intelligent agent is formed by

fusing (correlating) the set of the obtained evidence structures, without regard to the

arrival order of the primitive alarms, into a single alarm
k

comp
A , i.e.,

anaak

comp
ESESESA ⊗⊗← ...21 . The symbol ⊗ refers to the Dempster’s rule of

 106

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

combination.

Therefore, based on definition 6.1, an intelligent agent can correlate the received

set of alarms by simply applying the Dempster’s rule of combination given in Equation

(3.7) to combine all ai
ES for .,...,1 ni = Due to the nature of the PDES scheme and the

definition of commonality, the following formula can be used to calculate the

commonality measure of the network failure ai

j
f for the primitive alarm

i
a :

)(

)(
})({

1

ai

ai

jai

j

fbel

fbel
fQ = (6.12)

To calculate the commonality measure of the network failure k

j
f for all the primitive

alarms, the intelligent agent can use the following equation:

)()(
1

ai

j

n

i

k

j
fQTfQ ∏

=

= (6.13)

where T is a normalization factor defined in Equation (3.8) and is independent of the

network failure k

j
f of interest . Property 1, discussed in [50], leads to the following:

 Ω∈∀∝ ∏
=

j

n

i

ai

j

k

j
ffbelfQ ,)(})({

1

 (6.14)

Thus, using the property of (6.14), the local composite alarm k

comp
A can be obtained as

follows:

)}(),...,({ 1

k

c

kk

comp
fQfQA = (6.15)

It should be noted that)(k

j
fQ represents the combined belief assessment value of the

network failure k

j
f . The elements in k

comp
A are arranged in a non-decreasing order and

k

comp
A

Ω is a permutation of Ω .

A summary of the constructing local composite event algorithm employed by the

intelligent is presented in Fig. 6.6.

6.4.2 Agent Manager

 107

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

The task of the agent manager is to facilitate the cooperation of intelligent agents by

correlating their local composite alarms. Each local composite alarm has the form of

(6.15). If the agent manager receives only a single composite alarm, then it will identify

the network failure as the one with the maximum belief assessment value given by the

local composite alarm. However, if it receives multiple local composite alarms, then the

global view is achieved by fusing all the received local composite alarms. The agent

manger fuses the local composite alarms in the same manner as an intelligent agent fuses

its primitive alarms. This composite alarm correlation process results in a global

composite alarm. The network failure will be identified as the one with the maximum

belief assessment value given by the global composite alarm.

6.4.2.1 The Agent Manager Structure

Assuming that the agent manger receives more than a single local composite alarm, its

structure is shown in Fig. 6.7. Since, each composite alarm has the form of (6.15), the

agent manager does not need to build a belief assessment vector for each composite

alarm. However, an evidence structure will be constructed for each composite alarm.

Utilizing the same PDES mechanism, the agent manger constructs a set of evidence

structures for the composite alarms. Using the Dempster’s rule of combination, the agent

manger then correlates all the composite alarms, producing in the process a global

composite event
glob

A .

6.4.2.2 Global Composite Alarm

Let us assume that the agent manager receives the following set of composite alarms:

 },...,{ 1 K

compcomp
AAA = (6.16)

where each k

comp
A has the form given in (6.15) and its elements are ranked in a non-

increasing order. Their associated evidence structures are represented by the following

set:

 108

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

Figure 6.6: Constructing the local composite alarm k

comp
A by an intelligent agent.

k

i

k

i

k
aaS |{= is a network alarm received by intelligent agent k,

i=1,…,n};

};{φ=
k

B // belief assessment structure.

};{φ=
k

ES // evidence structure set.

BEGIN

 WHILE φ≠
i

S

 BEGIN

 k

ii
Sae ∈← ;

i

kk
aSS −← ;

 construct
ai

B for
i

e ;

 aikk
BBB +← ;

 END

 WHILE φ≠
k

B

 BEGIN

kai

i
BBes ∈← ;

aikk

BBB −← ;

 construct ai
ES for

i
es ;

 aik
ESES ← ;

 END

;1 kak

comp
ESESA ∈←

 IF ,1|| =
k

ES

 send
k

comp
A to the agent manager AM;

 ELSE IF

 ;1akk
ESESES −←

 WHILE φ≠
k

ES

 BEGIN

kaik

ESESe ∈← ;

 kk

comp

k

comp
eAA ⊗← ;

 aikk
ESESES −←

 END

 END

send
k

comp
A to the agent manager AM;

END

 109

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

Figure 6.7: The agent manager structure.

 },...,{ 1 K
ESESES = (6.17)

where each k
ES is obtained by the same mechanism used by the intelligent agent, and

Kk ,...,1= .

 Considering the global alarm correlation as a fusion process, it can be defined as

follows.

Definition 6.2 Given a set of local composite alarms },...,,{ 21 K

compcompcomp
AAA , each

obtained by the Equation (6.15), a global composite alarm can be formed by (1)

constructing a set of evidence structures for the given local composite alarms that has the

form given in (6.17), (2)fusing (correlating) the set of the obtained evidence structures,

without regard to the arrival order of the local composite alarms into a single alarm

 110

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

glob
A , i.e.,

K

compcompcompglob
AAAA ⊗⊗← ,...21 . The symbol ⊗ refers to the Dempster’s rule

of combination. The fusion process is performed by the agent manager.

Therefore, based on definition 6.2, the agent manager can correlate the received

set of composite alarms by simply applying the Dempster’s rule of combination given in

Equation (3.7) to combine all k
ES for Kk ,...,1= . Due to the nature of the PDES scheme

and the definition of commonality, the following formula can be used to calculate the

commonality measure of the network failure k

j
f for the composite alarm k

comp
A :

)(

)(
})({

1

k

k

jk

j

fQ

fQ
fQ = (6.18)

To calculate the commonality measure of the network failure k

j
f for all the composite

alarms, the agent manager can use the following equation:

)()(
1

k

j

K

k

j
fQTfQ ∏

=

= (6.19)

where T is a normalization factor defined in Equation (3.8) and is independent of the

network failure k

j
f of interest . To determine the best fault hypothesis, the agent manager

utilizes the maximum commonality decision rule arg(=MCD
j

f
max }))({

j
fQ .

Remarks:

• Remark 1: It has been shown in [50] that the DSET based on the proportional

difference evidence structure is equivalent to the Bayesian approach, in terms of

decision making. However, a belief value of the fault-alarm probability causality

graph is determined by many factors such as alarm loss, system bugs, alarm delay,

and so on. As such, belief values are often difficult to calculate and perfect

probabilistic evidence may not be available. The PDES, however, can be used to

incorporate available fuzzy evidences, as will be shown in the next chapter, to

increase its reasoning capabilities.

 111

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

• Remark 2: The commutative property of the Dempster’s rule of combination

makes the alarm correlation process event-driven operation. Primitive alarms will

be processed as soon as they arrive to the intelligent agents. Composite alarms

will be processed as soon as they arrive to the agent manager. The exact order of

their arrival is irrelevant in the correlation process.

• Remark 3: It is quiet possible that a single primitive alarm may be generated

multiple times by the same network entity and therefore all of them are observed

by the same intelligent agent. These alarms have the same diagnostic information

and differ only in their timestamps. From the viewpoint of the respective

intelligent agent, these alarms have the exact same effect on the creation of the

local composite event. Hence, to reduce to the calculation cost entailed by these

identical alarms, a compression mechanism by which the reduction of multiple

occurrences of an alarm into a single representative one can be performed before

the local correlation process takes place. Other methods can also be adopted to

reduce the number of insignificant alarms participating in the correlation process.

For example, a filtering mechanism can be utilized such that if some parameters

of an alarm e.g., priority, type, timestamp, severity, etc, do not fall into some

predefined legitimate values, then the candidate alarm is simply discarded or sent

to a log file. The advantage of employing such mechanisms may be realized in

obtaining a better quality of local composite alarm and more efficient

performance by the alarm correlation algorithm.

6.5 Summary

This chapter proposes a distributed alarm correlation system based on the Dempster-

Shafer evidence theory. The managed network is divided into several disjoint

management domains. Each management domain is assigned an intelligent agent that

keeps a global fault propagation model. Using the given fault propagation model and

belief updating scheme, the intelligent constructs an evidence structure for each primitive

network alarm received from its constituents. Using the Dempster’s rule of combination,

 112

CHAPTER 6. DISTRIBUTED ALARM CORRELATION ALGORITHM .

the intelligent agent then correlates the obtained evidence structures into a local

composite alarm and sends it to the agent manager. The agent manager, in turn, correlates

these local composite alarms into a global composite alarm. Based on the global

composite alarm, the agent manager then identifies the network failure. The effectiveness

of the proposed algorithm is examined by extensive experiments and its results are

reported in Chapter 8.

113

Chapter 7

Adaptive Fuzzy Alarm Correlation

Algorithm

7.1 Introduction

The primitive alarm space within a management domain is divided into several exclusive

clusters. These clusters, in turn, divide the fault hypothesis space into disjoint and

exhaustive fault hypothesis sets. Alarms that share the same cluster can be explained by

the same set of fault hypotheses (i.e., the cluster domain). As such, a cluster is viewed as

an association relation between a set of primitive alarms and a set of fault hypotheses.

Moreover, an observed cluster may respond differently to each fault occurrence in its

domain. In case of network failure, only relevant alarms within the cluster will be

reported. The reported alarms, however, may wrongly indicate other network failures in

the cluster domain. The fact that some alarms pertaining to the wrongly indicated failures

have not been observed should decrease our confidence in the occurrence of those

failures. Hence, an observed cluster can provide fuzzy cues about its domain of fault

hypotheses. In this chapter, a novel adaptive fuzzy alarm correlation algorithm is

 114

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

introduced. Using the same distributed model presented last chapter, the algorithm

takes into account the absence of relevant primitive alarms of each fault

hypothesis when the intelligent agent correlates the cluster alarms into a local fuzzy

composite alarm. To deal with conflict that may occur among the intelligent agents, the

agent manager utilizes a discounting mechanism in which the quality of information of

each local fuzzy composite alarm is weighted and fused accordingly.

7.2 Definitions and Notations

The distributed model is the same as the one proposed in the last chapter. To help explain

the proposed algorithm, we will use the simple fault propagation model depicted in Fig.

7.1. The given FPM is a bipartite graph in which the parentless nodes represent network

failures and the children nodes represent primitive alarms. The strength of the causal

relationship between the network failures and their alarms are described by conditional

probabilities. To facilitate the development of the adaptive fuzzy alarm correlation

approach, three new concepts along with their notations are introduced and discussed in

this section, namely domain of alarms, cluster of alarms, and domain of faults,

7.2.1 Domains of Alarms

Each primitive alarm
i

a , emitted by the network entity i, is characterized by its domain,

referred to by)(
i

aD .)(
i

aD is defined as the set of network faults that may cause the

network alarm
i

a to be triggered. The alarm domain can be obtained by examining the

available fault propagation model. One of the methods proposed in the literature is to

associate an alarm
i

a with all the faults
j

f which have a dependency

weights Wfap
ji

≥)|(in the FPM; where W is a parameter [45]. For example, the

following set of domains, S, are extracted from the fault propagation model shown in Fig.

7.1 (5.0=W):

 115

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

Figure 7.1: FPM of a simple network configuration.

S = { },{)(212 ffaD = , }{)(13 faD = , }{)(16 faD = , }{)(37 faD = ,

 }{)(39 faD = , }{)(210 faD = , }{)(313 faD = }

Clearly, different values of W may create different associations of faults with a

given alarm. Low value of W may lead to a higher association of an alarm with a set of

fault hypotheses. In contrast, a higher value of W may lead to a lower association. This

mechanism may be useful in the alarm correlation process. For instance, the correlation

process can discard some primitive alarms as having low priority if their weights are

below a predefined threshold. The domain of an alarm can be defined as follows.

Definition 7.1 Let >< PVG , be a distributed fault propagation model in the form of a

bipartite graph, where V is a set of nodes. Let F , VF ⊆ be the set of nodes at the tail of

edges that represent network failures and A , VA ⊆ , be the set of nodes at the edge heads

that represent primitive alarms. P is the associated conditional probability distribution

that represents the influence of relationship between network failures and their

corresponding alarms. Thus, the domain)(
i

aD for an alarm Aa
i
∈ can be defined as:

 FffaD
jji
∈= |{)(, there is an edge from

j
f to

i
a , and })|(Wfap

ji
≥ , (7.1)

where W is a parameter.

Network failures that are members of a particular alarm’s domain may also be

members of other alarm domains. Alarm domains that share a singleton fault hypothesis

 116

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

set or more constitute a cluster of alarms as explained next.

7.2.2 Clusters of Alarms

A cluster of alarms is defined as the set of alarms whose domains intersect with each

other. An alarm belongs to a cluster if its domain intersects with a domain of at least one

alarm that belongs to this cluster. Different clusters share no intersection. For example,

the alarm domains obtained by the FPM in Fig. 7.1 with 5.0=W , yield the following two

clusters:

},,,{ 106321 aaaaC =

},,{ 13972 aaaC =

Again, the value of W can indirectly affect the cardinalities of each cluster. Based on the

above discussion an alarm cluster can be defined as follows.

Definition 7.2 Let S be the set of K alarm domains, }|)({ AaaDS
ii
∈= ; and A and

)(
i

aD are defined as in 7.1. Then, an alarm cluster,
r

C , can be defined as:

 })(,)(|{
1

SaDaDaC
ii

K

i
ir

∈≠∩=

=

φ (7.2)

where r=1,2, …. The fault hypothesis set that can uniquely explain the cluster is called

the cluster domain.

According to the definition 7.2, a cluster is just a collection of primitive alarms that share

a set of fault hypotheses. This implies that the observed cluster can only be explained by

this set. This observation leads to the following definition.

Definition 7.3 Let
r

C be a cluster obtained using definition 7.2. Let
r

F be the set of fault

hypotheses that can uniquely explain the observed cluster
r

C and Ω⊆
r

F . Then, the set

r
F can be defined as:

 117

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

 }|)({
rii

ai
r

CaaDF ∈∪= (7.3)

 the set
r

F is called the domain of the cluster
r

C .

Since each cluster can only be explained by a distinct fault hypothesis set, the

alarm correlation problem can be viewed as finding the best explanation (fault

hypothesis) among the observed cluster domain. According to the definition 7.2, a cluster

may be considered as an association relation among network alarms that share one or

more elements of a certain set of fault hypotheses. Thus, an observed cluster can reduce

the fault hypothesis space to that given by the cluster domain.

Definition 7.4 Let },...,{ 1 m
CCC = be a set of clusters obtained using definition 7.2 such

that it divides the alarm space into disjunctive and exhaustive m clusters, i.e., :

φ=∩∩

=∪∪

m

m

CC

ACC

...

...

1

1

 A is the alarm space. Then, the cluster domains divide the fault hypothesis space into

disjunctive and exhaustive sets, i.e., :

φ=∩∩

Ω=∪∪

m

m

FF

FF

...

...

1

1
 (7.4)

For instance, },{ 211 ffF = and }{ 32 fF = explain the clusters 1C and 2C , given above,

respectively. A fault hypothesis
rj

Ff ∈ can be considered as the best explanation of the

observed cluster
r

C if
j

f is represented by most of the observed alarms in
r

C . In the real

world, most of the observed alarms are caused by the occurrence of a certain network

failure that they directly or indirectly relate to.

Definition 7.5 Network alarms that are members of the same cluster are called colleague

alarms.

 118

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

Since colleague alarms are often caused by a common set of network failures, they

should be correlated together to identify their most probable cause.

7.2.3 Domains of Network Faults

The set of alarms that may be observed as a result of the occurrence of a particular fault is

referred to as the domain of that fault. A domain of a fault can also be obtained by

investigating the available fault propagation model. For instance, given the FPM of Fig.

7.1, the domain of the fault 1f , referred to as)(1fD , is the set of its children,

},,{)(6321 aaafD = . A particular alarm is a member of a fault’s domain if the considered

fault is itself a member of the alarm’s domain. The FPM described in Fig. 7.1 clearly

shows that an alarm can be a member of more that one fault domain. Formally, a fault

domain is defined as follows.

Definition 7.6 Let us assume that the set of domains of the available n observable alarms

}|)({ AaaDS
ii
∈= is obtained using definition 7.1. A given alarm

i
a is considered as a

member of the fault domain of
j

f if and only if
j

f is a member of the
i

a domain.

Hence, the domain)(
j

fD of the fault
j

f can then be defined as:

 })(,,,)(|{)(SaDFfAafaDafD
ijijiij

∈∈∈≠∩= φ .,...,1, ni = (7.5)

An observed cluster, its domain, and fault domains will be utilized, as explained in later

sections, in the new algorithm to determine a membership degree of a certain fault

hypothesis in a given local fuzzy composite alarm.

7.2.4 Alarm Correlation Problem

The above definitions highlight very interesting properties regarding the alarm clusters

and fault domains and their implications in the alarm correlation process. If the observed

set of network alarms belong to the same cluster, then these alarms can be explained by

the same set of fault hypotheses that their domains share. However, if the observed

 119

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

alarms belong to different clusters then a conflict may arise between clusters as which

fault hypothesis set is the best explanation of the received alarms, since each cluster

proposes its own exclusive explanation. Moreover, an observed alarm may in fact

indicate a subset of fault hypotheses (i.e., its domain) as an explanation of its own

observed cluster, which may be different from other colleagues. The diagnostic clue that

can be gained from these facts is summarized as follows. While colleague alarms are

highly expected to be observed together than with other non-colleague alarms, it is likely

that some of these alarms may propose different fault hypotheses as an explanation of

their cluster. In addition, if simultaneous occurrence of multiple network failures is

permitted, then alarms belonging to different clusters may also be observed by the

intelligent agents. Based on the above definitions, the alarm correlation problem can be

formally defined as follows.

Definition 7.7 Let C be a set of clusters, i.e.,
ii

CCC |{= is defined as in Def. (7.2),

and ,...2,1=i },
i

F be the domain of the cluster
i

C and defined as in Def. (7.3), and the

set A be an observed set of primitive alarms such that AA ⊆ . Let
i

C be a set of

observed alarms such that
ii

CC ⊆ and AC
i

⊆ .The fault hypothesis
ji

f (i.e.,
ij

Ff ∈)

can be considered as the best explanation of
i

C provided that:

(i) |)(|
iji

CfD ∩ is a maximum,

(ii) its commonality value is a maximum (i.e., MCD= })({
ij

fQ .

Based on the above definition, the issue is then of that the alarm correlation scheme

needs to tackle are of twofold, namely:

• What impact may the absence of a colleague alarm
i

a from the cluster observation

set (i.e.,
ii

Ca ∉) have on identifying
ij

f as an explanation of
i

C ? Where

)(
jii

fDa ∈ ,

• What impact may the set of the non-observed clusters
K

C have on the fault

 120

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

hypothesis space? (i.e., }|{ φ=∩= ACCC
kkK

)

To address these two important issues, the adaptive alarm correlation scheme exploits

the implied information of what is called positive alarms (non-observed alarms).

Colleague alarms are often observed together (i.e., temporally related). Practically

however, some of them may not be observed. As expressed in Def. (7.7), the total number

of the observed alarms in the domain of a suspicious network failure may serve as a

confidence measure that the failure has actually occurred. This valuable information can

be incorporated in the local composite alarm built by the intelligent agent as described in

6.4.

A corresponding local fuzzy composite alarm can be constructed to account for the

missing network alarms in a suspicious fault’s domain. In this new composite alarm, the

mass value assigned to every focal element can be modified according to the fuzziness

provided by the observed cluster and the fault’s domain. The observed cluster may regard

its constituent alarms as a panel of experts. Regardless of their probabilistic information,

the fact that a certain alarm in the given cluster, which is a member of a fault’s domain,

has been observed amounts to the corresponding expert decision of the positive

occurrence of that fault. While the absence of the same alarm from the alarm observation

set, amounts to the decision of the corresponding expert that the fault has not occurred.

From this point of view, the more colleague alarms are being observed in a fault’s

domain, the more confident the relevant cluster should be in the occurrence of that fault.

In contrast, the less colleague alarms are being observed in a fault’s domain, the less

confident the relevant cluster is in the occurrence of that fault. This concept can be very

well represented by a local fuzzy composite alarm as will be explained next section.

7.3 Composite Alarm Representation

The alarm correlation process in a distributed system is performed at two levels, namely

local and global levels. At the local level, a new fuzzy composite alarm is constructed

 121

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

 from primitive alarms. At the global level, a new composite alarm is constructed from

the locally-obtained fuzzy composite alarms. In the following sections, the

representation of each new composite alarm is discussed.

7.3.1 Local Fuzzy Composite Alarm

A triggered primitive alarm is often an indication of multiple fault hypotheses as can be

seen from its domain. If all the network failures in the alarm domain have the same

conditional probability, then the alarm domain reflects a vagueness property of the

associated alarm. It means that the triggered alarm is located in boundary areas between

its domain members. Therefore, these hypotheses are not distinguishable clearly by the

given alarm. Consider, for instance, the network alarm 2a in Fig. 7.1. Its domain is given

by the following compound set:

},{)(212 ffaD =

The mere observation of the alarm 2a only indicates the occurrence of the fault

hypotheses 1f or 2f . This vagueness property of a network alarm is transitive to its own

cluster since the cluster is nothing but a collection of these alarms. Hence, an observed

cluster in fact lies in the boundary of the union set of the domains of its alarms.

Moreover, a certain fault hypothesis may not be uniquely explained by a single alarm as

can also be seen from its domain. For instance, if we look at the domain of the fault

hypothesis 1f , as one possible cause of the triggered alarm 2a , it yields the following

compound set in the alarm space:

},,{)(6321 aaafD =

Clearly, the alarm 2a is not the only indication of the occurrence of the fault

hypothesis 1f . Since the domain of the fault 1f belongs to the cluster 1C , any missing

alarm of)(1fD from the alarm observation set A should lower the confidence of the

cluster 1C in the occurrence of 1f .

One reasonable way to represent this information in the local composite alarm is

 122

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

to assign a certain weight for each fault hypothesis in the focal element, based on their

observed alarms. However, the weights assigned to network failures can not be

incorporated in the standard DSET. To accommodate for the vagueness property of an

observed cluster, the crisp focal elements represented in the agent’s local composite

alarm are replaced with fuzzy sets. A corresponding fuzzy focal element can be expressed

in a discrete form with finite elements as follows:

 ,
)(

,...,
)(

,...,
)(

||

||

1

1

0

0













=

B

BB

i

iBB

f

f

f

f

f

f
B

µ
µµ

 (7.6)

i
fB,∀ , 0)(≠Bm and 0)(≠

iB
fµ . Where },,...,{

||1

0
0

B
ffB = denoting the support set of

fuzzy set B . B is associated with certain fault hypotheses in the frame of discernment

Ω , i.e., Ω⊆B . UB ⊆
0 . U is the universe of discourse for the fuzzy focals, Uf

i
∈ ,

and)(
iB

fµ denotes the membership grade of each element
i

f in B ; || 0
B represent the

cardinality of
0

B . The information given by the observed cluster and the fault domains

can be directly represented in fuzzy rules to determine an overall fuzzy set:









=

c

c

f

f

f

f
F

)(
,...,

)(

1

1 µµ

. (7.7)

Furthermore, the fuzzy focal corresponding to a crisp focal in the considered

composite alarm is then determined by simply assigning membership values to the fault

hypotheses of its crisp focal. For instance, the fuzzy evidence provided by Equation (7.7)

is incorporated in the crisp evidence element },...,{ 1 j
ff in the composite alarm as:













j

j

f

f

f

f)(
,...,

)(

1

1
µµ

The intelligent agents keep the mass values originally assigned for crisp focal elements in

their local composite alarms as mass values for their corresponding fuzzy focal in the

new local fuzzy composite alarm. Thus, the corresponding fuzzy focal element of the

crisp focal B is represented in the local fuzzy composite alarm as follows:

))(),(,(fBmB
B

µ (7.8)

 123

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

To explain the roles played by both the alarm cluster and fault domains in

determining the fuzzy focals, the scenario of the occurrence of 3f in Fig. 7.1 is

discussed. Let us assume that the network entities are assigned to report their primitive

alarms to two intelligent agents as shown in Fig. 7.2.

Figure 7.2: Simple network configuration divided into two domains

It can be noticed from Fig. 7.2 that the domain of the fault hypothesis 3f has different

constituents for each intelligent agent. The domain of the fault hypothesis 3f is }{ 3a and

},,{ 1397 aaa to the intelligent agents 1 and 2, respectively. Obviously, in this case, more

alarms are reported to the intelligent agent 2. This could be interpreted as that the

network failure 3f is probably caused by one of the network entities in domain 2.

Furthermore, the intelligent agent 1 is clearly more sensitive to the fault hypothesis 3f . If

the network alarm 3a is not reported, it will not assume any role in the alarm correlation

process and its local composite alarm will not be created. However, if 3a is observed, it

first checks the domain of 3a and initially assumes that either the fault hypotheses 1f or

3f is responsible for triggering 3a . It then realizes that the colleague alarm 2a (a member

 124

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

of the 1f domain) has not been observed. This forces the agent to decrease its confidence

in the occurrence of the fault hypothesis 1f . Thus, it will assign a full weight for 3f and a

50% weight for 1f in its local fuzzy composite alarm.

If the complete set },,{ 1397 aaa is observed in domain 2, then the fault hypotheses

2f and 3f will be assigned full weight in the local fuzzy composite alarm. Though 2f

has not occurred, it is assigned full weight since 7a is the only alarm in its domain.

However, if none of the alarms in the set },{ 1210 aa is observed in domain 1, the

confidence in its occurrence will be greatly reduced by the agent 1. If 7a has not been

observed, then 2f will be ruled out as an explanation of the current malfunctioning and

3f will be assigned 66% weight in the local fuzzy composite alarm.

7.3.2 Global Composite Alarm

Once the local fuzzy composite alarms are obtained by the intelligent agents, they are

combined into a global composite alarm by the agent manager. However, due to the fuzzy

information embedded within the local composite alarms, they can not be directly

correlated by the Dempster’s rule of combination. Hence, the agent manager first

transforms every fuzzy focal element into corresponding consonant crisp sets using the

resolution identity principal [50]. During the decomposition process, each consonant

crisp set is then assigned a certain amount of mass proportional to their element

membership values. According to this scheme, the fuzzy focal B given in (7.8) can be

represented with its cuts−α . The mass)(Bm is then distributed among the produced

crisp sets. The decomposition process is performed as follows [50]:

• Step 1: Decompose the fuzzy focal B into its cuts−α associated level-sets. The

membership values of its elements are arranged in increasing order:

)()...()(
||21 0

BBBB
fff µµµ ≥≥

 125

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

where 0
Bx

j
∈ for ||,...,1 0

Bj = .The cut−α of B at level)(
jB

fµ is represented

by },...,{ 1 jj
ffB =

α
. Intuitively, each specifies a slice of the membership

function. Therefore, it is conceivable that the original membership function can be

reconstructed by adding these slices in order:

jj
xBxBxBB

ααα
ααα +++=

21 21

where
jj

xBα represents a fuzzy set such as the one below:







∉

∈

=

j

jjB

jj

Bfif

Bfiff

fB

α

α

αα

µ

µ

,0

),(
)(

 and + represents the disjunction operator (max operator).

• Step 2: Distribute the mass of fuzzy focal B into its cuts−α :

))()((
)(max

)(
)(1+

−×=
jBjB

Bx

j
ff

f

Bm
Bm µµ

µ

α
 (7.9)

It can easily be seen from Equation (7.9) that a mass value for a derived crisp

focal element is determined by two factors, namely, the original mass value and the

varying degrees of memberships of its members to the fuzzy focal. By correlating all

these crisp focals, which are equivalent to their corresponding fuzzy focals in local fuzzy

composite alarms, the agent manager actually creates a global fuzzy composite alarm.

7.4 Adaptive Fuzzy Alarm Correlation Algorithm

The adaptive fuzzy alarm correlation algorithm is based on the distributed model

presented last chapter. Though the distributed fault propagation model of the managed

network is the same, each intelligent agent may actually have different alarm and fault

domains as has been shown in section 7.3. This is so because each intelligent agent

correlates the network failures only to the network alarms emitted from their constituent

entities and remains unaware of any network alarms reported in other domains. As such,

some intelligent agents are more sensitive to certain network failures than others. The

cardinalities of the fault domains in a certain management domain reflect the degree of

 126

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

the sensitivity of its respective intelligent agent to these faults. Thus, to identify the

network failure, the intelligent agents involving in the alarm correlation process should

be given different weights.

7.4.1Intelligent Agent

The alarm space within each management domain is divided into exclusive and

exhaustive clusters. An observed cluster is used by an intelligent agent to:

(1) reduce its fault hypothesis space,

(2) construct its local composite alarm,

(3) determine the fuzzy focals within its local composite alarm.

As shown in Fig. 7.3, based on the observed cluster
ik

C , the fault hypothesis space of the

intelligent agent k is reduced to
ik

F . The same scheme presented in the last chapter is then

utilized to construct the local composite alarm k

comp
A . The focal elements of the local

composite alarm are then modified to accommodate for the fuzzy information provided

by the observed cluster. These three steps are discussed in detail in the following

sections.

7.4.1.1 Modifying the Fault Hypothesis Space

The partition of the alarm space based on their domains (as expressed in Def. (7.2))

results into exclusive alarm clusters. For an intelligent agent k, let
k

A denote its alarm

space, which is subset of the alarm set A provided by the FPM (i.e., AA
k

⊆) and
k

Ω be

its fault hypothesis space (i.e., Ω⊆Ω
k

). Based on the domains of alarms in
k

A , the

alarms are partitioned into r exhaustive and exclusive clusters such that:

φ=∩∩

=∪∪

rkk

krkk

CC

ACC

...

...

1

1
 (7.10)

Based on Def (7.4), the fault hypothesis space of the intelligent agent k is also

exhaustively and exclusively partitioned into:

 127

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

Figure 7.3: Intelligent agent structure.

φ=∩∩

Ω=∪∪

rkk

krkk

FF

FF

...

...

1

1
 (7.11)

An observed cluster
ik

C can be explained by
ik

F , where ri ,...,1= .

Let
k

A be a set of alarms and
kk

AA ⊆ , that has been observed by the intelligent

agent k. If an alarm
lk

a has been observed (i.e.,
klk

Aa ∈) and
lk

a is
iklk

Ca ∈ , then the

cluster
ik

C has been observed. Let
kikik

ACC ∩= .

Alarms of the observed cluster that are members of
ik

C will be called negative

alarms. Alarms of the observed cluster that are members of the set {
ik

C -
ik

C } are called

positive alarms. Since the observed cluster
ik

C can be explained by
ik

F , the fault

 128

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

hypothesis space of the intelligent agent k will be restricted to
ik

F (i.e.
ikk

F=Ω). In other

words, fault hypothesis sets of non-observed clusters are not considered in the alarm

correlation process. The intelligent agent k analyzes both the negative and positive alarms

of the observed cluster
ik

C and assigns a weight for each fault hypothesis in
ik

F . Hence, a

local fuzzy composite alarm can be defined as follows.

Definition 7.8 Given a set of observed alarms
i

C of a given cluster
ik

C , an intelligent

agent k may form a local fuzzy composite alarm
k

Fcomp
A by (1) correlating

i
C into a local

composite alarm
k

comp
A in the form given in Equation (6.15); (2) using

i
C ,

ik
C , and fuzzy

rules to assign membership values for members of each crisp focal element in
k

comp
A .

Hence, an observed cluster
ik

C provides probabilistic evidence, extracted

from
ik

C , for each failure in
ik

F . Furthermore, fuzzy evidence can also be inferred from

the observed cluster’s negative and positive constituent alarms and the fault domains of

its fault hypothesis set
ik

F .

7.4.1.2 Local Composite Alarm

Based on the observed alarms
ik

C received from its constituents, the agent k takes the

following three steps to form its local composite alarm [51]:

1. Calculating the belief assessments of each fault hypothesis in
ik

F using the

message updating algorithm (introduced in section 6.4). This step produces a

belief vector for each network failure hypothesis in the form given in Equation

(6.7).

2. Constructing an evidence structure set for
ik

C in the form given in Equation

(6.11).

 129

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

3. Forming a local composite alarm as given in Equation (6.15), and is rewritten

here for convenience:

)}(),...,({ ||1 ikkik

k

comp
fQfQA

Ω
= (7.12)

7.4.1.3 Local Fuzzy Composite Alarm

The intelligent agent k may determine the degree for a particular fault hypothesis

k

j
f (

ik

k

j
Ff ∈) to be a member of a given focal element based on how many of its

constituent alarms in)(k

j
fD have been observed (i.e., |)(|

ik

k

j
CfD ∩). However, the

network failures of the same cluster share a considerable subset of their alarms among

themselves. Upon careful examination of the fault domains, it can be easily noticed that a

given failure with less than 25% observation ratio of its alarm domain should not be

considered a strong explanation candidate. It is more likely that these alarms have been

triggered by other network failures that happen to share these alarms with the given

failure. A given failure is often considered a likely explanation for the observed cluster if

at least 50% of its alarm domain has been received by its relevant intelligent agent.

Moreover, a given failure with more than 75% observation ratio of its alarm domain is

considered a more likely explanation of the observed cluster. Hence, considering each

network failure as a fuzzy variable, three linguistic variables can be defined for each

fuzzy variable to capture the previous empirical information as follows: “unlikely” (UL),

“likely” (L), and “very likely” (VL). These fuzzy sets assume Z-curve, Pi-curve, and S-

curve membership functions, respectively.

The membership function shapes of a given network failure are controlled by the

observation ratio parameters. Let us assume that k

j
f represents the number of alarms in

)(k

j
fD that have been observed by its intelligent agent (i.e., |)(|

ik

k

j

k

j
CfDf ∩=). The

ratio parameters are determined as follows. |)(|
4

1 k

j

k

fj
fDLow = , |)(|

2

1 k

j

k

fj
fDMid = ,

 130

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

and |)(|
4

3 k

j

k

fj
fDHigh = . The VL membership function is defined as below:
















+>

+≤<

−+

−

≤≤−

−−

−<

=

baf

bafa
b

fba

afba
b

baf

baf

baf

k

j

k

j

k

j

k

j

k

j

k

j

k

jVL

;1

;
2

))((
1

;
2

))((

;0

),,(

2

2

2

2

µ (7.13)

where 2/)(k

fj

k

fj
MidHigha += , aHighb

k

fj
−= .

 The UL membership function is defined as follows:
















+>

+≤<

−+

≤<−

−−

−

−<

=

baf

bafa
b

fba

afba
b

baf

baf

baf

k

j

k

j

k

j

k

j

k

j

k

j

k

jUL

;0

;
2

))((

;
2

))((
1

;1

),,(

2

2

2

2

µ (7.14)

where 2/)(k

fj

k

fj
MidLowa += , aMedb

k

fj
−= .

 The L membership function is bell shaped and formed by placing both the VL and

UL curves back-to-back. The expression is:















=

>







+

<







−

=

af

af
bb

af

af
bb

af

baf

k

j

k

j

k

jUL

k

j

k

jVL

k

jL

;1

;
2

,
2

,

;
2

,
2

,

),,(µ

µ

µ (7.15)

where k

fj
Mida = , k

fj

k

fj
MedHighb −= .

The overlap ratio (OR) between the UL and L membership functions is:

.

 131

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

k

fj

k

fj

k

fj

LUL

High

LowMed
OR

−

=_

Let us assume that the cardinality of the fault domain of k

j
f is C (i.e., CfD

k

j
=|)(|).

Then, the overlap ratio (
LUL

OR _) is:

3

1

)4/3(

)4/1()2/1(
_ =

−

=

C

CC
OR

LUL

Similarly, the overlap ratio between the L and VL membership functions is:

k

fj

k

j

k

fj

k

fj

VLL

LowfD

MedHigh
OR

−

−

=

|)(|
_ .

Hence,
VLL

OR _ is:

3

1

)4/1(

)2/1()4/3(
_ =

−

−

=

CC

CC
OR

VLL

In both cases the overlap ratio is 33%. For example, if 20|)(| =
k

j
fD , then the overlap

between the membership functions of the linguistic variables for k

j
f is shown in Fig. 7.4.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Observed network alarms

M
e
m

b
e

rs
h
ip

 d
e
g
re

e

UL membership function
VL membership function
L membership function

Low = 5
Mid = 10
High = 15

Figure 7.4: VL, L, UL Membership functions.

 132

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

As shown if Fig. 7.4, if the number of alarms observed in the domain of k

j
f is less than

five (k

fj
Low), then the fault hypothesis k

j
f is ruled out as an explanation for the observed

alarm cluster. However, if 15 alarms or more of its domain are observed, then k

j
f is

considered as a more likely explanation for the observed alarm cluster. Using our

empirical knowledge, simple fuzzy rules can be obtained for each network failure as

follows:

1jR : if k

j
f is VL THEN

j
F is 1jA

2j
R : if k

j
f is L THEN

j
F is 2j

A

3jR : if k

j
f is UL THEN

j
F is 3jA

where j =1,…, ||
k

Ω .

The number of fuzzy rules for the whole managed network is linearly proportional

to the cardinality of the frame of discernment. (i.e., ||3 Ω×). The membership functions

of the consequent fuzzy sets are defined for each network failure as follows:













=

Ω||1

9.0
,...,

9.0
,...,

9.0
1

FFF
j

Aj
µ













=

Ω||1

5.0
,...,

5.0
,...,

5.0
2

FFF
j

Aj
µ













=

Ω||1

2.0
,...,

2.0
,...,

2.0
3

FFF
j

Aj
µ

A fuzzy inference process is then employed on all the obtained rules. The Mamdani

inference scheme is implemented in the following manner:

1. Calculate the firing level for each rule:

)(1

k

jVLj
fµτ =

)(2

k

jLj
fµτ =

 133

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

)(3

k

jULj
fµτ =

2. Calculate the output of each rule as follows:

),min()(
111

j
Ajjj

f µτµ =

),min()(
222

j
Ajjj

f µτµ =

),min()(
333

j
Ajjj

f µτµ =

3. Aggregate individual rule outputs to obtain overall fuzzy set
j

F with membership

defined by:

))(()(max
3

1

jjr

r

j
ff µµ

=

=

4. Replace the given crisp focal with fuzzy set
j

F .

The application of Mamdani inference scheme by the intelligent agent k, to every

fault hypothesis contained in its fault hypothesis space
k

Ω , results in one overall fuzzy set

as follows:













=Ω

Ω

Ω

||

||

1

1
)(

,...,
)(

k

k

kk

k

f

f

f

f µµ

 (7.16)

The overall fuzzy set signifies the number of the constituent alarms in each fault

domain that have been actually observed by the intelligent agent proportional to the total

number of the alarms in their respective domains. Hence, membership degrees of

different fault hypotheses in the fuzzy focal element vary according to the contributions

of their constituents in the alarm correlation process. A fault hypothesis with higher

number of its constituents participating in the alarm correlation process will be assigned a

higher degree of membership compared with other fault hypothesis with less number of

participating constituents. A full membership will only be given to those fault

hypotheses whose all constituents are actually participating in the alarm correlation. On

the other hand a fault hypothesis whose none of its constituents participate in the alarm

correlation will be assigned a zero membership. This is consistent with Def. (7.7). It is

 134

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

very logical to assume that a certain fault hypothesis whose all or most of its symptoms

being detected is more credible as a source of the malfunctioning than other fault

hypotheses with less of their symptoms being observed. Hence, considering the

proportionality a fault domain’s constituents participating in the alarm correlation process

as a measure of the fault belonging to a fuzzy focal is intuitive and conforms to the

human thinking and reasoning convention. Thus, the local fuzzy composite alarm may

then take the following form:













=Ω=

−

=

+

jljf
fbel

fbelfbel
BA

klBk

k

j

k

jk

j

k

Fcomp k

j

,...,1|,|,...,1|)(,
)(

)()(
,

1

1
µ (7.17)

where k

j
B is a fuzzy set associated with an intelligent agent k and its membership is

derived by Equation (7.16).

7.4.2 The Agent Manager

It is expected that local fuzzy composite alarms possess different discriminating

capabilities in distinguishing distinct network failures. To effectively assess each local

fuzzy composite alarm, the agent manager weights the probabilistic evidence against the

fuzzy evidence provided by each composite alarm. This weighting process is embedded

within the decomposition scheme described in section 7.3. As shown in Fig. 7.5, the

decomposition scheme transforms each local fuzzy composite alarm into its equivalent

crisp evidence structure. The resulting evidence structures are then combined using the

Dempster’s combination rule into a global composite alarm.

Let L be the set of local fuzzy composite alarms in the form of Equation (7.17).

L = },....,{ 1 K

FcompFcomp
AA

The following definition is used by the agent manager to combine the received set of

local fuzzy composite alarms.

Definition 7.9 Given a set of local fuzzy composite alarms },...,{ 1 K

compcomp
AA , a global

 135

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

composite alarm is formed by (1) transforming each fuzzy focal element into a

corresponding evidence structure set },...,{ 1 K
ESES using the decomposition scheme of

(7.9); (2) correlating the obtained evidence structures into a global composite

alarm,
glob

A without regard to their arrival order ,i.e.,
K

glob
ESESA ⊗⊗← ...1 . The

symbol ⊗ refers to the Dempster’s rule of combination.

Fig. 7.5: The agent manager structure.

7.4.2.1 Intelligent Agent Discounting Factor

To account for their diagnostic capability, the agent manager calculates a discounting

factor for each intelligent agent. Based on their factor, their composite alarm will be a

given a certain weight during the global alarm correlation process. However, the

probabilistic and fuzzy evidence is first evaluated within each local composite alarm as

follows. The divergence between these two types of evidence can be evaluated using the

 136

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

Kullback-Leibler (K-L) distance measure [51]. Given a belief assessment from an

intelligent agent k,

)}(),...,({ ||1

k

k

kk
fbelfbelB

Ω
=

and its fuzzy set,













=

Ω

Ω

||

||

1

1
)(

,...,
)(

k

k

kk

k

f

f

f

f
F

µµ

The terms)(
i

k
fµ are first normalized, i.e.,)()()(/()()(111 fffff

kkk

i

k

i

k
µµµµµ ++= ,

|)|,...,1(
k

i Ω= . The distance between
k

B and
k

F can be calculated using (K-L

distance) as follows:

)||()||(),(kkkkkk
BBDBD µµµ +=

the distance value can then be mapped into range [0, 1], using a unipolar sigmoidal

function:

))),((exp(1

1
)),((

0kkkk

kk

DBDP
BDr

−×−+

=

µ

µ (7.18)

According to Def. (7.9), the agent manager should first transforms each fuzzy

focal contained in k

Fcomp
A into a consonant crisp focal, where LA

k

Fcomp
∈ and .,...,1 Kk =

k
P and

0k
D are controlling parameters. The decomposition scheme as shown in (7.9)

distributes the mass of each fuzzy focal into its cuts−α . From the definition of

commonality and the nature of the decomposition scheme, the commonality of a fault

hypothesis within the corresponding crisp evidence resulted from the decomposition

scheme can be defined as:

),()(
max

)(
})({

0k

j

k

l

k

j

F

k

lFk

l

k

j
FfFm

f

fQ

l

j

l

j

∈×= δ

µ

µ

 (7.19)

According to (7.19), the commonality of each fault hypothesis is adjusted based on their

memberships. The normalized commonalities in the established crisp evidence are

defined by [51]:

 137

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

∑

Ω∈

=

kjf l

j

j

fQ

fQ
fP

})({

})({
})({ , (7.20)

The normalized commonality is known as Bayesian probability. If all the network

alarms of the fault hypothesis set have been observed (the corresponding elements in the

local fuzzy composite event are crisp sets with full memberships), the normalized

commonality of each fault hypothesis is identical to its belief value. Hence, the ratio

l

j

l

j
F

k

lF
f µµ max/)(is used to adjust the resultant commonality. We adopt the discounting

scheme proposed in [50], to guide the alarm correlation process. To determine the masses

for the resultant crisp focal element, we substitute the membership function given in

(7.19) with the following one:

 k

j

k

j

k

lFk

kk

lF
fBDrf l

j

l

j

µµµµµ min)min)((),(()(+−×= (7.21)

The function)),((
k

k
BDr µ measures the distance between the probabilistic evidence

provided by an alarm cluster calculated as a belief assessment from the FPM and its

fuzzy evidence which reflects the proportionality of each fault hypothesis in terms of

their domain alarms that have been actually observed by the intelligent agent. The agent

manager may discard the fuzzy evidence provided by an intelligent agent k if all

memberships in the agent’s local fuzzy composite alarm are equal (i.e.,

0)),((=
k

k
BDr µ . This indicates that all the alarms in the observed cluster have been

actually observed by the intelligent agent in question. If 1)),((=
k

k
BDr µ , network alarms

in a certain cluster have not been reported and as such they are considered as positive

alarms. Hence, the commonality of each fault hypothesis is adjusted according to what

degree these fault hypotheses differ from each other in their membership to a fuzzy focal

element. Therefore, the agent manager can calculate the commonality of a fault

hypothesis associated with a local fuzzy composite alarm:













=Ω=

−

=

+

jljf
fbel

fbelfbel
BA

klBk

k

j

k

jk

j

k

Fcomp k

j

,...,1|,|,...,1|)(,
)(

)()(
,

1

1
µ

provided by an intelligent agent k as follows:

 138

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

),()(
max

)(
})({

0k

j

k

l

k

j

F

k

lF
k

l

k

j
BfBm

f

fQ

l

j

l

j

∈×= δ

µ

µ

 (7.22)

)(k

lF
fl

j

µ is defined in Equation (7.21).

As stated in Def. (7.9), the agent manager uses the Dempster’s rule of

combination to correlate the local fuzzy composite alarms presented in (7.17). However,

due to their different discriminating capabilities, they should be treated according to their

importance to the alarm correlation. To evaluate the overall uncertainty contained in a

local fuzzy composite alarm, first the agent manager measures its fuzzy entropy.

Let { }))(,,),...,(,,
||1

||||11 fmBfmBA k

k
kk

k
B

k

B

kk

Fcomp
Ω

ΩΩ
= µµ be local fuzzy composite

alarm and
k

Fcomp
F
~

 denote its fuzzy entropies }
~

,...,
~

{
~

||1

kkk

Fcomp
k

FFF
Ω

= . The fuzzy entropy is

defined as [51]:

 ,
)(

)(

||

1~
||

1
0

0

∑
=

∪

∩

=

j

jj

jj

B

l jlBB

jlBB

j

k

j

f

f

B
F

µµ

µµ

 (7.23)

k

j
F
~

 is minimum if and only if k

j
B is a crisp set (i.e., 0)(=

jlB
f

j

µ or 1) and is
k

j
F
~

 the

maximum if and only if k

j
B is the most fuzzy set (i.e., 5.0)(=

jlB
f

j

µ). Since
k

j
F
~

 can take

values between 0 and 1 (1
~

0 ≤≤
k

j
F), the smaller is

k

j
F
~

, the less fuzzy is the fuzzy set k

j
B .

The overall uncertainty can then be measured using the following:

 ∑
Ω

=

−−=

k

j

jjj

k

Fcomp
FmmAFH

1

2))
~

1((log)(. (7.24)

)(k

Fcomp
AFH is minimum if

j
m =0 or 1, and k

j
B is a crisp set, (i.e., 0)(=

jlB
f

j

µ or 1) and

)(k

Fcomp
AFH is maximum if

||

1

Ω

=
j

m and k

j
B is the most fuzzy set (i.e., 5.0)(=

jlB
f

j

µ).

An intelligent agent that is less uncertain in both probabilistic and fuzzy evidence would

have a smaller value of hybrid entropy. Based on the discounting scheme introduced by

the DSET, the agent manager uses a discounting factor
k

α for each intelligent agent k to

 139

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

capture the probabilistic and fuzzy entropies of all intelligent agents:

))(),...,((),(),...,((11 K

FcompFcomp

K

compcompkk
AFHAFHAHAHηα = (7.25)

The Shannon entropy,)(K

comp
AH , is employed to quantify the uncertainty contained in the

probabilistic evidence provided by the local composite alarm of intelligent agent k:

 ∑
Ω∈

−−=

kjf

jj

K

comp
fbelfbelAH),(log)()(2 (7.26)

)(k

Fcomp
AFH is the hybrid entropy defined in Equation (7.24). The smaller is)(k

comp
AH ,

the more certain the intelligent agent is in terms of its probabilistic evidence k

comp
A ; and

the less discounted is its evidence, the smaller is)(k

Fcomp
AFH , and the more certain the

intelligent agent is in terms of its fuzzy evidence contained in its local fuzzy composite

alarm k

Fcomp
A .

7.4.2.2 Correlating Local Fuzzy Composite Alarms

Given the above discounting factor defined in Equation (7.25) and the new fuzzy

membership defined in (7.21), the agent manager can now calculate the common

commonalities for each intelligent agent using the final commonality defined as:

)()()1(
max

)(
})({

0
||

1

k

j

k

l

k

jk

j
F

k

lF

k

k

l

k
BfBm

f

fQ

l

j

l

j

∈−×+= ∑
Ω

=

δα

µ

µ

α (7.27)

To combine all local fuzzy composite alarms, the agent manager applies the Dempster’s

rule which yields the final commonality [51]:

 .})({})({
1

∑
=

=

K

k

l

k

l
FQTFQ (7.28)

The agent manager decides the fault hypothesis with the maximum value as the root

cause of the abnormality of the running network.

7.5. Summary

 140

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION ALGORITHM .

In this chapter, we developed an adaptive fuzzy evidential approach for the alarm

correlation problem in computer networks. In the proposed approach, an intelligent agent

takes advantage of the positive symptoms to construct a local fuzzy composite alarm. The

commonality value of each fault hypothesis proposed by these composite alarms are

adjusted according to the relationship between the probabilistic and fuzzy evidence

within their relevant composite alarm. To deal with conflict among intelligent agents

participating in the alarm correlation process, the agent manager adjusts these

commonalities even further based on some discounting factor. Finally, the Shannon

entropy and the hybrid entropy were used to calculate discounting factors on competing

hypotheses.

 141

Chapter 8

Simulation and Experiment Results

8.1 Introduction

In this dissertation we have proposed four schemes for fault probing and identification:

CSP-based scheme for probe selection (introduced in Chapter 4); Fuzzy CSP-based

scheme for fault identification (introduced in Chapter 5); Distributed Alarm Correlation

scheme (introduced in Chapter 6); and Adaptive Fuzzy Alarm Correlation approach in

scheme (introduced in Chapter 7). To demonstrate the effectiveness of these schemes,

extensive experiments have been carried out and their results are reported in this chapter.

For all experiments we have adopted and modified the simulation model proposed in [18]

and implemented it using the C++ programming language under object-oriented

environment.

 142

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

8.2 CSP-Based Algorithm for Optimal Selection of Probes

In this section we investigate the effectiveness of the CSP-based algorithm as a viable

approach for the preplanning of probing based schemes. A multi-scenario simulation

model is used to conduct this investigation. The subtractive search and the greedy

algorithms [2,5] are considered state-of-the-art and hence used for comparison. The

investigation is performed in two parts: In the first part, we ran experiments for each of

the three algorithms to find minimal solutions, i.e, determining an optimal number of

testing probes for each algorithm. In the second part, we study the effects of having

different number of probing stations deployed in a managed network for the solution set.

8.2.1 Simulation Model

The flow control of the simulation program is shown in Fig. 8.1. First we determine the

size of the managed network. The network size is assumed, without loss of generality, to

be in the range of 5-50 nodes. This could be extended to accommodate larger set of

nodes. After determining the network size, the simulation program generates a random

network topology. Both strong network and loose connectivity are contemplated. Strong

connectivity implies that the network is fully connected, i.e, each node in the network is

connected to every other node. The spanning tree routing algorithm is performed on the

generated network to create a tree-shape topology model and to eliminate any cyclic

paths. To obtain the dependency matrix of the network, a number of probing stations is

determined. The probing stations are then randomly deployed in the network. The

number of probes for each dependency matrix depends on the number of probing stations

and network size. For example, given a network size of five nodes, the simulation model

may produce a network configuration as shown in Fig. 8.2. To simplify the process of

determining the testing probe paths, a spanning tree of the network is computed. This

step may yield the routing configuration shown in Fig. 8.3. Using this routing

information, a probing station can easily obtain all the paths required by its probes

to examine the managed network.

 143

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.1: Obtaining a dependency matrix.

 144

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.2: A simple network configuration of size 5.

Figure 8.3: The resultant of spanning tree algorithm run on the network of Fig. 8.2.

Let us assume that the simulation model assigns nodes 1 and 2 as probing stations (both

depicted in red color in Fig. 8.3). The dependency matrix (D) extracted from the network

configuration of Fig. 8.3 is summarized as follows:

 145

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

The first four probes (rows) are issued from the first probing station; the remaining

probes are issued from the second probing station. This dependency matrix is fed to the

CSP-based algorithm as discussed in Chapter 4.

 In the following section, we test the CSP scheme on different network

configurations of different sizes. Since the objective is to reduce the size of the given

dependency matrix while maintaining its diagnostic power, the performance measure

used to compare the proposed CSP scheme with the subtractive search and greedy search

schemes is chosen as finding an optimal probe set (called the solution set) that meets all

the requirements discussed in Chapter 4.

8.2.2 Initial Variables

The proposed algorithm starts with an initial set of variables (called the active variables).

The cardinality (L) of the initial set is determined by Equation (4.3), restated here for

convenience:

ZLNL ∈≥);2log(/)log(

Where N is the network size and L is the number of initial active variables. The network

size is varied between 5 and 50, which yields the initial active variables as shown in

Table 8.1. At least three probes are needed for a network size of 5, and six

 146

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

probes or more are needed for a network size of 50, to successfully perform the fault

detection and identification tasks. In order to evaluate the efficiency of the proposed

model, we ran the simulation 10 times for each network size and obtained the average

number of selected probes in each run.

 Table 8.1: Initial set of active variables for different network sizes.

N 5 10 15 20 25 30 35 40 45 50

L 3 4 4 5 5 5 6 6 6 6

8.2.3 Optimal Probes for Different Network Sizes

In this section, the CSP-based model is tested for different network configurations.

Again, the performance of the CSP-based model is compared with that of the greedy and

subtractive search algorithms. The results are shown in Fig. 8.4. It is evident from the

results that the proposed CSP algorithm outperforms both algorithms. It always produces

the optimal number of probes. The subtractive search algorithm performs the worst. The

subtractive and greedy approaches utilize the conditional entropy as a measure of

diagnostic power of a given set of probes. The diagnostic ability H (P) of a set of probes

P is defined as follows [5]:

)|()(GNHPH =

Where },...,1{ nN = denotes the node set, and },...,1{ kG = denotes which group contains

the node in the decomposition induced by P. Failures in nodes in the same group can not

be distinguished by the probe P. If
i

n is the number of nodes in group
i

g , then:

∑
=

===

k

i

ii
gGNHgGpPH

1

)|()()(

Assuming failures are equally likely in any node, the diagnostic ability is reduced to the

following:

 147

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

)log()(
1

i

k

i

i
n

n

n
PH ∑

=

=

For example:

}})4,3{},2,1({{)(1 HPH =

That is adding P1 to the selected probes may have the following diagnostic power, based

on the groups induced by 1P :

12log2log
4

2
2log

4

2
)(1 ==+=PH

whereas

}})4,3,2{},1({{)(2 HPH =

yields the following diagnostic power:

19.13log
4

3
3log

4

3
1log

4

1
)(2 ==+=PH

H (P) is simply the expected minimal number of probes needed to uniquely diagnose all

nodes. A selected probe, P, that reduces the value of the H (P) of the current probe set is

a better choice; in this example 1P is better than 2P .

The subtractive approach starts with the given dependency matrix and considers

each probe in turn. If the diagnostic ability remains the same after dropping the given

probe from the dependency matrix, then the probe is discarded. The algorithm finds a

subset of probes that has the same diagnostic power as that of the original dependency

matrix, though the found subset is not minimal. The implication of this search paradigm

is that its effectiveness depends highly on the order of the dependency matrix. In a rather

different direction, the greedy approach starts with an empty set and adds a probe to this

initial probe set and calculates the diagnostic power of the solution set. If the selected

probe increases the diagnostic power of the initial probe set it keeps the selected probe in

the solution set; otherwise the probe is discarded. Again the greedy approach is also very

sensitive to the ordering of the probes in the dependency matrix. An early selected probe

may initially seem a valuable contributor to the solution set, however, at later stages it

 148

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Network size

N
u
m

b
e
r

o
f

p
ro

b
e
s

Subtractive Search
Greedy Search
CSP Model

 Figure 8.4: Comparisons of the CSP-based model with the greedy and

 subtractive algorithms.

can prevent more valuable probes from being selected. Thus both algorithms fail in

finding an optimal probe set. In contrast, while it may prolong the search process, the

ordering of the given dependency matrix has no effect on the final outcome of the

proposed algorithm.

8.2.4 Varying Number of Probing Stations

The effects of having different number of probing stations on the number of the selected

probes are investigated in this section. In real life networks, the process of determining a

certain number of probing stations as well as their locations in the managed network is

subject to administrative and economic considerations that are not part of our study.

Thus, in this work we do not address the question of how to select the probing stations.

Nonetheless, a preliminary study of their effects may help network administrators in that

process. We, however, restrict our experiments on networks with number of probing

stations range from 1 to 3. The results are shown in Fig. 8.5 and table 8.2.

 149

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Network size

N
u
m

b
e
r

o
f

p
ro

b
e
s

1 Probing station
2 Probing stations
3 Probing stations

 Figure 8.5: Number of probes obtained by the CSP model for different

 probing stations.

We can see from the results reported in Table 8.2, that as the number of probing stations

increases an optimal probe set with even less probes can be found by the CSP model.

Networks with higher number of probing stations provide more alternative choices and

routes for testing a subset of network nodes. Hence, a small comprehensive set of probes

can be easily found from a rich dependency matrix. This leads us to recognize that the

locations and number of probing stations may yield different results for each

configuration, however, given a certain configuration the proposed scheme will always

produce better results if not comparable to those of the other two approaches.

Table 8.2: Average number of probes for different probing stations.

Network size 5 10 15 20 25 30 35 40 45 50

One Probing Stations 5.9 6.1 6.6 6.9 6.8 6.9 6.9 7.3 7.6 7.9

Two Probing Stations 4.3 4.6 5.1 5.4 5.6 6.1 6.3 6.5 6.6 6.7

Three Probing Station 3.1 3.3 3.8 4.1 4.3 4.8 4.8 5.2 5.4 6.1

 150

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

8.3 FCSP-Based Probing Algorithm

In this section, the effectiveness of the adaptive fuzzy CSP-based algorithm is examined.

As has been pointed out in Chapter 5, the main shortcoming of the preplanned probe

schemes is that once an optimal set of probes is found the network management system

should periodically send all the probes in the optimal set for both fault detection and

identification tasks. The new algorithm avoids this overhead problem by considering only

relevant probes. A simulation model is first developed and the proposed fuzzy CSP

algorithm is tested on different scenarios.

8.3.1 Simulation Model

The simulation model presented in Fig. 8.1 is used to obtain the dependency matrix (D)

which in turn is manipulated as shown in Fig. 8.6. The greedy algorithm is first

performed on the obtained dependency matrix for each network configuration to extract a

minimal subset of probes for the purpose of fault detection. We randomly then introduce

a failure in the current network configuration and modify the probe, suspect, and healthy

sets as illustrated in Chapter 5. We run the adaptive fuzzy CSP algorithm to select the

most informative probe among the available probes of D based on the problem

constraints highlighted in section 5.3. Every time a probe is selected a probe counter is

incremented by 1. We repeat the same process until the root cause of the failure is

isolated. The average number of the selected probes is then measured for each network

configuration. We run the simulation 10 times for each network size. To compare the

results obtained by the new algorithm, we have also implemented the Greedy Fault

Localization (GFL) algorithm proposed in [3, 4]. The GFL uses two search methods to

select a candidate probe from the dependency matrix, namely Max and Min search

methods. The Max search approach selects a probe that covers maximum number of

suspected nodes, while the Min search approach selects a probe with a minimum number

of suspected nodes.

 151

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.6: The simulation model.

8.3.2 Results by the Fuzzy CSP Algorithm

The results of the experimentations are shown in Fig. 8.7. The proposed algorithm always

presents solutions with less number of probes than the other two algorithms. Though the

Min search algorithm is a little closer to the fuzzy CSP algorithm, the Max search is

obviously performing worse than both algorithms. As shown in Table 8.3, for networks

of size 5 and 50, the average number of probes obtained by the new fuzzy CSP algorithm

is around 3 and 10.2, respectively. On the other hand, the Max algorithm obtains

 152

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

on average 6.5 and 15.2 probes for the same network sizes. This deficiency can be traced

back to the search mechanism adopted by the Max algorithm. Since the Max approach

selects a probe with a maximum number of suspected nodes, a failed probe may result in

enlarging the suspect node set significantly and thus prolongs the search process.

Therefore, more probes are required to isolate the root cause of the problem.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Network Size

N
u
m

b
e
r

o
f

P
ro

b
e
s

MaxSearch algorithm
MinSearch algorithm

Fuzzy CSP based algorithm

 Figure 8.7: Comparisons of the fuzzy CSP-based, Min, and Max search

 algorithms.

Table 8.3: Average number of probes required by each scheme.

Network size 5 10 15 20 25 30 35 40 45 50

Min Search 5.2 5.5 6.1 6.8 8.2 9.3 10.1 11 11.6 12.7

Max Search 6.5 7 10 9.8 11.3 11.7 12.5 13.9 14.5 15.2

Fuzzy CSP-based 3 3.7 4.2 5.6 7 7.8 9 9.5 9.9 10.2

 153

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

If we treat the received alarms as candidate probes, the performance of the proposed

algorithm yields even lower number of testing probes than that of the Min search

algorithm . As shown in Fig 8.8, the number of probes required for the fault identification

task for networks of size 50 is reduced to approximately six probes, in contrast to 12

probes produced by the Min search algorithm. It cuts down the obtained probes by over

50%. This significant 50% improvement over the Min search algorithm can be achieved

by slightly modifying the fuzzy CSP algorithm to accommodate for the already triggered

alarms (no extra traffic is induced here). Since each received network alarm has to go

through a set of nodes to reach its management node, these nodes can be considered by

the fuzzy CSP algorithm as health nodes.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

Network size

N
u
m

b
e
r
o
f
p
ro

b
e
s

 Figure 8.8: The average number of probes obtained by the modified fuzzy

 CSP algorithm

 154

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

8.4 Distributed Alarm Correlation and Fault Identification

Algorithms

In this section we will examine the efficiency of the proposed alarm-based algorithms.

The proposed algorithms are based on the assumption that a single global fault

propagation model of the managed network is available and distributed among the

domain agents. While this assumption may not be realistic for huge networks that their

network topologies span over several continents, it falls within the realm of possibility for

small and large local networks (i.e., campus networks) or wide area networks that their

entities are contained in a single province and owned by a single institution. Next we will

present a case study of how to construct such a fault propagation model for a campus

network which will be used as a prototype to create fault propagation models in the

simulation process.

8.4.1Case Study

We present in this case study a bipartite dependency graph as a fault propagation model

of the campus network of the University of Waterloo that a fault network management

system can use. The structure of the campus network of University of Waterloo is shown

in Fig. 8.9. It consists of 69 nodes including 48 building Ethernet switches, 12 core

Ethernet switches, and 9 routers. The topology of the network is configured in a tree-

shaped fashion. The advantage of the tree-shaped topology is that cyclic paths are

eliminated. Though the size of the network is not so large the fault propagation model

constructed from this topology may require a considerable effort to manually construct it.

In the proposed dependency graph, we refer to the switch-to-switch and switch-to-router

delivery service as links; while the path refers to the route that a packet may take from

the first switch (the source) to the last one (the destination). The packet delivery service is

actually built on the delivery services provided by links. Since we are interested in

detecting and identifying performance failures in end-to-end service we want to identify

all the paths that the current network configuration provides and all the links that

 155

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.9: The topology of the campus network of University of Waterloo.

comprise each path. This process leads to the service-to-link relationship graph. In the

service-to-link relationship graph each link between any two switches or a switch and a

router is represented by a node. From this node we create a directed edge to any path that

may rely on this link for packet delivery service. Due to the limited space, only a partial

view of this graph is shown in Fig. 8.10. The ellipse shape indicates a link service and the

circle shape indicates a path service. This graph is important because it shows each

packet delivery service path from host to host which greatly narrows down the suspect

network nodes in case a failure in packet delivery service arises. However, the path-to-

link relationship graph does not explicitly show which network entities may generate

network alarms in case such path failures are detected. Hence, a more elaborated graph is

 156

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.10: Path-to-link relationship resulted from the topology of the campus network

 of Fig. 8.9.

needed to identify these monitoring entities which will be used to correlate symptoms

observed on the path level to identify and isolate the underneath link failures. The result

of this process is the fault propagation model of the managed network as shown in Fig.

8.11 and in which we associate a set of performance failures (e.g., congestion, delay,

broken link, etc) with each link node and associate a network alarm or a set of network

alarms with each network entity that may report the packet delivery failure of that end-to-

end service. For simplicity let us assume that only two intelligent agents are employed to

monitor the campus network and are installed in the core Ethernet switches E2 and MC.

The network entities connected to the core switch E2 through the core switch nodes ES1,

PHY, GSC, and SJC will report their network alarms to the intelligent agent 1. While the

network entities connected to the core switch MS through the core switches Math, DC,

BMH, and LIB will report their network alarms to the intelligent agent 2. For example,

 157

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

symptoms related to the path service SCH-AL are expected to be reported to the

intelligent agent 1 since the entities reporting these symptoms are the building switches

SCH and AL and the core switch ES1 and all are residing in its domain. However,

symptoms related to the path service NH-SCH will be reported to both agents since the

entities comprising the packet route are residing in both domains. Symptoms generated

from the building switch NH and the core switch LIB will be reported to the intelligent

agent 2, while symptoms generated from building switch SCH and the core switch ES1

will be reported to the intelligent agent 1. Hence, both agents need to collaborate to

identify the malfunctioning link that disrupted the path service. Though each agent has

the same fault propagation model similar to the one shown in Fig. 8.11 each intelligent

agent only relates the symptoms generated by its constituent entities. The rectangular

shapes refer to the network entities. It should be noted, though, that in the fault

propagation model the rectangular shapes will actually represent network alarms that are

triggered by their corresponding network entities.

8.4.2 Simulation Model

The simulation model uses tree-shaped topologies similar to the network configuration

shown in Fig. 8.9. Given a random network topology, smart bridges and switches may

create a tree-shaped topology using the spanning tree routing algorithm. The proposed

schemes will be evaluated for their fault detection and identification accuracies. To

describe the simulation steps we will use the fault propagation model obtained for the

campus network of University of Waterloo shown in Fig. 8.9 and Fig. 8.10.

8.4.2.1 Generating Random Network Topologies

Since the first step is to create a random and tree-shaped network topology, we will give

a brief review of the simulation algorithm used to randomly create a network topology

and the spanning routing algorithm used to create the tree-shaped topology. For further

details, you may refer to Appendix C. Let us assume the nodes of the generated network

 158

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Figure 8.11: Partial view of the fault propagation model of the network of Fig. 8.9.

represent the data link layer in the protocol stack. That means a given network of size

n has n bridges. The Network class encapsulates the dynamic behavior of the simulation

algorithm. The topology of the generated network is stored in the private variable,

Top[MAX][MAX]. The MAX constant refers to the network size, i.e., MAX=n. Each

node in the generated network is assigned an ID which stands for its hard coded Ethernet

address. The degree of connectivity of the generated network may be ranged from full

connectivity (i.e.; each node in the network is connected to every other node) to a partial

connectivity. Since the network nodes represent bridges, a tree shaped topology of the

given network can be then obtained using the spanning tree algorithm [113]. Once a

 159

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

random tree-shaped network configuration is obtained, a network manager will obtain a

its fault propagation model as described next.

8.4.2.2 Obtaining Fault Propagation Models

The next step in the simulation procedure is to obtain a valid fault propagation model for

the obtained tree-shaped network. It can be accomplished as follows. Let us assume that

the set of all possible alarms is referred to as A and the set of all faults is referred to as F .

For a given tree-shaped n-network topology of size n, we create a fault propagation

model as follows:

• We identify all the possible paths that the current network configuration may

provide. For example, the path from building switch LIB to the building switch

• NH in Fig. 8.9 can be represented as a node LIB-NH in the path-to-link

relationship graph as shown in Fig. 8.10.

• For each obtained path we identify the all the links that the path may depend on.

For example, the path LIB-NH shown in Fig. 8.10, may depend on the link

from

the building switch NH to the core switch LIB and the link from the building

switch LIB to the core switch LIB. Each link will be represented as a node as

shown in Fig. 8.10.

• We identify network entities for each path that may report network performance

failures for their related path in the form of network alarms. We will refer to these

network entities as path entities.

• We create a directed edge between every identified link node and every network

entity contained in a path which is using that link, as shown in Fig. 8.11.

• We associate with every link node a fault
j

f . It is known that in an n-node tree-

shaped network there are n-1 links which means that .1|| −= nF For example,

based on the given PFM in Fig. 8.10,

}1,......,,{ 7321 ALESfLIBMCfLIBLIBfNHLIBfF −=−=−=−== .

 160

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

• We create one network alarm for each path entity in the fault propagation model.

For example, the network alarms expected according the FPM shown in Fig. 8.11

are represented by the set }.,,,,,{ 1 ALSCHLIBESNHLIB
aaaaaaA =

• The priori fault probability distribution
f

p is randomly generated and uniformly

distributed over the interval [0.001, 0.01].

• To signify the causal relationship between networks failures (associated with

links) and their corresponding alarms (associated with paths), we assign randomly

a conditional probability for every edge shown in the fault propagation model.

The conditional probability distribution is uniformly distributed over the range

[0.5, 1).

Once the topology of the generated network is transformed into a tree-shaped one and

the fault propagation model is obtained, we randomly divide the given network into

separate management domains. In real networks, the number of number of management

domains is determined based on geographical and security considerations. To simplify

the simulation we will determine the number of intelligent agents (K) based on the

network size using the simple following rule:

2

)(log 2 n
K =

n is the number of network bridges. Applying this rule may yield management domains

shown in Table 8.4. We assign intelligent agent for each management domain and the

network entities are distributed among these domains based on their proximities of

intelligent agents. Each intelligent agent pertain a copy of the obtained fault propagation

model.

Table 8.4: Management domains.

Network size 5 10 15 20 25 30 35 40 45 50

Number of

domains

1 2 2 2 2 2 3 3 3 3

 161

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

8.4.3 Results by the DSET-Based Alarm Correlation

Algorithm

For every simulation case i, we created 10 simulation scenarios as follows. Let

k represent the th
k simulation scenario of the simulation case i, where 101 ≤≤ i

and 101 ≤≤ k . For every simulation scenario we proceed as follows:

• Based on the link priori probability distribution, we first randomly introduce a set

of faults to network links. We will refer to this set of introduced faults as k

i
F .

• We create a probability distribution]1,0[: →
k

i

k

a
AP , where

jj

k

a
aPaP {)(= occurs

| all faults in k

i
F occur}.

• Using k

a
P we randomly introduce a set of network alarms

k

i

k

iF
AA k ⊆ that may

have been caused by the introduced faults k

i
F .

• Using the proposed DSET-based algorithm we calculate k

i

k

iD
FF ⊆ the most likely

explanation of the observe network alarms in
k

iF
kA . We calculate the detection rate

(k

i
DR) using the following formula:

||

||
k

i

k

i

k

iDk

i

F

FF
DR

∩

=

For every simulation case we calculate the average detection rate as follows:

∑
=

=

10

110

1
k

k

ii
DRDR

We then calculate the values of detection rate for each simulation case denoted by

)(nDR for varied network sizes.

 We implemented also the well known code-book-based algorithm for alarm

correlation [6]. The correlation paradigm is based on coding schemes in which the

information contained in the fault propagation model represented as a bipartite graph is

converted into a set of codes. A code for each performance failure is extracted from the

 162

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

fault propagation model. For example, the fault propagation model of Fig. 8.11 may yield

the codebook shown in Table 8.5. A performance failure code is represented by a series

of bits. A certain bit takes the value of 1 if the corresponding network alarm can be

triggered by the network failure; otherwise it takes the value of 0. To isolate the

performance failure, the set observed alarms is matched to the codebook. Network

failures that optimally match an observed alarm vector are identified as the root causes of

the observed alarms. The identification mechanism is based on the Hamming distance

between network failure codes. As can be seen form the table two failures, namely MC-

E2 and ES1-SCH, can not be distinguished by the codebook since both failures have the

same code. However, this codebook resulted from an incomplete fault propagation model

and is only used here for explanatory reasons. A radius of a codebook is one half the

minimal distance between failure codes.

Table 8.5: Codebook obtained from the fault propagation model of Fig. 8.11.

 LIB-NH LIB-LIB MC-LIB MC-E2 ES1-E2 ES1-SCH ES1-AL

LIB 0 1 0 0 0 0 0

NH 1 1 0 1 1 1 0

LIB 0 1 0 1 1 1 0

ES1 0 0 0 1 1 1 1

SCH 1 0 1 1 1 1 1

AL 0 0 0 0 0 1 1

 163

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

In a noisy environment such as that of computer networks, it is highly expected that a

percentage of network alarms will be lost before they reach their intended destinations.

This can be caused by many factors such as, highly congested links on the alarms paths,

using of unreliable transport mechanisms such as user datagram protocol UDP (used by

the network management protocol SNMP), etc. Hence, we will test the reliability and

effectiveness of the proposed algorithms in the presence of such alarm losses. We define

the loss rate as number of network alarms actually received by intelligent agents to the

total number of network alarms generated by the introduced network failures. We have

set the loss rates for our experimentations to 10%, 20%, and 30%. The results of the

simulation experiments are shown in Fig. 8.12, Fig. 8.13, and 8.14 respectively. The

figures clearly illustrate that the proposed algorithm is always performs better than the

codebook based algorithm in terms of the fault detection rate. We notice that the

codebook algorithm performance deteriorates even further for small

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme
DSET-based scheme

Figure 8.12: Failure detection rate of both algorithms with loss ratio 10%.

 164

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme
DSET-based scheme

Figure 8.13: Failure detection rate of both algorithms with loss ratio 20%.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme
DSET-based scheme

Figure 8.14: Failure detection rate of both algorithms with loss ratio 30%.

 165

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

network sizes and high alarm losses. This is a major deficiency on the part of the

codebook. We attribute this shortcoming to the sensitivity of the codes of network

failures obtained from the available fault propagation model. This sensitivity is expressed

in the form of radius as defined above. For example, the radius of the codebook shown in

Table 8.4 is 0.5. When the radius is 0.5, the code is still able to provide distinction

among network failures; however, it is not resilient to noise. For example, the two

network failures ES1-E2 and ES1-SCH presented by the codebook of Table 8.4, are only

distinguished by a single network alarm emitted from the building switch AL. This is also

true in the case of network failures MC-E2 and ES1-SCH. This means that a loss of the

network alarm generated by the switch AL will result in a potential decoding error. Of

course to redeem this problem, the radius of the codebook has to be increased by

increasing the number of network alarms. However, the proposed scheme does not suffer

from this problem since it is non-deterministic in nature. Moreover, in the case of the

codebook-based scheme, the agent manager, for the lack of a better combination rule,

utilizes the majority vote mechanism to combine outcomes of its subordinate intelligent

agents. This mechanism may have some negative impact on the overall decision when

intelligent agents which have made correct judgments are outnumbered by intelligent

agents which have made false identifications. This is true when some intelligent agents

do not receive enough network alarms to make the right decision. For network of small

sizes, the number of the generated alarms are smaller compared with networks of larger

sizes. If some of these alarms are lost then the fault identification task becomes hard for

the DSET-based algorithm and even harder for the codebook-based algorithm. The

codebook algorithm, however, tends to enhance its performance as networks increase in

size while the alarm loss ratios decrease.

We calculate the false positive rate (k

i
FPR) using the following formula:

||

|\|
k

iD

k

i

k

iDk

i

F

FF
FPR =

For every simulation case we calculate the average false positive rate as follows:

 166

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

∑
=

=

10

110

1
k

k

ii
FPRFPR

We then calculate the values of false positive rate for each simulation case denoted by

)(nFPR for varied network sizes. The false positive rates for the alarm loss of rates 10%,

20%, and 30% are shown in Fig. 8.15, Fig. 8.16, and Fig. 8.17, respectively.

On average the proposed scheme has 0.03%, 0.035%, and 0.05% false positive

rates for the alarm losses rates of 10%, 20%, and 30%, respectively. It is noted that for

alarm losses higher than 10%, the codebook scheme yields higher percentage of false

positive rates as network sizes get larger (more than 0.07% false positive rate for

networks of size 50). This is due to the fact that the number of potential network failures

increases as the complexity of the network increases. It becomes difficult for the

codebook scheme to differentiate between network failures that have close similarity of

code signals. With high rate of missing crucial alarms, it may include non-existent

network failures in their explanation hypotheses. Though the increase of the alarm loss

ratio negatively affects the false positive rate of the proposed algorithm, it still yields

better false positive rates than those of the codebook scheme.

8.4.4 Results by the Adaptive Alarm Correlation Algorithm

In this section we investigate the performance and the accuracy of the adaptive fuzzy

DSET-based algorithm. As has been pointed out in Chapter 7 the DSET-based does

account for the positive symptoms in the process of fault identification. The fact that fault

hypothesis’s relevant network alarms have not been observed should decrease our

confidence in the occurrence of that hypothesis. We have utilized the simulation model

introduced in Section 8.4.4 and used the same obtained fault propagation models and

probability distributions. In this section, we have considered network alarms which have

not been observed in the previous simulation experiment as positive alarms. However, we

should not misinterpret lost negative alarms as positive alarms. The following additional

 167

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

Codebook scheme

DSET-based scheme

Figure 8.15: Failure positive rate of both algorithms with loss ratio 10%.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

Codebook scheme
DSET-based scheme

Figure 8.16: Failure positive rate of both algorithms with loss ratio 20%.

 168

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

Codebook scheme
DSET-based scheme

Figure 8.17: Failure positive rate of both algorithms with loss ratio 30%.

steps were added to the simulation process to account for the positive symptoms. For

each simulation case:

1. Based on the current fault propagation model, each intelligent constructs a fault

domain for each performance failure.

2. The set of symptoms that has not been observed by intelligent agents is referred to

by the set
k

iF

k

i

k

iR kAAA −= . Where k

i
A is the set of all possible observed alarms

and
k

iF
kA is the set of the actually observed symptoms resulted from the introduced

performance failures.

3. Using the k

a
P−1 , we randomly generate a subset

k

iR

k

ipos
AA ⊆ of positive alarms

from the set k

iR
A . Where k

a
P as defined above.

 169

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

4. Using the fuzzy inference mechanism introduce in section 7.2, each intelligent

agent calculates its local fuzzy composite alarm

We use the fault detection rate as an accuracy measure as described in the previous

section. The results are shown in Fig. 8.18, Fig. 8.19, and Fig. 8.20, for 10%, 20%, and

30% alarm losses, respectively. The average fault detection accuracies of the adaptive

scheme is compared with DSET-based and codebook-based algorithms and shown in

Tables 8.6, 8.7, and 8.8. Simple investigation of the provided tables shows clearly that the

fault detection rate has substantially improved. However, as the number of observed

negative alarms increase the three algorithms tend to provide comparable fault detection

accuracies. Intelligent agents in the adaptive-based scheme cooperate more effectively to

reach a final decision. As different intelligent agents may have different weights their

contributions to the fault identification task are based on how many negative and positive

alarms have individually been received. The weight factor is based on the discounting

factor as defined in Equation (7.25) and implemented as follows:

FHFH

FHBFH

F

BH
k

comp

k

comp

k

minmax

min)(

||log

)(

2

0
−

−

××= αα

Where FHmax and FHmin denote respectively the maximum and minimum of

hybrid entropies among the intelligent agents and is the maximum Shannon entropy [51].

We empirically set the value of 0α to 0.15 to stand as an upper bound for the discounting

factor. Hence, the advantage of the adaptive scheme over both DSET and codebook

based schemes is that the positive symptoms are incorporated in the fault identification

process.

 170

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme
DSET-based scheme
Adaptive DSET-based scheme

Figure 8.18: Failure detection rate of all algorithms with loss ratio 10%.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme
DSET-based scheme
Adaptive DSET-based scheme

Figure 8.19: Failure detection rate of all algorithms with loss ratio 20%.

 171

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Network size

D
e
te

c
ti
o
n
 r
a
te

 %

Codebook scheme

DSET-based scheme
Adpative DSET-based scheme

Figure 8.20: Failure detection rate of all algorithms with loss ratio 30%.

In some cases the detection accuracy of the adaptive scheme increases by 8%

more than that of the codebook scheme and 5% of that DSET-based scheme for the 20%

alarm loss. This is quite improvement since small networks with alarm loss of 20% can

be considered as poorly instrumented networks (networks with fewer triggered

symptoms). With this level of instrumentation, positive symptoms can play an important

role in increasing the accuracy of fault identification tasks. Of course one can argue that

this accuracy improvement may be achieved, however, the overall run-time of the fault

identification is also increased. This tradeoff between accuracy and performance is an

inherent characteristic of network management systems.

 172

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

Table 8.6: Accuracy averages of the three algorithms for alarm loss 10%

Network size 5 10 15 20 25 30 35 40 45 50

Codebook Algorithm 0.86 0.87 0.88 0.89 0.89 0.91 0.90 0.91 0.91 0.93

DSET-based

Algorithm

0.89 0.90 0.89 0.91 0.92 0.94 0.93 0.94 0.93 0.94

Adaptive DSET-based

Algorithm

0.94 0.93 0.92 0.94 0.95 0.96 0.95 0.95 0.95 0.95

Table 8.7: Accuracy averages of the three algorithms for alarm loss 20%

Network size 5 10 15 20 25 30 35 40 45 50

Codebook Algorithm 0.81 0.81 0.82 0.83 0.83 0.85 0.86 0.88 0.89 0.90

DSET-based

Algorithm

0.85 0.86 0.86 0.87 0.88 0.88 0.89 0.91 0.92 0.92

Adaptive DSET-based

Algorithm

0.89 0.90 0.89 0.90 0.90 0.91 0.90 0.92 0.94 0.93

Table 8.8: Accuracy averages of the three algorithms for alarm loss 30%

Network size 5 10 15 20 25 30 35 40 45 50

Codebook Algorithm 0.78 0.79 0.80 0.80 0.81 0.83 0.84 0.86 0.88 0.89

DSET-based

Algorithm

0.81 0.83 0.84 0.84 0.85 0.87 0.89 0.90 0.90 0.91

Adaptive DSET-based

Algorithm

0.86 0.87 0.88 0.87 0.88 0.89 0.91 0.91 0.91 0.92

 173

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

As shown in Fig. 8.21, Fig. 8.22, Fig. 8.23, the false positive rates are also improved by

0.01% for the alarm loss rates of 10% and 20% ratios and by 0.02% for the alarm loss

ratio 30%. On average the adaptive alarm correlation scheme has 0.02%, 0.025%, and

0.03% false positive rates for the alarm loss rates of 10%, 20%, and 30%, respectively.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

%

Codebook scheme
DSET-based scheme
Adpative DSET-based scheme

Figure 8.21: False positive rate of all algorithms with loss ratio 10%.

 174

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

%

Codebook scheme
DSET-based scheme
Adpative DSET-based scheme

 Figure 8.22: False positive rate of all algorithms with loss ratio 20%.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

%

Codebook scheme
DSET-based scheme
Adpative DSET-based scheme

Figure 8.23: Failure positive rate of all algorithms with loss ratio 30%.

 175

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS .

8.5 Summary

In this chapter, we have conducted extensive experimentations to examine the accuracy

and efficiency of the proposed algorithms in the field of computer network fault

management. For the active-based algorithms, the new CSP-based approaches always

provide less testing probes that is capable of detecting and identifying observed network

failures. The proposed DSET-based alarm correlation algorithms outperform the

codebook-based approach (which considered as one of the most widely recognizable

alarm correlation approaches) in terms of the fault identification accuracy as well as false

positive rates. A cased study of building a fault propagation model (a pre-request for the

new approaches) of the campus network of the University of Waterloo is also presented.

 176

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The problem of fault detection and identification in computer networks is an interesting

and a challenging one. The hierarchal nature of computer networks makes it possible that

a failure in a single network entity may spread vertically and horizontally and affect

multiple dependent entities that may otherwise just work perfectly. In a response to such

failure, the affected entities send notification messages to their assigned manager in the

form of alarms, trouble tickets, etc. In order to isolate the main cause of this failure,

some fault management systems correlate these diagnostic messages. Other fault

management systems use specific measurements, called probes, on a subset of network

entities. The probe-based fault management systems send these probes to the managed

network on a periodical basis and analyze their outcomes. Since each model has its own

merits and shortcomings we have investigated new approaches for both paradigms in this

dissertation. The main contributions of the work presented in this dissertation include the

following:

 177

CHAPTER 9. CONCLUSION AND FUTURE WORK .

• A novel-model for the probe selection is developed. The new constraint

satisfaction problem (CSP)-based model presents well-developed domain

reduction rules that are used by the search engine to reduce the search space and

speed up the model convergence.

• An adaptive novel-fuzzy CSP technique is presented to refine the available testing

probes and select the most informative among them. Instead of crisp constraints

that may not be fully satisfied by certain probes, fuzzy constraints are introduced.

Candidate probes that satisfy the fuzzy constraints the most are selected. In the

beginning, only a few of such probes are sent to the network for fault detection

tasks. The outcome of each fault detection probe is then utilized to either identify

the network failure or select more probes.

• A new distributed alarm correlation algorithm is proposed. The managed network

is divided logically into a cluster of disjoint management domains. Each

management domain is assigned an intelligent agent that is responsible for

collecting alarms emitted by entities in its domain. The reasoning engine of the

intelligent agent is based on the Dempster-Shafer Evidence Theory (DSET). In

the framework of the DSET, these alarms are considered as pieces of evidence.

An evidence structure for each received alarm is constructed based on the

posterior probability calculated for each fault hypothesis using the Pearl’s

updating belief algorithm. Intelligent agents then send their findings in the form

of new local composite alarms to a higher level manager called the agent

manager. The agent manager combines the new alarms using the Dempster’s rule

of combination.

• An adaptive distributed alarm correlation algorithm is presented. A fuzzy

evidence structure is constructed for each alarm cluster observed by an intelligent

agent. The intelligent agent utilizes its knowledge of network failure domains,

presented by fault propagation models, and assigns weights for each fault

hypothesis in the fuzzy focal. Alarms that were not observed by intelligent agent

are called positive alarms. The membership degree for each fault hypothesis in a

 178

CHAPTER 9. CONCLUSION AND FUTURE WORK .

given fuzzy focal is determined by both positive and negative network alarms in

that fault domain. The fuzzy inference mechanism is based on the premise that the

absence of observations of network alarms of a given network failure should

decrease our confidence in the occurrence of that network failure. The agent

manager that correlates the evidence structures provided by its subordinate agents

assigns each intelligent agent a certain weigh and fuses its evidence piece

accordingly.

Table 9.1 summarizes the main features of the proposed algorithms. In the table,

DAC stands for distributed alarm correlation and ADAC stands for adaptive, distributed

alarm correlation. The distributed alarm correlation algorithms are reactive in the sense

that they do not start their fault analysis process until they receive malfunctioning

indications from the managed network. Hence, they do not induce extra management

traffic. This of course implies that they may not be able to anticipate network failures in

advance. Being active, on the other hand, the CSP-based algorithms can predict potential

network failures before their actual occurrence and quickly identify the root cause.

However, this may entail some traffic overhead in terms of probes. Moreover, both CSP-

based algorithms are deterministic in nature. That is, the outcome of a given probe is

completely characterized by the health status of the network entities in its path. Thus,

they are more sensitive to noise than the alarm correlation algorithms.

Table 9.1: Main features of the proposed algorithms.

Algorithm CSP-Based Fuzzy CSP-Based DAC ADAC

Fault analysis

mechanism

Active Active Reactive Reactive

Nature of the

algorithm

deterministic deterministic Non-

deterministic

Non-

deterministic

Scalability Yes Yes Yes Yes

Multiple-fault

scenario

No No Yes Yes

 179

CHAPTER 9. CONCLUSION AND FUTURE WORK .

In summary, form a theoretic development standpoint, to the best of our knowledge, this

dissertation has presented the first effort in the following aspects: 1) propose the new

CSP model for active probe selection and introduce new domain reduction rules for the

search engine; 2) present new fuzzy CSP model for adaptive probe selection; 3) utilize

fault propagation models to build evidence structures and exploit positive and negative

symptoms observed by the management system; 4) introduce the Dempster-Shafer

evidence theory as a framework for network alarm correlation mechanism; 5) develop the

adaptive alarm correlation reasoning algorithm in the fuzzy evidential reasoning

framework, with the capability of discounting less informed intelligent agents during the

correlation process.

9.2 Future Work

One of the interesting suggestions is to investigate the use of a hybrid approach in which

network alarms can be considered as probing tests. Since each received network alarm is

an indication of the possible occurrence of certain network failures, we may conclude that

the network entities in the received network alarm are working properly and should not

be deemed suspected nodes. Furthermore, a hyper-arc consistency algorithm may be

investigated for both the standard and the fuzzy CSP-models. As has been demonstrated

throughout this work, fault propagation models play an important role in most of the

network alarm correlations reported in the literature. However, an automatic mechanism

by which such fault models can be extracted form current network configurations has not

by which such fault models can be extracted form current network configurations has not

been subjected to extensive study. Such tools can be very helpful in the dynamic

environment of computer networks, where current configurations may change frequently.

Besides the issues studied in this dissertation, in the field of network fault

management, the following two areas can be considered as open research problems:

• Temporal alarm correlation,

• FPM for wireless networks.

 180

CHAPTER 9. CONCLUSION AND FUTURE WORK .

Temporal correlation is recognized as one of the important aspects of alarm correlation

systems. In this research work, we have assumed that the received alarms are observed a

short time after the fault occurrence, and as such, only those occurring within a time-

window may be correlated. However, the proposed algorithms can be modified to

incorporate temporal information such as the arrival, between arrival, and time duration

in the alarm correlation process. Wireless networks introduce new challenges to the

network fault management field. Obtaining an accurate and constantly updated fault

propagation models prove to be a challenging task in a mobile wireless environment.

Hence, advanced techniques should be investigated through which such models can be

obtained.

 181

APPENDICES

 182

Appendix A

MODEL: Event Modeling Language

This summary review has been extracted from [38].

A.1 Overview

Event modeling is an essential component of event correlation systems. Event correlation

is the process of automatically grouping related events based on their underlying common

cause. An event correlation system consists of two basic components: an event definition

and propagation model (i.e., event model), and a reasoning algorithm. The event model

describes the underlying system. The reasoning algorithm correlate events based on the

knowledge contained in the event propagation model. The MODEL language is basically

the event modeling component of SMARTS InCharge. The features of the language will

be demonstrated through examples from the multimedia Quality of Service (QoS)

domain. MODEL language supplies an object-oriented data model complete with

inheritance and overloading. It also provides instrumentation capabilities to automatically

tie attributes in the model to SNMP MIB variables. Boolean expressions are used for a

declarative specification of events. The user can specify local event propagation rules in

which the causality graph can be constructed from the combination of the class-level

event propagation model and the current object topology. Event propagation patterns

depend heavily on the way in which objects are currently interconnected. Changing the

 183

Appendix A – MODEL: Event Modeling Language .

topology of the modeled objects will drastically alter of the observed symptoms of a

problem. One of the most desirable features of the MODEL language is that it is

correlation algorithm independent.

A.2 Multimedia Quality of Service (QoS) Domian

A scenario from the Multimedia Quality of Service (QoS) domain is illustrated in Fig.

A.1. On the local area network 2 (LAN 2) a video sender wishes to send some live video

to a receiver located on LAN 1 using a specific video tool that utilizes the UDP transport

protocol. The UDP connection transports IP packets through routers D, C, B, and A

Figure A.1: Multimedia over a multi-domain network.

which connect the LAN domains through a router backbone. The router backbone

domain uses physical-layer wide-area network (WAN) domains. Similarly, an audio

 184

Appendix A – MODEL: Event Modeling Language .

sender, Internet phone, on LAN4 wishes communicate with a receiver on LAN3, using a

specific audio-tool. Its IP packets are routed via F, C, B, and E. These transmissions

cause the rate of packets arriving at C to be high. Consequently, the buffer at C

overflows, causing the multimedia transmission to lose packets. The packet losses at

router C will propagate to all UDP connections which router C is a part of. Since UDP

does not retransmit lost packets, these losses will in turn propagate to the multimedia

transmissions and hence the quality ate the receiver may become unacceptable.

 The event model consists of a class-level model and a run-time object topology.

The class-level model describes the general rules for propagating events from objects of

one class to another. For the scenario described above, the class-level event model

consists of the following: a definition of the “poor video quality” event, and a rule

describing the propagation of router congestion to packet loss and then to poor video

quality, and optionally a “high packet loss” event at the router level. While the object

topology describes a particular instantiation of the run time model which reflects the

current state of the actual system. For the above scenario, the object topology consists of

the individual routers and multimedia applications and their relationship in the underlying

network. A reasoning algorithm would infer the presence of the congestion problem

based on the poor video and audio quality and the event model illustrated.

A.2 QoS Management

Consider the following scenario. Due to high traffic volume, router C experiences

congestion. As a consequence, its buffers overflow and incoming IP packets get lost. The

audio and video receivers experience QoS violation (an average transmission rate that is

drastically below tolerance). Using the knowledge provided by the corresponding model,

a correlation reasoning algorithm should report a high probability that the problem

causing these violations is located in the domain of the router backbone. To implement

the causal relationship (congestion causing lost packets), we assume the router

implements the IP protocol and is instrumented via SNMP. We can then measure the total

number of discarded packets by querying the SNMP MIB-II variables ipOutDiscards and

 185

Appendix A – MODEL: Event Modeling Language .

ipInDiscards:

 interface IPRouter: IP

{

 instrumented attribute long ipInDiscards;

 instrumented attribute long ipOutDiscards;

 instrumented long discardsThreshold;

 event PacketDiscardsHigh “The level of discarded packets is high” =

 (delta ipInDiscards + delta ipOutDiscards) / delta _time >

 discardsThreshold;

 instrurment SNMP;

 }

The attribute statements define measurable properties of the IP protocol entity. The event

statement defines the circumstance under which the event can be said to have occurred.

In this case, the event PacketDiscardHigh will be deemed to have occurred whenever the

sum of the changes ipInDiscards and ipOutDiscards per time exceeds a threshold. The

delta keyword indicates that the difference between the new and old values of the

attribute is desired. The _time keyword refers to the time at which samples are taken.

Thus this event is triggered when the discard rate reaches the threshold.

 Now we want to express the fact that there is a causal relationship between the

congestion problem and the high packet discard event (with probability 1.0):

 problem Congestion “High congestion’ = PacketDiscardsHigh 1.0;

This line will be added to the MODEL class definition above. Note that this is a

semantic declaration in the form of a rule; however, it does not have any specific

algorithmic or operational meaning. It simply expresses the fact that there is a causal

relationship between these two events. To include the problem and the symptom in the

 186

Appendix A – MODEL: Event Modeling Language .

scope of a single class, we should write the following rule:

Congestion (IPRouter(x)) -> PacketDsicardsHigh (IPRouter(x));

We have modeled the local symptom which indicates the problem of congestion. We also

like to relate the problem to the other observed symptoms at the multimedia application

level. In this way, anomalies observed at the multimedia level can be correlated with the

problem detected at lower level.

 Problems in one object propagate to related objects via relationships. In this

example, the congestion problem would propagate to higher level connections which are

layered over the congested IP node. To indicate this relationship between IP nodes and

connections, we would the following statement:

relationshipset Underlying, TransportConn, LayerdOever;

The keyword relationshipset indicates that many connections may be layered over

a single IP node. Now we want to express the fact that the congestion problem causes

both the local symptom PcketDiscardHigh, and propagates those discards as losses in the

higher level connection:

problem Congestion “High congestion” =

 PacktDiscardsHigh 1.0, connectionPacketLossHigh 0.8;

propagate symptom ConnectionPacketLossHigh =

 TransportConn, Uncerlying, PacketLossHigh;

We have added the symptom ConnectionPacketLossHigh to Congestion problem

with a causal probability of 0.8, where a value of 1.0 indicates complete certainty. This

indicates that the congestion at the IP node may not cause packet losses on all

 187

Appendix A – MODEL: Event Modeling Language .

connections above it, depending on the circumstance surrounding the congestion. We

would not want to rule out congestion simply because a single connection which is

layered over the node is not experiencing problems.

The propagate symptom statement says that the symptom

ConnectionPacketLossHigh refers to an event in a ralted obect, namely the event

PacketLossHigh in any TransportConn which layered over this IP node. The MODEL

code that propagates the problem to its observable symptom in the multimedia layer can

be presented as follows:

interface TransportConn

{

 propagate symptom PacketLossHigh =

 Port, ConnectedTo, PacketLossHigh;

}

interface UDPPort: Port

{

 propagate symptom PacketLossHigh =

 Appl, Underlying, PacketLossHigh;

}

{

interface MM_InPort: Appl

{

 instrumented attribute long MinRate;

instrumented attribute long MaxRate;

instrumented attribute long MsgCounter;

instrumented attribute long ActTime;

computed attribute ActualRate = (MsgCounter)/(_time – ActTime);

event BadRate = (MinRate > ActualRate) || (_time – ActTime);

 188

Appendix A – MODEL: Event Modeling Language .

problem PacketLossHigh = BadRate 1.0;

}

 Note that a Transportconn simply propagates the packet loss to the ports to which

it is connected; a UDP port (which, being a subclass of Port, inherits from Ports) in turn

propagates the packet losses to Applications which are LayeredOver the port. For

simplicity, the relationships which are utilized for this propagation, ConnectedTo and

Underlying, are not defined here. Typically they would be inherited from generic link and

node classes in the Netmate hierarchy, which is described later.

 The multimedia receive port, MM_InPort, is a subclass of Appl. Therefore, it

receives, via inheritance, the PacketLoss symptom form the UDP_Port which it is

layeredOver. The PacketLossHigh event in the MM_InPort has a single locally defined

symptom, thus we again utilize the problem statement to define its symptom. In this

case, PacketLossHigh causes the observable symptom BadRate, which indicates the

reception rate is out of tolerance. Since this symptom is observable, it is defined using the

event statement and an expression to detect the symptom.

 The MODEL language can also express the one-to-many relationships. For

example, suppose that there were many multimedia connections over the same congested

router (possible causing the congestion). In this case, there will be many UDP

connections (subclass of TransportConn) layered over the single IP object. The

congestion problem may cause symptoms in any or all of the connections which are

layered over the IP object.

A.3 Class Libraries in MODEL

In MODEL development, a three stage modeling process works best. In the first stage, a

generic library of networking classes is used to define the basic relationship between

objects in any modeled system. This set of classes is called the Netmate hierarchy is

depicted in Fig. A.2.

 189

Appendix A – MODEL: Event Modeling Language .

Figure A.2: Netmate calss hierarch.

The next stage consists of data modeling. Data modeling involves deriving domain

specific classes from the Netmate classes and adding the appropriate attribute and

instrumentation statements to produce an accurate data model of the domain. The third

stage involves adding the actual event propagation information to the model, either

directly into the second stage data model, or into subclasses of this model. At this stage, it

may be necessary to add additional relationship and attributes to the data model, if it is

seen that event propagation occurs over relationship that were not contemplated in the

Netmate model., or that important events can not monitored in the original data model.

 Using this methodology, a Multimedia QoS management library can be

developed. Fig. A.3 illustrates the class hierarch of the Multimedia library. The “root”

node is actually the resource class of the Netmate class library. The attributes of classes

in the library are instrumented via the OoSMIB, which provides quality of service metrics

 190

Appendix A – MODEL: Event Modeling Language .

that are important to diagnosing problems in the multimedia domain.

Figure A.3: Multimedia Class Hierarchy.

 191

Appendix B

Belief Updating Algorithm

This appendix presents Pearl’s belief updating algorithm. Pearl’s algorithm is distributed

in nature. Each node (RV) in the Bayesian network is considered as an individual

processor. The network nodes are expected to perform local computations and

communicate their results only to their neighboring nodes. A typical of a singly

connected Bayesian network is shown in Fig. B.1. The messages to be passed between

neighboring nodes are also illustrated. As shown in this figure, node X has n

parents
n

UU ,...,1 , m children,
m

YY ,...,1 . The conditional probability),...,|(1 n
uuxP

quantitatively relates the node X to its parents.

 Let −

XYj
W denote the evidence contained in the sub-network on the head side of the

arc
j

YX → , and +

UiX
W denote the evidence on the tail side of the arc XU

i
→ . The total

evidence is given by },,{ +−

=
XX

WWW where },...,{ 1

−−−

=
XYmXYX

WWW and

},...,{ 1

+++

=
UmXXUX

WWW . Note that for singly connected networks, all −

XYi
W and +

UiX
W are

disjoint.

 In Fig. B.1, the π message

)|()(+

=
UiXii

WuPuxπ (B.1)

 192

Appendix B – Belief Updating Algorithm .

is the current strength of the causal support contributed by incoming arc XU
i

→ , and

the λ message

)|()(xWPx
XYjYj

−

=λ (B.2)

is the current strength of the diagnostic support contributed by each outgoing arc

j
YX → .

)(
jx

Uπ

)(X
Yi

λ

Figure B.1: A typical node X in a Bayesian network.

Pearl’s belief updating algorithm [39]

A node X is activated when it receives the π messages from its parents, λ the messages

from its children, or node itself is instantiated for a specific value x. Upon activation, X

performs the following steps in any order.

Step 1: Belief updating. The node X updates its belief measure to

)()()(xxxb παλ= (B.3)

 193

Appendix B – Belief Updating Algorithm .

If X is not instantiated, the)(xλ and)(xπ messages can be calculated by:

∏=

j

Yj
xx)()(λλ (B.4)

∏∑=

i

ix

uu

n
uuuxPx

n

)(),...,|()(
,...,

1

1

ππ (B.5)

 Otherwise, if X is instantiated for x,

1)()(== xx πλ (B.6)

or if X is instantiated but not for x,

 0)()(== xx πλ (B.7)

α is a normalizing constant rendering ∑ =
X

xb 1)(.

 Note that (B.3)-(B.7) implies that 1)(=xb if X is instantiated with value x and 0 if

X is instantiated with values other than x.

Step 2: Bottom-up propagation. The node X computes new λ messages and posts

them to its parents:

∑ ∏∑
≠ ≠

=

iku ik

kn

x

iX

k

uuuxpxu

:

1)(),...,|()()(πλλ (B.8)

Step 3: Top-down propagation. The node X computes new π messages and posts

them to its children. If X is not instantiated, then

)()()(xxbx
YjYj

λπ = (B.9)

Otherwise, if X is instantiated for x,

 1)(=x
Yj

π (B.10)

or if X is instantiated but not for x,

0)(=x
Yj

π (B.11)

This algorithm needs to be initialized by the following procedures:

 194

Appendix B – Belief Updating Algorithm .

1. Set all λ values, λ messages, and π messages to 1.

2. For all roots U, set)()(uPu =π .

3. For all roots U and all children X of U, the node U posts new messages to X. If U

is not instantiated:

)()(uPu
x

=π (B.12)

 Otherwise, if U is instantiated for u, then

 1)(=u
x

π (B.13)

or if U is instantiated but not for u, then

 0)(=u
x

π (B.14)

 Initially, when no evidence is available, the probability distribution embedded in

the Bayesian network is in equilibrium. Upon the instantiation of a node (i.e., the arrival

of a new piece of evidence), the equilibrium state is broken. In order, for the network to

enter a new equilibrium state (i.e., the belief functions converge to their true values), the

number of belief updates to be performed by each node is proportional to the diameter of

the Bayesian network [39].

195

Appendix C

Simulation Software

This summary review outlines the simulation software which has been used to generate

random network topologies of different sizes and create probabilistic fault propagation

models for each obtained network topology.

C.1 Class Libraries

The main classes of the simulation model are shown in Fig. C1. It basically consists of

three classes namely, Components, Network, and Manager. The Components class

defines the network physical entities (such as routers and switches) and logical entities

(such as TCP connections) that comprise the managed network. The Network class

defines the link connectivity among the network physical entities and each path two

network nodes may use to exchange data utilizing certain routing algorithms. The

Manager class defines the responsibilities of the network manager including obtaining

fault propagation model for the current network configuration, assigning prior

probabilities, analyzing received alarms, etc. The relationship between the Network class

and the Components class is one-to-many as a single network topology may contain

random number of network components. However, a network may have only one

manager; thus, the relationship between the Network class and the Manager class is one-

to-one. In the following, a summary of the main functions of each class is presented.

 196

Appendix C – Simulation Software____ _________ .

Figure C.1: The main classes of the simulation software.

C.2 The Components Class

Since we only consider problems in lower layers and the network topology is tree-shaped,

the instances of the network Components class are restricted to the physical entities in the

second protocol stack, namely bridges. Therefore, we use the following Bridge class to

implement the Components class. The bridges will exchange configuration messages

which have the following form:

struct Message

{

 int root;

 int cost;

 int transmitter;

 int port;

 Message (int id = 0) :root(id), cost(0), transmitter(id), port(0)

 { }

Components

Physical Logical

Network

Manager

 197

Appendix C – Simulation Software____ _________ .

 };

The bridge class presents the following basic public functions which its instants need to

communicate with each other:

class Bridge

{

 private:

 Message config;

 public:

 Bridge (int id = 0, int co = 0, int trn = 0, int po = 0)

 {

 config.root = id;

 config.cost = co;

 config.transmitter = id;

 config.port = po;

 }

 void set (Message msg)

 {

 config.root = msg.root;

 config.cost = msg.cost;

 config.transmitter = msg.transmitter;

 config.port = msg.port;

 }

 void send(Message);

 Message getConfigM()

 { return config; }

 void showConfig() const

 {

 198

Appendix C – Simulation Software____ _________ .

 cout<<"\nRoot ID Cost Transmitter Port\n";

 cout<<"---\n";

cout<<setw(5)<<config.root<<setw(10)<<config.cost<<setw(15)<<config.transmitter

<<setw(20)<< config.port;

 cout<<endl;

 }

};

The bridges exchange these configuration messages among themselves and modify their

parameters based on the spanning routing protocol until they reach a stabilized state.

Hence, each bridge is expected to send and receive these messages to and from its

neighbors using the send() function. The send() function is implemented as follows:

void Bridge::send(Message msg)

 {

 if (config.root > msg.root)

 {

 config.root = msg.root;

 config.cost = msg.cost+1;

 config.port = msg.transmitter;

 }

 else if (config.root == msg.root && config.cost > msg.cost)

 {

 config.root = msg.root;

 config.cost = msg.cost+1;

 config.port = msg.transmitter;

 }

 }

 199

Appendix C – Simulation Software____ _________ .

C.2 The Network Class

The following Network class encapsulates the dynamic behavior of the simulation

algorithm:

class Network

{

protected:

 Bridge Bridges[MAX];

 Message msg[MAX];

 Host Hosts[MAX][MAX];

 int CONN;

 int Top[MAX][MAX];

 int nodeID[MAX];

 void initializeTop();

 void generateTop();

 void initializeBridges();

 bool randPerm(int start, int end, int range, int* result);

 void printToplogy1(int [][MAX]);

 void run();

public:

 Network()

 { run(); }

 void printToplogy();

 void printNodeID() const;

 void printRoutingTable() const;

};

Due to the limited space, we will only focus on the most important functions provided by

the Network class and ignore the less important ones. The topology of the generated

 200

Appendix C – Simulation Software____ _________ .

network is stored in the private variable, Top[MAX][MAX]. The MAX constant refers to

the network size, i.e., MAX=n. The network class constructor contains the function

run(), which is basically an initialization function and is described as follows:

void Network:: run()

{

 randPerm(10, 1000, MAX, nodeID);

 generateTop();

 initializeBridges();

 initializeHosts();

 }

Each node in the generated network is assigned an ID which stands for its hard

coded Ethernet address. One of the most important tasks of the class constructor is to run

the generatTop() function which actually creates a random network topology, given the

network size n (MAX) as follows:

void Network::generateTop()

{

 initializeTop();

 int connect[MAX];

 // CONN is the degree of Network Connectivity; CONN = N network is fully

 //connected. As CONN decreases, the network becomes less conncetd, however,

 //CONN should never be equal to zero (i.e., the network is completely not

 // connected).

 CONN = MAX % 2;

 if (CONN == 0) CONN = MAX/2;

 else CONN = (MAX+1)/2;

 //--

 // Generate random network topology

 201

Appendix C – Simulation Software____ _________ .

 for (int j=0; j<MAX; j++)

 {

 for (int i=j+1; j<MAX; j++)

 {

 randPerm(0, MAX, MAX, connect);

 for (int k=0; k<CONN; k++)

 {

 if (connect[k] >=i)

 {

 Top[j][connect[k]]=1;

 Top[connect[k]][j]=1;

 }

 }

 }

 }

 }

The degree of connectivity of the generated network may be ranged from full

connectivity (i.e.; each node in the network is connected to every other node) to a partial

connectivity.

C.3 The Manager Class

The main functions of the Manager class are to set the hosts and run the spanning routing

algorithm if any change occurs in the network configuration.

class Manager

{

protected:

 int Manager_ID;

 int spannigTree[MAX][MAX];

 202

Appendix C – Simulation Software____ _________ .

 void setSpanningTree();

 void initSpanningTree();

 void printSpanningTree();

 void runBridges();

 void setHosts();

 void showHosts();

 void run();

public:

 Manager()

 { run(); }

 };

The constructor function of the Manager class is defined as follows:

void Manager:: run()

{

runBridges();

 setSpanningTree();

 setHosts();

 initializeHosts();

 }

The dynamic of the spanning tree routing protocol, shown below, is based on the

algorithm proposed in [47], which is widely regarded as the industry standard of the data

link layer routing protocol. The bridges of a given network are first initialized with

random Ethernet addresses; however, they are assigned an identical rout cost. The

network manager may activate the spanning tree algorithm on the network bridges at any

time by simply invoking the function runBridges() :

 203

Appendix C – Simulation Software____ _________ .

void Manager::runBridges()

{

 for (int k =0; k<MAX; k++)

 {

 for (int i = 0; i<MAX; i++)

 {

 for (int j = 0; j<MAX; j++)

 {

 if (i != j && Top[i][j] != 0)

 {

 Bridges[i].send(Bridges[j].getConfigM());

 Bridges[j].send(Bridges[i].getConfigM());

 }

 }

 }

 }

 }

The outcome of the previous exchange of messages among network bridges

determines the tree-shaped topology of the generated network. Based on the information

stored in network bridges after running the spanning tree algorithm the new topology is

formed as follows:

void Manager::setSpanningTree()

{

 initSpanningTree();

 Message msg1;

 for (int i = 0; i<MAX; i++)

 {

 int nodeIndex =MAX ;

 204

Appendix C – Simulation Software____ _________ .

 msg1 = Bridges[i].getConfigM();

 for (int k = 0; k<MAX; k++)

 {

 if (nodeID[k] == msg1.port) nodeIndex = k;

 }

 if (nodeIndex != MAX)

 spannigTree[i][nodeIndex] = 1;

 else spannigTree[i][i] = 0;

 }

 for (int i=0; i<MAX; i++)

 for (int j=0; j<MAX; j++)

 if (spannigTree[i][j] == 1) spannigTree[j][i] = 1;

}

The generated tree-shaped network topology is stored in the SapanningTree private

variable.

205

Bibliography

[1] M. Brodie, I. Rish, S. Ma, Optimizing probe selection for fault localization, In

the 12
th
 International Workshop on Distributed Systems Operations Management,

2001.

[2] M. Brodie, I. Rish, S. Ma, G, Grabarnik, N. Odintsova, Active probing, Technical

 Report IBM, 2002.

[3] M. Natu, A. S. Sethi, Active probing approach for fault localization in computer

 network”, In E2EMON’06, Vancouver, Canada, 2006.

[4] M. Natu, A. S. Sethi, Efficient probing techniques for fault diagnosis, Second

 International Conference on Internet Monitoring and Protection, IEEE, 2007.

[5] M. Brodie, I. Rish, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik,

 K. Hernandez, Adaptive diagnosis in distributed systems, Technical Report IBM,

 2002.

[6] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie, High speed and

 robust event correlation, IEEE communications Magazine 34 (5) (1996) 82-90.

[7] R. Gardner, D. Harle, Alarm correlation and network fault resolution using

 Kohonen Self-Organizing map, Globecom 97 proceedings, pp. 1398-1402, 1997.

 206

Bibliography .

[8] A. T. Bouloutas, G. W. Hart, M. Shwartz, Fault identification using a FSM

 model with unreliable partially observed data sequences, IEEE Transactions on

 Communications, 41(7):pp. 1074-1083, 1993.

[9] C. Wang, M. Schwartz, Identification of faulty links in dynamic-routed networks,

 IEEE Journal on Selected Areas in Communications,11 (3) 1449-1460, 1993.

[10] ISO, Information Processing Systems-OSI, ISO Standard 9596-1: Common

 management information protocol, part 1: Specification.

[11] Rajeev Gopal, Layered model for supporting fault isolation and recovery, in

 Proc. Of Network Operation and Management Symposium (72), pp. 729-742, 2000.

[12] W. Stallings, SNMP, SNMPv2 and CMIP: The practical Guide to Network

 Management Standards, Addison Wesley, Reading, MA, 1993.

[13] J. D. Case, K. McCloghrie, M. T. Rose, S. Waldbusser, Protocol operations

 for version 2 of the simple network management protocol (SNMPv2), IETF

 Network Working Group, RFC 1905, 1996.

[14] Z. Wang, Model of network faults, Integrated Network Management I, North-

 Holland, Amsterdam, 1989, pp. 345-352.

[15] A. T. Bouloutas, S. Calo, A. Finkel, Alarm correlation and fault identification in

 communication networks, IEEE Transaction on Communications, V. 42, pp. 523-

 533, 1994.

[16] R. Deng, A. Lazar, A probabilistic approach to fault diagnosis in linear lighwave

 networks, IEEE Journal on Selected Areas in Communications, V. 11, N. 9, 1438-

 1448, 1993.

 207

Bibliography .

[17] M. Steinder, A. Sethi, A survey of fault localization techniques in computer

 networks, Elsevier, Science of Computer Programming 53 (2004) 165-194.

[18] M. Steinder, A. Sethi, Probabilistic fault diagnosis in communication systems

 through incremental hypothesis updating, Elsevier, Computer Networks 45 (2004)

 537-562.

[19] P. Hong, P. Sen, Incorporating non-deterministic reasoning in managing

 heterogeneous network faults, Integrated Network Management II, 1991, pp. 481-

 492.

[20] M. Steinder, A. S. Sethi, Non-deterministic fault localization in communication

 systems using belief networks, IEEE/ACM Transactions on Networking, 2004.

[21] A. T. Bouloutas, S. Calo, A. Finkel, I. Katzela, Distributed fault identification in

 communication networks, Journal of Network and System Management, vol. 3, no. 3

 , 1995.

[22] I. Katzela , A. T. Bouloutas, S. Calo, A. Finkel, Centralized vs distributed fault

 localization, Inetegrated Network Management IV, 1995, pp. 250-261.

[23] G. Shafer, A mathematical theory of evidence, Princeton University Press,

 Princeton, NJ, 1976.

[24] C. S. Hood, C. Ji, Proactive network fault detection, IEEE Transaction on

 reliability, 46(3), 1997.

[25] C. Chao, D. Yang, A. Liu, A LAN fault diagnosis system, Computer

 Communications 24 (14), pp. 1439-1451, Elsevier Science B. V., 2001.

[26] I. Rouvellou, G. Hart, Automatic alarm correlation for fault identification, Proc.

 IEEE INFOCOM 95, the Con. On Computer Communications, 1995, 553-561.

 208

Bibliography .

[27] C. Wang, M. Schwartz, Fault detection with multiple observers, IEEE INFOCOM

 proceedings, pp.2187-2196, 1992.

[28] C. S. Li, R. Ramaswami, Fault detection and isolation in transparent all-optical

 networks, IBM research report, RC-220028, 1995.

[29] S. Rabie, D. Rau-Chaplin, T. Shibahara, DAD: a real-time expert system for

 monitoring of data packet networks, IEEE Network, pp. 29-34, 1988.

[30] T. E. Marques, A symptom-driven expert system for isolating and Correcting

 network faults, in Expert System Applications in Integrated Network Management

 (E. C. Ericson, L.T. Ericson, and Minoli, eds.), pp. 251-258, Artech Mouse, 1989.

[31] W. Fuller, Network management using expert diagnostics, International Journal

 of Network Management, 199-208, 1999.

[32] LI Jing-hua, XU Guang-hui , A new network Management framework design and

 application realization, Proceedings of the Sixth International Conference on

 Parallel and Distributed Computing, Applications, and Technologies, IEEE

 Computer Society, 2005.

[33] K. McCloghrie, M. Rose, Management information base for network management

 of TCP/IP-based internets: MIB-II, IETF Network Working Group, RFC 1213,1991.

[34] R. H. Deng, A. A. Lazar, W. Wang, A probabilistic approach to fault diagnosis in

 linear lightwave networks, Integrated Network Management III, Northern-Holland,

 Amsterdam, pp. 697-708 [36], 1993.

[35] P. Smyth, Markov monitoring with unknown states, IEEE Journal on Selected Areas

 in Communications 12 (9) 1600-1612, 1994.

[36] D. A. Ohsie, Modeled abductive inference for event management and correlation,

 209

Bibliography .

 Ph.D. dissertation, Columbia University, 1996.

[37] W. Tracxyk, Probes for fault localization in computer networks, Journal of

 Telecommunications and Information Technology, 2004.

[38] D. Ohsie, A. Mayer, S. Kliger, S. Yemini, Event modeling with the MODEL

 language, Integrated Network Management, Northern-Holland, Amsterdam [99].

 pp. 625-637.

[39] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible

 inference, Morgan Kaufmann Publisher, 1988.

[40] A. Mohamed, O. Basir, A new probing scheme for fault detection

 and identification, IEEE International Conference on Electro Technology, 2009.

[41] E. Freuder, Synthesizing constraint expressions, Communications of ACM 21,

 958-966, 1978.

[42] Y. C. Law, Using constraints to break value symmetries in constraint satisfaction

 problems, PhD Dissertation, The Chinese university of Hong Kong, 2005.

[43] Z. Ruttaky, Fuzzy constraint satisfaction, IEEE Conference on fuzzy systems,

 1994.

[44] A. Mohamed, O. Basir, A new fuzzy adaptive approach for fault identification

 in computer networks, accepted in the 10
th
 IASTED International Conference

 on Artificial Intelligence and Applications (AIA 2010), 2010.

[45] I. Katzela, M. Schwartz, Schemes for fault identification in communication

 networks, IEEE Transactions on Networking, 3, number 6, pages 733-764, 1995.

[46] M. Hassan, B. Sugla, R. Viswanathan, A conceptual framework for network

 210

Bibliography .

 management event correlation and filtering systems, IFIP/IEEE, pp. 233-246, 1999.

[47] A. Mohamed, O. Basir, Fusion based approach for distributed alarm

 correlation in computer networks, accepted in the International Conference on

 Communication Software and Networks (ICCSN 2010), 2010.

[48] H. Zhu, O. Basir, A scheme for constructing evidence structures in Dempster-Shafer

 evidence theory for data fusion, Proc. 5
th
 IEEE int. Symp. Computational

 Intelligence in Robotics and Automation, 2003.

[49] G. Jakobson, M. Weissman, Alarm correlation, IEEE Network, 52-59, 1993.

[50] H. Zhu, Data fusion using neuro-fuzzy embedded evidential reasoning, Ph.D.

 dissertation, University of Waterloo, 2004.

[51] A. Mohamed, O. Basir, An adaptive multi-agent approach for distributed alarm

 correlation and fault identification, accepted in the 9
th

 IASTED International

 Conference on Parallel and Distributed Computing and Networks (PDCN 2010),

 2010.

[52] E. Ekaette, B. Far, A framework for distributed fault management using intelligent

 software agents, Proc. IEEE Canadian Conf. on Elect. and Comp. Engineering, V. 2,

 pp. 797-800, 2003.

[53] L. Ho, S. Cavuto, S. Papayassiliou, A. G. Zawadzki, Adaptive anomaly

 detection in transaction-oriented networks, Journal of Network and Systems

 Management, V. 9, N. 2, pp. 139-160, 2001.

[54] B. L. Hitson, Knowledge-based monitoring and control: an approach to

 understanding the behavior of TCP/IP network protocols, ACM 0-89791-279-

 211

Bibliography .

 9/88/008/0210, 1988.

[55] D. Wu, Information exchange protocol: a new approach for future network

 management, Proc. IEEE Infocom Conf.: Network Management , pp. 546-552,

 1995.

[56] K. McCloghrie, M. Rose, Management information base for network management

 of TCP/IP-based internets: MIB-II, IETF Network Working Group, RFC 1213,

 1991.

[57] H. Tran, J. Shonwalder, Distributed cased-based reasoning for fault management,

 Springer-Verlag Berlin Heiderlberg, 2007.

[58] Marina Thottan, C. Ji, Properties of network faults, in IEEE/IFIP Networks

 Operations and Management Symposium, pp. 941-942, 2000.

[59] S. Kandula, D. Databi, J. Vasseur, Shrink: A tool for failure diagnosis in IP

 networks, Proc. MineNet Workshop at SIGCOMM ACM, 2005.

[60] T. Zhang, S. Covaci, The semantic of network management information, Proc.

 IEEE INFOCOM Conf. , 1996.

[61] T. Zhang, P. G. Tsigaridas, A Knowledge-based model for network service

 management, Proc. of the first IEEE Symposium on Global Data Networking, 1993.

[62] J. Choi, M Choi, S. H. Lee, An alarm correlation and fault identification scheme

 based on OSI managed object classes, 1999 IEEE International Conference on

 Communications, pp. 1547-51, 1999.

[63] C. C. Lo, S. H. Chen, Robust event correlation scheme for fault identification

 in communication networks, International Journal of Communication Systems, V.

 12, N. 3, 1998.

 212

Bibliography .

[64] N. Dawes, J. Altoft, B. Pagurek, Network diagnosis by reasoning in uncertain

 nested evidence spaces, IEEE Trans. Comm., V. 43, pp. 466-476, 1995.

[65] M. Albghdadi, B. Briley, M. Evens, R. Sukkar, M. Petiwala, M. Hamlen,

 A framework for event correlation in communication systems, Proc. of the

 IFIP/IEEE International Conference on Management of Multimedia Networks and

 Services, pp. 271–284, 2001.

[66] R. D. Gardner, D. A. Harle, Methods and systems for alarm correlation, Proc.

 of Globecom’96, pp. 136-140, 1996.

[67] T. Ndousse, T. Okuda, Computation intelligence for distributed fault management

 in networks using fuzzy cognitive maps, in Proc. IEEE ICC, pp. 1558-1562, 1996.

[68] J. L. Chen, P. Huang, A fuzzy expert system for network fault management, Proc.

 of IEEE International Conf. on Systems, Maintenance, and Cybernetics, V. 1, pp.

 328-331, 1996.

[69] M. Thottan, C Ji, Anomaly detection in IP networks, IEEE Trans. On Signal

 Processing, V. 51, pp. 2191-2204, 2003.

[70] E. Aboelela, C. Douligeris, Switching theory approach to alarm correlation in

 network management, 25
th

 IEEE International Conf. on Local Computer Networks,

 2000.

[71] M. Yu, W. Li, L. Chung, A practical scheme for MPLS fault monitoring and alarm

 correlation in backbone networks, Computer Networks, Elsevier, pp. 3024-3042,

 2005.

 213

Bibliography .

[72] L. Lewis, A case-based reasoning approach to the management of faults

 in communications networks, in Proc. IEEEINFOCOM, V. 3, pp. 1422-1429, 1993.

[73] L. Lewis, G. Dreo, Extending trouble ticket systems to fault diagnostics, IEEE

 Network, V. 7, pp. 44-51, 1993.

[74] L. Hua, X. Guang-hui, A new network management framework design and

 application realization, Sixth International Conference on Parallel and Distributed

 Computing, Applications, and Technologies, 2005.

[75] R. Stephan, P. Ray, N. Paramesh, Network management platform based on mobile

 agents, International Journal of Network Management, 14(1), pp. 59-73, 2004.

[76] C. Perng, D. Thoenen, G. Grabarnik, S. Ma, J. Hellerstein, Data-driven validation,

 completion, and construction of event relationship networks, Proc. of the Ninth

 ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining, pp.

 729-734, 2003.

[77] C. Chao, D. Yang, A. Liu, An automated fault diagnosis system using hierarchical

 reasoning and alarm correlation, Journal of Network and Systems Management,

 V. 9, N. 2, pp. 183-202, 2001.

[78] Y. Nygate, Event correlation using rule and object based techniques, in Integrated

 Network Management IV, A. S. Sethi, F. Faure-Vincent, Y. Raynaud, pp. 278-289,

 1995.

[79] R. Neapolitan, Probabilistic reasoning in expert systems: theory and algorithms,

 John Wiley and sons, Inc., New York, NY, 1990.

[80] Y. Breibart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, A. Silberschatz,

 214

Bibliography .

 Toplogy discovery in heterogeneous IP networks, In Proc. Of IEEE INFOCOM,

 pages 265-274, 2000.

[81] B. Gruschke, Integrated event management: Event correlation using dependency

 graphs, in Integrated Network Management IV, A. S. Sethi, F. Faure-Vincent, Y.

 Raynaud,, pp. 130-141, 1995.

[82] J. F. Jordan, M. E. Paterok, Event correlation in heterogeneous networks using the

 OSI management framework, in Proc. IFIP/IEEE Communications Society, pp. 683-

 695, 1993.

[83] S. Katker, A modeling framework for integrated distributed systems fault

 management, Proc. IFIP/IEEE Internet. Conf. on Distributed Platforms, pp. 187-

 198, 1996.

[84] S. Katker, K. Geihs, A generic model for fault isolation in integrated management

 systems, Journal of Network and Systems Management V. 5, N. 2, pp. 109-130

 1997.

[85] S. Katker, M. Paterok, Fault isolation and event correlation for integrated fault

 management, In: A. Lazar, R. Sarauo and R. Stadler, Editors, Integrated Network

 Management V, pp. 583-596, 1997.

[86] G. Liu, A. K. Mok, E. Yang, Composite events for network event correlation, in

 :M. Sloman, S. Mazumdar and E. Lupu, Editors, Integrated Network Management

 VI, IEEE, pp. 247-260, 1999.

[87] K. Appleby, G. Goldszmidt, M. Steinder, Yamanja-a layered event correlation

 engine for multi-domain server farms, IFIP/IEEE International Symposium on

 Integrated Network Management, 2001.

 215

Bibliography .

[88] A. Lazar, W. Wang, R. Deng, Models and algorithms for network fault detection

 an identification: a review, in Proc. IEEE International Contr. Conf., 1992.

[89] C. Chao, Y.Chen, A. Liu, Abnormal event detection for network flooding attacks,

 Journal of Information Science and Engineering, V. 20, pp. 1079-1091, 2004.

[90] M. Thottan, C. Ji, Proactive anomaly detection using distributed intelligent agents,

 IEEE Network, V. 12, pp. 21-27, 1998.

[91] Y. Yu, Q. Liu, L. Tan, A graph-based proactive fault identification in computer

 networks, Elsevier, Computer Communication, pages 366-378, 2005.

[92] Q. He, M. Shayman, Using reinforcement learning for proactive network fault

 management, Proc. of the International Conf. on Communication Technologies,

 2000.

[93] R. Maxion, Anomaly detection for diagnosis, in 20
th
 International Symposium on

 Fault-Tolerant Computing IEEE, 1990.

[94] A. Clemn, Network Management Fundamentals, Cisco Press, 2007.

[95] D. Comer, Internetworking with TCP/IP vol I: Principals, protocols, and

 architecture, Fourth Edition, Prentice Hall, 2000.

[96] G. Jackobson, M. D. Weissman, Real-time telecommunications network

 management: Extending event correlation with temporal constraints, IFIP/IEEE,

 1995.

[97] S. Chutant, H. Nussbaumer, On the distributed fault diagnosis of computer

 networks, Technical Report 94/56, Ecole Polytechnique Federale de Lausanne,

 Lausanne, CH, 1994.

[98] A. Hanemann, D. Schmitz, M. Sailer, A framework for failure impact analysis and

 216

Bibliography .

 recovery with respect to service and level agreements, Proc. of the IEEE

 International Conf. on Services Computing (SCC05), 2005.

[99] M. Mountzia, G. Rodosek, Using the concept of intelligent agents in fault

 Management of distributed services, Journal of Network and Systems Management,

 V. 7, N. 4, 1999.

[100] G. Goldszmidt, Y. Yemini, Delegated agents for network management,

 IEEE Communications Magazine, V. 36, N. 3, pp. 66-70, 1998.

[101] M. Albaghdadi, B. Briley, M. Evans, Event storm detection and identification

 in communication systems, Elsevier, Reliability Engineering and System Safety,

 2006.

[102] A. Osmani, F. Krief, Model-based diagnosis for fault management in

 ATM networks, Proc. of International Conf. on ATM ICATM, pp. 91-99, 1999.

[103] N. Jailani, A. Patel, FMS: a computer network fault management system based

 on the OSI standards, Malaysian Journal of Computer Science, 1998.

[104] R. Cronk, P. Callahan, L. Bernstein, Rule-based expert systems for network

 management and operations: an introduction, IEEE Network Magazine, V. 5, N.

 4, pp. 7-21, 1988.

[105] L. Crutcher, A. Lazar, Management and control for giant gigabit networks, IEEE

 Network, V. 7, N. 6, pp. 67-71, 1993.

[106] H. Lutifyya, M. Bauer, A. Marshall, D. Stokes, Fault management in distributed

 systems: a policy-driven approach, Journal of Network and Systems Management,

 8 4 , pp. 499-525, 2000.

 217

Bibliography .

[107] A. Dupuy, S. Sengupta, O. Walfson, Y. Yemini, Netmate: a network management

 environment, IEEE Network magazine, 1991.

[108] S. Bapat, Towards richer relationship modeling semantics, IEEE Journal on

 Selected Areas in Communications, V. 11, N. 9, pp. 1373-1384, 1993.

[109] B. Pagurek, A. Kaye, D. Helmy, Knowledge based fault location in a data

 communication network, IEEE, 1988.

[110] L. Olson, A. Blackwell, Understanding network management with OOA, IEEE

 Network magazine, 1990.

[111] G. Tjaden, M. Wall, J. Goldman, C. Jeromnimon, Integrated network management

 for real-time operations, IEEE Network magazine, 1991.

[112] L. Barford, Diagnosis and design for diagnosability for Internet routers,

 Proceedings of the 7
th

 International Symposium on Quality Electronic Design,

 IEEE, 2006.

[113] R. Perlman, Interconnections, Second Edition: Bridges, Switches, and

 Internetworking Protocols, Addison Wesley, 1999.

