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Abstract 

Governmental and private institutions rely heavily on reliable computer networks for 

their everyday business transactions. The downtime of their infrastructure networks may 

result in millions of dollars in cost. Fault management systems are used to keep today’s 

complex networks running without significant downtime cost, either by using active 

techniques or passive techniques. Active techniques impose excessive management 

traffic, whereas passive techniques often ignore uncertainty inherent in network alarms, 

leading to unreliable fault identification performance. In this research work, new 

algorithms are proposed for both types of techniques so as address these handicaps.  

Active techniques use probing technology so that the managed network can be 

tested periodically and suspected malfunctioning nodes can be effectively identified and 

isolated. However, the diagnosing probes introduce extra management traffic and storage 

space. To address this issue, two new CSP (Constraint Satisfaction Problem)-based 

algorithms are proposed to minimize management traffic, while effectively maintain the 

same diagnostic power of the available probes. The first algorithm is based on the 

standard CSP formulation which aims at reducing the available dependency matrix 

significantly as means to reducing the number of probes. The obtained probe set is used 

for fault detection and fault identification. The second algorithm is a fuzzy CSP-based 

algorithm. This proposed algorithm is adaptive algorithm in the sense that an initial 

reduced fault detection probe set is utilized to determine the minimum set of probes used 

for fault identification. Based on the extensive experiments conducted in this research 

both algorithms have demonstrated advantages over existing methods in terms of the 

overall management traffic needed to successfully monitor the targeted network system.  

Passive techniques employ alarms emitted by network entities. However, the fault 

evidence provided by these alarms can be ambiguous, inconsistent, incomplete, and 

random. To address these limitations, alarms are correlated using a distributed Dempster-

Shafer Evidence Theory (DSET) framework, in which the managed network is divided 

into a cluster of disjoint management domains. Each domain is assigned an Intelligent 

Agent for collecting and analyzing the alarms generated within that domain. These agents  
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are coordinated by a single higher level entity, i.e., an agent manager that combines the 

partial views of these agents into a global one. Each agent employs DSET-based 

algorithm that utilizes the probabilistic knowledge encoded in the available fault 

propagation model to construct a local composite alarm. The Dempster‘s rule of 

combination is then used by the agent manager to correlate these local composite alarms. 

Furthermore, an adaptive fuzzy DSET-based algorithm is proposed to utilize the fuzzy 

information provided by the observed cluster of alarms so as to accurately identify the 

malfunctioning network entities. In this way, inconsistency among the alarms is removed 

by weighing each received alarm against the others, while randomness and ambiguity of 

the fault evidence are addressed within soft computing framework. The effectiveness of 

this framework has been investigated based on extensive experiments. 

 The proposed fault management system is able to detect malfunctioning behavior 

in the managed network with considerably less management traffic. Moreover, it 

effectively manages the uncertainty property intrinsically contained in network alarms, 

thereby reducing its negative impact and significantly improving the overall performance 

of the fault management system.  
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Chapter 1 

 

 

Introduction 

 

1.1 Preface 

As computer networks continue to grow in size and complexity, effective network 

management is expected to become even more crucially important and more challenging. 

Simply stated, the aim of a typical network management system is to monitor the 

managed system and to ensure that it is running as smoothly as possible. In order for the 

management systems to successfully manage the network a large amount of diagnostic 

information needs to be obtained and processed. This information can be either acquired 

using certain monitoring tools [1, 2, 3, 4, 5], or received from network entities in the form 

of network alarms [6, 7, 8, 9]. As such, fault management systems can be divided into 

two paradigms: (1) fault management systems that actively sample performance data 

from the managed network, commonly referred to as probe-based systems or active 

systems; and (2) fault management systems that utilize network alarms, commonly 

referred to as alarm correlation-based systems or passive systems. Both paradigms 

address certain challenges and offer alternative solutions to the fault network 

management problem and as such  they  may  have  their  own  merits  and bear their own 
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shortcomings. In this chapter, we present a brief review of the challenges and motivations 

of network fault management systems in the context of both paradigms. 

 

1.2 Open Systems Interconnection Model 

In order to appreciate the importance and complexity of fault management systems one 

needs to understand the more general topic of network management. According to the 

International Standard Organization (ISO), effective management of highly complex 

networks should be approached with respect to five main objectives, as described in the 

Open Systems Interconnection (OSI) model [10]: Configuration Management, Fault 

Management, Performance Management, Security Management, and Accounting 

Management. The objective of configuration management function is to initialize the 

network components and establish relationships among these components and to keep the 

manager informed about the status of these components. It is also responsible for 

reconfiguring the network resources (such as create new paths between network nodes) in 

case of changes in network topology. The performance management objective is 

dedicated for monitoring the network resources and controls their behavior (such as 

keeping track of current activities in the network and adjusting network component 

parameters to improve network performance). Furthermore, it collects and analyzes 

crucial information about network traffic to locate any bottleneck along network paths. 

The security management objective ensures restrict access to sensitive information and 

also generates and stores encryption keys. Users of the network can be charged for using 

the network resources and services through the accounting function which is also 

responsible for the user billings.  

  In this thesis, we are concerned with a central aspect of the OSI network 

management model, namely, fault management. Existing network fault management 

systems utilize widely available monitoring tools (such as ping, trace route, web page 

access, etc.) to examine the health status of network components. Furthermore, modern 

network devices are highly instrumented and configured  to  send  diagnostic  information 
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to their manager once they encounter some network failures. This diagnostic  information 

is analyzed to identify faults and their root causes, if possible. However, due to their 

dependency nature, a faulty component may cause a state of malfunctioning in one or 

more other system components [11]. As a result of this phenomenon,   a huge amount of 

diagnostic information is generated by these dependent entities and delivered to the 

network management stations. As this information is overwhelming, it is not possible for 

a human expert to analyze and process this information in a reasonable time frame. 

Therefore, human experts tend to rely on their experience and intuition to examine the 

network behavior and in due course may overlook some valuable diagnostic information 

obtained from network entities.  

 

1.3 Network Fault Management Terminologies 

Any exceptional state that may take place in a given network layer is referred to as 

network event [12]. Network faults (a special class of network events) manifest 

themselves in the form of alarms (or symptoms). Thus, dedicated software agents are 

installed in the network to monitor, collect and process traffic data. These agents send 

network alarms (such as SNMP traps [12, 13] or CMIP EVENT_REPORTs [10]) as 

notifications of possible malfunctioning if one (or more) of their monitored network 

parameters exceeds a predefined thresholds. Other alarms may be obtained by other 

means such as a trace rout utility, ping commands, system log files, etc. However, some 

network faults may not be directly observable due to the lack of a management function 

that can provide indications of their existence. Network fault management systems rely 

on network alarms to infer the main causes. In general, network faults are classified based 

on their time duration in the managed network [14]: 

• Permanent faults, 

• Intermittent faults, 

• Transient faults. 

Permanent faults are self-explanatory and exist in a network until they are repaired.  
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Examples of such faults include: a broken cable, malfunctioning interface card. 

Intermittent faults   occur in a discontinuous and periodic manner and tend to cause a 

failure of current processes, and therefore result in a maximum degradation in the service 

level for a short period of time. Transient faults momentarily cause minor degradation in 

the service, and as they are often masked by management utilities are not observable to 

the user.   

 

The main tasks of fault management systems can be divided into three stages: 

• Stage 1: Fault detection – the process by which network fault indicators, in the 

form of alarms generated by faulty network components, are captured on-line 

[15]. 

• Stage 2: Fault identification – the process of identifying the most likely causes of 

the received alarms [8, 15]. 

• Stage 3: Testing operation – the process of determining the actual faults that 

caused the network to malfunction [8]. 

 

The main focus of this research work will be on Stage 1 and Stage 2. The work is 

divided into two main parts. In the first part, we introduce a new approach based on 

Constraint Satisfaction Problem (CSP) to find an appropriate and optimal collection of 

probes for the purpose of fault detection. Furthermore, we introduce a fuzzy CSP-model 

that can adaptively select the most appropriate probes.  In the second part, we concentrate 

on the second stage of fault management to exploit the availability of network alarms that 

are observed by the management system in order to identify the root causes that may be 

responsible of their occurrence.   

 

1.4 Motivations 

In this section, the motivations behind the proposed intelligent fault management system 

are described in light of critical  examination  of  the current  fault  management  research 
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activities and directions. Important areas pertaining to network management systems are 

reviewed. 

 

1.4.1 Intelligent probing 

Dedicated software tools used for monitoring network components are commonly known 

as probes [1]. These probes (e.g., pinging, trace routing, etc.) are widely available. 

Network management systems that are based on such tools make them an appealing 

alternative to the alarm based (passive) systems due to their ability capture faults more 

effectively. In probes based fault management probing stations are first determined and 

located in different parts of the network. A set of probes emitted by these probing stations 

is then sent to network management on periodical basis. These probes are collectively 

analyzed to determine whether a failure has been detected. To effectively isolate the 

malfunctioning network component, the set of probes must cover all the nodes in the 

managed network [1, 2]. Depending on the number and locations of available probing 

stations this set has to include a large number of probes to be of practical use. Employing 

a large number of these probes for fault identification tasks certainly increases the 

accuracy of locating network malfunctioning components; nevertheless, the fault 

identification task will become more time-consuming. Furthermore, a large set of probes 

entails excessive management traffic injected into the managed network which may in 

fact exacerbate the situation. Hence it is desirable to minimize the negative impact of the 

extra management traffic induced by these probes.  

One of the main motivations in this research work is to explore the use of 

intelligent probing techniques that can help in reducing the number of these probes while 

preserving the quality of the diagnostic power of the original set. 

 

1.4.2 Uncertainty Management of Fault Evidence 

Another motivation of this research work revolves around the management of uncertainty 

associated with fault evidence, as it pertains to network alarms. One  of  the  widely  used 
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approaches for network fault management systems is based on network alarms generated 

by network entities as a response to network failures. An alarm correlation mechanism is 

often implemented to infer a fault hypothesis that is considered as an explanation for the 

observed alarms.  The alarm correlation mechanism views these alarms as fault evidence 

[16, 17, 18]. However, networks are such complex systems and their unreliability and 

non-determinism clearly affect the quality of the obtained fault evidence. This 

unavoidable distortion of information may lead to the wrong conclusion as a fault 

hypothesis. Network alarms that constitute fault evidence may contain high degree of 

uncertainty with respect to the following aspects: 

• Fault evidence ambiguity 

Different network faults may cause a set of alarms to be generated. However, in many 

practical situations, the monitoring systems may generate the same alarm as an 

indication of many different faults [17]. That is, the domain of a single alarm may 

include a set of different fault hypotheses. Hence, it is up to the management system 

to determine which particular fault may have caused the alarm. 

• Fault evidence inconsistency 

Monitoring software agents residing in the network devices (managed objects) have 

their own view regarding the operation state of the managed network. In the event of 

a fault occurrence, and based on their internal network parameters, a managed object 

may indicate a certain network entity as the source of network malfunctioning and 

thus generate a corresponding alarm accordingly. However, another managed object 

may have different opinion and determine that the same network entity is working 

properly [17]. These conflicting assessments by different network objects are not 

unusual and seem to be the result of the heterogeneity nature of computer networks.   

• Fault evidence incompleteness 

The set of alarms triggered by a fault occurrence in the managed network is often 

transmitted from the  managed  objects  to  network  managers  over  unreliable  

transport protocols. SNMP agents, for example, send their traps (alarms) to 

management   stations  using   the   user   data  protocol (UDP)  as  their  transmission 
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mechanism. UDP utilizes a best effort policy and does not guarantee that the SNMP 

message reach their destinations. As a result, the SNMP messages that were lost 

during transmission will not be recovered. Therefore, the fault management system 

should have the ability to conduct inference with incomplete information [16, 19]. 

• Fault evidence  inaccuracy 

Alarms that are generated by transient faults are called spurious alarms. Management 

systems are often equipped with error recovery procedures to repair transient faults. 

However, network alarms triggered by such faults should be discarded and not be 

taken into account in the diagnosis process since their main cause has been removed 

by the network management system. Avoiding and reducing the effects of these 

spurious alarms in the alarm correlation process is required [18, 19]. 

• Fault and symptom non-deterministic relationship 

The majority of fault diagnosis techniques adopted by network management systems 

are expert-based. Their appeal stems from the fact that the reasoning process of a 

diagnostic system is intuitively similar to that of a human expert. Thus the realization 

of a fault management system is the transfer of the human expert knowledge to an 

automated system. Most of these systems are based on ad-hoc, unstructured 

deterministic network models; and the cause-and-effect relationship between network 

faults and their corresponding alarms is inherently non-deterministic [16, 18, 19, 20]. 

A probabilistic model is considered as a more accurate representation for the network 

fault models. 

 

1.4.3 Distributed Fault Management System Architecture 

Traditionally, network fault management systems consist of two main components: 

agents and managers. Agents are basically monitoring software components that are 

installed in every monitored entity in the computer network. They are responsible for 

collecting network traffic, storing it in ASN format, and monitoring some particular 

variables and sending traps to their managers when one or more of these variables exceed 
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some predefined thresholds [12, 13].  

The fault management activities are performed by the managers, upon retrieving 

some of these variables from their subordinate agents using the Simple Network 

Management Protocol (SNMP). This centralized framework of management system 

architecture can be tolerated in small size networks.  As networks grow larger and 

become more heterogeneous, the centralized model creates a bottleneck at network 

management centers and introduces significant amounts of traffic, a considerable part of 

which is not important or necessary for the diagnosis process. Recently, more advanced 

fault management techniques have adopted a distributed approach by which the managed 

network is partitioned into distinct management domains, each managed by an 

independent management center [21, 22]. In this way, faults may be handled locally; thus 

reducing the amount of traffic that should be transmitted across the network. However, 

existing distributed techniques focus more on local view in the sense that the domain 

managers can only rely on its local information to identify the root cause of the network 

failure. Valuable global information is discarded in their fault analysis process.  An 

effective fault management system should make this information available to all domain 

managers.  

 

1.4.4 Automated Network Fault Management System 

The complexity and heterogeneity of modern computer networks contribute, to a great 

extent, to the shear amount of information that floods the managed network when it 

experiences a malfunctioning behavior in one of its managed objects. A single fault may 

cause a large set of alarms to be generated and delivered to their corresponding domain 

manager. The occurrence of numerous alarms is highly attributed to, among others, the 

manager. The occurrence of numerous alarms is highly attributed to, among others, the 

following factors [6, 17]:  

• Fault re-occurrence 

• Multiple invocations of a service provided by a faulty component 
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• Repetitive alarm generation by the same device 

• Fault propagation to other network components 

 

Managing all this information by human experts is almost impossible. Therefore, an 

efficient fault management system that facilitates an effective and appropriate level of 

automation is greatly needed.  

 

1.5 Contributions 

Based on the above motivations, this dissertation is devoted to the design of an 

automated, intelligent, distributed fault management system for computer networks. The 

main objectives of the proposed network fault management system are: 

• To reduce the overall management traffic (i.e., probes) required to periodically 

examine the components of the managed network without compromising 

diagnostic power, 

• To alleviate the negative impact of the uncertainty problem that inherently exists 

in the fault evidence (i.e., network alarms) on the performance of the fault 

management system.  

This research work introduces new methods for intelligent probing that can minimize 

the size of the probe set required for fault detection and identification. A distributed 

intelligent-agent-based fault management system is proposed. The proposed distributed 

system is based on the constraint satisfaction problem (CSP) formulation and the 

Dempster-Shafer Evidence Theory (DSET) [23]. The capabilities of DSET in dealing 

with imprecision and conflict that network alarms inherently possess make it suitable and 

appealing as a framework for knowledge representation and evidence propagation in 

computer networks. Fuzzy reasoning is employed to make the CSP more adaptive and to 

handle the positive alarms in the fault identification process.  

This dissertation makes the following contributions to the field of network fault 

management: 
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• To minimize the number of alarms (symptoms) processed by network 

management systems an appropriate and effective method of selecting network 

probes should be developed. Probing technology is widely used as an end-to-end 

transaction that provides information about the availability of the nodes of the 

managed network. One such probing program used for determining network 

availability   is   the   ping   program.   Other   probing   techniques  include  email 

messages, web-access requests, invoking a  service  from  a  database  server,  etc.   

Moreover, each probing transaction incurs cost to the network in terms of 

additional network management traffic. Considering the selection of an optimal 

number of available probes for diagnosis purposes as an optimization problem, we 

propose a novel constraint satisfaction problem (CSP) based model. The powerful 

search algorithms offered by the CSP techniques have been used to reduce the 

search space and produce an optimal set of probes in a very reasonable time. 

 

• We propose a novel fuzzy CSP-based model to further reduce the number of 

probes required for the fault detection and identification tasks. In this new 

approach, instead of sending all the probes obtained by the dependency matrix, 

only a few informative probes are sent for fault detection purposes. If these probes 

returned successfully then the managed network is assumed to work properly and 

no further action is needed. The network manager waits for a fixed time interval 

and then sends these same probes again. Only if one or more of these probes fails 

to report back does the fault identification process proceeds. Using the 

information carried by the failed probe or probes, the fuzzy CSP model selects a 

new probe from the dependency matrix. The new probe is selected based on some 

criteria formulated as a set of fuzzy constraints. In contrast to the standard CSP, 

the fuzzy CSP (FCSP) implies that constraints need not be fully satisfied. Some 

instantiations of the problem variables may satisfy the problem constraints more 

than other instantiations. The FCSP model provides some flexibility in the probe 

selection process that  is  not  achievable  by  the  standard  CSP.  For  instance,  a  
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candidate probe is selected only when the information inferred by its success or 

failure proves to be more valuable than other candidate probes. As such, the 

proposed scheme is adaptive in the sense that different outcomes of previous 

testing probes may yield different probes in the current probe selection process.      

 

• Network elements often emit alarms in response to a fault.  Each alarm  represents 

the fault from the network element‘s point of view. We propose a DSET based 

approach for alarm correlation and fault identification. In the view of DSET, 

alarms emitted by a specific network element may only provide partial 

information about the fault.  Our   proposed   technique collects partial 

observations of the network and infers the main cause of these alarms. It considers 

each received network alarm as a piece of evidence and a source of information. 

And as such, different alarms emitted by different network entities might have 

different assessment regarding the fault. The new technique constructs an 

evidence structure for each received alarm using the fault propagation model.   

DSET’s rule of combination is employed to fuse alarms represented as evidence 

structures. 

 

• Treating each received network alarm as a source of information entails the 

recognition that different network alarms possess different diagnostic capabilities. 

To take these capabilities into considerations, we propose an adaptive fuzzy 

evidential reasoning based fault identification approach. Domain managers 

construct fuzzy evidence structures for each received network alarm using both 

fault propagation models and alarm domains (not to be confused with 

management domains). Hybrid entropy, as an information measure, is used for 

evaluating the overall uncertainty contained in the alarm fuzzy evidence structure. 

The new proposed algorithm utilizes two discounting schemes based on the 

obtained fuzzy evidence structures to achieve adaptive reasoning capabilities. For 

each   network   alarm,   a   local   discounting   scheme   takes   place  during   the  
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decomposition of pieces of fuzzy evidence. A global discounting scheme is 

performed on the derived crisp evidence structures of the received alarms. 

 

• Finally, to demonstrate the efficiency and effectiveness of the proposed network 

fault management system, extensive simulations are carried out for networks with 

simple  network  topologies  and  for  networks  with  more  complicated  network 

topologies. 

 

1.6 Thesis Outlines 

The outline of the thesis is as follows: the existing state-of-the-art network fault 

management systems reported in the literature are discussed in Chapter 2, where we 

highlight their advantages and shortcomings. Since our proposed methods for the alarm-

correlation based approaches demand the availability of fault propagation models which 

are used to build alarm evidence structures, we briefly discuss the different techniques 

used by network management systems to obtain these fault propagation models in 

Chapter 3. In Chapter 4, we introduce a novel approach for the selection of an optimal set 

of probes based on the technology of constrained satisfaction problem.  In Chapter 5, an 

adaptive probe selection scheme based on a fuzzy CSP model is proposed by which 

outcomes of previous testing probes dynamically and adaptively influence the probe 

selection process. A new DSET based fault identification approach is proposed and 

discussed in Chapter 6. In Chapter 7, we present an adaptive fuzzy evidential reasoning 

based fault identification approach. In Chapter 8, we conduct extensive simulations to 

compare the proposed techniques with other popular approaches. We present our final 

thoughts regarding the research subject by including some suggestions for future work in 

Chapter 9. 
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Chapter 2  

  

 

Fault Detection and Identification in 

Computer Networks 

 

2.1 Introduction 

A network fault management system may passively monitor the targeted network system 

by being on the look for indications of malfunctioning behavior; it can also proactively 

and periodically test network entities to determine the occurrence of a malfunctioning 

behavior. Modern networks are highly instrumented that when a failure occurs, several 

symptoms (alarms) are generated and sent to the network manager from different 

dependent network components. Fault management systems receive these alarms as input 

and produce an output in the form of a set of fault hypotheses (network failures) 

regarding these observed alarms. Furthermore, probes (such as, ping, trace route, etc.) can 

also be considered as symptoms. For example, a failed probe can be viewed as a negative 

observation of a symptom, which in this case may indicate that certain components in the 

failed   probe  path  are  not  working   properly.   In  this  chapter,   we   provide  a   brief  
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review of  techniques reported in the literature with respect to both actual network alarms 

and monitoring probes.  

 

2.2 Network Fault Management Schemes 

 As shown in Fig. 2.1, a fault management system analyzes symptoms such as network 

alarms or probe outcomes received during the period of a fault occurrence using different 

techniques and methods. In this section, we discuss well known existing approaches for 

the network fault detection and identification problem. 

  

 

 

Figure 2.1: Proposed network fault management systems. 

 

 A network fault management system can be categorized based on the approach that it is 

built on, which is typically derived from one of the following paradigms:  

• Control theory, 

• Artificial Intelligence, 
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• Probability theory, 

• Pattern Recognition theory. 

 

Some fault management systems combine different approaches. For example, Hood 

and Ji present a hybrid approach in which they combine a probabilistic method in the 

form of Bayesian model of the managed network, with a proactive learning system to set 

auto regression parameters [24]. Broadly speaking, fault management system approaches 

can be divided into four categories, namely, model-based, AI, fault propagation model, 

and probing-based techniques.  

 

2.2.1 Model-Based Techniques 

In Model-Based Techniques an abstract model of the managed network that describes the 

functional and physical properties of the network components is first constructed using 

different techniques from logic to differential equations. This model represents failure 

inter-dependency among the network elements. Based on some input network parameters, 

the model predicts the network performance status. A network fault is detected once a 

discrepancy between the observations obtained from the managed network and the 

predictions produced by the model. In [8, 25, 26, 27, 28], finite state machine (FSM) 

models have been proposed. The managed network and its behavior in the existence of a 

fault is represented as a set of states, and the transition between these states is dictated by 

input events such as alarms coming from the network. The advantage of these algorithms 

is that they do not require learning and can cope with incomplete information. 

Nevertheless, it is well recognized that developing a fault model for a complex network is 

a daunting task.  

 

2.2.2 AI Techniques 

Among the commonly used techniques in network fault management systems are expert 

systems [29, 30, 31]. Expert systems use a rule-based representation to imitate the human 
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knowledge of an expert. This knowledge can be either surface–resulting from experience,  

or deep-resulting from understanding of the system behavior from its principal. The 

purpose of these rules is to associate a network fault hypothesis with network alarms. The 

rules typically take the following form: 

if alarm x then fault hypothesis is y 

Sometimes several fault hypotheses are produced due to the received large number of 

alarms. To identify the most likely fault, a heuristic search is performed on the obtained 

fault hypothesis.  

The expert system presented in [29] is comprised of four loosely coupled 

components: a monitor, a problem-clearing advisor, a trouble-ticket creation system, and 

a collection of network databases. The aim of the monitor sub-system is to respond to 

events and alarms as they occur on the network. It reads and formats alarms, filters out 

irrelevant information and redundant alarms, and then clusters together all alarms 

pertaining to a single network fault.  In [30], a real-time interactive expert system is 

developed to simplify the task of fault identification based on a symptom description. The 

expert behavior is modeled by a knowledge base which is formulated using a knowledge 

engineering process.  The targeted network components constitute the initial domain 

knowledge obtained from in-house data communication experts through a series of 

interviews. The resultant knowledge was coded in the form of complex condition-action 

production rules. In the case of fault occurrence, the system begins by attending to the 

symptom description, narrows the search to a relatively few suspicious components. 

Using its prior experience, the system determines the relative likelihood of each of the 

suspicious components and then focuses on the most likely fault locations. The expert 

system proposed in [31] implements all the network management functions. For the fault 

management part, it collects alarms generated by both predefined SNMP traps and user-

defined internal threshold traps. Upon receiving a set of alarms, it first sorts and filters 

them, and then correlates the alarms to automatically diagnose the network fault. In [32], 

to identify problems at the TCP/IP level, an expert system, adopting the primary 

technique used by human experts, is designed to analyze static traces  of  TCP/IP  packets  
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and packets of some related protocols (e.g., ARP, ICMP). Heuristics used for  reasoning  

about  the  cause  of  network  failures  are  represented  as production rules. Objects 

representing packets are manipulated by these rules. While the expert systems are 

effectively capable of modeling the human experience, the process required to form this 

experience into a set of production rules has proven to be difficult. Furthermore, this 

process tends to be sensitive to network topological changes which take place frequently 

and as a result the knowledge base has to be changed accordingly.  

Artificial neural network (ANN)-based fault management systems have also been 

proposed in the literature. In [7], a kohonen self-organizing Map (SOM) neural network 

is trained for alarm clustering. Neural networks are considered black box systems that do 

not require the managed network to be explicitly modeled. However, the training process 

to tune its weights may take long sessions. Moreover, there are no particular rules to 

guide the selection of number of layers and the number of neurons in each layer. 

Therefore, a trial and error process is expected to be performed during the training period 

until the neural network finally stabilizes.  

In [33], a mobile agent-based approach has been proposed. The hierarchical 

structure provided by the Internet model is exploited as a fault propagation model and 

used as an event correlation scheme. 

 

2.2.3 Fault Propagation Techniques 

Fault propagation (FP) refers to the fact that a fault in one network entity is able to affect 

the state of other network entities. Due to the hierarchal structure of computer networks, a 

malfunctioning component that affects the services and functions provided by lower 

layers may be observed in higher layers (vertical propagation) and it could also be 

observable in other hosts distant from the location where the fault originated (horizontal 

propagation). Based on this intrinsic property of computer networks, a graphical model of 

the managed computer network can be constructed in which the relationship between its 

entities is clearly specified. This graphical model is referred to in the literature as Fault 

Propagation Model (FPM). The FPM represents all faults and their  respective  symptoms  
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that may occur in a managed network as nodes. Fault propagation models are often 

expressed using dependency or causality graphs.  

A dependency graph is a directed graph G = (O, D), where O is a finite, non-

empty set of nodes representing network entities and D is a set of edges between these 

nodes. The directed edge (oi, oj) is an element of the set D denoting that a node oi may 

depend on another node oj. Every edge is assigned a certain weight. This weight indicates 

the strength of the relationship between the nodes in a given proposition. For example, 

given the network configuration of Fig. 2.2 (a), its dependency graph can be obtained as 

shown in Fig. 2.2 (b). The conditional probabilities assigned for each edge represent the 

relationship strength between the given nodes.    

A causality graph can then be obtained from the dependency graph by simply 

reversing the directions of its edges. Most of the inference techniques reported in the 

literature utilize causality graphs using either OR model or AND model.  An OR model 

combines possible causes (network failures) of  a symptom using logical operator OR, 

meaning that at least one of the possible causes has to exist for the considered symptom 

to occur.  

 

Figure 2.2: A simple network configuration and its corresponding dependency graph. 
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To simplify the fault identification problem, the reported techniques assume that only one 

fault exists in the network at a time or restrict the number of simultaneous faults to a 

certain number. Moreover, the symptom analysis process is often performed in a 

window-based fashion (i.e., a fault management system works with a   group of   

symptoms observed only over a certain time-window).  

The codebook, an FPM-based alarm correlation algorithm, utilizes a matrix of 

fault codes that represents a bipartite causality graph to distinguish faults from one 

another [6].  A fault code is a sequence of values from the set {0, 1}. The value of 1 at ith 

position of a code, constructed for a fault fj, indicates cause-effect implication between 

fault fj and symptom si .  As shown in Fig. 2.3, this technique allows for network faults to 

be uniquely coded by a given set of symptoms. The codebook approach uses minimum 

symbol distance as a decision making scheme.  

 

 

 

 

Figure 2.3: Correlation matrix derived from a causality graph [6]. 

 

Other popular FPM-based approaches are known as belief networks. A belief network is 

a Directed Acyclic Graph (DAG) whose nodes represent random variables, the edges 

denote   the   existence   of   direct  causal  influences  between  the  linked  variables,  the   
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strength of these influences are expressed by forward conditional probabilities. In the 

context of fault network management systems, these variables represent states of the 

network entities or the occurrence of symptoms.   Hood et al. [24] reported an application 

of Bayesian network theory to proactive fault detection. The belief network is a tree-

shaped based on the structure of the SNMP MIB’s [13, 33]. In [20], this algorithm was 

adopted as an approximation scheme for performing fault identification in an obtained 

FPM. More fault identification techniques, based on the belief network theory, were 

reported in [9, 19, 34, 35].  

 

2.2.4 Probing-Based Techniques 

The main component of Probing-Based Techniques is a sample measurement called 

probe. A probe is basically a dedicated program (such as ping or trace route) or a network 

application (such as web access or email) installed in one of the network nodes, called a 

probing station. A probe is sent to examine a subset of nodes in the managed network on 

a periodic basis. Once a probe is sent to the network it either successfully returns to its 

probing station, signifying that all the network nodes in its path are in working order, or it 

fails to return to its probing station, indicating that one node or more in its path are in a 

failure state. In [1, 2, 3], a special matrix, called a dependency matrix, is first constructed 

based on the location and number of the available probing stations. One of the advantages 

of such techniques is that a subset of nodes of the managed network can be tested and 

examined at any time. Hence, fault localization can be restricted to a very limited number 

of nodes based on the results of the testing probes. The set of testing probes used for fault 

identification tasks may contain a large number of these probes. Since all the probes in 

the probe set have to be utilized this may entail an extra burden on the managed network 

in terms of bandwidth usages. Moreover, the extra management traffic may actually 

exacerbate the situation when a congestion problem detected in the managed network. To 

address these issues, several algorithms have been proposed in the literature. In [1], a new 

algorithm is proposed to minimize the number of these testing probes. In [2, 3], active 

approaches reduce these probes even further by selecting  a  small subset of probes  based  
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on the outcomes of previously used probes. In [4], a heuristic-based approach is 

introduced. The outcomes of previous probes are utilized to select the new probe. The 

probing-based techniques are still in their infancy and new rigorous techniques are 

definitely needed.  

 

2.3 Summary 

This chapter presents a brief review of some of the existing network fault management 

techniques. Each of these techniques has at least one of the following limitations: 

1. Excessive management traffic is introduced to the managed network. 

2. Uncertainty properties inherently contained in the fault evidence are often ignored 

during the alarm correlation process. 

Inadequate work has been done in the past to effectively address these two important 

issues. The discussion has been focused on the reasoning algorithms not on the 

representation model of the managed system. The underlying knowledge representation 

of the managed system adopted by our alarm-based proposed algorithms utilizes fault 

propagation models. These models in turn are used to build evidence structures for the 

received network alarms. In the following chapter, some of the techniques used to obtain 

such models are reviewed. Furthermore, the Dempster-Shafer Evidence Theory as it 

constitutes the framework of the reasoning process of the distributed management system 

is introduced. 
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Chapter 3  

 

 

FPM Techniques and Evidential 

Reasoning 

 

3.1 Introduction 

Alarm correlation schemes can be viewed as two-component systems. The first 

component is a model of the underlying managed system represented by a fault 

propagation model (FPM). The second component is a reasoning mechanism that actually 

performs the alarm correlation process. The purpose of a FPM is to clearly describe the 

causal relationship between network failures and their corresponding alarms. Upon 

receiving a set of alarms, the reasoning mechanism utilizes this relationship to identify 

their root causes. The alarm correlation techniques proposed in this thesis are based on 

the assumption that fault propagation models do exist and available to fault management 

systems. In this chapter, we provide a brief review of the systematic methods used to 

obtain such models. The Dempster-Shafer evidence theory is also introduced since it 

constitutes the framework of the proposed reasoning mechanism. 
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3.2 Alarm Correlation Architecture 

The structure of alarm correlation systems is usually composed of two basic units (see 

Fig. 3.1): a knowledge base which includes a fault propagation model, and an alarm 

correlation unit. The reasoning mechanism performed by the alarm correlation unit 

utilizes the information presented by the knowledge base and provides a fault hypothesis 

set that may explain the observed alarms [36].  

 

3.2.1 Knowledge Base 

For network fault management systems to efficiently perform their tasks, they need to 

store knowledge about the managed network itself (such as network components and 

network topology). This knowledge can be acquired by interviewing human experts and 

saved in a typical relational database file or stored in a MIB (management information 

base). The knowledge base is also expected to contain important information about 

network events (network failures and their corresponding alarms). The most important 

component of the knowledge base is the fault propagation model which describes how 

these events propagate between objects in the supervised network [6, 9, 11, 15, 18, 36]. 

This propagation is due to the hierarchal nature of computer networks, and a fault 

propagation model is usually obtained from a dependency relationship model that reflects 

this hierarchy.  

Fault propagation models show which alarms may be observed if a certain 

network failure occurs. For example, IP connection failure alarms over a specific router 

could be caused by a power failure in that router. Moreover, empirical information 

(obtained from a log that stores a history of activity of the network) is used to develop a 

probabilistic model of the managed network.  This probabilistic model may also be 

included in the FPM [20].  

    

3.2.2 Alarm Correlation Unit 
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Figure 3.1: Alarm correlation system structure. 

 

To correlate the observed alarms, alarm correlation units utilize different techniques. 

Some correlation   techniques exploit the probabilistic knowledge provided by the fault 

propagation models to infer the most probable network failure. In these techniques, fault 

propagation models basically take the form of Bayesian networks [18]. Other correlation 

techniques rely on coding schemes by which a set of failure codes is constructed using 

the given fault propagation models.  Upon receiving network alarms, they construct an 

alarm vector and compare it to a set of the predefined failure codes [6].  The closest 

failure code to the observed alarm vector is identified as the root cause of the problem.  In 

Chapters 6 and 7, we propose new alarm correlation techniques. These algorithms utilize 

the probabilistic knowledge provided by the fault propagation model to create local 

composite events. A local composite event represents the alarm correlation performed 

locally by an intelligent agent in its domain. These local composite events are then 

combined by a higher level management entity into a global composite event.  

 

3.3 Fault Propagation Models 

A fault propagation model is essentially a representation of  the  cause-effect  relationship 
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that may exist among network events. Several methods have been proposed in the 

literature to capture this relationship. In what follows we review some of these methods. 

We then present a case study on obtaining a fault propagation model for the Campus 

network of the University of Waterloo in Chapter 8. 

 

3.3.1 Object-Oriented Based Fault Propagation Model 

The Object-Oriented Fault Propagation model has been introduced by Jackbson and 

Weisman. In this model the object-oriented paradigm is used to represent the network 

topology and the relationship among its entities [37]. The structural and behavioral 

abstract classes constitute the framework of the managed system. The network entities 

(NEs) and the network topology are described by the structural class. It contains two 

major subclasses namely, network element class and element relationship class. The 

network element class represents the network entity types such as switch, router, bridge, 

link, etc. The network element relationship class describes the dependency relationship 

between the managed objects as depicted in Fig 3.2. Objects created from the same class 

maintain similar types of relationship. The behavior abstract class as shown in Fig 3.3 

should capture the mechanism by which network events are propagated. The major unit 

of this class is the network message class in which the alarm messages generated by 

different network entities (NEs) are hierarchically represented. Each dependency model 

may have two kinds of basic dependency: 

• Direct dependency: one object is used/referenced directly by anther object. 

• Indirect dependency: a chain of one or more direct dependencies joins two 

objects. 

 

3.3.2 Fault Propagation Modeling Using the MODEL 

Language 

One of the most appealing techniques used to model the cause-effect relationship among 

network events is a modeling language called MODEL [38].    It  provides  the  following 
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Figure 3.2: Network element class hierarchies. 

 

 

 

 

Figure 3.3: Direct and indirect dependency class. 

 

advantages over other existing techniques: 

• object-oriented data model capabilities, 

• causality graph construction features, 

• independent of reasoning algorithms. 
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Furthermore, it also extends the functionality of the underlying SNMP protocol. To better 

explain the basics of the MODEL language, let us examine the congestion fault that a 

router may experience [38]. To model the causal relationship between a congestion 

failure and its alarm indicating lost packets, the total number of discarded packets can be 

measured. Using SNMP commands [12], the corresponding MIB variables are retrieved: 

 

interface IPRouter: IP 

 { 

    instrumented attribute long ipInDiscards; 

    instrumented attribute long ipOutDiscards; 

    attribute long discardsThreshold; 

 

    event PacketDiscardsHigh “The level of discarded  

                                                  packets is high” =  

              (delta ipInDiscards +  delta ipOutDiscards) / 

                        delta _time > discardsThreshold; 

     

    instrument SNMP; 

 

} 

The keyword attribute is used here to define measurable properties of the IP 

protocol. The keyword event defines the condition necessary for the packets loss alarm to 

occur. Therefore, it only occurs when the sum of the two measured IP MIB variables 

namely ipInDiscards and ipOutDiscards is over a predefined threshold 

(discardThreshold).  The delta statement calculates the difference between the old and 

new values of the corresponding MIB variables.  The keyword _time indicates the time at 

which the two MIB variables were pulled. Thus, this alarm is triggered when the discard 

rate reaches the threshold. The causal relationship between the congestion failure and the 

high packet discard alarm (with probability 1.0) can be expressed as: 
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                 Problem Congestion “High congestion“= 

                                      PacketDiscardsHigh 1.0; 

 

The above is a semantic declaration in the form of a rule. The rule that should be included 

in a single class to reflect the fault/alarm relationship is as follows: 

 

                Congestion (IPRouter(x)) ->  

                             PacketDiscardsHigh(IPRouter(x)); 

 

This way, a local alarm which indicates the network congestion failure is 

modeled. Network failures in one object propagate to related objects via relationships. In 

this example, the congestion failure would propagate to higher level connections which 

layered over the congested IP node. To express the fact that the congestion failure causes 

both local alarms PacketDiscardsHigh and ConnectionPacketLossHigh and propagates 

those alarms to higher level connections, we can write: 

 

                            Problem Congestion “High congestion“= 

                                               PacketDiscardsHigh 1.0; 

                                               ConnectionPacketLossHigh 0.8; 

                            Propagate symptom ConnectionPacketLossHigh = 

                                               TransportConn, Underlying, PacketLossHigh; 

   

Now the alarm ConnectionPacketLossHigh of the network congestion failure has been 

added with a causal probability of 0.8, where a value 1.0 indicates complete certainty. For 

further details about the MODEL language, you may refer to appendix A. 

 

3.3.3 Layered Fault Propagation Model 

In [11], a layered fault propagation model is presented. It captures the hierarchal 

characteristic of computer  networks  where  the  relationship  among  network  layers  on  
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a single host and between network nodes within a single protocol layer are clearly 

defined. In this layered fashion, protocols provided by a specific layer are implemented 

by the network functions and services provided by the next lower layer. Even though the 

physical connectivity is established in the lowest layer, components of above layers have 

logical connectivity with their counter-part components in some other node within the 

same layer. This dependency among network components can be efficiently used for fault 

analysis. The Network Dependency Graph (NDG) may then be constructed as a 

representation of the recursive dependencies among the network components (protocols, 

services, functions). In this NDG, the services, protocols, and functions correspond to the 

graph nodes as depicted in Fig. 3.4 [11].  

 

 

 

Figure 3.4: Dependency relationships between network components [11]. 

 

The edges among the graph nodes describe the dependency relationship among these 

nodes. The dependency relationship may represent the dependency between a service and 

network functions and protocols at a specific layer, between functions at  adjacent  layers,  
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or between a protocol and services and network functions at the next lower layer. As 

shown in Fig. 3.4, service S at layer L, defined between any two network nodes a and b 

may be dependent on the set of all protocols between nodes a and b at layer L, the set of 

all network functions at layer L for node a, and on the set of all network functions at layer 

L for node b. From the perspective of Service S(a,b)
L
, indications of malfunctioning 

behavior at Network Function(a)
L
, Network Function (b)

L
, and S(a,b)

L-1
  are  considered  

network failures.  While indications of malfunctioning behavior at Service S(a,b)
L
 are 

considered alarms.   

 

3.3.4 Fault Propagation Model based on Dependency 

Matrix 

Probing-based schemes often represent the available probes in the form of dependency 

matrix as shown in Table 4.1. The dependency matrix describes a set of network entities 

and which probes that each entity may affect in case of their failure. Treating probes as 

network alarms, a fault propagation model can be obtained from the given dependency 

matrix. For example, a fault propagation model in the form of a bipartite graph is 

extracted from the dependency matrix of Table 4.1, as shown in Fig. 3.5. If we view the 

bipartite graph of Fig. 3.5 as a two-layer Bayesian network, then a probabilistic model 

can be built in terms of a joint distribution as follows [2]. Let us assume that the variable 

X represents the set of the network failures },,,{ 21 rverDatabaseSeWebServerRouterRouter
ffffX = , P   

is the set of the available probes, and )(
j

pY is the set of parents of the probe
j

p . Then, 

the joint probability distribution can be stated as follows: 

))(|()(),(
1 1

j

n

i

m

j

jrirr
pYpPxPpxP ∏ ∏

= =

=  

Network failures are assumed to be independent, and the outcome of each probe 

depends only on the components examined by this probe. )(
ir

xP  represents network 

failure probabilities and conditional probability )(|(
jjr

pYpP  represents the   dependency  
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of probe outcomes on its components.  

 

 

 

 

Figure 3.5: Bipartite graph. 

 

 

3.4 Formulation of the Alarm Correlation Problem in the  

DSET Framework 

Since we utilize the Dempster-Shafer evidence theory (DSET) as an inference engine for 

the alarm correlation unit, we introduce the necessary background of DSET in this 

section. Dempster-Shafer theory has continuously been gaining increasing attention 

among the researchers especially in expert systems and information fusion communities 

where reasoning under uncertainty is an active area of research. The evidence theory 

(developed by Glenn Shafer which is based on the earlier work of Arthur Dempster [23]) 

is considered a generalization of the Bayesian theory since it allows for manipulation of 

non-necessary exclusive events in a way that can explicitly represent computer networks 

status of uncertainty. From the evidence theory point of view, an observed alarm 

constitutes a  piece  of  evidence  regarding  certain  network  failures.  For  example,  the  
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congestion failure at IP layer manifests itself as packet loss alarms in upper layers, as 

shown in section 2.2. However, the packet loss alarms may also be triggered by a whole 

set of failures other than the congestion failure. The non-deterministic nature of the 

relationship between the observed alarms and their potential network failures makes the 

application of the evidence theory as a correlation mechanism very appealing. For 

instance, let us say alarm a1 is usually caused by network congestion (F1) in a particular 

link, while another alarm, a2, may be caused by either F1 or link down (F2). The evidence 

theory allows distributing support for a particular event (e.g., the network failure is F1) as 

well as to the union of events (e.g., the network failure is either F1 or F2). The following 

sections discuss modeling notions of faults in the context of evidence theory. 

  

3.4.1 Network Faults as Frame of Discernment 

In the context of evidence theory, a frame of discernment Ω is a finite set and consists of 

the exhaustive and exclusive events [23]. 2
Ω
 is the power set composed of all possible 

subsets of Ω. To frame the alarm correlation problem in the context of evidence theory in 

the context, the frame of discernment represents singletons of all the possible network 

failures that may occur in the managed network. For example, if the abnormal behavior 

of a given managed network is caused by four different exclusive faults, F1,F2 (as 

described earlier), a server crash (F3), and broadcast storm (F4), then the network failures 

can be represented by the frame of discernment as Ω = {F1, F2, F3, F4}. A belief measure 

over Ω, called a mass function, can assign a partial belief to every network failure in this 

frame of discernment. In this research work, an intelligent agent utilizes the message 

passing algorithm [39], also called Pearl’s belief updating algorithm, to calculate a belief 

value for each network failure. The belief value is computed based on the observed 

alarms and the given fault propagation model of the managed network. After it assigns 

belief values for each network failure in its frame of discernment, the intelligent agent  

constructs  an  evidence  structure  and  propagates  the  evidence  structure  to  the 

network manger.  
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3.4.2 Mass Function and Focal Elements  

The mass function (a basic probability assignment (bpa)) over a frame of discernment Ω  

is a mapping function [ ]1,02: →
Ω

m , such that the following two conditions hold:  

                                                       ∑
Ω⊆

=

A

Am 1)( ,                           (3.1)                                             

                                              ( ) 0=φm                                                                                                                                                

A is the set of network failures and Ω⊆A . The quantity ( )Am  is a measure of belief that 

is assigned to exactly the set A (not to any proper set of A). It expresses a partial belief 

that a certain network failure of Ω  belongs to the set A. For example, let us assume that 

A is given as A = {F1, F2}. Upon receiving a set of alarms, an intelligent agent may assign 

the belief value ( ) 4.0=Am  to the subset A. A value of 0.4 signifies that 40% of the 

intelligent agent’s total belief that the current network failure is due to either F1 or F2. 

Different set of observed alarms may cause the intelligent agent to have different belief 

values regarding certain network failures. Subsets of network failures with belief values 

greater than zero are called focal elements.  

 

3.4.3Evidence Structure  

An evidence structure represents a collection of pieces of evidence and takes the 

following form:  

                                          ( )( )AmA,                                                                               (3.2) 

Where A is a focal element that represents a set of network failures and ( )Am  is its mass 

quantity. The piece of evidence is distributed among all subsets of Ω  rather than among 

elements of Ω  as is the case in probability theory. The collection of all these pieces of 

evidence by an intelligent agent involved in the alarm correlation process constitutes the 

evidence structure of the intelligent agent. If the evidence structure contains only 

singleton focal elements, then, their mass values can be understood as their probabilities; 

and hence, the evidence structure of that alarm is called the Bayesian structure.  
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3.4.4 Evidential Measures and Belief Interval  
 

Let A and B refer to certain sets of failure hypotheses, such that Ω⊆A  and Ω⊆B . An 

intelligent agent may use one of the following functions to calculate a belief value for 

each fault hypothesis set: 

Belief function:        

                     ( )∑
⊆

=

AB

BmABel )(             (3.3) 

Plausibility function: 

   ( ) ( ) 0,)( == ∑
≠∩

φ

φ

PlBmAPl

AB

                                                                (3.4) 

Commonality function: 

  ( )∑
⊆

=

BA

BmAQ )(                                                                    (3.5) 

Pignistic probability function: 

                  ( )

( )

∑
Ω⊆

×∩

=

B B

BmBA
APpig                                                                      (3.6) 

The belief function is used to measure the total belief in a proposition (a failure 

hypothesis set) which takes into account the measures of belief assigned to the subsets of 

that proposition. It represents the total amount of probability that must be distributed 

among the network failures of that proposition. In a diagnostic context, if A = {F1, F2}, 

then Bel (A) is the sum of all the pieces of evidence (m(F1), m(F2), and m(F1, F2)) that 

support A (i.e., it supports the claim that, based on the observed alarms, the network 

failure is either F1 or F2). On the other hand, the plausibility function measures the 

maximal amount of belief that a proposition can take. It represents the maximal amount 

of probability that can be distributed among the network failures of that proposition. In a 

diagnostic interpretation, Pl(A) is the sum of all pieces of evidence that do not rule out 

that the network failure is either F1 or F2. Together the total belief and plausibility in a 

proposition constitute a confidence interval of that proposition. The probability that the 

network failure is  either  F1   or   F2   is  indicated   by   the   confidence   interval [Bel(A),  
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Pl(A)], where Bel(A) and Pl(A) are the lower and upper bounds of the confidence interval 

respectively and Bel(A) - Pl(A) expresses the ignorance regarding the proposition A.  

 

3.4.5 Combining Agents Evidence Structures  

After these evidence structures have been constructed by each intelligent agent involved 

in the alarm correlation process, the agent manager combines all of them into a single 

evidence structure using the combination rule, introduced by Dempster, as follows:  

           ( ) ( )∑ ∏⊕

=
=

=

∩

=

=

AA

n

i

i

ii

n

i
in

i

AmAm

1
1

1
                                                                            (3.7) 

where A is defined as before. This combination can be normalized as: 
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3.5 Summary 

In this chapter, we present a brief review of techniques used by different management 

systems to obtain and model the underlying topology of the managed network. The basics 

of Dempster-Shafer Evidence Theory are also reviewed, along with the formulation of 

the alarm correlation problem within its framework. However, to employ the DSET, a 

mass function has first to be defined. The definition of mass functions has been 

considered a largely unsolved problem. In essence, a mass is referred to as a basic 

probability assignment [23], which is often associated with a probability distribution. 
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Chapter 4  

 

 

A Novel CSP Approach for Probe 

Selection  

 

4.1 Introduction 

The number of generated alarms in a network of a moderate size can be overwhelming, 

while a considerable subset of these alarms can be redundant with little diagnostic value. 

As such, these alarms should not be considered in the fault analysis stage. Therefore, a 

sensible approach is needed to remove these alarms and consider only the most relevant 

alarms when performing the alarm correlation process. In this regard, we view probes 

(such as ping and trace route utilities) as active alarms. In contrast to regular alarms, 

active alarms are generated by pre-assigned nodes (called probing stations) and 

periodically sent to the network for node-availability testing tasks. In this chapter, we 

introduce a new approach, based on the constraint satisfaction problem (CSP) techniques, 

that is able to find an optimal number of active alarms. The powerful search techniques 

provided   by   the   CSP technology make it   an appealing alternative to the existing 

approaches. CSP-based approaches have  been  proposed  and  applied  in  other  areas  of 
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network management, however, limited effort has been made to investigate their use for 

the purpose of fault detection and identification in computer networks.  

 

4.2 Probing System Structure 

In contrast to the passive (event-correlation based) approaches, the new CSP-based 

approach is an active approach in which certain and limited number of measurements are 

obtained and analyzed. These measurements are often referred to in the literature as 

probes. A probe is basically a test transaction (such as ping and trace-route) whose 

outcome depends on the health status of the network components that exist in its path.  

As shown in Fig. 4.1, a probing station is a dedicated system that sends these probes to 

test different network elements according to a predefined schedule. Depending on the 

size of the managed system, the number of the probing stations varies from one network 

to another. To use probes, probing stations must be first selected and installed at different 

locations in the managed network. The total number of probes issued by these probing  

 

                       

 

Figure 4.1: Configuration Example of two Probing Stations. 
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stations and used by the network management system is called the probe set. This probe 

set is often large. Since probes are basically embedded code and are installed, operated, 

and maintained in probing stations, they may impose a certain cost. 

The objective is to obtain a subset of the probe set that is both small and 

exhaustive (i.e., it should cover all the network nodes). The new probe set is called the 

solution probe set. Moreover, the solution probe set must have the same diagnostic power 

as the original probe set. Figure 4.2 shows the necessary steps required to realize the 

active probing scheme. 

 

 

Figure 4.2: System Architecture. 

 

Using the network topology information stored in the knowledge base and 

knowing the locations of the pre-assigned probing stations, we can identify all possible 

probes originated from the dedicated probing stations. The only pre-request here is that 

the obtained probes must be able to reach each network element at least once. The result 

of the first step is the probe set (also known as the dependency matrix). Using the 

dependency matrix, the objective of the proposed CSP-based approach is to find the 

solution probe set.  

 

4.3 Problem Description and Notation 

For the sake of simplicity, let us assume that the network to be managed is composed of 

six nodes and has the topology of Fig. 4.1, with the assigned probing stations.  The 

possible probes that can be obtained form the depicted  configuration  are  shown  in  Fig.  
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4.3. The probing stations and their respective probes are marked by the same color. A 

probe may effectively be represented using the coding approach to alarm correlation. 

According to this scheme, each probe is represented by a binary string of length that is 

equal to the network size. The value of one in position j in the binary string denotes that 

the given probe passes through the node Nj. If the probe does not test the considered 

node, then its position in the binary string is assigned the value of zero. Using this 

representation, the obtained dependency matrix for the network configuration shown in 

Fig. 4.1 is shown in Table 4.1.  

 

 

 

Figure 4.3: Simple Network Graph. 

 

The superscript notation used to describe a probe indicates both its probing station 

from which it is issued and its final destination for which it is going. For example, the 

probe
WebServer

P _1 , shown in the fourth row of the dependency matrix, means that this probe 

is originated at probing station 1 and terminating at the server (WebServer)  hosting the 

web site. The path that this probe should go through to reach the WebServer node is 

WebServerRRobing →→→ 211Pr . Usually, the routes that these probes take during 

their transitions are determined by the routing information pertained in the routing  tables.  
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Of course such routing configuration will be taken into consideration when designing and 

determining the required probes.  

 

Table 4.1: The dependency matrix of the network of Fig. 4.3 

 

 

Once a probe is generated by a probing station, it is expected to return two 

possible outcomes. The probe either succeeds at reaching its final destination or it fails. If 

the probe succeeds, then all the nodes and links that comprise its path are presumed up 

and functioning properly. If the probe fails, then at least one component of its path is 

assumed to be in a failure state. A single probe may only be used as a fault detection 

signal of the network entities in its path. However, to identify a malfunctioning entity, 

multiple probes are needed. For instance, if the initial solution set contains only the 

probes 
WebServer

P _1  and 
rverDatabaseSe

P _1 , then the fault management system can only identify 

problems pertaining to the web and database servers. However, it may not be able to 

locate failures in the routers. The information contained in these two probes simply is not 

enough to be used for comprehensive diagnostic tasks. This diagnostic deficiency is 

evident and can be seen from their respective undistinguishable columns in the 

dependency matrix.  Moreover,  the  node  Probing Station 2  can  not  be  tested   by  the 
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two probes as both probes have value of zero in their code at the node’s position. The 

incompleteness characteristic exhibited by the initial solution set can be resolved by 

considering more probes from the dependency matrix. Hence, more probes are needed 

and must be added to the solution set. Before adding a new probe to the solution probe 

set, its diagnostic abilities should be first examined. For all the network nodes to be 

uniquely identified, the solution probe set must have non identical columns.    

 Let N refer to the network size, D to the dependency matrix,
i

X  to the th
i row in 

D, and R to the total number of rows in D.  Each row in D represents a unique probe. 

Therefore, for each DX
i
∈ , the entry 1)( =jX

i
 if the probe 

i
X  passes through the node 

j. 0)( =jX
i

 otherwise, where Ri ,...,1= and Nj ,...,1= . The size of the dependency 

matrix D is determined by R-by-N.  

 

4.4  CSP Model for Probe Selection 

To model the probing problem in the framework of constraint satisfaction problems, three 

major components have to be identified namely the problem variables, their domains, and 

a set of constraints that govern the relationship among the problem variables. In order to 

facilitate the problem formalization, we will discuss and provide the definitions of 

various concepts relating to the constraint satisfaction problem paradigm.  

 

4.4.1 Definitions 

The constraint satisfaction research community introduces extremely diverse 

terminologies. In our study, we adopt Freuder’s definitions of a standard CSP, variable 

instantiations (or value assignment), consistent instantiation, and solution to a CSP [40], 

as the basis for our formalization. 

Definition 4.1 (constraint satisfaction problem) A constraint satisfaction problem P is 

a tuple ( )CDX ,, , where 

• { }
n

xxX ,...,1= is a finite set of variables, 
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• { }
n

DDD ,....,1= is a set of domains. Each variable Xx
i
∈ is associated with a 

finite domain of possible values, 
i

D .  

• { }
m

ccC ,...,1= is a finite of m constraints or relations. Each constraint Cc
i
∈ is 

defined on a subset of k variables, { } Xxxc
k

iii
⊆= ,...,)var(

1
, and allows specified 

combinations of values that are subset of the Cartesian product of the domains of 

constraint variables )var(
i

c , that is 
k

iii
xDxDc ...

1
⊆ . 

Definition 4.2 (Variable instantiation or value assignment) An instantiation of a 

variable 
i

x  is the assignment to 
i

x  of a value d from the variable domain of values
i

D , 

that is, 
ii

Dddx ∈= , We denote a variable instantiation or value assignment by the 

assignment dx
i

= or the variable pair ),( dx
i

. An instantiation of a set of variables 

{ }
k

xx ,...,1=χ is the simultaneous instantiation of all variables in the set χ  with values 

from their associated domains, that is,  

{ } kiDdXxdxdx
iiikk

≤≤∈∈== 1,,,,...,11  

We denote an instantiation of a set of variables by the set of ordered 

pairs )},(),...,,{( 11 kk
dxdx , or, simply, by the k-tuple of assigned values ),...,( 1 k

dd .  

Definition 4.3 (Consistent instantiation or satisfied constraint) An instantiation 
χ

I of a 

set of variables χ  is consistent with or satisfies a constraint c defined on the same set of 

variables χ ,  χ=)var(c , if and only if cI ∈
χ

.  

Definition 4.4 (Solution to a CSP) A solution to a constraint satisfaction problem P is a 

consistent instantiation of all variables in P. 

Based on the above definitions, we present in detail the formulation of the probing 

problem in the framework of the constraint satisfaction problem. Using definition 4.1, the 

CSP representation of the probing problem is composed of three main components as 

shown in Fig. 4.4 [40]: 

• A set of CSP variables that represent the selected probes, 

• Their associated domains in terms of the dependency matrix, 
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• A set of constraints that governs the mechanism of the probe selection process. 

 

 

 

 

Figure 4.4: CSP model of the probe selection problem. 

 

Clearly, the system probes provided by the dependency matrix represent the system 

to be modeled. Each CSP variable, 
i

x , will  represent  a  selected  probe  from  its domain 

i
D . In essence, the set of constraints should capture the dynamic behavior of the probe 

selection process. Therefore, the imposed constraints will guarantee that a selected probe 

does not introduce undesirable features (such as identical columns) to the solution probe 

set. This, of course, implies that the set of constraints must be well-defined and 

accurately reflect the strict conditions under which the selection process is to be 

performed.  

 

4.4.2 Defining Testing Probes as CSP Variables 

The probing problem can be modeled as   a  CSP   problem   by   first  defining  an  initial 
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finite set of variables. The cardinality of the initial variable set depends on the size of the 

dependency matrix. Let P refer to the number of the probing stations and N to the number 

of the network nodes. Hence, the total number of probes, R can be determined by the 

following equation: 

                                                PNPR −= *                                                            (4.1) 

That means the obtained dependency matrix consists of R rows of probes. The initial set 

of the CSP variables may be determined using the lower bound restriction. To cover all 

the nodes of the managed network by the solution probe set, the number of the initial 

variables should not be less than the lower bound.  

Let K refer to the number of probes to be selected from the dependency matrix. 

Since it is not known in advance how many of these probes are sufficient for the fault 

detection and identification task, K can not be determined beforehand. However, there is 

a lower bound, L, on the value that K may take at the start of the selection process. L can 

be computed using the following formula: 

                             N
L

≥2                                                                                (4.2) 

Hence, L can be calculated as: 

                                          ZLNL ∈≥ );2log(/)log(                                              (4.3) 

Therefore, K initially assumes the value of L as determined by (4.3). Logically, it should 

not, however, exceed the maximum number of the available probes. This can be stated as 

follows: 

                                                    RKL ≤≤                                                                   (4.4) 

We will refer to the K CSP variables as the active variables. If there are no K 

probes in the dependency matrix that can satisfy the imposed constraints, then the 

algorithm will dynamically modify the initial variable set by activating another variable. 

This can be done simply by increasing K by one (i.e., 1+= KK ). As soon as the search 

algorithm finds K probes that satisfy all the imposed constraints, the K probes will be 

considered as the solution probe set and the search process terminates. Hence, the set of 

the CSP variables can be generally defined as: 

                                     { }
K

xxxX ,...,, 21= ;      RLK ,...,=                               (4.5) 
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As shown in Fig. 4.4, each active variable may take any probe from the dependency 

matrix. Hence, the set of domains associated with the set of active variables will be a set 

of dependency matrices: 

                                             { }
k

DDDD ,....,, 21=                                                           (4.6) 

The possible values that an active variable, xi may take are defined in its domain,
i

D  such 

that dx
i

= where
i

Dd ∈ . In order to find an optimal set of K probes, the search algorithm 

should find an instantiation,
X

I  for the set of active variables, { }
K

xxxX ,...,, 21= , from 

their domains that satisfy certain constraints, which will be discussed in detail next 

section. 

 

4.4.3 Construction of the Problem Boolean Constraints 

The objective of the proposed algorithm is to find a solution probe set that possesses 

some distinctive properties. These properties constitute the bases upon which the imposed 

constraints will be constructed. In what follows, we provide more elaboration on these 

properties and present the constraints that capture their inferred principals. Also, the 

advantages of adhering to these principals will be pointed out. During the discussion of 

the proposed constraints, the individual elements of the available probes are of binary 

form, and hence their possible values are restricted to the set {0, 1}. Moreover, the 

solution probe set will constitute a corresponding solution matrix, similar to the 

dependency matrix, except that it should contain smaller number of probes.  

 

Property 1 The number of selected probes contained in the solution probe set should be  

kept minimal.  

 

The purpose of the first property is to reduce the amount of management traffic imposed 

by the original probe set which is represented by the dependency matrix. Less 

management traffic means that more network bandwidth will be available for network 

users. Furthermore, in case of network difficulties (for example, network congestion), not 
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eliminating  this extra traffic may worsen  these  difficulties. To achieve this objective, 

we view the solution probe set as a cost function in terms of the number of its probes. 

Hence, the cost function may take the following form: 

                                               ||min K                                                                           (4.7) 

The realization of this crucial property lies in the use of the concept of the active 

variables. Since the number of active variables is paramount to an optimal number of 

selected probes, we should keep the value of K as low as possible.  K is actually the 

cardinality of the solution probe set. Setting K initially to the lower bound and increasing 

it only when the chosen K probes are unable to successfully locate network problems is in 

fact guaranteeing that K will always maintain an optimal number of probes. 

Theoretically, of course, K can not have a value that is less than the lower bound L. This 

fact can be summarized by the following definition. 

 

Definition 4.5 The cardinality of the solution set, K, must be at least equal to L and less 

than P*N-P. 

  

The other properties will be ensured in the form of strict Boolean constraints and 

the cost function presented in (4.7) will be subject to these constraints. A violation of one 

of these constraints means that these properties are not being met by the current variable 

instantiations. During the search process, the probe committing these constraint violations 

will be replaced by a new one. Since the representation of the testing probes is in the 

form of binary string, Boolean manipulations of these probes make the realization of 

these properties simple. We will refer to a new probe being considered for the solution 

probe set as a candidate probe. Therefore, in order for a candidate probe to be added to 

the solution probe set, the following properties must hold. 

 

Property 2 Every node in the managed network should be covered by the solution set at 

least once.  
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We should avoid selecting probes that may lead to creating a solution matrix in which 

one or more of its columns are zero columns. That is, for any column in the solution 

matrix, all its entries should not be equal to zero. To preserve this property in the solution 

probe set, the following definition can be used.  

 

Definition 4.6 The new probe set can be considered a solution probe set if and only if, 

each column of its corresponding solution matrix includes the value of 1 in their entries, 

at least once.  

 

Based on definition 4.6, property 2 can be captured by the following constraint: 

                                   )(...)(: 11 jxjxC
K

∨∨                                                                  (4.8) 

                                    Nj ,...,1=∀  

The conjunctive normal form of this constraint ensures that C1 is only true when an entry 

of value 1 exists in each column of the solution matrix. Each column in the solution 

probe set represents a distinctive network node. A column, that only containing zeros as 

its entries indicates that the node represented by that column is not covered by the current 

solution probe set. This constraint is extremely useful in pruning the search tree as will be 

explained in more detail later. An instantiation IX = )},(),...,,{( 11 kk
dxdx may satisfy this 

constraint, 1C  if and only if 1CI
X

∈ . 

 

Property 3 Each node covered by the solution probe set should be uniquely identified. 

 

In order for a fault management system to be able to identify any malfunctioning network 

node, the selected probes should have differentiating capabilities by which a failed node 

can be efficiently isolated and identified.  Hence, candidate probes that introduce 

identical columns to the solution probe set should not be selected. Identical columns 

confuse the management system as which node (represented by an identical column) is 

actually responsible for the malfunctioning behavior. The essence of this property can be 

captured by the following definition. 
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Definition 4.7 The found set can be considered a solution probe set if and only if, each 

column of its corresponding solution matrix has a different value from each other column 

in at least one of their entries.  

 

Using definition 4.7, property 3 can be realized by the following constraint: 

                                     ))()(())()((:2 jxjxjxjxC
iiii

¬∨¬∧∨                                    (4.9) 

                                     { }Ki ,..,1∈∀  

                                     { }1,...,1 −∈∀ Nj  

                                     { }Njj ,...,1( +∈∀  

This constraint can only be violated by the solution probe set if two of its columns in its 

corresponding solution matrix are exactly the same. For this constraint to be satisfied, any 

two corresponding entries of two columns must have different values at the same row, 

regardless of what values the rest of their other entries may take. 

 

Property 4 Identical probes should not be included in the solution probe set. 

 

The purpose of this property is to avoid redundant probes. Since candidate probes are 

represented by active variables that have the same domain, it is possible that more than 

one of these variables may be instantiated by the same value. This can be summarized in 

the following definition. 

 

Definition 4.8 The found set can be considered a solution probe set if and only if, each 

row of its corresponding solution matrix has  a different value from each other row in at 

least one of their entries.  

 

Using definition 4.8, the following constraint may capture property 4 as follows: 

                      )))()((....))1()1(((:3 NxNxxxC
KiKi

⊕∨∨⊕¬                                     (4.10) 

                                for 1,...,1 −= Ki . 
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The purpose of the exclusive disjunction ⊕  is to examine the similarity of the individual 

elements of the candidate probe with their corresponding elements in the probes of the 

solution probe set. Two active variables are presumed to have different instantiations if 

any two of their corresponding elements have opposite values.  

 Any violation of one or more of these constraints prompts the search algorithm to 

discard the current instantiation of the last active variable 
k

x  and selects a new one. If no 

instantiation is available for
k

x from its domain 
k

D  such that these properties hold, then a 

backtracking is performed in which a new instantiation of the previous active variable 

1−k
x will be chosen from its domain 1−k

D  .     

 

4.5 K-Consistency and Constraint Propagation 

In this section, we consider some consistency techniques that can be utilized to remove 

inconsistent values from the domains of the active variables without removing any 

solutions to the probing problem. That is, an instantiation of one of the active variables 

that may violate one or more of the constraints described in Equations (4.8), (4.9), and 

(4.10) should be removed from their domains. Since our constraints are expected to 

include K active variables, we adopt the following definition of K-arc consistency 

developed by Freuder [41]. 

 

Definition 4.9 (K-consistency) A CSP is k-consistent if and only if consistent partial 

solution over k-1 distinct variables, there exist an instantiation of
th

K variable such that 

the partial solution plus that instantiation is consistent.  

 

The K-consistency and propagation techniques are used to improve the efficiency 

of the backtracking search algorithm by detecting failures earlier in the search process.  

The constraint propagation is embedded in the backtracking algorithm and performed to 

reduce the domains of the unassigned active variables. If a domain of any variable 

becomes  empty  after  propagation,  the  current  CSP can  not  produce  a  valid  solution   
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and backtracking should be carried out. The domain values removed due to the 

propagation activity are returned when a backtracking is performed and another 

assignment for the variable is made by the search algorithm. The backtracking and 

constraint propagation continue until a solution is found or the backtracking process is 

out of active variables.  

 

4.5.1 Domain Reduction Rules 

The proposed CSP is considered as a Boolean CSP since its constraints are defined using 

Boolean expressions. In this framework, the Boolean constraints are divided into two 

classes, namely, simple form and compound form. In order to achieve K-arc consistency 

defined in 4.9, the compound constraints should first be transformed into simple forms 

which will be dealt with directly using domain reduction rules. Some auxiliary variables 

are introduced in the preprocessing stage before identifying the domain reduction rules 

for each constraint. A Boolean constraint is called a simple constraint if it is in one of the 

following forms: 

• )()( jxjx
li

= ; we call it the equality constraint, 

• )()( jxjx
li

=¬ ; we call it the NOT constraint, 

• zjxjx
li

=∧ )()( ; we call it the AND constraint, 

• zjxjx
li

=∨ )()( ; we call it the OR constraint. 

Where zjxjx
li

),(),(  denote different Boolean variable, NjjliKli ...1,;,,...,1, =≠= . 

 To apply the domain reduction rules on constraint 1C  defined in Equation (4.8), 

we first transform the constraint, 

)(...)(: 11 jxjxC
K

∨∨  

                                                      Nj ,...,1=∀  

into the following simple Boolean constraints: 

                                         121 )()( zjxjx =∨                                                 (4.11) 

                                         231 )( zjxz =∨                                                                     (4.12) 
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M  

                                  12 )(
−−

=∨
KKK

zjxz                                                                     (4.13) 

For constraint 1C  to be satisfied, one of its simple Boolean expressions, defined in (4.11), 

(4.12), and (4.13), has to be true. The following domain reduction rules can be applied on 

the simple constraint defined in Equation (4.11) as follows: 

                
{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

121

121121

=∩∈=

=∈==∨

zjxjx

zjxjxzjxjx
                                      (4.14) 

or 

             
{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

121

121121

==∩∈

==∈=∨

zjxjx

zjxjxzjxjx
                                         (4.15) 

If 1z is true, then the first constraint 1C  is satisfied. These domain reduction rules simply 

state that for 1z to be true, the following rule should hold: 

1)(1 11 =→= jxz  or 1)(2 =jx                                               (4.16) 

 That is for the simple constraint defined in Equation (4.11) to be true, then either )(1 jx  

or )(2 jx  must be equal to 1. If 1z is not true, then we apply the same reduction rules on 

the second simple Boolean constraint defined in Equation (4.12). In this, case 1z will 

assume the value of 0. Applying the previous domain reduction rules on this constraint, 

the following rule can be deduced: 

           1)(1 32 =→= jxz                                                                      (4.17) 

And so on, until the last rule of last simple constraint is obtained. Thus, 

1)(11 =→=
−

jxz
kk

                                                                 (4.18) 

The constraint 1C  may only be violated if all of its simple Boolean constraints are 

violated, that is 0..... 121 ====
−K

zzz . If one of its simple Boolean constraints is true 

then 1C  is satisfied. 

The second constraint 2C  defined in Equation (4.9), 

))()(())()((:2 jxjxjxjxC
iiii

¬∨¬∧∨                                     



 52 

CHAPTER 4.  A NOVEL CSP APPROACH FOR PROBE SELECTION                          .                  

 

                                       { }Ki ,..,1∈∀  

                                       { }1,...,1 −∈∀ Nj  

                                       { }Njj ,...,1( +∈∀  

can be transformed into these simple Boolean constraints: 

1)()(
iii

zjxjx =∨                                                                 (4.19) 

2)()(
iii

zjxjx =¬∨¬                                                           (4.20) 

           321 iii
zzz =∧                                                                  (4.21) 

Where jji ,, are as defined above. For the constraint 2C  to be satisfied, then the simple 

Boolean constraint defined in Equation (4.21) must be true. Since this constraint is an 

AND constraint, it means that the other two simple constraints defined in Equations 

(4.19) and (4.20) must also be true. The following domain reduction rules can be applied 

on the simple constraint defined in Equation (4.19) as follows: 

                
{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

1

11

=∩∈=

=∈==∨

iii

iiiiii

zjxjx

zjxjxzjxjx
                                     (4.22) 

or 

    
{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

1

11

==∩∈

==∈=∨

iii

iiiiii

zjxjx

zjxjxzjxjx
                                     (4.23) 

These domain reduction rules simply state that for 1iz to be true, the following rule should 

hold: 

1)(1 11 =→= jxz
ii

 or 1)( =jx
i

                                              (4.24) 

 The following domain reduction rules may also be applied on the simple constraint 

defined in Equation (4.20) as follows: 

      
{ }

{ } 1},1{1,0)(;0)(;

1,1,0)(,0)(;)()(

2

22

=∩∈¬=¬

=∈¬=¬=¬∨¬

iii

iiiiii

zjxjx

zjxjxzjxjx
                        (4.25) 

     
{ }

{ } 1,0)(};1{1,0)(;

1,0)(,1,0)(;)()(

2

22

==¬∩∈¬

==¬∈¬=¬∨¬

iii

iiiiii

zjxjx

zjxjxzjxjx
                         (4.26) 
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These domain reduction rules simply state that for 2i
z  to be true, the following rule 

should hold: 

1)(12 =¬→= jxz
ii

 or 1)( =¬ jx
i

                                                     (4.27) 

Moreover, for the constraint 3i
z  to be true the following rule should hold: 

11 13 =→=
ii

zz  and 12 =
i

z                                                                 (4.28) 

Hence, for 2C to be violated only one of its simple constraints has to be violated.  

The last constraint 3C  defined in Equation (4.10), 

)))()((....))1()1(((:3 NxNxxxC
KiKi

⊕∨∨⊕¬  

                                            for 1,...,1 −= Ki . 

can be transformed into these simple Boolean constraints: 

              1)1()1( zxx
Ki

=⊕                                                               (4.29) 

                                         2)2()2( zxx
Ki

=⊕                                                               (4.30) 

                                                    M        

                                         
NKi

zNxNx =⊕ )()(                                                            (4.31) 

For constraint 3C  to be satisfied, one of its simple Boolean expressions, defined in (4.29), 

(4.30), and (4.31), has to be true. The following domain reduction rules can be applied on 

the simple constraint defined in Equation (4.29) as follows: 

     
{ }

{ } 1},1{1,0)1(;0)1(;

1,1,0)1(,0)1(;)1()1(

1

11

=∩∈=

=∈==⊕

zxx

zxxzxx

Ki

KiKi

                                      (4.32) 

    
{ }

{ } 1,0)1(};1{1,0)1(;

1,0)1(,1,0)1(;)1()1( 11

==∩∈

==∈=⊕

iKi

KiKi

zxx

zxxzxx
                                       (4.33) 

These domain reduction rules simply state that for 1iz to be true, the following rule should 

hold: 

    1)1(11 =→=
i

xz  and 0)1( =
K

x , or 0)1( =
i

x and 1)1( =
K

x              (4.34) 

Similar reduction rules can be applied for the other simple constraints defined in (4.30) 

and (4.31) and the following rules can be obtained: 



 54 

CHAPTER 4.  A NOVEL CSP APPROACH FOR PROBE SELECTION                          .                  

 

     1)2(12 =→=
i

xz  and 0)2( =
K

x , or 0)2( =
i

x and 1)2( =
K

x                    (4.35) 

    1)(1 =→= Nxz
iN

 and 0)( =Nx
K

, or 0)( =Nx
i

and 1)( =Nx
K

              (4.36) 

Therefore, for the constraint 3C  to be satisfied, then any one of the simple 

constraints 21 , zz … or
N

z must be true. Hence, for 3C to be violated all the simple 

constraints must be violated, that is 0....21 ====
N

zzz . 

 

4.5.2 Backtracking Search Algorithm 

The domain reduction rules developed in the last section will be embedded in the search 

algorithm as constraint propagation methods. Fig. 4.5 shows the main algorithm that calls 

the backtracking search with constraint propagation shown in Fig. 4.6. The main 

algorithm starts with constraint propagation for all the CSP problem variables. Then it 

calls the backtracking search if the constraint propagation function does result in an 

empty domain for one of the problem variables. The backtracking search is a recursive 

algorithm in which every time before it calls itself with a new variable, constraint 

propagation is performed once again for the new variable.  It only calls itself if the 

constraint propagation was successful for the new variable.  

The function cost () is to check whether the new value assignment for the current 

variable is consistent. The propagate () function is to apply the domain reduction rules 

developed in the previous section. In its first call, the propagate () function will apply the 

domain reduction rules on all the problem variables. After an active variable is 

instantiated with a value from its domain, it applies them with the new assignment for the 

current variable and the rest of the problem variables. A simple checking forward 

algorithm can be utilized as constraint propagation algorithm as shown in Fig. 4.7. 

 

4.6 Breaking Symmetries 

Since the proposed CSP model is based on backtrack search algorithm, symmetrically 

equivalent states in the search tree may be explored more than once. Among these states,  
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Figure 4.5: Backtracking main algorithm. 

 

either all of them lead to a solution, or none of them lead to one. Exploring one of these 

equivalent states is enough to determine if a solution can be found for the CSP model. 

Hence, the backtrack search algorithm should limit itself to visit only one of these 

symmetrical states. The advantage of breaking these symmetries is that the search space 

can be reduced even further. The proposed CSP model introduces the following two 

forms of symmetry: 

• Probes can be permuted among the K! combinations, 

• Probes can be exchanged. 

/*ALGORITHM BACKTRACKING SEARCH WITH CONSTRAINT PROPAGATION 

PROCEDURE MAIN 

BEGIN 

/*Initialization for global variables 

]..1[ KarrayD ← ;                /* D contains the domain of individual variables. 

]..1[ KarraySolution ← ;     /* The solution set. 

FALSEfailure ← ; 

FALSESuccess ←  

/*End of initializations 

propagate (0, D, failure); 

IF NOT failure THEN  

           BACKTARCK_PROP (1, D, Solution, Success) 

 END 

END 
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Figure 4.6: The backtrack search procedure. 

 

The first symmetry may occur when a particular probe is being selected more than once. 

In fact, this symmetry will be avoided by the search algorithm because of the 

constraint 3C . The constraint 3C will always make sure that identical probes will be 

discarded. However, we have not introduced a constraint that may break the second 

symmetry. The second symmetry can be avoided using lexicographical ordering [42]. A 

sequence 
n

xxx ,....,1=

r
 is lexicographically smaller than or equal to another 

sequence
n

yyy ,....,1=

r
, written as yx

lex

rr
≤ , if and only if: 

PROCEDURE BACKTRACK_PROP( i: INTEGER, D: DOMAINS, Success: 

BOOLEAN);  

BEGIN 

 WHILE D[j] <> {} AND NOT Success DO 

            ];[; iDddx
i

∈=  

            };{][][ diDiD −=  

 IF const (Solution, i, d) THEN 

             Solution [i] = d;     

                       Success = (i==K); 

                       IF NOT Success THEN 

                             propagate (i+1, D, failure); 

                            IF NOT failure THEN 

                                     BACKTRACK_PROP ( i, D, Success) 

                           END 

                  END   

                 END 

END PROCEDURE BACKTRACK_PROP 
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Figure 4.7: Constraint propagation algorithm. 

 

 

11 yx ≤ and 
iiii

ii

yxyx ≤→=Λ

<≤

)(
1

 

for ni ≤≤2 .The sequence x
r

 is lexicographically smaller than  y
r

, written as yx
lex

rr
< if 

and only if yx
lex

rr
< and 

iini
yx ≠∨

≤≤1 .  

 In general, a variable symmetry σ  can be broken by the lexicographical ordering 

constraint [41] 

)(xx
lex

rr
σ≤ , 

where x
r

 is a sequence of the variables in the CSP. The following symmetry breaking 

constraints then can be used to break the variable symmetry as follows: 

Klex
xxx ,...,21 ≤  

Klex
xxxx ,...,, 321 >≤<  

-- 

KlexK
xxxx >≤<

−121 ,...,,  

 

PROCEDURE propagate (D: DOMAINS, failure: BOOLEAN) 

BEGIN 

 failure = FALSE; 

 FOR i=1:K 

   D[i] =  { }constentaisiddiDd ][{|][ ∈∈  

  Failure = (D[i] == {}; 

            END 

END propagate 
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Using a constraint for each variable symmetry (σ ), all symmetrical solutions in each 

symmetry class except the lexicographically smallest, with respect to the sequence x
r

, 

would be removed.  

 

4.7 Summary 

In this chapter, we present a novel approach for the probing problem. The CSP-based 

model can capture the dynamic nature of the selection process in the form of Boolean 

constraints. The objective is to choose a subset of the available testing probes in which 

the solution subset has to have three crucial features: 

i. The cardinality of the solution set should be as minimum as possible, 

ii. It has to cover all the nodes in the managed network, 

iii. Every network node should be uniquely identified. 

 

The proposed scheme dynamically changes the number of active variables that are 

involved in the selection process. Experiments have been conducted and the effectiveness 

of the proposed approach in terms of minimizing the number of the selected probes has 

been demonstrated and compared with other existing approaches.  
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Chapter 5  

 

 

A New Fuzzy CSP Probing Algorithm 

 

5.1 Introduction  

Though the CSP-based model developed in the previous chapter tremendously reduces 

the total number of probes required for fault detection and identification tasks, there is 

still an imposed overhead. The fault identification process still can not be performed 

unless all the probes contained in the solution probe set are utilized. This unavoidable 

cost may be tolerated in small networks. However, as managed networks grow larger, this 

problem may become a serious issue and a more adaptive probe-selection mechanism is 

needed to alleviate its negative impact. In this chapter, we develop a novel Fuzzy CSP-

based algorithm. Instead of selecting a group of probes at once, the new algorithm only 

considers a single probe at a time. To be eligible for the fault identification task, an 

informative probe should possess some diagnostic abilities. The most informative probe 

is recognized as a probe that may help reduce the set of the suspect nodes more 

efficiently than other competing probes. Since the competing probes may satisfy this 

essential requirement with different degrees, the standard CSP may not be suitable.  Thus,  
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a fuzzy CSP model is developed, in which a probe that satisfies the formulated fuzzy 

constraints the most is identified as the most informative probe.  

 

5.2 System Architecture and Notations  

The proposed approach is divided into two major components. As shown in Fig. 5.1, the 

first component performs the fault detection task. In this stage, a small number of probes 

are sent periodically to the managed network. If one or more of these probes fail, then the 

managed network is considered to be in an anomaly state.  

 

 

 

Figure 5.1: Probe-based system architecture. 

 

Since, the fault detection probes may not be sufficient to identify the 

malfunctioning node, the task of the second component is to perform the fault 

identification process. During this stage, further analysis of the failed and successful 

probes is carried out. Taking advantage of the valuable diagnostic knowledge provided 

by the current status of the fault detection probes, the most  appropriate  probe  is  singled  
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out for the fault identification task and sent to the managed network. Careful fault 

analysis is then conducted on the outcome of the probe. This step may result in either the 

failed node being identified or a new informative probe being selected.  

 

5.2.1 Fault Detection Probe Set 

The fault detection probe set may be obtained manually by the network administrator. A 

simple greedy approach applied on the dependency matrix (the probe set) can also be 

employed to attain this set. It has to cover all the nodes in the managed network with as 

minimum number of probes as possible. Naturally, the first selected probe should be the 

probe with the maximum number of network nodes in its path. This probe should be then 

eliminated from the probe set. A second probe is selected from the remaining probes such 

that it covers as many network nodes that have not been covered by the first probe. This 

probe selection process continues until all the network nodes are represented by the 

selected probes or no available probes are left.  

 Let us assume that the set N represents the set of nodes of the network under 

investigation, P represents the probe set, and S the set of the selected probes from P. The 

greedy approach can be implemented as shown in Figure 5.2. The greedy algorithm is 

simple enough to be self-explanatory. If sufficient testing probes are available, then a 

small set of fault detection probes can be found. However, if such set is not found, then 

more testing probes can be created and added to the probe set and the probe selection 

process starts over.   

 

5.2.2 Dynamic CSP-Model for Fault Identification 

The central premise of the proposed algorithm is that a failed probe gives a valuable clue 

on the set of nodes that may contain the malfunctioning node. Moreover, successful 

probes may indicate a set of nodes that should be ruled out as likely suspects of the 

malfunctioning behavior. The constituents of the failed probe, therefore, comprise a 

special node set called the suspect  set (referred to by F),  while  the  constituents   of  the   
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Figure 5.2: Probe selection by the greedy algorithm. 

 

 

successful probes constitute another special node set called the healthy set (referred to by 

G).  Furthermore,   probes  whose  constituents  are  subset  of  the  set  G  are  considered  

      /*Greedy Algorithm for the selection of the fault detection 

      /*probe set 

1. Inputs: N and P. 

2. Outputs S. 

3. Select a probe P  from P such that it has the maximum number of non-

covered nodes and the least number of covered nodes. 

4. Add P  to S. 

5. Remove P  from P. 

6. Remove the nodes expected to be probed by P  from N. 

7. if ( NULLN ≠ ) and ( NULLP ≠ ) then 

                         Repeat steps 3 to 6. 

                 end if 

       8.      if ( NULLN = ) then     

                         Return S. 

                         Exit. 

                end if 

9.    if ( NULLN ≠ ) and ( NULL=P ) then 

                   Report “insufficient probes in P.” 

                          Exit. 

                  end if 
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healthy probes and removed from P. Using F and G sets, the proposed fuzzy CSP-based 

algorithm selects a new probe from the modified probe set P. Based on the response of 

the new selected probe,  it  may  either  locate  the  malfunctioning  node  or  dynamically 

adjusts the suspect, healthy, and probe sets. It should be noted that the fault identification 

task is an iteration process. In this process, probes will be temporally removed from the 

probe set P and nodes will be deleted or added from and to the suspect and healthy sets. 

This iteration stops only when the failure set F becomes a singleton set. A general 

schematic diagram of the iteration process is depicted in Fig. 5.3.   

 

 

 

 

Figure 5.3: Schematic diagram of probing-based algorithm. 

 

The objective of the new algorithm is to identify the malfunctioning node with as 

little management traffic (probes) as possible. To achieve the intended objective, the 

algorithm should  meaningfully  reduce  the  size  of  the  suspect  node  set  F.  However,  
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choosing less capable probes may result in an opposite effect and enlarge the suspect set. 

This could prolong the fault identification process causing more management traffic to be 

sent to the managed network. Therefore, the conditions with which testing probes are 

selected should be carefully examined and well represented in the problem formulation. 

The dynamic mechanism of the selection procedure should be captured by a set of well-

defined constraints. These constraints must ensure that only the most informative probes 

are qualified for the fault identification task. Consequently, the domains of the problem 

variables will be effectively modified.  

 

5.3 Problem Description  

Assuming only a single node failure may occur in the managed network, let 
i

p
R  refer to 

the response of the probe
i

p , where i=1… K. K is the number of probes in the fault 

detection probe set. The probe 
i

p  is defined by its constituent set (the network nodes in 

its path). 
i

p
R may take a value only from the set {0, 1}. If the probe 

i
p  fails, then 0=

pi
R ; 

otherwise 1=
pi

R .  

• If a single probe fails ( 0=
pi

R ) and the other probes succeed ( 1=
pj

R ), then the 

initial suspect and healthy sets are constructed as follow: 

( ){ })(|
jii

pppnnF ∩−∈=                                          (5.1) 

( ){ })()(|
jii

pppNnnG ∩∪−∈=                                (5.2) 

• If multiple probes fail,  that is 0.... ===
ji

pp
RR , then: 

{ },)....(|
ji

ppnnF II∈=                               (5.3) 

{ }))....((|
ji

ppNnnG II−∈=                                  (5.4) 

where jikji ≠= ,...1, . 

If the result of Equation (5.1) or (5.3) is a singleton set F, then F identifies the 

malfunctioning node. However, if F contains more than one element, then further fault 

analysis will be carried out.  The  fuzzy  CSP-based  fault  identification  algorithm  picks 
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another probe according to some features described in detail next section. 

 Let
m

p  be the newly selected probe. The new probe is expected to contain a subset of 

suspect nodes or both suspect and healthy nodes in its path.  The response of 
m

p will 

impact the elements in both F and G as follows: 

• If 0=
m

p
R , then 

( ){ }FpnnF
m

∩∈= |                                                    (5.5) 

                                             ( ){ })(| FpNnnG
m

∩−∈=                                          (5.6) 

• If 1=
m

p
R , then 

                        ( ){ })(| FpFnnF
m

∩−∈=                                          (5.7) 

          { })(| GpnnG
m

∪∈=                                                   (5.8) 

If the probe 
m

p  fails, then obviously the suspect nodes presented by the probe will 

become even more suspicious and should be singled out for more testing. Equation (5.5) 

suggests that the suspect set  F  will hold only the suspected nodes in the probe
m

p . The 

other suspected nodes will be removed from F and added to the healthy set G as implied 

by Equation (5.6). However, if the probe 
m

p succeeds, its suspected nodes should be 

removed from the suspect set F as indicated by Equation (5.7) and added to the healthy 

set G as shown in Equation (5.8). If the suspect set F is not a singleton set then another 

probe is selected and the whole process will be conducted once again in the same manner. 

Depending on the status of the sets of F and G, the probe set P may also go through some 

refinement where probes of healthy nodes will be ignored from the probe selection 

process.   

This problem can be best explained by the following example. The dependency 

matrix, D, obtained from the network configuration of Fig. 5.4, is presented in table 5.1. 

For the sake of convenient notations, it is summarized as follows: 

D = {P12, P13, P14, P15, P16, P42, P43, P45, P46} 

The network nodes are represented by the set N = {N1, N2, N3, N4, N5, N6}. The set of 

probes are defined in terms of their constituent nodes as follows: 
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Figure 5.4: Simple Network Graph. 

 

 

 

Table 5.1: The Dependency matrix of the network in Fig. 5.4. 

Probes Nodes N1 N2 N3 N4 N5 N6 

P12 1 1 0 0 0 0 

P13 1 0 1 0 0 0 

P14 1 0 1 1 0 0 

P15 1 1 0 0 1 0 

P16 1 0 1 0 0 1 

P42 0 1 1 1 0 0 

P43 0 0 1 1 0 0 

P45 0 1 1 1 1 0 

P46 0 0 1 1 0 1 

 

 

 

 

       P = {P12 = {N1, N2}, P13 = {N1, N3}, P14 = {N1, N3, N4}, P15 = {N1, N2, N5},  

     P16 = {N1, N3, N6}, P42 = {N2, N3, N4}, P43 = {N3, N4}, P45 = {N2, N3, N4, N5},   

     P46 = {N3, N4, N6} } 
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In this new representation, any node that is not covered by a given probe will not 

be reported by the node set of the probe. According to the new approach, the greedy 

scheme is first applied on the probe set. Consequently, the following two probes are 

selected: 

P45 = {N2, N3, N4, N5} 

                                                        P16 = {N1, N3, N6} 

 

 

It is apparent that P45 and P16  can completely cover the nodes in the managed network. 

Should one or both of these probes report the occurrence of a failure, the fault 

identification function will be invoked promptly. The information carried by the detection 

probes will be fully exploited as follows:  

• If P16 has failed and P45 has succeeded,  then, according to Equations (5.1) and 

(5.2), the node sets F and G will be constructed as follows: 

         F = {N1, N6} 

G = {N2, N3, N4, N5} 

            Naturally, nodes reported by the successful probe should be included in 

the    healthy   

            set G,  as  well  as  any  node   covered by both the failed probe and the successful  

probe simultaneously.  Thus, faults pertained to node 3, N3, is not included in the 

suspected set F. 

• If P45 has failed and P16 has succeeded, following the same Equations, the sets F 

and G will formed as follows:           

F = {N2, N4, N5} 

G = {N1, N3, N6} 

• If both probes have failed, then according to the Equations (5.3) and (5.4), the 

suspect and healthy sets will be formed as follows: 

    F = P45  ∩  P5 = {N3} 

                                                  G = N - (P45  ∩  P5) = {N1, N2, N4, N5, N6} 
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The fundamental presumption behind this reasoning is that the outcomes of the probes 

force certain assignments to the problem variables, namely F and G. Note here, since the 

suspect set F has been adjusted and turned into a singleton set, no further fault analysis is 

needed.  

 

5.4 A Fuzzy CSP Framework 

Since the constraints imposed by the probing problem need not be fully satisfied, the 

crisp CSP formulation will not be flexible enough to accommodate them.  The fuzzy CSP 

(FCSP) methodologies seem more appropriate to tackle this kind of problems. The main 

concept is to generalize the notion of crisp constraints [43], in which different tuples may 

satisfy a particular constraint with different degrees. Once the fuzzy constraints have 

been defined and constructed, standard search techniques to solve CSP problems can be 

adapted to solve fuzzy CSP problems. To formally define the probing problem in a fuzzy 

CSP framework, a basic definition of a fuzzy CSP is first presented.  

 

5.4.1Fuzzy Constraint Satisfaction Problem (FCSP) 

Definition 5.1 A fuzzy constraint satisfaction problem (FCSP) is defined as a 3-

tuple ( )
f

CDX ,, , where: 

• { }niXX
i

,...,1| == is a finite set of variables. 

•  { }niDD
i

,...,1| == is the set of domains. Each domain 
i

d  is a finite set 

containing the possible values for the corresponding variable 
i

x in X. 

• f
C  is a set of finite fuzzy constraints. That is, 

 [ ]













=→














= ∏

∈

midRC
f

ij

f

i

Rx

jR

f

i

f
,...,1,1,0:|

)var(

µ ,                                 (5.9) 

Where )var( f

i
R denotes the set of variables of fuzzy constraint f

i
R . The main concept of a 

fuzzy CSP revolves around a fuzzy constraint.  A fuzzy constraint is a mapping  from  the  
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Cartesian product of the domains )....( 21 k
xDxxDD of the constraint variables 

k
xxx ,...,, 21 , 

into the interval [0, 1]. The value assigned to c for the constraint ),...,,( 21 k
xxxc  is the 

degree of satisfaction that the instantiations of the variables 
k

XXX ,...,, 21   may present 

to the   constraint.  A fuzzy constraint corresponds to a membership function of a fuzzy 

set. If 1),...,,( 21 =
k

xxxc , then we say that the constraint is fully satisfied by this 

instantiation. Conversely, If 0),...,,( 21 =
k

xxxc , then the constraint is fully violated by 

this instantiation.  The support set is formed by the instantiations of the variables for 

which c > 0. 

 

5.4.2 Probing Fuzzy CSP Formulation 

Formally, the fuzzy CSP-based probing problem can be defined as follows:  Let 
t

F , 
t

G , 

and  
t

P   refer  to  the sets  of  the  suspect   nodes,   the  healthy nodes,  and  the   probes, 

respectively, at iteration t, where ,....1,0=t . Let { }pf , be the set of the probing problem 

variables. Let 
F

Σ  and 
P

Σ  refer to the domains of f  and p , respectively. The 

domain
t

F
Σ  is basically a superset of 

t
F  and

P
Σ =

t
P , and the empty set, Φ , and the whole 

set are excluded from the domain 
t

F
Σ . Therefore, to find a solution to the fuzzy CSP 

probing, we have to assign an instantiation for each variable
Fi

f ∑∈ and
Pl

p ∑∈ , 

where )12,...,1( −=

ΣF

i , and ),...,1(
t

ml = , and subject to a set of binary constraints, C.  

The binary constraints ensure that certain properties hold during the selection 

process. We will refer to a competing probe in the selection process as candidate probe, 

the nodes in its path as the test set, and the suspect and healthy sets as the diagnostic sets.  

In what follows we discuss these properties and their impact on the formulation of these 

binary constraints [44]. 

 

Property 1   A candidate probe should be able to test at least one suspect node. 
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Clearly that probes which contain only healthy nodes in their test set are not going to be 

useful in the fault analysis process. However, as network entities continuously are added 

or removed from both diagnostic sets, a probe may change its status in later stages of the 

fault analysis process. To preserve this property in the selected probe, the following 

definition can be used.  

 

Definition 5.2 The test set of a candidate probe
Pl

p ∑∈ , should contain at least one 

element from the current diagnostic set
t

F .      

 

Based on definition 5.2, property 1 can be captured by the following constraint: 

C1: l
p I  

t
F ≠ Φ                                                           (5.10) 

The purpose of this constraint is to temporarily eliminate from the search space all the 

healthy probes since we are only interested in testing the suspect nodes represented by the          

diagnostic set
t

F .  

 

Property 2   A candidate probe should be able to test a suspect node currently under 

investigation. 

 

Not all the suspect nodes are investigated at once. Only a selected subset of the diagnostic 

set 
t

F  will be targeted for testing. A candidate probe should contain in its test set the 

targeted node. This property can be defined as follows. 

 

Definition 5.3 The test set of a candidate probe
Pl

p ∑∈ , should contain the targeted 

suspect node 
Fi

f ∑∈  from the current diagnostic set
t

F .      

 

Based on definition 5.3, property 2 can be captured by the following constraint: 

C2: l
p I

i
f =

i
f                                                             (5.11) 
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This constraint can only be consistent if the current instantiation of the problem variable 

i
f is clearly included in the test set of the candidate probe. 

 

Property 3   A candidate probe should not aim to test all the suspect nodes at once. 

 

Probes that contain all the suspect nodes in their test sets should also be avoided. Since 

one or more of the suspicious nodes in the diagnostic set 
t

F  is the main cause of the 

malfunctioning behavior, a candidate probe that contains all the suspect nodes in its test 

set is doomed to fail, regardless of how many healthy nodes presented in its test set. We 

use the following definition to capture the essence of this property. 

 

Definition 5.4 The test set of a candidate probe
Pl

p ∑∈  should not contain all the 

elements in the current diagnostic set
t

F .      

 

Based on definition 5.4, property 3 can be captured by the following constraint: 

  C3: l
p I  

t
F ≠

t
F                                                         (5.12) 

The consequences of such failed probe is that the non-suspect nodes in its test set will be 

wrongly added to the current diagnostic set
t

F  and eliminated from the diagnostic set
t

G . 

This of course will further complicate the diagnosis process and introduce unnecessary 

management traffic into the managed system. This may also result in removing more 

capable probes from the probe search space. 

 

Property 4   A candidate probe targeting a certain number of suspicious nodes is 

considered more desirable than other probes with more or less suspicious nodes. 

 

A high priority should be given to a candidate probe that is able test a certain number in 

the current suspect set. The following definition can be used to preserve this property. 
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Definition 5.5  A candidate probe
Pl

p ∑∈ , with a certain number of suspect nodes from 

the diagnostic set 
t

F  in its test set, which yields a higher value output of a continuous 

function in the range of (0, 1) is considered more eligible than other probes .      

 

Based on definition 5.5, property 4 can be captured by the following constraint: 

C4: (| pl I  
t

F |) ⇒ (0, 1)                                               (5.13) 

Hence, the candidate probe should be examined with the current diagnostic set
t

F  rather 

that a subset of it. The extreme function values of 0 and 1 are excluded from the function 

range. A value of 0 means that the candidate probe’s test set may not include any of the 

suspect nodes in F which contradicts the constraint C1. A value of 1 means that the 

candidate  probe’s  test   set   could  contain   all  the  nodes  of  the  suspect  set  F  which 

contradicts the constraint C3. Whether the preference will be given to candidate probes 

with more or less suspected nodes in their test set will be discussed in detail in the 

following section. 

 

Property 5   A candidate probe traversing a certain number of healthy nodes is 

considered more desirable than other probes with more or less of healthy nodes. 

 

Another factor that may play a major role in a candidate probe selection is the number 

of healthy nodes present in its test set. This property can be defined as follows.  

 

Definition 5.6  A candidate probe
Pl

p ∑∈ , with a certain number of healthy nodes from 

the diagnostic set
t

G  in its test set, which yields a higher value output of a continuous 

function in the range of [0, 1], is considered more desirable that other probes .      

 

A candidate probe with a certain number of healthy nodes in its test set is given high 

priority than other candidate probes. Based on definition 5.6, property 5 can be captured 

by the following constraint: 
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C5: (|pl I t
G |) ⇒ [0, 1]                                                (5.14) 

The evaluation of this constraint can break a tie between competing probes and the 

preference will be considered based on the situation at hand. The value of zero implies 

that the candidate probe may not have a single healthy node in its test set. This probe 

should be given the highest priority since the probe test set is basically a subset of the 

suspect set.  The success or failure of this probe can positively have a huge impact on the 

suspect set and radically modify its size. On other hand, a candidate probe whose test set 

include all the healthy nodes of the current G should be given the lowest priority.  

Clearly the constraints C1, C2, and C3 are crisp ones and they could be either fully 

satisfied or fully violated. However, the constraints C4 and C5 are fuzzy in the sense that 

some probes will satisfy these two constraints with different degrees of satisfaction. The 

domains of the fuzzy constraints C4 and C5 are also fuzzy sets with membership functions 

4C
dom and

5C
dom , respectively, where [21]: 

{ }
PltllC

pFpCpdom Σ∈∀= |),(max)( 44
                                 (5.15) 

{ }
PltllC

pGpCpdom Σ∈∀= ),(max)( 55
                                   (5.16) 

During the search process for a best solution, problem constraints will be evaluated 

individually. These membership functions can be used to find an instantiation for a 

certain constraint that can satisfy it the best. 

 

5.4.3 The Satisfaction of the Fuzzy Constraints 

The eligibility of a given probe for the fault identification task may depend on two crucial 

factors: 

1. The ratio of the suspect nodes represented in its test set, 

2. The ratio of healthy nodes represented in its test set. 

Recognizing the importance of this knowledge is essential in order to make a 

better judgment pertaining to the probe selection. Therefore, the contributions of the 

fuzzy constraints to the selection process play a vital role in this regard. One way to 

extract this significant piece of information from a  candidate  probe  is  by  obtaining  the  
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intersection set of the candidate probe test set with both diagnostic sets and then 

calculating their cardinalities. That is, the cardinality of the set {
l

p I  
t

F }, specified by 

the constraint C4, determines the number of the suspected nodes that the candidate 

probe
l

p  may have.  On the other hand, the cardinality of the set {
l

p I
t

G }, specified by 

constraint C5, gives the number of the healthy nodes it has. Based on this obtained 

information, the next step is to determine what probes are more appropriate for the fault 

identification task.     

One approach is to iteratively select a probe that covers a large number of suspect 

nodes. The success of such a probe gives a large amount of information as its entire 

suspect nodes will be removed from the suspect set. However, if the probe fails then the 

its healthy nodes will be added to the suspect set.  Furthermore, because the probe test set 

has a large number of suspect nodes, it will be more likely that this probe will fail, risking 

its perfectly good nodes to be added to the suspect set. This approach can be very 

effective if the candidate probe has no healthy nodes in its test set. That is, the probe test 

set is actually a subset of the suspect set. In this case, if the probe fails, then the suspect 

set will be reduced to the test set of this probe, which will be less than the original one. If 

the probe succeeds, then all the nodes of the probe test set will be removed from the 

suspect set. Thus, the new suspect set will be much less than the original one.  

The other approach is to select a probe with the least number of the suspect nodes. 

Not much information may be gained if the probe succeeds, as the suspect set will be 

slightly reduced.  However, if it fails, there are two possible scenarios: 

• If the probe test set contains only a single suspect node, then the malfunctioning node 

has been identified. This is the best scenario as the fault analysis terminates. 

• If the probe set contains more than a single suspect node and no healthy nodes, then 

the suspect set will be significantly reduced to that of the probe test set. Otherwise, 

the healthy nodes will also be added to the suspect set. 

It is clear from the above discussion that a better probe has no or few healthy 

nodes in its test set. In case of failure, the candidate probe will not expand the suspect set 

dramatically. It may, however, have a large or  small  number  of  suspect  nodes  as  each  
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approach has their own merits and shortcomings. In this study, probes with the lowest 

number of both suspect and healthy nodes are given the highest priority. 

Let p  refer to the cardinality of the set {
l

p I  
t

F }, (i.e., ||
tl

Fpp I= ), and p
)

 

refer to the cardinality of the set {
l

p I
t

G }, (i.e., ||
tl

Gpp I
)

= ). The constraints 

4C and 5C  are treated as fuzzy variables that are empirically associated with three 

linguistic terms (fuzzy sets): Low, Med, and High. Depending on the constraint at hand, 

each linguistic variable is semantically different from its counterpart. For example, the 

fuzzy set Low represents low number of suspect nodes in a given probe, according to 

constraint 4C . It also refers to the low number of healthy nodes in a given probe, 

according to constraint 5C . These fuzzy sets assume half-triangular, full-triangular, and S-

shaped membership functions, respectively.  

Given p , the fuzzy set Low member function of 4C is defined as follows:  
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The fuzzy set Med membership function of 4C is defined as follows: 
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The fuzzy set High membership function of 4C is defined as follows: 
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where the parameters ||25.0
t

Fa = , ||50.0
t

Fb = , and ||75.0
t

Fc = . The shapes of the 

membership functions of the fuzzy constraint 4C  are shown in Fig. 5.5. 

Given p
)

, the fuzzy set Low member function of 5C is defined as follows:  
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The fuzzy set Med membership function of 5C is defined as follows: 
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The fuzzy set High membership function of 5C is defined as follows: 
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where the parameters ||25.0
t

Ge = , ||50.0
t

Gf = , and ||75.0
t

Gg = . The shapes of 

the membership functions of the fuzzy constraint 5C  are shown in Fig. 5.6. 

Based on the previous discussion, simple fuzzy rules can be obtained as follows. 

For the constraint 4C , we have the following rules: 

R1: if p  is Low Then 4C  is 1A  

R2: if p  is Med Then 4C is 2A  

R3: if p is High Then 4C is 3A  

For the constraint 5C , we have the following rules: 
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R4: if p
)

 is Low Then 5C is 1B  

R5: if p
)

 is Med Then 5C  is 2B  

R6: if p
)

 is High Then 5C  is 3B  

The fuzzy consequents in the proposed rules are defined to reflect the desirable 

characteristics required in a given probe. For example, if probes with less number of both 

suspect and health nodes in their paths should be given high priorities over other probes, 

then the fuzzy consequents can be defined as  follows:  { }41 /9.0 CA = ,  { }42 /5.0 CA = , 
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{ }41 /2.0 CA = , { }51 /9.0 CB = , { }52 /5.0 CB = , and { }53 /2.0 CB = . Different probe 

selection criteria require different fuzzy consequent definitions.  

To determine the satisfaction degree of the fuzzy constraints 4C and 5C , we group 

the relevant fuzzy rules for each constraint and apply the Mamdani inference mechanism 

on each group. By applying the Mamdani mechanism on the fuzzy rules (R1, R2, and 

R3), the satisfaction degree of the constraint 4C is obtained as follows:  

1. Calculate the firing level for each rule in the fuzzy rules group of 4C : 

)(41 p
LowC

µτ =  

)(42 p
MedC

µτ =  

)(43 p
HighC

µτ =  

2. Calculate the output of each rule as follows: 

))(,min()( 4141 1
CC

A
µτµ =  

))(,min()( 4242 2
CC

Aj
µτµ =  

))(,min()( 4343 3
CC

A
µτµ =  

3. Aggregate individual rule outputs to obtain overall fuzzy set 4C with membership 

defined by: 

))(()( 4

3

1

4 max CC
r

r

µµ

=

=  

)( 4Cµ  represents the satisfaction degree of the constraint 4C  given the number of the 

suspect nodes, p ,  in its path. 

Similarly, we apply the same inference mechanism on the second group of the fuzzy 

rules, (R4, R5, and R6), to obtain the satisfaction degree of the constraint 5C , as follows:  

1. Calculate the firing level for each rule in the fuzzy rules group of 5C : 

)(54 p
LowC

)
µτ =  

)(55 p
MedC

)
µτ =  
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)(56 p
HighC

)
µτ =  

2. Calculate the output of each rule as follows: 

))(,min()( 5451 1
CC

B
µτµ =  

))(,min()( 5552 2
CC

B
µτµ =  

))(,min()( 5653 3
CC

B
µτµ =  

3. Aggregate individual rule outputs to obtain overall fuzzy set 5C with membership 

defined by: 

))(()( 5

3

1

5 max CC
r

r

µµ

=

=  

)( 5Cµ  represents the satisfaction degree of the constraint 5C  given the number of the 

healthy nodes, p
)

,  in its path. 

 

5.5 Constraint Propagation 

The arc consistency takes the form of domain reduction rules. By removing the 

inconsistent values from the domains of the set variables{ }pf , , the constraint 

propagation techniques narrow down the search space without ruling out any solution. If 

one of the domains is reduced to an empty set, then a solution to the probing problem can 

not be found from the given probes. The constraint propagation techniques are embedded 

within the branch and bound search algorithm.  

 

5.5.1 Domain Reduction Rules  

In order to perform the constraint propagation, certain domain reduction rules should be 

developed. Let C be the set of the problem constraints { }54321 ,,,, CCCCCC = . Since the 

problem constraints are binary, the following reduction rules can be applied to achieve 

the required arc consistency: 

Arc Consistency rule 1 
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pf

pf

pfc

pfCc

Σ∈Σ′∈

Σ∈Σ∈∈

,;

,;
                                                                      (5.23) 

Where ( ){ }cpfpf
pff

∈Σ∈∃Σ∈=Σ′ ,|:  

Arc Consistency rule 2 

pf

pf

pfc

pfCc

Σ′∈Σ∈

Σ∈Σ∈∈

,;

,;
                                                                      (5.24) 

Where ( ){ }cpffp
fpp

∈Σ∈∃Σ∈=Σ′ ,|:  

 

The first domain reduction rule simply modifies the domain 
f

Σ in a way that for 

each instantiation of the variable f with a subset of suspect nodes, there exist 

corresponding probes in the domain
p

Σ . The notation
f

Σ′  refers to the new domain. The 

second reduction rule behaves in the same manner but operates on the probe variable of 

the constraint and results in the following new domain
p

Σ′ . 

 

5.5.2 Maintaining Arc Consistency (MAC) Algorithm 

The domain reduction rules described in the previous section are used by the arc 

consistency algorithm developed in this section. The following definition may help us 

formulate the arc consistency algorithm.  

 

Definition 5.7    

• Consider a binary constraint C on the variables x and y with the domains 
x

D  

and
y

D , that is 
x

DC ⊆ X 
y

D  . We call C arc consistent if                  

          - ,),( CbaDbDa
yx

∈∈∃∈∀  

          - .),( CbaDaDb
xx

∈∈∃∈∀  

• We call a CSP arc consistent if all its binary constraints are arc consistent 
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According to this definition a binary constraint is arc consistent if every value in each 

domain has a support in the other domain. In the literature, MAC is alternatively called 

Arc Consistency Look Ahead or Full Look Ahead and summarized in Fig. 5.7.  

To explain the algorithm of arc consistency, let us suppose that the following two 

probes were chosen for the fault detection as shown in  section  5.2  and  sent  to  test  the  

healthy status of the running network: 

 

P45 = {N2, N3, N4, N5} 

                                                        P16 = {N1, N3, N6} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5.7: Arc algorithm. 

S0: ={ }54321 ,,,, CCCCC ; 

 S: = S0; 

WHILE φ≠S  DO 

   choose SC ∈ ;  

( ){ }Cpfpf
pff

∈Σ∈∃Σ∈=Σ ,|: ;                                              

( ){ }Cfpfp
fpp

∈Σ∈∃Σ∈=Σ ,|: ;                                                   

 IF 
f

Σ changed THEN 

       ∪= SS : { CSC ′∈′ |0 is on f ′ } 

 ELSE IF 
p

Σ changed THEN 

       ∪= SS : { CSC ′∈′ |0 is on p′ } 

 ELSE IF  

       { }CSS −=:  

 END 

END 
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Let us further assume that the probe P16  fails  and  probe  P45  succeeds. The outcomes of 

both probes will have the following effect: 

                                                   
t

F  = {N1, N6} 

t
G  = {N2, N3, N4, N5} 

As a result the domain 
t

F
∑  of the variable f  is constructed as follows: 

t
F

∑  = {{N1}, {N6}, {N1, N6}} 

The domain of variable
P

p ∑∈  is the set of the available probes without the successful 

probe sent during the fault detection process: 

 

P
∑  = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5}, {N1, N3, N6}, {N2, N3, N4},  

          {N3, N4}, {N3, N4, N6}} 

During the constraint propagation, maintaining arc consistency can be achieved as 

follows: 

1. The element {N1, N6} will be removed from the variable domain 
F

∑ as a direct result 

of applying the reduction rule 1 on the second constraint C3. Hence, the new domain 

will be as follows: 

            
t

F
∑  = {{N1}, {N6}} 

      Using the same reduction rule on the same constraint will also result in      

      modifying the second domain 
P

∑  in which the element {N1, N3, N6} will be removed  

      and the new domain will be as follows: 

            
P

∑  = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5} {N2, N3, N4}, {N3, N4},  

                      {N3, N4, N6}} 

2. Applying the domain reduction rule 2 on the first constraint C1, the elements {{N2, N3, 

N4}, {N3, N4}} will be removed from the variable domain
P

∑ . Hence, the resulted new 

domain will be as follows: 

            
P

∑  = {{N1, N2}, {N1, N3}, {N1, N3, N4}, {N1, N2, N5}, {N1, N3, N6}, {N3, N4, N6}} 
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For the fuzzy constraints C4 and C5, local consistency can be achieved by removing 

elements from the variable domains which can not satisfy the constraints better than a 

given thresholdα . Estimating an appropriate value forα  will depend on various factors 

which discussed on the previous section ( 10 ≤< α ).  

 

5.6 Branch and Bound Search Algorithm 

In the literature, there are several methods reported for determining the joint satisfaction 

of the problem fuzzy constraints. One of these methods is based on the average 

combination principal. It  is  more  intuitive  than  the  others  since  it  looks  at  the  joint  

satisfaction as the accumulative satisfaction of the individual constraints.   

 

Definition 5.8 The degree of joint satisfaction of the constraints
i

C , 5,...,1=i , by the 

instantiation, ( )
lj

pfd ,= , 
fj

f Σ∈  and 
Pl

p Σ∈  is the average of the satisfaction of the 

individual constraints. That is: 

( )( ) ( )dCdCCC

i

iave ∑
=

=

5

1

51
5

1
,,...,                      (5.25) 

During the search process, a best solution is an instantiation d ′  if the degree of the 

satisfaction of all the constraints is maximal. That is: 

     ( )( ) ( )( )dCCCCCdCCCCCC ,,,,,max,,,,, 5432154321 =′                 (5.26) 

For a given instantiation, the degree of satisfaction is calculated using Equation (5.25) 

and will be compared with another degree of satisfaction yielded by another instantiation 

(saved in a special variable called bound). To choose the best instantiation, Equation 

(5.26) is employed.  

 

5.6.1 Constructing a Best Solution 

The adopted measure of joint degree of satisfaction is characterized by two important 

aspects:       
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• The proportional contribution of each constraint to the joint satisfaction may be 

calculated independent of each other. The appropriateness of particular initiation 

for a given variable may be evaluated using the domains of the fuzzy constraints 

offered by Equations (5.15) and (5.16). 

• The joint satisfaction is monotone with respect to the satisfaction to the individual 

constraints, that is, if 1d and  2d are such that  

                                                     ( ) ( )21 dCdC
ii

=  

( ) ( )21 dCdC
jj

≥  

                for 6,...,1=i and ji ≠ . Then, 

                      ( )( ) ( )( )254321154321 ,,,,,,,,,, dCCCCCCdCCCCCC ≥           (5.27) 

In constructing the best solution, the monotonic aspect described by Equation (5.27) will 

be proven useful in the search process. When exploring the search space, we first 

compute the upper bound for the degree of satisfaction of the best possible extension of a 

given partial solution. The monotonic characteristic of the joint satisfaction permits a 

partial solution to provide an upper bound in terms of its degree of satisfaction. Any 

extension of the partial solution that may yield a degree of satisfaction lower than the 

upper bound will be excluded from further considerations.  

 

 5.6.2 Heuristic Search Mechanism 

The main procedure of the search algorithm is shown in Fig. 5.8. The main algorithm is 

to initialize the domains of each variable, based on the responses of the chosen probes. It 

then performs simple constraint propagation on the formed domains to eliminate any 

inconsistencies that may be found in the variable domains. If the constraint propagation 

yields an empty set for any of the variable domains, then a solution can not be found. 

Otherwise, it invokes the bound and branch function. Since the variable p  is the most 

constrained variable, the search for a best solution starts by initiating it from its domain 

first as shown in Fig. 5.9. After  assigning  a  value  for  the  variable  f ,  the consistency  



 85 

CHAPTER 5.  A NEW FUZZY CSP PROBING ALGORITHM                                         .                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Bound and branch main algorithm. 

 

is checked. If this instantiation is consistent, then the degree of satisfaction will be 

calculated using Equation (5.24) and examined with the bound variable. Initially, the 

bound variable is set to 0. This ensures that the first consistent instantiation will be saved 

by the search algorithm and examined along with other consistent instantiations during 

the search operation. Only instantiations with higher degree of satisfaction will be saved 

in the solution variable. If the current instantiation is inconsistent, the constraint 

propagation will be performed for the p domain with the value of the variable f  being 

fixed. If the constraint propagation yields an empty set for one or both variables, then  the  

/* ALGORITHM BRANCH AND BOUND 

PROCEDURE MAIN 

BEGIN 

/* Initializations of global variables*/ 

   
F

Σ = {superset of the suspect set F}; 

   
P

Σ ={superset of the probe set P}; 

   solution = array[1..3]; 

   bound = 0; 

 failure = FALSE; 

/*End of initializations 

  propagate(
F

Σ ,
P

Σ  , failure); 

      IF NOT failure THEN 

              BOUND_AND_BRANCH (
F

Σ ,
P

Σ , solution, bound); 

     ELSE IF 

          Report “solution can not be found” 

     END 

END 
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Figure 5.9: The search engine of the proposed algorithm. 

 

current value of the variable f will be discarded and a new value will be assigned to f . 

The search for a best  solution  starts again in the same manner.  The overloading 

propagate function is shown in Fig. 5.10. 

 

PROCEDURE BOUND_AND_BRANCH (
F

Σ ,
P

Σ , solution, bound) 

BEGIN 

{ }

{ }

;

;
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                              };,{ pfsolution =  
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                     END  IF 

             ELSE IF 
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);,,( Σ

 

                  END  

            END  

      END  

END  BOUND_AND_ BRANCH 
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Figure 5.10: Overloading constraint propagation function. 

 

5.7 Summary 

In this chapter, we present a new fuzzy CSP-based technique for probe selection. Instead 

of sending all probes, a small subset of these probes is utilized for the purpose of fault 

detection. If one or more of these probes fail, then a fault has been detected. Thus, the 

fault identification function is invoked. It starts by analyzing the responses of the fault 

detection probes, and based on the information gained by the fault analysis, it creates two 

special sets for the most suspect and healthy nodes. The new sets, along with well-

defined crisp and fuzzy constraints, are used to choose an appropriate probe that satisfies 

the imposed constraints the most. The effectiveness of the proposed scheme is reported in 

Chapter 8.  

PROCEDURE propagate (
PF

ΣΣ , , failure) 

BEGIN 

    failure = false; 

   }{|{
FFF

ff Σ∈Σ∈=Σ ; is a consistent instantiation}; 

   failure = (
F

Σ = {}? ); 

   },{|{
ppP

pfp Σ∈Σ∈=Σ  ; is a consistent instantiation}; 

   failure = (
P

Σ =  {} ?);     

END Propagate; 

PROCEDURE propagate (
P

f Σ, , failure) 

BEGIN 

    failure = false; 

   },{|{
ppP

pfp Σ∈Σ∈=Σ  ; is a consistent instantiation}; 

   failure = (
P

Σ = {}? ); 

END Propagate; 
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Chapter 6  

 

 

Distributed Alarm Correlation 

Algorithm 

 

6.1 Introduction 

Network components are often equipped with monitoring tools that are able to detect any 

network abnormalities. These tools are configured to send appropriate notifications 

(alarms) to their assigned managers, in case of network failure.  In order to identify the 

source of the problem, the majority of fault managements systems analyze these alarms 

using deterministic approaches such as codebooks and expert systems. However, 

computer networks are such complex and noisy environment that the information carried 

by these alarms is often imperfect. Thus, taking into account this intrinsic property of 

network alarms has been considered crucial for achieving effective alarm correlation 

performance.   

In this chapter, we propose a novel distributed, alarm-correlation based approach. 

The network is divided into disjoint management domains and each domain is assigned 

an intelligent agent.  Network entities within each domain are  configured  to  direct  their  
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alarms to the dedicated intelligent agent.  Within the framework of the Dempster-Shafer 

evidence theory, the network alarms are viewed as pieces of evidence by the intelligent 

agent. Using a given fault propagation model, each intelligent agent correlates these 

alarms into a new alarm and sends the new alarm to its agent manager. The new alarm 

constitutes the view point of the intelligent agent regarding the current status of the 

managed network. To form a global and cohesive view point, these partial views are, 

therefore, fused by a higher management entity called the agent manager.  

 

6.2 Distributed Fault Management Systems 

 One of the most important objectives of fault management systems is developing 

effective distributed fault management approaches [6, 21, 22]. The distributed approach 

is realized by dividing the network into management domains and each domain is 

assigned a dedicated manager. Generally speaking, distributed fault management 

approaches can be classified into two main categories, namely, the hierarchical 

localization and the decentralized localization. The first approach, the hierarchical 

localization, assumes the existence of a central manager that supervises all the domain 

managers and has a global view of the network. If a network failure affects only a single 

domain, then the alarm correlation process will be performed locally by the respective 

domain manager to identify the network failure. If the network failure spans over several 

domains, then the central manager will perform the alarm correlation as if there were no 

domain managers. On the other hand, the decentralized approach eliminates the role of 

the central manager altogether. Each domain manager separately identifies the network 

failure based on the alarms observed in their domain. The domain managers then 

cooperate with each other to form a global view of the network status. In the following 

section, we review some issues pertaining to each approach. 

 

6.2.1Issues in Distributed Systems 

Clearly,   each  distributed  approach  discussed   above  employs  a  different  strategy  to 
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identify   the  source  of  the  network  problem.  As such, each has its own merits and 

shortcomings. The hierarchical approach is considered technically simpler to implement.  

However, the fact that a central manager takes the responsibility of resolving a multi-

domain network failure defeats the purpose of the distributed approach. Because the 

central manager exclusively performs the fault identification task, it has to collect and 

analyze the network alarms issued by all the management domains. This means that the 

workload is not being effectively distributed among the management domain managers. 

The second approach requires the collaboration among the domain managers to reach a 

global view. This requirement, however, is complicated by the fact that domain managers 

have a limited view and lack global information of the network as a whole. Without this 

knowledge, a domain manager may not be able to establish a causal relationship between 

alarms observed in its domain and their potential causes in other domains. Based on the 

above discussion, an effective distributed fault management approach has to address the 

following two fundamental issues: 

• The availability of global information about the network topology and state. Due 

to the hierarchical nature of computer networks, alarms do propagate from one 

domain to another. Furthermore, the main cause of a certain alarm, observed in a 

particular domain, may not be visible in the same domain.  Hence, while a domain 

manager can locate the source of alarms observed in its domain, it may not be 

able to identify potential sources that reside outside of its domain. 

• Coordination among the domain managers. A failure in a network component in 

one domain can affect other components in other domains. Though the affected 

components will respond to the same failure by sending alarms to their respective 

managers, each domain manager can only correlate alarms observed in its domain 

to identify the same failure. Therefore, it is recommended that the managers of the 

affected domains cooperate with each other and collectively identify the failed 

entity and its domain.   

The proposed distributed approach addresses these two issues as follows. First, a fault 

propagation   model  for  the  whole  network  is  constructed  using  one  of  the  methods  
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described in chapter 3. Secondly, the central manager and each domain manager are 

required to have a copy of the same model. Consequently, not only will a domain manger 

be able to correlate its alarms to network failures in its domain, but it can also correlate 

them to failures in other domains. The domain manager need not know the exact location 

of the network failure responsible for its observed alarms. The network failure will be 

localized by the central manager. This way, while the alarm correlation is performed 

locally, it may indicate the source of the problem globally.  The alarm correlation process 

results in a new alarm representing the view of the domain manager of the network status. 

The manager’s view, however, is still incomplete as only local alarms are being 

considered in the alarm correlation. 

Since the central manager has the same fault propagation model, it can globally 

correlate the new alarms constructed by the domain managers and more accurately 

identify the network failure. The global alarm correlation performed by the central 

manager eliminates the need for the domain managers to directly communicate with each 

other and exchange information about the status of their domains. They are simply 

required to communicate their new alarms to the central manager. Thus, excessive 

management traffic can also be avoided.  

 

6.2.2 Assumptions and Notations 

Alarms generated by network entities are called primitive alarms. The purpose of the 

local alarm correlation is to combine the primitive alarms into a new alarm. The new 

combined alarm is called a composite alarm. Each primitive alarm in the set 

},...,1|{ nia
i

=><  is expected to provide probabilistic evidence regarding each network 

failure 
j

f  in the fault hypothesis space },...,{ 1 c
ff=Ω . The probabilistic evidence is 

represented by a set of belief assessments in the following form: 

                                      )}(),...,({ 1

ai

c

aiai
fbelfbelB =                                                     (6.1) 

ai
B represents the belief set given by the primitive alarm 

i
a  and )( ai

j
fbel  denotes  the its 

belief assessment   of  the  given   fault   hypothesis.  The  fault  hypotheses, in  the  belief  



 92 

CHAPTER 6.  DISTRIBUTED  ALARM  CORRELATION ALGORITHM                     .                  

 

set, are arranged in a non-increasing order. },...,{ 1

ai

c

ai

ai
ff=Ω is a permutation of Ω . To 

simplify the probabilistic model accompanied by the distributed fault propagation model, 

the following dependency assumptions are made: 

• Failures in the given fault propagation model, which are perceived as symptoms 

and observed as network alarms, are not directly dependent, since these symptoms 

may occur as a result of the same underlying problem. Therefore, given known 

states of antecedent nodes in the model, the failure nodes (corresponding to 

symptoms) of dependent node are independent of each other [18, 20]. 

• Failures that may contribute to the occurrence of a particular symptom (alarm) 

and which perceived as faults are considered independent. This assumption is 

commonly reported in the literature [19, 20, 21, 22, 34, 45]. 

 

Based on the above assumptions, network alarms, representing the evidence set, are 

considered independent. Furthermore, hypotheses in the frame of discernment Ω , 

representing network failures, are assumed to be mutually exclusive and exhaustive.   

 

6.3 Distributed Fault Propagation Model 

Since computer networks are usually modeled in layered approach, the distributed fault 

propagation model can be constructed based on the dependency relationship among the 

network components. As shown in Fig. 3.4, a dependency relationship among the 

network components in different layers is usually modeled as a dependency graph. The 

dependency relationship may represent the dependency between network functions 

provided by the lower layers such the physical and data link layers and services provided 

by the higher layers such the transport and application layers. Due to this intrinsic 

property, failures can only propagate from components of lower to components of higher 

layers or between components on the same layer. Thus, a failure in a network function of 

the physical or data link layer is expected to manifest itself as a failure in the services 

provided by the application layers. In the dependency graph, failures in  lower  layers  are 
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considered faults; while failures in higher layers are considered symptoms or alarms. 

Since these dependencies among the network entities are non-deterministic in nature, the 

uncertainties about these dependencies are represented by assigning probabilities to the 

links and nodes in the given dependency model. 

 In a dependency graph, a weight assigned to a dependency link represents the 

probability that the node at the tail of the edge fails given the node at the head of the edge 

fails. The dependency graph, in turn, can then be easily mapped into a Bayesian (Belief) 

network. Therefore, the belief network theory can be utilized to calculate belief 

assessments for each fault hypothesis. Furthermore, the obtained Bayesian network of the 

whole managed network is then simplified into a correlation graph (bipartite graph). The 

resultant correlation graph is considered the distributed fault propagation model and 

stored in the knowledge base of each intelligent agent and the agent manager. The 

process of obtaining the distributed fault propagation model of the managed network is 

described in the subsequent sections. However, we next present a formal definition of the 

Belief network.  

 

6.3.1 Belief Networks 

Formally, a belief network is a pair PG, , where G is a directed acyclic graph, in which 

each node represents a random variable over a multi-valued domain and is denoted by iV . 

The set of all nodes is denoted by V . Let iD  represent the domain of the variable iV . The 

set of directed edges represented by E indicates causal relationships between the 

variables. }{
i

PP = , the conditional probability matrix associated with a random 

variable iV , reflects the strengths of casual influences among these variables. Let 

}..V,V ,{V )( ini2i1 …=
i

vPar  be the set of parents of the variable
i

V . 
i

P  is a 

)1|)((| +
i

VPar -dimensional matrix of size ||.....|||| 1 inii
DxxDxD ; 

where }v..V,v{V|vP(V ),...,,( inini1i1ii1 =…===
iniii

vvvP . An assignment of variables 

in set V  is  denoted by }vV,...,vV ,v{V nn2211 ====A  where  each
jj

Dv ∈ .  Given  a  
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subset of random variables VVVU
kmkk

⊆= },....,{ 1 , an assignment of A

K
U  is consistent 

with assignment A. Evidence set e is an assignment A

o
U , where VU

o
⊆ a set of variables 

whose values are known, and for each
ooj

UV ∈ , A

oj
v  is its observed value.  

 Given evidence set e, belief networks can be used to calculate belief assignment. 

The belief assignment task is to calculate e)|vP(V )vV( iiii ===bel to variable iV . A 

belief updating algorithm, polynomial with respect to |V|, is available for poly-trees, i.e., 

directed graphs without undirected cycles [39].  

 

6.3.2 Mapping Dependency Graph to a Belief Network 

A dependency graph of a managed network is often obtained from the network topology. 

The dependency graph is then transformed into a Bayesian network simply by reversing 

its edges. For instance, the Bayesian network of the dependency graph shown in Fig. 3.4 

is illustrated in Fig. 6.1. Each node in the belief network may represent a dependency 

graph node in one of its failure modes. The belief network corresponding to the layered 

dependency graph is constructed using the following steps [11]. 

• A random variable in the belief network will be created for each failure mode in 

the dependency graph. Let iV  be belief network node corresponding to a failure 

mode that represents a particular  entity  in  the  dependency  graph  (for example,  

ServiceL(a,b), NetworkFunctionL, ProtocolL, etc.) Its corresponding domain, iD , 

may take the values of {true, false} to indicate whether their corresponding failure 

has occurred or not.  

• Let iV  and Vj represent two belief network nodes that correspond to node X in 

failure mode iF  and node Y in failure mode jF , in the dependency graph, 

respectively. If a dependency relationship exists in the dependency graph between 

X and Y in the form of YX → , and iV  is contributing to the occurrence of jV , 

then add an edge from iV  to jV  in the belief network. 
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• Using the independency assumptions made in the previous section, the probability 

matrix jP associated with node jV represents the following conditional probability 

distribution: 

   1)|P(Vj === falseVfalse
i

 

 ),(1)|P(Vj jii
FFPtrueVfalse −===  

0)|P(Vj === falseVtrue
i

 

 ),()|P(Vj jii
FFPtrueVtrue ===  

where YPFFP
ji

{),( =  is in failure mode 
j

F  | X  is in failure mode }
i

F .  

 

           

 

 

 

 

Figure 6.1: Belief network of the dependency graph in Figure 3.4. 
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 6.3.3 Correlation Graph as a Distributed Fault Propagation 

Model 

A causality graph may include information that does not contribute to the alarm 

correlation process. Certain alarms are not directly caused by any network failures. They 

are simply manifestations of other network alarms.  These indirect manifestations may be 

eliminated without loss of information. Alarms may form many-to-one relation; e.g. 

1321 ,, afff → , or inference relation; e.g. 211 aaf →→ . All these relations represent 

causal equivalence. Consequently, all involved alarms can be aggregated into a single 

alarm. Therefore, the last step is to transform the obtained causality graph into a 

correlation graph. The detailed causality graph of the Belief network of Fig. 6.1 is shown 

in Fig. 6.2(a). Here, the failures in the lowest layer are considered faults; and the failures 

at higher layers are considered alarms. A causality graph can be converted into a 

correlation graph as follows [46]. If 
kj

aaf →→ ...1 in the causality graph, then in the 

correlation graph there is an edge from 
j

f  to the first of 
k

aa ...,1  that is an alarm, i.e., 

there is an edge 
ij

af →  where 11..., −i
aa  are not alarms. Hence, the correlation graph 

corresponding to the causality graph given in Fig. 6.2(a) is shown in Fig. 6.2(b). 

 

6.4 Distributed Alarm-Correlation Based Approach 

The managed network supposedly has a tree-shaped topology and is logically partitioned 

into K disjoint management domains. K depends on the size and complexity of the given 

network. In this dissertation, we adopt a hierarchical structure for the fault management 

system. The lower-level domain managers referred to as intelligent agents, locally collect 

and analyze network alarms in their respective domains. They report to a higher-level 

manger, referred to as the agent manager, as shown in Fig. 6.3 [47].   The intelligent 

agents and the agent manger have the same distributed fault propagation model in the 

form of a bipartite causality graph as shown in Fig. 6.2(b). 
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6.4.1Intelligent Agent (IA) 

Primitive alarms are generated by network components. The intelligent agents perceive 

these network components in their domains as sources of information. As such, the 

information carried by their primitive alarms may in fact be imperfect and exhibit a high 

degree of uncertainty. The intrinsic uncertainty properties are attributed to many factors 

including complexity, unreliability, and non-determinism in computer networks. As has  

 

 

 

(a) 

 

(b) 

 

Figure 6.2: Alarm correlation causality graph. 
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been shown in [19, 47], the fault evidence (presented by the primitive alarms) may be 

ambiguous and inconsistent due to the following conditions: 

• A primitive alarm may indicate a non-singleton set of fault hypotheses 

(ambiguity), 

• Two or more of these primitive alarms may have disagreement regarding the main 

fault hypothesis (inconsistency). 

 

 

 

 

 

 

Figure 6.3: Distributed fault management system. 

 

To reduce their negative impact on the local alarm correlation process, the intelligent 

agents carefully manage these uncertainty aspects. In this sense, the   alarm   correlation 

process   is   viewed   as reasoning under uncertainty.   

 

6.4.1.1 Intelligent Agent Structure 

Given the uncertainty problem imposed by the set of the  observed  primitive  alarms,  the 
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reasoning mechanism employed by an intelligent agent k should be capable of answering 

the following two questions: 

1. What is the likely fault hypotheses that can explain the observed alarms? 

2. If disagreement occurs among the primitive alarms, how can this conflict be 

resolved? 

To deal with both aspects of the uncertainty issue, the intelligent agent performs 

the alarm correlation utilizing a hybrid combination of the probability theory and the 

Dempster-Shafer evidence theory. Using the given fault propagation model and the 

Pearl’s belief propagation scheme, the intelligent agent constructs a belief assessment 

set
ai

B for every primitive alarm
i

a . Taking the form given in Equation (6.1), the belief 

assessment set identifies the most likely fault hypotheses from the view point of
i

a . 

Within the framework of the evidence theory, the intelligent agent then constructs an 

evidence structure ai
ES  for every belief set

ai
B . To resolve any conflict among the 

primitive alarms, the intelligent agent fuses the obtained evidence structures into a single 

composite alarm k

comp
A  using the Dempster’s rule of combination. The structure of an 

intelligent agent k is shown in Fig. 6.4.  

  Thus, the intelligent agent‘s composite alarm is basically formed using the 

following three main steps: 

• A belief assessment set is first obtained for each primitive alarm, 

• An evidence structure is then constructed for each belief assessment set, 

• Finally, the evidence structures are combined to form a new composite alarm. 

The first step is discussed in detail next and the remaining two steps are discussed in the 

subsequent sections.   

 

6.4.1.2  Alarm’s Belief Assessment Set 

To construct an evidence structure for each received network alarm, the intelligent agent 

needs first to determine the belief assessment for each primitive alarm. To accomplish 

this task, the intelligent agent uses its propagation  fault  model  stored  in  its  knowledge  
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Figure 6.4: Structure of intelligent agent k. 

 

database and the iterative belief updating proposed in [39]. The belief network (the fault 

propagation model) is viewed by the belief updating scheme as a noisy-OR model of 

probability distribution. In such networks, the belief assessment query calculated using 

the Pearl’s message schema produces the posterior probability distribution.  

According to Pearl’s algorithm, the belief network nodes exchange λ  and 

π messages (see Fig. 6.5). Message )(
jX

vλ  that node X sends to its parent 
j

V for every 

valid sV
j
'  value

j
v , denotes a posterior probability of the entire body of evidence in the 

sub-graph obtained by removing link XV
j

→ that contains X , given that
jj

vV = . 

Message )(x
i

U
π , that node X  sends to its child

i
U , denotes a probability that xX =  (for 

every valid value of X ) given the entire body of evidence in the sub-graph  containing X   

created by removing edge
i

UX → .  The  complete  description  of  the  message  passing 
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created by removing edge
i

UX → . The complete description of the message passing 

algorithm is presented in Appendix B.  

 In a noisy-OR poly-tree, the term 
i

XU
q  refers to the probability of activating the 

inhibitor controlling the link
i

UX → . The possible values that the random variables may 

have are {0, 1}, where 1 denotes the occurrence of the corresponding event and 0 means 

that the event did not occur. The probability that 
i

U occurs given that X occurs 

is
ii

XUXU
qc −= 1 . Based on messages received from parents and children, node 

X computes )(xλ , )(xπ  and )(xbel as follows [39]: 

∏
=

=

n

i

U
xx

i

1

)()( λλ                                                                                     (6.2) 
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



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π                          (6.3) 

  )()()( xxxbel παλ=                                                                                 (6.4) 

The messages )(xλ and )(xπ are computed using the following equations [39]: 

  ∏

≠

−−−=

jk

kxxv

v

xVjX k

j

j

cqv ))1())0()1(()1(()( πλλλβλ                              (6.5) 

              )()()( xxx

ik

UU ki

πλαπ ∏
≠

=                      (6.6) 

where for 1=
j

v , )(
jj

vx ππ = ; α  is a normalizing constant, and β  is any constant. 

Initially )(xλ will assume the value of 1 if x is indeed the observed value of X, for 

all observed nodes X. Otherwise, )(xλ is set to 0. For all unobserved nodes )(xλ is set to1 

for all values of x. For all parentless nodes )(xπ will be set to their corresponding prior 

probabilities. Once an intelligent agent receives one or more primitive alarms from its 

constituent entities, it consults its fault propagation model and assigns their 

corresponding belief network nodes with the value of 1. For those primitive alarms, 

which were not observed by the intelligent agent their corresponding belief nodes will be 

left unassigned (i.e., their 1)1()0( == λλ ). It then computes the belief assessments for  all  
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Figure 6.5: Message passing in Pearl’s belief propagation. 

 

the unobserved nodes (the fault hypotheses) for each primitive alarm using the belief 

updating algorithm. It starts from the evidence node (i.e., the belief network node 

representing the observed network alarm) and propagates the changed belief along the 

belief network edges by computing )(xbel , )(
ix

vλ , and )(
ix

uπ in every visited node. For 

every network alarm, a certain ordering is defined that is equivalent to the breadth-first 

order started from the evidence node.  Thus, the belief propagation performed after 

receiving a network alarm
i

a yields the following belief assessment set
ai

B : 

                                      )}(),...,({ 1

ai

c

aiai
fbelfbelB =                                                     (6.7)                              

6.4.1.3 Constructing Evidence Structures 

The obtained belief assessment vector (Equation (6.7)) will be utilized by the intelligent 

agent to construct an evidence structure for each observed primitive alarm.  The evidence 

structure takes the following form: 

( )( )AmA,  

where A and )(Am  are the focal element and its mass, respectively as defined in section 

3.5. We adopt the evidence  model  proposed  by [48],  which  is  called  the  Proportional  
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Difference Evidence Structure (PDES). One of the advantages of the PDES model is that 

it produces consonant focal elements; thus, the number of combined focals is reduced 

tremendously during the alarm correlation process. According to this model, the belief 

assessments obtained by the updating belief algorithm introduced in the previous section, 

are arranged in non-decreasing order such that the following relationship hold: 

)(...)()( 21

ai

c

aiai
fbelfbelfbel ≥≥≥  

where 
ia

ai

j
f Ω∈  and 

ai
Ω is a permutation of .Ω  

Thus, a primitive alarm can be assigned to a certain network failure as follows: 

 IF              )()( 21

aiai
fbelfbel ≥ then the network alarm, 

i
a , can be assigned to fault 

                              hypothesis class }{ 1

ai
f ; 

            ELSE IF   )()( 32

aiai
fbelfbel ≥  then the network alarm, 

i
a , can be assigned to 

                              fault hypothesis class },{ 21

aiai
ff ; 

            ELSE IF   )()( 43

aiai
fbelfbel ≥  then the network alarm, 

i
a , can be assigned to 

                              fault hypothesis class },,{ 321

aiaiai
fff ; 

   M  

 ELSE IF   )()( 1

ai

c

ai

c
fbelfbel ≥

−
 then the network alarm, 

i
a , can be assigned to 

                              fault hypothesis class },...,,{ 21

ai

c

aiai
fff ; 

If the primitive network alarm, 
i

a , yields an equal belief assessment to different fault 

hypotheses, then the above decision rule produces a compound set that contains all the 

fault hypotheses undistinguishable by 
i

a .  Furthermore, this decision rule can be utilized 

to construct an evidence structure for each network alarm in four steps as follows: 

1. The interval [0, )( 1

ai
fbel ] is divided into c portions by means of the split points at 

)( ai

j
fbel , cj ,...,2= , which lead to c discrete values (let 0)( 1 =

+

ai

c
fbel ), 

.,...,2,1),()( 1 cjfbelfbelm
ai

j

ai

jj
=−=

+
 

2. The quantity 
j

a is associated with one of consonant class sets as follows: 
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}{ 11

ai
fm → , 

},{ 212

aiai
ffm → , 

M  

},...,,{ 1211

ai

c

aiai

c
fffm

−−
→ , 

    },...,,{ 21

ai

c

aiai

c
fffm → ; 

 where },...,,{ 21

ai

j

aiai
fff the is the union of ai

f1  through ai

c
f  . 

 

3. To obtain mass, 
j

m is normalized as follows: 

)(

)()(
)(/

1

1

1 ai

ai

j

ai

jai

jj

fbel

fbelfbel
fbelmm

+
−

== . 

             for all cj ,...,2,1= . 

4. Given a network alarm 
i

a , its evidence structure can be formed as: 

{ }













=

−

=

+

cj
fbel

fbelfbel
ffES

ai

ai

j

ai

jai

j

aiai ,...,2,1|
)(

)()(
,,...,

1

1

1            (6.8) 

The above process is intended to assign different weights to different fault 

hypothesis sets. The weight magnitude reflects the confidence about how much a 

particular hypothesis supports the received alarm. For example, the value 

)()( 211

aiai
fbelfbelm −= signifies numerically the commitment that the received alarm 

i
a  

exactly belongs to the singleton fault hypothesis set }{ 1

ai
f . If the belief assessment is the 

same for two different hypotheses, then logically the weighted confidence should be 

assigned to a compound hypothesis set in which both fault hypotheses are included. For 

instance, if )()( 21

aiai
fbelfbel =  then it is reasonable, since both hypotheses are not 

distinguishable given the received alarm
i

a , to assign 
i

a to the union set of both fault 

hypotheses },{ 21

aiai
ff . The union set  indicates  that  both  network  faults  are  equally  

suspicious  of  the current network abnormality and a further analysis is needed to isolate 

a single cause.   
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6.4.1.4 Local Composite Alarm 

The essence of the alarm correlation is to assign a new meaning to a set of observed 

alarms that can be explained by a certain set of fault hypotheses [49]. This is done so that 

the amount of information reaching the central manager is reduced and the network 

failure is more easily identified. Thus, the local alarm correlation is viewed as a fusion 

process by which the observed primitive alarms are combined into a new alarm. The new 

alarm resulted from the fusion process is called a composite alarm. The local composite 

alarm is obtained as follows. Let us assume that an intelligent agent k receives the 

following set of alarms: 

                                   },...,{ 1 n

k
aaA =                                                               (6.9) 

their associated belief assessment sets ia
B  for ni ,...,1= , are presented as follows: 

                                 },...,1{ an
B

a
B

k
B =                                                         (6.10) 

where each ia
B has the form given in (6.7) and its elements are ranked in a non-

increasing order. Their associated evidence structures are represented as follows: 

                                              },...,1{ an
ES

a
ES

k
ES =                                                    (6.11) 

where each ai
ES has the form given in (6.8).  

          Considering the local alarm correlation as a fusion process, it can be defined as 

follows. 

  

Definition 6.1 Given a set of primitive alarms },...,,{ 21 n
aaa , a set of their associated 

belief assessments in the form of Equation (6.10) is obtained. Based on the obtained set 

of belief assessments, the set of evidence structures is then constructed, which has the 

form of Equation (6.11). A local composite alarm of the intelligent agent is formed by 

fusing (correlating) the set of the obtained evidence structures, without regard to the 

arrival order of the primitive alarms, into a single alarm
k

comp
A , i.e., 

anaak

comp
ESESESA ⊗⊗← ...21 .   The   symbol   ⊗    refers   to   the    Dempster’s rule  of  
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combination. 

Therefore, based on definition 6.1, an intelligent agent can correlate the received 

set of alarms by simply applying the Dempster’s rule of combination given in Equation 

(3.7) to combine all ai
ES  for .,...,1 ni =  Due to the nature of the PDES scheme and the 

definition of commonality, the following formula can be used to calculate the 

commonality measure of the network failure ai

j
f  for the primitive alarm

i
a : 

                                           
)(

)(
})({

1

ai

ai

jai

j

fbel

fbel
fQ =                                                        (6.12) 

To calculate the commonality measure of the network failure k

j
f for all the primitive 

alarms, the intelligent agent can use the following equation: 

                                              )()(
1

ai

j

n

i

k

j
fQTfQ ∏

=

=                                          (6.13) 

where T is a normalization factor defined in Equation (3.8) and is independent of the 

network failure k

j
f  of interest . Property 1, discussed in [50], leads to the following: 

                                     Ω∈∀∝ ∏
=

j

n

i

ai

j

k

j
ffbelfQ ,)(})({

1

                                           (6.14) 

Thus, using the property of (6.14), the local composite alarm k

comp
A can be obtained as 

follows: 

                                       )}(),...,({ 1

k

c

kk

comp
fQfQA =                                                     (6.15) 

It should be noted that )( k

j
fQ represents the combined belief assessment value of the 

network failure k

j
f . The elements in k

comp
A  are arranged in a non-decreasing order and 

k

comp
A

Ω  is a permutation of Ω . 

A summary of the constructing local composite event algorithm employed by the 

intelligent is presented in Fig. 6.6. 

 

6.4.2 Agent Manager 
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The task of the agent manager is to facilitate the cooperation of intelligent agents by 

correlating their local composite alarms. Each local composite alarm has the form of 

(6.15). If the agent manager receives only a single composite alarm, then it will identify 

the network failure as the one with the maximum belief assessment value given by the 

local composite alarm. However, if it receives multiple local composite alarms, then the 

global view is achieved by fusing all the received local composite alarms. The agent 

manger fuses the local composite alarms in the same manner as an intelligent agent fuses 

its primitive alarms. This composite alarm correlation process results in a global 

composite alarm. The network failure will be identified as the one with the maximum 

belief assessment value given by the global composite alarm.   

 

6.4.2.1 The Agent Manager Structure 

Assuming that the agent manger receives more than a single local composite alarm, its 

structure is shown in Fig. 6.7. Since, each composite alarm has the form of (6.15), the 

agent manager does not need to build a belief assessment vector for each composite 

alarm. However, an evidence structure will be constructed for each composite alarm. 

Utilizing the same PDES mechanism, the agent manger constructs a set of evidence 

structures for the composite alarms. Using the Dempster’s rule of combination, the agent 

manger then correlates all the composite alarms, producing in the process a global 

composite event 
glob

A .  

 

6.4.2.2 Global Composite Alarm 

Let us assume that the agent manager receives the following set of composite alarms: 

                                  },...,{ 1 K

compcomp
AAA =                                                                  (6.16) 

where each k

comp
A  has the form given in (6.15) and its elements are ranked in a non-

increasing order. Their associated evidence structures are represented by the following 

set: 
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Figure 6.6: Constructing the local composite alarm k

comp
A by an intelligent agent. 

k

i

k

i

k
aaS |{= is a network alarm received by intelligent agent k, 

i=1,…,n}; 

};{φ=
k

B       // belief assessment structure. 

};{φ=
k

ES    // evidence structure set. 

BEGIN 

     WHILE φ≠
i

S  

    BEGIN 

  k

ii
Sae ∈← ; 

  
i

kk
aSS −← ; 

   construct 
ai

B  for
i

e ; 

   aikk
BBB +← ; 

               END 

      WHILE φ≠
k

B    

                BEGIN 

                         
kai

i
BBes ∈← ; 

  
aikk

BBB −← ; 

  construct ai
ES  for 

i
es  ; 

  aik
ESES ← ; 

       END 

;1 kak

comp
ESESA ∈←  

      IF ,1|| =
k

ES  

               send 
k

comp
A  to the agent manager AM; 

                             ELSE IF 

                         ;1akk
ESESES −←  

                                WHILE φ≠
k

ES  

                 BEGIN 

                                            
kaik

ESESe ∈← ; 

                     kk

comp

k

comp
eAA ⊗← ; 

          aikk
ESESES −←  

                 END 

       END 

send 
k

comp
A  to the agent manager AM; 

END 
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Figure 6.7: The agent manager structure. 

 

 

                                              },...,{ 1 K
ESESES =                                                    (6.17) 

where each k
ES  is obtained by the same mechanism used by the intelligent agent, and 

Kk ,...,1= . 

          Considering the global alarm correlation as a fusion process, it can be defined as 

follows. 

 

Definition 6.2 Given a set of local composite alarms },...,,{ 21 K

compcompcomp
AAA , each 

obtained by the Equation (6.15), a global composite alarm can be formed by (1) 

constructing a set of evidence structures for the given local composite alarms that has the 

form given in (6.17), (2)fusing (correlating) the set of the obtained evidence structures, 

without regard to the arrival order of  the  local  composite  alarms  into  a  single  alarm  
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glob
A  , i.e., 

K

compcompcompglob
AAAA ⊗⊗← ,...21 . The symbol ⊗  refers to the Dempster’s rule 

of combination. The fusion process is performed by the agent manager.  

 

Therefore, based on definition 6.2, the agent manager can correlate the received 

set of composite alarms by simply applying the Dempster’s rule of combination given in 

Equation (3.7) to combine all k
ES  for Kk ,...,1= . Due to the nature of the PDES scheme 

and the definition of commonality, the following formula can be used to calculate the 

commonality measure of the network failure k

j
f  for the composite alarm k

comp
A : 

                                           
)(

)(
})({

1

k

k

jk

j

fQ

fQ
fQ =                                                             (6.18) 

To calculate the commonality measure of the network failure k

j
f for all the composite 

alarms, the agent manager can use the following equation: 

                                              )()(
1

k

j

K

k

j
fQTfQ ∏

=

=                                          (6.19) 

where T is a normalization factor defined in Equation (3.8) and is independent of the 

network failure k

j
f  of interest . To determine the best fault hypothesis, the agent manager 

utilizes the maximum commonality decision rule arg( =MCD
j

f
max }))({

j
fQ . 

 

Remarks:             

• Remark 1: It has been shown in [50] that the DSET based on the proportional 

difference evidence structure is equivalent to the Bayesian approach, in terms of 

decision making. However, a belief value of the fault-alarm probability causality 

graph is determined by many factors such as alarm loss, system bugs, alarm delay, 

and so on. As such, belief values are often difficult to calculate and perfect 

probabilistic evidence may not be available. The PDES, however, can be used to 

incorporate available fuzzy evidences, as will be shown in the next chapter, to 

increase its reasoning capabilities. 
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•  Remark 2: The commutative property of the Dempster’s rule of combination 

makes the alarm correlation process event-driven operation. Primitive alarms will 

be processed as soon as they arrive to the intelligent agents. Composite alarms 

will be processed as soon as they arrive to the agent manager. The exact order of 

their arrival is irrelevant in the correlation process.  

• Remark 3: It is quiet possible that a single primitive alarm may be generated 

multiple times by the same network entity and therefore all of them are observed 

by the same intelligent agent. These alarms have the same diagnostic information 

and differ only in their timestamps. From the viewpoint of the respective 

intelligent agent, these alarms have the exact same effect on the creation of the 

local composite event. Hence, to reduce to the calculation cost entailed by these 

identical alarms, a compression mechanism by which the reduction of multiple 

occurrences of an alarm into a single representative one can be performed before 

the local correlation process takes place. Other methods can also be adopted to 

reduce the number of insignificant alarms participating in the correlation process. 

For example, a filtering mechanism can be utilized such that if some parameters 

of an alarm e.g., priority, type, timestamp, severity, etc, do not fall into some 

predefined legitimate values, then the candidate alarm is simply discarded or sent 

to a log file. The advantage of employing such mechanisms may be realized in 

obtaining a better quality of local composite alarm and more efficient 

performance by the alarm correlation algorithm.  

 

6.5 Summary 

This chapter proposes a distributed alarm correlation system based on the Dempster-

Shafer evidence theory. The managed network is divided into several disjoint 

management domains. Each management domain is assigned an intelligent agent that 

keeps a global fault propagation model. Using the given fault propagation model and 

belief updating scheme, the intelligent constructs an evidence structure for each primitive 

network alarm received from its constituents. Using the Dempster’s rule  of  combination,  
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the intelligent agent then correlates the obtained evidence structures into a local 

composite alarm and sends it to the agent manager. The agent manager, in turn, correlates 

these local composite alarms into a global composite alarm. Based on the global 

composite alarm, the agent manager then identifies the network failure. The effectiveness 

of the proposed algorithm is examined by extensive experiments and its results are 

reported in Chapter 8.  
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Chapter 7 

 

 

Adaptive Fuzzy Alarm Correlation 

Algorithm 

 

7.1 Introduction 

The primitive alarm space within a management domain is divided into several exclusive 

clusters. These clusters, in turn, divide the fault hypothesis space into disjoint and 

exhaustive fault hypothesis sets. Alarms that share the same cluster can be explained by 

the same set of fault hypotheses (i.e., the cluster domain). As such, a cluster is viewed as 

an association relation between a set of primitive alarms and a set of fault hypotheses. 

Moreover, an observed cluster may respond differently to each fault occurrence in its 

domain. In case of network failure, only relevant alarms within the cluster will be 

reported. The reported alarms, however, may wrongly indicate other network failures in 

the cluster domain. The fact that some alarms pertaining to the wrongly indicated failures 

have not been observed should decrease our confidence in the occurrence of those 

failures. Hence, an observed cluster can provide fuzzy cues about its domain of fault 

hypotheses.  In  this  chapter,   a   novel  adaptive  fuzzy   alarm  correlation  algorithm  is 
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introduced.  Using  the  same distributed model presented last chapter, the algorithm  

takes  into  account  the  absence  of  relevant  primitive  alarms  of  each  fault  

hypothesis when the intelligent agent correlates the cluster alarms into a local fuzzy 

composite alarm. To deal with conflict that may occur among the intelligent agents, the 

agent manager utilizes a discounting mechanism in which the quality of information of 

each local fuzzy composite alarm is weighted and fused accordingly.  

 

7.2 Definitions and Notations 

The distributed model is the same as the one proposed in the last chapter. To help explain 

the proposed algorithm, we will use the simple fault propagation model depicted in Fig. 

7.1.  The given FPM is a bipartite graph in which the parentless nodes represent network 

failures and the children nodes represent primitive alarms. The strength of the causal 

relationship between the network failures and their alarms are described by conditional 

probabilities. To facilitate the development of the adaptive fuzzy alarm correlation 

approach, three new concepts along with their notations are introduced and discussed in 

this section, namely domain of alarms, cluster of alarms, and domain of faults, 

 

7.2.1 Domains of Alarms 

Each primitive alarm 
i

a , emitted by the network entity i, is characterized by its domain, 

referred to by )(
i

aD . )(
i

aD  is defined as the set of network faults that may cause the 

network alarm 
i

a  to be triggered. The alarm domain can be obtained by examining the 

available fault propagation model. One of the methods proposed in the literature is to 

associate an alarm 
i

a  with all the faults 
j

f  which have a dependency 

weights Wfap
ji

≥)|(  in the FPM; where W is a parameter [45]. For example, the 

following set of domains, S, are extracted from the fault propagation model shown in Fig. 

7.1 ( 5.0=W ): 
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Figure 7.1: FPM of a simple network configuration. 

 

S = { },{)( 212 ffaD = , }{)( 13 faD = , }{)( 16 faD = , }{)( 37 faD = , 

        }{)( 39 faD = , }{)( 210 faD = , }{)( 313 faD =  } 

 

Clearly, different values of W  may create different associations of faults with a 

given alarm. Low value of W may lead to a higher association of an alarm with a set of 

fault hypotheses. In contrast, a higher value of W may lead to a lower association. This 

mechanism may be useful in the alarm correlation process. For instance, the correlation 

process can discard some primitive alarms as having low priority if their weights are 

below a predefined threshold.  The domain of an alarm can be defined as follows. 

 

Definition 7.1 Let >< PVG ,  be a distributed fault propagation model in the form of a 

bipartite graph, where V is a set of nodes. Let F , VF ⊆  be the set of nodes at the tail of 

edges that represent network failures and A , VA ⊆ , be the set of nodes at the edge heads 

that represent primitive alarms. P is the associated conditional probability distribution 

that represents the influence of relationship between network failures and their 

corresponding alarms. Thus, the domain )(
i

aD for an alarm Aa
i
∈ can be defined as: 

        FffaD
jji
∈= |{)( , there is an edge from

j
f  to 

i
a , and })|( Wfap

ji
≥ ,          (7.1) 

where W is a parameter.  

 

Network failures that are members of a particular alarm’s domain may also be 

members of other alarm domains. Alarm domains that share a singleton fault  hypothesis  
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set or more constitute a cluster of alarms as explained next.  

 

7.2.2  Clusters of Alarms 

A cluster of alarms is defined as the set of alarms whose domains intersect with each 

other. An alarm belongs to a cluster if its domain intersects with a domain of at least one 

alarm that belongs to this cluster. Different clusters share no intersection. For example, 

the alarm domains obtained by the FPM in Fig. 7.1 with 5.0=W , yield the following two 

clusters: 

},,,{ 106321 aaaaC =  

},,{ 13972 aaaC =  

Again, the value of W can indirectly affect the cardinalities of each cluster. Based on the 

above discussion an alarm cluster can be defined as follows. 

 

Definition 7.2 Let S be the set of K  alarm domains, }|)({ AaaDS
ii
∈= ; and A and 

)(
i

aD  are defined as in 7.1. Then, an alarm cluster,
r

C , can be defined as: 

                                                   })(,)(|{
1

SaDaDaC
ii

K

i
ir

∈≠∩=

=

φ                               (7.2) 

where r=1,2, …. The fault hypothesis set that can uniquely explain the cluster is called 

the cluster domain. 

 

According to the definition 7.2, a cluster is just a collection of primitive alarms that share 

a set of fault hypotheses. This implies that the observed cluster can only be explained by 

this set. This observation leads to the following definition. 

 

Definition 7.3 Let 
r

C  be a cluster obtained using definition 7.2. Let
r

F  be the set of fault 

hypotheses that can uniquely explain the observed cluster
r

C  and Ω⊆
r

F . Then, the set 

r
F  can be defined as: 
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                                      }|)({
rii

ai
r

CaaDF ∈∪=                                       (7.3) 

 the set
r

F  is called the domain of the cluster 
r

C  . 

 

Since each cluster can only be explained by a distinct fault hypothesis set, the 

alarm correlation problem can be viewed as finding the best explanation (fault 

hypothesis) among the observed cluster domain. According to the definition 7.2, a cluster 

may be considered as an association relation among network alarms that share one or 

more elements of a certain set of fault hypotheses. Thus, an observed cluster can reduce 

the fault hypothesis space to that given by the cluster domain.  

 

Definition 7.4 Let },...,{ 1 m
CCC =  be a set of clusters obtained using definition 7.2 such 

that it divides the alarm space into disjunctive and exhaustive m clusters, i.e., : 

                      
φ=∩∩

=∪∪

m

m

CC

ACC

...

...

1

1
 

  A is the alarm space. Then, the cluster domains divide the fault hypothesis space into 

disjunctive and exhaustive sets, i.e., : 

            
φ=∩∩

Ω=∪∪

m

m

FF

FF

...

...

1

1
                                                   (7.4) 

For instance, },{ 211 ffF =  and }{ 32 fF = explain the clusters 1C  and 2C , given above, 

respectively. A fault hypothesis 
rj

Ff ∈  can be considered as the best explanation of the 

observed cluster 
r

C  if 
j

f  is represented by most of the observed alarms in
r

C . In the real 

world, most of the observed alarms are caused by the occurrence of a certain network 

failure that they directly or indirectly relate to.  

 

Definition 7.5 Network alarms that are members of the same cluster are called colleague 

alarms. 
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Since colleague alarms are often caused by a common set of network failures, they 

should be correlated together to identify their most probable cause. 

 

7.2.3 Domains of Network Faults 

The set of alarms that may be observed as a result of the occurrence of a particular fault is 

referred to as the domain of that fault. A domain of a fault can also be obtained by 

investigating the available fault propagation model. For instance, given the FPM of Fig. 

7.1, the domain of the fault 1f , referred   to   as )( 1fD , is   the   set   of   its children, 

},,{)( 6321 aaafD = . A particular alarm is a member of a fault’s domain if the considered 

fault is itself a member of the alarm’s domain. The FPM described in Fig. 7.1 clearly 

shows that an alarm can be a member of more that one fault domain. Formally, a fault 

domain is defined as follows. 

 

Definition 7.6 Let us assume that the set of domains of the available n observable alarms 

}|)({ AaaDS
ii
∈= is obtained using definition 7.1. A given alarm 

i
a  is considered as a 

member of the fault domain of 
j

f   if and only if 
j

f   is a member of the 
i

a  domain. 

Hence, the domain )(
j

fD  of the fault 
j

f  can then be defined as: 

              })(,,,)(|{)( SaDFfAafaDafD
ijijiij

∈∈∈≠∩= φ .,...,1, ni =                (7.5) 

An observed cluster, its domain, and fault domains will be utilized, as explained in later 

sections, in the new algorithm to determine a membership degree of a certain fault 

hypothesis in a given local fuzzy composite alarm.  

 

7.2.4 Alarm Correlation Problem 

The above definitions highlight very interesting properties regarding the alarm clusters 

and fault domains and their implications in the alarm correlation process. If the observed 

set of network alarms belong to the same cluster, then these alarms can be explained by 

the same set  of  fault  hypotheses  that  their  domains  share.  However,  if  the  observed  
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alarms belong to different clusters then a conflict may arise between clusters as which 

fault hypothesis set is the best explanation of the received alarms, since each cluster 

proposes its own exclusive explanation.  Moreover, an observed alarm may in fact 

indicate a subset of fault hypotheses (i.e., its domain) as an explanation of its own 

observed cluster, which may be different from other colleagues. The diagnostic clue that 

can be gained from these facts is summarized as follows. While colleague alarms are 

highly expected to be observed together than with other non-colleague alarms, it is likely 

that some of these alarms may propose different fault hypotheses as an explanation of 

their cluster. In addition, if simultaneous occurrence of multiple network failures is 

permitted, then alarms belonging to different clusters may also be observed by the 

intelligent agents. Based on the above definitions, the alarm correlation problem can be 

formally defined as follows.  

 

Definition 7.7 Let C be a set of clusters, i.e., 
ii

CCC |{=  is defined as in Def. (7.2), 

and ,...2,1=i }, 
i

F  be the domain of the cluster 
i

C  and defined as in Def. (7.3), and the 

set A  be an observed set of primitive alarms such that AA ⊆ . Let 
i

C  be a set of 

observed alarms such that 
ii

CC ⊆  and AC
i

⊆  .The fault hypothesis 
ji

f (i.e.,
ij

Ff ∈ ) 

can be considered as the best explanation of 
i

C  provided that: 

(i)  |)(|
iji

CfD ∩  is a maximum, 

(ii) its commonality value is a maximum (i.e., MCD= })({
ij

fQ .  

Based on the above definition, the issue is then of that the alarm correlation scheme 

needs to tackle are of twofold, namely: 

• What impact may the absence of a colleague alarm
i

a  from the cluster observation 

set (i.e.,
ii

Ca ∉ ) have on identifying 
ij

f  as an explanation of
i

C ? Where 

)(
jii

fDa ∈ , 

• What impact may  the  set  of  the  non-observed  clusters  
K

C   have  on  the  fault  



 120 

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION  ALGORITHM               .    

 

hypothesis space? (i.e., }|{ φ=∩= ACCC
kkK

) 

 

To address these two important issues, the adaptive alarm correlation scheme exploits 

the implied information of what is called positive alarms (non-observed alarms). 

Colleague alarms are often observed together (i.e., temporally related). Practically 

however, some of them may not be observed. As expressed in Def. (7.7), the total number 

of the observed alarms in the domain of a suspicious network failure may serve as a 

confidence measure that the failure has actually occurred. This valuable information can 

be incorporated in the local composite alarm built by the intelligent agent as described in 

6.4.   

A corresponding local fuzzy composite alarm can be constructed to account for the 

missing network alarms in a suspicious fault’s domain. In this new composite alarm, the 

mass value assigned to every focal element can be modified according to the fuzziness 

provided by the observed cluster and the fault’s domain. The observed cluster may regard 

its constituent alarms as a panel of experts.  Regardless of their probabilistic information, 

the fact that a certain alarm in the given cluster, which is a member of a fault’s domain, 

has been observed amounts to the corresponding expert decision of the positive 

occurrence of that fault. While the absence of the same alarm from the alarm observation 

set, amounts to the decision of the corresponding expert that the fault has not occurred. 

From this point of view, the more colleague alarms are being observed in a fault’s 

domain, the more confident the relevant cluster should be in the occurrence of that fault. 

In contrast, the less colleague alarms are being observed in a fault’s domain, the less 

confident the relevant cluster is in the occurrence of that fault. This concept can be very 

well represented by a local fuzzy composite alarm as will be explained next section.  

 

7.3 Composite Alarm Representation 

The alarm correlation process in a distributed system is performed at two levels, namely 

local and global levels. At the local level, a  new  fuzzy  composite  alarm  is  constructed 
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 from primitive alarms. At the global level, a new composite alarm is constructed from 

the locally-obtained fuzzy composite alarms.  In the following sections, the 

representation of each new composite alarm is discussed. 

 

7.3.1 Local Fuzzy Composite Alarm 

A triggered primitive alarm is often an indication of multiple fault hypotheses as can be 

seen from its domain. If all the network failures in the alarm domain have the same 

conditional probability, then the alarm domain reflects a vagueness property of the 

associated alarm. It means that the triggered alarm is located in boundary areas between 

its domain members. Therefore, these hypotheses are not distinguishable clearly by the 

given alarm. Consider, for instance, the network alarm 2a  in Fig. 7.1. Its domain is given 

by the following compound set: 

},{)( 212 ffaD =  

The mere observation of the alarm 2a  only indicates the occurrence of the fault 

hypotheses 1f  or 2f . This vagueness property of a network alarm is transitive to its own 

cluster since the cluster is nothing but a collection of these alarms. Hence, an observed 

cluster in fact lies in the boundary of the union set of the domains of its alarms. 

Moreover, a certain fault hypothesis may not be uniquely explained by a single alarm as 

can also be seen from its domain. For instance, if we look at the domain of the fault 

hypothesis 1f , as one possible cause of the triggered alarm 2a , it yields the following 

compound set in the alarm space: 

},,{)( 6321 aaafD =  

Clearly, the alarm 2a  is not the only indication of the occurrence of the fault 

hypothesis 1f . Since the domain of the fault 1f  belongs to the cluster 1C , any missing 

alarm of )( 1fD  from the alarm observation set A  should lower the confidence of the 

cluster 1C  in the occurrence of 1f .  

One reasonable way to represent this information in the local  composite  alarm  is 
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to assign a certain weight for each fault hypothesis in the focal element, based on their 

observed alarms. However, the weights assigned to network failures can not be 

incorporated in the standard DSET. To accommodate for the vagueness property of an 

observed cluster, the crisp focal elements represented in the agent’s local composite 

alarm are replaced with fuzzy sets. A corresponding fuzzy focal element can be expressed 

in a discrete form with finite elements as follows: 

                              ,
)(

,...,
)(

,...,
)(

||

||

1

1

0

0













=

B

BB

i

iBB

f

f

f

f

f

f
B

µ
µµ

                                           (7.6) 

i
fB,∀ , 0)( ≠Bm and 0)( ≠

iB
fµ . Where },,...,{

||1

0
0

B
ffB =  denoting the support set of 

fuzzy set B . B  is associated with certain fault hypotheses in the frame of discernment 

Ω , i.e., Ω⊆B . UB ⊆
0 . U  is the universe of discourse for the fuzzy focals, Uf

i
∈ , 

and )(
iB

fµ  denotes the membership grade of each element 
i

f  in B ; || 0
B  represent the 

cardinality of 
0

B . The information given by the observed cluster and the fault domains 

can be directly represented in fuzzy rules to determine an overall fuzzy set: 

                                          








=

c

c

f

f

f

f
F

)(
,...,

)(

1

1 µµ

.                                                       (7.7) 

Furthermore, the fuzzy focal corresponding to a crisp focal in the considered 

composite alarm is then determined by simply assigning membership values to the fault 

hypotheses of its crisp focal. For instance, the fuzzy evidence provided by Equation (7.7) 

is incorporated in the crisp evidence element  },...,{ 1 j
ff  in the composite alarm as: 













j

j

f

f

f

f )(
,...,

)(

1

1
µµ

 

The intelligent agents keep the mass values originally assigned for crisp focal elements in 

their local composite alarms as mass values for their corresponding fuzzy focal in the 

new local fuzzy composite alarm. Thus, the corresponding fuzzy focal element of the 

crisp focal B  is represented in the local fuzzy composite alarm as follows:   

                                                       ))(),(,( fBmB
B

µ                                                      (7.8) 
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To explain the roles played by both the alarm cluster and fault domains in 

determining the fuzzy focals, the scenario of the occurrence of 3f  in Fig. 7.1 is 

discussed. Let us assume that the network entities are assigned to report their primitive 

alarms to two intelligent agents as shown in Fig. 7.2.  

 

 

 

Figure 7.2: Simple network configuration divided into two domains 

 

It can be noticed from Fig. 7.2 that the domain of the fault hypothesis 3f  has different 

constituents for each intelligent agent. The domain of the fault hypothesis 3f  is }{ 3a and 

},,{ 1397 aaa to the intelligent agents 1 and 2, respectively. Obviously, in this case, more 

alarms are reported to the intelligent agent 2. This could be interpreted as that the 

network failure 3f   is probably caused by one of the network entities in domain 2. 

Furthermore, the intelligent agent 1 is clearly more sensitive to the fault hypothesis 3f . If 

the network alarm 3a  is not reported, it will not assume any role in the alarm correlation 

process and its local composite alarm will not be created. However, if 3a  is observed, it 

first checks the domain of 3a  and initially assumes that either the fault hypotheses 1f  or 

3f  is responsible for triggering 3a . It then realizes that the colleague alarm 2a  (a member  



 124 

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION  ALGORITHM               .    

 

of the 1f domain) has not been observed. This forces the agent to decrease its confidence 

in the occurrence of the fault hypothesis 1f . Thus, it will assign a full weight for 3f  and a 

50% weight for 1f  in its local fuzzy composite alarm. 

If the complete set },,{ 1397 aaa is observed in domain 2, then the fault hypotheses 

2f  and 3f  will be assigned full weight in the local fuzzy composite alarm. Though 2f  

has not occurred, it is assigned full weight since 7a  is the only alarm in its domain. 

However, if none of the alarms in the set },{ 1210 aa  is observed in domain 1, the 

confidence in its occurrence will be greatly reduced by the agent 1. If 7a has not been 

observed, then 2f  will be ruled out as an explanation of the current malfunctioning and 

3f  will be assigned 66% weight in the local fuzzy composite alarm.  

 

7.3.2  Global Composite Alarm 

Once the local fuzzy composite alarms are obtained by the intelligent agents, they are 

combined into a global composite alarm by the agent manager. However, due to the fuzzy 

information embedded within the local composite alarms, they can not be directly 

correlated by the Dempster’s rule of combination. Hence, the agent manager first 

transforms every fuzzy focal element into corresponding consonant crisp sets using the 

resolution identity principal [50]. During the decomposition process, each consonant 

crisp set is then assigned a certain amount of mass proportional to their element 

membership values. According to this scheme, the fuzzy focal B  given in (7.8) can be 

represented with its cuts−α . The mass )(Bm  is then distributed among the produced 

crisp sets. The decomposition process is performed as follows [50]: 

• Step 1: Decompose the fuzzy focal B  into its cuts−α associated level-sets. The 

membership values of  its elements are arranged in increasing order: 

)()...()(
||21 0

BBBB
fff µµµ ≥≥  
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where 0
Bx

j
∈  for ||,...,1 0

Bj = .The cut−α of B at level )(
jB

fµ  is represented 

by },...,{ 1 jj
ffB =

α
. Intuitively, each specifies a slice   of   the membership 

function. Therefore, it is conceivable that the original membership function can be 

reconstructed by adding these slices in order: 

jj
xBxBxBB

ααα
ααα +++= ....

21 21  

where 
jj

xBα  represents a fuzzy set such as the one below: 







∉

∈

=

j

jjB

jj

Bfif

Bfiff

fB

α

α

αα

µ

µ

,0

),(
)(  

 and + represents the disjunction operator (max operator). 

• Step 2: Distribute the mass of fuzzy focal B  into its cuts−α :  

                  ))()((
)(max

)(
)( 1+

−×=
jBjB

Bx

j
ff

f

Bm
Bm µµ

µ

α
                 (7.9)     

It can easily be seen from Equation (7.9) that a mass value for a derived crisp 

focal element is determined by two factors, namely, the original mass value and the 

varying degrees of memberships of its members to the fuzzy focal. By correlating all 

these crisp focals, which are equivalent to their corresponding fuzzy focals in local fuzzy 

composite alarms, the agent manager actually creates a global fuzzy composite alarm.  

 

7.4 Adaptive Fuzzy Alarm Correlation Algorithm 

The adaptive fuzzy alarm correlation algorithm is based on the distributed model 

presented last chapter. Though the distributed fault propagation model of the managed 

network is the same, each intelligent agent may actually have different alarm and fault 

domains as has been shown in section 7.3. This is so because each intelligent agent 

correlates the network failures only to the network alarms emitted from their constituent 

entities and remains unaware of any network alarms reported in other domains. As such, 

some intelligent agents are more sensitive to certain network failures than others. The 

cardinalities of the fault domains in a certain management  domain  reflect  the  degree  of  
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the sensitivity of its respective intelligent agent to these faults. Thus, to identify the 

network failure, the intelligent agents involving in the alarm correlation process should 

be given different weights. 

    

7.4.1Intelligent Agent 

The alarm space within each management domain is divided into exclusive and 

exhaustive clusters. An observed cluster is used by an intelligent agent to: 

(1) reduce its fault hypothesis space, 

(2) construct its local composite alarm, 

(3) determine the fuzzy focals within its local composite alarm. 

As shown in Fig. 7.3, based on the observed cluster
ik

C , the fault hypothesis space of the 

intelligent agent k is reduced to
ik

F . The same scheme presented in the last chapter is then 

utilized to construct the local composite alarm k

comp
A . The focal elements of the local 

composite alarm are then modified to accommodate for the fuzzy information provided 

by the observed cluster. These three steps are discussed in detail in the following 

sections.  

 

7.4.1.1 Modifying the Fault Hypothesis Space 

The partition of the alarm space based on their domains (as expressed in Def. (7.2)) 

results into exclusive alarm clusters. For an intelligent agent k, let 
k

A  denote its alarm 

space, which is subset of the alarm set A  provided by the FPM (i.e., AA
k

⊆ ) and 
k

Ω  be 

its fault hypothesis space (i.e., Ω⊆Ω
k

). Based on the domains of alarms in
k

A , the 

alarms are partitioned into r exhaustive and exclusive clusters such that:                                                                   

                                                
φ=∩∩

=∪∪

rkk

krkk

CC

ACC

...

...

1

1
                                                      (7.10) 

Based on Def (7.4), the fault hypothesis space of the intelligent agent k is also 

exhaustively and exclusively partitioned into: 
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Figure 7.3: Intelligent agent structure. 
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rkk

krkk

FF

FF
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1

1
                                                   (7.11) 

An observed cluster 
ik

C  can be explained by
ik

F , where ri ,...,1= . 

Let 
k

A  be a set of alarms and
kk

AA ⊆ , that has been observed by the intelligent 

agent k. If an alarm 
lk

a  has been observed (i.e., 
klk

Aa ∈ ) and 
lk

a  is 
iklk

Ca ∈ , then the 

cluster 
ik

C  has been observed. Let
kikik

ACC ∩= . 

Alarms of the observed cluster that are members of 
ik

C will be called negative 

alarms. Alarms of the observed cluster that are members of the set {
ik

C -
ik

C } are called 

positive  alarms.   Since  the  observed  cluster  
ik

C   can  be  explained  by 
ik

F ,  the  fault  
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hypothesis space of the intelligent agent k will be restricted to 
ik

F (i.e.
ikk

F=Ω ). In other 

words, fault hypothesis sets of non-observed clusters are not considered in the alarm 

correlation process. The intelligent agent k analyzes both the negative and positive alarms 

of the observed cluster 
ik

C  and assigns a weight for each fault hypothesis in
ik

F . Hence, a 

local fuzzy composite alarm can be defined as follows. 

 

Definition 7.8 Given a set of observed alarms 
i

C  of a given cluster
ik

C  , an intelligent 

agent k may form a local fuzzy composite alarm 
k

Fcomp
A  by (1) correlating 

i
C  into a local 

composite alarm 
k

comp
A in the form given in Equation (6.15); (2) using 

i
C , 

ik
C , and fuzzy 

rules to assign membership values for members of each crisp focal element in 
k

comp
A . 

 

Hence, an observed cluster 
ik

C  provides probabilistic evidence, extracted 

from
ik

C , for each failure in
ik

F . Furthermore, fuzzy evidence can also be inferred from 

the observed cluster’s negative and positive constituent alarms and the fault domains of 

its fault hypothesis set
ik

F .  

 

7.4.1.2 Local Composite Alarm 

Based on the observed alarms 
ik

C  received from its constituents, the agent k takes the 

following three steps to form its local composite alarm [51]: 

 

1. Calculating the belief assessments of each fault hypothesis in 
ik

F  using the 

message updating algorithm (introduced in section 6.4). This step produces a 

belief vector for each network failure hypothesis in the form given in Equation 

(6.7). 

2. Constructing an evidence structure set for 
ik

C  in the form given in Equation 

(6.11). 
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3. Forming a local composite alarm as given in Equation (6.15), and is rewritten 

here for convenience: 

                         )}(),...,({ ||1 ikkik

k

comp
fQfQA

Ω
=                                      (7.12) 

   

7.4.1.3 Local Fuzzy Composite Alarm  

The intelligent agent k may determine the degree for a particular fault hypothesis 

k

j
f (

ik

k

j
Ff ∈ ) to be a member of a given focal element based on how many of its 

constituent alarms in )( k

j
fD  have been observed (i.e., |)(|

ik

k

j
CfD ∩ ). However, the 

network failures of the same cluster share a considerable subset of their alarms among 

themselves. Upon careful examination of the fault domains, it can be easily noticed that a 

given failure with less than 25% observation ratio of its alarm domain should not be 

considered a strong explanation candidate. It is more likely that these alarms have been 

triggered by other network failures that happen to share these alarms with the given 

failure. A given failure is often considered a likely explanation for the observed cluster if 

at least 50% of its alarm domain has been received by its relevant intelligent agent. 

Moreover, a given failure with more than 75% observation ratio of its alarm domain is 

considered a more likely explanation of the observed cluster. Hence, considering each 

network failure as a fuzzy variable, three linguistic variables can be defined for each 

fuzzy variable to capture the previous empirical information as follows: “unlikely” (UL), 

“likely” (L), and “very likely” (VL). These fuzzy sets assume Z-curve, Pi-curve, and S-

curve membership functions, respectively.  

The membership function shapes of a given network failure are controlled by the 

observation ratio parameters. Let us assume that k

j
f  represents the number of alarms in 

)( k

j
fD  that have been observed by its intelligent agent (i.e., |)(|

ik

k

j

k

j
CfDf ∩= ).  The 

ratio parameters   are determined  as  follows.  |)(|
4

1 k

j

k

fj
fDLow = ,  |)(|

2

1 k

j

k

fj
fDMid = , 
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and |)(|
4

3 k

j

k

fj
fDHigh = . The VL membership function is defined as below: 
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where 2/)( k

fj

k

fj
MidHigha += , aHighb

k

fj
−= .  

 The UL membership function is defined as follows: 
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where 2/)( k

fj

k

fj
MidLowa += , aMedb

k

fj
−= . 

 The L membership function is bell shaped and formed by placing both the VL and 

UL curves back-to-back. The expression is: 
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where k

fj
Mida = , k

fj

k

fj
MedHighb −= . 

The overlap ratio (OR) between the UL and L membership functions is: 

. 



 131 

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION  ALGORITHM               .    

 

k

fj

k

fj

k

fj

LUL

High

LowMed
OR

−

=_  

Let us assume that the cardinality of the fault domain of k

j
f  is C (i.e., CfD

k

j
=|)(| ). 

Then, the overlap ratio (
LUL

OR _ ) is: 

3

1

)4/3(

)4/1()2/1(
_ =

−

=

C

CC
OR

LUL
 

Similarly, the overlap ratio between the L and VL membership functions is: 

k

fj

k

j

k

fj

k

fj

VLL

LowfD

MedHigh
OR

−

−

=

|)(|
_ .  

Hence, 
VLL

OR _  is: 

3

1

)4/1(

)2/1()4/3(
_ =

−

−

=

CC

CC
OR

VLL
 

In both cases the overlap ratio is 33%. For example, if 20|)(| =
k

j
fD , then the overlap 

between the membership functions of the linguistic variables for k

j
f is shown in Fig. 7.4.  
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Figure 7.4: VL, L, UL Membership functions. 
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As shown if Fig. 7.4, if the number of alarms observed in the domain of k

j
f  is less than 

five ( k

fj
Low ), then the fault hypothesis k

j
f  is ruled out as an explanation for the observed 

alarm cluster. However, if 15 alarms or more of its domain are observed, then k

j
f  is 

considered as a more likely explanation for the observed alarm cluster. Using our 

empirical knowledge, simple fuzzy rules can be obtained for each network failure as 

follows: 

1jR : if k

j
f  is VL  THEN 

j
F  is 1jA  

2j
R : if k

j
f  is L    THEN 

j
F   is 2j

A  

3jR : if k

j
f  is UL THEN 

j
F  is 3jA  

where j =1,…, ||
k

Ω . 

The number of fuzzy rules for the whole managed network is linearly proportional 

to the cardinality of the frame of discernment. (i.e., ||3 Ω× ). The membership functions 

of the consequent fuzzy sets are defined for each network failure as follows: 













=

Ω||1

9.0
,...,

9.0
,...,

9.0
1

FFF
j

Aj
µ  

  












=

Ω||1

5.0
,...,

5.0
,...,

5.0
2

FFF
j

Aj
µ  

  












=

Ω||1

2.0
,...,

2.0
,...,

2.0
3

FFF
j

Aj
µ  

 

A fuzzy inference process is then employed on all the obtained rules. The Mamdani 

inference scheme is implemented in the following manner: 

1. Calculate the firing level for each rule: 

                                                       )(1

k

jVLj
fµτ =  

                                                       )(2

k

jLj
fµτ =  
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                                                       )(3

k

jULj
fµτ =  

2. Calculate the output of each rule as follows: 

),min()(
111

j
Ajjj

f µτµ =  

),min()(
222

j
Ajjj

f µτµ =  

),min()(
333

j
Ajjj

f µτµ =  

3. Aggregate individual rule outputs to obtain overall fuzzy set 
j

F with membership 

defined by: 

))(()( max
3

1

jjr

r

j
ff µµ

=

=  

4. Replace the given crisp focal with fuzzy set 
j

F . 

 

The application of Mamdani inference scheme by the intelligent agent k, to every 

fault hypothesis contained in its fault hypothesis space
k

Ω , results in one overall fuzzy set 

as follows: 

                                












=Ω

Ω

Ω

||

||

1

1
)(

,...,
)(

k

k

kk

k

f

f

f

f µµ

                                                       (7.16) 

The overall fuzzy set signifies the number of the constituent alarms in each fault 

domain that have been actually observed by the intelligent agent proportional to the total 

number of the alarms in their respective domains. Hence, membership degrees of 

different fault hypotheses in the fuzzy focal element vary according to the contributions 

of their constituents in the alarm correlation process. A fault hypothesis with higher 

number of its constituents participating in the alarm correlation process will be assigned a 

higher degree of membership compared with other fault hypothesis with less number of 

participating constituents.  A full membership will only be given to those fault 

hypotheses whose all constituents are actually participating in the alarm correlation.  On 

the other hand a fault hypothesis whose none of its constituents participate in the alarm 

correlation will be assigned a zero membership. This is  consistent  with  Def. (7.7).  It  is  
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very logical to assume that a certain fault hypothesis whose all or most of its symptoms 

being detected is more credible as a source of the malfunctioning than other fault 

hypotheses with less of their symptoms being observed. Hence, considering the 

proportionality a fault domain’s constituents participating in the alarm correlation process 

as a measure of the fault  belonging  to  a  fuzzy  focal  is  intuitive  and  conforms  to  the 

human thinking and reasoning convention. Thus, the local fuzzy composite alarm may 

then take the following form: 

            












=Ω=

−

=

+

jljf
fbel

fbelfbel
BA

klBk

k

j

k

jk

j

k

Fcomp k

j

,...,1|,|,...,1|)(,
)(

)()(
,

1

1
µ             (7.17) 

where k

j
B  is a fuzzy set associated with an intelligent agent k and its membership is 

derived by Equation (7.16).  

 

7.4.2 The Agent Manager 

It is expected that local fuzzy composite alarms possess different discriminating 

capabilities in distinguishing distinct network failures. To effectively assess each local 

fuzzy composite alarm, the agent manager weights the probabilistic evidence against the 

fuzzy evidence provided by each composite alarm. This weighting process is embedded 

within the decomposition scheme described in section 7.3. As shown in Fig. 7.5, the 

decomposition scheme transforms each local fuzzy composite alarm into its equivalent 

crisp evidence structure. The resulting evidence structures are then combined using the 

Dempster’s combination rule into a global composite alarm.  

Let L be the set of local fuzzy composite alarms in the form of Equation (7.17).  

L = },....,{ 1 K

FcompFcomp
AA  

The following definition is used by the agent manager to combine the received set of 

local fuzzy composite alarms. 

 

Definition 7.9 Given a  set  of  local  fuzzy  composite  alarms },...,{ 1 K

compcomp
AA ,  a  global  



 135 

CHAPTER 7. ADAPTIVE FUZZY ALARM CORRELATION  ALGORITHM               .    

 

composite alarm is formed by (1) transforming each fuzzy focal element into a 

corresponding evidence structure set },...,{ 1 K
ESES  using the decomposition scheme of 

(7.9); (2) correlating the obtained evidence structures into a global composite 

alarm,
glob

A  without regard to their arrival order ,i.e., 
K

glob
ESESA ⊗⊗← ...1 . The 

symbol ⊗  refers to the Dempster’s rule of combination.  

 

 

 

 

Fig. 7.5: The agent manager structure. 

 

 

7.4.2.1  Intelligent Agent Discounting Factor 

To account for their diagnostic capability, the agent manager calculates a discounting 

factor for each intelligent agent. Based on their factor, their composite alarm will be a 

given a certain weight during the global alarm correlation process. However, the 

probabilistic and fuzzy evidence is first evaluated within each local composite alarm as 

follows. The divergence between these two types of evidence can be evaluated  using  the  
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Kullback-Leibler (K-L) distance measure [51]. Given a belief assessment from an 

intelligent agent k, 

)}(),...,({ ||1

k

k

kk
fbelfbelB

Ω
=  

and its fuzzy set, 
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


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f
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The terms )(
i

k
fµ  are first normalized, i.e., )()()(/()()( 111 fffff

kkk

i

k

i

k
µµµµµ ++= , 

|)|,...,1(
k

i Ω= . The distance between 
k

B  and 
k

F  can be calculated using (K-L 

distance) as follows: 

)||()||(),( kkkkkk
BBDBD µµµ +=  

the distance value can then be mapped into range [0, 1], using a unipolar sigmoidal 

function: 

                         
))),((exp(1

1
)),((

0kkkk

kk

DBDP
BDr

−×−+

=

µ

µ                            (7.18) 

According to Def. (7.9), the agent manager should first transforms each fuzzy 

focal contained in k

Fcomp
A  into a consonant crisp focal, where LA

k

Fcomp
∈  and .,...,1 Kk =  

k
P and 

0k
D are controlling parameters. The decomposition scheme as shown in (7.9) 

distributes the mass of each fuzzy focal into its cuts−α . From the definition of 

commonality and the nature of the decomposition scheme, the commonality of a fault 

hypothesis within the corresponding crisp evidence resulted from the decomposition 

scheme can be defined as: 

                        ),()(
max

)(
})({

0k

j

k

l

k

j

F

k

lFk

l

k

j
FfFm

f

fQ

l

j

l

j

∈×= δ

µ

µ

                                       (7.19) 

According to (7.19), the commonality of each fault hypothesis is adjusted based on their 

memberships. The normalized commonalities in the established crisp evidence are 

defined by [51]: 
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∑

Ω∈

=

kjf l

j

j

fQ

fQ
fP

})({

})({
})({ ,                                                     (7.20) 

The normalized commonality is known as Bayesian probability. If all the network 

alarms of the fault hypothesis set have been observed (the corresponding elements in the 

local fuzzy composite event are crisp sets with full memberships), the normalized 

commonality of each fault hypothesis is identical to its belief value. Hence, the ratio 

l

j

l

j
F

k

lF
f µµ max/)(  is used to adjust the resultant commonality. We adopt the discounting 

scheme proposed in [50], to guide the alarm correlation process. To determine the masses 

for the resultant crisp focal element, we substitute the membership function given in 

(7.19) with the following one: 

                      k

j

k

j

k

lFk

kk

lF
fBDrf l

j

l

j

µµµµµ min)min)((),(()( +−×=                        (7.21) 

The function )),((
k

k
BDr µ measures the distance between the probabilistic evidence 

provided by an alarm cluster calculated as a belief assessment from the FPM and its 

fuzzy evidence which reflects the proportionality of each fault hypothesis in terms of 

their domain alarms that have been actually observed by the intelligent agent. The agent 

manager may discard the fuzzy evidence provided by an intelligent agent k if all 

memberships in the agent’s local fuzzy composite alarm are equal (i.e., 

0)),(( =
k

k
BDr µ . This indicates that all the alarms in the observed cluster have been 

actually observed by the intelligent agent in question. If 1)),(( =
k

k
BDr µ , network alarms 

in a certain cluster have not been reported and as such they are considered as positive 

alarms. Hence, the commonality of each fault hypothesis is adjusted according to what 

degree these fault hypotheses differ from each other in their membership to a fuzzy focal 

element. Therefore, the agent manager can calculate the commonality of a fault 

hypothesis associated with a local fuzzy composite alarm: 


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provided by an intelligent agent k as follows: 
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)( k

lF
fl

j

µ is defined in Equation (7.21).  

As stated in Def. (7.9), the agent manager uses the Dempster’s rule of 

combination to correlate the local fuzzy composite alarms presented in (7.17).  However, 

due to their different discriminating capabilities, they should be treated according to their 

importance to the alarm correlation. To evaluate the overall uncertainty contained in a 

local fuzzy composite alarm, first the agent manager measures its fuzzy entropy.  

Let { }))(,,),...,(,,
||1

||||11 fmBfmBA k

k
kk

k
B

k

B

kk

Fcomp
Ω

ΩΩ
= µµ  be local fuzzy composite 

alarm and 
k

Fcomp
F
~

 denote its fuzzy entropies }
~

,...,
~

{
~

||1

kkk
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k

FFF
Ω

= . The fuzzy entropy is 

defined as [51]: 
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k

j
F
~

 is minimum if and only if  k

j
B is a crisp set (i.e., 0)( =

jlB
f

j

µ or 1) and is 
k

j
F
~

 the 

maximum if and only if k

j
B  is the most fuzzy set (i.e., 5.0)( =

jlB
f

j

µ ). Since 
k

j
F
~

 can take 

values between 0 and 1 ( 1
~

0 ≤≤
k

j
F ), the smaller is

k

j
F
~

, the less fuzzy is the fuzzy set k

j
B . 

The overall uncertainty can then be measured using the following: 
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)( k

Fcomp
AFH is minimum if 

j
m =0 or 1, and k

j
B  is a crisp set, (i.e., 0)( =

jlB
f

j

µ or 1) and 

)( k

Fcomp
AFH  is maximum if 

||

1

Ω

=
j

m and k

j
B  is the most fuzzy set (i.e., 5.0)( =

jlB
f

j

µ ).  

An intelligent agent that is less uncertain in both probabilistic and fuzzy evidence would 

have a smaller value of hybrid entropy. Based on the discounting scheme introduced by 

the DSET, the agent manager uses a discounting factor 
k

α  for each intelligent agent  k  to 
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capture the probabilistic and fuzzy entropies of all intelligent agents: 

              ))(),...,((),(),...,(( 11 K

FcompFcomp

K

compcompkk
AFHAFHAHAHηα =                        (7.25) 

The Shannon entropy, )( K

comp
AH , is employed to quantify the uncertainty contained in the 

probabilistic evidence provided by the local composite alarm of intelligent agent k: 
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−−=

kjf

jj

K

comp
fbelfbelAH ),(log)()( 2                                         (7.26) 

)( k

Fcomp
AFH is the hybrid entropy defined in Equation (7.24). The smaller is )( k

comp
AH , 

the more certain the intelligent agent is in terms of its probabilistic evidence k

comp
A ; and 

the less discounted is its evidence, the smaller is )( k

Fcomp
AFH , and the more certain the 

intelligent agent is in terms of its fuzzy evidence contained in its local fuzzy composite 

alarm k

Fcomp
A .  

 

7.4.2.2 Correlating Local Fuzzy Composite Alarms 

Given the above discounting factor defined in Equation (7.25) and the new fuzzy 

membership defined in (7.21), the agent manager can now calculate the common 

commonalities for each intelligent agent using the final commonality defined as: 
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To combine all local fuzzy composite alarms, the agent manager applies the Dempster’s 

rule which yields the final commonality [51]: 

                                            .})({})({
1

∑
=

=

K

k

l

k

l
FQTFQ                                                  (7.28) 

The agent manager decides the fault hypothesis with the maximum value as the root 

cause of the abnormality of the running network. 

 

7.5. Summary 
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In this chapter, we developed an adaptive fuzzy evidential approach for the alarm 

correlation problem in computer networks. In the proposed approach, an intelligent agent 

takes advantage of the positive symptoms to construct a local fuzzy composite alarm. The 

commonality value of each fault hypothesis proposed by these composite alarms are 

adjusted according to the relationship between the probabilistic and fuzzy evidence 

within their relevant composite alarm.   To  deal  with  conflict  among  intelligent  agents  

participating in the alarm correlation process, the agent manager adjusts these 

commonalities even further based on some discounting factor. Finally, the Shannon 

entropy and the hybrid entropy were used to calculate discounting factors on competing 

hypotheses.  
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Chapter 8 

 

 

Simulation and Experiment Results 

 

8.1 Introduction 

In this dissertation we have proposed four schemes for fault probing and identification: 

CSP-based scheme for probe selection (introduced in Chapter 4); Fuzzy CSP-based 

scheme for fault identification (introduced in Chapter 5); Distributed Alarm Correlation 

scheme (introduced in Chapter 6); and  Adaptive Fuzzy Alarm Correlation approach in 

scheme (introduced in Chapter 7). To demonstrate the effectiveness of these schemes, 

extensive experiments have been carried out and their results are reported in this chapter. 

For all experiments we have adopted and modified the simulation model proposed in [18] 

and implemented it using the C++ programming language under object-oriented 

environment.  
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8.2 CSP-Based Algorithm for Optimal Selection of Probes 

In this section we investigate the effectiveness of the CSP-based algorithm as a viable 

approach for the preplanning of probing based schemes. A multi-scenario simulation 

model is used to conduct this investigation. The subtractive search and the greedy 

algorithms [2,5] are considered state-of-the-art and hence used for comparison. The 

investigation is performed in two parts: In the first part, we ran experiments for each of 

the three algorithms to find minimal solutions, i.e, determining an optimal number of 

testing probes for each algorithm. In the second part, we study the effects of having 

different number of probing stations deployed in a managed network for the solution set.  

 

8.2.1 Simulation Model 

The flow control of the simulation program is shown in Fig. 8.1. First we determine the 

size of the managed network. The network size is assumed, without loss of generality, to 

be in the range of 5-50 nodes. This could be extended to accommodate larger set of 

nodes. After determining the network size, the simulation program generates a random 

network topology. Both strong network and loose connectivity are contemplated. Strong 

connectivity implies that the network is fully connected, i.e, each node in the network is 

connected to every other node. The spanning tree routing algorithm is performed on the 

generated network to create a tree-shape topology model and to eliminate any cyclic 

paths. To obtain the dependency matrix of the network, a number of probing stations is 

determined. The probing stations are then randomly deployed in the network. The 

number of probes for each dependency matrix depends on the number of probing stations 

and network size. For example, given a network size of five nodes, the simulation model 

may produce a network configuration as shown in Fig. 8.2. To simplify the process of 

determining the testing probe paths, a spanning tree of the network is computed.  This 

step may yield the routing configuration shown in Fig. 8.3. Using this routing 

information,   a  probing  station  can  easily  obtain  all  the  paths required by its probes 

to examine the managed network. 
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Figure 8.1: Obtaining a dependency matrix. 
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Figure 8.2: A simple network configuration of size 5. 

 

 

 

Figure 8.3: The resultant of spanning tree algorithm run on the network of Fig. 8.2. 

 

 

Let us assume that the simulation model assigns nodes 1 and 2 as probing stations (both 

depicted in red color in Fig. 8.3). The dependency matrix (D) extracted from the network 

configuration of Fig. 8.3 is summarized as follows: 
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The first four probes (rows) are issued from the first probing station; the remaining 

probes are issued from the second probing station. This dependency matrix is fed to the 

CSP-based algorithm as discussed in Chapter 4.  

  In the following section, we test the CSP scheme on different network 

configurations of different sizes. Since the objective is to reduce the size of the given 

dependency matrix while maintaining its diagnostic power, the performance measure 

used to compare the proposed CSP scheme with the subtractive search and greedy search 

schemes is chosen as finding an optimal probe set (called the solution set)  that meets all 

the requirements discussed in Chapter 4.  

 

8.2.2 Initial Variables 

The proposed algorithm starts with an initial set of variables (called the active variables). 

The cardinality (L) of the initial set is determined by Equation (4.3), restated here for 

convenience: 

ZLNL ∈≥ );2log(/)log(  

Where N is the network size and L is the number of initial active variables.  The network 

size is varied between 5 and 50, which yields  the   initial   active  variables  as  shown  in  

Table 8.1.   At   least   three   probes  are   needed   for  a  network   size   of   5,   and   six  
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probes or  more  are needed  for a network size of 50, to successfully perform the fault 

detection and identification tasks. In order to evaluate the efficiency of the proposed 

model, we ran the simulation 10 times for each network size and obtained the average 

number of selected probes in each run.  

 

 Table 8.1: Initial set of active variables for different network sizes. 

N 5 10 15 20 25 30 35 40 45 50 

L 3 4 4 5 5 5 6 6 6 6 

 

 

8.2.3 Optimal Probes for Different Network Sizes 

In this section, the CSP-based model is tested for different network configurations. 

Again, the performance of the CSP-based model is compared with that of the greedy and 

subtractive search algorithms. The results are shown in Fig. 8.4. It is evident from the 

results that the proposed CSP algorithm outperforms both algorithms. It always produces 

the optimal number of probes. The subtractive search algorithm performs the worst. The 

subtractive and greedy approaches utilize the conditional entropy as a measure of 

diagnostic power of a given set of probes. The diagnostic ability H (P) of a set of probes 

P is defined as follows [5]: 

)|()( GNHPH =  

Where },...,1{ nN = denotes the node set, and },...,1{ kG = denotes which group contains 

the node in the decomposition induced by P. Failures in nodes in the same group can not 

be distinguished by the probe P.  If 
i

n is the number of nodes in group
i

g , then: 

∑
=

===

k

i

ii
gGNHgGpPH

1

)|()()(  

Assuming failures are equally likely in any node, the diagnostic ability is reduced to the 

following: 
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For example: 

}})4,3{},2,1({{)( 1 HPH =  

That is adding P1 to the selected probes may have the following diagnostic power, based 

on the groups induced by 1P  : 

12log2log
4

2
2log

4

2
)( 1 ==+=PH  

whereas  

}})4,3,2{},1({{)( 2 HPH =  

yields the following diagnostic power: 

19.13log
4

3
3log

4

3
1log

4

1
)( 2 ==+=PH  

H (P) is simply the expected minimal number of probes needed to uniquely diagnose all 

nodes. A selected probe, P, that reduces the value of the H (P) of the current probe set is 

a better choice; in this example 1P  is better than 2P . 

 

The subtractive approach starts with the given dependency matrix and considers 

each probe in turn. If the diagnostic ability remains the same after dropping the given 

probe from the dependency matrix, then the probe is discarded. The algorithm finds a 

subset of probes that has the same diagnostic power as that of the original dependency 

matrix, though the found subset is not minimal. The implication of this search paradigm 

is that its effectiveness depends highly on the order of the dependency matrix. In a rather 

different direction, the greedy approach starts with an empty set and adds a probe to this 

initial probe set and calculates the diagnostic power of the solution set. If the selected 

probe increases the diagnostic power of the initial probe set it keeps the selected probe in 

the solution set; otherwise the probe is discarded. Again the greedy approach is also very 

sensitive to the ordering of the probes in the dependency matrix. An early selected probe 

may initially seem a valuable contributor  to the solution  set, however,  at  later  stages  it 
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              Figure 8.4: Comparisons of the CSP-based model with the greedy and 

                                subtractive algorithms.  

 

can prevent more valuable probes from being selected. Thus both algorithms fail in 

finding an optimal probe set.  In contrast, while it may prolong the search process, the 

ordering of the given dependency matrix has no effect on the final outcome of the 

proposed algorithm.  

 

8.2.4 Varying Number of Probing Stations 

The effects of having different number of probing stations on the number of the selected 

probes are investigated in this section. In real life networks, the process of determining a 

certain number of probing stations as well as their locations in the managed network is 

subject to administrative and economic considerations that are not part of our study. 

Thus, in this work we do not address the question of how to select the probing stations. 

Nonetheless, a preliminary study of their effects may help network administrators in that 

process. We, however, restrict our experiments on networks with number of probing 

stations range from 1 to 3. The results are shown in Fig. 8.5 and table 8.2. 
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                  Figure 8.5: Number of probes obtained by the CSP model for different  

                                    probing   stations. 

 

We can see from the results reported in Table 8.2, that as the number of probing stations 

increases an optimal probe set with even less probes can be found by the CSP model. 

Networks with higher number of probing stations provide more alternative choices and 

routes for testing a subset of network nodes. Hence, a small comprehensive set of probes 

can be easily found from a rich dependency matrix. This leads us to recognize that the 

locations and number of probing stations may yield different results for each 

configuration, however, given a certain configuration   the   proposed scheme will always 

produce better  results  if  not comparable to those of the other two approaches. 

 

 

Table 8.2: Average number of probes for different probing stations.  

Network size 5 10 15 20 25 30 35 40 45 50 

One Probing Stations 5.9 6.1 6.6 6.9 6.8      6.9 6.9     7.3  7.6   7.9 

Two Probing Stations 4.3 4.6 5.1 5.4 5.6 6.1 6.3 6.5 6.6 6.7 

Three Probing Station 3.1 3.3 3.8 4.1 4.3 4.8 4.8 5.2 5.4 6.1 
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8.3 FCSP-Based Probing Algorithm 

In this section, the effectiveness of the adaptive fuzzy CSP-based algorithm is examined. 

As has been pointed out in Chapter 5, the main shortcoming of the preplanned probe 

schemes is that once an optimal set of  probes is found the network management system 

should periodically send all the probes in the optimal set for both fault detection and 

identification tasks. The new algorithm avoids this overhead problem by considering only 

relevant probes. A simulation model is first developed and the proposed fuzzy CSP 

algorithm is tested on different scenarios.    

 

8.3.1 Simulation Model 

The simulation model presented in Fig. 8.1 is used to obtain the dependency matrix (D) 

which in turn is manipulated as shown in Fig. 8.6. The greedy algorithm is first 

performed on the obtained dependency matrix for each network configuration to extract a 

minimal subset of probes for the purpose of fault detection. We randomly then introduce 

a failure in the current network configuration and modify the probe, suspect, and healthy 

sets as illustrated in Chapter 5. We run the adaptive fuzzy CSP algorithm to select the 

most informative probe among the available probes of D based on the problem 

constraints highlighted in section 5.3. Every time a probe is selected a probe counter is 

incremented by 1. We repeat the same process until the root cause of the failure is 

isolated. The average number of the selected probes is then measured for each network 

configuration. We run the simulation 10 times for each network size. To compare the 

results obtained by the new algorithm, we have also implemented the Greedy Fault 

Localization (GFL) algorithm proposed in [3, 4]. The GFL uses two search methods to 

select a candidate probe from the dependency matrix, namely Max and Min search 

methods. The Max search approach selects a probe that covers maximum number of 

suspected nodes, while the Min search approach selects a probe with a minimum number 

of suspected nodes.  
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Figure 8.6: The simulation model. 

 

 

8.3.2 Results by the Fuzzy CSP Algorithm 

The results of the experimentations are shown in Fig. 8.7. The proposed algorithm always 

presents solutions with less number of probes than the other two algorithms. Though the 

Min search algorithm is a little closer to the fuzzy CSP algorithm, the Max search is 

obviously performing worse than both algorithms. As shown in Table 8.3, for networks 

of size 5 and 50, the average number of probes obtained by the new fuzzy CSP algorithm 

is   around  3  and  10.2,  respectively.  On  the  other  hand,   the  Max  algorithm  obtains   
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on average 6.5 and 15.2 probes for the same network sizes. This deficiency can be traced 

back to the search mechanism adopted by the Max algorithm. Since the Max approach 

selects a probe with a maximum number of suspected nodes, a failed probe may result in 

enlarging the suspect node set significantly and thus prolongs the search process. 

Therefore, more probes are required to isolate the root cause of the problem.  
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                   Figure 8.7: Comparisons of the fuzzy CSP-based, Min, and Max search  

                                      algorithms. 

 

 

Table 8.3: Average number of probes required by each scheme.  

Network size 5 10 15 20 25 30 35 40 45 50 

Min Search 5.2 5.5 6.1 6.8 8.2      9.3 10.1     11  11.6  12.7 

Max Search 6.5 7 10 9.8 11.3 11.7 12.5 13.9 14.5 15.2 

Fuzzy CSP-based 3 3.7 4.2 5.6 7 7.8 9 9.5 9.9 10.2 
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If we treat the received alarms as candidate probes, the performance of the proposed 

algorithm yields even lower number of testing probes than that of the Min search 

algorithm . As shown in Fig 8.8, the number of probes required for the fault identification 

task for networks of size 50 is reduced to approximately six probes, in contrast to 12 

probes produced by the Min search algorithm. It cuts down the obtained probes by over 

50%. This significant 50% improvement over the Min search algorithm can be achieved 

by slightly modifying the fuzzy CSP algorithm to accommodate for the already triggered 

alarms (no extra traffic is induced here). Since each received network alarm has to go 

through a set of nodes to reach its management node, these nodes can be considered by 

the fuzzy CSP algorithm as health nodes.  
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                    Figure 8.8: The average number of probes obtained by the modified fuzzy  

                                       CSP algorithm  
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8.4 Distributed Alarm Correlation and Fault Identification 

Algorithms 

In this section we will examine the efficiency of the proposed alarm-based algorithms. 

The proposed algorithms are based on the assumption that a single global fault 

propagation model of the managed network is available and distributed among the 

domain agents. While this assumption may not be realistic for huge networks that their 

network topologies span over several continents, it falls within the realm of possibility for 

small and large local networks (i.e., campus networks) or wide area networks that their 

entities are contained in a single province and owned by a single institution. Next we will 

present a case study of how to construct such a fault propagation model for a campus 

network which will be used as a prototype to create fault propagation models in the 

simulation process.  

 

8.4.1Case Study 

We present in this case study a bipartite dependency graph as a fault propagation model 

of the campus network of the University of Waterloo that a fault network management 

system can use. The structure of the campus network of University of Waterloo is shown 

in Fig. 8.9. It consists of 69 nodes including 48 building Ethernet switches, 12 core 

Ethernet switches, and 9 routers. The topology of the network is configured in a tree-

shaped fashion. The advantage of the tree-shaped topology is that cyclic paths are 

eliminated. Though the size of the network is not so large the fault propagation model 

constructed from this topology may require a considerable effort to manually construct it. 

In the proposed dependency graph, we refer to the switch-to-switch and switch-to-router 

delivery service as links; while the path refers to the route that a packet may take from 

the first switch (the source) to the last one (the destination). The packet delivery service is 

actually built on the delivery services provided by links. Since we are interested in 

detecting and identifying performance failures in end-to-end service we want to identify 

all   the  paths  that  the  current  network  configuration  provides  and  all  the  links  that  
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Figure 8.9: The topology of the campus network of University of Waterloo. 

 

comprise each path. This process leads to the service-to-link relationship graph. In the 

service-to-link relationship graph each link between any two switches or a switch and a 

router is represented by a node. From this node we create a directed edge to any path that 

may rely on this link for packet delivery service. Due to the limited space, only a partial 

view of this graph is shown in Fig. 8.10. The ellipse shape indicates a link service and the 

circle shape indicates a path service. This graph is important because it shows each 

packet delivery service path from host to host which greatly narrows down the suspect 

network nodes in case a failure in packet delivery service arises. However, the path-to-

link relationship graph does not explicitly show which network entities may generate 

network alarms in case such path failures are detected. Hence, a more elaborated graph is  
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Figure 8.10: Path-to-link relationship resulted from the topology of the campus network  

                     of Fig. 8.9. 

 

needed to identify these monitoring entities which will be used to correlate symptoms 

observed on the path level to identify and isolate the underneath link failures. The result 

of this process is the fault propagation model of the managed network as shown in Fig. 

8.11 and in which we associate a set of performance failures (e.g., congestion, delay, 

broken link, etc) with each link node and associate a network alarm or a set of network 

alarms with each network entity that may report the packet delivery failure of that end-to-

end service. For simplicity let us assume that only two intelligent agents are employed to 

monitor the campus network and are installed in the core Ethernet switches E2 and MC. 

The network entities connected to the core switch E2 through the core switch nodes ES1, 

PHY, GSC, and SJC will report their network alarms to the intelligent agent 1. While the 

network entities connected to the core switch MS through the core switches Math, DC, 

BMH, and LIB will report their network alarms to the  intelligent  agent 2.  For  example,  
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symptoms related to the path service SCH-AL are expected to be reported to the 

intelligent agent 1 since the entities reporting these symptoms are the building switches 

SCH and AL and the core switch ES1 and all are residing in its domain. However, 

symptoms related to the path service NH-SCH will be reported to both agents since the 

entities comprising the packet route are residing in both domains. Symptoms generated 

from the building switch NH and the core switch LIB will be reported to the intelligent 

agent 2, while symptoms generated from building switch SCH and the core switch ES1 

will be reported to the intelligent agent 1. Hence, both agents need to collaborate to 

identify the malfunctioning link that disrupted the path service. Though each agent has 

the same fault propagation model similar to the one shown in Fig. 8.11 each intelligent 

agent only relates the symptoms generated by its constituent entities. The rectangular 

shapes refer to the network entities. It should be noted, though, that in the fault 

propagation model the rectangular shapes will actually represent network alarms that are 

triggered by their corresponding network entities.  

 

8.4.2 Simulation Model 

The simulation model uses tree-shaped topologies similar to the network configuration 

shown in Fig. 8.9. Given a random network topology, smart bridges and switches may 

create a tree-shaped topology using the spanning tree routing algorithm. The proposed 

schemes will be evaluated for their fault detection and identification accuracies. To 

describe the simulation steps we will use the fault propagation model obtained for the 

campus network of University of Waterloo shown in Fig. 8.9 and Fig. 8.10.  

 

8.4.2.1 Generating Random Network Topologies 

Since the first step is to create a random and tree-shaped network topology, we will give 

a brief review of the simulation algorithm used to randomly create a network topology 

and the spanning routing algorithm used to create the tree-shaped topology. For further 

details, you may refer to Appendix C. Let us assume the nodes of the  generated  network 
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Figure 8.11: Partial view of the fault propagation model of the network of Fig. 8.9. 

 

 

represent the  data  link  layer  in  the protocol stack. That means a given network of size 

n has n bridges. The Network class encapsulates the dynamic behavior of the simulation 

algorithm. The topology of the generated network is stored in the private variable, 

Top[MAX][MAX]. The MAX constant refers to  the  network  size,  i.e.,  MAX=n. Each 

node in the generated network is assigned an ID which stands for its hard coded Ethernet 

address. The degree of connectivity of the generated network may be ranged from full 

connectivity (i.e.; each node in the network is connected to every other node) to a partial 

connectivity. Since the network nodes represent bridges, a tree shaped topology of the 

given network  can  be  then  obtained  using  the  spanning  tree  algorithm [113]. Once a  
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random tree-shaped network configuration is obtained, a network manager will obtain a  

its fault propagation model as described next. 

 

8.4.2.2 Obtaining Fault Propagation Models 

The next step in the simulation procedure is to obtain a valid fault propagation model for 

the obtained tree-shaped network. It can be accomplished as follows. Let us assume that 

the set of all possible alarms is referred to as A and the set of all faults is referred to as F . 

For a given tree-shaped n-network topology of size n, we create a fault propagation 

model as follows: 

• We identify all the possible paths that the current network configuration may 

provide. For example, the path from building switch LIB to the building switch  

• NH in Fig. 8.9 can be represented as a node LIB-NH in the path-to-link 

relationship graph as shown in Fig. 8.10.  

• For each obtained path we identify the all the links that the path may depend on. 

For example, the path LIB-NH shown in Fig. 8.10, may  depend  on  the  link  

from  

the building switch NH to the core switch LIB and the link  from the building 

switch LIB to the core switch LIB. Each link will be represented as a node as 

shown in Fig. 8.10. 

• We identify network entities for each path that may report network performance 

failures for their related path in the form of network alarms. We will refer to these 

network entities as path entities. 

• We create a directed edge between every identified link node and every network 

entity contained in a path which is using that link, as shown in Fig. 8.11. 

• We associate with every link node a fault
j

f . It is known that in an n-node tree-

shaped network there are n-1 links which means that .1|| −= nF  For example, 

based on the given PFM in Fig. 8.10, 

}1,......,,{ 7321 ALESfLIBMCfLIBLIBfNHLIBfF −=−=−=−== . 
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• We create one network alarm for each path entity in the fault propagation model. 

For example, the network alarms expected according the FPM shown in Fig. 8.11 

are represented by the set }.,,,,,{ 1 ALSCHLIBESNHLIB
aaaaaaA =  

• The priori fault probability distribution
f

p  is randomly generated and uniformly 

distributed over the interval [0.001, 0.01].   

• To signify the causal relationship between networks failures (associated with 

links) and their corresponding alarms (associated with paths), we assign randomly 

a conditional probability for every edge shown in the fault propagation model. 

The conditional probability distribution is uniformly distributed over the range 

[0.5, 1).  

Once the topology of the generated network is transformed into a tree-shaped one and 

the fault propagation model is obtained, we randomly divide the given network into 

separate management domains. In real networks, the number of number of management 

domains is determined based on geographical  and  security  considerations.  To  simplify  

the simulation we will determine the number of intelligent agents (K) based on the 

network size using the simple following rule: 

2

)(log 2 n
K =  

n is the number of network bridges. Applying this rule may yield management domains 

shown in Table 8.4. We assign intelligent agent for each management domain and the 

network entities are distributed among these domains based on their proximities of 

intelligent agents. Each intelligent agent pertain a copy of the obtained fault propagation 

model.  

 

Table 8.4: Management domains. 

Network size 5 10 15 20 25 30 35 40 45 50 

Number of 

domains 

1 2 2 2 2 2 3 3 3 3 
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8.4.3 Results by the DSET-Based  Alarm Correlation 

Algorithm 

For every simulation case i, we created 10 simulation scenarios as follows. Let 

k represent the th
k simulation scenario of the simulation case i, where 101 ≤≤ i  

and 101 ≤≤ k . For every simulation scenario we proceed as follows: 

• Based on the link priori probability distribution, we first randomly introduce a set 

of faults to network links. We will refer to this set of introduced faults as k

i
F . 

• We create a probability distribution ]1,0[: →
k

i

k

a
AP , where 

jj

k

a
aPaP {)( = occurs 

| all faults in k

i
F occur}. 

• Using k

a
P  we randomly introduce a set of network alarms 

k

i

k

iF
AA k ⊆ that may 

have been caused by the introduced faults k

i
F . 

• Using the proposed DSET-based algorithm we calculate k

i

k

iD
FF ⊆  the most likely 

explanation of the observe network alarms in
k

iF
kA . We calculate the detection rate 

( k

i
DR ) using the following formula: 

||

||
k

i

k

i

k

iDk

i

F

FF
DR

∩

=  

 

For every simulation case we calculate the average detection rate as follows:  

∑
=

=

10

110

1
k

k

ii
DRDR  

We then calculate the values of detection rate for each simulation case denoted by 

)(nDR  for varied network sizes. 

 We implemented also the well known code-book-based algorithm for alarm 

correlation [6].  The correlation paradigm is based on coding schemes in which the 

information contained in the fault propagation model represented as a bipartite graph is 

converted into a set of codes. A code for each performance failure  is  extracted  from  the  
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fault propagation model. For example, the fault propagation model of Fig. 8.11 may yield 

the codebook shown in Table 8.5. A performance failure code is represented by a series 

of bits. A certain bit takes the value of 1 if the corresponding network alarm can be 

triggered by the network failure; otherwise it takes the value of 0. To isolate the 

performance failure, the set observed alarms is matched to the codebook. Network 

failures that optimally match an observed alarm vector are identified as the root causes of 

the observed alarms. The identification mechanism is based on the Hamming distance 

between network failure codes. As can be seen form the table two  failures,  namely  MC- 

E2 and ES1-SCH, can not be distinguished by the codebook since both failures have the 

same code. However, this codebook resulted from an incomplete fault propagation model  

and is only used here for explanatory reasons. A radius of a codebook is one half the 

minimal distance between failure codes.  

 

 

 

  

Table 8.5: Codebook obtained from the fault propagation model of Fig. 8.11. 

 LIB-NH LIB-LIB MC-LIB MC-E2 ES1-E2 ES1-SCH ES1-AL 

LIB 0 1 0 0 0 0 0 

NH 1 1 0 1 1 1 0 

LIB 0 1 0 1 1 1 0 

ES1 0 0 0 1 1 1 1 

SCH 1 0 1 1 1 1 1 

AL 0 0 0 0 0 1 1 

 

 

 

 

 



 163 

CHAPTER 8. SIMULATION AND EXPERIMENT RESULTS                                         .    

 

In a noisy environment such as that of computer networks, it is highly expected that a 

percentage of network alarms will be lost before they reach their intended destinations. 

This can be caused by many factors such as, highly congested links on the alarms paths, 

using of unreliable transport mechanisms such as user datagram protocol UDP (used by 

the network management protocol SNMP), etc. Hence, we will test the reliability and 

effectiveness of the proposed algorithms in the presence of such alarm losses. We define 

the loss rate as number of network alarms actually received by intelligent agents to the 

total number of network alarms generated by the introduced network failures. We have 

set the loss rates for our experimentations to 10%, 20%, and 30%. The results of the 

simulation experiments are shown in Fig. 8.12, Fig. 8.13, and 8.14 respectively. The 

figures clearly illustrate that the proposed algorithm is always performs better than the 

codebook based algorithm in terms of the fault detection rate.  We notice that the 

codebook algorithm performance  deteriorates  even  further  for  small  
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Figure 8.12: Failure detection rate of both algorithms with loss ratio 10%. 
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Figure 8.13: Failure detection rate of both algorithms with loss ratio 20%. 
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Figure 8.14: Failure detection rate of both algorithms with loss ratio 30%. 
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network sizes and high alarm losses. This is a major deficiency on the part of the 

codebook. We attribute this shortcoming to the sensitivity of the codes of network 

failures obtained from the available fault propagation model. This sensitivity is expressed 

in the form of radius as defined above. For example, the radius of the codebook shown in 

Table 8.4 is 0.5. When the  radius  is  0.5,  the  code  is  still  able  to  provide  distinction  

among  network failures; however, it is not resilient to noise. For example, the two 

network failures ES1-E2 and ES1-SCH presented by the codebook of Table 8.4, are only 

distinguished by a single network alarm emitted from the building switch AL. This is also 

true in the case of network failures MC-E2 and ES1-SCH. This means that a loss of the 

network alarm generated by the switch AL will result in a potential decoding error. Of 

course to redeem this problem, the radius of the codebook has to be  increased by 

increasing the number of network alarms. However, the proposed scheme does not suffer 

from this problem since it is non-deterministic in nature. Moreover, in the case of the 

codebook-based scheme, the agent manager, for  the  lack  of  a  better  combination  rule,  

utilizes the majority vote mechanism to combine outcomes of its subordinate intelligent 

agents. This mechanism may have some negative impact on the overall decision when 

intelligent agents which have made correct judgments are outnumbered by intelligent 

agents which have made false identifications. This is true when some intelligent agents 

do not receive enough network alarms to make the right decision. For network of small 

sizes, the number  of  the generated alarms are smaller compared with networks of larger 

sizes. If some of these alarms are lost then the fault identification task becomes hard for 

the DSET-based algorithm and even harder for the codebook-based algorithm. The 

codebook algorithm, however, tends to enhance its performance as networks increase in 

size while the alarm loss ratios decrease.  

We calculate the false positive rate ( k

i
FPR ) using the following formula: 

||

|\|
k

iD

k

i

k

iDk

i

F

FF
FPR =  

 

For every simulation case we calculate the average false positive rate as follows:  
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We then calculate the values of false positive rate for each simulation case denoted by 

)(nFPR  for varied network sizes. The false positive rates for the alarm loss of rates 10%, 

20%, and 30% are shown in Fig. 8.15, Fig. 8.16, and Fig. 8.17, respectively.   

 

On average the proposed scheme has 0.03%, 0.035%, and 0.05% false positive 

rates for the alarm losses rates of 10%, 20%, and 30%, respectively. It is noted that for 

alarm losses higher than 10%, the codebook scheme yields higher percentage of false 

positive rates as network sizes get larger (more than 0.07% false positive rate for 

networks of size 50). This is due to the fact that the number of potential network failures 

increases as the complexity of the network increases. It becomes difficult for the 

codebook scheme to differentiate between network failures that have close similarity of 

code signals. With high rate of missing crucial alarms, it may include non-existent 

network failures in their explanation hypotheses.  Though the increase of the alarm loss 

ratio negatively affects the false positive  rate  of  the  proposed  algorithm,  it  still  yields 

better false positive rates than those of the codebook scheme.   

 

8.4.4 Results by the Adaptive Alarm Correlation Algorithm  

In this section we investigate the performance and the accuracy of the adaptive fuzzy 

DSET-based algorithm. As has been pointed out in Chapter 7 the DSET-based does 

account for the positive symptoms in the process of fault identification. The fact that fault 

hypothesis’s relevant network alarms have not been observed should decrease our 

confidence in the occurrence of that hypothesis. We have utilized the simulation model 

introduced in Section 8.4.4 and used the same obtained fault propagation models and 

probability distributions. In this section, we have considered network alarms which have 

not been observed in the previous simulation experiment as positive alarms. However, we 

should not misinterpret lost negative alarms as positive alarms. The  following  additional  
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Figure 8.15: Failure positive rate of both algorithms with loss ratio 10%. 
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Figure 8.16: Failure positive rate of both algorithms with loss ratio 20%. 
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Figure 8.17: Failure positive rate of both algorithms with loss ratio 30%. 

 

 

steps were added to the simulation process to account for the positive symptoms. For 

each simulation case: 

1. Based on the current fault propagation model, each intelligent constructs a fault 

domain for each performance failure.  

2. The set of symptoms that has not been observed by intelligent agents is referred to 

by the set
k

iF

k

i

k

iR kAAA −= . Where k

i
A  is the set of all possible observed alarms 

and 
k

iF
kA is the set of the actually observed symptoms resulted from the introduced 

performance failures.  

3. Using the k

a
P−1 , we randomly generate a subset 

k

iR

k

ipos
AA ⊆  of positive alarms 

from the set k

iR
A . Where k

a
P  as defined above.  
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4. Using the fuzzy inference mechanism introduce in section 7.2, each intelligent 

agent calculates its local fuzzy composite alarm 

 

We use the fault detection rate as an accuracy measure as described in the previous 

section. The results are shown in Fig. 8.18, Fig. 8.19, and Fig. 8.20, for 10%, 20%, and 

30% alarm losses, respectively. The average  fault  detection  accuracies  of  the  adaptive  

scheme is compared with  DSET-based  and  codebook-based  algorithms  and  shown  in 

Tables 8.6, 8.7, and 8.8. Simple investigation of the provided tables shows clearly that the 

fault detection rate has substantially improved. However, as the number of observed 

negative alarms increase the three algorithms tend to provide comparable fault detection 

accuracies. Intelligent agents in the adaptive-based scheme cooperate more effectively to 

reach a final decision. As different intelligent agents may have different weights their 

contributions to the fault identification task are based on how many negative and positive 

alarms have individually been received. The weight factor is based on the discounting 

factor as defined in Equation (7.25) and implemented as follows: 

 

FHFH

FHBFH

F

BH
k

comp

k

comp

k

minmax

min)(

||log

)(

2

0
−

−

××= αα  

 

Where FHmax and FHmin denote respectively the maximum and minimum of 

hybrid entropies among the intelligent agents and is the maximum Shannon entropy [51]. 

We empirically set the value of 0α  to 0.15 to stand as an upper bound for the discounting 

factor. Hence, the advantage of the adaptive scheme over both DSET and codebook 

based schemes is that the positive symptoms are incorporated in the fault identification 

process.    
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Figure 8.18: Failure detection rate of all algorithms with loss ratio 10%. 
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Figure 8.19: Failure detection rate of all algorithms with loss ratio 20%. 
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Figure 8.20: Failure detection rate of all algorithms with loss ratio 30%. 

 

In some cases the detection accuracy of the adaptive scheme increases by 8% 

more than that of the codebook scheme and 5% of that DSET-based scheme for the 20% 

alarm loss. This is quite improvement since small networks with alarm loss of 20% can 

be considered as poorly instrumented networks (networks with fewer triggered 

symptoms). With this level of instrumentation, positive symptoms can play an important 

role in increasing the accuracy of fault identification tasks. Of course one can argue that 

this accuracy improvement may be achieved, however, the overall run-time of the fault 

identification is also increased. This tradeoff between accuracy and performance is an 

inherent characteristic of network management systems.  
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Table 8.6: Accuracy averages of the three algorithms for alarm loss 10% 

Network size 5 10 15 20 25 30 35 40 45 50 

Codebook Algorithm 0.86 0.87 0.88 0.89 0.89 0.91 0.90 0.91 0.91 0.93 

DSET-based 

Algorithm 

0.89 0.90 0.89 0.91 0.92 0.94 0.93 0.94 0.93 0.94 

Adaptive DSET-based 

Algorithm 

0.94 0.93 0.92 0.94 0.95 0.96 0.95 0.95 0.95 0.95 

 

 

Table 8.7: Accuracy averages of the three algorithms for alarm loss 20% 

Network size 5 10 15 20 25 30 35 40 45 50 

Codebook Algorithm 0.81 0.81 0.82 0.83 0.83 0.85 0.86 0.88 0.89 0.90 

DSET-based 

Algorithm 

0.85 0.86 0.86 0.87 0.88 0.88 0.89 0.91 0.92 0.92 

Adaptive DSET-based 

Algorithm 

0.89 0.90 0.89 0.90 0.90 0.91 0.90 0.92 0.94 0.93 

 

 

 

Table 8.8: Accuracy averages of the three algorithms for alarm loss 30% 

Network size 5 10 15 20 25 30 35 40 45 50 

Codebook Algorithm 0.78 0.79 0.80 0.80 0.81 0.83 0.84 0.86 0.88 0.89 

DSET-based 

Algorithm 

0.81 0.83 0.84 0.84 0.85 0.87 0.89 0.90 0.90 0.91 

Adaptive DSET-based 

Algorithm 

0.86 0.87 0.88 0.87 0.88 0.89 0.91 0.91 0.91 0.92 
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As shown in Fig. 8.21, Fig. 8.22, Fig. 8.23, the false positive rates are also improved by 

0.01% for the alarm loss rates of 10% and 20% ratios and by 0.02% for the alarm loss 

ratio 30%. On average the adaptive alarm correlation scheme has 0.02%, 0.025%, and 

0.03% false positive rates for the alarm loss rates of 10%, 20%, and 30%, respectively. 

 

 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Network size

F
a
ls

e
 p

o
s
it
iv

e
 r
a
te

%

Codebook scheme
DSET-based scheme
Adpative DSET-based scheme

 

Figure 8.21: False positive rate of all algorithms with loss ratio 10%. 
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 Figure 8.22: False positive rate of all algorithms with loss ratio 20%. 
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Figure 8.23: Failure positive rate of all algorithms with loss ratio 30%. 
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8.5 Summary 

In this chapter, we have conducted extensive experimentations to examine the accuracy 

and efficiency of the proposed algorithms in the field of computer network fault 

management. For the active-based algorithms, the new CSP-based approaches always 

provide less testing probes that is capable of detecting and identifying observed network 

failures. The proposed DSET-based alarm correlation algorithms outperform the 

codebook-based approach (which considered as one of the most widely recognizable 

alarm correlation approaches) in terms of the fault identification accuracy as well as false 

positive rates. A cased study of building a fault propagation model (a pre-request for the 

new approaches) of the campus network of the University of Waterloo is also presented.  
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Chapter 9 

 

 

Conclusions and Future Work 

 

9.1 Conclusions 

The problem of fault detection and identification in computer networks is an interesting 

and a challenging one. The hierarchal nature of computer networks makes it possible that 

a failure in a single network entity may spread vertically and horizontally and affect 

multiple dependent entities that may otherwise just work perfectly. In a response to such 

failure, the affected entities send notification messages to their assigned manager in the 

form of alarms, trouble tickets, etc.  In order to isolate the main cause of this failure, 

some fault management systems correlate these diagnostic messages. Other fault 

management systems use specific measurements, called probes, on a subset of network 

entities. The probe-based fault management systems send these probes to the managed 

network on a periodical basis and analyze their outcomes. Since each model has its own 

merits and shortcomings we have investigated new approaches for both paradigms in this 

dissertation. The main contributions of the work presented in this dissertation include the 

following:  
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• A novel-model for the probe selection is developed. The new constraint 

satisfaction   problem   (CSP)-based    model   presents   well-developed    domain  

reduction rules that are used by the search engine to reduce the search space and 

speed up the model convergence.  

• An adaptive novel-fuzzy CSP technique is presented to refine the available testing 

probes and select the most informative among them. Instead of crisp constraints 

that may not be fully satisfied by certain probes, fuzzy constraints are introduced. 

Candidate probes that satisfy the fuzzy constraints the most are selected. In the 

beginning, only a few of such probes are sent to the network for fault detection 

tasks. The outcome of each fault detection probe is then utilized to either identify 

the network failure or select more probes.  

• A new distributed alarm correlation algorithm is proposed. The managed network 

is divided logically into a cluster of disjoint management domains. Each 

management domain is assigned an intelligent agent that is responsible for 

collecting alarms emitted by entities in its domain. The reasoning engine of the 

intelligent agent is based on the Dempster-Shafer Evidence Theory (DSET). In 

the framework of the DSET, these alarms are considered as pieces of evidence. 

An evidence structure for each received alarm is constructed based on the 

posterior probability calculated for each fault hypothesis using the Pearl’s 

updating belief algorithm. Intelligent agents then send their findings in the form 

of new local composite alarms to a higher level manager called the agent 

manager. The agent manager combines the new alarms using the Dempster’s rule 

of combination.  

• An adaptive distributed alarm correlation algorithm is presented. A fuzzy 

evidence structure is constructed for each alarm cluster observed by an intelligent 

agent. The intelligent agent utilizes its knowledge of network failure domains, 

presented by fault propagation models, and assigns weights for each fault 

hypothesis in the fuzzy focal. Alarms that were not observed by intelligent agent 

are called positive alarms. The membership degree for each fault hypothesis   in  a  
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given fuzzy focal is determined by both positive and negative network alarms in 

that fault domain. The fuzzy inference mechanism is based on the premise that the 

absence of observations of network alarms of a given network failure should 

decrease our confidence in the occurrence of that network failure. The agent 

manager that correlates the evidence structures provided by its subordinate agents 

assigns each intelligent agent a certain weigh and fuses its evidence piece 

accordingly.  

Table 9.1 summarizes the main features of the proposed algorithms. In the table, 

DAC stands for distributed alarm correlation and ADAC stands for adaptive, distributed 

alarm correlation. The distributed alarm correlation algorithms are reactive in the sense 

that they do not start their fault analysis process until they receive malfunctioning 

indications from the managed network. Hence, they do not induce extra management 

traffic. This of course implies that they may not be able to anticipate network failures in 

advance. Being active, on the other hand, the CSP-based algorithms can predict potential 

network failures before their actual occurrence and quickly identify the root cause. 

However, this may entail some traffic overhead in terms of probes. Moreover, both CSP-

based algorithms are deterministic in nature. That is, the outcome of a given probe is 

completely characterized by the health status of the network entities in its path. Thus, 

they are more sensitive to noise than the alarm correlation algorithms.  

 

Table 9.1: Main features of the proposed algorithms. 

Algorithm CSP-Based  Fuzzy CSP-Based DAC ADAC 

Fault analysis 

mechanism 

Active Active Reactive Reactive 

Nature of the 

algorithm 

deterministic deterministic Non-

deterministic 

Non-

deterministic 

Scalability Yes Yes Yes Yes 

Multiple-fault 

scenario 

No No Yes Yes 
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In summary, form a theoretic development standpoint, to the best of our knowledge, this 

dissertation has presented the first effort in the following aspects: 1) propose the new 

CSP model for active probe selection and introduce new domain reduction rules for the 

search engine; 2) present new fuzzy CSP model for adaptive probe selection; 3) utilize 

fault propagation models to build evidence structures and exploit positive and negative 

symptoms observed by the management system; 4) introduce the Dempster-Shafer 

evidence theory as a framework for network alarm correlation mechanism; 5) develop the 

adaptive alarm correlation reasoning algorithm in the fuzzy evidential reasoning 

framework, with the capability of discounting less informed intelligent agents during the 

correlation process. 

 

9.2 Future Work 

One of the interesting suggestions is to investigate the use of a hybrid approach in which 

network alarms can be considered as probing tests. Since each received network alarm is 

an indication of the possible occurrence of certain network failures, we may conclude that 

the network entities in the received network alarm are working properly and should not 

be deemed suspected nodes. Furthermore, a hyper-arc consistency algorithm may be 

investigated for both the standard and the fuzzy CSP-models. As has been demonstrated 

throughout this work, fault propagation models play an important role in most of the 

network alarm correlations reported in the literature. However, an automatic mechanism 

by which such fault models can be extracted form current network configurations has  not 

by which such fault models can be extracted form current network configurations has not 

been subjected to extensive study. Such tools can be very helpful in the dynamic 

environment of computer networks, where current configurations may change frequently.   

Besides the issues studied in this dissertation, in the field of network fault 

management, the following two areas can be considered as open research problems: 

• Temporal alarm correlation, 

• FPM for wireless networks. 
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Temporal correlation is recognized as one of the important aspects of alarm correlation 

systems. In this research work, we have assumed that the received alarms are observed a 

short time after the fault occurrence, and as such, only those occurring within a time-

window may be correlated. However, the proposed algorithms can be modified to 

incorporate temporal information such as the arrival, between arrival, and time duration 

in the alarm correlation process. Wireless networks introduce new challenges to the 

network fault management field. Obtaining an accurate and constantly updated fault 

propagation models prove to be a challenging task in a mobile wireless environment. 

Hence, advanced techniques should be investigated through which such models can be 

obtained.  
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Appendix A 

 

MODEL: Event Modeling Language  

This summary review has been extracted from [38].  

 

 

A.1 Overview 

Event modeling is an essential component of event correlation systems. Event correlation 

is the process of automatically grouping related events based on their underlying common 

cause. An event correlation system consists of two basic components: an event definition 

and propagation model (i.e., event model), and a reasoning algorithm. The event model 

describes the underlying system. The reasoning algorithm correlate events based on the 

knowledge contained in the event propagation model. The MODEL language is basically 

the event modeling component of SMARTS InCharge. The features of the language will 

be demonstrated through examples from the multimedia Quality of Service (QoS) 

domain. MODEL language supplies an object-oriented data model complete with 

inheritance and overloading. It also provides instrumentation capabilities to automatically 

tie attributes in the model to SNMP MIB variables. Boolean expressions are used for a 

declarative specification of events. The user can specify local event propagation rules in 

which the causality graph can be constructed from the combination of the class-level 

event propagation model and the current object topology. Event propagation patterns 

depend heavily on the way in which objects are currently  interconnected.   Changing  the 
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topology of the modeled objects will drastically alter of the observed symptoms of a 

problem. One of the most desirable features of the MODEL language is that it is 

correlation algorithm independent.  

 

A.2 Multimedia Quality of Service (QoS) Domian 

A scenario from the Multimedia Quality of Service (QoS) domain is illustrated in Fig. 

A.1. On the local area network 2 (LAN 2) a video sender wishes to send some live video 

to a receiver located on LAN 1 using a specific video tool that utilizes the UDP transport 

protocol. The UDP connection  transports  IP  packets  through  routers  D,  C,  B,  and  A  

 

 

 

 

Figure A.1: Multimedia over a multi-domain network. 

 

which connect the LAN domains through a router backbone. The router backbone 

domain  uses  physical-layer  wide-area  network  (WAN) domains.  Similarly,  an   audio  
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sender, Internet phone, on LAN4 wishes communicate with a receiver on LAN3, using a 

specific audio-tool. Its IP packets are routed via F, C, B, and E. These transmissions 

cause the rate of packets arriving at C to be high. Consequently, the buffer at C 

overflows, causing the multimedia transmission to lose packets. The packet losses at 

router C will propagate to all UDP connections which router C is a part of. Since UDP 

does not retransmit lost packets, these losses will in turn propagate to the multimedia 

transmissions and hence the quality ate the receiver may become unacceptable.  

 The event model consists of a class-level model and a run-time object topology. 

The class-level model describes the general rules for propagating events from objects of 

one class to another. For the scenario described above, the class-level event model 

consists of the following: a definition of the “poor video quality” event, and a rule 

describing the propagation of router congestion to packet loss and then to poor video 

quality, and optionally a “high packet loss” event at the router level. While the object 

topology describes a particular instantiation of the run time model which reflects the 

current state of the actual system. For the above scenario, the object topology consists of 

the individual routers and multimedia applications and their relationship in the underlying 

network. A reasoning algorithm would infer the presence of the congestion problem 

based on the poor video and audio quality and the event model illustrated.  

 

A.2 QoS Management 

Consider the following scenario. Due to high traffic volume, router C experiences 

congestion. As a consequence, its buffers overflow and incoming IP packets get lost. The 

audio and video receivers experience QoS violation (an average transmission rate that is 

drastically below tolerance). Using the knowledge provided by the corresponding model, 

a correlation reasoning algorithm should report a high probability that the problem 

causing these violations is located in the domain of the router backbone. To implement 

the causal relationship (congestion causing lost packets), we assume the router 

implements the IP protocol and is instrumented via SNMP. We can then measure the total  

number of discarded packets by querying the SNMP MIB-II variables ipOutDiscards  and 
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ipInDiscards: 

  interface IPRouter: IP 

{ 

 instrumented attribute long ipInDiscards; 

            instrumented attribute long ipOutDiscards; 

 instrumented long discardsThreshold; 

 

 event PacketDiscardsHigh “The level of discarded packets is high” = 

            (delta ipInDiscards + delta ipOutDiscards) / delta _time > 

            discardsThreshold; 

 

            instrurment SNMP; 

 } 

The attribute statements define measurable properties of the IP protocol entity. The event 

statement defines the circumstance under which the event can be said to have occurred. 

In this case, the event PacketDiscardHigh will be deemed to have occurred whenever the 

sum of the changes ipInDiscards and ipOutDiscards per time exceeds a threshold. The 

delta keyword indicates that the difference between the new and old values of the 

attribute is desired. The _time keyword refers to the time at which samples are taken. 

Thus this event is triggered when the discard rate reaches the threshold. 

 Now we want to express the fact that there is a causal relationship between the 

congestion problem and the high packet discard event (with probability 1.0): 

 

  problem Congestion “High congestion’ = PacketDiscardsHigh 1.0; 

 

This line will be added to the MODEL class definition above. Note that this is a 

semantic declaration in the form of a rule; however, it does not have any specific 

algorithmic or operational meaning. It  simply  expresses  the  fact  that  there is  a  causal  

relationship between these two events. To include the problem  and  the  symptom  in  the 
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scope of a single class, we should write the following rule: 

 

Congestion (IPRouter(x))  ->  PacketDsicardsHigh (IPRouter(x)); 

 

We have modeled the local symptom which indicates the problem of congestion. We also 

like to relate the problem to the other observed symptoms at the multimedia application 

level. In this way, anomalies observed at the multimedia level can be correlated with the 

problem detected at lower level.  

 Problems in one object propagate to related objects via relationships. In this 

example, the congestion problem would propagate to higher level connections which are 

layered over the congested IP node. To indicate this relationship between IP nodes and 

connections, we would the following statement: 

 

relationshipset Underlying, TransportConn, LayerdOever; 

 

The keyword relationshipset indicates that many connections may be layered over 

a single IP node. Now we want to express the fact that the congestion problem causes 

both the local symptom PcketDiscardHigh, and propagates those discards as losses in the 

higher level  connection: 

 

problem Congestion “High congestion” =  

  PacktDiscardsHigh 1.0,   connectionPacketLossHigh 0.8; 

 

propagate symptom ConnectionPacketLossHigh = 

  TransportConn, Uncerlying, PacketLossHigh; 

 

We have added the symptom ConnectionPacketLossHigh to Congestion problem 

with a causal probability of 0.8, where a value of 1.0  indicates  complete  certainty.  This  

indicates   that   the   congestion   at   the  IP  node  may  not  cause  packet  losses  on  all  
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connections above it, depending on the circumstance surrounding the congestion. We 

would not want to rule out congestion simply because a single connection which is 

layered over the node is not experiencing problems.  

The propagate symptom statement says that the symptom 

ConnectionPacketLossHigh refers to an event in a ralted obect, namely the event 

PacketLossHigh in any  TransportConn which layered over this IP node. The MODEL 

code that propagates the problem to its observable symptom in the multimedia layer can 

be presented as follows: 

 

interface TransportConn 

{ 

 propagate symptom PacketLossHigh = 

   Port, ConnectedTo, PacketLossHigh; 

} 

interface UDPPort: Port 

{ 

  propagate symptom PacketLossHigh =  

     Appl, Underlying, PacketLossHigh;  

} 

{ 

interface MM_InPort: Appl 

{ 

 instrumented attribute long MinRate; 

instrumented attribute long MaxRate; 

instrumented attribute long MsgCounter; 

instrumented attribute long ActTime; 

 

computed attribute ActualRate = (MsgCounter)/(_time – ActTime); 

event BadRate = (MinRate > ActualRate) || (_time – ActTime); 
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problem PacketLossHigh = BadRate 1.0; 

} 

 

 Note that a Transportconn simply propagates the packet loss to the ports to which 

it is connected; a UDP port (which, being a subclass of Port, inherits from Ports) in turn 

propagates the packet losses to Applications which are LayeredOver the port. For 

simplicity, the relationships which are utilized for this propagation, ConnectedTo and 

Underlying, are not defined here. Typically they would be inherited from generic link and 

node classes in the Netmate hierarchy, which is described later.  

 The multimedia receive port, MM_InPort, is a subclass of Appl. Therefore, it 

receives, via inheritance, the PacketLoss symptom form the UDP_Port which it is 

layeredOver. The PacketLossHigh event in the MM_InPort has a single locally defined 

symptom, thus we again utilize the problem  statement to define its symptom. In this 

case, PacketLossHigh causes the observable symptom BadRate, which indicates the 

reception rate is out of tolerance. Since this symptom is observable, it is defined using the 

event statement and an expression to detect the symptom.  

 The MODEL language can also express the one-to-many relationships. For 

example, suppose that there were many multimedia connections over the same congested 

router (possible causing the congestion). In this case, there will be many UDP 

connections (subclass of TransportConn) layered over the single IP object. The 

congestion problem may cause symptoms in any or all of the connections which are 

layered over the IP object.  

 

A.3 Class Libraries in MODEL 

In MODEL development, a three stage modeling process works best. In the first stage, a 

generic library of networking classes is used to define the basic relationship between 

objects in any modeled system. This set of classes is called the Netmate hierarchy is 

depicted in Fig. A.2. 
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Figure A.2: Netmate calss hierarch. 

 

 

The next stage consists of data modeling. Data modeling involves deriving domain 

specific classes from the Netmate classes and adding the appropriate attribute and 

instrumentation statements to produce an accurate data model of the domain. The third 

stage involves adding the actual event propagation information to the model, either 

directly into the second stage data model, or into subclasses of this model. At this stage, it 

may be necessary to add additional relationship and attributes to the data model, if it is 

seen that event propagation occurs over relationship that were not contemplated in the 

Netmate model., or that important events can not monitored in the original data model. 

 Using this methodology, a Multimedia QoS management library can be 

developed. Fig. A.3 illustrates the class hierarch of the Multimedia library. The “root” 

node is actually the resource class of the Netmate class library. The attributes of classes 

in the library are instrumented via the OoSMIB, which provides quality of service metrics  
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that are important to diagnosing problems in the multimedia domain.   

 

 

 

 

Figure A.3: Multimedia Class Hierarchy. 
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Appendix B 

 

Belief Updating Algorithm 

 

 

This appendix presents Pearl’s belief updating algorithm. Pearl’s algorithm is distributed 

in nature. Each node (RV) in the Bayesian network is considered as an individual 

processor. The network nodes are expected to perform local computations and 

communicate their results only to their neighboring nodes. A typical of a singly 

connected Bayesian network is shown in Fig. B.1. The messages to be passed between 

neighboring nodes are also illustrated. As shown in this figure, node X has n 

parents
n

UU ,...,1 , m children,
m

YY ,...,1 .  The conditional probability ),...,|( 1 n
uuxP  

quantitatively relates the node X to its parents.  

 Let −

XYj
W denote the evidence contained in the sub-network on the head side of the 

arc
j

YX →  , and +

UiX
W denote the evidence on the tail side of the arc XU

i
→ . The total 

evidence is given by },,{ +−

=
XX

WWW  where },...,{ 1

−−−

=
XYmXYX

WWW and 

},...,{ 1

+++

=
UmXXUX

WWW . Note that for singly connected networks, all −

XYi
W  and +

UiX
W are 

disjoint.  

 In Fig. B.1, the π  message  

    )|()( +

=
UiXii

WuPuxπ         (B.1) 
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is the current strength of the causal support contributed by incoming arc XU
i

→ , and 

the λ  message 

)|()( xWPx
XYjYj

−

=λ          (B.2) 

 

is the current strength of the diagnostic support contributed by each outgoing arc 

j
YX → .  

 

 

)(
jx

Uπ

)(X
Yi

λ

 

 

Figure B.1: A typical node X in a Bayesian network. 

 

 

Pearl’s belief updating algorithm [39]  

A node X is activated when it receives the π  messages from its parents, λ the messages 

from its children, or node itself is instantiated for a specific value x. Upon activation, X 

performs the following steps in any order. 

Step 1: Belief updating. The node X updates its belief measure to  

 

  )()()( xxxb παλ=          (B.3) 
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If X is not instantiated, the )(xλ  and )(xπ  messages can be calculated by: 

∏=

j

Yj
xx )()( λλ                                            (B.4) 

∏∑=

i

ix

uu

n
uuuxPx

n

)(),...,|()(
,...,

1

1

ππ                                          (B.5) 

 Otherwise, if X is instantiated for x,  

1)()( == xx πλ                    (B.6) 

or if X is instantiated but not for x,  

            0)()( == xx πλ                      (B.7) 

 

α  is a normalizing constant rendering ∑ =
X

xb 1)( . 

 Note that (B.3)-(B.7) implies that 1)( =xb if X is instantiated with value x and 0 if 

X is instantiated with values other than x. 

  

Step 2: Bottom-up propagation. The node X computes new λ messages and posts 

them to its parents: 

∑ ∏∑
≠ ≠

=

iku ik

kn

x

iX

k

uuuxpxu

:

1 )(),...,|()()( πλλ                           (B.8) 

  

Step 3: Top-down propagation. The node X computes new π  messages and posts 

them to its children. If X is not instantiated, then 

)()()( xxbx
YjYj

λπ =                                           (B.9) 

Otherwise, if X is instantiated for x, 

 1)( =x
Yj

π                             (B.10) 

or if X is instantiated but not for x, 

0)( =x
Yj

π       (B.11) 

 

This algorithm needs to be initialized by the following procedures: 
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1. Set all λ values, λ messages, and π messages to 1. 

2. For all roots U, set )()( uPu =π . 

3. For all roots U and all children X of U, the node U posts new messages to X. If U 

is not instantiated: 

)()( uPu
x

=π                  (B.12) 

  

  Otherwise, if U is instantiated for u, then 

     1)( =u
x

π                                         (B.13) 

 

or if U is instantiated but not for u, then 

     0)( =u
x

π                                                   (B.14) 

 

 Initially, when no evidence is available, the probability distribution embedded in 

the Bayesian network is in equilibrium. Upon the instantiation of a node (i.e., the arrival 

of a new piece of evidence), the equilibrium state is broken. In order, for the network to 

enter a new equilibrium state (i.e., the belief functions converge to their true values), the 

number of belief updates to be performed by each node is proportional to the diameter of 

the Bayesian network [39].  
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Simulation Software  

This summary review outlines the simulation software which has been used to generate 

random network topologies of different sizes and create probabilistic fault propagation 

models for each obtained network topology.   

 

 

C.1 Class Libraries 

The main classes of the simulation model are shown in Fig. C1. It basically consists of 

three classes namely, Components, Network, and Manager. The Components class 

defines the network physical entities (such as routers and switches) and logical entities 

(such as TCP connections) that comprise the managed network. The Network class 

defines the link connectivity among the network physical entities and each path two 

network nodes may use to exchange data utilizing certain routing algorithms. The 

Manager class defines the responsibilities of the network manager including obtaining 

fault propagation model for the current network configuration, assigning prior 

probabilities, analyzing received alarms, etc. The relationship between the Network class 

and the Components class is one-to-many as a single network topology may contain 

random number of network components. However, a network may have only one 

manager; thus, the relationship between the Network class and the Manager class is one-

to-one. In the following, a summary of the main functions of each class is presented.  
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Figure C.1: The main classes of the simulation software.  

 

C.2 The Components Class 

Since we only consider problems in lower layers and the network topology is tree-shaped, 

the instances of the network Components class are restricted to the physical entities in the 

second protocol stack, namely bridges. Therefore, we use the following Bridge class to 

implement the Components class. The bridges will exchange configuration messages 

which have the following form: 

 

struct Message 

{ 

 int root; 

 int cost; 

 int transmitter; 

 int port; 

 Message (int id = 0) :root(id), cost(0), transmitter(id), port(0) 

 { } 

 
Components 

Physical Logical 

Network 

Manager 
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 }; 

 

The bridge class presents the following basic public functions which its instants need to 

communicate with each other: 

  

class Bridge 

{ 

 private: 

    Message config; 

 public: 

     Bridge ( int id = 0, int co = 0, int trn = 0, int po = 0) 

     { 

     config.root        = id; 

     config.cost        = co; 

     config.transmitter = id; 

     config.port        = po; 

      } 

      void set (Message msg) 

        { 

          config.root        = msg.root; 

          config.cost        = msg.cost; 

          config.transmitter = msg.transmitter; 

          config.port        = msg.port; 

        } 

      void send(Message); 

      Message getConfigM() 

       { return config;  } 

      void showConfig() const 

       { 
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        cout<<"\nRoot ID     Cost        Transmitter            Port\n"; 

        cout<<"-----------------------------------------------------\n"; 

cout<<setw(5)<<config.root<<setw(10)<<config.cost<<setw(15)<<config.transmitter

<<setw(20)<< config.port; 

        cout<<endl; 

       } 

}; 

 

The bridges exchange these configuration messages among themselves and modify their 

parameters based on the spanning routing protocol until they reach a stabilized state. 

Hence, each bridge is expected to send and receive these messages to and from its 

neighbors using the send() function. The send() function is implemented as follows: 

 

void Bridge::send(Message msg) 

   { 

        if (config.root > msg.root) 

         { 

          config.root = msg.root; 

          config.cost = msg.cost+1; 

          config.port = msg.transmitter; 

          } 

         else if ( config.root == msg.root && config.cost > msg.cost) 

         { 

          config.root = msg.root; 

          config.cost = msg.cost+1; 

          config.port = msg.transmitter; 

          } 

  } 
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C.2 The Network Class 

The following Network class encapsulates the dynamic behavior of the simulation 

algorithm: 

 

class Network 

{ 

protected: 

     Bridge Bridges[MAX]; 

     Message msg[MAX]; 

     Host   Hosts[MAX][MAX]; 

     int CONN; 

     int Top[MAX][MAX]; 

     int nodeID[MAX]; 

     void initializeTop(); 

     void generateTop(); 

     void initializeBridges(); 

      

     bool randPerm(int start, int end, int range, int* result); 

     void printToplogy1(int [][MAX]); 

     void run(); 

public: 

     Network() 

     { run(); } 

     void printToplogy(); 

     void printNodeID() const; 

     void printRoutingTable() const; 

}; 

Due to the limited space, we will only focus on the most important functions provided by 

the Network class and ignore  the  less  important  ones.  The  topology  of  the  generated  
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network is stored in the private variable, Top[MAX][MAX]. The MAX constant refers to  

the  network  size,  i.e.,  MAX=n.  The network class constructor  contains  the function 

run(), which is basically an initialization function and is described as follows: 

 

void Network:: run() 

{ 

 randPerm(10, 1000, MAX, nodeID); 

 generateTop(); 

 initializeBridges(); 

 initializeHosts(); 

 } 

Each node in the generated network is assigned an ID which stands for its hard 

coded Ethernet address. One of the most important tasks of the class constructor is to run 

the  generatTop() function which actually creates a random network topology, given the 

network size n (MAX) as follows: 

 

void Network::generateTop() 

{ 

    initializeTop(); 

    int connect[MAX]; 

    // CONN is the degree of Network Connectivity; CONN = N network is fully 

    //connected. As CONN decreases, the network becomes less conncetd, however, 

    //CONN should never be equal to zero (i.e., the network is completely not 

    //  connected). 

    CONN = MAX % 2; 

    if (CONN == 0) CONN = MAX/2; 

    else CONN = (MAX+1)/2; 

    //-------------------------------------------------------------------------- 

    //                   Generate random network topology 
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    for (int j=0; j<MAX; j++) 

     { 

      for (int i=j+1; j<MAX; j++) 

       { 

         randPerm(0, MAX, MAX, connect); 

            for (int k=0; k<CONN; k++) 

             { 

                if (connect[k] >=i) 

                 { 

                Top[j][connect[k]]=1; 

                Top[connect[k]][j]=1; 

                 } 

             } 

         } 

       } 

 } 

 

The degree of connectivity of the generated network may be ranged from full 

connectivity (i.e.; each node in the network is connected to every other node) to a partial 

connectivity.  

 

C.3 The Manager Class 

The main functions of the Manager class are to set the hosts and run the spanning routing 

algorithm if any change occurs in the network configuration. 

class Manager 

{ 

protected: 

     int Manager_ID;  

    int spannigTree[MAX][MAX]; 
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    void setSpanningTree(); 

    void initSpanningTree(); 

   void printSpanningTree(); 

    void runBridges(); 

    void setHosts(); 

   void showHosts(); 

   void run(); 

public: 

     Manager() 

     { run(); } 

   }; 

 

The constructor function of the Manager class is defined as follows: 

  

void Manager:: run() 

{ 

runBridges(); 

 setSpanningTree(); 

 setHosts(); 

 initializeHosts(); 

 } 

 

The dynamic of the spanning tree routing protocol, shown below, is based on the 

algorithm proposed in [47], which is widely regarded as the industry standard of the data 

link layer routing protocol. The bridges of a given network are first initialized with 

random Ethernet addresses; however, they are assigned an identical rout cost. The 

network manager may activate the spanning tree algorithm on the network bridges at any 

time by simply invoking the function runBridges() : 
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void Manager::runBridges() 

{ 

   for (int k =0; k<MAX; k++) 

   { 

    for (int i = 0; i<MAX; i++) 

          { 

           for (int j = 0; j<MAX; j++) 

             { 

                if (i != j && Top[i][j] != 0) 

                  { 

                     Bridges[i].send(Bridges[j].getConfigM()); 

                     Bridges[j].send(Bridges[i].getConfigM()); 

                   } 

              } 

           } 

    } 

 } 

The outcome of the previous exchange of messages among network bridges 

determines the tree-shaped topology of the generated network. Based on the information 

stored in network bridges after running the spanning tree algorithm the new topology is 

formed as follows: 

 

void Manager::setSpanningTree() 

{ 

       initSpanningTree(); 

       Message msg1; 

       for (int i = 0; i<MAX; i++) 

       { 

            int nodeIndex =MAX ; 
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            msg1 = Bridges[i].getConfigM(); 

            for (int k = 0; k<MAX; k++) 

                { 

                  if (nodeID[k] == msg1.port) nodeIndex = k; 

                 } 

            if (nodeIndex != MAX) 

                 spannigTree[i][nodeIndex] = 1; 

            else  spannigTree[i][i] = 0; 

        } 

        for (int i=0; i<MAX; i++) 

          for (int j=0; j<MAX; j++) 

             if ( spannigTree[i][j] == 1) spannigTree[j][i] = 1; 

} 

 

The generated tree-shaped network topology is stored in the SapanningTree private 

variable.  
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