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ABSTRACT 
 

      Cross-linked copolymers of acrylic acid (sodium acrylate) and acrylamide were 

synthesized by free radical polymerization. The copolymer hydrogel was studied for 

capture of copper ion from aqueous solution. Effects of macromolecular structure (i.e., 

content of the acrylic acid, the quantity of the carboxyl groups neutralized with sodium 

hydroxide, and the degree of cross-linking) on water-sorption and copper ion uptake were 

investigated. With an increase in the content of acrylic acid (sodium acrylate), the copper 

sulfate uptake increases, and water sorption decreases quickly and then slowly increases 

when the acrylic acid content is high enough. The copper ion uptake is accompanied with 

a release of sodium ions from the copolymer. Increasing the percentage of the carboxyl 

groups neutralized by sodium hydroxide will increase the uptake of copper sulfate and 

water. With an increase in the content of the cross-linking agent, both copper sulfate 

uptake and water sorption decrease. Even though valence of copper ion is two times that 

of sodium ion, the copper ions sorption and sodium ions release do not follow a simple 

ion exchange relation because of insertion of acrylamide co-monomers in 

macromolecular chain. When copper ions interact with carboxyl groups in the copolymer 

to form chelating complexes, the water sorption decreases substantially.  

            An analysis of adsorption isotherm indicates that at relatively low concentrations 

of CuSO4 in water, the copper ion sorption into the copolymer follows the Langmuir 

model.      The wide angle X-ray diffraction (WAXD) data reveal that the copper sulfate 

sorbed in the hydrogel is not in crystalline state. 
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CHAPER 1 INTRODUCTION  

1.1 Background 

      Hydrogels are a group of (co)polymers with cross-linked networks. Their structures 

are heterogeneous in different orders in micro-morphology [Osada 1998]. Many methods 

are available to prepare hydrogel materials. They are mainly made from water-soluble 

monomers by radical polymerization reactions. The most popular water-soluble 

monomers include acrylic acid, acrylamide and their derivatives. These monomers can be 

used to synthesize cross-linked homopolymers and copolymers consisting of different co-

monomers by aqueous solution or other polymerization processes. These monomers also 

can be grafted onto such other materials as polyethylene terephthalate (PET) fiber and 

some natural macromolecules to obtain hydrogel materials. Another way to synthesize 

hydrogel materials is to prepare interpenetrating polymer network (IPN) composites from 

water-soluble monomers with other materials. In addition, some natural materials (e.g., 

chitosan) are also used as hydrogels. 

      The wet and soft hydrogel materials are based on cross-linked hydrophilic polymers. 

Some hydrogel materials are cross-linked polyelectrolytes with ionic groups on the 

macromolecular chains. Therefore, the polyelectrolyte gels possess unique physical and 

chemical properties [Tanaka 1982, Ilmain 1991, Okuzaki 1995, Woessener 1970, Osada 

1992]. They can hold a large amount of water molecules (over 2000 times the polymer 

weight) in their pores of the network but do not dissolve in aqueous solutions [Osada 

1992]. Because of the ionic groups on the macromolecular chains, polyelectrolyte has an 

electrostatic potential field around the macromolecular chains [Osaka 1998]. Therefore, 
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they can also attract certain cations or anions to form complexes. One of the most 

important applications of hydrogel materials is to bind and capture metal ions (especially 

heavy metal ions) from water. Isogai [1999] found that polyelectrolyte binds metal ions 

in three ways: 1) Cooperative and stoichiometric. 2) Non-cooperative and stoichiometric, 

and 3) Cooperative and non-stoichiometric. The mechanism of metal ion adsorption is 

determined by the three-dimensional chemical structure of the ligand, hydrophobicity and 

the charge density of the polyelectrolyte [Osada 1998].  

       Heavy metal ions are harmful and toxic to human beings and the environment 

[European Commission 2002, Lester 1987, Zhao 2004]. For example, copper ions can 

damage kidneys and the liver, causing anemia. In this thesis work, hydrogels based on 

acrylic acid (sodium acrylate) and acrylamide copolymers were studied for water sorption 

and copper (II) ion removal from aqueous solution. 

     The effects of the content of the acrylic acid in the copolymers, the quantity of the 

carboxyl groups neutralized by sodium hydroxide and the content of the cross-linking 

agent on the sorption performance were evaluated. The adsorption equilibrium of the 

copper ions in the copolymer hydrogels was investigated at different copper ion 

concentrations. It was observed that copper ion uptake was accompanied with 

replacement of sodium ions, and water molecules were forced to leave the copolymer 

hydrogels. The crystalline morphology of copper compounds was examined by wide 

angle X-ray diffraction (WAXD) to confirm that they are not crystalline in the hydrogel 

materials. 
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1.2 Scope of the thesis 

      This thesis includes the following: synthesis of copolymers of acrylic acid (sodium 

acrylate) and acrylamide, their sorption behavior for copper ion removal from water, and 

water sorption capacity. In particular, the effect of macromolecular structure on the 

sorption behavior was studied.  

      Chapter 1 gives an introduction to preparation of polymer hydrogel materials and 

their sorption behavior for metal ions and water. The objective of the research is also 

present in this chapter.  

      A review of the literature on the subject is presented in Chapter 2, which covers 

preparation of polymeric hydrogels, adsorption mechanism, and various models currently 

available for analyzing the experimental data of sorption equilibrium. 

      Chapter 3 describes the experimental work and Chapter 4 presents the research results 

and discussion. Specifically, the following are addressed:  

A. Synthesis of copolymer hydrogel materials.  

B. Investigation on the effect of macromolecular chain structure (including the content 

of acrylic acid in the copolymers, the quantity of carboxyl groups neutralized by 

sodium hydroxide, cross-liking agent content) on copper ion uptake and water-

sorption capacity. 

C. Analysis of experimental data on isothermal sorption and modeling of the adsorption 

isotherm. 

D. Qualitative observation on copper sulfate adsorption.  

E. Wide angle X-ray diffraction (WAXD) analysis characterizes the crystalline 

morphological structure of copper compounds in the hydrogel. 
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      In Chapter 5, the general conclusions drawn from this study are presented and 

recommendations for further studies are given. All the experimental data are presented in 

the Appendix.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

      Heavy metal ions are harmful and toxic to human beings and the environment. 

Therefore, they must be removed from wastewater and drinking water. Many techniques 

have been employed to remove heavy metal ions, including adsorption, chemical 

precipitation, electro-dialysis, ion exchange and membrane separation [Humphrey 1997, 

Zhao 2004]. Table 2-1 summarizes the general separation processes and their application 

for heavy metal removal [Humphrey 1997]. 

      Adsorption is a well known technique widely employed for separation and 

purification. In removing heavy metal ions from aqueous solutions, adsorbents can bind 

and capture heavy metal ions from the aqueous solutions. The key part of an adsorption 

process is the adsorbents. Thus, good adsorbents should be abundant and easy to process, 

and have high selectivity, large surface area and long service time [Zhao 2004].  

      So far, many natural materials and synthetic compounds have been used as 

adsorbents, including bark, lignin, dead biomass, zeolite, peat, xanthate, clay, modified 

wool and cotton, fly ash, chitosan [Bailey 1999], as well as homopolymer, copolymer and 

composites of water soluble monomers (e.g., acrylic acid and acrylamide). In the next 

section, the synthesis and applications of synthetic adsorbent for the removal of heavy 

metal ions will be discussed. Among the above-mentioned absorbents, chitosan has a 

good adsorption capacity for heavy metal ions. Chitin is a biomaterial abundant in nature. 

It can be deacetylated to obtain chitosan. Chitosan adsorption capacity for Cu2+, Cd2+, 
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Cr3+, Hg2+, Pb2+ is 222, 558, 92, 1123, and 796 mg per gram adsorbent, respectively 

[Bailey 1999, Masri 1974, McKay 1989]. 

 

Table 2- 1   Separation techniques for removal of heavy metal ions from aqueous solution 

[Humphrey 1997] 

 

Separation technique Advantage Disadvantage 

Adsorption 
Economical and efficient for 

dilute solution 
Regeneration  needed 

Chemical precipitation 
Remove most heavy metal 

ions 

Need to adjust pH and 

break down the complex 

Electrodialysis 
Remove most ions with 

electric charge 

Unsatisfactory for removal 

of chelated ions 

Ion exchange 
Easy removal of heavy metal 

ions 
Fouling  and regeneration 

Membrane separation 
Excellent heavy metal 

removal 
Membrane fouling cost 

 

      In principle, the adsorption behavior can be quantitatively described by mathematical 

models based on adsorption equilibrium and kinetics. These models can be used to 

predict the adsorption capacity or adsorption rate. For sorption isotherms, there are 

several models employed for data analysis, and the Langmuir isotherm and Freundlich 

isotherm are most widely used.  
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      The Langmuir adsorption isotherm equation, developed in 1916, describes the 

relationship between the molecular adsorption or coverage on an adsorbent surface to the 

concentration (or gas pressure) of a medium around the adsorbent surface. The basic 

underlying assumption is that the adsorption rate is equal to the desorption rate, i.e. a 

dynamic equilibrium is created between adsorption and desorption. Additional 

assumptions for the Langmuir model also include: ①  the adsorbent surface is 

homogenous; ② adsorption on adsorbent surface is localized; ③ each adsorption site can 

accommodate only one adsorbate molecule or atom [Do 1998]. This model is well 

suitable for monolayer adsorption and the Langmuir constant (KL) shows the strength of 

adsorbate molecules bound and captured onto the adsorption site. The greater the 

Langmuir constant, the stronger the molecule adsorption.  

 

                                                                                                                                        (2-1) 

 

where qe is the equilibrium uptake on adsorbent (mg/g), Ce is the adsorbate equilibrium 

concentration in solution (mg/L), qmax is the maximum equilibrium sorption capacity on 

sorbent (mg/g), and KL is Langmuir adsorption constant (l/mg). 

 

      The Freundlich adsorption isotherm model is a modified Langmuir model because the 

simple Langmuir model can not adequately explain certain adsorption phenomenon. It 

shows the relationship between the concentration of an adsorbate on the surface of an 

adsorbent and the equilibrium concentration (or equilibrium pressure) of the adsorbates in 

eL

eL
e CK

CqK
q

+
=

1
max
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solution (gas) at a given temperature. This model can work well for multi-site adsorption 

and heterogeneous surfaces.  

 

                                                                                                                                        (2-2) 

 

where KF is the Freundlich constant [(mg/g)(L/mg)n], and n is a dimensionless Freundlich 

constant. Both of them are a function of temperature.  

 

      With respect to an adsorption process, the adsorption rate (kinetics) is another 

important parameter. Mathematical models have been developed to predict the adsorption 

rate. The common kinetic models of adsorption include pseudo-first order equation and 

pseudo-second order equation. The Pseudo-first order equation was proposed by 

Lagergren in 1898. It is generally expressed in the following form [Sag 2002]: 

 

                                                                                                                                        (2-3) 

 

where k1 (1/min) is the pseudo-first order rate constant, qe is the equilibrium adsorption 

capacity, qt (mg/g) is the adsorption capacity at time t.  

 

      Ho (1996) employed the pseudo-second order reaction rate equation to investigate the 

kinetics of heavy metal sorption onto peat. This equation can be written in the following 

form: 

 

)(1 qqk
dt
dq

e −=

n
eFe CKq

1

=
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                                                                                                                                        (2-4) 

 

where k2 is the rate constant of the pseudo-second order equation (g/mg-min). 

 

2.2 Synthesis and applications of hydrogels of polymers and 

composites 

      Hydrogel materials are made from water soluble monomers and have been used in 

many fields [Ilmain 1991, Osada 1998, Kawaguchi 2000, Nguyen 2002]. Some portions 

of hydrogel materials are normally based on a functional polyelectrolyte which can easily 

swell in aqueous solutions but does not dissolve. Due to its hydrophilic property, it can 

hold a large number of water molecules in its network pores and binds metal ions by its 

functional polar groups (e.g., carboxylic, hydroxide, sulfuric, amide and amine) 

distributed on the macromolecular chains. The soft and water-wet hydrogel materials 

have attracted strong academic and industrial interests. The preparation of hydrogels 

based on homo-polymers, copolymers and composites as well as their applications for the 

removal of heavy metal ions will be reviewed. Finally, the adsorption mechanism will be 

briefly discussed in section (2.3). 

 

2
2 )( qqk

dt
dq

e −=
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2.2.1 Synthesis and application of homo-polymers of water soluble monomer 

      Water soluble monomers include acrylic acid, acrylamide and their derivatives. 

Among them, acrylic acid is a popular water-soluble monomer with a significant 

solubility. This monomer can be easily polymerized, and its pH can be adjusted by an 

inorganic base. If the resulting polymer is linear, it can easily dissolve into an aqueous 

solution. However, if it is cross-linked by a cross-linking agent or grafted onto a non-

water-soluble material, it will adsorb water molecules and becomes swollen, but will not 

dissolve in water.  

      There are many methods for polymerization of acrylic acid. In general, acrylic acid is 

initiated and polymerized in aqueous solutions using water-soluble initiators (such as 

K2S2O8) (Huang 2007) or oil-soluble initiators (such as 2,2’-azoisobutyronitrile (AIBN) 

(Rivas and Quilodran 2005). If the polymer obtained is a linear polymer, it can generally 

dissolve in aqueous solutions with high solubility to form a transparent solution. If a 

cross-linking agent, for example, N, N’-Methylene-bis-acrylamide (MBA) is used in the 

polymerization system, a cross-linked polymer of acrylic acid can be obtained. This non-

linear cross-linked polymer cannot dissolve in an aqueous solution, but can hold a large 

amount of water molecules to form a hydrogel. Figure 2-1 shows the schematic diagram 

of acrylic acid polymerization.  

 

2.2.2 Copolymers of water soluble monomer (acrylic acid and acrylamide)  

      Acrylic acid is an organic unsaturated acid. This monomer and its polymers, 

poly(acrylic acid), usually need to be neutralized by an inorganic base such as sodium 

hydroxide to adjust its pH for certain applications. Acrylamide is also a common water 
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soluble monomer. It is a non-ionic compound, appearing a pH of neutralization in 

aqueous solution. In order to expand the applicability of polyelectrolyte materials, acrylic 

acid (sodium acrylate) and its derivatives are usually used to produce copolymers with 

other water-soluble monomers, such as acrylamide and its derivatives. From a molecular 

structure and molecular design point of view, acrylamide monomer can be inserted into 

the chain segment of poly(acrylic acid), decreasing the sequence length and tacticity of 

the acrylic acid chain segment. This is expected to enhance the efficiency of carboxyl 

groups in poly(acrylic acid) to associate with metal ions. It is important that the co-

monomer can improve macromolecular chain structure of poly(acrylic acid) and obtain a 

desired morphology of the condense state.   

 

nC=C

COOH

-[C-C]n-

COOH

Initiator

C-C-C-C-C-C-C-C

C-C-C-C-C-C-C-C

Initiator

Crosslinker

 

Figure 2- 1  Polymerization of acrylic acid with or without a cross-linking agent 
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      With respect to copolymers of acrylic acid and acrylamide, one important 

consideration is H-bond formation between carboxyl groups and amides because 

carboxyl groups on acrylic acid can not only bind metal ions but also act with the amides 

on acrylamide. Figure 2-2 shows the H-bond complex formation and molecular 

configuration of the copolymer of acrylic acid and acrylamide [Ilmain 1991]. The H-bond 

is formed at low temperatures. However, with an increase in temperature, it can 

dissociate (Figure 2-3). This phenomenon is referred to as the “zipper effect” by Endo 

[2001]. Formation of H-bond increases the physical cross-linking points of the 

copolymer, thickening the solution of copolymers, resulting in phase separation and 

phase transition of the copolymer of acrylic acid and acrylamide.  

 

 

Figure 2- 2  H-bond complex formation and molecular configuration of copolymer of 

acrylic acid and acrylamide [Ilmain 1991, Katono 1991] 

 

      The cross-linked copolymers of acrylic acid and acrylamide are usually used as 

hydrogel materials to capture metal ions from aqueous solutions [Rivas 1998A, Atta 

2008, Cavus 2009]. Cavus [2009] prepared cross-linked homo-polymers of acrylic acid 
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and copolymer of acrylic acid and methacrylamide (20 mol %). N,N’-

methylenebisacrylamide (MBA) was employed as the cross-linking agent (1.0 mol % 

based on total amount of the monomers). Ammonium peroxodisulphate (APS, 4.5g/100 

water) and N,N,N’,N’-tetramethylethylenediamine (TEMED) were used as the initiator 

(1.0 mol % based on total amount of the monomers) and accelerator, respectively. The 

total initial monomer concentration was 1M. The polymerization reaction was performed 

at 60 oC for 24 hours (Figure 2-4). 

 

 

Figure 2- 3  Dissociation of H-bond of the copolymer of acrylic acid and acrylamide with 

temperature [Endo 2001] 

 

      They examined the adsorption behavior of these hydrogel materials for sorption of the 

heavy metal ions (Pb2+, Cu2+, Cd2+), and reported that the homo-polymer had a higher 

sorption capacity to Pb2+, Cu2+ than the copolymers. However, for Cd2+ sorption, the 

difference in the sorption capacity was not significant. It was noticed that as sorption 

proceeds with time, the pH of the aqueous solution declined, suggesting that the metal 

ions was bound by the hydrogel materials and the H+ was continuously released. The 
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experimental data show the kinetics of the sorption can be accurately described by the 

pseudo-second order kinetic model. These (co)polymers can be well used in wastewater 

treatment industry.  

 

 

Figure 2- 4  Synthesis of the cross-linked copolymer of acrylic acid and methacrylamide 

[Cavus 2009] 

 

      Xie [2007] prepared a similar hydrogel system to study their adsorption behavior for 

metal ions (Cu2+, Fe3+). The molar percentage of co-monomer acrylamide used in the 

polymerization system was about 15 mol %, and 60 % of acrylic acid was neutralized by 

sodium hydroxide. With increases in adsorption time and the pH from 1 to 4.5, the 

adsorption amounts (mg/g polymer) of copper ion and iron ion increase. The pH has 

stronger influence on Fe3+ sorption than Cu2+ sorption and the copper ions have higher 

sorption rate than iron ions. With an increase in the initial concentration of the metal ions, 

the adsorption amount of Cu2+ increased continually, but that of Fe3+ increased initially 
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and then decreased when the iron ion concentration was greater than 0.006 M. The 

hydrogel adsorbent possesses the largest uptake for copper ions and iron ions for 247 and 

173 mg/g, respectively. Langmuir model can well describe the adsorption isotherm and 

the pseudo-second order chemisorption kinetics model can be used to explain the kinetics 

of adsorption.  

      The controlled hydrolysis of polyacrylamide in alkaline solution is another important 

method to prepare copolymers of acrylic acid and acrylamide described by Li [2002]. In 

their study, the stock solutions of acrylamide (18.75ml, 40 %) and cross-linking agent 

(7.50ml, 2 %) were mixed with deionized water (23.75ml). The initiator (ammonium 

persulphate, 70 μl, 10 wt %) and accelerator (N,N,N’,N-tetramethylethylenediamine 

(TEMED), 25 μl, 99 %) were then added to 10 ml of the stock solution. Polymerization 

was performed at 40 oC for 1 hour in a glass mold. The obtained samples (in thin sheets) 

were immersed in deionized water to remove unreacted monomers and linear polymers, 

followed by partial hydrolysis in 40 ml of 10 wt % sodium hydroxide solution at 75-80 

oC for 5 h. The resulting product was a cross-linked copolymer of acrylic acid and 

acrylamide. Element microanalysis showed the average sequence structure of the 

resulting product was 1.8:1 (acrylic acid to acrylamide), i.e., about 64.3 mol % acrylic 

acid. They studied the adsorption behavior of the hydrogel material for metal ions (Cd2+, 

Cu2+, Na+, K+, Ca2+, Mg2+). At pH 5-9, the binding capacity (μmol / cm2-sample) of the 

copolymer hydrogel was relatively high. Outside this range, the binding capacity 

becomes very low. With an increase in pH from 2 to 6, the uptake for copper ions and 

cadmium ions increases from o to 1.59 μmol/cm2 and 1.56 μmol/cm2, respectively, and 

the water sorption capacity increased from less than 10 to120 g/g.  
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      Acrylamide is also a water-soluble monomer. However, it has relatively low capacity 

(2.7×10-2 mmol/g) for metal binding due to the absence of ionic groups. In order to 

enhance its capacity for binding metal ions, the amides on polyacrylamide chains can be 

transformed to ionic groups by such chemical reactions as transamidation, Hoffmann and 

Mannich reactions [Kasgoz 2001 and 2003]. The cross-linked polyacrylamide was 

prepared by radical polymerization of acrylamide (AAm) plus cross-linking agent 

(MBA). K2S2O8 and KHSO3 were used as an initiator couple. The cross-linked 

polyacrylamide obtained was then immersed in pure water to get fully swollen at room 

temperature. The transamidation reaction of amide groups in the polyacrylamide chain 

was performed in aqueous media or non-aqueous media at 90 oC for 9 hours by adding 

ethylenediamine (EDA), diethylenetriamine (DEDA) and triethylenetriamine (TETA) in 

the reaction system. The products obtained were washed with water and methanol, and 

dried under vacuum to constant weight. The resulting polymers obtained from aqueous 

media and non-aqueous media had the maximum capacity of binding copper ion, 2.27 

mmol/g-sample and 2.93 mmol/g-sample, respectively. The metal removal capacity of 

the products obtained from transamidation reaction increases with an increase in pH from 

3 to 5.5. 

      One derivative of amide with ionic groups can also be obtained if the cross-linked 

polyacrylamide was treated according to Hoffmann reaction. NaOCl can be used to react 

with the amide groups in the cross-linked polyacrylamide, as shown in Figure 2-5. The 

cross-linked polyacrylamide was transformed to its cationic derivative. The maximum 

capacity of the polymer for binding copper ion was shown to be 1.86 mmol/g.  
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Figure 2- 5  Hoffmann reaction mechanism of cross-linked polyacrylamide [Kasgoz 

2001] 

 

      Furthermore, Kasgoz [2003] reported that when the amide groups in cross-linked 

polyacrylamide were treated using HCHO and EDA according to Mannich type reaction, 

the maximum capacity for the resulting hydrogel product to bind copper ions increased to 

2.76 mmol/g from 2.7×10-2 mmol/g. Figure 2-6 shows the Mannich reaction mechanism. 

 

 

Figure 2- 6  Mannich reaction mechanism of cross-linked polyacrylamide [Kasgoz 2003] 

 
      In addition, if the cross-linked polyacrylamide was treated with formaldehyde and 

sodium bisulfate (sodium sulfate) based on sulfonethylation reaction, anionic derivatives 

of carboxyl groups can be obtained. Figure 2-7 shows the sulfonethylation reaction 

mechanism. The resulting hydrogel product has a higher capacity to bind copper ions 

(4.07 mmol/g).  
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Figure 2- 7  Sulfonethylation reaction mechanism of cross-linked polyacrylamide 

[Kasgoz 2003] 

 

      It is worth noting that with an increase in pH from 3 to 5.5, the binding capacity of 

the hydrogels treated with both Mannich and sulfonethylation reactions increased. The 

metal adsorption rate in the hydrogels obtained by the Mannich reaction also increased 

with an increase in pH from 3 to 4.5.  

      In addition, the two products obtained also have high removal capacity for Cd2+ and 

Pb2+. 

 

2.2.3 Composites from water-soluble monomers and polymers  

      Preparation of blends and composites is an efficient and economic method to expand 

the applicability of water-soluble polymeric materials. Both acrylic acid and acrylamide 

are widely used in the form of blends and composites. 

      Polyvinylpyrrolidone (PVP) is a water-soluble polymer, and its macromolecular 

structure is shown in Figure 2-8. The monomer has a 5-membered lactam structure. 

Because of the presence of carbonyl groups in the structure, PVP can be dissolved in 

water and other polar solvent such as ethyl acetate, chloroform, benzene and lower 

alcohols or ketones.  
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Figure 2- 8  Chemical structure of polyvinylpyrrolidone [Ali 2003] 

 

      PVP was used to prepare hydrogel materials by radiation-induced 

homo/copolymerization with acrylic acid (AAc) [Ali 2003]. Using PVP (MW = 1, 300, 

000) and AAc to synthesize hydrogel materials by radiation with 60Co gamma rays 

initiation at a dose rate 10.28 kGy/h, the resulting polymer had an interpenetrating 

network (IPN) structure. With an increase in the content of the PVP, the water sorption 

uptake of the copolymer increased. In addition, this composite was studied about its 

sorption behavior for metal ions (Fe3+, Mn2+, Cu2+). pH has higher effect on Fe3+ than  

Mn2+ and Cu2+. The sorption rate can be described by pseudo-first order rate model. As 

changing the PVP/AAc composition from 30/70 to 80/20, the capacity of the composite 

to bind copper ions increased from 2 to 23 mg/g. The greatest uptake for Fe3+ and Mn2+ is 

36 and 14 mg/g, respectively.  

      Wet and soft hydrogel materials have low mechanical strength. In order to maintain a 

good mechanical property, water-soluble monomers can be grafted onto some readily 

available commercial materials with high mechanical strength (such as poly(ethylene 

terephthalate) (PET) fibers) [Karakisla 2003, Coskun 2006]) or some natural materials 

[Shibi 2002 and 2005].  
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Figure 2- 9  Reaction mechanism of monomer grafted onto PET [Campbell 1970] 
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      PET fiber is a commonly used synthetic material. When acrylic acid, acrylamide and 

their derivatives are grafted onto PET fibers, a water-absorbing material with high 

mechanical properties can be obtained. Using Bz2O2 as an initiator, a water-absorbing 

material product can be produced by surface grafting shown in Figure 2-9. There are two 

radical reactive sites on ethylene terephthalate which can propagate the grafting reaction. 

Campbell [1970] found the type II radical site on PET to be predominant. Thus, the 

water-soluble monomers were mainly grafted onto PET according to type II reaction 

mechanism to produce product 4.  

      When the grafting monomer is acrylic acid, increasing pH from1 to 6 will increase 

copper uptake. The copper ions sorption isotherm follows Langmuir model, and the 

sorption kinetics can be well described by the Pseudo-first order equation [Karakisla 

2003]. At a grafting yield of 13.2 %, the sorption capacity of the hydrogel is about 1.7 

mmol/g at pH 5 at 25 oC. 

      If other water-soluble monomers such as methacrylic acid and acrylamide were 

grafted, the hydrogels possess strong sorption capacities for metal ions. The sorption 

capacity for Cu2+, Ni2+ and Co2+ was reported to be 31.25, 43.48 and 27.1 mg/g, 

respectively [Coskun 2006]. Competitive adsorption tests suggested sorption selectivity 

for Cu2+ with the coexistence of Co2+ and Ni2+. The sorption isotherm and kinetics follow 

Langmuir model and pseudo-first order equation, respectively. In addition, it was also 

found that when the grafting yield increases from 10 to 130 %, the sorption capacity 

increases sharply. With an increase in pH from 2 to 6, the sorption capacity for metal ions 

increases sharply.  
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      It is a relatively new approach to prepare sorbent by grafting water-soluble monomers 

onto natural materials [Shibi 2002 and 2005]. Banana stalk, a kind of lignocellulose, can 

be used as a hydrogel matrix, and acrylamide monomer can be grafted onto its backbone. 

Using ferrous ammonium sulphate/H2O2 as a redox initiator system,  solid phase grafting 

was carried out at 70 oC for 4 hours, as shown in Figure 2-10. The solid sorbent can 

remove heavy metal ions (Hg2+ and Co2+) from aqueous solutions. The sorption 

experimental data showed the sorption kinetics and isotherm can be described by pseudo-

second-order kinetic equation and Freundlich model, respectively. It is important to note 

that Co2+ state is dependent on pH. Below a pH of 6, most cobalt ions (II) exist in the 

state of Co2+ ions in the solution. At a higher pH, Co(OH)+ and Co(OH)2 begin to appear 

in the soluion, but the Co2+ ions gradually diminish. A further increase of pH to 10 will 

cause Co(OH)+ to decline and above pH 11, Co2+ and Co(OH)+ finally disappear and only 

Co(OH)2 exists in the solution.  

 

  

Figure 2- 10  Preparations of polyacrylamide-grafted banana stalk (PGBS-COOH) [Shibi 

2002 and 2005]. 
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           Chitosan, (Figure 2-11) is another natural material with a strong sorption capacity 

for metal ions. Acrylic acid was grafted onto chitosan beads to functionalize its surface 

by Li [2006] using a two-step process shown in Figure 2-12. Chitosan granules were 

prepared first. A homogeneous chitosan solution in acetic acid (2 %, w/w) was injected in 

droplets into a 1 M NaOH solution to form chitosan beads. The beads were then cross-

linked by ethylene glycol diglycidyl ether (EGDE) solution at 70 °C for 6 h. The cross-

linked chitosan beads obtained were washed with water until a pH 6-6.5. These beads had 

an average size of about 1 mm. Then, PAAc was graft onto the chitosan beads. A solution 

containing PAAc and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride 

(WSC) was used to graft PAAc on the chitosan beads at 4 °C for 24 h. The beads were 

then separated from the solution and washed with deionized water to remove any 

unreacted or loosely bound PAAc. The resulting beads were used to remove Pb2+ ion at a 

pH range of 1-6. Comparing with the adsorption capacity (95.15 mg/g) of pure chitosan, 

the sorption capacity of the PAAc-chitosam composite was increased sharply to 294.12 

g/g. Among the Langmuir, Freundlich and Temkin sorption isotherm models, the 

Langmuir model was shown to work best. The sorption kinetics was shown to follow the 

pseudo-second-order kinetic model. 
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Figure 2- 11  Molecular formula for Chitosan [Zhao 2004] 

 

         Water soluble monomers and chitosan can also be used to prepare interpenetrating 

network (IPN) composites. A simple and facile method to prepare a composite of a 

chitosan and water soluble molecules for metal ion adsorption is to directly polymerize 

acrylamide in chiosan suspension [Akkaya 2008]. Firstly, chitosan was suspended in 

water to form a homogeneous suspension. Then, a solution containing acrylamide 

monomers was added to the suspension and stirred. Cross-linking agent, (N, N’-

methylenebisacrylamide) and initiator (ammonium persulphate and N,N,N’,N’-

tetramethylethylenediamine) water solution were added to the suspension. The 

polymerization was carried out at 25 ◦C, and the PAAc–Chitosan gel was washed with 

distilled water until the effluent attained a neutral pH. This hydrogel was used to adsorb 

Pb2+, UO2
2+, and Th2+. Compared to pure chitosan, the composite of chitosan and 

polyacrylamide with interpenetrating network has an improved binding for UO2
2+ and 

Th2+. Among the entire isotherm models (Langmuir, Freundlich and Dubinin-

Radushkevich) tested to describe the experimental data, the Langmuir model appeared to 



CHAPTER 2 LITERATURE REVIEW                                                                            

 25

give a more reasonable result. In addition, the composite had a higher adsorption rate for 

UO2
2+ and Th2+ than chitosan.  

 

 

Figure 2- 12  Two-Step process for poly(acrylic acid) grafting on chitosan beads [Li 

2006]. 

 

      Clay is a common inorganic filler in composite preparation. A 

clay/poly(methoxyethyl)acrylamide (PMEA) composite was prepared by bulk 

polymerization for Pb2+ removal from aqueous solutions [Solener 2008]. At first, the 

monomer was initially dissolved in deionized water, and then clay was added and mixed 

using a magnetic stirrer. An aqueous solution of the cross-linking agent N, N-

methylenebisacrylamide (MBA) was added at 4°C. Subsequently, an aqueous potassium 
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persulfate (KPS) solution and an aqueous solution of tetramethylethylenediamine 

(TEMED) were added as initiator and accelerator, respectively. The container was placed 

in a water bath at 4°C, mixed with a magnetic stirrer, and a clay–polymer composite 

formed in 30 min. Then, the reactor was preserved in a water bath at 4°C for 24 h, 

followed by washing with deionized water at 4°C for 2 h to rinse unreacted monomers 

and initiator components completely. Finally, the clay–polymer composite was dried 

under vacuum at 50°C for 48 h. The capacity of the composite for Pb2+ sorption increased 

from about 1 to over 30 mg/g when the pH increased from 1 to 6. The adsorption kinetics 

followed a pseudo-second-order kinetic model, and the Dubinin-Radushkevich model 

was found to be satisfactory to describe the sorption isotherm.  

      Many proteins in nature can sequester submicromolar concentrations of heavy metal 

ions (Cu2+, Zn2+, Ca2+, Hg2+, Cr2+, Ni2+, Pb2+) in aqueous solutions [Schwarzenbach 

2006]. They are attracting significant attention in water treatment due to their strong 

metal binding capacity and high selectivity. Protein-polymer hybrid composite materials 

have been reported as hydrogel adsorbent to remove heavy metal ions from water 

solution [Gilmore 2006, Esser-Kahn 2008A and 2008B]. In the composites, the 

macromolecular chain acts as the backbone of the hydrogel material, and the protein 

molecules function as only a cross-linking agent. The compatibility between protein and 

polymer is not strong enough and may result in phase separation. Thus, a reactive ketone 

group can be introduced at the N- and C- terminal of a selected protein (peptide) chains. 

The functional groups in the protein can react with the functional groups in the polymer 

chains to form a linkage between protein and macromolecule. The composite has a 

heterogeneous structure. In general, the polymers used are based on acrylamide and its 
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derivatives. They are prepared by radical polymerization. Alkoxyamino-substituted 

acrylamide monomer was also employed [Gilmore 2006, Esser-Kahn 2008B]. The 

protein-cross-linked hydrogel and the mechanism for sequestration of heavy metal ions 

are shown in Figure 2-13. When binding heavy metal ions, the protein molecules 

contracts and the volume of the hydrogel decreases. The capacity of the composite 

materials for binding metal ions is shown in Figure 2-14, and they have a high removal 

capacity for Hg2+, Cd2+, Zn2+, Cu2+, and Co2+. 

 

 

Figure 2- 13  Protein-cross-linked hydrogel for sequestration of heavy metal ions [Esser-

Kahn 2008A] 
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Figure 2- 14  Data and images of hydrogel for sequestration of heavy metal ions [Esser-

Kahn 2008A] 

 

2.3 Adsorption mechanism  

          Both linear poly(acrylic acid) and cross-linked poly(acrylic acid) are hydrophilic 

because of the carboxyl groups in the macromolecular chains. The polymeric acid (which 

is a polyelectrolyte) can dissociate to give H+ and carboxyl anion, -COO- in an aqueous 

solution. When metal ions (e.g. Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Ca2+, Mg2+) were added into 

the polymeric acid solution, because the polymeric acid can associate with these metal 

ions, the dissociation equilibrium will be influenced by metal binding at a given 

concentration of metal ions. A great deal of work has been done to investigate the 

interaction between poly(acrylic acid) and metal ions [Gregor 1955, Masaaki 1979, Yokoi 

1986, Benegas 1998, Porasso 1999, Tomida 2001, Rivas 2005, Huang 2007].  
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      According to the modified Bjerrum model [Bjerrum 1941, Gregor 1955, Tomida 

2001], the complexes of poly(acrylic acid) and divalent metal ions can successively form 

various complexes in an aqueous solution, and the equilibrium can be described by: 

  

                                                                                                                                        (2-5) 

                     

                                                                                                                                        (2-6) 

 

where K1 and K2 are successive stability constant. 

 

      If one single metal ion coordinates more than two ligands (carboxyl groups) of the 

poly(acrylic acid), the complex equilibrium can be expressed as: 

 

                                                                                                                                        (2-7) 

 

where Kn is a stability constant.  

 

      The successive constants for the above three equilibrium can be giving by: 

 

                                                                                                                                        (2-8) 
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                                                                                                                                      (2-10) 

 

where HL is the functional groups in the macromolecular ligands, M2+ is the divalent ion. 

LM+, L2M and L2M(HL)n are the complexes. 

 

      As for polymeric acid ligands, the dissociation equilibrium constant of the carboxyl 

groups at a given metal ion concentration can be given by [Gregor 1955, Tomida 2001]: 

 

                                                                                                                                      (2-11) 

 

where β is a constant related to metal ions. 

 

      The relationship among the pH, dissociation equilibrium constant (Ka) and the α can 

be expressed by the modified Henderson-Hasselbach equation (2-12). α is the degree of 

polymer acid neutralization, expressing the molar ratio of sodium hydroxide to the 

carboxyl groups in the macromolecular ligands. It can be expressed by the equation (2-

13) [Gregor 1955, Porasso 2000, Tomida 2001].  

 

                                                                                                                                      (2-12) 
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where [NaOH] is the concentration of the added sodium hydroxide solution, Cp is the 

total poly(acrylic acid) concentration (carboxylic and carboxylate groups). 

   

     A complex of poly(acrylic acid)-divalent metal ion is illustrated in Figure 2-15. This 

complex shows a tetrahedral structure (square planar complex) [Tomida 2001].  

 

 

Figure 2- 15 The structure for poly(acrylic acid)-divalent metal ion complexes of 

L2M(HL)2 [Tomida 2001] 

 
      According to the above-mentioned analysis, sodium hydroxide can directly influence 

the pH of the solution, and α and the state of carboxyl groups, and eventually affects the 

coordination number of functional groups in the macromolecular ligands and the amount 

of metal binding. 

      The average coordination number of poly(acrylic acid)-metal ion complexes depends 

on the pH (4-6) of the aqueous solution and the molar ratio of carboxyl groups to the 

metal ions. It can vary from 0 to more than two [Tomida 2001]. For divalent copper ion, 

at a pH of 4, when the equilibrium concentration of copper ions increases from 0 to 1 

mM, the average coordinate number decreases from 3.5 to 2. At a pH of 5, the number of 
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the average coordinates changes from 2 to around 1.5 with increasing the equilibrium 

concentration of copper ion from 0 to 1 mM. This result shows that with an increase in 

equilibrium concentration of metal ions in the solution and pH, the complexes with one 

or two ligands are predominant.  

      With respect to the coordination number and the state of the metal ions (Cu2+) in a 

broader pH range from less than 3 to over 9, Yokoi [1986] reported the following results: 

there are two factors determining the status of Cu2+ in an aqueous solution. One is the pH 

of the solution and the other one is the ratio of the residual functional groups in 

poyl(acrylic acid) to Cu2+ concentration. If pH is less than 3, the copper ions can exist as 

ordinary hydrated Cu2+ in aqueous Cu2+-poyl(acrylic acid) solutions, and no copper ion 

complexes can be formed. In a pH range of 3-8, mononuclear complexes of copper ions 

with one (ML) or two (ML2) carboxyl groups from poyl(acrylic acid) can be formed in an 

aqueous solution. The coordination of copper ions to carboxyl groups in poyl(acrylic 

acid) is strain-free. At a pH below 4, (ML) is the preferential complex. Furthermore, 

when the ratio of carboxyl groups to copper ions is relatively low (≤ 10), a large amount 

of binuclear copper (II) complexes can be formed at pH 4. When the pH raises further to 

9, all mononuclear and binuclear complexes of Cu2+ finally disappear. 

      It is worthy of noting that when the pH increases to 6, inorganic compound Cu(OH)2 

can be gradually formed. However, because of a high local concentration of carboxyl 

groups and a polyelectrolyte field effect, Cu(OH)2 does not precipitate in the aqueous 

solution but remains in the solution due to hydrophilic interaction with poyl(acrylic acid). 

Therefore, in the range of solution pH 4-7, the water-sorption and metal binding capacity 
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of the hydrogel copolymers increases with an increase in pH [Yokoi 1986, Tomida 2001] 

due to formation of mononuclear and binuclear metal (Cu2+) ion complexes.  

      As stated before, it is a complicated process for metal ion to associate with such 

macromolecular ligands as poly(acrylic acid). The apparent dissociation constant, Ka, is 

influenced by not only the counter ions but also the flexibility of the polymer ligands 

[Porasso 1999 and 2000]. According to the counter ion condensation theory, the change 

of the apparent dissociation constant involves electrostatic interactions between the metal 

ions and the polymer ions and chemical binding of counter ions of different valence. The 

total free energy for carboxyl groups in poyl(acrylic acid) binding metal ions can be 

considered to consist of contributions from electrostatic and entropic mixing 

contributions. The bound fraction of metal ions leads to a decrease in charge of 

poly(acrylic acid) by a fraction σ, which reduces the electrostatic interaction between 

carboxyl groups and metal ions in the solution. With an increase in chemical binding, 

more negative value of the intrinsic free energy of binding is obtained resulting in a high 

binding capacity. 

      Poly(acrylic acid) can also bind metal ions in solid state even though most water 

molecules were removed from solution [Yoon 2005]. Linear poly(acrylic acid) (MW=240 

000) in an aqueous solution (25 wt %) containing metal ions was spin-coated on a surface 

of a α-Al2O3 single crystal to form a thin film. The solution pH was adjusted by 1M 

NaOH and 1 M HCl. By using Long-Period X-ray Standing Wave Fluorescent Yield 

(XSW-FY) and X-ray reflectivity techniques, the partition result of metal ions (Pb2+ and 

AsO4
3-) was determined between the poly(acrylic acid) film and the metal oxide. It was 
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reported that the metal ions were preferentially bound by the poly(acrylic acid) film even 

though the concentration of metal ions (Pb2+) was very low. 
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CHAPTER 3 EXPERIMENTAL  

3.1 Materials  

      The monomers acrylic acid (AAc, 99 %) and acrylamide (AAm, 99%) were obtained 

from Sigma, and used without further treatment. Ammonium persulfate (APS, 98%), 

sodium metabisufite (98%) were used as initiator and accelerator in this study, 

respectively. They were purchased from Sigma and Fluka, respectively. Sodium 

hydroxide (99%) was provided by Riedel-Dehaen. Cross-linker N, N-

Methylenebis(acrylamide) (MBA, 99.5%) was also provided by Fluka. CuSO4 was 

obtained from Sigma. All other chemicals used were of analytic grades. Figure 3-1 shows 

the molecular formula of the co-monomers, cross-linking agent, initiator and accelerator. 

 

3.2 Synthesis of copolymer hydrogels  

      Cross-linked copolymers of acrylamide and acrylic acid (sodium acrylate) were 

prepared by free radical polymerization using monomers acrylamide and acrylic acid 

(sodium acrylate) and cross-linking agent N, N-methylenebisacrylamide (MBA). A redox 

initiating system, consisting of ammonium persulfate and sodium metabisuffite, was used 

as an initiator. A 1.25 M solution of acrylic acid was prepared, and 75 % of carboxyl 

groups were neutralized using sodium hydroxide at room temperature, that is, 75 % of 

acrylic acid was transformed to sodium acrylate. A 1.25 M solution of acrylamide was 

also prepared. At first, a predetermined amount of cross-linking agent (MBA) was put 

into a 50 ml beaker, followed by adding a fixed volumes of the prepared acrylic acid 
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(sodium acrylate) (1.25M) and acrylamide (1.25M) solution. The mixture was mixed 

thoroughly in the beaker to form a clear solution. Subsequently, 1.0 ml of initiator (APS) 

solution (0.1M) was injected into the beaker using a syringe. Oxygen dissolved in the 

solution from air was purged out by bubbling pure nitrogen gas through the solution for 

10 minutes at room temperature. Then, 1.0 ml of accelerator (sodium metabisufite) 

(0.1M) was added into the solution, followed by nitrogen gas purging for 5 minutes. The 

beaker was enclosed into a plastic bag filled with pure nitrogen gas for blanketing the 

reaction mixture. Finally, the reaction mixture and the plastic bag were moved into an 

oven at 45 °C for about 4 hrs to allow polymerization and the hydrogel. Figure 3-2 shows 

the synthesis of the copolymers of acrylic acid (sodium acrylate) and acrylamide. Table 

3-1 summarizes the compositions of the reaction mixtures and the designation of the 

polymer samples produced. 

      The hydrogel copolymers obtained were broken into small sizes and immersed in 

deionized water for more than one week to remove the water-soluble residual monomers 

and linear copolymers. The copolymer samples were then dried in an oven at 60-80 °C 

and then further dried under vacuum at 60-80 °C until a constant weight of the sample 

was established. The obtained sample was a white powder.  
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Figure 3- 1  Molecular formula of the co-monomers, cross-linking agent, initiator and 

accelerator. 
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Figure 3- 2  Synthesis of copolymers of acrylic acid and acrylamide. 
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Table 3- 1   Chemical composition of hydrogel samples prepared in aqueous solution 

Set Sample 
AAc 

mol % 

AAm 

mol % 

MBA 

mol % 

APS (Na) 

mol % 

1-1 100 0 1 0.2 

1-2 100 0 2 0.2 

1-3 100 0 3.9 0.2 

1-4 100 0 7.4 0.2 

1 

1-5 100 0 13.8 0.2 

2-1 80 20 1 0.2 

2-2 80 20 2 0.2 

2-3 80 20 3.9 0.2 

2-4 80 20 7.4 0.2 

2 

2-5 80 20 13.8 0.2 

3-1 60 40 1 0.2 

3-2 60 40 2 0.2 

3-3 60 40 3.9 0.2 

3-4 60 40 7.4 0.2 

3 

3-5 60 40 13.8 0.2 

4-1 40 60 1 0.2 

4-2 40 60 2 0.2 

4-3 40 60 3.9 0.2 

4-4 40 60 7.4 0.2 

4 

4-5 40 60 13.8 0.2 

5-1 20 80 1 0.2 

5-2 20 80 2 0.2 

5-3 20 80 3.9 0.2 

5-4 20 80 7.4 0.2 

5 

5-5 20 80 13.8 0.2 

6 6-1 0 100 1 0.2 
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6-2 0 100 2 0.2 

6-3 0 100 3.9 0.2 

6-4 0 100 7.4 0.2 

 

6-5 0 100 13.8 0.2 

 
Monomer concentration (AAc+AAm): 1.25M 

Amount of initiator: 0.2 mol %, based on total amount of monomers 

Amount of MBA: mol %, based on total amount of monomers 

Polymerization temperature: 45oC 

AAc:   Acrylic acid 

AAm:  Acrylamide 

MBA:  N, N-Methylenebis(acrylamide) 

APS :   Ammonium persulfate 

Na:       Sodium metabisufite, accelerator, same quantity as APS 

 

3.3 Adsorption experimental  

3.3.1 Water adsorption  

      The polymer samples were tested for water sorption. The polymer samples were 

ground to fine powders. 0.500g of the sample was then placed in a beaker containing a 

pre-determined volume of deionized water. The water sorption was allowed to occur for 

at least 3-days at room temperature to reach equilibrium. The swollen hydrogel was 

filtered and weighed. Then, the hydrogel was dried under vacuum at 80oC until a constant 

weight was attained. 

      The water sorption uptake, SW (g/g), was determined gravimetrically: 
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                                                                                                                                        (3-1) 

     

where mw is mass of swollen gel at sorption equilibrium (g), and m0 is the mass of the dry 

polymer (g).  

 

3.3.2 Copper uptake from aqueous CuSO4 solutions 

      Dry powder samples (0.100 g unless specified otherwise) were immersed in 50.00 g 

of a copper sulfate solution at given concentrations. The sorption equilibrium was 

attained after 3 days at room temperature (23 oC), and the samples were filtered and 

weighed.  

      The total sorption uptake (including CuSO4 and water), Ssol (g/g), was determined 

from: 

 

                                                                                                                                        (3-2) 

 

where ms is the mass of the hydrogel in CuSO4 solution at sorption equilibrium (g), and  

m0 is the mass of the dry polymer (g). 

 

      Considering that water was also adsorbed by the copolymer hydrogels, to further 

determine the copper ion (copper sulfate) uptake, the copper ion concentrations in the 

original solutions and in the solutions at sorption equilibrium was measured using 

inductively coupled plasma (ICP) spectrophotometer (Thermo Jarrell Ash; Model: ICP 
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61E). An Atomic Emission Spectroscopy (AES) detector was used, whose detection limit 

is 0.02 mg/l for Cu2+ and 0.5 mg/l for Na+. Every sample was measured at least three 

times, and the average number was used as the data for the sample. 

      It was noticed that when copper ions (II) were taken up by the copolymer sorbent, 

some sodium ions were released to the liquid. The following equations were applied to 

calculate the sorbed amount of Cu2+, CuSO4, and water as well as Na+ loss per unit 

weight of dry polymer:  

 

                                                                                                                                        (3-3) 

 

                                                                                                                                        (3-4) 

 

                                                                                                                                        (3-5) 
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m0 is mass of dry polymer samples (g), C0Cu is copper ion concentration in original 

solution (mM), CeCu is copper ion concentration (mM) in solution at equilibrium, C0Na is 
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msol-a is mass of solution (mg) sorbed in hydrogel. The density (ρ) of the dilute solution is 

considered to be the same as density of pure water (g/ml).  

      The percentage (P %) of copper ions captured by the copolymer hydrogels, i.e. the 

percentage of the bound copper ions accounting for total amount of copper ions, is given 

by: 

                                                                                                                               

                                                                                                                                        (3-7) 

 

3.4 Sorption isotherm 

      To study the sorption isotherm, a copolymer of 80 mol % acrylic acid (75 % of 

carboxyl groups in the acrylic acid were neutralized by sodium hydroxide) and 20 mol % 

acrylamide was used in the experiment. The cross-linking agent (MBA) is 3.9 mol % 

based on the total quantity of the co-monomers.  

      The experimental procedure for sorption tests was the same as described above, 

except that the copper concentration was varied over a wide range from 0 to 2300 ppm 

(36.22 mM).  

 

3.5 Qualitative observation on copper adsorption 

      An irregular piece of the copolymer sample was immersed in deionized water in a 

beaker. This copolymer was synthesized from 40 mol % AAm and 60 mol % AAc (75 % 
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linear (co)polymers and the residual monomers, the hydrogel sample was rinsed at least 

three times with fresh deionized water. When sorption equilibrium was established (in 

about one week), the hydrogel sample was picked up and weighed. Afterward, the water-

sorbing hydrogel sample was transferred into another beaker containing copper sulfate 

solution (500ml). The water molecules in hydrogel start to run away from the copolymer 

hydrogel. When a new sorption equilibrium was reached (in three days), the sample was 

taken out from the beaker. After removing the water solution on the surface of the 

sample, its weight was measured. Then, the sample was transferred into another beaker 

containing a copper sulfate solution with a higher concentration. The above-mentioned 

procedure was repeated. A series of experiments was performed using different copper 

sulfate concentrations.  

 

3.6 Wide Angle X-ray Diffraction (WAXD) characterization 

      Hydrogel samples were immersed into a copper sulfate solution (1396 ppm or 21.98 

mM) for about 7-days at room temperature. The hydrogel sample was taken from the 

solution and surface water removed. Afterward, the wet hydrogel copolymer was oven-

dried at 80 oC, and then dried under vacuum at 80 oC to remove residual water. The dried 

samples were ground to fine powders. The powder samples were examined using wide 

angle X-ray diffraction (WAXD). For comparison purpose, the crystalline structure of 

pure CuSO4 was also examined. A Bruker (Bruker D8-Focus) diffractometer was 

employed in these experiments. The X-ray wavelength was 1.5418 Å, and the scattering 

angle, 2 θ, was examined from 0 and 50o with 0.1o intervals. The WAXD plots were 
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fitted, and smoothed by using Origin software. The sample used was a copolymer of AAc 

(60 mol %) and AAm. 75 mol % carboxyl group in the AAc chain was neutralized with 

sodium hydroxide. The content of cross-linking agent (MBA) was 2 mol % based on the 

total amount of the co-monomers.  
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CHAPTER 4 RESULTS AND DISCUSSION   

4.1 Adsorption 

      Cross-linked copolymers of acrylic acid (partially neutralized) and acrylamide were 

synthesized by radical polymerization in aqueous solutions. These soft and wet hydrogel 

materials can easily swell in aqueous solutions due to the hydrophilic groups in the 

macromolecular chain. However, they are not soluble in water. These materials showed 

different sorption capacity for pure water and metal uptake. Copper sulfate was used as a 

model adsorbate in this research.  

 

4.1.1 Pure water sorption 

      Figure 4-1 shows the results of pure water sorption as a function of macromolecular 

structure of cross-linked copolymers. In this three-dimensional chart, the two horizontal 

axes show the content (mol %) of acrylic acid (sodium acrylate) in the co-monomers and 

the content (mol %) of cross-linking agent (MBA) used in the copolymer synthesis, 

respectively, and the longitudinal axis indicates the water sorption uptake.  

      It can be seen that the water sorption capacity (g/g-copolymer) of the hydrogel 

sample increases when the content of the acrylic acid (sodium acrylate) in the co-

monomers increased. This trend becomes more significant at a higher content of the 

acrylic acid (sodium acrylate). On the other hand, with an increase in the content of the 

cross-linking agent, the above-mentioned phenomenon (water sorption increasing with an 

increase in acrylic acid content) becomes more apparent. A maximum sorption uptake of 
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about 820 g/g is attained with polymer produced from only acrylic acid at 1.0 mol % 

cross-linking agent. Clearly, acrylic acid (sodium acrylate) has a strong influence on the 

water sorption capacity of the copolymer hydrogels. The carboxyl groups in the acrylic 

acid (sodium acrylate) exhibit a high capacity for holding water molecules compared to 

the amide of acrylamide. Similar results have been obtained by Ilmain [1991] and Endo 

[2001]. When the AAc/AAm composition changes from 0/100 (mole/mole) to 20/80 and 

from 80/20 to 100/0, the water sorption capacity of the polymers increases dramatically, 

suggesting that the microstructure of the hydrogel has experienced a big change. This can 

be attributed to the intermolecular H-bond formed in the hydrogel copolymers [Ilmain 

1991, Endo 2001]. 

      As expected, for any given AAc/AAm compositions, a decrease in the content of the 

cross-linking agent increases the water sorption capacity. The cross-linking affects 

directly the length of the polymer chain segment and the pore size of the cross-linked 

network. Increasing the amount of cross-linking agent will result in a higher cross-linking 

density of the copolymers and smaller sizes of the network pores, which reduces the 

amount of water that can be accommodated. If the polymers are not adequately cross-

linked, although a very large water sorption capacity can be obtained, the resulting 

hydrogel will be more fragile and difficult to handle due to lack of integrity.  
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Figure 4- 1  Water sorption uptake of copolymers as a function of co-monomer 

composition and content of cross-linking agent 

 

4.1.2 Sorption in CuSO4 solution 

      Adsorption of metal ions from aqueous solutions is an important property of hydrogel 

materials. The same polymer samples were used in the experiments to test the sorption 

characteristics of Cu2+ ions. The results obtained from these experiments are shown in 
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Figure 4-2. Compared with pure water sorption, the copolymers have a lower sorption 

uptake in the copper sulfate solution. At 1300 ppm (20.47 mM) of copper ions in the 

solution, the total mass uptake (i.e. copper sulfate and water) is only about 5 % of the 

pure water sorption uptake. In addition, the effect of the copolymer composition on 

sorption uptake shows a different trend from that of water sorption. At a given content of 

cross-linking agent, with an increase in the acrylic acid (sodium acrylate) content, the 

total sorption uptake of the copolymer decreases to a minimum at around 40 mol % of 

acrylic acid (sodium acrylate) and then gradually increases. The polymer comprising of 

100 mol % of acrylic acid shows a maximum sorption uptake. This trend is more 

significant at a lower content of cross-linking agent. With respect to the effect of cross-

linking agent, at a given AAc/AAm composition in the copolymer, the sorption uptake 

increases with a decrease in the degree of cross-linking. Interestingly, the sorption uptake 

of copolymers with 40 mol % of acrylic acid (sodium acrylate) is not significantly 

influenced by the content of the cross-linking agent. However, the effect of cross-linking 

agent on the sorption uptake becomes more significant when the main component in the 

copolymer is either acrylic acid or acrylamide. 

      In this sorption process, the copolymer takes up water molecules and binds copper 

ions simultaneously. In other words, it is the copper ions that reduce the water sorption 

uptake in the copolymer hydrogel. The carboxyl groups in the polymers are primarily 

responsible for the sorption in the copolymer hydrogel. Copper ions have stronger 

interactions with the carboxyl groups in macromolecular chains than the amide groups. 

When copper ions are associated with macromolecular ligands, both mononuclear and 

binuclear copper ion chelate complexes will be formed [Yokoi 1986]. A portion of the 
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active sorbent sites in the hydrogel copolymer are occupied by copper ions to form 

chelate complexes [Akkaya 2008,Tsutsui 2006, Katono 1991, Atta 2009] and the chain 

segments of the copolymers are confined. As a result, the apparent cross-linking density 

of the copolymers increases, which is equivalent to an increased cross-linking. The pore-

size of the copolymer network appears to be smaller. Therefore, the copolymer hydrogel 

has a lower water uptake in the copper sulfate solution. At a given copper ion 

concentration, the number of copper ions that can be chelated by carboxyl groups is 

limited. When the content of acrylic acid (sodium acrylate) co-monomer in the 

copolymer increases, the carboxyl groups will complex with metal ions preferentially, 

and the remaining carboxyl groups left as free groups will be the active sites for sorbing 

water molecules. Therefore, with an increase in the content of the acrylic acid in the 

copolymer, more carboxyl groups will be available to sorb water molecules. This 

explains the observation that the water sorption uptake increases with an increase in the 

content of the acrylic acid in the copolymer. In addition, the amide groups in the 

copolymer do not form complexes with copper ions and thus do not contribute to metal 

uptake significantly. However, the amide groups are capable of adsorbing water. The 

experimental data show that at a given content of the cross-linking agent, the total 

sorption uptake reaches a minimum when the copolymer contains 40 mol % of acrylic 

acid (sodium acrylate) and 60 mol % of acryl amide. 

      In general, longer chain segments tend to have better flexibility and are more 

beneficial to the formation of the metal chelate complexes. Therefore, the above 

observations become more apparent as the content of the cross-linking agent decreases.  

 



CHAPTER 4 RESULTS AND DISCUSSION                                                                   

 51

 

020406080100
0

10

20

30

13.8
7.4

3.9
2.0

1.0

U
pt

ak
e 

of
 C

uS
O

4 s
ol

ut
io

n,
 g

/g

Acrylic acid, mol% C
ro

ss
-li

nk
in

g 
ag

en
t, 

m
ol

%

 

 

 

Figure 4- 2  Total sorption uptake (copper sulfate and water) in the (co)polymer 

adsorbent  

Initial conditions of sorption experiment: Copolymer 0.500g, CuSO4 solution 50.00 ml 

(Cu2+:1300 ppm or 20.47mM). Room temperature.  
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4.2 Copper ion uptake and water uptake  

      The total sorption uptake includes water and copper sulfate. In this section, the effect 

of molecular microstructure of the copolymers (e.g., acrylic acid (sodium acrylate) co-

monomer content, percentage of carboxyl groups in AAc neutralized with sodium 

hydroxide, and content of cross-linking agent) on the copper sulfate uptake and water 

uptake will be evaluated separately. 

 

4.2.1 Content of acrylic acid co-monomer in copolymer 

      Carboxyl groups in the copolymers are primarily responsible for the sorption 

properties of hydrogel materials. In this study, the effects of the density of carboxyl 

groups and the segment sequence structure on the uptake of copper sulfate and water will 

be studied. The copolymer of acrylic acid (sodium acrylate) and acrylamide selected for 

these experiments contained 3.9 mol % of cross-linking agent MBA based on the total 

quantity of co-monomers. 75 % of carboxyl groups in the acrylic acid co-monomer were 

neutralized with sodium hydroxide to maintain a pH of about 7.  

      As described before, with an increase in the acrylic acid (sodium acrylate) co-

monomer content in copolymers, the total sorption uptake (including copper sulfate and 

water) of the hydrogel materials first decreased, and beyond a turning point, the sorption 

capacity began to increase. Here the sorption uptake of copper sulfate will be separated 

from water uptake. Figure 4-3 is a plot of copper sulfate uptake and water uptake as a 

function of the content of the acrylic acid (sodium acrylate) co-monomer in the 

copolymer. It can be seen that with an increase in the content of the acrylic acid (sodium 
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acrylate), the copper sulfate uptake increases in a linear fashion. However, the water 

uptake decreases first and then increases, resulting in a minimum uptake at about 40 mol 

% acrylic acid (sodium acrylate) in the copolymer. As mentioned before, the carboxyl 

group, -COOH, has a stronger interaction, than amide group (CONH2), with copper ion 

[Cavus 2009, Rivas 2004]. Increasing the number of carboxyl groups in the copolymer is 

expected to increase the mononuclear and binuclear complexes formed. Thus, the copper 

sulfate uptake gradually increases with an increase in the content of the acrylic acid 

(sodium acrylate) in the copolymer. However, at a relatively low acrylic acid content in 

the copolymer, because of the strong chelating complexation, the active sites will be 

mainly occupied by copper ions, which compete more strongly than water uptake. When 

the acrylic acid content is above a certain level (i.e., about 40 mol %), the water sorption 

will gradually increase because of the increased amide groups, which are not affected by 

metal ion association. The minimum water uptake observed is due to the opposing effects 

of the acrylic acid (sodium acrylate) and acrylamide on the competitive sorption of 

CuSO4 and water in the copolymers. 

      From a macromolecular sequence structure point of view, when the content of the 

acrylic acid (sodium acrylate) increases from 0 to 20, 40, 60, 80 and 100, the average 

sequence length of acrylic acid co-monomer (number of acrylic acid co-monomer / 

number of acrylamide co-monomer) increases from 0 to 1:4, 2:3, 3:2, 4:1, and eventually 

a sequence of all acrylic acid monomer. For cross-linked copolymers, the average chain 

segment length between two cross-linking points can be estimated to be 12.8 units. As 

acrylic acid (sodium acrylate) content increases, the sequence length of acrylic acid 

(sodium acrylate) co-monomer and carboxyl group density increase. The water sorption 
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uptake decreases to 1.0 g/g at 40 mol % of acrylic acid (sodium acrylate) content in the 

polymer from 8.0 g/g in the polymer of 100 % acrylamide, then increases to 2.0 g/g when 

the polymer contains only acrylic acid (sodium acrylate). 
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Figure 4- 3  Uptake of water and CuSO4 in the (co)polymers  

Copolymer used for this experiment contains AAc (75% carboxyl neutralized with 

sodium hydroxide), AAm, and 3.9 mol % MBA based on total number of monomers.  

The initial concentration of copper ion is 1220 ppm (19.21mM).  
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      When the polymer adsorbent was merged into the CuSO4 solution, a portion of 

copper sulfate was sorbed by the polymer, eventually reaching an equilibrium with the 

copper sulfate in the solution. Figure 4-4 shows the percentage CuSO4 sorbed by the 

polymer relative to the CuSO4 in the original solution. In this system which contains 

50.00 ml of copper sulfate solution (copper ion: 1220 ppm or 19.21 mM), the total 

amount of copper sulfate is 0.96 mmole.  
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Figure 4- 4  Percentage CuSO4 taken up by the (co)polymers 

Experimental conditions are shown in Figure 4-3 
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      It should be pointed out that during the experiment it was found copper ion (II) 

uptake was accompanied by sodium ion release from the polymers. Sodium ions leave the 

macromolecular ligands from (-COO-) and dissipate from the network of the cross-linked 

copolymers and eventually dissolve into the solution. Figure 4-5 shows the result of 

sodium ion loss (mmol/g) and copper ion uptake (mmol/g) as a function of the copolymer 

composition. The ratio of sodium ion loss and copper ion uptake is more than 2, which 

indicates that copper ion uptake is not a simple ion exchange with sodium ions. Copper 

ions can form mononuclear and binuclear chelating complexes [Yokoi 1986]. In 

mononuclear chelating complexes, divalent metal ions can associate with one or two 

ligands (groups) [Cavus 2009, Barbucci 2002, Rivas 1998B]. Previous work [Yokoi 

1986, Cavus 2009, Barbucci 2002, Rivas 1998B] appears to show that one copper ion (II) 

replace a maximum of two sodium ions. However, the present study indicates that the 

ratio of sodium ions lost to copper ions gained may exceed 2, depending on polymer 

composition. For example, at an acrylic acid (sodium acrylate) content of 100, 80 and 60 

mol %, the sodium ion loss is 7.73, 6.16 and 5.05 mmol/g, respectively, and the 

corresponding copper gain is 3.42, 2.86 and 2.47 mmol/g, respectively. The sodium ion 

loss to copper ion gain ratio appears to be over 2 when acrylic acid (sodium acrylate) is 

the main component of the copolymer. In an extreme case of poly(acrylic acid) (sodium 

acrylate), the sodium ion loss to copper ion gain ratio reaches 2.26. This is because 75 % 

of the acrylic acid in the copolymer has been converted into sodium acrylate during 

polymer synthesis. A portion of the sodium ions may also dissociate in aqueous solutions. 

Nevertheless, it seems clear that the copper ion uptake is due to mononuclear chelating 
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complexation and copper ion sorption is accompanied by sodium ion release from the 

adsorbent.  
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Figure 4- 5  Sodium ion loss and copper ion gain in the copolymers  

Experimental conditions are shown in Figure 4-3 
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4.2.2 Percentage neutralization of carboxyl groups 

      Many studies have been reported in the literature on the effect of pH on the sorption 

properties of metal ions in hydrogel materials [Yokoi 1986, Tomida 2001, Li 2002, 

Cavus 2009, Karakisla 2003, Coskun 2006, Xie 2007, Li 2006, Solener 2008, Atta 2009]. 

In general, the pH not only determines the state of metal ions in aqueous solutions but 

also affects the form of the functional carboxyl groups (i.e., –COOH or -COO-). For the 

copolymer materials, the state of the carboxyl groups determines their sorption behavior. 

When the carboxyl acid group, –COOH, is neutralized by sodium hydroxide, the acrylic 

acid will be converted into sodium acrylate, –COONa, which has a high solubility and 

can exist in an aqueous solution in the form of carboxyl anion, -COO- and sodium cation, 

Na+. In order to study the effect of the state of functional carboxyl groups on water 

sorption and copper sulfate uptake in the copolymer materials, a portion of the carboxyl 

acid groups were neutralized so that the copolymers contain both -COO- and -COOH. 

The cross-linked copolymers used in these experiments were synthesized using  60 mol 

% acrylic acid co-monomer (AAc), 40 mol %  acrylamide co-monomer (AAm), and 2.0 

mol % cross-liking agent (MBA) based on the total quantity of the co-monomers. The 

carboxyl groups in the AAc chain segments were partially neutralized with sodium 

hydroxide.  

      Figure 4-6 shows the effect of percentage acrylic acid neutralized with sodium 

hydroxide on the copper sulfate uptake and water sorption. The initial quantity of copper 

sulfate solution was 50.00 ml at an ion concentration of 1550 ppm (24.41mM), the total 

amount of copper sulfate in the solution was 1.22 mmole. It is shown that both copper 

sulfate and water sorption increase with an increase in the  percentage of acrylic acid 
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neutralized, i.e. percentage of -COO- anion in the total number of carboxyl acid groups. 

The copper sulfate uptake shows a linear relationship with the percentage acrylic acid 

neutralized. The water uptake, however, increases quickly at low percentage (0-25 mol 

%) neutralization of acrylic acid and then increases slowly with a further increase in the 

percentage neutralization from 25 to 100 mol %. These results suggest that the carboxyl 

acid anion, -COO-, has a higher capacity of binding copper ions and taking up water 

molecules than carboxyl acid groups, –COOH. The anionic -COO-, an adsorbing active 

sites [Coskun 2006, Atta 2009, Boonamnuayvitaya 2004, Tahir 2003], is easier to 

associate with copper ions to form mononuclear and binuclear complexes, favoring the 

uptake of copper ions. It also has a high sorption capacity for water molecules via 

hydrogen bond. In addition, according to a previous study [Yokoi 1986], when the 

carboxyl groups are neutralized with sodium hydroxide, the pH of the aqueous solution 

depends on the percentage of acrylic acid neutralized. A higher percentage of acrylic acid 

neutralized will lead to a higher pH, which affects the state of copper ions in aqueous 

solutions. It has been reported that some copper ions can form inorganic compound 

Cu(OH)2, which will precipitate and agglomerate at high pH values. 

      Figure 4-7 shows the percentages of CuSO4 adsorbed by the copolymer versus the 

percentage neutralization of acrylic acid. The sorption equilibrium was affected by the 

ratio of the carboxyl acid groups (–COOH) and the carboxyl anion groups (-COO-) in the 

copolymer. With an increase in the percentage of acrylic acid neutralization, more 

carboxyl acid groups will be converted to anionic -COO-, and therefore the copper sulfate 

can easily associate with functional carboxyl groups in the copolymer to form complexes. 

Consequently, the percentage of CuSO4 sorbed at equilibrium gradually increases. 
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Compared to the extreme case of 0 neutralization for which 9.7 % of CuSO4 was taken up 

by the copolymer, when all the –COOH groups were converted to -COO- anions, the 

percentage CuSO4 sorbed by the copolymer increased to 24.85 %. This clearly shows that 

the anionic -COO- groups have stronger interactions with copper ions than –COOH. In 

addition, due to the high pH at complete neutralization of acrylic acid by sodium 

hydroxide, a certain amount of copper sulfate may form Cu(OH)2 in the solution which is 

not bound to the copolymer sorbent [Yokoi 1986].  

      Furthermore, Figure 4-8 shows that the sodium ion loss from the copolymer and 

copper ion gain from the solution are dependent on percentage of acrylic acid neutralized 

with sodium hydroxide. Both the copper ion gain and sodium ion loss increase with an 

increase in the percentage neutralization of acrylic acid (pH increases). As expected, if 

the acrylic acid was not neutralized by sodium hydroxide, copper ions were bound to the 

copolymer, but there was no sodium lost to the solution. With an increase in the 

percentage of acrylic acid neutralized, more sodium ions will be released from the 

copolymer to the solution. The molar ratio of sodium ion loss to copper ion uptake is not 

always equal to 2. This again suggests that the copper ion uptake is not a simple 

exchange with sodium ions. 
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Figure 4- 6  Uptake of CuSO4 and water in copolymers versus percentage of acrylic acid 

neutralized with sodium hydroxide  

The copolymers were synthesized from 60 mol % AAc, 40 mol % AAm and 2 mol % 

MBA based on total amount of the monomers.  

The initial concentration of cooper ion was 1550 ppm (24.41mM).  
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Figure 4- 7  Percentages of CuSO4 taken up by the copolymers at different degree of 

neutralization of acrylic acid 

Conditions of polymer synthesis and sorption test were the same as shown in Figure 4-6. 
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Figure 4- 8  Copper ion gain and sodium ion loss in the sorption process 

Conditions of polymer synthesis and sorption test were the same as shown in Figure 4-6. 
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4.2.3 Degree of cross-linking 
      The cross-linking of the copolymer will shorten the length of chain segments and 

reduce the pore size of the cross-linked networks. It can be estimated that as the content 

of the cross-linking agent in the copolymer increases from 1.0 to 13.8 mol %, the length 

of chain segments between two cross-linking points will be reduced from 100 to 7.2 

units. The copolymers used for this set of experiments comprised of 60 mol % acrylic 

acid (75 % of carboxyl groups were neutralized with sodium hydroxide) and 40 mol % 

acrylamide. 

     Figure 4-9 shows the copper sulfate uptake and water sorption as a function of the 

content of the cross-linking agent in the copolymers. With an increase in the cross-linking 

agent content, both the copper sulfate uptake and water sorption decrease, and the 

decrease in water uptake is more significant, especially at a lower content of the cross-

linking agent. As mentioned above, an increase in the degree of cross-linking will shorten 

the length of chain segments of copolymer network and increase the cross-linking 

density. As a result, the cross-linked network in the copolymer will have smaller pores, 

leading to a lower water sorption uptake in the copolymer. On the other hand, the 

flexibility of the polymer chain affects copper uptake as well. Flexibility is beneficial to 

the formation of both mononuclear and binuclear complexes [Yokoi 1986]. Increasing the 

degree of cross-linking will reduce the flexibility of the polymer chain. Therefore, the 

carboxyl groups in the chain segments will be difficult to associate with copper ions. 

Consequently, increasing the content of the cross-linking agent in the copolymer will 

gradually decrease the copper sulfate uptake. In addition, copper sulfate uptake is more 

mainly influenced by the carboxyl groups in the macromolecular chains than the chain 

segment length between cross-linking points. 
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Figure 4- 9  Uptake of CuSO4 and water in copolymers with different content of cross-

linking agent.  

The copolymers contained 60 mol % AAc (75 % neutralized with sodium hydroxide), 

and 40 mol % AAm. 50 ml of CuSO4 solution (Cu2+: 1220ppm, 19.21mM) was used in 

the sorption tests.  
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       The percentage of CuSO4 sorbed by the copolymer is shown in Figure 4-10. Figure 

4-11 shows the sodium ion loss and copper ion uptake as a function of the content of the 

cross-linking agent. Both copper ion uptake and sodium ion loss are shown to decrease 

with an increase in the content of the cross-linking agent. The molar ratio of sodium ions 

released and copper ions taken up is slightly greater than 2. When the cross-linking agent 

increases from 1.0 to 13.8 mol %, the copper ion uptake decreases from 2.5 to 1.8 

mmol/g, while the sodium ion released changes from 5.3 to 4.0 mmol/g. These results 

suggest that the sodium ions released does not seem to result simply from the 

replacement with copper ions to form chelating complexes. Nevertheless, it can be 

concluded that the sodium ion release from the copolymer is induced by the copper ion 

uptake to form mononuclear or binuclear complexes with the functional groups in the 

copolymer. This agrees with the results of Cavus [2009] and Barbucci [2002].  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 RESULTS AND DISCUSSION                                                                   

 67

 

 

0 5 10 15
0

10

20

30

40

C
uS

O
4 b

ou
nd

 in
 h

yd
ro

ge
l, 

%

Cross-linking agent, mol%

 

Figure 4- 10  Percentage of CuSO4 sorbed in the copolymers at different degrees of cross-

linking  

Polymer composition and sorption test conditions are presented in Figure 4-9 
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Figure 4- 11  Sodium ions released and copper ions taken up   

Polymer composition and sorption test conditions are presented in Figure 4-9 
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4.3 Sorption isotherm 

      Figures 4-12 and 4-13 show the sorption uptake of copper sulfate and water as a 

function of equilibrium concentration of the copper in the sulfate solution, respectively. 

At a relatively low concentration of copper ion in the solution, the equilibrium sorption 

uptake of copper sulfate increases drastically with an increase in the copper ion 

equilibrium concentration in the solution. For example, increasing copper ion equilibrium 

concentration from 0.03 to 1.34 mM leads to an increase in copper sulfate uptake from 

0.005 to 0.37 g/g-polymer. However, when the feed copper concentration is greater than 

1.34 mM, a further increase in copper ion concentration does not increase the equilibrium 

sorption uptake of copper sulfate significantly. This is easy to understand. Because 

copper sulfate sorption into the copolymer is induced by chelating complexation between 

copper ions and the active functional groups in the copolymer, the copolymer adsorbent 

has a strong power to capture the copper ions, even at a low concentration. However, 

when most of the active functional sites in the sorbent are occupied by copper ions, the 

copolymer adsorbent will be unable to continue to take additional copper ions effectively, 

in spite of the higher copper ion concentration in the solution. The strong binding 

between the copolymer and copper ions will be discussed later in more detail. On the 

other hand, when copper ions are bound to the copolymer, the water uptake decreases, as 

expected. This is shown in Figure 4-13. As mentioned previously, copper sorption occurs 

by chelating complexation, which reduces water uptake due to reduction of the functional 

groups in the copolymer to sorb water by hydrogel bonding. The copper complexation 

with the functional groups in the copolymer also acts as cross-linking, making the 

polymer network more tight and rigid. 
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Figure 4- 12  Uptake of CuSO4 in the copolymer as a function of equilibrium 

concentration in the solution  

The copolymer was comprised of 60 mol % AAc (75 % neutralized with sodium 

hydroxide), 40 mol % AAm, cross-linked with 2 mol % MBA based on the total quantity 

of the co-monomers. 
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      Based on the data in Figures 4-12 and 4-13, the following physical reasoning can be 

provided: when the copper ion concentration is relatively low, most of copper ions are 

bound to form complexes with the carboxyl groups in the copolymer chain. Because of 

the strong binding power of the copolymer to capture copper ions, its copper ion uptake 

dramatically increases at this stage. In the meantime, because the carboxyl groups were 

occupied quickly by copper ions and cannot interact effectively with water molecules by 

H-bond, the water sorption decreases substantially. For example, the pure water sorption 

uptake is 179 g/g-polymer. At a copper ion concentration of 1.34 mM in the solution, the 

equilibrium water uptake is only 1.3 g/g-polymer. In the sorption process, copper ions 

exchange with sodium ions to directly interact with the functional carboxyl groups in the 

copolymer chains. Therefore, the more the functional carboxyl groups are occupied to 

bind copper sulfate, less water will be taken up by the copolymer. 

      Figure 4-14 shows the copper ion uptake and sodium ion release as a function of 

equilibrium concentration of copper ion in the solution. At low concentrations, the molar 

quantity of sodium ion release is more than two times of copper ion uptake. This is 

because in addition to exchange between copper ions and sodium ions (which gives a 

molar ratio of sodium release to copper uptake of 2 based on stoichiometry), some 

sodium ions in the copolymer dissociate and enter the solution phase. However, at 

relatively high copper concentrations in the solution, the copper ions will not only 

complex with the hydroxyl groups but also interact with the amide groups, resulting in a 

sodium release to copper uptake ratio of slightly lower than 2.  

      Based on the above analysis, it can be seen that at sorption equilibrium, all copper 

ions, water and sodium ions will reach equilibrium between the solution phase and the 
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polymer phase. The sorption uptake of copper influences the equilibrium of sodium and 

water between the solution phase and polymer phase significantly. 
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Figure 4- 13  Sorption uptake of water in the copolymer as a function of equilibrium 

concentration of copper in the solution  

Polymer composition was the same as shown in Figure 4-12 
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Figure 4- 14  A comparison of copper ion uptake and sodium ion release as a function of 

equilibrium concentration of copper in the solution 

Polymer composition was the same as shown in Figure 4-12 

 

      The sorption isotherm data were analyzed with Langmuir equation and Freundlich 

equation. The Langmuir model is based on monolayer adsorption on the active sites of an 

adsorbent, representing chemisorption on a set of distinct localized adsorption sites. It 
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assumes that the forces between sorbed molecules are negligible, and once a molecule 

occupies a site no further sorption take place. Figure 4-15 shows that the sorption data at 

low concentration range (<10 mM) can be represented by the Langmuir isotherm 

equation with a correlation coefficient (R2) of 0.972. It should be pointed out that the 

active sorptive sites, carboxyl groups, associate with copper ions to form chelating 

complexes with one or two ligands [Rivas 1998B, Cavus 2009]. The functional carboxyl 

groups in the chain segments of the copolymer network can not move freely toward 

copper ions to form complexes because the flexibility of chain segments of the 

copolymer declines once sorption occurs. Based on Langmuir isotherm, the maximum 

sorption capacity in the copolymer (qmax) is 2.58 mM/g and the binding constant (KL) is 

2.9 l/mM. 

      The Freundlich isotherm model was also tested to fit the experimental data. 

Unfortunately, it was found that the Freundlich model did not work for the sorption 

system studied here. In principle, the Freundlich model should work well for multi-layer 

sorption systems. Because copper sorption occurs via chelating complexation, once a 

hydroxyl site is occupied by a copper ion, it will be difficult to interact with additional 

cooper ions. It is not surprising that the Langmuir model works better than the Freundlich 

model to describe the copper sorption in the copolymer sorbent.  
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Figure 4- 15  Sorption isotherm of copper as represented by the Langmuir isothermal 

model 

 

4.4 Qualitative observation on copper adsorption 

      At first, the dried copolymer sample was immersed into deionized water for three 

days to become fully saturated, and then the hydrogel sample was taken out and weighed. 
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The soft and wet hydrogel sample, which was transparent, then was immersed in 500ml 

copper sulfate solution at 94 ppm for 3 days to reach sorption equilibrium. It was found 

that the copolymer sample shrank in size after sorbing copper sulfate, and some water in 

the hydrogel was released. The hydrogel containing copper sulfate became light blue in 

color.  

      When the hydrogel sample was transferred into another copper sulfate solution at a 

higher concentration (174 ppm), the blue spot coverage increased and a darker blue layer 

was observed on the outer surface of the hydrogel sample. However, the inner part of the 

hydrogel sample was still transparent. It appeared that the copper–carboxyl complexes 

acted as barrier which restricted the diffusion of copper ions from the solution to the 

interior of the hydrogel. Further increasing copper sulfate solution concentration (from 

382 to 1396 ppm), the blue outer layer became thicker and the sample shrank further to 

form a more rigid and less swollen solid. This is shown in Figure 4-16, and the weight 

change of the sample was shown in Table 4-1.the weight loss is due to the water 

molecules coming out form the copolymer hydrogel.  

       When the copolymer adsorbs water, the network pores of the cross-linked copolymer 

retains a large amount of water molecules due to strong interaction between water 

molecules and the hydrophilic carboxyl groups in the macromolecular chain. When 

copper ions are bound to the copolymer by chelating complexation, the water molecules 

can no longer be retained, and the hydrogel will begin to lose water, causing shrinkage in 

the copolymer sample. The copper sorption and the accompanied water loss are clearly 

demonstrated here. Figure 4-17 is a scheme illustrating water loss from the hydrogel 

caused by copper sorption into the copolymer. As shown in this Figure, some water 
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molecules interact with carboxyl groups on macromolecular chain by H-bonding. The 

other water molecules are held in hydrogel by interaction such as H-bonding, Van de 

Waals force. When copper ions enter the pore of hydrogel and associate with carboxyl 

groups, all the water molecules were excluded from the pore and copper ions complexes 

were formed. Base on the Figure, it is easier for carboxyl anions to associate with copper 

cations than carboxyl acid.  

 

Table 4- 1 Weight of the hydrogel in copper sulfate solutions at different concentrations 

 A B C D E F 

Concentration of 
CuSO4, ppm 

0 94 174 382 736 1396 

Weight,  g 113.0 88.0 2.608 1.276 0.858 0.819 

 

      The chelating complexes acted as an internal cross linking, which provided a barrier 

for copper ions in the liquid solution to penetrate the copolymer, resulting in a “core-and 

shell” structure where the core is difficult to reach by copper ions in the solution. This 

was why in previous sorption studies all the copolymer samples were ground to fine 

powders to ensure the sorption took place uniformly. 
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Figure 4- 16  A: hydrogel swollen in pure water; B: in copper sulfate solution at 94 ppm 

(1.48mM); C: 174 ppm (2.74mM); D: 382 ppm (6.01mM); E: 736 ppm (11.59mM); F: 

1396 ppm (21.98mM)    

The copolymer composition: 60 mol % AAc (75 % neutralized with sodium hydroxide) 

and 40 mol % AAm, cross-linked with 2 mol % MBA based on total amount of co-

monomers. 
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Figure 4- 17  Process of hydrogel losing water molecules 
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4.5 WAXD spectrum of the copolymer containing CuSO4 

      Copper sulfate is a crystalline inorganic compound. When bound to the copolymer, 

the crystalline structure will disappear because copper ions form chelating complexes 

with the carboxyl groups. This has been confirmed by the wide angle X-ray diffraction 

(WAXD). 

      Figure 4-18 shows the WAXD spectrum of pure CuSO4 sample and the dried 

copolymer containing CuSO4. The sharp peaks in the spectrum of pure CuSO4 indicate its 

crystalline structure. No peaks were visible in the WAXD spectrum of the dried hydrogel 

sample containing CuSO4 sorbate. This result suggests that the copper sulfate sorbed in 

the hydrogel is in a non-crystalline form, which is consistent with the above explanation 

that copper ions form complexes with the hydroxyl groups in the copolymer. The 

carboxyl groups in the acrylic acid chain segments are easy to associate with copper ions 

[Yoon 2005] and copper sulfate does not aggregate in the hydrogel as an isolated 

dispersed phase but associates with the ligands to form complexes.  
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Figure 4- 18  WAXD spectrum of CuSO4 and the copolymer hydrogel containing CuSO4 

The copolymer composition: 60 mol % AAc (75 % neutralized with sodium hydroxide) 

and 40 mol % AAm, cross-linked with 2 mol % MBA based on total amount of co-

monomers. 
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CHAPTER 5 GENERAL CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 General conclusions 

      Copolymers of acrylic acid and acrylamide were synthesized by free radical 

polymerization in aqueous solutions. The copolymers were comprised of different 

contents of acrylic acid (where the carboxyl groups were partially neutralized by sodium 

hydroxide) and were cross-linked with different amounts of MBA. These copolymers 

were tested for copper sorption for aqueous solutions. The following conclusions can be 

drawn from this research: 

(1) The effect of macromolecular structure on water sorption and metal ion (Cu2+) 

uptake is systematically investigated.  

(2) With an increase in the content of the acrylic acid (sodium acrylate), copper sulfate 

uptake increases, and water sorption decreases quickly and then gradually increases 

when the acrylic acid content is high enough. Copper ion uptake is accompanied 

with a release of sodium ions from the copolymer.  

(3) Increasing the percentage of the carboxyl groups neutralized by sodium hydroxide 

will increase the uptake of copper sulfate and water. Copper ion uptake is a major 

factor for sodium ion loss from the copolymer.  

(4) With an increase in the content of the cross-linking agent, both copper sulfate 

uptake and water sorption decrease. 
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(5) At relatively low concentrations of CuSO4 in water, the copper sulfate sorption into 

the copolymer follows the Langmuir model.  

(6) When copper ions replace sodium ions to interact with carboxyl groups in the 

copolymer to form chelating complexes, the water sorption decreases substantially.  

 

5.2 Recommendations  

       The following are recommendations for future investigation: 

(1) Hydrogels are soft materials with many special properties. Their applications can be 

expanded. For example, the copolymers of acrylic acid and acrylamide may be used 

to separate water from organic compounds because of their excellent hydrophilicity.  

(2)  The mechanism of metal sorption into the copolymer and details about the 

chelating complexation need further studies.  

(3) The polymer synthesis conditions (e.g. co-monomer composition, temperature, 

cross-linking agent) may be optimized for given applications.  
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APPENDICES 

A1.  Water sorption data and copper sulfate solution sorption data for copolymers of 

acrylic acid and acrylamide. 

(0.500g sample in 50.00ml CuSO4 solution, initial Cu2+: 1300 ppm or 20.47mM) 

 
AAc 

mol % 
MBA 

mol % 
Water-sorption 

g/g 
CuSO4 solution 

g/g 
0 1  65.31 19.47 
20 1 371.73 5.16 
40 1 410.59 3.45 
60 1 429.56 14.68 
80 1 534.14 18.06 
100 1 833.33 30.58 
0 2    31.91 15.05 
20 2 137.73 4.50 
40 2 154.28 3.77 
60 2 149.38 10.29 
80 2 172.61 18.42 
100 2 195.32 26.05 
0 3.9 21.89 12.91 
20 3.9 63.67 4.90 
40 3.9 65.98 3.28 
60 3.9 73.46 8.50 
80 3.9 103.92 11.94 
100 3.9 117.49 20.46 
0 7.4 13.99 9.15 
20 7.4 30.50 5.24 
40 7.4 31.71 4.76 
60 7.4 33.13 6.16 
80 7.4 38.77 6.84 
100 7.4 39.49 14.06 
0 13.8 15.90 6.98 
20 13.8 38.05 4.85 
40 13.8 36.07 4.45 
60 13.8 36.80 5.09 
80 13.8 36.99 7.20 
100 13.8 34.44 11.60 
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A2. Effect of the content of the acrylic acid on sorption uptake.  

Copolymer: 75 % AAc neutralized, MBA 1 mol %  

Initial Cu2+ concentration: 1220ppm (19.21mM) 

 
AAc 

mol % 

H2Ouptake 

g/g 

CuSO4uptake

g/g 

Cu2+ gain 

mmol/g 

CuSO4 bound  

% 

Na+ Loss 

mmol/g 

0 7.812 0.058 0.365 3.8 0.193 

20 1.597 0.153 0.958 10.0 2.128 

40 1.045 0.295 1.848 19.2 3.76 

60 1.946 0.394 2.468 25.7 5.054 

80 2.433 0.457 2.861 29.8 6.156 

100 2.734 0.546 3.423 35.6 7.731 
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A3. Percentage of carboxyl groups neutralized by sodium hydroxide on sorption uptake.  

Copolymer: 60 mol % AAc, 40 mol % AAm, MBA 1 mol%.  

Initial Cu2+ concentration: 1550ppm (24.41mM) 

 

Neutralized 

mol% 

CuSO4uptake 

g/g 

H2Ouptake 

g/g 

CuSO4 bound

% 

Na+ Loss 

mmol/g 

Cu2+ Gain 

mmol/g 

0 0.189 0.425 9.7 0.049 1.183 

25 0.302 1.444 15.5 1.717 1.889 

50 0.362 1.588 18.6 3.349 2.267 

75 0.396 1.644 20.3 4.226 2.482 

100 0.485 1.795 24.8 5.632 3.036 
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A4. Effect of content of cross-linking agent on sorption uptake.  

Copolymer includes AAc 60 mol % (75 %  AAc neutralized), 40 mol% AAM 

Initial Cu2+ concentration: 1220ppm (19.21mM) 

 

MBA 

mol% 

CuSO4uptake 

g/g 

H2Ouptake 

g/g 

Cu2+ gain 

mmol/g 

Na+ Loss 

mmol/g 

CuSO4 bound

% 

1 0.396 2.494 2.484 5.266 25.9 

2 0.394 1.946 2.468 5.054 25.7 

3.9 0.356 1.464 2.234 4.887 23.2 

7.4 0.325 1.415 2.035 4.562 21.2 

13.8 0.295 1.345 1.846 4.021 19.2 
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A5. Effect of equilibrium concentration (mM) on CuSO4 and H2O uptake 

Copolymer: 60 mol % AAc (75 %  AAc neutralized), 40 mol % AAm, MBA 1 mol%.  

 

Cu2+ equilibrium 

Conc, mM 

H2O uptake 

g/g 

CuSO4 uptake 

g/g 

CuSO4 bound 

% 

32.28 1.656 0.404 13.5 

19.53 1.656 0.384 19.8 

10.55 1.447 0.381 31.0 

4.16 1.434 0.366 52.5 

1.34 1.317 0.37 77.4 

0.18 44.171 0.225 94.5 

0.19 83.508 0.152 92.2 

0.16 133.151 0.069 88.2 

0.10 163.886 0.034 86.5 

0.03 179.331 0.005 77.4 

0 179.347 0 13.5 
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A6. Effect of equilibrium concentration (mM) on Cu2+ gain and Na+ loss 

Copolymer: 60 mol % AAc (75 %  AAc neutralized), 40 mol % AAm, MBA 1 mol%.  

 

Cu2+ equilibrium Conc, 

mM 

Na+ Loss 

mmol/g 

Cu2+ gain 

mmol/g 

32.28 4.245 2.533 

19.53 4.269 2.403 

10.55 4.247 2.39 

4.16 4.377 2.291 

1.34 4.533 2.315 

0.18 3.02 1.408 

0.19 2.155 0.952 

0.16 1.249 0.435 

0.10 0.796 0.215 

0.03 0.455 0.033 

0 0.375 0 
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A7. Relationship between equilibrium concentration (mM) and initial concentration 

Copolymer: 60 mol % AAc (75 %  AAc neutralized), 40 mol % AAm, MBA 1 mol%.  

 

Cu2+ equilibrium Conc, 

mM 

Cu2+ initial Conc, 

mM 

32.28 37.17 

19.53 24.25 

10.55 15.24 

4.16 8.72 

1.34 5.92 

0.18 3.00 

0.19 2.06 

0.16 0.99 

0.10 0.50 

0.03 0.08 

0 0 

 

 
 
 
 
 
 
 
 
 


