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Abstract

In speech science and technology, the acoustic-to-articulatory mapping is known as
a difficult problem due to its non-linear and one-to-many characteristics. Over the
years. different optimization techniques have been proposed to solve this problem.
One of these methods is based on the extended Kalman filtering and smoothing.
Although the application of this technique to vowels was promising. its extension
to all classes of speech sounds has not been successful. This thesis focuses on devel-
oping and improving a statistical method of estimating the articulatory trajectories

from the speech signal based on the extended Kalman filtering and smoothing.

In this study, we proposed a new way of constraining the acoustic-to-articulatory
inversion by imposing high-level phonological constraints in addition to the dynam-
ical ones. These phonological constraints were imposed by constructing different
dynamical models with separate acoustic observation functions for each copro-
duction unit of speech consisting of two consecutive phones. Each observation
sub-function was approximated in small regions by piecewise linear functions us-
ing articulatory-acoustic look-up tables. The estimation of the model parameters
was based on a direct maximum-likelihood method using training articulatory-
acoustic trajectories. An integrated method has been proposed in this study for
the recognition of coproduction units and segmentation of the speech signal based
on maximum-likelihood of the acoustic observations given different coproduction
models. The likelihood of the acoustic observations given every phonological co-
production model was computed using the innovation sequences from the extended
Kalman filter. The smoothed articulatory states of the corresponding model with
the highest likelihood were used as the best estimate of the articulatory trajectories
in every segment. Good estimation results for all classes of speech sounds have been

obtained in different experiments using both synthesized and real human data.
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Chapter 1

Introduction

This introductory chapter presents the subject. purpose and motivation of this
study and an overview of the methods used for acoustic-to-articulatory inversion.

At the end of this chapter the scope and organization of the thesis are also presented.

1.1 Subject, Purpose and Motivation

The use of articulatory representation of speech has a few attractive advantages over
the acoustic representation. A low-dimensional. slow-varying articulatory descrip-
tion of speech is considered by many scientists and researchers as an appropriate
representation with potential applications to different areas in speech science and
technology. However. the articulatory representation is mostly used as a ‘labo-
ratory’ description of speech. mainly because of the difficulties in acquiring the
vocal-tract profiles and articulators’ trajectories from humans during the speech
production. Even with all the recent progress in the medical imaging techniques.

e.g.. magnetic resonance imaging (MRI), the application of such methods are im-
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practical or not possible for many of the speech science and technology areas. Thus.
the recovering of the articulators’ positions and motions from the speech acoustics.
commonly called speech inversion. brought a new hope and perspective to the prob-
lem of obtaining the articulatory representation of speech. Over more than 30 years.
various approaches to the estimation of the articulatory parameters and vocal-tract
shapes from the speech signal have been proposed. One of the main difficulties of
this speech inverse transformation consists in its non-unique characteristics. Al-
though substantial progresses have been achieved in this area of speech processing
in all theoretical, experimental and computational domains of research. there is no
robust technique known to be successfully applied to all classes of speech sounds

and different speakers.

Most of the recent approaches to the speech inversion have shifted from the ob-
jective of finding analytical, static solutions to finding dynamically constrained tra-
jectories of the articulators from pre-recorded databases of articulatory and acoustic
speech measurements. In this context. an elegant and promising technique of es-
timating the hidden articulatory trajectories from the speech signal was applied
successfully to vowels. for the first time more than 20 years ago. based on the ex-
tended Kalman filtering and smoothing. Later, other approaches have attempted
to extend this technique to other classes of speech sounds, but the results were not
very successful. On the other hand, recent experimental studies have shown that
the articulators’ positions can be accurately recovered using human articulatory
and acoustic speech measurements. Yet, a practical, generalized solution to all

different sounds and speakers has not been obtained.

The subject of this thesis is the estimation of the articulatory trajectories and
the recognition of some combination of articulatory gestures from the speech acous-

tic signal. The main purpose of this study consists in developing a generalized
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speech inversion method, applicable to all classes of speech sounds and different
speakers. This study focused on finding new solutions and improvements capa-
ble to overcome the limitations and drawbacks revealed by the previous studies
of speech inversion. Thus. this research is more experimental and computational
rather than theoretical. although some theoretical aspects have been discussed. The
objective of this study was also to evaluate the developed method on real speech
data. containing a limited number of combinations of speech sounds from different
classes. A long-time goal, following this study. would be the application of the
speech inversion method to different areas, like speech coding and recognition. and

teaching speech production to hearing and speaking impaired.

This study was motivated by two factors. First. it was motivated by the poten-
tial of using the articulatory representations in different areas of speech science and
technology. Second, it was motivated by the relative un-success of the previous ap-
proaches to generalize the method of estimating the articulatory trajectories from
the speech signal to all classes of sounds. Relative to the second factor. this research
was motivated by the divergent and somehow controversial outcomes of three dif-
ferent studies concerning the estimation of articulatory trajectories using Kalman
filtering, which we found in literature (Shirai and Honda [89]; Wilhelms et al. [105]:
Ramsay and Deng [75]). While the first study. [89], showed relatively accurate re-
sults in estimating articulatory trajectories for vowels, the second study, [105]. did
not succeed in obtaining the same accuracy for both vowels and consonants. Thus,
for some consonants, like plosives and nasals, the estimated articulatory trajectories
were not accurate, showing instabilities of the method in the intervals close to the
vocal-tract constrictions. Moreover, the third study, [75], approached the estima-
tion of articulatory trajectories using Kalman filtering as an internal process of an

automatic speech recognition system, without explicitly addressing the drawbacks
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revealed by the second study, related to consonantal sounds. If the generalization
of Kalman filtering estimation approach to all classes of speech sounds were suc-
cessful. we would wonder why this method has not been yet successfully applied
into different areas in speech processing, like automatic speech recognition, speech
coding. teaching the deaf to speak, etc. But, as many researchers stated. we believe
that the success of the application of the speech inversion method to those areas
depends fundamentally on the accuracy of the method of estimating the articula-
tory trajectories. In other words, efforts should be made first to develop accurate
speech inversion methods, before these methods could be successfully applied to
different areas of speech. We quote from a paper presented at the 1994 Meeting of

the Acoustical Society of America:

In order to perform automatic speech recognition based on the move-
ments of the articulators, there must be a reliable mechanism for es-
timating these articulatory positions directly from speech. Section IV
provides several reasons why this is a formidable problem. None of the
articulatory models that have been applied as speech synthesizers or
speech mimics have been successfully applied to ASR. and it is unlikely
that they will be until better techniques are found for acoustic to ar-
ticulatory inversion. (R. C. Rose, J. Schroeter and M. M. Sondhi 1996.
[80})

We are in agreement with the above statement of those authors and we hope that the
contributions of this research will encourage and support other studies in achieving
the ultimate goal of applying the recovered articulatory information to different

areas of speech science and technology.
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1.2 Overview of Acoustic-to-Articulatory Inver-

sion and Recognition of Articulatory Gestures

Speech represents the most common and natural way of communication for people
and is a part of language like writing and sign language. As a communication pro-
cess. speech is a way of transmitting information or thoughts from one person to
other persons. This information, structured in words, is coded into acoustic signals
by the speaker vocal system and decoded from acoustic signals into words by lis-
teners’ ears and brains. The natural speech is always produced by an articulatory
and vocal-tract system. It is not clear whether or not. in recognizing the speech
sounds. people recover in their minds some temporal information about the state of
the articulatory system of the speaker who produced it. As the linguistic-acoustic
relationship does not necessarily rely on the modeling of dynamical articulatory
system. the identity of a sound is not directly associated to the state of the artic-
ulators which produced it, but that state might theoretically be inferred from the

acoustic signal.

One benefit of analyzing the speech process in a domain closer to the source. in
the transmitting chain, is the lower redundancy of articulatory signals compared
to that of final coded acoustic signals. At a rate of about 10 phonemes per second.
and an information of about 5 bits/phoneme the speech has an average information
of about 50 bits/sec, which is about three orders of magnitude less than the average
information transmitted through a communication channel by sampling the speech
signal 8000 times per second and coding each sample with 8 bits, resulting in 64
Kbits/sec. It is certain that not all the information transmitted this way is useful

and most of it is redundant.

A second benefit of this would be the reduced variability of speech in the ar-
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ticulatory domain. One of the most difficult problems in processing and analyzing
the speech is the great variability of the speech signal. This huge variability en-
countered in the speech signal has different origins: differences among speakers’
anatomical and physiological vocal-tract structures including those due to gender
and age. differences among speakers’ ways of speaking and coordinating the nu-
merous articulators’ gestures. differences in ways of speaking of one speaker due to
physiological. psychological and anatomical variations. differences in speech sounds
of one speaker due to coarticulation. articulatory compensation and prosodic varia-
tions and differences in the environment or speech transmission channels. Based on
the assumption that speech is produced by an articulatory and vocal-tract system.
a possible way of reducing this large variability is to analyze the speech not in the
acoustic domain but in the articulatory domain. This variability reduction is based
on the fact that for a language. the speakers produce a specific speech sound using
less variable articulatory gestures in a vocal-tract geometric task domain. and the
remaining variability is mainly due to coarticulation. articulatory compensation

and prosody.

A third benefit of analyzing the speech in the articulatory domain could arise
from analyzing slow movements of the articulators which produced the speech com-

paring to the quick changes in the acoustic speech signal.

The recovery of articulatory state and motion from speech signal. the so called
speech inversion problem, could have both theoretical and practical applications. It
could help the motor theory of speech perception (Liberman et al.. [48]; Liberman
and Mattingly, [49]), the articulatory phonology (Browman and Goldstein, [4], [6])
and have applications in speech recognition (Zlokarnik. [107]: Ramsay and Deng,
[75]). speaker recognition, speech synthesis (Wilhelms et al., [105]), speech coding
(Gupta and Schroeter. [33]; Schroeter and Shondi. [85]) and teaching deaf people
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to speak (Zahorian and Venkat, [106}).

An analytical formulation of this inverse transformation based on the solutions
of wave equation and boundary conditions is very laborious and in fact this func-
tion is represented by a chain of transformations, most of them nonlinear. First.
the articulatory parameters have to be transformed into vocal-tract acoustic tubes
described by area and length functions. Then using the boundary conditions the
acoustic wave equation has to be solved in order to obtain the transfer function of
the vocal-tract. The convolution of the impulse response of this transfer function
with an excitation signal finally gives the speech signal which is further applied
to some feature extraction transformation in order to be represented by acoustic
feature parameters like formants. FFT, LPC or cepstrum parameters. A practical
approach consists of using a mapping between acoustic and articulatory domains
instead of an analytical function. This mapping can be done between pairs of corre-
sponding points in the two domains, acoustic and articulatory. A codebook of many
pairs of vectors in the acoustic and articulatory domains can be used for the imple-
mentation of such mapping. These codebooks can be obtained using articulatory
and vocal-tract acoustic models or direct measurement of simultaneous acoustic and
articulatory speech data. The static solution for the acoustic-to-articulatory inverse
mapping problem suffers of non-uniqueness because of the one-to-many characteris-
tics of this nonlinear inverse transformation. A dynamically constrained approach,
based on articulatory or acoustic dynamic modeling, could help searching for a
unique solution but it still represents a difficult nonlinear optimization problem.
The characteristics of the application for which the inverse mapping solution is be-
ing sought can determine the accuracy and the limits of the estimated articulatory
parameters and motion. For some applications like speech coding for example. it

is not so important the accuracy of the estimated articulatory trajectories but the



CHAPTER 1. INTRODUCTION 8

accuracy of the re-synthesized acoustic signal. For other applications like automatic
speech recognition or teaching deaf people to speak. the accuracy of the estimated

articulatory positions and trajectory might be crucial.

After more than thirty years of various attempts. the speech researchers still
regard the acoustic-to-articulatory inversion as an open and very challenging prob-
lem. Moreover. there is no general method known for recovering the vocal tract
shapes from the speech signal for all classes of speech sounds and robust enough to

be applied to solve and help a practical problem.

There were many attempts of estimating the vocal tract shapes from the formant
frequencies of the speech signal. but these parameters are not representative for all
classes of speech sounds, hence these methods cannot be generalized for the speech
inversion problem. The non-unique solution of the acoustic-to-articulatory mapping
motivated researchers to employ nonlinear optimization methods and find optimal
articulatory trajectories and tract shapes by using dynamic constraints on more

than one frame of speech.

The multiple-to-one nature of the forward transformation. from articulators to
acoustics. has been proven by modeling speech production using multiple acoustic
tubes (Flanagan, [26]) and by some bite-block experiments of articulatory com-
pensation, in which a subject bites down on a small block and tries to produce
a natural speech sound with an unnatural position of the mandible (Lindblom et
al., {50]). Another example of multiple-to-one characteristics of the transformation
is the speech produced by ventriloquists. who are able to produce some speech
sounds with completely different articulator positions from those of normal speech.
It appears that because of the multiple-to-one nature of the forward transformation
found in articulatory compensation experiments. speech production modeling and

ventriloquist” way of speaking, it should not be possible to recover accurately the
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articulator positions from speech acoustics. However it is not fully understood to
what extent this articulatory compensation phenomenon is used during naturally
produced speech. On the other hand. the one-to-many nature of the inverse map-
ping based on vocal-tract acoustic modeling is very sensitive to the assumptions
underlying the models. like the nature of losses. In the articulatory compensation
experiments there are still perceptual differences between sounds produced with

bite-blocks and those normally produced (Flege et al.. [27]).

Among the first researchers who approached the speech inversion problem were
Mermelstein and Schroeder who proposed a method of estimating a smoothed
area function from formant frequencies in 1965. [61]. Each of them extended this
first study later. Schroeder proposed the use of measured spectra and acoustic
impedance measurements at the lips in order to constrain the area function esti-
mated (Schroeder. [58]). Using Fourier series of the logarithmic area function he
obtained unique solutions for the area function for the assumption of small per-
turbations. Also he proved that there is a unique relation between the impedance
function at the lips and the resonance frequencies of the vocal-tract. Mermelstein
determined by computer simulation the area function using the first six admittance
poles and zeroes for some Russian vowels for which X-ray data were published.
[59]. Gopinath and Sondhi reviewed the theory of determination of vocal-tract
shape from acoustic measurements and input impedance. [29]. A new method of
estimating the area function of the vocal-tract employing the inverse filtering of the
acoustic speech waveforms has been suggested by Wakita. [103]. He proved a direct

relation between the inverse filter model and the acoustic tube model of speech.

Shirai and Honda studied the estimation of articulatory motion using an artic-
ulatory dynamical model and nonlinear filtering. [89]. They modeled the nonlinear

observation function relating the formant frequencies to articulatory parameters by
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third-order multi-variable polynomials and used the Kalman filtering technique to

estimate unique articulatory trajectories from formant frequencies.

A numerical approach for studying the relationship between the vocal-tract
shape and its corresponding acoustic output has been done by Atal et al.. [1}. using
a computer sorting technique. They constructed a codebook of 30720 articulatory
and acoustic pairs of vectors by sampling the whole space of an articulatory model
and storing the articulatory and acoustic data. They called all the vectors which

mapped into the same acoustic vector, an articulatory fiber.

A study of generating vocal-tract shapes from formant frequencies has been
published by Ladefoged et al., [46]. In that research the authors used a factor anal-
ysis method, called PARAFAC, to represent the tongue shape by two components:
a front raising and a back raising component. The weights of these two components
and of a third one representing the distance between the lips were determined us-
ing a stepwise multiple regression technique from three formant frequencies of 5C
vowels. The recovered vocal-tract shapes were compared with X-ray diagrams of

speakers of British English, American English and Russian.

An extension of Kalman filtering technique for estimation of articulatory tra-
jectories for vowels and consonants has been done by Wilhelms et al.. [105]. They
used as acoustic features large vectors of short time spectra computed from esti-
mated ARMA coefficients for vowels and some consonants. The Jacobian matrix of
the observation function has been computed using numerical approximation. This

study revealed difficulties in estimating the articulatory parameters for consonants.

Schroeter et al., [84] proposed a method of estimating the articulatory param-
eters using a vocal tract/cord model and an articulatory-acoustic codebook. In

this study they have used the LPC parameters as acoustic vectors and sampled the
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articulatory space between pairs of root shapes. They extended later their work to
a multi-frame approach. In 1989 Schroeter and Sondhi, [86] presented a method
based on dynamic programming to search the articulatory codebooks. They have
used the LPC derived cepstral coefficients as acoustic feature and introduced a lifter
in computation of the acoustic distance and a dynamic cost in making a transition

from a vocal tract shape to another one.

Methods of speech inversion based on neural networks have been published by
Shirai and Kobayashi, [93], Shirai, [88] and Papcun et al.. [68]. In the first two
papers the authors used an articulatory model and trained neural networks to ap-
proximate the nonlinear relationship between articulatory parameters of the model
and the cepstrum coefficients as acoustic parameters. The third paper presents a

method of training the acoustic-to-articulatory network on X-ray microbeam data.

A study of inverse mapping in speech based on an articulatory model for robot
speech synthesis has been done by Laboissiére. [44]. For this task. the target artic-
ulatory parameters of a robot containing an articulatory speech synthesizer have

to be estimated from a real speech in order to teach the robot to produce speech.

An optimization method based on conditional minimum of work has been used
by Sorokin, [95] and Sorokin and Trushkin, [97], for determination of vocal-tract

shape for vowels from formant frequencies and by Sorokin, [96] for fricatives.

A study for recovering the vocal-tract area function for vowels and fricative con-
sonants has been published by Beautemps et al., [2]. They proposed an extension
of the a8 model for computing area function along the vocal-tract and used the

formant frequencies as acoustic parameters for inversion.

Ramsay and Deng, [75], proposed a stochastic target model for articulatory

speech recognition, and the estimation of articulatory state was based on extended
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Kalman filtering technique. The novelty of their approach consist in modeling the
articulatory state by a Markov chain, proposing an articulatory target model and
using the Estimate-Maximize (EM) algorithm for estimating model parameters.
The whole nonlinear observation function has been approximated by a codebook
containing acoustic and articulatory parameters and the Jacobian matrices for each

region of linearization. This codebook has been structured as a binary decision tree.

Another work based on dynamic programming search of an articulatory code-
book search has been presented by Richards et al., [78]. They attempted to estimate
the articulatory representation of speech using the cepstral coefficients and a large

codebook containing 160000 entries derived using the Distinctive Regions Model.

A study of inverse mapping problem using real human articulatory and acous-
tic data has proven that. for some classes of speech sounds. the articulator posi-
tions can be accurately recovered (Hogden et al., [34]). In this study. the authors
used a look-up table method for mapping from the acoustic space represented by
smoothed spectra to the articulatory space represented by X and Y coordinates of
some receiver coils placed on articulators. They used electromagnetic midsagittal
articulography to record the data. Another study tried to recover the articula-
tory dynamics from speech acoustics using a genetic algorithm and the information

contained in the formant frequencies (McGowan and Lee [56]).

Computational models for speech production have been proposed by Saltzman
and Munbhall [82], Kaburagi and Honda [38]. These studies modeled the human ar-
ticulatory system and used additional constraints to determine a unique trajectory

of the articulators.

Recent results in speech inversion based on human data recorded using the elec-

tromagnetic midsagittal articulography have been published by Suzuki et al., [99].
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They constructed a large codebook of 222894 articulatory-acoustic pair data and
used dynamic constraints in the search of this codebook. They applied this method
to continuous speech utterances containing vowels and consonants in Japanese.
Their best results of inversion were based on a segment interval of the search of
160ms. Root mean squared (RMS) errors of about 2 mm have been obtained in

estimating articulatory trajectories with this searching method.

In an early stage of our study we experimented, [20]. an extension of the Kalman
filtering approach of Shirai and Honda, using formant frequencies as acoustic pa-
rameters and the linearization of the observation function on small regions based on
a codebook. Another extension in our early work was the estimation of vocal-tract
shapes from more general acoustic features using Kalman filtering. [21]. We used
the mel-frequency cepstrum coefficients. and created a large codebook of 235000
pairs of articulatory and acoustic vectors using Maeda’s articulatory model. {55].
The linearization of the observation functions has been done on 10000 small regions
using a clustering method. The estimation of model parameters has been applied
using the EM algorithm like in [75]. In this study the inversion method has been

applied for vowels only.

An experimental study of recognizing articulatory gestures has been published
by Papcun et al., [68]. These authors used a neural network trained on x-ray
microbeam data to estimate the articulatory trajectories from the speech acoustics.
They constructed articulatory templates for the recognition of release gestures of
three articulators — lower lip, tongue tip and tongue dorsum — in the production
of 6 English stop consonants: /p/. /b/, /t/, /d/, /k/ and /g/. For a small corpus
of 90 gestures from three different speakers, the gestures were recognized correctly

from 94.4% to 98.9%.

During the last three decades researchers have tried different approaches to the
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complicated and challenging problem of acoustic-to-articulatory inversion. Both
analytical and computational frameworks of these approaches have some advantages
and disadvantages, depending on the application and generalization of methods.
Despite the large variety of all these methods used to solve the speech inverse
problem. some of them just mentioned above, there is no practical. generalized

method known for different speakers and all classes of speech sounds.

The state-of-the-art in this area of speech inversion is probably still in its early
stage. The very recent attempts of providing general methods of inversion for all
classes of speech sounds, like in (Suzuki et al., [99]), it is worth to be mentioned
here. This study not only introduces a generalized method based on human data
but also provides a qualitative and quantitative error evaluation of estimated artic-
ulatory parameters. Although their direct approach is based on exhaustive search
of an articulatory-acoustic database acquired using electromagnetic articulographic
measurements. it has been successfully applied to all classes of speech sounds for a

single speaker.

In this context. the study of inverse mapping in speech presented in this thesis
is trying to provide a generalized method of speech inversion to all classes of speech
sounds of a language. In this thesis we describe our study of recovering vocal-tract
shape and its dynamics based on a new approach of Kalman filtering by applying
new phonological constraints. This method has proven to be a general and robust
approach for speech inversion for all classes of speech sounds and can be applied

using either articulatory models or human articulatory-acoustic measurements.
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1.3 Scope and Organization of the Document

Chapter 2 describes a background of speech production modeling by giving exam-
ples of vocal-tract acoustic models, articulatory models and of modeling the artic-
ulatory dynamics. The background of Kalman filtering state estimation method is
not included in this chapter, but in the main chapter dedicated to the acoustic-to-

articulatory inversion.

In Chapter 3 we present some experiments of articulatory and acoustic vowel
classification which support the usefulness of articulatory analysis of speech and
the potential application of the speech inversion method to speech recognition.
Although the topic of this chapter is not directly related to the speech inversion
problem. we included this chapter in this thesis as a preliminary work on articula-

tory analysis of speech.

Chapter 4 represents the main part of this thesis and presents the general
method of inverting the articulatory-to-acoustic transformation. In this chapter. we
describe the coproduction segments and models. the modeling of the articulatory-
acoustic function by using codebooks, the model parameter estimation using a di-
rect maximum-likelihood method, the estimation of articulatory trajectories based
on extended Kalman filtering and smoothing and the new way of applying phono-
logical constraints to the speech inversion as an integrated approach of recognizing

the coproduction models and estimating articulatory trajectories.

Chapter 5 presents experimental results for acoustic-to-articulatory inversion
based on three sets of experiments, using synthesized and real speech data. These
experimental results are based on speech segments containing a number of differ-
ent classes of speech sounds. Different coproduction segments have been used for

both synthesized and real speech data. The first set of experiments is based on
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synthesized speech with an articulatory-acoustic model. The second set of exper-
iments is based on real speech data acquired with an electromagnetic midsagittal
articulograph. The third set of experiments presents examples based on real speech

acquired with an X-ray microbeam system.

In Chapter 6 we present two potential applications of the speech inversion
method. First. a new method of displaying the dynamics of the vocal-tract over
time is presented as an application for general speech research and as an aid in
teaching the speaking and hearing impaired to speak or teaching foreign languages.
Second. applications of the speech inversion method to automatic speech recogni-

tion are suggested.

Finally. in Chapter 7 we conclude this dissertation by presenting a summary of
this thesis and the contributions of this research. At the end of this chapter an

outline of the future work is also presented.



Chapter 2

A Background of Speech

Production

This chapter presents a background of speech production and examples of vocal-
tract acoustic models. articulatory models and models of articulatory dynamics.
These examples contain solutions of the wave equation in the vocal-tract. a statistic

articulatory model and dynamic modeling approaches of articulatory system.

2.1 Vocal-Tract Acoustic Models

The theories of speech production have been developed by scientists and researchers
over the years. A first step in understanding the production of speech sounds in
the vocal-tract was the theory of the wave propagation proposed by Chiba and
Kajiyama, [12]. According to this theory the speech sound is produced by a pla-
nar acoustic wave which propagates between glottis and lips and nostrils in the

vocal and respectively nasal tract. The acoustic theory of speech production was

17
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published by Fant in 1960, [25]. He proposed a source-filter theory of speech pro-
duction according to which the speech sound is produced by a source. e.g.. glottis in
the case of vowels, and filtered by the vocal-tract. Another step in understanding
the speech production was the application of the perturbation theory to study the
acoustic effect of small variations in the area function of the vocal-tract (Schroeder.
[58]: Mermelstein, [60]). The quantal theory of speech was proposed by Stevens.
[98]. According to this theory large variations in the acoustic domain can be pro-
duced by small variations in the articulatory domain and large variation in the
articulatory domain can have little effect in the acoustic domain. A more detailed
overview of these theories can be found in [9]. Further developments in the field of
speech production were carried out. Two reference books of speech processing have

been published by Flanagan. [26] and Rabiner, [74].

In this section. an example of providing solutions for the wave propagation

equations in time domain is reviewed.

The speech production system contains the vocal tract which begins at glottis
and ends at the lips. the nasal tract which begins at the velum and ends at the
nostrils and the source of excitation which is in the glottis for voiced sounds or
somewhere between glottis and lips for unvoiced sounds. The vocal tract consists
of the pharyngeal cavity and oral cavity and has for an average male the total
length of about 17.5 cm. The nasal tract has at at the beginning a common part
which continues further with two separate, parallel, nasal tracts which end at the

nostrils.

The wave propagation in the vocal-tract is based on some laws of physics. These
laws which describe the generation and propagation of sound in the vocal system
arc: the fundamental laws of conservation of mass. conservation of momentum.

conservation of energy and the laws of thermodynamics and fluid mechanics. The
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complete acoustic theory of speech production must consider the following effects:
1) excitation of sound in the vocal tract 2) variation in time of the shape of vocal
tract 3) nasal coupling 4) radiation of sound at the lips and nostrils 5) losses due
to viscous friction and heat conduction 6) softness and vibration of the vocal and

nasal tract walls.

Using the laws governing the generation and propagation of sound in the vocal
system. a set of partial differential equations can be derived. Taking into account
all the effects which appear in the vocal system the formulation and solutions of
this set of differential equations is very difficult, therefore some simple assumptions
have to be taken. For a simple configuration of the vocal system. the vocal tract is

modeled as a nonuniform tube.

Portnoff, [73], derived the following pair of equations for an acoustic tube ap-

proximating the vocal-tract
dp 3(u/A) N

==L 2.1
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where

p = p(zx.t) is the sound pressure in the tube

u = u(r,t) is the volume velocity in the tube

A = A(z,t) is the area function of the tube (cross-sectional area)
P is the density of air in the tube

c is the velocity of sound

T is the distance from glottis

t is the time

The solutions for these equations are very complicated. except for some simplifica-

tions and approximations of the model.



CHAPTER 2. A BACKGROUND OF SPEECH PRODUCTION 20

A time-domain simulation of the vocal-tract system, which we used in this study,
has been developed by Maeda in 1982, {54]. This approach is based on the acoustic
transmission line of the vocal-tract and a direct solving in time-domain the equa-
tions governing the sound generation and propagation in the vocal-tract. In this
simulation the vocal system consists of the pharyngeal. nasal and oral cavities. The
glottis is connected to a lung pressure source. The planar propagation assumption
of the acoustic waves in the vocal-tract is considered. Three differential equations
were used to describe the evolution of pressure p(z,t) and volume velocity u(z.t)
inside an acoustic tube with non-rigid walls. These were the equation of motion

(EQM). equation of continuity (EQC) and equation of wall vibration (EQW)

8_p _a_pou ru

pou e _ o 2.3
oz "ot a, T A, (2:3)
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where pp is the density of air at equilibrium, ¢ is the sound velocity, r is the flow
resistance, y is the amplitude of the yielding of walls due to the pressure inside
the tube, A¢ and Sy are the given area and perimeter. and m, b. k represent the
mass., mechanical resistance and stiffness of the wall per unit length. The equation

describing the evolution of area due to wall yielding is
A(z.t) = Ao(z.t) + y(z,t)So(z, t). (2.6)

In this approach the losses due to heat conduction and viscous friction at the walls
have not been taken into account, since they only produce a small increase in the

bandwidth of the formants. The boundary condition at the glottis is

Poup(t) = p(zo. t), (2.7)
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where P,,,(¢) represents the sub-glottal pressure value of the source. The conditions

at the nasal coupling point z, are defined by the equations

u(zy . t) = u(zf.t) +u (0.1). (2.8)
p(zi.t) = p(zi.t) = p (0.¢), (2.9)
where *—’, ‘+" and ‘" indicate respectively the pharyngeal cavity end. the beginning

of the oral cavity and the nasal tract. The boundary conditions at the mouth open-
ing and nostrils are approximated by a radiation load in a form of a parallel circuit

consisting of a conductance and a susceptance, both independent of frequency.

Numeric solutions of the above continuous-time equations for p(z.t) and u(z.t)
can be obtained by discretizing in both time and space domains. The discretization
of u(z.t) in the space domain, along the vocal-tract, can be done at some points
r; using variable sampling intervals X;

J
;=Y Xi (2.10)
i=0
where j = 0.1,2..... M. The pressure p(z.t) will be sampled at the middle point
between z;_, and z;. The discretization in time of the p(z.t) and u(z.t) variables
can be done at sampled points t = nT, for n = 0,1.2,.... where T represents a
fixed sampling interval. In Figure 2.1 the sampling in the two dimensional space is
represented. For the discretization in space, the integrations can be approximated
by the ‘midpoint’ rule and by the ‘rectangular’ rule. After these approximations,
the discrete space equations of motion (EQM), continuity (EQC) and wall vibration
(EQW) become

d poXj1 Xj1ri dpoX;,, | Xjr;
dt ] it = j i 11
dt 2Aj—l UJ 2Aj—l UJ + dt 2AJ UJ + 2AJ U]# (2 )

d X;A; d d
@t po2 [ T XA g XiSivi (2.12)
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Figure 2.1: Sampling of the pressure and volume velocity in the two dimensional

space (from Maeda. [54])

d? d
S;iP; = m—sy; + b y; + ky;. (2.13)

Eliminating y; from EQC and EQW, they can be written as

UJ' - Uj+1 = u; + uz + us, (2.14)
d m b
P; = th 52 u; + X82u3+/ stu;;dt, (2-15)
where
d X;A;
= — 2.16
u dt poc? ( )
d —X;A;j (2.17)
=gt '
d
uz = th SJyJ (2'18)

From these equations the analogy of the acoustic transmission line with the electric

transmission line can be observed. The velocity-pressure variables play the role of
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Figure 2.2: The electric equivalent circuit of a rectangular section of the vocal-tract

tube (from Maeda. [54])

the current-voltage variables from the electric counterpart. The equivalent electric
circuit corresponding to one section of the acoustic tube approximating the vocal-

tract is presented in Figure 2.2. The circuit elements can be identified as

L; = poX;/24;. (2.19)
R; = 4muX,/A,, (2.20)
C; = X;A;/(poc?). (2.21)
Ud; = —dit(X,-A,-), (2.22)
Lw; = m/(X;S3). (2.23)
Rw; = b/(X;5?), (2.24)

Cw; = (X;52)/k. (2.25)
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Figure 2.3: The transmission line representation of the whole vocal-tract (from

Maeda. [54])

Using these notations. EQM and EQC can be rewritten

d .
P~ P = Jt-(Lj—l + L;)U; + (Rj_1 + R;)U;. (2.26)
Uj —Uj+1 = u; + us + uz. (227)
where
w=2c;p,. (2.28)
dt

Uz = —Udj. (229)

d 0
P]’ PT, LwJu;; + Rw]'llg + / CwJ dt. (230)

The transmission-line representation of the vocal-tract is presented in Figure 2.3.
From this picture, the boundary conditions at the nasal branch point which occurs

between the section K and the section K + 1 are

d
Px — Pnc = EZL'KUNC + RxUnc, (2.31)
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d

Pyc — Priy = 'CELK+1UK+1 + R Uk +1. (2.32)
7 d 1 ' r s

PNC_PI = a—tL1U1+RlU1. (233)

Unc = Ugs1 + U. (2.34)

The discretization in time can be obtained by applying the ‘trapezoid’ rule for

computing an integral as

/(:_Tl)T y(t)dt = T(y(n) + y(n — 1)]/2. (2.35)

For the case y(t) = dz/dt. this formula has the form
[z(n) — z(n - 1)]/T = [y(n) + y(n — 1)]/2. (2.36)

which is called central difference with averaging. In the discrete space equations

there are three kinds of terms

yi(t) = ar(t)z(t). (2.37)
pa(t) = Sealt)a(t). (2.38)
ws(®) = [ es)z(e)dr (2.39)

where c¢;(t) are coefficients and z(¢) is P(t) or U(t). The first kind of terms can be

digitized at time t = nT directly as

y1(n) = ci(n)z(n). (2.40)

The second term can be approximated using a recursive formula

y2(n) = (2/T)ez(n)x(n) — Q(n — 1), (2.41)

where the recursion formula is

Q(n —1) = (1/T)ex(n — 1)z(n — 1) — Q(n - 2). (2.42)
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Similarly, the third term can be approximated by the equation
y3(n) = (T/2)cs(n)z(n) + V(n - 1). (2.43)
where the recursion formula is
Vin—-1)=Teci(n—1)z(n—-1) + V(n - 2). (2.44)

Applying this rules, the discrete space equations described above can be trans-
formed into linear algebraic equations in which U;(n). P;(n). Unyc(n) and Pyc(n)
are their solutions. These algebraic equations can be solved recursively in time
starting from the initial conditions of the vocal-tract for which Q(0) = 0 and

V(0) = 0. Three sets of equations are derived by eliminating the P;(n)

~ - - - Ul
) 3 Hy b
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F, b Hy b i
= (2.45)
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for the oral tract and
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for the nasal tract. The elements in these three equations are given by
bj(n) = 1/[2C;(n)/T + Yw;(n)],

H;(n) = ~2[L;_1(n) + L;(m)/T — Rj-1(n) — R;(n) — bj_1(n) ~ bj(n).
and
Fy(n) = b1 (m)[Ud;_y (n) — Vima(n = 1)] = by(n)[Uds(n) = Vj(n — 1)]
~Qj(n—1),
where
Yw;(n) = 1/[2Lw;(n)/T — Rw;(n) + T/2Cw;(n)).
Ud;(n) = [A;(n) X;(n) — Aj(n — 1) X;(n — 1)]/T.,
Qi(n—1) = (/T)Lyi(n — 1) + Li(n — DUs(n ~ 1) — Q;(n — 2).
Vi(n — 1) = Vey(n — 1) — Yy (n)[Quls(n — 1) — Qucs(n ~ 1)),
Vej(n —1) = (4/T)Cy(n — 1)Pi(n — 1) = Ve;(n — 2),
Qulj(n — 1) = (4/T)Lwj(n — 1)us(n — 1) — Qul;(n — 2).

Qucj{n ~ 1) = [T/Cwj(n — 1)]uz(n — 1) + Qucj(n — 2).

27
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(2.49)

(2.50)



CHAPTER 2. A BACKGROUND OF SPEECH PRODUCTION 28

and

uz(n) = Yw;(n)[Pj(n) + Quwl;(n — 1) — Qwe;(n — 1)]. (2.58)

The three matrix equations can be solved using an elimination-substitution proce-
dure. A detailed derivation of these transmission line equations and a computer
program for solving them has been provided by Maeda. [54]. After solving these
equations and the values of Unc(n), Uj(n) and U;-(n) are obtained for all j. the

pressure P;(n) and P}(n) are computed using

P;(n) = b;(n)[U;(n) — Uj—1(n)Ud;(n) + Vj(n — 1)]. (2.59)

The simulated speech signal can be obtained from the sampled values of pressure
Pys(n) and Py(n). Digital simulation of speech utterances using this method and
program gives a high quality speech signal. We studied the acoustic-to-articulatory
inversion using two kinds of data: simulated data and human direct measured
acoustic-articulatory data. For the experiments based on synthesized data we have

used this method and program with the permission of the author. Dr. Maeda.

2.2 Static Articulatory Models

In this section, a statistic articulatory model originally developed by Maeda, [53].
[55]. which was extensively used in this study with the permission of the author, is
presented. This is a static articulatory model, that is. it transforms a set of artic-

ulatory parameters into a vocal-tract shape and the corresponding area function.

Over the years, various articulatory models and articulatory speech synthesizers
have been developed (Coker and Fujimura. [13]; Mermelstein. [60}; Maeda, [53].
[55]: Rubin et al.. [81]; Meyer et al.. [62]; Shondi and Schroeter, [94]; Kohler and
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Lacroix. [41]). These models provided vocal-tract shapes by specifying a number
of articulatory parameters which controlled the position of the lips. jaw. tongue
tip. tongue body, tongue dorsum, larynx, velum and hyoid bone. From vectors of
articulatory parameters static vocal-tract shapes and corresponding area functions
can be obtained for different speech sounds. thus these models can be classified
as static articulatory models. Usually these models provide the vocal-tract shapes
in the two dimensional space represented by the midsagittal plane. Some other
articulatory models provide 3D shapes of the vocal-tract (Dang and Honda [14].
Engwall [24]).

A class of articulatory models of great interest represents those models de-
rived by statistical analysis of lateral X-ray images of persons producing speech.
Such an articulatory model was originally developed by Maeda, [53], [55] and was
later extended by Laboissiére and Galvan. [45]. The midsagittal vocal-tract shapes
of a female speaker were extracted from X-ray films recorded with a rate of 50
frames/sec. A total of 519 frames were used from ten sentences in French. A semi-
polar coordinate system with a fix relation to the hard palate was used. as depicted
in Figure 2.4. The contour of the vocal-tract was sampled at the intersections with
the semi-polar coordinate grid lines. Using this representation the tongue shape is
specified by a vector 2, of variables corresponding to the distances of the tongue
contour along the grid lines 31/30/29/28 to 7. Another variable. the jaw opening.
represented by the distance between the central upper and lower incisors, is mea-
sured for each frame. The tongue shape can be described as a weighted sum of
some linear components, using a procedure called general linear component model
(Overall. [67]). Each linear component represents the effect of a specific articula-

tor upon the shape and these components are mutually orthogonal. The vector z,
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19

Figure 2.4: The semi-polar coordinate system for representing vocal-tract shapes

representing the tongue contour can be specified by a linear equation
2z = Aep + B, (2.60)

where pT = [j b d t. t,] is a vector of parameters representing the jaw, tongue body,
tongue dorsum, tongue tip z and tongue tip y variables, A, is a matrix of weights
or loading coefficients and B, is a vector representing the mean tongue position. A,
and B, are computed from X-ray data by linear regression. First, the loadings A;
corresponding to the jaw (the first column of the A, matrix), are determined from

data z, of all the frames, knowing the jaw opening, applying a linear regression

Zy = Ag]j + Bg (2.61)
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where A,; is a vector of loadings corresponding to the jaw and j is the jaw opening
parameter (measured from X-ray data). To ensure the orthogonality of the jaw
component with the other components of the vector p the influence of jaw parameter

j is subtracted from the data
Ztnzw =2 — Ang + Bt. (2.62)

After the subtraction of the jaw component, the loadings A, of a tongue body
component corresponding to a grid direction in the pharyngeal region are computed
from the remaining data z**, by another linear regression. Then the influence of
the tongue body component is subtracted from data. The loadings 4.4, of the
tongue dorsal component corresponding to a grid direction in the dorsal region are
computed similarly. Finally the loadings of tongue tip £ and y components are
computed. The first three elements of the vector p are accountable for about 94%
of the tongue data variances. Now for any value of the tongue parameter vector p.
a vector z, representing the distances of the tongue contour can be computed using
the above formula. Similarly. a linear equation can be applied to describe the z,

vector representing the velum distances along the grid lines 16 to 19
z, = A, xd, + B, (2.63)

where d, represents the distance between velum and the throat wall, and A, and
B, are matrices of coefficients computed by linear regression. Three other linear
independent parameters are added to specify the lip protrusion. lip aperture and
pharynx hight: {;, I, and ps. Thus the variable parts of the vocal-tract shape can
be specified by a vector of nine parameters of the model: j. b. d. t.. t,, d,, I, [,
and py. All the parameters are normalized to their standard deviations. We added

a fixed nasal-tract connected to the velum port for the production of nasal sounds.
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In order to compute the equivalent area function of the vocal-tract. the two-
dimensional articulatory model is converted to a concatenation of polygons sepa-
rated by the grid lines of the model and further these polygons are replaced by
rectangles with the same area, obtaining a straight model. The hight of each rect-
angle represents the midsagittal distance of the vocal-tract for the corresponding
segment and the length of each rectangle represent the length of that segment. An
a3 model can transform the midsagittal distance d into area of the section A using
the formula

A= ad’ (2.64)
where a and 3 are some coefficients depending on the position r of the section
along the vocal-tract. An improved a3 model has been used to obtain the area

function from the midsagittal distances. (Perrier et al.. [70]).

The concatenation of the above articulatory model controlled by nine param-
eters with the a3 model of computing the area function and with the vocal-tract
acoustic model described in this chapter produced an articulatory speech synthe-
sizer capable to synthesize high quality speech sounds. We used this articulatory

svnthesizer extensively to produce continuous voiced and unvoiced speech.

2.3 Dynamic Articulatory Modeling

In this section a few methods of modeling the dynamics of the articulators are pre-
sented. These modeling approaches take into account the kinematics and dynamics
which govern the vocal system. Some of the most common approaches use the
mass-spring system to describe the motion of articulators based on the dynamic
parameters mass, damping and stiffness (Saltzman and Munhall [82]. McGown and

Lee [56]). Other approaches do not use explicitly the mass of the articulators and
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are based on a quantitative formulation of a dynamic model described by second

order critically damped equation (Browman and Goldstein [6]. Kroger et al.. [42]).

The movement of the articulators is very complex and determined by the coor-
dinated action of many muscles involved in producing articulatory gestures. These
individual gestures of the articulators are usually overlapped in time. One impor-
tant effect of this overlapping is the co-articulation phenomenon. The rotation and
translation movements of the articulators have to be taken into account in order
to produce a phonemic gesture defined in a vocal-tract task space. These complex
movements are usually approximated by simple dynamic equations. Thus. un ar-
ticulatory dynamic model can be approximated by a set of second order differential
equations which describe the motion of each articulator based on its equivalent
spring constant, damping constant and mass. If r; defines the position of the i-th

articulator. its motion can be approximated by the following equation
mz; + bz; + kr; = f. (265)

where m. b and k represent the mass coefficient. damping coefficient and spring
coefficient respectively of the z; articulator and f is a driving force. During the
production of speech these coefficients and force are functions of time. In a matrix

form the equation which describes the motions of all articulators is
Mx+Bx+Kx=f (2.66)

where M. B and K are matrices specifying the masses. damping coeflicients and
spring coefficients of the articulators. If these matrices are set diagonal the artic-
ulators are considered independent of each other, but this is a crude assumption
because, in reality the motions of most of the articulators are correlated. The vector

f is the input of the articulatory system and is related to the phonemic target or
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the rest position of the articulators. This equation can be written in the following

form

Mx + Bx+K(x—x9) =0 (2.67)

where X, is a vector representing the phonemic target or the rest position of the

articulators (Saltzman and Munbhall, [82]: (McGown and Lee. [56]).

These equations have been applied to a tract-variable dynamical model (Saltz-
man and Munhall, [82]) and to a state-variable dynamical model (Kaburagi and
Honda. [38]). In the former study. the tract-variables are defined as the major task
for articulators to create local constrictions in different regions of the vocal tract.

The linear dynamical equation describing the motion of tract-variables z is
Z=M"1-Bz — K(z — zo)] (2.68)

where zg is the target or rest position for the tract variables. These tract-variables
defined as location and constriction degree of tongue tip and tongue dorsum. lips
protrusion and aperture, velum and glottal states. are functions of model articulator
variables which represent the actual position of the articulators. The nonlinear
relationships between the tract variables z and corresponding model articulator

variables ¢ are defined by the equations

z = z(¢) (2.69)
z=J(¢)¢ (2.70)
7=J(p)p+I(¢.0)¢ (2.71)

where z is an m x 1 tract variable vector and ¢ is an n x 1 current articulator
position vector. The J matrix is an m x n Jacobian matrix which has its elements

defined by partial derivatives 8z;/9¢; evaluated at the current ¢.
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The equation of motion of the model articulators is
M(J4 + J¢) + BI$ + K(z(¢) — 2o(¢0)] = 0. (2.72)
This equation can be written in the following form
¢ = I {(M7'[-BJ$ - K[z(¢) — 2zo(¢0)]]) — J&} (2.73)

where the pseudo-inverse Jacobian J* = W IJT(JW™1J7)-1 and W is a diagonal
weighting matrix. This last equation describes the movements to tract-variable

targets zg of the model-articulator variables ¢.

In the latter study, [38], Kaburagi and Honda tried to solve a linear equation

relating some state-variable, x, to some tract variable, z. defined by
z = Ex (2.74)

where E is a conversion matrix. They applied the second-order discrete linear equa-
tions to the state-variables x representing the relative positions of the articulators

to a jaw-based coordinate system as follows
xi(n) = 2rx;(n — 1) + *x;(n — 2) = (1 — 7)*f;(n) (2.75)

where n denotes time sample, 7 is a constant and f; represents an input force for the
i-th state variable articulator which can be the jaw, upper lip, lower lip or tongue.
The vector y defining the absolute positions of the articulators are obtained by
linear transformation from state-variable vector x, and the tract variable vector
z is also obtained from the absolute position vector y by a linear transformation.
Thus the tract variables are linear transformations of the state variable as shown in
Equation 2.74. When a motor task is given at a moment by the tract-variable target,

the state variables x are determined by solving these simultaneous linear equations.
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If the dimension of z is smaller than that of x. these equations restrict the values to
only a subspace of x, and the inverse mapping, from z to x becomes one-to-many.
To solve this problem a cost function is used. This cost function is defined as a
sum of quadratic forms of changes in output movements and input forces of the
system. Given the motor task, a unique solution of these equations is determined
by minimizing the cost function. This is an optimal control problem with linear

dynamics and quadratic criteria and can be solved by dynamic programming.

Browman and Goldstein, in their work on articulatory phonology. ([4]. [6]. [7]).
defined gestures as dynamic articulatory structures. The speech is modeled as
‘constellations’ of articulatory gestures. The gestures are specified by a set of tract
variable (e.g.. lip protrusion LP. lip aperture LA. tongue body constrict location
TBCL. etc.). In an early study. [8]. they modeled the dynamics of the articula-
tors by fitting sinusoids to the articulatory trajectories, based on the motion of an
undamped mass-spring system. They found a very good match between the fitted
sinusoids and the real articulatory trajectories. Then they extended the dynamic
modeling to a damped mass-spring model, which they used in articulatory phonol-
ogy. A gesture was defined as the dynamic patterns of the articulators in moving
from an arbitrary rest position toward a target and back to the rest position. This
represents a complete cycle of a gesture. The elementary gestures of different tract
variable can overlap in time. From this work, we have been inspired to use the seg-
ments of speech defined by the onset interval of the gestures, that is, the dynamic
patterns in moving the articulators from an arbitrary rest position (defined by a

particular phoneme), toward a target position (defined by a different phoneme).



Chapter 3

Articulatory and Acoustic

Representations

The potential of using the articulatory representation for automatic speech recog-
nition is emphasized by comparing two simple phonetic classification experiments
based on articulatory features. respectively, acoustic features. These experiments
are first performed in the original vector spaces. and then in some transformed
sub-spaces, called task spaces. The articulatory and acoustic data used in these ex-
periments have been simultaneously recorded with an electromagnetic midsagittal

articulograph.

3.1 Articulatory and Acoustic Representations in

Original Spaces

The articulatory representations of speech could be useful for phonemic classifica-

tion or speech recognition if a reliable method of acoustic-to-articulatory mapping

37
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would be used. Experiments of phonemic classification based on direct articulatory
measurements have shown a promising potential of using articulatory features. In
this section. to emphasize the potential of using articulatory features for speech
recognition. a phonemic classification experiment based on articulatory representa-
tions of speech sounds is presented in comparison with the classification based on
the corresponding acoustic features. In articulatory phonetics the speech sounds are
analyzed using the configurations of the vocal-tract and some of the articulators.
The fact that each speech sound has a distinct combination of place and manner
or articulation and voicing status suggests that this information can be useful in
recognizing and classifying speech sounds. Considering this distinct articulatory-
phonetic mapping, it is expected that an automatic classification of the speech units

could be possible if some appropriate articulatory features would be available.

For human speech recognition, the motor theory of speech perception [49]. states
that humans use some knowledge of their internal articulation mode in the process
of perception and classification of sounds. However, to what extent and how much
articulatory information is inferred in recognizing speech sounds and perception of
speech is not known. It is known that. before transformed into acoustic signal. the
speech information is encoded by the speaker into articulatory gestures and it is
expected that in this articulatory stage the linguistic information should be present

at least as much as into the speech acoustic signal.

There is a great interest in extracting the articulatory information from the
speech acoustic signal and using this information to improve the recognition rate
of automatic speech recognizers. Experiments of automatic speech recognition and
phonetic classification have been done based on articulatory measurements added
to the acoustic speech data to show how much the articulatory data can improve the

recognition rate. Such preliminary results have shown that by appending articula-
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tory data to the acoustic data the speech recognition error rate decreased (Petajan
(T1]. Zlokarnik [107], [108]). A different approach of articulatory based automatic
speech recognition tried to use some prior articulatory knowledge and the acous-
tic features of speech (Deng and Sun [16], [17]). In this experiment the authors
imposed a mapping between the states of a Hidden Markov Model (HMM) and
the articulatory features. Although this approach has provided promising resuits.
the knowledge about articulation has not been inferred from data and additional

sources of prior articulatory knowledge need to be used.

In this section, an acoustic-phonetic and an articulatory-phonetic relationship
are analyzed in a form of phonetic classification experiments based on simultaneous
articulatory and acoustic data. A small amount of articulatory data, simultaneously
recorded with the acoustic data. have been acquired for this experiment using an
alternating magnetic field method (Schonle et al.. [83]. Tuller et al.. [101]). We used
the technique of Electromagnetic Midsagittal Articulography (EMA), (Perkell et.
al.. [69]) employing a device built by Carstens Medizinelektronik GmbH, Gottingen,
Germany, [10].

The phoneme-specific vocal-tract shapes are considered those invariant features
representing the phonemic targets during speech production and are called motor
tasks or dynamic tasks (Kaburugi and Honda, [38]; McGowan and Lee, [56]). A
description of these phonemic targets can be made using some reduced subspaces,
called task spaces. in both articulatory and acoustic domains (Honda and Kaburagi,
[35]). The phonemic target represents some points in the multidimensional articula-
tory or acoustic spaces to be reached during the production of a particular phoneme.
Depending on speech rate and stress. these points can or cannot be reached but
always represent the target towards which the articulatory and acoustic vectors are

driven during production of each phoneme. It is difficult to define exactly the tar-
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gets therefore for each phoneme we consider a target region representing a subspace
of the original space defined by the invariant features for a specific degree of articu-
lation. For this description there are an infinity of targets defined by the invariant
units or gestural primitives for each degree and way of articulation. The articula-
tors are driven by forces specifying the targets for each phoneme-specific gesture
during speech production. The analysis of speech patterns can provide information
about phonemic targets if the articulatory and acoustic vectors are analyzed at
those points in time at which the forces for the next phonemic target are applied.
These points can be found at the minimum velocity of the articulatory or acoustic
vectors. Multivariate statistical methods can be used for analysis of these task
spaces (Morrison, [64]). One of such methods is the principal component analysis
(PCA). Using the generalized eigenvectors one can find phoneme-specific subspaces
of the original multidimensional spaces in which the tasks have the maximum con-
centration (Honda and Kaburagi. {35]). This means that in these subspaces. the
task vectors have minimum variance along each direction. The task space can be
defined as having a number of directions for which the variance ratio of all vectors
to that of phoneme-specific vectors. represents most of the total variance of this
ratio. Usually 2 or 3 dimensions are enough to represent these task spaces. The
phonemic target can be approximated by the center of gravity of these task spaces.
To see how well these task spaces can represent the phonemes or the phonemic
targets some experiments of analysis and classification of articulatory and acoustic
patterns have been done in both original spaces and task spaces. If the results are
comparable we can say that even though with drastic reduction of the dimensional-
ity, the task spaces can still represent well the phonemic targets or those invariant

features of each phoneme.

A probabilistic pattern analysis and classification method, such as APACS,
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(Chan and Wong, [11]), can be applied to both articulatory and acoustic patterns
of speech. We used this classification method in both acoustic and articulatory
spaces. as presented in [23]. This method handles uncertainty that comes from
inconsistent, incorrect or missing information in the training examples and can
be classified as an inductive learning method. or a method of classification based
on learning from examples. The set of training examples contains a number of
objects and each object belongs to a class represented by a phoneme. Each object

is described by a number of attributes. The whole algorithm has three phases.

In the first phase. the detection of underlying patterns in the training examples.
is done by computing the contingency table for each attribute. Each element of
the contingency table represents the number of vectors from the training set that
belong to a specific class and have a specific attribute value. For each attribute
we can compute the expected table in which each element represents the expected
number of objects that have a specific attribute value and belong to a specific
class. For detecting the underlying patterns we can detect the relevant features for
classification. These relevant features are those attribute values that are important
for the characterization of a certain class of objects. This detection of relevant
features is based on the difference between the probability of an object to belong
to a specific class and the probability of the same object to belong to the same
class given a specific value of the attribute. If this difference is significant then that

attribute value is a relevant feature.

The second phase of the algorithm is to construct rules for classification based
on the detected patterns. The classification rules describe each class of the training

examples probabilistically.

The third phase of the algorithm is the prediction of class membership of new

objects not used in the training set. This prediction can be achieved by evaluating
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each attribute of the new object if it is relevant and in this case we can compute
the weight of evidences for that object having that attribute value for belonging
to different classes. After we evaluate all attributes of the new vector we can have
more than one class predicted for that object. We choose the class that has the
greatest sum of weight of evidences, to be the class with the greatest probability

for the new object to be included in.

We have done some phonetic classification experiments using this statistical
analysis and classification method for both acoustic and articulatory speech pat-
terns. These experiments have used first the features from the original acoustic and
articulatory spaces and then the features from the task spaces. in order to deter-
mine how well the acoustic and articulatory task spaces can represent the phonemic
targets speech. These experiments were carried out for 5 American English vowels.
produced in consonantal contexts with relative slow movements of the articulators
by a single male subject, in order to increase the probability of the articulators to
reach the phonemic target for each vowel. For the orthographic representation of
these vowels and consonants we used the TIMIT convention. [65]. The five vowels
used were /ah/. /eh/, [/iy/, /ao/ and /uh/. The utterances recorded were of the
form VCV (vowel-consonant-vowel). For each of the five vowels. 17 VCV tokens
were produced by selecting one of the following consonants: /b/. /d/. /f/. /g/. /h/.
/zh/, /k/, /). /m/. /n/, [p/, [t/, [s/. [/sh/, /t/. /v/ and [z/. Each such VCV
token has been repeated three times. In all these tokens the first and second vowels
were the same and thus each of the 5 vowels has been produced 102 times. In these
simple experiments we did not actually split the whole data in training and test

data, since the comparative results are of interest and not the absolut ones.

The articulatory and acoustic data representing the middle vowel positions in

the articulatory space are plotted in Figure 3.1 and in the acoustic space are plotted
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in Figure 3.2. In the acoustic domain, we used a single graph to represent the plots
in both F1-F2 plane and F3-F4 plane. The articulatory data. obtained with an
electromagnetic midsagittal articulometer (Carstens GmbH, [10]). consist of vectors
containing the £ and y coordinates of 3 sensors placed on the lower lip. tongue body
and tongue dorsum respectively (6 dimensions) in the midsagittal plane. Other
two sensors, placed on the nose and upper teeth, were used as references and for
correcting the movements of the head related to the helmet. The acoustic data
consist of vectors containing the first 4 formant frequencies derived from a 14-th
order LPC analysis. Each ellipsis from these figures is drawn using two standard
deviations in each dimension, for each vowel. In the articulatory domain. the plots
corresponding to different vowels are quite overlapped. In the acoustic domain. the
plots in F1-F2 plane are quite disjoint for these vowels, but they are overlapped in

F3-F4 plane.

The results of vowel classification in the articulatory and acoustic spaces are
presented in Tables 3.1 and 3.2. In each classification table the elements of the
main diagonal represent the number of correct classified vectors whereas all other
elements represents the number of misclassified vectors. As can be seen in both
original spaces the results are similar. The lower classification results in the articu-
latory space for /ao/ and /uh/ may suggest that the z and y positions of the three
coils placed on the articulators are a little less relevant for these vowels. In the
acoustic domain, the classification results are better. probably due to the greater
separability of the acoustic patterns in the F1-F2 plane. Thus. a single /uh/ vector

has been misclassified as /ao/.

This small experiment shows that the information encoded into articulatory
domain is relevant to the phonetic identity of the vowels, and thus, the articulatory

features might be potential features for automatic speech recognition.
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/ah/ | [eh/ | [iy/ | /ao/ | /uh/
Jah/ | 102 | © 0 0 0
Jeh/| 0 | 101 ] 1 0 0
/iy/ | O 0 [102]| O 0
/ao/ 0 0 0 98 4
Juh/ | 0 0 0 5 97

Table 3.1: Confusion matrix for classification using articulatory features

/ah/ | /eh/ | [iy/ | /ao/ | /uh/
/ah/ | 102 | o 0 0 0
Jeh/| 0 | 102 0 0 0
[iy/ 0 0 102 0 0
/ao/ 0 0 0 102 0
Juh/ | 0 0 0 1 | 101

Table 3.2: Confusion matrix for classification using acoustic features
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3.2 Articulatory and Acoustic Representations in

Task Spaces

A statistical analysis method has been used as in [35] in both articulatory and
acoustic spaces to study the degree of concentration of the target distributions in
each space. The phonemic target is defined as a subspace linearly transformed from
the original space so that the distribution of the achieved tasks is maximally con-
centrated for that phoneme. This phoneme specific subspace, called task space. is
linearly transformed from the original space by finding the generalized eigenvectors
for the covariance matrix of all vectors, C, and covariance matrix of each phoneme

vectors. C,. in each space. This has been done by solving the matrix equation
C.F = C,FA (3.1)

where F is a matrix containing in each column an eigenvector and A is a diago-
nal matrix containing the generalized eigenvalues which are equal to the variance
ratio of all vectors to the phoneme specific vectors for each dimension. Figure 3.3
presents the degrees of concentration of target distribution along the first dimension
for each of the 5 vowels in both articulatory and acoustic spaces. This degree of
concentration is represented by the ratio of standard deviation of the entire distri-
bution to that of each vowel distribution in the task space. From this figure one
can observe a higher concentration for vowels /eh/ and /iy/ in the articulatory task
space and of vowels /iy/, /ao/ and /uh/ in the acoustic task space. The sum of the
variances ratios for the first two dimensions of maximum concentration represents
more than 90 percent of the whole variance ratio for each vowel in each space. Each
dimension of the two dimensional task spaces represents a linear transformation of

all dimensions of the original space. In a matrix form the task space. z, can be



CHAPTER 3. ARTICULATORY AND ACOUSTIC REPRESENTATIONS 47

Articulatory space Acoustic space
15 T v 16 v —
14}

121 -
(=} (o]
= 101 =

3 « 10} -
c | =4
o 2
k] s

> 2 8 1
Q (o]
© B
3 2

s 5 6 ]
73] S5t (7]

4 = -

2 3
O A i 0 L A
0 2 4 6 0 2 4 6
ar /el N lof i/ lal  fel N fof o/

Figure 3.3: Degrees of concentration of target distributions in articulatory and

acoustic spaces.

represented by a linear transformation of the original space. x. as follows:
z = Ex (3.2)

where E is a matrix with coefficients of transformation obtained from matrix F of
Equation 3.1 (In this case E7 represents the first two columns of matrix F). Be-
cause z contains the first two principal components of the ratio of covariance matrix
of all vectors to the covariance matrix of one phoneme vectors , its dimensions are
perpendicular each other for different positive eigenvalues. The articulatory and
acoustic task spaces are presented for all vowels studied in the following figures.

In all these figures the abscissa is represented by the first dimension of maximum
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concentration and the ordinate is represented by the second dimension of the max-
imum concentration in each task space. The two principal axes of each ellipse are

equal to two times the standard deviation along each axis.

In order to reveal the properties of the task spaces. the experiments of classifi-
cation of articulatory and acoustic patterns of speech were repeated for each of the

task spaces using the same APACS method (Chan and Wong. [11}).

The classification results for the articulatory and acoustic task spaces are pre-
sented in Table 3.3 and 3.4 for the vowel /ah/, Table 3.5 and 3.6 for the vowel
/eh/. Table 3.7 and 3.8 for the vowel /iy/. Table 3.9 and 3.10 for the vowel /ao/.
Table 3.11 and 3.12 for the vowel /uh/. For each of the vowels the classification
results are similar in the articulatory and acoustic task spaces. as in the case in the
original spaces. One finding of these classification experiments is that in the task
space of each vowel in both articulatory and acoustic domains. that specific vowel
for which the task space was constructed was better classified than in the original
space. We drawn the conclusion that the task spaces represent some kind of filters

for better viewing the articulatory or acoustic vectors of that particular sound.

We observed a kind of similarity of vector distributions between the articulatory
task space for /uh/ and the acoustic task space for /ah/. With some simple linear
transformations the two task spaces can be superimposed as presented in Figure
3.14. In the two task spaces, inverted and rotated, one can observe the similarity
of vowel distributions of the scattered vectors with the well known vowel triangle
from the F1-F2 plane (F1 representing the first format frequency on abscissa and

F2 representing the second format frequency on ordinate).
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Artcutatory Task Space for /a/
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Figure 3.4: Articulatory task space of the vowel /ah/

Acoustic Task Space for /a/
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Figure 3.5: Acoustic task space of the vowel /ah/
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/ah/ | feh/ | [iy/ | [ao/ | [uh/
Jah/ | 102 | 0o | 0 | © 0
Jeh/ | 0 [102] 0 | 0 0
Jiy/ | © 0 |102] 0 0
Jao/ | © 0 | 0 |102] 0
Juh/ | 0 o | o | 4 | 98
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Table 3.3: Confusion matrix for classification in the articulatory task space of /ah/

/ah/ | /eh/ | [iy/ | /ao/ | /ubh/
Jah/ | 102 | 0o | 0 | o 0
Jeh/| 0 | 95 | 1 | 6 0
Jiy/ | o 3 99| 0 0
[ao/ 1 0 0 99 2
Jub/ | © o | 0| 4 | 102

Table 3.4: Confusion matrix for classification in the acoustic task space of /ah/
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Figure 3.6: Articulatory task space of the vowel /eh/

Acoustic Task Space for /e/

Figure 3.7: Acoustic task space of the vowel /eh/
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/ah/ | /eh/ | [iy/ | /ao/ | /uh/
Jah/ | 100 | 0 0 2 0

Jeh/| 0 [102] 0 | o 0
Jiy/ | 0 0 |102] o 0
/ao/ 0 0 0 101 1
Juh/ | © o | o | 3 | 99

Table 3.5: Confusion matrix for classification in the articulatory task space of /eh/

/ah/ | /eh/ | /iy/ | /ao/ | /uh/
Jah/ | 99 | 2 | o 1 0
Jeh/ | 0 [ 102 0 | O 0
/iy/ | © 0 [102] o 0
Jao/ | O o | o | 91| 11
Juh/ | © o | o | 15 | 87

Table 3.6: Confusion matrix for classification in the acoustic task space of /eh/
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Figure 3.8: Articulatory task space of the vowel /iy/

Acoustic Task Space for V

+

Figure 3.9: Acoustic task space of the vowel /iy/
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/ah/ | [eh/ | [iy/ | [ao/ | /uh/
Jah/ | 102 | © 0 0 0
Jeh/| 0 | 102 | 0 0 0
Jiy/ | o 0 |102] O 0
Jao/ | 4 0 0| 97 | 1
Juh/ | © 0 0 6 | 96
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Table 3.7: Confusion matrix for classification in the articulatory task space of /iy/

jah/ | jeh/ | fiv/ | Jao/ | fun/
Jah/ | 102 | © 0 0 0
Jeh/ 9 | 3 | 0 0
Jiy/ | 0 o {102]| © 0
Jao/ 1 0 0 100 1
Juh/ | © 0 0 2 | 100

Table 3.8: Confusion matrix for classification in the acoustic task space of /iy/
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Articulatory Task Space for /o/
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Figure 3.10: Articulatory task space of the vowel /ao/

Acoustic Task Space for /o/
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Figure 3.11: Acoustic task space of the vowel /ao/
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/ah/ | /[eh/ | [iy/ | Jao/ | [uh/

Jah/ | 96 | 6 0 0 0
Jeh/| 0 | 102 ]| 0O 0 0
/iy/ | o 0 |102] o 0
Jao/ | O 0 0 | 102 0
Juh/| 0 0 0 1 | 101

Table 3.9: Confusion matrix for classification in the articulatory task space of /ao/

/ah/ | /eh/ | /iy/ | /ao/ | [ub/
/ah/ | 101 | 0 0 1 0
Jeh/| 1 | 98 | 3 0 0
Jivy/ | 0 0 |102] 0 0
Jao/ | 1 0 0 [ 101} 0
Juh/ | 0 0 0 1 | 101

Table 3.10: Confusion matrix for classification in the acoustic task space of /ao/
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ARTICULATORY AND ACOUSTIC REPRESENTATIONS

Articulatory Task Space for /u/

Figure 3.12: Articulatory task space of the vowel /uh/

Acoustic Task Space for /u/

Figure 3.13: Acoustic task space of the vowel /uh/
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/ah/ | /eh/ | [iy/ | /ao/ | [uh/
Jah/ | 99 | 3 0 0 0

Jen/ | 2 99 | 1 0 0
Jiy/ | o0 0 |102] 0 0
/ao/ | O 1 0 100 1
Juh/| © 0 0 0 | 102

Table 3.11: Confusion matrix for classification in the articulatory task space of

Juh/

/ah/ | /eh/ | [iy/ | /ao/ | [uh/
/ah/ | 100 | © 0 2 0
Jeh/ | 0 | 102 | 0 0 0
/iy/ | © 0 |102]| 0 0
/ao/ 1 0 0 101 0
Juh/ | 0 0o | 0| o | 102

Table 3.12: Confusion matrix for classification in the acoustic task space of /uh/
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Articulatory and Acoustic Task Spaces
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Figure 3.14: Superposition of acoustic task space of the vowel /ah/ and articulatory

task space of the vowel /uh/



Chapter 4

Acoustic-to-Articulatory Inversion

This main chapter of this dissertation presents the new phonological. gestural-based
speech inversion method. This speech inversion approach accounts for coarticula-
tion phenomena and. together with a vocal-tract length normalization, can be used
to systematically account for interspeaker variabilities. The presentation of the
speech inversion method starts with the formulation of the phonological coproduc-
tion segments and models of speech, continues with the method of approximat-
ing the non-linear observation function, the statistical method for estimating the
parameters of the models, the estimation of articulatory state based on Kalman
filtering technique and concludes with the segmentation and recognition of the
phonological coproduction models and estimation of the most likely articulatory

trajectories.

The acoustic-to-articulatory inversion method presented in this thesis consists
of two main parts: the training, which is described by the first three sections of
this chapter and the estimation of articulatory trajectories by Kalman filtering and

recognition of models, which are described by the last two sections.

60
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As the natural speech represents the output of the dynamic articulatory system,
the movements of this system produce continuous changes in the shapes of the vocal
tract as it goes from one phoneme to another. Thus. the speech acoustic signal is
not merely a simple concatenation of stationary segments representing phonemes.
It contains the underlying dynamic constraints imposed by the articulatory system
and thus. it is a natural way of approaching the speech inverse problem from a
dynamic point of view. The statistical method for sound-to-gesture inversion pre-
sented in this thesis is based on dynamical system modeling of speech production
and has at its heart the statistical versions of the state-space model representing
the dynamic vocal system. The two equations defining the state-space model of
a dynamic system are the state equation, which imposes dynamic constraints on
the evolution in time of the system, and the output or observation equation, which
models the direct relationship between the hidden state variable and the measure-
ments or the observation variable. These equations contain stochastic components
in a form of random variables whose only known parameters are the type of dis-
tribution and the first and second order statistics. The well developed statistical
methods of filtering, predicting and smoothing used in linear dynamical modeling
and their extension to the non-linear dynamic systems can be applied to estimate
the evolution in time of the hidden state variable of the system. System identi-
fication techniques like the Maximum-Likelihood (ML) method can be applied to
the estimation of model parameters from training observations of the system. A
ML version of model parameter estimation is the Expectation-Maximization (EM)
algorithm (Dempster et. al., 1977, [15]), which iteratively estimates the model pa-
rameters from data with unobserved components and has been extensively used for

parameter estimation in the speech recognition field.

One of the main innovations proposed by this study in the area of acoustic-
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Figure 4.1: General Block Diagram of the Speech Inversion Method based on

Phonological and Dynamical Constraints

to-articulatory inversion consists in the new way of imposing high-level phonolog-
ical constraints to this inversion. We imposed these phonological constraints by
building different coproduction models and associating to each model a particular

articulatory-acoustic sub-function.

The general block diagram of the acoustic-to-articulatory inversion method de-
veloped in this study is presented in Figure 4.1. The speech signal is pre-processed
and the acoustic feature extracted as a sequence of acoustic vectors. These acoustic
parameters are applied to the extended Kalman filtering and smoothing block. For
a short segment of speech. the extended Kalman filter is applied repetitively using
each time the parameters of a different phonological dynamical model. A likelihood

measure is computed for each model and. based on this measure, the model with
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the maximum-likelihood is selected. A method of segmenting the speech signal is
also used based on the likelihood measure. Then, for each recognized segment of
speech, the Kalman smoother is applied using the corresponding model parameters.
The estimated articulatory trajectories are obtained from the smoother. Details re-

garding each phase of the speech inversion method are given in the next sections.

4.1 Coproduction Segments and Models of Speech

The speech inversion method developed in this study is based on modeling the
speech production system using linear dynamic models with non-linear observation
functions. Studies of phonemic speech recognition based on modeling the speech
dynamics. considered the parameters of speech to be non-stationary and. thus.
functions of the corresponding phonetic unit to which the speech segment was
affiliated (Shirai and Kobayashi [91] and [92]; Ostendorf and Roukos [66]: Digalakis
et al.. [18] and [19]: Ramsay and Deng [75] and [76]).

Adopting the technique used in classical approaches of automatic speech recog-
nition. these authors employed a different dynamic model for each phoneme or
phonemic transition [92], [75]. Even though such an approach is motivated primar-
ily by the goal of classification and recognition of the phonemes, we adopted this
method in our study of acoustic-to-articulatory inversion in order to improve the
accuracy of the estimated articulatory trajectories. This approach is supported by
the conclusions of some studies (Shirai and Kobayashi [91] and [92]: Browman and
Goldstein [8]: Kréger et al., [42]), which have shown that the articulatory dynamic
parameters change during the speech production and this is related to the linguistic

information and phonetic identity of the speech sounds.

The main innovation in imposing these new phonological constraints consists
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in dividing the articulatory-acoustic function into sub-functions corresponding to
phonological coproduction models. Thus. not only that we use different dynamic
parameters to model different speech segments (coproduction of gestures). but we
employed segment specific articulatory-to-acoustic mappings. This last character-
istics has probably the most important effect on the accuracy of estimated artic-
ulatory trajectories. In addition. our experiments have shown that averaging the
parameters of all models corresponding to different phonological units will decrease
the accuracy in estimating the articulatory trajectories. This method of speech
inversion based on constructing a different dynamical model with a different obser-
vation function for each phonological coproduction model does not represent just a
generalized mathematical formulation adopted from speech recognition but is one of
our important findings revealed by our experiments of inversion for different classes

of speech sounds. based on synthesized and real speech data.

The previous studies dedicated to inverting the articulatory-to-acoustic trans-
formation did not impose any phonological or linguistic constraint on this inversion,
so they considered the speech as the output of a single dynamic model with time
invariant parameters. On the other hand, preliminary studies and experiments of
articulatory based speech recognition which. subsequently, tried to estimate the
articulatory state. using different models for different phonetic/phonologic units,
did not actually divide the observation function (Shirai [87]; Shirai and Kobayashi
[90] and [91}; Ramsay and Deng [75] and [76]; Zlokarnik [107] and [108]: Krstulovic
[43]: King and Wrench [40]).

A question of whether or not one needs to know the phonologic affiliation of
a speech segment in order to accurately recover the articulatory gestures from the
speech acoustics may arise. This. in our opinion. represents an open question

which needs more debates and experimental evidences from speech researchers and
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scientists. However. our experimental findings encourage us to support the idea
that, knowing the phonological or linguistical affiliation of a speech acoustic segment

helps in increasing the accuracy of estimating the articulatory trajectories.

Having established this new characteristics of the speech inversion method as
developed here, we will define now the phonological coproduction segments (or
units) and models of speech. The main idea in defining the phonological coproduc-
tion units to be associated to the dynamical models relies on the concept of gesture
from articulatory phonology. These gestures in the area of articulatory phonology
represent a new way of defining the articulatory structures (Browman and Gold-
stein (8], [4]. [5]. [6] [7]). These phonological gestures are patterns of articulatory
movement corresponding to segments of speech. unlike in the traditional linguistic
phonetic research where the phonetic units are represented by static physical pa-
rameters or vocal-tract shapes. The original definition of gestures in articulatory
phonology was based on specifying the geometric tract variables which produce the
gestures (e.g., bilabial gestures). In this thesis we adopt the concept of gestures as
phonologic structures and extend it from the tract variables to the more general ar-
ticulatory variables which can be represented by the parameters of an articulatory
model or by the coordinates of some pellets placed on different articulators. Thus.
we define the phonological coproduction segment as the articulatory realizations of
a constellation of elementary, possible overlapped gestures, as defined by Browman
and Goldstein [7], in moving toward a phonetic target and starting from an initial
state represented by a different phonetic unit. An entire utterance can thus be
modeled by a concatenation of such coproduction segments or units. We associate
a dynamical model to each coproduction segment. The models describe the move-
ments from an initial articulatory configuration corresponding to a phonetic unit a.

to a target articulatory configuration. corresponding to a different phonetic unit .
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Such an (a. ) model can be associated with the sequence of articulatory patterns
in producing any phonologically possible combination of two consecutive phonetic

units.

Even though the articulatory gestures represent the articulatory movements
necessary to produce the phonetic target 3. we do not associate this phonological
unit with the phonetic unit 8 because the dynamic patterns of this motion are
to a great extent dependent on the initial articulatory state. represented by the
phonetic unit a. Figure 4.2 presents the trajectories of a tongue body articulatory
parameter recorded with an electromagnetic midsagittal articulograph (EMA). for
two segments of speech — /ah s/ and /eh s/, from a male speaker. The articulatory
parameter represents the X position of a sensor placed on tongue body (T2-X).
Although both segments have the same target phoneme /s/. the trajectories are
different. In this figure one can see that the *“T2-X" parameter has a positive slope
for the /eh s/ segment and a negative slope for the /ah s/ segment. Not only the
trajectories are different. but also the articulator’s position of the target phoneme
/s/. Table 4.1 presents the dynamic parameters $, and &,. for the two segments

of speech, of a second order linear system described by the equation
z(k +1) = ®,z(k) + ®oz(k — 1) + w(k). (4.1)

where k is the discrete time, z is the articulatory variable (T2-X). and w is a driving
variable. The dynamic model parameters were estimated using a Maximum-
Likelihood method from the articulatory trajectories of the twe different segments.
/ah s/ and /eh s/. The details of the ML model parameter estimation used. will

be presented in one of the next sections.

The human vocal apparatus, as a dynamic system. contains different articula-

tors. excitation sources, sound radiators and some fixed parts of the vocal and nasal
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Figure 4.2: Examples of T2-X parameter trajectories for /ah s/ and /eh s/ segments

of speech. (EMA recordings from a male speaker)

/ah's/ | 1.9748 | -0.9746
Jeh's/ | 1.0872 | -0.0862

Table 4.1: Examples of different dynamic model parameters for T2-X
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tracts. The speech, representing at a higher level a sequence of phonological units,
is the result of overlapped articulatory gestures in which the co-articulation of con-
secutive sounds can significantly change their patterns. These patterns can also be
altered by changing the rate of the speech due to the dynamic constraints imposed
by the articulators. Thus, the speech, as the output of the dynamic vocal system
is produced by the dynamic co-operation of the articulators. The theory of speech
production is modeling speech as having two main components: the source and the
filter. Both parts have dynamic behavior but in encoding the phonologic informa-
tion into speech acoustics the filter component has the main dynamic role. The
dynamics of the source is also an important factor because changes in the state and
location of the source can also impose phonologic information into speech acoustics.
Starting with the muscles acting upon the lungs to produce an air flow necessary
to excite and pass the vocal and nasal tracts, continuing with those acting upon
the glottis. larynx, tongue, velum and jaw, and finishing with those moving the
lips and controlling the head position for speech direction, all these muscles have
a co-ordinated activity controlled by the brain using nervous impulses transmitted
through the spinal cord. spinal nerves and nerve fibers. The dynamics of the vocal
apparatus is thus very complex and determined by the co-ordinated movements
of its parts and their interaction in the three dimensional space. Each articula-
tor or dynamic part of the vocal system is controlled by different muscles. some
of them having antagonist behaviors. It is very difficult to model accurately the
movement of all these dynamic parts due to the complexity of the system and their
complicated interaction in producing speech gestures. In addition to the dynamic
constraints the motion of the vocal system is also determined by the various phys-
iological constraints due to the limited space of action and the interaction of its

articulators.
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In this study we were concerned about modeling the motion of those articula-
tors which are the main vocal system parts responsible for encoding phonologic-
linguistic identity into the speech acoustic signal. Thus, the jaw. lips. tongue,
larynx and velum are of interest in this study and not those like lungs and neck
which do not impose any phonetic information upon speech. Because the motion
of the articulators is influenced by their mass, damping coeflicients and stiffness
coefficients it is appealing to use the second order differential equations to model
the time evolution of the articulators. This is the motivation of choosing second-
order equation in modeling the motion of the articulators. In this study however,
the modeling has been done using directly the discrete-time difference equations
instead of their equivalent continuous-time differential equations. Thus, we em-
ployed the linear second-order difference equation in which the state variables are
driven by some inputs towards phonetic targets. We preferred to use this direct
discrete time description of articulatory motion instead of modeling the articulators
using continuous-time differential equation of spring-mass-damping systems. which
would need explicitly a description of mass, damping and stiffness of each artic-
ulator and then converting the continuous-time model to a discrete-time model.
The continuous-time description of each articulator would be difficult to obtain for
the case of a statistical articulatory model, like that we are using in this study,
or for modeling the articulatory system by direct measurements of some pellets
placed on articulators. It would be more difficult to assess for the statistical lin-
car components of the model or for those small points on articulators their true
mass. damping and stiffness parameters and then to convert the continuous time

equations into the equivalent discrete time equations.

A simple, second order model, capable to account for coarticulation phenomena

in producing the articulatory gestures is formulated in the following. This model
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corresponds to a coproduction segment as defined in the beginning of this section.
The two discrete-time equations describing the state-space model of the dynamic

articulatory system are the state equation and respectively the observation equation

x(k +1) = & x(k) + #Tx(k — 1) + w(k) (4.2)
y(k) = heB[x(k)] + v(k) (4.3)

where & represents the discrete-time index, x is a n x 1 vector representing the state
variable of the articulators, «I»&‘"‘” and an'm are m X n transition matrices. y is a
m x 1 vector representing the measurements or the observation variable, h{®#)(x)
is a m x 1 non-linear observation function, w and v are n x 1 respectively m x 1
uncorrelated Gaussian white noise vectors with zero means and n x n respectively

m x m covariance matrices Q(®% and R(=?) defined as follows

E{w(@)wT(j)} = QP (:)é;; (4.4)
E{vi)VvT(j)} = RED ()4, (4.5)
E{w(@)vT(j)} =0 (4.6)

where E is the expectation sign. 4;; is the Kronecker delta and T is the transpose
sign. These covariance matrices are symmetric and positive definite. The initial
state x(0) is assumed to be independent of the random vectors w and v and to have
a Normal distribution for a given model with the n x 1 mean vector u{*#) and the
n x n covariance matrix 3(#). The main advantage of using the state-space model
defined by the state and observation equations consists in accounting separately for
modeling disturbances of the state and respectively the observation. This is done

by using the two independent random variables w and v.

In the above discrete state-space model equations the state variable x can rep-

resent the parameters which control an articulatory model or can represent the



CHAPTER 4. ACOUSTIC-TO-ARTICULATORY INVERSION 71

position of some points or pellets situated on articulators and used to track their
movements by electromagnetic articulography, cine-radiography or magnetic reso-
nance imaging techniques. The acoustic-to-articulatory inversion method presented
in this chapter can be applied to any data consisting of simultaneous articulatory
and acoustic vectors and is not restricted to using an articulatory model to gen-
erate these data. Thus, pairs of articulatory and acoustic vectors generated by an
articulatory-acoustic model or acoustic vectors recorded simultaneously with artic-
ulatory measurements from EMA, MRI or cine-radiography systems can be used.
We consider that the state vector x and the noise vector w have the same dimen-
sion. n. Also the acoustic observation vector y and the corresponding noise vector

v have the same dimension. m.

The linear state equation is modeling the dynamic constraints imposed to the
evolution of the state of the articulators. These constraints are due to the equivalent
mass inertia of the articulators and their damping and stiffness coefficients. In this
linear equation the noise w is driving the articulatory state and it also models the
errors in the evolution of the state variable. The linear state equation represents
a simple approximation of the real. complicated motion of the articulators, yet
powerful enough to model the main mechanical processes which take place into the

human vocal system.

The second equation of the state-space model of the articulatory system, rep-
resents the non-linear measurement equation or the observation equation. The
measurement variable y can be a parametric representation of the acoustic speech
signal and it is considered the surface observation of the dynamic vocal system.
The non-linear function h'®#)(x) directly relates the observation variable y to the
hidden articulatory state variable x. If using an articulatory model this function

approximates a chain of transformations. First the articulatory variables are trans-
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formed into vocal-tract midsagittal distances, then these distances are transformed
into cross-sectional areas and then these areas are used to solve the wave equations
into the vocal and nasal tracts. Finally the pressure and volume velocity of the
air flow are computed at the lips and nostrils and the acoustic pressure signal is
then processed and the speech acoustic parameters are extracted using different
methods like LPC or MFCC computation. formant extraction etc. In practice. the
computation of the non-linear observation function is rather complicated and time
consuming even though some simplifications and approximations are assumed. The
non-linearity of the observation equation makes the distribution of the observation
variable non-Gaussian. even though the noise variable v and the state variable are
considered Gaussian. In order to apply the estimation methods based on extended
Kalman filtering. a method of approximating the non-linear function h(*)(x). on
piecewise linear regions is needed. This function h(®**)(x) and its Jacobian matrix
can be computed using numerical approximation methods. It can be linearized on
small regions based on the Taylor series decomposition of a function. The Jacobian
matrix is needed in the Kalman filtering techniques for computing the error covari-
ance matrix and the Kalman gain. Using the first order terms of the expansion of
the h'=#)[x(k)] function in a Taylor series about a reference value x. (k) of the state

variable we can write the output equation as follows
y(k) = h(=P () + H®)(x,)[x(k) — x.] + v(k) (4.7)

where H(*-f)(x,) is the Jacobian matrix of h‘*#) having the elements defined as the
partial derivative of h(®#) with respect to x

h?)  ar P x(t)]

- _ . 4.8
oz, Bz:(t) Ix(t)=x.(t): (4.8)

where 7{*”) is the ith element of vector h*#) and z; is the jth element of vector

x. The speech inversion results of the previous studies based on Kalman filtering
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were obtained using formant frequencies [89] and power spectrum components [105]
as measurements or acoustic observation variable y. In a preliminary stage of this
study we used the formant frequencies as acoustic observation vectors [20], and then
we extended the study by using a more general acoustic feature. the Mel-Frequency

Cepstrum Coefficients (MFCCs) [21].

In the state equation, the transition matrices ®.**) and &5

are functions of
the matrices describing the masses M, damping coefficients B and stiffness coeffi-
cients K, of the articulators as presented in the counterpart continuous differential
equation from Chapter 2. The assumption used by other authors. [89]. that the
articulatory system is critically damped is not considered here, so we do not impose

any relationship between ®{** and ®{*) matrices.

The second-order state equation can be augmented to the first-order equation

as follows
x(k + 1 &7 &1 | | x(k w(k
k+1) | _ [ o w ][]
x(k) I 0 x(k—-1) 0
The augmented state variable denoted by z becomes
x(k)
z(k) = . (4.10)
x(k — 1)
the augmented transition matrix ®(=?) becomes
¢(a.ﬁ) Q(Gﬁ)
glh = | 7! > (4.11)

I 0
and the augmented noise vector w. becomes

wok) = | VL (4.12)
0
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The augmented first-order state equation can be written in the simple form
z(k + 1) = ®@Plz(k) + w.(k). (4.13)

where the augmented noise vector w. has the covariance matrix Q{*#) defined by

the equation

Q(O.ﬁ) 0
QP = : (1.14)
0O O
The dimension of the augmented state vector z is two times larger than that of the

original state vector x.

Using the augmented state variable z. the corresponding observation equation

becomes

y(k) = g z(k)] + v(k). (1.15)

where g(@#)(z(k)] is the augmented non-linear observation function derived directly
from the original observation function h(*#)[x(k)] through a simple transformation.
It can be observed from this last equation that by augmenting the state variable
the dimensions of the new function g{®#)(z]. observation variable y and observa-
tion noise v remain the same. The corresponding augmented observation equation

linearized on small regions using the Taylor series expansion becomes
y(k) = g (z,) + GP)(z.)[z(k) — z.] + v(k) (4.16)

where G(@f)(z,) is the Jacobian matrix of g(®#)[z] computed at some reference

points z,.

This last equation together with the augmented state equation describe the
final dynamic model for which statistical methods of model parameter estimation
and state estimation based on extended Kalman filtering and smoothing have been

applied.
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In this study we implemented and analyzed a second version of the dynamical
model. which is based on piecewise constant targets. This target model was first
applied to estimation of articulatory trajectories by Shirai and Honda [89]. and
later extended to a stochastic target model in estimating articulatory trajectories
for automatic speech recognition by Ramsay and Deng [75]. We implemented this
version in order to evaluate it and we found that it is not very accurate in estimating
articulatory trajectories. even though. for automatic speech recognition purposes
where an accurate estimation of articulatory trajectories is not very important. this

target model might be useful.

For this target model, the second-order state equation becomes
x(k +1) = ®% (k) + L Px(k - 1) + (k) + w(k). (4.17)

where u is the target variable, constant over a certain segment of speech. as de-

scribed by the equation
u(k + 1) = u(k) (4.18)

for a speech segment from k = [; to k = l; defined by the onset of an articulatory
gesture. The control, or target transformation matrix ¥, has to be constrained by

the equilibrium equation at which the state reaches the target. that is
x(k+1)=x(k) =x(k—1) = u(k) (4.19)
From this condition the constraint on the ¥(>#) matrix can be easily obtained as
wed) =1 — P _ P (4.20)

where I is the identity matrix.

Like the state variable x(k), the control input u(k) is unobservable. Imposing

different constraints on the evolution of this control input can affect the accuracy
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of state estimation due to underlying assumptions regarding the control input or
target, u(k). The assumption that this control input or target is constant over
an interval corresponding to a phonologic gesture. as used by Shirai and Honda
[89]. and Ramsay and Deng [75], leads to constraining the approximation of the
articulatory trajectories by exponential functions, which asymptotically approach
the targets. Studies of articulatory motion and modeling have shown that the
exponential time function cannot fit accurately the movements of the articulators
which. instead, are better approximated by sinusoidal functions (Browman and
Goldstein [8]; Kroger et al., [42]). On the other hand, the actual control input
of the articulators is affected by the complex neuro-chemical processes which take
place in the human body. Thus, it is difficult to approximate the real shape of the
control input. However, it is not certain that the shape of the control input could
be estimated accurately from the speech acoustic signal alone. Our experiments
have shown that imposing this constraint of step target affects the accuracy of
articulatory trajectory estimation. If, for example, in applications like articulatory
based speech recognition, such a step target could be meaningful and useful. it could
be determined by other simpler methods from the estimated articulatory trajectory.
Another drawback of the target model is that these targets segment the speech
globally into units in which the overlapping of articulatory gestures is not allowed.
That is. there is no single pair of boundaries delimiting a speech unit common to
all articulatory variables. In reality, each articulatory variable has its distinct set
of boundaries corresponding to an activation interval of a gesture. In a Kalman
filtering approach of estimating articulatory trajectories, the individual boundaries
corresponding to each articulatory variable are difficult to obtain. Theoretically,
these individual boundaries could be obtained if a number of separate Kalman

filters and smoothers would be used, each of them corresponding to an articulatory
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variable. Unfortunately, this approach is not practical.

The second-order state equation including the target can be transformed into a

first order equation by augmenting the state variable as follows

r x(k + 1) 35 b glas) x(k) w(k)
x (k) = I 0 0 x(k—-1)| + |0 . (4.21)
u(k +1) 0 0 I u(k) 0

where I is an n x n identity matrix and 0 is an n X n matrix, or an n dimensional

vector in the last column, with all elements equal to zero.

Denoting the augmented state variable by z
x(k)
z(k) = | x(k-1) |. (4.22)
u(k)

the augmented transition matrix by ®{=-#)

an,ﬁ) an'ﬁ) P l(aB)
® = I 0 o |. (4.23)
0 0 I

and the augmented noise vector by w.

w(k)
w.(k) = 0 . (4.24)
0
we can write the state equation in a simple augmented form as follows

z(k + 1) = ®Plz(k) + w.(k). (4.25)
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The augmented noise vector has its covariance matrix Q{*#) defined by the equation

Q(a.ﬁ) 00
an.ﬁ) = 0 0 0. (4.26)
0 00

The dimension of the augmented state vector z is three times larger than that of the
original state vector x. and thus the whole estimation method is computationally

more expensive.

4.2 Articulatory-Acoustic Function

The acoustic-to-articulatory inversion described in this thesis is based on training
pairs of articulatory and acoustic trajectories. These training data can be either
synthesized or measured from real subjects. The articulatory-acoustic nonlinear
sub-functions are approximated from the corresponding training utterances of each
phonological coproduction model. In order to prepare the data for these approxi-
mations. the continuous training utterances have to be first segmented and labeled.
This can be carried out manually or by employing an automatic segmentation
method based on the acoustic parameters (Ljolje and Riley [52]). After segmenta-
tion and labeling, all the tokens corresponding to each coproduction phonological

unit were used to piecewise linearly approximate the corresponding sub-function.

The articulatory synthesis function, which relates the speech acoustic parame-
ters to the corresponding articulatory parameters, requires a large computational
cost. In addition, the numerical computation of the Jacobian matrix of this func-
tion decreases the speed of the overall speech inversion method. Hence, methods of

approximating the articulatory-acoustic function and numerical computation of the
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Jacobian matrix are desirable. In this section, a method used for approximating
the articulatory-acoustic non-linear functions is presented. This method was ex-
perimented in order to carry out this approximation with piecewise linear functions
in small regions. For each small linear region the mean acoustic and articulatory
vectors and the Jacobian matrix which linearly relates the two spaces are needed

in the process of extended Kalman filtering and smoothing.

The direct transformation from the articulatory space to the acoustic space
represents the process of speech production or the synthesis and can be. in general.

described as a non-linear multivariate function g of a multivariate argument
y = g(2). (4.27)

where y represents the acoustic vector and z represents the articulatory vector.
These vectors can have various dimensions according to what exactly they repre-
sent in the acoustic and articulatory spaces. To represent the speech acoustics one
can use different parameters derived from the speech acoustic signals, e.g. formant
frequencies. FFT coefficients. LPC coefficients. MFCC parameters etc. The artic-
ulatory vectors can also be represented by different parameters. e.g. articulatory
model parameters, measurements of pellets on different articulators, area functions

of the vocal-tract, etc.

This speech production or synthesis function described by Equation 4.27 in-
volves a high computational cost even though a very simplified production model is
employed. It is more convenient therefore. to approximate this non-linear function
with piecewise linear functions on small regions on which the linearity assumption
holds. In addition, in our approach of speech inversion, this linearization is neces-
sary in order to transform the dynamical model with non-linear observations into a

linear perturbation model with linear observation matrix (Jacobian matrix). The
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linearization of the measurement or observation function can be done using large
numbers of pairs of articulatory and acoustic vectors. The creation of the collection
of (z.y) pairs of vectors for many different articulatory configurations can be made
by sampling the articulatory space of an articulatory model (Atal et al.. [1]). or by
acquiring real human articulatory and acoustic data (Hogden et al., [34]: Suzuki et
al.. [99]). The former method has the advantage of simplicity but it is very difficult
to synthesize accurate articulatory trajectories close to real ones. The latter method
has the advantage that it does not contain the inherent approximations introduced
by the use of articulatory-acoustic models. A disadvantage of this method is that
it is difficult in practice to obtain large articulatory and acoustic database for all
classes of speech sounds and many speakers. In this study of speech inversion we
experimented the approximation of the articulatory-to-acoustic function using both

methods of generating and acquiring articulatory and acoustic data.

The linearization of the articulatory-to-acoustic function in small regions has
been used first by Shirai and Honda [89] and Atal et al.. [1] for the purpose of
inversion of this transformation. Thus. for small regions around some reference
points defined by z. and y. = g(z.) in the combined articulatory-acoustic space

they approximated y as follows
y~y.+ G(z — z.). (4.28)

where G was the matrix of partial derivatives of g(z). This equation represents only
the first order approximation of the Taylor series expansion of the non-linear func-
tion because it neglects the high order terms. Because the articulatory-to-acoustic
transformation is computationally very expensive, in practice, the elements of the
Jacobian matrix G are computed numerically by replacing the partial derivatives

with partial differences.
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One of the most important innovations proposed in this study consists in di-
viding the whole observation function into a number of sub-functions. each corre-
sponding to a phonological coproduction model. as defined in the beginning of this
chapter. In this research we propose a method to divide the whole non-linear obser-
vation function into a number of N¢ coproduction non-linear sub-functions. where
Nc ~ Np x Np and Np represents the number of phonetic units of a language. This
total number of coproduction models A¢ is not perfectly equal to the square of the
number of phonetic units A3 because of the linguistic and phonological constraints
of the language. Each sub-division of the whole observation function belongs to a
dynamic model (a, 8). indexed from 1toN. Thus. in the above linearized equation.

the parameters become dependent of the model (a. 3)
y = g + Gz — z{*9)], (1.29)

where gsa.a) = g(aﬁ)(zga-ﬂ)) and G®P = Glad) (z{>)),

The method of approximating the non-linear function. experimented in this
study, was based on articulatory-acoustic codebooks. An alternative method of ap-
proximating the non-linear observation function is presented in Appendix A. and is
based on neural networks. This alternative method is more universal and is suitable
to approximate any nonlinear articulatory-acoustic sub-function corresponding to

a phonological coproduction model.

4.2.1 Approximating the Articulatory-Acoustic Function by
Codebooks

The codebooks or look-up tables were first used for approximating the articulatory-

acoustic function by Atal et al., [1] and latter have been adopted by several authors
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(Schroeter et al., [84]; Schroeter and Sondhi [86] and [85]: Ramsay and Deng [75]:
Hogden et al., [34]; Dusan and Deng {20]). Because the exhaustive search of large
articulatory-acoustic codebooks is time consuming, it can be simplified if some
vector quantization methods are employed (Gray [31]: Linde et al.. [51]: Larar et

al.. {47]).

By linearly approximating the non-linear observation sub-function. correspond-
ing to phonological coproduction models (a,/3). we constructed codebooks C(**
containing a number N(®#) of sets of linear parameters S{*?[z{*? gl=* G,
representing the mean articulatory vector. mean acoustic vector and respectively
the Jacobian matrix of each small linear region i = 1.2..... N{*#)_ included in the
model. This kind of sets of triple articulatory-acoustic parameters has been pro-
posed by Ramsay and Deng [75], but in that study they were not associated to

phonological models but to binary-derived or ‘cubic’ regions without any phono-

logic relationship.

In this subsection, a method of creating the codebooks C{*# from training
pairs of articulatory and acoustic vectors from a reference speaker is presented.
The clustering of data into small regions is carried out by using self organized maps
neural networks (SOM-NN). The linearization of these regions is accomplished by
a multiple linear regression method. First, we assume that we have a collection
of labeled sequences of pairs of articulatory-acoustic vectors for each phonologi-
cal coproduction model (a, 3). These training sequences can either be synthesized
or acquired from a reference speaker and should contain realizations of the corre-
sponding coproduction units using different speed and stress parameters. Thus. the
articulatory-acoustic data collected from a single speaker (or reference model) can
only have a variability due to some dynamical and linguistic factors like the manner

of articulation and the stress and speed parameters. Eliminating the coarticula-
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tion variability the phonological coproduction model represents different transition
prototypes of producing the /aB/ phonologic sequence. An example of such a
collection of trajectories for a model (a.3) = (eh,iy) containing 20 trajectories
generated with the Maeda’s articulatory-acoustic model is represented in figure
4.3. For clarity. the trajectories are displayed by scattered small dots rather than
continuous plots. The non-linearity of the observation function g{**) can be seen in
many of the sub-plots. However, for this model the non-linearity is not very large.
The time dimension has been eliminated by displaying in a separate sub-plot the
yi — z; elements of the acoustic vectors y. represented by 10 MFCC parameters.

and articulatory vectors z. represented by 8 Maeda’s model parameters.

In creating a codebook C(*#), a method of clustering the articulatory-acoustic
data corresponding to the (a,3) model has to be used. The clustering method
divides this data into small regions on which the linearity assumption holds. In our
experiments we varied the number N!*# of the piecewise linear regions included
in a codebook C{*#) between 3 and 50. A basic number of N{*?) = 10 has been

successfully used in most of our experiments.

We developed an efficient method of clustering the articulatory-acoustic data of
each model using neural networks of the self-organizing map (SOM) type. These
neural networks are competitive layers and are often used for classification. By ap-
plying the SOM technique a predefined number of clusters are determined from the
data and for each cluster the weights (or centers) of the regions in the multidimen-
sional acoustic-articulatory space are computed. In clustering the space of a model
we used the combined space of articulatory and acoustic dimensions. For the data
displayed in figure 4.3, corresponding to a model (a, ) for the /eh iy/ segment.
a clustering example using N{®#) = 7 is presented in this figure by marking the

centers of the clusters with small circles. The centers of these circles are the pro-
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Figure 4.3: Scatter plots of 20 /eh iy/ sequences synthesized with the Maeda’s

models
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jections of the mean cluster vectors 2"

#) and g!*?) on each of the two dimensional
subspaces y; — z;. where i = 1, 2,..,10and j =1.2,...,8. After computing the cen-
ters or the mean values of each cluster a method of linearization based on multiple
linear regression using least squares has been used. The goal of linearization in each
cluster consists in finding a matrix which approximates the Jacobian matrix of the
g‘=#) non-linear function computed at the point represented by the center of the
cluster. In evaluating the accuracy of the linear approximation of the g(@?) function
for each cluster the errors of approximation are computed for all the data samples
of a model. If the average error for all the data samples is greater than a predefined
threshold then a higher number of clusters will be used. until the average error is
lower than the threshold. The whole algorithm of clustering and linearization has
been implemented iteratively using the MATLAB's statistics tool-box. Finally, for
each phonological coproduction model (a, B), a codebook Cte#) containing a list
or a look-up table of N{=#) sets of parameters SleP [glF ) gle?) gi? )]. where

i=1,2.....N*P) is created.

In the extended Kalman filtering, for finding the closest linear region correspond-
ing to an arbitrary articulatory vector #(k|k — 1), a search based on the Euclidean
distances between this new vector and the articulatory mean of each cluster has
been used. Thus, the closest cluster, or linear region, will provide the most accurate

approximation of the non-linear function g(@? at the point Z(k|k — 1).

The sequence of articulatory-acoustic pairs of vectors can be either synthe-
sized or acquired from human measurements. However, if the training articulatory-
acoustic data of a model (a,3) contains a very small number of sequences, the
above method is not accurate in approximating the non-linear function g(*#) in
small regions. This is due to the limitations of the multiple regression method

employed. For this case, we developed a method of generating random sequences
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of articulatory-acoustic training data from as little as a single original sequence
corresponding to a model. This method is based on approximating the original
training sequence (or sequences) with polynomial functions on all the sub-spaces
represented by the combinations of any element of z with any element of y. This
approximation is needed because the acoustic parameters are affected by noise. An
example of approximating a single sequence, /aa sh/. is illustrated in Figure 4.4.
The display is in a form of articulatory-acoustic sub-spaces, like in the previous
figure. The original /aa sh/ sequence has been approximated on each subspace
with a third-order polynomial function which is displayed with continuous lines.
whereas the original sequence is displayed with dotted lines. After computing all
the polynomial function coefficients, based on the method of polynomial ﬁtting, a
number of random sequences can be generated artificially from these polynomials
by adding a Gaussian noise to the main polynomial trajectories. Figure 4.5 dis-
plays the generated data of 20 /aa sh/ trajectories, plotted with small dots, and

the polynomial functions, plotted with continuous lines.

The random noise used to generate these trajectories should not be large enough
to change the phonetic identity of each of the  and 8 phonemes. Then these new
sequences can be used together with the original one (or ones) to do the clustering
and linearization of the corresponding model. Our experiments have shown that this
method could be successfully used as a solution when very few training sequences

for a model are available.
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4.3 Maximum-Likelihood Estimation of Model Pa-
rameters using Articulatory-Acoustic Train-

ing Data

In this study we implemented a simple method of estimation of model parameters
using the maximum-likelihood method and based on the training utterances. Since
the estimation of articulatory trajectories used in this study is based on continuous
speech training utterances. consisting of pairs of articulatory and acoustic vectors,
the estimation of model parameters can be considered a supervised training pro-
cess. The articulatory-acoustic training data has to be pre-segmented and labeled
before the model parameter estimation starts. This segmentation and labeling can
be made manually or. an automatic segmentation and labeling of the speech ut-
terances can be employed. Such an automatic segmentation method based on the
acoustic parameters alone can provide the phones and their boundaries using a
phone recognition system (Ljolje and Riley [52]). From the phone transcription
and boundaries, the diphone units and their boundaries can be easily obtained.
The Maximum-Likelihood (ML) estimation is a statistical method of estimation
based on finding an optimum parameter set which maximize a likelihood objective
function. When dealing with exponential distributions. e.g.. Normal distribution,
the logarithm of the likelihood function is often used as the objective function. A
derivation of the maximum-likelihood estimation of the parameters for a multivari-

ate Normal distribution can be found in {30].

In this section. for the clarity of the equations, we dropped the index (a.3) of

all the parameters corresponding to a coproduction model.

The estimation of the dynamic articulatory system model parameters 6 =
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{®.Q.,R} has been done in this study using the a direct form of the ML method.
We also implemented an alternative method of model parameter estimation. from

acoustic parameters alone, using the Expectation-Maximization algorithm. [15].

In the following of this section, we derive the ML parameter estimation method
and provide details of our implementation. For a particular model. described by
the state space equations, the ML estimation is based on maximizing an objective
function consisting of the likelihood of the complete articulatory and acoustic data

L(Z.Y).

For a state-space model, corresponding to a particular phonologic articulatory
gesture onset interval as defined by Browman and Goldstein in [6] and Kroger et al..
in [42]. we can consider the system to be time-invariant. This means that. for a given
interval specifying the onset of an articulatory gesture. we have a model described by
the state-space equations in which the parameter set # do not change its value and
we want to estimate it from the sequences of observations. Y = [y(1)y(2)...y(NV)]
and Z = [z(1)2z(2)...z(N)] corresponding to a coproduction segment. In the state-
space model equations of the dynamical system. the two noise processes w_(k) and
v(k) have Normal distributions with assumed zero means and covariance matrices
Q. and R

p(w:) ~ N(0.Q.). (4.30)

p(v) ~ N(O,R). (4.31)

Because w_(k) and v(k) are assumed independent each other. their joint likelihood

equals their probability product

N N
Llw.,v] = kII plw. (k)] IT plv(k)l, (4.32)
=1 k=1

for a sequence of N independent identically distributed (i.i.d.) samples of these
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distributions. The logarithm of the joint likelihood function L is

logL[w..v] = log{[] p{w-(k)] [] plv(k)]}

k=1 k=1

N N
= log H plw. (k)] + log H plv(k)]
k=1 k=1

N 1 X TA-1
-~ k=1
Af 1 N T —1
—SloglR| — 2 3 _[v(k)]"R7[v(K)]
k=1
+constant. (4.33)

In order to estimate the parameter set 8 = {®, Q.. R} of a phonological copro-
duction model from an observation sequence using the maximum likelihood method
we need the objective function defined by the joint log-likelihood of the complete
data. This objective function J(Z.Y,#) is defined by the log-likelihood of the state
and observation variables and can be obtained using the above equation by sub-
stituting the two random variables w_.(k) and v(k) using the augmented state and

observation equations

J(Z.Y.0) = log{L(Z,Y), 8}

= ~SloglQ.| — 5 S-[a(k) - ®a(k — DI Q: [a(k) — Ba(k — )]
k=1
N
~ZlogR| ~ £ S°[y(k) — gla(®TR [y (k) - glz (k)] (434)
k=1

where we omitted the constant term from the previous equation. This objective

function can be further written as follows

J(®,Q.,R) =logL(Z.Y.0)
= —%tr{Q‘l[Ss — S, 87 — ST + #S,87]}
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—Str{R![S, — Ss — ST + S¢}

N N
—510g|Q:| — -log|R/, (4.35)
where tr represents the trace (or the spur) of the matrices and S,. .... S¢ are the

sufficient statistics defined by the following equations

S, = kiIZ(k— Dz(k — 1)7T. (4.36)
S, = év:lz(k)z(k—nT, (4.37)
S; = g:lz(k)z(k)T, (4.38)
Sy = ﬁ_':y(k)y(k)? (4.39)
Ss = iy(k)g(z(k))? (4.40)
Se¢ = Zg(z ))g(z(k))". (4.41)

where g(z(k)) are computed using the articulatory-acoustic codebook or the neural

network for the corresponding model sub-function.

In order to estimate the model parameters. we have to compute the derivative
of the objective function with respect to each of the model parameters. make the

derivative equal to zero, and solve these equations

9J(®.Q:.R)

= 4.42
3P 0 (4.42)

where P is a matrix and represents each of the model parameters ®, Q.. R. In
taking the derivatives of the scalar function J(®,Q., R) with respect to the matrix

parameters P we used some rules of matrix algebra. as presented in [30]. Applying
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this maximization technique the set of model parameters can be estimated as

® = S,S77, (4.43)
Q. = 71,-(53 - S,87'sT), (4.44)
- 1
R = =(S:—8s— 87 +S0). (4.45)
where N represents the number of samples and S;, ..., Sg are computed using the

acoustic and articulatory samples from the training utterances.

In addition to the set of parameters 8 = {®,Q., R} estimated above. the ex-
tended Kalman filter needs other two parameters for initialization — the mean and
the covariance matrix of the initial state for each model. The initial state z(0)
of any observation sequence corresponding to a model is assumed to have also a

Normal distribution with mean u and covariance matrix X
p[z(0)] ~ N(u, ). (4.46)

For a single observation sequence with 1 to /V observations. the mean and covariance

matrix of the initial state can be simply chosen as

[L = Z(].), (4.47)

S = 3(1), (4.48)

where z(1) is the first articulatory state in the training sequence and 3(1) is a

covariance matrix which can only be experimentally chosen.

If we estimate the parameters of a model from multiple observation sequences,
the extension of the above single sequence algorithm to this case is straightforward
and can be done by extending the summations in the computation of the statistics
S;. .... S¢ to all the observation sequences. Thus, in the case of M training obser-

vation sequences, each of them having a particular length N, the corresponding
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statistics become
M Nim)
S, = Z 3 z(k - 1)z(k - 1)T. (4.49)
m=1 k=1
M Nm)

S: = Y 3 z(k)z(k—1)T, (4.50)
" New
S; = > ¥ z(k)z(k)T. (4.51)
m=1 k=1
M Nm
Sy = Y Z y(k)y k)T, (4.52)
m=1 k=
M N(m)
Ss = Y ZY(k)g(Z(k)) (4.53)
m=1 k=
N(m)

S¢ = Z Y- (z(k))g(z(k))". (4.54)

m=1 k=1
The estimated model parameters computed for the case of multiple training obser-

vation sequences are

& = S,S87', (4.55)
~ 1 _
. = W(sa — S,Sy!ST). (4.56)
- 1
R = _ZT’T()(S4 — S5 — ST + Sq). (4.57)
m=1 m

For the case of multiple observation sequences. the mean and covariance matrix of

the initial state can be computed as

po= — Z Z(m)(1). (4.58)
m—-l
N M
= 7= X e () = Allaem (1) = A7 (4:59)

where z(,,)(1) is the first articulatory state in the training sequence number m.

We successfully implemented this method of model parameter estimation based

on the articulatory and acoustic training utterances. We also implemented the
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Expectation-Maximization algorithm for ML parameter estimation which uses the
acoustic observation alone. As expected, the estimated parameters using the EM
algorithm are not as accurate as those obtained from the direct ML method. but

they are close.

4.4 Articulatory State Estimation Using the Ex-

tended Kalman Filtering and Smoothing

The statistical method of state estimation. which is at the core of the acoustic-
to-articulatory inversion used in this study. is based on the extension of Kalman
filtering and smoothing to non-linear systems. Before the presentation of the ex-
tended Kalman filtering (EKF) and smoothing methods. which will be done in
detail later in this section, the basics of the Kalman filtering and smoothing ap-
plied to a generic linear dvnamical model will be described in the following. In this
section. for the convenience of a simplified notation. we dropped the index (a. 3)
of the model for all the parameters corresponding to a phonological coproduction

model.

The Kalman filtering, predicting and smoothing are mean-squared estimation
methods. The mean-squared estimation is a method in which an estimator 8 of a
random parameter @ is determined by minimizing the mean-squared error objective

function J, that is
J[Oms (k)] = E{[6 — brrs(k)]T[6 — Oms(K)]} (4.60)

where Oy s(k) =60 — éMs(k) is the estimation error. and the estimation is based on
the observation data y(1), ..., y(k). According to the fundamental theorem of esti-

mation theory. [57], minimizing the mean-squared error is equivalent to minimizing
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the conditional mean-squared error
JelBars (k)] = E{[0 — Ors(K)]T[0 — Ous(O)]ly (). ...y (k) } (4.61)

and the solution of this estimator is
Ous(k) = E{6]Y ()} (4.62)

where Y (k) is the composed vector representing the observations y(1). ..., y(k).

Filtering. predicting and smoothing are three different methods of estimating
the state of the systems by minimizing the mean-squared estimation error of the
state. Kalman filtering is the method for estimating the current state of a dynamic
system based on the past and current observations or measurements of that systems.
The Kalman filtering estimate Z(k|k) of the state z at time k is defined by the

expectation of state at time k given the observations from time 1 to time k
z(klk) = Elz(k)ly(1). ...y (k)]. (4.63)

Similarly, the first order (one step) predicted estimate Z(k|k — 1) of the state z at
time K is

z(klk — 1) = E[z(k)ly(1). ..y (k - 1)] (4.64)

and the first order smoothed estimate Z(k|k + 1) of the state z at time k is
2(klk + 1) = Elz(k)ly(1). ...y (k + 1)]. (4.65)

The definition of the higher order predicted and smoothed estimates is straightfor-
ward. The predicted and filtered estimates of the state are coupled each other in
the so called Kalman filtering technique, which is a recursive mean-squared method
of obtaining the filtered estimate from the previous value of predicted estimate and

vice-versa.
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In the following the forward recursions of the Kalman filtering (Kalman. [39]).
are presented for the application of the method to a basic linear dynamical sys-
tem model as described by the linear state and observation equations for the non-

stationary case
zk+1)=®(k+ 1.k)z(k) + ¥(k+ 1.k)u(k) + T(k + 1. k)w(k). (4.66)

y(k) = H(kK)z(k) + v(k). (4.67)

The initial state vector, z(0), is a multivariate Gaussian vector with mean g and
covariance matrix X. ®(k + 1,k) is the state transition matrix. H(k) is the ob-
servation matrix, ¥(k + 1,k) is the transformation matrix corresponding to the
input signal u(k) and I'(k + 1. k) is the transformation matrix corresponding to the
noise w(k). The two independent white noises w(k) and v(k) have the covariance
matrices Q(k) and respectively R(k).

For this linear dynamic model the Kalman filter state estimation is given by the

following recursive equation
z(k|k) = z(klk — 1) + K(k)y(k|k — 1) (4.68)

for k = 1,2,.... N, where K(k) is the Kalman gain matrix and y(k|k — 1) is the

innovation process computed as
y(klk — 1) = y(k) — H(k)z(k|k - 1). (4.69)

The filtering equation from above consists of two terms, describing the prediction

and respectively the correction. The predicted state estimation is given by the

prediction equation

2(klk — 1) = ®(k, k — 1)2(k — 1|k — 1) + ¥(k, k — 1)u(k — 1). (4.70)
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The filtering error Z(k|k) defined by the equation
z(klk) = z(k) — z(k|k). (4.71)
is a zero-mean Gauss-Markov sequence with the covariance matrix defined by
P(klk) = [I - K(k)H(K)]P(k|k — 1) (4.72)
where the predicted error covariance matrix is

P(klk —1) = ®(k, k — 1)P(k — 1|k — 1)®T (k. k — 1)
+(k. k- 1)Q(k — )T (k. k —1), (4.73)

and the error cross-covariance matrix is

P(k.k — 1|k) = I - K(k)H(k)]®(k.k — 1)P(k — 1}k — 1). (4.74)
The Kalman gain matrix can be computed from the equation

K(k) = P(klk — 1)HT (k)[H(k)P(k|k — 1)HT (k) + R(k)]! (4.75)

The initial conditions at time zero are: z(0|0) = u and P(0[0) = X.

For the same basic linear dynamical model the fixed interval smoothed estimate
of the state is computed using some backward recursions from £k = N to k = 1.

These backward recursions (Rauch. [77]), are described by the equations
z(k—1|N) =2(k—-1lk—-1)+ A(k —1)[2(k|N) — ®(k. k - 1)z(k — 1|k — 1)]. (4.76)
Ak—-1) =Pk -1k - 1)®(k.k - 1D)TP(klk-1)"", (4.77)

P(k — 1|N) = P(k — 1|k ~ 1) + A(k — 1)[P(k|N) — P(k|k — 1)]A(k — 1)T. (4.78)

P(k.k — 1|N) = P(k.k — 1|k) + [P(k|N) — P(k|k)|P(k|k)'P(k.k — 1]k). (4.79)
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The application of Kalman filtering to the linear dynamical articulatory model
with non-linear observation function can be done by approximating the non-linear
function with piecewise linear functions on small regions and using the extended

Kalman filtering method.

The extended Kalman filtering represents an extension of the linear Kalman
filtering method to the non-linear systems in which one or both of the state-space
equations are non-linear. This extension is based on the theory of small perturba-
tions in which the non-linear system is approximated by a linear one on a small

region. and the original non-linear model becomes a linear perturbation model.

The linearization of the non-linear observation function can be accomplished
by expanding it in a Taylor series and, for example, restricting the expansion to
the first order terms. By linearization of the non-linear equations of the state-
space model on small regions some of the linear Kalman filtering equations will be
changed by transforming the original non-linear model into a perturbation linear
model. A variant of the extended Kalman filter has also been developed in which
the state estimation is accomplished iteratively a number of times and this is called
iterated extended Kalman filtering (IEKF). A complete derivation of the recursion
formulas, for the general case with both equations of the state-space model non-
linear. can be found in [57]. In our case, the articulatory dynamical model has
only the observation equation non-linear, whereas the state equation is a linear
equation. This simplifies somehow the transformation of the linear Kalman filter

for the articulatory non-linear observation model.

Now, assuming that the parameters of the state-space model has been estimated
from a set of training observations corresponding to a phonological coproduction
unit. this model can be used for estimating the hidden articulatory state from new

test data consisting of only acoustic observations. As described in the first section



CHAPTER 4. ACOUSTIC-TO-ARTICULATORY INVERSION 100

of this chapter the augmented articulatory state-space model is described by the

following linear state equation and non-linear observation equation
z(k + 1) = ®z(k) + w.(k). (4.80)

y(k) = g[z(k)] + v(k) (4.81)

where g[z(k)] is a nonlinear function relating the augmenting articulatory state
vector z(k) to the acoustic measurements or observation vector y(k). By linearizing
the observation function on small regions around some nominal points z,(k) the

non-linear equation can be transformed into a linear perturbation equation
dy (k) = Glz.(k)]dz(k) + v(k). (4.82)

where 0z(k) = z(k) — z.(k), dy(k) = y(k) — g[z.(k)] and G[z.(k)] is the Jacobian
matrix of the multivariate function g[z(k)] computed at the nominal value z.(k).

This perturbation equation can be written in the following form
y(k) = g(z.) + G(z.)[z(k) — z.] + v(k). (4.83)

which represents the first order approximation by the Taylor series expansion of
the original non-linear observation equation. Because of this approximation. the
extended Kalman filter and smoother will not be the optimal estimators of the
state z(k), but the first order approximations of E[z(k)|Y(1,..., k)], respectively
E[z(k)|Y(1,..., N)].

The Jacobian matrix G[z.(k)] has the dimension m x n and its elements are

defined by the partial derivatives

a_g,'_ _ 8g,-[z(k),k]

- . 4.84
32,' azj(k) |l(t)— «(t) ( )
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where t = 1.2.....m and j = 1, 2, ...,n. The nominal value z,(k) can be chosen to

be at each time frame k the predicted estimate of the state
z.(k) = z(klk — 1). (4.85)

Thus. by obtaining at each time frame k the nominal value z,(k) = z(k|k — 1) from
Kalman predictor and the corresponding g[z(k[k — 1)] and G[z(k|k — 1)] from lin-
earization. the forward and backward recursions of the extended Kalman filtering
and smoothing can be computed using these terms as follows

a) Forward Recursions (Filtering)

#(klk — 1) = ®2(k — 1|k — 1). (4.86)
z(k|k) = z(klk — 1) + K(k: «){y(k) — g(z.) — G(z.)[2(k|k — 1) — z.]}. (4.87)

K(k: +) = P(k|k — 1; #)GT (k; *)[G(k: *)P(k|k — 1: )GT (k; x) + R]™!.  (4.88)

P(klk — 1;%) = ®P(k — 1|k — 1: +)®T + Q.. (4.89)
P(k|k: #) = [I — K(k; #)G(k; #)|P(k[k — 1; %), (4.90)
P(k.k — 1|k; %) = [I — K(k: x)G(k: *)|PP(k — 1]k — 1: %). (4.91)

where = denotes the use of z(k|k — 1). These forward recursions of the extended
Kalman filter are executed for k = 1,2, ..., N. The a priori estimated mean of initial
state is used for z(0]0). The Equation 4.86 is called the prediction equation because
it predicts the state at time k from the state at time & — 1. The Equation 4.87 is
called the correction equation because it corrects the predicted state for time k with
the information obtained from the observation vector at time k. An iterative version
of the extended Kalman filter (IEKF) has been proposed (Jazwinski. [37]). In this

method. after running the above equations of the extended Kalman filter using the



CHAPTER 4. ACOUSTIC-TO-ARTICULATORY INVERSION 102

linearization around z, (k) = z(k|k—1). the model is iteratively re-linearized around

previously estimated state z.(k) = z(k|k).

The smoothed estimate of the state can be obtained by the following recursions
of the Kalman smoother.

b) Backward Recursions (Smoothing)

z(k — 1IN) = z(k — 1]k — 1) + A(k — 1)[2(k|N) — ®z(k — 1}k — 1)].  (4.92)
Ak-1)=Pk—-1k-1)®TP(k[k —1)"", (4.93)

Pk —1|N) = P(k — 1}k — 1) + A(k — 1)[P(k|N) — P(klk — 1)]JA(k — 1)T. (4.94)
P(k.k — 1|N) = P(k.k — 1|k) + [P(k|N) — P(k|k)|P(k|k) 'P(k.k — 1]k). (4.95)

These Kalman smoother recursions are executed for £t = N.N — 1.....1 and use
the first and second order statistics computed in the forward pass of the extended

Kalman filter.

In the above forward and backward recursions the parameters are constant over

segments of speech corresponding to each phonological coproduction model.

We implemented the extended Kalman filtering program in two versions. in
C and MATLAB. Due to the intensive matrix computations for which MATLAB
has been optimized. the difference in time execution between the two versions was

relatively small.
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4.5 Segmentation, Recognition of Models and Es-

timation of Articulatory Trajectories

The method of estimating the articulatory trajectories from the speech signal pre-
sented in this thesis is based on a new way of constraining the speech inversion. by
using high-level. gestural phonological constraints. In this section. we address the
issues why the recognition of phonological coproduction models is important for the
estimation of articulatory trajectories and how this recognition can be implemented

and integrated into the global speech inversion method.

The phonological constraints are imposed by recognizing the coproduction model
(. 3). which has the highest conditional probability p(a, 8]Y), given the observa-
tion sequence Y. and then. by estimating the trajectories using the recognized
model’s parameters for the Kalman smoothing. In other words. we filter iteratively
a speech segment using the parameters of different models. e.g.. the dynamical
model parameters and the articulatory-acoustic sub-function. and find the model
which best fits the data. using a likelihood measure based on innovation sequences
of the extended Kalman filtering. The whole process can be seen as an integrated
method. since both model recognition and trajectory estimation are based on the

same statistical method of extended Kalman filtering.

Mathematically. the recognition of coproduction models (or units) is based on
the Bayes’ rule. according to which the probability of a model (a. 3). given an obser-
vation sequence Y, can be expressed as a function of the probability of observations

given the model. This rule can be described by the equation

p(Y|a, B)p(a,B)
p(Y) '

In this study we did not make use of the a priori probability of the coproduction

pla.B|Y) = (4.96)
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units or models p(a. 3). so we supposed that all the models had the same a prior:
probability. Also. the probability of the observation sequence p(Y) has the same
value across all the models and. consequently. we can ignore it. Thus. for the
recognition of phonological coproduction units. instead of using the probability of a
model given the observation sequence we can use the probability of the observation

sequence given the model
pla.BlY) o p(Yla. 3). (4.97)

We modeled the above probabilities by likelihood measures. The likelihood mea-
sure used in recognizing the coproduction models can be based on the innovation
sequences from the extended Kalman filtering, as in {19]. and can be computed
using the formula
1 s

logL(Yla. ) = -3 kz_l{loglzek(a,ﬁ)l +ef(a.0)E (a. Bler(a. )} (4.98)
where Ng is the number of frames in the observation sequence corresponding to
a coproduction model. and the innovations process given the model e;(a. ) and
its covariance matrix given the model X,, (a.3) are computed from the extended

Kalman filtering equations of the previous section, as follows
er(a.3) = y(k) — g(z.) — G(z.)[z(k|k — 1) - z,] (4.99)
., (a.8) = G(k: +)P(klk — 1; #)GT(k: +) + R. (4.100)

For the case when the segmentation of the utterance is known and the model
boundaries are given. the recognition of gestures implies simply the application
of the extended Kalman filtering using different (c. ) models. After recognizing
the model with the highest likelihood function. the extended Kalman smoothing is
finally applied using the parameters of this model in order to estimate the articula-

tory trajectories. The target phoneme 3 of the recognized model becomes then the
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base phoneme a of the next model. For the complete recognition of the next model,
it is necessary to do the filtering using only the parameters of the a*x models. where
* stands for any possible phoneme which is allowed to succeed the known phoneme
a. Thus, to start the estimation of articulatory trajectories. the only information
needed is the position of the central point of the phonemes (segmentation) and the
label of the first phoneme from the utterance. If the label of the first phoneme is
not known, a solution can be obtained by applying only for the first segment the
filtering using all coproduction models and recognizing the one with the highest
likelihood measure. Then. the algorithm can be applied as described until the end
of the utterance. Except for the case of laboratory studies. where the segmentation
can be carried out a priori in a manual way. the segmentation of the speech signal
is not available. The automatic segmentation of the speech utterances is a rather
complicated operation and sometimes requires a whole process of automatic speech

recognition.

In applying the whole method of estimating the articulatory trajectories. a
method of segmenting the speech signal and estimating the phoneme boundaries
can be employed from the field of automatic speech recognition. Such a segmenta-
tion method and estimation of the sequence of states can be based on the popular
Viterbi algorithm [102], later described in [28]. Other methods of automatic seg-
mentation of the speech signal into phonetic units. which are not based on automatic
speech recognition, can also be used (Svendsen and Soong [100]). The coproduc-
tion segment boundaries are not the same with the phoneme boundaries. usually
computed by the current automatic speech recognition systems. like those based
on Hidden Markov Models (HMM). In the HMM recognition methods. a search
algorithm, such as Viterbi search, estimates the most likely sequence of states and

the phoneme boundaries. These boundaries are delimiting the most stationary part
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of the phonemes. For each phoneme, the two boundaries approximate its beginning
and end. respectively. In our framework, the phoneme boundaries determined as
above are not suitable for delimiting the segments corresponding to the coproduc-
tion models, because, in general. the phoneme boundaries will be placed somewhere
between the true coproduction unit boundaries (usually close to the middle point
of the coproduction units). Thus. for our framework. the segmentation should
be based on finding the model boundaries which are placed approximately in the
middle of the phonemes. The first boundary of a coproduction segment is placed
approximately in the middle point of the starting phoneme «. of the model. whereas
the second one is placed approximately in the middle point of the target phoneme
. The accurate estimation of the middle points of the phonemes is not critical
due to the fact that we did not use piecewise constant target inputs in the state
space models. This flexibility in approximating the boundaries of the coproduction
segments makes a model not completely disjoint from others with which it shares
one of the a or 3 phonemes (e.g.. the coproduction models /aa eh/ and /eh s/
have an overlapping region around the middle point of the phoneme /eh/). A sim-
ple. although not very accurate, solution to estimate the model boundaries from
the phoneme boundaries is to choose the median frame between these phoneme
boundaries. However, such a method of segmentation based on the Viterbi search
algorithm cannot be carried out without training the HMM models and. hence. this
segmentation method would involve a complete automatic speech recognition task
as a preprocessing phase of speech inversion. Due to the complexity of the auto-
matic speech recognition process. we would like to refrain ourself of stipulating that
condition as a prerequisite phase of the speech inversion method. An alternative

solution for estimating the gestural boundaries have been sought.

Although it was not the goal of this study to develop a new search and segmen-
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tation algorithm, for the purpose of demonstrating the speech inversion method.
we experimentally developed an integrated method of segmentation. This segmen-
tation method is integrated into the whole method of estimating the articulatory
trajectories and uses the extended Kalman filtering results. The objective of this
method is to approximate the centers of the phonemes in the speech utterance using
the trained coproduction models and some cost functions based on the likelihood
computation. In Figure 4.6 we present the general flow diagram of the integrated
procedure of recognizing the gestures and estimating the articulatory trajectories.
Given a speech signal, represented by a sequence y;,....yenp of acoustic vectors.
e.g. MFCC parameters, first. we apply a simple method of localization and classifi-
cation of the first phoneme of the utterance. This classification of the first phoneme
may not be extremely accurate. because a re-classification of this phoneme will be
carried out further. The localization of the first phoneme is based on energy and
zero-crossing rate computations. Then the classification method is applied based
on the minimum Euclidean distance. Such a distance is computed using the MFCC
acoustic parameters from the frames of the first sound of the utterance and some
stored reference frames for each of the phonemes. The phoneme with the minimum
distance is recognized as the first phoneme p;. We set the base of the coproduction
model a = p; and the beginning of the segment B = 1, that is, the initial frame
of the first phoneme. Then the extended Kalman filtering is applied for all the
(a.3) models in which a = p; is known. The interval for this filtering is chosen
as [B, B + L], where L represents a number of frames. large enough to include at
least the second phoneme in that interval. If B+ L > END, we use the interval
[B.END). Then, some cost functions C(y(k)ja3) based on the negative of the

conditional likelihood of the acoustic observations given each model and for each
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Figure 4.6: Flow diagram of the procedure of recognizing gestures and estimating

articulatory trajectories
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frame are computed using the innovation sequences

Cy(k)le, B) = log| e, (@, B)| + e (. B) B} (a. B)ex(a, B) (4.101)

By summing these cost functions we compute the forward-accumulated cost func-

tions (or distances) at each frame &

k
FCi(a.f) = 3 [log | ., (a.B8)] + e (a. B)E . (a. B)eq(a. B)]. (4.102)

n=B
for k = B..... B+ L. We find the model p;p, with the minimum accumulated cost
on a maximum interval [B. K], where K < B + L. Then we apply the extended
Kalman filtering on the interval [B. K], using all (*,3) models in which 8 = p»,
and compute the average cost functions (Av. Co.) over all these models, on that
interval. This average cost is then smoothed over a number of frames. The position
of the minimum of the smoothed, averaged cost function will approximate the center
E of the p, phoneme. If this is the first model. than from the previous filtering
with fixed 3 = p» and variable a = *, we compute some backward-accumulated
cost functions

E
BCi(a.B) = Y [log|=..(a.B)| + eX(a, B)E;} (a. B)en(a. B)). (4.103)

n=k
for k = B...., E. Finding the model for which the backward-accumulated cost func-
tion is minimum at k = B, we obtain the re-classification of the first phoneme of
the utterance. Once the (a,8) = (p;.p2) model is known, we apply the Kalman
smoother for the final estimation of the articulatory trajectories on the estimated
interval B. E. and we save the model name and boundaries together with the es-
timated articulatory trajectories. If the end of the model segment FE is less than
the end of the utterance END, then we set @ = p, and B = E and go to find and

estimate the next segment of speech by iterating the operations from the last five
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boxes. This procedure terminates when the end of utterances is reached and the

Kalman smoother was applied in the last segment.

For the purpose of illustration of the overall method, in the following we present
an example. Figure 4.7 illustrates examples of the cost functions representing the
negative of the likelihood for the first part of a slow utterance /aa zh aa b aa/. for
five (a.3) models in which the base phoneme « is /aa/. The frame interval for this
utterance was 10 ms. The five models have the target phonemes /b/. /d/. /p/.
/zh/ and /eh/. The sixth plot represents the average cost over all the models in

which the base phoneme o was /aa/.

A low value in the cost functions, respectively a high likelihood, means a good fit
of the acoustic observations with the corresponding model. Conversely, a high value
in the cost functions shows that is unlikely that the observation frame corresponds
to that model. As can be seen in the 4th plot corresponding to the model /aa zh/.
the cost function has the lowest cost. Then, we apply the extended Kalman filtering
for all the models for which the target phoneme 3 is /zh/ and compute the average
cost over all these models. Figure 4.8 illustrates the iterative steps of the algorithm.
First. we pre-recognize the first phoneme of the utterance, a = /aa/. The plots
from each column represents the filtering phases within a pass of the block diagram.
corresponding to a single segment. The sub-plots from the first raw represent the
forward-accumulated cost functions computed for each segment. with known a. The
forward-accumulated cost function with the lowest final value corresponds to the
recognized target phoneme 3 = p,. The sub-plots from the second raw represent
the average cost functions (dotted line). computed by filtering with models with
different o and fixed 8 = p,. The minimum of the smoothed average cost functions
(solid line). provides an estimate of the center of each target phoneme 3 = p>. The

sub-plots from the third raw represent the backward-accumulated cost functions for
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the re-estimation of the first phoneme a = p,. Finally. the sub-plot from the bottom
of the figure represents the actual articulatory trajectories and the estimated model
boundaries for this example. Now we describe in details each phase of the method
displayed in this figure. Once we finished the second phase of filtering. for all models
with 3 = /zh/. we compute the smoothed average cost over all these models and
run an algorithm of finding an approximate median point of minimum smoothed
average cost value (first sub-plot from the second raw). In this sub-plot the dotted
line represents the average cost and the solid line represents the smoothed average
cost. This minimum value corresponds to the ‘center’ of the second phoneme and
is stored. As in Figure 4.8. this point was found at frame number 22. as printed in
the first sub-plot of the third raw. After the recognition of the second phoneme. the
reclassification of the first phoneme of the utterance is carried out by filtering the
k = 1.....22 interval using all the models with the target phoneme 3 = /zh/. and
choosing the model with the minimum backward-accumulated cost. @ = /aa/. as
shown in the first sub-plot from the third raw. The base phoneme a = /aa/ of this
model will be the finally recognized first phoneme of the utterance. Then we started
the recognition/estimation in the second segment. In the cost functions of a = /zh/
models we select the longest interval starting from frame 22 and having the lowest
accumulated cost. as we did for the first segment. We found that this corresponds
to the model (zh,aa). We repeat these steps until the end of the utterance and
we found the ‘central’ points of the other phonemes from the utterance. In this
example, the original ‘central’ points of the phonemes were at the frames 1, 21.
41. 61 and 81. The estimated ‘central’ points by using this method were 1. 22,
42. 61 and 80. as the segmentation is presented in the bottom sub-plot (dash-
dot line). Once the boundaries are obtained for each coproduction segment. the

estimation of articulatory trajectories is simply achieved by applying the extended
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Kalman smoother for each segment using the corresponding model parameters. The
smoothed articulatory trajectories for this example of a synthesized utterance /aa
zh aa b aa/ are presented in Figure 4.9. In this figure. each sub-plot represents the
estimated and actual trajectories of an articulatory parameter of Maeda’'s model.
Thus. j is the jaw, b is the tongue body, d is the tongue dorsum. ¢z is the tongue
tip X position, ty is the tongue tip Y position. Iz is the lip protrusion. ly is the
lip aperture and ph is the pharynx hight. At the beginning of each segment the
new smoother will use as the initial state and covariance matrix the corresponding
values from the last frame of the previous smoothing interval. At the bottom of
this figure, the actual (solid line) and estimated (dotted line) vocal-tract midsagittal
shapes are displayed. Each shape represents the configuration of the vocal-tract at
a certain frame of speech (here a frame is 10 ms), where a center of a phoneme was
found. In the proximity of each vocal-tract shape the corresponding frame number
and phonemic transcription are printed. For this example of synthesized speech.

the actual and estimated articulatory trajectories are very close.

The method of segmentation and recognition of coproduction models is inte-
grated into the general process of estimating articulatory trajectories. This model
recognition is important not only because it provides a phonetic transcription of
the speech utterance, but also because it constraints the search of the articulatory
states in the process of estimating the trajectories. However. we do not expect that
the phonemic transcription generated by this method to be perfect and comparable
to the one provided by a state-of-the-art automatic speech recognition system based
on HMM, as our goal is an accurate estimation of the articulatory trajectories and

not the phonemic recognition.
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Chapter 5

Experimental Results

In this chapter we present results from three sets of experiments, based on synthe-
sized and real speech data. The estimated articulatory trajectories are compared to
the actual articulatory trajectories simultaneously recorded with the speech signals.
The first section describes experiments based on speech data synthesized using an
articulatory-acoustic model. The second section describes results of estimating ar-
ticulatory trajectories based on real speech data, recorded with an Electromagnetic
Midsagittal Articulograph. (Carstens {10]). The third section presents some re-
sults of estimation based on real speech data from the X-ray Microbeam Speech

Production Database of University of Wisconsin, [104].

5.1 Experimental Results based on Synthesized
Speech Data

We begin this section by presenting a few experimental results of estimating artic-

ulatory trajectories from our preliminary studies based on Kalman filtering tech-

116
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nique and using articulatory-acoustic codebooks. In these preliminary studies we
implemented the Kalman filtering and smoothing algorithms and the maximum-
likelihood model parameter estimation method. We used two different acoustic
features: formant frequencies and MFCC parameters. We created the articulatory-
acoustic codebooks using the Maeda’s articulatory and acoustic models [54]. [55].
We did not have in these preliminary experiments real articulatory trajectories to
be compared to the estimated ones, since we used for testing acoustic data alone
from the TIMIT database, [65]. Also we did not use any speaker normalization tech-
nique here. We used the acoustic prototypes of the 10 vowels which were published
by Peterson and Barney [72], for 61 male and female American English speakers.
We used the following American English vowels: /aa/. /ae/. /ah/. /ao/. /eh/,
/ey/. [/ih/. [iy/. /uh/ and /uw/. For each vowel produced by each speaker, 1.000
articulatory prototypes were obtained from the Maeda’s articulatory model and
using the Metropolis algorithm. This synthesized articulatory-acoustic database
was obtained and clustered in our laboratory in a previous project by Dr. Arturo
Galvan and Jeff Ma. The exact acoustic formants corresponding to these articu-
latory prototypes were recalculated using a frequency-domain vocal-tract acoustic
model. A total of 610,000 articulatory-acoustic pairs were obtained for the whole
vowel codebook. Some of the articulatory-acoustic pair vectors were identical or
very close to other pair vectors in this database. A pruning was carried out and
a final codebook of about 331,000 different pairs of vectors was created. Based on
this second codebook, we tested the estimation method using the first three for-
mant frequencies from vowel tokens extracted from the TIMIT database. Actual
articulatory trajectories were not available. In Figure 5.1 we present the Maeda'’s
model articulatory trajectories estimated from a seven frame token of /aa/ spoken

by a female speaker. As can be seen, the estimated articulatory trajectories are



CHAPTER 5. EXPERIMENTAL RESULTS 118

quite smooth. In Figure 5.2, the corresponding original formant frequencies and
the synthesized ones using the estimated articulatory trajectories are presented.
The original and synthesized formants are almost identical. This does not mean
that the estimated articulatory trajectories were close to the real ones. However.
the extended Kalman filtering and smoothing were working well providing smooth
articulatory trajectories and well fitted acoustic trajectories. reconstructed from

the estimated articulatory parameters.

In a second preliminary experiment we used a similar codebook derived from
the 610,000 articulatory prototypes of vowels described above. We computed from
these articulatory prototypes the vocal-tract transfer functions and the correspond-
ing MFCC parameters. After pruning, this new codebook contained 235.000 differ-
ent articulatory prototypes and the corresponding MFCC parameters as acoustic
features. We obtained the MFCC parameters from the articulatory prototypes by
using first a frequency-domain vocal-tract acoustic model. to obtain the transfer
function of the vocal-tract. and then we developed a method to obtain the MFCC
parameters from the vocal-tract transfer functions. In Figure 5.3. the estimation
results are presented for a token /aa/ of a female speaker from the TIMIT database.
The estimated articulatory trajectories are smooth and the area functions and pro-
files of the vocal-tract seem to be reasonable. Again there is no comparison with
real articulatory trajectories for data obtained from TIMIT. In Figure 5.4. the orig-
inal MFCC trajectories are compared to the reconstructed MFCC trajectories using
the estimated articulatory parameters. As can be observed, the acoustic fit is quite
good. We now present an estimation result based on the same framework as in the
above figures. but using test acoustic features from the continuous French sentence
“Ma chemise est roussie.” spoken by a French female speaker. Figure 5.5. show the

estimation results for the segment /m i z e/, from the above sentence, even though
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in the codebook we did not include vocal-tract shapes and MFCC parameters for

consonants. Again. the acoustic match is very good. as can be seen in Figure 5.6.

In these preliminary studies our goal was mainly to develop the general frame-
work of the estimation method based on Kalman filtering. and to test its capabil-
ities of estimating articulatory trajectories from acoustic features alone. In these
experiments we did not provide or implement important innovative solutions to
overcome the difficulties revealed by the previous studies of speech inversion based
on Kalman filtering technique. However. we tested the articulatory-acoustic code-
book approach. Because the vowel codebooks used were created by using a means
of random sampling of the articulatory space. many unrealistic vocal-tract shapes
were included in these codebooks. In the latter experiment. presented in Figure 5.5
and Figure 5.6. we compared the estimated articulatory trajectories to the real ones.
which were extracted from X-ray data of the French female speaker from which the
statistical articulatory model was built, and they were quite different. This discor-
dance cannot be explained only by the acoustic differences in the sounds of English
and French. We believe that the inclusion of unrealistic vocal-tract shapes into the
codebook. by randomly sampling the articulatory space. was responsible for these

differences in articulatory trajectories.

After these preliminary experiments, we will present now some experimental
results obtained by our method in which we used both dynamical and phonological
constraints. We synthesized speech using the Maeda's articulatory model and time-
domain acoustic model. The articulatory prototypes of some vowels were extracted
from the x-ray data of a French female speaker, from whom the statistical artic-
ulatory model was built (Maeda [55]). Prototypes for other phonemes and some
vowels were manually adjusted in order to obtain a perceptually better acoustic

match with the American English phonemes. We obtained the trajectories between
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each pair of articulatory prototypes by interpolation with a cosine function. We
used different interpolation function and finally chose the cosine function because
the trajectories were better matched with those obtained with an electromagnetic
midsagittal articulograph. The articulatory trajectories were sampled at 10 ms. In
these experiments we used only 8 articulatory model parameters, even though we
added to the Maeda’s articulatory model a nasal tract and another parameter that
controls the velum position. The acoustic parameters used in this experiment were
the MFCCs. We obtained these acoustic parameters using two different tools: the
HTK tool and a local DSP tool previously developed in our group. First the speech
signal was pre-emphasized and windowed using a Hamming window of 32 ms, and
a frame step of 10 ms. Then the FFT was computed and the log power spectrum
was applied to 25 triangular filters distributed on a mel-frequency scale. From the
output of the filters the MFCC parameters were computed using the classical for-
mula. We used the first 10 MFCC parameters after excluding the first coefficient

corresponding to energy.

We generated articulatory and acoustic trajectories for different coproduction
segments (pairs of phonemes, or diphones). In order to construct coproduction
models for each such pair, a number of different tokens were needed. We used a ran-
dom number generation method to synthesize different tokens by adding Gaussian
noise to an initial trajectory. In Figure 5.7 we represented the articulatory-acoustic
vectors, corresponding to 20 synthesized /eh ih/ trajectories. Each sub-plot rep-
resents a particular projection of the data on a two-dimensional space consisting
of an articulatory dimension and an acoustic dimension. As can be seen in this
figure, the articulatory-acoustic sub-functions are in general nonlinear. From these
data a model for /eh ih/ was created using look-up tables of codebooks. Then we

synthesized test data for /eh ih/ different from the training data. An example of
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estimated articulatory trajectories from a test utterance for /eh ih/ is presented
in Figure 5.8. At the bottom of this figure the actual and estimated vocal-tract
shapes are superimposed. Similar synthesized data were obtained for /b ih/. /s ih/
and /d ih/, and presented in Figures 5.9, 5.10 and 5.11. We did not used in this
experiment nasals, but other coproduction segments were synthesized as presented

in Table 5.1. These examples contain transitions to three different vowels — /ih/.

/ih/ | /ah/ | /uh/
/eh/ | eh ih | eh ah | eh uh
/b/ | bih | bah | buh
/s/ | sih | sah | suh
/d/ | dih | d ah | d uh

Table 5.1: Table of synthesized coproduction segments

/ah/ and /uh/. from the vowel /eh/. the stop consonants /b/ and /d/. and the
fricative /s/. Examples of estimated trajectories and vocal-tract shapes for /eh
ah/, /b ah/. /s ah/ and /d ah/ are presented in Figures 5.12 to 5.15. and for /eh
uh/, /b uh/, /s uh/ and /d uh/ are presented in Figures 5.16 to 5.19.

In a different experiment we tested other coproduction models. Examples for
/aa b/, /aa d/ and /aa sh/ are presented in Figures 5.20 to 5.22. Other copro-
duction segments were also synthesized and experiments of estimating articulatory
trajectories were carried out with similar results for these segments. The accuracy
of estimated articulatory trajectories was very high in this experiment. especially
due to the fact that the training and test data were not very different; that is, the

Gaussian noise used to synthesize new trajectories was relatively small.
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Figure 5.7: Articulatory and acoustic training data for /eh ih/ consisting of 20

synthesized segments
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Figure 5.8: Actual and estimated articulatory trajectories for a segment /eh ih/
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Figure 5.9: Actual and estimated articulatory trajectories for a segment /b ih/
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Figure 5.10: Actual and estimated articulatory trajectories for a segment /s ih/
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Figure 5.11: Actual and estimated articulatory trajectories for a segment /d ih/
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We did not try to synthesize speech data with large variances in articulatory
domain because the resulting vocal-tract shapes could change the initial phonetic
identity of the sounds. and also because there was no guarantee that the resulted
vocal-tract shapes were realistic or physically possible. However. this experiment
based on synthesized speech data. had the main objective to develop and test the

estimation method. and not to obtain real estimation results.

Experimental results from continous speech are also presented here, since the au-
tomatic segmentation method was developed and tested first on synthesized speech
data. This experiment based on continuous synthesized speech contained the fol-

lowing coproduction segments. as presented in Table 5.2

faa/ | [eh/ | /b/ | /d/ | /zh/ | /[sh/ | /p/
/aa/ aaeh [aablaad | aazh | aash |jaap
/eh/ | eh aa ehb{ehd|ehzh|ehsh|ehp
/b/ | baa | beh
/d/ | daa | deh
/zh/ | zh aa | zh eh
/sh/ | sh aa | sh eh

/p/ | paa | peh

Table 5.2: Table of synthesized segments for continuous speech experiments

Thus, Figures 5.23 and 5.24 present results of automatic segmentation and es-
timation for the synthesized continuous utterance /aa p aa b aa/. Other results of
estimating articulatory trajectories for utterances /aa b aa p aa/ and /aa zh aa b

aa/ are presented in Figures 5.25 and Figures 5.26.
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Figure 5.12: Actual and estimated articulatory trajectories for a segment /eh ah/
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Figure 5.13: Actual and estimated articulatory trajectories for a segment /b ah/
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Figure 5.14: Actual and estimated articulatory trajectories for a segment /s ah/
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Figure 5.15: Actual and estimated articulatory trajectories for a segment /d ah/
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Figure 5.16: Actual and estimated articulatory trajectories for a segment /eh uh/
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Figure 5.17: Actual and estimated articulatory trajectories for a segment /b uh/
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Figure 5.18: Actual and estimated articulatory trajectories for a segment /s uh/
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Figure 5.19: Actual and estimated articulatory trajectories for a segment /d uh/
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Figure 5.20: Actual and estimated articulatory trajectories for a segment /aa b/
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Figure 5.21: Actual and estimated articulatory trajectories for a segment /aa d/
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Figure 5.22: Actual and estimated articulatory trajectories for a segment /aa sh/
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Figure 5.24: Actual and estimated articulatory trajectories for an utterance /aa p
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Figure 5.26: Actual and estimated articulatory trajectories for an utterance /aa zh
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5.2 Experimental Results based on EMA Speech
Data

In this section. we present experimental results obtained using Electromagnetic
Midsagittal Articulography {EMA) data. The subject from whom the speech data
were recorded was the author of this thesis. The articulatory-acoustic speech data
recorded with the articulograph (Carstens [10]), consisted of VCV utterances con-
taining the combinations of five English vowels — /ah/, /eh/. /iy/, /ao/ and /uh/,
and 17 consonants — /b/, /d/, /f/. /g/, /h/. /zh/, /k/, /1/, /m/. /n/. [p/. /x/,
/s/. /sh/. /t/. /v/ and /z/. Each VCV utterance was repeated three times. In
each of the VCV utterances the first and second vowel was the same. We used three
coils to trace the movement of the articulators, and they were placed on the lower
lip (LL). about 2.5 cm back from the tongue tip (TT2) and about 4.5 cm back from
the tongue tip (T'T3). For each coil the X and Y coordinates were recorded. A total
of 6 articulatory parameters were used in the articulatory vectors. The articulatory
data were sampled at a frequency of 125 Hz by the articulograph. The acoustic
speech signal was recorded with a sampling rate of 16.000 Hz. Like in the previous
experiment, the first 10 MFCC parameters were computed from the speech signal
from a window of 32 ms and a frame step of 10 ms. To synchronize the articu-
latory parameters with the acoustic parameters a re-sampling of the articulatory
trajectories was carried out with a frequency of 100 Hz. Thus, both articulatory

and acoustic parameters were finally available for frames separated at 10 ms.

Figure 5.27 presents the articulatory and acoustic data for the recorded utter-
ance /ah b ah ah b ah ah b ah/. In Figure 5.28 the automatic recognition of
the model is presented. A model was created using the first segment /ah b/ from

this utterance and the random generation of new segments from the original one
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using polynomial functions, as described in Section 4.2.1. Examples of estimated
articulatory trajectories from a segment /ah b/, included in the training data are
displayed in Figure 5.29. In the 7th sub-plot of this figure the root-mean-squared
(RMS) error between the actual and estimated articulatory states is plotted. Figure
5.30 presents details from the bottom of the previous figure. of the positions of the
three sensors in the vocal-tract midsagittal plane. In Figure 5.31, the correspond-
ing actual and reconstructed MFCC trajectories are presented. In the following we
present the set of model parameters estimated using ML method from the segment

/ah b/ included in training data

- - -

[ 1.220 ~0.235
1.862 ~0.861
&Y = diag 0895 . B = diag 0-106
1.144 ~0.445
1.310 ~0.308
| 1.013 | | —0.014 |
[ 1.365 |
0.144
[ 0.0014 | 0.237
0.0025 0.439
Q) = diag 0.0002 . R = gigg 0.761
0.0002 0.178
0.0001 0.686
| 0.0004 | 0.207
0.415
| 0.199 |
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A similar example. for a segment /ah b/ not included in training data is pre-
sented in Figure 5.32. Figure 5.33 and Figure 5.34. For this case the RMS errors
are also around the value of 1 mm. In general, the RMS errors are larger for the
case of segments not included in training data. as expected. This effect is mainly
caused by the coproduction model observation sub-function, rather than the dy-
namical model parameters. For this case, the details regarding the positions of the
three sensors are displayed in Figure 5.33. As in Figure 5.30, the upper curves in
these plots represent the shape of the palate of the speaker. These curves start at
the incisors (left), and end at the soft palate (right). The last parts of these curves
(about 1 cm at the right) represent a portion of the soft palate. which is usually

not fixed as depicted by these plots.

The articulatory and acoustic data recorded for the /ah m ah ah m ah ah m
ah/ utterance are presented in Figure 5.35. and the estimation results for a segment
/ah m/. included in training data are presented in Figure 5.36. The RMS errors
are about 0.5 mm. The estimation results for a segment /ah m/. not included
in training data are presented in Figure 5.37. The corresponding RMS errors are

higher in this case and they are about 2.3 mm.

Other estimation results, for the segments /ah t/ and /ah g/ not included in
training data, and for the segments /ah s/ and /ah 1/ included in training data,
are presented in Figures 5.38 to 5.41. As expected, the RMS errors are in general
larger for the cases of sequences not included in training data of the corresponding

models. However, these RMS errors are reasonably small, of the order of 2.0 mm.
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Actual (sofid) and estimated (dashdot) articulatory trajectornies
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training data (detail from previous figure, axes in cm)
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Actual MFCCs (solid) and reconstructed MFCCs (dashdot)
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual MFCCs (solid) and reconstructed MFCCs (dashdot)
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual (sofid) and estimated (dashdot) articulatory trajectories
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Figure 5.37: Actual and estimated articulatory trajectories for a segment /ah m/.

not included in training data
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Actual (sofid) and estimated (dashdot) articulatory trajectories
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual (solid) and estimated (dashdot) articulatory trajectories
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In the following, we present some experimental results of estimation based on
continuous VCV utterances. In the next figures representing the automatic seg-
mentation and recognition of models we used the same kind of sub-plots like in

Figure 5.28. but because of the limited space we omitted the title of each sub-plot.

In Figure 5.42 we present the automatic segmentation and recognition of models
for an utterance /ah b ah/ included in training data of the corresponding models.
The sub-plots from the first raw represent the forward-accumulated cost functions
(distances) for different models starting with /ah/ and /b/. respectively. The sub-
plots from the second raw represent the average of the cost functions (distances)
over all the models ending with /b/ and /ah/. respectively (dotted lines). and
the smoothed average cost functions (solid lines). We used the minimum of the
smoothed average distance to find the center of the second phoneme in each co-
production segment. This smoothed distance provided a better approximation of
the position of the center of the second phoneme than the un-smoothed distance.
The central frames of the second phoneme of each model were estimated very well.
The sub-plots from the third raw represent the backward-accumulated distances of
the models which end with /b/ and /ah/, respectively. We used these functions to
reestimate the first phoneme of the utterance and also to check the forward estima-
tion of the second phoneme of each coproduction segment. The sub-plot from the
fourth raw represents the actual articulatory trajectories and the positions of the
estimated boundaries. We used this kind of plot to check visually the accuracy of
the estimated boundaries, since for both training and test data we had available the
actual articulatory trajectories. The actual and estimated articulatory trajectories
for the utterance /ah b ah/ are presented in Figure 5.43. An enlarged view of the
vocal-tract profiles from the bottom of this figure is presented in Figure 5.44. The

actual and reconstructed MFCC parameters, using the codebooks, are displayed in
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Figure 5.42: Automatic segmentation and recognition of models for an utterance

/ah b ah/. included in the training data
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual MFCCs (solid) and reconstructed MFCCs (dashdot)
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Figure 5.45: Actual and reconstructed MFCC trajectories for an utterance /ah b

ah/. included in the training data
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Figure 5.46: Automatic segmentation and recognition of models for an utterance

/ah m ah/, not included in training data
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Actua! (solid) and estimated (dashdot) articulatory trajectories
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Figure 5.49: Automatic segmentation and recognition of models for an utterance

/ao m ao/, included in training data
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Actual MFCCs (soiid) and reconstructed MFCCs (dashdot)
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Figure 5.51: Actual and reconstructed MFCC trajectories for an utterance /ao m

ao/. included in training data
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Figure 5.52: Automatic segmentation and recognition of models for an utterance

/eh s eh/, not included in training data
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Figure 5.53: Actual and estimated articulatory trajectories for an utterance /eh s

eh/. not included in training data



CHAPTER 5. EXPERIMENTAL RESULTS

24

20

18

16

14

12

10

T

T2

/eh/

12

Is /

24

T2

LL
leh /

15

25

Figure 5.54: Actual and estimated VT profiles for an utterance /eh s eh/,

included in training data (detail from previous figure)
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Figure 5.55: Automatic segmentation and recognition of models for an utterance

/ao t ao/. not included in training data
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Actual (solid) and estimated (dashdot) articulatory trajectories
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ao/. not included in training data
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Figure 5.57: Actual and estimated VT profiles for an utterance /ao t ao/. not

included in training data (detail from previous figure)
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Figure 5.45.

An example of estimation from an utterance /ah m ah/. not included in training
data is presented in Figures 5.46 to 5.48. The mean RMS error was about 3.0 mm
for this case. The central positions of the second phoneme of each model were

estimated very well.

An example of estimation from an utterance /ao m ao/ included in training data
is presented in Figures 5.49 to 5.51. The RMS errors for this case were very small.
because the utterance was included in training data of the models. The central

positions of the second phoneme of each model were also estimated very well.

Other examples. for utterances not included in training data are presented in
Figures 5.52 to 5.54 for an utterance /eh s eh/. and in Figures 5.55 to 5.57 for an
utterance /ao t ao/. For both cases the central positions of the second phoneme
of each model were estimated very well. However. we especially presented these
examples because of the relative large differences in the estimating RMS errors of
the two cases. In the first example. an average RMS error of about 1.2 mm was
found. In the second example. the average RMS error was about 3.9 mm. This
large error is probably due to the differences between the training and testing cases.

in vocal-tract shapes and trajectories in producing the /ao t ao/ utterances.



CHAPTER 5. EXPERIMENTAL RESULTS 182

5.3 Experimental Results based on X-ray Micro-
beam Speech Data

We recently received a copy of the X-ray Microbeamn Speech Production Data of
University of Wisconsin. In this section, we present a few experimental results
obtained using the X-ray Microbeam Data of University of Wisconsin. [104]. This
database consists of articulatory and acoustic recordings from 48 speakers using
American English. The articulatory data was sampled every 6.866 ms (sampled
at approx. 146 Hz). The speech acoustic signal was sampled at 21.739 Hz. We
selected the first speaker from this database. coded JW11. From this speaker. we
selected two utterances — /s ah s ah ... s ah/ and /p uh p uh ... p uh/. coded
Tp105 and Tpl02, respectively. The articulatory parameters we used consisted
of the X and Y coordinates of four pellets placed on the lower lip (LL) and on
tongue (TT1, TT2, TT3). Details regarding these recordings can be found in [104].
From the speech signal we computed the first 10 MFCC parameters. excluding the
energy parameter, every 10 ms. from Hamming windows of 32 ms. We re-sampled
the articulatory trajectories with a frequency of 100 Hz. corresponding to 10 ms

frame intervals.

Figure 5.58 presents the data of the /s ah s ah ... s ah/ utterance of the speaker
JW11. We constructed a model for the /s ah/ unit using 8 of the /s ah/ segments
from this utterance. The training data for this model are presented in Figure 5.59.
Figures 5.60 and 5.61 presents the estimation results for a /s ah/ segment not

included in the training data.

The articulatory and acoustic data for the utterance /p uh p uh ... p uh/ are
presented in Figure 5.62. The estimation results for a segment /p uh/ not included

in training data are presented in Figures 5.63 to 5.65.
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Figure 5.58: MFCC and articulatory trajectories for the /s ah s ah ... s ah/ utter-

ance coded ‘Tpl05° of speaker JW11 from Wisconsin X-ray Microbeam Database
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Original MFCCs (red) and reconstructed MFCCs (blue)
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Figure 5.61: Actual and reconstructed MFCC trajectories for a segment /s ah/,

not included in training data
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Actual (solid) and estimated (dashdot) articulatory trajectories
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Figure 5.64: Actual and estimated articulatory trajectories for a segment /p uh/,

not included in training data
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Original MFCCs (red) and reconstructed MFCCs (blue)
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Figure 5.65: Actual and reconstructed MFCC trajectories for a segment /p uh/,
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Chapter 6

Applications

In this chapter. two potential applications of this speech inversion method to two
different areas are presented. A new graphic representation method for displaying
vocal-tract area function evolution over time is proposed as a general application in
speech research and as an aid in teaching the hearing or speaking impaired to speak
or in teaching foreign languages. A potential application of this speech inversion

method to automatic speech recognition is also presented.

6.1 Displaying the Dynamics of the Vocal-Tract

In articulatory speech research the graphic representations of articulatory trajecto-
ries and vocal-tract shapes are very useful. The most common articulatory repre-
sentation in speech is in a form of a sagittal contour of the vocal tract. This kind
of graphic representation can be obtained from cine-radiographic images. X-rays,
Magnetic Resonance Imaging systems (MRI) or electromagnetic articulography and

represents the shape of the vocal tract at certain moments in time. Using this rep-
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resentation the evolution in time of the vocal-tract can be portrayed by displaying
consecutive shapes at different time points, as presented in Fig. 6.1 for a French
sentence ‘Ma chemise est roussie’ produced by a female speaker. The shapes are
extracted from X-ray images recorded at a rate of 50 frames/sec. The position
of the main articulators can be observed in each vocal-tract section, but the con-
tinuity of vocal-tract shape evolution in time cannot be easily observed on these

discrete shape plots. This representation of the vocal apparatus is very common in
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Figure 6.2: Articulatory trajectories for the word ‘program’

articulatory phonetics.

A dynamic representation of the articulators in a form of articulatory trajecto-
ries is presented in Fig. 6.2. for an utterance of the word ‘program.’ In the first
sub-plot. the speech signal is plotted. Then. in the next sub-plots. eight trajectories
are displayed. representing the X and Y coordinates of 4 pellets, one placed on the
lower lip and three on the tongue. These articulatory trajectories are recorded with

an X-ray microbeam system. [104]. In this figure the horizontal axis represents the
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time as the frame index, whereas the vertical axis represents the amplitude of the
articulatory parameters in mm. When the articulators’ trajectories are available
from recordings like those of electromagnetic articulography. these representations
can show the continuity of articulators’ movements between adjacent sounds. The
main advantages of these trajectory representations consist in providing the con-

tinuous time evolution of the articulators.

A new continuous time representation of the vocal-tract is proposed here using
the cross-sectional area function of the vocal-tract. This kind of representation is
similar to the speech spectrogram and consists of a three-dimensional display of
area function. Because the main parameters represented in this kind of display are
the vocal-tract cross sectional areas, we call this graphic representation areogram,
by analogy with the spectrogram where the spectra are displayed as a function of
time. At any time instance. both area function and spectra are two dimensional
functions. The area function is an amplitude versus vocal-tract length function and

the spectra represent a magnitude versus frequency function.

A static vocal-tract shape can be approximated by a concatenation of uniform
tubes having different cross sectional areas. These cross sectional areas can be
displayed as an amplitude plot or using a brightness plot. A hypothetic vocal-
tract area function with a complete closure at the glottis an a linear area function
approximated by steps of 0.5 cm is presented in Fig. 6.3. The left plot displays
the amplitude versus distance from glottis and the right one displays the same area
function encoded using a grey scale. The brightness of each section of the vocal-
tract is proportional to the amplitude of the corresponding cross sectional area of
the section. The darkest section represents the portion of the vocal-tract with a
complete constriction. A logarithmic scale is used to encode the area amplitude

into different grey scale levels. The grey scale is compressed towards the darkest
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Figure 6.3: Amplitude and brightness area function representations for a hypothetic

vocal-tract shape having a piecewise linear area function

levels in order to better represent constrictions with small cross sectional area.

In Fig. 6.4 and Fig. 6.5 the graphic area function representations are presented
for the corresponding vocal-tract shapes of the vowels /aa/ and /iy/. The large
areas from the front mouth cavity for vowel /aa/ and back cavity for vowel /iy/

are represented with the brightest grey levels.

In Fig. 6.6 and Fig. 6.7 the representations for the corresponding vocal-tract
shapes of the consonants /b/ and /t/ are presented. The complete constrictions at
the lips for the consonant /b/ and at the alveolar region for the consonant /t/ are

represented with the darkest grey levels (black).

Concatenating the consecutive frames. a continuous time representation of the
evolution of vocal-tract can be obtained. The areogram of the estimated vocal-

tract. using the speech inversion method presented in this thesis. for an utterance
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Figure 6.4: Amplitude and brightness area function representations for a vocal-tract

shape of the vowel /aa/
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Figure 6.5: Amplitude and brightness area function representations for a vocal-tract

shape of the vowel /iy/
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Figure 6.8: Areogram representation for the utterance /aa zh aa p aa/

/aa zh aa p aa/ is displayed in Fig. 6.8. For comparison, the spectrogram of the
originally synthesized speech signal using the Maeda’s models is presented in Fig.
6.9. Each small rectangle in the areogram plot represents a uniform section of
the vocal-tract and has a uniform gray level. The abscissa represents the frame
index in time. The time sampling of vocal-tract shapes is 10 ms/frame. Unlike
in the corresponding spectrogram, in this areogram the position of the complete
constriction (black level), here at the lips. can be immediately observed for the /p/
portion of the utterance. From the spectrogram the place of the articulation can

only be inferred by trained persons from the formant trajectories before and after
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the /p/ constriction.

This areogram representation of the evolution of the vocal-tract can be applied
to any type of the articulatory model, as far as an area function can be computed
or estimated. Also this graphic representation can be applied to any vocal-tract
for which an area function has been obtained. e.g., from MRI images. The num-
ber of sections with which the vocal-tract shape is approximated can be arbitrarily
large and it depends on the model used. The advantages of using this new graphic
representation consist in providing a continuous time and global evolution of the
vocal-tract and that this representation is based on absolute values of cross sec-
tional areas along the tract. Once the area function is computed or estimated the
graphical representation is independent of the model used to determine the area
function. Similar graphic representations have been proposed by Hoole, 1993.[36].
and Greisbach and Esser, 1993,[32], but using instead of amplitude of the area func-
tion the position of some points on the tongue. However, unlike the area function.

the absolute position of the tongue does not represent globally the vocal-tract.

The application of this graphic representation is based on the estimated artic-
ulatory trajectories of a reference articulatory model, such as Maeda’s, from the
speech signal alone, as presented in this thesis. From the estimated trajectories.
representing the articulatory model parameters, the vocal-tract area function can

be easily computed and used in constructing the areogram.

In addition to the general applications of this displaying method in speech sci-
ence research and phonetics, the potential applications of this areogram represen-
tation include teaching the speaking impaired or the deaf people to speak and

teaching foreign languages.
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6.2 Automatic Speech Recognition

The use of articulatory information to improve the performance of the automatic
speech recognition (ASR) systems is now a long-lasting desiderate. Unfortunately.
there is no practical approach of successfully recovering and applying the articu-
latory features to ASR. On the other hand. there are still debates regarding the
way of application of articulatory information to ASR. These debates are on the
questions of whether the articulatory information needs to be accurately recovered
in a form of articulatory trajectories (Zlokarnik [107}). or it is enough to constrain
the recognition process using this information as an a priori knowledge (Deng and
Sun [17])7 We quote from a critique [63], of a paper [80], presented at the 1994
Meeting of the Acoustical Society of America in the Special Session on ‘Speech

Recognition and Perception from an Articulatory Point of View.':

. . does a recognition process (natural or artificial) need knowledge
about articulation (a) to “recover” that information or (b) to “con-
strain” the recognition (search) process? In other words, does the pro-
cess of recognition have to “derive” a particular articulatory trajectory
or is it enough for it to be “constrained” by allowable trajectories?

(Roger K. Moore 1996, [63])

The speech inversion method presented in this study performs both recognition
of phonological coproduction models and estimation of articulatory trajectories, si-
multaneously. Given the structure of the coproduction models which account for
the coarticulation of two successive phonemes, by recognizing the particular suc-
cession of these models in a speech utterance. the phonemic recognition from these

models is a straightforward simple task. The recognition of coproduction models is
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based on the Bayes’ rule, as presented in Section 4.5. The processes of model recog-
nition and articulatory trajectory estimation are unified. The recognition of models
uses the likelihood measure computed as a result of trajectory estimation (extended
Kalman filtering). whereas the final trajectory estimation process benefits from the
recognition of the coproduction models. Because the likelihood measure needed
to make recognition decisions can be computed from the extended Kalman filter-
ing forward recursions, without running the backward recursions of the smoother.
the recognition of models can be considered as one step of time ahead of the final
trajectory estimation process, which is based on the extended Kalman smoothing.
However. although is not a computationally efficient solution, these two processes
can be carried out simultaneously if the extended Kalman smoother is accomplished
after each filtering in the model recognition phase, and the estimated trajectories
are stored for all the smoothings. In this case the final filtering and smoothing are
no longer necessary and the smoothed articulatory trajectories corresponding to the
highest likelihood measure can be selected as the final estimates. The straightfor-
ward application of this speech inversion method to automatic speech recognition

is thus an intrinsic part of this speech inversion approach.

Another application to automatic speech recognition is possible, based on the
experimental evidence of improving the automatic speech recognition accuracy by
adding articulatory features to the acoustic features (Petajan [71], Zlokarnik [107]
and [108]). Those experiments have shown that by adding the articulatory features
which were recorded simultaneously with the acoustic features, the error recognition
rate has been reduced substantially. When the articulatory features were estimated
from the acoustic features alone the error recognition rate was only slightly reduced.
This suggests that those estimation methods were not accurate enough. and better

estimation methods could eventually reduce the error rate significantly. Our ex-
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periments have shown a good accuracy in estimating the articulatory trajectories
using phonological and dynamical constraints. We believe that this good accuracy
will provide a basis for improving the performance of automatic speech recognition

systems based on acoustic and estimated articulatory features.



Chapter 7

Conclusion and Future Work

This chapter concludes this dissertation by summarizing the research described
and by presenting the main contributions of this thesis. The future work is also

discussed by presenting a few directions of some potential interest.

This thesis concerned the developing of a generalized method of inverting the
articulatory-to-acoustic transformation. This speech research area is usually called
speech inversion. It was not the objective of this study to apply the developed
speech inversion method to all possible coproduction models, based on all combi-
nations of the speech sounds, but to develop a generalizable inversion method and
to evaluate it on different coproduction models, containing speech sounds from dif-
ferent classes (e.g., vowels, fricatives. stops. nasals). In this research. we proposed a
new way of applying high-level linguistic constraints to the speech inversion. We de-
veloped a method of speech inversion based on dynamical system modeling in which
we applied additional constraints — the phonological constraints — by modeling
a different articulatory-acoustic function for each coproduction model consisting of

any phonologically possible combination of two consecutive phonemes.
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Initially, we intended to develop a generalized method of speech inversion based
on some linearly transformed task spaces, with a reduced dimensionality. In order
to apply this transformation method we carried out a simple experiment designed
to answer to two questions: do articulatory features preserve enough information
about the phonetic affiliation of speech sounds? and. is there a quasi-linear rela-
tionship between the articulatory and acoustic features of speech in transformed.
task spaces. which have a drastically reduced dimensionality? In Chapter 3. we
presented this preliminary analysis experiment. This experiment consisted of an
articulatory-acoustic feature space transformation and a classification of vowels in
both original (full) and task (reduced) spaces. Our simple experiment. provided
an affirmative answer to the first question and a negative one to the second. Due
to the negative answer. we did not try to implement the speech inversion method
on a reduced task space. taking into account that we cannot benefit from a lin-
car observation function on these task spaces while we may loose some important

information. by drastically reducing the dimensionality of the original spaces.

The main chapter of this thesis. Chapter 4, described the general speech inver-
sion method and each of its components. Thus. in the first section. we defined the
coproduction segments and models of speech we were using. Then we presented a
method of modeling the direct articulatory-acoustic function for each such copro-
duction model. This modeling is based on codebooks. Then. a method of estimating
the model parameters was presented. This is a simple Maximum-Likelihood esti-
mation method and is based on the articulatory and acoustic training data. The
method of estimating the articulatory trajectories, based on the extended Kalman
filtering and smoothing, was then described. At the end of that chapter. the gen-
eral method of segmenting the speech, recognizing the units or models and finally

estimating the articulatory trajectories was presented.
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The speech inversion method described in this thesis was based on training
speech data acquired from a single reference speaker or model. The application of
this method to other speakers, can be carried out by employing a speaker normal-
ization method or a vocal-tract length normalization method. In [22]. we proposed
an original method of estimating the overall vocal-tract length of other speakers.
based on neural networks, and a method of normalization of the acoustic parame-

ters, based on estimated overall vocal-tract length.

After the presentation of the main speech inversion method. in Chapter 5 we
presented the experimental results. We carried out three different sets of experi-
ments, to show the potential of the developed method of speech inversion. based
on training articulatory and acoustic continuous speech data. and using dynam-
ical and phonological constraints. The first set of experiments was designed to
develop and implement the method. and was based on speech data synthesized
with an articulatory-acoustic model. In a preliminary experiment of this kind. we
evaluated the extended Kalman filtering state estimation method using formant
frequencies as acoustic parameters. The articulatory-acoustic nonlinear function
was approximated by a large codebook, generated randomly within the limits of
the articulatory model used. Using the formant frequencies. this preliminary ex-
periment, was limited to 10 American English vowels. The acoustic fit of the actual
and reconstructed formants from the estimated articulatory trajectories was very
good, although, there was no guarantee that the estimated articulatory parameters
were realistic. Then we extended this preliminary experiment. by using a more
general acoustic feature, the MFCC parameters. Again. the acoustic fit was very
good. We applied in this second preliminary experiment. the inversion method
to some speech data for which we had available the corresponding real articula-

tory trajectories, obtained from X-ray films. We found a relatively large difference
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between the estimated trajectories and the real ones. We explained this fact by
the numerous unrealistic vocal-tract shapes included into the articulatory-acoustic
codebook, due to the random sampling. After these preliminary experiments. we
approached the inversion method using our initial idea of constructing a different
coproduction model for each phonologically possible combination of two consecu-
tive phonemes. We successfully developed and applied these new constraints using
continuous speech data, synthesized with the Maeda’s articulatory and vocal-tract
acoustic models. We applied this generalized method of inversion to combinations
of speech sounds from different classes, including vowels. fricatives and stop conso-
nants. We did not applied here the method to nasal sounds. However. the method
has shown its potential on these synthesized speech data. and good results of tra-

jectory estimation have been obtained.

The second set of experiments was based on real speech data. recorded with
an Electromagnetic Midsagittal Articulograph. using the author of this thesis as a
subject. The speech utterances were in a form of simple VCVs, in which the first
and second vowels were the same, drown from five English vowels. and the conso-
nant was each from a set of 17 English consonants used. Different coproduction
models have been tested, including vowels. fricatives. nasals and stop consonants.
The experimental results have shown good accuracies in estimating articulatory
trajectories, based on real articulatory-acoustic training data. Average RMS errors
of about 2 to 3 mm have been obtained for utterances not included into the training
data. These results are comparable to those of a state-of-the-art study. presented

in [99].

The third set of experiments was also based on real speech data. from the X-
ray Microbeam Speech Production Database of University of Wisconsin. which we

very recently have received. As in the previous set of experiments, also based on
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real speech training data, the experimental results have shown a good accuracy in
estimating articulatory trajectories. Average RMS errors of about 2 mm have been

obtained for utterances not included into the training data.

Two different applications of the speech inversion method developed in this
research are presented in Chapter 6. In the first application. we developed a new
method of displaying the dynamics of the vocal-tract during continuous speech
and using an articulatory model. This method of graphic representation is based
on estimated articulatory parameters from which an area function can be easily
computed as a function of time. We called this kind of representation areogram. by
analogy to the spectrogram, in which the spectra are displayed as a function of time.
This displaying method can have, in addition to the general application in speech
research, a practical application in teaching the hearing or speaking impaired to
speak. or in teaching foreign sounds and languages. The second application of the
speech inversion method, discussed in that chapter. is that to automatic speech
recognition. The direct application to automatic speech recognition is obvious.
since the inversion method has an intrinsic part of segmenting the speech and
recognizing the sequence of coproduction models. From these coproduction models.
the phonetic classification and recognition is a straightforward step. However. we
suggested another method of application to automatic speech recognition, by adding
the estimated articulatory features to the acoustic ones in order to perform a speech

recognition based on both acoustic and articulatory features.

7.1 Contributions

The main contribution of this thesis consists in generalizing a previously proposed

speech inversion method based on Kalman filtering technique, [89]. to all classes of
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speech sounds. This generalization has been achieved by applying a few innovations
to the initial method of articulatory state estimation based on the extended Kalman
filtering and smoothing. These innovations were also implemented in order to
overcome the difficulties related to consonants, revealed by a second study of speech
inversion. based on Kalman filtering, [105]. The principal innovation consists in
applying high-level linguistic constraints to the speech inversion method. This has
been achieved by using different phonological models for any possible combination of
two consecutive phonemes. Thus, the constraints are phonological and not phonetic.
due to the phonological rules applied in construction of the coproduction models.
The construction of the coproduction models was based on two parts: first, a
different set of dynamical model parameters had to be estimated for each model. as
proposed first in [91], [92] and latter applied in [75]: second. a different sub-function
representing the articulatory-acoustic transformation had to be implemented for
each model. This second part has not been applied before to the speech inversion
problem, although, a speech inversion approach has used a simple division of the
articulatory-acoustic codebook into two different parts, corresponding to voiced and
unvoiced sounds, [79]. The whole method of inverting the articulatory-to-acoustic
transformation, as developed in this research, represents an integrated approach
of articulatory trajectory estimation and segmentation/phonetic-classification. As
described in this report, we used the method of extended Kalman filtering combined
with a Maximum-Likelihood method for performing the automatic segmentation
and classification of coproduction models. The extended Kalman filtering was then
used also as a forward step, followed by the backward step of smoothing, to obtain
the estimated articulatory trajectories. The speech inversion method developed
in this study, has overcome the difficulties and problems revealed by the previous

approaches related to consonantal sounds, [105]. Our approach did not show any
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problem in modeling these sounds, including stop, nasal and fricative consonants.

Another contribution of this research consists in proposing and successfully ap-
plying the direct method of model parameter estimation from training data using
the Maximum-Likelihood method. This direct method has not been applied before
to the speech inversion problem, although an extension of it. based on the EM algo-
rithm has been proposed in [75]. A method based on codebooks. has been efficiently
implemented to approximate the nonlinear articulatory-acoustic sub-function for

each coproduction model.

Another contribution of this thesis consists in proposing a new method of dis-
playing the dynamics of the vocal-tract over time, based on estimated articulatory
trajectories and using an articulatory model to obtain the area functions. This
method depends on the accuracy of the estimated articulatory trajectories and can

only be applied in conjunction with an articulatory model.

7.2 Future Work

Future work, following this study, can be focused on the evaluation of the general-
ized speech inversion method on real speech data produced with different prosodic
information from different speakers. Thus, a larger number of tokens. with differ-
ent speed and emphasizing stress is needed for each coproduction model, in order
to evaluate the method for data with large variabilities. Also, tokens of the same
coproduction segment taken from different context words could show a larger vari-

ability in both articulatory and acoustic domains.

Another direction for future work is the evaluation of a variant of the inversion

method based on tying the models with the same target phoneme (3) into a single
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model called 8. In this way, the number of models will be drastically reduced to
about 40 to 50. the number of phonemes in a language. The models would become
simple phonetic models. The set of dynamical model parameters will have in this
case an averaged value over all the coproduction models tied. Such an approach
would be more practical. due to the small number of models. However, we did
a preliminary experiment of tying such models and the accuracy of the estimated

articulatory trajectories has been affected.

A future experiment could be focused on an extensive evaluation of the method
of approximating the articulatory-acoustic functions with multi-layer neural net-
works. It is known that such neural networks are able to approximate any nonlinear
function. We believe that this method of linearizing the articulatory-acoustic func-
tion on small regions, will provide more accurate results than the method based on

articulatory-acoustic codebooks.

The evaluation of the speech inversion method with some other acoustic feature.
e.g.. LPC parameters, and different frame intervals would also be an interesting
direction. Even though, in this study we used two acoustic features — the formant
frequencies and MFCC parameters — all these experiments were based on a 10 ms
frame interval. It would also be interesting to see how the accuracy of the estimated
trajectories will be affected by the dimension of the acoustic vectors. In this work
we only used three formant frequencies and 10 MFCC coefficients. Increasing the
dimensionality of the acoustic vectors, and decreasing the time of the analysis frame

are expected to increase the accuracy of the estimated articulatory trajectories.

It would be interesting to evaluate the speech inversion method for a simple
application of speech coding, using an articulatory model to synthesize the training
data. A very low transmission rate is expected to be obtained by coding the slow

varying estimated articulatory trajectories. However, probably the most important
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application of this speech inversion method, would be to automatic speech recog-
nition. For this application, though, a practical solution of tying the models would
probably be needed. Although other speech processing areas. e.g., diphone synthe-
sis. have to deal with the same problem of the large number of models (diphones),
the construction of about 2000 such models for a language represents a real practi-
cal problem. In addition, we have to deal with the scarcity of the speech data from
the training database. It is possible to have only one utterance for a model or even
none. For the first case, we provided an approximate solution to construct a model
from a single token. For the case when no token is available in the training data
for a model. of course, the model cannot be constructed. Therefore, by tying the

coproduction models into phonetic models, this problem can be overcome.



Appendix A

Approximating g(®f) [z] by Neural

Networks

An alternative method. which we propose for the future work. for approximation
and linearization of the articulatory-acoustic function could be based on artificial
neural networks (NNs). Such a method uses the properties of NNs of general func-
tion approximation. For each coproduction model, a neural network can be created
and trained with the same pairs of articulatory and acoustic vectors used to con-
struct the codebooks. The neural network inputs correspond to the articulatory
vectors whereas its outputs correspond to the acoustic vectors (e.g., MFCC param-
cters). The articulatory-acoustic mapping is non-linear. but is not one-to-many
like the inverse mapping. An advantage of using the neural networks in lineariz-
ing the articulatory-acoustic function consists in the simple way of computing the
Jacobian matrix needed for linearization. This method of computation is based on
the backpropagation of the errors in calculation of the derivatives of the network

outputs with respect to the network inputs. In order to be able to approximate the
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Figure A.1: Neural network of three layers for approximating an articulatory-

acoustic sub-function

non-linear articulatory-acoustic function. the neural network has to be trained with
pairs of simultaneously acquired articulatory and acoustic vectors. After training,
the network is capable of approximating the non-linear articulatory-acoustic func-
tion for any new articulatory vector applied at its inputs. The non-linear mapping,
represented by the articulatory synthesis function g(®#). can be described by the
equation

y = g(a.ﬁ)[z]’ (A.1)

where z is the articulatory vector and y is the acoustic vector. A suitable neural

network consists of multiple layers perceptrons (MLP).

The topology of an MLP neural network. consisting of three layers is presented
in a block diagram in Figure A.1. In this figure, the input vector of the network is
denoted by z, the weight matrices by IW and LW, the bias vectors by b, the input
vectors of the transfer functions by n, the output vectors of the transfer functions
by a and the output vector of the network by y. The first layer, is connected to
the articulatory inputs and has N} neurons with sigmoid transfer functions.. The
second layer has also N, neurons with sigmoid transfer functions. The third layer

has N; neurons with purely linear transfer functions and its outputs correspond to
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the acoustic parameters.

A method of computing the Jacobian matrix of the non-linear function, based on
the backpropagation of the errors in the neural networks was presented by Bishop
[3]. The Jacobian matrix G®#)(z) of the non-linear function. computed at the
input vector z = z.. has its elements given by the partial derivatives of each of the

outputs with respect to each of the inputs

wp) _ 957 99l z(t)]
G\ = 5 = kaz,-(t) lz(t)=2. (t)- (A.2)

For clarity. we will omit further the model index and the time index. Because the
output of the network represents the acoustic parameters, we will replace the g, by
yr. and use the notation corresponding to Figure A.1. The elements of the Jacobian

matrix can be derived as follows

Oye 9ni(1) _ <~ O
s 3% ZanJ(l 3z, ‘Zan,a)lwﬂ(l L). (A.3)
where
ayk 20 ayk 011[(2) 20 ayk
T = 2 53] D) o ey P DAV (A
and

Oyr _ Oyx Ini(3)
(')11,(2) - Bnk(3) 8n,(2)

In order to find the elements of the Jacobian matrix, one needs to apply an articu-

= fo(nu(2)) LWii(3. 2) f5(ni(3))- (A.5)

latory vector, around which the matrix is needed, at the inputs of the network and
compute all the activations vectors in the network. Then, by using the backprop-
agation approach. the elements of the Jacobian matrix can be computed using the

equation

20 20
Gri = 3_ IWn(1,1) f1(n;(1)) 3 LWi;(2. 1) f2(nu(2)) LWii(3. 2) f3(ni(3)).  (A-6)
j=1 =1
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where f;(n;(1)), f2(n:(2)) and f;(n«(3)) are the derivatives of the transfer functions
of each layer in the neural network. The derivatives of the sigmoid functions can

be computed directly using the original sigmoid transfer functions.

A direct way of computing the Jacobian matrix is by applying the recursive
formula from above for each element of the matrix. Another way is by employing

the matrix multiplication functions. and can be done by using the matrix equation

G =IWT(1.1) * [f;(n(1)) * U]. =
LWT(2.1) * [f,(n(2)) * U]. *
LW7T(3,2) = [f;(n(3)) = U]. (A.T)

where U = [11111...1] is a N; dimensional raw vector of ones and .* represents the

element-by-element multiplication of matrices.

The whole linearization of the articulatory-acoustic function can be accom-
plished by the trained neural network. For each reference articulatory input vector
applied to the network. the implemented algorithm can compute the corresponding
acoustic output vector (MFCC parameters) and the Jacobian matrix at the point

represented by the reference vector.

An advantage of the neural network approximation method is that eliminates
the need of clustering the data and the storing of the triple sets of parameters,
corresponding to each of the piecewise linear region of the model. It is also an
universal method of approximating any nonlinear function. such as the articulatory-

acoustic one.
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