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Abstract 

 Muscle spindle fibers are specialized stretch receptors that allow the perception 

and coordination of limb movement. Differentiation of muscle spindles is initiated by 

signals derived from the in growing Ia sensory neurons during development. The sensory 

neuron secretes neuregulin which binds and signals through the ErbB receptors to initiate 

a signaling cascade. This cascade results in the expression of a specific repertoire of 

genes, one of which is the transcription factor Egr3, which is necessary in the 

development of muscle spindles.  

 Signaling occurs efficiently when the postsynaptic receptors are clustered into 

large aggregates in apposition to an innervating nerve. Using what is known about 

acetylcholine receptor clustering at neuromuscular junctions as a model, this study shows 

the importance of the basal lamina proteins agrin and laminin and their shared receptor α-

dystroglycan in aggregating ErbB receptors at sensory synapses.  The study also shows 

that signaling through these receptors subsequently results in increased expression of 

Egr3, the transcription factor critical to muscle spindle fiber differentiation. Using an α-

dystroglycan silenced culture, it is shown that α-dystroglycan is necessary to induce 

neuregulin, laminin and agrin induced Egr3. In these same myotube cultures there is also 

a reduced number of AChR-ErbB3 colocalized aggregates and this is not rescued with the 

addition of laminin. Taken together, these results suggest an essential role for basal 

lamina components and α-dystroglycan, molecules that are crucial in acetylcholine 

receptor aggregation at neuromuscular junctions, in the induction of the transcription 

factor Egr3, a critical transcription factor involved in muscle spindle fiber differentiation. 
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Chapter 1 

Introduction 

 Muscle spindle fibers are specialized muscle stretch receptors. Formed as a result 

of reciprocal signaling between the muscle and nerve, neuregulin (NRG) is believed to be 

the required signal provided by the approaching Ia sensory neuron during development 

that initiates the differentiation of muscle fibers into spindles (Hippenmeyer et al., 2002). 

The direct molecular signaling mechanisms between the sensory neurons and developing 

muscle involved in this process have been well documented in past studies, but the roles 

of muscle basal lamina components such as agrin (AGRN) and laminin (LN) and their 

common receptor in skeletal muscle, α-dystroglycan (α-DG), on this process have not 

previously been described.  

1.1 Muscle spindle fibers 

 Proprioception is the sensation of axial body position and the awareness of limb 

and body movement through space. Muscle spindle fibers, also referred to as 

mechanoreceptors, are the specialized sensorimotor organs that permit proprioceptive 

communication from the periphery to the central nervous system (CNS). Proprioceptive 

deficits or the inability to sense limb and body movement and position results in 

difficulties carrying out basic tasks that require coordinated body and limb movement, 

such as walking. Muscle spindle fibers are also involved in sensorimotor behaviors such 

as balance and posture (Stapley et al., 2002). Age-associated morphology changes in 

muscle spindle fibers observed in the elderly may result in decreases in proprioception, 



 2 

which could contribute to the increases in ataxia and falls amongst senior populations 

(Swash and Fox, 1972); (Kararizou et al., 2005). Similar, but more severe abnormalities 

in gait, as well as scoliosis and resting tremors, are observed in mice deficient for the 

early growth response three (Egr3) transcription factor. In Egr3 null animals there is a 

complete lack of muscle spindle fiber differentiation (Tourtellotte and Milbrandt, 1998). 

The specialized structure of muscle spindle fibers allows them to carry out their 

important and specialized function.  They are small, encapsulated sensory organs that lie 

in parallel with skeletal (extrafusal or contractile) muscle fibers. Muscle spindles consist 

of several highly specialized intrafusal muscle fibers, which contain motor neuron 

endings near the outer ends and the sensory endings within the equatorial region (Hunt, 

1990; Zelena, 1994) and a number of extrafusal fibers. The intrafusal muscle fibers can 

be described as either bag fibers or nuclear chain fibers. Sensory innervation of these 

fibers by Ia afferents is distinct and characterized by a pattern of extensive annular spirals 

(Hunt, 1990). Secondary sensory endings are also present around nuclear chain and bag2, 

and are smaller group II sensory axons (Hunt, 1990). Motor innervation is supplied by 

small γ-motor neurons, which innervate the extrafusal muscle fibers in the spindle fiber. 

These motor endings can be distinguished as dynamic or static (Hunt, 1990). The 

dynamic axons increase the dynamic response of the motor endings when the length of 

the muscle is changing, while the static axons act to stabilize at a steady length (Hunt, 

1990). This is how muscle spindles signal changes in muscle length to the CNS, which 

allows the perception of body position and control of muscle contraction (Hunt, 1990). 

This is why degradation or complete lack of muscle spindles fibers results in gait ataxia 

and other abnormalities in sensorimotor behaviors (Tourtellotte and Milbrandt, 1998). 
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1.2 Development of muscle spindle fibers 

In rodents the development of muscle spindles has been well researched. 

Differentiation is initiated early in embryonic development and nascent muscle spindle 

fibers initially appear by embryonic day seventeen [E(17); (Zelena, 1994)], and spindles 

continue to mature well into postnatal life (Kucera et al., 1988); (Zelena, 1994), Early 

studies revealed that it is the Ia afferent (sensory) axon that provides the necessary signal 

input to initiate muscle spindle differentiation, as surgical elimination of sensory, but not 

motor neurons, results in the rapid deterioration of spindle fibers (Kucera and Walro, 

1992a; Kucera and Walro, 1992b; Kucera et al., 1993). Further research showed that 

mice with mutations that impair the function of neurotrophin-3 (NT-3) or the NT-3 

receptor, tyrosine kinase C (TrkC), fail to develop spindle fibers (Ernfors et al., 1994; 

Klein et al., 1994). NT-3 is a survival factor provided by fetal muscle and is the ligand of 

TrkC, which is expressed on proprioceptive sensory neurons. Elimination of either of 

these factors results in the absence of proprioceptive sensory neurons, and thus, the lack 

of muscle spindles (Ernfors et al., 1994; Klein et al., 1994). Signals that are provided by 

sensory neurons are essential to induce the expression of transcription factors specific to 

intrafusal muscle and are necessary for the differentiation of muscle spindle fibers. 

1.3 NRG signaling is essential for muscle spindle fiber 

differentiation 

The developing intrafusal muscle fibers of developing spindles specifically 

expresses several transcription factors, including the early growth response (Egr) family 

transcriptions factor, Egr3 (Tourtellotte and Milbrandt, 1998). Mice deficient in Egr3 
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present with profound gait ataxia, due to the complete lack of spindle fibers; Egr3 

expression is essential for the differentiation of these structures (Tourtellotte and 

Milbrandt, 1998). The expression of Egr3 in certain cell types has been shown to be 

stimulated via NRG-1 mediated signal cascade (Sweeney et al., 2001). In vitro studies 

indicate that the NRG β1 epidermal growth factor (EGF)-like domain is the minimal 

fragment of NRG sufficient to induce the immediate expression of genes and proteins 

required for spindle fiber differentiation, including Egr3 (Jacobson et al., 2004). In vivo, 

elimination of all isoforms of NRG results in severe impairment of muscle spindle 

development, as is evident by the lack of transcriptional markers, such as Egr3, as well as 

the absence of the characteristic annulospiral configuration of proprioceptive neurons 

surrounding the developing spindles (Hippenmeyer et al., 2002). More specifically, these 

findings also report that it is the immunoglobulin (Ig)-containing isoform of NRG, which 

is specifically expressed by proprioceptive neurons as opposed to other isoforms broadly 

expresses by most neurons, that is specifically required for muscle spindle formation 

(Hippenmeyer et al., 2002). 

NRG signals through homo- and heterodimers of ErbB receptors. NRG is capable 

of binding directly to ErbB3 and ErbB4 (Fischbach and Rosen, 1997). Although ErbB3 

demonstrates high affinity binding to NRG, it cannot autophosphorylate in response to 

NRG binding, which is necessary to transduce the signal, and it therefore forms 

functional heterodimers with either ErbB2 or ErbB4 by necessity (Burden and Yarden, 

1997; Lemke, 1996). ErbB2 also forms heterodimers by necessity as it is incapable of 

directly binding to any of the NRG isoforms, it however, exhibits strong kinase activity 

(Lemke, 1996). The ErbB2-ErbB3 heterodimer is the most potent activator of the Ras-
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Erk pathway leading to proliferation and differentiation, and the phosphatidylinositol-3’-

kinase (PI3K)-Atk survival pathway (Altiok et al., 1997; Tansey et al., 1996). ErbB2 is 

essential in embryonic NRG-mediated spindle fiber differentiation and is also expressed 

by spindle fibers in adults (Andrechek et al., 2002; Leu et al., 2003). Ablation of ErbB2 

in skeletal muscle results in gross proprioceptive deficits due to the complete lack of 

muscle spindle formation (Andrechek et al., 2002; Leu et al., 2003). ErbB3 and ErbB4 

mediated signaling is also likely involved in the embryonic initiation of muscle spindles 

as both ErbB3 and ErbB4 expression has been reported in late embryonic development at 

sites where innervation occurs (Hippenmeyer et al., 2002). 

1.4 AGRN signaling results in aggregation of synapse-specific 

proteins 

In order for efficient NRG signaling through the ErbB receptors to occur between 

the in growing sensory neuron and the muscle, a stable synapse must be established, and 

the necessary postsynaptic proteins, the ErbB receptors included, must be recruited to the 

site of neural innervation. At neuromuscular junctions (NMJ)s, AGRN expressed by the 

in growing α-motor neurons results in the clustering of acetylcholine receptors (AChRs) 

and other synaptic proteins such as LN-β2, muscle specific kinase  (MuSK), rapsyn, β-

dystroglycan  (β-DG) and utrophin (Meier et al., 1997). Clustering of AChRs at the NMJ 

will be used as a model to determine if the major contributing molecules also act in a 

similar manner in aggregating ErbB receptors at sensory synapses.  

In skeletal muscle, the NMJs are highly specialized synapses that facilitate 

efficient signaling between motor neurons and proximal skeletal muscle. In embryonic 



 6 

development, before the motor neuron makes contact with the skeletal muscle, AChRs 

are dispersed diffusely across the muscle surface, but within hours of neural contact, the 

postsynaptic AChRs begin to form aggregates on the postsynaptic membrane (Bevan and 

Steinbach, 1977). Postsynaptic regions eventually pack densities of AChRs of ~10 

000/µm2 compared to the unspecialized adjacent areas having an AChR density of 

~1000-fold less (Fertuck and Salpeter, 1974). 

The clustering of AChRs and other synaptic proteins by AGRN commences when 

AGRN activates its functional receptor MuSK. AGRN initially binds low-density 

lipoprotein receptor four (Lrp4) (Kim et al., 2008; Zhang et al., 2008),which 

subsequently complexes with MuSK, resulting in MuSK phosphorylation (Glass et al., 

1996; Hopf and Hoch, 1998). Docking protein 7 (Dok-7) and tumorous imaginal Discs 1 

(Tid1) also complex with MuSK (1999; Linnoila et al., 2008; Okada et al., 2006), and are 

both required for efficient intracellular signal transduction; knockout mice for any of 

these genes is lethal at birth and there is an absence of AChR aggregates at postsynaptic 

terminals (DeChiara et al., 1996; Gautam et al., 1996; Linnoila et al., 2008; Okada et al., 

2006). Dok-7 is involved in MuSK and AChR β-subunit phosphorylation and Tid1 

demonstrates phosphorylation of AChR β-subunits and activation of small guanidine 

triphosphatases GTPases; both of these processes are necessary for interactions with 

rapsyn (Linnoila et al., 2008; Okada et al., 2006). Rapsyn is associated with AChRs, 

connects AChRs to the cytoskeleton and is required in AChR clustering (Fuhrer et al., 

1999). A MuSK-rapsyn interaction is mediated though a rapsyn-associated 

transmembrane linker (RATL) (Apel et al., 1997). Ultimately, the activation of MuSK 

results in the phosphorylation of the β-subunit of the AChR, which is a necessary 
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requirement for enhancing the linkage of the AChRs to the cytoskeleton (Borges and 

Ferns, 2001; Wallace et al., 1991). 

Numerous other synapse-specific proteins are also aggregated by AGRN and co-

localize with AChRs, included in these are the NRG receptors ErbB2 and ErbB3 (Meier 

et al., 1997; Rimer et al., 1998). ErbB4 has been shown to be associated with the adaptor 

protein syntrophin, which is also localized to NMJs (Garcia et al., 2000). Based in this, 

perhaps AGRN, which has been shown to aggregate ErbB2, ErbB3 and ErbB4 to AChR 

cluster regions (Meier et al., 1997; Rimer et al., 1998), is also involved in the 

accumulation of ErbB receptors to the synapses formed between propriocetive sensory 

neurons and muscle.  

In the developing nervous system, AGRN is expressed in specific patterns at 

specific developmental time points. Both primordial motor and sensory neuron 

derivatives in the rat and chick express high levels of AGRN transcripts (Ma et al., 1994; 

Ma et al., 1995; Stone and Nikolics, 1995). Although AGRN is the product of a single 

gene, many different isoforms exist (Rupp et al., 1991). These are generated through 

alternative transcriptional start sites (Burgess et al., 2000; Denzer et al., 1995), as well as 

extensive combinations of alternative splice sites contained in the C-terminal end 

(Burgess et al., 1999; Ferns et al., 1993; Hoch et al., 1993). The primary AGRN transcript 

contains three potential alternative splice sites, denoted X, Y, and Z in rodents and A, B 

in chicks (Hoch et al., 1993; Ruegg et al., 1992). A 12-amino acid insert at the X site 

appears to have no effect on the ability of AGRN to cluster AChRs (Ferns et al., 1992).  

It is inserts of 8, 11, or 19-amino acids at the Z-spice site that demonstrate the greatest 

effect in the ability of AGRN to assemble aggregates of AChRs (Ferns et al., 1992). The 
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highly active Z-site insert containing isoforms are expressed exclusively by motor 

neurons in the developing nervous system (Hoch et al., 1993; Stone and Nikolics, 1995), 

and are highly expressed during the developmental time period that corresponds to 

synaptogenesis (Stone and Nikolics, 1995). Although all isoforms of AGRN exert some 

AChR clustering ability, it is the Z-splice variants (or B-splice variants in chick) that 

exhibit the most potent aggregating capacity (Ferns et al., 1992; Ferns et al., 1993). 

Interestingly, the presence of a 4-amino acid insert at the Y-splice site does increase the 

AChR clustering activity by 2-fold, when there is no Z-insert present (Ferns et al., 1993). 

This isoform, AGRN(4, 0), is extensively expressed by rat sensory neurons in the dorsal 

root ganglion (DRG) at E(15) (Stone and Nikolics, 1995), just prior to the initial 

appearance of nascent muscle spindle fibers on E(17) (Zelena, 1994).    

Additionally, at the NMJ ErbB2 and ErbB3 are also co-localized to these AGRN-

induced postsynaptic clusters, presumably through association with syntrophin (Garcia et 

al., 2000; Meier et al., 1997; Rimer et al., 1998). This aggregation of ErbB receptors is 

also observed in myotube tissue cultures that constitutively express MuSK (Jones et al., 

1999). Furthermore, knockout mice that are MuSK or AGRN deficient fail to assemble 

aggregates of ErbB receptors (DeChiara et al., 1996; Gautam et al., 1996). In order to 

ensure efficient transduction of NRG signaling leading to activation of Egr3 expression, 

which subsequently induce a network of spindle fiber specific genes (Albert et al., 2005), 

ErbB receptors must be in close proximity to the inductive signal. AGRN is expressed in 

both motor and sensory neurons as evident by expression in embryonic spinal cord 

primordial motor neurons as well as DRG in chicken embryos (Ma et al., 1995). Rat 

DRG express exceedingly high levels of AGRN(4, 0) at E13 through E15 (Stone and 
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Nikolics, 1995). Perhaps AGRN expressed by in growing sensory Ia afferents during 

development is a source of AGRN that is adequate to cause the aggregation of the ErbB 

receptors and allow for effective NRG signaling resulting in induction of Egr3 and 

ultimately spindle fiber differentiation. 

1.5 α-DG the transmembrane link 

 AGRN acts to aggregate AChRs and other synaptic proteins to the NMJ in a fast 

and effective manner through activation of MuSK (Glass et al., 1996; Hopf and Hoch, 

1998). However, AGRN also binds directly to α-DG (Bowe et al., 1994; Campanelli et 

al., 1994; Gee et al., 1994; Sugiyama et al., 1994). α-DG is a highly glycosylated, 

peripheral membrane protein and is part of the dystrophin-associated glycoprotein 

complex (DGC); disruption or absence of this complex of proteins can result in any 

number of muscular dystrophies (Ervasti et al., 1990; Ibraghimov-Beskrovnaya et al., 

1992). α-DG is the product of a single gene (dag1) that is initially expressed as a pro-

peptide and subsequently post-translationally cleaved generating two distinct subunits, α-

DG and the transmembrane β-DG (Holt et al., 2000; Ibraghimov-Beskrovnaya et al., 

1992). α- and β-DG are associated in a non-covalent manner and this interaction creates 

the core of the DGC effectively linking the extracellular matrix (ECM) to the underlying 

cytoskeleton, a link that is essential to maintaining the integrity of skeletal muscle and 

protecting it from the mechanical stress caused by contraction (Ervasti and Campbell, 

1993; Henry and Campbell, 1996; Michele and Campbell, 2003). At NMJs in skeletal 

muscle, β-DG associates with rapsyn and colocalizes with AChRs at newly forming 

synaptic clusters (Bartoli et al., 2001; Cartaud et al., 1998; Cohen et al., 1995). 
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 α-DG was once thought to be the functional AGRN receptor (Gee et al., 1994).  

AGRN does indeed bind to α-DG via its Laminin G-like (LG) modules (Hohenester et 

al., 1999), however, α-DG does not demonstrate the kinase activity required for 

phosphorylation of the AChR β-subunit, which is necessary for enhanced anchoring of 

the AChRs to the cytoskeleton (Borges and Ferns, 2001; Wallace et al., 1991). α-DG 

binds to the active neural AGRN isoform, but also binds with high affinity to the other 

AGRN isoforms that do not have a significant affect on AChR clustering (Gesemann et 

al., 1996; Hopf and Hoch, 1996; Sugiyama et al., 1994). Other evidence that suggests a 

role for α-DG in consolidation and maintenance as opposed to the initial signal in NMJ 

formation is that α-DG deficient myotubes do form NMJs, and although they are altered 

in morphology, clusters of AChRs are still present (Cote et al., 1999; Grady et al., 2000; 

Jacobson et al., 1998). α-DG functions in AGRN-induced AChR clustering independent 

of MuSK, as AGRN-MuSK signaling is not substantially inhibited in muscle cell lines 

deficient in α-DG (Jacobson et al., 1998). In competitive binding experiments disrupting 

the ARGN-α-DG interaction, such as treatment with muscle AGRN, which binds α-DG 

with a 10-fold higher affinity than neural AGRN (Campanelli et al., 1994; Gesemann et 

al., 1996; Sugiyama et al., 1994), or with anti-α-DG antibodies, results in no significant 

decrease in phosphorylation of MuSK or the downstream phosphorylation of the AChR 

β-subunit (Jacobson et al., 1998). α-DG is now thought to work downstream of MuSK 

activation in AGRN-induced AChR clustering where it works to regulate the stability of 

AChR aggregates. First AGRN-induced MuSK activation mediates the formation of 

AChR microclusters (Froehner et al., 1990; Phillips et al., 1991), which are then 

subsequently condensed and then maintained as larger clusters (Figure 1; (Cohen et al., 
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1995; Jacobson et al., 1998). Unstable and diffuse AChR clusters are observed in muscle 

fibers that are deficient in α-DG (Cote et al., 1999; Grady et al., 2000; Jacobson et al., 

2001), as well as a significant reduction in LN, perlecan and acetylcholine esterase 

(AChE) at these α-DG deficient NMJs (Cote et al., 1999; Jacobson et al., 2001). These 

findings suggest a role for α-DG in the stabilization and condensation of AChR clusters.  

 Since α-DG is involved in stabilizing and condensing aggregates of AChRs (Cote 

et al., 1999; Jacobson et al., 2001), which have also been shown to colocalize with ErbB 

receptors at NMJs (Jones et al., 1999; Meier et al., 1997), perhaps α-DG is of importance 

in clustering ErbB receptors at sensory synapse. Another extracellular matrix protein that 

binds α-DG is LN, perhaps it too works to facilitate NRG-ErbB signaling by involvement 

in clustering ErbB receptors.  
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Figure 1: Clustering of AChRs at the NMJ 

AGRN secreted from motor neurons binds to Lrp4, which is complexed with MuSK and 

induces MuSK phosphotyrosylation. Dok-7 is subsequently phosphorylated and 

complexes with Tid1, which in turn works to activate small GTPases (not shown), 

ultimately phosphorylating the AChR β-subunits. This cascade results in small 

microclusters of AChRs at nascent NMJs. The basal lamina protein LN then acts to 

condense the microclusters into large, mature, stable clusters through binding to α-DG 

and LN self-polymerization via the short arms pt LN cruciform (A). AGRN can also 

cluster AChRs by binding to α-DG. This may occur as a result of up steam MuSK 

activation and clustering α-DG into clusters (B). LN also demonstrates the ability to 

cluster AChRs. High concentrations of LN added to myotubes in vitro cause AChRs to 

aggregate. This has been shown to occur independent of MuSK activation by AGRN. LN 

clusters by binding α-DG and then binding to other LN via homophilic interactions 

between short arms (B).  

 

Rap = rapsyn, P = phophotyrosine phosphorylation 
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1.6 LN is a condenser and stabilizer of AChR synaptic clusters 

 The LNs are part of a large family of heterotrimeric proteins comprised of at least 

12 isoforms (Aumailley and Smyth, 1998; Koch et al., 1999). LNs can polymerize into 

large sheet-like structures and along with collagen IV, perlecan and nidogen/entactin 

constitute a large proportion of the ECM (Timpl and Brown, 1996). Specific LN 

isoforms, LN-1 (α1β1γ1) and LN-2 (α2β1γ1) demonstrate high affinity binding to α-DG, 

while it is the LN-2 (α2β1γ1) isoform that provides the critical like of the cytoskeleton to 

the ECM in skeletal muscle, as mutations to the LN-2 α2 (also referred to as merosin) 

chain results in congenital muscular dystrophies (Campbell, 1995). LN (now referring to 

LN-2 α2 chain containing isoforms from this point on) are crucifix-shaped molecules 

with the long arm α chain containing a tandem of five LG modules at the C-terminal end 

which contain the α-DG binding sites (Figure 1; (Ervasti and Campbell, 1993; Gee et al., 

1993; Smalheiser, 1993). This binding is calcium dependent, just as α-DG-AGRN 

binding is also through LG modules and is calcium dependent (Bowe et al., 1994; 

Campanelli et al., 1994; Gee et al., 1994; Sugiyama et al., 1994). The LG modules of LN 

likely bind to the central, highly glycosylated, mucin-like region, which is rich in 

negatively charged oligosaccharides (Durbeej et al., 1998). 

 During synaptic differentiation in skeletal muscle, as previously explained, 

AGRN from in growing motor neurons activates MuSK, which in turn phosphorylates the 

AChR β-chains resulting in aggregates of AChRs forming microclusters (Figure 1; 

(Froehner et al., 1990; Phillips et al., 1991). LN binding to α-DG then acts to stabilize 

and condense these microaggregates into larger clusters (Figure 1; (Cohen et al., 1995; 
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Jacobson et al., 1998). MuSK activation leading to AChR clustering results in the co-

clustering of α-DG to these developing synapses (Cohen et al., 1995), in a rapsyn-

dependent manner (Apel et al., 1995). This recruitment of α-DG to these clusters acts as 

a scaffold that works to immobilize AChRs and other synaptic proteins to these 

developing synapses via α-DG-LN interactions (Apel et al., 1997; Carbonetto and 

Lindenbaum, 1995; Ibraghimov-Beskrovnaya et al., 1992). LN itself has been shown to 

self-assemble in solution by homophilic interactions between its short arms (Yurchenco 

et al., 1992); this phenomenon has also been observed on the surface of muscle cells 

(Cohen et al., 1997). Interestingly, several studies have demonstrated that LN addition to 

myotube cultures can actually promote the accumulation of AChRs into large clusters, 

via binding to α-DG, independent of AGRN (Montanaro et al., 1998; Sugiyama et al., 

1997). Since LN-α-DG interactions are an important part of AChR clustering in both a 

MuSK-AGRN dependent and independent manner, conceivably these interactions may 

play an important role in the aggregation of ErbB receptors at developing sensory 

synapses and facilitate efficient NRG signaling.  

1.7 Research objectives 

 Experiments were designed to establish whether the key proteins involved in the 

clustering of AChRs in developing motor synapses, AGRN, LN and α-DG, are also 

important in sensory synapses formation. Given that AGRN and LN are capable of 

clustering AChRs at motor synapses (McMahan, 1990; Montanaro et al., 1998; Sugiyama 

et al., 1997), and that AGRN also aggregates ErbB receptors to these clusters (DeChiara 

et al., 1996; Gautam et al., 1996), initially it was determined whether addition of AGRN 

and LN addition to myotube cultures had any affect on the expression of the transcription 
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factor Egr3, which has previously been used as a marker for muscle spindle 

differentiation (Hippenmeyer et al., 2002). Egr3 levels were monitored using immunoblot 

analysis and both molecules proved effective in inducing Erg3 expression. To investigate 

α-DG’s role in this process complimentary methods were used. In the first instance, an α-

DG silenced muscle cell line was used and in the second instance, basal lamina/α-DG 

interactions were blocked, using an anti-α-DG antibody. Again, Egr3 levels were 

evaluated by immunoblot analysis. In both cases treatments resulted in a dramatic 

increase in Egr3 expression, which was substantially decreased in α-DG deficient 

myotubes and myotubes blocked with anti-α-DG antibodies. Blocking experiments with 

NRG and ErbB inhibitors were used to determine if LN induced Egr3 expression was 

occurring as a result of NRG-ErbB signaling and not in some other novel pathway. 

Inhibiting NRG and ErbB signaling did indeed reduce the expression of Egr3 induced by 

LN, indicating LN induction of Egr3 does occur via NRG-ErbB signaling. Furthermore, 

immunocytochemistry was used to determine the levels of muscle spindle fiber specific 

slow developmental myosin heavy chain (sd-MyHC) expression. However, no change in 

sd-MyHC was observed. Finally, the effect of LN on both AChR and ErbB3 clustering 

was examined using direct and indirect immunocytochemistry. Taken together, analysis 

of the results from these experiments revealed that indeed AGRN, LN and α-DG 

influence Egr3 levels and therefore may play an important role in spindle fiber 

differentiation. Based on these results, a role for AGRN and LN binding to α-DG at 

sensory synapses that acts upstream of NRG-ErbB signaling to allow the effective 

transmission of NRG-ErbB signaling to occur and stimulate Egr3 induction is inferred. 

This likely occurs as a consequence of AGRN and LN’s ability to stimulate clustering of 
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the ErbB receptors by inducing physical changes in the basal lamina resulting in the 

immobilization of ErbB receptors and other synaptic proteins to these regions.   
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Chapter 2 

Materials and Methods 

2.1 Cell culture 

 Human primary myoblasts were provided as a gift from H. Blau (Stanford 

University, Stanford, CA). Cells were cultured on plastic tissue culture plates coated with 

0.1% collagen in HAMS F-10 medium (Wisent, St-Bruno, QC) supplemented with 15% 

fetal bovine serum (FBS; Wisent, St-Bruno, QC), 100 U/ml penicillin/streptomycin 

(Wisent, St-Bruno, QC), and 0.5% chick embryo extract (Sera Laboratories International, 

UK). Cultures were grown at 37ºC in 5% CO2 and 95% humidity. Myoblasts were fused 

to myotubes after reaching confluence by maintaining cultures in Dulbecco’s modified 

Eagle’s medium (DMEM; Wisent, St-Bruno, QC) high glucose formula supplemented 

with 2% horse serum (Wisent, St-Bruno, QC), 1% insulin-transferrin-selenium 

(Mediatech Inc., Manassas, VA), and 100 U/ml penicillin/streptomycin (Wisent, St-

Bruno, QC). Fusion of myoblasts to myotubes typically took 3-4 days. 

 The C2C12 myoblast cell line was obtained from the American Type Culture 

Collection (ATCC; CRL-1772). Myoblasts were seeded on plastic tissue culture plates 

and grown in DMEM low glucose medium (Wisent, St-Bruno, QC) supplemented with 

20% FBS and 100 U/ml penicillin/streptomycin at 37ºC, 95% humidity in 8% CO2. 

Fusion of myoblasts was induced by changing to fusion medium consisting of DMEM 

high glucose (Wisent, St-Bruno, QC) supplemented with 2% horse serum (Wisent, St-



 20 

Bruno, QC) and 100 U/ml penicillin/streptomycin. Fusion of myoblasts to myotubes 

typically took 3-4 days. 

 The α-DG-silenced cell line, 11E myoblasts, were a generous gift from S. 

Carbonetto (McGill University, Montreal, QC). The 11E cultures were maintained as 

previously described (Jacobson et al., 1998). Briefly, 11E cells were derived from C2C12 

myoblasts and grown similarly, with the addition of the antibiotic G418 sulfate (70 

µg/ml; Wisent, St-Bruno, QC) to the growth medium. Fusion to myotubes usually 

required 5-6 days in fusion medium.  

 Mouse-anti-slow developmental myosin heavy chain (sd-MyHC) specific 

monoclonal antibody producing hybridomas were obtained from The Developmental 

Studies Hybridoma Bank (University of Iowa, Iowa City, IA). Hybridomas were grown 

in Iscove’s DMEM (Wisent, St-Bruno, QC) supplemented with 20% heat inactivated 

FBS and Gentamycin sulfate (50 µg/ml; Wisent, St-Bruno, QC). Culture growth 

conditions were 37ºC, 5% CO2 and 95% humidity. To collect antibodies, culture medium 

was gently centrifuged (52 × g) to remove cells. The supernatant was then collected and 

stored at 4ºC. To determine the approximate concentration of antibodies, dilutions of the 

supernatant were electrophoresed on a 10% sodium dodecyl sulfate polyacylamide gel 

(SDS-PAGE) and transferred to nitrocellulose and immunoblotted (see section 2.5). 

Antibodies were visualized using an anti-mouse antisera conjugated to horseradish 

peroxidase (1:2000; GE Health Care, UK). Immunoblot results are shown in the 

Appendix (see Figure A1). 
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2.2 Treatments and blocking experiments 

2.2.1 Culture treatments for immunoblot analysis 

 Time course experiments were preformed by refreshing the fusion medium of 

fused C2C12 myotubes and adding NRG (1 nM; Shenandoah Biotechnology Inc., 

Warwick, PA), NRG with AGRN (500 pM; rrC-Ag 3,4,8, R & D Systems, Minneapolis, 

MN), and AGRN alone to cultures. Treatments were added to culture plates at 1, 3, 6, 12 

and 24 hours prior to protein extraction. A non-treated control was also prepared at the 

24-hour time point. The concentrations of the treatments are consistent in all experiments 

unless stated differently.  

 In experiments were LN was used, it was added to C2C12 and 11E cultures at a 

final concentration of 50 nM (Millipore Corp., Billerica, MA). The LN treatment along 

with NRG was added to cultures four hours prior to protein extraction. An untreated 

control was also prepared at this time. 

2.2.2 Blocking experiments 

 α-DG was blocked with the monoclonal antibody 11H6 (sc-53987; Santa Cruz 

Biotechnology, Santa Cruz, CA). This antibody was added to C2C12 myotubes one hour 

prior to treatments with NRG, LN and an untreated control at a dilution of 1:50 in fusion 

medium. 

 NRG function was blocked using an anti-NRG1-β1 EGF domain-neutralizing 

antibody (AF-396-NA; R & D Systems, Minneapolis, MN). It was added at the time of 

treatment with NRG, LN and an untreated control at a concentration of 2 µg/ml. 

Treatments were added two hours before protein extraction. 
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  Blocking ErbB receptor signaling was achieved by using Tyrphostin AG825.  

Tyrphostin AG825 (50 mM; Cayman Chemical, Ann Arbor, MI) was added to cultures 

and incubated overnight before the addition of treatments with NRG, LN and an 

untreated control. These treatments were added four hours before protein extraction. 

2.2.2 Culture treatments for immunofluorescence  

 All treatments of C2C12 and 11E cultures prepared for immunofluorescence were 

incubated overnight (18 hrs) prior to preparation of cultures for fixation. All 

concentrations of treatments were the same as previously stated for western blotting 

purposes. 

2.3 Protein extractions 

 Following treatment of fused myotubes, cultures were washed twice with 

Dublecco’s Phosphate-buffered Saline (D-PBS; Wisent, St-Bruno, QC) solution and 

collected in D-PBS and centrifuged at 4 ºC and 470 × g. The pellet of cells was 

resuspended in protein extraction buffer [25 mM Tris-HCl pH 7.5, 25 mM Glycine, 150 

mM NaCl, 5 mM EDTA, 1% Triton X-100, and 1x Complete Protease Inhibitor Cocktail 

(Roche, Mississauga ON)] and incubated on ice for 15 minutes and then centrifuged at 

16000 × g at 4ºC. The supernatant was collected and used for immunoblot analysis. 

2.4 Immunoblot analysis 

 Protein extracts were quantified using the Bio-Rad Protein Assay (Bio-Rad 

Laboratories, Mississauga, ON) to ensure equal protein sample loading. Immunoblots 

were performed according to methods previously described (Jacobson et al., 1998). In 
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brief, quantified protein extracts were electrophoresed using 8% SDS-PAGE and 

subsequently transferred to a nitrocellulose membrane. Ponseau S was used to ensure 

successful transfer of proteins as well as verify equal loading. Following electrophoretic 

transfer to nitrocellulose membranes were blocked for one hour at room temperature in 

blocking buffer (5% skim milk powder in 10 mM Tris-HCl pH 7.5, 0.15 M NaCl and 

0.1% Tween 20). Membranes were then incubated with primary antibody [Egr3 (1:400), 

Santa Cruz Biotechnology, Santa Cruz, CA; α-DG (1:1000), sc-53987 Santa Cruz 

Biotechnology, Santa Cruz, CA)] in blocking buffer for one hour at room temperature. 

Horseradish peroxidase (HRP)-conjugated secondary antibodies were used to visualize 

protein-specific binding and were diluted in blocking buffer and incubated for one hour at 

room temperature [(1:2000), GE Health Care, UK]. Chemiluminescence was detected 

using the combination of ECL western blotting substrate (Peirce, Rockford, IL) and 

autoradiography film (Labscientific Inc., Livingston, NJ).  

 An extra protein sample was also electrophoresed on each gel for use as a 

secondary antibody control lane. This lane contained quantified protein extract from 

NRG treated C2C12 cells and was left in blocking solution while all other lanes were 

incubated in primary antibody. Incubation in conjugated secondary antibody solution and 

detection was carried out along with all test lanes. 

 To quantify protein expression levels, densitometric analysis was carried out on 

sub-saturated film exposures using the gel analysis macro included in the NIH image 

software package available at: ftp://rsbweb.nih.gov/pub/nih-image. All values were 

expressed as a percentage of the control value (zero time point) in order to average 

several independent experiments.  
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2.5 Immunofluorescence 

 Myotubes used for immunofluorescence were grown on acid washed (bathed in 

66% concentrated nitric acid and 33% concentrated hydrochloric acid for 2 hours and 

rinsed in deionized water for 30 minutes) glass cover slips, which were subsequently 

coated with 0.1% gelatin. For experiments were α-bungarotoxin (α-BTX) was used to 

observe AChR clusters, rhodamine-labeled α-BTX (0.2 µg/ml; Molecular Probes) was 

added to treated cultures one hour prior to fixation. To verify that the rhodamine-labeled 

α-BTX indeed binds specifically to AChRs, a control was prepared by adding a 10-fold 

excess of unlabeled α-BTX (2 µg/ml; Molecular Probes) to a culture plate 30 minutes 

before the addition of rhodamine-labeled α-BTX. Following all treatments, cultures were 

washed twice with PBS and then fixed either with 2% paraformaldehyde or 70% ice-cold 

ethanol. 

 Experiments where ErbB3 and AChR clusters were examined; cultures were fixed in 

2% paraformaldehyde for 20 minutes and permeablized in 0.3% Triton x-100 in PBS for 

10 minutes. When looking at the levels of sd-MyHC, cultures were fixed in 70% ice-cold 

ethanol at -20ºC for 15 minutes and permeablized in 0.1% Triton x-100 in PBS for 10 

minutes. After permeabilzation, cultures were incubated for one hour in blocking buffer 

(10% horse serum in PBS). Primary antibodies were diluted in blocking buffer and 

incubated for one hour at room temperature [anti-ErbB3 (1:200); Santa Cruz 

Biotechnology, Santa Cruz, CA] or at 4ºC overnight [anti-sd-MyHC (1:2), The 

Developmental Studies Hybridoma Bank, IA]. Cultures were washed five times with 

PBS; specific binding was detected with fluorescein-conjugated secondary antiserums 

[anti-rabbit and anti-mouse, both used at 1:2000, (Molecular Probes)]. Cultures were 
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washed five times with PBS before the addition of ProLong Gold antifade reagent 

(Molecular Probes) and the cover slips mounted onto slides. Fluorescence was observed 

using a Zeiss Axiovert 200 inverted microscope (Zeiss, Burnaby, BC) at a final 

magnification of 400 × for examination of ErbB3 and AChR clusters and inspection of 

myotubes for sd-MyHC. To record actual observed differences in fluorescence, 

experimental and control samples were photographed under identical conditions using a 

Qimaging retiga 1494 digital camera in combination with OpenLab software 

(Improvision, Waltham, MA). 

2.6 Quantification of AChR and ErbB3 colocalization 

 C2C12 and 11E myotubes were treated overnight (18 hours) with NRG and LN as 

well as an untreated control. AChR and ErbB3 clusters were visualized on 

paraformaldehyde-fixed myotubes with rhodamine-labeled α-BTX and indirect 

fluorescence using ErbB3-specific antibodies. Myotubes were magnified 400 × using the 

Zeiss Axiovert 200 inverted microscope (Zeiss, Burnaby, BC) and 10 random, non-

overlapping fields of view were photographed for quantification. Quantification of 

overlapping AChR and ErbB3 aggregates was determined by visual inspection of 

photographs imported into Adobe Photoshop (Adobe Photoshop CS Version 8.0).  In 

Photoshop, the contrast of the photographs was adjusted for optimal viewing, and any 

and all photographic manipulations made in Photoshop were kept consistent between all 

treatments and experiments. Visible clusters of rhodamine-labeled α-BTX bound to 

AChRs were counted and compared to the immunofluorescence pattern produced by 

staining for ErbB3. When ≥ 50% of the fluorescence of similar size and shape 

corresponded to that of the α-BTX fluorescence pattern, an overlap was considered. To 
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account for differences in cell densities, the average number of AChR aggregates per 

myotube was also recorded. This was accomplished by counting the number of AChR 

clusters and the total number of myotubes in that field of view. The ratio of AChR 

clusters to the number of myotubes was then calculated. 
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Chapter 3 

Results 

3.1 Induction of Egr3 by AGRN and LN 
 

 Previous studies have used the induction of the transcription factor Erg3 as a 

molecular marker to identify the early initiation stages of muscle spindle fiber 

differentiation (Hippenmeyer et al., 2002). It has also been established that NRG 

provided by the in growing Ia sensory neuron induces the production of Egr3, which is 

necessary for muscle spindle development (Hippenmeyer et al., 2002; Jacobson et al., 

2004; Tourtellotte and Milbrandt, 1998). NRG signals through the ErbB family of 

tyrosine kinase receptors and in order for an efficient transmission of signal into the 

growing muscle to occur the ErbB receptors must be concentrated and in close proximity 

to the site of contact. AGRN and LN are involved in clustering and consolidation of 

AChR clusters at the NMJ (McMahan, 1990; Montanaro et al., 1998; Sugiyama et al., 

1997). It has been shown that ErbB2 and ErbB3 colocalize with AGRN-induced AChR 

clusters (Meier et al., 1997; Rimer et al., 1998). Considering these findings, this study 

investigated whether AGRN and LN influence the induction of Egr3.  

 To determine whether AGRN and LN are involved, the mouse C2C12 myotube 

cell line was utilized. This line has been characterized extensively in studies of 

postsynaptic differentiation and is relatively easy to grow, readily available from the 

ATCC, and is similar in many respects to human myotubes. This was important, as more 

direct connections and possible future medical implications to human health may be 

inferred as a consequence of data attained from this study. For this reason, initial 
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Figure 2: Induction of Egr3 in C2C12 mouse myotubes 

Shown here is an immunoblot for Egr3 following treatments with NRG, NRG and 

AGRN, and AGRN alone in Human and mouse myotubes. The levels of Egr3 protein 

were increased in C2C12 mouse myotubes when treated for 2 hours with NRG, NRG and 

AGRN and AGRN as compared to the basal level of Egr3 in the untreated control. This 

particular anti-Egr3 antibody (Santa Cruz Biotechnology, Santa Cruz, CA) recognized 

Egr3 in C2C12 mouse myotube whole protein extracts as opposed to human myotube 

protein extracts that were prepared the same way and cultures given the same treatments 

for the same duration as well as a shorter incubation. 
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experiments were carried out in a human primary myotube cell line. Unfortunately, the 

commercially available anti-Egr3 polyclonal antibody readily recognizes the Egr3 from 

mouse myotube protein extracts far better than that of the human myotube protein 

extracts when used for western blotting (Figure 2). The direct comparison of human 

myotubes and C2C12 mouse myotubes both treated for 2 hours with a control, NRG, 

NRG + AGRN and AGRN alone exhibited a very different result after western blotting. 

There is no visible band at 46 kDa in the lanes where human myotube extracts were 

blotted, in contrast to the lanes corresponding to C2C12 extracts where Egr3 protein was 

clearly recognized by the antibody (Figure 2). Even a shorter incubation time of human 

myotubes with the same treatments resulted in the absence of banding at 46 kDa where 

Egr3 should be recognized by immunobloting. Due to the absence of obvious Egr3 

immunoreactivity in the human primary cells further studies were restricted to C2C12 

myotubes. 

 To determine the optimal time point to look at Erg3 induction in further 

experiments, a 24-hour time course was completed. C2C12 myotubes were treated for 1, 

3, 6, 12 and 24-hours with NRG, NRG + AGRN and AGRN and protein lysates were 

prepared for immunoblotting. Egr3 protein levels were determined by immunoblot, 

quantified by densitometry, and the resulting values normalized to the untreated control. 

All values were expressed as a percentage of the control so that values could be averaged 

across several independent experiments. Immunoblot analysis revealed that NRG induced 

Egr3 levels reached the highest point by 3 hours and remained high over the 24-hour 

period (Figure 3), which is consistent with values obtained by Jacobson et al., 2001.  
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Figure 3: NRG and AGRN induction of Egr3 over 24 hours 

Representative Western blot for Egr3 following treatment with NRG, NRG and AGRN 

and AGRN over a 24-hour time course (A). Expression levels of Egr3 were quantified 

and are represented in B and C. NRG appeared to induce Egr3 at all time points and 

reached a peak by 3 hours, which is earlier than that of AGRN alone at 6 hours (B and 

C). Addition of NRG and AGRN together appeared to be possibly additive, and a peak in 

protein level was reached between 3 and 6 hours and remained high for the duration of 

the 24-hour test (B and C). Although not significant, likely due to the great deal of 

variation, the implied trend suggests NRG and AGRN are sufficient to induce expression 

of Egr3 in C2C12 myotubes (mean ± SD; n=3).  
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Treatment with AGRN alone appeared to peak at 6 hours, while AGRN and NRG 

together appeared to peak at some time point between 3 and 6 hours (Figure 3). There 

were no significant changes (tested by t-test) in Egr3 as a consequence of the treatments, 

likely due to the sizeable amount of variation. The implied trend however, did allow us to 

determine that 4 hours is an appropriate treatment length for the rest of the study. 

 To address whether LN was also capable of increasing the induction of Erg3, 

C2C12 myotubes were treated for 4 hours with NRG, NRG + LN and LN alone. The 

resulting western blot analysis revealed that the addition of LN results in a roughly 100% 

increase in protein level over the basal level of the untreated group (n=3, P<0.01, t-test; 

Figure 4). Addition of NRG increased Egr3 by ~50% in the same experiment (n=3, 

P<0.05, t-test), and NRG and LN together resulted in a ~75% increase (n=3, P<0.05, t-

test). Therefore, LN is able to increase the expression of Egr3, but treatment with NRG 

and LN simultaneously does not appear to be additive. Interestingly, this data also 

suggests that under these conditions in the C2C12 culture, LN is sufficient to induce 

Egr3. 

 

 

 

 

 

 

 

 

 



 34 

 

 

 

 

 

 

Figure 4: LN induced Egr3 expression in C2C12 myotubes 

Western blot for Egr3 after 4 hour incubation with NRG, NRG and LN and LN alone (A). Egr3 

protein levels were determined using densitometry and are represented as averages (mean ± SD) 

in B. Addition of NRG increased Egr3 by 50% (n=3, *P<0.05) and NRG and LN together 

increased Egr3 levels by 75% (n=3, *P<0.05). LN addition resulted in a 100% increase of Egr3 

compared to the basal level of Egr3 in the untreated control (n=3, **P<0.01). The addition of 

NRG and LN together does not appear to be additive according to this data. 
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3.2 α-DG is necessary for NRG, ARGN and LN induced Egr3 
expression 
 

 Since both AGRN and LN bind to α-DG (Bowe et al., 1994; Campanelli et al., 

1994; Gee et al., 1994; Ibraghimov-Beskrovnaya et al., 1992; Sugiyama et al., 1994) and 

it was shown that both AGRN and LN induce Egr3, it was relevant to determine whether 

this induction is diminished if α-DG is extensively reduced. In order to address this, the 

α-DG-silenced myotube cell line, 11E, was used. 11E myotubes were generated from 

C2C12 cultures into which a stable α-DG anti-sense construct has been integrated 

(Montanaro et al., 1999). The resulting cell line exhibits an ~ 80% reduction in α-DG 

protein (Jacobson et al., 1998). Upon receiving the 11E cultures, a western blot was 

performed to ensure the α-DG was indeed reduced (Figure 5). In fact there is a >80% 

decrease in α-DG in 11E cultures compared to C2C12 cultures (Figure 5).  

 Following confirmation of α-DG reduction in 11E cultures, it was necessary to 

establish whether the increases in Egr3 attributed to NRG and ARGN were affected by 

decreased α-DG. C2C12 and 11E cultures were both treated with NRG, NRG + AGRN 

and AGRN for 4 hours. A noticeable decline in Egr3 in treated 11E compared to C2C12 

cultures is shown in a representative western blot (Figure 6A). There was a 79.7 ± 4.7% 

(mean ± SD; n=3, P<0.01, t-test) reduction in NRG-induced Egr3 and an 80.4 ± 8.9% 

(n=3, P<0.05, t-test) reduction in NRG and AGRN-induced Egr3 production in 11E 

treated groups (Figure 6B). AGRN stimulated 11E cultures also produced less Egr3 than 

their C2C12 counterparts (reduced by 72.0 ± 13.3%; Figure 6B). 

 In order to investigate whether the diminished Erg3 induction exhibited by NRG 

and AGRN treated 11E cells was also observed in LN treated 11E cultures, a similar  
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Figure 5: Confirmation of α-DG reduction in 11E myotubes 

Western blot for α-DG in C2C12 and 11E myotubes (A). The amount of α-DG protein 

present in C2C12 and 11E myotubes was quantified and expressed as a percentage of the 

amount of α-DG present in C2C12 myotubes (B). There is an approximate 80% 

reduction in the amount of α-DG expressed in 11E myotubes compared to C2C12 

myotubes (n=1). 
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Figure 6: α-DG is required for NRG and AGRN induction of Egr3 

Representative immunoblot for Egr3 induced by 4 hour treatments of NRG and NRG and 

AGRN and AGRN alone in C2C12 and 11E myotubes (A). Levels of Egr3 protein were 

quantified by densitometry and reported as averages (mean ± SD; n=3) in B. In all 

treatment groups the amount of Egr3 was substantially reduced in the 11E myotubes 

when compared to the same treatments in the C2C12 myotubes (panel B; n=3, *P<0.05, 

**P<0.01). Induction of Egr3 by NRG and AGRN in 11E myotubes was reduced by 79.7 

± 4.7% and 72.0 ± 13.1% respectively. A similar reduction was also observed in 11E 

cultures treated with both NRG and AGRN together when compared to the same 

treatment in C2C12 myotubes (80.4 ± 8.9%).  
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experiment was performed using LN instead of AGRN. Both C2C12 and 11E cultures 

were treated for 4 hours and protein extracted and immunoblot analysis carried out. 

Again, all Egr3 induction levels were substantially reduced in 11E treatment groups. 

There was a 94.0 ± 2.4% (n=3, P<0.05, t-test) decrease in NRG-induced Egr3 and a 92.0 

± 3.4% decrease in LN-induced Egr3 production in 11E myotubes compared to that of 

C2C12 cultures (Figure 7). 

 To confirm this decrease in NRG and LN induced Egr3 expression is due to 

reduced levels of α-DG in the 11E myotubes, an α-DG antibody blocking experiment 

was executed. C2C12 cultures were treated with a 1:50 dilution of the α-DG blocking 

antibody 11H6 for 1 hour prior to the addition of 4-hour treatments of NRG and LN (as 

well as an untreated control). A representative immunoblot illustrates the reduced NRG- 

and LN-induced Egr3 levels when α-DG is obstructed (Figure 8A). Although 

densitometric analysis outcome yielded results with no significance (n=7) between 

treatment groups and the treatment with the α-DG function-blocking antibody, the 

implied trend suggests that blocking α-DG does actually diminish Egr3 induction (Figure 

8B). Taken together along with the C2C12 vs. 11E experiments, this data suggests that 

NRG, AGRN and LN induction of Egr3 is either directly or indirectly mediated by α-

DG. 

 Since Egr3 expression appears to be mediated by α-DG, whether this also 

translated into a reduction of sd-MyHC, a specific MyHC variant unique to muscle 

spindle fibers was investigated. Over night treatment of C2C12 and 11E cultures with 

NRG and LN were fixed in ice-cold ethanol and used for indirect immunofluorescence 

for sd-MyHC (Figure 9). Qualitative examination of the sd-MyHC specific fluorescence 
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revealed only very minor, inconsequential changes in fluorescence between C2C12 and 

11E myotubes for each treatment group. Unexpectedly, there was no discernible increase 

in sd-MyHC in the C2C12 NRG treated myotubes compared to the untreated control 

group. This was unanticipated as a previous group conducted a similar experiment with 

comparable treatment conditions in a primary human myotube cell line, which yielded 

substantial increases in sd-MyHC following NRG treatment (Jacobson et al., 2004). 

Perhaps this can be attributed to the fact that C2C12 myotubes were originally generated 

from adult mice instead of embryonic mice and have somehow lost the ability to be 

persuaded to produce sd-MyHC (Blau et al., 1983). 
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Figure 7: α-DG is required for NRG and LN induction of Egr3 

Western blot of 4 hour NRG, NRG and LN and LN treated C2C12 and 11E myotubes 

with an antibody specific to Egr3 (A). Quantified Egr3 protein levels expressed as 

averages (mean ± SD; n=3) are shown in B. The amount of Egr3 protein produced was 

significantly reduced in 11E myotubes, which have substantially reduced amounts of α-

DG, when compared to C2C12 myotubes (B; n=3, *P<0.05). NRG induction was reduced 

by 94.0 ± 2.4% and LN induction of Egr3 by 92.0 ± 3.3% in 11E cultures. The induction 

of Egr3 observed in C2C12 cultures was not observed in the 11E myotubes (B). 
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Figure 8: Blocking α-DG reduced the induction of Egr3 

Western blot of blocking NRG- and LN-induced Egr3 expression using the monoclonal 

antibody 11H6, which blocks α-DG (A). Densitometry was analyzed and reported as 

mean ± SD (n=7) in panel B. Although not significant, most likely due to the high levels 

of variability, the implied trend suggests that by blocking α-DG the amount of Egr3 

induced by either NRG or LN treatment is reduced (B).  
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Figure 9: The effect of reduced α-DG on sd-MyHC 

C2C12 and 11E myotubes were left untreated and treated with NRG and LN for 18 hour 

and subsequently fixed in ice-cold ethanol. Immunocytochemistry was used to visualize 

changes in sd-MyHC in the different treatment groups. There was no observable changes 

in sd-MyHC specific fluorescence between C2C12 and 11E treated myotubes. Even the 

C2C12 myotubes showed little evidence of increased sd-MyHC in the NRG treated group 

compared to the background levels of non-specific fluorescence in the secondary 

antibody control panel. Scale bar, 25 µm for C2C12 and 11E treated myotubes and 90 

µm in the secondary antibody control. 
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3.3 LN-stimulated Egr3 induction is reduced by NRG and ErbB 
inhibitors 
 

 It was observed that NRG and LN induction of Egr3 is disrupted by a decrease in 

α-DG levels and by blocking α-DG. Following this, the question of what effect blocking 

NRG signaling had on NRG and LN-induced Egr3 production was addressed. Firstly, a 

function-blocking anti-NRG antibody was used to directly block NRG. C2C12 cultures 

were treated with NRG and LN as well as an untreated control along with the addition of 

2 µg/ml of anti-NRG1-β1 EGF domain-neutralizing antibody for 2 hours. The subsequent 

levels of Egr3 were monitored by western blot (Figure 10). Quantified Egr3 levels reveal 

an increase of ~3.5 and ~2.5 fold in NRG and LN treated myotubes respectively, 

compared to the untreated control (Figure 10B; n=3, P<0.05, P<0.001, t-test). These 

heightened Egr3 levels were decreased by 36.6 ± 16.6% and 33.0 ±15.9%  (n=3, P<0.05, 

t-test) with the addition of the NRG-blocking antibody (Figure 10).  

 Secondly, the ErbB receptor inhibitor Tyrphostin AG825 was used to block ErbB 

signaling into the cell. Tyrphostin AG825 is an adenosine triphosphate (ATP) 

competitive inhibitor that specifically competes with ErbB receptors for ATP, which is 

necessary for its tyrosine kinase activity. As with the NRG-blocking experiments, C2C12 

myotubes were treated with NRG, LN and an untreated control for 4 hours prior to 

protein extraction. The AG825 was added to cultures overnight before the addition of 

treatments. Immunoblot analysis was used to examine changes in Egr3 expression 

(Figure 11). Densitometry was used to quantify values and all were expressed as a 

percentage of the untreated control, which was standardized to zero to allow many 

independent experiments to be compared. A representative western blot illustrates the 
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observable reduction in Egr3 induction by the ErbB receptor signaling inhibitor AG825 

(Figure 11A). Addition of AG825 caused a reduction in NRG and LN stimulated Egr3 

induction by 61.2 ± 23.1% (n=3, P<0.01, t-test) and 51.6 ± 26.4% (n=3, P<0.01, t-test) 

respectively (Figure 11B). Taken together, this data suggests that the increase in Egr3 

produced by the addition of LN is mediated through the NRG-ErbB, ligand-receptor 

complex in NRG independent manner and not another alternative pathway. 
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Figure 10: Blocking NRG reduces LN-induced Egr3 expression 

Imunoblot of NRG- and LN-induced Egr3 expression reduction using a function blocking 

monoclonal antibody specific to NRG (A). Quantified protein levels were expressed as 

averages (mean ± SD, n=3) shown in B. NRG and LN induction compared to the 

untreated control was increased by ~3.5 and ~2.5 fold respectively (n=3, *P<0.05, 

***P<0.001). This increase in Egr3 production induced by NRG was reduced by 36.6 ± 

16.6% in the presence of the NRG-blocking antibody (n=3). Likewise, the LN-induced 

Egr3 expression was also reduced with the addition of the blocking antibody by 33.0 ± 

15.9% (n=3, *P<0.05). 
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Figure 11: Blocking ErbB receptor signaling reduces LN-induced Egr3 expression 

Panel A illustrates a Western blot demonstrating the reduced NRG and LN induction of 

Egr3 expression using the ErbB receptor inhibitor AG825. Quantified protein levels were 

expressed as averages (mean ± SD, n=3) shown in B. Blocking ErbB signaling resulted in 

a reduction of NRG-induced Egr3 expression by 61.2 ± 23.1% (n=3, **P<0.01) and a 

reduction in LN-induced Egr3 expression by 54.6 ± 26.4%  (n=3, *P<0.05). 
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3.4 Involvement of α-DG in ErbB receptor clustering 

 These results show that LN and AGRN, both α-DG ligands, are sufficient for 

induction of Egr3. The results also show that α-DG is essential for both LN and AGRN 

induction of Egr3 as well as NRG induced expression of Egr3. Both LN and AGRN act 

to cluster AChRs at the NMJ and ErbB receptors colocalize with AGRN-induced AChR 

aggregates (Gautam et al., 1996; Meier et al., 1997; Rimer et al., 1998). Given this, it was 

then attempted to determine whether α-DG is obligatory in this co-clustering process.  

 C2C12 and 11E myotubes were incubated with NRG and LN (and an untreated 

control) overnight and AChRs were then directly labeled by adding rhodamine-

conjugated α-BTX to the cultures prior to being fixed in paraformaldehyde. Following 

fixation, ErbB3 receptors were indirectly stained with anti-ErbB3 specific antibodies 

followed by incubation with a fluorescence-conjugated antisera. Slides were examined 

and photographed at a final magnification of 400 ×. From these photographs, AChR and 

overlapping ErbB3 clusters were quantified and the ratio of number of AChR clusters per 

myotube was calculated (Table 1). In C2C12 myotubes, the addition of NRG compared 

to the untreated control showed little change in the number of AChR clusters per 

myotube and about half of the AChR clusters had overlapping ErbB3 aggregates in both 

the NRG treated and control (Figure 12A, arrows). The untreated and NRG treated 

myotubes had similar number of AChR clusters per myotube, 1.15 and 1.11 respectively 

(Table 1). In contrast, there was a substantial increase in the amount of AChR clusters in 

the LN treated myotubes (Figure 12A, arrows). The average number of AChR clusters 

per myotube was calculated to be 2.15 (Table 1). Therefore the addition of LN to C2C12 

myotubes greatly increases the number of AChR clusters per myotube.   
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 In the absence of abundant α-DG, a drastic reduction in AChR clusters is 

observed (Figure 12B arrows, Table 1). In all 11E treatment groups the ratio of AChR 

clusters to number of myotubes is radically decreased. In the 11E untreated group, the 

number of AChR cluster per myotube was diminished to 0.52 and in the NRG and LN 

treated groups similar values of 0.67 and 0.59 were computed (Table 1).  

 Surprisingly, in all C2C12 and 11E treatment groups there was not a considerable 

amount of variability in the percent of AChR clusters that scored positive for ErbB3 

clusters (Figure 12A,B arrow, Table 1). Addition of LN to C2C12 myotubes results in an 

increased number of AChR receptor aggregates (2.15 AChR clusters per myotube, 

n=241) and 53% of those had ErbB3 clusters that overlaped (Table 1). Similarly, 

untreated C2C12 cultures and NRG treated cultures exhibit 59% and 67% of the AChR 

clusters having overlap. The number of AChR clusters is considerably increased in the 

presence of LN and so is the number of ErbB3 clusters, but the proportion of overlap 

remains similar to the other two groups where clustering is likely spontaneous. 

Interestingly, the extent of AChR-ErbB3 overlap without typical levels of α-DG remains 

quite constant at 50% in the untreated control and 47% and 59% in the NRG and LN 

treated 11E myotubes (Table 1). Taken as a whole, these results show that LN does 

increase the number of AChR clusters and approximately half of those are colocalized 

with ErbB3 clusters. Likewise, in conditions of scarce α-DG, about half of the AChR 

clusters are co-clustered with ErbB3 aggregates. The difference to take notice of, is the 

increased number of AChR clusters and therefore the increased number of overlapping 

ErbB3 aggregates, albeit the proportion remains largely unchanged in the 11E treated 

myotubes.  
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Figure 12: Reduced α-DG decreases the number of AChR and ErbB3 aggregates 

C2C12 and 11E myotubes were treated with NRG, LN along with an untreated control 

overnight. Cultures were then fixed and double labeled for AChR clusters and ErbB3 

aggregates with rhodamine-labeled α-BTX (red channel) and indirect fluorescence with 

ErbB3-specific antibodies (green channel) respectively. Panel A shows the fluorescence 

in C2C12 myotubes. The first column stained for AChR clusters and the middle for 

ErbB3 clusters. Arrows indicate a cluster in the AChR panel and arrows in the middle 

column point out areas of increased ErbB3 fluorescence that corresponds to AChR 

aggregates in the first panel. There is a more considerable amount AChR clusters in 

cultures treated with LN compared to that of the NRG and control groups (A). The same 

treatments and staining in 11E cultures show a remarkable reduction in the number of 

AChR clusters (B). Labeling controls were also preformed to ensure binding was specific 

(C). Scale bar, 25 µm. 
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Table 1: Overlap of ErbB3 clusters with AChR aggregates 

C2C12 and 11E myotubes were treated with NRG, LN and an untreated control overnight 

and were double labeled for AChR clusters and ErbB3 aggregates with rhodamine-

labeled α-BTX and indirect fluorescence with ErbB3-specific antibodies. Visual 

inspection was carried out to quantify the extent of ErbB3 overlap with AChR clusters. 

An overlap was counted if >50% of the ErbB3 fluorescence coexisted with that of the 

AChR cluster fluorescence. The data in the table describes the amount of AChR clusters 

that scored positive for overlap with ErbB3 aggregates as a percentage with the total 

number of AChR clusters counted for the given treatment given in brackets.  
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AChR clusters/myotube AChR clusters/myotube

Control 1.15 59% (n=147) 0.52 50% (n=63)

NRG 1.11 67% (n=184) 0.67 47% (n=42)

LN 2.15 53% (n=241) 0.59 48% (n=78)

% Overlap % Overlap

C2C12 11E
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Chapter 4 

Discussion 

 ECM proteins play a critical role in the development and maintenance of NMJs. 

Here  the possibility of a role for the basal lamina proteins LN, AGRN and their common 

receptor α-DG at sensory synapses in the induction of muscle spindle fibers was 

investigated. In initial aspects of the study, the induction of the transcription factor Egr3 

was used as a marker for early spindle fiber development. It was originally hypothesized 

that AGRN, LN and α-DG would be vital elements that act to increase the induction of 

Egr3, possibly through clustering of the ErbB receptors through which NRG signals. This 

would be an interesting result as AGRN, LN and α-DG all influence important changes at 

NMJs during development and have not been attributed to similar roles at sensory 

synapses. Here, it was shown that both AGRN and LN can induce Egr3 expression 

independent of added NRG. This induction is ablated when ErbB receptor and NRG 

inhibitors are applied prior to treatment. Further, it was shown that α-DG is a necessary 

component in this process and absence of α-DG mitigates Egr3 induction as well as 

reduced the number of induced and spontaneous AChR and co-clustered ErbB3 

aggregates.  

4.1 AGRN and LN can induce Erg3 independently from NRG 

 Initial experiments were preformed to determine the affect of AGRN and LN on 

Egr3 expression in myotubes. Given that both AGRN and LN are capable of clustering 

AChRs at motor synapses, and that AGRN can also cluster ErbB receptors to motor 
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synapses, it was hypothesized that AGRN and LN would increase Egr3 expression 

(McMahan, 1990; Meier et al., 1997; Rimer et al., 1998; Sugiyama et al., 1997). 

 Initial experiments focused on AGRN and sought to determine if AGRN could 

influence Egr3 protein levels, as AGRN is a potent inducer of AChR clusters at the NMJ 

and previous studies demonstrate ErbB2 and ErbB3 clustering in myotubes when treated 

with AGRN, and persistent ErbB2 and ErbB3 co-localization with AChR clusters in vivo 

(McMahan, 1990; Meier et al., 1997; Rimer et al., 1998). Furthermore, constitutively 

active MuSK can also cluster ErbB receptors in the absence of AGRN, and this is 

sufficient to aggregate ErbB2 to AChR clusters (Jones et al., 1999). Although Ia sensory 

afferents that innervate muscle spindle fibers do not produce the active neural AGRN(4,8) 

necessary to activate MuSK (Stone and Nikolics, 1995), they do produce AGRN(4,0), 

which is effective in clustering at NMJs a high concentrations (Ferns et al., 1993; Stone 

and Nikolics, 1995). A time course over 24 hours was used to determine if and at what 

time point addition of AGRN impacted Egr3 expression the most. Immunoblot analysis 

revealed that AGRN does indeed increase the amount of Egr3 protein produced when 

added alone almost to nearly the same extent as the addition of NRG to cultured 

myotubes (Figure 3). It was also determined that at a time point between 3 and 6 hours 

AGRN-induced Egr3 expression appeared to peak. Erg3 expression continued to remain 

high until close to 12 hours (Figure 3). This is consistent with previous studies that have 

determined that AGRN is effective in inducing AChR microclusters of AChRs within 4 

hours of application (Sugiyama et al., 1997). When treatments with NRG, NRG with 

AGRN and AGRN alone were compared it appeared all three treatments induce Egr3 to 
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the same extent as NRG. AGRN is likely not acting in an additive manner and potentially 

may activate Egr3 through a mechanism similar to NRG. 

 AGRN stimulates the accumulation of AChRs and ErbB receptors (McMahan, 

1990; Meier et al., 1997; Rimer et al., 1998), and can induce Egr3 expression (Figure 3) 

The next step was to determine if LN, which can also cluster AChRs, also affects the 

amount of Egr3 produced. Myotubes treated with LN for 4 hours demonstrated increased 

Egr3 protein levels compared to the untreated control (Figure 4). This increase is similar 

to the increases induced by NRG (Figure 4). This is an interesting result as LN can 

increase Egr3 expression, presumably by its ability to cluster cell surface molecules on 

myotubes not unlike it aggregates AChRs at NMJs independent of MuSK activation 

(Suigyama et al., 1997; Montanaro et al., 1998). Neural AGRN is tightly regulated and 

secreted solely by α-motor neurons, and is not produced by the sensory neurons that 

stimulate spindle fiber differentiation (Ma et al., 1995; Reist et al., 1992; Stone and 

Nikolics, 1995). Accordingly, LN is a more ubiquitously expressed and LN-mediated 

clustering of ErbB receptors in spindle fiber development, independent of AGRN-MuSK 

signaling (Montanaro et al., 1998; Sugiyama et al., 1997), is a more probable scenario 

involved in this process than the AGRN-MuSK pathway. LN clusters AChRs by binding 

α-DG and self-association of LN-LN short arms (Cohen et al., 1997). If this situation is 

acting in the LN-induction of Egr3, then it would be assumed that α-DG is critical in this 

process, which was further investigated. 

 Since NRG is indispensable in the process of muscle spindle differentiation, 

which is marked by induction of Egr3 (Hippenmeyer et al., 2002), how then is addition of 

LN and AGRN able to induce Egr3 without the addition of NRG? There are a few 
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possible explanations. First, that there is another pathway being activated, which also 

leads to the Egr3 expression. Second, since ErbB receptors have been shown to localize 

in plasma membrane lipid rafts where their tyrosine phosphorylation is much higher (Ma 

et al., 2003; Zhou and Carpenter, 2000), the receptors may self activate due to their close 

proximity and tyrosine phosphorylation-rich environment. Finally, as speculated by 

Ruegg and Bixby (1998), MuSK- and α-DG-mediated aggregation of proteins at 

developing NMJs results in accumulation of muscle-derived NRGs to this site creating a 

NRG sink (Ruegg and Bixby, 1998). This explanation is supported by another study by 

Meier and colleagues (1998) that confirms AGRN does induce clustering of muscle-

derived NRGs to the NMJ and that muscle-derived NRG exhibits the same type of 

activity as NRGs produced by neurons (Meier et al., 1998). Using ErbB receptor and 

NRG specific inhibitors, it was shown that blocking either component results in a 

reduction of LN-stimulated Egr3 induction (Figures 10 and 11). This result can eliminate 

the possibility of a novel pathway being activated, as both ErbB and NRG inhibitors 

lessen LN-induced Egr3 expression. If self-activation of the ErbB receptors occurs in this 

experimental environment, inhibition of ErbB phosphorylation should inhibit the 

induction of Egr3. The results attained are consistent with this notion as Egr3 levels were 

reduced in all treatment groups when AG825 was also added. The scenario put forth by 

Ruegg and Bixby (1998) appears to be a more probable match to previous publications, 

but the results attained in this study, may suggest otherwise. If the anti-NRG treatment 

inhibits binding of NRG, whether endogenous or exogenous in source, to the ErbB 

receptors and therefore their activation, it would be expected that the inhibition treatment 

would reduce even basal level Egr3 expression in untreated groups. However, the results 
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shown in Figure 10 (lane 2 of western blot) suggest this is not occurring, as treatment 

with the inhibitor does not reduce the basal Egr3 level of protein, it is actually slightly 

elevated. The anti-NRG treatment does reduce Egr3 expression induced by both the 

addition of NRG and LN treatments, but not in the untreated control group. The anti-

NRG antibody was added at a concentration that was sufficient to inhibit approximately 

50% of the added NRG; perhaps higher concentrations would produce a different result 

in the untreated control group. Although both experiments were informative, the actual 

mechanism acting in this process likely requires further investigation as well as 

determining the probable mechanism acting in vivo, where NRG is produced by both 

nerve and muscle (Meier et al., 1998). 

4.2 α-DG is necessary for induction of Egr3 

 Here, it was shown that both AGRN and LN can induce Egr3 (Figures 3 and 4) 

and both are known to bind to α-DG (Bowe et al., 1994; Campanelli et al., 1994; Gee et 

al., 1994; Ibraghimov-Beskrovnaya et al., 1992; Sugiyama et al., 1994). The α-DG-

silenced, 11E myotube culture was used to answer the question what affect does the 

AGRN/LN receptor α-DG have on Egr3 expression? 11E myotubes are derived from 

C2C12 myotubes and express an antisense α-DG gene (Montanaro et al., 1999). α-DG is 

reduced by 80-90% in 11E myotubes (Figure 5; (Montanaro et al., 1999). In all cases 

reduction of α-DG mitigated NRG-, AGRN- and LN-stimulated Egr3 induction (Figures 

6 and 7). This suggests that the induction of Egr3 by both AGRN and LN as well as NRG 

occurs via an α-DG dependent mechanism as opposed to a MuSK dependent mechanism, 

which is consistent with a previous study (Montanaro et al., 1998). Clusters of AChRs at 
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developing NMJs are still present in α-DG deficient muscles (Cote et al., 1999; Grady et 

al., 2000; Jacobson et al., 2001). If the AGRN induced Egr3 were the result of AGRN-

MuSK signaling, it would be expected that in α-DG deficient myotubes that the induction 

of Egr3 would not be impaired in the absence of α-DG. Previous studies have reported 

that AGRN-MuSK signaling is not substantially inhibited in muscle cell lines deficient in 

α-DG (Jacobson et al., 1998), reinforcing the notion that induction of Egr3 by AGRN 

occurs independently of MuSK. To determine if the AGRN-MuSK pathway does play a 

role in spindle fiber differentiation, future studies could investigate whether or not 

AGRN-/- and MuSK-/- mice develop muscle spindle fibers. As well as investigating the 

newly identified elements necessary in this process such as Lrp4, Tid1 and Dok-7 and 

whether these knockout mice have fully formed muscle spindle fibers.  

 In all treatment groups, the NRG-, LN- and AGRN-induced Egr3 expression was 

drastically reduced when α-DG levels were diminished (Figures 6 and 7). Both LN and 

AGRN may cluster ErbB receptors, via a diffusion trap type mechanism, as a similar 

mechanism has been suggested in AChR clustering (Jacobson et al., 2001). Originally, it 

was thought that AGRN released from innervating neurons initiated postsynaptic 

differentiation (McMahan, 1990). However, other studies suggest that AGRN may act as 

a stabilizer or by a de-clustering mechanism rather than an active clustering signal. Prior 

to motor innervation of skeletal muscle there are spontaneous postsynaptic-like AChR 

clusters present on the muscle surface (Fischbach and Cohen, 1973). When innervation 

occurs in AGRN-/- mice, these clusters disperse, but when AGRN is released, it 

counteracts this dispersal (Lin et al., 2001). LN can also act in a comparable manner by 

binding α-DG and self-assembling into a matrix via its short arms (Figure 1; (Cohen et 
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al., 1997). Bezakova and Ruegg (2003) suggest the formation of a LN/integrin-AGRN-α-

DG network, which could act in a diffusion trap manner (Bezakova and Ruegg, 2003; 

Cohen et al., 1997). AGRN isoforms without the Z-splice insert bind to α-DG and LN 

with high affinity (Denzer et al., 1997; Gesemann et al., 1998). This interaction may 

mediate LN/integrin-AGRN-α-DG connections (Burgess et al., 2002). All of these 

possibilities are consistent with the C2C12 vs. 11E experimental results obtained. The 

exact interactions and mechanisms, including the involvement of integrins, will need to 

be further investigated to elucidate the actual machinery and mechanisms acting in this 

process. 

 To further confirm the importance of α-DG in the induction of Egr3, and to 

ensure the integrity of the myotubes were not jeopardized in creating the 11E cell line, 

and that this is not the reason for the reduction in Egr3 induction, the α-DG monoclonal 

antibody was used to block α-DG binding to LN. The results show that NRG and LN 

induced Egr3 expression is reduced when α-DG is blocked (Figure 8). This experiment 

was replicated numerous times and although the level of Egr3 reduction was not 

significant, a reproducible reduction in Egr3 expression was observed. Previous studies 

have successfully used this antibody to block α-DG-LN interactions (Gee et al., 1994; 

Montanaro et al., 1998; Montanaro et al., 1999). However, it is important to note that the 

source of the antibody for these studies was from ascites and was used optimally at a 

dilution of 1:50 (Gee et al., 1994; Montanaro et al., 1998; Montanaro et al., 1999). The 

source of the 11H6 antibody purchased for this study is unknown, but received at a 

concentration of 200 µg/ml, which may be far less than that used in the studies cited 

(Santa Cruz Biotechnology, Santa Cruz, CA). The antibody was used at a 1:50 dilution, 
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as this was used in previous research (Montanaro et al., 1998). A more significant result 

may have been collected if 11H6 from ascites were used.  

 Taken together these results suggest that AGRN and LN induce Egr3 though α-

DG dependent mechanism. It can be concluded that α-DG is an essential element in the 

induction of Egr3 and therefore likely has an important role in the differentiation of 

muscle spindle fibers 

4.3 α-DG deficiency reduces the number of AChR and ErbB3 

clusters 

 Here, it was shown that addition of LN to cultured myotubes increases the number 

of AChR cluster and approximately 50% of these clusters are co-clustered by ErbB3 

(Figure 12 and Table 1). This increase in aggregates is substantially reduced in 11E 

myotubes lacking α-DG (Figure 12 and Table 1). The average number of spontaneous 

and LN-induced AChR clusters on C2C12 myotubes calculated in this study, is consistent 

with the numbers reported by a previous Montanaro and colleagues (1998). Montanaro 

and colleagues (1998) also report a significant decrease in AChR aggregates in 11E 

myotubes, which is not rescued with the addition of LN this is also consistent with the 

findings reported here (Montanaro et al., 1998). Interestingly, our finding do demonstrate 

a marked reduction in AChR clusters in 11E cultures, but the proportion of these 

aggregates that colocalizes with ErbB3 remains comparably constant (Table 1). This 

suggests that even in spontaneously formed AChR clusters, approximately 50% of the 

clusters will also contain ErbB3 aggregates. An increase in AChR and ErbB3 clustering 

was observed with LN treatment and a considerable reduction resulted under α-DG 
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reduced conditions (Figure 12 and Table 1). Under the same conditions, addition of LN 

and reduction in α-DG resulted in an increase of Egr3 and a reduction of Egr3 

respectively. Therefore it is probable that the increase of clustered ErbB3 coincides with 

an increase in Egr3 expression, and likewise in α-DG reduced myotubes a decrease in 

Egr3.  

 LN-α-DG mediated clustering of ErbB receptors likely results from similar 

mechanisms acting in clustering AChRs at NMJs. These mechanisms have already been 

outlined. Another system that parallels this LN-α-DG clustering is the clustering of 

potassium and water-permeable channels in astrocytes, which are important in potassium 

buffering and water homeostasis (Guadagno and Moukhles, 2004). Astrocytes are the 

glial cells of the central nervous system (CNS). Astrocytes grown on a LN substrate 

showed a substantial increase in the number of AQP4 water-permeable channels and 

Kir4.1 potassium channels compared to control groups. Furthermore, the potassium 

channel Kir4.1 was shown to colocalized with the DGC protein syntrophin (Guadagno 

and Moukhles, 2004; Moukhles and Carbonetto, 2001). This is interesting considering the 

adaptor protein syntrophin has been shown to associate with ErbB4 localized at NMJs 

(Garcia et al., 2000). Perhaps interactions with syntrophin are how ErbB receptors are 

brought into aggregates at NMJs.  

4.4 Conclusions 

 So the question remains, is α-DG required for muscle spindle differentiation? 

These results suggest that it may be. Here, it was shown that the basal lamina proteins 

AGRN and LN are sufficient to induce Egr3, a molecular marker for muscle spindle 

differentiation, in C2C12 myotubes just as NRG is capable of doing (Figures 3 and 4). 
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LN and AGRN directly associate with α-DG, and limited supplies of α-DG resulted in 

substantially reduced induction of Egr3 (Figures 6, 7 and 8). This LN induction appears 

to be mediated through the NRG-ErbB signaling pathway, as this LN-stimulated increase 

in Egr3 is diminished by inhibitors of NRG and ErbB receptor signaling (Figures 10 and 

11). Furthermore, LN increases the number of AChR cluster per myotube with half of 

them scoring positive for ErbB3 overlap (Table 1). However, this increase is diminished 

when α-DG is reduced (Table 1). Also of interest, although reduced in numbers the same 

proportion of AChR and ErbB3 clusters overlap (Table 1). Overall these results imply a 

role for α-DG and its ligands, AGRN and LN, in the induction of the transcription factor 

Egr3, which is essential for muscle spindle fiber initiation (Tourtellotte and Milbrandt, 

1998). Therefore AGRN, LN and α-DG may play a central role upstream of NRG-ErbB 

signaling in muscle spindle differentiation. Complimentary in vivo studies may assist in 

clarifying their importance and the mechanisms acting in this process. 

4.5 Future directions 

 As mentioned previously, to ultimately determine whether AGRN is involved in 

differentiation of muscle spindles, it would be interesting to closely examine skeletal 

muscle sections of AGRN null mice to establish whether or not muscle spindle fibers are 

present and if there is any variation in the morphology of the spindles compared to their 

wild type counterparts. AGRN null mice have very few, small, dispersed AChR 

formations at postsynaptic regions (Gautam et al., 1996). It would also be of interest to 

determine whether or not MuSK and rapsyn null mice have typical spindle fibers, which 

both, like the AGRN null mutants, do not have properly formed NMJs (DeChiara et al., 

1996; Gautam et al., 1999). Knocking out α-DG is an early embryonic lethal mutation 
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due to its importance in basement membrane formation, death occurs in development 

before the advent of spindle differentiation (Williamson et al., 1997). However, chimeric 

mice, which do have skeletal muscle lacking α-DG, could be examined for the presence 

of typical muscle spindles present in the α-DG-/- muscle to determine the result of α-DG 

deficiencies on muscle spindles in vivo (Cote et al., 1999). Such a study would ultimately 

determine whether α-DG is essential in this process.  

 Recently the AGRN coreceptor Lrp4 and new proteins involved in AGRN-MuSK 

signaling have been identified, Tid1 and Dok-7, it would be worthwhile to explore 

whether these molecules are necessary for spindle formation. More simple experiments 

that could be carried out to better understand the involvement of AGRN in this process 

would be to treat myotube cultures with AGRN(4.0), which is expressed in vivo by sensory 

neurons. Since AGRN and LN work together in clustering AChRs at postsynaptic 

densities, the effect of both LN and AGRN together on Egr3 induction should be 

examined. A clearer understanding of the mechanisms underlying AGRN and LN 

clustering of ErbB receptors and subsequent induction of Egr3 will allow a better 

understanding of how aggregating of proteins works in other systems, such as astrocytes 

in the CNS, as well as what breaks down and malfunctions in this process in regard to 

disease states and the aging process. Age-associated degradation of muscle spindle fibers 

can leave the elderly with proprioceptive deficits that can lead to serious injuries due to 

falls (Kararizou et al., 2005; Swash and Fox, 1972). Likewise, some diabetic patients are 

also at increase risk for falls due to altered gait, and decreases in posture control as a 

result of large-fiber neuropathies associated with abnormal innervation of muscle 

spindles by Ia afferents (Cavanagh et al., 1992; Muller et al., 2008; Richardson et al., 
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2001). Conceivably, better understanding of the mechanisms involved in developing 

typical muscle spindles, may eventually uncover therapeutic approaches in treating 

atypical conditions. 



 75 

Appendix A 
 

 

 

 

 

 

 

Figure A1: Western blot of sd-MyHC hybridoma medium 

Western blot of diluted hybridoma medium. Blots were probed with anti-mouse IgG 

antibodies. The primary antibody mouse-anti-Disc Large was used as a positive control 

and the IgG fragments are visible below the 55 and 26 kDa markers. The 1:2 dilution of 

hybridoma mediums is the highest dilution where the IgG light chain is still present and 

was used as a starting concentration in experiments using the sd-MyHC antibody. 
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Table A1: AChR/ErbB3 cluster counts and calculations 

This table contains the raw data used to calculate AChR clusters/myotube, % overlap and 

count the total number of AChR clusters. 
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Exp 1: Jul 3 Exp 2: Jun 17

Culture/treatment # AChR clusters # myotubes Clusters/myotube overlap % overlap # AChR clusters # myotubes Clusters/myotube overlap % overlap

C2            Control 13 9 1.44 9 69.23 5 4 1.25 2 40.00

9 11 0.82 3 33.33 4 4 1.00 2 50.00

11 10 1.10 10 90.91 6 5 1.20 2 33.33

12 7 1.71 9 75.00 6 3 2.00 3 50.00

14 9 1.56 6 42.86 3 4 0.75 2 66.67

8 12 0.67 6 75.00 4 6 0.67 3 75.00

6 7 0.86 4 66.67 8 7 1.14 4 50.00

9 10 0.90 4 44.44 7 6 1.17 4 57.14 Avg Clusters/myotube Avg % OL n=# AchR clusters

9 5 1.80 3 33.33 4 3 1.33 2 50.00

5 7 0.71 4 80.00 4 4 1.00 4 100.00 1.15 59.15 147

NRG 11 10 1.10 7 63.64 9 5 1.80 3 33.33

16 14 1.14 11 68.75 8 8 1.00 3 37.50

12 12 1.00 10 83.33 1 3 0.33 3 300.00

13 11 1.18 7 53.85 5 5 1.00 3 60.00

15 10 1.50 10 66.67 3 5 0.60 2 66.67

20 14 1.43 7 35.00 6 5 1.20 2 33.33

4 7 0.57 2 50.00 6 9 0.67 3 50.00

9 11 0.82 6 66.67 9 8 1.13 6 66.67 Avg Clusters/myotube Avg % OL n=# AchR clusters

19 9 2.11 9 47.37 8 7 1.14 3 37.50

10 7 1.43 5 50.00 1.11 66.86 184

LN 21 7 3.00 11 52.38 8 2 4.00 5 62.50

23 9 2.56 11 47.83 14 6 2.33 7 50.00

17 5 3.40 10 58.82 15 6 2.50 10 66.67

12 9 1.33 7 58.33 8 3 2.67 3 37.50

10 6 1.67 3 30.00 4 3 1.33 2 50.00

10 8 1.25 5 50.00 4 4 1.00 2 50.00

19 10 1.90 11 57.89 14 5 2.80 5 35.71

8 5 1.60 4 50.00 10 6 1.67 5 50.00 Avg Clusters/myotube Avg % OL n=# AchR clusters

15 6 2.50 7 46.67 11 4 2.75 7 63.64

9 9 1.00 4 44.44 9 5 1.80 8 88.89 2.15 52.56 241

11E          Control 7 7 1.00 2 28.57 2 9 0.22 1 50.00

1 4 0.25 1 100.00 3 4 0.75 1 33.33

3 10 0.30 1 33.33 2 4 0.50 1 50.00

4 6 0.67 2 50.00 1 3 0.33 0 0.00

6 10 0.60 4 66.67 1 2 0.50 1 100.00

5 7 0.71 1 20.00 4 6 0.67 2 50.00

3 6 0.50 2 66.67 2 8 0.25 1 50.00

4 10 0.40 3 75.00 3 8 0.38 1 33.33 Avg Clusters/myotube Avg % OL n=# AchR clusters

5 8 0.63 1 20.00

7 11 0.64 5 71.43 0.52 49.91 63

NRG 3 3 1.00 2 66.67 0 2 0.00 0 #DIV/0!

3 1 3.00 0 0.00 3 5 0.60 1 33.33

6 8 0.75 2 33.33 0 2 0.00 0 #DIV/0!

2 3 0.67 0 0.00 5 5 1.00 3 60.00

3 5 0.60 1 33.33 1 5 0.20 0 0.00

5 7 0.71 3 60.00 3 3 1.00 2 66.67

4 6 0.67 0 0.00 0 1 0.00 0 #DIV/0!

3 3 1.00 2 66.67 0 1 0.00 0 #DIV/0! Avg Clusters/myotube Avg % OL n=# AchR clusters

1 7 0.14 0 0.00

0.67 46.67 42

LN 6 10 0.60 4 66.67 4 7 0.57 2 50.00

4 7 0.57 2 50.00 3 4 0.75 1 33.33

1 9 0.11 0 0.00 2 6 0.33 1 50.00

7 9 0.78 2 28.57 2 3 0.67 1 50.00

6 8 0.75 1 16.67 4 8 0.50 3 75.00

3 8 0.38 2 66.67 6 8 0.75 3 50.00

3 11 0.27 1 33.33 1 1 1.00 1 100.00

3 8 0.38 1 33.33 3 5 0.60 2 66.67 Avg Clusters/myotube Avg % OL n=# AchR clusters

9 8 1.13 3 33.33 3 4 0.75 1 33.33

6 10 0.60 1 16.67 2 6 0.33 2 100.00 0.59 47.68 78 
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