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Abstract

In this thesis, we consider plants with uncertain parameters where those pa-
rameters may be time-varying; we show that, with reasonable assumptions, we can
design a controller that stabilizes such systems while providing near-optimal per-
formance in the face of persistent discontinuities in the time-varying parameters.
We consider two classes of uncertainty. The first class is modeled via a (possibly
infinite) set of linear time invariant plants - the uncertain time variation consists
of unpredictable (but sufficiently slow) switches between those plants. We consider
standard LQR performance, and, in the case of a finite set of plants, the more
complicated problem of LQR step tracking. Our second class is a time-varying
gain margin problem: we consider an reasonably general, uncertain, time-varying
function at the input of an otherwise linear time invariant nominal plant. In this
second context, we consider the tracking problem wherein the signal to be tracked is
modeled by a (stable) filter at the exogenous input and we measure performance via
a weighted sensitivity function. The controllers are periodic and mildly nonlinear,
with the exception that the controller for the second class is linear.
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Chapter 1

Introduction

This thesis lies in the field of feedback control, in which the goal is to design a
controller to force a given system (the plant) to achieve some desired objective;
e.g., a car maintaining a specific speed down the highway, a ship following a desired
path to its berth in a crowded port, or an airplane landing at a busy airport. It
is clearly desirable to achieve these objectives while rejecting unexpected external
disturbances, such as curves or hills, sea swells, or errant wind gusts, each of which
could lead to disastrous consequences. In order to reject disturbances, such con-
trollers typically measure system outputs and then use that feedback information
to behave accordingly; e.g. if the car is going up a hill, then it will begin to slow
down, the controller senses this and increases the power to the engine resulting in
the car returning to the desired speed. Of course, there are limitations as to what
can be accomplished: “You can’t make a battleship act like a butterfly.”

Typically, a Control Engineer begins the design of such a controller by quanti-
fying the system’s behaviour via a mathematical model. To complicate the issue
of the ensuing design, imagine that there is some uncertainty as to how well the
model behaviour matches the behaviour of the actual plant. Such uncertainty could
arise, for example, from simplifications made during the modeling process or from
unexpected system failures (e.g. catastrophic failure due to fatigue or an intermit-
tent fault in a sensor or actuator). This issue of uncertainty naturally leads to the
following questions: If we design a controller for a specific plant model, then how
much uncertainty can there be in that model before the controlled system ceases
to behave as expected? Can we design controllers that tolerate and perhaps even
adapt to a plant that changes over time? If we can model the uncertainty a pri-
ori, then can we use that information to somehow improve the performance of the
controlled system, e.g. can the performance be made optimal in some sense?

In this thesis we present a design technique that uses on the fly estimation
to stabilize certain classes of uncertain systems, while obtaining some measure of
(near-optimal) performance. We do so with the added wrinkle of allowing the
uncertainty to be time-varying. We will present four problems and their associated
solutions; these problems can be grouped into two classes of uncertainty.
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Three of the problems can be grouped into one class: switching between a (pos-
sibly infinite) set of Linear Time Invariant (LTI) plants. This problem is inspired by
fault analysis: there are many models, each of which represents the system operat-
ing in some fault mode, the goal is to provide stability and acceptable performance
in the face of (unknown and possibly persistent) switching between fault modes.
There are many different ways to approach this problem and to categorize what is
meant by ‘acceptable’ performance; for an excellent (although slightly old) survey
of the topic of fault tolerance, see [31]; a more recent, but less tractable, review can
be found in [47]. Here, we are interested in the particular performance problem of
Linear Quadratic Regulation (LQR) optimal performance in the sense that we wish
to design a controller that provides the optimal performance for each LTI plant in
the set. Our three sub-problems are

(i) stability and LQR performance for a finite set of plants,

(ii) stability and LQR step tracking performance for a finite set of plants, and

(iii) stability and LQR performance for a compact set of plants.

We will refer to these problems as the Finite Stability, Finite Tracking, and Compact
Stability problems, respectively.

Observe that the time variation in all of the above problems is piecewise con-
stant, so, in an effort to investigate a more general time variation, we turn to our
second class. Here, we consider the tracking problem for an otherwise LTI plant
with a fairly general time-varying gain at the plant input; we will refer to this as
the Time Varying Gain Margin (TVGM) problem (the reason will become clear
shortly). Performance in this context is often measured in terms of input output
functions (such as weighted sensitivity), which is what we will do.

In the remainder of this chapter, we begin by introducing two classical uncer-
tainty problems which are directly linked to our two classes of uncertainty and
then discuss three approaches to solving uncertainty problems. We then move on
to a relatively new approach to the problem and to the contributions of this thesis.
Finally we conclude by providing an outline of the remainder of the thesis.

1.1 Two Classical Problems in Uncertainty

The Finite and Compact Stability problems lead directly to the classical Simul-
taneous Stabilization problem: given a (possibly infinite) set of plants, design a
single controller which stabilizes every plant in the set. This problem can be traced
back at least to [41] and [19], wherein, for the case of only two LTI plants, the
authors provide easily checked necessary and sufficient conditions for the existence
of a stabilizing LTI controller. The general problem is much harder: conditions
for the existence of a stabilizing LTI controller in the case of three or more LTI

2



plants is rationally undecidable [2]. A common example of the limitations of using
LTI controllers, and one that we will use throughout this thesis to illustrate our
approach’s effectiveness, is the two plants

1

s− 1
and

−1

s− 1
,

which can not be simultaneously stabilized by a single LTI controller.

Of course, even if a controller is able to provide simultaneous stability for a
given set of plants, there is no guarantee that it will stabilize the system in the
face of persistent switching between those plants; indeed, it is well known that (in
general) switching too quickly between stable LTI systems leads to instability. For
an excellent survey of some fundamental issues regarding stabilization of switching
systems, see [17] and the references therein.

Our second problem of interest is the classical Gain Margin problem: with P0

a fixed LTI plant and [g−, g+] ∈ R+, given the set

P := {gP0 : g ∈ [g−, g+]},

find a controller that stabilizes every plant in P ; furthermore, find a bound on the
gain margin

GM :=
g+

g−

that ensures that such a controller exists. It is well known that if P0 is unstable and
non-minimum phase, then there is an upper bound on the gain margin achievable
using an LTI controller [12]; in other words, for such a plant, if the ratio GM
is large, then an LTI controller can not stabilize every plant in the set P . If we
allow the gain g to be time-varying and to be negative, then we obtain the TVGM
problem.

1.2 Prior Work

We now turn to a discussion of three classical approaches to solving the problems
outlined above: Robust Control, Adaptive Control, and Supervisory Control (or
Logic Based Switching). Recall that we wish to obtain stability and performance;
we examine the merits of these approaches accordingly.

1.2.1 Robust Control

The basic idea behind Robust Control is to design a single static (but not necessar-
ily LTI) controller, which will provide stability and some measure of performance
for every plant in the uncertainty set. Perhaps the most well known Robust Control
method is the frequency domain approach in which the set of plant uncertainty is
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modeled via a nominal LTI plant in transfer function form with structured distur-
bances at its interfaces, also modeled via transfer functions; the goal is then to
design an LTI controller to provide simultaneous stabilization and some measure of
performance. In this context, performance is typically measured in the H∞ sense;
a common optimization goal is that of weighted sensitivity minimization.

Two significant benefits to this approach are that it yields an LTI controller
(and all of the associated benefits) and that it is relatively straightforward for a
non-expert to apply. There are three main drawbacks:

• It does not handle time variations well.

• Since the controller is LTI, the set of uncertainty that can be stabilized is
limited by [41] and [19].

• Performance optimization is of the minimax type in the sense that, if we
calculate the optimal performance for each plant individually, then the best
performance that can be guaranteed for any plant is no better than the worst
of these [46].

If we turn to Linear Time Varying (LTV) controllers and consider a finite set
of plant uncertainty, then we can alleviate some of these drawbacks. Work in the
1980’s and early 1990’s, e.g. see [13], [10], [11], and [1] to name but a few of the
approaches, has solved the general simultaneous stabilization problem; however,
the approaches taken in these papers indicate that the performance may be quite
poor. For example, in [13], the idea is to first design one deadbeat compensator for
each plant, and then apply them (periodically) in sequence; unfortunately, there
will (likely) be poor transient performance, at least until the controller reaches the
compensator corresponding to the actual plant. In [11], an optimal generalized-
hold is designed to achieve the stability objective; however, since generalized-holds
typically have poor inter-sample behaviour [6], it is unclear whether or not good
performance is obtained.

If we consider compact uncertainty sets, then the classical Gain Margin problem
is perhaps the simplest problem that one could envision. Recall that the goal there
was to stabilize the system in the face of a large range of uncertain gains (i.e.
a large gain margin); performance in this context is typically measured via the
size of the sensitivity function. If the nominal plant P0 is unstable non-minimum
phase and we restrict ourselves to LTI controllers, then it is shown in [43] that the
size of the sensitivity function (when using the 2−norm) tends to infinity as the
gain margin required tends toward the maximum attainable1. If a linear periodic
controller (LPC) is used, then the gain margin can be made arbitrarily large (e.g.
see [7], [44], and [45]); however, there is some question as to the performance
that can be attained via those approaches. For example, Yan, Anderson, and
Bitmead [44] show that, under suitable assumptions, one can use an LPC to make

1In other words, for larger sets of uncertainty, the performance decreases.
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the gain margin as large as desired while ensuring that the size of the sensitivity
function remains bounded; however, we point out that (obviously) bounded is not
the same as optimal. Finally, these approaches assume that the plant gain, although
unknown, is nonetheless fixed; if we allow it to be time-varying, then there is no
longer any guarantee that they will work.

1.2.2 Adaptive Control

The original goal of Adaptive Control was to provide stability and performance in
the face of time-varying uncertainty. Unfortunately, obtaining even stability in this
context turned out to be much more difficult than was originally expected; indeed,
most results in this area do not prove anything explicit for the time-varying case,
or, when they do, they require that the time variation be slow.

The main difference between this approach and Robust Control is that, here, the
controller is not fixed; the idea is to design a controller that can ‘adapt’ to changing
plant parameters. Typically, such a controller is realized via a linear compensator
in tandem with a nonlinear estimator whose job is to ‘tune’ the compensator during
operation to reflect any changes in the system parameters. Classically, the plant
parameters are estimated on the fly and the controller is updated with the assump-
tion that the current estimate is exactly correct. For a good review of this topic,
see [21] and the references therein.

In general, the resulting controllers are typically shown to have the desired be-
haviour in only an asymptotic sense and are highly nonlinear; however, since the
resulting controllers are time-varying, the LTI restrictions on simultaneous stabi-
lization are not present, so we expect to be able to handle larger sets of uncertainty.
Unfortunately, the estimation process is typically highly nonlinear and, at least in
the initial stages, the control signals may become quite large. Furthermore, the
estimation methods that are used typically require that the control signal be ‘suffi-
ciently exciting’ in some sense (e.g. it must have a wide frequency spectrum); if it
is not, then the estimate may not converge to the actual value, although it is still
possible to achieve stability [20].

While there is (usually) no guarantee that the transient behaviour will be nice
(indeed, it is typically quite poor), since the estimation is constantly being up-
dated, there is a reasonable expectation that slow time variations can be tolerated;
examples of classical Adaptive Controllers that directly address the issue of time-
varying plants include [15], [20], and [36]. Indeed, in [36], the authors allow the
time-variation to be fast, provided that it has some known structure.

A common formulation of the setup is as follows: design a controller so that,
when it is attached to the actual plant, the output asymptotically approaches that
of some known (stable) nominal plant which models the desired behaviour. This
problem is called the Model Reference Adaptive Control (MRAC) problem. Typical
assumptions on the uncertain plant are that
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• the plant be minimum phase,

• an upper bound on the plant order is known, and

• an upper bound on the plant relative degree is known.

Some of these restrictions (e.g., the minimum phase assumption) can be lifted
if, instead of requiring a complete model match, we simply insist that the plant
poles match a desired set [9]. One of our results leverages some work in this area,
so we have included this brief introduction for completeness; however, since we
are interested in all LTI systems, including non-minimum phase ones, we will not
pursue the MRAC formulation. For those who wish to investigate the topic further,
we direct the reader to [22] for an excellent overview of the history of this approach.

1.2.3 Supervisory Control

Supervisory Control lies at the interface between Robust and Adaptive control: a
significant amount of the design is performed offline, but some tuning is performed
online. This approach arose in part to address the issue of time-varying uncertain
systems (of which switching systems are a subset), which neither Robust nor Adap-
tive Control can handle very well. The idea here is to design (offline) a stabilizing
compensator for each plant (as was done in [13]) along with a ‘supervisor’ that pe-
riodically chooses (online) which of the compensators to apply; the resulting closed
loop system can be viewed as a complicated switching system.

It is not straightforward to analyze the stability of switched systems. Common
areas of study include how quickly one can switch between otherwise stable systems
while maintaining stability, and, if we could control the switching, what kinds of
switching signals could stabilize an otherwise unstable set of systems. As stated
earlier, an excellent review of the topic is [17] and the references therein. Unfortu-
nately, in our case we do not know the switching information a priori, nor do we
have control over it, so many of these tools do not apply to our problem.

Recent work in this area includes [28], [29], [30], [16], and [42]; in these pa-
pers, the uncertainty sets are quite large (e.g. compact sets of plants). These
controllers often work by considering multiple adaptive identification models and
then applying the one that minimizes some estimation performance index. While
they are often shown to provide improved transient behaviour when compared to
more classical Adaptive controllers, Supervisory Controllers are often highly non-
linear. Additionally, the focus of this approach is typically on stability and noise
rejection rather than performance. A notable exception to this is [29], in which the
proposed supervisory controller is shown to have some nice robustness characteris-
tics; following the classical robust control result that stability robustness is linked
to performance, the author argues that this avenue is a promising one with respect
to providing optimal performance.
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1.3 A New Approach to the Problem

We now turn to the approach adopted in this thesis. As with Supervisory Con-
trol, this approach lies at the boundary of Adaptive and Robust Control and is
(at least partially) motivated by switching systems architecture. The main dif-
ference here is that we skirt many of the difficulties of the above approaches by
directly estimating the desired control signal rather than estimating plant or
controller parameters or determining a desired (supervisory/monitoring) switching
signal. The resulting controllers provide performance that is robust to uncertainty
and are able to adapt to variations in the plant parameters; as such, we will refer
to this approach as Robust Adaptive Control Signal Estimation (RACE) Control.
The resulting controller is periodic with period T .

The first instance of this approach appears in Miller and Rossi [26]. The idea
behind the approach is simple, although only in hindsight: Why estimate plant or
controller parameters when what you really want to know is which control signal to
apply? Indeed, it turns out that by directly estimating the desired control signal,
we can perform the estimation linearly, unlike in Adaptive or Supervisory Control.
Furthermore, unlike in Robust Control, we can obtain performance that is as close
to the optimal as desired for every plant in the uncertainty set. Of course, this is
easier said than done. In this section we outline some of the prior work in this area
and discuss the high level ideas behind the approach. We begin by discussing some
papers which are key to the work presented in this thesis.

We begin with [26], where the authors proposed a RACE controller that was
able to provide stability and near optimal LQR performance for every plant in a
finite LTI set. A slight nonlinearity was introduced to deal with some of the adverse
side effects of switching and the resulting controller was shown to tolerate a finite
number of switches. Additionally, it was shown that the controller could achieve
infinite gain margin and 60 degrees of phase margin for every plant in the set.
Unfortunately, the tradeoff is that a small period T and fast sampling rates are
required, leading to large controller gains and possibly poor noise tolerance; this
drawback is common to all of Miller’s earlier work2.

The second paper of interest is [22]. The main contribution of that paper was
the construction of a RACE controller which was shown to alleviate many of the
classical MRAC drawbacks; i.e., it allows quite a general time variation, provides
immediate performance (rather than asymptotic), removes the nonlinearities, and
reduces the size of the control signal. This work required the common MRAC
assumptions that the plant be minimum phase, the relative degree of the plants be
known, and that the high frequency gains of the plants be bounded. In a followup
conference paper [24], Miller redesigned this controller to solve the standard Gain
Margin problem, including the case of negative gains and non-minimum phase
nominal plants, while providing near optimal weighted sensitivity (in the L1 sense).

2Specifically, that work predating this author’s work.
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Finally, we look at [25], in which the RACE controller provides simultaneous
stability and near optimal performance for a compact set of LTI plants. This work
does not directly address the issue of switching, although it does indicate that, with
the addition of a nonlinearity as in [26], it should be able to tolerate slow switching.
Preliminary work on this problem, where the authors considered only first order
systems, was presented in [18].

These papers pertain to this thesis in the following way. The ideas of [22] and [24]
were leveraged to solve the TVGM problem, which was first presented in [40], while
[26] was paramount to developing the solutions to the Finite Stability and Tracking
problems ([38] and [37] respectively), and the ideas in [25] were critical to solving
the Compact Stability problem [39]. This thesis compiles these four works (together
with some logical additions and extensions), providing the following contributions:

• In all cases we provide stability in the face of persistent switches.

• In all but the Compact Stability problem, we provide near optimal perfor-
mance for every plant in the uncertainty set in the face of persistent plant
switches; in the Compact Stability problem we provide near optimal perfor-
mance when there is no switching.

• Since it is not automatic, we explicitly consider the problem of stability in
the face of noise for our nonlinear controllers3.

• We explicitly prove that RACE can solve the Finite Tracking problem in the
context of persistent plant switches, whereas previous work only hinted that
it should be possible.

• In all but the TVGM problem, we allow a large period T , alleviating some
of the noise and large controller gain concerns raised in [26] and [25] while
providing a more aesthetically pleasing control signal (see Figure 1.1); in both
of the Finite problems we also allow for slow sampling, which further alleviates
these concerns.

• The RACE controller presented in [22] solves the TVGM problem, but only
for minimum-phase nominal plants, while the controller in [24] allows non-
minimum-phase plants, but does not allow time variation in the uncertain
gain; our solution works for both a time-varying gain and any finite dimen-
sional (FD) LTI plant.

1.4 Outline

We begin in Chapter 2 by discussing some mathematical preliminaries and notation
that will hold throughout this thesis. In Chapter 3 we investigate the Finite Stabil-

3We do not do this in the Compact Stability problem (the analysis is significantly more com-
plex), but we expect that our controller should be noise tolerant.
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Figure 1.1: Comparison of our control signal versus those in prior work.

ity problem; in Chapter 4 we retain the majority of the structure from Chapter 3
and extend that result to the more difficult Finite Tracking problem. In Chapter 5
we turn back to simple LQR optimal performance, but allow for a compact set
of LTI plants; since the set of uncertainty is infinite, we will require a new set of
notation and a different estimation approach than in earlier chapters. In Chapter 6
we investigate the TVGM problem; it will turn out that the process will be similar
to that of Chapter 5. Finally, in Chapter 7 we summarize our results and provide
some ideas for possible directions of future work.
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Chapter 2

Preliminaries

Each chapter in this thesis deals with a slightly different control problem, but there
are some concepts, useful notation, and mathematical preliminaries that will be
used throughout; we introduce those here.

2.1 Standard Definitions

Let Z denote the set of integers, Z+ the set of non-negative integers, N the set of
natural numbers, R the set of real numbers, and R+ the set of non-negative real
numbers. We denote the norm and the corresponding induced norm of a vector or
matrix via ‖ · ‖ (we will use the 2-norm in Chapters 3 through 5 and the ∞-norm
in Chapter 6). The set of real-valued bounded piecewise continuous signals on Rn

is denoted PC∞(Rn)1, when the dimension is clear from the context we will drop
the Rn. We measure the size of f ∈ PC∞ by

‖f‖∞ := sup
t≥0
‖f(t)‖,

and the induced norm of a linear operator S : PC∞ → PC∞ by

‖S‖ = sup
f∈PC∞, f 6=0

‖Sf‖∞
‖f‖∞

.

We say that f ∈ PC is piecewise smooth on [a, b] ⊂ R if there exists a finite set
of points {xi},

a = x1 < x2 < . . . < xk = b,

such that, on each interval (xi, xi+1), i = 1, .., k, we have that f and ḟ are contin-
uous and bounded, and that they both have finite limits as x→ xi and x→ xi+1.
We say that f ∈ PC is piecewise smooth (and write f ∈ PS) if it is piecewise

1We do not use L∞(Rn) since we are sampling signals without filtering them first.
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smooth on every finite interval [a, b] ⊂ R+. We let PS∞ denote the set of f ∈ PS
for which

‖f‖∞ <∞ and esssupt≥0‖ḟ(t)‖ <∞.
Finally, with T > 0, we let PS∞(T ) denote the set of f ∈ PS∞ for which every
discontinuity in f and ḟ are at least T time units apart.

It will be useful to analyze functions that depend on one particular interval of
noise data; to that end, we adopt the sampled-data lifting notation from [3]: we
partition the signal w ∈ PC∞ into intervals of length T and use wk to denote the
piece of w which occurs in the kth interval [kT, (k + 1)T ) via

wk(t) := w(kT + t), t ∈ [0, T ).

A natural extension of this notation is the following: we let PC∞[0, T ) denote the
set of piecewise continuous bounded signals on the interval [0, T ), so x ∈ PC∞[0, T )
if there exists a constant c > 0 such that

‖x(t)‖ ≤ c, t ∈ [0, T );

additionally, we define
‖x‖∞ := sup

t∈[0,T )

‖x(t)‖.

Furthermore, we say that the map

G : PC∞[0, T )→ Rn

x 7→ G(x)

has a bounded gain if there exists a constant c > 0 such that

‖G(x)‖ ≤ c‖x‖∞.

Clearly, if w ∈ PC∞ then

wk ∈ PC∞[0, T ), k ∈ Z+, T > 0.

Finally, we will occasionally deal with maps of the form

G : PC∞[0, T )×Rp → PC∞[0, T ),

wherein the second argument plays the role of modulation; in this case we say that
G has a bounded gain if there exists a constant c > 0 such that

‖G(x, y)‖∞ ≤ c‖x‖∞, x ∈ PC∞, y ∈ Rp,

with the smallest such c denoted by ‖G‖. Similarly, we will occasionally deal with
maps of the form

G : PC∞[0, T )×Rp → Rp,
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wherein the second argument still plays the role of modulation; again we say that
G has a bounded gain if there exists a constant c > 0 such that

‖G(x, y)‖ ≤ c‖x‖∞, x ∈ PC∞, y ∈ Rp,

with the smallest such c denoted by ‖G‖.
In this thesis we often wish to select the smaller of the two quantities v1 ∈ Rn

and v2 ∈ Rn. The standard notation for such an operation is

argmin
v∈{v1,v2}

‖v‖;

unfortunately, the quantities v1 and v2 will sometimes be expressed only as com-
plicated functions of system signals and parameters, in which case this notation
will become highly cumbersome. To that end, we adopt the following slightly non-
standard notation:

argmin{‖v1‖, ‖v2‖} := argmin
v∈{v1,v2}

‖v‖.

Finally, to remove any ambiguity, for every v1 ∈ Rn and v2 ∈ Rn satisfying ‖v1‖ =
‖v2‖, we set

argmin{‖v1‖, ‖v2‖} = v1.

It will sometimes be useful to use order notation to express the size of some of
our functions. To that end, we say that f : R+ → Rn×m is of order T j and write
f = O(T j) if there exists a constant γ > 0 so that, for sufficiently small T > 0,

‖f(T )‖ ≤ γT j.

Occasionally, such a function f will also depend on a variable φ restricted to some
set Φ; in this case, we say that f = O(T j) if there exists a constant γ > 0 so that,
for sufficiently small T > 0,

‖f(T, φ)‖ ≤ γT j, φ ∈ Φ.

We have two last pieces of notation. First, we define ⌊⌋ to be the floor operator:
for x ∈ R,

⌊x⌋ := max{y ∈ Z : y ≤ x}.
Finally, we will use the Kronecker product ⊗ on vectors, so, with x ∈ Rn and
y ∈ Rm we have

x⊗ y =






yx1
...
yxn




 ∈ Rnm.
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Figure 2.1: Simplified System Block Diagram

2.1.1 Feedback Structure and Stability

With P the plant and C the controller, noise introduced at the plant input and
output, labeled wu and wy respectively, and an exogenous input yref , we have the
feedback diagram shown in Figure 2.1.

We will investigate two standard types of closed loop stability: input/output
(I/O) and asymptotic. In each chapter we will provide precise definitions of these
concepts that are appropriate for the associated plant and controller structure under
study. For now, we (loosely) say that

• The controller C I/O stabilizes the plant P if, when all initial conditions are
zero, the map from the exogenous inputs to all outputs is well defined and
bounded.

• The controller C asymptotically stabilizes the plant P if, when all of the ex-
ogenous inputs are zero, for every initial condition, the plant and controller’s
internal variables go to zero as time goes to infinity.

From this description we see that the former can be viewed as a kind of ‘external’
stability, while the latter can be viewed as a kind of ‘internal’ stability, Finally, we
say that a controller stabilizes a set of plants P if it provides I/O stability and
asymptotic stability for every plant P ∈ P.

2.2 Notation Relating to Discontinuities

Recall that we are interested in time-varying sets of uncertainty and that we allow
discontinuities in the plant parameters; we impose a minimum time between these
discontinuities, which we label Ts. Furthermore, for simplicity, we insist that the
plant parameters are always continuous from the right.

Starting with the first discontinuity at t1, we gather the times at which these
discontinuities occur to generate a strictly increasing, possibly finite, sequence of
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times {tl}. This possibility of finiteness poses a notational problem and would
require multiple special cases in our proofs. Since our results do not differentiate
between systems with infinite and finite numbers of discontinuities, we circumvent
this difficulty in the following way. If there are a finite number of discontinuities,
then there exists a non-negative integer l̄ which is such that tl̄ is the time at which
the final discontinuity occurs. We then define

tl̄+j := tl̄ + jTs, j ∈ N

and consider a new strictly increasing sequence that is composed of the original
finite sequence with these additional ‘false’ discontinuity times tacked onto the
end. Finally, since we are only concerned with the system behavior for t ≥ 0, for
convenience we will insist that the system be continuous at t = 0 so

t1 6= 0.

Finally, we add the time
t0 := 0

to the beginning of the sequence {tl}, so we have

[0,∞) =
∞⋃

l=0

[tl, tl+1).

To simplify our nomenclature refer to this new (infinite) sequence {tl} as the se-
quence of switching times.

It will be useful to define an associated sequence of (non-negative) integers {kl}
that indicates which periods may contain switches: we would like kl to satisfy

tl ∈ [klT, (kl + 1)T ), l ∈ Z+,

so it is natural to define

kl :=

⌊
tl
T

⌋

, l ∈ Z+. (2.1)

Recall that we impose continuity at t0; it follows immediately from this and (2.1)
that there are no switches in the intervals

[kT, (k + 1)T ), k ∈ Z+ \ {kl : l ∈ N};

we adopt the common set compliment notation and define

{kl : l ∈ N}c := Z+ \ {kl : l ∈ N}.

Clearly, {kl} is a function of {tl} and T , to reduce clutter we do not make it explicit.
Furthermore, if we insist that T < Ts, then

kl 6= kl+1, l ∈ N;
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observe that we may have t1 < T and therefore k1 = 0, so we must allow k0 = k1

and be sure to account for this case in our proofs2.

Finally, since some of our signals may not be continuous at the switching times,
we adopt the standard notation to indicate the left hand limit of x ∈ PC∞ at a
point t: we say that

x(t−) = a

if, for every ε > 0 there exists a constant δ > 0 so that

‖x(τ)− a‖ < ε, t− τ ∈ (0, δ).

We will not need the analogue x(t+).

2.3 The RACE Approach - A High Level Discus-

sion

In the introduction, we outlined what RACE can accomplish. Before proceeding
to the details of our problems and the proposed solutions, we provide a high level
discussion on how RACE is implemented with the goal of simplifying our discussion
in upcoming chapters; we will provide details and make all of the forthcoming
notions more precise in following chapters.

Typically, the implementation of a RACE controller involves splitting each pe-
riod into two parts, the Estimation Phase and the Control Phase3. In the Estima-
tion Phase, we attempt to estimate the optimal control signal for the active plant
(without directly estimating any plant or controller parameters) and then in the
Control Phase we apply (a suitably scaled version of) that signal to the system. Of
course we would prefer performing estimation and control simultaneously; however,
our approach provides a very convenient structure with which to deal with discon-
tinuities in the plant parameters. In the remainder of this section we will discuss
two natural questions:

(i) What can we estimate?

(ii) How will discontinuities in the plant parameters affect the system behavior?

These notions will need to be made specific to each of our problems, as such they
will be made more precise later on.

2 For small T , this is no longer an issue; however, we are interested in large T , so the point is
moot.

3Currently, there are two exceptions, we will briefly discuss one of these in Chapter 3 and the
other in Chapter 6.
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2.3.1 Estimation

Before we proceed, we need a piece of notation. We define the matrix Ei ∈ Rnq×n

to be analogous to the basis vector ei in the following sense: with all q blocks of
dimension n× n we define

Ei :=














0
...
0
I
0
...
0














← ith block element.

So, just as ei can be used to obtain the ith column of a matrix A (via Aei), we
can use Ei to obtain the ith block column element of a correspondingly partitioned
matrix

A :=
[
A1 A2 . . . Aq

]
∈ Rr×nq

via
AEi = Ai.

Recall that the controller is periodic with period T - we will discuss estimates
over a single period [kT, (k + 1)T ). We let x ∈ Rn be the plant state. We can
(linearly) estimate the following:

(i) If the set of FDLTI plants is finite (i.e. {P1, .., Pq}) and if the active plant is
Pi, then we can estimate the quantity

Eix[kT ].

(ii) If the set of FDLTI plants is compact and p is the set of 2nMarkov parameters
associated with the active plant P and its observer canonical form state-space
triple (Ap, Bp, Cp), then we can estimate the quantities

x[kT ], x[kT ]⊗ p, [x[kT ]⊗ p]⊗ p
︸ ︷︷ ︸

=:x[kT ]⊗2p

, etc..

(iii) With g(t) a time-varying parameter at a fixed FDLTI plant’s input and a
constant ū ∈ R, we can estimate the quantities

ū, ūg[kT ], ūg2[kT ], etc..

Of course, there are certain restrictions on when we can obtain these estimates; we
will discuss them at the appropriate points in the upcoming analysis. It may be
possible to linearly estimate additional structures, but these are all that we will
require in this thesis. While it is not obvious, these estimates can be leveraged
to (linearly) construct estimates of a wide variety of control signals, including the
desired optimal control signals.
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2.3.2 Effect of Discontinuities on Estimation

Discontinuities will cause the control signal to be wrong for the remainder of the
period in which they occur, so if there is a discontinuity in every period, then (in
general) we will never be able to apply the desired control signal and the system
will likely become unstable. To that end, we will insist that

T <
Ts

2
,

so after every period with a discontinuity there is at least one without a discontinuity;
furthermore, there is at most one discontinuity in any given period.

In the Control Phase we apply the estimate of the desired control signal; the
behaviour there is essentially open loop, so the control signal will not be directly
affected by the discontinuity. It will turn out that the behaviour of our controller
over one period will be independent of the preceding periods, so we will be able to
reassert the correct control in the period immediately following the switch; there-
fore, switching during the Control Phase is not a concern. On the other hand, if a
discontinuity occurs in the Estimation Phase, then, due to the nature of our esti-
mation method, the resulting estimate will likely be quite large - since this signal
drives the Control Phase this would play havoc with the plant. To alleviate this
problem we will obtain two4 estimates in sequence and then use the smaller of the
two with the view that, even though the choice may be wrong, at least it will be
modest in size.

With this discussion in mind, we adopt the following notation: the duration of
each estimate is T ′, so the Estimation Phase has duration 2T ′. Our controller is
periodic of period T , so clearly we will need T ′ < T/2.

4Since we know that there is at most one switch in each period, two estimates will suffice.

17



Chapter 3

The Finite Stability Problem

In this chapter we propose a (mildly nonlinear) RACE controller which solves the
Finite Stability problem; i.e. for a finite set of LTI plants {P1, ..., Pq}, the controller
provides the following:

• Stability in the face of persistent switching between those plants.

• Near optimal LQR performance when there is no switching.

• Near nominal LQR performance when there is switching (we will discuss what
we mean by ‘nominal’ later on).

A preliminary version of this work was published in the conference paper [38]; in the
first part (Section III) of that paper, we presented a highly intuitive and straight-
forward approach that performed estimation and control simultaneously and was
able to achieve optimal performance after only a single period. Unfortunately, that
controller has the major drawback that it can not handle even one plant change,
so we do not present any of the details here.

This controller is motivated by the approach in [26]. Here we seek to alleviate
the two main drawbacks in that work: we allow persistent plant changes and we no
longer require that the controller period be small. Larger controller periods allow
for smaller controller gains, so we expect improved noise performance. We investi-
gate both asymptotic and input/output stability; since our controller is nonlinear,
the latter is not automatic and has the effect of showing that our controller is noise
tolerant. Furthermore, we will show that our nonlinearity can be (effectively) re-
moved from the closed loop and put onto the noise signal, so our controller is almost
linear.

A brief outline is as follows. In Section 3.1 we make the problem precise. In Sec-
tion 3.2 we present the design of a RACE controller that is based on a generalized-
hold and a generalized-sampler1; the design is intuitively appealing and the analysis

1A generalized sampler constructs a weighted integral of the measured signal rather than simply
sampling this signal at a point.
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straight-forward (as compared to [26]), we also analyze some noise related proper-
ties of this controller over a single period. In Section 3.3 we investigate the stability
properties of this controller; in the context of plant switches, we construct a lower
bound on the achievable rate of plant changes and a corresponding upper bound
on the controller’s period which, together, ensure that stability is maintained. In
Section 3.4 we turn to the question of performance: when there are no switches we
show that, if the Estimation Phase is sufficiently short, then we recover the optimal
performance, while in the context of plant switches we show that, if the controller’s
period is sufficiently small, then we can recover the nominal performance (again,
we will define what we mean by ‘nominal’ later). In Section 3.5 we present an
illustrative example and we wrap up with a summary and concluding remarks in
Section 3.6. In this chapter, we use the 2-norm to measure the size of a vector.

3.1 Problem Formulation

To define the problem, we will begin by obtaining a representation for our finite set
of LTI plants and then impose some assumptions. The motivation for this problem
is that of tolerating occasional faults, i.e. the plant switches from one LTI plant to
another without warning. It will be convenient to express this behaviour in terms
of a time varying plant that is defined via a switching signal, and then define a
time varying uncertainty set composed of those time varying plants. Once we have
done so, we will conclude by providing one of our two stability definitions and then
defining what we mean by performance.

Consider the LTI plant Pi which is represented with the state-space model

ẋ(t) = Ai x(t) +Bi u(t), x(0) = x0,
y(t) = Ci x(t),

(3.1)

with x(t) ∈ Rn the state, u(t) ∈ Rm the control input, and y(t) ∈ Rr the plant
output. Note that each of the LTI plants has the same number of inputs (m),
outputs (r), and order (n)2. The finite set of LTI plants is given by

P := {Pi : i = 1, ..., q}.

It is natural to impose the following assumptions:

Assumption 3.1 (Ci, Ai) is observable for every i ∈ {1, .., q}.

Assumption 3.2 (Ai, Bi) is stabilizable for every i ∈ {1, .., q}.

At this point we fix P .

2If the orders are initially different, we let n be the largest order and augment the remaining
admissible plant models with some additional observable but uncontrollable stable states.
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We would like to fit the model (3.1) into the closed loop structure given by
Figure 2.1. In this chapter we are not interested in tracking, so we set the exogenous
reference signal yref to zero; incorporating the noise at the plant output yields

e := y + wy

= Cix+ wy.

If we also include the noise at the control input, then we can rewrite (3.1):

ẋ(t) = Ai x(t) +Bi(u(t) + wu(t)),
e(t) = Ci x(t) + wy(t).

(3.2)

For our controller design method to work, we need the matrices {A1, ..., Aq} to have
disjoint eigenvalues. Although this may seem restrictive, it turns out that, if we
assume that the transfer functions

Ci(sI − Ai)
−1Bi, i = 1, .., q

are distinct and that (Ai, Bi) and (Aj, Bj) share uncontrollable modes only if j = i,
then the system can regularized by using output feedback of the form

u = ν +Ke, (3.3)

so (3.2) becomes

ẋ(t) = [Ai +BiKCi]
︸ ︷︷ ︸

=:Âi

x(t) +Biν(t) +
[
Bi BiK

]

︸ ︷︷ ︸

=:Li

[
wu

wy

]

︸ ︷︷ ︸

=:w(t)

,

e(t) = Cix(t) +
[

0 I
]
w(t),







(3.4)

and it follows from [5] that, for almost all K, the matrices {Â1, ..., Âq} will indeed
enjoy the desired property. Henceforth we will impose

Assumption 3.3 {Â1, ..., Âq} have disjoint eigenvalues.

The actual plant is not known exactly: at any given time it lies in P . To define
the set of admissible time varying plants we consider a piecewise constant switching
signal

σ : R+ → {1, ..., q}
which specifies the index of the plant at every time t; we assume that σ is continuous
from the right3. Since P is fixed, we can use σ to uniquely define the time-varying
plant Pσ which can be modeled via the following (time-varying) state-space model

ẋ(t) = Âσ(t) x(t) +Bσ(t) ν(t) + Lσ(t) w(t), x(0) = x0,
e(t) = Cσ(t) x(t)

︸ ︷︷ ︸

=y(t)

+
[

0 I
]
w(t).







(3.5)

3We require this for convenience; a more general σ can be handled with minor modifications.
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With the minimum time between plant switches given by Ts, we can define the set
of allowable switching signals: for any Ts > 0,

ΣTs
:= {σ : there are at least Ts time units between discontinuities in σ};

note that the first discontinuity is allowed to occur before t = Ts. We can also
define the (time varying) uncertainty set: for any Ts > 0,

PTs
:= {Pσ : σ ∈ ΣTs

};

notice that P∞ = P .

We now take a moment to investigate some useful properties of the switching
signal σ together with some convenient notation. Each σ explicitly defines the
times at which the plant Pσ switches, so using the (infinite) sequence of switching
times that we defined in Section 2.2, we can also define the (infinite) sequence of
LTI plant indices {il} with il ∈ {1, ..., q} which are such that

σ(t) = il, t ∈ [tl, tl+1), l ∈ N.

Note that both {tl} and {il} are implicit functions of σ.

3.1.1 Stability

We represent our controller C by (3.3) together with an as yet unspecified term
given in input-output form:

κ : PC∞ → PC∞
: e 7→ ν.

(3.6)

Combining this with the plant Pσ represented by (3.5) yields the closed loop system
diagram shown in Figure 3.1 and leads naturally to the following I/O stability
definition:

Definition 3.1 With Ts > 0 and x0 = 0, we say that the controller C I/O stabi-
lizes PTs

if, for every Pσ ∈ PTs
, the map

(wu, wy)→ (e, u, y)

is well defined and has bounded gain.

We will provide a definition of asymptotic stability once the structure of the com-
pensator κ has been established in more detail.
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Figure 3.1: Block Diagram

3.1.2 LQR Performance

We would like to design a controller which not only provides stability but also
near optimal LQR performance for each possible model Pi ∈ P. To this end, for
each i ∈ {1, ..., q}, we choose positive definite symmetric matrices Qi ∈ Rn×n and
Ri ∈ Rm×m, set w = 0, and consider the classical quadratic performance index

Ji(x0) =

∫ ∞

0

[x′(t)Qix(t) + u′(t)Riu(t)]dt. (3.7)

If we substitute using (3.3), then this cost function becomes

Ji(x0) =

∫ ∞

0

x(t)′Qix(t) + (ν(t) +Ke(t))′Ri(ν(t) +Ke(t))dt, (3.8)

which (since e = Cix) is a standard form for the model (3.4). The LQR problem
is to find, for each x0 ∈ Rn, the control signal ν which minimizes this cost. As is
well-known, the optimal controller is state-feedback:

ν = Fix,

which gives rise to an optimal cost of the form

J0
i (x0) = x′0Vix0

with Vi a positive definite solution of an associated Riccati equation. The closed
loop matrix that arises from applying this state feedback is labeled

Āi := Âi +BiFi.

Remark 3.1 Although (3.8) appears needlessly complicated compared to (3.7), this
is exactly the structure that we will obtain when we analyze the step tracking case
in the following chapter; if we retain this structure here, then the proofs in the
following chapter will require minimal changes, so that is what we will do.
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Defining a cost function and associated optimal controller for plants that lie in
PTs

is harder than for those in P since we do not know the switching information
a priori; we defer doing so until Section 3.4.

It will be useful to have uniform bounds on system parameters, so we define

a := max
i=1,..,q

‖Âi‖,

b := max
i=1,..,q

‖Bi‖,

c := max
i=1,..,q

‖Ci‖,

ℓ := max
i=1,..,q

‖Li‖,

and
f := max

i=1,..,q
‖Fi‖.

Finally, since Āi is Hurwitz by design, there exist constants γ0 > 0 and λ0 < 0 such
that

‖eĀit‖ ≤ γ0e
λ0t, i = 1, .., q, t ≥ 0. (3.9)

3.2 The Controller

In this section we design the compensator κ which is periodic of period T . Recall
that we wish to design a controller that provides optimal LQR performance for every
LTI plant Pi and that, in Section 2.3.1, we indicated that it would be possible to
find a good estimate of the optimal control signal

ν(t) = Fix(t) = Fie
Āi(t−kT )

︸ ︷︷ ︸

=:Hi(t−kT )

x[kT ], t ∈ [kT, (k + 1)T ); (3.10)

the main difficulty in doing so is that both i and x[kT ] are unknown. Although it
would be sufficient to obtain these two pieces of information explicitly and inde-
pendently, it is not necessary.

To achieve our objective, we begin by partitioning each period into two parts:
the Estimation Phase followed by the Control Phase. In the Estimation Phase we
will be able to use a generalized sampler to obtain an estimate of Eix[kT ] and then,
motivated by the properties of Ei, in the Control Phase we will use a generalized
hold to apply (an estimate of) the desired control signal (3.10):

ν(t) =
[
H1(t− kT ) . . . Hq(t− kT )

]

︸ ︷︷ ︸

=:H(t−kT )

Eix[kT ] = Hi(t− kT )x[kT ].

The design discussion above gives rise to three minor issues. The first is that the
‘optimal’ control signal is applied only for part of the period (i.e. during the Control
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≈ x[kT ]≈ x[kT ]
v1[k]

H(t)argmin{‖v1[k]‖, ‖v2[k]‖}
≈ Fie

Āi(t−kT )x[kT ]

v2[k]
ObtainObtain

(k + 1)TkT + 2T ′kT + T ′kT
t

ν(t)

Figure 3.2: Input signal

Phase), so we do not use H directly; instead we use a suitably adjusted version of
H which we label Ĥ. Second, as discussed in Section 2.3.2, to mitigate the effect of
a switch occurring during the Estimation Phase, we obtain two estimates in series;
the duration of the Estimation Phase is 2T ′, so we require T > 2T ′. Finally, we
will be able to perform our estimation passively (i.e. the control signal is turned
off during the Estimation Phase); to reflect this fact, we will set

Ĥ(t) = 0, t ∈ [kT, kT + 2T ′).

Figure 3.2 shows an example of the control signal ν over one period when there are
no switches.

Finally, recall from Section 2.3.2 that we require T < Ts/2. We now state the
final periodic compensator κ:

THE PROPOSED COMPENSATOR κ

With Ts > 0, T ∈ (0, Ts/2), T ′ ∈ (0, T/2), S, Ĥ periodic of period T , and
k ∈ Z+, we define the controller by

v1[k] :=

∫ kT+T ′

kT

S(t)e(t) dt, (3.11)

v2[k] :=

∫ kT+2T ′

kT+T ′

S(t)e(t) dt, (3.12)

ν(t) =

{
0 t ∈ [kT, kT + 2T ′)

Ĥ(t)argmin{‖v1[k]‖, ‖v2[k]‖} t ∈ [kT + 2T ′, (k + 1)T ).
(3.13)
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Remark 3.2 Since the controller is nonlinear, there is no guarantee that the sys-
tem will be well posed; however, it is routine to prove that, for every choice of
σ ∈ ΣTs

and w ∈ L∞, when (3.3) and κ are applied to the plant Pσ, every x0 ∈ Rn

yields a unique solution.

Before proceeding we make three observations. First, this κ results in an overall
controller that is nonlinear; however, the nonlinearity will turn out to be very mild.
Second, since

Ĥ(t) = 0, t ∈ [0, 2T ′),

we can write (3.13) more compactly as

ν(t) = Ĥ(t)argmin{‖v1[k]‖, ‖v2[k]‖} t ∈ [kT, (k + 1)T )

without worrying about causality issues. Finally, this compensator’s behaviour
depends only on the current period, so its ‘initial condition’ vi[−1] is irrelevant.

This choice of κ together with (3.3) leads naturally to the following definition
of asymptotic stability:

Definition 3.2 With Ts > 0 and w = 0, we say that the controller C asymptoti-
cally stabilizes PTs

if, for every Pσ ∈ PTs
we have that

(i) for every ε > 0 there exists a δ > 0 so that, if ‖x0‖ < ε, then

‖x(t)‖ < δ, t ≥ 0,

‖v1[k]‖ < δ, and ‖v2[k]‖ < δ, k ∈ Z+,

and

(ii) for every x0 ∈ Rn, we have

lim
t→∞
‖x(t)‖ = 0, lim

k→∞
‖v1[k]‖ = 0, and lim

k→∞
‖v2[k]‖ = 0.

Remark 3.3 Observe that (ii) is a global convergence condition, rather than the
typical local one. Furthermore, we will be able to prove a stronger condition than
(i), namely: there exists a constant γ > 0 so that for every x0 ∈ Rn we have

‖x(t)‖ ≤ γ‖x0‖, t ≥ 0,

‖v1[k]‖ ≤ γ‖x0‖, and ‖v2[k]‖ ≤ γ‖x0‖, k ∈ Z+.

We now make the notions discussed above more precise. We begin by designing
the sampler, then give the details of the hold, and last of all, we investigate some
system properties in the presence of noise. The sampler and hold are both designed
so that they have desirable properties when there are no plant switches and there
is no noise. To that end, in the next two sub-sections we set w = 0 and
assume that the plant is Pi over the interval [kT, (k + 1)T ).
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3.2.1 Designing the Generalized-Samplers and the Gain S

We would like to design our sampler’s gain S such that, in the event that there
is no plant switch and no noise, the generalized sampler provides exactly Eix[kT ].
We can state our estimation objective in the following way: if the plant is Pi and
w = 0, then we wish S to be such that

v1[k] =

∫ kT+T ′

kT

S(t)e(t) dt = Eix[kT ] (3.14)

and

v2[k] =

∫ kT+2T ′

kT+T ′

S(t)e(t) dt = Eix[kT ]; (3.15)

observe that v1[k], v2[k] ∈ Rnq. To design such an S, observe that, since w = 0, we
have that

e = y = Cix,

so to achieve (3.14) for every admissible i we clearly need

∫ kT+T ′

kT

S(t)e(t) dt =

∫ kT+T ′

kT

S(t)Cie
Âi(t−kT )x[kT ] dt

= Eix[kT ], i = 1, .., q

or equivalently
∫ kT+T ′

kT

S(t)Cie
Âi(t−kT ) dt = Ei, i = 1, .., q. (3.16)

If we define the augmented matrices

Â := diag{Â1...Âq} and C :=
[
C1 ... Cq

]
,

then (3.16) collapses into
∫ T ′

0

S(t)CeÂtdt = I. (3.17)

Finally, if we set

S(t) =

{

e−ÂT ′

S(t− T ′), t ∈ [T ′, 2T ′)
0, t ∈ [2T ′, T ),

(3.18)

then (3.17) is also sufficient to ensure that (3.15) is satisfied for every admissible
i. Assumptions 3.1 and 3.3 ensure that (C, Â) is observable, so there is a whole
family of periodic functions which satisfy (3.17) and (3.18); we provide an example
of such a function in Section 3.5.

We would like to ensure that v1 and v2 are bounded in the presence of noise.
At first glance, it would seem that restricting S (on [0, T )) to PC∞[0, T ) would be
adequate; however, this would preclude the classical ‘ideal sampler’. To that end,
we restrict S (on [0, T )) to be the sum of an element of PC∞[0, T ) and a sum of
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a finite sequence of impulses over [0, T ); all such maps are said to be admissible.
Notice that an admissible S has the desirable property that the maps

∫ T ′

0

S(t)e(t)dt : PC∞[0, T ) 7→ Rnq

and ∫ 2T ′

T ′

S(t)e(t)dt : PC∞[0, T ) 7→ Rnq

have bounded gain.

Remark 3.4 The particular choice of an admissible S only determines the effect
of noise on the system. That being said, some choices of S will be easier to im-
plement than others. Indeed, for implementation purposes, we will typically choose
a finite string of impulses, equally spaced on [0, T ), since implementing this would
be equivalent to constructing a weighted sequence of samples of the error, which is
easy to carry out.

At this point, with Ts > 0, for each T ∈ (0, Ts/2) and T ′ ∈ (0, T/2), we
choose an admissible S that satisfies (3.17) and (3.18); to minimize clutter
we do not write it as an explicit function of T and T ′.

3.2.2 Designing the Generalized-Hold Ĥ

Recall that the optimal control signal for the plant Pi is

ν(t) = Hi(t)x[kT ], t ∈ [kT, (k + 1)T );

as discussed at the beginning of this section, we can combine these Hi’s to construct
the optimal hold gain H. Also recall that, since the control signal is applied only for
part of the period, we do not apply the optimal hold; instead we apply a suitably
adjusted version, whose gain Ĥ is naturally partitioned as

Ĥ :=
[

Ĥ1 . . . Ĥq

]
.

We would like Ĥ to have two properties:

(i) that it converges (in some sense) to H as T ′ goes to zero and

(ii) that, even if T ′ is non-zero, when there is no noise and no switches, the state
exactly matches the optimal trajectory at the endpoints.

We first consider (ii). We would like

x[(k + 1)T ] = eĀiTx[kT ], (3.19)
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but

eĀiT = eÂiT +

∫ T

0

eÂi(T−τ)BiHi(τ)dτ

and

x[(k + 1)T ] =

[

eÂiT +

∫ T

2T ′

eÂi(T−τ)BiĤi(τ) dτ

]

x[kT ],

so, since i is unknown, to satisfy (3.19) and thereby (ii) we need

∫ T

2T ′

eÂi(T−τ)BiĤi(τ)dτ =

∫ T

0

eÂi(T−τ)BiHi(τ)dτ, i = 1, .., q.

This is clearly equivalent to

∫ T

2T ′

eÂi(T−τ)Bi [Ĥi(τ)−Hi(τ)]
︸ ︷︷ ︸

=:H̃(τ)

dτ =

∫ 2T ′

0

eÂi(T−τ)BiHi(τ)dτ

︸ ︷︷ ︸

=:Ψi(T,T ′)

, i = 1, .., q. (3.20)

If (Âi, Bi) is controllable4 then, for each i, (3.20) has a natural solution for H̃i: with
the controllability grammian defined by

Wi(t) :=

∫ t

0

e−ÂiτBiB
′
ie

−Â′
iτdτ,

the least square solution to (3.20) is

H̃i(t) = B′
ie

−Â′
i(t−2T ′)W−1

i (T − 2T ′)e−Âi(T−2T ′)Ψi(T, T
′), t ∈ [2T ′, T ). (3.21)

Our choice of hold is then

Ĥ(t) =

{
0 t ∈ [0, 2T ′)
[

H1 + H̃1 H2 + H̃2 . . . Hq + H̃q

]
(t) t ∈ [2T ′, T ),

(3.22)

which clearly satisfies (ii). Note that each H̃i is an implicit function of T and T ′;
furthermore, we define

H̃ :=
[

H̃1 H̃2 . . . H̃q

]
.

We now prove that (i) holds for our choice of H̃; before doing so, observe that

‖Hi(t)‖ = ‖Fie
Āit‖ ≤ fγ0e

λ0t

≤ fγ0, t ∈ [0, T ), i = 1, .., q.

It will turn out that the following is a critical function:

εH(T, T ′) := 2b2fγ0e
aTT ′ max

i=1,..,q
‖W−1

i (T − 2T ′)‖. (3.23)

4If it is not, we do a similarity transformation to isolate the controllable part and then proceed
in the same way.

28



Lemma 3.1 With Ts > 0, for every T ∈ (0, Ts/2) we have that

(i) for every T ′ ∈ (0, T/2)

‖H̃i(t)‖ = ‖Ĥi(t)−Hi(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T ), i = 1, .., q,

(ii) and lim
T ′→0

εH(T, T ′) = 0.

Proof: This result follows directly from (3.21) and is left to the reader.

At this point we have defined Ĥ by (3.21) and (3.22), and chosen an admissible
S that satisfies (3.17) and (3.18), so κ as written in (3.11)-(3.13) is well defined,
as is the controller C, which we relabel C(T, T ′) to emphasize its dependence on T
and T ′.

3.2.3 System Properties in the Presence of Noise

Now that we have designed the controller C(T, T ′), we would like to investigate
how noise will affect the system; the presence of the nonlinearity (which arises by
choosing the smaller of the two samples) complicates the analysis. It will turn
out that, over periods where there is no switch, we can separate the effect of the
nonlinearity from the effect of the state at the beginning of the period. In fact, it
will turn out that we can write a state-space equation (over one period) in which
the effect of the state is linear - the nonlinearities are contained entirely in the
noise part of the equation5. Unfortunately, when there is a switch in the period we
cannot isolate the nonlinearity in this way; however, we will be able to find a nice
bound on the size of the sampler’s outputs and hence the control signal.

The following proposition will make these two notions more precise, but first we
remind the reader of the notation

wk(t) := w(kT + t), t ∈ [kT, (k + 1)T )

and that there are no plant switches on the intervals

[kT, (k + 1)T ), k ∈ {kl : l ∈ N}c.

Finally, we define

ρ(T ′) := max
i,j=1,..,q

{

max
t∈[0,T ′)

‖e−ÂiteÂjt‖
}

;

notice that
lim
T ′→0

ρ(T ′) = 1.

5The state does show up in the nonlinear part, but only in the sense that it selects between
two functions of noise.
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Proposition 3.1 With Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2), there exists a
constant γv(T, T

′) > 0, 2q linear functions of noise

φ1,i : L∞[0, T )→ Rn+r, i = 1, .., q

φ2,i : L∞[0, T )→ Rn+r, i = 1, .., q

with bounded gains, and q selector functions

χi : L∞[0, T )×Rn+r → {0, 1}, i = 1, .., q,

such that, for every x0 ∈ Rn, σ ∈ ΣTs
, and w ∈ PC∞, when C(T, T ′) is attached

to Pσ, we have that:

(i) Pσ’s state-space representation (3.5) satisfies

ẋ(t) = Âσ(t)x(t) +Bσ(t)Ĥσ(t)(t)x[kT ] +
[

Bσ(t)Ĥ(t) Lσ(t)

]
×

[
χσ(t)(wk, x[kT ])φ1,σ(t)(wk) + [1− χσ(t)(wk, x[kT ])]φ2,i(wk)

w(t)

]

,

t ∈ [kT, (k + 1)T ), k ∈ {kl : l ∈ N}c.

(ii) The sampler outputs v1 and v2 satisfy

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖x[klT ]‖+ γv(T, T
′)‖w‖∞, l ∈ Z+.

Proof: Please see Appendix A.

The above provides detailed structure on the behaviour of the closed loop sys-
tem. Since the details of the way that the noise enters the system are irrelevant, the
following corollary, which looks at periods with no plant switches, will be useful:

Corollary 3.1 With Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2), there exists 2q
nonlinear, bounded gain functions

φi : L∞[0, T )×Rn+r → L∞[0, T ), i = 1, .., q

θi : L∞[0, T )×Rn+r → Rn+r, i = 1, .., q

so that, for every x0 ∈ Rn, σ ∈ ΣTs
, w ∈ PC∞, and k ∈ {kl : l ∈ N}c, when

C(T, T ′) is attached to Pσ, we have that (3.5) satisfies

ẋ(t) = Âσ(t)x(t) +Bσ(t)Ĥσ(t)(t)x[kT ] + φσ(t)(wk, x[kT ]), t ∈ [kT, (k + 1)T ),

x[(k + 1)T ] = eĀσ[kT ]Tx[kT ] + θσ[kT ](wk, x[kT ]).
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Proof: The result follows directly from Proposition 3.1(i) and the properties of Ĥ
(most notably (3.19)) and is left to the reader.

Remark 3.5 We see that, on periods on which there are no plant switches, the
closed loop system behaviour is quite regular: the effect of the noise can be separated
out, in some sense, from the effect of the value of the state at the beginning of the
period.

3.3 Stability

In this section we will investigate stability. When there are no switches, we can
prove stability for arbitrarily large T , which is not possible when we have plant
switches; as such, we investigate these cases separately. We begin with the former.

Theorem 3.1 For every T > 0 and T ′ ∈ (0, T/2), the controller C(T, T ′) sta-
bilizes P.

Proof:

Fix T > 0 and T ′ ∈ (0, T/2). Let x0 ∈ Rn, w ∈ PC∞, and i = 1, .., q be arbitrary
and assume that the plant is Pi ∈ P. From Corollary 3.1 we have that there exists
two nonlinear functions

φi : L∞[0, T )×Rn+r → L∞[0, T )

θi : L∞[0, T )×Rn+r → Rn+r

which have bounded gains and are such that, for every k ∈ Z+ we have

ẋ(t) = Âix(t) +BiĤi(t)x[kT ] + φi(wk, x[kT ]), t ∈ [kT, (k + 1)T ) (3.24)

x[(k + 1)T ] = eĀiTx[kT ] + θi(wk, x[kT ]); (3.25)

since these functions have bounded gains, we can define

γφ := max
i=1,..,q

‖φi‖∞,

γθ := max
i=1,..,q

‖θi‖.

Finally, since T and T ′ are fixed, we have that ‖Ĥ‖∞ is well defined.

(Asymptotic Stability)

Let x0 ∈ Rn remain arbitrary and set w = 0. In this context (3.24) and (3.25)
reduce to

ẋ(t) = Âix(t) +BiĤi(t)x[kT ], t ∈ [kT, (k + 1)T ) (3.26)
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and
x[(k + 1)T ] = eĀiTx[kT ]. (3.27)

If we solve (3.27) and then substitute the result into the solution of (3.26), then we
clearly have

x(t) =

(

eÂi(t−kT ) +

∫ t

kT

eÂi(t−τ)BiĤi(τ)dτ

)

eĀikTx0, t ∈ [kT, (k + 1)T ), k ∈ Z+

so

‖x(t)‖ ≤
(

eaT + TeaT b‖Ĥ‖∞
)

γ0e
λ0kT‖x0‖, t ∈ [kT, (k + 1)T ), k ∈ Z+

≤
(

eaT + TeaT b‖Ĥ‖∞
)

γ0e
−λ0T eλ0t‖x0‖, t ≥ 0;

yielding both our desired bound on x and

lim
t→∞
‖x(t)‖ = 0.

Since S is admissible and periodic, we have that there exists a constant γs > 0 so
that

‖v1[k]‖ =

∥
∥
∥
∥
∥

∫ kT+T ′

kT

S(t)e(t)dt

∥
∥
∥
∥
∥

≤ γs max
t∈[kT,kT+T ′)

‖e(t)‖, k ∈ Z+

and

‖v2[k]‖ =

∥
∥
∥
∥
∥

∫ kT+2T ′

kT+T ′

S(t)e(t)dt

∥
∥
∥
∥
∥

≤ γs max
t∈[kT+T ′,kT+2T ′)

‖e(t)‖, k ∈ Z+.

Since e = Cix, this clearly yields both the desired bounds on v1 and v2 and the
limits

lim
k→∞
‖v1[k]‖ ≤ lim

t→∞
γsc‖x(t)‖

= 0

and
lim
k→∞
‖v2[k]‖ = 0.

(I/O Stability)

Let w ∈ PC∞ be arbitrary and set x0 = 0. From the structure of C(T, T ′), the
definitions of e and y, and since S is admissible and ‖Ĥ‖∞ is well defined, it is
enough to find a bound on ‖x‖∞ in terms of ‖w‖∞.
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We begin by solving (3.24) to find

x(t) = eÂi(t−kT )x(kT ) +

∫ t

kT

eÂi(t−τ)
(
BiĤi(τ)x[kT ] + φi(wk, x[kT ])

)
dτ,

t ∈ [kT, (k + 1)T ), k ∈ Z+,

so

‖x(t)‖ ≤ eaT‖x[kT ]‖+

∫ t

kT

ea(t−τ)
(
b‖Ĥ‖∞‖x[kT ]‖+ γφ‖w‖∞

)
dτ

≤
[

eaT + TeaT b‖Ĥ‖∞
]

︸ ︷︷ ︸

=:γ1

‖x[kT ]‖+ TeaTγφ
︸ ︷︷ ︸

=:γ2

‖w‖∞,

t ∈ [kT, (k + 1)T ), k ∈ Z+. (3.28)

Since x0 = 0, solving (3.25) yields

x[kT ] =
k−1∑

j=0

eĀiT (k−1−j)θi(wj, x[jT ]), k ∈ Z+,

so

‖x[kT ]‖ ≤
k−1∑

j=0

γ0e
λ0Tjγθ‖w‖∞

≤ γ0γθ

1− eλ0T
‖w‖∞, k ∈ Z+,

which combines with (3.28), yielding

‖x(t)‖ ≤ γ1‖x[kT ]‖+ γ2‖w‖∞, t ∈ [kT, (k + 1)T ), k ∈ Z+

≤
[

γ1
γ0γθ

1− eλ0T
+ γ2

]

‖w‖∞, t ≥ 0,

so clearly

‖x‖∞ ≤
[

γ1
γ0γθ

1− eλ0T
+ γ2

]

‖w‖∞.

We now turn to the case of (possibly persistent) plant switches; these plant
switches introduce two main difficulties:

(i) It is well known that switching too quickly between stable LTI systems can
lead to instability.

(ii) In periods with a plant switch, the incorrect control will (likely) be applied.

To address these two issues we will place bounds on Ts, T , and T ′:
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(Ts) Even if (ii) was not an issue and we could immediately apply the correct
control signal, (i) says that if Ts is too small then our controller may not be
able to stabilize the system. To that end we will place a loose6 lower bound
on the choice of Ts. It will turn out that a critical value is

Ts :=
ln
{

γ0

(
1 + 2bfγ0

a

)2
}

|λ0|
.

(T ) As T increases, the duration and adverse effect of (ii) will also increase. The
end result of this is twofold: first, the undesirable effect of the plant switch
is further increased due to the application of incorrect control, and second,
the total amount of time that the correct control signal is applied (before the
next switch occurs) is decreased. To this end, we place an upper bound on
T . It will turn out that a critical value is

T̄ (Ts) := min

{
Ts

2
,
|λ0|

3(a− λ0)

(
Ts − Ts

)
}

.

(T ′) Finally, recall that the gain of our generalized hold is

Ĥ = H + H̃;

the size of H̃ and therefore Ĥ will (likely) increase with increasing T ′. So,
even if T is small, the adverse effect of (ii) will increase with increasing T ′.
To that end, we will also require that T ′ be small.

Theorem 3.2 For every Ts > Ts and T ∈ (0, T̄ (Ts)), if T ′ is sufficiently small
then C(T, T ′) stabilizes PTs

.

Proof:

Fix Ts > Ts, T ∈ (0, T̄ (Ts)), σ ∈ ΣTs
, and let x0 ∈ Rn, w ∈ PC∞, and T ′ ∈ (0, T/2)

be arbitrary. From Corollary 3.1, there exist 2q nonlinear functions

φi : L∞[0, T )×Rn+r → L∞[0, T ), i = 1, .., q

and
θi : L∞[0, T )×Rn+r → Rn+r

that have bounded gains and are such that, for every k ∈ {kl : l ∈ N}c we have

ẋ(t) = Âσ(t)x(t) +Bσ(t)Ĥσ(t)(t)x[kT ] + φσ(t)(wk, x[kT ]), t ∈ [kT, (k + 1)T ) (3.29)

6This bound is loose in the sense that our controller can stabilize uncertainty sets with some-
what smaller Ts, but to do so we must force T to be small.
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and
x[(k + 1)T ] = eĀσ(t)Tx[kT ] + θσ(t)(wk, x[kT ]). (3.30)

Since these functions have bounded gains and are implicit functions of T ′, we can
define

γφ(T
′) := max

i=1,..,q
‖φi‖∞

and
γθ(T

′) := max
i=1,..,q

‖θi‖.

Finally, recall that switches are confined to {kl : l ∈ N} and

tl ∈ [kl, (kl + 1)T ), l ∈ Z+;

however, observe that, even though the plant parameters are discontinuous at tl,
the state x is not.

Before turning to the particular details of each of our two stability types, it will
be useful to perform some preliminary analysis. To proceed, it is important to note
that ‖Ĥ(t)‖ and ‖Ĥ‖∞ are implicit functions of T ′; indeed, there is no uniform
upper bound on ‖Ĥ‖∞; however, by definition, for every i = 1, .., q we clearly have
that

‖Ĥi(t)‖ =

{
0 t ∈ [0, 2T ′)

‖Hi(t)− H̃i(t)‖ t ∈ [2T ′, T ),
so

‖Ĥi‖∞ ≤ max
t∈[2T ′,T )

‖Hi(t)− H̃i(t)‖

≤ fγ0 + max
t∈[2T ′,T )

‖H̃i(t)‖, i = 1, .., q.

If we use the definition of εH given in (3.23) and Lemma 3.1 to bound the rightmost
term, then we find

‖Ĥi‖∞ ≤ fγ0 + εH(T, T ′), i = 1, .., q. (3.31)

Since T is fixed, we write εH(T ′) instead of εH(T, T ′).

We first address the l = 0 case in the sense that we investigate the interval
[0, k1T ]7. We begin by solving (3.30):

x[kT ] = eĀi0
kTx0 +

k−1∑

j=0

eĀi0
(k−1−j)T θi0(wj, x[jT ]), k = 0, .., k1,

so

‖x[kT ]‖ ≤ γ0e
λ0kT‖x0‖+

k−1∑

j=0

γ0e
λ0jTγθ(T

′)‖w‖∞

≤ γ0‖x0‖+ γ0γθ(T
′)

1

1− eλ0T
‖w‖∞, k = 0, .., k1. (3.32)

7Observe that this includes the degenerate case of t1 < T , in which case the interval consists
of only the point 0.
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Additionally, we can solve (3.29):

x(t) = eÂi0
(t−kT )x[kT ] +

∫ t

kT

eÂi0
(t−τ)

[
Bi0Ĥi0(τ)x[kT ] + φi0(wk, x[kT ])

]
dτ,

t ∈ [kT, (k + 1)T ], k = 0, .., k1 − 1,

so

‖x(t)‖ ≤
[
eaT + TeaT b

(
fγ0 + εH(T ′)

)]

︸ ︷︷ ︸

=:α0(T ′)

‖x[kT ]‖+ TeaTγφ(T
′)‖w‖∞,

t ∈ [kT, (k + 1)T ], k = 0, .., k1 − 1,

which combines with (3.32) to provide a nice bound over the interval of interest:

‖x(t)‖ ≤ α0(T
′)γ0‖x0‖+

[

α0(T
′)γ0γθ(T

′)
1

1− eλ0T
+ TeaTγφ(T

′)

]

︸ ︷︷ ︸

=:γ̄(T ′)

‖w‖∞, t ∈ [0, k1T ]. (3.33)

We now turn to t ≥ k1T . We will present two claims: the first examines the
behavior of x on intervals where there is a switch and the second uses Corollary 3.1
to examine the behavior of x on intervals where there is no switch. Together
with (3.32), these claims will provide the necessary tools for proving both types of
stability.

Claim 1: There exist constants γ1(T
′) > 0 and γ̄1(T

′) > 0 such that

‖x(t)‖ ≤ γ1(T
′)‖x[klT ]‖+ γ̄1(T

′)‖w‖∞, t ∈ [klT, (kl + 1)T ], l ∈ N.

Proof:

Let l ∈ N be arbitrary. Since the interval of interest contains a plant switch, we use
Proposition 3.1(ii) to bound the size of the sampler output: there exists a constant
γv(T

′) > 0 such that

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖x[klT ]‖+ γv(T
′)‖w‖∞

so, by definition of ν and using (3.31) to bound ‖Ĥ‖∞, we have

‖ν(t)‖ ≤
(
fγ0 + εH(T ′)

)
×
(
ρ(T ′)‖x[klT ]‖+ γv(T

′)‖w‖∞
)
,

t ∈ [klT, (kl + 1)T ). (3.34)

The plant switch causes a discontinuity in the plant parameters, so we must be
careful when solving for x in this period. To that end, we split the period into two
parts: before the switch [klT, tl], and after the switch [tl, (kl + 1)T ].
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We start by investigating the first interval. Solving (3.5) yields

x(t) = eÂil
(t−klT )x[klT ] +

∫ t

klT

eÂil
(t−τ) [Bilν(τ) + Lilw(τ)] dτ, t ∈ [klT, tl+1],

so

‖x(t)‖ ≤ ea(t−klT )‖x[klT‖+
(

≤ea(t−klT )

︷ ︸︸ ︷

ea(t−klT ) − 1)

a

(

b max
t∈[tl,tl+1)

‖ν(τ)‖+ ℓ‖w‖∞
)

,

t ∈ [klT, tl+1].

We can then use (3.34) to find

‖x(t)‖ ≤ eaT‖x[klT ]‖+
eaT

a
b
(
fγ0 + εH(T ′)

)(
ρ(T ′)‖x[klT ]‖+ γv(T

′)‖w‖∞
)

+

eaT ℓ

a
‖w‖∞

= eaT

[

1 +
b
(
fγ0 + εH(T ′)

)
ρ(T ′)

a

]

︸ ︷︷ ︸

=:α1(T ′)

‖x[klT ]‖+

eaT

a

[
b
(
fγ0 + εH(T ′)

)
γv(T

′) + ℓ
]

︸ ︷︷ ︸

=:α2(T ′)

‖w‖∞, t ∈ [klT, tl]. (3.35)

Similarly, in the second interval [tl, (kl + 1)T ) we find

‖x(t)‖ ≤ eaT‖x(tl)‖+
eaT

a
b
(
fγ0 + εH(T ′)

)
ρ(T ′)‖x[klT ]‖+ α2(T

′)‖w‖∞,
t ∈ [tl, (kl + 1)T ],

In the case where klT = tl this provides

‖x(t)‖ ≤ α1(T
′)‖x[klT ]‖+ α2(T

′)‖w‖∞, t ∈ [klT, (kl + 1)T ]. (3.36)

otherwise, we use (3.35) to find

‖x(t)‖ ≤ eaT (α1(T
′)‖x[klT ]‖+ α2(T

′)‖w‖∞) +

eaT

a
b
(
fγ0 + εH(T ′)

)
ρ(T ′)‖x[klT ]‖+ α2(T

′)‖w‖∞

= eaT

(

α1(T
′) +

b
(
fγ0 + εH(T ′)

)
ρ(T ′)

a

)

︸ ︷︷ ︸

=:γ1(T ′)

‖x[klT ]‖+

α2(T
′)
(
eaT + 1

)

︸ ︷︷ ︸

=:γ̄1(T ′)

‖w‖∞, t ∈ [klT, tl]. (3.37)
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Since it is clear that
γ1(T

′) ≥ α1(T
′)

and
γ̄1(T

′) ≥ α2(T
′),

we can combine (3.37) with (3.36) and (3.35) to find a bound on the entire interval:

‖x(t)‖ ≤ γ1(T
′)‖x[klT ]‖+ γ̄1(T

′)‖w‖∞, t ∈ [klT, (kl + 1)T ].

We now turn to intervals where there is no switch: [(kl +1)T, kl+1T ). Note that
we have only one degenerate case: it may be that t1 < 2T , so p1T ≤ 1, in which
case the interval [(p0 + 1)T, p1T ] = [T, p1T ] contains only the point T .

Claim 2: There exists γ2(T
′) > 0 and γ̄2(T

′) > 0 such that, for all l ∈ N we have

‖x(t)‖ ≤ eλ0(t−(kl+1)T )γ2(T
′)‖x[klT ]‖+ γ̄2(T

′)‖w‖∞, t ∈ [(kl + 1)T, kl+1T ].

Proof:

Let l ∈ N be arbitrary. To reduce notational clutter we write

[kT, k̄T ) := [(kl + 1)T, kl+1T )

and write i instead of il (so the plant is Pi over the interval). We begin by solving
(3.30):

x[kT ] = eĀi(k−k)Tx[kT ] +
k−1∑

j=k

eĀi(k−1−j)T θi(wj, x[jT ]), k ≤ k ≤ k̄ − 1;

so

‖x[kT ]‖ ≤ γ0e
λ0(k−k)T‖x[kT ]‖+

∞∑

j=0

γ0e
λ0jTγθ(T

′)‖w‖∞

≤ γ0e
λ0(k−k)T‖x[kT ]‖+

γ0γθ(T
′)

1− eλ0T
‖w‖∞. (3.38)

Next, we solve (3.29):

x(t) = eÂi(t−kT )x[kT ] +

∫ t

kT

eÂi(t−τ)
[

BiĤi(t)x[kT ] + φi(wk, x[kT ])
]

dτ,

t ∈ [kT, (k + 1)T ], k = k, .., k̄ − 1,

so

‖x(t)‖ ≤ eaT‖x[kT ]‖+
eaT

a

[
b
(
fγ0 + εH(T ′)

)
‖x[kT ]‖+ γφ(T

′)‖w‖∞
]

= eaT

(

1 +
b
(
fγ0 + εH(T ′)

)

a

)

‖x[kT ]‖+
eaT

a
γφ(T

′)‖w‖∞,

t ∈ [kT, (k + 1)T ], k = k, .., k̄ − 1.
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Combined with (3.38), this yields

‖x(t)‖ ≤ eaT

(

1 +
b
(
fγ0 + εH(T ′)

)

a

)(

γ0e
λ0(k−k)T‖x[kT ]‖+

γ0γθ(T
′)

1− eλ0T
‖w‖∞

)

+
eaT

a
γφ(T

′)‖w‖∞

= eλ0(k−k)T γ0e
aT

(

1 +
b
(
fγ0 + εH(T ′)

)

a

)

︸ ︷︷ ︸

=:α3(T ′)

‖x[kT ]‖+

eaT

[(

1 +
b
(
fγ0 + εH(T ′)

)

a

)

γ0γθ(T
′)

1− eλ0T
+
γφ(T

′)

a

]

︸ ︷︷ ︸

=:α4(T ′)

‖w‖∞,

t ∈ [kT, (k + 1)T ], k = k, .., k̄ − 1.

We now turn to Claim 1, which says that, in particular,

‖x[kT ]‖ ≤ γ1(T
′)‖x[klT ]‖+ γ̄1(T

′)‖w‖∞,

so we have

‖x(t)‖ ≤ eλ0(k−k)Tα3(T
′)‖x[kT ]‖+ α4(T

′)‖w‖∞
≤ eλ0(k−k)Tα3(T

′) (γ1(T
′)‖x[klT ]‖+ γ̄1(T

′)‖w‖∞) + α4(T
′)‖w‖∞,

t ∈ [kT, (k + 1)T ], k = k, .., k̄ − 1;

it follows that

‖x(t)‖ ≤ eλ0(t−k)T e−λ0Tα3(T
′)γ1(T

′)
︸ ︷︷ ︸

=:γ2(T ′)

‖x[klT ]‖+

[α3(T
′)γ̄1(T

′) + α4(T
′)]

︸ ︷︷ ︸

=:γ̄2(T ′)

‖w‖∞, t ∈ [kT, k̄T ].

We now assemble our results to find a bound over the entire interval [0,∞). To
do so, notice that, in particular, Claim 2 says that

‖x[kl+1T ]‖ ≤ eλ0(kl+1−(kl+1))Tγ2(T
′)‖x[klT ]‖+ γ̄2(T

′)‖w‖∞, l ∈ N

so, since
tl+1 − tl ≥ Ts, l ∈ N,

we have that

‖x[kl+1T ] ≤ eλ0(Ts−2T )γ2(T
′)‖x[klT ]‖+ γ̄2(T

′)‖w‖∞, l ∈ N.
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If
eλ0(Ts−2T )γ2(T

′) < 1 (3.39)

then it follows immediately that

‖x[klT ]‖ ≤
(
eλ0(Ts−2T )γ2(T

′)
)(l−1)

︸ ︷︷ ︸

≤1

‖x[k1T ]‖+
γ2(T

′)

1− eλ0(Ts−2T )
‖w‖∞, l ∈ N,

which combines with (3.33) to yield

‖x[klT ]‖ ≤
(
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖x0‖+

[

γ̄(T ′) +
γ2(T

′)

1− eλ0(Ts−2T )
γ̄2(T

′)

]

︸ ︷︷ ︸

=:γ̄3(T ′)

‖w‖∞, l ∈ N. (3.40)

It will turn out that our hypothesis ensures that (3.39) holds (for sufficiently small
T ′); to maintain the flow of the proof, we defer showing this until the end. In the
meantime, we assume that (3.39) holds (and restrict T ′ accordingly) and proceed.
From Claims 1 and 2 we have that

‖x(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
}
‖x[klT ]‖+ max

{
γ̄1(T

′), γ̄2(T
′)
}
‖w‖∞,

t ∈ [klT, kl+1T ], l ∈ N;

if we combine this with (3.40), then it follows immediately that

‖x(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖x0‖+

(
max

{
γ1(T

′), γ2(T
′)
}
× γ̄3(T

′) + max
{
γ̄1(T

′), γ̄2(T
′)
})

︸ ︷︷ ︸

=:γ̄4(T ′)

‖w‖∞,

t ∈ [klT, kl+1T ], l ∈ N, (3.41)

which we will use in conjunction with (3.33) to prove our stability results.

(Asymptotic Stability)

If we set w = 0 and let x0 ∈ Rn remain arbitrary, then by (3.33) we have

‖x(t)‖ ≤ α0(T
′)γ0‖x0‖, t ∈ [0, k1T ],

and by (3.41) we have

‖x(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖x0‖,

t ∈ [klT, kl+1T ], l ∈ N.

Clearly, for each admissible T ′, using (3.39) yields the desired bound

‖x(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
}
α0(T

′)γ0‖x0‖, t ≥ 0, l ∈ N;

40



furthermore, we also have

lim
t→∞
‖x(t)‖ ≤ lim

l→∞

(

max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0

)

,

so, again using (3.39), it follows that

lim
t→∞
‖x(t)‖ = 0.

As in the proof of Theorem 3.1, since S is periodic and admissible and (with the
noise turned off) e = Cix, these clearly yield both the desired bounds on v1 and v2

and the limit
lim
k→∞
‖v1[k]‖ = 0, and lim

k→∞
‖v2[k]‖ = 0.

(I/O Stability)

Set x0 = 0 and let w ∈ PC∞ be arbitrary. Observe that, for each T, T ′ pair, ‖Ĥ‖∞
is well defined, so, as in the proof of Theorem 3.1, from the structure of C(T, T ′),
the definitions of e and y, and since S is admissible, it is enough to find a bound
on ‖x‖∞ in terms of ‖w‖∞. From (3.41), we have

‖x(t)‖ ≤ γ̄4(T
′)‖w‖∞, t ≥ k1T,

so using (3.33) to provide a bound on ‖x(t)‖ over the interval [0, k1T ] yields

‖x‖∞ ≤ max
{
γ̄0(T

′), γ̄4(T
′)
}
‖w‖∞.

It remains to show that our hypothesis ensures that (3.39) holds for small T ′.
We begin by using the explicit formula for γ2(T

′) derived in this proof:

γ2(T
′) = e−λ0Tα3(T

′)γ1(T
′),

with

α3(T
′) = γ0e

aT

(

1 +
b(fγ0 + εH(T ′))

a

)

,

γ1(T
′) = eaT

(

α1(T
′) +

b(fγ0 + εH(T ′))ρ(T ′)

a

)

,

and

α1(T
′) = eaT

(

1 +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

;

back-substituting we find

γ2(T
′) = e−λ0Tγ0e

2aT

(

1 +
b(fγ0 + εH(T ′))

a

)

×
[

eaT

(

1 +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

+
b(fγ0 + εH(T ′))ρ(T ′)

a

]

≤ e−λ0Tγ0e
3aT

(

1 +
b(fγ0 + εH(T ′))

a

)(

1 +
2b(fγ0 + εH(T ′))ρ(T ′)

a

)

.
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But
lim
T ′→0

ρ(T ′) = 1

and, from Lemma 3.1,
lim
T ′→0

εH(T ′) = 0

so

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) ≤ eλ0(Ts−2T )e−λ0Tγ0e

3aTγ0

(

1 +
bfγ0

a

)(

1 +
2bfγ0

a

)

≤ eλ0Tse3(a−λ0)Tγ0

(

1 +
2bfγ0

a

)2

.

To simplify this expression, we will use the hypothesis that Ts > Ts and T < T̄ (Ts);
it follows directly from this and the definition of T̄ (Ts) that

T < |λ0|
3(a−λ0)

(Ts − Ts)

⇒ 3(a− λ0)T < |λ0|(Ts − Ts)

⇒ e3(a−λ0)T < e|λ0|(Ts−Ts)

= eλ0(Ts−Ts),

so

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) < eλ0Tsγ0

(

1 +
2bfγ0

a

)2

.

If we now apply the definition of Ts, then we find that

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) < 1,

and therefore, for sufficiently small T ′ we have that

eλ0(Ts−2T )γ2(T
′) < 1.

Remark 3.6 We indicated earlier that Ts is a loose bound; indeed, it is easy to
argue that a more reasonable (and much tighter) requirement is

Ts >
ln(γ0)

|λ0|
.

For such a Ts, we claim (without proof) that the controller C(T, T ′) will stabilize the
set PTs

8; unfortunately, the only way that we have found to prove stability for such
a bound involves forcing T to be small, which is undesirable. On the other hand,
using the bound Ts allows for the derivation of the bound T̄ (Ts) which has the nice
property that T̄ (Ts)→∞ as Ts →∞, which is consistent with Theorem 3.1.

8Indeed, this is the bound that we will use in the (more general) context of a compact set of
plants (Chapter 5).
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3.4 Performance

Here we investigate the performance of the proposed controller; as such, we set the
noise to zero throughout the remainder of this section. We will consider two cases:
performance with no plant switches, and performance in the face of plant switches.

We begin with the first case: the plant is unknown, but lies in the finite set of
LTI plants P ; to that end, we fix the plant index, say at i. For the plant Pi, the
corresponding LQR-optimal signals are

x0(t) := eĀitx0, t ≥ 0, (3.42)

ν0(t) := Fie
Āitx0, t ≥ 0, (3.43)

and
e0(t) := Cix

0(t), t ≥ 0,

so the optimal LQR cost is

J0
i (x0) :=

∫ ∞

0

(x0(t))′Q̄ix
0(t) + (ν0(t) +Ke0(t))′Ri(ν

0(t) +Ke0(t))
︸ ︷︷ ︸

=:Mi(x0(t),ν0(t),e0(t))

dt

and the actual cost is

Ji(x0) :=

∫ ∞

0

Mi(x(t), ν(t), e(t))dt.

Observe that, since there is no noise and there are no plant switches, both samplers
will always produce the same result, so the closed loop system is linear time varying
(LTV). We will show that, by making T ′ small, the difference between Ji and J0

i

can be made as small as desired for every plant Pi.

Theorem 3.3 For every ε > 0 and T > 0, if T ′ is sufficiently small, then the
controller C(T, T ′) stabilizes P and, when C(T, T ′) is attached to Pi ∈ P, we
have that

|Ji(x0)− J0
i (x0)| ≤

∫ ∞

0

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ ε‖x0‖2, x0 ∈ Rn+r.

Proof:

Fix ε > 0, T > 0, and w = 0. Let x0 ∈ Rn and i = 1, .., q be arbitrary. Stability
follows directly from Theorem 3.1. With εH given by (3.23), from Lemma 3.1 we
have that

‖H̃i(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T ), i = 1, .., q.
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Since T is fixed, we drop it and write εH(T ′); furthermore, Lemma 3.1 also says
that

lim
T ′→0

εH(T ′, T ) = 0,

so there exists a constant T̄ ′
1 ∈ (0, T/2) so that

εH(T ′) < 1, T ′ ∈ (0, T̄ ′
1),

so henceforth we let T ′ ∈ (0, T̄ ′
1) be arbitrary. From Corollary 3.1 we have that

ẋ(t) = Âix(t) +BiĤi(t)x[kT ], t ∈ [kT, (k + 1)T ) (3.44)

and
x[(k + 1)T ] = eĀiTx[kT ]. (3.45)

We define
x̃ := x− x0

and
ν̃ := ν − ν0,

so from (3.45) we have that

x̃[kT ] = 0, k ∈ Z+. (3.46)

We will investigate the cost function over one period T , and then extend the
result to the entire time range. It follows immediately from the definitions of Ji

and J0
i that

∣
∣Ji(x0)− J0

i (x0)
∣
∣

≤
∫ ∞

0

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

=
∞∑

k=0

(
∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

)

.(3.47)

We now find a relationship between the actual and optimal cost functions over a
single period T . With

γlqr := 2 max
i=1,..,q

{
max{‖Q̄i + C ′

iK
′RiKCi‖, ‖Ri‖, ‖RiKCi‖}

}
(3.48)

it is straight-forward to check that

∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt ≤

γlqr

∫ (k+1)T

kT

[

‖x0(t)‖‖x̃(t)‖+ ‖x̃(t)‖2 + ‖ν0(t)‖‖ν̃(t)‖+ ‖ν̃(t)‖2 +

‖ν̃(t)‖‖x̃(t)‖+ ‖ν0(t)‖‖x̃(t)‖+ ‖ν̃(t)‖‖x0(t)‖
]

dt,

k ∈ Z+. (3.49)
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We now use the definitions of x0 and ν0 given in (3.42) and (3.43) respectively, then
apply (3.9) and simplify, to find

∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

∫ (k+1)T

kT

[

‖eĀi(t−kT )‖ × ‖x[kT ]‖
(
‖x̃(t)‖+ ‖ν̃(t)‖

)
+

‖Fie
Āi(t−kT )‖ × ‖x[kT ]‖

(
‖x̃(t)‖+ ‖ν̃(t)‖

)
+

‖ν̃(t)‖2 + ‖x̃(t)‖2 + ‖ν̃(t)‖‖x̃(t)‖
]

dt

≤ γlqr

∫ (k+1)T

kT

[

γ0(1 + f)‖x[kT ]‖
(
‖x̃(t)‖+ ‖ν̃(t)‖

)
+

‖ν̃(t)‖2 + ‖x̃(t)‖2 + ‖ν̃(t)‖‖x̃(t)‖
]

dt,

k ∈ Z+. (3.50)

The upshot of this is that, if we can bound
∫ (k+1)T

kT
‖ν̃(t)‖dt,

∫ (k+1)T

kT
‖ν̃(t)‖2dt, and

‖x̃(t)‖ by a suitably scaled version of ‖x[kT ]‖, then we can leverage (3.45) to obtain

the desired result. We begin with
∫ (k+1)T

kT
‖ν̃(t)‖dt and

∫ (k+1)T

kT
‖ν̃(t)‖2dt:

Claim 1: There exists a constant γ1 > 0 satisfying

∫ (k+1)T

kT

‖ν̃(t)‖dt ≤ γ1(T
′ + εH(T ′))‖x[kT ]‖, k ∈ Z+,

and ∫ (k+1)T

kT

‖ν̃(t)‖2dt ≤ γ1(T
′ + εH(T ′))‖x[kT ]‖2, k ∈ Z+.

Proof:

By definition and (3.46) we have that

∫ (k+1)T

kT

‖ν̃(t)‖dt =

∫ (k+1)T

kT

‖ν(t)− ν0(t)‖dt

=

∫ T

0

‖(Ĥi(t)−Hi(t))x[kT ]‖dt

=

∫ 2T ′

0

‖ −Hi(t)x[kT ]‖dt+

∫ T

2T ′

‖H̃i(t)x[kT ]‖dt

so

∫ (k+1)T

kT

‖ν̃(t)‖dt ≤
[
∫ 2T ′

0

fγ0 dt+

∫ T

2T ′

εH(T ′)dt

]

‖x[kT ]‖

≤ [2fγ0T
′ + εH(T ′)T ] ‖x[kT ]‖, k ∈ Z+.
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Similarly,

∫ (k+1)T

kT

‖ν̃(t)‖2dt ≤






∫ 2T ′

0

(fγ0)
2dt+

∫ T

2T ′

εH(T ′)2

︸ ︷︷ ︸

<εH(T ′)

dt




 ‖x[kT ]‖2

≤
[
2(fγ0)

2T ′ + εH(T ′)T
]
‖x[kT ]‖2.

Set γ1 := max{2fγ0, 2(fγ0)
2, T} to obtain the desired result.

Now we turn to ‖x̃(t)‖:

Claim 2: There exists a constant γ2 > 0 satisfying

‖x̃(t)‖ ≤ γ2(T
′ + εH(T ′))‖x[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.

Proof:

Using the definitions of Āi, x
0, and ν0 combined with (3.44) we obtain

˙̃x(t) = Âix̃(t) +Biν̃(t), t ≥ 0.

Solving this and using (3.46), we find that

x̃(t) =

∫ t

kT

eÂi(t−τ)Biν̃(t)dτ, t ∈ [kT, (k + 1)T ), k ∈ Z+

so

‖x̃(t)‖ ≤
∫ t

kT

‖eÂi(t−τ)Bi‖‖ν̃(t)‖dτ

≤ beaT

∫ (k+1)T

kT

‖ν̃(t)‖dτ,

to which we apply Claim 1, to obtain

‖x̃(t)‖ ≤ beaTγ1
︸ ︷︷ ︸

=:γ2

(T ′ + εH(T ′))‖x[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.

Now we return to (3.50), to which we apply Claims 1 and 2 to yield
∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

{

γ0(1 + f)‖x[kT ]‖
[
Tγ2(T

′ + εH(T ′))‖x[kT ]‖+ γ1(T
′ + εH(T ′))‖x[kT ]‖

]

+γ1(T
′ + εH(T ′))‖x[kT ]‖2 + Tγ2

2(T
′ + εH(T ′))2‖x[kT ]‖2 +

γ1(T
′ + εH(T ′))‖x[kT ]‖γ2(T

′ + εH(T ′))‖x[kT ]‖
}

= γlqr

{

γ0(1 + f)
[
Tγ2 + γ1

]
+ γ1 + Tγ2

2(T
′ + εH(T ′)) + γ1γ2(T

′ + εH(T ′))
}

×
(T ′ + εH(T ′))‖x[kT ]‖2, k ∈ Z+.
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Observe that

(T ′ + εH(T ′)) ≤ T

2
+ 1,

so this reduces to

∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

{[
γ0(1 + f) + γ2(T/2 + 1)

][
Tγ2 + γ1

]
+ γ1

}

︸ ︷︷ ︸

=:γ3

(T ′ + εH(T ′))‖x[kT ]‖2,

k ∈ Z+.

We can now combine this with the solution to (3.45) to yield

∞∑

k=0

∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt ≤

γ3(T
′ + εH(T ′))

∞∑

k=0

‖eĀikTx0‖2

and then use (3.9) to obtain

∞∑

k=0

∫ (k+1)T

kT

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γ3(T
′ + εH(T ′))

∞∑

k=0

γ2
0e

2λ0kT‖x0‖2

= (T ′ + εH(T ′)) γ3γ
2
0(1− e2λ0T )−1

︸ ︷︷ ︸

=:γ4

‖x0‖2.

Finally, using Lemma 3.1, we have

lim
T ′→0

(T ′ + εH(T ′))γ4 = 0,

so, for every sufficiently small T ′, with (3.47), we obtain

∣
∣Ji(x0)− J0

i (x0)
∣
∣ ≤

∫ ∞

0

∥
∥Mi(x(t), ν(t), e(t))−Mi(x

0(t), ν0(t), e0(t))
∥
∥ dt

≤ ε‖x0‖2.

We now consider the performance when the plant is allowed to switch. Unfor-
tunately, even though we set the noise to zero as in the previous section, if a switch
occurs during the Estimation Phase, then the output of the samplers will typically
be different, so the nonlinearity will directly affect the analysis.
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To proceed, we must first precisely define the performance goal. If σ ∈ ΣTs

was known in advance, then we could simply solve for the optimal control signal,
corresponding state trajectories, and corresponding optimal cost, and use these
quantities as our goal. However, this is unrealistic since σ is not known in advance
and we are evaluating a causal control law. Instead we select the nominal (possibly
not optimal) controller in the following way: for a given plant Pσ ∈ PTs

, we define
the nominal control signal on the interval [tl, tl+1) to be the one that corresponds to
the LTI optimal controller for the plant Pil . More precisely, if the plant is Pσ ∈ PTs

,
then the nominal control signal ν0, nominal state x0, and nominal error e0 are given
by

ν0(t) := File
Āil

(t−tl)x(tl), t ∈ [tl, tl+1), l ∈ N, (3.51)

x0(t) := eĀil
(t−tl)x(tl), t ∈ [tl, tl+1) l ∈ N, (3.52)

and
e0(t) := Cσ(t)x

0(t), t ≥ 0.

with a corresponding nominal cost of

J0
[tl,tl+1)(x(tl)) :=
∫ tl+1

tl

[
(x0(t))′Q̄ilx

0(t) + (ν0(t) +Ke0(t))′Ril(ν
0(t) +Ke0(t))

]
dt, l ∈ N.

Note that this is exactly the optimal cost for the LTI plant Pil over the interval
[tl, tl+1). Similarly, our actual cost is

J[tl,tl+1)(x(tl)) :=

∫ tl+1

tl

[
x′(t)Q̄ilx(t) + (ν(t) +Ke(t))′Ril(ν(t) +Ke(t))

]
dt, l ∈ N.

If [t, t̄) ⊂ [tl, tl+1), then we define J[t,t̄)(ξ(tl), yref ) and J0
[t,t̄)(ξ(tl), yref ) in the natural

way.

The following result shows that, by making T and T ′ small, for every Pσ ∈ PTs

the performance can be made as close to the nominal one as desired.

Theorem 3.4 For every ε > 0 and Ts > Ts there exists a constant T̄1 ∈
(0, T̄ (Ts)) such that for every T ∈ (0, T̄1), if T ′ is sufficiently small, then the
controller C(T, T ′) stabilizes PTs

and, for every σ ∈ ΣTs
, attaching the controller

C(T, T ′) to the plant Pσ yields

∣
∣
∣J0

[tl,tl+1)(x(tl))− J[tl,tl+1)(x(tl))
∣
∣
∣ ≤ ε‖x(tl)‖2, l ∈ N, x0 ∈ Rn.

Proof: Stability follows directly from Theorem 3.2. The proof of performance is
complicated and is provided in Appendix A.
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3.5 An Example

To illustrate the proposed design and some of the closed loop system properties we
will discuss the following example problem: we allow the plant to switch between
the two LTI plants

P1 :

{
ẋ(t) = x(t) + u(t)
y(t) = x(t)

and

P2 :

{
ẋ(t) = x(t) + u(t)
y(t) = −x(t),

which are not simultaneously stabilizable using an LTI controller. Observe that
n = 1. We discuss this problem in two different settings: in the first, we concentrate
on performance and ignore noise, while in the second we investigate the response
of the system when noise is present.

Notice that the eigenvalues are not disjoint, so our controller design begins with
the selection of the regularization gain

K = 2,

which results in the state-space representations

Â1 = 3 and Â2 = −1;

there is no change to Bi and Ci:

B1 = B2 = 1, C1 = 1, and C2 = −1.

We select the LQR variables

Qi = Ri = 1, i = 1, 2;

using the cost function (3.8) yields the optimal gains

F1 = −4.414 and F2 = 0.4149.

For this problem, we can calculate Ts = 1.94s; to illustrate that this bound is loose,
we will switch plants every 0.5 seconds10.

The hold is explicitly defined via (3.21) and (3.22), but we must still design our
sampler function S. To do so we need some additional definitions. We choose an
additional parameter j ∈ Z+ satisfying

j ≥ 2n = 2

9These are the gains for the optimal control signal ν = Fix; to find the gains for u = F̄ix

simply set F̄i = Fi + KCi.
10Observe that, as discussed in Remark 3.6 since these plants are first order, we have that

γ0 = 1, so we expect that the tight lower bound on Ts is actually zero.
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and then set

h :=
T ′

j
;

then we define

Oj(C, e
Âh) :=








C

C̃eÂh

...

CeÂ(j−1)h







.

Since j ≥ 2n = 2 and (Â, C) is assumed to be observable, by [7], for sufficiently

small h, the matrix Oj(C, e
Âh) has full column rank. If we define

[
S̄0 S̄1 . . . S̄j−1

]
:=
(

Oj(C, e
Âh)′Oj(C, e

Âh)
)−1

Oj(C, e
Âh)′

and let S(t) (on [0, T )) be a weighted sum of j impulses given by

S(t) =

j−1
∑

k=0

S̄kδ(t− kh),

then it follows that
∫ T ′

0

S(t)e(t)dt =

j−1
∑

k=0

S̄ke(kh); (3.53)

it is routine to check that the sampler (3.53) satisfies the desired properties. Observe
that the generalized sampler can be implemented using a weighted sum of j samples
of e, spaced h time units apart. For this reason, we refer to h as the sample time.

We will present two controllers which use different choices of T ′ and j, so to
conserve space, we provide only one set of example calculations. Here, we select
the period, Estimation Phase duration, and sampler parameter to be

T = 0.1s, 2T ′ = 0.02s, and j = 10,

respectively; with these choices the sample time is

h = 0.001s.

The corresponding sampler gains are

S̄[0] =

[
−13.39
−13.74

]

, . . . , S̄[9] =

[
13.51
13.66

]

.

Completing the controller design, we find that the generalized hold gains are

Ĥ1(t) = −4.414e−1.414t − 1.795e−3(t−0.04)

and
Ĥ2(t) = −0.414e−1.414t − 0.086e(t−0.04).

Together, S and H are two orders of magnitude smaller than the gains of [26].
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3.5.1 Performance

Here we turn the noise off and investigate the performance of the system. The
controller period is T = 0.1s and the sample time is h = 0.001s; we could use
a longer period, but then we would need to switch more slowly (since we need
2T < Ts) and our figures would be highly uninteresting. As stated above, the plant
switches every 0.5 seconds - the switch occurs in the middle of the first sample
during the Estimation Phase. We investigate two sampling durations, T ′ = 0.01s
and T ′ = 0.03s11, shown in Figure 3.3 and Figure 3.4 respectively; the time axis
indicates the locations where the plant switches. These results show that both
the state and control signals are close to the nominal ones; the jumps in u and
corresponding increases in the state correspond to the Estimation Phase, where
ν = 012. In the case where the Estimation Phase is shorter (i.e. T ′ = 0.01s) the
oscillations in u become smaller and both the control signal and the state get closer
to the nominal ones, as expected; given the scale of our figures, it is somewhat
difficult to see the improvement, so we include a zoomed figure of the state x with
the two cases overlaid (Figure 3.5).
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t −
 u

Figure 3.3: Example - solid is actual, dashed is nominal - T ′ = 0.01s.

11Observe that, in this second case, the Estimation Phase takes up more than half of the period.
12Recall that we have regularized the system, hence the input u is not zero there, instead it is

Ke.
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Figure 3.4: Example - solid is actual, dashed is nominal - T ′ = 0.03s.

3.5.2 Noise Rejection

Here we consider the same setup as above, but we add noise at the plant output and
set the initial conditions to zero. Since smaller T ′s lead to larger controller gains
(even thought we have not proven it) we expect our noise tolerance to improve
as T ′ gets larger (as opposed to performance, which improves as T ′ gets smaller).
Results are shown in Figures 3.6 and 3.7; in the state and input components of
these figures, the time axis indicates locations where plant switches occur. We see
that the state experiences significantly more of an adverse affect in the T ′ = 0.01s
case as compared to T ′ = 0.03s, supporting our hypothesis. Finally, in both cases
we see that the system does not go unstable in the presence of noise and is able to
recover the desired behaviour once noise is turned off (i.e. the state goes to zero).

Finally, for completeness, we combine these two cases: we consider T ′ = 0.01s
and set the initial condition on x back to 1 (as it was in the performance examples
above). The result is Figure 3.8; again, observe that the system does not go unstable
in the presence of noise and is able to recover the desired behaviour once noise is
turned off (i.e. the state goes to zero).
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Figure 3.5: Comparing the state x - zoomed in.

3.6 Summary and Concluding Remarks

In this chapter we consider the problem of simultaneous stabilization and LQR
optimal performance. The set of time-varying plants is modeled by allowing (suf-
ficiently slow but possibly persistent) switches between a finite number of LTI
models; we characterize the class of time varying plants by the quantity Ts, which
is the smallest admissible time between switches, and provide an easily computable
bound on how often a switch is allowed. For any sufficiently large Ts, we design
a periodic, mildly nonlinear controller to achieve the objective; it consists of two
parts: a generalized sampler which estimates the state at the beginning of each
period and a generalized hold which applies the desired control signal.

In comparison to earlier work on a related problem [26]13, here the controller’s
period can be large, so we expect to have relatively smaller controller gains and
relatively improved noise rejection. One drawback shared with [26] is that, the
closer to optimal that we require the performance to become, the larger the con-
troller gains will be and the poorer the noise behaviour becomes. Further work
is required to analyze and continue improving upon this tradeoff, although that is
beyond the scope of this thesis. It is clearly desirable to extend this result to the
more demanding objective of step tracking; the next chapter will focus on this.

13The major difference is that [26] only allows a finite number of plant switches.
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Figure 3.6: Example with noise - T ′ = 0.01s.
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Figure 3.7: Example with noise - T ′ = 0.03s.
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Figure 3.8: Example with noise and initial conditions - T ′ = 0.01s.
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Chapter 4

The Finite Tracking Problem

In this chapter the objective is to revisit the problem of our previous chapter with
the goal of providing the more demanding control objective of optimal step tracking.
At first glance one would think that step tracking is no harder than stabilization;
the main difficulty arises from having to achieve this in the face of plant parameter
changes: the augmented state is generally not continuous when the plant switches.
This leads to issues when incorporating noise in the plant model and involves the
addition of a mildly restrictive assumption that allows us to bound the size of the
discontinuity in the augmented state. This chapter’s controller design and analysis
will be very similar to that of the previous chapter; we point out any differences and
will try to minimize repetition. This work was first presented in [37]. In that paper,
we only proved I/O stability; for completeness, here we will also prove asymptotic
stability.

This chapter follows the same structure as Chapter 3; a brief outline is as
follows. In Section 4.1 we provide the problem definition and some mathematical
preliminaries, including definitions of LQR tracking, stability, and some tools for
handling noise. In Section 4.2 we present the RACE controller and analyze some
noise related properties of the controller over a single period. In Section 4.3 we
investigate closed loop stability, while in Section 4.4 we turn to the question of
performance. In Section 4.5 we revisit the example of Section 3.5 in the context
of step tracking, and we wrap up with a summary and concluding remarks in
Section 4.6. As before, we use the 2-norm to measure the size of a vector. Since
the proofs in this chapter are quite similar to those in the previous one (with
appropriate changes to deal with the discontinuity in the augmented plant state
discussed above), we relegate them all to Appendix B.

4.1 Problem Formulation

We would like to extend the controller of Chapter 3 to provide LQR step tracking
in the face of (possibly persistent) switching between LTI plants. To that end, we
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retain the notation for the LTI plant Pi given by (3.1), the sets P and ΣTs
, and

the switching signal σ outlined in Section 3.1 as well as Assumptions 3.1 and 3.2;
recall that we can use σ ∈ ΣTs

to write down the state-space representation of the
time varying plant Pσ:

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t), x(0) = x0,
y(t) = Cσ(t) x(t).

Before we add noise to our model, it will be useful to present a preliminary
discussion regarding our performance goal. Indeed, this discussion will lead to an
augmented model for which the inclusion of noise is non-trivial. To begin, we let
yref ∈ Rr be the set-point to be tracked and define the tracking error by

e(t) := y(t)− yref .

There is more than one way to define optimal step tracking, we choose the following
approach. Motivated by the internal model principle [8], we augment the plant with
an integrator at the input, yielding a state-space representation of the augmented
plant Pi with u̇ as the input and e as the output:

[
ẍ(t)
ė(t)

]

=

[
Ai 0
Ci 0

]

︸ ︷︷ ︸

=:Âi

[
ẋ(t)
e(t)

]

︸ ︷︷ ︸

=:η(t)

+

[
Bi

0

]

︸ ︷︷ ︸

=:B̂i

u̇(t), (4.1)

η0 := η(0) =

[
Aix0 +Biu(0)
Cix0 − yref

]

∈ Rn+r

e(t) =
[

0 I
]

︸ ︷︷ ︸

=:Ĉi

η(t).

With this in hand, for each Pi ∈ P and with Qi > 0 and Ri > 0, we choose the
following natural cost criterion:

∫ ∞

0

[e(t)′Qie(t) + u̇(t)′Riu̇(t)]dt, (4.2)

which is in the standard form for the model (4.1). Recall that sufficient conditions
for the existence of a solution to this optimal control problem are that

(i) (Q
1/2
i Ĉi, Âi) be detectable and

(ii) (Âi, B̂i) be stabilizable.

To satisfy (i) observe that Assumption 3.1 implies that (Ĉi, Âi) is observable, which,

coupled with the fact that Qi > 0, means that (Q
1/2
i Ĉi, Âi) is observable as well.

Item (ii) is not automatic; since the objective is to track steps asymptotically, it is
natural to impose
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Assumption 4.1 For every i = 1, .., q, (Ai, Bi, Ci) has no transmission zeros at
zero and has at least as many inputs as outputs:

rank

[
Ai Bi

Ci 0

]

= n+ r.

Together, Assumptions 3.2 and 4.1 guarantee that (ii) holds, so we have satisfied
the two requirements.

Finally, recall that, in Chapter 3, for the controller design method to work, we
required that the A matrices have disjoint eigenvalues; if they did not, then we
introduced a regularizing output feedback to solve the problem. The final result of
that analysis was the model (3.4) and Assumption 3.3. Observe that here we will
never have disjoint eigenvalues since all of the augmented LTI plants share at least
the integrator poles at zero, so we again assume that the transfer functions

Ci(sI − Ai)
−1Bi, i = 1, .., q

are distinct and that (Ai, Bi) and (Aj, Bj) share uncontrollable modes only if j = i,
and then apply some regularizing output feedback, this time of the form

u̇ = Ke+ ν,

so (4.1) becomes

η̇(t) =

[
Ai BiK
Ci 0

]

︸ ︷︷ ︸

=:Ãi

η(t) +

[
Bi

0

]

︸ ︷︷ ︸

=:B̃i

ν(t),

e(t) =
[

0 I
]

︸ ︷︷ ︸

=:C̃

η(t).

(4.3)

As before, it follows from [5] that, for almost all K, the matrices {Ã1, ..., Ãq} will
enjoy the desired property; we replace Assumption 3.3 with

Assumption 4.2 {Ã1, ..., Ãq} have disjoint eigenvalues.

4.1.1 Noise

Observe that, if we incorporate noise into (4.3) then we will have ẇu and ẇy terms,
which are highly undesirable since the noise signals need not be differentiable; we
shall carry out a change of variables (in the general context of the time varying
plant Pσ) to avoid this problem. To proceed, first recognize that, for every σ ∈ ΣTs

58



and yref ∈ Rr, the state η satisfies

η(t) =

[
ẋ(t)
e(t)

]

=

[
Aσ(t) Bσ(t)

Cσ(t) 0

]

︸ ︷︷ ︸

=:Gσ(t)

[
x(t)
u(t)

]

+

[
Bσ(t) 0

0 I

]

︸ ︷︷ ︸

=:Lσ(t)

[
wu(t)
wy(t)

]

︸ ︷︷ ︸

=:w(t)

−
[

0
I

]

yref , t ≥ 0. (4.4)

Now define
ξ(t) := η(t)− Lσ(t)w(t), σ ∈ ΣTs

, t ≥ 0. (4.5)

We would like to write the differential equation for ξ, but we must be careful:
while x and u are clearly continuous, both ẋ and e typically jump when the plant
changes, which means that both η and ξ do as well. Since the set of switching times
are given by {tl : l ∈ N}, it is easy to verify that

ξ̇(t) = Ãσ(t)ξ(t) + B̃σ(t)ν(t) + Ãσ(t)Lσ(t)w(t),

e(t) = C̃ξ(t) + C̃Lσ(t)w(t), t /∈ {tl : l ∈ N}.

}

(4.6)

At the jump points we use (4.4) and (4.5) to describe the change in the state from
ξ(t−l ) to ξ(tl):

ξ(tl) = η(tl)− Lσ(tl)w(tl)

= Gσ(tl)

[
x(tl)
u(tl)

]

−
[

0
I

]

yref , l ∈ N;






(4.7)

we can also describe the change in the opposite direction:

ξ(t−l ) = η(t−l )− Lσ(t−
l

)w(t−l )

= Gσ(t−
l

)

[
x(tl)
u(tl)

]

−
[

0
I

]

yref , l ∈ N.






(4.8)

Finally, we provide the special case that defines the initial condition

ξ0 := ξ(0) = Gσ(0)

[
x0

u0

]

−
[

0
I

]

yref ;

recall that we insist that the plant parameters be continuous at t0 = 0, so we define

ξ(0−) := ξ0 and σ(0−) := σ(0).

Observe that, since both x and u are continuous, the jump in ξ comes directly from
the change in the plant parameters, encapsulated in Gσ. We would like to bound
the size of this jump, but it is not clear how to do this unless Gσ is square and
invertible, so we impose
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Assumption 4.3 The system has the same number of inputs as outputs: m = r.

Remark 4.1 If m > r then we can always regularize the system to make it square
without losing any observability/stabilizability properties, but at the cost of losing
optimality.

From Assumption 4.3 we have that Gσ is square, coupled with Assumption 4.1,
we find that Gσ is invertible. We can now state a technical result that provides a
bound on the size of the jump in the state ξ; to do so, it will be useful to define

ḡ := max
i,j=1,..,q

‖GiG
−1
j ‖ ≥ 1.

Lemma 4.1 With Ts > 0, Pσ ∈ PTs
, and l ∈ N we have

‖ξ(tl)‖ ≤ ḡ‖ξ(t−l )‖+ (ḡ + 1)‖yref‖,
∥
∥ξ(t−l )

∥
∥ ≤ ḡ‖ξ(tl)‖+ (ḡ + 1)‖yref‖.

4.1.2 Stability

We would like to define what we mean by closed loop stability, but first we need to
specify the closed-loop system of interest. The actual plant is Pσ and the controller
C consists of an integrator of the form

u̇ = Ke+ ν, u(0) = u0 (4.9)

together with an as yet unspecified term given in input-output form:

κ : PC∞ → PC∞
: e 7→ ν.

(4.10)

Together, these yield the closed loop system given in Figure 4.1 and lead naturally
to

Definition 4.1 With Ts > 0, x0 = 0, and u0 = 0, we say that the controller C I/O
stabilizes PTs

if, for every Pσ ∈ PTs
the map

(wu, wy, yref )→ (u, y, ν)

is well defined and has bounded gain.

60



ν u y

wu

wy

κ

K

e u̇

C

1
s−

yref
P

Figure 4.1: System Block Diagram

We will provide a definition of asymptotic stability once the structure of the com-
pensator κ has been established in more detail.

Remark 4.2 Let V denote the closed loop map

V : (wu, wy, yref )→ (u, y, ν).

To prove closed loop stability, it will be convenient to use the preliminary anal-
ysis culminating in (4.6)-(4.8); the problem is that this analysis proceeds on the
assumption that yref is a constant. Fortunately, it is clear from Figure 4.1 that

V (wu, wy, yref ) = V (wu, wy − yref , 0)

which means that, to prove stability, it is sufficient to prove that

(wu, wy, 0)→ (u, y, ν)

has bounded gain; i.e., we can set yref to zero in the analysis, which is what we will
do in the upcoming proofs of closed loop stability.

4.1.3 LQR Step Tracking Performance

We now turn the noise off (i.e. set w = 0) and, for each Pi ∈ P, rewrite the cost
function (4.2) using the new state ξ and the input ν:

Ji(ξ0) =

∫ ∞

0

ξ(t)′
[

0 0
0 Qi

]

︸ ︷︷ ︸

=:Q̄i

ξ(t) + (ν(t) +Ke(t))′Ri(ν(t) +Ke(t))dt.

Assuming that C stabilizes Pi, the LQR problem is to find, for each ξ0 ∈ Rn+r, the
control signal ν which minimizes this cost. As is well-known, the optimal controller
is state-feedback of the form

ν = Fiξ,
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which gives rise to an optimal cost of the form

Ji(ξ0) = ξT
0 Viξ0

with Vi a positive definite solution of an associated Riccati equation. The closed
loop matrix which arises from applying this state feedback is labeled

Āi := Ãi + B̃iFi.

As before, we defer defining a cost function and associated optimal controller
for plants that lie in PTs

until Section 4.4.

Our proofs often require uniform bounds on system parameters, so we define

a := max
i=1,..,q

‖Ãi‖,

b := max
i=1,..,q

‖B̃i‖,

f := max
i=1,..,q

‖Fi‖,

and
ℓ := max

i=1,..,q
‖Li‖;

note that ‖C̃‖ = 1. Finally, since Āi is Hurwitz by design, there exist constants
γ0 > 1 and λ0 < 0 such that

‖eĀit‖ ≤ γ0e
λ0t, i = 1, .., q, t ≥ 0. (4.11)

4.2 The Controller

In this section we design the compensator κ; it is periodic of period T . The design
of this compensator closely mirrors that of the previous chapter, so we provide only
the highlights. Recall that we would like to design the overall controller so that
both u and e are LQR optimal on each period, i.e., so that if the plant is Pi on
[kT, (k + 1)T ), then

ν(t) = Fiξ(t) = Fie
Āi(t−kT )

︸ ︷︷ ︸

=:Hi(t−kT )

ξ[kT ], t ∈ [kT, (k + 1)T ). (4.12)

As before, we do not use H directly; instead we use a suitably adjusted version of
H, which we label Ĥ. Furthermore, to reflect the fact that the control signal is
turned off during the Estimation Phase, we set

Ĥ(t) = 0, t ∈ [kT, kT + 2T ′).
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Although the details of the gains S and H have slight modifications, there is no
change to the structure of κ:

THE PROPOSED COMPENSATOR κ

With Ts > 0, T ∈ (0, Ts/2), T ′ ∈ (0, T/2), S, Ĥ periodic of period T , and
k ∈ Z+, we define the controller by

v1[k] :=

∫ kT+T ′

kT

S(t)e(t) dt, (4.13)

v2[k] :=

∫ kT+2T ′

kT+T ′

S(t)e(t) dt, (4.14)

ν(t) =

{
0 t ∈ [kT, kT + 2T ′)

Ĥ(t)argmin{‖v1[k]‖, ‖v2[k]‖} t ∈ [kT + 2T ′, (k + 1)T ).
(4.15)

Remark 4.3 Since the controller is nonlinear, there is no guarantee that the sys-
tem will be well posed; however, it is routine to prove that, for every choice of
yref ∈ L∞, σ ∈ ΣTs

, and w ∈ L∞, when (4.9) and κ are applied to the plant Pσ,
every x0 ∈ Rn and u0 ∈ Rm yields a unique solution.

As before, the nonlinearity will turn out to be very mild, we can rewrite (4.15)
more compactly as

ν(t) = Ĥ(t)argmin{‖v1[k]‖, ‖v2[k]‖} t ∈ [kT, (k + 1)T )

without worrying about causality issues, and the ‘initial condition’ vi[−1] is irrele-
vant.

This choice of κ together with (4.9) leads naturally to the following definition
of asymptotic stability:

Definition 4.2 With Ts > 0, w = 0, and yref = 0, we say that the controller C
asymptotically stabilizes PTs

if, for every Pσ ∈ PTs
we have that

(i) for every ε > 0 there exists a δ > 0 so that, if ‖x0‖ < ε and ‖u0‖ < ε, then

‖x(t)‖ < δ, ‖u(t)‖ < δ, t ≥ 0,

‖v1[k]‖ < δ, and ‖v2[k]‖ < δ, k ∈ Z+,

and
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(ii) for every x0 ∈ Rn and u0 ∈ Rm, we have

lim
t→∞
‖x(t)‖ = 0, lim

t→∞
‖u(t)‖ = 0,

lim
k→∞
‖v1[k]‖ = 0, and lim

k→∞
‖v2[k]‖ = 0.

.

Remark 4.4 As before, observe that (ii) is a global convergence condition, rather
than the typical local one. Furthermore, we will be able to prove a stronger condition
than (i), namely: there exists a constant γ > 0 so that for every x0 ∈ Rn we have

‖x(t)‖ ≤ γ(‖x0‖+ ‖u0‖), ‖u(t)‖ ≤ γ(‖x0‖+ ‖u0‖), t ≥ 0,

‖v1[k]‖ ≤ γ(‖x0‖+ ‖u0‖), and ‖v2[k]‖ ≤ γ(‖x0‖+ ‖u0‖), k ∈ Z+.

We now explain how to choose the sampler gain S and the hold gain H and
then investigate some system properties in the presence of noise.

4.2.1 Designing the Gains S and H

We begin with S. If the plant is Pi and there is no noise then we wish S to be
such that

v1[k] =

∫ kT+T ′

kT

S(t)e(t) dt = Eiξ[kT ] (4.16)

and

v2[k] =

∫ kT+2T ′

kT+T ′

S(t)e(t) dt = Eiξ[kT ]; (4.17)

observe that v1[k], v2[k] ∈ R(n+r)q. If we define the augmented matrices

Ã := diag{Ã1...Ãq} and C̄ :=
[

C̃ ... C̃
]
,

and require
∫ T ′

0

S(t)C̄eÃtdt = I (4.18)

and

S(t) =

{

e−ÃT ′

S(t− T ′), t ∈ [T ′, 2T ′)
0, t ∈ [2T ′, T ),

(4.19)

then (4.16) and (4.17) are satisfied for every admissible i. Assumptions 3.1 and 4.2
ensure that (C̄, Ã) is observable, so there is a whole family of periodic functions
which satisfy (4.18) and (4.19). As before, we restrict ourselves to only those gains
S that are admissible.
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We now turn to H. Observe that, with the controllability grammian defined by

Wi(t) :=

∫ t

0

e−Ãiτ B̃iB̃
′
ie

−Ã′
iτdτ,

if we define

H̃i(t) := B̃′
ie

−Ã′
i(t−2T ′)W−1

i (T − 2T ′)e−Ãi(T−2T ′)Ψi(T, T
′), t ∈ [2T ′, T ) (4.20)

then

Ĥ(t) =

{
0 t ∈ [0, 2T ′)
[

H1 + H̃1 H2 + H̃2 . . . Hq + H̃q

]
(t) t ∈ [2T ′, T ),

(4.21)

yields a hold with the desired characteristic that

ξ[(k + 1)T ] = eĀiT ξ[kT ]. (4.22)

Furthermore, if we define

εH(T, T ′) := 2b2fγ0e
aTT ′ max

i=1,..,q
‖W−1

i (T − 2T ′)‖, (4.23)

then we can easily prove the following:

Lemma 4.2 With Ts > 0, for every T ∈ (0, Ts/2):

(i) for every T ′ ∈ (0, T/2)

‖H̃i(t)‖ = ‖Ĥi(t)−Hi(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T ), i = 1, .., q,

(ii) and lim
T ′→0

εH(T, T ′) = 0.

Proof: This result follows directly from (4.20) and is left to the reader.

At this point, with Ts > 0, for each T ∈ (0, Ts/2) and T ′ ∈ (0, T/2), we choose
an admissible S that satisfies (4.18) and (4.19); to minimize clutter we do not write
it as an explicit function of T and T ′. We have also defined Ĥ by (4.20) and (4.21),
so κ as written in (4.13)-(4.15) is well defined, as is the controller C, which we
relabel C(T, T ′) to emphasize its dependence on T and T ′.

4.2.2 System Properties in the Presence of Noise

As before, over periods where there is no switch, the nonlinearity in the generalized
sampler can be moved to a nonlinearity on the noise w and, when there is a switch
in the period, we have a nice bound on the size of the sampler outputs and hence the
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control signal. Due to the inclusion of the reference signal yref and the discontinuity
in ξ, this result is more complicated than before.

We remind the reader of the notation

wk(t) := w(kT + t), t ∈ [kT, (k + 1)T )

and we define

ρ(T ′) := max
i,j=1,..,q

{

max
t∈[0,T ′)

‖e−ÃitGiG
−1
j eÃjt‖

}

and

ρy(T
′) := max

{

max
i,j=1,..,q

{

max
t∈[0,T ′)

‖e−Ãit(GiG
−1
j − I)‖

}

, ḡ + 1

}

;

notice that
lim
T ′→0

ρ(T ′) = ḡ and lim
T ′→0

ρy(T
′) = ḡ + 1.

With these in hand, we find the analogues to Proposition 3.1 and Corollary 3.1:

Proposition 4.1 With Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2), there exists a
constant γv(T, T

′) > 0, 2q linear functions of noise

φ1,i : L∞[0, T )→ Rn+r, i = 1, .., q

φ2,i : L∞[0, T )→ Rn+r, i = 1, .., q

that have bounded gain, and q selector functions

χi : L∞[0, T )×Rn+r → {0, 1}, i = 1, .., q

such that, for every σ ∈ ΣTs
and w ∈ L∞, when C(T, T ′) is attached to the plant

Pσ, we have that

(i) For every k ∈ {kl : l ∈ N}c, Pσ’s state-space representation (4.6) satisfies

ξ̇(t) = Ãσ(t)ξ(t) + B̃σ(t)Ĥσ(t)(t)ξ[kT ] +
[

B̃σ(t)Ĥ(t) Ãσ(t)Lσ(t)

]
×

[
χσ(t)(wk, ξ[kT ])φ1,σ(t)(wk) + [1− χσ(t)(wk, ξ[kT ])]φ2,σ(t)(wk)

w(t)

]

,

t ∈ [kT, (k + 1)T ), x0 ∈ Rn, u0 ∈ Rm, yref ∈ Rr.

(ii) The sampler outputs v1 and v2 satisfy

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖ξ[klT
−]‖+ ρy(T

′)‖yref‖+ γv(T, T
′)‖w‖∞,

l ∈ N, x0 ∈ Rn, u0 ∈ Rm, yref ∈ Rr.
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Corollary 4.1 With Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2), there exists a
set of 2q nonlinear functions

φi : L∞[0, T )×Rn+r → L∞[0, T ), i = 1, .., q

θi : L∞[0, T )×Rn+r → Rn+r, i = 1, .., q

which have bounded gain and are such that, for every σ ∈ ΣTs
, w ∈ L∞, and

k ∈ {kl : l ∈ N}c, if C(T, T ′) is attached to Pσ, then (4.6) satisfies

ξ̇(t) = Ãσ(t)ξ(t) + B̃σ(t)Ĥσ(t)(t)ξ[kT ] + φσ(t)(wk, ξ[kT ]), t ∈ [kT, (k + 1)T ),

and

ξ[(k + 1)T−] = eĀσ[kT ]T ξ[kT ] + θσ[kT ](wk, ξ[kT ]),

x0 ∈ Rn, u0 ∈ Rm, yref ∈ Rr.

Proof: The result follows directly from Proposition 4.1(i) and the properties of Ĥ
(most notably (4.22)) and is left to the reader.

4.3 Stability

As before, when there are no switches, we can prove stability for arbitrarily large
T , which is not possible when we have plant switches. We begin with the case
of no switching; the proof of this theorem is a simple extension of the proof of
Theorem 3.1.

Theorem 4.1 For every T > 0 and T ′ ∈ (0, T/2) the controller C(T, T ′) stabi-
lizes P.

We now turn to the case of (possibly persistent) plant switches; as before, these
plant switches introduce two main difficulties:

(i) It is well known that switching too quickly between stable LTI systems can
lead to instability.

(ii) In periods with a plant switch, the incorrect control will (likely) be applied.

Observe that (i) is exacerbated since plant switches cause an undesirable jump in
the state ξ, so our lower bound on Ts will be more complicated:

Ts :=
ln
{
ḡγ0

(
1 + bfγ0

a

) (
1 + bfγ0

a
(1 + ḡ)

)}

|λ0|
;
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we have the same upper bound on T :

T̄ (Ts) := min

{
Ts

2
,
|λ0|

3(a− λ0)

(
Ts − Ts

)
}

.

Theorem 4.2 For every Ts > Ts and T ∈ (0, T̄ (Ts)), if T ′ is sufficiently small
then C(T, T ′) stabilizes PTs

.

Remark 4.5 In this case, it is easy to argue that a tighter lower bound on Ts is in
fact

ln {ḡγ0}
|λ0|

;

again, we do not investigate this bound since to do so, we would need T to be small.

4.4 Step Tracking Performance

Here we investigate the step tracking performance of the proposed controller, so we
set the noise to zero. We consider the case of no plant switches and then the case
where we allow plant switches.

In the first case, the plant is unknown, but lies in the finite set of LTI plants P .
To that end, we fix the plant index, say at i; hence, for a given plant and integrator
initial conditions x0 ∈ Rn and u0 ∈ Rm, and a constant reference yref ∈ Rn, we
have a corresponding initial condition

ξ0 =

[
Aix0 +Biu0

Cix0 − yref

]

, (4.24)

which plays an important role in the upcoming discussion. Indeed, for the plant
Pi, the corresponding LQR-optimal signals are

ξ0(t) := eĀitξ0, t ≥ 0, (4.25)

ν0(t) := Fie
Āitξ0, t ≥ 0, (4.26)

and
e0(t) := Ciξ

0(t), t ≥ 0,

so the optimal LQR cost is

J0
i (ξ0) :=

∫ ∞

0

(ξ0(t))′Q̄iξ
0(t) + (ν0(t) +Ke0(t))′Ri(ν

0(t) +Ke0(t))
︸ ︷︷ ︸

=:Mi(ξ0(t),ν0(t),e0(t))

dt
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and the actual cost is

Ji(ξ0) :=

∫ ∞

0

Mi(ξ(t), ν(t), e(t))dt.

As in Chapter 3, here the closed loop system is LTV and, by making T ′ small, for
every plant Pi the difference between Ji and J0

i can be made as small as desired.

Theorem 4.3 For every ε > 0 and T > 0, if T ′ is sufficiently small then the
controller C(T, T ′) stabilizes P and, when C(T, T ′) is attached to Pi ∈ P, we
have that

|Ji(ξ0)− J0
i (ξ0)| ≤

∫ ∞

0

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ ε‖ξ0‖2, ξ0 ∈ Rn+r.

We now consider the step tracking performance when the plant is allowed to
switch. Recall from Chapter 3 that switches can cause the output of the samplers
to be different, so the nonlinearity will affect the analysis.

As in the Section 3.4, we define the nominal control signal in the following way:
if the plant is Pσ ∈ PTs

, then the nominal control signal ν0 is given by

ν0(t) := File
Āil

(t−tl)ξ(tl), t ∈ [tl, tl+1), l ∈ N; (4.27)

similarly, we define

ξ0(t) := eĀil
(t−tl)ξ(tl), t ∈ [tl, tl+1) l ∈ N (4.28)

and

e0(t) := C̃ξ0(t)

=
[

0 I
]
ξ0(t), t ≥ 0.

Since, in general, the state ξ(t) jumps at t = tl, the actual control signal on the
interval [tl, (kl + 1)T ) will (likely) be wrong - this error is related to ξ(tl) and to
yref , so for each σ ∈ ΣTs

and l ∈ Z+, our nominal cost (which is defined only over
the interval [tl, tl+1)) will be a function of both of these terms and can be expressed
via

J0
[tl,tl+1)(ξ(tl), yref ) :=

∫ tl+1

tl

[
(ξ0(t))′Q̄ilξ

0(t) + (ν0(t) +Ke0(t))′Ril(ν
0(t) +Ke0(t))

]
dt;

this is exactly the optimal cost for the LTI plant Pil over the interval [tl, tl+1).
Similarly, our actual cost is

J[tl,tl+1)(ξ(tl), yref ) :=

∫ tl+1

tl

[
ξ(t)′Q̄ilξ(t) + (ν(t) +Ke(t))′Ril(ν(t) +Ke(t))

]
dt.
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If [t, t̄) ⊂ [tl, tl+1), then we define J[t,t̄)(ξ(tl), yref ) and J0
[t,t̄)(ξ(tl), yref ) in the natural

way.

We now show that, by making T and T ′ small, for every Pσ ∈ PTs
the perfor-

mance can be made as close to the nominal one as desired.

Theorem 4.4 For every ε > 0 and Ts > Ts there exists a constant T̄1 ∈
(0, T̄ (Ts)) such that for every T ∈ (0, T̄1), if T ′ is sufficiently small, then the
controller C(T, T ′) stabilizes PTs

and, for every σ ∈ ΣTs
, attaching the controller

C(T, T ′) to the plant Pσ yields

∣
∣
∣J0

[tl,tl+1)(ξ(tl), yref )− J[tl,tl+1)(ξ(tl), yref )
∣
∣
∣ ≤ ε

[
‖ξ(tl)‖+ ‖yref‖

]2
, l ∈ N,

x0 ∈ Rn, u0 ∈ Rm, yref ∈ Rr.

4.5 An Example

We now revisit the example of Section 3.5:

P1 : (A1, B1, C1) = (1, 1, 1) and P2 : (A2, B2, C2) = (1, 1,−1).

Here, our controller design begins with the selection of the regularization gain

K = 1,

which results in the augmented state-space matrices

Ã1 =

[
1 1
1 0

]

, Ã2 =

[
1 1
−1 0

]

, B̃1 = B̃2 =

[
1
0

]

, and C̃ =
[

0 1
]
.

We select the LQR variables

Qi = Ri = 1, i = 1, 2,

which yield the optimal gains

F1 =
[
−2.7321 −2

]
and F2 =

[
−2.7321 0

]
.

We choose a reference signal of
yref = 1.

With this in hand, we can calculate Ts ≈ 7.2s; as in Chapter 3, to illustrate that
this is a loose bound, we will switch at a faster rate. Observe that the bound given
in Remark 4.5 yields ≈ 1.5s.
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The hold is explicitly defined via (4.20) and (4.21), but we must still design our
sampler function S; we will do so in the same way as in Section 3.5. To that end,
we choose an additional parameter j ∈ Z+ satisfying

j ≥ 2n = 2

and then set

h :=
T ′

j

and define

Oj(C̃, e
Ãh) :=








C̃

C̃eÃh

...

C̃eÃ(j−1)h







.

Since j ≥ 2n = 2 and (Ã, C̃) is assumed to be observable, by [7], for sufficiently

small h, the matrix Oj(C̃, e
Ãh) has full column rank. If we define the weights

[
S̄0 S̄1 . . . S̄j−1

]
:=
(

Oj(C̃, e
Ãh)′Oj(C̃, e

Ãh)
)−1

Oj(C̃, e
Ãh)′

and we let S(t) (on [0, T )) be a weighted sum of j impulses

∫ T ′

0

S(t)e(t)dt =

j−1
∑

k=0

S̄ke(kh); (4.29)

then it is routine to check that the sampler (4.29) satisfies the desired properties.

Again, we present only one set of example calculations. Here, we select the
period, Estimation Phase duration, and sampler parameter to be

T = 1s, 2T ′ = 0.4s, and j = 20,

respectively; with these choices the sample time is

h = 0.01s.

The corresponding sampler gains are

S̄[0] = 1000







−1.7950
0.2121
−1.7743
−0.2116






, . . . , S̄[19] = 1000







1.8122
−0.1493
1.8033
0.1492






.

Completing the controller design, we find that the generalized hold gains are

H̃1(t) = B̃′
1e

−Ã1(t−2T ′)

[
−13.1072 −9.0308
−34.2661 −23.6544

]
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and

H̃2(t) = B̃′
2e

−Ã2(t−2T ′)

[
−7.6305 −1.3209
30.5702 5.5256

]

,

which are many orders of magnitude smaller than those of [26] (the gains are not
explicitly stated in [26], they can be found in [27]). Observe that these gains are
much larger than those in Chapter 3, so we expect the noise rejection to degrade
accordingly; this is due to the inclusion of the integrator. A similar relationship is
found in the examples of [26].

4.5.1 Performance

Here we turn the noise off and investigate the performance of the system; since
they have minimal effect, we set the initial conditions x0 = u0 = 0. The controller
period is T = 1 and the sample time is h = 0.01. The plant switches every seven
seconds - the switch occurs in the middle of the first sample during the Estimation
Phase. We investigate two sampling durations, T ′ = 0.2 and T ′ = 0.1, shown
in Figure 4.2 and Figure 4.3 respectively. These results show that both the error
and control signal are close to the nominal ones; the dips in u correspond to the
Estimation Phase, where ν = 0. In the case where the Estimation Phase is shorter
(i.e. T ′ = 0.1) the oscillations in u become smaller and both the control and error
signals get closer to the nominal ones, as expected. The time axis indicates the
locations where the plant switches.

Observe that, as compared to Figures 3.3 and 3.4, here the control signal u is
very smooth - this is the effect of the integrator. If we were to look at the signal u̇
instead, then we would see a behaviour very similar to that of the control signal of
Chapter 3. Furthermore, observe that the system takes much longer to settle here;
this is a direct consequence of the phase lag introduced by the integrator.

To better illustrate the behavior during the Estimation and Control Phases,
Figure 4.4 shows a closeup view of the control signal from Figure 4.3 over a single
period wherein a plant switch occurs.

4.5.2 Noise Rejection

Here we consider the same setup as above, but set h = 0.0011, add noise at the
plant output, and set yref to zero. As in Chapter 3, we expect our noise tolerance
to improve as T ′ gets larger. Results are shown in Figures 4.6 and 4.5; in the error
and input components of these figures, the time axis indicates locations where plant
switches occur. We see that the system experiences significantly more of an adverse

1We use a smaller h since our simulation runs in MATLAB and is actually a discretized
approximation of the system which uses h as its sampling rate, including during the Control
Phase - the addition of noise means that we require a finer resolution for this approximation to
be accurate. This is also why we use a smaller noise signal as compared to Chapter 3.
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Figure 4.2: Example - solid is actual, dashed is nominal - T ′ = 0.2s.

affect in the T ′ = 0.01s case as compared to T ′ = 0.02s. Finally, in both cases we
see that the system does not go unstable in the presence of noise and is able to
recover the desired tracking behaviour once noise is turned off (i.e. the error goes
to zero).

Remark 4.6 Since the controller is essentially open loop during a single period,
although we have not explicitly shown it here, as the period T increases, we expect
the noise tolerance to decrease. Since T ′ is bounded above by T/2, forcing T to be
small also forces T ′ to be small. Hence, we expect a tradeoff in the size of the noise
gain between a small T and a large T ′.

Finally, for completeness, we combine these two cases with a twist: we set the
initial condition on x and u to one. We chose T ′ = 0.02s, h = 0.001s, and yref = 1.
The result is Figure 4.7; again, observe that the system does not go unstable in the
presence of noise and is able to recover the desired tracking behaviour once noise
is turned off (i.e. the error goes to zero).

4.6 Summary and Conclusions

In this chapter we extend the result of Chapter 3 to the more challenging problem of
step tracking. We follow a similar analysis to that of Chapter 3, with one important
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Figure 4.3: Example - solid is actual, dashed is nominal - T ′ = 0.1s.

difference: here the state ξ can jump at the switching times. This difference has
many ramifications; for example, we must bound the size of the jump and be sure
to include its effect in the lower bound Ts; we must also take care when writing
down and solving our system equations since the derivative of the state is not
well defined at times when the plant parameters switch. A second (and less far-
reaching) difference is that incorporating the noise signals in the augmented plant’s
state-space realization is non-trivial and requires a change of variables.

As with Chapter 3, in comparison to earlier work by Miller on a related (but
easier) problem [26], here the controller’s period can be large, so, as in Chapter 3
we expect to have relatively smaller controller gains and relatively improved noise
rejection; our example above indicates that this is indeed the case. Unfortunately,
the inclusion of the integrator to solve the tracking problem leads to much larger
gains than those of Chapter 3. One drawback shared with [26], and shown in our
simulations, is that there is a tradeoff between performance and noise tolerance.
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Figure 4.5: Example with noise - T ′ = 0.01s.
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Figure 4.6: Example with noise - T ′ = 0.02s.
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Figure 4.7: Example with noise, initial conditions, and yref = 1 - T ′ = 0.02s.
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Chapter 5

The Compact Stability Problem

We now turn away from the question of tracking and back to the original Chapter 3
problem of stability with LQR performance; here we seek to extend the result of
Chapter 3 to the case of a compact set of LTI plants. Since there may be an infinite
number of plants, we no longer turn the control signal off when performing our
estimation; a side effect of this is that our actual state will no longer match the
optimal one at the period endpoints. Since the analysis here is significantly more
complex, in this chapter we consider only the Single Input Single Output (SISO)
case, ignore noise, and consider stability only in the asymptotic sense; furthermore,
we do not explicitly analyze performance in the face of plant switches, although we
do provide an illustrative simulation. These results draw heavily on [25]; an early
version of this work was presented in the conference paper [39].

Before we proceed, we remind the reader of the contribution of this design.
Recall that the RACE controller in [25] provides simultaneous stability and near
optimal LQR performance for a compact set of LTI plants; however, it does not
directly address the issue of switching and the controller period is small. As in the
previous two chapters, we provide a redesign that provides stability in the face of
persistent plant switching and allows the controller period to be large. Although
we do not analyze performance in the face of plant switches, we expect that our
controller yields a similar result to that of the previous two chapters.

A brief outline of this chapter is as follows. In Section 5.1 we make the prob-
lem precise. In Section 5.2 we address the question of estimation. In Section 5.3
we leverage the results of Section 5.2 to design a RACE controller and present
some results that will be useful in proving the main theorems of this chapter. In
Section 5.4 we investigate the stability properties of this controller both with and
without plant switches, while in Section 5.5 we turn to the question of performance
when there are no switches. In Section 5.6 we present two illustrative examples
and we wrap up with a summary and concluding remarks in Section 5.7. In this
chapter, we use the 2-norm to measure the size of a vector.
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5.1 Problem Formulation

Here we will use transfer functions to define the set of LTI plants of interest. We
wish to consider a compact set of transfer functions that all have the same order
n; these transfer functions are of the form

P :
bn−1s

n−1 + bn−2s
n−2 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

, ai, bi ∈ R, i = 0, .., n− 1. (5.1)

We say that such a transfer function is minimal if the numerator and denominator
polynomials are coprime; furthermore, we say that a set of such transfer functions
is compact if the set composed of all of the corresponding coefficients















a0

a1
...

an−1







,








b0
b1
...

bn−1














∈ Rn ×Rn

is compact.

To define the set of admissible transfer functions, we fix n ∈ Z+ and define Γ to
be the set of all transfer functions of the form (5.1) that are minimal and of order
n. We then assume that the set of admissible LTI plants lies in a compact subset
of Γ, which we label P1.

We would like to evaluate performance in the LQR sense, so we will need a
state-space representation of P ∈ P. It will turn out that our analysis will be much
simpler if we adopt a state-space representation that is highly structured. To that
end, for each plant P ∈ P, we adopt the state-space representation corresponding
to the (minimal) observable canonical form:

ξ̇(t) =








1
. . .

1
−a0 · · · · · · −an−1








︸ ︷︷ ︸

=:AP

ξ(t) +








b0
b1
...

bn−1








︸ ︷︷ ︸

=:BP

u(t)

y(t) =
[

1 0 . . . 0
]

︸ ︷︷ ︸

=:C

ξ(t);







(5.2)

we associate this model with the triple (AP , BP , C). Observe that, since the repre-
sentation is assumed to be minimal, the pairs (C,AP ) and (AP , BP ) are automat-
ically controllable and observable, respectively. Furthermore, since P is compact,

1Clearly this includes the case of a finite number of plants similar to that in Chapter 3. While
the approach in this chapter will work for a finite number of plants, here, as opposed to previous
chapters, we will always require a short Estimation Phase, which leads to larger controller gains
and correspondingly poor noise tolerance.
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so is the associated set of observer canonical triples

P̃ := {(AP , BP , C) ∈ Rn×n ×Rn ×R1×n : P ∈ P}.

Recall that we wish to provide near optimal LQR performance for each possible
model in P . With R > 02, we consider the classical performance index

J(ξ0) :=

∫ ∞

0

[y2(t) +Ru2(t)] dt.

As is well-known, for each P ∈ P, the optimal controller for (AP , BP , C) is state-
feedback and of the form

u = FP ξ,

which gives rise to a cost of the form

JP (ξ0) = ξT
0 VP ξ0

with Vp the positive definite solution associated with a Riccati equation. The
associated closed loop system is

ξ̇ = (AP +BPFP )
︸ ︷︷ ︸

ĀP

ξ.

It is not straightforward to estimate such a feedback signal; however, it will turn
out that we can estimate nice functions of the first 2n Markov parameters

{CBP , CAPBP , ..., CA
2n−1
P BP}.

To that end, observe that BP is composed of the first n Markov parameters while C
is constant; we can prove that AP and FP are nice functions of the first 2n Markov
parameters:

Lemma 5.1 (Parametrization Lemma) [25] AP and FP are analytic functions
of the first 2n Markov parameters

{CBP , CAPBP , ..., CA
2n−1
P BP}

for all P ∈ Γ.

Remark 5.1 Since
ĀP = AP +BPFP ,

it follows immediately from this lemma that the function eĀP t is an analytic function
of t and the first 2n Markov parameters.

2Unlike previous chapters, here we use the same r for every plant.
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Observe that, since every transfer function in P is assumed to be minimal, for
every P, P̄ ∈ P, we have that

(AP , BP , C) = (AP̄ , BP̄ , C)⇔ P = P̄

and we can choose m ∈ {n, .., 2n} to ensure that







CBP

CAPBP
...

CAm−1
P BP








=








CBP̄

CAP̄BP̄
...

CAm−1
P̄

BP̄







⇔ (AP , BP , C) = (AP̄ , BP̄ , C).3

Therefore, the first m Markov parameters can be used to uniquely define each
plant; the converse is also true. We now fix m ∈ {n, .., 2n} to ensure that this
uniqueness property holds. Furthermore, we define

M :=














CBP

CAPBP
...

CAm−1
P BP








: P ∈ P







;

since P̃ is compact,M is compact as well.

Since our estimation method hinges on the Markov parameters, it will be more
convenient to analyze our plant in terms of p ∈M (instead of P ∈ P), so we relabel
the matrices AP , BP , FP , and ĀP by Ap, Bp, Fp, and Āp. Finally, if the transfer
function P ∈ P is associated with the Markov parameters p ∈M, then we label it
Pp.

Since the set of plants in not required to be finite, in this chapter we consider
a slightly different switching signal σ: instead of having σ specify an index, we
consider the (piecewise constant) switching signal

σ : R+ →M

which specifies the Markov Parameters of the time-varying input/output map Pσ

at every time t; as usual, we assume that σ is continuous from the right. With
Ts > 0, we define

ΣTs
:= {σ(t) : 1) σ(t) ∈M, t ≥ 0,

2) σ(t) is a piecewise constant function of t, and

3) there is at least Ts time units between discontinuities}.

We can then define

PTs
:= {Pσ : σ ∈ ΣTs

}.
3In general, we need m = 2n; however, if there is a lot of structure in the problem (e.g. a gain

margin problem), then it may be that m < 2n is sufficient.
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Figure 5.1: Block diagram

As usual, notice that P∞ = P . We can also express the time-varying plant Pσ in
observer canonical state-space form via

ξ̇(t) = Aσ(t) ξ(t) +Bσ(t) u(t), ξ(0) = ξ0,
y(t) = C ξ(t);

(5.3)

which we associate with the triple (Aσ, Bσ, C). We define Fσ and Āσ in an analogous
way. Since there is no noise and no reference signal and since, in this chapter, we
will not require a regularization feedback, plants of this form together with the
controller C yield the (very simple) block diagram of Figure 5.1.

In our previous chapters, the compensator κ had rich structure that led to a
natural definition of asymptotic stability. That will not be the case here; however,
it will turn out that our controller C can be modeled via a (sampled data) state-
space representation. As in our previous chapters, to handle the switching we will
use a mild nonlinearity, so, with G and J periodic functions of k, we will adopt a
state space representation of C of the form

z[k + 1] = G(k, z[k], y(kh)), z[0] = z0 ∈ Rl,
u(kh+ τ) = J(k, z[k], τ), τ ∈ [0, h).

(5.4)

If we label the period of G and J by ℓ, then the period of the controller is T := ℓh.
We associate this system with the 4-tuple (G, J, h, ℓ). As usual, it will turn out
that our compensator’s behaviour will depend only on the current period, so the
initial condition of the controller z[0] will have no bearing on the stability of the
system. The following definition of asymptotic stability follows naturally from the
above discussion:

Definition 5.1 With Ts > 0, the controller C asymptotically stabilizes PTs
if,

for every Pσ ∈ PTs
we have that

(i) for every ε > 0 there exists a δ > 0 so that, if ‖x0‖ < ε, then

‖x(t)‖ < δ, t ≥ 0, and ‖z[k]‖ < δ, k ∈ Z+,

and

(ii) for every x0 ∈ Rn, we have

lim
t→∞

ξ(t) = 0 and lim
k→∞

z[k] = 0.
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Figure 5.2: Input signal.

Remark 5.2 As usual, observe that (ii) is a global convergence condition, rather
than the typical local one. Furthermore, we will be able to prove a stronger condition
than (i), namely: there exists a constant γ > 0 so that for every x0 ∈ Rn we have

‖x(t)‖ ≤ γ‖x0‖, t ≥ 0, and ‖z[k]‖ ≤ γ‖x0‖, k ∈ Z+.

We now present some uniform bounds on our system parameters. Since P̃ is
compact, the following are well defined:

a := sup
p∈M
‖Ap‖,

b := sup
p∈M
‖Bp‖.

Furthermore, sinceM is compact and Fp is an analytic function of p, the following
is well defined:

f := sup
p∈M
‖Fp‖.

Observe that ‖C‖ = 1. Finally, since we do not have a finite number of plants, it
is not straightforward to find a nice, exponentially decaying bound on ‖eĀpt‖; we
defer doing so until the next section.

As usual, we split the period of the controller into two parts, the Estimation
Phase, where we estimate Fpe

Āp(t−kT )ξ[kT ], and the Control Phase, where we apply
the estimate of Fpe

Āp(t−kT )ξ[kT ]. Unlike in previous chapters, here, the estimation
method requires the application of a sequence of test signals (or probes), which are
constructed on the fly; a typical control signal is illustrated in Figure 5.2. As in
our previous two chapters, we will carry out each phase in (almost) a linear fashion
in order to end up with (almost) a linear controller.
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5.2 Estimation

We indicated in Section 2.3.1 that we can estimate the desired control signal by
estimating polynomials in p; in this section we will show how to do this. This
process is not straightforward: we will require an additional approximation as well
as a special way of writing down polynomials whose arguments are vector valued.

5.2.1 Estimating Polynomials in p

We begin by presenting a technical lemma that provides the basis for our polynomial
estimation approach. To do so, it will be useful to define several matrices:

Sm :=










1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...
1 m m2 · · · mm










,

Om(C,Ap) :=








C
CAp

...
CAm

p







,

Xm(h) = diag{1, h, h2/(2!), ..., hm/(m!)}.
Note that S is a Vandermonde matrix and h is non-zero, so both Sm and Xm(h)
are invertible. We will be using a sequence of samples of y; to that end, we define

Y(t) :=








y(t)
y(t+ h)

...
y(t+mh)







.

Lemma 5.2 (Key Estimation Lemma) [25] Let h̄ ∈ (0, 1). There exists a con-
stant γ > 0 so that for every t0 ≥ 0, ξ0 ∈ Rn, h ∈ (0, h̄), ū ∈ R, and p ∈ M,
the solution of (5.2) with

u(t) = ū, t ∈ [t0, t0 +mh)

satisfies

∥
∥
∥
∥
Xm(h)−1S−1

m Y(t0)−Om(C,Ap)ξ(t0)−
[

0
p

]

ū

∥
∥
∥
∥
≤ γh(‖ξ(t0)‖+ ‖ū‖),

‖ξ(t)− ξ(t0)‖ ≤ γh(‖ξ(t0)‖+ ‖ū‖), t ∈ [t0, t0 +mh].
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Observe that the second result of this lemma says that the effect of probing can be
made small by making h small.

To see how the Key Estimation Lemma (KEL) can be applied, suppose that we
first set

u(t) = 0, t ∈ [t0, t0 + (m+ 1)h)4;

observe that

Om(C,Ap) =

[
In[

Im+1−n 0
]
An

p

]

,

so a good estimate of ξ(t0) is

[
In 0

]
Xm(h)−1S−1

m Y(t0).

Since we may have a plant switch in the interval [t0, t0 + (m+ 1)h), we proceed as
in our previous chapters: we set

u(t) = 0, t ∈ [t0 + (m+ 1)h, t0 + 2(m+ 1)h)

as well, so another good estimate of ξ(t0) is

[
In 0

]
Xm(h)−1S−1

m Y(t0 + (m+ 1)h).

As usual, we choose the smaller of the two estimates:

Est
{
ξ(t0)

}
:= argmin{‖

[
In 0

]
Xm(h)−1S−1

m Y(t0)‖,
‖
[
In 0

]
Xm(h)−1S−1

m Y(t0 + (m+ 1)h)‖}.

If we insist that
2(m+ 1)h < Ts

(recall that Ts is the minimum time between switches), then at least one interval
will not contain a plant switch; if h is also small, then we will be guaranteed that
the above estimate will be accurate when there is no plant switch and will be modest
in size when there is one. We define

hm := (m+ 1)h,

so each application of the Estimation Lemma requires an input of duration hm,
which we can view as a kind of internal probing period.

We estimate additional terms in the following way. With g ∈ R1×(m+1) and
ρ > 0 a scaling factor, suppose we define a test signal to be a linear functional of
our above estimate:

ū = ρgEst
{
ξ(t0)

}
.

If we now set
u(t) = ū, t ∈ [t0 + 2h̄m, t0 + 4h̄m),

4We use m + 1 instead of m to avoid initialization issues when constructing a state space
representation of our controller; this has no effect on our proofs.
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then by the KEL we should define

Est
{
pū
}

:=
1

ρ

[
0 I

]
×

argmin{‖Xm(h)−1S−1
m [Y(t0 + 2hm)− Y(t0)]‖,

‖Xm(h)−1S−1
m [Y(t0 + 3hm)− Y(t0 + hm)]‖}.

Of course, this can be repeated a number of times (for different choices of g) so it
should be possible to estimate terms of the form φ(p)ξ(t0) with φ : R 7−→ Rm+1 a
polynomial in its arguments.

Unfortunately, this is not enough to estimate to desired control signal. To see
why, recall that the optimal control law is

u(t) = Fpe
Āp(t−kT )ξ[kT ], t ∈ [kT, (k + 1)T ), k ∈ Z+,

with Fp and Āp analytic functions of p (i.e. Fp and Āp are not necessarily polyno-
mials in p). The process outlined above can only estimate polynomials, so we must
perform an additional approximation.

5.2.2 Approximation by a Sampled-Data Controller

The optimal control signal is of the form

u(t) = Fpe
Āp(t−kT )

︸ ︷︷ ︸

=:H(p,t−kT )

ξ[kT ], t ∈ [kT, (k + 1)T ), k ∈ Z+;

the problem is that H(p, t − kT ) is not a polynomial in p and t and so it can not
be estimated via the Estimation Lemma. However, H is an analytical function of
its two arguments, so, if we fix an upper bound on the period, say Tmax, then by
the Stone-Weierstrass Approximation Theorem [32], for every ε > 0 there exists a
polynomial Hε satisfying

‖H(p, t)−Hε(p, t)‖ ≤ ε, p ∈M, t ∈ [0, Tmax]; (5.5)

we can use the Estimation Lemma to estimate Hε(p, t)ξ[kT ].

There are three technical issues that we must address before we move on. First,
for each ε > 0 there are many polynomials Hε that satisfy (5.5); to that end we
adopt the following convention: if we fix ε > 0, then we implicitly mean that we fix
Hε so that it satisfies (5.5). Second, observe that, since M is compact, for every
ε > 0 there exists a constant γ(ε) > 0 such that

‖Hε(p, t)‖ ≤ γ(ε), p ∈M, t ∈ [0, Tmax];

for each ε > 0, we let γ̄(ε) be the smallest such γ(ε) and adopt the notation

‖Hε‖∞ := γ̄(ε).
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Finally, it is natural to define

H0(p, t) := H(p, t).

We now wish to analyze the closed loop system behaviour when the control law

u(t) = Hε(p, t− kT )ξ[kT ], t ∈ [kT, (k + 1)T ), k ∈ Z+ (5.6)

is applied to the system, but first, we need some notation. When the optimal control
law is applied to the plant (5.2), we label the corresponding state response, output,
and control signal by ξ0, y0, and u0, respectively; similarly, when (5.6) is applied to
the plant, we label the corresponding responses by ξε, yε, and uε. In both cases, we
omit the dependence of ξ, y, and u on the parameter p ∈ M. Furthermore, when
we apply (5.6) to the plant (Ap, Bp, C) we obtain

ξε(t) =

[

eAp(t−kT ) +

∫ t−kT

0

eAp(t−kT−τ)Hε(p, τ)dτ

]

︸ ︷︷ ︸

=:Φε
p(t−kT,0)

ξε[kT ], t ∈ [kT, (k + 1)T );

observe that, by our definition of H0, we have

Φ0
p(t− kT, 0) = eĀp(t−kT ).

In our previous chapters, we showed that the actual cost can be made as close
as desired to the optimal one. In this chapter, we will investigate a related problem:
we show that the actual trajectories can be made as close as desired to the optimal
ones in the sense that

∫ ∞

0

(

[y(t)− y0(t)]2 +R[u(t)− u0(t)]2
)

dt

can be made small. We adopt the standard notation

‖x‖22 :=

∫ ∞

0

(
x(t)

)2
dt.

Proposition 5.1 There exist constants ε̄ > 0, γ0 > 1, and λ0 < 0 so that, for
every ε ∈ [0, ε̄), ξ0 ∈ Rn, T ∈ (0, Tmax) and p ∈M, we have that

(i) ‖ξ0(t)− ξε(t)‖ ≤ εγ0e
λ0t‖ξ0‖, t ≥ 0,

(ii) ‖u0(t)− uε(t)‖ ≤ εγ0e
λ0t‖ξ0‖, t ≥ 0,

(iii) ‖Φε
p(T, 0)k‖ ≤ γ0e

λ0kT , k ∈ Z+,

(iv)

∥
∥
∥
∥

[
yε

R1/2uε

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤ ε2γ2
0‖ξ0‖2.
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Proof: Please see Appendix C.

At this point we apply Proposition 5.1 and fix the constants ε̄ > 0, γ0 > 0, and
λ0 < 0 so that they have the required properties.

Remark 5.3 This proposition says that a controller that uses the polynomial ap-
proximation Hε instead of the optimal function H provides behaviour that can be
made arbitrarily close to the optimal one by making ε small.

Remark 5.4 Observe that (iii) says that the closed loop system’s behaviour at the
period endpoints is nice in the sense that it experiences exponential decay. Further-
more, since the proposition allows ε = 0, (iii) also gives us our nice bound:

‖eĀpt‖ ≤ γ0e
λ0t, p ∈M, t ≥ 0.

Now that we have a control signal that can be written in the form of a polynomial
in p, it remains to show how to apply the KEL to obtain a good estimate of this
control signal. To do so, we will need to re-parameterize our polynomial.

5.2.3 Polynomial Notation

Here we adopt the notation of [25] and modify it to our needs, which we now quickly
summarize. The goal is to parametrize the polynomial Hε(p, t) in such a way that
we can estimate the various terms in a straight-forward and systematic fashion. We
adopt the standard notation: for x ∈ Rn, we have

x =






x1
...
xn




 .

Following Rudin [32], we introduce the notion of a multi-index, which is an ordered
m+ 1-tuple

α = (α1, ..., αm+1), αi ∈ Z+.

For such a multi-index, we can define

|α| := α1 + · · ·+ αm+1,

(p, t)α := pα1
1 · · · pαm

m tαm+1 ;

since we are dealing with integer exponents, we define 00 := limx→0 x
0 = 1. Hence,

given that Hε is a polynomial which maps Rm+1 7−→ R1×n, it follows that there
exists a finite index set I ⊂ (Z+)m+1 and constant matrices cα ∈ R1×n, α ∈ I, so
that we can write Hε in the form

Hε(p, t) =
∑

α∈I

(p, t)αcα, (p, t) ∈M× [0, Tmax].
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Now we turn to the estimation problem. From Section 5.2.1, ξ(t0) can be easily
estimated using the KEL as motivation. Now consider the problem of estimating
the polynomial

∑

α∈I

(p, t)αcαξ(t). (5.7)

We define q to be the largest multi-index of the first p elements:

q := max
α∈I

m∑

i=1

|αi|

and q̄ to be the largest index of the m+ 1th element:

q̄ := max
α∈I
|αm+1|.

From the KEL we know that for each j ∈ {1, ..., n}, it is possible to estimate pξj(t)
by carrying out a simple experiment, so, by doing a succession of n experiments,
we can estimate

ξ(t)⊗ p =








pξ1(t)
pξ2(t)

...
pξn(t)







∈ Rnp.

Using the same logic, we can estimate

(ξ(t)⊗ p)⊗ p ∈ Rnp2

using a succession of nm experiments. Of course, this can be repeated as many
times as desired. To this end, we now define

ξ(t)⊗0 p := ξ(t)

and
ξ(t)⊗i+1 p := (ξ(t)⊗i p)⊗ p, i ∈ N;

notice that ξ(t) ⊗i p is a column vector of height nmi. It is easy to see that the
vector ξ(t)⊗i p contains all possible terms of the form

{pαξj(t) : |α| = i, j = 1, ..., n},

so (5.7) can be rewritten: we can choose row vectors di,j of length nmi so that

∑

α∈I

(p, t)αcαξ(t) =

q̄
∑

j=0

tj
q
∑

i=0

di,j(ξ(t)⊗i p),

which we can estimate using the KEL. Observe that fixing ε and thereby Hε has
the effect of fixing the limits q̄ and q and the coefficients di,j.
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Remark 5.5 Perhaps the most problematic feature of this approach is that of ob-
taining a closed form description of H(p, t) and constructing the approximation
Hε(p, t). As discussed in [25], unless special structure is available, the best ap-
proach is a numerical one: grid the M parameter space, compute the optimal gain
at each point on the grid, and then fit a good polynomial approximation to it; un-
fortunately this will be difficult to do if m or the set of parameter uncertainty is
large.

5.2.4 Applying The KEL

Following Section 5.2.1, envision setting

u(t) = 0, t ∈ [kT, kT + 2hm),

so it follows from the KEL that a good estimate of ξ[kT ] is given by

Est
{
ξ[kT ]

}
= Est

{
ξ[kT ]⊗0 p

}

:= argmin
{∥
∥
[
In 0

]
Xm(h)−1S−1

m Y(kT )
∥
∥ ,

∥
∥
[
In 0

]
Xm(h)−1S−1

m Y(kT + hm)
∥
∥

}

= ξ[kT ] +O(h)ξ[kT ],

with the last equality holding if there is no plant switch on [kT, kT + 2hm). To
estimate terms of the form

ξ[kT ]⊗i p, i = 1, ..., q,

recall that ξ[kT ]⊗i p are column vectors of height npi. With ρ > 0 a scaling factor,
set

u(t) =







ρEst
{
ξ[kT ]

}

1
t ∈ [kT + 2hm, kT + 4hm),

...
...

ρEst
{
ξ[kT ]

}

n
t ∈ [kT + 2nhm, kT + 2(n+ 1)hm).

It follows from the KEL and the discussion of Section 5.2.1 that we should define

Est
{
pξi[kT ]

}
:=

1

ρ

[
0 Ip

]
×

argmin{‖Xm(h)−1S−1
m [Y(kT + 2hm)− Y(kT )]‖,

‖Xm(h)−1S−1
m [Y(kT + 3hm)− Y(kT + hm)]‖}

= pξi(kT ) +O(h)ξ[kT ], i = 1, .., n,

with the last equality holding if there is no plant switch on [kT, kT + 2hm). By
stacking these estimates we can obtain an estimate of ξ[kT ] ⊗ p, which we label
Est
{
ξ[kT ]⊗ p

}
. We can then estimate ξ[kT ]⊗2 p in an analogous way (by probing

with successive elements of Est
{
ξ[kT ]⊗ p

}
); since ξ[kT ]⊗ p is of dimension

n1 := nm,
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this will take n1 experiments, each of length 2hm, yielding a total of 2n1hm units
of time. This can be repeated in a similar fashion to yield estimates of ξ[kT ]⊗i p,
i = 3, ..., q, with the ith term taking

2ni−1hm := 2nmi−1hm

units of time. In this fashion, we can construct a good estimate of

Hε(p, t− kT )ξ[kT ] =

q̄
∑

j=0

(t− kT )j

q
∑

i=0

di,j(ξ[kT ]⊗i p)

to be applied during the Control Phase.

5.2.5 A More General From

As mentioned above, it is often difficult to obtain the polynomial Hε and the
coefficients di,j; as the order of the required polynomial increases, the problem
becomes even more difficult. To that end, we now discuss a more general form for
polynomial which can, if there is sufficient structure in the problem, have a lower
order than Hε (we illustrate this in the second example of Section 5.6).

If we choose W ∈ Rn×(m+1) to be such that WOm(C,Ap) is invertible (which
we can do since Om(C,Ap) has full column rank) and define

w(t) := WOm(C,Ap)ξ(t), t ≥ 0

and
H̄ε(p, τ) := Hε(p, τ) (WOm(C,Ap))

−1 , p ∈M, τ ∈ [0, T ),

then
H̄ε(p, τ)w[kT ] ≡ Hε(p, τ)ξ[kT ], p ∈M, τ ∈ [0, T ), k ∈ Z+.

It is sometimes possible to choose W so that H̄ε has a lower order than Hε. To
estimate such a polynomial, observe that, by the KEL,

Est
{
w(t0)

}
:= argmin{‖WXm(h)−1S−1

m Y(t0)‖,
‖WXm(h)−1S−1

m Y(t0 + hm)‖}
is a good estimate of w(t0), which we can feed back into the system (in the same
way as we did with Est

{
ξ(t0)

}
in Section 5.2.4) to obtain the required components

to construct a good estimate of the polynomial

H̄ε(p, t− kT )w[kT ] =

q̄
∑

j=0

(t− kT )j

q̂
∑

i=0

d̄i,j(w[kT ]⊗i p),

which we can use as our control signal in the Control Phase.

In an effort to keep our proofs simpler and easier to follow, we do not present
our controller using this general form. That being said, given the definition of w
and the fact that P̃ is compact (and therefore WOm(C,Ap) and its inverse are
uniformly bounded), it is reasonable to expect that the general form would yield
the same results.

90



5.3 The Controller

This proposed control law is periodic of period T ; we begin by describing its open
loop behaviour on a single period. To proceed, we require several definitions. First,
we define certain important points in time:

T1 := 2hm = the time to estimate ξ[kT ],

Ti+1 = Ti + 2ni−1hm = the time to estimate p⊗i ξ[kT ], i = 1, ..., q.

The idea is that on the interval [kT, kT + T1) we estimate ξ[kT ], while on the
interval [kT + Ti, kT + Ti+1) we estimate ξ[kT ] ⊗i p. Note that, from our earlier
definition of T ′, we have

Tq+1 = 2T ′.

Our last important time is the period T , which we require to be an integer multiple
of h; on the interval [kT + 2T ′, (k + 1)T ) we implement the Control Phase. To
reduce clutter, we define

T̄ (Ts) := min{Ts/2, Tmax}.

Finally, with i ∈ N, we let the matrix Vi(h) ∈ Rni×(ni+ni−1) consist of ni−1 copies
of
[
O Im

]
Xm(h)−1S−1

m arranged in a block diagonal form.

If the plant was fixed, say (Ap, Bp, C), then it would be natural to define our
estimates via

Est
{
ξ[kT ]⊗0 p

}
:= argmin{‖

[
In 0

]
Xm(h)−1S−1

m Y(kT )‖,
‖
[
In 0

]
Xm(h)−1S−1

m Y(kT + hm)‖}.

and, with i = 1, ..., q and j = 1, ..., ni−1,

Est
{
ξ[kT ]⊗i p

}
:=

1

ρ
argmin







∥
∥
∥
∥
∥
∥
∥

Vi(h)






Y(kT + Ti)− Y(kT )
...

Y(kT + Ti+1 − 2hm)− Y(kT )






∥
∥
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥
∥

Vi(h)






Y(kT + Ti + hm)− Y(kT + hm)
...

Y(kT + Ti+1 − hm)− Y(kT + hm)






∥
∥
∥
∥
∥
∥
∥







;

however, in general, our plant will not be fixed. To that end, we recall that the
switching signal σ(t) takes on the value inM corresponding to the active plant at
time t and instead we define

Est
{
ξ[kT ]⊗0 σ[kT ]

}
:= argmin{‖

[
In 0

]
Xm(h)−1S−1

m Y(kT )‖,
‖
[
In 0

]
Xm(h)−1S−1

m Y(kT + hm)‖}.
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and, with i = 1, ..., q and j = 1, ..., ni−1,

Est
{
ξ[kT ]⊗i σ[kT ]

}
:=

1

ρ
argmin







∥
∥
∥
∥
∥
∥
∥

Vi(h)






Y(kT + Ti)− Y(kT )
...

Y(kT + Ti+1 − 2hm)− Y(kT )






∥
∥
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥
∥

Vi(h)






Y(kT + Ti + hm)− Y(kT + hm)
...

Y(kT + Ti+1 − hm)− Y(kT + hm)






∥
∥
∥
∥
∥
∥
∥







.

We can now write down our proposed controller C, which we relabel C(ε, T, T ′)
to emphasize its dependence on T, T ′, and ε, presented in open loop form and given
in three phases:

THE PROPOSED CONTROLLER C(ε, T, T ′)

With Ts > 0, T ∈ (0, T̄ (Ts)), T
′ ∈ (0, T/2), ε ∈ (0, ε̄), and k ∈ Z+ we define the

controller by

Stage 1 - State Estimation Phase: [kT, kT + T1)

u(t) = 0, t ∈ [kT, kT + T1) = [kT, kT + 2hm),

Stage 2 - Control Estimation Phase: [kT + T1, kT + 2T ′)

u(t) = ρEst
{
ξ[kT ]⊗i−1 σ[kT ]

}

j
,

t ∈ [kT + Ti + 2(j − 1)hm, kT + Ti + 4(j − 1)hm),

j = 1, ..., ni−1, i = 1, ..., q,

Stage 3 - Control Phase: [kT + 2T ′, (k + 1)T )

u(t) =

q̄
∑

j=0

(t− kT )j

q
∑

i=0

di,jEst
{
ξ[kT ]⊗i σ[kT ]

}
, t ∈ [kT + 2T ′, (k + 1)T ).

Remark 5.6 Recall that C(ε, T, T ′) can be described by the state-space representa-
tion (5.4). Since the controller is nonlinear, there is no guarantee that the system
will be well posed; however, it is routine to prove that, for every choice of p ∈ M,
when C(ε, T, T ′) is applied to (Ap, Bp, C), every ξ0 ∈ Rn and z0 ∈ Rl yields a unique
solution.

At this point we examine the behaviour of the closed loop system over a single
period. We will consider two cases: one in which there is no plant switch on the
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interval and one in which there is at most one such switch. We remind the reader
of the switching notation outlined in Section 2.2: recall that switches are confined
to the times {tl} excluding t0 = 0 and that we define

kl :=

⌊
tl
T

⌋

, l ∈ Z+,

so there are no plant switches on intervals of the form

[kT, (k + 1)T ), k ∈ {kl : l ∈ N}c;

furthermore, recall that (for simplicity) we insist that σ ∈ ΣTs
be continuous from

the right. With this in hand, we can state our result:

Proposition 5.2 With Ts > 0 and ε ∈ (0, ε̄), there exists a constant γ > 0 so
that:

(i) For every T ∈ (0, T̄ (Ts)), if T ′ is sufficiently small, then, for every ξ0 ∈
Rn, and σ ∈ ΣTs

, if the controller C(ε, T, T ′) is attached to the plant Pσ

then, for every k ∈ {kl : l ∈ N}c, we have that

(a) ‖ξ(t)− Φε
σ(t)(t− kT, 0)ξ[kT ]‖ ≤ γT ′‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ),

(b) |u(t)| ≤ γ‖ξ[kT ]‖, t ∈ [kT, kT + 2T ′), and

|u(t)−Hε(σ(t), t)ξ[kT ]| ≤ γT ′‖ξ[kT ]‖, t ∈ [kT + 2T ′, (k + 1)T ).

(ii) There exists a constant T̄1 ∈ (0, T̄ (Ts)) so that, for every T ∈ (0, T̄1), if
T ′ is sufficiently small, then, for every ξ0 ∈ Rn, σ ∈ ΣTs

, and k ∈ Z+,
when the controller C(ε, T, T ′) is attached to the plant Pσ, we have that

(a) ‖ξ(t)− ξ(kT )‖ ≤ γT‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ),

(b) |u(t)| ≤ γ‖ξ(kT )‖, t ∈ [kT, (k + 1)T ).

Proof: Please see Appendix C.

The first part of this proposition states that the actual state ξ behaves much
like ξε, at least over periods in which there is no switch; furthermore, this match
improves as T ′ gets smaller. The second part of the proposition says that, in all
periods, even ones with a switch, we can find a nice bound on the size of the state
and the input over that period, but the bound requires that T be small and T ′ be
even smaller.

It will turn out that, over intervals in which there are no switches, ξ exhibits
exponential decay over the entire time interval, which will be useful when proving
all of our major theorems. To that end, we state the following technical lemma:

93



Lemma 5.3 (Boundedness Lemma) With Ts > 0 and ε ∈ (0, ε̄), for every
T ∈ (0, T̄ (Ts)), there exists a constant ελ ∈ (λ0, 0) so that, for every λ ∈ (λ0, ελ),
there exists a constant γ(T, λ) > 0 so that, for every sufficiently small T ′ and
every σ ∈ ΣTs

, if the controller C(ε, T, T ′) is attached to the plant Pσ then, for
every interval of the form [kT, k̄T ) over which there are no switches, we have
that

‖ξ(t)‖ ≤ γ(T, λ)eλ(t−kT )‖ξ[kT ]‖, t ∈ [kT, k̄T ], ξ0 ∈ Rn;

furthermore,
lim
T→0

γ(T, λ) = γ0.

Proof: Please see Appendix C.

The above lemma says that we can make γ(T, λ)eλ(t−kT ) as close as we wish to
γ0e

λ0(t−kT ), which will be very useful when we are proving stability in the face of
plant switches. When there are no switches, we do not need this level of generality;
to that end, we present the following Corollary:

Corollary 5.1 With T ∈ (0, Tmax) and ε ∈ (0, ε̄), there exist constants λ ∈
(λ0, 0) and γ > 0 so that, for every p ∈ M and sufficiently small T ′, if the
controller C(ε, T, T ′) is attached to the plant Pp then

‖ξ(t)‖ ≤ γeλt‖ξ0‖, t ≥ 0, ξ0 ∈ Rn.

Proof: This result follows directly from Lemma 5.3 and is left to the reader.

Finally, we look at a useful property of the controller’s state-space representa-
tion:

Lemma 5.4 The control law C(ε, T, T ′) has a representation of the form (5.4)
given by (G, J, h, ℓ) which is deadbeat in the following sense:

G(0, z, y) = G(0, 0, y).

Proof: Please see Appendix C.

Henceforth, when we discuss properties provided by the controller C(ε, T, T ′), we
implicitly mean properties provided by (G, J, h, ℓ).
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5.4 Asymptotic Stability

In this section we will investigate asymptotic stability; since this problem is signifi-
cantly more complex than our previous ones, for time reasons we will not investigate
I/O stability. Recall that our estimation process now requires active probing. The
effect of this is twofold: first, for the estimates to be good, we require fast sampling,
and second, to keep the adverse effects of these probes to a minimum, we require
the duration of the Estimation Phase to be small. To this end, unlike in previous
chapters, even when there are no switches, we cannot prove stability for arbitrarily
large T ′ (we can still allow T to be large).

Theorem 5.1 For every T ∈ (0, Tmax) and ε ∈ (0, ε̄), if T ′ > 0 is sufficiently
small, then the controller C(ε, T, T ′) asymptotically stabilizes P.

Proof:

Fix T ∈ (0, Tmax) and ε ∈ (0, ε̄) and let p ∈ M and ξ0 ∈ Rn be arbitrary. Observe
that, by Lemma 5.4 we have that G(0, z, y) = G(0, 0, y); therefore, since the con-
troller is periodic, if y(t)→ 0 then z[k]→ 0 as well. By the structure of C(ε, T, T ′)
we have that u is bounded by ξ; furthermore, y = Cξ. The upshot of all of this is
that, to prove stability, it is enough to show that ξ(t)→ 0 as t→∞. To that end,
we now invoke Corollary 5.1: there exist constants λ̄ ∈ (λ0, 0) and γ̄ > 0 so that,
for every sufficiently small T ′ we have

‖ξ(t)‖ ≤ γ̄eλ̄t‖ξ0‖, t ≥ 0,

providing the desired bound; furthermore, clearly

lim
t→∞
‖ξ(t)‖ = lim

t→∞

(

γ̄eλ̄t‖ξ0‖
)

= 0.

We now allow for persistent plant changes and show that our controller is stabi-
lizing under the condition that switches occur slowly enough. We suspect that, as
in the previous two chapters, we could (loosely) bound Ts below and then T above
in such a way that, as Ts gets big, so does the bound on T . Since the analysis here
is significantly more complex and we wish to leverage Proposition 5.2(ii) (which
requires that T be small) instead, we will force T to be small and use the tighter
lower bound on Ts.

To motivate such a bound, consider the following simplified example. We have
two LTI plants, Pp and Pp̄, and the time-varying plant Pσ switches back and forth
between them, spending τ1 time units at Pp and τ2 time units at Pp̄ before repeating:

95



for every k ∈ Z+,

Pσ(t) =

{
Pp, t = [k(τ1 + τ2), k(τ1 + τ2) + τ1)
Pp̄, t = [k(τ1 + τ2) + τ1, (k + 1)(τ1 + τ2))

Stability is clearly dictated by the matrix

eĀpτ1eĀp̄τ2 ; (5.8)

the closed loop system is stable iff the eigenvalues of this matrix all lie within the
open unit disk, with a sufficient condition being that

‖eĀpτ1eĀp̄τ2‖ < 1. (5.9)

Of course, if one knows in advance that the time-varying plant is as indicated, then
one can always stabilize the system with a more cleverly designed controller even if
(5.8) has eigenvalues outside the open unit disk; unfortunately, in our case no such
a priori information is available.

This brings us to the general case. Using (5.9) as motivation, a sufficient con-
dition for stability should be

sup
p,p̄∈M

sup
τi>Ts

‖eĀpτ1eĀp̄τ2‖ < 1. (5.10)

To simplify this condition, observe that Proposition 5.1(iii) says that

‖eĀpt‖ ≤ γ0e
λ0t, t ≥ 0, p ∈M,

so (5.10) holds if
γ0e

λ0Ts < 1

or equivalently if

Ts >
ln(γ0)

|λ0|
=: Ts.

Theorem 5.2 With ε ∈ (0, ε̄), if Ts > Ts, then there exists a constant T̄ > 0
so that, for every T ∈ (0, T̄ ), if T ′ is sufficiently small, then the controller
C(ε, T, T ′) stabilizes PTs

.

Proof:

Fix ε ∈ (0, ε̄) and Ts > Ts and let ξ0 ∈ Rn, σ ∈ ΣTs
, and T ∈ (0, Ts/2) be

arbitrary. As in the proof of Theorem 5.1, observe that, by Lemma 5.4 we have
that G(0, z, y) = G(0, 0, y); therefore, since the controller is periodic, if y(t) → 0
then z[k] → 0 as well. By the structure of C(ε, T, T ′) we have that u is bounded
by ξ; furthermore, y = Cξ. The upshot of all of this is that, to prove stability, it is
enough to show that ξ(t)→ 0 as t→∞.
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Before we proceed, we invoke Lemma 5.3: there exists a constant ελ ∈ (λ0, 0)
such that, for every λ ∈ (λ0, ελ) there exist constants T̄ ′(T, λ) > 0 and γ(T, λ) > 0
so that, for every T ′ ∈ (0, T̄ ′(T, λ)) we have

‖ξ(t)‖ ≤ γ(T, λ)eλ(t−(kl+1)T )‖ξ[(kl + 1)T ]‖, t ∈ [(kl + 1)T, kl+1T ], l ∈ N (5.11)

and the special case5

‖ξ(t)‖ ≤ γ(T, λ)eλt‖ξ0‖, t ∈ [0, k1T ), (5.12)

At this point we fix λ ∈ (λ0, ελ) so that it satisfies

Ts >
ln(γ0)

|λ| >
ln(γ0)

|λ0|
= Ts (5.13)

Since λ is now fixed, we drop it from T̄ ′(T, λ) and γ(T, λ) and simply write T̄ ′(T )
and γ(T ).

We now pause for a moment to discuss the structure of the remainder of this
proof. Observe that it is sufficient to prove that, for every sufficiently small T >
0 there exists a constant T̄ ′(T ) > 0 so that, for every T ′ ∈ (0, T̄ ′(T )) we have
asymptotic stability. We have just established the existence of a constant T̄ ′ which
will turn out to be sufficient to achieve the desired objective; we let T ′ ∈ (0, T̄ ′(T ))
be arbitrary and devote the remainder of this proof to showing that we obtain the
desired result for every sufficiently small T .

As usual, we begin by investigating the first interval [0, k1T ). Observe that, if
t1 < T then k1 = 0 and there is nothing to prove, so we assume that this is not the
case. From (5.12) we know that nothing untoward happens in this initial period,
furthermore, since ξ is continuous, for all cases of k1, we have that

‖ξ[k1T ]‖ ≤ γ(T )eλk1T‖ξ0‖. (5.14)

We now investigate t > k1T . The bound on Ts is designed to ensure that there is
enough time for the system to recover from the adverse affect of a plant switch before
the next switch occurs. To that end, we proceed by finding an update equation
for ‖ξ[k1+1T ]‖ in terms of ‖ξ[klT ]‖ and then show that, because of the bound on
Ts, the state at the endpoints ‖ξ[klT ]‖ tends to zero as l tends to infinity; we then
conclude by showing that, between these endpoints, the state is well behaved.

Obtaining the desired update equation requires two steps. First, we observe
that (5.11) gives us a nice bound over intervals with no switch; in particular, it
says that

‖ξ[kl+1T ]‖ ≤ γ(T )eλ(kl+1−(kl+1))T‖ξ[(kl + 1)T ]‖, l ∈ N.

5Observe that, if t1 < T , then the interval of interest is empty, so implicitly, this inequality
only applies if t1 > T .
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The second step is to obtain a bound on ‖ξ[(kl + 1)T ]‖, which we do via Propo-
sition 5.2(ii)(a), which says that, if T > 0 is sufficiently small, then there exists a
constant α1(T ) > 0 such that

‖ξ(t)‖ ≤ α1(T )‖ξ[klT ]‖, t ∈ [klT, (kl + 1)T ], l ∈ N, (5.15)

in particular we have

‖ξ[(kl + 1)T ]‖ ≤ α1(T )‖ξ[klT ]‖, l ∈ N;

furthermore, observe that, since ξ is continuous, we clearly have that

lim
T→0

α1(T ) = 1.

We now combine this with our first step to find that, for every sufficiently small
T > 0, we have

‖ξ[kl+1T ]‖ ≤ γ(T )α1(T )eλ(kl+1−(kl+1))T‖ξ[klT ]‖, l ∈ N.

Since
tl+1 − tl < Ts, l ∈ N,

we have
‖ξ[kl+1T ]‖ ≤ γ(T )α1(T )e−2λT eλTs‖ξ[klT ]‖, l ∈ N, (5.16)

so, solving iteratively yields

‖ξ[klT ]‖ ≤
(
γ(T )α1(T )e−2λT eλTs

)l−1 ‖ξ[k1T ]‖, l ∈ N

and, using (5.14), (5.11), and (5.15), for every sufficiently small T > 0, we have

‖ξ(t)‖ ≤ γ2(T )α1(T )
(
γ(T )α1(T )e−2λT eλTs

)l−1 ‖ξ0‖, t ∈ [klT, kl+1T ), l ∈ N.
(5.17)

Clearly, if
γ(T )α1(T )e−2λT eλTs < 1

then
lim
l→0

(
γ(T )α1(T )e−2λT eλTs

)l−1
= 0,

and therefore we have the desired limit

lim
t→0
‖ξ(t)‖ = 0;

furthermore, if we combine (5.17) with the bound on the interval [0, k1T ] given by
(5.14), then we have the desired bound on the entire interval

‖ξ(t)‖ ≤ max{γ2(T )α1(T ), γ(T )}‖ξ0‖, t ≥ 0.

98



It remains to show that our assumption on Ts ensures that, for every sufficiently
small T and every T ′ ∈ (0, T̄ ′(T )), we have

γ(T )α1(T )e−2λT eλTs < 1.

To do so, observe that (5.13) yields

γ(T )α1(T )e−2λT eλTs < γ(T )α1(T )e−2λT 1

γ0

,

and furthermore, from Lemma 5.3 we have

lim
T→0

γ(T ) = γ0,

so

lim
T→0

(
γ(T )α1(T )e−2λT eλTs

)
< lim

T→0

(

γ(T )α1(T )e−2λT 1

γ0

)

= 1;

therefore, for every sufficiently small T and every T ′ ∈ (0, T̄ ′(T )), we have

γ(T )α1(T )e−2λT eλTs < 1.

5.5 Performance

We now turn to the question of performance. In this chapter, we will only investi-
gate the case where there is no plant switching; here we find that, for arbitrary T ,
we can get as close as we wish to the optimal trajectories, provided that we make
both ε and T ′ small.

Theorem 5.3 For every T ∈ (0, Tmax) and δ > 0, if ε ∈ (0, ε̄) and T ′ ∈
(0, T/2) are sufficiently small, then C(ε, T, T ′) asymptotically stabilizes P and,
when C(ε, T, T ′) is attached to any plant P ∈ P, the closed loop system response
satisfies

∥
∥
∥
∥

[
y

R1/2u

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤ δ‖ξ0‖2, ξ0 ∈ Rn.

Proof:

We begin by fixing δ > 0 and T ∈ (0, Tmax). Let ξ0 ∈ Rn, p ∈M, and T ′ ∈ (0, T/2)
be arbitrary. From Proposition 5.1(iv), for every ε ∈ (0, ε̄), we have that

∥
∥
∥
∥

[
yε

R1/2uε

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤ ε2γ2
0‖ξ0‖2,
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so fixing

ε ∈
(

0,min

{√

δ

2

1

γ0

, ε̄

})

yields
∥
∥
∥
∥

[
yε

R1/2uε

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤ δ

2
‖ξ0‖2; (5.18)

therefore,

∥
∥
∥
∥

[
y

R1/2u

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤
∥
∥
∥
∥

[
y

R1/2u

]

−
[

yε

R1/2uε

]∥
∥
∥
∥

2

2

+

∥
∥
∥
∥

[
yε

R1/2uε

]

−
[

y0

R1/2u0

]∥
∥
∥
∥

2

2

≤
∥
∥
∥
∥

[
y

R1/2u

]

−
[

yε

R1/2uε

]∥
∥
∥
∥

2

2

+
δ

2
‖ξ0‖2.

Stability now follows immediately from Theorem 5.1. It remains to show that, for
sufficiently small T ′, we have

∥
∥
∥
∥

[
y

R1/2u

]

−
[

yε

R1/2uε

]∥
∥
∥
∥

2

2

≤ δ

2
‖ξ0‖2;

the remainder of this proof is devoted to this.

Since y = Cξ, it suffices to show that ‖u−uε‖22 and ‖ξ− ξε‖22 are both bounded
by (a scaled version of) T ′‖ξ0‖2, we can then obtain the desired result by making
T ′ small. To that end, we define

ξ̃ε := ξε − ξ

and
ũε := uε − u.

We begin with ‖ξ̃‖22:
Claim 1: There exists a constant γ1 > 0 such that, if T ′ > 0 is sufficiently small,
then we have

‖ξ̃ε‖22 ≤ γ1T
′‖ξ0‖2.

Proof:

We start by investigating the period endpoints. Using Proposition 5.2(i)(a), it
is easy to show that, for every sufficiently small T ′ > 0, there exists a function
∆p[k] ∈ PC∞ and a constant α1 > 06 such that

‖∆p[k]‖ ≤ α1T
′‖ξ[kT ]‖, k ∈ Z+, p ∈M

6We will invoke Proposition 5.2 many times in this proof. To reduce notation, we will use α1

as our constant each time.
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and
ξ̃ε[(k + 1)T ] = Φε

p(T, 0)ξ̃ε[kT ] + ∆p[k], k ∈ Z+

whose solution satisfies

ξ̃ε[kT ] =
k−1∑

i=0

(Φε
p(T, 0))k−1−i∆p[i], k ∈ Z+.

Using Proposition 5.1(iii) to bound ‖(Φε
p(T, 0))k‖ together with our bound on ‖∆‖

yields

‖ξ̃ε[kT ]‖ ≤
k−1∑

i=0

γ0e
λ0(k−1−i)Tα1T

′‖ξ[iT ]‖, k ∈ Z+. (5.19)

If we invoke Corollary 5.1, then we find that there exist constants λ̄ ∈ (λ0, 0) and
γ̄ > 0 so that, for every sufficiently small T ′ we have

‖ξ(t)‖ ≤ γ̄eλ̄t‖ξ0‖, t ≥ 0; (5.20)

applying this to (5.19) yields

‖ξ̃ε[kT ]‖ ≤
k−1∑

i=0

γ0e
λ0(k−1−i)Tα1T

′γ̄eλ̄iT‖ξ0‖

=
k−1∑

i=0

γ0e
λ0iTα1γ̄T

′eλ̄(k−1−i)T‖ξ0‖

= γ0α1γ̄T
′eλ̄(k−1)T

k−1∑

i=0

e(λ0−λ̄)iT‖ξ0‖

≤ γ0α1γ̄e
−λ̄T

1− e(λ0−λ̄)T
︸ ︷︷ ︸

=:α2

T ′eλ̄kT‖ξ0‖, k ∈ Z+. (5.21)

We now investigate the behaviour inside the period. Returning to Proposi-
tion 5.2(i)(a), it is also easy to show that, for every sufficiently small T ′ > 0, we
have

‖ξ̃ε(t)− (Φε
p(t− kT, 0))ξ̃ε[kT ]‖ ≤ α1T

′‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.

Since T and ε are fixed, ‖Hε‖∞ is well defined; furthermore, it is straightforward
to show that

‖Φε
p(t, 0)‖ ≤ eaT + TeaT b‖Hε‖∞

︸ ︷︷ ︸

=:γφ

, t ∈ [0, T ]

so
‖ξ̃ε(t)‖ ≤ γφ‖ξ̃ε[kT ]‖+ α1T

′‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.
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Using (5.21) to bound ‖ξ̃ε[kT ]‖ and (5.20) to bound ‖ξ[kT ]‖ yields (for small T ′)

‖ξ̃ε(t)‖ ≤ γφα2T
′eλ̄kT‖ξ0‖+ α1T

′γ̄eλ̄t‖ξ0‖, t ∈ [kT, (k + 1)T ), k ∈ Z+

=
(

γφα2e
−λ̄T + α1γ̄

)

︸ ︷︷ ︸

=:α3

eλ̄tT ′‖ξ0‖, t ≥ 0,

which we use to find that, for every sufficiently small T ′ we have

∫ ∞

0

‖ξ̃ε(t)‖2dt ≤
∫ ∞

0

α2
3e

2λ̄t(T ′)2‖ξ0‖2dt

=
α2

3

2|λ̄|(T
′)2‖ξ0‖2

≤ α2
3

2|λ̄|T
′‖ξ0‖2.

We now turn to ũε:

Claim 2: There exists a constant γ2 > 0 such that, for sufficiently small T ′, we
have

‖ũε‖22 ≤ γ2T
′‖ξ0‖2.

Proof:

By definition,

ũε(t+ kT ) = Hε(p, t)ξε[kT ]− u(t− kT )

= Hε(p, t)ξ[kT ] +Hε(p, t)ξ̃ε[kT ]− u(t− kT ), t ∈ [0, T ), k ∈ Z+,

so, for every k ∈ Z+ we have,

∫ T

0

‖ũε(t+ kT )‖2dt =

∫ 2T ′

0

‖Hε(p, t)ξε[kT ]− u(t− kT )‖2dt+

∫ T

2T ′

‖Hε(p, t)ξ[kT ] +Hε(p, t)ξ̃ε[kT ]− u(t− kT )‖2dt.

It will be convenient to look at each term on the RHS independently. We start with
the first. Since ‖Hε‖∞ is well defined, by the first result of Proposition 5.2(i)(b),
for sufficiently small T ′, we have

∫ 2T ′

0

‖Hε(p, t)ξε[kT ]− u(t− kT )‖2dt

≤ 2T ′ (‖Hε‖∞‖ξε[kT ]‖+ α1‖ξ[kT ]‖)2

≤ 2T ′ (‖Hε‖∞(Φε
p(T, 0))k‖ξ0‖+ α1‖ξ[kT ]‖

)2
.
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To bound the second term, we use the second result of Proposition 5.2(i)(b) together
with (5.21) to find that, for sufficiently small T ′, we have

∫ T

2T ′

∥
∥
∥

[
Hε(p, t)ξ[kT ]− u(t− kT )

]
+Hε(p, t)ξ̃ε[kT ]

∥
∥
∥

2

dt ≤

(T − 2T ′)
︸ ︷︷ ︸

≤T

(

α1T
′‖ξ[kT ]‖+ ‖Hε‖∞α2T

′eλ̄kT‖ξ0‖
)2

.

Putting these together and using (5.20) to bound ‖ξ[kT ]‖ and our bound on ‖Φε
p‖

yields (for small T ′)

∫ T

0

‖ũε(t+ kT )‖2dt ≤
[

2
(

‖Hε‖∞γ0e
λ0kT + α1γ̄e

λ̄kT
)2

+

Te2λ̄kT (α1γ̄ + ‖Hε‖∞α2)
2

]

T ′‖ξ0‖2

≤
[

2 (‖Hε‖∞γ0 + α1γ̄)
2 + T (α1γ̄ + ‖Hε‖∞α2)

2
]

︸ ︷︷ ︸

=:α4

×

T ′e2λ̄kT‖ξ0‖2, k ∈ Z+

so, for every sufficiently small T ′ we have

∫ ∞

0

‖ũε(t)‖2dt ≤
∞∑

i=0

α4T
′e2λ̄kT‖ξ0‖2

=
α4

1− e2λ̄T
T ′‖ξ0‖2.

Combining Claims 1 and 2, for sufficiently small T ′, we clearly have that

∥
∥
∥
∥

[
y

R1/2u

]

−
[

yε

R1/2uε

]∥
∥
∥
∥

2

2

≤ ‖y − yε‖22 +R‖u− uε‖22

≤ ‖C‖ × ‖ξ − ξε‖22 +R‖u− uε‖22
≤ (γ1 +Rγ2)T

′‖ξ0‖2

so clearly, for sufficiently small T ′, we have

∥
∥
∥
∥

[
y

R1/2u

]

−
[

yε

R1/2uε

]∥
∥
∥
∥

2

2

≤ δ

2
‖ξ0‖2.
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5.6 Examples

Here we will consider two example uncertainty sets, each of which admits the pair
of plants 1

s−1
and −1

s−1
. In the first example, the uncertainty will be entirely en-

capsulated at the plant input, yielding the gain margin problem; we present this
example so that we have a basis for comparison in Chapter 6. The second example
is a reinvestigation of the example of [25]; we will use this example to illustrate how
to use the more general form given in Section 5.2.5.

In the following examples, we allow the plant to switch and show that we main-
tain stability. For comparison purposes, we also include a nominal signal which is
defined to be the LQR optimal trajectory for whichever plant is active (as in our
previous chapters):

ξnominal(t) := eĀσ(t)tξ0, t ≥ 0,

ynominal(t) := Cξnominal(t), t ≥ 0,

and
unominal(t) := Fσ(t)ξ

nominal(t), t ≥ 0.

5.6.1 Example 1 - Gain Margin

Here we consider transfer functions of the form

P :
b

s+ a

and the compact set

P = {P : (a, b) ∈ (1, [−1,−1/2] ∪ [1/2, 1])};

observe that this is the gain margin problem (with gain margin 1/2) and that it is
enough to set m = n = 1, so

p = b.

We choose the LQR parameter
R = 1,

which yields the feedback gain

fb = −1

b
(1 +

√
1 + b2)

and the closed loop matrix
āb =

√
1 + b2.

It turns out that the polynomial7

[
− 0.0048 b7 + 0.0119 b5 + 0.1056 b3 + 0.1250 b

]
τ 2+

7To find this polynomial, we use MATLAB’s ‘polyfit’ function to approximate fb and e−φ and
then use φ =

√
1 + b2τ ≈ ( 1

2
b2 + 1)τ .
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Figure 5.3: Example 1 - solid is actual, dashed is nominal - h = 0.0001s.

[
0.0333 b5 − 0.1483 b3 − 0.4298 b

]
τ − 0.0747 b3 + 0.4818 b

provides a reasonably good approximation to

fbe
ābτ .

We perform two experiments: h = 0.0001s and h = 0.0005s, shown in Figure 5.3
and 5.4, respectively. In both cases, the Estimation Phase has duration 32h, the
Control Phase has duration 100h, and we switch between b = 1 and b = −1 every
π/10s. As usual, we see improved performance for smaller sampling rates.

Since it is somewhat difficult to see what is going on in the control signal, we
provide a zoomed in version of the h = 0.0001s case in Figure 5.5; observe that
at the beginning of each Estimation phase, the control signal jumps to zero - this
is the state estimation phase of the controller. Furthermore, observe that, because
the switch occurs during the Estimation Phase, the resulting control signal is the
wrong sign; however, the correct control is reasserted in the following period.

5.6.2 Example 2

Here we provide an example which will clearly benefit from the more general form
provided in Section 5.2.5. We have the same structure of first order transfer func-
tions:

P :
b

s+ a
,
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Figure 5.4: Example 1 - solid is actual, dashed is nominal - h = 0.0005s.
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but this time we consider the compact set

P = {P : (a, b) ∈ ([−1, 1], {−1, 1})};

here we require m = 2n = 2, so

p =

[
b
ab

]

.

We choose the LQR parameter
r = 1,

which yields the feedback gain

fp = −b(a+
√

1 + a2),

the closed loop matrix
āp =

√
1 + a2,

and the extended observability matrix

Om(1, a) =





1
a
a2



 .

Observe that √
1 + a2 ≈ 1 +

1

2
a2,

so if we set
W =

[
1 1 1/2

]
,

then

fpe
āpτ ≈ −b

(

1 + a+
1

2
a2

)

e
√

1+a2τ

= −be
√

1+a2τWOm(1, a),

so if we approximate
w[kT ] = WOm(1, a)ξ[kT ]

instead of ξ[kT ] in the state estimation phase, then we can reduce the order of the
required polynomial estimate by two. Indeed, the polynomial8

[

0.0640 b5a4 + 0.2561 b3a2 + 0.2561 b
]

τ 2 +
[

− 0.4403 b3a2 − 0.8805 b
]

τ + 0.9872 b

provides a reasonably good approximation to −beābτ .

It turns out that the structure of the arguments bjaj−1 allows us to significantly
reduce the number of probes. As usual, we begin with the state estimation phase,
wherein we obtain our estimate of w. To see how to reduce the number of probes,
observe that we can proceed in the following way:

8To find this polynomial, we again use MATLAB’s ‘polyfit’ function to approximate e−φ and
then substitute with φ =

√
1 + a2τ ≈ ( 1

2
a2 + 1)τ .

107



(i) Probe with Est
{
w[kT ]

}
to obtain a good estimate of

pw[kT ] =

[
b
ba

]

w[kT ].

(ii) Probe with the estimate of

([
b
ba

]

w[kT ]

)

2

to obtain a good estimate of

p(ba)w[kT ] =

[
b2a
b2a2

]

w[kT ].

...

(iv) Probe with the estimate of

([
b4a3

b4a4

]

w[kT ]

)

2

to obtain a good estimate of

p(b4a4)w[kT ] =

[
b5a4

b5a5

]

w[kT ].

We then use

estimate of

([
b
ba

]

w[kT ]

)

1

≈ bw[kT ]

...

estimate of

([
b5a4

b5a5

]

w[kT ]

)

1

≈ b5a4w[kT ]

to construct the desired polynomial. Since we never probe with the first element of
the estimated vectors, the total number of probes is significantly reduced; indeed, if
we had not taken advantage of the structure, then we would have needed 15 probes
in the control estimation phase instead of only four.

We perform two experiments: h = 0.0005s and h = 0.0008s, shown in Figure 5.6
and 5.7, respectively. In both cases, the Estimation Phase has duration 36h, the
Control Phase has duration 200h, we fix a = 1, and we switch between b = 1 and
b = −1 every π/3s. As expected, we see improved performance for smaller sampling
rates.

5.7 Summary and Concluding Remarks

In this chapter, we revisit the problem of Chapter 3 in the context of a compact
(rather than finite) set of LTI plants that is given in transfer function form. We
provide a canonical state-space representation for each plant and design a mildly
nonlinear RACE controller that provides asymptotic stability in the face of (pos-
sibly persistent) switching between plants in the set. Furthermore, the proposed
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Figure 5.6: Example 2 - solid is actual, dashed is nominal - h = 0.0005s.
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Figure 5.7: Example 2 - solid is actual, dashed is nominal - h = 0.0008s.
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controller is shown to provide near optimal LQR performance for each LTI plant.
Although we have not discussed it here, we expect that near nominal performance
(in the same sense as in the previous two chapters) can be obtained for sufficiently
small T , T ′, and ε.

The main difference between this controller and those of Chapters 3 and 4
is that, here, our estimation method requires active probing, which significantly
complicates the analyses. A major drawback to this approach is that, even though
we know that they exist, the polynomial Hε and the coefficients di,j can be quite
difficult to find, especially for higher order plants.
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Chapter 6

The Time Varying Gain Margin
Problem

At this point, we change gears and consider a problem that is both simpler and
more complex, depending on perspective. We consider a nominal LTI plant P1 with
an unknown time-varying (TV) multiplicative gain g at the input; together, these
comprise the actual plant Pg

1. This problem is simpler in the sense that we have a
single LTI plant with a single unknown parameter; however, it is more complicated
in the sense that the uncertainty is allowed to be a reasonably general time-varying
function, rather than piecewise constant.

As has been the case throughout this thesis, we are interested in more than
just stability. Here we will consider the tracking problem that can be modeled via
a (stable) filter W at the exogenous input. In keeping with some of the standard
results in this area, we will use a weighted sensitivity function to measure perfor-
mance; furthermore, in this chapter we use the infinity norm to measure the size
of a vector (instead of the 2-norm as was used in all previous chapters). This con-
troller is motivated by those of [24] and [22]; we seek to alleviate the restrictions
of those papers by allowing for both rapidly time varying gains (which [24] does
not do) and non-minimum phase plants (which [22] does not do). A preliminary
version of this work was presented in the conference paper [40].

Recall that, in [24] it was shown that one can achieve any desired gain margin
while ensuring that the size of the weighted sensitivity function2 is near LTI-optimal.
There, the gain was constant, but here it is time-varying, so a natural question is:
can one provide better performance for a given LTI plant by using a nonlinear
time-varying (NLTV) controller instead of an LTI one? When using the 2-norm to
measure the signal size, the answer is NO, at least in the simplest setup [14]. When
using the ∞-norm to measure signal size, as is done in [24] as well as here, the
answer is YES, at least for certain multi-input multi-output cases [34]. However,

1Since we will denote the plant associated with the gain g as Pg, our nominal plant is P1

(instead of the familiar P0).
2It is critical that the weight be strictly proper.
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Figure 6.1: Comparison of Input Signal from Chapter 5 and Chapter 6

here our goal is to design a LTV controller and, at least in the discrete time case, it
has been proven [33] that there is no advantage to LTV over LTI controllers. Based
on this argument, our performance goal will be LTI optimal weighted sensitivity.

In all of the previous chapters, we used a generalized hold to apply a control
signal that looked much like the optimal one. The main reason behind using a
generalized hold (rather than a zero order hold) was to allow for longer controller
periods. Unfortunately, we will not be able to allow large periods here: we would like
to allow the gain g to be rapidly time varying, so, since the controller is essentially
open loop over each period, intuitively we will need short periods to ensure stability.
To that end, we will use a (easier to analyze) piecewise constant control signal (see
Figure 6.1).

If we assume that the TV gain g lies in a compact set, then the set composed
of all possible plants Pg is also compact, so it is not surprising that the discussion
here will be reminiscent of that of Chapter 5. There is one exception: since the
gain is always time varying, in this chapter, we will not differentiate between gains
that do or do not contain discontinuities.

A brief outline of this chapter is as follows. In Section 6.1 we make the problem
precise. In Section 6.2 we address the question of estimation. In Section 6.3 we
leverage the results of Section 6.2 to design a RACE controller and present some
results that will be useful in proving the main theorem of this chapter. In Section 6.4
we present the main result: we show that our controller design can provide stability
and near optimal (LTI) performance in the face of time varying uncertainty in the
gain g. In Section 6.5 we present two illustrative examples. In Section 6.6 we
discuss a promising avenue for future research in this area and we wrap up with a
summary and concluding remarks in Section 6.7.

Before proceeding, we briefly introduce some notation that will be exclusive to
this chapter. We use the notation ΦA(t, t0) to denote the state transition matrix
corresponding to the square matrix A; furthermore, since we are dealing with time
variations and LTI systems, it will be convenient (and natural) to write gK to
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indicate an LTI function K with a time varying function g on the output.

6.1 Problem Formulation

We are interested in a SISO nominal plant P1 with an unknown gain g at the input;
together, these form the time-varying plant Pg. Furthermore, recall that we model
the signal to be tracked via a (stable) filter W at the exogenous input. In this
section, we provide state-space models for P1, Pg, and W , some assumptions on the
set of admissible gains, definitions of stability and optimal performance, and some
useful notation.

The nominal SISO plant P1 can be modeled via the state-space representation

ẋp(t) = Ap x(t) +Bp u(t), xp(0) = xp0,
y(t) = Cp xp(t),

(6.1)

which we assume to be stabilizable and detectable with relative degree m. It follows
naturally that, for g ∈ PC∞, the TV plant Pg is given by

ẋp(t) = Ap xp(t) +Bp g(t)u(t), xp(0) = xp0,
y(t) = Cp xp(t).

(6.2)

We now turn to the class of admissible gains. To achieve the tracking objective

• it is reasonable to require a bound on the derivative of g, since otherwise it
would be hard to track;

• we need g(t) to be bounded away from zero to ensure that 1
g(t)

is bounded;

• we need g(t) to be bounded (so that we can prove a uniform type of result);
and last of all,

• we require that discontinuities in g be sufficiently far apart.

These requirements can be encapsulated via three parameters:

• a constant cg > 0,

• a compact set G ⊂ R not including zero, and

• a fixed time Ts.

We can then define the set of admissible gains by

G(G, Ts, cg) := {g ∈ PS∞(Ts) : 1) g(t) ∈ G, t ∈ R and
2) esssupt≥0‖ġ(t)‖ ≤ cg};
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hence, the set of admissible TV plants is given by

P := {Pg : g ∈ G(G, Ts, cg)}.

The class of reference signals to be tracked is modeled by the stable, finite
dimensional, LTI, low-pass filter W , which is driven by an exogenous input r. We
model this filter via the following minimal representation:

ẋw(t) = Aw xw(t) +Bw r(t), xw(0) = xw0,
yref (t) = Cw xw(t)

(6.3)

and we make the following key assumption:

Assumption 6.1 The relative degree of W is greater than the relative degree of
P1.

Remark 6.1 Tracking problems tend to be concerned with the low frequency com-
ponent of the signal to be tracked, so if W does not satisfy Assumption 6.1, it can be
made to do so by rolling off the high frequency with minimal effect on the problem.

To incorporate this model into the structure of Figure 2.1, we introduce noise
at the plant input and output (wu and wy respectively), define the tracking error
by

e := yref − (y + wy),

and label the (as yet undefined) controller by C. Together, these yield the closed
loop block diagram shown in Figure 6.2.

To achieve our objective, observe that if the FDLTI controller Klti stabilizes3 P1,
then the controller 1

g
Klti stabilizes Pg and provides the same weighted sensitivity.

Hence, if we first choose Klti such that it stabilizes and provides near (LTI) opti-
mal performance for the nominal plant P1, then, since g is unknown, the problem
becomes that of designing C such that it behaves close to 1

g
Klti when attached to

the plant Pg. Of course, this is easier said than done. In the course of the design

3We will define what we mean by stability in a moment.
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process, we will consider three different controllers, each of which has Klti as a com-
ponent. To that end, it will be useful to adopt the following minimal representation
of Klti:

ẋk(t) = Ak xk(t) +Bk e(t), xk(0) = xk0,
u0(t) = Ck xk(t) +Dk e(t).

(6.4)

It will be convenient to combine the state-space representations of the plant, filter,
and LTI controller, yielding a representation of the augmented open loop system:





ẋp(t)
ẋk(t)
ẋw(t)



 =





Ap 0 0
−BkCp Ak BkCw

0 0 Aw





︸ ︷︷ ︸

=:A





xp(t)
xk(t)
xw(t)





︸ ︷︷ ︸

=:x(t)

+





Bp

0
0





︸ ︷︷ ︸

=:Bu

g(t)u(t)+





0
0
Bw





︸ ︷︷ ︸

=:Br

r(t), x(0) = x0 :=





xp0

xk0

xw0



 ∈ Rn,

u0(t) = [ −DkCp Ck DkCw ]
︸ ︷︷ ︸

=:F

x(t),

e(t) = [ −Cp 0 Cw ]
︸ ︷︷ ︸

=:C

x(t).

(6.5)

With this in hand, we can express our controller C as a combination of Klti together
with an (as yet unspecified) compensator κ given in input-output form:

κ : PC∞ → PC∞
:

[
e
u0

]

7→ u.

This yields the closed loop system shown in Figure 6.3 and the following natural
definition of stability:

Definition 6.1 With x0 = 0, we say that the controller C I/O stabilizes P if, for
every Pg ∈ P the map

(wu, wy, r)→ (u, y, e)

is well defined and has bounded norm.

Observe that, since our closed loop system is linear, finite dimensional, and stabi-
lizable, asymptotic stability is an automatic result of I/O stability. Furthermore, in
the remainder of this chapter, we restrict ourselves to only those FDLTI controllers
Klti that stabilize P1 and label the set of all such controllers by S(P1).

Since we will be investigating the performance of different controller and gain
combinations we would like the notation for the weighted sensitivity to emphasize
this:
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Figure 6.3: Expanded Block Diagram

Definition 6.2 With x0 = 0, wy = 0, and wu = 0, for a given gain g and controller
C, we define the weighted sensitivity by

S(g, C)W : r 7→ e,

so
S(g, C)W := (I + PgC)−1W

and the cost associated with g and C is therefore

‖S(g, C)W‖ := sup
r∈PC∞,

r 6=0

‖ ((I + PgC)−1W ) (r)‖∞
‖r‖∞

.

This leads naturally to the following definition of the optimal cost achievable by an
LTI controller:

αlti := inf
K is LTI and stabilizes P1

‖S(1, K)W‖.

We can now restate our performance objective: we would like to design C so that
‖S(g, C)W‖ can be made as close as desired to αlti, independent of g ∈ G(G, Ts, cg).
As we indicated above, to do so it would clearly be enough to design Klti ∈ S(P1)
so that it provides a cost close to αlti and then apply the controller 1

g
Klti; however,

we can not do so since g is unknown.

6.2 Estimation

As usual, we must perform some estimation. We implied in Section 2.3.1 that
we can estimate the quantities gi[kT ]u0[kT ] reasonably well and then use them to
apply an estimate of the desired control signal. This section is devoted to explaining
how to do this. We begin by outlining the estimation method, then perform an
additional approximation, and finally, show how these can be combined to provide
(an estimate of) the desired control signal. In this section, we assume that the
noise is turned off.

116



6.2.1 Estimating Polynomials in g

Before providing the details, we use a simple (first order) example to outline the
idea behind a single iteration of the estimation process. For simplicity, we will
assume that g is constant. Consider the following nominal plant P1 given by

ẏ(t) = ay(t) + gu(t)

together with the reference model W given by

ẋw(t) =

[
0 1
−α0 −α1

]

︸ ︷︷ ︸

=:Aw

xw(t) +

[
0
β

]

︸ ︷︷ ︸

=:Bw

r(t)

yref (t) =
[

1 0
]

︸ ︷︷ ︸

=:Cw

xw(t).

Recall that our controller’s input is the signal e = yref − y. We will begin by
investigating y. Consider the constant input

u(t) = ū, t ∈ [t0, t0 + h),

which yields

y(t0 + h) = (1 + ah)y(t0) + hgū+O(h2)y(t0) +O(h2)ū.

Unfortunately, the effect of the initial conditions are overriding that of gū. We can
begin to address this problem by rearranging the above equation4:

1

h
[y(t0 + h)− y(t0)] = ay(t0) + gū+O(h)y(t0) +O(h)ū. (6.6)

We now have a situation where, although the initial conditions are no longer dom-
inating, neither is the effect of gū. To combat this, we use a more complicated u;
we first turn off u to get our hands on the initial conditions, and then turn it back
on:

u(t) =

{
0 t ∈ [t0, t0 + 2h)
ū t ∈ [t0 + 2h, t0 + 4h).

With this control signal, we can subtract off (an approximation of) the initial
conditions to obtain the desired signal. Indeed, with this more complicated input
we find the effect of the initial conditions:

y(t0 + h) = (1 + ah)y(t0) +O(h2)y(t0)

4This procedure corresponds to a discrete-time approximation of the derivative of the plant
output, with the estimate improving but noise tolerance worsening as h → 0. This is similar to
the trade-off that arises in PID design with regards to the high frequency roll off of the derivative
term: the higher the frequency, the better the approximation to a pure differentiator, but the
worse the noise tolerance. To make our noise problems even more challenging, as the relative
degree of P1 increases, we will need additional derivative approximations; indeed, we will need m

of them.
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and the effect of ū:

y(t0 + 3h) = (1 + ah)y(t0 + 2h) + hgū+O(h2)y(t0 + 2h) +O(h2)ū

which we combine and rearrange as in (6.6) to provide

1

h
{[y(t0 + 3h)− y(t0 + 2h)]− [y(t0 + h)− y(t0)]} =

= a[y(t0 + 2h)− y(t0)] + gū+O(h)y(t0) +O(h)y(t0 + 2h) +O(h)ū

= a[e2ahy(t0)− y(t0)] + gū+O(h)y(t0) +O(h)e2ahy(t0) +O(h)ū

= gū+O(h)y(t0) +O(h)ū

which is a good approximation of gū. However, our controller’s input is the signal
e, so we must also consider the yref part. Performing a similar analysis, and using
the fact that the relative degree of the reference model is two (so CwBw = 0) we
obtain

1

h
{[yref (t0 + 3h)− yref (t0 + 2h)]− [yref (t0 + h)− yref (t0)]}

=
1

h
Cw

[
e3Awh − e2Awh − eAwh + I

]
xw(t0) +O(h)xw(t0) +O(h)‖r‖∞

= O(h)xw(t0) +O(h)‖r‖∞;

therefore, looking at the error signal e = yref − y we see that

1

h
{[e(t0 + h)− e(t0)]− [e(t0 + 3h)− e(t0 + 2h)]} =

gū+O(h)y(t0) +O(h)ū+O(h)xw(t0) +O(h)‖r‖∞, (6.7)

which is a good approximation of gū.

We now consider the general case. To proceed, we will require four useful
matrices:

Sm :=










1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...
1 m m2 · · · mm










,

Om(C,Ap) :=








C̃

C̃Ãp
...

C̃Ãm
p







,

Xm(h) = diag{1, h, h2/(2!), ..., hm/(m!)},
and

E(t) :=








e(t)
e(t+ h)

...
e(t+mh)







.
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The matrices Sm and Hm arise naturally from the structure of the solution to (6.1)
and (6.3); we show this in Appendix D in the proof of the up-coming Estimation
Lemma. Note that Sm is a Vandermonde matrix and h is non-zero, so both Sm

and Xm(h) are invertible; observe that Xm(h)−1 = O(h−m). Finally, since m is the
relative degree of P1, we are guaranteed that [Cp(Ap)

m−1Bp]
−1 exists. Motivated

by the structure of u and the size of these matrices, we define the probing period
to be

hm := (m+ 1)h.

With em+1 ∈ Rm+1 used to represent the (m+1)th basis vector, we can now rewrite
(6.7) using this notation:

1

h
{[e(t0 + h)− e(t0)]− [e(t0 + 3h)− e(t0 + 2h)]}

=
1

h
{[e(t0 + 2h)− e(t0)]− [e(t0 + 3h)− e(t0 + h)]}

=
[ −1

h
1
h

]
{[

e(t0)
e(t0 + h)

]

−
[
e(t0 + 2h)
e(t0 + 3h)

]}

= eT
m+1Xm(h)−1S−1

m [E(t0)− E(t0 + hm)]

= [Cp(Ap)
m−1Bp]

−1eT
m+1Xm(h)−1S−1

m [E(t0)− E(t0 + hm)].

which is a good approximation to gū.

We now formally state the estimation result:

Lemma 6.1 [Estimation Lemma] There exist constants γ > 0 and h̄ > 0 so

that for every t0 ≥ 0, x0 ∈ Rn, r ∈ PC∞, h ∈ (0, h̄), ū ∈ R, and g ∈
G(G, Ts, cg), the solutions of (6.2) and (6.3) with

u(t) =

{
0, t ∈ [t0, t0 + hm)
ū, t ∈ [t0 + hm, t0 + 2hm),

satisfy the following:

(i) for every g ∈ G(G, Ts, cg)

∥
∥[Cp(Ap)

m−1Bp]
−1eT

m+1Xm(h)−1S−1
m [E(t0)− E(t0 + hm)]

∥
∥ ≤

γ|ū|+ γh [‖xp(t0)‖+ ‖xw(t0)‖+ ‖r‖∞] ,

(ii) and if g is continuous on [t0, t0 + 2hm) then we have:

∥
∥[Cp(Ap)

m−1Bp]
−1eT

m+1Xm(h)−1S−1
m [E(t0)− E(t0 + hm)]− g(t0)ū

∥
∥ ≤

γh [‖xp(t0)‖+ ‖xw(t0)‖+ |ū|+ ‖r‖∞] .
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Proof: Please see Appendix D.

Remark 6.2 Observe that (6.2) and (6.3) do not contain noise signals, so implic-
itly, this result holds on intervals [t0, t0 + 2hm) where w = 0.

In a major departure from the previous three chapters, here we will not take
two estimates in series, allowing our controller (and the closed loop system) to be
linear. In previous chapters, a main goal was to allow for large controller periods;
the introduction of the nonlinearity was critically important to doing so5. Since
this chapter always requires small controller periods, here we would gain very little
from making our controller non-linear. Furthermore, using the nonlinearity requires
either doubling the duration of the Estimation Phase or halving the sampling pe-
riod, the former is an issue since we need small periods, and (although we do not
prove it here) the latter would degrade the noise performance.

The upshot of this lemma is that the known (measurable) quantity

[Cp(Ap)
m−1Bp]

−1eT
m+1Xm(h)−1S−1

m [E [kT ]− E(jT + hm)]

provides us with a good estimate of g[kT ]ū. The natural next step is to feed a scaled
version of that estimate back into the system to obtain an estimate of g2[kT ]ū and
so on. Of course, this only provides us with an estimate of polynomials in g; as in
the previous chapter, an additional approximation is required.

6.2.2 Approximation by a Sampled Data Controller

Recall that the desired control signal is

u(t) =
1

g(t)
u0(t), t ≥ 0.

Unfortunately, this is not a polynomial in g, so we can not use the Estimation
Lemma to estimate it; however, we know from the previous chapter that we can
leverage the Stone-Weierstrass Approximation Theorem [32] to obtain a good ap-
proximation to the desired control signal which is a polynomial in g. Indeed, for
every tolerance ε > 0, the Stone-Weierstrass Approximation Theorem guarantees
the existence of a (real) polynomial

φε(f) :=

q
∑

i=0

aif
i

such that
|1− fφε(f)| < ε, f ∈ G.

5Recall that, if the estimate was generated over an interval with a switch, then the resulting
control signal to be applied over the control phase would also be large, causing havoc with the
plant if allowed to persist due to long controller periods.
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It follows immediately that

‖1− gφε(g)‖∞ < ε, g ∈ G(G, Ts, cg). (6.8)

Observe that, for each ε > 0 there are many polynomials φε that satisfy (6.8); to
that end we adopt the following convention: if we fix ε > 0, then we implicitly
mean that we fix φε so that it satisfies (6.8).

If we use xε to denote the state trajectory when the controller φε(g)Klti is
applied to (6.2), then we can use (6.5) to write the associated closed loop state-
space representation by setting

u(t) = φε(g(t))u0(t)

= φε(g(t))Fxε(t)
︸ ︷︷ ︸

=:uε(t)

, t ≥ 0,

yielding

ẋε(t) = [A+Bug(t)φ
ε(g(t))F ]

︸ ︷︷ ︸

=:Aε
cl

(g(t))

xε(t) +Brr(t), xε(0) := x0,

eε(t) = Cxε(t).

(6.9)

We use the natural notation of ΦAε
cl

(g)(t, t0) to represent the transition matrix asso-
ciated with Aε

cl(g(t)). Clearly, we can obtain a good estimate of the control signal
uε by using the KEL, but before we do so, we first confirm that this provides the
desired performance for the plant Pg if ε is small enough.

Proposition 6.1 For every Klti ∈ S(P1), there exist constants ε̄ > 0, λ0 < 0

and γ0 > 0 such that, for every ε ∈ (0, ε̄), x0 ∈ Rn, r ∈ PC∞, and g ∈
G(G, Ts, cg) the following properties hold:

(i) ‖ΦAε
cl

(g)(t, t0)‖ ≤ γ0e
λ0(t−t0), t ≥ t0,

(ii) the controller φε(g)Klti satisfies

‖S(g, φε(g)Klti)W − S(1, Klti)W‖ ≤ γε.

Proof: Please see Appendix D.

At this point, for every Klti ∈ S(P1), we fix the constants ε̄ > 0, λ0 < 0, and
γ0 > 0 so that they satisfy Proposition 6.1; clearly these constants will depend on
the particular choice of Klti, but we do not make it explicit.
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6.2.3 Applying the KEL

From the discussion of Section 6.2.1, if we set

u(t) =

{
0, t ∈ [kT, kT + hm)
u0[kT ], t ∈ [kT + hm, kT + 2hm),

then it is reasonable to define

Est
{
g[kT ]u0[kT ]

}
:= [Cp(Ap)

m−1Bp]
−1eT

m+1Xm(h)−1S−1
m [E [kT ]− E(kT + hm)],

which is a good estimate of g[kT ]u0[kT ]. The natural next step is to feed a scaled
version of that estimate back into the system to obtain an estimate of g2[kT ]u0[kT ]
and so on, which can be combined to provide a good estimate of control signal

u(t) = φεg[kT ]u0[kT ] ≈ 1

g[kT ]
u0[kT ], t ∈ [kT, (k + 1)T );

clearly, for small T and ε, this provides a good estimate of the desired optimal
control signal.

Observe that this estimate is only good if g is continuous on the interval, so on
periods that contain a discontinuity in g, our estimates will (likely) be poor. That
being said, the Estimation Lemma says that, even if there is a discontinuity, the
size of the estimate is bounded.

6.3 The Controller

In this section, we design the controller C. Our design approach works in the follow-
ing way: we choose a controller Klti ∈ S(P1) that provides acceptable performance
and then design a sampled-data linear periodic compensator κ of period p and
sample time h that performs estimation, yielding an output that behaves much like
that of the controller 1

g
Klti. From the Estimation Lemma and the structure of φε,

we know that we need to obtain q estimates, each of which will take 2hm units of
time to obtain, so the Estimation Phase is of duration T ′ = 2qhm. We could choose
any duration for the Control Phase; for simplicity, we assume that Control Phase
has duration 2hm, so the period is

T = 2(q + 1)hm = 2(q + 1)(m+ 1)h.

Observe that there is a natural relationship between h, hm, T ′, and T .

In the following, we use estimation coefficients ci, which are arbitrary (non-zero)
weights that can be chosen to adjust the size of the control signal u. It will be useful
to define

c−1 := 1,

Est{u0(jT )} := u0(kT ),
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and

Est{cigi+1(kT )u0(jT )} := [Cp(Ap)
m−1Bp]

−1eT
m+1Xm(h)−1S−1

m ×
[
E(kT + 2ihm)− E(kT + (2i+ 1)hm)

]
, i = 0, ..., q − 1.

As usual, we present our controller in open loop form over one period:

THE PROPOSED COMPENSATOR - κ

With Klti ∈ S(P1), ε ∈ (0, ε̄), h ∈ R+, and k ∈ Z+, we define the compensator

by

Stage 1 - Estimation Phase: [kT, kT + T ′)

u(t) =






0 t ∈ [kT, kT + hm)
c0u

0(kT ) t ∈ [kT + hm, kT + 2hm)
0 t ∈ [kT + 2hm, kT + 3hm)
c1
c0
Est{c0g(kT )u0(jT )} t ∈ [kT + 3hm, kT + 4hm)

...
0 t ∈ [kT + 2(q − 1)hm, kT + (2q − 1)hm)
cq−1

cq−2
Est{cq−2g

q−1(kT )u0(jT )} t ∈ [kT + (2q − 1)hm, kT + T ′),

(6.10)

Stage 2 - Control Phase: [kT + T ′, (k + 1)T )

u(t) =
1

2

[
q
∑

i=0

2(q + 1)ai
1

ci−1

Est{ci−1g
i(kT )u0(jT )}−

q−1
∑

i=0

ci
ci−1

Est{ci−1g
i(kT )u0(jT )}

]

, t ∈ [kT + T ′, (k + 1)T ). (6.11)

The controller C consists of Klti and κ, which clearly depends on ε and T ; to
stress this, we re-write it as C(Klti, ε, T ). A graphical representation of the resulting
control signal is given in Figure 6.4. Observe that κ is a periodic sampled-data
controller with period p = 2(q + 1)(m + 1) and sample time h; we can obtain a
state space representation of dimension q + 1 with each state holding one of the
estimates:

z[k + 1] = Az[k]z[k] +Bz[k]

[
u0

e

]

(kh), z[0] = z0 ∈ Rq+1,

u(kh+ τ) = Cz[k]z[k] +Dz[k]

[
u0

e

]

(kh), τ ∈ [0, h),
(6.12)
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t

≈ φε(g[kT ])u0[kT ]

Phase
Control

(k + 1)T

Phase
Estimation

. . .

kT

u(t)

kT + T ′

Figure 6.4: Input signal u for one period T - control phase not to scale.

with Az, Bz, Cz, and Dz periodic of period p. For an example of a construction of
such a representation for a special case, please see Appendix D.

We now investigate the closed loop system’s behaviour over one period. We will
be able to show that, for small T , the effect of the controller C(Klti, ε, T ) is similar
to that of φε(g)Klti, at least over one period.

Lemma 6.2 [One Period Lemma] With Klti ∈ S(P1) and ε ∈ (0, ε̄), there exist

constants γ > 0 and T̄ > 0 so that for every T ∈ (0, T̄ ), x0 ∈ Rn, r ∈ PC∞,

g ∈ G(G, Ts, cg), and k ∈ Z+, when C(Klti, ε, T ) is applied to Pg the solution to

(6.5) satisfies:

(i) In all cases we have

(a)
∥
∥
∥x(t)− ΦAε

cl
(g)(t, kT )x(kT )−

∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ
∥
∥
∥ ≤

γT (‖x(kT )‖+ ‖r‖∞),

(b) ‖u(t)‖ ≤ γ‖x(kT )‖+ γT‖r‖∞, t ∈ [kT, (k + 1)T ).

(ii) If g is absolutely continuous on [kT, (k + 1)T ) then

∥
∥x((k + 1)T )− ΦAε

cl
(g)((k + 1)T, kT )x(kT )−

∫ (k+1)T

kT

ΦAε
cl

(g)((k + 1)T, τ)Brr(τ)dτ
∥
∥
∥ ≤ γT 2(‖x(kT )‖+ ‖r‖∞).

Proof: Please see Appendix D.
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We now consider the entire interval [0,∞) and show that C(Klti, ε, T ) stabilizes
P and provides weighted sensitivity close to that provided by φε(g)Klti. In a major
divergence from prior chapters, observe that stability does not require a lower
bound on Ts.

Proposition 6.2 With Klti ∈ S(P1) and ε ∈ (0, ε̄), there exists a constant

γ > 0 so that, for every sufficiently small T > 0, the controller C(Klti, ε, T )

stabilizes P and satisfies

∥
∥S
(
g, C(Klti, ε, T )

)
W − S

(
g, φε(g)Klti

)
W
∥
∥ ≤ γT, g ∈ G(G, Ts, cg).

Proof: Please see Appendix D.

6.4 The Main Result

In our previous chapters, we considered stability and performance separately; how-
ever, observe that Proposition 6.2 already provides the desired stability result. In-
deed, it says that we can use any stabilizing compensator Klti and any ε ∈ (0, ε̄) to
generate a stabilizing controller C(Klti, ε, T ), provided that T is small enough. We
achieve the desired goal of near optimal LTI performance in the face of uncertainty
in g by leveraging the results of the previous section. To that end, recall that

αlti := inf
K∈S(P1)

‖S(1, K)W‖

and that we would like to design C so that ‖S(g, C)W‖ can be made as close as
desired to αlti, independent of g ∈ G(G, Ts, cg).

Theorem 6.1 For every δ > 0 there exists a compensator Klti ∈ S(P1) and

a constant ε̄1 ∈ (0, ε̄) so that, for every ε ∈ (0, ε̄1), if T > 0 is sufficiently

small, then the controller C(Klti, ε, T ) stabilizes P and provides the following

performance bound:

‖S (g, C(Klti, ε, T ))W‖ ≤ αlti + δ, g ∈ G(G, Ts, cg).

Proof:

Fix δ > 0 and let g ∈ G(G, Ts, cg) be arbitrary. Choose Klti ∈ S(P1) so that it
satisfies

‖S(1, Klti)‖ ≤ αlti +
δ

3
.
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From Proposition 6.1, for every ε ∈ (0, ε̄), it follows directly that

‖S(1, Klti)W − S(g, φε(g)Klti)W‖ ≤ γ0ε;

define

ε̄1 := min

{

ε̄,
δ

3γ0

}

so

‖S(1, Klti)W − S(g, φε(g)Klti)W‖ ≤
δ

3
, ε ∈ (0, ε̄1).

Fix ε ∈ (0, ε̄1). From Proposition 6.2 it follows directly that there exist con-
stants T̄1 > 0 and γ1 > 0 such that for every T ∈ (0, T̄1), the proposed controller
C(Klti, ε, T ) stabilizes P and satisfies

‖S(g,K)W − S(g, φε(g)Klti)W‖ ≤ γ1T ;

define

T̄2 := min

{

T̄1,
δ

3γ1

}

.

If we combine the above inequalities, then it follows that

‖S(g,K)W‖ = ‖S(g,K)W − S(g, φε(g)Klti)W +

S(g, φε(g)Klti)W − S(1, Klti)W + S(1, Klti)W‖
≤ ‖S(g,K)W − S(g, φε(g)Klti)W‖+

‖S(g, φε(g)Klti)W − S(1, Klti)W‖+ ‖S(1, Klti)W‖

≤ δ

3
+
δ

3
+ (αlti +

δ

3
)

= αlti + δ, T ∈ (0, T̄2).

Remark 6.3 From the above proof we see that, for each Klti, the controller C(Klti, ε, T )
recovers the performance ‖S(1, Klti)W‖ for small values of ε and T .

6.5 Examples

Here we discuss two examples to illustrate the proposed design. First, we will
consider a setup that incorporates our standard two plants −1

s−1
and 1

s−1
; since it

is minimum-phase, this problem is better solved by using the methods in [22] -
we consider it for completeness. Our second example is more complicated and
considers a second order, non-minimum phase nominal plant.
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6.5.1 Example 1

We consider the nominal plant

P1 : (Ap, Bp, Cp) = (1, 1, 1)

the compact set
G = [−

√
2,−1] ∪ [1,

√
2],

the minimum time between switches

Ts = 2,

and the derivative bound
cg = 1.

Observe that the relative degree of P1 is m = 1. The class of signals to be tracked
is modeled via the filter

W : Aw =

[
0 1
−1 −2

]

, Bw =

[
0
1

]

, Cw =
[

1 0
]
.

We begin the controller design by selecting the (non-optimal) LTI compensator

Klti = 10

and choosing the inter-sample time

h = 0.001.

We use the optimal approach outlined in [35] to find the polynomial

φ0.011(g(t)) = 0.3431g5(t)− 1.5147g3(t) + 2.1642g(t).

Finally, for simplicity, we choose the arbitrary constants ci = 1, i = 0, .., q.

In this simulation we will consider the particular case where all initial conditions
are zero, r is a square wave with period 4π:

r = sgn(cos(π/2)),

and g is a scaled sinusoid that switches between the positive and negative parts of
G:

g(t) =

√
2− 1

2
sin(2t) +

√
2 + 1

2
sgn(cos(2t/3)).

We see from Figure 6.5 that the output follows the desired path quite well; further-
more, if we were to overlay the optimal output y, it would lie on top of our actual
output. We suspect that it is possible to optimize the choice of ci to reduce the
size of the control signal, but that is beyond the scope of this thesis. Figure 6.6
provides a zoomed in view of the control signal to better illustrate the behaviour
of the controller. Since this example was presented for completeness, we do not
consider noise and non-zero initial conditions (we will do so in our next example).
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Figure 6.5: Example 1
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Figure 6.6: Example 1 - zoomed control signal u
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6.5.2 Example 2 - A Non-Minimum Phase System

We now move to our second example. The methods in [22] cannot handle non-
minimum phase plants, so here we consider the following unstable non-minimum
phase nominal plant:

P1 : Ap =

[
0 1
0 −1

]

, Bp =

[
0
1

]

, Cp =
[
−1 1

]
,

whose relative degree is m = 1. We consider the same set of admissible gains:

G([−
√

2,−1] ∪ [1,
√

2], 2, 1)

and filter:

W : Aw =

[
0 1
−1 −2

]

, Bw =

[
0
1

]

, Cw =
[

1 0
]
.

Using the concepts outlined in [4] we find that the LTI optimal cost is 0.5.

We begin the controller design by selecting the LTI compensator

Klti = −0.9
s+ 1

0.01s+ 1
,

which provides a cost of 0.82. We use the same polynomial φ as in our first example.
Finally, we again choose the arbitrary constants ci = 1, i = 0, .., q.

In the first simulation we will consider the particular case where all initial con-
ditions are zero, r is a square wave with period 8π, and g is the same as in the first
example. We look at two different inter-sample times h = 0.0001s and h = 0.00005s
and we see from Figures 6.7 and 6.8 that, in both cases, the output follows the de-
sired path reasonably well, considering that our plant is unstable and non-minimum
phase; furthermore, for smaller h the output more closely matches the optimal one,
as expected (this is further highlighted in Figure 6.9). As in the first example,
we suspect that it is possible to optimize the choice of ci to reduce the size of the
control signal, but that is beyond the scope of this thesis.

Finally, we turn off the exogenous input r and add noise on the plant output with
size 10−4 from t = 2.4s to t = 10.8s and we consider h = 0.0008s and h = 0.0002s.
Results are shown in Figures 6.10 and 6.11. As usual, a smaller h leads to larger
noise gains.

6.6 Controller Redesign - Ideas for Future Work

There are three obvious drawbacks to the above approach:

(i) As usual, the noise gains are large.
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Figure 6.7: Example 2 - h = 0.00005s.
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Figure 6.8: Example 2 - h = 0.0001s.
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Figure 6.10: Example 2 with noise - h = 0.00008s.
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Figure 6.11: Example 2 with noise - h = 0.00002s.

(ii) The control signal is very ‘jumpy’ and requires fast actuators.

(iii) As the desired performance approaches the optimal one, the complexity of
the controller increases (as ε→ 0 we typically have q →∞).

It is not clear how to address (i) or (iii) directly; indeed, (iii) appears to be an
artifact of the design approach. To attempt to mitigate (ii), it is natural to try to
perform estimation on top of the control signal; it turns out that a new estima-
tion approach based on this idea [23] appears to solve (iii) and provide significant
improvements to (i). The idea behind this approach is as follows: rather than es-
timate the optimal control signal, we attempt to estimate the error between our
previous estimate and the optimal control signal. This is a promising avenue for
future work. Since we do not yet have any details, we will provide a rough outline
of the approach in order to illustrate the expected benefits.

It turns out that using a test signal of the form

u(t) =

{
α+ β t ∈ [t0, t0 + τ/2)
α− β t ∈ [t0 + τ/2, t0 + τ)

yields a good estimate of 2βg(t0). If we define our estimate of the previous period’s
optimal control signal via

ûk := Est
{
φε(g[(k − 1)T ])u0[(k − 1)T ]

}
≈ 1

g[(k − 1)T ]
u0[(k − 1)T ],
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Figure 6.12: New Input Signal for Redesigned Controller.

and assume that it is a reasonably good estimate for not only the previous period,
but for the current one as well6, then we could imagine setting β = ûk and using a
very small α to probe with. For example, with ρ a scaling factor, we could set

u(t) =

{
ûk + ρu0[kT ] t ∈ [kT, kT + hm)
ûk − ρu0[kT ] t ∈ [kT + hm, kT + 2hm),

which yields a good estimate of 2ρg[kT ]u0[kT ], which we then feed back to obtain
a good estimate of 2ρg2[kT ]u0[kT ], and so on, from which we could generate our
estimate of

ûk+1 = Est
{
φεu0[kT ]

}
.

Figure 6.12 shows an example of this new control signal; observe that the probing
takes place around the quantity ûk which is updated each period to reflect the new
estimate.

Unfortunately, the above approach only has the effect of mitigating (ii). Instead
we will try to use an estimate of the error between the previous estimate and the
current optimal control signal to construct the optimal control signal: define

f [kT ] := u0[kT ]− g[kT ]ûk,

so
1

g[kT ]
f [kT ] =

1

g[kT ]
u0[kT ]− ûk

is the error signal that we wish to estimate. To do so, we first probe with ûk to
generate an estimate of g[kT ]ûk, which we use (in conjunction with the known signal
u0) to construct a good estimate of f which we can use to estimate the quantites
g[kT ]f [kT ], g2[kT ]f [kT ], etc.. Finally, we combine these estimates to yield

φε(g[kT ])f [kT ] ≈ 1

g[kT ]
f [kT ];

therefore, we can construct

ûk+1 := Est
{
φε(g[kT ])f [kT ]

}
+ ûk ≈

1

g[kT ]
u0[kT ].

6The validity of this assumption relies on the period being small.
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At this point, it is unclear what all of this extra work has bought for us; however,
observe that

ûk+1 = Est
{
φε(g[kT ])f [kT ]

}
+ ûk

≈ φε(g[kT ])f [kT ] + ûk

= φε(g[kT ])
[
u0[kT ]− g[kT ]ûk

]
+ ûk

=
(
1− φε(g[kT ])g[kT ]

)

︸ ︷︷ ︸

<ε

ûk + φε(g[kT ])u0[kT ],

which clearly converges for any ε < 1. The upshot of this is that, to obtain near
optimal performance, we only need our polynomial estimate to be good enough to
ensure that ε < 1; indeed, it turns out that, if the sign of the gain is not known,
then a first order polynomial is enough, while if the sign is known, then a constant
is sufficient.

This discussion has many ramifications. First, complexity is no longer an issue
and, (perhaps more importantly) since the complexity directly contributes to our
noise problems, we expect significantly improved noise performance. Additionally,
this controller performs estimation and control simultaneously. Finally, the result-
ing control signal is much more aesthetically pleasing. Of course, proving this result
will require totally new tools and will not be straightforward since, unlike all of our
previous controllers, this controller has memory from one period to the next.

6.7 Summary and Conclusions

In this chapter we show that we can obtain near LTI optimal weighted sensitivity
in the face of time-varying uncertainty in the plant’s input gain. To do so, we
design a linear periodic RACE controller that requires a short period; this short
period requirement leads to one major drawback: we expect poor noise tolerance.
At the end of this chapter, we proposed a change to the estimation method which
alleviates the noise issue while providing several totally unexpected benefits; for
example, we no longer require small ε to obtain near optimal performance, so the
polynomial order can be drastically reduced. This new method provides a very
promising avenue for future work.

134



Chapter 7

Summary and Concluding
Remarks

In this thesis the goal was to provide stability and near-optimal performance for
two classes of time varying uncertain plants. The first class of time-varying plants
arises from allowing (sufficiently slow and possibly persistent) switching between
elements of a (possibly infinite) set of LTI plants, while the second class arises from
allowing a fairly general time-varying gain at the input of an otherwise LTI nominal
plant.

The key idea behind our control approach is to periodically estimate and then
apply the optimal control signal. The resulting controllers adapt to changes in
the plant parameters and are able to provide performance that is robust to uncer-
tainty, so we refer to them as Robust Adaptive Control signal Estimation (RACE)
Controllers.

For the first class of uncertainty, we start by designing a RACE controller to
handle the simple case of a finite set of plants and then show that, with minor
modifications, the same approach can be used to provide near-optimal step tracking.
The estimation method is very straightforward and does not require probing. These
controllers contain a mild nonlinearity to handle plant switches, allowing for larger
controller periods and slower sampling than previous RACE approaches, leading
to improved noise tolerance. We also provide an easily computable bound on how
often switches are allowed.

We complete the investigation of the first class by considering the case of a
compact set of LTI plants; estimation is significantly more complex in this case,
requiring active probing. We consider only SISO plants and ignore noise in the
analysis; furthermore, we only prove the performance result for the time-invariant
case (i.e., we do not allow plant switches). As above, this controller also uses a
mild nonlinearity to handle plant switches; however, here we require fast sampling
(we can still allow large controller periods), so it is unclear how much of an im-
provement we should expect with respect to noise. That being said, in this context
no previous RACE controllers have been shown to stabilize such a system in the
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face of persistent switching. A major drawback of this approach (shared with that
of [25]) is that it is difficult to find the required polynomial approximation and its
associated coefficients.

We conclude the thesis by investigating the second class of uncertainty; i.e.,
the TVGM problem. We allow the uncertain gain to be quite general and design a
RACE controller to achieve the objectives of stability and near optimal performance
in the face of that uncertainty. Although the problem requires active probing, our
estimation method is simpler than that of the Compact Stability problem discussed
above. Unlike the previous controllers, here we do not require the nonlinearity, so
the closed loop system in linear periodic; however, we do require small controller
periods, so we expect larger noise gains.

7.1 Future Work

Regarding the first class of stability, although our first two RACE controllers have
smaller gains than their predecessors (and therefore we expect improved noise tol-
erance), it still remains to perform noise analysis with the goal of finding ways to
reduce the noise gain. Additionally, we suspect that the robustness results of [26]
could be extended to our setting, which would allow a framework similar to that
of [42], in which more general time variations are modeled as piecewise constant
ones, with the difference absorbed into unmodeled plant dynamics. Furthermore,
in addition to the problem of LQR performance, [25] investigates the problem of
pole placement and shows that the optimal control laws have similar structure. We
expect that our results can be extended to the pole placement setting. Finally, we
indicated that defining optimal performance in the context of plant switches is not
straightforward; an alternative definition would be to consider the finite horizon
cost, where the horizon is the period of the controller.

In the particular case of the Compact Stability problem, there are significant
opportunities for future work beyond those indicated above. The most obvious
is to complete the analysis in the same vein as the first two problems; i.e., prove
I/O stability (in the face of noise) and near-nominal performance in the face of
persistent plant switches. An additional avenue of future work is that of studying
efficient ways of finding the polynomial Hε and the coefficients di,j.

Finally, at the end of Chapter 6, we presented a high level outline of a very
promising avenue of future work for all of our settings. The idea is to use the
previous period’s estimate as the baseline control signal and then probe on top
of it with the goal of estimating the error between the current control signal and
the optimal control signal; we then update the control signal for the next period
accordingly. This approach was originally proposed as a way to perform estimation
and control simultaneously with the goal of making the control signal less ‘jumpy’;
however, there are several totally unexpected and highly desirable side effects. Two
of the most significant are that the noise gain is significantly reduced, as is the
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complexity of the controller. We expect that this approach can be applied to the
TVGM problem as well as the Compact Stability problem; in the latter case this
could lead to additional benefits since the complexity of the controller directly
relates to the order of the polynomial approximation Hε.
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Appendix A

Proofs from Chapter 3

Proof of Proposition 3.1:

Fix Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2). Let σ ∈ ΣTs
, x0 ∈ Rn, and w ∈ PC∞

be arbitrary.

(i)

Let k ∈ {kl : l ∈ N}c be arbitrary. Observe that σ(t) is constant on [kT, (k+ 1)T );
we denote its value by i, which means that the plant is Pi on this interval. We
begin by solving (3.5) over t ∈ [kT, kT + 2T ′). Note that, in this interval,

Ĥ(t) = 0,

so
ν(t) = 0

as well; therefore,

e(t+ kT ) = Cie
Âitx[kT ] + Ci

∫ t

0

eÂi(t−τ)Liwk(τ)dτ +
[

0 I
]
wk(t)

︸ ︷︷ ︸

=:fi(wk,t)

, t ∈ [0, 2T ′).

We substitute this into (3.11) and then use (3.16) to find that

v1[k] = Eix[kT ] +

∫ T ′

0

S(t)Cifi(wk, t)dt

︸ ︷︷ ︸

=:φ1,i(wk)

, (A.1)

similarly, for v2 we find

v2[k] = Eix[kT ] +

∫ 2T ′

T ′

S(t)Cifi(wk, t)dt

︸ ︷︷ ︸

=:φ2,i(wk)

. (A.2)
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Note that, in (A.1) and (A.2), v1 and v2 are implicit functions of i, wk, and x[kT ];
with this in mind, we define χi to be the selector function

χi(wk, x[kT ]) :=

{
1 if argmin{‖v1[k]‖, ‖v2[k]‖} = v1[k]
0 if argmin{‖v1[k]‖, ‖v2[k]‖} = v2[k],

so we can write

argmin{‖v1[k]‖, ‖v2[k]‖} =

Eix[kT ] + χi(wk, x[kT ])φ1,i(wk) + (1− χi(wk, x[kT ]))φ2,i(wk); (A.3)

from (3.13) it follows that

ν(t) = Ĥ(t)
[
Eix[kT ] + χi(wk, x[kT ])φ1,i(wk) + (1− χi(wk, x[kT ]))φ2,i(wk)

]

= Ĥi(t)x[kT ] + Ĥ(t)
[
χi(wk, x[kT ])φ1,i(wk) + (1− χi(wk, x[kT ]))φ2,i(wk)

]
,

t ∈ [kT, (k + 1)T ).

Substituting this into the first equation of (3.5) and using the fact that

σ(t) = i, t ∈ [kT, (k + 1)T )

yields the desired equation:

ẋ(t) = Âσ(t)x(t) +Bσ(t)Ĥσ(t)(t)x[kT ] +
[

Bσ(t)Ĥ(t) Lσ(t)

]
×

[
χσ(t)(wk, x[kT ])φ1,σ(t)(wk) + [1− χσ(t)(wk, x[kT ])]φ2,σ(t)(wk)

w(t)

]

,

t ∈ [kT, (k + 1)T ).

Last of all, it is straight-forward, though tedious, to show that φ1,i and φ2,i have
bounded gain.

(ii)

Let l ∈ N be arbitrary. To obtain the desired result we consider three cases.

Case 1: Switch occurs in the Control Phase: tl ∈ [klT + 2T ′, (kl + 1)T ).

Here the samplers are not affected by the switch, so (A.1), (A.2), and (A.3) hold
(with k = kl and i = il−1); since φi,1 and φi,2 have bounded gain for every i = 1, ..q,
it follows that there exists a constant γ1(T, T

′) > 0 that is independent of i such
that

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ‖x[klT ]‖+ γ1(T, T
′)‖w‖∞ (A.4)

Case 2: Switch occurs during the second sample: tl ∈ [klT + T ′, klT + 2T ′).

Here, the first sampler is not affected; therefore, (A.1) still holds and it follows
that we again obtain (A.4).
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Case 3: Switch occurs during the first sample: tl ∈ [klT, klT + T ′).

Here, we have two possibilities: tl = klT and tl > klT
1. We begin by considering

the former. Here σ(t) is constant on [klT, klT + T ′), so it follows that (A.1) and
(A.2) hold (this time with k = kl and i = il) and we again obtain (A.4).

The other case is that of tl ∈ (klT, klT + T ′). Unfortunately, the first sampler
yields a possibly large output, and, due to the plant switch, (A.2) does not hold.
Fortunately, we can still obtain a nice bound on ‖v2[kl]‖. We begin by recognizing
that, since tl < klT + T ′, we have

e(t) = Cile
Âil

(t−klT−T ′)x[klT + T ′] +

Cil

∫ t

klT+T ′

eÂil
(t−τ)Lilw(τ)dτ +

[
0 I

]
w(t)

︸ ︷︷ ︸

=:g0,il
(w,T,T ′,t)

,

t ∈ [klT + T ′, klT + 2T ′)

so from (3.12), (3.17), and (3.18) we have

v2[kl] =

∫ klT+2T ′

klT+T ′

S(t)e(t) dt

= Eile
−Ail

T ′

x[klT + T ′] +

∫ klT+2T ′

klT+T ′

S(t)g0,il(w, T, T
′, t)dt

︸ ︷︷ ︸

=:g1,il
(T,T ′,w)

. (A.5)

We would like to write our bound in terms of x[klT ] instead of x[klT + T ′]. To do
so, we first observe that

x[klT + T ′] = eÂil
(klT+T ′−tl)x(tl) +

∫ klT+T ′

tl

eÂil
(klT+T ′−τ)Lilw(τ)dτ

︸ ︷︷ ︸

=:g2,il
(T,T ′,w,tl)

and

x(t
)
l = eÂil−1

(tl−klT )x[klT ] +

∫ tl

klT

eÂil−1
(tl−τ)Lil−1

w(τ)dτ

︸ ︷︷ ︸

=:g3,il
(T,T ′,w,tl)

.

If we define

φ̂il(T, T
′, w, tl) := g1,il(T, T

′, w) + Eile
−Âil

T ′

g2,il(T, T
′, w, tl) +

Eile
−Âil

(tl−klT )g3,il(T, T
′, w, tl)

1The astute reader may be concerned that our result will not hold if σ is such that t1 < T .
Recall that there is no discontinuity at t0, so even if t1 < T , there can be at most one discontinuity
on [0, T ), occurring at t1.
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then these two equalities combine with (A.5) to provide

v2[kl] = Eile
−Âil

(tl−klT )eÂil−1
(tl−klT )x[klT ] + φ̂il(T, T

′, w).

Since there are a finite number of plants, it is straightforward, though tedius, to
show that φ̂il has the property that there exists a constant γ2(T, T

′) > 0 such that

max
t∈[klT,(kl+1)T ]

‖φ̂il(T, T
′, w, t)‖ ≤ γ2(T, T

′)‖w‖∞, l ∈ N,

so we have

‖v2[kl]‖ ≤ max
t∈[0,T ′)

∥
∥
∥e−Âil

teÂil−1
t
∥
∥
∥ ‖x[klT ]‖+ γ2(T, T

′)‖w‖∞;

using the definition of ρ(T ′) we obtain

‖v2[kl]‖ ≤ ρ(T ′)‖x[klT ]‖+ γ2(T, T
′)‖w‖∞. (A.6)

Since we clearly have
ρ(T ′) ≥ 1

we can combine (A.4) and (A.6) to find that, no matter whether or not tl = klT
we have

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖x[klT ]‖+

max{γ1(T, T
′), γ2(T, T

′)}
︸ ︷︷ ︸

=:γv(T,T ′)

‖w‖∞. (A.7)

Clearly, (A.7) holds in all three cases, so it provides the desired bound.

Proof of Theorem 3.4:

Fix ε > 0, Ts > Ts, and w = 0; let σ ∈ ΣTs
and T ∈ (0, T̄ (Ts)) be arbitrary.

Stability follows directly from Theorem 3.2. Since Ts is fixed, to reduce clutter we
write T̄ instead of T̄ (Ts). We set

ρ := ρ(Ts/4).

As in the proof of Theorem 3.3, we define

x̃ := x− x0

and
ν̃ := ν − ν0.

Finally observe that it is enough to prove that, if T is sufficiently small, then there
exists a constant T̄ ′(T ) ∈ (0, T/2) such that, for every T ′ ∈ (0, T̄ ′(T )) we have the
desired result.

We first deal with the special case of l = 0.
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Claim 0: There exists a constant T̄ ′
0(T ) ∈ (0, T/2) so that, if T ′ ∈ (0, T̄0(T )), then

|J[0,t1)(x(tl))− J0
[0,t1)(x(tl))| ≤ ε‖x0‖2, x0 ∈ Rn.

Proof:

On the interval [0, t1), σ(t) is constant, so Theorem 3.3 can be applied: it states
that, if T ′ is sufficiently small then, irrespective of the value of σ(t) on [0, t1), we
have

|J[0,t1)(x(tl))− J0
[0,t1)(x(tl))| ≤ ε‖x(t0)‖2, x0 ∈ Rn,

so the result follows immediately.

Before we move on, recall that, with εH given by (3.23), from Lemma 3.1 we
have that

‖H̃i(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T ), T ′ ∈ (0, T/2) i = 1, .., q,

observe that, from the definition of Ĥ we have that

Ĥ(t) =

{
0 t ∈ [0, 2T ′)

H(t) + H̃(t) t ∈ [2T ′, T ),

so clearly
‖Ĥ‖∞ ≤ fγ0 + εH(T, T ′), T ′ ∈ (0, T/2).

Unlike in the proof of Theorem 3.3, here we will not need to (explicitly) make εH

small; indeed, it will be enough to simply bound ‖Ĥ‖∞. To that end, we observe
that Lemma 3.1 says that, for every T ∈ (0, T̄ ),

lim
T ′→0

εH(T, T ′) = 0,

so, for every T ∈ (0, T̄ ), there exists a constant T̄ ′
1(T ) ∈ (0, T̄ ′

0(T )) so that

‖Ĥ‖∞ ≤ fγ0 + 1, T ′ ∈ (0, T̄ ′
1(T )). (A.8)

We now turn to the general case: let l ∈ N be arbitrary. It will be useful to
partition each interval into two parts; this is best illustrated via Figure A.1. We will
be able to leverage Theorem 3.3 to provide a nice result for the second part of the
interval shown in Figure A.1, but to do so we must first investigate two important
issues that do not arise when there are no switches:

(i) From Proposition 3.1(ii), we know that in intervals with a switch, the size of
the controller output depends on x[klT ]; however, we wish to obtain results
in terms of x(tl).

(ii) The control applied during [tl, (kl + 1)T ) will likely be wrong, so, unlike the
case where there are no switches, we will likely not have x[(kl + 1)T ] =
x0[(kl + 1)T ].
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Figure A.1: Partitioning of one interval - time axis is not to scale. Here (i) is
the portion of the period immediately following a switch, while (ii) contains the
remainder of the period.

We begin by investigating (i).

Claim 1: There exists a constant γ1 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )), we have

‖x[klT ]‖ ≤ γ1‖x(tl)‖.

Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. If tl = klT , then we conclude that the result

is trivially true as long as γ1 ≥ 1. If tl > klT , then we proceed by solving (3.5)
backwards in time to yield

x[klT ] = e
Âi(l−1)

(klT−tl)x(tl) +

∫ klT

tl

e
Âi(l−1)

(klT−τ)
Bi(l−1)

ν(τ)dτ. (A.9)

Since the period [klT, (kl + 1)T ) contains a switch, we use Proposition 3.1(ii) to
bound the size of the sampler output, yielding

‖ν(t)‖ ≤ ‖Ĥ(t)‖ρ‖x[klT ]‖, t ∈ [klT, (kl + 1)T ). (A.10)

We can take norms on both sides of (A.9), use (A.8) to bound ‖Ĥ(t)‖, and simplify,
yielding

‖x[klT ]‖ ≤ eaT‖x(tl)‖+

∫ tl

klT

eaT b(fγ0 + 1)ρ‖x[klT ]‖ dτ ;

therefore,
‖x[klT ]‖ ≤ eaT̄‖x(tl)‖+ TeaT̄ b(fγ0 + 1)ρ‖x[klT ]‖.

With
α := eaT̄ max{1, bρ(fγ0 + 1)},
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it follows that
‖x[klT ]‖ ≤ α

[
‖x(tl)‖+ T‖x[klT ]‖

]

and therefore
[
1− αT

]
‖x[klT ]‖ ≤ α‖x(tl)‖

Clearly

‖x[klT ]‖ ≤ α

1− αT ‖x(tl)‖

≤ 2α‖x(tl)‖, T ∈
(

0,min

{

T̄ ,
1

2α

})

.

We now investigate the difference between the nominal and the actual state at
(kl + 1)T .

Claim 2: There exists a constant γ2 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )), we have

‖x̃(t)‖ ≤ γ2T‖x(tl)‖, t ∈ [tl, (kl + 1)T ]

and
‖x(t)‖ ≤ γ2‖x(tl)‖, t ∈ [tl, (kl + 1)T ].

Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. Using the definitions of x0 and ν0 given by (3.52)

and (3.51) respectively, we obtain

ẋ0(t) = Âilx
0(t) +Bilν

0(t), t ∈ [tl, tl+1]

which combines with (3.5) to yield

˙̃x(t) = Âil x̃(t) +Bil ν̃(t), t ∈ [tl, tl+1].

Solving this and using the fact that x(tl) = x0(tl), we find that

x̃(t) =

∫ t

tl

eÂil
(t−τ)Bil ν̃(τ)dτ, t ∈ [tl, tl+1];

therefore,

x̃(t) =

∫ t

tl

eÂil
(t−τ)Bil (ν(τ)−Hil(τ)x(tl)) dτ, t ∈ [tl, (kl + 1)T ] ⊂ [tl, tl+1].

We then take the norm of both sides and use (A.10) and (A.8) to yield

‖x̃(t)‖ ≤
∫ T

0

eaT b [(fγ0 + 1) ρ‖x[klT ]‖+ fγ0‖x(tl)‖] dτ

≤ TeaT̄ b
[
(fγ0 + 1)ρ‖x[klT ]‖+ fγ0‖x(tl)‖

]
, t ∈ [tl, (kl + 1)T ]
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to which we apply Claim 1 to find that, if T is sufficiently small, then

‖x̃(t)‖ ≤ eaT̄ b
[
(fγ0 + 1)ργ1 + fγ0

]

︸ ︷︷ ︸

=:α1

T‖x(tl)‖, t ∈ [tl, (kl + 1)T ],

which provides the first desired result. To obtain the second desired result, observe
that it follows immediately from the definition of x0 that

‖x0(t)‖ ≤ γ0‖x0(tl)‖, t ∈ [tl, (kl + 1)T ],

so we conclude that, if T ∈ (0, T̄ ) is sufficiently small, then

‖x(t)‖ ≤ ‖x̃(t)‖+ ‖x0(t)‖
≤ (α1T̄ + γ0)

︸ ︷︷ ︸

=:α2

‖x(tl)‖, t ∈ [tl, (kl + 1)T ].

As indicated earlier, we would like to leverage Theorem 3.3; since the period
[klT, (kl + 1)T ) contains a switch, we will not be able to do so for the interval
[tl, (kl + 1)T ). Recall that the proof of Theorem 3.3 was motivated by (3.50) and
that we found bounds on ‖x̃(t)‖,

∫
‖ν(t)‖dt, and

∫
‖ν(t)‖2dt to find the desired

result; we will do the same for the interval [tl, (kl + 1)T ). Observe that Claim 2
already provides a nice bound on ‖x̃(t)‖; we now turn to

∫
‖ν(t)‖dt and

∫
‖ν(t)‖2dt:

Claim 3: There exists a constant γ3 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )) we have

∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤ γ3T‖x(tl)‖

and ∫ (kl+1)T

tl

‖ν̃(t)‖2dt ≤ γ3T‖x(tl)‖2.
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Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. Observe that
∫ (kl+1)T

tl

‖ν̃(t)‖dt =

∫ (kl+1)T

tl

(‖ν(t)− ν0(t)‖)dt

≤
∫ (kl+1)T

tl

(‖ν(t)‖+ ‖ν0(t)‖)dt

≤
∫ (kl+1)T

tl

(‖ν(t)‖+ fγ0‖x(tl)‖)dt,

so using (A.10) and (A.8) we find that
∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤
∫ (kl+1)T

tl

[(fγ0 + 1)ρ‖x[klT ]‖+ fγ0‖x(tl)‖] dt

≤ T [(fγ0 + 1)ρ‖x[klT ]‖+ fγ0‖x(tl)‖] .
We now apply Claim 1 to find that, if T > 0 is sufficiently small, then

∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤ T
{ [

(fγ0 + 1)ργ1 + fγ0

]

︸ ︷︷ ︸

=:α1

‖x(tl)‖
}

.

Similarly, we find that, if T > 0 is sufficiently small, then
∫ (kl+1)T

tl

‖ν̃(t)‖2dt ≤
∫ (kl+1)T

tl

(‖ν(t)‖+ ‖ν0(t)‖)2dt

≤
∫ (kl+1)T

tl

[
(fγ0 + 1)ργ1 + fγ0

]2‖x(tl)‖2dt

≤ Tα2
1‖x(tl)‖2.

With γlqr > 0 defined in (3.48), for every interval [t, t̄) ⊂ [tl, tl+1), it is routine
to confirm that the procedure used to derive (3.49) can be applied here to show
that
∣
∣
∣J[t,t̄)(x(tl))− J0

[t,t̄)(x(tl))
∣
∣
∣ ≤

γlqr

∫ t̄

t

(
‖x0(t)‖‖x̃(t)‖+ ‖x̃(t)‖2 + ‖ν0(t)‖‖ν̃(t)‖+ ‖ν̃(t)‖2+

‖ν̃(t)‖‖x̃(t)‖+ ‖ν0(t)‖‖x̃(t)‖+ ‖ν̃(t)‖‖x0(t)‖
)
dt.

We now apply the definitions of x0 and ν0 found in (3.52) and (3.51) yielding
∣
∣
∣J[t,t̄)(x(tl))− J0

[t,t̄)(x(tl))
∣
∣
∣ ≤

γlqr

∫ t̄

t

[
γ0(1 + f)eλ0(t−tl)‖x(tl)‖ (‖x̃(t)‖+ ‖ν̃(t)‖) +

‖x̃(t)‖2 + ‖ν̃(t)‖2 + ‖ν̃(t)‖‖x̃(t)‖
]
dt.
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If we apply Claims 2 and 3, then we find that there exists a constant α3 > 0 such
that, if T > 0 is sufficiently small and T ′ ∈ (0, T̄ ′

1(T )), we have

∣
∣J[tl,(kl+1)T )(x(tl))− J0

[tl,(kl+1)T )(x(tl))
∣
∣ ≤ α3T‖x(tl)‖2. (A.11)

It remains to analyze the second part of the interval, namely [(kl + 1)T, tl+1).

Claim 4: If T is sufficiently small, then there exists a constant T̄ ′
2(T ) ∈ (0, T̄ ′

1(T ))
so that, for every T ′ ∈ (0, T̄ ′

2(T )), we have that
∣
∣
∣J[(kl+1)T,tl+1)(x(tl))− J0

[(kl+1)T,tl+1)(x(tl))
∣
∣
∣ ≤ ε

2
‖x(tl)‖2.

Proof:

On the interval of interest, namely [(kl + 1)T, tl+1), there are no switches. Recall
that, in Theorem 3.3 we showed that we can obtain a nice performance bound when
there are no switches; however, there we had the nice property that x[(kl + 1)T ] =
x0[(kl + 1)T ], which is typically not the case here. Nonetheless, we would like to
leverage Theorem 3.3, so we define

x̂0(t) := eĀil
(t−(kl+1)T )x[(kl + 1)T ], t ∈ [(kl + 1)T, tl+1), (A.12)

ν̂0(t) := File
Āil

(t−(kl+1)T )x[(kl + 1)T ], t ∈ [(kl + 1)T, tl+1), (A.13)

and
ê0(t) := Cilx̂

0(t), t ∈ [(kl + 1)T, tl+1),

and then define

Ĵ0
[(kl+1)T,tl+1)(x(tl)) :=

∫ tl+1

(kl+1)T

Mil(x̂
0(t), ν̂0(t), ê0(t))dt.

Claim 2 says that, if T > 0 is sufficiently small, then for every T ′ ∈ (0, T̄ ′
1(T )), we

have
‖x[(kl + 1)T ]‖ ≤ γ2‖x(tl)‖;

since our closed loop system is periodic with period T , we can combine this with
Theorem 3.3 applied to the interval [(kl + 1)T, tl+1) to find that, if T is sufficiently
small, then there exists a constant T̄ ′

2(T ) ∈ (0, T̄ ′
1(T )) so that, for every T ′ ∈

(0, T̄ ′
2(T )), we have

∣
∣
∣J[(kl+1)T,tl+1)(x(tl))− Ĵ0

[(kl+1)T,tl+1)(x(tl))
∣
∣
∣

≤
∫ tl+1

(kl+1)T

‖Mil(x(t), ν(t), e(t))−Mil(x̂
0(t), ν̂0(t), ê0(t))‖dt

≤ ε

4γ2
2

‖x[(kl + 1)T ]‖2

≤ ε

4
‖x(tl)‖2. (A.14)
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We now find a relationship between Ĵ0(x(tl)) and the nominal cost J0(x(tl)).
We define

x̃0 := x̂0 − x0

and
ν̃0 := ν̂0 − ν0;

as before, it is routine to confirm that the procedure used to derive (3.49) can be
applied here to show that
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣ ≤

γlqr

∫ tl+1

(kl+1)T

(
‖x0(t)‖‖x̃0(t)‖+ ‖x̃0(t)‖2 + ‖ν0(t)‖‖ν̃0(t)‖+ ‖ν̃0(t)‖2+

‖ν̃0(t)‖‖x̃0(t)‖+ ‖ν0(t)‖‖x̃0(t)‖+ ‖ν̃0(t)‖‖x0(t)‖
)
dt.

From the definitions (3.52), (A.12), (3.51), and (A.13) we have

‖x0(t)‖ ≤ γ0e
λ0(t−(kl+1)T )‖x0[(kl + 1)T ]‖,

‖x̃0(t)‖ ≤ γ0e
λ0(t−(kl+1)T )‖x̃0[(kl + 1)T ]‖,

‖ν0(t)‖ ≤ fγ0e
λ0(t−(kl+1)T )‖x0[(kl + 1)T ]‖,

‖ν̃0(t)‖ ≤ fγ0e
λ0(t−(kl+1)T )‖x̃0[(kl + 1)T ]‖, t ∈ [(kl + 1)T, tl+1),

which means that
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣

≤ γlqrγ
2
0

[∫ tl+1

(kl+1)T

e2λ0(t−(kl+1)T )dt

] [

(1 + f + f 2)‖x̃0[(kl + 1)T ]‖2 +

(1 + 2f + f 2)‖x̃0[(kl + 1)T ]‖ × ‖x0[(kl + 1)T ]‖
]

≤ γlqrγ
2
0(1 + f)2 1

2|λ0|
×

[
‖x̃0[(kl + 1)T ]‖2 + γ0‖x̃0[(kl + 1)T ]‖ × ‖x0(tl)‖

]
. (A.15)

By definition
x̂0[(kl + 1)T ] = x[(kl + 1)T ],

so it follows immediately that

x̃0[(kl + 1)T ] = x̃[(kl + 1)T ],

so we can apply Claim 2 to obtain a bound on ‖x̃0[(kl + 1)T ]‖ in (A.15): it follows
that, if T is sufficiently small, then for every T ′ ∈ (0, T̄ ′

2(T )) we have
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣ ≤

γlqrγ
2
0(1 + f)2 1

2|λ0|
[

γ2
2T

2‖x(tl)‖2 + γ0γ2T‖x(tl)‖2
]

.
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If we define

γ4 := γlqrγ
2
0(1 + f)2 1

2|λ0|
max{γ2

2 T̄ , γ0γ2}

then ∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣ ≤ γ4T‖x(tl)‖2,

so clearly, if T is sufficiently small, then for every T ′ ∈ (0, T̄ ′
2(T )) we have

∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣ ≤ ε

4
‖x(tl)‖2. (A.16)

We now combine (A.14) and (A.16) to find that, if T is sufficiently small, then
for every T ′ ∈ (0, T̄ ′

2(T )) we have

∣
∣
∣J[(kl+1)T,tl+1)(x(tl))− J0

[(kl+1)T,tl+1)(x(tl))
∣
∣
∣

≤
∣
∣
∣J[(kl+1)T,tl+1)(x(tl))− Ĵ0

[(kl+1)T,tl+1)(x(tl))
∣
∣
∣+

∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(x(tl))− J0
[(kl+1)T,tl+1)(x(tl))

∣
∣
∣

<
(ε

4
+
ε

4

)

‖x(tl)‖2

=
ε

2
‖x(tl)‖2.

It remains to combine the result of Claim 4 with (A.11). Clearly, if T is suffi-
ciently small, then for every T ′ ∈ (0, T̄ ′

2(T )) it follows immediately that

∣
∣
∣J[tl,tl+1)(x(tl))− J0

[tl,tl+1)(x(tl))
∣
∣
∣ ≤

∣
∣J[tl,(kl+1)T )(x(tl))− J0

[tl,(kl+1)T )(x(tl))
∣
∣+

∣
∣
∣J[(kl+1)T,tl+1)(x(tl))− J0

[(kl+1)T,tl+1)(x(tl))
∣
∣
∣

≤
(

α3T +
ε

2

)

‖x(tl)‖2

≤ ε‖x(tl)‖2.
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Appendix B

Proofs from Chapter 4

When there are no plant switches, the proofs here will be virtually identical to
those in Chapter 3 (with the exception of some variable name substitutions and
some slight changes due to to different structure of the error signal). Even with
switches, the proofs will follow the same structure; changes in the details are almost
always due to the discontinuity in the state ξ and the inclusion of the reference signal
yref .

Proof of Lemma 4.1:

First note that u and x are continuous, and, by Assumptions 4.1 and 4.3, for every
Ts > 0, σ ∈ ΣTs

, and t ≥ 0, we have that G−1
σ(t) exists. Let Ts > 0, Pσ ∈ PTs

, and

l ∈ Z+ be arbitrary. From (4.7) and (4.8), we have that

[
x(tl)
u(tl)

]

= G−1

σ(t−
l

)
ξ(t−l ) +G−1

σ(t−
l

)

[
0
I

]

yref

= G−1
σ(tl)

ξ(tl) +G−1
σ(tl)

[
0
I

]

yref ;

these two equations can be readily combined to yield

ξ(tl) = Gσ(tl)G
−1

σ(t−
l

)
ξ(t−l ) +

(

Gσ(tl)G
−1

σ(t−
l

)
− I
)[ 0

I

]

yref (B.1)

and

ξ(t−l ) = Gσ(t−
l

)G
−1
σ(tl)

ξ(tl) +
(

Gσ(t−
l

)G
−1
σ(tl)
− I
)[ 0

I

]

yref .

Hence, by the definition of ḡ, we obtain our desired result.

Proof of Proposition 4.1:

Fix Ts > 0, T ∈ (0, Ts/2), and T ′ ∈ (0, T/2), and let x0 ∈ Rn, u0 ∈ Rm, σ ∈ ΣTs
,

yref ∈ Rr, and w ∈ L∞ be arbitrary.
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(i)

Let k ∈ {kl : l ∈ N}c be arbitrary. Observe that σ(t) is constant on [kT, (k+ 1)T );
for notational simplicity, we denote its value by i, which means that the plant is Pi

on this interval.

We begin by solving (4.6) for e(t + kT ) over t ∈ [0, 2T ′). Note that, in this
interval,

Ĥ(t) = 0,

so
ν(t) = 0

as well; therefore,

e(t+ kT ) = C̃
[

eÃitξ[kT ] +

∫ t

0

eÃi(t−τ)ÃiLiwk(τ)dτ + Liwk(t)

︸ ︷︷ ︸

=:fi(wk,t)

]

, t ∈ [0, 2T ′).

We substitute this into (4.13) and then use (4.18) to find that

v1[k] = Eiξ[kT ] +

∫ T ′

0

S(t)C̃fi(wk, t)dt

︸ ︷︷ ︸

=:φ1,i(wk)

. (B.2)

Similarly, for v2 we find

v2[k] = Eiξ[kT ] +

∫ 2T ′

T ′

S(t)C̃fi(wk, t)dt

︸ ︷︷ ︸

=:φ2,i(wk)

. (B.3)

Note that, in (B.2) and (B.3), v1 and v2 are implicit functions of i, wk, and ξ[kT ];
with this in mind, we define χi to be the selector function

χi(wk, ξ[kT ]) :=

{
1 if argmin{‖v1[k]‖, ‖v2[k]‖} = v1[k]
0 if argmin{‖v1[k]‖, ‖v2[k]‖} = v2[k],

so we have

argmin{‖v1[k]‖, ‖v2[k]‖} =

Eiξ[kT ] + χi(wk, ξ[kT ])φ1,i(wk) + (1− χi(wk, ξ[kT ]))φ2,i(wk); (B.4)

from (4.15) it follows that

ν(t) = Ĥ(t) [Eiξ[kT ] + χi(wk, ξ[kT ])φ1,i(wk) + (1− χi(wk, ξ[kT ]))φ2,i(wk)]

= Ĥi(t)ξ[kT ] + Ĥ(t) [χi(wk, ξ[kT ])φ1,i(wk) + (1− χi(wk, ξ[kT ]))φ2,i(wk)] ,

t ∈ [kT, (k + 1)T ).
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Substituting this into the first equation of (4.6) and using the fact that

σ(t) = i, t ∈ [kT, (k + 1)T )

yields the desired equation:

ξ̇(t) = Ãσ(t)ξ(t) + B̃σ(t)Ĥσ(t)(t)ξ[kT ] +
[

B̃σ(t)Ĥ(t) Ãσ(t)Lσ(t)

]
×

[
χσ(t)(wk, ξ[kT ])φ1,σ(t)(wk) + [1− χσ(t)(wk, ξ[kT ])]φ2,σ(t)(wk)

w(t)

]

,

t ∈ [kT, (k + 1)T ).

Last of all, it is straight-forward, though tedious, to show that φ1,i and φ2,i have
bounded gain.

(ii)

Let l ∈ N be arbitrary. To obtain the desired result we consider three cases.

Case 1: Switch occurs in the Control Phase: tl ∈ [klT + 2T ′, (kl + 1)T ).

Here the Estimation Phase is not affected by the switch, so (B.2), (B.3), and
(B.4) hold (with k = kl and i = il−1); since φi,1 and φi,2 have bounded gain for every
i = 1, ..q, it follows that there exists a constant γ1(T, T

′) > 0 that is independent
of i such that

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ‖ξ[klT ]‖+ γ1(T, T
′)‖w‖∞;

since there is a discontinuity on [klT + 2T ′, (kl + 1)T ), there cannot be one at
t = klT , so ξ[klT ] = ξ[klT

−] and

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ‖ξ[klT
−]‖+ γ1(T, T

′)‖w‖∞. (B.5)

Case 2: Switch occurs during the second sample: tl ∈ [klT + T ′, klT + 2T ′).

Here, the first sampler is not affected; therefore, (B.2) still holds and it follows
that we again obtain (B.5).

Case 3: Switch occurs during the first sample: tl ∈ [klT, klT + T ′).

Here, we have two possibilities: tl = klT and tl > klT
1. We begin by considering

the former. Here, in general,

ξ[klT ] 6= ξ[klT
−];

however, σ(t) is constant on [klT, klT + T ′), so it follows that (B.2) and (B.3) hold
(this time with k = kl and i = il) and we obtain

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ‖ξ[klT ]‖+ γ1(T, T
′)‖w‖∞,

1The astute reader may be concerned that our result will not hold if σ is such that t1 < T .
Recall that there is no discontinuity at t0, so even if t1 < T , there can be at most one discontinuity
on [0, T ), occurring at t1.
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to which we apply Lemma 4.1 to yield

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ḡ‖ξ[klT
−]‖+ (ḡ + 1)‖yref‖+ γ1(T, T

′)‖w‖∞. (B.6)

The other case is that of tl ∈ (klT, klT + T ′), so

ξ[klT ] = ξ[klT
−];

unfortunately, the first sampler yields a possibly large output, and, due to the
plant switch, (B.3) does not hold. Fortunately, we can still obtain a nice bound on
‖v2[kl]‖. We begin by recognizing that, since tl < klT + T ′, we have

e(t) = C̃eÃil
(t−klT−T ′)ξ[klT + T ′] + C̃

[ ∫ t

klT+T ′

eÃil
(t−τ)ÃilLilw(τ)dτ + Lilw(t)

]

︸ ︷︷ ︸

=:g0,il
(T,T ′,w,t)

,

t ∈ [klT + T ′, klT + 2T ′)

so from (4.14) and (4.19) we have

v2[kl] =

∫ klT+2T ′

klT+T ′

S(t)e(t) dt

= Eile
−Ail

T ′

ξ[klT + T ′] +

∫ klT+2T ′

klT+T ′

S(t)g0,il(T, T
′, w, t)dt

︸ ︷︷ ︸

=:g1,il
(T,T ′,w)

. (B.7)

We would like to write a bound in terms of ξ[klT
−] instead of ξ[klT + T ′]. To do

so, we first observe that

ξ[klT + T ′] = eÃil
(klT+T ′−tl)ξ(tl) +

∫ klT+T ′

tl

eÃil
(klT+T ′−τ)ÃilLilw(τ)dτ

︸ ︷︷ ︸

=:g2,il
(T,T ′,w,tl)

and then, as in (B.1) from the proof of Lemma 4.1, we obtain

ξ(tl) = GilGil−1
ξ(t−l ) +

(

GilG
−1
il−1
− I
)[ 0

I

]

yref

and finally

ξ(t−l ) = eÃil−1
(tl−klT )ξ[klT

−] +

∫ tl

klT

eÃil−1
(tl−τ)Ãil−1

Lil−1
w(τ)dτ

︸ ︷︷ ︸

=:g3,il
(T,T ′,w,tl)

.

If we define

φ̂il(T, T
′, w, tl) := g1,il(T, T

′, w) + Eile
−Ãil

T ′

g2,il(T, T
′, w, tl) +

Eile
−Ãil

(tl−klT )GilG
−1
il−1

g3,il(T, T
′, w, tl)
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then these three equalities combine with (B.7) to provide

v2[kl] = Eile
−Ãil

(tl−klT )GilG
−1
il−1

eÃil−1
(tl−klT )ξ[klT

−] +

Eile
−Ãil

(tl−klT )
(

GilG
−1
il−1
− I
)[ 0

I

]

yref + φ̂il(T, T
′, w).

Since there are a finite number of plants, φ̂il has the property that there exists a
constant γ2(T, T

′) > 0 such that

max
t∈[klT,(kl+1)T ]

‖φ̂il(T, T
′, w, t)‖ ≤ γ2(T, T

′)‖w‖∞, l ∈ N,

so we have

‖v2[kl]‖ ≤ max
t∈[0,T ′)

∥
∥
∥e−Ãil

tGilG
−1
il−1

eÃil−1
t
∥
∥
∥ ‖ξ[klT

−]‖+

max
t∈[0,T ′)

∥
∥
∥e−Ãil

t
(

GilG
−1
il−1
− I
)∥
∥
∥ ‖yref‖+ γ2(T, T

′)‖w‖∞;

using the definitions of ρ(T ′) and ρy(T
′) we can write

‖v2[kl]‖ ≤ ρ(T ′)‖ξ[klT
−]‖+ ρy(T

′)‖yref‖+ γ2(T, T
′)‖w‖∞. (B.8)

Since we clearly have both
ρ(T ′) ≥ ḡ

and
ρ(T ′) ≥ ḡ + 1,

we can combine (B.6), and (B.8) to find that, no matter whether or not tl = klT
we have

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖ξ[klT
−]‖+ ρy(T

′)‖yref‖+

max{γ1(T, T
′), γ2(T, T

′)}
︸ ︷︷ ︸

=:γv(T,T ′)

‖w‖∞. (B.9)

We can now combine the results of our three cases. To do so, observe that

ρ(T ′) ≥ 1,

and then combine the bounds in (B.5) and (B.9) to find

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖ξ[klT
−]‖+ ρy(T

′)‖yref‖+ γv(T, T
′)‖w‖∞, l ∈ N.

Proof of Theorem 4.1:

Fix T > 0, T ′ ∈ (0, T/2), and Pi ∈ P. Let x0 ∈ Rn, u0 ∈ Rm, and w ∈ PC∞ be
arbitrary. As discussed in Remark 4.2, we can set yref = 0.
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From Corollary 4.1 we have that there exist nonlinear functions

φi : L∞[0, T )×Rn+r → L∞[0, T )

and
θi : L∞[0, T )×Rn+r → Rn+r

that have bounded gain and are such that, for every k ∈ Z+, we have

ξ̇(t) = Ãiξ(t) + B̃iĤi(t)ξ[kT ] + φi(wk, ξ[kT ]), t ∈ [kT, (k + 1)T ) (B.10)

and
ξ[(k + 1)T ] = eĀiT ξ[kT ] + θi(wk, ξ[kT ]); (B.11)

we define
γφ := max

i=1,..,q
‖φi‖

and
γθ := max

i=1,..,q
‖θi‖.

Since T and T ′ are fixed, we have that ‖Ĥ‖∞ is well defined. Finally, observe that,
by (4.4), (4.5), and Assumptions 4.1 and 4.3, for t ≥ 0 we have

ξ(t) = Gi

[
x(t)
u(t)

]

⇔ G−1
i ξ(t) =

[
x(t)
u(t)

]







(B.12)

and there exits a constant g > 0 so that

‖Gi‖ ≤ g, i = 1, .., q.

(Asymptotic Stability)

Let x0 ∈ Rn and u0 ∈ Rm remain arbitrary and set w = 0; observe that, since
yref = 0, we have

ξ0 =

[
Aix0 +Biu0

Cix0

]

.

In this context (B.10) and (B.11) reduce to

ξ̇(t) = Ãiξ(t) + B̃iĤi(t)ξ[kT ], t ∈ [kT, (k + 1)T ) (B.13)

and
ξ[(k + 1)T ] = eĀiT ξ[kT ]. (B.14)

If we solve (B.14) and then substitute the result into the solution of (B.13), then
we clearly have

ξ(t) =

(

eÃi(t−kT ) +

∫ t

kT

eÃi(t−τ)B̃iĤi(τ)dτ

)

eĀikT ξ0, t ∈ [kT, (k + 1)T ), k ∈ Z+
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so

‖ξ(t)‖ ≤
(

eaT + TeaT b‖Ĥ‖∞
)

γ0e
λ0kT‖ξ0‖, t ∈ [kT, (k + 1)T ), k ∈ Z+

≤
(

eaT + TeaT b‖Ĥ‖∞
)

γ0e
−λ0T eλ0t‖ξ0‖, t ≥ 0;

clearly
lim
t→∞
‖ξ(t)‖ = 0.

Since S is admissible and periodic, we have that there exists a constant γs > 0 so
that

‖v1[k]‖ =

∥
∥
∥
∥
∥

∫ kT+T ′

kT

S(t)e(t)dt

∥
∥
∥
∥
∥

≤ γs max
t∈[kT,kT+T ′)

‖e(t)‖, k ∈ Z+

and

‖v2[k]‖ =

∥
∥
∥
∥
∥

∫ kT+2T ′

kT+T ′

S(t)e(t)dt

∥
∥
∥
∥
∥

≤ γs max
t∈[kT+T ′,kT+2T ′)

‖e(t)‖, k ∈ Z+.

Since e = C̃ξ, this clearly yields

lim
k→∞
‖v1[k]‖ ≤ lim

t→∞
γs‖ξ(t)‖

= 0,

and similarly
lim
k→∞
‖v2[k]‖ = 0;

finally, by (B.12), we have

lim
t→∞

∥
∥
∥
∥

[
x(t)
u(t)

]∥
∥
∥
∥
≤ lim

t→∞
g−1 ‖ξ(t)‖

= 0.

(I/O Stability)

Let w ∈ PC∞ be arbitrary and set x0 = 0 and u0 = 0. Observe that, by (B.12), we

can obtain a bound on

[
x
u

]

in terms of a bound on ξ; additionally, this provides

us with
ξ0 = 0.
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Furthermore, by (4.5)

ξ(t) =

[
ẋ(t)
e(t)

]

−
[
Bi 0
0 I

] [
wu(t)
wy(t)

]

, t ≥ 0,

which we rearrange to find

e(t) =
[

0 I
]
ξ(t) + wy(t),

so we can obtain a bound on e in terms of bounds on ξ and wy. From the structure
of the compensator κ given in (4.13)-(4.15), it then follows that we can obtain a
bound on ν in terms of ξ and wy. Hence, to prove I/O stability it is enough to
obtain a bound on ‖ξ‖∞ in terms of ‖w‖∞. The remainder of this proof will be
devoted to this.

We begin by investigating (B.11). Since ξ0 = 0 we have

ξ[kT ] =
k−1∑

j=0

eĀi(k−1−j)T θi(wj, ξ[jT ]), k ∈ Z+;

taking norms and then extending the summation to infinity we find that

‖ξ[kT ]‖ ≤
∞∑

j=0

γ0e
λ0jTγθ‖w‖∞

=
γ0γθ

1− eλ0T
︸ ︷︷ ︸

=:γ1

‖w‖∞, k ∈ Z+. (B.15)

We now solve (B.10), to find that, for every k ∈ Z+, we have

ξ(t) = eÃi(t−kT )ξ[kT ] +

∫ t

kT

eÃi(t−τ)
[

B̃iĤi(t)ξ[kT ] + φi(wk, ξ[kT ])
]

dτ,

t ∈ [kT, (k + 1)T ),

so

‖ξ(t)‖ ≤ eaT‖ξ[kT ]‖+ TeaT
[

b‖Ĥ‖∞‖ξ[kT ]‖+ γφ‖w‖∞
]

≤ eaT
(

1 + Tb‖Ĥ‖∞
)

︸ ︷︷ ︸

=:γ2

‖ξ[kT ]‖+ TeaTγφ
︸ ︷︷ ︸

=:γ3

‖w‖∞, t ∈ [kT, (k + 1)T ).

Combining this with (B.15) provides

‖ξ(t)‖ ≤ (γ1γ2 + γ3)‖w‖∞, t ≥ 0.
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Proof of Theorem 4.2:

Fix Ts > Ts, T ∈ (0, T̄ (Ts)), and σ ∈ ΣTs
, and let x0 ∈ Rn, u0 ∈ Rm, T ′ ∈ (0, T/2),

and w ∈ L∞ be arbitrary; as discussed in Remark 4.2, we can set yref = 0. Finally,
as in the proof of Theorem 4.1, observe that, by (4.4) and (4.5) and Assumptions 4.1
and 4.3, for t ≥ 0 we have

ξ(t) = Gσ(t)

[
x(t)
u(t)

]

⇔ G−1
σ(t)ξ(t) =

[
x(t)
u(t)

]







(B.16)

and, since there are a finite number of LTI plants, there exits a constant g > 0 so
that

‖Gσ(t)‖ ≤ g, t ≥ 0.

From Corollary 4.1, there exist 2q nonlinear functions

φi : L∞[0, T )×Rn+r → L∞[0, T ), i = 1, .., q

and
θi : L∞[0, T )×Rn+r → Rn+r, i = 1, .., q

that have bounded gain with the property that, for every k ∈ {kl : l ∈ N}c, we
have

ξ̇(t) = Ãσ(t)ξ(t) + B̃σ(t)Ĥσ(t)(t)ξ[kT ] + φσ(t)(wk, ξ[kT ]), t ∈ [kT, (k + 1)T ) (B.17)

and
ξ[(k + 1)T−] = eĀσ[kT ]T ξ[kT ] + θσ[kT ](wk, ξ[kT ]). (B.18)

We define
γφ(T

′) := max
i=1,..,q

‖φi‖

and
γθ(T

′) := max
i=1,..,q

‖θi‖.

Before turning to the particular details of each of our two stability types, it
will be useful to perform some preliminary analysis. To proceed, we make two
comments. First,

klT 6= tl ⇒ ξ[klT
−] = ξ[klT ]. (B.19)

Second, it is important to note that ‖Ĥ(t)‖ and ‖Ĥ‖∞ are implicit functions of
T ′; indeed, there is no uniform upper bound on ‖Ĥ‖∞. However, by definition, for
every i = 1, .., q we clearly have that

‖Ĥi(t)‖ =

{
0 t ∈ [0, 2T ′)

‖Hi(t)− H̃i(t)‖ t ∈ [2T ′, T ),
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so

‖Ĥi‖∞ ≤ max
t∈[2T ′,T )

‖Hi(t)− H̃i(t)‖

≤ fγ0 + max
t∈[2T ′,T )

‖H̃i(t)‖;

if we use Lemma 4.2 to bound the rightmost term, then we find

‖Ĥi‖∞ ≤ fγ0 + εH(T, T ′). (B.20)

Since T is fixed, we write εH(T ′) instead of εH(T, T ′).

We now address the l = 0 case in the sense that we investigate the interval
[0, k1T ). Note that, if k1 = 0 then this interval is empty and there is nothing to
prove, so we assume that this not the case. We begin by observing that σ(t) = i0
over [0, k1T ), so we can solve (B.18) to find

ξ[kT−] = ξ[kT ] = eĀi0
kT ξ0 +

k−1∑

j=0

eĀi0
(k−1−j)T θi0(wj, ξ[jT ]), k = 0, .., k1 − 1,

so

‖ξ[kT ]‖ ≤ γ0‖ξ0‖+ γ0γθ(T
′)

1

1− eλ0T
‖w‖∞, k = 0, .., k1 − 1. (B.21)

We then solve (B.17), yielding

ξ(t) = eÃi0
(t−kT )ξ[kT ] +

∫ t

kT

eÃi0
(t−τ)

(

B̃i0Ĥi0(τ)ξ[kT ] + φi0(wk, ξ[kT ])
)

dτ,

t ∈ [kT, (k + 1)T ), k = 0, .., k1 − 1,

so, using (B.20) to bound ‖Ĥ(t)‖, we find that

‖ξ(t)‖ ≤
(
eaT + TeaT b(fγ0 + εH(T ′)

)

︸ ︷︷ ︸

=:α0(T ′)

‖ξ[kT ]‖+ TeaTγφ(T
′)‖w‖∞,

t ∈ [kT, (k + 1)T ), k = 0, .., k1 − 1.

If we combine this with (B.21), then we obtain

‖ξ(t)‖ ≤ α0(T
′)γ0‖ξ0‖+

[

α0(T
′)

(

γ0γθ(T
′)

1

1− eλ0T

)

+ TeaTγφ(T
′)

]

︸ ︷︷ ︸

=:γ̄(T ′)

‖w‖∞,

t ∈ [0, k1T ). (B.22)

Clearly
α0(T

′)γ0 ≥ 1,

so, for all cases of k1 we have

‖ξ[k1T
−]‖ ≤ α0(T

′)γ0‖ξ0‖+ γ̄(T ′)‖w‖∞. (B.23)
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We now turn to t ≥ k1T . We will present two claims: the first examines the
behavior of ξ on intervals where there is a switch and the second uses Corollary 3.1
to examine the behavior of ξ on intervals where there is no switch. Together with
(B.22), these claims will provide the necessary tools for proving both types of
stability. Recall that switches are confined to {tl : l ∈ N} and

tl ∈ [klT, (kl + 1)T ).

Claim 1: There exist constants γ1(T
′) > 0 and γ̄1(T

′) > 0 such that

‖ξ(t)‖ ≤ γ1(T
′)‖ξ[klT

−]‖+ γ̄1(T
′)‖w‖∞, t ∈ [klT, (kl + 1)T ), l ∈ N.

Proof:

Since the interval of interest may contain a plant switch, we use Proposition 4.1(ii)
to bound the size of the sampler output: there exists γv(T

′) > 0 such that

min{‖v1[kl]‖, ‖v2[kl]‖} ≤ ρ(T ′)‖ξ[klT
−]‖+ γv(T

′)‖w‖∞, l ∈ N,

so, by definition of ν and (B.20) we have

‖ν(t)‖ ≤ (fγ0 + εH(T ′))
(
ρ(T ′)‖ξ[klT

−]‖+ γv(T
′)‖w‖∞

)
,

t ∈ [klT, (kl + 1)T ), l ∈ N. (B.24)

A plant switch causes a discontinuity, so we must be careful when solving for ξ
in this period. To that end, we split the period into two parts: the time interval
before the switching time, namely [klT, tl), and the time interval at and after the
switching time, namely [tl, (kl + 1)T ).

We start by investigating the first interval. If tl = klT , then this interval is
empty. If tl > klT , then solving (4.6) yields

ξ(t) = eÃil
(t−klT )ξ[klT ] +

∫ t

klT

eÃil
(t−τ)

[

B̃ilν(τ) + ÃilLilw(τ)
]

dτ, t ∈ [klT, tl);

taking norms on both sides gives

‖ξ(t)‖ ≤ ea(t−klT )‖ξ[klT‖+
(

≤ea(t−klT )

︷ ︸︸ ︷

ea(t−klT ) − 1)

a

(

b max
t∈[klT,tl)

‖ν(τ)‖+ aℓ‖w‖∞
)

,

t ∈ [klT, tl).

We can now use (B.19) and (B.20) to yield

‖ξ(t)‖ ≤ eaT‖ξ[klT
−]‖+

eaT

a

[

b(fγ0 + εH(T ′))×
(
ρ(T ′)‖ξ[klT

−]‖+ γv(T
′)‖w‖∞

)
+ aℓ‖w‖∞

]

, t ∈ [klT, tl),
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which we rearrange to find

‖ξ(t)‖ ≤ eaT

(

1 +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

︸ ︷︷ ︸

=:α1(T ′)

‖ξ[klT
−]‖+

eaT

(
b(fγ0 + εH(T ′))

a
γv(T

′) + ℓ

)

︸ ︷︷ ︸

=:α2(T ′)

‖w‖∞, t ∈ [klT, tl). (B.25)

Now we turn to the second interval. If we solve (4.6) on [tl, (kl + 1)T ) and use
(B.24), then, using the same approach as above, we obtain

‖ξ(t)‖ ≤ eaT‖ξ(tl)‖+
eaT

a
b(fγ0 + εH(T ′))ρ(T ′)‖ξ[klT

−]‖+ α2(T
′)‖w‖∞,

t ∈ [tl, (kl + 1)T ),

to which we apply Lemma 4.1 to yield

‖ξ(t)‖ ≤ eaT ḡ‖ξ(t−l )‖+
eaT

a
b(fγ0 + εH(T ′))ρ(T ′)‖ξ[klT

−]‖+ α2(T
′)‖w‖∞,

t ∈ [tl, (kl + 1)T ). (B.26)

Now we use (B.25) and (B.26) to obtain the desired bounds. If tl = klT , then
from (B.26) we have

‖ξ(t)‖ ≤ eaT

(

ḡ +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

︸ ︷︷ ︸

=:α3(T ′)

‖ξ[klT
−]‖+ α2(T

′)‖w‖∞,

t ∈ [klT, (kl + 1)T ). (B.27)

If tl > klT , then we use (B.25) to obtain a bound on ‖ξ(t−l )‖ and substitute this
into (B.26) to yield

‖ξ(t)‖ ≤ eaT ḡ
(
α1(T

′)‖ξ[klT
−]‖+ α2(T

′)‖w‖∞
)

+

eaT

a
b(fγ0 + εH(T ′))ρ(T ′)‖ξ[klT

−]‖+ α2(T
′)‖w‖∞

= eaT

(

ḡα1(T
′) +

b(fγ0 + εH(T ′))ρ(T ′)

a

)

︸ ︷︷ ︸

=:γ1(T ′)

‖ξ[klT
−]‖+

α2(T
′)
(
eaT ḡ + 1

)

︸ ︷︷ ︸

=:γ̄1(T ′)

‖w‖∞, t ∈ [tl, (kl + 1)T );

since it is clear that
γ1(T

′) ≥ α1(T
′)

162



and
γ̄1(T

′) ≥ α2(T
′),

if we combine this with (B.25), then we have

‖ξ(t)‖ ≤ γ1(T
′)‖ξ[klT

−]‖+ γ̄1(T
′)‖w‖∞, t ∈ [klT, (kl + 1)T ). (B.28)

Finally, observe that
γ1(T

′) ≥ α3(T
′),

so we can combine (B.28) with (B.27), so that, regardless of whether or not tl = klT ,
we have

‖ξ(t)‖ ≤ γ1(T
′)‖ξ[klT

−]‖+ γ̄1(T
′)‖w‖∞, t ∈ [klT, (kl + 1)T ).

We now turn to the interval [(kl + 1)T, kl+1T ).

Claim 2: There exist constants γ2(T
′) > 0 and γ̄2(T

′) > 0 such that, for all l ∈ N
we have

‖ξ(t)‖ ≤ eλ0(t−(kl+1)T )γ2(T
′)‖ξ[klT

−]‖+ γ̄2(T
′)‖w‖∞, t ∈ [(kl + 1)T, kl+1T ).

Proof:

Let l ∈ N be arbitrary. To reduce notational clutter we write

[kT, k̄T ) := [(kl + 1)T, kl+1T );

on this interval
σ(t) = il.

We begin by using the fact that ξ(t) is continuous over [kT, k̄T ) to solve (B.18),
which results in

ξ[kT−] = ξ[kT ] = eĀil
(k−k)T ξ[kT ] +

k−1∑

j=k

eĀil
(k−1−j)T θil(wj, ξ[jT ]), k ≤ k ≤ k̄ − 1;

taking norms on both sides yields

‖ξ[kT ]‖ ≤ γ0e
λ0(k−k)T‖ξ[kT ]‖+

∞∑

j=0

γ0e
λ0jTγθ(T

′)‖w‖∞

≤ γ0e
λ0(k−k)T‖ξ[kT ]‖+

γ0γθ(T
′)

1− eλ0T
‖w‖∞, k ≤ k ≤ k̄ − 1. (B.29)

Next, we solve (B.17), to find that, for every integer k satisfying k ≤ k ≤ k̄− 1, we
have

ξ(t) = eÃil
(t−kT )ξ[kT ] +

∫ t

kT

eÃil
(t−τ)

[

B̃ilĤil(t)ξ[kT ] + φil(wk, ξ[kT ])
]

dτ,

t ∈ [kT, (k + 1)T ),
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so taking norms on both sides and using (B.20) to bound ‖Ĥ(t)‖ yields

‖ξ(t)‖ ≤ eaT‖ξ[kT ]‖+
eaT

a
[b(fγ0 + εH(T ′))‖ξ[kT ]‖+ γφ(T

′)‖w‖∞]

= eaT

(

1 +
b(fγ0 + εH(T ′))

a

)

‖ξ[kT ]‖+
eaT

a
γφ(T

′)‖w‖∞,

t ∈ [kT, (k + 1)T ),

which, combined with (B.29), yields

‖ξ(t)‖ ≤ eaT

(

1 +
b(fγ0 + εH(T ′))

a

)(

γ0e
λ0(k−k)T‖ξ[kT ]‖+

γ0γθ(T
′)

1− eλ0T
‖w‖∞

)

+
eaT

a
γφ(T

′)‖w‖∞

= eλ0(k−k)T γ0e
aT

(

1 +
b(fγ0 + εH(T ′))

a

)

︸ ︷︷ ︸

=:α4(T ′)

‖ξ[kT ]‖+

eaT

[(

1 +
b(fγ0 + εH(T ′))

a

)
γ0γθ(T

′)

1− eλ0T
+
γφ(T

′)

a

]

︸ ︷︷ ︸

=:α5(T ′)

‖w‖∞,

t ∈ [kT, (k + 1)T ).

We now use Claim 1. Since ξ is continuous at (kl +1)T , it follows immediately that

‖ξ[(kl + 1)T ]‖ = ‖ξ[kT ]‖ ≤ γ1(T
′)‖ξ[klT

−]‖+ γ̄1(T
′)‖w‖∞,

so, for every integer k satisfying k ≤ k ≤ k̄ − 1, we have

‖ξ(t)‖ ≤ eλ0(k−k)Tα4(T
′)‖ξ[kT ]‖+ α5(T

′)‖w‖∞
≤ eλ0(k−k)Tα4(T

′)
(
γ1(T

′)‖ξ[klT
−]‖+ γ̄1(T

′)‖w‖∞
)

+ α5(T
′)‖w‖∞,

t ∈ [kT, (k + 1)T );

it follows easily that

‖ξ(t)‖ ≤ eλ0(t−kT ) e−λ0Tα4(T
′)γ1(T

′)
︸ ︷︷ ︸

=:γ2(T ′)

‖ξ[klT
−]‖+

[α4(T
′)γ̄1(T

′) + α5(T
′)]

︸ ︷︷ ︸

=:γ̄2(T ′)

‖w‖∞, t ∈ [kT, k̄T ).

We now assemble our results to find a bound over the entire interval [0,∞). To
do so, notice that, in particular, Claim 2 says that

‖ξ[kl+1T
−]‖ ≤ eλ0(kl+1−(kl+1))Tγ2(T

′)‖ξ[klT
−]‖+ γ̄2(T

′)‖w‖∞, l ∈ N,
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so, since
tl+1 − tl ≥ Ts, l ∈ N,

we have that

‖ξ[kl+1T
−]‖ ≤ eλ0(Ts−2T )γ2(T

′)‖ξ[klT
−]‖+ γ̄2(T

′)‖w‖∞, l ∈ N.

If
eλ0(Ts−2T )γ2(T

′) < 12, (B.30)

then it follows immediately that

‖ξ[klT
−]‖ ≤

(
eλ0(Ts−2T )γ2(T

′)
)(l−1)

︸ ︷︷ ︸

≤1

‖ξ[k1T
−]‖+

1

1− eλ0(Ts−2T )γ2(T ′)
γ̄2(T

′)‖w‖∞,

l ∈ N

which combines with (B.23) to yield

‖ξ[klT
−]‖ ≤

(
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖ξ0‖+

[

γ̄(T ′) +
1

1− eλ0(Ts−2T )γ2(T ′)
γ̄2(T

′)

]

︸ ︷︷ ︸

=:γ̄3(T ′)

‖w‖∞, l ∈ N. (B.31)

It will turn out that our hypothesis ensures that (B.30) holds (for sufficiently small
T ′). To maintain the flow of the proof, we defer showing this until the end; in the
meantime, we assume that it holds (and restrict T ′ accordingly) and proceed. We
have from Claims 1 and 2 that

‖ξ(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
}
‖ξ[klT

−]‖+ max
{
γ̄1(T

′), γ̄2(T
′)
}
‖w‖∞,

t ∈ [klT, kl+1T ), l ∈ N;

if we combine this with (B.31), then it follows immediately that

‖ξ(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖ξ0‖+

(
max

{
γ1(T

′), γ2(T
′)
}
× γ̄3(T

′) + max
{
γ̄1(T

′), γ̄2(T
′)
})

︸ ︷︷ ︸

=:γ̄4(T ′)

‖w‖∞,

t ∈ [klT, kl+1T ), l ∈ N. (B.32)

which we will use, in conjunction with (B.22) to prove our stability results.

(Asymptotic Stability)

If we set w = 0 and let x0 ∈ Rn and u0 ∈ Rm remain arbitrary, then by (B.22) we
have

‖ξ(t)‖ ≤ α0(T
′)γ0‖ξ0‖, t ∈ [0, k1T ]

2We will prove that our hypothesis ensures that this holds for sufficiently small T ′ shortly.
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and, by (B.32), we have

‖ξ(t)‖ ≤ max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖ξ0‖,

t ∈ [klT, kl+1T ], l ∈ N;

clearly, for each admissible T ′,

lim
t→∞
‖ξ(t)‖ ≤ lim

l→∞

(

max
{
γ1(T

′), γ2(T
′)
} (
eλ0(Ts−2T )γ2(T

′)
)(l−1)

α0(T
′)γ0‖ξ0‖

)

,

so, using (B.30), it follows that

lim
t→∞
‖ξ(t)‖ = 0.

As in the proof of Theorem 4.1, since S is periodic and admissible and (with the
noise turned off) e = C̃ξ, this clearly yields

lim
k→∞
‖v1[k]‖ = 0, and lim

k→∞
‖v2[k]‖ = 0,

and, by (B.16), we have

lim
t→∞

∥
∥
∥
∥

[
x(t)
u(t)

]∥
∥
∥
∥
≤ lim

t→∞
g−1 ‖ξ(t)‖

= 0.

(I/O Stability)

Set x0 = 0 and u0 = 0 and let w ∈ PC∞ be arbitrary. Observe that, by (B.16) we

can obtain a bound on

[
x
u

]

in terms of a bound on ξ; additionally, this provides

us with ξ0 = 0. Furthermore, by (4.5)

ξ(t) =

[
ẋ(t)
e(t)

]

−
[
Bσ(t) 0

0 I

] [
wu(t)
wy(t)

]

, t ≥ 0,

which we rearrange to find

e(t) =
[

0 I
]
ξ(t) + wy(t),

so we can obtain a bound on e in terms of bounds on ξ and wy. From the structure
of the compensator κ given in (4.13)-(4.15), it then follows that we can obtain a
bound on ν in terms of ξ and wy. Hence, to prove I/O stability it is enough to
obtain a bound on ‖ξ‖∞ in terms of ‖w‖∞. From (B.32), we have

‖ξ(t)‖ ≤ γ̄4(T
′)‖w‖∞, t ≥ k1T,
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so using (B.22) to provide a bound on ‖ξ(t)‖ over the interval [0, k1T ] yields

‖ξ‖∞ ≤ max
{
γ̄(T ′), γ̄4(T

′)
}
‖w‖∞.

It remains to show that our hypothesis ensures that (B.30) holds for small T ′.
We begin by using the explicit formula for γ2(T

′) derived in this proof:

γ2(T
′) = e−λ0Tα4(T

′)γ1(T
′),

with

α4(T
′) = γ0e

aT

(

1 +
b(fγ0 + εH(T ′))

a

)

,

γ1(T
′) = eaT

(

ḡα1(T
′) +

b(fγ0 + εH(T ′))ρ(T ′)

a

)

,

and

α1(T
′) = eaT

(

1 +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

;

back-substituting we find

γ2(T
′) = e−λ0Tγ0e

2aT

(

1 +
b(fγ0 + εH(T ′))

a

)

×
[

ḡeaT

(

1 +
b(fγ0 + εH(T ′))ρ(T ′)

a

)

+
b(fγ0 + εH(T ′))ρ(T ′)

a

]

≤ e−λ0Tγ0e
3aT

(

1 +
b(fγ0 + εH(T ′))

a

)(

ḡ +
b(fγ0 + εH(T ′))ρ(T ′)

a
(1 + ḡ)

)

.

But
lim
T ′→0

ρ(T ′) = ḡ.

and, from Lemma 2,
lim
T ′→0

εH(T ′) = 0,

so

lim
T ′→0

γ2(T
′) ≤ e−λ0Tγ0e

3aT

(

1 +
bfγ0

a

)(

ḡ +
bfγ0ḡ

a
(1 + ḡ)

)

= e−λ0T e3aTγ0ḡ

(

1 +
bfγ0

a

)(

1 +
bfγ0

a
(1 + ḡ)

)

and therefore

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) ≤ eλ0Tse3(a−λ0)Tγ0ḡ

(

1 +
bfγ0

a

)(

1 +
bfγ0

a
(1 + ḡ)

)

.
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To simplify this expression, we will use the hypothesis that Ts > Ts and T < T̄ (Ts);
it follows directly from this and the definition of T̄ (Ts) that

T < |λ0|
3(a−λ0)

(Ts − Ts)

⇒ 3(a− λ0)T < |λ0|(Ts − Ts)

⇒ e3(a−λ0)T < e|λ0|(Ts−Ts)

= eλ0(Ts−Ts),

so

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) < eλ0Tsγ0ḡ

(

1 +
bfγ0

a

)(

1 +
bfγ0

a
(1 + ḡ)

)

.

If we now apply the definition of Ts, we find that

lim
T ′→0

eλ0(Ts−2T )γ2(T
′) < 1,

and therefore, for sufficiently small T ′, we have

eλ0(Ts−2T )γ2(T
′) < 1.

Proof of Theorem 4.3:

Fix ε > 0 and T > 0. Let T ′ ∈ (0, T/2) be arbitrary. Stability follows directly from
Theorem 4.1. Let yref ∈ Rr, x0 ∈ Rn, u0 ∈ Rr, and i = 1, .., q, be arbitrary and
assume that

σ(t) = i, t ≥ 0;

observe that this yields a corresponding ξ0 via (4.24). Since we are not allowing
plant switches ξ is continuous; furthermore, since w = 0, from Corollary 4.1 we
have

ξ̇(t) = Ãiξ(t) + B̃i Ĥi(t)ξ[kT ]
︸ ︷︷ ︸

=ν(t)

, t ∈ [kT, (k + 1)T ), k ∈ Z+ (B.33)

and
ξ[(k + 1)T ] = eĀiT ξ[kT ] = eĀi(k+1)T ξ0, k ∈ Z+. (B.34)

With εH(T, T ′) given by (4.23), from Lemma 4.2, we have that

‖H̃i(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T )

and, for every T > 0,
lim
T ′→0

εH(T, T ′) = 0; (B.35)

since T is fixed we will write εH(T ′) instead of ε(T, T ′). To minimize the complexity
of the forthcoming algebra, henceforth we restrict our attention to those choices of
T ′ that are sufficiently small to ensure that

εH(T ′) < 1.
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We also define
ξ̃ := ξ − ξ0

and
ν̃ := ν − ν0,

so from (B.34) we have that

ξ̃[kT ] = 0, k ∈ Z+. (B.36)

We will investigate the cost function over one period T , and then extend the
result to the entire time range. It follows immediately from the definitions of Ji

and J0
i that

∣
∣Ji(ξ0)− J0

i (ξ0)
∣
∣

≤
∫ ∞

0

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

=
∞∑

k=0

(
∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

)

.(B.37)

We now find a relationship between the actual and optimal cost functions over a
single period T . With

γlqr := 2 max
i=1,..,q

{

max{‖Q̄i + C̃ ′K ′RiKC̃‖, ‖Ri‖, ‖RiKC̃‖}
}

(B.38)

it is straight-forward to check that
∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt ≤

γlqr

∫ (k+1)T

kT

[

‖ξ0(t)‖‖ξ̃(t)‖+ ‖ξ̃(t)‖2 + ‖ν0(t)‖‖ν̃(t)‖+ ‖ν̃(t)‖2 +

‖ν̃(t)‖‖ξ̃(t)‖+ ‖ν0(t)‖‖ξ̃(t)‖+ ‖ν̃(t)‖‖ξ0(t)‖
]

dt,

k ∈ Z+. (B.39)

We now use the definitions of ξ0 and ν0 given in (4.25) and (4.26) respectively, then
apply (4.11) and simplify, to find
∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

∫ (k+1)T

kT

[

‖eĀi(t−kT )‖ × ‖ξ[kT ]‖
(
‖ξ̃(t)‖+ ‖ν̃(t)‖

)
+

‖Fie
Āi(t−kT )‖ × ‖ξ[kT ]‖

(
‖ξ̃(t)‖+ ‖ν̃(t)‖

)
+

‖ν̃(t)‖2 + ‖ξ̃(t)‖2 + ‖ν̃(t)‖‖ξ̃(t)‖
]

dt

≤ γlqr

∫ (k+1)T

kT

[

γ0(1 + f)‖ξ[kT ]‖
(
‖ξ̃(t)‖+ ‖ν̃(t)‖

)
+

‖ν̃(t)‖2 + ‖ξ̃(t)‖2 + ‖ν̃(t)‖‖ξ̃(t)‖
]

dt, k ∈ Z+. (B.40)
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The upshot of this is that, if we can bound ‖ξ̃(t)‖,
∫ (k+1)T

kT
‖ν̃(t)‖dt, and

∫ (k+1)T

kT
‖ν̃(t)‖2dt

by a suitably scaled version of ‖ξ[kT ]‖, then we can leverage (B.34) to obtain the

desired result. We begin with
∫ (k+1)T

kT
‖ν̃(t)‖dt and

∫ (k+1)T

kT
‖ν̃(t)‖2dt:

Claim 1: There exists a constant γ1 > 0 satisfying

∫ (k+1)T

kT

‖ν̃(t)‖dt ≤ γ1(T
′ + εH(T ′))‖ξ[kT ]‖, k ∈ Z+,

and ∫ (k+1)T

kT

‖ν̃(t)‖2dt ≤ γ1(T
′ + εH(T ′))‖ξ[kT ]‖2, k ∈ Z+.

Proof:

By definition and (B.36) we have that

∫ (k+1)T

kT

‖ν̃(t)‖dt =

∫ (k+1)T

kT

‖ν(t)− ν0(t)‖dt

=

∫ 2T ′

0

‖ −Hi(t)ξ[kT ]‖dt+

∫ T

2T ′

‖H̃i(t)ξ[kT ]‖dt

≤
[
∫ 2T ′

0

fγ0 dt+

∫ T

2T ′

εH(T ′)dt

]

‖ξ[kT ]‖

≤ [2fγ0T
′ + εH(T ′)T ] ‖ξ[kT ]‖, k ∈ Z+.

Similarly,

∫ (k+1)T

kT

‖ν̃(t)‖2dt ≤






∫ 2T ′

0

(fγ0)
2dt+

∫ T

2T ′

εH(T ′)2

︸ ︷︷ ︸

<εH(T ′)

dt




 ‖ξ[kT ]‖2

≤
[
2(fγ0)

2T ′ + εH(T ′)T
]
‖ξ[kT ]‖2,

Set γ1 = max{2fγ0, 2(fγ0)
2, T} to obtain the desired result.

Now we turn to ‖ξ̃(t)‖:

Claim 2: There exists a constant γ2 > 0 satisfying

‖ξ̃(t)‖ ≤ γ2(T
′ + εH(T ′))‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.

Proof:

Using the definitions of Āi, ξ
0, and ν0 we can write

ξ̇0(t) = Ãiξ
0(t) + B̃iν

0(t), t ≥ 0
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which combines with (B.33) to yield

˙̃ξ(t) = Ãiξ̃(t) + B̃iν̃(t), t ≥ 0.

Solving this and using (B.36), we find that

ξ̃(t) =

∫ t

kT

eÃi(t−τ)B̃iν̃(t)dτ, t ∈ [kT, (k + 1)T ), k ∈ Z+

so

‖ξ̃(t)‖ ≤
∫ t

kT

‖eÃi(t−τ)B̃i‖‖ν̃(t)‖dτ

≤ beaT

∫ (k+1)T

kT

‖ν̃(t)‖dτ,

to which we apply Claim 1, to obtain

‖ξ̃(t)‖ ≤ beaTγ1
︸ ︷︷ ︸

=:γ2

(T ′ + εH(T ′))‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+.

Now we return to (B.40), to which we apply Claims 1 and 2 to yield

∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

{

γ0(1 + f)‖ξ[kT ]‖
[
Tγ2(T

′ + εH(T ′))‖ξ[kT ]‖+ γ1(T
′ + εH(T ′))‖ξ[kT ]‖

]

+γ1(T
′ + εH(T ′))‖ξ[kT ]‖2 + Tγ2

2(T
′ + εH(T ′))2‖ξ[kT ]‖2 +

γ1(T
′ + εH(T ′))‖ξ[kT ]‖γ2(T

′ + εH(T ′))‖ξ[kT ]‖
}

= γlqr

{

γ0(1 + f)
[
Tγ2 + γ1

]
+ γ1 + Tγ2

2(T
′ + εH(T ′)) + γ1γ2(T

′ + εH(T ′))
}

×
(T ′ + εH(T ′))‖ξ[kT ]‖2, k ∈ Z+.

Observe that

(T ′ + εH(T ′)) ≤ T

2
+ 1,

so this reduces to
∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γlqr

{[
γ0(1 + f) + γ2(T/2 + 1)

][
Tγ2 + γ1

]
+ γ1

}

︸ ︷︷ ︸

=:γ3

(T ′ + εH(T ′))‖ξ[kT ]‖2,

k ∈ Z+.
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We can now combine this with (B.34) and then (4.11) to yield

∞∑

k=0

∫ (k+1)T

kT

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ γ3(T
′ + εH(T ′))

∞∑

k=0

‖eĀikT ξ0‖2

≤ γ3(T
′ + εH(T ′))

∞∑

k=0

γ2
0e

2λ0kT‖ξ0‖2

= (T ′ + εH(T ′)) γ3γ
2
0(1− e2λ0T )−1

︸ ︷︷ ︸

=:γ4

‖ξ0‖2.

From (B.35) we have
lim
T ′→0

εH(T ′) = 0,

so, for every sufficiently small T ′, we obtain

(T ′ + εH(T ′))γ4 < ε,

and therefore, using (B.37), we obtain

∣
∣Ji(ξ0)− J0

i (ξ0)
∣
∣ ≤

∫ ∞

0

∥
∥Mi(ξ(t), ν(t), e(t))−Mi(ξ

0(t), ν0(t), e0(t))
∥
∥ dt

≤ ε‖ξ0‖2.

Proof of Theorem 4.4

Fix ε > 0, Ts > Ts, and w = 0; let σ ∈ ΣTs
and T ∈ (0, T̄ (Ts)) be arbitrary.

Stability follows directly from Theorem 4.2. Since Ts is fixed, to reduce clutter we
write T̄ instead of T̄ (Ts). We set

ρ := ρ(Ts/4)

and
ρy := ρy(Ts/4).

As in the proof of Theorem 4.3, we define

ξ̃ := ξ − ξ0

and
ν̃ := ν − ν0.

As in the proof of Theorem 3.4, our proof works by showing that, if T is sufficiently
small, then there exists a constant T̄ ′(T ) ∈ (0, T/2) such that, for every T ′ ∈
(0, T̄ ′(T )) we have the desired result.
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We first deal with the special case of l = 0.

Claim 0: There exists a constant T̄ ′
0(T ) ∈ (0, T/2) so that, if T ′ ∈ (0, T̄0(T )), then

|J[0,t1)(ξ(tl), yref )− J0
[0,t1)(ξ(tl), yref )| ≤ ε

[
‖ξ(t0)‖+ ‖yref‖

]2
,

x0 ∈ Rn, u0 ∈ Rr, yref ∈ Rr.

Proof:

On the interval [0, t1), σ(t) is constant, so Theorem 4.3 can be applied: it states
that, if T ′ is sufficiently small then, irrespective of the value of σ(t) on [0, t1), we
have

|J[0,t1)(ξ(tl), yref )− J0
[0,t1)(ξ(tl), yref )| ≤ ε‖ξ(t0)‖2, x0 ∈ Rn, u0 ∈ Rr, yref ∈ Rr,

so the result follows immediately.

Before we move on, we follow the same process as in the proof of Theorem 3.4
to bound Ĥ. To that end, recall that, with εH given by (4.23), from Lemma 4.2 we
have that

‖H̃i(t)‖ ≤ εH(T, T ′), t ∈ [2T ′, T ), T ′ ∈ (0, T/2) i = 1, .., q,

observe that, from the definition of Ĥ we have that

Ĥ(t) =

{
0 t ∈ [0, 2T ′)

H(t) + H̃(t) t ∈ [2T ′, T ),

so clearly
‖Ĥ‖∞ ≤ fγ0 + εH(T, T ′), T ′ ∈ (0, T/2).

Unlike in the proof of Theorem 4.3, here we will not need to (explicitly) make εH

small; indeed, it will be enough to simply bound ‖Ĥ‖∞. To that end, we observe
that Lemma 4.2 says that, for every T ∈ (0, T̄ ),

lim
T ′→0

εH(T, T ′) = 0,

so, for every T ∈ (0, T̄ ), there exists a constant T̄ ′
1(T ) ∈ (0, T̄ ′

0(T )) so that

‖Ĥ‖∞ ≤ fγ0 + 1, T ′ ∈ (0, T̄ ′
1(T )). (B.41)

We now turn to the general case: let l ∈ N be arbitrary. As in Theorem 3.4, it
will be useful to partition each interval into two parts, illustrated via Figure A.1,
which we reproduce here (Figure B.1) for convenience. Since we do not know
whether or not tl = klT , we must take care to differentiate between ξ[klT ] and
ξ[klT

−]; furthermore, since
ḡ ≥ 1,
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[

)[

)

(ii)

kl+1T tl+1(kl + 1)Ttl
t

(i)

σ

klT

Figure B.1: Partitioning of one interval - time axis is not to scale. Here (i) is
the portion of the period immediately following a switch, while (ii) contains the
remainder of the period.

whether or not tl = klT , from Lemma 4.1 we have

‖ξ[klT
−]‖ ≤ ḡ‖ξ[klT ]‖+ (ḡ + 1)‖yref‖. (B.42)

We will be able to leverage Theorem 4.3 to provide a nice result for the second
part of the interval shown in Figure B.1, but to do so we must first investigate two
important issues that do not arise when there are no switches:

(i) From Proposition 4.1(ii), we know that in intervals with a switch, the size of
the controller output depends on ξ[klT

−]; however, we wish to obtain results
in terms of ξ(tl) and yref .

(ii) The control applied during [tl, (kl + 1)T ) will likely be wrong, so, unlike the
case where there are no switches, we will likely not have ξ[(kl + 1)T ] =
ξ0[(kl + 1)T ].

We begin by investigating (i).

Claim 1: There exists a constant γ1 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )), we have

‖ξ[klT
−]‖ ≤ γ1 [‖ξ(tl)‖+ ‖yref‖] .

Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. If tl = klT , then we apply (B.42) and conclude

that the result is trivially true as long as γ1 ≥ ḡ + 1. If tl > klT , then we proceed
by solving (4.6) backwards in time to yield

ξ[klT ] = e
Ãi(l−1)

(klT−tl)ξ(t−l ) +

∫ klT

tl

e
Ãi(l−1)

(klT−τ)
B̃i(l−1)

ν(τ)dτ. (B.43)
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Since the period [klT, (kl + 1)T ) contains a switch, we use Proposition 4.1(ii) to
bound the size of the sampler output, yielding

‖ν(t)‖ ≤ ‖Ĥ(t)‖(ρ‖ξ[klT
−]‖+ ρy‖yref‖), t ∈ [klT, (kl + 1)T ). (B.44)

Here ξ[klT ] = ξ[klT
−], so we can take norms on both sides of (B.43), use (B.41) to

bound ‖Ĥ(t)‖, and simplify, yielding

‖ξ[klT
−]‖ ≤ eaT‖ξ(t−l )‖+

∫ tl

klT

eaT b(fγ0 + 1)
(
ρ‖ξ[klT

−]‖+ ρy‖yref‖
)
dτ ;

therefore,

‖ξ[klT
−]‖ ≤ eaT̄‖ξ(t−l )‖+ TeaT̄ b(fγ0 + 1)

(
ρ‖ξ[klT

−]‖+ ρy‖yref‖
)
.

With
α := eaT̄ max{1, b(fγ0 + 1)ρ, b(fγ0 + 1)ρy},

it follows that

‖ξ[klT
−]‖ ≤ α

[

‖ξ(t−l )‖+ T
(
‖ξ[klT

−]‖+ ‖yref‖
)]

and therefore
[
1− αT

]
‖ξ[klT

−]‖ ≤ α
[
‖ξ(t−l )‖+ T‖yref‖

]
. (B.45)

Clearly,

‖ξ[klT
−]‖ ≤ α

1− αT
[
‖ξ(t−l )‖+ T‖yref‖

]

≤ 2α‖x(tl)‖+ ‖yref‖, T ∈
(

0,min

{

T̄ ,
1

2α

})

,

so, since α > 1, we have

‖ξ[klT
−]‖ ≤ 2α

[
‖ξ(t−l )‖+ ‖yref‖

]
;

finally, we use Lemma 4.1 to obtain a bound on ‖ξ(t−l )‖:

‖ξ[klT
−]‖ ≤ 2α [ḡ‖ξ(tl)‖+ (ḡ + 2)‖yref‖] .

Since α > 1, if we define
γ1 := 2α(ḡ + 2),

then, for every sufficiently small T , it follows that

‖ξ[klT
−]‖ ≤ γ1 [‖ξ(tl)‖+ ‖yref‖] .

We now investigate the difference between the nominal and the actual state at
(kl + 1)T .
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Claim 2: There exists a constant γ2 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )), we have

‖ξ̃(t)‖ ≤ γ2T (‖ξ(tl)‖+ ‖yref‖), t ∈ [tl, (kl + 1)T ]

and
‖ξ(t)‖ ≤ γ2(‖ξ(tl)‖+ ‖yref‖), t ∈ [tl, (kl + 1)T ].

Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. Using the definitions of ξ0 and ν0 given by (4.28)

and (4.27) respectively, we obtain

ξ̇0(t) = Ãilξ
0(t) + B̃ilν

0(t), t ∈ [tl, tl+1)

which combines with (4.6) to yield

˙̃ξ(t) = Ãil ξ̃(t) + B̃il ν̃(t), t ∈ [tl, tl+1).

Solving this and using the fact that ξ(tl) = ξ0(tl), we find that

ξ̃(t) =

∫ t

tl

eÃil
(t−τ)B̃il ν̃(τ)dτ, t ∈ [tl, tl+1);

since tl+1 − tl > 2T , we know that ξ̃(t) is continuous at kl+1T , so

ξ̃(t) =

∫ t

tl

eÃil
(t−τ)B̃il ν̃(τ)dτ

=

∫ t

tl

eÃil
(t−τ)B̃il (ν(τ)−Hil(τ)ξ(tl)) dτ, t ∈ [tl, (kl + 1)T ] ⊂ [tl, tl+1).

We then take the norm of both sides and use (B.44) and (B.41) to yield

‖ξ̃(t)‖ ≤
∫ T

0

eaT b
[
(fγ0 + 1) (ρ‖ξ[klT

−]‖+ ρy‖yref‖) + fγ0‖ξ(tl)‖
]
dτ

≤ TeaT̄ b
[
(fγ0 + 1)(ρ‖ξ[klT

−]‖+ ρy‖yref‖) + fγ0‖ξ(tl)‖
]
,

t ∈ [tl, (kl + 1)T ]

to which we apply Claim 1 to find that, if T is sufficiently small, then we have

‖ξ̃(t)‖ ≤ TeaT̄ b
{

(fγ0 + 1)
[
ργ1(‖ξ(tl)‖+ ‖yref‖) + ρy‖yref‖

]
+ fγ0‖ξ(tl)‖

}

,

≤ eaT̄ bmax
{
(fγ0 + 1)ργ1 + fγ0, (fγ0 + 1)(ργ1 + ρy)

}

︸ ︷︷ ︸

=:α1

×

T
[
‖ξ(tl)‖+ ‖yref‖

]
, t ∈ [tl, (kl + 1)T ],
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which provides the first desired result. To find the second desired result, observe
that it follows immediately from the definition of ξ0 that

‖ξ0(t)‖ ≤ γ0‖ξ0(tl)‖, t ∈ [tl, (kl + 1)T ],

so we conclude that, if T > 0 is sufficiently small, then

‖ξ(t)‖ ≤ ‖ξ̃(t)‖+ ‖ξ0(t)‖
≤ (α1T̄ + γ0)

︸ ︷︷ ︸

=:α2

[
‖ξ(tl)‖+ ‖yref‖

]
, t ∈ [tl, (kl + 1)T ].

As indicated earlier, we would like to leverage Theorem 4.3; since the period
[klT, (kl + 1)T ) contains a switch, we will not be able to do so for the interval
[tl, (kl + 1)T ). Recall that the proof of Theorem 4.3 was motivated by (B.40) and
that we found bounds on ‖ξ̃(t)‖,

∫
‖ν(t)‖dt, and

∫
‖ν(t)‖2dt to find the desired

result; we will do the same for the interval [tl, (kl + 1)T ). Observe that Claim 2
already provides a nice bound on ‖ξ̃(t)‖; we now turn to

∫
‖ν(t)‖dt and

∫
‖ν(t)‖2dt:

Claim 3: There exists a constant γ3 > 0 such that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

1(T )) we have

∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤ γ3T [‖ξ(tl)‖+ ‖yref‖]

and ∫ (kl+1)T

tl

‖ν̃(t)‖2dt ≤ γ3T [‖ξ(tl)‖+ ‖yref‖]2 .

Proof:

Let T ′ ∈ (0, T̄ ′
1(T )) be arbitrary. Observe that

∫ (kl+1)T

tl

‖ν̃(t)‖dt =

∫ (kl+1)T

tl

(‖ν(t)− ν0(t)‖)dt

≤
∫ (kl+1)T

tl

(‖ν(t)‖+ ‖ν0(t)‖)dt

≤
∫ (kl+1)T

tl

(‖ν(t)‖+ fγ0‖ξ(tl)‖)dt,

so using (B.44) and (B.41) we find that

∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤
∫ (kl+1)T

tl

[
(fγ0 + 1)

(
ρ‖ξ[klT

−]‖+ ρy‖yref‖
)

+

fγ0‖ξ(tl)‖
]
dt

≤ T
[
(fγ0 + 1)

(
ρ‖ξ[klT

−]‖+ ρy‖yref‖
)

+ fγ0‖ξ(tl)‖
]
.
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We now apply Claim 1 to find that, if T > 0 is sufficiently small, then

∫ (kl+1)T

tl

‖ν̃(t)‖dt ≤ T
{ [

(fγ0 + 1)ργ1 + fγ0

]

︸ ︷︷ ︸

=:α1

‖ξ(tl)‖+

(fγ0 + 1)(ργ1 + ρy)
︸ ︷︷ ︸

=:α2

‖yref‖
}

.

Similarly, we find that, if T is sufficiently small, then

∫ (kl+1)T

tl

‖ν̃(t)‖2dt ≤
∫ (kl+1)T

tl

(‖ν(t)‖+ ‖ν0(t)‖)2dt

≤
∫ (kl+1)T

tl

(
‖ν(t)‖+ fγ0‖ξ(tl)‖

)2
dt

≤ T [α1‖ξ(tl)‖+ α2‖yref‖]2 .

If we set
γ3 := max{α1 + α2, (α1 + α2)

2}
then the result follows.

With γlqr > 0 defined in (B.38), for every interval [t, t̄) ⊂ [tl, tl+1), it is routine
to confirm that the procedure used to derive (B.39) can be applied here to show
that
∣
∣
∣J[t,t̄)(ξ(tl), yref )− J0

[t,t̄)(ξ(tl), yref )
∣
∣
∣ ≤

γlqr

∫ t̄

t

(

‖ξ0(t)‖‖ξ̃(t)‖+ ‖ξ̃(t)‖2 + ‖ν0(t)‖‖ν̃(t)‖+ ‖ν̃(t)‖2+

‖ν̃(t)‖‖ξ̃(t)‖+ ‖ν0(t)‖‖ξ̃(t)‖+ ‖ν̃(t)‖‖ξ0(t)‖
)

dt.

We now apply the definitions of ξ0 and ν0 found in (4.28) and (4.27) yielding

∣
∣
∣J[t,t̄)(ξ(tl), yref )− J0

[t,t̄)(ξ(tl), yref )
∣
∣
∣ ≤

γlqr

∫ t̄

t

[

γ0(1 + f)eλ0(t−tl)‖ξ(tl)‖
(

‖ξ̃(t)‖+ ‖ν̃(t)‖
)

+

‖ξ̃(t)‖2 + ‖ν̃(t)‖2 + ‖ν̃(t)‖‖ξ̃(t)‖
]

dt.

If we apply Claims 2 and 3, then we find that there exists a constant α3 > 0 such
that for every T ∈ (0, T̄1), if T ′ > 0 is sufficiently small, then we have

∣
∣J[tl,(kl+1)T )(ξ(tl), yref )− J0

[tl,(kl+1)T )(ξ(tl), yref )
∣
∣ ≤ α3T [‖ξ(tl)‖+ ‖yref‖]2 . (B.46)

It remains to analyze the second part of the interval, namely [(kl + 1)T, tl+1).
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Claim 4: If T is sufficiently small, then there exists a constant T̄ ′
2(T ) ∈ (0, T̄ ′

1(T ))
so that, for every T ′ ∈ (0, T̄ ′

2(T )), we have
∣
∣
∣J[(kl+1)T,tl+1)(ξ(tl), yref )− J0

[(kl+1)T,tl+1)(ξ(tl), yref )
∣
∣
∣ ≤ ε

2

[
‖ξ(tl)‖+ ‖yref‖

]2
.

Proof:

On the interval of interest, namely [(kl + 1)T, tl+1), there are no switches. Recall
that, in Theorem 4.3 we showed that we can obtain a nice performance bound when
there are no switches; however, there we had the nice property that ξ[(kl + 1)T ] =
ξ0[(kl + 1)T ], which is typically not the case here. Nonetheless, we would like to
leverage Theorem 4.3, so we define

ξ̂0(t) := eĀil
(t−(kl+1)T )ξ[(kl + 1)T ], t ∈ [(kl + 1)T, tl+1), (B.47)

ν̂0(t) := File
Āil

(t−(kl+1)T )ξ[(kl + 1)T ], t ∈ [(kl + 1)T, tl+1), (B.48)

and
ê0(t) := Cil ξ̂

0(t), t ∈ [(kl + 1)T, tl+1),

and then define

Ĵ0
[(kl+1)T,tl+1)(ξ(tl), yref ) :=

∫ tl+1

(kl+1)T

Mil(ξ̂
0(t), ν̂0(t), ê0(t))dt.

Claim 2 says that, if T > 0 is sufficiently small, then for every T ′ ∈ (0, T̄ ′
1(T )), we

have
‖ξ[(kl + 1)T ]‖ ≤ γ2(‖ξ(tl)‖+ ‖yref‖);

since our closed loop system is periodic with period T , we can combine this with
Theorem 4.3 applied to the interval [(kl + 1)T, tl+1) to find that, if T > 0 is suf-
ficiently small, then there exists a constant T̄ ′

2(T ) ∈ (0, T̄ ′
1(T )) so that, for every

T ′ ∈ (0, T̄ ′
2(T )), we have

∣
∣
∣J[(kl+1)T,tl+1)(ξ(tl), yref )− Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )
∣
∣
∣

≤
∫ tl+1

(kl+1)T

‖Mil(ξ(t), ν(t), e(t))−Mil(ξ̂
0(t), ν̂0(t), ê0(t))‖dt

≤ ε

4γ2
2

‖ξ[(kl + 1)T ]‖2

≤ ε

4
(‖ξ(tl)‖+ ‖yref‖)2. (B.49)

We now find a relationship between Ĵ0(ξ(tl), yref ) and J0(ξ(tl), yref ). We define

ξ̃0 := ξ̂0 − ξ0

and
ν̃0 := ν̂0 − ν0;
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as before, it is routine to confirm that the procedure used to derive (B.39) can be
applied here to show that
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣ ≤

γlqr

∫ tl+1

(kl+1)T

(

‖ξ0(t)‖‖ξ̃0(t)‖+ ‖ξ̃0(t)‖2 + ‖ν0(t)‖‖ν̃0(t)‖+ ‖ν̃0(t)‖2+

‖ν̃0(t)‖‖ξ̃0(t)‖+ ‖ν0(t)‖‖ξ̃0(t)‖+ ‖ν̃0(t)‖‖ξ0(t)‖
)

dt.

From the definitions (4.28), (B.47), (4.27), and (B.48) we have

‖ξ0(t)‖ ≤ γ0e
λ0(t−(kl+1)T )‖ξ0[(kl + 1)T ]‖,

‖ξ̃0(t)‖ ≤ γ0e
λ0(t−(kl+1)T )‖ξ̃0[(kl + 1)T ]‖,

‖ν0(t)‖ ≤ fγ0e
λ0(t−(kl+1)T )‖ξ0[(kl + 1)T ]‖,

‖ν̃0(t)‖ ≤ fγ0e
λ0(t−(kl+1)T )‖ξ̃0[(kl + 1)T ]‖, t ∈ [(kl + 1)T, tl+1),

which means that
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣

≤ γlqrγ
2
0

[∫ tl+1

(kl+1)T

e2λ0(t−(kl+1)T )dt

]

×
[

(1 + f + f 2)‖ξ̃0[(kl + 1)T ]‖2 +

(1 + 2f + f 2)‖ξ̃0[(kl + 1)T ]‖ × ‖ξ0[(kl + 1)T ]‖
]

≤ γlqrγ
2
0(1 + f)2 1

2|λ0|
×

[
‖ξ̃0[(kl + 1)T ]‖2 + γ0‖ξ̃0[(kl + 1)T ]‖ × ‖ξ0(tl)‖

]
. (B.50)

By definition
ξ̂0[(kl + 1)T ] = ξ[(kl + 1)T ],

so it follows immediately that

ξ̃0[(kl + 1)T ] = ξ̃[(kl + 1)T ],

so we can apply Claim 2 to obtain a bound on ‖ξ̃0[(kl + 1)T ]‖ in (B.50): it follows
that, if T is sufficiently small, then, for every T ′ ∈ (0, T̄ ′

2(T )), we have

∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣ ≤

γlqrγ
2
0(1 + f)2 1

2|λ0|
[

γ2
2T

2
(
‖ξ(tl)‖+ ‖yref‖

)2
+ γ0γ2T

(
‖ξ(tl)‖+ ‖yref‖

)
‖ξ0(tl)‖

]

.

If we define

γ4 := γlqrγ
2
0(1 + f)2 1

2|λ0|
max{γ2

2 T̄ , γ0γ2}
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then
∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣ ≤ γ4T

(
‖ξ(tl)‖+ ‖yref‖

)2
,

so clearly, if T is sufficiently small, then, for every T ′ ∈ (0, T̄ ′
2(T )), we have

∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣ ≤

ε

4

(
‖ξ(tl)‖+ ‖yref‖

)2
. (B.51)

We now combine (B.49) and (B.51) to find that, if T is sufficiently small, then,
for every T ′ ∈ (0, T̄ ′

2(T )), we have

∣
∣
∣J[(kl+1)T,tl+1)(ξ(tl), yref )− J0

[(kl+1)T,tl+1)(ξ(tl), yref )
∣
∣
∣

≤
∣
∣
∣J[(kl+1)T,tl+1)(ξ(tl), yref )− Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )
∣
∣
∣+

∣
∣
∣Ĵ0

[(kl+1)T,tl+1)(ξ(tl), yref )− J0
[(kl+1)T,tl+1)(ξ(tl), yref )

∣
∣
∣

<
(ε

4
+
ε

4

) [
‖ξ(tl)‖+ ‖yref‖

]2

=
ε

2

[
‖ξ(tl)‖+ ‖yref‖

]2
.

It remains to combine the result of Claim 4 with (B.46). Clearly, if T is suffi-
ciently small, then, for every T ′ ∈ (0, T̄ ′

2(T )), it follows immediately that

∣
∣
∣J[tl,tl+1)(ξ(tl), yref )− J0

[tl,tl+1)(ξ(tl), yref )
∣
∣
∣

≤
∣
∣J[tl,(kl+1)T )(ξ(tl), yref )− J0

[tl,(kl+1)T )(ξ(tl), yref )
∣
∣+

∣
∣
∣J[(kl+1)T,tl+1)(ξ(tl), yref )− J0

[(kl+1)T,tl+1)(ξ(tl), yref )
∣
∣
∣

≤
(

α3T +
ε

2

) [
‖ξ(tl)‖+ ‖yref‖

]2

≤ ε
[
‖ξ(tl)‖+ ‖yref‖

]2
.
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Appendix C

Proofs from Chapter 5

We will require the following two technical lemmas.

Lemma C.1 If all eigenvalues of A ∈ Rn×n are less that one in magnitude,
then there exist constants δ > 0, γ > 0, and λ ∈ (0, 1) so that, for every
∆ ∈ PC∞ satisfying ‖∆‖∞ < δ we have

∥
∥(A+ ∆[T ])k

∥
∥ ≤ γ(λ)k, k ∈ Z+, T ≥ 0.

Proof:

Let k ∈ Z+, T ≥ 0, and ∆ ∈ PC∞ be arbitrary. We obtain this result by using
(discrete time) Lyaponov energy methods. Since all eigenvalues of A ∈ Rn×n are
less that one in magnitude, there exists a positive definite symmetric matrix P that
satisfies

A′PA− P = −I. (C.1)

We define x via
x[k + 1] = (A+ ∆[T ]) x[k], x[0] = x0. (C.2)

Additionally, we define
V (x[k]) := x′[k]Px[k],

λ̄ := max {1,maximum eigenvalue of P} ,
λ := minimum eigenvalue of P,

and
a := ‖A‖;

observe that, since P is positive definite and symmetric, by the definition of V , we
have

λ‖x[k]‖2 ≤ V (x[k]) ≤ λ̄‖x[k]‖2. (C.3)
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Using the definition of V combined with (C.2) and then (C.1) yields

V (x[k + 1]) = x′[k]
{
(A+ ∆[T ])′P (A+ ∆[T ])

}
x[k]

= x′[k]
{
A′PA+ 2A′P∆[T ] + ∆′[T ]P∆[T ]− P + P

}
x[k]

= −x′[k]x′[k] + x′[k]
{
2A′P∆[T ] + ∆′[T ]P∆[T ]

}
x[k] + x′[k]Px′[k]

≤ −‖x[k]‖2 +
∥
∥2A′P∆[T ] + ∆′[T ]P∆[T ]

∥
∥× ‖x[k]‖2 + V (x[k])

≤ (−1 + 2aλ̄‖∆‖∞ + λ̄‖∆‖2∞)‖x[k]‖2 + V (x[k]). (C.4)

If we fix δ ∈
(

0,−a+
√

a2 + 1
λ̄

)

, then

−1 ≤ −1 + 2aλ̄‖∆‖∞ + λ̄‖∆‖2∞
< −1 + 2aλ̄δ + λ̄δ2

< 0, ‖∆‖∞ < δ,

and there exists a constant α ∈ (−1, 0) satisfying

−1 + 2aλ̄‖∆‖∞ + λ̄‖∆‖2∞ < α, ‖∆‖∞ < δ;

we now restrict ourselves to only those ∆ ∈ PC∞ that satisfy ‖∆‖∞ < δ. Together
with (C.4), (C.3), and the fact that λ̄ ≥ 1, this yields

V (x[k + 1]) < α‖x[k]‖2 + V (x[k])

≤ α
1

λ̄
V (x[k]) + V (x[k]),

≤ (α+ 1)V (x[k]); (C.5)

clearly
α+ 1 ∈ (0, 1),

so, since V > 0, we can solve (C.5) iteratively to yield

V (x[k]) ≤ (α+ 1)k V (x[0]).

Using (C.3), this becomes

λ‖x[k]‖ ≤ (α+ 1)k λ̄‖x0‖,

so

‖x[k]‖ ≤ λ̄

λ
︸︷︷︸

=:γ

(α+ 1)k

︸ ︷︷ ︸

=:λk

‖x0‖,

which implies that
∥
∥(A+ ∆[T ])k

∥
∥ ≤ γ(λ)k.
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Lemma C.2 With T̄ > 0 and ∆ ∈ PC∞, consider the difference equation

z[(k + 1)T ] = A(T )z[kT ] + ∆[k], k ∈ Z+

for which there exist constants γ1 > 1, γ2 > 0, and λ1 < 0 so that

‖
(
A(T )

)k‖ ≤ γ1e
λ1kT , k ∈ Z+, T ∈ (0, T̄ )

and
‖∆[k]‖ ≤ γ2T‖z[kT ]‖, k ∈ Z+, T ∈ (0, T̄ ).

For every T ∈ (0, T̄ ), there exists a constant ελ ∈ (λ1, 0) so that, for every
λ2 ∈ (λ1, ελ) satisfying

2γ1γ2e
−λ2T̄

|λ1 − λ2|
< 1,

there exists a constant γ̄(γ2, λ2) > 1 so that

‖z[kT ]‖ ≤ γ̄(γ2, λ2)e
λ2(k−k)T‖z[kT ]‖, k ≥ k, k ∈ Z+

and
lim
γ2→0

γ̄(γ2, λ2) = γ1.

Proof:

Fix T̄ > 0 and T ∈ (0, T̄ ) and let k ∈ Z+ and λ2 ∈ (λ1, 0) be arbitrary. Define

z̄[kT ] = e−λ2(k−k)T z[kT ], k ≥ k;

using this definition in the difference equation under study, we obtain

z̄[(k + 1)T ] = e−λ2T (k−k+1)T
(
A(T )z[kT ] + ∆[k]

)

= e−λ2TA(T )
︸ ︷︷ ︸

=:Ā(T )

z̄[kT ] + e−λ2T e−λ2(k−k)T ∆[k]
︸ ︷︷ ︸

=:∆̄[k]

, k ≥ k

whose solution satisfies

z̄[kT ] =
(
Ā(T )

)k−k
z̄[kT ] +

k−1∑

i=k

(
Ā(T )

)k−1−i
e−λ2T ∆̄[i], k ≥ k.

We adopt the notation
‖z̄‖∞ := sup

k≥k
‖z̄[kT ]‖.

For k ∈ Z+, clearly,

‖
(
Ā(T )

)k‖ ≤ e−λ2Tγ1e
λ1kT

= γ1e
(λ1−λ2)kT
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and

‖∆̄[k]‖ ≤ e−λ2(k−k)Tγ2T‖z[kT ]‖
= γ2T‖z̄[kT ]‖,

so, since λ2 ∈ (λ1, 0), we have

‖z̄‖∞ ≤ γ1‖z̄[kT ]‖+
∞∑

i=k

γ1e
(λ1−λ2)iT e−λ2Tγ2T‖z̄‖∞

≤ γ1‖z̄[kT ]‖+
γ1γ2e

−λ2T̄

1− e(λ1−λ2)T
T‖z̄‖∞

and therefore (

1− γ1γ2e
−λ2T̄

1− e(λ1−λ2)T
T

)

‖z̄‖∞ ≤ γ1‖z̄[kT ]‖. (C.6)

For ‖z̄‖∞ to be well defined, it is enough for the coefficient on the left be positive.
To that end, we observe that for sufficiently small |γ1 − γ2|, we have

γ1γ2e
−λ2T̄

1− e(λ1−λ2)T
T ≤ 2γ1γ2e

−λ2T̄

|λ1 − λ2|

which, by assumption, is less than one; therefore, for sufficiently small |λ1−λ2|, we
obtain

1− γ1γ2e
−λ2T̄

1− e(λ1−λ2)T
T > 0.

Returning to (C.6), this means that, if |λ1 − λ2| is sufficiently small, then we have

‖z̄‖∞ ≤
γ1

1− 2γ1γ2e−λ2T̄

|λ1−λ2|
︸ ︷︷ ︸

=:γ̄(γ2,λ2)

‖z̄[kT ]‖,

so, since z̄[kT ] = z[kT ], we have

‖z̄[kT ]‖ ≤ γ̄(γ2, λ2)‖z[kT ]‖, k ≥ k,

and therefore

‖z[kT ]‖ = ‖eλ2(k−k)T z̄[kT ]‖
≤ γ̄(γ2, λ2)e

λ2(k−k)T‖z[kT ]‖, k ≥ k.

Finally, when λ2 is fixed, clearly

lim
γ2→0

γ̄(γ2, λ2) = γ1.
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Proof of Proposition 5.1:

Let ξ0 ∈ Rn, ε ≥ 0, and T ∈ (0, Tmax) be arbitrary. It will turn out that, once we
have (iii), the remaining items follow almost directly, so we will start with it.

(iii)

For each p ∈M, Lemma C.1 provides a bound on ‖Φε
p(T, 0)‖; however, we wish to

find a uniform bound, which is easier said than done. To obtain this result we will
need to leverage the properties of compact sets and analytic functions.

For any two (not necessarily distinct) sets of Markov Parameters p, p̄ ∈ M we
have

Φε
p(T, 0) = eĀp̄T +

(

Φε
p(T, 0)− eĀp̄T

)

︸ ︷︷ ︸

=:∆p,p̄[T ]

.1

Furthermore, since Āp is Hurwitz, for every T > 0 and p ∈ M, from Lemma C.1,
there exists constants δp > 0, γp > 0, and λp ∈ (0, 1) so that, for every function
∆ ∈ PC∞ which is such that ‖∆‖∞ ≤ δp, we have

∥
∥
∥
∥

(

eĀpT + ∆(T )
)k
∥
∥
∥
∥
≤ γp(λp)

k, k ∈ Z+. (C.7)

This bound does not have the desired structure, but that is a secondary concern;
more importantly the bound depends on the choice of p and hence is not uniform.
To make this bound independent of p, we will cover the set of all of our admissible
plants with a finite number of open sets, each of which admits a uniform bound,
and then leverage the finiteness to find a uniform bound for the entire setM, which
we will then convert to the desired structure. To do so, we must first show that
‖∆p,p̄‖ can be made small.

Recall that, by the definition of Āp and H(p, t) we have that

eĀp̄T = eAp̄T +

∫ T

0

eAp̄(T−τ)Bp̄H(p̄, τ)dτ

which combines with the definition of Φε
p to yield

‖∆p,p̄[T ]‖ = ‖Φε
p(T, 0)− eĀp̄T‖

≤ ‖eAp̄T − eApT‖+
∫ T

0

‖eAp̄(T−τ)Bp̄ − eAp(T−τ)Bp‖‖H(p̄, τ)‖dτ +

∫ T

0

‖eAp(T−τ)Bp‖
[

‖H(p̄, τ)−H(p, τ)‖+

‖H(p, τ)−Hε(p, τ)‖
]

dτ, p, p̄ ∈M. (C.8)

1Observe that, with our definition of Φ0, if ε = 0 then ∆p,p̄[T ] = 0.
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Recall that the set
P̃ = {(Ap, Bp, C) : p ∈M}

contains only minimal representations, so if we define Γ̃ to be the set of all (not
necessarily canonical form) state-space triples

(A,B,C) ∈ Rn×n ×Rn×1 ×R1×n

which are such that the pair (A,B) is controllable and the pair (C,A) is observable,
then P̃ is a compact subset of Γ̃. Furthermore, since H(p, τ) is an analytic function
of p and τ , and p is an analytic function of (Ap, Bp, C), clearly H(p, τ) is bounded
on the compact set P̃ × [0, Tmax], say by h̄. Finally, since Γ̃ is open, there exists an
open ball Bp̄ ⊂ Γ̃ centered at (Ap̄, Bp̄, C) whose closure lies in Γ̃, so there exists a
constant γ̃p̄ > 0 such that

‖eAp̄T − eApT‖ ≤ γ̃p̄‖Ap̄ − Ap‖, (Ap, Bp, C) ∈ Bp̄,

‖eAp̄TBp̄ − eApTBp‖ ≤ γ̃p̄

[

‖Ap̄ − Ap‖+ ‖Bp̄ −Bp‖
]

, (Ap, Bp, C) ∈ Bp̄,

and

‖H(p̄, τ)−H(p, τ)‖ ≤ γ̃p̄

[

‖Ap̄ − Ap‖+ ‖Bp̄ −Bp‖
]

, (Ap, Bp, C) ∈ Bp̄.

Combining these and the fact that ‖H −Hε‖ < ε with (C.8) we see that

‖∆p,p̄[T ]‖ ≤ γ̃p̄‖Ap̄ − Ap‖+

Tmaxγ̃p̄

[

‖Ap̄ − Ap‖+ ‖Bp̄ −Bp‖
]

h̄+

Tmaxe
aTmaxb

[

γ̃p̄

[

‖Ap̄ − Ap‖+ ‖Bp̄ −Bp‖
]

+ ε

]

, (Ap, Bp, C) ∈ Bp̄,

so clearly, there exists a constant ε̄p̄ > 0 and a ball B̃p̄ ⊂ Bp̄ with a sufficiently
small radius such that

‖∆p,p̄[T ]‖ ≤ δp̄, (Ap, Bp, C) ∈ B̃p̄, ε ∈ [0, ε̄p̄).

We can now apply (C.7) to find that

∥
∥
∥

(
Φε

p(T, 0)
)k
∥
∥
∥ =

∥
∥
∥
∥

(

∆p,p̄[T ] + eĀp̄T
)k
∥
∥
∥
∥

≤ γp̄(λp̄)
k, k ∈ Z+, (Ap, Bp, C) ∈ B̃p̄, ε ∈ [0, ε̄p̄).

At this point, we have found a uniform bound over (sufficiently small) balls.
We would now like to leverage these to find a uniform bound over the entire set P̃ .
To do so, we observe that the open sets B̃p̄ form an open cover of P̃ , so, since P̃ is
compact, there exists a finite sub-cover in the sense that there exists

{p̄i : i = 1, .., l} ⊂ M
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so that

P̃ ⊂
l⋃

i=1

B̃p̄i

and
∥
∥
∥

(
Φε

p(T, 0)
)k
∥
∥
∥ ≤ γp̄i

(λp̄i
)k, k ∈ Z+, (Ap, Bp, C) ∈ B̃p̄i

, ε ∈ [0, ε̄p̄i
).

If we set
γ1 := max

i=1,..,l
γp̄i
,

λ̄1 := max
i=1,..,l

λp̄i
,

and
ε̄1 := min

i=1,..,l
ε̄p̄i
,

then ∥
∥
∥

(
Φε

p(T, 0)
)k
∥
∥
∥ ≤ γ1(λ̄1)

k, k ∈ Z+, p ∈M, ε ∈ [0, ε̄1).

It remains to put this bound in the desired form. Observe that, since λ̄1 ∈ (0, 1),
there exists λ1 < 0 such that

(λ̄1)
k ≤ eλ1kT , T ∈ [0, Tmax], k ∈ Z+;

in fact, any λ1 < 0 satisfying

λ1 ∈
(

ln(λ̄1)

Tmax

, 0

)

will work. We choose any such λ1 to find
∥
∥
∥

(
Φε

p(T, 0)
)k
∥
∥
∥ ≤ γ1e

λ1kT , k ∈ Z+, p ∈M, ε ∈ [0, ε̄1). (C.9)

Henceforth, we restrict ε ∈ [0, ε̄1) and let p ∈M and k ∈ Z+ be arbitrary.

(i)

Define
ξ̃ := ξ0 − ξε

and recall that, by definition,

ξ0[kT ] = eĀpkT ξ0.

Clearly,

˙̃ξ(t) = Apξ̃(t) +BpH(p, t)ξ0[kT ]−BpH
ε(p, t)ξε[kT ]

= Apξ̃(t) +BpH
ε(p, t)ξ̃[kT ] +

Bp

(
H(p, t)−Hε(p, t)

)
ξ0[kT ], t ∈ [kT, (k + 1)T ),
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whose solution satisfies

ξ̃(t) = Φε
p(t− kT, 0)ξ̃[kT ] +

∫ t

kT

[

eAp(t−τ)Bp

(
H(p, τ)−Hε(p, τ)

)
eĀpkT ξ0

]

dτ,

t ∈ [kT, (k + 1)T ). (C.10)

As usual, we will begin by analyzing the period endpoints. To that end, observe
that, in particular, (C.10) says that

ξ̃[(k + 1)T ] = Φε
p(T, 0)ξ̃[kT ] +
[∫ T

0

eAp(T−τ)Bp

(
H(p, τ)−Hε(p, τ)

)
dτ

]

︸ ︷︷ ︸

=:Ψε
p(T )

eĀpkT ξ0;

solving iteratively and using the fact that ξ̃(0) = 0 yields

ξ̃[kT ] =
k−1∑

i=0

(
Φε

p(T, 0)
)k−1−i

Ψε
p(T )eĀpiT ξ0.

Now,
‖Ψε

p(T )‖ ≤ TeaTmaxb ε,

and both eĀpiT and
(
Φε

p(T, 0)
)k−1−i

can be bounded by (C.9), so

‖ξ̃[kT ]‖ ≤
k−1∑

i=0

γ1e
λ1(k−1−i)TTeaTmaxb εγ1e

λ1iT‖ξ0‖

≤ γ2
1e

aTmaxb
︸ ︷︷ ︸

=:γ2

Tε

k−1∑

i=0

e
λ1
2

(k−1+i)T‖ξ0‖

≤ e
λ1
2

(k+1)T

(
Tγ2e

−λ1T

1− eλ1
2

T

)

ε ‖ξ0‖.

Since T is bounded above, there exists a constant γ3 > 0 so that

Tγ2e
−λ1T

1− eλ1
2

T
< γ3, T ∈ (0, Tmax);

therefore,

‖ξ̃[kT ]‖ ≤ γ3e
λ1
2

(k+1)T ε ‖ξ0‖.
Finally, from the design of Hε and (C.9), we have that

‖Hε(p, τ)‖ < ε+ ‖H(p, τ)‖
≤ ε̄1 + fγ1e

λ1Tmax , τ ∈ (0, T ),
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so, from the definition of Φε
p, observe that,

‖Φε
p(t− kT, 0)‖ ≤ eaTmax + Tmaxe

aTmaxb
(
ε̄1 + fγ1e

λ1Tmax
)

︸ ︷︷ ︸

=:γφ

.

Applying these to (C.10) yields

‖ξ̃(t)‖ ≤ γφ

(
γ3e

λ1
2

(k+1)T ε‖ξ0‖
)

+ Tmaxe
aTmaxbε

(
γ1e

λ1kT‖ξ0‖
)

≤
(
γφγ3 + Tmaxe

aTmaxbγ1e
−λ1Tmax

)

︸ ︷︷ ︸

=:γ4

e
λ1
2

(k+1)T ε‖ξ0‖, t ∈ [kT, (k + 1)T )

≤ γ4e
λ1
2

t ε‖ξ0‖, t ≥ 0. (C.11)

(ii)

Define
ũ := u0 − uε.

Clearly,

ũ(t) = H(p, t)ξ0[kT ]−Hε(p, t)ξε[kT ]

= H(p, t)ξ̃[kT ]−
(
H(p, t)−Hε(p, t)

)
ξε[kT ]

= H(p, t)ξ̃[kT ]−
(
H(p, t)−Hε(p, t)

) (
Φε

p(T, 0)
)k
ξ0;

therefore, using (C.9) and (C.11), we obtain

‖ũ(t)‖ ≤
(
h̄γ4e

λ1
2

Tmax + γ1e
−λ1Tmax

)

︸ ︷︷ ︸

=:γ5

e
λ1
2

t ε‖ξ0‖. (C.12)

(iv)

Observe that
∥
∥
∥
∥

[
yε

r1/2uε

]

−
[

y0

r1/2u0

]∥
∥
∥
∥

2

2

≤ ‖yε − y0‖22 + r‖uε − u0‖22

≤ ‖ξε − ξ0‖22 + r‖uε − u0‖22
so by (C.11) and (C.12), we have

∥
∥
∥
∥

[
yε

r1/2uε

]

−
[

y0

r1/2u0

]∥
∥
∥
∥

2

2

≤ (γ2
4 + rγ2

5)
︸ ︷︷ ︸

=:γ6

ε2‖ξ0‖2
∫ ∞

0

(

e
λ1
2

t
)2

dt

=
γ6

|λ1|
ε2‖ξ0‖2.
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If we set

γ0 := max

{

γ1, γ4, γ5,

√
γ6

|λ1|

}

and

λ0 :=
λ1

2
,

then the result follows.

Proof of Proposition 5.2:

Fix Ts > 0 and let ξ0 ∈ Rn, ε ∈ (0, ε̄), T ∈ (0, T̄ (Ts)), σ ∈ ΣTs
, and k ∈ Z+ be

arbitrary. Observe that forcing T ′ to be small is equivalent to forcing h and thereby
hm to be small. Furthermore, it will be convenient to define

Ti,j := Ti + 2(j − 1)hm

and

Est
{
Est
{
ξ[kT ]⊗i σ[kT ]

}

j
⊗ σ[kT ]

}
:=

1

ρ
argmin

{∥
∥
[
In 0

]
H(h)−1S−1

[
Y(kT + Ti,j)− Y(kT )

]∥
∥ ,

∥
∥
[
In 0

]
H(h)−1S−1

[
Y(kT + Ti,j + hm)− Y(kT + hm)

]∥
∥

}

.

Finally, throughout this proof it will be important to keep in mind that ξ is con-
tinuous, which provides many nice properties; for example, for any [t, t̄] ⊂ R+, we
have that maxt∈[t,t̄] ‖ξ(t)‖ is well defined.

This proof works by using the KEL to find bounds on the size of our estimates
and thereby the desired variables. Since the KEL does not hold on subintervals in
which there is a switch, we must be careful; we now obtain a bound on the control
signal over the Estimation Phase which holds whether or not there is a switch.

Claim 1: There exists a constant γ1 > 0 so that, in all cases, for every sufficiently
small T ′ we have that

|u(t)| ≤ γ1 max
τ∈[kT,kT+2T ′]

‖ξ(τ)‖, t ∈ [kT, (k + 1)T ).

Proof:

The key to this proof is the following. Since T < Ts/2 there can be at most one
switch on any period. Recall that all of our estimates are obtained via an argmin
of two sets of samples obtained on disjoint intervals. Since we know that there is
no switch during the acquisition of at least one of the samples, then that sample
can be bounded by the KEL and so can the associated estimates.
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Using the KEL to bound at least one of the samples, we find that there exists
a constant γkel > 0 so that, for every sufficiently small T ′ > 0, we have that

‖Est[ξ[kT ]⊗0 σ[kT ]]‖ ≤ γkel max{ξ[kT ], ξ[kT + hm]}
≤ γkel max

t∈[kT,kT+hm]
{ξ(t)} (C.13)

and similarly, with i = 1, .., q and j = 1, .., ni−1,

Est
{
Est
{
ξ[kT ]⊗i−1 σ[kT ]

}

j
⊗ σ[kT ]

}
≤

(

sup
p∈M
‖p‖+ γkelT

′
)∥
∥
∥Est

{
ξ[kT ]⊗i−1 σ[kT ]

}

j

∥
∥
∥+ γkelT

′ max
t∈[kT,kT+Ti,j ]

‖ξ(t)‖. (C.14)

By definition,

Est
{
ξ[kT ]⊗i σ[kT ]

}
=





Est
{
Est
{
ξ[kT ]⊗i−1 σ[kT ]

}

1
⊗ σ[kT ]

}

. . .
Est
{
Est
{
ξ[kT ]⊗i−1 σ[kT ]

}

ni−1
⊗ σ[kT ]

}



 ;

therefore, using (C.14), we find that there exists a constant α1 > 0 so that, for
every sufficiently small T ′ we have that

∥
∥Est

{
ξ[kT ]⊗i σ[kT ]

}∥
∥ ≤ α1

∥
∥Est

{
ξ[kT ]⊗i−1 σ[kT ]

}∥
∥+ α1T

′ max
t∈[kT,kT+2T ′]

‖ξ(t)‖,

which we can solve iteratively to find that

∥
∥Est

{
ξ[kT ]⊗i σ[kT ]

}∥
∥ ≤ αi

1

∥
∥Est

{
ξ[kT ]⊗0 σ[kT ]

}∥
∥+

i−1∑

j=0

αj
1T

′ max
t∈[kT,kT+2T ′]

‖ξ(t)‖.

With (C.13), this becomes

∥
∥Est

{
ξ[kT ]⊗i σ[kT ]

}∥
∥ ≤

(

αi
1γkel +

i−1∑

j=0

αj
1T

′

)

max
t∈[kT,kT+2T ′]

‖ξ(t)‖,

so, since i is bounded by q, there exists a constant α2 > 0 so that, for every
sufficiently small T ′ we have

∥
∥Est

{
ξ[kT ]⊗i σ[kT ]

}∥
∥ ≤ α2 max

t∈[kT,kT+2T ′]
‖ξ(t)‖, i = 1, .., q

and therefore, from the structure of u, if we define

γ1 := max{γkel, α2} ×max

{

ρ,

q̄
∑

j=0

(Tmax)
j

q
∑

i=0

‖di,j‖
}

,

then
|u(t)| ≤ γ1 max

τ∈[kT,kT+2T ′]
‖ξ(τ)‖, t ∈ [kT, (k + 1)T ].
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(i)

Assume that there are no switches on the interval [kT, (k+ 1)T ); to simplify nota-
tion, with p ∈ M arbitrary, we assume that σ(t) = p over this interval. We begin
by refining the bound on u that was obtained in Claim 1. To do so, we first find a
bound on ξ over the Estimation Phase.

Claim 2: There exists a constant γ2 > 0 so that, for every sufficiently small T ′ we
have that

‖ξ(t)‖ ≤ γ2‖ξ[kT ]‖, t ∈ [kT, kT + 2T ′).

Proof:

To proceed, observe that, solving (5.3) and using σ(t) = p provides

ξ(t) = eAp(t−kT )ξ[kT ] +

∫ t

kT

eAp(t−τ)Bpu(τ)dτ, t ∈ [kT, kT + 2T ′),

so

‖ξ(t)‖ ≤ eaTmax‖ξ[kT ]‖+ 2T ′eaTmaxb max
τ∈[kT,kT+2T ′]

|u(τ)|, t ∈ [kT, kT + 2T ′).

If we apply Claim 1, then for every sufficiently small T ′ > 0, we have that

‖ξ(t)‖ ≤ eaTmax‖ξ[kT ]‖+ 2T ′eaTmaxb

(

γ1 max
τ∈[kT,kT+2T ′]

‖ξ(τ)‖
)

, t ∈ [kT, kT + 2T ′),

so clearly

max
t∈[kT,kT+2T ′]

‖ξ(t)‖ ≤ eaTmax‖ξ[kT ]‖+ 2T ′eaTmaxbγ1 max
τ∈[kT,kT+2T ′]

‖ξ(τ)‖,

and, if

T ′ ∈
(

0,
1

4eaTmaxbγ1

)

,

then

max
t∈[kT,kT+2T ′]

‖ξ(t)‖ ≤ eaTmax

1− 2T ′eaTmaxbγ1

‖ξ[kT ]‖

≤ 2eaTmax

︸ ︷︷ ︸

=:γ2

‖ξ[kT ]‖;

therefore
‖ξ(t)‖ ≤ γ2‖ξ[kT ]‖, t ∈ [kT, kT + 2T ′].
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Clearly, Claims 1 and 2 combine to provide (i)(c): for every sufficiently small
T ′ we have that

|u(t)| ≤ γ1 max
τ∈[kT,kT+2T ′]

‖ξ(τ)‖

≤ γ1γ2‖ξ[kT ]‖, t ∈ [kT, kT + 2T ′]. (C.15)

To proceed, we first need to leverage the KEL to find a nice result regarding
our estimates when there is no switch.

Claim 3: There exists a constant γ3 > 0 so that, if T ′ is sufficiently small, then

‖Est
{
ξ[kT ]⊗i p

}
− ξ[kT ]⊗i p‖ ≤ γ3T

′‖ξ[kT ]‖, i = 0, .., q

Proof:

The case of i = 0 is trivial: the KEL and Claim 2, together, say that

Est
{
ξ[kT ]⊗0 p

}
= ξ[kT ] +O(T ′)‖ξ[kT ]‖.

By the definition of our controller, the KEL, and Claim 2 we have that

Est
{
Est
{
ξ[kT ]⊗0 p

}

j
⊗ p
}

= pEst
{
ξ[kT ]⊗0 p

}

j
+

O(T ′)
(

γ2‖ξ[kT ]‖+ ‖Est
{
ξ[kT ]⊗0 p

}

j
‖
)

, j = 1, .., n.

therefore, back substituting yields

Est
{
Est
{
ξ[kT ]⊗0 p

}

j
⊗ p
}

= pξ[kT ]j +O(T ′)‖ξ[kT ]‖, j = 1, .., n

and therefore

Est
{
ξ[kT ]⊗1 p

}
=





Est
{
Est
{
ξ[kT ]⊗0 p

}

1
⊗ p
}

. . .
Est
{
Est
{
ξ[kT ]⊗0 p

}

n
⊗ p
}





= ξ[kT ]⊗1 p+O(T ′)‖ξ[kT ]‖.

We can continue this process iteratively to find the desired result:

Est
{
ξ[kT ]⊗i p

}
= ξ[kT ]⊗i p+O(T ′)‖ξ[kT ]‖, i = 1, .., q.

By the definition of the controller and Claim 3, we have (i)(b): for t ∈ [kT +
2T ′, (k+1)T ), for every sufficiently small T ′ > 0, using the fact that, on this interval
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σ[kT ] = p, we have that

|u(t)−Hε(σ[kT ], t)|

=

∣
∣
∣
∣
∣

q̄
∑

j=0

(t− kT )j

q
∑

i=0

di,j

(
Est
{
ξ[kT ]⊗i σ[kT ]

}
− ξ[kT ]⊗i σ[kT ]

)

∣
∣
∣
∣
∣

≤
q̄
∑

j=0

(t− kT )j

q
∑

i=0

‖di,j‖
∥
∥Est

{
ξ[kT ]⊗i σ[kT ]

}
− ξ[kT ]⊗i σ[kT ]

∥
∥

≤
(

q̄
∑

j=0

T j
max

q
∑

i=0

‖di,j‖
)

γ3

︸ ︷︷ ︸

=:α3

T ′‖ξ[kT ]‖. (C.16)

With this in hand, we can now obtain (i)(a): observe that (again using σ[kT ] =
p)

‖ξ(t)− Φε
σ[kT ](t− kT, 0)ξ[kT ]‖

=

∥
∥
∥
∥

∫ t

0

eAσ[kT ](t−τ)Bσ[kT ]

(
u(τ)−Hε(σ[kT ], τ)ξ[kT ]

)
dτ

∥
∥
∥
∥

≤
∫ 2T ′

0

‖eAσ[kT ](t−τ)Bσ[kT ]

(
u(τ)−Hε(σ[kT ], τ)ξ[kT ]

)
‖dτ +

∫ T

2T ′

‖eAσ[kT ](t−τ)Bσ[kT ]

(
u(τ)−Hε(σ[kT ], τ)ξ[kT ]

)
‖dτ, t ∈ [kT, (k + 1)T ).

Since ε is fixed, we have that ‖Hε‖∞ is well defined, so we can use Claim 2, (C.15)
and (C.16) to find that

‖ξ(t)− Φε
σ[kT ](t− kT, 0)ξ[kT ]‖

≤ 2T ′eaTmaxb (γ1γ2 + ‖Hε‖∞γ2) ‖ξ[kT ]‖+ (T − 2T ′)eaTmaxbα3T
′‖ξ[kT ]‖

≤ eaTmaxb
[

2 (γ1γ2 + ‖Hε‖∞γ2) + Tmaxα3

]

T ′‖ξ[kT ]‖

(ii)

Since we do not know whether or not there is a switch in this period, rather than
use the sequence {tl}, we introduce some new notation. We assume that if there
is a switch in the period [kT, (k + 1)T ), then it occurs at t̂, i.e., there is a time
t̂ ∈ [kT, (k + 1)T ) and two (not necessarily distinct) sets of Markov parameters
p1, p2 ∈M satisfying2

σ(t) =

{
p1, t ∈ [kT, t̂)
p2, t ∈ [t̂, (k + 1)T );

2Recall that we assume that σ is continuous from the right for convenience.
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if there is no switch in the interval, then p1 = p2.

To proceed, we re-investigate the solution to (5.3) in the context of switches.
Observe that

ξ(t) = eAp1 (t−kT )ξ[kT ] +

∫ t

kT

eAp1(t−τ)Bp1u(τ)dτ, t ∈ [kT, t̂),

and

ξ(t) = eAp2 (t−t̂)ξ(t̂) +

∫ t

t̂

eAp2(t−τ)Bp2u(τ)dτ,

= eAp2 (t−t̂)

[

eAp1 (t̂−kT )ξ[kT ] +

∫ t̂

kT

eAp1 (t−τ)Bp1u(τ)dτ

]

+

∫ t

t̂

eAp2 (t−τ)Bp2u(τ)dτ, t ∈ [t̂, (k + 1)T );

if we combine these with Claim 1, then we conclude that, for every sufficiently small
T ′, we have

‖ξ(t)− ξ[kT ]‖ ≤ max
{∥
∥I − eAp1 t

∥
∥ ,
∥
∥
∥I − eAp2 (t−t̂)eAp1 (t̂−kT )

∥
∥
∥

}

‖ξ[kT ]‖+

TeaTmaxbγ1 max
τ∈[kT,(k+1)T ]

‖ξ(τ)‖, t ∈ [kT, (k + 1)T ), (C.17)

and the simpler bound

‖ξ(t)‖ ≤ eaTmax‖ξ[kT ]‖+ TeaTmaxbγ1 max
τ∈[kT,(k+1)T ]

‖ξ(τ)‖, t ∈ [kT, (k + 1)T ).

We analyze this simpler bound in the same way as in the proof of Claim 2, to find
that, with

T̄0 := min

{

T̄ (Ts),
1

2eaTmaxbγ1

}

,

for every T ∈ (0, T̄0), if T ′ > 0 is sufficiently small, then

‖ξ(t)‖ ≤ eaTmax

2
‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ]; (C.18)

when combined with Claim 1, this yields (ii)(b):

|u(t)| ≤ γ1e
aTmax

2
‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ].

Furthermore, when (C.18) is applied to (C.17), we obtain (ii)(a); to see how, first
observe that, for small T ,

∥
∥I − eAp1 (t−kT )

∥
∥ ≈ ‖Ap1(t− kT )‖
≤ aT, t ∈ [kT, (k + 1)T ],
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and
∥
∥
∥I − eAp1 (t̂−kT )eAp2 (t−t̂)

∥
∥
∥ ≈

∥
∥Ap1(t̂− kT ) + Ap2(t− t̂)

∥
∥

≤ aT, t ∈ [kT, (k + 1)T ],

so there exists a constant T̄1 ∈ (0, T̄0) so that, for every T ∈ (0, T̄1), if T ′ > 0 is
sufficiently small, then we have

‖ξ(t)− ξ[kT ]‖ ≤ max
{∥
∥I − eAp1T

∥
∥ ,
∥
∥I − eAp1Ap2T

∥
∥
}
‖ξ[kT ]‖+

Te2aTmaxbγ1
1

2
‖ξ[kT ]‖

≤
(

2a+
e2aTmaxbγ1

2

)

T‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ].

Proof of Lemma 5.3:

Fix Ts > 0, T ∈ (0, T̄ (Ts)), and ε ∈ (0, ε̄) and let T ′ ∈ (0, T/2) be arbitrary.
To reduce clutter, with p ∈ M arbitrary, assume that σ(t) = p over the interval
[kT, k̄T ). From Proposition 5.2(i)(a), if T ′ is sufficiently small, then there exists a
function ∆p[k] ∈ PC∞ and a constant δ > 0 satisfying

‖∆p[k]‖ ≤ δT ′‖ξ[kT ]‖, p ∈M (C.19)

and
ξ[(k + 1)T ] = Φε

p(T, 0)ξ[kT ] + ∆p[k], k = k, .., k̄ − 1. (C.20)

From Proposition 5.1(iii) we have that

‖
(
Φε

p(T, 0)
)k ‖ ≤ γ0e

λ0kT , p ∈M,

so the difference equation (C.20) is of the form in Lemma C.2, which we would like
to apply; to that end, we let λ1 ∈ (λ0, 0) be arbitrary. We would like our result to
hold for all admissible λ1; to do so, for each λ1 ∈ (λ0, 0), we must be able to ensure
the existence of a constant γ1 > 0 that satisfies

δT ′ < γ1T

and
2γ0γ1e

−λ1Tmax

|λ1 − λ0|
< 1.

Together, these are equivalent to

δT ′ < γ1T <
|λ0 − λ1|

2γ0e−λ1Tmax
T.
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Clearly

δT ′ <
|λ0 − λ1|

2γ0e−λ1Tmax
T

⇔ T ′ <
|λ0 − λ1|

2δγ0e−λ1Tmax
T =: T̄ ′(λ1, T ),

so for every T ′ ∈ (0, T̄ ′(λ1, T )/2) we have that such a γ1 exists. Observe that γ1

can be made independent of T ′ but that it depends on T and λ1; the dependence
on T will be useful, but the dependence on λ1 will not, so we re-write it as γ1(T ).
Furthermore, if we freeze λ1, then such a γ1 has the property that

lim
T→0

γ1(T ) = 0.

For the remainder of this proof, we let T ′ ∈ (0, T̄ ′(λ1, T )/2) be arbitrary.

We now apply Lemma C.2 to (C.20) to find that there exist constants ελ ∈
(λ0, 0) and γ̄(γ1, λ1) > 1 such that, for every λ1 ∈ (λ0, ελ) we have

‖ξ[kT ]‖ ≤ γ̄(γ1, λ1)e
λ1(k−k)T‖ξ[kT ]‖, k = k, .., k̄, (C.21)

and, if λ1 is fixed, then
lim
γ1→0

γ̄(γ1, λ1) = γ0.

Observe that this implies (with λ1 fixed)

lim
T→0

γ̄(γ1(T ), λ1) = γ0;

It serves our purposes to stress the dependence on T , so, since γ1 is a function of
both T and λ1 we will write γ̄(T, λ1) instead of γ̄(γ1, λ1).

We now have the desired structure at the sample points; it remains to show that
our state is well behaved everywhere. To that end, we observe that, since Φε

p is
clearly bounded, Proposition 5.2(i)(a) says that there exists a constant γ3(T ) > 0
such that, for every sufficiently small T ′ > 0, we have

‖ξ(t)‖ ≤ γ3(T )‖ξ[kT ]‖, t ∈ [kT, (k + 1)T ), k ∈ Z+;

since ξ is continuous, we have that

lim
T→0

γ3(T ) = 1.

Using this bound together with (C.21), if T ′ is sufficiently small, then we obtain

‖ξ(t)‖ ≤ γ3(T )γ̄(T, λ1)e
λ1(k−k)T‖ξ[kT ]‖, k = k, .., k̄, t ∈ [kT, (k + 1)T ),

≤ γ3(T )γ̄(T, λ1)e
−λ1T

︸ ︷︷ ︸

=:γ(T,λ1)

eλ1(t−kT )‖ξ[kT ]‖, t ∈ [kT, k̄T ).
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Finally, with λ1 fixed we have

lim
T→0

γ(T, λ1) = lim
T→0

(
γ3(T )γ̄(T, λ1)e

−λ1T
)

= 1× γ0 × 1

= γ0.

Proof of Lemma 5.4:

Note that we do not need a minimum realization. We will use the controller state
z to hold all of the samples of y, so we will need z to have dimension

nz := 2

(

m+
∑

i=1

qni

)

.

We assume that the period of the controller is ℓ, so

T = ℓh

and therefore,
kT = kℓh, k ∈ Z+.

With ei the standard basis vector, we then define the periodic state update function

G(j, z[j], y(jh)) =

{
eT
1 y(jh) j = 0
z[j] + eT

j+1y(jh) j = 1, .., ℓ− 2;

observe that zi will hold y[kT + (i− 1)h] and that, at the beginning of each period
we clear the state. Clearly, this provides the desired property

G(0, z[j], y(jh)) = G(0, 0, y(jh)).

It remains to carefully design the output function J . We will do so in a series
of phases that mirror how the controller is defined, but first we introduce some
notation. The discrete time analogue to Ti is defined by

ℓ1 := 2(m+ 1) and ℓi := ℓi−1 + 2ni−1(m+ 1);

we also define the discrete time analogue to Ti,l:

ℓi,l := ℓi + 2(l − 1)(m+ 1).

Phase 1: State Estimation Phase

Here we want u = 0, so we set

J(j, z[j], τ) = 0, j = 0, .., ℓ1 − 1.
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Phase 2: Control Estimation Phase

Here we need u to be the sequence of test signals:

u(t) = ρEst
{
ξ[kT ]⊗i−1 σ[kT ]

}

l
, t ∈ [kT + ℓi,lh, kT + ℓi,l+1h).

Recall that we use m + 1 instead of m to avoid initialization issues; however, this
means that we are obtaining one more sample than we require; i.e. we want to
throw away the m+ 1th sample. To that end, we will now abuse the notion of the
basis matrix Ei introduced elsewhere in this document. We define

Ī :=

[
Im
0

]

∈ R(m+1)×m

and then, with Ei ∈ Rnz×m consisting of block elements of size (m+1)×m, we set

Ei :=














0
...
0
Ī
0
...
0














← ith block element,

so ET
i z[j] is a vector consisting of the (i− 1)(m+ 1) to i(m+ 1)− 2th elements of

z[j].

We begin with i = 1. Observe that

Est
{
ξ[kT ]⊗0 σ[kT ]

}

l
= Est

{
ξ[kT ]

}

l

=
1

ρ
eT

l argmin{‖
[
In 0

]
H(h)−1S−1

︸ ︷︷ ︸

=:V0(h)

Y(kT )‖,

‖
[
In 0

]
H(h)−1S−1Y(kT + hm)‖}

=
1

ρ
eT

l argmin{‖V0(h)E
T
1 z[j]‖, ‖V0(h)E

T
2 z[j]‖},

j = ℓ1,l, .., ℓ− 1. (C.22)

so we can set

J(j, z[j], τ) = eT
l argmin{‖V0(h)E

T
1 z[j]‖, ‖V0(h)E

T
2 z[j]‖},

j = ℓ1,l, .., ℓ1,l+1 − 1, l = 1, .., n.

Via a similar argument, with

n̄1 := 2 and n̄i := n̄i−1 + 2ni + 1
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observe that, for i = 2, .., q we have

Est
{
ξ[kT ]⊗i−1 σ[kT ]

}

l
=

1

ρ
eT

l argmin







∥
∥
∥
∥
∥
∥
∥
∥

Vi(h)







(
ET

n̄i+1 − ET
1

)
z[j]

...
(

ET
n̄i+1−2 − ET

1

)

z[j]







∥
∥
∥
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥
∥
∥

Vi(h)







(
ET

n̄i+2 − ET
2

)
z[j]

...
(

ET
n̄i+1−1 − ET

2

)

z[j]







∥
∥
∥
∥
∥
∥
∥
∥







j = ℓi,l, .., ℓ− 1, l = 1, .., ni, (C.23)

so, with ∗ the content of the argmin above, we can set

J(j, z[j], τ) = eT
l argmin{∗} j = ℓi,l, .., ℓi,l+1 − 1, l = 1, .., ni.

Phase 2: Control Phase

Here we wish to apply

u(τ + kT ) =

q̄
∑

j=0

τ j

q
∑

i=0

di,jEst
{
ξ[kT ]⊗i σ[kT ]

}
, τ ∈ [Tq+1, T );

if we use the state based estimate realizations (C.22) and (C.23), then it is enough
to set

J(j, z[j], τ) =

q̄
∑

j=0

τ j

q
∑

i=0

di,jEst
{
ξ[kT ]⊗i σ[kT ]

}
, j = ℓq, .., ℓ− 1.
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Appendix D

Proofs from Chapter 6

We will require the following technical lemma:

Lemma D.1 If A ∈ Rn×n is Hurwitz, then there exist constants δ > 0, λ < 0,

and γ > 0 such that, for all ∆ ∈ PC∞ satisfying ‖∆‖∞ < δ, we have

(i) ‖ΦA+∆(t, t0)− ΦA(t, t0)‖ ≤ γ‖∆‖∞eλ(t−t0), t ≥ t0,

(ii) ‖ΦA+∆(t, t0)‖ ≤ γeλ(t−t0), t ≥ t0.

Proof:

Let t0 ∈ R+, t ≥ t0, and ∆ ∈ PC∞ be arbitrary. Observe that (ii) is the continuous
time equivalent to Lemma C.1. Since A is Hurwitz, there exists a positive definite
symmetric matrix P that satisfies

PA+ A′P = −I. (D.1)

We define x and xδ via
ẋ(t) = A x(t), x(t0) = x0, (D.2)

ẋδ(t) = (A+ ∆(t)) xδ(t), xδ(t0) = x(t0) = x0. (D.3)

(ii)

We prove this result by obtaining a bound on ‖xδ(t)‖ in terms of ‖xδ(t0)‖. To do
so we will solve some differential inequalities, constructed through manipulation of
energy functions. To that end, set

V (xδ(t)) = x′δ(t)Pxδ(t),
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which combines this with (D.1) and (D.3) to yield

V̇ (xδ(t)) = −x′δ(t)xδ(t) + x′δ(t) [P∆(t) + ∆′(t)P ]xδ(t)

≤ −‖xδ(t)‖2 + 2‖P‖‖∆‖∞‖xδ(t)‖2,

If we fix

δ =
1

4‖P‖ ,

then this becomes

V̇ (xδ(t)) ≤ −
1

2
‖xδ(t)‖2, ‖∆‖∞ < δ. (D.4)

To that end, we restrict ourselves to only those ∆ ∈ PC∞ that satisfy ‖∆‖∞ < δ.
Furthermore, define

λ̄ := maximum eigenvalue of P,

and
λ := minimum eigenvalue of P

and observe that, since P is positive definite and symmetric, by the definition of
V , we have

λ‖x(t)‖2 ≤ V (xδ(t)) ≤ λ̄‖x(t)‖2, t ≥ t0 (D.5)

which, when combined with (D.4), yields

V̇ (xδ(t)) ≤ −
1

2
‖xδ(t)‖2 ≤ −

1

2λ̄
V (xδ(t)),

whose solution satisfies

V (xδ(t)) ≤ e−
1
2λ̄

(t−t0)V (xδ(t0)), t ≥ t0

≤ λ̄e−
1
2λ̄

(t−t0)‖xδ(t0)‖2, t ≥ t0.

Finally, using (D.5) yields

λ‖xδ(t)‖2 ≤ λ̄e−
1
2λ̄

(t−t0)‖xδ(t0)‖2

⇒ ‖xδ(t)‖ ≤
(
λ̄

λ

) 1
2

︸ ︷︷ ︸

=:γ1

e−
1
4λ̄

(t−t0)
︸ ︷︷ ︸

=:eλ1(t−t0)

‖xδ(t0)‖, t ≥ t0, (D.6)

so clearly we have the desired result

‖ΦA+∆(t, t0)‖ ≤ γ1e
λ1(t−t0), t ≥ t0;

furthermore, observe that we can set ∆ = 0 to obtain

‖ΦA(t, t0)‖ ≤ γ1e
λ1(t−t0), t ≥ t0. (D.7)
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(i)

Since xδ(t0) = x(t0) = x0, we can write

(xδ − x)(t) = [ΦA+∆(t, t0)− ΦA(t, t0)]x0;

therefore, we can find our desired bound by solving the differential equation given
by

(ẋδ − ẋ)(t) = A(xδ(t)− x(t)) + ∆(t)xδ(t), xδ(t0)− x(t0) = 0,

whose solution is

(xδ − x)(t) =

∫ t

t0

ΦA(t, τ)∆(τ)xδ(τ)dτ,

so clearly

‖(xδ − x)(t)‖ ≤
∫ t

t0

∥
∥ΦA(t, τ)∆(τ)xδ(τ)

∥
∥dτ.

Using (D.7) to bound ‖ΦA‖ and (D.6) to bound ‖xδ‖ yields

‖(xδ − x)(t)‖ ≤
∫ t

t0

γ1e
λ1(t−τ)‖∆‖∞γ1e

λ1(τ−t0)‖x0‖dτ

≤ γ2
1‖∆‖∞‖x0‖

∫ t

t0

eλ1(t−τ)e
λ1
2

(τ−t0)dτ

≤ 2γ2
1

|λ1|
‖∆‖∞e

λ1
2

(t−t0)‖x0‖.

Proof of Lemma 6.1 (The Estimation Lemma):

Let x0 ∈ Rn, r ∈ PC∞, t0 ∈ R+, h ∈ (0, h̄), ū ∈ R, and g ∈ G(G, Ts, cg) be
arbitrary. Recall that we are analyzing two models (6.2) and (6.3) that do not
contain noise signals.

Here we wish to prove a result pertaining to stacked error signals E . To make
the proof more tractable, we will split our analysis into two parts: we first inves-
tigate y and then yref . Recall from standard linear system theory that the Zero
Input Response (ZIR) is the system response when the initial condition is nonzero
and input is zero; conversely, setting the initial condition to zero and introducing a
nonzero input produces the Zero State Response (ZSR). The input under consider-
ation in this proof is zero and then constant, and we would like to investigate the
system responses to each of these segments independently and then combine the
result. To that end, it will be convenient to split the various system responses into
two parts in the following way1:

y(t) = Cpe
Ap(t−t0)xp(t0)

︸ ︷︷ ︸

=:yzir(t,t0)

+

∫ t

t0

Cpe
Ap(t−τ)Bpg(τ)u(τ) dτ

︸ ︷︷ ︸

=:yzsr(t,t0)

, t ∈ [t0, t0 + 2hm).

1Our use of ZIR and ZSR are slightly non-standard here, but the nomenclature serves the
purpose of helping to keep track of which component we are discussing.
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We will require the following notation:

Op :=








Cp

CpAp
...

CpA
m
p








and Ow :=








Cw

CwAw
...

CwA
m
w







,

and we define Y(t0) and Yref (t0) so that they are consistent with the definition of
E(t0) and define Yzir(t0, t0) so that it is consistent with the definition of Y(t0) and
yzir(t, t0).

We begin by investigating the plant output y.

Claim 1: There exist constants γ > 0 and h̄ > 0 so that for every u of the form

u(t) =

{
0, t ∈ [t0, t0 + hm)
ū, t ∈ [t0 + hm, t0 + 2hm),

the solution to (6.1) has the following two properties:

(i) ‖Xm(h)−1S−1
m (Y(t0 + hm)− Y(t0))‖ ≤ γ‖ū‖+ ch‖xp(t0)‖.

(ii) Furthermore, if g ∈ G(G, Ts, cg) is continuous on [t0, t0 + 2hm), then

‖Xm(h)−1S−1
m (Y(t0 + hm)− Y(t0))− Cp(Ap)

m−1Bpem+1g(t0)ū‖ ≤
γh(‖xp(t0)‖+ ‖ū‖).

Proof:

We begin by performing some preliminary analysis, starting with the time interval
[t0, t0 + hm), in which u = 0. For every l = 0, ..,m we have

y(t0 + lh) = Cpe
Aplhxp(t0),

=
m∑

i=0

Cp(Aplh)
i

i!
xp(t0) +O(hm+1)xp(t0)

=
[

1 l . . . lm
]
Xm(h)Opxp(t0) +O(hm+1)xp(t0).

We then stack all of the signals of the form y(t0 + lh) to yield

Y(t0) = SmXm(h)Opxp(t0) +O(hm+1)xp(t0). (D.8)

Now we turn to the time interval [t0+hm, t0+2hm), in which u = ū. To simplify
notation we define

t1 := t0 + hm.

Using the same method as above, we obtain the (stacked) response due to the initial
conditions:

Yzir(t1, t0) = SmXm(h)Ope
Aphmxp(t0) +O(hm+1)eAphmxp(t0). (D.9)
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(i)

To find a loose bound on the forced response, we first note that the elements
of G(G, Ts, cg) are uniformly bounded and P1 has relative degree m; as such, for
t ∈ [t1, t1 + hm) we have

yzsr(t, t1) =

∫ t

t1

Cpe
Ap(t−τ)Bpg(τ)ū dτ

=

∫ t

t1

[
Cp(Ap(t− τ))m−1Bp

(m− 1)!
+O((t− τ)m)

]

O(1)ū dτ.

=
Cp(Ap)

m−1Bp(t− t1)m

m!
O(1)ū+O((t− τ)m+1)ū,

t ∈ [t1, t1 + hm). (D.10)

In particular, this yields

yzsr(t1 + lh, t1) = O(1)
Cp(Ap)

m−1Bp(lh)
m

m!
ū+O(hm+1)ū, l = 0, ..,m.

Combining this with (D.9) and subtracting (D.8) yields

Y(t0 + hm)− Y(t0) = SmXm(h)[Op(e
Aphm − I)xp(t0) +O(1)ū] +

O(hm+1)xp(t0) +O(hm+1)ū.

Finally, we simplify and invert SmXm(h) to obtain

Xm(h)−1S−1
m (Y(t0 + hm)− Y(t0)) = O(h)xp(t0) +O(1)ū+O(h)xp(t0) +O(h)ū

= O(1)ū+O(h)xp(t0).

(ii)

Here we have the additional assumption that g is continuous on [t0, t0 + 2hm), so it
follows that for every such g ∈ G(G, Ts, cg)

|g(t)− g(t0)| ≤ cg|t− kT |, t ∈ [t0, t0 + 2hm),

which means that we can write

g(t) = g(t0) +O(h), t ∈ [t0, t0 + 2hm). (D.11)

We can use (D.11) to find a tighter version of (D.10):

yzsr(t, t1) =

∫ t

t1

Cpe
Ap(t−τ)Bpg(τ)ū dτ

=

∫ t

t1

[
Cp(Ap(t− τ))m−1Bp

(m− 1)!
+O((t− τ)m)

]

[g(t1) +O(h)] ū dτ

=

∫ t

t1

[
Cp(Ap(t− τ))m−1Bp

(m− 1)!
g(t1)+

O((t− τ)m) +O((t− τ)m−1)O(h)
]

ū dτ, t ∈ [t1, t1 + hm).
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so we have

yzsr(t+ lh, t1) =
CpA

m−1
p Bp(lh)

m

m!
g(t1)ū+O(hm+1)ū, l = 0, ..,m.

Combining this with (D.9) and subtracting (D.8) yields

Y(t0 + hm)− Y(t0) = SmXm(h)[Ope
Aphm ]xp(t0) +O(hm+1)xp(t0) +

Cp(Ap)
m−1Bpg(t0)SmXm(h)em+1ū+O(hm+1)ū, (D.12)

finally, we invert SmXm(h) to obtain

Xm(h)−1S−1
m (Y(t0 + hm)− Y(t0)) = O(h)Opxp(t0) + Cp(Ap)

m−1Bpg(t0)em+1ū+

O(h)xp(t0) +O(h)ū

= em+1Cp(Ap)
m−1Bpg(t0)ū+

O(h)[‖xp(t0)‖+ |ū|].

We now turn to the filter output yref .

Claim 2: There exist constants γ > 0 and h̄ > 0 so that the solution to (6.3)
satisfies

‖Xm(h)−1S−1
m (Yref (t0)− Yref (t0 + hm))‖ ≤ γh(‖xw(t0)‖+ ‖r‖∞).

Proof:

The solution to (6.3) satisfies

yref (t) = Cwe
Aw(t−t0)xw(t0) +

∫ t

t0

Cwe
Aw(t−τ)Bwr(τ) dτ.

Using Assumption 6.1, and the same methods as in the proof of Claim 1, we obtain

Yref (t0) = SmXm(h)Owxw(t0) +O(hm+1)xw(t0) +O(hm+1)‖r‖∞ (D.13)

and

Yref (t0+hm) = SmXm(h)Owe
Awhmxw(t0)+O(hm+1)xw(t0)+O(hm+1)‖r‖∞, (D.14)

which combine to yield

Yref (t0)− Yref (t0 + hm) = SmXm(h)Ow(eAwhm − I)xw(t0) +

O(hm+1)xw(t0) +O(hm+1)‖r‖∞;

we then multiply by Xm(h)−1S−1
m and simplify to obtain

Xm(h)−1S−1
m (Yref (t0)− Yref (t0 + hm)) = O(h)xw(t0) +O(h)‖r‖∞.
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We obtain the desired results via a direct application of Claims 1 and 2. Com-
bining the inequalities in Claim 1(i) and Claim 2 yields

Xm(h)−1S−1
m (E(t0)− E(t0 + hm)) = O(1)ū+O(h)(‖xp(t0)‖+ ‖xw(t0)‖+ ‖r‖∞),

which implies

[
Cp(Ap)

m−1Bp

]−1
eT

m+1Xm(h)−1S−1
m (E(t0)− E(t0 + hm)) =

O(1)ū+O(h)(‖xp(t0)‖+ ‖xw(t0)‖+ ‖r‖∞),

while combining the inequalities in Claim 1(ii) and Claim 2 yields

Xm(h)−1S−1
m (E(t0)− E(t0 + hm))− em+1Cp(Ap)

m−1Bpg(t0)ū =

O(h)(|ū|+ ‖xp(t0)‖+ ‖xw(t0)‖+ ‖r‖∞),

which implies

[
Cp(Ap)

m−1Bp

]−1
eT

m+1Xm(h)−1S−1
m (E(t0)− E(t0 + hm))− g(t0)ū =

O(h)(|ū|+ ‖xp(t0)‖+ ‖xw(t0)‖+ ‖r‖∞).

Proof of Proposition 6.1:

Fix Klti ∈ S(P1) and let x0 ∈ Rn, r ∈ PC∞, and g ∈ G(G, Ts, cg) be arbitrary.
Here we will require a state space representation of the ideal system (i.e. g ≡ 1 and
C = Klti) in closed loop:

ẋ0(t) = (A−BuF )
︸ ︷︷ ︸

=:A0
cl

x0(t) +Brr(t) (D.15)

e0(t) =
[
−Cp 0 Cw

]

︸ ︷︷ ︸

=:Ccl

x0(t).

Define ∆(g(t)) to be the difference between Aε
cl(g(t)) and A0

cl:

∆(g(t)) := Aε
cl(g(t))− A0

cl

= Bu

(
g(t)φε(g(t))− 1

)
F

Finally, since A0
cl is Hurwitz by design of Klti we can apply Lemma D.1: there exist

constants δ > 0, λ1 < 0, and γ1 > 0 so that, for all ∆(g) satisfying ‖∆(g)‖∞ < δ,
we have

‖ΦAε
cl

(g)(t, t0)− ΦA0
cl
(t, t0)‖ ≤ γ1εe

λ1(t−t0), t ≥ t0, (D.16)

‖ΦAε
cl

(g)(t, t0)‖ ≤ γ1e
λ1(t−t0), t ≥ t0. (D.17)
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(i)

From the definition of ∆ we have that

‖∆(g(t))‖ = ‖Bu

(
g(t)φε(g(t))− 1

)
F‖

≤ ‖Bu‖ × ‖F‖ × ε, t ≥ 0,

so, if we choose ε̄ such that

ε̄ ≤ δ

‖Bu‖ × ‖F‖
,

then it follows directly from (D.17) that

‖ΦAε
cl

(g)(t, t0)‖ ≤ γ1e
λ1(t−t0), t ≥ t0, ε ∈ (0, ε̄).

(ii)

Since we are interested in weighted sensitivity, we investigate (eε− e0)(t) with zero
initial conditions:

eε(t)− e0(t) = Ccl(x
ε(t)− x0(t))

= Ccl

∫ t

0

[ΦAε
cl

(g)(t, τ)− ΦA0
cl
(t, τ)]Brr(τ)dτ.

We take norms on both sides and use (D.16) to conclude that

‖(eε − e0)(t)‖ ≤ ‖Ccl‖
∫ t

0

γ1εe
λ1(t−τ)‖Br‖‖r‖∞dτ

=
γ1

|λ1|
‖Ccl‖‖Br‖

︸ ︷︷ ︸

=:γ2

ε(1− eλ1t)‖r‖∞

≤ γ2ε‖r‖∞, t ≥ t0, ε ∈ (0, ε̄).

Construction of Suitable State Matrices for κ:

For simplicity, in this construction we look at the special case of q = 1 and c1 = 1;
also, recall that p = 2(q + 1)(m+ 1) = 4(m+ 1). Define:

[
γ0 . . . γm

]
:= (Cp(Ap)

m+1Bp)
−1eT

m+1Xm(h)−1S−1
m .

The controller is periodic of period p, so we choose periodic matrices: for i ∈ Z+

we set

Az[ip+ k] =

{
0 k = 0
I k = 1, .., p− 1,
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Bz[ip+ k] =







[
1 0
0 γ0

]

k = 0

[
0 0
0 γk

]

k = 1, ..,m

[
0 0
0 −γk−(m+1)

]

k = m+ 1, .., 2(m+ 1)− 1

0 k = 2(m+ 1), .., p− 1,

Cz[ip+ k] =







0 k = 0, ..,m
[

1 0
]

k = m+ 1, .., 2(m+ 1)− 1

1
2

[
2(q + 1)a0 − 1 2(q + 1)a1

]
k = 2(m+ 1), .., p− 1,

and
Dz[ip+ k] = 0.

Proof of Lemma 6.2 (One Period Lemma):

Fix Klti ∈ S(P1) and ε ∈ (0, ε̄) and let x0 ∈ Rn, r ∈ PC∞, k ∈ Z+, g ∈ G(G, Ts, cg)
be arbitrary. Assume that C(Klti, ε, T ) is attached to the plant Pg.

Before proceeding, we give an overview of the proof. First we use the Estimation
Lemma to obtain rough bounds on |u| and ‖x(t)−x[kT ]‖. We then use these bounds
to find tighter bounds for the case where g is continuous on the interval. Since
T := 2(q+1)hm and hm = (m+1)h, we have that T , h, and hm are interchangeable
with respect to order notation. We begin by using the Estimation Lemma to obtain
bounds on the estimates (and hence on the input):

Claim 1: There exists a constants γ1 > 0 so that, if h > 0 is sufficiently small,
then

‖u(t)‖ ≤ γ1 sup
τ∈[kT,(k+1)T )

‖x(τ)‖+ γ1h‖r‖∞, t ∈ [kT, (k + 1)T ).

Proof:

From the definition of u and the Estimation Lemma we have

Est{cigi+1[kT ]u0(jT )} = (Cp(Ap)
m−1Bp)

−1eT
m+1Xm(h)−1S−1

m ×
[E(kT + (2i+ 1)hm)− E(kT + 2ihm)]

= O(1)Est{ci−1g
i[kT ]u0(jT )}+

O(h)[xp(kT + 2ihm) + xw(kT + 2ihm) + ‖r‖∞],

i = 0, .., q − 1;

solving iteratively and using the fact that u0[kT ] = Fx[kT ], we obtain

Est{cigi+1[kT ]u0(jT )} = O(1)x[kT ] +O(h)

[

max
τ∈[kT,(k+1)T )

‖x(τ)‖+ ‖r‖∞
]

= O(1) max
τ∈[kT,(k+1)T )

‖x(τ)‖+O(h)‖r‖∞,

i = 0, .., q − 1.
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Our desired result follows directly from the special structure of u.

We now turn to an analysis of the system equation (6.5) and derive a bound on
the state x over the interval [kT, (k + 1)T ).

Claim 2 There exists a constant γ2 > 0 so that, if T > 0 is sufficiently small, then

‖x(t)‖ ≤ γ2‖x[kT ]‖+ γ2T‖r‖∞, t ∈ [kT, (k + 1)T ).

Proof:

Solving (6.5) and then applying Claim 1 yields

x(t) = eA(t−kT )x[kT ] +

∫ t

kT

eA(t−τ) [Bug(τ)u(τ) +Brr(τ)] dτ

= O(1)x[kT ] +O(T )

[

sup
τ∈[kT,(k+1)T )

‖u(τ)‖+ ‖r‖∞
]

= O(1)x[kT ] +O(T )

[

‖r‖∞ + max
τ∈[kT,(k+1)T )

‖x(τ)‖
]

,

t ∈ [kT, (k + 1)T );

it follows immediately that

max
τ∈[kT,(k+1)T )

‖x(τ)‖ = O(1)x[kT ] +O(T )[‖r‖∞ + max
τ∈[kT,(k+1)T )

‖x(τ)‖],

which means that

max
τ∈[kT,(k+1)T )

‖x(τ)‖ = O(1)x[kT ] +O(T )‖r‖∞,

so clearly
x(t) = O(1)x[kT ] +O(T )‖r‖∞, t ∈ [kT, (k + 1)T ).

We now use Claims 1 and 2 to find a bound on x(t)− x[kT ].

Claim 3: There exists a constant γ3 > 0 so that, if T > 0 is sufficiently small,
then

‖x(t)− x[kT ]‖ ≤ γ3T (‖x[kT ]‖+ ‖r‖∞), t ∈ [kT, (k + 1)T ).

Proof:

Solving (6.5) yields

x(t)− x[kT ] =
(
eA(t−kT ) − I

)
x[kT ] +

∫ t

kT

eA(t−τ) [Bug(τ)u(τ) +Brr(τ)] dτ

= O(T )

[

x[kT ] + sup
τ∈[kT,(k+1)T )

‖u(τ)‖+ ‖r‖∞
]

, t ∈ [kT, (k + 1)T );
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if we simplify and apply Claim 1 followed by Claim 2 then we find

x(t)− x[kT ] = O(T )(‖x[kT ]‖+ ‖r‖∞).

(i)

We can use Claims 1 and 2 to obtain (b): from Claim 1 we have

u(t) = O(1) max
τ∈[kT,(k+1)T )

‖x(τ)‖+O(h)‖r‖∞, t ∈ [kT, (k + 1)T ),

to which we apply Claim 2, yielding

u(t) = O(1)x[kT ] +O(T )‖r‖∞, t ∈ [kT, (k + 1)T ). (D.18)

To find (a), we observe that, for t ∈ [kT, (k + 1)T ), we have

x(t)− ΦAε
cl

(g)(t, kT )x[kT ] −
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ

= x(t)− x[kT ] + (I − ΦAε
cl

(g)(t, kT ))x[kT ]−
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ,

to which we apply Claim 3, yielding

x(t)− ΦAε
cl

(g)(t, kT )x[kT ]−
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ =

O(T )(x[kT ] + ‖r‖∞) +O(T )x[kT ] +O(T )‖r‖∞.

(ii)

We must now investigate the case in which g is continuous on [kT, (k + 1)T ); to
that end, we restrict ourselves to such pairs g and k.

Observe that we can rewrite the system equation (6.5) in the following way:

ẋ(t) = Ax(t) +Bug(t)u(t) +Brr(t)

= Aε
cl(g(t))x(t) +

[
A− Aε

cl(g(t))
]
x(t) +Brr(t) +Bug(t)u(t),

whose solution satisfies

x(t) = ΦAε
cl

(g)(t, kT )x[kT ] +

∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ +

∫ t

kT

ΦAε
cl

(g)(t, τ)
{[
A− Aε

cl(g(τ))
]
x(τ) + g(τ)Buu(τ)

}

dτ.
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From the definition of Aε
cl we have

A− Aε
cl(g(τ)) = −Bug(τ)φ

ε(g(τ))L,

so

x(t)− ΦAε
cl

(g)(t, kT )x[kT ]−
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ =

∫ t

kT

ΦAε
cl

(g)(t, τ)Bug(τ)
[
− φε(g(τ))u0(τ) + u(τ)

]
dτ

︸ ︷︷ ︸

=:η(kT,t)

.

We proceed by using the Estimation Lemma to show that the effect of u is similar
to that of φε(g)u0 and then use that result to find a nice bound on η.

Claim 4: There exists a constant γ4 > 0 so that, if T > 0 is sufficiently small, then

∥
∥
∥
∥
∥

∫ (k+1)T

kT

(
u(τ)− φε(g[kT ])u0[kT ]

)
dτ

∥
∥
∥
∥
∥
≤ γ4T

2(‖x[kT ]‖+ ‖r‖∞).

Proof:

From the Estimation Lemma (with t0 = kT + 2ihm and ū = u(kT + (2i + 1)hm))
we have

Est{cigi+1[kT ]u0(jT )} = g(kT + 2ihm)u(kT + (2i+ 1)hm) +

O(T )[‖xp(kT + 2ihm)‖+ ‖xw(kT + 2ihm)‖+

|u(kT + (2i+ 1)hm)|+ ‖r‖∞].

As in (D.11), since g is continuous on [kT, (k + 1)T ] we have that

g(t) = g[kT ] +O(T ), t ∈ [kT, (k + 1)T ),

so

Est{cigi+1[kT ]u0(jT )} = [g[kT ] +O(T )]u(kT + (2i+ 1)hm) +

O(T )[‖xp(kT + 2ihm)‖+ ‖xw(kT + 2ihm)‖+

|u(kT + (2i+ 1)hm)|+ ‖r‖∞]

= g[kT ]u(kT + (2i+ 1)hm) +O(T )[‖xp(kT + 2ihm)‖+

‖xw(kT + 2ihm)‖+ |u(kT + (2i+ 1)hm)|+ ‖r‖∞].

Now, from (6.10) we have

u(kT + (2i+ 1)hm) =
ci
ci−1

Est{ci−1g
i[kT ]u0(jT )}, i = 0, 1, ..., q − 1,
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so

Est{cigi+1[kT ]u0(jT )} = g[kT ]
ci
ci−1

Est{ci−1g
i[kT ]u0(jT )}+

O(T )[‖xp(kT + 2ihm)‖+ ‖xw(kT + 2ihm)‖+

|u(kT + (2i+ 1)hm)|+ ‖r‖∞].

Finally, using Claim 1 to provide a bound on |u(kT + (2i+ 1)hm)| and Claim 2 to
provide a bound on ‖x(t)‖ we obtain the update equation

Est{cigi+1[kT ]u0(jT )} = g[kT ]
ci
ci−1

Est{ci−1g
i[kT ]u0(jT )}+O(T )(‖x[kT ]‖+‖r‖∞),

which, solved iteratively using the ‘initial condition’ of Est{u0(jT )} = u0[kT ] yields

Est{cigi+1[kT ]u0(jT )} = cig
i+1[kT ]u0[kT ]+O(T )(‖x[kT ]‖+‖r‖∞), i = 0, 1, .., q−1.

Since
∫ (k+1)T

kT

[u(τ) − φε(g[kT ])u0[kT ]]dτ

= hm

[
q−1
∑

i=0

u(kT + (2i+ 1)hm)

]

+

2hmu(kT + 2qhm)− Tφε(g[kT ])u0[kT ]

= hm

[
q−1
∑

i=0

ci
ci−1

Est{ci−1g
i[kT ]u0(jT )}

]

+

2hm
1

2

[
q
∑

i=0

2(q + 1)ai
1

ci−1

Est{ci−1g
i[kT ]u0(jT )}−

q−1
∑

i=0

ci
ci−1

Est{ci−1g
i[kT ]u0(jT )}

]

− Tφε(g[kT ])u0[kT ]

this result together with and the fact that T := 2(q + 1)hm yields

∫ (k+1)T

kT

[u(τ) − φε(g[kT ])u0[kT ]]dτ

= 2(q + 1)hm

[
q
∑

i=0

aig
i[kT ]u0[kT ]

]

− Tφε(g[kT ])u0[kT ] +

O(T )hm[x[kT ] + ‖r‖∞]

= O(T 2)(x[kT ] + ‖r‖∞).

We now turn to η. We begin by finding a bound on φε(g(t))u0(t). Since

u0(t) = Fx(t), (D.19)

214



we have

φε(g(t))u0(t)− φε(g[kT ])u0[kT ] = [φε(g(t))− φε(g[kT ])]u0[kT ] +

L[x(t)− x[kT ]]φε(g(t));

to which we apply Claim 3 and use the fact that g(t) = g[kT ] +O(T ), yielding

φε(g(t))u0(t) = φε(g[kT ])u0[kT ] +

O(T )(|u0[kT ]|+ ‖x[kT ]‖+ ‖r‖∞), t ∈ [kT, (k + 1)T ).

We can use this in the definition of η to obtain

‖η(kT, t)‖ ≤
∫ (k+1)T

kT

O(1)
[

− φε(g[kT ])u0[kT ] + u(τ) +

O(T )(|u0[kT ]|+ ‖x[kT ]‖+ ‖r‖∞)
]

dτ

= O(1)

[
∫ (k+1)T

kT

[
−φε(g[kT ])u0[kT ] + u(τ)

]
dτ

]

+

O(T 2)(|u0[kT ]|+ ‖x[kT ]‖+ ‖r‖∞), t ∈ [kT, (k + 1)T ).

We then use Claim 4 to bound the first term and (D.19) in the second term, yielding

‖η(kT, t)‖ ≤ O(T 2)(‖x[kT ]‖+ ‖r‖∞), t ∈ [kT, (k + 1)T ),

so, for every t ∈ [kT, (k + 1)T ) we have

x(t)− ΦAε
cl

(g)(t, kT )x[kT ]−
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ

= η(kT, t)

= O(T 2)(‖x[kT ]‖+ ‖r‖∞).

Proof of Proposition 6.2:

Fix x0 = 0, Klti ∈ S(P1), and ε ∈ (0, ε̄) and let g ∈ G(G, Ts, cg) be arbitrary. Both
the stability and the sensitivity parts of this proof work by gluing together the single
period results obtained in the Control Lemma. In the previous three chapters, we
used the switching sequence {tl} to state and to prove our results since it provided
a very natural way to define nominal performance in the face of plant switches. In
this chapter, the weighted sensitivity function is well defined, even in the face of
discontinuities in g, so instead of using the switching sequence, here we proceed by
observing that, as T → 0, the percentage of intervals of length T which contain a
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discontinuity in g tends to zero, so that the stronger conclusion of Lemma 6.2 is
applicable. To that end we define the following integer function:

ρ(T ) :=

⌊
Ts

T

⌋

.

It follows that
ρ(T )T ≤ Ts

and that ρ(T )T → Ts as T → 0; hence on any interval of ρ(T )T time units long,
there is at most one interval of length T which has a discontinuity.

Before proceeding, we invoke two of our previous results. First, from Proposi-
tion 6.1 we have that

‖ΦAε
cl

(g)(t, t0)‖ ≤ γ0e
λ0(t−t0), t ≥ t0. (D.20)

Second, from the Control Lemma, there exists a constant δ > 0 and functions ∆1

and ∆2 satisfying

‖∆1[kT ]‖ ≤
{

0 if g is continuous on [kT, (k + 1)T )
δT otherwise

, k ∈ Z+

and
‖∆2[kT ]‖ ≤ δT 2, k ∈ Z+

so that, for every sufficiently small T > 0, we have

x(t)− ΦAε
cl

(g)(t, kT )x[kT ]−
∫ t

kT

ΦAε
cl

(g)(t, τ)Brr(τ)dτ =

[∆1[kT ] + ∆2[kT ]] [‖x[kT ]‖+ ‖r‖∞] , t ∈ [kT, (k + 1)T ), k ∈ Z+. (D.21)

We let T > 0 to be arbitrary and sufficiently small to ensure that the above holds.

Before moving to the details of each of our two problems (i.e., stability and
weighted sensitivity), we present the following technical result.

Claim 1: There exist constants γ1 > 0 and λ1 ∈ (λ0, 0) so that, for every r ∈ PC∞,
if k0 ∈ Z+ and w ∈ PC∞ satisfy

w(t) = 0, t ≥ k0T

and T > 0 is sufficiently small, then

‖x[kT ]‖ ≤ γ1

(
eλ1(k−k0)T‖x[k0T ]‖+ ‖r‖∞

)
, k ≥ k0.

Proof:

Let k0 ∈ Z+ and w ∈ PC∞ be arbitrary such that they satisfy

w(t) = 0, t ≥ k0T
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and let k ≥ k0 and r ∈ PC∞ be arbitrary.

Using (D.20) to bound ‖ΦAε
cl

(g)‖ in the integrand, from (D.21), in particular, we
have that

x[(k + 1)T ] = ΦAε
cl

(g)((k + 1)T, kT )x[kT ] +

O(1)

∫ (k+1)T

kT

γ0e
λ0[(k+1)T−τ ]‖Br‖‖r‖∞dτ +

O(1)[‖∆1[kT ]‖+ δT 2][‖x[kT ]‖+ ‖r‖∞]

= ΦAε
cl

(g)((k + 1)T, kT )x[kT ] +

O(T )‖r‖∞ +O(1)
[
‖∆1[kT ]‖+ δT 2

]
‖x[kT ]‖.

Observe that, from the definition of a state transition matrix, we have that

ΦAε
cl

(g)(kT, k0T ) =
k−1∏

i=k0

ΦAε
cl

(g)((i+ 1)T, iT ), k ≥ k0, k0 ∈ Z+,

so we can iteratively solve the above difference equation to obtain

x[kT ] = ΦAε
cl

(g)(kT, k0T )x[k0T ] +

j−1
∑

i=0

(

ΦAε
cl

(g)((j − 1)T, iT )×

[
O(T )‖r‖∞ +O(1)

(
‖∆1[kT ]‖+ δT 2

)
‖x(iT )‖

])

.

Using (D.20), we find that there exists a constant α1 > 0 such that

‖x[kT ]‖ ≤ γ0e
λ0(k−k0)T )‖x[k0T ]‖+ α1

j−1
∑

i=0

(

γ0e
λ0(j−1−i)T ) ×

[
T‖r‖∞ +

(
‖∆1[kT ]‖+ δT 2

)
‖x(iT )‖

])

.

If we define the RHS of this inequality to be ψ[kT ], then we obtain the more easily
handled equation

ψ[(k + 1)T ] = eλ0Tψ[kT ] + α1γ0

[
T‖r‖∞ + (‖∆1[kT ]‖+ δT 2)‖x[kT ]‖

]
,

γ0‖x[k0T ]‖ = ψ[k0T ]; (D.22)

since
‖x[kT ]‖ ≤ ψ[kT ]

to obtain the desired result, it is sufficient to find a bound on ψ for all k. We begin
with (D.22), which implies

ψ[(k + 1)T ] ≤ (eλ0T + γ0α1‖∆1[kT ]‖+ γ0δT
2)ψ[kT ] + γ0α1T‖r‖∞. (D.23)

Observe that there exists a λ̄1 ∈ (λ0, 0) such that, for small T ,

eλ0T + γ0α1δT
2 ≤ eλ̄1T ;
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if we apply this to (D.23) and use the definition of ∆1, then we obtain

ψ[(k + 1)T ] ≤
{
eλ̄1Tψ[kT ] + γ0α1T‖r‖∞ if g is continuous on [kT, (k + 1)T )
(1 + γ0α1δT )ψ[kT ] + γ0α1T‖r‖∞ otherwise.

(D.24)

Recall that, in every ρ(T ) periods, we have at least ρ(T ) − 1 periods where g is
continuous. As such, if T > 0 is sufficiently small, then we can use (D.24) and
eλ̄1T ≤ 1 to write

ψ[(k + ρ(T ))T ] ≤ eλ̄1T (ρ(T )−1)(1 + γ0δT )ψ[kT ] +
ρ(T )−1
∑

i=0

(1 + γ0α1δT )i (γ0α1T‖r‖∞)

≤ eλ̄1T (ρ(T )−1)(1 + γ0α1δT )ψ[kT ] +

γ0α1Tρ(T )(1 + γ0α1δT )ρ(T )‖r‖∞,

but
(1 + γ0δT ) ≤ eγ0δT , T ≥ 0

and by definition
ρ(T )T ≤ Ts,

so

ψ[(k + ρ(T ))T ] ≤ eλ̄1T (ρ(T )−1)+γ0δTψ[kT ] + γ0α1Tse
γ0δTs‖r‖∞.

Finally, observe that there exists a λ̄2 ∈ (λ̄1, 0) such that, for small T , we have

λ̄1T (ρ(T )− 1) + γ0δT ≤ λ̄2Tρ(T ),

so we have

ψ[(k + ρ(T ))T ] ≤ eλ̄2Tρ(T )ψ[kT ] + γ0α1Tse
γ0δTs‖r‖∞;

indeed, we can solve this iteratively to find that

ψ[(k0 + jρ(T ))T ] ≤ (eλ̄2T )jρ(T )ψ[k0T ] +
eγ0δTs

1− eλ̄2Tρ(T )
γ0α1Ts‖r‖∞

≤ (eλ̄2T )jρ(T )ψ[k0T ] +
eγ0δTs

1− eλ̄2Ts/2
γ0α1Ts

︸ ︷︷ ︸

=:α2

‖r‖∞,

j ∈ Z+. (D.25)

To complete the proof of the claim we must show that ψ is well behaved at the
sample points which lie between jρ(T )T and (j+1)ρ(T )T . We consider (D.23) and
use a weak bound on ∆1: for small T

ψ[(k + 1)T ] ≤ (eλ0T + 2γ0δT )ψ[kT ] + γ0α1T‖r‖∞
≤ (1 + 2γ0δT )ψ[kT ] + γ0α1T‖r‖∞
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which, solved iteratively to obtain a crude bound on ψ[kT ], provides the following:
for every k̄0 ≥ k0 and small T we have

ψ[kT ] ≤ (1 + 2γ0δT )k−k̄0ψ[k̄0T ] + γ0α1T
(1 + 2γ0δT )k−k̄0 − 1

2γ0δT
‖r‖∞

≤ e2γ0δT (k−k̄0)ψ[k̄0T ] +
α1

2δ
[e2γ0δT (k−k̄0) − 1]‖r‖∞, k ≥ k̄0 (D.26)

so for l = 0, ..., ρ(T ) − 1, set k̄0 = k0 + jρ(T ), k = (k0 + jρ(T ) + l)T , and use
l < ρ(T ) to find

ψ[(k0 + jρ(T ) + l)T ] ≤ e2γ0δTρ(T )ψ[k0 + jρ(T )T ] +
α1

2δ
[e2γ0δTρ(T ) − 1]‖r‖∞

≤ e2γ0δTsψ[k0 + jρ(T )T ] +
α1

2δ
[e2γ0δTs − 1]

︸ ︷︷ ︸

=:α3

‖r‖∞, j ∈ Z+

which combines with (D.25) to yield

ψ[(k0 + jρ(T ) + l)T ] ≤ e2γ0δTs

[

(eλ̄2T )jρ(T )ψ[k0T ] + α2‖r‖∞
]

+ α3‖r‖∞
≤ e2γ0δTse−λ̄2Ts(eλ̄2T )jρ(T )+lψ[k0T ] +

[
e2γ0δTsα2 + α3

]

︸ ︷︷ ︸

=:α4

‖r‖∞, j ∈ Z+

which implies that

ψ[kT ] ≤ e(2γ0δ−λ̄2)Ts

︸ ︷︷ ︸

=:α5

(eλ̄2T )k−k0ψ[k0T ] + α4‖r‖∞, k ≥ k0.

Using the definition of ψ it follows that

‖x[kT ]‖ ≤ γ0α5e
λ̄2T (k−k0)x[k0T ] + α4‖r‖∞, k ≥ k0.

Sensitivity:

Fix w ≡ 0 and let r ∈ PC∞ be arbitrary. By the definition of weighted sensitivity,
it is enough to bound (e− eε) by r. Since

e = Cpx− Cwr,

it clearly sufficient to bound (x− xε) by r; indeed, it is sufficient to show

‖(xε − x)(t)‖ = O(T )‖r‖∞.

To do so, we will begin by showing that x[kT ] is bounded, independent of the choice
of k and then use this to show that xε − x is well behaved at the sample points;
finally, we show that nothing untoward happens between samples. To that end, we
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now look for a bound on the difference between x and xε at the sampling times.
Observe that, since w ≡ 0, Claim 1 says that, if T > 0 is sufficiently small, then

‖x[kT ]‖ ≤ γ1

(
eλ1kT‖x0‖+ ‖r‖∞

)
, k ∈ Z+.

It will be convenient to define
x̃ε := x− xε.

Claim 2: There exists a constant γ2 > 0 so that, if T > 0 is sufficiently small then

‖x̃ε[kT ]‖ ≤ γ2T‖r‖∞, k ∈ Z+.

Proof:

Let k ∈ Z+ be arbitrary. From (6.9) we have

xε[(k + 1)T ] = ΦAε
cl

(g)((k + 1)T, kT )xε[kT ] +

∫ (k+1)T

kT

ΦAε
cl

(g)((k + 1)T, τ)Brr(τ)dτ,

so, using (D.21), we have

x̃ε[(k + 1)T ] = ΦAε
cl

(g)((k + 1)T, kT )x̃ε[kT ] +

[∆1[kT ] + ∆2[kT ]]× [‖x[kT ]‖+ ‖r‖∞] ,

whose solution satisfies

x̃ε[kT ] =
k−1∑

j=0

(
ΦAε

cl
(g)((k − 1)T, 0)) [∆1[jT ] + ∆2[jT ]]× [‖x[jT ]‖+ ‖r‖∞]

)
.

If we use Claim 1 to bound ‖x[kT ]‖, the definition of ∆2, and the bound on ‖ΦAε
cl

(g)‖
then, for sufficiently small T , we have

‖x̃ε[kT ]‖ ≤
k−1∑

j=0

γ0e
λ0(k−1−j)T

[
‖∆1[jT ]‖+ δT 2

]
(γ1 + 1)‖r‖∞. (D.27)

The only problematic term is ∆1. In the worst case, g has discontinuities every
ρ(T ) samples, that is, ∆(iT ) = 0 for every i that is not an integer multiple of ρ(T ).
Therefore, we have

k−1∑

i=0

eλ0T (k−1−i)‖∆1[kT ]‖ ≤
∞∑

i=1

eλ0ρ(T )T iδT

≤
∞∑

i=0

eλ0Tsi/2δT for small T

=
1

1− eλ0Ts/2
δ T.

220



Furthermore,

k−1∑

i=0

eλ0T (k−1−i) ≤
∞∑

i=0

eλ0T i

=
1

1− eλ0T

≤ 2

|λ0|T
for small T ,

so (D.27) becomes

‖x̃ε[kT ]‖ ≤
[
γ0O(T ) + γ0O(T−1)δT 2

]
‖r‖∞

= O(T )‖r‖∞.

We can now prove the sensitivity bound; as stated above, it is clearly enough
to prove that

x̃ε = O(T )‖r‖∞.
Claim 2 says that x̃ε is of the right form at integer multiples of T ; it remains to
show that x̃ε(t) is well behaved between these points. It is straightforward to show
that

xε(t)− xε[kT ] = O(T )[‖xε[kT ]‖+ ‖r‖∞];

using Proposition 6.1(i) to find a crude bound on ‖xε[kT ]‖ yields

xε(t)− xε[kT ] = O(T )‖r‖∞. (D.28)

It remains to find a bound on x(t)− x[kT ]; to do so, we return to (D.21), use the
bound on ΦAε

cl
(g), and assume the worst case (i.e. for every k ∈ Z+, ∆1[kT ] = O(T ))

to find that

x(t)− x[kT ] = O(T )[‖x[kT ]‖+ ‖r‖∞], t ∈ [kT, (k + 1)T ),

and then we use Claim 1 to provide a crude bound on ‖x[kT ]‖, yielding

x(t)− x[kT ] = O(T )‖r‖∞. (D.29)

Combining (D.28) and (D.29) yields

x̃ε(t)− x̃ε[kT ] = O(T )‖r‖∞,

which we use with Claim 2 to find the desired result:

x̃ε(t) = [x̃ε(t)− x̃ε[kT ]] + x̃ε[kT ]

= O(T )‖r‖∞.
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Stability:

Fix r ≡ 0 and let w ∈ PC∞ be arbitrary. Observe that, when investigating per-
formance we set w ≡ 0 but that we can not do so when investigating stability.
However, since W is stable, our system is linear, and x incorporates the state of
Klti and Pg, and e = Cx− wy, to prove stability it is sufficient to show that, with
r ≡ 0, both x and u are uniformly bounded functions of w.

This proof works by investigating the response to noise when it is present over
only one interval and then stitching together those results to obtain a bound over
the entire interval; to this end, with j ∈ Z+, define

wj(t) :=

{
w(t) t ∈ [jT, (j + 1)T )
0 else,

and let xj and zj be the responses due to wj (we define ej and u0
j in an analogous

way), with
xj(0) = x0 = 0.

Observe that, since r ≡ 0, Claim 1 says that, if T > 0 is sufficiently small, then for
every j ∈ Z+ we have

‖xj[kT ]‖ ≤ γ1

(
eλ1(k−j−1)T‖x[(j + 1)T ]‖+ ‖r‖∞

)
, k ≥ j + 1. (D.30)

Before proceeding, we sketch the proof. Now, observe that (D.30) indicates that
we have a bound on xj as in Figure D.1. Furthermore, since the system is linear
and causal, we have that

x(t) =
∞∑

j=0

xj(t), t ≥ 0,

so if we can show that the exponential bound on xj is uniform over j, then x will
also be bounded. The bound on u will follow directly. To proceed, we must first
nail down T̄ so that we can fix T in an appropriate range. To do so, we require the
following claim, which will also provide the exponential part of our bound.

Claim 3: There exists a constant γ3 > 0 so that, for every sufficiently small T > 0
we have

‖xj(t)‖ ≤ γ3e
λ1(t−(j+1)T )‖xj[(j + 1)T ]‖, t ≥ (j + 1)T, j ∈ Z+.

Proof:

Let j ∈ Z+ be arbitrary. Using (D.30) in conjunction with the One Period Lemma
we find that, if T > 0 is sufficiently small, then

xj(t) = O(1)ΦAε
cl

(g)(t, kT )xj[kT ] +O(T )xj[kT ],

= (O(1) +O(T )) eλ1(k−j−1)T‖xj[(j + 1)T ]‖,
t ∈ [kT, (k + 1)T ), k ≥ j + 1.
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O(1)‖w‖∞

jT

O(1)eλ1(t−(j+1)T )‖xj [(j + 1)T ]‖

(j + 1)T0
t

bound on ‖xj(t)‖

Figure D.1: Bound on xj

At this point we fix T > 0 so that it is sufficiently small to satisfy Claims 1
and 3. It remains to investigate the interval t ∈ [jT, (j + 1)T ), in which we apply
noise. As such, we now rewrite the system equations to reflect the inclusion of noise
and r ≡ 0:

ẋ(t) = Ax(t) +Bug(t)(u(t) + wu(t)) +





0
−Bu

0



wy(t) (D.31)

u0(t) = Fx(t)−Dkwy(t),

e(t) = Cx(t)− wy(t).

There is no change to κ:

z[k + 1] = Az[k]z[k] +Bz[k]

[
u0

e

]

(kh)

ψ[k] = Cz[k]z[k] +Dz[k]

[
u0

e

]

(kh),

u(kh+ τ) = ψ[k], τ ∈ [0, h).

(D.32)

Recall that κ is periodic of period p and that

T = ph,

so, since the system is linear and causal, we have

xj[jT ] = 0,

zj[jp] = 0,

ej[jT ] = −wy[jT ],

and
u0

j [jT ] = −Dkwy[jT ].
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If we solve (D.31), then it is easy to show that there exists a constant α6 so that
for all j ∈ Z+ and k = jp, .., (j + 1)p− 1 we have

‖xj(t)‖ ≤ α6(‖xj(kh)‖+ |uj(kh)|+ ‖w‖∞), t ∈ [kh, (k + 1)h); (D.33)

if we combine this with (D.32), then we see that there exists a constant α7 > 1 so
that, for all j ∈ Z+ and k = jp, .., (j + 1)p− 1, we have

∥
∥
∥
∥
∥
∥





xj((k + 1)h)
zj[k + 1]
ψj[k + 1]





∥
∥
∥
∥
∥
∥

≤ α7

∥
∥
∥
∥
∥
∥





xj(kh)
zj[k]
ψj[k]





∥
∥
∥
∥
∥
∥

+ α7‖w‖∞;

solving iteratively yields

max
k=jp,..,(j+1)p−1

∥
∥
∥
∥
∥
∥





xj(kh)
zj[k]
ψj[k]





∥
∥
∥
∥
∥
∥

≤ αp
7

∥
∥
∥
∥
∥
∥





0
0

−Dkwy(0)





∥
∥
∥
∥
∥
∥

+
αp

7 − 1

α7 − 1
‖w‖∞

≤






αp

7‖Dk‖+
αp

7 − 1

α7 − 1
︸ ︷︷ ︸

=:α8






‖w‖∞.

Using this in (D.33) yields

max
t∈[jT,(j+1)T )

‖xj(t)‖ ≤ α6(2α8 + 1)
︸ ︷︷ ︸

=:α9

‖w‖∞,

so, with Claim 3, we have

‖xj(t)‖ ≤ γ3α9e
λ1(t−(j+1)T )‖w‖∞, t ≥ jT.

Finally, we find the full response to w by stitching together the xjs. Recall that

x(t) =
∞∑

j=0

xj(t),

so for each k ∈ Z+ we have

‖x(t)‖ ≤
k∑

j=0

‖xj(t)‖

≤ γ3α9

k∑

j=0

eλ1(t−(j+1)T )
︸ ︷︷ ︸

≤eλ1(k−j−1)T

‖w‖∞, t ∈ [kT, (k + 1)T ), k ∈ Z+

≤ γ3α9e
−λ1T

∞∑

j=0

(
eλ1T

)j ‖w‖∞

=
γ3α9e

−λ1T

1− eλ1T
‖w‖∞, t ≥ 0.
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Hence we have the desired bound on x, independent of g. It remains to show that u
is bounded. This follows directly from the special structure of the controller. From
(6.10) - (6.11) we see that, since T is fixed, there exists a α10 > 0 such that

‖u(t)‖ ≤ α10

(

max
t∈[kT,(k+1)T )

‖e(t)‖+ ‖u0[kT ]‖
)

, t ∈ [kT, (k + 1)T ).

Since e(t) and u0(t) are linear functions of x(t) and u(t), it follows that there exists
a constant α11 so that

‖u(t)‖ ≤ α11‖w‖∞, t ≥ 0.
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Appendix E

List of Notation

Since this thesis contains a significant amount of notation, here we compile the more
important terms that were not introduced in Chapter 2. Although it may sometimes
be repetitive, to improve accessibility, we will provide four lists of notation, one for
each of the chapters 3 to 6. We refer to equation numbers where possible, in the
absence of which we refer to page numbers.
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Table E.1: Notation for Chapter 3

(Ai, Bi, Ci) (3.1)
The state-space matrices corresponding to the
(MIMO) plant Pi

(Âσ(t), Bσ(t), Cσ(t)) (3.1)
The state-space matrices corresponding to the reg-
ularized time-varying plant Pσ at time t

Âi (3.4) The regularized A matrix for the plant Pi

Āi p.22
Āi := Âi +BiFi, the optimal closed loop A matrix
for the plant Pi

a, b, c, ℓ, f p.23
Uniform bounds on the matrices Âi, Bi, Ci, Li,
and Fi over every i

Fi p.22 The optimal state feedback gain for the plant Pi

Hi (3.10) The optimal hold gain for the plant Pi

Ĥi p.24
The adjusted version of the hold gain for the plant
Pi

H̃i (3.20) The difference between Hi and Ĥi

K (3.3) The regularization gain

Li (3.4)
The noise input state-space matrix for the plant
Pi

Pσ p.20
The time varying plant corresponding to the
switching signal σ

S p.24 The sampler gain

v1 (3.11) Output of the first sampler

v2 (3.12) Output of the second sampler

γ0, λ0 (3.9)

Provides uniform bound on optimal closed loop
modes:

‖eĀit‖ ≤ γ0e
λ0t, i = 1, .., q, t ≥ 0.

Note: γ0 > 0 and λ0 < 0

σ p.20
σ : R+ → {P1, .., Pq}, the signal that specifies the
index of the time-varying plant at every time t

ν (3.3) The regularized plant input
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Table E.2: Notation for Chapter 4

(Ãi, B̃i, C̃i) (4.3)
The state-space matrices corresponding to the reg-
ularized, augmented plant Pi

Āi p.62
Āi := Ãi + B̃iFi, the optimal closed loop A matrix
for the plant Pi

a, b, ℓ, f p.62
Uniform bounds on the matrices Ãi, B̃i, Li, and
Fi over every i

Fi p.61
The optimal state feedback gain for the aug-
mented, regularized plant Pi

Gi (4.4) The gain relating η to x and u for the plant Pi

ḡ p.60
A uniform bound on the size of discontinuities in
ξ

Hi (4.12) The optimal hold gain for the plant Pi

Ĥi p.62
The adjusted version of the hold gain for the plant
Pi

H̃i (4.20) The difference between Hi and Ĥi

K (4.3) The regularization gain

Li (4.4)
The noise input state-space matrix for the plant
Pi

Q̄ p.61 An augmented LQR gain

S p.63 The sampler gain

v1 (4.13) Output of the first sampler

v2 (4.14) Output of the second sampler

η (4.1) The augmented plant state

γ0, λ0 (4.11)

Provides uniform bound on optimal closed loop
modes:

‖eĀit‖ ≤ γ0e
λ0t, i = 1, .., q, t ≥ 0.

Note: γ0 > 0 and λ0 < 0
ν p.58 The regularized augmented plant input

ξ (4.5)
A change of variables from η to allow noise in the
model of the augmented plant
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Table E.3: Notation for Chapter 5

(Ap, Bp, C) (5.2)
The state-space matrices corresponding to the ob-
servable canonical form of the plant Pp and the
Markov Parameters p

Āp p.79
Āp := Ap+BpFp, the optimal closed loop A matrix
for the plant Pp

a, b, f p.82
Uniform bounds on the matrices Ãp, B̃p, and Fp

over every i
Fp p.79 The optimal state feedback gain for the plant Pp

H p.85 The optimal function

Hε (5.5)
A polynomial approximation to the optimal func-
tion

h various
The controller’s sampling rate - an arbitrary inte-
ger

h̄m p.84
hm := (m+ 1)h. An inter-sample rate used in the
Estimation Phase

m p.80
An integer in {n, .., 2n}, chosen to ensure that p
uniquely identifies the plant

p p.80 The first m Markov parameters of the plant Pp

Tmax p.85
An arbitrary upper bound on the length of the
controller period T

γ0, λ0 p.86
Provides uniform bound on the transmission ma-
trix Φ Note: γ0 > 0 and λ0 < 0

σ p.80
σ : R+ →M, the signal that specifies the Markov
parameters of the time-varying plant at every time
t

Φ p.86 A state transition matrix

ξ (5.2) The state of the observer canonical form

ξ0 p.86 The optimal state trajectory

ξε p.86
The state trajectory when the function Hε is ap-
plied
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Table E.4: Notation for Chapter 6

(A,Bu, Br, F, C) (6.5)
The state-space matrices corresponding to aug-
mented open loop system

Aε
cl (6.9)

The closed loop A matrix when the polynomial ap-
proximation φ is applied to the time varying plant
Pg

h various
The estimator’s sampling rate - an arbitrary inte-
ger

h̄m p.119
hm := (m+ 1)h. An inter-sample rate used in the
Estimation Phase

m p.113 The relative degree of the nominal plant P1

x (6.5)
The state matrices corresponding to augmented
open loop system

xε p.121
The state trajectory when the polynomial approx-
imation φε is used

γ0, λ0 p.121
Provides uniform bound on the transmission ma-
trix Φ Note: γ0 > 0 and λ0 < 0

φ p.120 A polynomial approximation to 1/g
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