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Abstract 
 

 Determination of the fatigue life of a component requires knowledge of the local maximum 

fluctuation stress and the through-thickness stress distribution acting at the critical cross-section. This 

has traditionally been achieved through the use of stress concentration factors. More recently finite 

element methods have been used to determine the maximum stress acting on a weldment. 

Unfortunately, meshing large and complicated geometries properly requires the use of fine meshes and 

can be computationally intensive and time consuming. An alternative method for obtaining maximum 

stress values using coarse three-dimensional finite element meshes and the hot spot stress concept will 

be examined in this paper. 

 Coarse mesh stress distributions were found to coincide with fine mesh stress distributions over 

the inboard 50% of a cross-section. It was also found that the moment generated by stress distribution 

over the inboard half of the cross-section accounted for roughly 10% of the total moment acting in all of 

the cases studied. As a result of this, the total moment acting on a cross-section may be predicted using 

knowledge of the stress distribution over the inboard 50% of a structure.  

Given the moment acting on a cross-section, the hot spot stress may be found. Using bending 

and membrane stress concentration factors, the maximum stress value may be found. Finally, given the 

maximum stress data, the fatigue life of a component may be determined using either the strain-life 

approach or fatigue crack growth methods.  
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1.0 Introduction 
 

This document describes how a coarse finite element mesh can be used to find the maximum 

stress acting at the weld toe of a welded joint. This maximum stress value is then typically used to 

determine the fatigue life of the weldment. By using a coarse finite element mesh to calculate the 

maximum stress in a weld, fatigue analyses of large and complicated welded structures may be 

completed even with limited computational resources. 

Fatigue life may be calculated using a variety of methods. In this report, both the strain-life 

method and the fatigue crack growth methods will be examined. Both of these methods require a good 

estimate for the maximum stress in a weldment. 

The maximum stress at the weld toe of a weldment may be much more severe than the nominal 

stress value that traditional static analysis would indicate, particularly if there are irregularities at the 

surface. In this paper, a technique known as the hot spot stress concept will be used to determine the 

maximum stress acting on a weldment. This technique uses a pair of stress concentration factors and 

the hot spot stress value to determine the maximum stress acting at the weld toe. This method has the 

advantages of being applicable in almost any situation as well as being easy to use. 

At this point, the problem resolves to calculating the hot spot stress acting over the area of 

interest using coarse-mesh finite element data. For a four-element-thick coarse mesh made up of 

quadratic elements, it was found that the stress distributions from both the coarse-mesh and fine-mesh 

models converged over the interior 50% of a cross-section. Using this knowledge, the interior stress 

distribution is used to predict the hot spot stress, ultimately allowing for a fatigue-life analysis. 

The techniques described in this paper are particularly useful in large, statically indeterminate 

problems where the exact loads at a given cross-section are difficult to find. The arm of an excavator 

would be a good example of such an assembly. By using a coarse-mesh model, a complete assembly may 

be modeled. By manipulating the coarse mesh data using the techniques suggested in this report, good 

estimates for the fatigue life may be found. In contrast, running a fine-mesh analysis would require far 

more time and processing power. 
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2.0 Fatigue Analysis 
 

While attempting to describe the mechanical properties of a material, the most common 

approach is to generate a stress-strain diagram. However, when a stress-strain diagram is created the 

load is usually applied very slowly, allowing the effects of the strain to be fully manifested. The material 

is also tested to destruction, so the load is only ever applied once. The resulting data is therefore most 

useful for static conditions: situations in which the stress level in a part remains constant with respect to 

time. 

In practice, parts are frequently subjected to loads that fluctuate. Components that fail as a 

result of repeated or fluctuating loads often do so at stress levels well below the ultimate or even yield 

strength of the material. In order to predict this type of behavior, knowledge of static analysis is 

generally insufficient. Fatigue is a more complicated phenomenon when compared to static analysis, 

and knowledge of fatigue and fracture mechanics is essential for designing against this type of failure. 

 

2.1 Literature Background 
 

 Fatigue may be defined as the process by which a material fails after repeated exposure to load, 

ultimately resulting in failure at a load much lower stress than would be expected via static analysis.  

 Fatigue became of interest to engineers in the mid 1800’s, during the industrial revolution. In 

order to improve upon locomotives and steel bridges which were beginning to appear, the behavior of 

metals under repeated loads had to be understood. In other to reach this objective, information was 

collected concerning the circumstances under which structures and components failed.  

The first known study into fatigue was conducted by the German mining engineer Albert in the 

1829, where he tested metal chains which would later be used in hoists for the mines [1]. A more 

detailed study was performed by Wohler in the 1850’s, where he studied the failure of railway axles [2]. 

Wohler created diagrams that related the stress a component was subjected to with the number of 

cycles of load it could take before failing, or an S-N diagram. He observed that below a certain stress, 

components did not fail, and thereby introduced the concept of a fatigue limit. He also went on to show 

that the amplitude of the stress acting on a part was more significant than the maximum stress itself. 

Goodman went on to show how mean stresses affected the fatigue life of a material [3]. In 

1910, Basquin proposed an empirical relationship for the S-N curve of a material, laying the foundations 

for the modern stress-life approach [4]. The curves tended to follow a linear log-log plot in their finite 

life regions. In 1920 Griffith wrote a paper detailing the basics of fracture, which would provide the base 

for the next stage in fatigue life analyses: fatigue crack growth. Unfortunately, his work dealt mostly 

with glass, and was not used for several decades [5]. 
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By the beginning of the Second World War, fatigue had developed into a major field of research. 

The linear damage accumulation rule was proposed by Miner, allowing for multiple levels of load to be 

accounted for during fatigue life analysis [6].  

The strain life method was developed by Coffin and Manson, who proposed an empirical 

relationship between the strain amplitude a component experienced and the fatigue life [7].  They are 

responsible for developing the idea that plastic strains are responsible for fatigue life. Topper and 

Morrow also supported the idea of using plastic strains in fatigue life calculations [8]. Their work, 

combined with Neuber’s Rule and the Rainflow fatigue counting method developed by Matsuishi and 

Endo, provide the basis for modern strain life analysis [9]. 

Fracture mechanics was pioneered in large part by Irwin, who developed the idea of the stress 

intensity factor through his studies of the static strength of cracked bodies [10]. Paris later 

demonstrated that the rate at which a crack grows may be expressed as a function of the stress intensity 

factor amplitude experienced during loading [11]. 

The peak stress experienced by a part is required to perform a fatigue analysis. This value can be 

obtained using either empirical stress intensity factors or finite element analyses.  Another alternative 

approach is to use the hot spot structural stress [12]. The hot spot stress concept was first used for 

analyzing the welded connections used on offshore structures. Strain gauges are used to pick up the 

stress acting at a distance from the weld, allowing for the hot spot stress acting at the weld toe to be 

extrapolated. This stress value can then be combined with nominal stress intensity factors to yield an 

estimate for the peak stress affecting a part. Some procedures for determining the hot spot stress acting 

on a structure using shell elements were developed by Niemi [13].  

 

2.2 The Strain-Life Method 
 

 The strain life method is used to provide an estimate the number of cycles a component 

subjected to cyclic load will last before cracks begin to initiate. The first step in performing the strain-life 

analysis of a component is to find the maximum nominal stress acting on a part. The nominal stress may 

be found via static analysis, or by the coarse-mesh techniques proposed in this paper. The maximum 

local elastic stress may then be determined by multiplying the maximum nominal stress with the 

appropriate stress concentration factor.  

 Once the maximum local elastic stress has been determined, the Neuber equation may be used 

to transform the value to maximum local actual stress value [14]. This step is generally only performed if 

the yield stress of the material has been exceeded, as the elastic and actual stress on a part are identical 

in the elastic regime. The estimates of the actual stress and strain generated by the Neuber equation 

(Eq.1) are also known as the Neuber Stress and Neuber Strain. 
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(1) 

 

Figure 1. Illustration of how the Neuber stress and strain (B) are related to the elastic stress and strain 
(A). 

 

 Since the Neuber equation has two unknowns in it, the Neuber Stress and Neuber Strain, a 

second equation is required to solve it. The second equation must relate the stress and strain acting in 

both the elastic and plastic regimes. The Ramberg-Osgood equation (Eq.2) is often used to accomplish 

this. The Ramberg-Osgood equation requires a pair of material constants to function, K’ and n’. These 

constants are found experimentally [15]. 

1/ '

22
22 22

'

n

K
 

(2) 

Neuber’s equation provides a conservative estimate of the actual strain. A non-conservative 

estimate of the actual strain may be determined using the Equivalent Strain Energy Density (ESED) 

method [15]. The ESED expression is shown in Eq. 2. The values of K’ and n’ in the ESED expression are 

the constants from the Ramberg-Osgood equation, and E is the elastic modulus of the material. Note 

that the ESED method only has one unknown, and therefore does not need to be solved simultaneously 

with the Ramberg-Osgood expression. 

2 1/ '

22 22 22
22 22

1

2 2 ' 1 '
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(3) 

With the actual strain value, the Manson-Coffin equation may be used to determine the strain 

life of a component [7]. The Manson-Coffin expression requires the strain amplitude affecting apart to 

be input, the difference between the maximum and minimum stress values affecting a part. Five 
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material constants are also required: Young’s modulus (E), the true stress (s’f) at fracture, the true 

strain at fracture (e’f), and the experimental constants b and c. The expression is shown below:  

'
2 ' 2

2

b cf

f f fN N
E  

(4) 

The value of Nf returned by the expression is the estimate of the number of cycles required to 

initiate a crack in a material. A crack at initiation usually does not correspond to a failure of a 

component’s ability to carry load, however, and several more cycles of safe life may be obtained from 

the part is the rate of crack growth in the part may be estimated. In order to perform such an estimate, 

the fracture mechanics method may be used. 

 

2.3 The Fracture Mechanics Method 
 

 The fracture mechanics method is used to estimate the number of cycles of load a component 

may be exposed to before a crack reaches a critical size. Critical size is usually defined as the point at 

which a part will experience brittle fracture. However, it should be noted that a part may be considered 

to have failed from an engineering point of view long before a crack grows to the point that brittle 

fracture occurs.  

 Unlike the strain-life method, which uses strain as the independent variable when determining 

the number of cycles to failure, the fracture mechanics method uses a variable known as the stress 

intensity factor. The stress intensity factor typically has units of MPa*m1/2 in SI units, and is useful in 

determining the stress intensity at the tip of a crack as a result of a remote load or residual stresses [15]. 

 There are several modes in which fracture can occur. These include opening a crack, shearing a 

crack in the direction of the crack depth, and shearing the crack in the direction perpendicular to the 

crack depth. These are often referred to as modes I, II, and III, and are illustrated below [15]: 
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Figure 2. Fracture Modes. 

The level of stress intensity is given by the symbol K, followed by a subscript indicating what 

mode of fracture the stress intensity is referring to. For example, for the stress intensity acting on an 

opening crack, the symbol would be KI. Some other critical stress intensity values are Kth and KIc. Kth is 

the threshold stress intensity factor, the stress intensity factor below which a crack will not grow. KIc, on 

the other hand, is the critical stress intensity factor, the stress intensity beyond which a part will 

experience brittle fracture. 

The relationship between stress intensity and the number of cycles to failure is given by the 

da/dN vs. DK curve, also known as the fatigue crack growth curve. The value da/dN is the rate at which 

the crack depth, a, increases with respect to the effective difference in stress intensity acting on a part, 

DK. There are three regions to the curve. In region I, the stress intensity is close to threshold, and the 

crack grows very slowly. In region II, the graph is nearly linear. Many components operate in this region. 

Finally, in region III, the material is close to the fracture limit, and crack growth rates are very high. 

Please note that regions I, II, and III on the fatigue crack growth chart do not necessarily correspond to 

the fracture modes I, II, and III illustrated in figure 1. A fatigue crack growth graph is shown in figure 2. 
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Figure 3. Three Regions of the Fatigue Crack Growth Curve 

Several fracture mechanics equations exist that allow for the growth of a crack to be predicted. 

In this paper, the Paris equation will be used. 

2.3.1 The Paris Equation 

 The Paris equation is applicable in region II of the fatigue crack growth curve, where the 

logarithmic response of da/dN to DK is largely linear. In this region of the fatigue crack growth curve, the 

Paris equation is applicable. The equation is given below. 

K
nda

C
dN  

(5) 

 The Paris equation relies on material constants C and m, as well as the range of stress intensities 

that affect a part, DK. DK is defined as Kmax – Kmin. Once the inputs to the Paris equation are known, it 

may be solved through integration, with ai and af being the initial and final crack sizes. 

( )

f

i

a

f m

a

da
N

C K
 

(6) 

 As a crack grows, the stress intensity it generates changes. In order to obtain the highest 

possible accuracy, the da/dN increment should be recalculated after every cycle. The total crack length 

after a series of cycles would therefore be the initial crack length plus the summation of da/dN values 

for each increment of crack growth. 
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1 1

N N
m

i o i o i

i i

a a a a C K

 

(7) 

 Using the above equation, a crack may be grown until ai reaches its critical value, or plastic 

yielding occurs. 

 IT should also be noted that the constants for the Paris equation are dependant on the ratio of 

stress intensity that a component is subjected to. The stress intensity ratio is defined as follows. 

min

max

K
R

K
 

(8) 

 Given an R-ratio between -5 and 0.5, Kurihara’s equation [16] may be used to convert the actual 

DK value to the effective value, DKeff, at an R-ratio of -1. The equation is given below: 

K 1

K 1.5

eff

R  
(9) 

 By accounting for the changing stress intensity factor during crack growth and the effect of the 

R-ratio, the Paris equation can be a very effective tool in computing the life of materials subjected to 

cyclic load in region II of the fatigue crack growth curve.
 

2.3.2 Calculation of the Stress Intensity Factor 

 

 The stress intensity factor can be determined using a variety of techniques, but for the purposes 

of this paper the weight function method will be examined. If the correct weight function is known, the 

stress intensity factor may be determined by integrating the product of the stress distribution sy in the 

crack plane with the weight function m(y,a), where a is the crack length [17]. The expression is shown 

below: 

0

( ) ( , )

a

K y m y a dy

 

(10) 

 Where the generalized weight function for a one dimensional crack m(y,a) is given in Eq. 11. 

1/2 3/2

1 2 3

2
( , ) 1 1 1 1 ...

2 )

y y y
m y a M M M

a a aa y
 

(11) 

 This expression is useful for crack geometries such as edge cracks, but two-dimensional crack 

models are often required to obtain an accurate estimate for the fatigue life of a component [18]. These 

two dimensional cracks are often semi-elliptical, and have a pair of critical points at which the stress 

intensity factor must be calculated: the deepest point in the crack, and the surface point. It should be 
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noted that although there are a pair of surface points, in the case of semi-elliptical crack they will have 

identical stress intensity factors. 

 

Figure 4. Locations at which stress intensity factors are calculated on a semi-elliptical crack. 

 The deepest point in a semi-elliptical crack will be referred to as point A, and the surface point 

as point B. The stress intensity factors for each point much be calculated separately. 

0

( ) ( , )

a

A AK y m y a dy

 

(12) 

0

( ) ( , )

a

B BK y m y a dy

 

(13) 

 Note that the only distinction between Eq. 12 and Eq. 13 is the weight function. The weight 

functions mA(y,a) and mB(y,a) are given below. 

1/2 3/2

1 2 3

2
( , ) 1 1 1 1

2 )
A A A A

y y y
m y a M M M

a a aa y
 

(14) 

1/2 3/2

1 2 3

2
( , ) 1

2
B B B B

y y y
m y a M M M

a a ay
  

(15) 

 Given the weight functions and stress distribution in a component, the stress intensity factors 

affecting a part may therefore be determined. Those stress intensities, in turn, may be input into the 

Paris equation to perform a fatigue crack growth analysis. 

2.3.3 The Crack Shape Model 

 

As stated earlier, two-dimensional cracks are typically assumed to be semi-elliptical in nature. 

This is because when planar cracks initiate from a surface, they are most often observed to have an 

approximately semi-elliptical shape. The depth of the crack is referred to as ‘a’ and the width of the 

crack is traditionally assigned a value of ‘2c’. 
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The rate of crack growth can be calculated for every cycle in both the ‘c’ and ‘a’ directions, and 

the tendency is for the cracks to grow faster in width than in depth. As a result of this, semi-elliptical 

cracks tend to morph into edge cracks if given sufficient time. Also, the difference in growth rates in the 

‘a’ and ‘c’ directions therefore results in the crack changing in shape with every cycle. The a/c ratio is 

often used to characterize the shape of a semi-elliptical crack. 
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3.0 Stress Concentrations and Distributions in Welded Connections 
 

The maximum stress acting on a weldment is found by first determining the nominal stress 

acting on the weldment at the location of interest, and then using the appropriate stress concentration 

factor to determine the maximum elastic stress value. These stress concentration factors are usually 

found from handbooks. Finite element methods are also used to determine the maximum stress acting 

on a weldment, and have the advantage of being effective regardless of how strange geometry is, while 

handbooks are limited to standard shapes. 

The stress state in a weld is multiaxial, but resolves to two normal and a single shear component 

at the surface. The stress concentration that occurs at the weld toe results in the stress component 

normal to the weld toe generating most of the fatigue damage.  

The maximum elastic stress, or peak stress, acting on a cross-section is found using the 

appropriate stress concentration factor and the nominal stress at the weld toe of a weldment. The peak 

stress may be found using the following expression: 

Peak t nK
  

(16) 

 Similarly, the hot spot stress may also be used to determine the peak stress, and will be covered 

in the following section. 

,Peak t hs hsK
 

(17) 

 

3.1 The Hot Spot Stress Concept 
 

 The hot spot stress concept was first used to perform structural analyses on offshore structures 

[19]. Strain gauges placed at known distances from a weld were used to extrapolate a stress value at the 

weld toe, known as the hot spot stress. The strain gauges had to be placed sufficiently far away from the 

weld to be unaffected by the geometric effect of the weld toe on the strain readings, and distances of 

0.4t and 1t are typically used, where t is the thickness of the plate [20].  

 The hot spot stress can be used to determined the peak stress via the hot spot stress 

concentration factor, Kt,hs. The hot spot stress is itself the sum of the membrane and bending stresses 

acting at the surface of a weldment [21]. The bending stress is referred to as the stress generated by the 

moment acting on a weldment, and the membrane stress is the result of the compressive or tensile 

forces on the weldment. The hot spot stresses can therefore be decomposed into the normal and 

bending stresses if the hotspot stress on both the compression and tension surfaces of a weldment is 

known. These hot spot stresses are also referred to as shell stresses. The shell stresses are labeled sA 
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and sB. The axial and bending stresses obtained by decomposing the shell stresses are referred to be 

sm
hs and sb

hs. 

2

m A B
hs

  
(18) 

2

b A B
hs

  
(19) 

 The decomposition from shell stresses to membrane and bending stresses is shown pictorially in 

the following figure: 

 

Figure 5. Decomposition of hot spot stress into a hot spot bending and hotspot membrane stress. 

 Since the hot spot stress varies with the level of membrane and bending stress acting on a 

weldment, the value of Kt,hs also varies with the ratio of sm
hs/s

b
hs. As a result of this, a table of Kt,hs 

values would be required to determine the peak stress value for any given geometry. An alternative is to 

break up the stress concentration factor into a pair of factors: Kb
t,hs for the bending stress and Km

t,hs for 

the membrane stress [21]. Using a pair of stress concentration factors, the peak stress is determined 

according to the following expression: 

, ,

m m b b

Peak hs t hs hs t hsK K
 

(20) 

 The advantage to Eq. 18 is that the ratio between the bending and membrane stresses no longer 

effects the stress concentration factor, allowing for the table of the factors to be greatly simplified. 

 

3.2 Stress Concentration Factors near Fillet Welds 
 

 The stress concentration factor near a fillet weld may be obtained using analytical, numerical, or 

experimental techniques for any given loading mode. The value for hot spot stress and nominal stress 

are identical in the case of either pure bending or pure axial loading. Given this relationship, in the case 

of purely axial loading the following statement is true: 
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m ten

hs hs n  
(21) 

Likewise, for pure bending the hotspot and nominal stresses are related as follows: 

b bend

hs hs n  
(22) 

  
The stress distributions acting in the vicinity of a fillet weld is shown  in the following figure. 

Stress field ‘A’ denotes the normal stress distribution in the weld throat. Stress field B marks the normal 

stress distribution in the plate at the weld toe, and C the normal stress distribution away from the weld 

toe. Stress field D illustrates how the normal stress decreases with separation from the weld toe. Stress 

field E shows the shear stress distribution in the weld throat. Finally, Stress field F shows the hot spot 

stress distribution at the weld toe [21]. 

 

Figure 6. Stresses acting near a fillet weld's toe 

Since the nominal stresses are equal to the hotspot stresses for pure axial and pure bending 

loads, the stress concentration factors required to predict the peak stress in a geometry would therefore 

also be identical. For axial loading, the stress concentration factors are related as follows: 

, ,

ten ten
t t Peak Peak
t n t hs ten m

n hs

K K

 

(23) 

 The relationship between the hot spot stress and nominal stress is shown in the following figure: 
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Figure 7. For a pure axial load the nominal stress equals the bending stress. 

 Likewise, the bending stress concentration factors are related as follows: 

, ,

ben ben
b b Peak Peak
t n t hs ben b

n hs

K K

 

(24) 

 Using this information, the expression for determining the peak stress in a mixed bending and 

axial loading situation may be rewritten using the nominal stress concentration factors. By using the 

nominal stress concentration factors, any stress concentration factor handbook may be used to go from 

the hot spot stresses to the peak stress value. 

, ,

m t b b

Peak hs t n hs t nK K
 

(25) 

 The combined effect of the bending and axial stresses on a weldment are shown in the following 

figure: 

 

Figure 8. Stress distribution in the weld toe cross section of a T-Joint, with membrane and bending 
stresses shown.

 

 The hot spot axial and bending stresses equal the nominal axial and bending stresses. The axial 

and bending stress concentration factors are then multiplied into the axial and bending stress values 

respectively, and the sum of the two results in the peak stress value. 
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3.2.1 Stress Concentration Factors for a T-Joint Subjected to an Axial Load 

 

 There are several empirical expressions used to estimate the stress concentration factor for a T-

Joint subjected to an axial load. The following expression is suggested by Monahan [22], and provides a 

conservative estimate of the stress concentration factor in question. In this expression, Q is the angle 

between the weld and the plate, t is the thickness of the plate, and r is the weld toe radius. 

0.454

0.37

, 1 0.388m

t hs

t
K

r   

(26) 

 A less conservative estimate for the stress concentration factor was suggested by Iida and 

Uemura [23], which accepts more geometric inputs than the expression suggested by Monahan. 

0.65

, ,

1 exp 0.9
2 1

2.8 21 exp 0.45
2

t m

t n t hs

W

h h
K K

W rW

th
 

(27) 

 Where W is defined as follows: 

( 2 ) 0.3( 2 )p pW t h t h
  

(28) 

 The variables used in the above expressions are shown in the following figure: 

 

Figure 9. T-Joint Subjected to axial load. 

 The expression suggested by Iida and Uemura have been verified for values of r/t ranging from 

0.025 to 0.4, and for Q in the range of 20° to 50°. Eq. 27 and Eq. 28 were used to find the stress 

concentration factors for the analyses presented in this report. 
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3.2.2 Stress Concentration Factors for a T-Joint Subjected to a Bending Load 

 

 Empirical equations also exist to calculate the stress concentration factor in the case of a 

bending load. The following expression is suggested by Monahan [22], and provides a conservative 

estimate of the stress concentration factor in question. In this expression, Q is the angle between the 

weld and the plate, t is the thickness of the plate, and r is the weld toe radius. 

0.469

0.572

, 1 0.512b

t hs

t
K

r   

(29) 

 Similarly, Iida and Uemura [23] determined a less conservative estimate for the stress 

concentration factor in a fillet weld under bending: 

0.25 4

, , 1/3

21 exp 0.9 0.13 0.65 1
2 2 2

1 1.9 tanh tanh
2

11 exp 0.45
2

pb b

t n t hs

W h r

h t r t t
K K

rt h t rW
t th

(30) 

  

 W is defined in Eq. 28. The expression is valid for r/t values ranging from 0.025 to 0.4, and for 

values of Q between 20° and 50°. The remaining variables are shown in the following figure: 

 

Figure 10. Fillet weld under bending load. 

 Bending stress concentration factors were calculated using Eq.30 in this report. 
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3.3 Stress Concentration Factors near Butt Welds 
 

 The other type of geometry that will be examined in this report in the butt weld. Similar to the 

fillet weld, the nominal and hot spot stress concentration factors acting on a butt weld are identical 

during pure axial load and pure bending load. The shell stresses for any loading case may therefore be 

measured and decomposed into the bending and axial components, as shown in Eq. 18 and Eq.19. 

 Once the bending and axial loads are determined, they may be multiplied by the appropriate 

values of Kb
t,n and Kt

t,n respectively, and summed to estimate the peak stress acting at the weld toe as 

shown in Eq. 25. 

3.3.1 Stress Concentration Factors for a butt joint Subjected to an Axial Load 

  

The stress concentration factor used to determine the peak stress in the butt weld subjected to 

an axial load was developed by Iida and Uemura [23]. It is shown below: 

0.65

,

1 exp 0.9
2 1

1 2

2.8 21 exp 0.45
2

m

t hs

W

h h
K

W rW

th
 

(31) 

Where: 

2 0.6
p

W t h h
  

(32) 

 The variables used in the above expressions are shown in the follow figure: 

 

Figure 11. Butt Weld 
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 The expression suggested by Iida and Uemura have been verified for values of r/t ranging from 

0.025 to 0.4, and for Q in the range of 20° to 50°. Eq. A and Eq. B were used to find the stress 

concentration factors for the analyses presented in this report. 

 

3.3.2 Stress Concentration Factors for a butt Joint Subjected to a Bending Load 

 

 The stress concentration factor used to determine the peak stress in the butt weld 

subjected to an bending load was developed by Iida and Uemura [23]. It is shown below: 

0.25 4

, 1

3

2
1 exp 0.9 0.13 0.65 1

2 2
1 1.5 tanh tanh

11 exp 0.45
2

b

t hs

W h r

h r t t
K

rtW r
th t    

(33) 

Where W is defined as it was in Eq. 31. 

 The variables used in the above expressions are shown in the following figure: 

 

Figure 12. Butt weld under bending load 

 

 The expression suggested by Iida and Uemura have been verified for values of r/t ranging from 

0.025 to 0.4, and for Q in the range of 20° to 50°. Eq. C and Eq. D were used to find the stress 

concentration factors for the analyses presented in this report. 
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3.4 Simulation of the Stress Distribution in the Weld Toe Cross-Section 
 

 The stress distribution through a cross-section is useful in performing fatigue crack growth 

analysis of a weldment. In order to perform such an analysis, the product of the weight function stress 

field must be integrated to generate the stress intensity factor value, as shown in  

The stress distribution in the weld toe cross-section may be simulated using relationships 

relating the peak stress affecting a weldment and the weldment’s geometry. A common approach for 

fillet welds is to use Monahan’s Equation to estimate the stress distribution through a cross section 

based off of the geometry of the weld and the peak stress acting in the weldment. 

 For other geometries, such as a butt weld, a stress distribution suggested by Glinka was found to 

generate a stress distribution almost identical to that generated by a fine-mesh finite-element analysis. 

3.4.1 Monahan’s Equation 

 

 Monahan’s equation is very useful in estimating the stress distribution at the weld toe cross 

section of a fillet weld. It requires only the peak stress of the weld, and several geometric values 

describing the shape of the weld itself [22].  

The stress distribution suggested by Monahan for a weldment subjected to axial load is given 

below: 

1/2 3/2

, 1 1 1 1
( )

2 2 22 2

m m

t hs hs

m

K y y
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r r G
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Where: 
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r
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t     

(35) 
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r       
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0.3m

y r
T

t t        
(40) 

 The through thickness stress distribution generated by the bending load is given by the following 

set of expressions: 

1/2 3/2
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Where: 
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 The axial and bending stress distribution may be superimposed to determine the overall stress 

distribution acting on a cross-section. The simplified comprehensive expression for the stress 

distribution generated by a combined axial and bending load on a fillet weld is given below: 

1/2 3/2

, ,

1 2
1 1 1 1

)
2 2 22 2 2 2

m m b b

t hs hs t hs hs

m b

y

K K y yt
y

G G r r

 

(47) 

 The above expression can therefore be used to go from a peak stress and geometric features to 

the stress distribution at the weld-toe cross section of a fillet weld. This information may then be used 

for subsequent fatigue crack growth analysis, which would otherwise require fine mesh analysis to 

generate a reliable representation of the stress distribution. 
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3.4.2 Glinka’s Notch Tip Stress Distribution 

 

 Although Monahan’s equation provides a good estimate for the stress distribution in the case of 

a fillet weld, it can fail to provide a reasonable stress distribution in the case of a butt weld or a notch. 

The distribution suggested by Glinka [15] provides a good match to fine-mesh finite element results for 

most cases. The expression is shown below: 

2 4

1 1 1
2

peak

yy

x x x

r r
for 3.5x r  (48) 

Where k is the distance from the notch tip to the neutral axis, and r is the notch tip radius. It should be 

noted that for a case of pure axial loading, k goes to infinity. 

 

Figure 13. Illustration of variable involved in Glinka’s distribution for stresses near a notch tip 

The expression is only accurate out to 3.5 notch radii, however, after which point it should be 

merged with the nominal stress distribution in the cross-section of the weldment as smoothly as 

possible. 



 

22 
 

4.0 Coarse Three-Dimensional Mesh Finite Element Model 
 

 The coarse finite element mesh used, also known as the GR3 method, allows for the peak stress 

acting at a critical cross section to be determined using a finite element mesh only 4 elements thick, 

along with some post-processing. The weld toe is modeled as a sharp corner. An example of such a 

course mesh is shown in the following figure: 

 

Figure 14. A coarse finite element mesh. 

Weld toe radii and other small notch-like features in a geometry have the effect of creating 

sharp stress spikes in a weldment, and need to be carefully meshed in order to create a reliable stress 

estimate. Meshing such small features often requires millions of additional finite elements in order to 

achieve a reliable estimate of their effect. This is shown in the following figure: 

 

Figure 15. A finely-meshed weld toe. 



 

23 
 

By using a coarse finite element mesh and accounting for the effects of weld toe radii and other 

comparable features in post-processing, large and complicated structures subjected to complex loadings 

may be analyzed quickly.  

The coarse finite element mesh does not give a good estimate of the stress at the weld toe 

unless it is properly post-processed. Initially, the coarse finite element mesh will underestimate the 

stress at the surface. A comparison between the output of a coarse finite element mesh model and a 

fine finite element mesh model with the weld toe modeled is shown in the following figure: 

 

Figure 16. Coarse (Blue) and Fine (Brown) Mesh Stress Distribution for a T-Joint 

 The difference in peak stress estimated by the coarse and fine finite element meshes is 

considerable. However, over the inboard 50% of the cross-section, there does not appear to be much 

difference between the output of the fine finite element mesh and the coarse one. Therefore, the only 

reliable data generated by the coarse finite element mesh is only over the inboard half of the cross-

section. 

This observation would typically be quite useless from and engineering point of view, as the 

peak stresses in a weldment almost invariably occur at the surface of a weldment. However, by 

examining several different welded geometries, it was found that the inboard 50% of the cross-section 

always accounts for 10% of the total moment acting on a cross-section. Therefore, by calculating the 

moment generated by the inboard 50% of the cross-section from the coarse finite element data and 

multiplying by 10, the total moment acting on a cross-section could be found. 

In a generalized loading case, a cross-section may be subjected to both a moment and an axial 

load. The axial load was calculated by simply integrating the stress distribution over the area of the 

cross-section. 

-1000.00

-800.00

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0.00 0.20 0.40 0.60 0.80 1.00St
re

ss
 (

M
P

a)

Relative Position



 

24 
 

The two above methods extract the acting moment and load at a given cross-section from the 

coarse mesh data. Now that that information is known, the nominal bending and axial stresses may be 

calculated using classical analysis. The bending stress acting is found using the following expression: 

bend

n

Mc

I  
 (49) 

Where M is the moment extracted from the coarse mesh data, c is the distance from the weld toe to the 

neutral axis, and I is the moment of inertia of the cross-section. The procedure for extracting the value 

of the moment M from the coarse finite element mesh data will be covered in Section 4.2. 

 The membrane stress is found using the following expression: 

ten

n

P

A  
(50) 

Where P is the load extracted from the coarse-mesh data and A is the cross-sectional area. The 

procedure for extracting the load P from the coarse finite element mesh data will be covered in Section 

4.3. 

 At this point, the bending and axial stress concentration factors may be calculated using the 

expressions suggested by Iida and Uemura. The nominal bending and membrane stresses are then 

entered into Eq.25 along with the stress concentration factors, yielding the peak stress value. 

 The peak stress value may then be used to perform a strain life analysis, as outlined in Section 

2.1. However, if fatigue crack growth analysis is required, a full stress distribution must be found. The 

stress distribution may be calculated using Monahan’s equation in the case of a fillet weld, or the 

method proposed by Glinka for other cases. 

4.1 Procedure for Generating the Coarse 3D Finite Element Mesh 
 

 The finite element mesh should be four elements thick, and care should be taken to keep aspect 

ratios in the vicinity of the weld toe should be no greater than 3. It is also convenient if mesh seeds are 

placed at both surface, and at locations 25%, 50%, and 75% through the thickness of the cross-section. 

This is not a necessity, however, and merely makes it easier to extract the stress values from the 

required locations. If the nodes are at different locations, the stresses at the locations 25% and 75% 

through the cross-section may be interpolated from the values at the other nodes. 

 An important detail is that for the 4-element thick mesh to work, the order of the elements in 

the mesh must be quadratic. Linear elements will not provide sufficient accuracy.  

The mesh elements may be either hexagonal or tetrahedral in shape. 
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4.2 Calculation of the Total Moment from the Finite Element Mesh Data 
 

 The total moment acting on the cross-section may be determined by first extracting the stress 

values acting at locations 25%, 50%, and 75% through the cross-section. These three points define the 

stress values acting at the nodes of the two interior element of the GR3 model. This is illustrated in the 

following figure, with the required stress values highlighted in red, and the inboard 50% of the cross-

section highlighted in violet: 

 

Figure 17. Stresses extracted from the coarse-mesh finite element model 

 In general, the moment generated by a stress field over a slice of depth Dx of a planar cross 

section is defined by the following integral: 

0
, ) ( )

i
y

i

x x
t
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 (51) 

For a unit thickness slice of a cross section, and assuming that the change in stress value in the x 

direction is small, the double integral can be done away with and the moment generated by a stress 

distribution is described by the following integral: 
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(52) 

Where ‘s(y)’ is the stress distribution, ‘yNA’ is the position of the neutral axis, and ‘y’ is a position along 

the through thickness. The value ‘t’ represent the thickness of the cross-section. 

 As stated in Section 4.0, the moment generated by the inboard 50% of the cross-section account 

for 10% of the total moment acting on the cross section. This relationship is captured by the following 

expression: 

10b InboardM M
 

(53) 

 In the case of the coarse mesh model, the inboard moment, MInboard, may be found by numerical 

integrating the linear stress distributions from 25% to 50% of the thickness, and then from 50% to 75% 

of the thickness. The linear stress distribution spanning the i’th element may be expressed in the 

following form: 

)i i iy a y b
 

(54) 

 The ai term is defined as follows: 
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 And the bi term is defined below: 
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(56) 

 The expression for the stress distribution, Eq. 54, may be substituted into Eq. 52, and integrated 

to create as estimate for the moment generated by an i’th slice. The expression is given below: 
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(57) 

 The total moment can then be found by summing the moment generated by the two inboard 

elements of the coarsely-meshed cross-section. The total moment is therefore expressed as follows: 
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(58) 

 Finally, now that the inboard moment is known, the total moment may be found using Eq. 53. 

The slices 2 and 3 refer to the slices going from 25% to 50% of the way through the through thickness 

and from 50% to 75% of the through thickness. The result is shown below: 

3 3
3 3 3
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1 1 1 1 1

2 2 21

10
3 2

i i i i i i

b i i NA i i i i i i i i NA

i i ii i

y y y y
M y y y y y y

y y

(59) 

 At this point, the bending stress may be found using classical analysis, as shown in Eq.49. 

 

4.3 Calculation of the Total Load from the Finite Element Mesh Data 
 

 The total load acting on the cross-section must also be determined from the coarse-mesh finite-

element data. In contrast to the calculation of the moment, where only the inboard data points were 

used, the total load is found using all of the nodes of the finite element mesh through a cross-section.  

 Analogously to Eq. 51, the load generated by a stress field over a slice of a planar cross section is 

defined by the following integral: 

0

,
i

i

x xt

x

P x y dx dy

 

(60) 

 Once again, assuming that the change in stress over the slice in the x direction is small, and 

taking a slice of unit thickness, the double integral may be reduced to a single integral: 

0
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(61) 

 By substituting a linear distribution for the stresses between nodes and integrating, the 

expression simplifies to the following: 
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(62) 

 This term is then summed up over all of the elements in the cross-section to return the total 

load value. For the four-element finite element meshes used in the coarse model, this returns the 

following expression: 
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(63) 

 The load at this point may now be entered into Eq.50, and the membrane stress may be found. 

 

4.4 Validation of the Coarse 3D Finite Element Mesh 

 

 The validation of the membrane and bending stresses generated using the coarse-mesh finite 

element data was carried out for a variety of different geometries. These were mostly taken from 

standard John Deere test geometries. The geometries studied are listed below: 

- T-Joint under In-Plane Bending 

- T-Joint under Out-of-Plane Bending 

- Circular Tube on Plate under Bending 

- Circular Tube on Plate under Tension 

Each of these geometries were analyzed using data provided from the John Deere company. The 

coarse mesh data, post processed as outlined in this Section, consistently returned peak stress values 

close to the peak stress indicated by the finely meshed finite element models. 

The validation process extended to determining that the total moment predicted to be acting on the 

cross-section in the fine mesh case was approximately equal to ten times the moment generated by the 

inboard part of the coarsely-mesh cross-section. A margin of error of +/-10 % is allowed for. 

4.4.1 In-Plane Bending Welded T-Joint Analysis 

 

 The first welded connection that will be analyzed is the T-joint. For this geometry, the stress 

distribution in the region of interest will be found using a coarse mesh only 4 elements thick. This stress 

distribution will then be compared to the stress distribution generated using a finely-meshed model. It is 

expected that the stress distributions for the two meshes should align over the inboard 50% of the cross 

section.  

It is also expected that the moment generated by the stress distribution over the inboard 50% of 

the cross section will account for 10% of the total moment. The total moment can therefore be found 
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using only the stress distribution of the inboard 50% of the cross-section. Once this total moment is 

known, both the hotspot and peak stresses can be found, and finally the fatigue life of a weldment may 

be determined. 

The joint was assumed to be made of a typical structural steel, and was analyzed given a 

geometry provided by Rakesh Goyal at John Deere. The geometry was meshed using hexagonal 

elements, with the mesh density being higher in the areas of interest. The area of interest in this case 

was the cross-section running through the base plate below the weld toe line. The fine mesh data used 

for comparison in the following analyses was also provided by the Rakesh Goyal [24]. 

 

4.4.1.1 Material Properties 

 

 The material assumed for this trial was standard structural steel. This matched the earlier work 

done by Rakesh Goyal of John Deere, making comparisons of the results easier. 

 The material was assumed to have a Young’s Modulus of 200 GPa and a Poisson’s Ratio of 0.3. It 

was also assumed to behave in a perfectly elastic manner. This is a reasonable assumption to make, as 

most design cases limit their applied stress values to the elastic regime.  

 

4.4.1.2 Geometry of T-Joint 

 

 The geometry of the T-Joint is shown in the following figure: 

 

Figure 18. Geometry of the T-Joint [24]. 
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 The base plate has dimensions of 500 mm x 500 mm x 4 mm, and the vertical plate has a depth 

of 50 mm.  The original geometry is shown in Figure 16. 

 In order to minimize the computational complexity of the problem, the geometry was cut along 

the axis of symmetry of the loading case. The resulting geometry is shown in Figure 17. 

 

Figure 19. Model of the complete T-Joint geometry. 

 

 

Figure 20. Model of the T-Joint geometry cut along its axis of symmetry 

  

Loads and boundary conditions were then applied to the model. 
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 Boundary conditions consisted of pinned constraints at the two corners of the base plate 

furthest from the vertical plate, and an x-symmetry condition along the entire cut face. The x-symmetry 

condition constrains the geometry from displacing in the x-direction, and from rotating about the y- and 

z-axes. The applied boundary conditions are shown in the following figures. 

 

Figure 21. Area subjected to x-symmetry boundary condition highlighted in red. 

 

 

Figure 22. Points subjected to pinned boundary condition highlighted in red. 

  

 The load applied to this case was a concentrated load applied as shown in the following figure. A 

load of 500 N was applied to the region shown in the image below. 
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Figure 23. Point of application and direction of load marked by red arrow. 

 

4.4.1.3 Meshing of the T-Joint 

 

 The geometry was meshed entirely using hexagonal quadratic elements. Structured meshes 

were used wherever possible, but regions with more complicated geometries were meshed using swept 

meshing techniques. For the swept meshes, mapped meshing techniques were used where appropriate. 

 The sections of the geometry meshed using swept, advancing front meshing techniques are 

shown below in yellow, while the sections of the geometry that were used using structured meshes are 

highlighted in green in the following figure. Once again, all of the elements used were quadratic in 

nature. 
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Figure 24. Types of meshing techniques used during the analysis. 

 The primary region of interest in this case was the cross-section through the base-plate 

underneath the weld toe line. There are two weld toe lines of interest in the T-joint geometry, and they 

are highlighted in the following figure. The cross-section below either one of these lines may be used for 

analysis. 

 

Figure 25. Weld toe lines of interest. 

Regions close to the area of interest were meshed relatively finely, with an effort being made to 

ensure all of the elements were as close to cubic as possible. Further away from the area of interest, 

coarser meshes were used to minimize the computational intensity. The resulting mesh is shown in the 

following figures. 
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Figure 26. Global overview of the mesh used for a T-Joint under In-Plane Bending. 

 

Figure 27. Mesh in the weld area for a T-Joint under In-Plane Bending. 
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Figure 28. Mesh in the area of interest for a T-Joint under In-Plane Bending. 

 The stress distributions generated by the above meshes using quadratic elements were found to 

give sufficiently accurate stress readings in the inboard 50% of the cross section of the base plate 

directly underneath the weld toe line. 

 

4.4.1.4 Three-Dimensional Coarse Mesh Stress Distribution in the T-Joint 

 

 The stress distribution generated by the above mesh is shown in the following figure. 

 

Figure 29. Coarse mesh stress distribution for a T-Joint under in-plane bending. 
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 The coarse mesh distribution is expected to coincide with the fine mesh stress distribution of 

the cross section from the 0.25 to 0.75 relative position marks. This will be verified in the following 

section, where the coarse and fine mesh stress distributions for this cross section will be overlaid.  

 

4.4.1.5 Three-Dimensional Fine Mesh Stress Distribution in the T-Joint 

 

In order to assess the accuracy of the stress distribution generated by the coarse mesh, the 

stress distribution generated by a finely-meshed model of the T-joint was to create a comparison. The 

finely-meshed data used in this case was produced by Rakesh Goyal, of John Deere. The geometry used 

was identical to the one shown in section 4.4.1.2, except that a radius of 0.55 mm was applied to the 

edges of the fillet weld. 

The fine mesh stress distribution is shown in the following figure. 

 

Figure 30. Fine mesh stress distribution for a T-Joint under in-plane bending [24]. 

 

 The coarse and fine mesh distributions can now be overlaid to verify if the two distributions 

match over the domain of relative positions from 0.25 to 0.75. This is shown in the following figure. 
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Figure 31. Overlay of coarse and fine mesh stress distributions for a T-Joint under in-plane bending. 

. 

 It can be seen that the two distributions do match up over the inboard 50% of the cross-section. 

It can therefore be said that the coarse mesh data for the stress distribution is valid for the interior half 

of the cross-section. It will now be shown that the data from the interior of the cross-section may be 

manipulated to generate maximum stress values. 

4.4.1.6 Ratio of Inboard and Total Bending Moments 

 

 It is expected that the ratio between the inboard and total bending moments be 0.1. This 

relationship has been found to hold for a variety of loading conditions and geometries.  

In this case, the total moment acting in the finely-meshed case was found to be 97.48 Nm. The 

moment generated by the inboard 50% of the coarse-mesh stress distribution was found to be 10.23 

Nm. The ratio between these two values is therefore 0.10, confirming the prediction.  

4.4.2 Out-of-Plane Bending Welded T-Joint Analysis 

 

 The second welded connection that will be analyzed is the T-joint, but this time with the 

bending in the out-of-plane direction. For this geometry, the stress distribution in the region of interest 

will be found using a coarse mesh only 4 elements thick. This stress distribution will then be compared 

to the stress distribution generated using a finely-meshed model. It is expected that the stress 

distributions for the two meshes should align over the inboard 50% of the cross section.  

It is also expected that the moment generated by the stress distribution over the inboard 50% of 

the cross section will account for 10% of the total moment. The total moment can therefore be found 
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using only the stress distribution of the inboard 50% of the cross-section. Once this total moment is 

known, both the hotspot and peak stresses can be found, and finally the fatigue life of a weldment may 

be determined. 

The joint was assumed to be made of a typical structural steel, and was analyzed given a 

geometry provided by Rakesh Goyal at John Deere. The geometry was meshed using hexagonal 

elements, with the mesh density being higher in the areas of interest. The area of interest in this case 

was the cross-section running through the attached plate below the weld toe line. 

 

4.4.2.1 Material Properties 

 

 The material assumed for this trial was standard structural steel. This matched the earlier work 

done by Rakesh Goyal of John Deere, making comparisons of the results easier. 

 The material was assumed to have a Young’s Modulus of 200 GPa and a Poisson’s Ratio of 0.3. It 

was also assumed to behave in a perfectly elastic manner. This is a reasonable assumption to make, as 

most design cases limit their applied stress values to the elastic regime.  

 

4.4.2.2 Geometry of T-Joint 

 

 The geometry of the T-Joint is shown in the following figure: 

 

 

Figure 32. Geometry of the T-Joint [24] 
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 The base plate has dimensions of 500 mm x 500 mm x 4 mm, and the vertical plate has a depth 

of 50 mm.  The original geometry is shown in Figure 30. 

 In order to minimize the computational complexity of the problem, the geometry was cut along 

the axis of symmetry of the loading case. The resulting geometry is shown in Figure 31. 

 

Figure 33. Model of the complete geometry of the T-Joint 

 

 

Figure 34. Model of the T-Joint geometry cut along its axis of symmetry 
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Loads and boundary conditions were then applied to the model. 

 Boundary conditions consisted of pinned constraints at the two corners of the base plate 

furthest from the vertical plate, and a y-symmetry condition along the entire cut face. The y-symmetry 

condition constrains the geometry from displacing in the y-direction, and from rotating about the x- and 

z-axes. The applied boundary conditions are shown in the following figures. 

 

Figure 35. Area subjected to y-symmetry boundary condition highlighted in red. 

 

 

Figure 36. Points subjected to pinned boundary condition highlighted in red. 

  

 The load applied to this case was a surface traction applied as shown in the following figure. A 

resulting load of 500 N was applied to the region shown in the image below. 
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Figure 37. Point of application and direction of load marked by red arrow. 

 

4.4.2.3 Meshing of the T-Joint 

 

 The geometry was meshed entirely using hexagonal quadratic elements. Structured meshes 

were used wherever possible, but regions with more complicated geometries were meshed using swept 

meshing techniques. For the swept meshes, mapped meshing techniques were used where appropriate. 

 The sections of the geometry meshed using swept, advancing front meshing techniques are 

shown below in yellow, while the sections of the geometry that were used using structured meshes are 

highlighted in green in the following figure. Once again, all of the elements used were quadratic in 

nature. 
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Figure 38. Types of meshing techniques used during the analysis. 

 The primary region of interest in this case was the cross-section through the base-plate 

underneath the weld toe line. There are two weld toe lines of interest in the T-joint geometry, and they 

are highlighted in the following figure. The cross-section below either one of these lines may be used for 

analysis. 

 

Figure 39. Weld toe lines of interest. 

Regions close to the area of interest were meshed relatively finely, with an effort being made to 

ensure all of the elements were as close to cubic as possible. Further away from the area of interest, 

coarser meshes were used to minimize the computational intensity. The resulting mesh is shown in the 

following figures. 
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Figure 40. Global overview of the mesh used for a T-joint in out-of-plane bending. 

 

Figure 41. Mesh in the weld area for a T-joint in out-of-plane bending. 
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Figure 42. Mesh in the area of interest for a T-joint in out-of-plane bending. 

 The stress distributions generated by the above meshes using quadratic elements were found to 

give sufficiently accurate stress readings in the inboard 50% of the cross section of the base plate 

directly underneath the weld toe line. 

 

4.4.2.4 Three-Dimensional Coarse Mesh Stress Distribution in the T-Joint 

 

 The stress distribution generated by the above mesh is shown in Fig.43. 
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Figure 43. T-Joint  coarse mesh stress distribution. 

  

 The coarse mesh distribution is expected to coincide with the fine mesh stress distribution of 

the cross section from the 0.25 to 0.75 relative position marks. This will be verified in the following 

section, where the coarse and fine mesh stress distributions for this cross section will be overlaid.  

 

4.4.2.5 Three-Dimensional Fine Mesh Stress Distribution in the T-Joint 

 

In order to assess the accuracy of the stress distribution generated by the coarse mesh, the 

stress distribution generated by a finely-meshed model of the T-joint was to create a comparison. The 

finely-meshed data used in this case was produced by Rakesh Goyal, of John Deere. The geometry used 

was identical to the one shown in section 4.4.2.2, except that a radius of 0.55 mm was applied to the 

edges of the fillet weld. 

The fine mesh stress distribution is shown in Fig.44. 
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Figure 44. T-Joint fine mesh stress distribution [24]. 

 The coarse and fine mesh distributions can now be overlaid to verify if the two distributions 

match over the domain of relative positions from 0.25 to 0.75. This is shown in the following figure. 

 

Figure 45. Overlay of coarse and fine mesh stress distributions for the T-Joint. 

 It can be seen that the two distributions do match up over the inboard 50% of the cross-section. 

It can therefore be said that the coarse mesh data for the stress distribution is valid for the interior half 

of the cross-section. It will now be shown that the data from the interior of the cross-section may be 

manipulated to generate maximum stress values. 

4.4.2.6 Ratio of Inboard and Total Bending Moments 
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 It is expected that the ratio between the inboard and total bending moments be 0.1. This 

relationship has been found to hold for a variety of loading conditions and geometries.  

In this case, the total moment acting in the finely-meshed case was found to be 97.15 Nm. The 

moment generated by the inboard 50% of the coarse-mesh stress distribution was found to be 9.56 Nm. 

The ratio between these two values is therefore 0.10, confirming the prediction.  

4.4.3 Circular Tube on Plate Under Bending 

 

 The third welded connection that will be analyzed is the circular tube on a plate. For this 

geometry, the stress distribution in the region of interest will be found using a coarse mesh only 4 

elements thick. This stress distribution will then be compared to the stress distribution generated using 

a finely-meshed model. It is expected that the stress distributions for the two meshes should align over 

the inboard 50% of the cross section.  

It is also expected that the moment generated by the stress distribution over the inboard 50% of 

the cross section will account for 10% of the total moment. The total moment can therefore be found 

using only the stress distribution of the inboard 50% of the cross-section. Once this total moment is 

known, both the hotspot and peak stresses can be found, and finally the fatigue life of a weldment may 

be determined. 

The joint was assumed to be made of a typical structural steel, and was analyzed given a 

geometry provided by Rakesh Goyal at John Deere. The geometry was meshed using hexagonal 

elements, with the mesh density being higher in the areas of interest. The area of interest in this case 

was the cross-section running through the base plate below the weld toe line. 

 

4.4.3.1 Material Properties 

 

 The material assumed for this trial was standard structural steel. This matched the earlier work 

done by Rakesh Goyal of John Deere, making comparisons of the results easier. 

 The material was assumed to have a Young’s Modulus of 200 GPa and a Poisson’s Ratio of 0.3. It 

was also assumed to behave in a perfectly elastic manner. This is a reasonable assumption to make, as 

most design cases limit their applied stress values to the elastic regime.  

 

4.4.3.2 Geometry of Circular Tube on Plate 

 

 The geometry and loading of the cylindrical tube on the plate is shown in Fig.46. 
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Figure 46. Circular Tube on Plate [24]. 

 

 The base plate has dimensions of 625 mm x 625 mm x 6.25 mm, and the cylinder has a height of 

312.5 mm. The weld toe radius is 0.3125 mm. The angle of the weld is 45°, with a height of 6.25 mm. 

Finally, the diameter of the tube is 62.5 mm.    

 In order to minimize the computational complexity of the problem, the geometry was cut along 

the axis of symmetry of the loading case. The resulting geometry is shown in the following figure. 
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Figure 47. Circular Tube on Plate Full Model. 

 

 

Figure 48. Model of the T-Joint geometry cut along its axis of symmetry 

 Loads and boundary conditions were then applied to the model. 

 Boundary conditions consisted of pinned constraints at the two corners of the base plate 

furthest from the vertical plate, and an x-symmetry condition along the entire cut face. The x-symmetry 
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condition constrains the geometry from displacing in the y-direction, and from rotating about the x- and 

z-axes. The applied boundary conditions are shown in the following figures. 

 

Figure 49. Area subjected to y-symmetry boundary condition highlighted in red. 

 

 

Figure 50. Points subjected to pinned boundary condition highlighted in red. 
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 The load applied to this case was a surface traction applied as shown in the following figure. A 

load of 500 N was generated by applying a surface traction over the upper rim area of the tube. The 

magnitude of the applied surface traction was 1.71 MPa. 

 

 

Figure 51. Point of application and direction of load marked by red arrow. 

 

4.4.3.3 Meshing of the T-Joint 

 

 The geometry was meshed entirely using hexagonal quadratic elements. Structured meshes 

were used wherever possible, but regions with more complicated geometries were meshed using swept 

meshing techniques. For the swept meshes, mapped meshing techniques were used where appropriate. 

 The sections of the geometry meshed using swept advancing front meshing techniques are 

shown below in yellow, and the regions meshed using a structured mesh are shown in green. Advancing 

front meshing was used in the base plate, and structured meshing in the tube and weld. 
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Figure 52. Types of meshing techniques used during the analysis. 

 The primary region of interest in this case was the cross-section in the base plate under the weld 

toe line. There is one weld toe line of interest in the tube on plate geometry, and it is highlighted in the 

following figure. The cross-section below to this line along the axis of symmetry may be used for 

analysis. 

 

Figure 53. Weld toe line of interest. 
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Regions close to the area of interest were meshed relatively finely, with an effort being made to 

ensure all of the elements were as close to cubic as possible. Further away from the area of interest, 

coarser meshes were used to minimize the computational intensity. The resulting mesh is shown in the 

following figures. 

 

Figure 54. Global overview of the mesh used for a circular tube on plate under bending. 
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Figure 55. Mesh in the weld area for a circular tube on plate under bending. 

 

Figure 56. Mesh in the area of interest for a circular tube on plate under bending. 

 The stress distributions generated by the above meshes using quadratic elements were found to 

give sufficiently accurate stress readings in the inboard 50% of the cross section of the base plate 

directly underneath the weld toe line. 
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4.4.3.4 Three-Dimensional Coarse Mesh Stress Distribution in the Circular Tube on Plate 

 

 The stress distribution generated by the above mesh is shown in the following figure. 

 

Figure 57. Coarse mesh stress distribution for a circular tube on plate under bending. 

  

 The coarse mesh distribution is expected to coincide with the fine mesh stress distribution of 

the cross section from the 0.25 to 0.75 relative position marks. This will be verified in the following 

section, where the coarse and fine mesh stress distributions for this cross section will be overlaid.  

 

4.4.3.5 Three-Dimensional Fine Mesh Stress Distribution in the Circular Tube on Plate 

 

In order to assess the accuracy of the stress distribution generated by the coarse mesh, the 

stress distribution generated by a finely-meshed model of the T-joint was to create a comparison. The 

finely-meshed data used in this case was produced by Rakesh Goyal, of John Deere. The geometry used 

was identical to the one shown in section 4.4.3.2, except that a radius of 0.3125 mm was applied to the 

edges of the fillet weld. 

The fine mesh stress distribution is shown in the following figure. 
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Figure 58. Fine mesh stress distribution for a circular tube on plate under bending [24]. 

 The coarse and fine mesh distributions can now be overlaid to verify if the two distributions 

match over the domain of relative positions from 0.25 to 0.75. This is shown in the following figure. 

 

Figure 59. Overlay of coarse and fine mesh stress distributions for the circular tube on plate under 
bending. 

 It can be seen that the two distributions do match up over the inboard 50% of the cross-section. 

It can therefore be said that the coarse mesh data for the stress distribution is valid for the interior half 
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of the cross-section. It will now be shown that the data from the interior of the cross-section may be 

manipulated to generate maximum stress values. 

4.4.3.6 Ratio of Inboard and Total Bending Moments 

 

 It is expected that the ratio between the inboard and total bending moments be 0.1. This 

relationship has been found to hold for a variety of loading conditions and geometries.  

In this case, the total moment acting in the finely-meshed case was found to be 28.7 Nm. The 

moment generated by the inboard 50% of the coarse-mesh stress distribution was found to be 2.92 Nm. 

The ratio between these two values is therefore 0.10, confirming the predicted value.  

4.4.4 Circular Tube on Plate Under Tension 

 

 The third welded connection that will be analyzed is the circular tube on a plate. For this 

geometry, the stress distribution in the region of interest will be found using a coarse mesh only 4 

elements thick. This stress distribution will then be compared to the stress distribution generated using 

a finely-meshed model. It is expected that the stress distributions for the two meshes should align over 

the inboard 50% of the cross section.  

It is also expected that the moment generated by the stress distribution over the inboard 50% of 

the cross section will account for 10% of the total moment. The total moment can therefore be found 

using only the stress distribution of the inboard 50% of the cross-section. Once this total moment is 

known, both the hotspot and peak stresses can be found, and finally the fatigue life of a weldment may 

be determined. 

The joint was assumed to be made of a typical structural steel, and was analyzed given a 

geometry provided by Rakesh Goyal at John Deere. The geometry was meshed using hexagonal 

elements, with the mesh density being higher in the areas of interest. The area of interest in this case 

was the cross-section running through the base plate below the weld toe line. 

 

4.4.4.1 Material Properties 

 

 The material assumed for this trial was standard structural steel. This matched the earlier work 

done by Rakesh Goyal of John Deere, making comparisons of the results easier. 

 The material was assumed to have a Young’s Modulus of 200 GPa and a Poisson’s Ratio of 0.3. It 

was also assumed to behave in a perfectly elastic manner. This is a reasonable assumption to make, as 

most design cases limit their applied stress values to the elastic regime.  
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4.4.4.2 Geometry of Circular Tube on Plate 

 

 The geometry and loading of the cylindrical tube on the plate is shown in the following figure: 

 

 

Figure 60. Dimensions and load acting on circular tube on plate under tension [24]. 

 

 The base plate has dimensions of 625 mm x 625 mm x 6.25 mm, and the cylinder has a height of 

312.5 mm. The weld toe radius is 0.3125 mm. The angle of the weld is 45°, with a height of 6.25 mm. 

Finally, the diameter of the tube is 62.5 mm.    

 In order to minimize the computational complexity of the problem, the geometry was cut along 

both axes of symmetry of the loading case. The resulting geometry is shown in Fig.61. 
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Figure 61. Circular Tube on Plate Full Model. 

 

 

Figure 62. Model of the T-Joint geometry cut along both axes of symmetry 

 Loads and boundary conditions were then applied to the model. 
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 Boundary conditions consisted of pinned constraint at the corner of the base plate furthest from 

the tube. The face cut along the x-axis was set to have a y-symmetry boundary condition. This implied 

the face could not displace in the y-direction, and could not rotate about the x- or z-axes. The face cut 

along the y-axis was set to have a x-symmetry boundary condition. This implied the face could not 

displace in the x-direction, and could not rotate about the y- or z-axes. The applied boundary conditions 

are shown in the following figures. 

 

Figure 63. Area subjected to y-symmetry boundary condition highlighted in red. 

 

Figure 64. Area subjected to x-symmetry boundary condition highlighted in red. 
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Figure 65. Point subjected to pinned boundary condition highlighted in red. 

  

 The load applied to this case was a surface traction applied as shown in the following figure. A 

load of 125 N was generated by applying a surface traction over the upper rim area of the tube. The 

magnitude of the applied pressure was -0.47 MPa. 
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Figure 66. Point of application and direction of load marked by red arrow. 

 

4.4.4.3 Meshing of the Circular Tube on Plate 

 

 The geometry was meshed entirely using hexagonal quadratic elements. Structured meshes 

were used wherever possible, but regions with more complicated geometries were meshed using swept 

meshing techniques. For the swept meshes, mapped meshing techniques were used where appropriate. 

 The sections of the geometry meshed using swept advancing front meshing techniques are 

shown below in yellow, and the regions meshed using a structured mesh are shown in green. Advancing 

front meshing was used almost exclusively for this geometry. 
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Figure 67. Types of meshing techniques used during the analysis. 

 The primary region of interest in this case was the cross-section in the tube adjacent to the weld 

toe line. There is one weld toe line of interest in the tube on plate geometry, and it is highlighted in the 

following figure. The cross-section adjacent to this line along the axis of symmetry may be used for 

analysis. 

 

Figure 68. Weld toe line of interest. 

Regions close to the area of interest were meshed relatively finely, with an effort being made to 

ensure all of the elements were as close to cubic as possible. Further away from the area of interest, 
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coarser meshes were used to minimize the computational intensity. The resulting mesh is shown in the 

following figures. 

 

Figure 69. Global overview of the mesh used for a circular tube on plate under tension. 

 

Figure 70. Mesh in the weld area for a circular tube on plate under tension. 
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Figure 71. Mesh in the area of interest for a circular tube on plate under tension. 

 The stress distributions generated by the above meshes using quadratic elements were found to 

give sufficiently accurate stress readings in the inboard 50% of the cross section of the base plate 

directly underneath the weld toe line. 

 

4.4.4.4 Three-Dimensional Coarse Mesh Stress Distribution in the Circular Tube on Plate under 

Tension 

 

 The stress distribution generated by the above mesh is shown in Fig.72. 
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Figure 72. Circular tube on plate bending coarse mesh stress distribution. 

  

 The coarse mesh distribution is expected to coincide with the fine mesh stress distribution of 

the cross section from the 0.25 to 0.75 relative position marks. This will be verified in the following 

section, where the coarse and fine mesh stress distributions for this cross section will be overlaid.  

 

4.4.4.5 Three-Dimensional Fine Mesh Stress Distribution in the Circular Tube on Plate 

 

In order to assess the accuracy of the stress distribution generated by the coarse mesh, the 

stress distribution generated by a finely-meshed model of the T-joint was to create a comparison. The 

finely-meshed data used in this case was produced by Rakesh Goyal, of John Deere. The geometry used 

was identical to the one shown in section 4.4.1.2, except that a radius of 0.55 mm was applied to the 

edges of the fillet weld. 

The fine mesh stress distribution is shown in Fig.73. 
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Figure 73. T-Joint fine mesh stress distribution [24]. 

 The coarse and fine mesh distributions can now be overlaid to verify if the two distributions 

match over the domain of relative positions from 0.25 to 0.75. This is shown in the following figure. 

 

Figure 74. Overlay of coarse and fine mesh stress distributions for the T-Joint. 

 It can be seen that the two distributions do match up over the inboard 50% of the cross-section. 

It can therefore be said that the coarse mesh data for the stress distribution is valid for the interior half 

of the cross-section. It will now be shown that the data from the interior of the cross-section may be 

manipulated to generate maximum stress values. 
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4.4.4.6 Ratio of Coarse and Fine Mesh Load Values 

 

 It is expected that the ratio between the inboard and total bending moments be 0.1. This 

relationship has been found to hold for a variety of loading conditions and geometries.  

In this case, the total moment acting in the finely-meshed case was found to be 0.48 Nm. The 

moment generated by the inboard 50% of the coarse-mesh stress distribution was found to be 5.32 Nm. 

The ratio between these two values is therefore 0.09, slightly off from the predicted value of 0.10, but 

within the +/-10% allowance specified.  

  



 

69 
 

5.0 Experimental Verification 
 

This section outlines the analysis procedure used to predict the fatigue life of a notched and 

welded component at three distinct load levels. These components were tested by the Fatigue Design 

and Evaluation Committee of the Society of Automotive Engineers to help determine the accuracy with 

which the life of a welded structure may be estimated [25]. The GR3 method was used to determine the 

stresses acting at the critical cross-sections. 

The analysis sought to determine the fatigue life for each of the failure conditions for each of 

the loading cases specified. The fatigue life to crack initiation was found using the strain-life approach. 

The fatigue life to a crack across the width of a weldment was then found by taking the number of cycles 

indicated by the strain-life approach and adding the number of cycles required to grow a semi-elliptical 

crack from its initiation to the point where the crack spans the width of the weldment.  

Next, the crack was treated as an edge crack, and the number of cycles required for it to reach 

the obvious edge crack and brittle fracture stages were determined.  

The resulting predictions gave estimates for the various lives of the two components at different 

load levels. The predictions were then compared to the experimental data generated by the Fatigue 

Design and Evaluation Committee in order to verify their accuracy. 

 

5.1 Geometries of the two test specimens 
 

The samples tested were both made from 1.5” x 1.5” square cross-section bar stock. The bar 

itself was 2’ long, end to end. A weld or a notch was placed 1.125” on either side of the midpoint of the 

bar. The major dimensions for the fatigue test samples are shown in Fig. 75. 
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Figure 75. Notched Geometry Side View 

 

5.1.1 Notch Geometry 

 

The notch itself was a U-type notch, with a specified depth and radius. These parameters are 

summarized in Table 1.  

Table 1. Notch geometry details 

Radius 0.125” 

Depth 0.09375” 

 

The notch was designed to generate a stress concentration factor comparable to that of the 

weld. An image of the notched configuration is shown in Fig. 76. 
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Figure 76. 3D view of the notched bar. 

 

A pictorial example of the depth and radius parameters for a U-notch is shown in Fig. 77. 

 

Figure 77. Geometric features of a notched bar. 
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5.1.2 Weld Geometry 

 

An image of the welded configuration is shown in Fig. 78. 

 

Figure 78. 3D view of the welded bar. 

 

The geometry of the weld is defined using several parameters. These parameters are shown in 

Fig. 79. 

 

Figure 79. Geometric features of a butt weld. 
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 The parameters indicated above were provided in the data supplied by the Fatigue Design and 

Evaluation committee in order to determine the effect of the weld on the life of the weldment. The 

critical dimensions of the weld are included in Table 1. 

Table 2. Weld details. 

Q 45° 

H 0.14” 

hp 0.47” 

R 0.04” 

T 1.5” 

 

5.2 Material Properties 
 

The bars were made from A36 steel, which had been stress relieved prior to welding. No specific 

information was provided concerning the steel’s mechanical properties, however, so the required 

information was obtained by examining journal articles. For this analysis, an article detailing the failure 

of an A36 steel strut on the Paseo bridge was used.  

 The information required to conduct a fatigue life analysis on the welded and notched 

components fall into three main categories: the Ramberg-Osgood constants, the Manson-Coffin 

constants, and the Paris equation constants. 

 The Ramberg-Osgood equation (Eq.2)  is used to describe the stress-strain response of a 

material in both the plastic and elastic regimes. The expression is given below, along with the constants 

for A36 steel.  

 Where: 

K’ : 194 ksi 

n’: 0.226 

 The Manson-Coffin expression (Eq.4) is used to determine the fatigue life of a component up to 

crack initiation, given a certain strain amplitude. The values of the constants for A36 steel are given 

below: 

Where: 

E: 29000 ksi 

s’f: 162 ksi 

e’f: 0.338 
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b: -0.110 

c: -0.480 

 The Paris equation (Eq.5)  is used to determine the rate of crack growth resulting from a given 

stress intensity factor. The related constants for A36 steel are given below: 

Where: 

C: 7 x 10-10 ksi*in1/2  

n: 2.80 

 It should also be noted that in order to properly use the Paris equation, the R-ratio (Eq.8) at 

which the Paris equation constants were obtained must be known and accounted for.  

Kmin and Kmax are the maximum and minimum stress intensities that a weldment is subjected to 

during loading. The R value that the above Paris equation constants were obtained at was taken as 0.04.  

 Given this R-ratio, a value for the ratio between the actual and effective stress intensity factors 

may be estimated by the empirical relationship suggested by Kurihara (Eq.9).  

 Now that the Paris equation has been adjusted for the R-ratio at which the data was obtained, 

all that remains to be included into material data are yield and ultimate strengths of the material, as 

well as the critical stress intensity factor. These values are included below: 

Yield Stress:    48 ksi 

Ultimate Tensile Stress:   58 ksi 

Critical Stress Intensity Factor:  50 ksi*in1/2 

5.3 Loading and Boundary Conditions 
 

Both the welded and notched configurations were subjected to the same four-point bending loadings. 

The loading applied was of constant amplitude. There were three load levels at which the life for each 

configuration had to be determined. These load levels are indicated in the following table. 

Table 3. Applied Load Levels. 

Load Level Applied Load 

High 6.0 kip 

Medium 5.0 kip 

Low 3.5 kip 

 



 

75 
 

5.4 Notched Specimen Analysis 
 

The analysis may broadly be broken up into two separate cases: analysis of the welded structure 

and analysis of the notched structure. Each of these cases may then be further broken down into the 

crack initiation and crack propagation phases. The crack propagation phases, in turn, can be broken 

down into the propagation from an initial crack to a crack across the width of the part, a crack across the 

width of the part to an obvious edge crack, and an obvious edge crack to brittle failure. 

The notched sample was analyzed using two distinct methods. First, the fatigue life to crack 

initiation was found using the strain-life technique and the Manson-Coffin expression. This returned the 

fatigue life from the initiation of load, State 0, to the crack initiation, State 1.  

Next, the sample was analyzed via fatigue crack-growth analysis using the Paris equation. This 

method returns the lives associated with the various stages of crack propagation: Stages 2 through 4. 

5.4.1 Notched Specimen GR3 Analysis 

 

 The notched sample was analyzed using the GR3 method to determine the peak stress and 

through-thickness stress distribution acting at the weld toe. In order to model the weld, the geometry 

shown in Fig. 80 was reduced to a one-quarter model to reduce the computational complexity. The 

model was cut along lines of symmetry, and is shown in the following figure: 

 

Figure 80. Geometry of notch used for analysis. 
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 The quarter geometry had a symmetry boundary condition applied on the cut face that ran the 

length of the square rod, and an cantilevered boundary condition applied on the face that was cut in 

between the two notches. The location of application of the boundary conditions and the type of 

boundary used is shown in the following figures: 

 

Figure 81. Region of application of the x-symmetry boundary condition to the notched geometry. 

 

Figure 82. Region of application of the cantilever boundary condition to the notched geometry. 

 The load was applied in the form of pressures on the interior surfaces of the holes in the part. A 

pressure along the upper and lower faces was applied to generate the desired load level.  

The coarse mesh used for the GR3 analysis was four elements thick in the through-thickness 

direction. This is shown in Fig. 83: 
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Figure 83. Coarse mesh of the notched geometry. 

 The coarse-mesh through-thickness stress distribution at the notch tip is given in the following 

figure: 

 

Figure 84. Coarse mesh through-thickness stress distribution below the notch tip 
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 The coarse-mesh stress distribution matches the fine-mesh stress distribution reasonably well 

over the inboard half of the cross section, as shown in the following figure. The stresses were 

normalized using the maximum nominal stress value. 

 

Figure 85. Comparison of the fine and coarse mesh through-thickness stress distributions below the 
notch tip. 

The stress values provided by the coarse mesh were input into Eq.59 to obtain the moment 

acting and Eq.63 to determine the axial load. These values were then input into Eq.49 and Eq.50 to 

obtain the nominal membrane and bending stresses. Eq.31, Eq.32, and Eq.33 were then used to 

determine the peak stress acting at the cross-section. Finally, the stress distribution in the cross-section 

under the weld toe was found using Eq.48. Eq.48 was used in lieu of Monahan’s equation, Eq.47, 

because Monahan’s equation only works reliably for fillet welds.  

All three of the distributions are overlaid in Fig. 86. 
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Figure 86. Fine mesh, coarse mesh, and through-thickness stress distribution based on coarse-mesh 
results. 

 The through-thickness stress distribution over predicts the intensity of the stress field near the 

notch slightly, but this is largely due to the intensity of the peak stress near the notch tip being slightly 

higher than the value predicted using Eq.31, Eq.32, and Eq.33. 

5.4.2 Notched Specimen Strain Life Analysis 

 

The number of cycles required to initiate a crack in the notched specimen was determined using 

the strain-life method. The first step to performing the analysis is to determine the nominal stress acting 

in the critical cross-section. 

 Given that the component was subjected to four-point bending, the only load acting on the 

notched cross-section was the bending moment. The moment was calculated using classical techniques, 

and the gross nominal bending stress for the cross-section was then determined. The gross nominal 

stresses were found to have the following values: 

Table 4. Nominal Stresses. 

Load Level Nominal Gross Stress 

High 42.2 ksi 

Medium 35.1 ksi 

Low 24.7 ksi 
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 In contrast to this, the nominal stresses found using the GR3 method were slightly more severe: 

Table 5. Nominal Stresses found using the GR3 method. 

Load Level Nominal Gross Stress 

High 46.4 ksi 

Medium 38.6 ksi 

Low 27.2 ksi 

  

The stresses are over predicted by roughly 10%, which is the outer range of the error 

experienced when using the extrapolation from the moment generated by the inboard stress field to the 

total moment acting on the critical cross-section. However, it is expected that this will lead to a 

conservative life-estimate for the component, and the analysis will proceed using the value suggested by 

the GR3 method.  

 The next step in determining the strain-life of the component would be to find the maximum 

stress acting on the critical cross-section necessitates. This requires that the stress concentration factor 

of the notch be found. This value was obtained by entering the notch geometry into the solver on 

efatigue.com [4]. The solver returned a gross bending stress concentration factor Kb = 2.37, resulting in 

the following local maximum stresses at the notch tip: 

Table 6. Local Elastic Stresses for the Notched Specimen 

Load Level Maximum Local Stress 

High 111 ksi 

Medium 92.2 ksi 

Low 64.9 ksi 

 

 Note that all of these maximum local stress values are greater than the yield stress of the 

material, 48 ksi. As a result of this, either Neuber’s rule (Eq.1) or the ESED (Eq.2) method must be 

incorporated to relate the actual strains at the notch tip with the calculated elastic strains.  

Neuber’s method is conservative, and would return an upper bound on the strain the part 

experiences. The ESED method, in contrast, is non-conservative, and returns a lower-bound on the 

associated strain values. 

The nominal stresses, gross stress concentration factor, and relevant material constants were at 

this point entered into the FALIN program, which computed the strain-life of the notched specimen for 

each of the load levels. Neuber’s method was used to generate a lower bound on the life of the part for 

every given load level, and the ESED method with a bending correction was used to generate the upper 

bound. An example of the input for the FALIN program is shown in Fig. 87. 
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Figure 87. Notched Specimen FALIN Material Data 

 The FALIN program proceeds with its analysis by calculating the hysteresis loop resulting from 

the fatigue loading, and outputs the fatigue life for each loading case. A sample output is shown in the 

Fig.  88. 
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Figure 88. Notched specimen hysteresis loop. 

The results of the FALIN fatigue-life calculations are summarized in the following table: 

 

Table 7. Notched specimen strain life predictions 

Load Level Cycles to Failure, Neuber Cycles to Failure, ESED 

High 4955 5130 

Medium 12391 13078 

Low 77735 89178 

 

 This result indicates the life of the notched component to crack initiation, and marks the 

conclusion of the first stage of the analysis for the notched component. The component will be analyzed 

further in the following section, which deals with fatigue crack growth. 
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5.4.3 Notched Specimen Fatigue Crack Growth Analysis 

 

The fatigue crack growth analysis of the notched component was accomplished through use of the Paris 

equation. In order for the Paris equation to be used, however, the stress intensity factor must be found. 

The stress intensity factor depends on the stress distribution over that cross-section. This relationship is 

given in (Eq.10). 

 In order to proceed with the analysis, the stress distribution in the cross-section, s(x), must be 

determined. The weight function m(x,a) is handled by the FALPR program. A normalized stress 

distribution was obtained using the GR3 method and Glinka’s Near Notch Tip Stress Distribution, and is 

shown in the figure below: 

 

Figure 89. Notched sample through-thickness stress distribution. 

  

Given the stress distribution in the component, the Paris equation constants and the R-ratio at 

which the constants were obtained, the fatigue crack growth problem now only requires crack size 

inputs and the type of crack to be set in order to solve the problem. 

  For the initial crack case, a semi-elliptical crack with an a/c value of 0.3 was assumed. The width 

of the crack at the surface may be estimated from the images provided in the given data. The image is 

shown in Fig. 90. 
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Figure 90. Notched sample crack initiation 

By estimating the crack width value from the picture and then using the assumed a/c value of 

0.3, an initial crack depth may be estimated. This, however, leaves the final obstacle of determining the 

final crack depth. This requires examination of the image of the crack spanning the width of the notched 

part. This image is shown in Fig. 91. 

 

Figure 91. Notched sample with a crack across the width 

 By examining the image of the crack across the width, there appear to be two cracks spanning 

the width of the crack. It therefore seems reasonable to assume that the crack should be grown to the 

point that it spans half of the width of the part. In order to determine at what number of cycles this 

occurs, the FALPR program was used. 

 Fatigue crack growth constants, initial crack depth, initial crack a/c ratio, and the geometry of 

the cross-section were al input into FALPR. The software generated a plot of the growing crack, and 
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allowed for the number of cycles required for the crack to span half the cross-section to be read off the 

resulting crack growth chart. A sample of the FALPR output is shown in the figure below. 

 

Figure 92. FALPR notched sample semi elliptical crack growth output. 

 The resulting final crack depth was found to be 0.19”. The number of cycles required for this 

final crack depth to be reached is presented in the following table. 

Table 8. Number of cycles required for crack to propagate across the thickness of a part for the 
notched sample. 

Load Level Cycles 

High 10985 

Medium 31118 

Low 49183 

 

 At this point, there were two semi-elliptical cracks assumed to be generating the apparent crack 

across the width of the part. In order to grow the crack further, the pair of semi-elliptical cracks were 
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replaced with a single edge crack spanning the width of the part, with a depth equal to the maximum 

depth of the semi-elliptical cracks. This change is shown pictorially in the following figure. 

 

Figure 93. Replacement of the pair of semi-elliptical cracks with a single edge crack. 

 The edge crack was then grown to the depth of crack shown in state 3, the obvious edge crack. 

This state is shown in the following figure: 

 

Figure 94. Notched sample with an obvious edge crack. 

 The depth of the crack was obtained by taking measurements of the image and scaling the 

value. The final crack depth was found to be 0.24”.  

The Paris constants, material properties, and initial and final crack sizes were once again input 

into FALPR program. Please note that there was no value required for a/c for this trial, as the crack was 
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reset to be an edge crack. The number of cycles required to grow the crack from a crack across the 

width to an obvious edge crack is given in the following table: 

Table 9. Number of cycles required to go from a crack across the width to an obvious edge crack in the 
notched sample. 

Load Level Cycles 

High 743 

Medium 1243 

Low 3344 

 

 The final number of cycles to be determined is the number of cycles required to grow a crack 

from the obvious edge crack state to brittle fracture. For this stage, the FALPR program is run again, this 

time with the final crack size from the obvious edge crack state set as the initial crack size. The final 

crack size is the crack size that results in brittle fracture, and depends on the load applied. The number 

of cycles required to grow a crack from the obvious edge crack state to brittle fracture, as well as the 

final crack length, are given in the following table: 

Table 10. Number of cycles required to go from an obvious edge crack to final failure in the notched 
sample. 

Load Level Cycles Final Crack Length 

High 1359 0.35” 

Medium 3635 0.45” 

Low 12696 0.62” 

 

 An image of the component after brittle fracture is shown below: 

 

Figure 95. Failure in the notched sample. 
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5.4.4 Notched Specimen Total Predicted Lives 

 

Now that the number of cycles associated with the crack initiation and growth phases have all been 

separately determined, the total lives to each stage may be found. The initiation life was taken to be the 

average of the initiation lives generated by the Neuber and ESED method. All of the following lives were 

determined by summing the total number of cycles required to reach the given stage. These total life 

values are summarized in the following table: 

Table 11. Predicted lives for the notched sample. 

 High Load Level Medium Load Level Low Load Level 

Initiation 5043 12735 83457 

Crack across the width of the part 16028 31118 132640 

Obvious edge crack 16636 32135 135373 

Failure 17747 35106 145751 

 

5.4.5 Comparison of Total and Predicted Lives for the Notched Specimen 

 

The total predicted number of cycles to failure for the notched sample was plotted against the 

experimental data obtained by the Fatigue Design and Evaluation committee. The data obtained by the 

committee is recorded in the following table: 

Table 12. Experimental lives for the notched sample. 

 High Load Level Medium Load Level Low Load Level 

Initiation N/A 5000 62000 

Crack across the width of the part N/A 8000 106000 

Obvious edge crack N/A 14000 115000 

Failure N/A 21975 154494 

 

From the table, it can be seen that the predicted values for the fatigue life are generally longer 

than the experimental values. This discrepancy is considerably worse at the medium load level 

compared to the low load level.  

The error is especially severe for the initiation and semi-elliptical crack growth regimes for the 

medium load level, where the part fails three to five times sooner than expected. The best match 

between the predicted and experimental data occurs for the prediction of life to brittle fracture in the 

low load level case, where the predicted value is only 6% less than the experimental life. A comparison 

of the results is included in Fig. 96. 
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Figure 96. Comparison of experimental and predicted fatigue lives for the notched sample. 

 

5.5 Welded Specimen Analysis  
 

The welded sample was analyzed using a method similar to the one used on the notched 

sample. First, the fatigue life to crack initiation was found using the strain-life technique and the 

Manson-Coffin expression. Next, the sample was analyzed using the fatigue crack-growth method and 

the Paris equation.  

5.5.1 Welded Specimen GR3 Analysis 

 

 The welded specimen was analyzed using the GR3 method in order to determine the peak stress 

and through-thickness stress distribution acting at the weld toe. 

 In order to simplify the analysis, the geometry was cut along the x and y lines of symmetry to 

generate a one-quarter model of the weld. This model is shown in the following figure: 
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Figure 97. Quarter model of the welded specimen. 

 

 The quarter model then had x and z-symmetry boundary conditions applied to it along the cut 

surfaces. This is shown in the following figures: 

 

Figure 98. Region of application of the x-symmetry boundary condition. 
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Figure 99. Region of application of the cantilever boundary condition. 

 Pressures were applied to the holes in the part to generate the required loads in the four-point 

bending specimens. The part is then meshed as shown in the following figure, with four elements 

through the thickness: 

 

Figure 100. Coarsely-meshed welded model. 
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 The coarsely-meshed model was then run in order to obtain the through-thickness stress 

distribution under the weld toe. Due to the three load levels used in this analysis, a distribution of the 

normalized through-thickness stress distribution will be provided. The field was normalized via the 

linearized surface stress value. The normalized coarse-mesh stress field is shown in the following figure: 

 

Figure 101. Coarse-mesh stress distribution of the welded specimen. 

 This distribution was compared with the high load level stress distribution predicted by a finely-

meshed model of the same geometry, resulting in the following figure. The two distributions match up 

well over the inboard half of the cross-section. 

 

Figure 102. Comparison of coarse and fine finite element mesh distributions. 
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 The stress values provided by the coarse mesh were input into Eq.59 to obtain the moment 

acting and Eq.63 to determine the axial load. These values were then input into Eq.49 and Eq.50 to 

obtain the nominal membrane and bending stresses. Eq.31, Eq.32, and Eq.33 were then used to 

determine the peak stress acting at the cross-section. Finally, the stress distribution in the cross-section 

under the weld toe was found using Eq.48. Eq.48 was used in lieu of Monahan’s equation, Eq.47, 

because Monahan’s equation only works reliably for fillet welds.  

All three of the distributions are overlaid in the following figure: 

 

Figure 103. Comparison of coarse and fine finite element distributions, and the stress distribution 
generated using the coarse finite-element mesh data. 

 Note that the distribution generated using Eq.48 predicts slightly higher stresses than the fine-

mesh, but this is mostly a result of the stress concentration equations suggested by Iida and Uemura 

(Eq.31, Eq.32, and Eq.33) over predicting the peak stress at the weld toe. 

5.5.2 Welded Specimen Strain Life Analysis 

 

The number of cycles required to initiate a crack in the welded specimen was determined using the 

strain-life method. The first step to performing the analysis is to determine the nominal stress acting in 

the critical cross-section. The nominal gross stress in the cross-section of the welded specimen was 

identical to the nominal gross stress in the notched specimen. The values are tabulated in Table 4.  

 The next step in obtaining the strain-life of the component would be to find the maximum local 

stress acting on the component. This requires that the stress concentration factor of the notch be found. 

This value was obtained by entering the notch geometry into the expression proposed by K.Iida and T. 

Uemura (Eq.33). 
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The equation returned a gross bending stress concentration factor Kb = 2.33, resulting in the 

following local maximum stresses at the notch tip. Local maximum stresses at the weld toe 

Table 13. Maximum local elastic stresses at the weld toe.  

Load Level Maximum Local Stress 

High 98.4 ksi 

Medium 81.8 ksi 

Low 57.6 ksi 

 

 Note that all of these maximum local stress values are greater than the yield stress of the 

material, 48 ksi. As a result of this, either Neuber’s rule or the ESED method must be incorporated to 

relate the actual strains at the notch tip with the calculated elastic strains. The Neuber and ESED 

expressions are shown in equations 10 and 11. 

The nominal stresses, gross stress concentration factor, and relevant material constants were at 

this point entered into the FALIN program, which computed the strain-life of the notched specimen for 

each of the load levels. Neuber’s method was used to generate a lower bound on the life of the 

weldment for every given load level, and the ESED method with a bending correction was used to 

generate the upper bound, exactly as was done for the notched configuration. 

At this point, however, an extra piece of data was added to the analysis. A residual stress equal 

to 60% of the yield stress of A36 steel was incorporated. This was done because the weldment was not 

stress relieved after the welding process. 

The results of the FALIN fatigue-life calculations are summarized in the following table. 

Table 14. Strain life estimates for the welded configuration. 

Load Level Cycles to Failure, Neuber Cycles to Failure, ESED 

High 1483 6412 

Medium 5100 15900 

Low 43260 98400 

 

 This result indicates the life of the notched component to crack initiation, and marks the 

conclusion of the first stage of the analysis for the notched component. The component will be analyzed 

further in the following section, which deals with fatigue crack growth. 

5.5.3 Welded Specimen Fatigue Crack Growth Analysis 

 

The fatigue crack growth analysis of the notched component was accomplished via use of the Paris 

equation. In order for the Paris equation to be used, however, the stress intensity factor must be found. 
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The stress intensity factor at any point in a cross-section, however, depends on the stress distribution 

over that cross-section. This relationship is given in Equation 12.  

 In order to proceed, the stress distribution in the cross-section, sy(x), must be determined. The 

stress distribution was found by taking an expression proposed by Glinka, which describes the stress 

distribution near a notch tip. This near-notch stress distribution was merged with the nominal stress 

field at a distance of 3.5 weld toe radii from the surface.  

 Using Eq.48 and the nominal stress distribution, the following through-thickness stress 

distribution was derived for the welded component at the weld toe. It should be noted that while the 

notched component used a stress distribution over a 1.40625” thick net cross section, the stress 

distribution for the welded component used a stress distribution over the full 1.5” thickness of the 

weldment.  

Given the stress distribution in the component, the Paris equation constants, and the R-ratio at 

which the constants were obtained, the fatigue crack growth problem now requires crack size inputs 

and the type of crack for the problem to be solved. In addition to this, however, the welded component 

also requires a residual stress distribution to be included. 

The residual stress distribution used in this analysis was designed to generate 60% of yield stress 

close to the weld. This was accomplished using a triangular stress distribution, with 60% of yield stress 

acting at the surface and zero stress at a distance of 3.5 radii from the surface of the weldment. A 

triangular stress distribution was then applied over the remainder of the cross section to balance out 

the force generated by the near-weld stresses. The resulting stress distribution is shown in the following 

Fig.104. 
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Figure 104. Residual stress distribution in the weld toe cross-section. 

  For the initial crack case, a semi-elliptical crack with an a/c value of 0.3 was assumed. It was 

decided to use the same values of initial and final crack size as were used for the notched component, 

0.025” and 0.19”. This ensured that both samples would have experienced roughly the same amount of 

damage at each of the intervals. The image of the crack initiation and crack across the width for the 

welded component are shown in Fig. 105 and 106. 

 

 

Figure 105. Initiation of cracking in the welded cross-section. 



 

97 
 

 

Figure 106. Crack across the width of the weldment. 

 It should be noted that, in the case of the welded component, it appears as if the several small 

initiation points had coalesced together into a crack spanning the width. This is quite distinct from the 

pair of initiations growing into a crack spanning the width that was observed in the notched component. 

However, in both cases, the crack is considered to be semi-elliptical until the point where the crack 

actually spanned the width of the weldment. 

 After inputting the relevant material properties, Paris equation constants, stress distributions, 

and final and initial crack sizes, the number of cycles required to grow the crack from initiation to a crack 

across the width was determined. The number of cycles required to go from crack initiation to a crack 

across the width of the weldment are recorded in table 13. 

Table 15. Number of cycles required to go from crack initiation to a crack across the width of a part for 
the welded geometry. 

High 12540 

Medium 19120 

Low 41280 

 

 From this point onwards, the crack was treated as an edge crack. This was done because it was 

assumed that the multiple initiating semi-elliptical cracks at the weld toe would coalesce and form a 

unified crack front. The edge crack across the width must then be grown until it reaches the obvious 

edge crack state. This state is shown in the following figure: 
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Figure 107. Obvious edge crack in the welded geometry. 

 In order to obtain comparable results for both the welded and notched components, the depth 

of obvious edge crack for the notched component was used for the welded component, 0.35”  

The Paris constants, material properties, and initial and final crack sizes were once again input 

into FALPR program. Please note that there was no value required for a/c for this trial, as the crack was 

reset to be an edge crack. The number of cycles required to grow the crack from a crack across the 

width to an obvious edge crack is given in table 14: 

Table 16. Number of cycles required to go from a crack across the width to an obvious edge crack in 
the welded configuration. 

Load Level Cycles 

High 1900 (B.F. @ 0.33”) 

Medium 2206 

Low 6792 

 

 Please note that brittle failure was predicted to occur for the high load case at 1900 cycles, 

when the crack had reached a length of 0.33”. 

The final number of cycles to be determined is the number of cycles required to grow a crack 

from the obvious edge crack state to brittle fracture. For this stage, the FALPR program is run again, this 

time with the final crack size from the obvious edge crack state set as the initial crack size. The final 

crack size is the crack size that results in brittle fracture, and depends on the load applied. The number 
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of cycles required to grow a crack from the obvious edge crack state to brittle fracture, as well as the 

final crack length, are given in the following table: 

Table 17. Number of cycles required to go from an obvious edge crack to final failure in the welded 
geometry. 

Load Level Cycles Final Crack Length 

High N/A 0.33” 

Medium 2206 0.44” 

Low 6792 0.63” 

 

 An image of the component after brittle fracture is shown below: 

 

Figure 108. Final failure of the welded component. 

5.5.4 Welded Specimen Total Predicted Lives 

 

Now that the number of cycles associated with the crack initiation and growth phases have all 

been separately determined, the total lives to each stage may be found. The initiation life was taken to 

be the average of the initiation lives generated by the Neuber and ESED method. All of the following 

lives were determined by summing the total number of cycles required to reach the given stage. These 

total life values are summarized in the following table: 

Table 18. Lives to failure for the welded specimen. 

 High Load Level Medium Load Level Low Load Level 

Initiation 9420 21920 140150 

Crack across the width of the part 12154 25887 148514 

Obvious edge crack 18226 35473 169801 

Failure 18226 36529 175258 
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5.5.5 Comparison of Total and Predicted Lives for the Welded Specimen 

 

The total predicted number of cycles to failure for the notched sample was plotted against the 

experimental data obtained by the Fatigue Design and Evaluation committee. The data obtained by the 

committee is recorded in the following table: 

Table 19. Experimental lives to failure for the welded specimen. 

 High Load Level Medium Load Level Low Load Level 

Initiation 18000 55300 N/A 

Crack across the width of the part 20700 94000 N/A 

Obvious edge crack 23400 168000 N/A 

Failure 30964 198282 N/A 

 

From the table, it can be seen that the predicted values for the fatigue life are generally shorter 

than the experimental values. This discrepancy is considerably worse at the medium load level 

compared to the high load level.  

The error is especially severe for the initiation and semi-elliptical crack growth regimes for the 

medium load level, where the weldment fails three to five times sooner than expected. The best match 

between the predicted and experimental data occurs for the prediction of life to brittle fracture in the 

high load level case. A comparison of the results is included in the following figure. 
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Figure 109. Comparison of experimental and predicted fatigue lives for the welded sample. 
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6.0 Conclusions 
  

 The GR3 modeling method can be used to generate good estimates for the peak stress and 

through-thickness stress distribution at the weld toe of a weldment using a course finite element mesh. 

The coarseness of the mesh allows for large, complicated structures to be modeled as a whole, all the 

while keeping the processing time for such a problem at a minimum.  

 The peak stress value generated using the GR3 method is useful for performing stress-life and 

strain-life analyses of a weldment. By coupling the GR3 method with Monahan’s Equation or Glinka’s 

Notch-Tip Stress Distribution, the through thickness stress distribution may be obtain and fatigue crack 

growth analyses may be performed. 

 Validations of the GR3 model are included for a circular tube on plate geometry subject to both 

tension and bending loads, and a t-joint geometry subjected to both in-plane and out-of-plane bending 

loads. 

 The applicability of the GR3 method to fatigue analyses was then demonstrated by using the 

GR3 method and Glinka’s Notch-Tip Stress Distribution to generate through-thickness stress 

distributions for the Society of Automotive Engineers Fatigue Design and Evaluation committee 

challenge. The stress distributions generated using the GR3 method matched those generated using a 

fine finite-element mesh quite closely, and used a much coarser mesh. 
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