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Abstract

This thesis presents the design of a tactile device that can be used to display

varying magnitudes of roughness. The device is designed to be attached to an

existing force feedback device in order to create a package that is able to display

both macro-level (force feedback) and micro-level (tactile feedback) information to

the users. This device allows the users to feel a simulated texture by placing an

index finger on an aperture. The stimulus is created with a spiral brush made of

nylon bristles. The brush is attached to a DC motor and the speed and direction

of rotation of the brush are used to generate textures at the fingertip through the

aperture.

Three psychophysical experiments are conducted to study the effects of speed

and direction on the roughness perception. The first experiment is designed to

investigate the sensitivity to a change in the speed of the brush. This experiment

is conducted for two levels of base speed and it is found that as the base speed

increases, the just noticeable difference (JND) with respect to speed decreases.

In the second experiment, it is found that this tactile device is able to repre-

sent textures of rough nature, such as sandpaper. It is also found that the human

roughness perception cannot be described in a unique manner. Two opposite defi-

nitions of rough textures are identified in this experiment. While some users relate

an increase in the speed of the brush to increasing roughness, others relate it to

decreasing roughness. Further, the results show that the effects of direction are

insignificant on the roughness perception for both groups of users.

In the third experiment, the effects of direction are studied more closely by

presenting the two directions successively with a time gap of 0.5s. It is found that

with this small time gap, the users are able to discriminate between directions,

unlike in the previous experiment. The roughness perception is affected by the

change in direction when the time gap is small.

These findings open further areas that need to be investigated before a robust

tactile device can be designed.
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Chapter 1

Introduction

The sense of touch is a crucial aspect of information gathering. Through touch, we

are able to gather information about an object that may not be possible otherwise.

This includes our ability to detect surface stiffness, temperature, texture, weight

etc. In order to convey realism, it is important to include the sense of touch in

virtual environments. A virtual environment that conveys the sense of touch is

called a haptic system. A haptic system consists of 4 major units:

1. A virtual environment

2. A haptic device

3. A haptic process

4. A human operator

The haptic device is used by a human operator to interact with the virtual envi-

ronment and receive force feedback from it. A haptic process links the haptic device

and the virtual environment and communicates information between the two. The

block diagram of this system is shown in Figure 1.1. The human operator uses

the haptic device to navigate the virtual environment. The haptic process uses the

position and orientation of the haptic device and the objects in the virtual envi-

ronment to perform a number of tasks. These may include, for example, updating
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the position and orientation of an avatar according to the operator’s manipulation

of the haptic device, detecting a collision between the avatar and an object in the

virtual world and then calculating the reaction forces that are be generated by the

contact. These forces are translated into motor torques that are then fed back to

the haptic device to be displayed to the user.

Human 
Operator

Haptic
Device

Haptic
Process

Virtual 
Environment

Force feedback

Device manipulation

Update avatar 
information

Get virtual world 
information

D
is
pl
ay
 

im
ag
es

To
rq
ue

s

Po
si
tio

n/
O
ri
en

t.

Figure 1.1: Block diagram of the haptic system

Various industries are exploiting haptic feedback to improve performance of

virtual reality tasks. Including haptic touch in computer-aided-design (CAD) has

shown to improve performance while designing 3D models [Liu et al., 2004, Dachille Ix

et al., 2001]. Moreover, surgical residents who use haptic feedback in a medical

simulator have shown to perform significantly better than those who performed

the same tasks without haptic feedback [Ström et al., 2006]. Haptic feedback has

also been shown to improve performance in human computer interfaces [Dennerlein

et al., 2000], where a force feedback mouse was shown to reduce movement/steering

times by as much as 52%.

These are all examples of a kinesthetic haptic feedback - sensations in muscles,

tendons and joints. It belongs to a class known as proprioceptive that includes

not only the kinesthetic sense but also the cutaneous and vestibular senses. The

vestibular sense, relating to the positioning of the head, is outside the scope of the

current research. However, the cutaneous sense, which relates to touch through

skin is of high importance. It includes the ability to sense pressure, temperature

2



and pain. The ability to sense pressure is more specifically known as the tactile

sense, which also allows us to determine surface textures [Oakley et al., 2000]. The

focus of this thesis lies in the tactile sense and the perception of rough textures.

1.1 Tactile Feedback

In a virtual environment, tactile feedback is just as important as kinesthetic feed-

back. Without tactile information some of the key properties of surfaces, such as

texture, remain unexplored in virtual environments. One of the challenges of hap-

tic feedback is to match the perception of touch in a virtual environment to a real

environment. The perception of texture and how we perceive roughness of different

magnitudes is a complex topic that has been studied by psychophysics for decades.

There are various applications in virtual reality where the performance or the

learning curve can be improved by providing tactile feedback. Palpation with fin-

ger pads is a commonly practiced technique for early detection of breast cancer.

However, breast cancers can range in size from being microscopic to 8cm [Klimberg

et al., 1998]. Given this range, smaller tumors may be detectable via touch by an

expert doctor only. Providing a virtual environment with haptic devices that can

display tactile feedback, may be an important aspect of training for doctors. In

fact, similar training environments are already available for laparoscopic procedures

[Basdogan et al., 2001]. While 3D texture maps are applied to the visual displays

to create realistic effects, realism cannot be achieved until the touch feedback is

complete. Medical simulators are focused on providing force feedback. However,

the tactile feedback is still missing.

Other applications of tactile feedback include machining or handcrafting such

as pottery modelling [Lee et al., 2008]. Attention allocation [Sklar and Sarter,

1999], where different tactile cues are used to capture attention in human-machine

communication, is another use of tactile feedback. Tactile feedback can also be

used to interact with touch screen displays [Lee et al., 2004].

3



While the kinesthetic force feedback devices are well developed, tactile feedback

devices are in a primitive stage. This thesis presents the design of a tactile device

that aims to display various magnitudes of rough textures. However, roughness

perception is a subjective measure. To determine if this tactile device is able to meet

its objectives and how the various control variables affect roughness perception,

several psychophysical experiments are conducted. These experiments are designed

to study the effects of relative speed and direction of motion of a surface underneath

the fingertip.

1.2 Thesis Outline

Chapter 2 of this thesis presents the literature review relevant to this research. It

begins with a review of different aspects of touch that affect the touch perception

followed by a discussion on how textures can be simulated. Several different designs

of existing force feedback devices and tactile devices are also presented. At last,

psychophysical methods that are used to quantify sensations are discussed.

Chapter 3 presents the design of the tactile device including the design consid-

erations and constraints that dictated the design.

Chapter 4 presents some of the preliminary work that is necessary for doing user

testing with this device. The key areas of psychophysical interest are presented in

this chapter as well.

In Chapter 5, a study of the just noticeable difference (JND) with respect to

the speed of the surface is presented. It presents a detail analysis of how the JND

changes for different levels of base speed.

Chapter 6 presents the types of textures that this tactile device is able to rep-

resent. Furthermore, the effects of the speed of the surface and the direction of

motion on roughness perception are also studied in this chapter.

Chapter 7 presents the effects of direction of motion in more detail by controlling

4



the time gap between stimuli. The effects of speed of the surface are re-confirmed

in this chapter as well.

Chapters 8 presents the main conclusions derived from the experiments and the

future considerations that may be used to further explore roughness perception by

using this tactile device.

Appendix A presents the results tables from the statistical analysis. Appendix B

presents background information on the statistical analysis used in this thesis. Ap-

pendix C presents the design specifications of the tactile device. At last, Appendix

D shows the CAD drawing of the tactile device.
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Chapter 2

Background

2.1 The History of Haptics

The earliest known work in haptics seems to have started with the findings of Ernst

Heinrich Weber, a professor at the University of Leipzig, between 1818 and 1871

[Prytherch and McLundie, 2002]. Weber was interested in studying different aspects

of sensations. While his research spanned various fields, he was mostly interested in

studying the haptic aspects of sensations. In various experiments, he studied how

different parts of the body respond differently to touch sensations. He designed

his experiments using the two-point threshold where a touch organ is touched at

two closely spaced points. The goal is to determine how far apart the two points

have to be in order to recognize that there is a spatial separation between them.

Weber found that for touch organs that were highly sensitive, the distance between

the points was less than for touch organs that were less sensitive. Furthermore, his

experiments concluded that we can perceive spatial separation much better when

the sensations are provided along the transverse axis of the body rather than the

longitudinal axis [Ross and Murray, 1978].

Weber further investigated the cross-modality of vision and touch. Weber ar-

gued that in order for us to accurately perceive spatial separation, we need informa-

tion from both touch and vision. According to Weber, vision is more sophisticated
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and more developed than touch. However, he did report that with practice, touch

can be made more sensitive. Furthermore, Weber reported that in the absence of

vision, varying the amount of applied force on objects can change our perception

of their properties [Prytherch and McLundie, 2002].

His fundamental study about the threshold of sensitivity generated a lot of en-

thusiasm in sensory psychology. Weber found that in order for us to detect an

increase in stimuli, the change must be above the threshold of sensitivity of that

sense [Prytherch and McLundie, 2002]. This led to the concept of just notice-

able difference (JND). The JND of a particular sensation is the smallest possible

increment or decrement in stimulus that can be detected. This concept will be

investigated further in Section 2.5.3.

Most of these topics will be discussed in more detail in the sections to follow

where it will become apparent that the work of Weber was truly the basis of much

of the human factors research in haptics being conducted today. All of his work

was originally published in his two books De Tactu (1834) and Der Tastsinn und

das Gemeingefuhl (1851) and has been translated to English.

2.2 Touch Perception

There are various ways in which we touch objects and ways in which our sense of

touch is affected. These factors are important to review in order to conduct any

experiments to study the sense of touch.

2.2.1 Active vs. Passive Touch

David Katz may be called another pioneer in the field of studying touch. Katz

may have been the first one to study the effect of relative motion of a sense organ

and the object to be touched. Like Weber, Katz’s research spanned various fields.

However, his main interest remained in studying the microstructure (texture) of
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objects rather than the macrostructure (form). Katz studied the effect of relative

motion of a sense organ and the object to be touched. He argued that finger

motion across a surface is necessary in order to fully identify surface properties

such as material, stiffness and roughness [Katz and Krueger, 1989]. He explained

that simply resting a finger on a rough or smooth surface is insufficient to fully

judge the properties. Although he did not give a name to this phenomenon, it

was later called the concept of active and passive touch. Active touch refers to

the case of a finger moving over the surface of an object, thus creating relative

motion whereas passive touch creates relative motion by moving the object over

a stationary finger. As Gibson [1962] later put it, the difference lies in the act of

touching (active touch) or being touched (passive touch).

Gibson believed that active touch is better for perceiving two dimensional shapes

than passive touch. To prove his hypothesis, he conducted an experiment in which

he chose six different cookie cutter shapes to be presented to his subjects. They

were not allowed to look at the objects. However, they were given a picture of

the six objects that were going to be presented to them. Their task was to match

the object in their hand to one of the drawings. The objects were presented in

a random order. In the passive case, the subjects were asked to place their hand

palm up on the table and an object was placed on their palm. In the active case,

the subjects were allowed to explore the object in any manner including the use

of their fingers. Gibson confirmed his hypothesis since subjects answered correctly

49% of the time in the passive touch condition and 95% of the time in the active

touch condition.

In a similar setup, Gibson studied the effect of static vs. moving contact for the

passive case. In the static passive case, the cookie cutter shapes were simply placed

on the subjects’ hand as in the previous experiment. In the moving passive case,

however, the cookie cutters were twisted clockwise and counter-clockwise on the

hand. Gibson found the performance of the moving case to be significantly better

than that of the static case — 72% vs. 49%. This leads to a similar conclusion
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discussed earlier by Katz — that relative motion is necessary in order to fully grasp

the properties of an object. At this point, it is important to mention that Gibson

did not make any conclusions from this study. In fact, he mentioned that the test

setup of the active and the passive case were not the same, since in the active case,

the subjects explored with their fingers while in the passive case the palm of their

hand was used. Differences in sensitivity of the palm and the fingers may have

resulted in different results. However, it is still worth noting that performance for

the passive case improved significantly for the moving case than the static case.

In order to create a test scenario where exploration using active and passive

touch was as similar as possible, Cronin [1977] conducted a set of experiments

similar to those of Gibson’s. Although he did not use cookie cutters as stimuli,

they were still outline shapes such as a circle, square, pentagon etc. Like Gibson,

Cronin studied the effects of active and passive touch on object identification. In

the case of passive touch, he conducted two different tests: the case of a moving

object and a still object. To avoid the ambiguity faced by Gibson by allowing the

use of fingers in the active touch case, Cronin conducted all his experiments with

the palm of the hand only. For the case of the active touch, the subjects were

allowed to explore the object with the palm of their hand only and they were not

allowed to bend their hand. They were also not allowed to feel the sides of the

object to keep it consistent with the passive touch test. The results showed that

in the case of the moving object, active touch and passive touch did not produce

significantly different results. This contradicts Gibson’s results. However, Cronin

did report that passive touch was significantly better in the case of the moving

object than the still object, which is in agreement with Gibson.

Many researchers have found similar results to Gibson and Cronin [Vega-Bermudez

et al., 1991, Heller and Myers, 1983, Heller, 1984, Schwartz et al., 1975]. In a

surprising case, Magee and Kennedy found that passive touch was better for the

identification of raised-line drawings.

All of these researches have either studied active and passive touch with outline
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shapes using the palm of the hand or with raised-line drawings or letters. One

common factor between all of these is that, for the case of the passive touch, the

experimenter has been involved in the stimulation process. In the case of outline

shapes, the experimenter has moved the objects on the subjects’ hand; in the case

of raised-line drawings, the experimenter has guided the subjects’ hand along the

contour. It is possible that inconsistent presentation of the object from subject to

subject may have altered the results. Lederman [1981] designed her experiments

to study active and passive touch without any involvement from the experimenter.

Her experimental setup consisted of a balance apparatus and eight aluminum plates

with linear gratings. The procedure allowed for the subjects to apply a constant

force on the plates while moving back and forth at a pace that would be the same

for both active and passive cases. The stimuli were presented to the middle finger

only. Once again, her results showed that there is no significant difference between

the active and the passive case. It made little or no difference whether the subjects

moved their finger on the metal gratings or the metal gratings moved underneath

their stationary finger.

2.2.2 Exploratory Procedures

The fact that many researchers have argued over the effectiveness of object iden-

tification using touch alone has not discouraged research in this area to continue.

Although some results with raised-line drawings and “nonsense” shapes have shown

that touch is insufficient at object identification when compared with vision [Cash-

dan, 1968, Rose et al., 1972, Brynat and Raz, 1975, Magee and Kennedy], Klatzky

et al. [1985] disagree. Klatzky et al. argue that such stimuli do not necessarily rep-

resent real objects and are often missing some of the key properties of real objects

such as texture, size etc. Especially in the case of raised-line drawings, it becomes

necessary to identify the shape of the object and imagine how it would look visu-

ally, thus defeating the original purpose of the experiment. In order to demonstrate

their point, they tested a number of subjects with 100 objects both visually and
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haptically. As expected and forewarned by other research, all of the objects were

correctly identified when presented visually. In the haptic case, a surprising 96% of

the objects were identified correctly under strict naming conventions and of those

94% were correctly identified within 5 seconds. Klatzky et al. have shown that

haptic identification of real objects is not only possible but also fast and accurate.

Encouraged by these results, Lederman and Klatzky [1987] began to study the

hand motions that people use to identity objects via touch. They were interested

in determining which hand motion, called an exploratory procedure (EP), was used

to identify a property of the object and which of the EPs were most optimal at

exploring a specific property. They created a set of experiments in which they ob-

served the hand movements that the subjects used to explore a certain property of

the object such as hardness, texture, temperature etc. They studied seven proper-

ties of each object: texture, hardness, temperature, weight, volume, general shape

and exact shape. The hand movements that they observed were classified into six

categories as shown in Table 2.1.

Table 2.1: Descriptions of exploratory procedures.

EP Description

Lateral Motion Rubbing motion

Pressure Normal forces or torque about an arbitrary axis

Static Contact Remain stationary on the surface

Unsupported Holding Lift an object

Enclosure Molding of the hand to wrap the object

Contour Following Trace the outline of the object

The relationship between each EP and the object properties is shown in Table

2.2. S indicates that the EP is sufficient at determining the corresponding property,

O indicates optimality and N indicates necessity. A blank space indicates that the

particular EP was not used to explore the corresponding property.
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An important observation to examine here is the EP used for texture. Although

all of the mentioned EPs are sufficient for determining texture, lateral motion is the

only optimal one. This may seem obvious since we generally rub our fingers back

and forth on an object in order to identify its texture. However, if we generally

hold the object in our hand or simply rest our hand on it, we may still be able

to gather some texture information. This observation is reconfirmed in their more

detailed analysis in Lederman and Klatzky [1990].

Table 2.2: Relationship between EPs and object properties [Lederman and Klatzky,

1987].

EP Tex. Hard. Temp. Wt. Vol. Gen. shape Ex. shape

Lateral Mo-

tion

O S S

Pressure S O S

Static Con-

tact

S O O O

Unsupported

Holding

S S O S S

Enclosure S S S S S S

Contour

Following

S S S S S S N

2.2.3 Adaptation

One major issue in trying to study any of the senses of the human body is its

ability to adapt to constant stimuli. Just as we might adapt to a constant audible

tone such that its presence is not noticeable after some time, the sense of touch

is also highly adaptive. This is by no means a drawback. In fact, it serves a very
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useful purpose. Without this adaptive feature, we would be constantly aware of the

chair we are sitting on and the clothes we wear. It is a natural phenomenon likely

developed to rid us of these discomforts. Since the ideal goal of research in haptics

is to replicate reality or make it as real as possible given the various limitations, it

is apparent that adaptation of the sensory system must be studied and it has been

a topic of interest for researchers for decades.

In the context of cutaneous sensation, adaptation refers to one’s diminishing

sensitivity to touch [Scharf et al., 1975]. In other words, it refers to the phenomenon

which makes us unaware of the presence of objects that we are constantly in touch

with (e.g. the shoes we wear). This is not to say that once adapted, the object

cannot be felt anymore. The feeling is quickly restored when the object in touch

is moved [Schiffman, 1976]. Even Katz believed that adaptation occurs quickly

in a touch organ [Katz and Krueger, 1989]. He strengthened his earlier argument

regarding active touch being better than passive touch by saying that adaptation

occurs significantly faster for a motionless contact than with a moving contact.

Katz does not provide any experimental data to support his argument.

Many researchers have conducted experiments in order to find some way to

quantify the time it takes for adaptation to occur, how quickly it can be restored

and the factors that affect it. DiZio and Lackner [2000] have shown that adaptation

does not have to occur in the presence of visual feedback only. In fact, in their

experiments, they showed that congenitally blind and sighted subjects could adapt

to coriolis forces. This experiment was conducted in a manner such that the subjects

had to extend their arm and point at a target while they were seated at the center

of rotation of a slow rotation room (SRR). According to their results, adaptation

to coriolis forces occurred within 10 reaches to the target. After resting for 2min

at 0deg/s, the effects of this adaptation disappeared within another 10 reaches.

However, They did not mention how much time it took on average to complete 10

reaches.

In a different setup, Scheidt et al. [2000] tried to study adaptation for another
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reaching task where the subjects were asked to move the end effector of a robot

from one point to another. They were subjected to three different effects:

1. A null field — zero forces applied to the hand. The subjects moved from

point A to point B freely.

2. A perpendicular force field (also called the adaptation phase)— damping force

perpendicular to the hand motion and proportional to the hand velocity was

applied as the subjects moved from point A to B.

3. A channel field — The hand was guided along a stiff virtual guide. The

virtual guide was made of two stiff walls that were 1mm apart. The stiffness

of the walls was 6000N/m. The guide constrained the subjects to move in a

straight line from point A to B.

First, the performance of the subjects was measured using the null field to record

their pre-adaptation behaviour. Then they were subjected to the perpendicular

force field until adaptation occurred. Full adaptation occurred when subjects had

learned to apply an equal and opposite force against the perpendicular force. After

adaptation, one set of subjects was provided null and channel fields on alternating

trials to allow for kinematic errors during the null field trials. The other set was

provided only the channel field. This was the disadaptation phase used to deter-

mine how long it takes to lose adaptation to the perpendicular force and return

to the pre-adaptation behaviour. The results show that adaptation to the perpen-

dicular field occurs within 5 to 10 trials. The disadaptation, on the other hand,

was different for the two groups. The first group that received null and channel

fields on alternating trials took less time to return to pre-adaptation behaviour

(approximately 8.5 trials) than the the second group that was allowed to move in

the channel field only (approximately 138 trials). This data shows that, in the case

of reaching movements, disadaptation occurs much more quickly when kinematic

errors are allowed.

14



With an intent to determine adaptation to pressure, Zigler [1932] found that

if objects of different weights were placed on a part of the body, then adaptation

occurs more quickly for lighter weights than heavier weights. For instance, a 50mg

weight placed on the back of the hand may take only 2− 5s to be adapted to while

a 2000mg weight can take 9 − 20s. They also showed that the size of the object

also played a role in adaptation. The larger diameter objects were more quickly

adapted than smaller diameter objects that had the same weight.

Thus, it is clear that it is crucial to consider adaptation of the cutaneous sense

when studying the human tactile behaviour.

2.2.4 Perceived Roughness

If someone is asked to determine the texture of a fabric, they will usually respond by

running their fingers back and forth on the fabric. This agrees with the observations

made by Lederman and Klatzky [1987] that lateral motion is the most optimal

EP to determine texture. However, the discrimination of different textures is a

complicated procedure. It is affected by many variables — especially for the case of

rough textures. More researchers are interested in conveying rough textures rather

than smooth ones mostly because the absence of a rough surface is interpreted to

be smooth. Hence, the focus has been laid upon finding how to convey different

levels of roughness and the factors that change the human perception.

Fingertip Force

Lederman and Taylor [1972] speculated that the force with which one pushes down

on a rough surface changes the perception of how rough the surface actually is. In

other words, pushing down harder on a surface may make the surface feel rougher

than just lightly rubbing a finger on it. To test their theory, they created an

apparatus that allowed them to control the force with which the users would press

on the surface. Their results showed that the perceived roughness increased as the

15



applied fingertip force increased. They re-confirmed these results in a similar setup

where the subjects were allowed to choose the amount of force they applied on a

surface [Lederman, 1974]. They found that regardless of who set the force limit

(the experimenter or the subjects themselves), perceived roughness increased with

increasing force.

Rate of Hand Motion

Lederman [1974] conducted an experiment to determine if the rate at which the

fingers pass over a grooved surface affects the perception of roughness. They asked

their subjects to rub their fingers over the surface at specified rates. Initially, their

results indicate a significant dependency of perceived roughness on rate of hand

motion. It shows that as the rate of hand motion increases, so does the perceived

roughness. However, upon a closer look, they conclude that the perceived roughness

does not increase as significantly as the hand motion had to increase to cause the

effect. For instance, the hand motion had to increase by 25 times as much in order

to feel a 1dB increase in roughness magnitude. On this basis, they argue that

the rate of hand motion does not play a significant role and other factors such

as fingertip force are more effective. They had found that if the fingertip force

increased by nine times, then the roughness magnitude increased by 1dB to 2dB.

Geometry of the Surface

Continuing on their interest to determine the factors that affect perceived rough-

ness, Lederman [1974] and Lederman and Taylor [1972] focused on finding how

different levels of grooved surfaces can change the roughness perception. They

were interested in studying if the groove width and land width played any role in

roughness perception. Groove width is the width of each groove while land width

is width of the flat region between each groove. They found that increasing groove

width was strongly correlated with increasing roughness magnitude while increasing

land width not only has less of an effect, it has an inverse effect — that is increasing
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land width decreased the perceived roughness. This make sense intuitively because

as the width of the flat regions grows, the plate becomes more smooth than rough.

Even then, the land width is more effective than the rate of hand motion. One

might also say that perceived roughness may be a function of the friction between

the finger and the object such that increasing friction may increase the roughness

magnitude. This is generally the result found by Ekman et al. [1965]. They mostly

used different sandpapers to derive their results. However, they do not describe how

the coefficient of friction was measured. This is true for grip forces as well. Lower-

ing the coefficient of friction while maintaining the same texture and roughness of

the object is shown to increase the grip forces [Cadoret and Smith, 1996]. In any

case, these results contradict those of Taylor and Lederman [1975] who found that

the effect of coefficient of friction is insignificant in roughness perception. They

used grooved plates and used liquid detergent to lower the coefficient of friction.

No strict conclusion can be made from these contradictory results since they used

different experimental setups.

Rigid Link vs. Direct Skin Contact

Many haptic devices allow users to feel virtual objects through some sort of a

physical object interposed between the hand and the virtual object, e.g. a probe

or a stylus. However, in a real environment, we rarely try to feel objects by using

a pen or a stick even though it is possible to be able to feel the stiffness of a table

with a stick. The haptic devices that use a probe or a stylus rely on this concept to

be able to present force feedback. Although this approach appropriately conveys

the surface stiffness and roughness, it is not hard to imagine that exploration with

bare fingers where there is direct contact between the skin and the object is more

effective. This is shown by Klatzky and Lederman [1999], where different densities

of dot patterns were explored by direct finger contact, a large probe and a small

probe. The results indicate that subjects tended to rate the roughness the highest

when the surface was explored with the finger and the least when explored with the
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small probe. This indicates that probing with a larger diameter probe gathers more

information about the surface as it brings the roughness magnitude closer to that

which is felt directly by the finger. Similarly, exploration with bare fingers produces

more accurate results than exploration with gloves [Klatzky and Lederman, 1999].

Further, it has been shown that users exert more force to explore a surface when

using a probe rather than a bare finger [Klatzky et al., 1999]. This is also intuitive

because less information about the surface is gathered through a probe and by

applying more force, users try to compensate for this lack of texture information.

2.3 Stimulating Texture

As shown so far, much has been studied about the human tactile behavior in terms

of the factors that affect touch perception and roughness perception. One major

aspect that has been common in all of these experiments is that they used real

materials. Whether it is sandpaper, raised line drawings or dot patterns, the forces

on the finger tip are a result of direct contact with a real material regardless of the

use of a probe or a finger. This research is important as it affects the design of

tactile actuators where these forces are generated artificially. The question is how

can phenomenon studied be incorporated into the haptic technology and make it

a part of a virtual reality environment? Is it possible to give the same touch and

roughness perception to virtual objects as to real materials?

While many force feedback haptic devices have been developed in the past, some

of which will be discussed later in Section 2.4, not many stimulate texture. Many

researchers have devised various ways to simulate the texture on virtual surfaces.

Generally speaking, there is one major category in texture perception - roughness

versus smoothness.
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2.3.1 Height Fields

One way to simulate haptic textures is through the use of height fields. Generally

this implies that an irregular height field is mapped on top of a smooth continuous

surface as shown in Figure 2.1. The height field creates hills and valleys to represent

irregular bumps on the surface. Height fields can be created by mapping 2D images

onto 3D objects [Ho et al., 1999], by using fractal surfaces [Costa and Cutkosky,

2000] or noise textures [Perlin, 1985].

Original Surface
Height Field

Figure 2.1: Height field mapped onto a smooth surface [Ho et al., 1999]

Before understanding how the force magnitudes and directions are calculated

for textured surfaces, it is easier to look at an example of a smooth surface first.

In the most simple case, the force to be applied to the user on a smooth surface is

calculated using a spring damper model and the depth of penetration. An avatar is

the representation of the user in a virtual environment. This could be in the shape

of a mouse cursor, a dental tool when the virtual world is an application of a dental

procedure or any other form appropriate to the application. The position of the

avatar is constantly monitored to check for collision. Whenever there is no collision,

the force output is zero. This is only true in the ideal case since the user generally

has to support the weight of the end effector and the inertia of the device along

with uncompensated friction effects of the joints and actuators. When a collision is

detected, the depth of penetration of the avatar along with the spring and damper

coefficients are used to calculate the force magnitude. The direction of the force

is normal to the surface, henceforth referred to as the surface normal. For the 1D

case, this scenario is shown in Figure 2.2a and Figure 2.2b. The force magnitude
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(a) Without Penetration

k
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(b) With Penetration

Figure 2.2: Penetration into a smooth surface

for the two cases is given by

F = 0 Penetration = 0 (2.1)

F = kx+ bv Penetration > 0 (2.2)

where F is the force magnitude, x is the depth of penetration, k is the spring

stiffness, b is the damping coefficient and v is the velocity of the avatar. The

direction of the force is normal to the surface.

Now for the textured case, determining both the depth of penetration and the

direction of the force are complicated by the irregular geometry. Ho et al. [1999]

present an approach to determine the depth of penetration by looking at the Haptic

Interface Point (HIP) and the Ideal Haptic Interface Point (IHIP). HIP is the

location of the end effector in the virtual world. This is allowed to penetrate solid

objects. IHIP is location of the end effector on the surface of the object if it were

not allowed to penetrate. Once the depth of penetration is calculated, the force

magnitude can be calculated using a spring damper model. The direction of the

force is determined using the surface normal which is also more complicated for the

textured maps. Ho et al. build upon the techniques of Max and Becker [1994] to

calculate the surface normal based on the original smooth surface normal and the
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local height gradients. Costa and Cutkosky [2000] define the direction of the force

to be normal to the surface tangent that has to be precomputed.

The depth of penetration and the direction of the surface normal changes con-

tinuously as the IHIP traverses the surface. In this way, irregular forces (both in

direction and magnitude) are presented to the user to convey the feeling of different

textures.

2.3.2 Lateral Forces

The previous approach employed the use of normal forces to display textures. This

seems intuitive. However, researchers have shown that the use of only lateral forces

can also be effective in texture display. Minsky et al. [1990] used a joystick to apply

lateral spring forces to the user’s hand. They argue that these lateral forces can give

the user a feeling of hills and valleys because users relate a downward gravitational

force towards the valley with a spring force towards its rest point. This concept

is shown by them in Figure 2.3. This technique also relies on the texture height

maps. When the user is moving uphill, the direction of the force is against the

motion in order to provide the feeling that it is harder to go uphill and when the

user is moving downhill, the direction of the force is along the user’s motion to

make it easier to go downhill.

Similar to the earlier discussion in Section 2.2.4 that an increasing downwards

force increases the perception of perceived roughness, experiments with lateral

forces also show similar results. That is, increasing the magnitude of the lateral

force increases the roughness perceived by users [Minsky and Lederman, 1996].
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Force

Figure 2.3: Use of lateral forces in texture display [Minsky et al., 1990]

2.4 Haptic Devices

2.4.1 Existing Force Feedback Devices

There are many haptic devices in the market that will transmit kinesthetic forces.

Each one is designed with a different set of constraints. These could include fidelity,

workspace, cost, force output, application just to name a few. However, most of

these devices can be categorized in one of the following four ways:

1. Stylus

2. Glove

3. Free hand

4. Air Pressure

Stylus

Many haptic devices use a stylus (the end effector of the haptic device) to explore

the virtual world. The users hold on to the stylus and use it to navigate their avatar
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(a) The PHANTOM Omni R© c© Copy-

right SensAble Technologies, Inc.

[Sensable Technologies, 2009]

With Quanser the possibilities are infinite + 1  ( 9 0 5 )  9 4 0 - 3 5 7 5   w w w . q u a n s e r . c o m

5-DOF Haptic Wand 

HAPTICS & ROBOTICS

Product Information Sheet S25 - 1 - rev. B

Description 

Quanser’s 5-DOF Haptic Wand is a ground-breaking

haptic device. Originally designed and constructed

by Prof. Tim Salcudean (at the University of

British Columbia) to perform research in haptics,

Quanser has advanced the redundant actuator

robot into a robust commercial tool.  

The haptic interface has five Degrees Of

Freedom (DOF) allowing for three translations

and two rotations (roll and pitch). This is achieved

by using a dual-pantograph arrangement. Each

pantograph is driven directly by two DC motors

at its shoulders and another DC motor, more

powerful, at its waist. The control wand end-effector is connected to both end points of each panto-

graph through Universal joints (U-joints). The yaw about the wand axis (i.e., sixth DOF) is passive and

unlimited for better holding comfort of the human hand. Made of

lightweight materials, the wand's equivalent mass over its entire

workspace is further minimized by two adjustable counterbalances

mounted on both waist joints.

Power to the six motors is delivered using Quanser’s QPA linear

current power amplifiers, while motor shaft positions are measured

using high-resolution optical encoders. The system is controlled via

a PC utilizing Quanser’s Q8 superior-performance hardware-in-the-loop

(HIL) control board. The open architecture design of the system

allows users to develop any control algorithm they desire. Two

wand pantographs can be driven in tandem via two Q8 boards for

master-slave implementation.

The system is supplied with Quanser’s flexible WinCon software

and application examples to perform real-time control using MAT-

LAB/Simulink. Device drivers are supplied with the Q8 (Q8 SDK)

allowing users to develop their own controllers on their desired

platform. Prosense API device drivers are also provided including 

5-DOF Wand Pantograph application examples creating co-located

graphics and haptics rendering.

Curriculum & Research

Topics:

• Haptic Interface Control 

• Impedance Control

• Master Joystick / Slave
Environment (Reachin API)
Interaction

• Teleoperation 

• Parallel, Redundant
Manipulators 

• Kinematic & Dynamic
Modeling

• Robotics 

• Motion (Position & Speed)
Control

• Force Control 

• Force/Velocity Observer

• Position and Force Tracking:
In Free Motion & During
Hard Contact

• System Identification

• Multivariable Control Design

• PID Control Design

• Adaptive Control

• State-Feedback

• Real-Time Control

• Discrete Time Sampling

Fully Compatible

With Prosense API

A ground-breaking, turnkey manipulator for the world’s
haptics and teleoperation community

(b) The Haptic Wand [Quanser Con-

sulting Inc, 2009]

Figure 2.4: Stylus haptic devices

on the visual display. The stylus itself can be designed to resemble a specific tool,

e.g. a scalpel for a surgical simulator. The force is transmitted to the user through

the stylus. Examples of this type of device are the PHANTOM Omni R© shown in

Figure 2.4a and the Haptic Wand shown in Figure 2.4b. The PHANTOM Omni R©

is a six degree of freedom (DOF) device with three serial links and a stylus that is

held by the user. Only the first three joints are actuated. The Haptic Wand on the

other hand is a 5-DOF device consisting of two planar manipulators connected by

a vertical rod that the user holds on to.

These type of devices rely on the concept of distal attribution to allow users to

feel as if they are present in the virtual environment. Loomis [1992] described distal

attribution as the experience of “being in touch with” the virtual environment.

These devices are well suited for tasks where the use of a tool would be required,

whether the task is performed in a real or simulated environment. However, it is

obvious that for tasks that rely on information gathered directly from touching the

objects, the use of a stylus is insufficient. Indirect surface interaction using the
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(a) CyberGlove R© [Cyber Glove Sys-

tems LLC, 2009a]

(b) CyberGrasp [Cyber Glove Systems

LLC, 2009b]

Figure 2.5: Glove type haptic devices

stylus has been shown to be less efficient than direct finger interaction for tasks

that involve tracing [West and Cutkosky, 1997]. This finding leads to designs that

attempt to convey the object information through the use of the entire hand.

Glove

Haptic gloves are meant to be more versatile than a stylus haptic device. The

concept behind the design of these devices is that the users should be able to

“hold” the virtual objects in their hand. One example of a haptic glove is the

combination of CyberGlove R© and CyberGrasp by CyberGlove Systems LLC as

shown in Figure 2.5a and Figure 2.5b. The CyberGlove R© provides position and

orientation information of the hand to display the motion on a virtual display in

real-time. The CyberGrasp is an exoskeleton mounted on top of the CyberGlove R©

to provide push and pull forces to each of the five fingers through a network of

tendons.

The applications for such devices are more obvious in CAD and in remote han-

dling of hazardous materials [Cyber Glove Systems LLC, 2009b]. In CAD, users

can grasp the objects in their hand and feel their weight, surface properties etc.

In remote handling of hazardous materials, this device would have to be coupled

with a slave robot that would perform the same actions as its master. Moving

from stylus type devices to haptic gloves gives a greater degree of freedom in object
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manipulation. However, it still does not solve an underlying problem that comes

with the design of haptic devices — making the free space feel free. In both of these

designs, the haptic device is always in touch with the user’s hand. In a real envi-

ronment, when the user’s hand is in free space, the user does not feel any external

mass or inertia. However, when using these devices, there is always the inherent

mass, inertia, friction and even surface properties of the device that are in contact

with the user’s hand. Moreover, these devices are expensive and generally do not

convey realism.

Free Hand

Free hand exploration is of great interest in the haptic community. The idea behind

this concept is that the user should feel an external effect only when the user’s hand

comes in contact with a virtual object, otherwise the hand should be freely moving

without being connected to anything. This led to the design of a Touch/Force

Display System shown in Figure 2.6 by Yoshikawa and Nagura [2001].

Force Sensor
Ring

Joint

Link

Figure 2.6: Haptic Ring [Yoshikawa and Nagura, 2001]

They designed a serial manipulator with a ring attached at the end. The users

insert their finger in the ring. When the user is not in contact with a virtual object,

the ring tracks the position of the finger and moves with the finger without coming

in touch with it. However, as the users touch a virtual object, the ring slides in from
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the corresponding direction to touch the users’ finger providing a distinct difference

between contact and non-contact states.

2.4.2 Air Pressure

Suzuki and Kobayashi [2005] have designed a device that does not constraint the

movements of the user in any way. They designed a device consisting of air nozzles

and an air receiver. The design is shown in Figure 2.7. The user holds on to

an air receiver generally equipped with a handle. It can be made in any shape

appropriate for the application. The air jets from the nozzles hit the air receiver

and apply forces on the user’s hand. The purpose of the receiver is to act as an

interface for receiving the air jets. The user could place their hand in the air jet.

However, then the sensation feels like wind rather than an applied force.

The virtual display is projected onto the surface from a projector. The user

wears 3D glasses with markers that are tracked by cameras to keep track of the

user’s viewpoint. The markers are also placed on the air receiver to track its position

and orientation relative to the virtual display. The advantage of this device is that

the user is not tethered to anything with wires or rigid links.

2.4.3 Texture Display Devices

To capture the microlevel detail of objects, researchers are now focusing on devel-

oping tactile devices that focus on capturing texture information. Unlike the force

feedback devices, there are no commercially available tactile devices. However,

researchers have developed various different types of tactile devices.

Pin Array

The most common type of tactile device is the pin array type. These devices

generally have a grid of pins that push up on the finger tip according to the surface
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Projector

Air receiver

Nozzles

Air jet

Figure 2.7: Force feedback device using air pressure [Suzuki and Kobayashi, 2005]

that is meant to be simulated. Such a device is constructed by Kontarinis et al.

[1995]. They created a 6x4 array of pins that are actuated by shape memory alloy

(SMA) wires. SMA wires are actuated using electric current. The temperature

change of the wire causes it to shrink causing further tension or go back to its

original length which is the rest position. Each pin has its own actuator resulting

in 24 actuators. The design of their device for one pin is shown in Figure 2.8.

Originally, the rest position of the SMA wire is such that the pins are at rest and

the user feels a smooth surface. The spring is used to keep the wire at the initial

tension. When the wires are heated through current, the SMA wire shrinks causing

the lever to lift up and push the pin against the finger. All pins are actuated

independently to create various patterns. The actuation of the pins is decided by

the pressure distribution of the finger on the touch pad. The pressure distribution

is measured using a capacitive tactile array sensor.

Moy et al. [2000] created a pin array device that is actuated pneumatically.

They argue that in the flat top devices such as the one discussed above, not all of

the raised pins come into contact with the skin. This is naturally because of the
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Lever
Spring

Pin

SMA Wire

Figure 2.8: Tactile display using pins actuated using SMA wires [Kontarinis et al.,

1995]

shape of the finger. Their pneumatically actuated device molds around the finger

so that different areas of the skin can be stimulated. An illustration of their device

is shown in Figure 2.9. It is a 5x5 array of pressurized chambers. The silicon tubing

is used to control the pressure in each chamber.

Finger

Locking Mechanism

Silicon Tubing

Contact Interface

Figure 2.9: Tactile display using pneumatically actuated pins [Moy et al., 2000]

Although the actuation of pins may differ, the underlying concept for both

devices is the same.
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Vibration

Researchers have also used vibratory information to portray the feeling of texture.

Campbell et al. [1999] modified the IBM
TM

TrackPoint In-Keyboard Pointing De-

vice to produce vibrations at the tip. They outfitted the TrackPoint with a current

coil and a ferromagnetic slug as shown in Figure 2.10. When a current is supplied

to the coils, the magnetic field pushes the slug upwards to hit the cap. By supplying

a pulsing current, the slug can be made to move up and down and the frequency

of the pulse can be used to control the frequency of vibration. The users rest their

finger on the cap and feel the vibration created by the slug moving up and down.

In a mouse steering task, they showed that such tactile feedback can be used to

enhance performance.

Cap

Ferromagnetic Slug

Coil

Figure 2.10: Tactile display using vibration in a TrackPoint [Campbell et al., 1999]

2.5 Psychophysical Methods

The validity of haptic devices has to be checked via user testing. To estimate how

well these devices meet their objectives and how well users relate them to real life,

various psychophysical methods can be employed.

The focus of this thesis is to study the texture perception. There needs to
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be some way of quantifying the touch sensations, whether it is done by scaling the

different stimuli as they are perceived by the fingers or by using other ways to detect

the thresholds of the fingertip. The measurement of sensation is an area studied

by psychophysicists for over a century. Some of the most relevant psychophysical

methods to this research are presented in the sections to follow.

2.5.1 Magnitude Estimation

Magnitude estimation is a part of psychophysical methodology in which subjects

estimate their sensations on a number scale. This phenomenon utilizes the fact

that given different magnitudes of the same stimuli, we are able to scale them using

numbers in a rather consistent manner [Stevens, 1956]. Most of the research in

magnitude estimation has been done using sound where the subjects are asked to

scale different magnitudes of loud stimuli.The method of magnitude estimation de-

scribed by Stevens [1956] looks at a few different ways of determining how different

intensities of the loud stimuli correspond to a number scale. In his initial experi-

ment, Stevens provided his subjects with a standard tone and assigned the number

10 to it. He then asked various subjects to compare the standard tone to many

variable tones and assign a number to the variable tones based on their judgment.

For instance, if the subjects felt that the variable tone was twice as loud as the

standard, then they were asked to call it 20. In this way, he presented tones that

were of lower and higher intensities than the standard tone. His results have shown

that subjects could relate the loudness of each stimuli consistently to a number

scale. In further experiments dealing with roughness and smoothness perception,

he found that the curves for roughness and smoothness were reciprocals of each

other [Stevens and Harris, 1962]. He used different grits of emery, chose a standard

(set to 10) and asked the subjects to base the rest of their judgments according to

this standard. Interested in determining how the performance of each subject would

differ if no standard was presented, he conducted another experiment in which he

asked the subjects to call the first stimulus whatever number they thought was
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appropriate. He found that the subjects’ response was more consistent when no

standard was presented. Connor et al. [1990] preformed experiments where they

asked the subjects to judge the roughness of dotted patterns. They asked the sub-

jects to give any number that was appropriate for the roughness of the patterns.

Using this magnitude estimation technique, they tried to determine the effects of

dot spacing and dot size on roughness perception.

The type of scaling used by Stevens is based on a ratio scale that requires the

multiplication of the number assigned to the standard tone by a constant. Another

type of estimation which relates numbers directly to psychological magnitudes is

called the absolute scale. This method does not require the subjects to compare the

magnitude of the current stimuli to any of the previous ones. Subjects are generally

asked to assign any number that best describes the stimuli according to their own

perception. In fact, it has been shown that subjects tend to drift towards the

absolute scale rather than the ratio scale when asked to estimate the magnitudes

of stimuli [Zwislocki and Goodman, 1980].

Similar magnitude estimation techniques have been used by various researchers

as a way to quantify the touch perception [Minsky and Lederman, 1996, Lederman

and Taylor, 1972].

2.5.2 Signal Detection Theory

Study of the touch perception also involves an analysis of the sensitivity of touch.

It is necessary to determine the factors that affect our touch sensation. In order

to accomplish this task, psychophysicists have devised further ways to measure

the sensitivity of senses. Some of these methods will be discussed in the following

sections. It is important to note that these methods are not specifically designed to

study the sense of touch. These are general methods that can be applied to study

sensitivity of any sense.
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The Yes-No Procedure

This yes-no procedure is typically employed to check if the subjects are able to

detect the presence or absence of a signal [Gescheider, 1997]. A signal could be any

stimulus. If the study is being conducted on the auditory sense, then the signal

could be the presence of a certain frequency beep. In the case of the visual sense,

the signal could be addition of a new colour in a colour pallet. In this procedure,

the subjects are required to detect the presence of the signal and respond by saying

“Yes” or “No”, implying the signal was detected or not respectively. The proportion

of trials that the signal is present are referred to as the signal plus noise (SN) trials

and the remainder of the trials are referred to as the noise (N) trials [Gescheider,

1997]. The noise in this case does not have to be the typical ambient noise. It could

be anything that distracts or affects the attention of the observer. For instance,

noise could be the fatigue that subjects might feel as the experiment progresses, it

could be the presence of white noise in the audio case etc. In addition, the decision

made by the subjects during each trial have costs (for incorrect answers) and values

(for correct answers) associated with them. The proportion of SN trials and the

value of correct and incorrect answers are decided by the experimenter in advance.

For each type of trial, there are two decisions that the subjects may make. In an SN

trial, the subjects may detect the signal and say yes (hit) or they may not detect

the signal and say no (miss). In a N trial, the subjects may think the signal was

presented and say yes (false alarm) or recognize that the signal was absent and

say no (correct rejection). These responses are normally categorized in a table as

shown in Table 2.3. The sensitivity of the subjects is measured using the hit rate

(H) and the false alarm rate (F) [Macmillan and Creelman, 1991]. This is because

for perfectly sensitive subjects, the hit rate should be 1 (100%) and the false alarm

rate should be 0. On the other hand for a completely insensitive subjects, the

hit and false alarm rate are equal because these subjects are unable to distinguish

between SN and N and make guesses that bring their probability close to the chance

probability.
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Table 2.3: The Outcomes of the Yes-No Procedure.

Yes No

SN Percentage of Hits Percentage of Misses

SN Percentage of False Alarms Percentage of correct rejections

The signal detection theory (SDT) can be used to measure the sensitivity of

the subjects using H and F values [Macmillan and Creelman, 1991]. The measure

of detectability, d′, is used in SDT to quantify subjects’ sensitivity level. It is the

difference between the z-scores of H and F as shown in Equation (2.3). Detailed

derivation of d′ is provided in Section B.3 in Appendix B.

d′ = z(H)− z(F ) (2.3)

Consider an example where H = 0.8 and F = 0.4. Then,

z(H) = z(0.8) = 0.842

z(F ) = z(0.4) = −0.253

d′ = 0.842− (−0.253) = 1.095

When d′ is approximately 1, the performance is considered satisfactory. When

the subjects are completely insensitive, H = F and d′ = 0. For completely sensitive

subjects, H = 1, F = 0 and d′ ≈ 4.65 [Macmillan and Creelman, 1991].

Forced Choice Procedure

In the forced choice procedure, the subjects are generally provided two intervals, one

of which contains the signal and the other does not. Their task is to identify which

of the two intervals contains the signals. Since one of the intervals always contains

the signal, the subjects are forced to choose one. A procedure with two intervals

is referred to as the two-alternative forced-choice (2AFC) design. There could be

multiple intervals for choice - procedures are referred to as mAFC designs where

33



m refers to the number of alternatives the subjects have to choose from. Another

scenario of a forced-choice procedure could be the presentation of two stimuli and

the subjects’ task is to indicate the order of the stimuli. For instance, in an audio

case, they could be presented with two beeps of two different intensities and be

asked to determine which of the two beeps was louder. Here, they are once again

forced to make a choice. For example, suppose the order of presentation is (high,

low) or (low, high). In that case, the hit rate (H) is the percentage of response that

are (high, low) when the stimuli is also (high,low) and the false alarm rate (F) is

the percentage of responses when the response (high,low) is received when in fact

the stimuli was (low, high).

This procedure is considered easier than the yes-no procedure [Gescheider, 1997].

The advantage of this procedure over the yes-no procedure is that the yes-no pro-

cedure places memory demands on the subjects. The subjects’ imperfect memory

may lead to a higher number of no responses - a factor known as the response bias.

Each trial in the forced-choice procedure is independent of the previous trials and

the subjects do not need to remember the stimuli of the previous trials. They need

to compare only the stimuli presented in the current trial. The disadvantage of this

procedure is that the experimenter needs to define what is meant by “same” and

“different”. The subjects may not share the same definition as the experimenter

leading to of response bias. The measure of sensitivity for this procedure is also

given by d′ as in the yes-no procedure. However, since this procedure is considered

easier, the value of d′ has to be adjusted down by a factor of
√

2. For reasons

why this factor should be
√

2, see [Gescheider, 1997]. So for the example shown in

Equations (2.4) to (2.4), d′ is calculated as

d′ =
1√
2
∗ 1.095 = 0.774

The Same-Different Procedure

To overcome some of the shortcomings of the yes-no procedure and the forced-choice

procedure, there is the same-different procedure. In this procedure, the subjects
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are presented with two stimuli within the same trial. These two stimuli may be

the same or different and it is the subjects’ task to determine which of these two

outcomes it is. The advantage of this procedure over the forced choice procedure is

that the experimenter need not explain to the subjects how the stimuli will differ.

In some cases, when the difference in stimuli is verbally difficult to explain, this

procedure serves well. Hit and false alarm rates in this case are calculated as before.

H is the percentage of trials where the subjects say “different” when the stimuli are

different and F is the percentage of trials when the subjects say “different” when

in fact the stimuli are same.

This procedure is considered more difficult than the yes-no procedure and the

forced choice procedure [Macmillan and Creelman, 1991] because the analysis is

more complicated. The experimenter does not know which decision rule the subjects

choose to classify same and different stimuli. It becomes even more difficult for the

subjects and the experimenter when there are more than two stimuli. Nevertheless,

two different techniques are presented in Macmillan and Creelman [1991] to carry

out the analysis. One is the independent-observation strategy in which it is assumed

that the subjects independently compare the two stimuli to a criterion. The other

is the differencing strategy in which it is assumed that the subjects compare the two

stimuli against each other and call it different when this difference exceeds a preset

threshold. Macmillan and Creelman recommend that the independent-observation

strategy be used when there are only two different stimuli. If there are more than

two stimuli, then the differencing strategy should be used. It is easy to imagine that

the task becomes increasingly more difficult with a higher number of stimuli and

thus the differencing strategy generally produces a higher d′ value for a given set

of H and F values than the independent-observation strategy. According to Table

A5.3 in Appendix 5 of [Macmillan and Creelman, 1991], d′ = 1.095 calculated

earlier, would be changed to 1.84 for the independent-observation strategy. For

the differencing strategy, the value of d′ would be 2.35 according to Table A5.4 of

Appendix 5 in Macmillan and Creelman [1991]. This result is consistent with the

earlier argument that differencing strategy, generally employed for more difficult
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tasks with more than two stimuli, results in a higher d′ value.

2.5.3 Just Noticeable Difference

In the previous sections, the procedures were generally concerned with determining

the sensitivity of the subjects to different intensities of a stimulus. These procedures

are generally used to measure the threshold of sensitivity. In other words, they are

used to determine the smallest level of stimulus that is detectable. However, it is

sometimes important to determine a difference threshold. The difference threshold

refers to the smallest incremental or decremental change in stimulus intensity that

is detectable by the subjects. It is also known as the Just Noticeable Difference

(JND). This concept relies on the fact that, at the difference thresholds, the subjects

will sometimes detect the change in stimulus and not at other times. Some methods

of determining the JND are discussed below.

Method of Constant Stimuli

In the method of constant stimuli, the subjects are provided two stimuli and are

asked to determine which of the two has a larger intensity. In this way, a standard

stimulus and a comparison stimulus are presented in the same trial. The standard

stimulus is the same in every trial while the comparison stimulus changes either

in the direction of higher intensity than the standard or in the direction of lower

intensity. The value of the comparison stimuli is presented randomly in a increasing

and decreasing order. The two stimuli are presented either simultaneously to two

different areas of the sense organ or successively to the same area. In haptics,

this could mean that the texture feedback is presented to two different fingers

simultaneously or to the same finger successively. Both of these techniques are

acceptable. However, each one has its drawbacks.

A space error occurs when the stimuli are presented simultaneously because

different sensitivities of different areas may affect the results. These errors can be
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reduced by presenting the standard stimulus on one area for half the trials and to

the second area for the other half of the trials.

In a similar way, time error occurs when the stimuli are presented successively

because this places memory demands on the subjects that have to remember the

first half of the trial to use as comparison for the second half. This can be accounted

for by presenting the standard stimulus first on half of the trials and second on the

other half of the trials [Gescheider, 1997].

The upper limen, Lu, is the intensity larger than the standard which is detected

50% of the time. The lower limen, Ll, is the intensity smaller than the standard

which is detected 50% of the time. The JND is then half of their difference [Scharf

et al., 1975]. It is given by

JND =
Lu − Ll

2
(2.4)

Method of Limits

Similar to the method of constant stimuli, in the method of limits, the subjects are

again provided two stimuli in a given trial. Initially, the comparison intensity is

set to be at a level much higher or much lower than the standard so that there is

no ambiguity about which stimuli is higher. Suppose that the initial comparison

intensity is set to be much larger than the standard. In that case, on successive

trials, the experimenter decreases the intensity by the smallest possible value. This

series of trials are referred to as the descending series. In each trial, the subjects

are required to say whether the comparison stimuli is greater than, equal to or less

than the standard. At the beginning, their response will be “greater than” for a few

trials. Once the discriminability approaches zero, their response becomes “equal to”

and then eventually to “less than”. Lu is the average of the two trials when the

response changes from greater to equal. Ll is the average of the two trials when

the response changes from equal to less. The series of trials when the initial value

of the comparison stimuli is set well below that of the standard is referred to as

the ascending series. A number of ascending and descending series are performed
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in an alternating fashion to get a set of Lu and Ll values. The means of the Lu and

Ll, Lu and Ll respectively, are used to determine the JND [Gescheider, 1997]. It is

given by

JND =
Lu − Ll

2
(2.5)

It is important to note that space and time errors discussed earlier must be

accounted for in similar ways. An example of an ascending and descending series is

shown in Table 2.4. For the ascending series (A), Lu is the average of stimulus inten-

sities 8 and 9 because the response changes from equal to (E) to greater than (G).

Ll is the average of stimulus intensities 3 and 4 because the response changes from

less than (L) to equal to (E). Similarly, the upper and lower limen are calculated

for the descending series. The problem with this method is its systematic order.

Two types of errors that occur with this method are the error of habituation or the

error of expectation. Habituation occurs when the subjects keep responding with

the same answer because the comparison stimulus is changing slowly. Expectation

occurs when the subjects change the response after a number of trials because of

the awareness that at some point the answer is expected to change [Scharf et al.,

1975]. These errors can be avoided by restricting the size of the trials so that the

subjects do not tend toward any habit and by changing the starting value of each

series so that it is harder to expect when the response should change.

Staircase Method

The staircase method, otherwise referred to as the variations in the method of

limits, is derived from the method of limits. The subjects are initially presented

with a stimulus intensity which is either far below or far above the intensity of the

standard stimulus. For illustrative purposes, assume that the stimulus intensity

is far below that of the standard. In the ascending series, the intensity of the

comparison stimulus will be increased in steps until the subject’s response changes

from “less than” to “equal to”. At this point, the series is reversed. An example of
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Table 2.4: Ascending and Descending series of the Method of Limits

Stimulus Intensity A D

13 G

12 G

11 G

10 G

9 G E

8 E E

7 E E

6 E E

5 E E

4 E L

3 L

2 L

1 L

Lu 8.5 9.5

Ll 3.5 4.5

this method is shown in Figure 2.11. The points at which the subject’s response

changes is called a transition point. The experiment is continued until a number

of transition points are obtained. The JND is taken to be the average of these

transition points. This method generally requires fewer trials than the method of

limits because intensities that are far below or far above the standard intensity are

not presented [Gescheider, 1997].

Method of Adjustment

The method of adjustment is different from all of the previous methods because in

this method, the intensity of the comparison stimulus is controlled by the subjects
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Figure 2.11: The staircase method

rather than the experimenter. The subjects are provided with a standard stimuli

and a variable comparison stimuli. Their task is to adjust the intensity of the

comparison stimuli until it matches the standard. The idea behind this concept

is that the subjects will sometimes overestimate the intensity and at other times,

underestimate it. This information can be used to define thresholds [Gescheider,

1997]. However, this method has been criticized as being invalid for defining the

JND [Scharf et al., 1975]. First, for this method to work properly, the comparison

stimulus has to be continuously variable which may not be the case for some studies.

Second, the two stimuli have to be presented simultaneously which may not be

possible. If the stimuli are presented in successive order with the standard presented

first, then the time errors described earlier cannot be corrected [Gescheider, 1997].

Interweaving Staircase Method

In the staircase method, the experiment can still have errors introduced in it due

to subjects’ habituation and expectation. To overcome this issue, the interweaving

staircase method is developed in which an ascending and a descending series may be
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presented in a random order to the subjects. In fact, the two series are intertwined

such that each series does not have to be terminated before the other one begins.

This scenario is presented in Figure 2.12 for successive presentations of the standard

stimulus followed by the comparison.
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Figure 2.12: The interweaving staircase method

In this case, the subject is initially presented with a comparison stimulus inten-

sity that is greater than the standard by 1 incremental unit. The subject is asked

to determine if the response is greater than, less than or equal to the standard. If

the subject responds with “equal to”, then the value of the comparison response

is increased by another unit in the next trial. Without waiting for this ascending

series to terminate, in the following trial, the value of the comparison stimuli is de-

creased by 1 unit. In this way, the ascending and descending series are intertwined.

A transition point occurs, when the response of the subject changes for a series.

The JND once again is the average of the transition points. In this case, an upper

limen and a lower limen JND can be calculated individually by taking the average
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of the the ascending and descending series respectively. So in the example shown,

the upper limen JND is the average of points t1 and t3 and the lower limen JND

is the average of points t2 and t4.
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Chapter 3

Tactile Device

3.1 Motivation and Design Considerations

As discussed earlier, haptic feedback is comprised of two parts: the kinesthetics

and the tactile. Hence, a haptic device needs to be able to transmit both types of

information. The goal of this research is to combine these two effects at a macro

and a micro level scale. Designs of force feedback devices have been well studied.

Research in this field started with the transmission of large forces. However, now

researchers are focusing more on the tactile aspect. The interest in the current

project began with the idea of designing a tactile device that can be attached on

an existing force feedback device. In this way, the kinesthetic force information

would be provided by the force feedback device and the tactile information would

be provided by the tactile device.

It is important to determine what type of tactile information should be con-

sidered. Much of the literature in studying the tactile sense is concerned with the

ability to distinguish different roughnesses. As discussed in Chapter 2, roughness

is of prime interest over smoothness because the absence of a rough texture can

be interpreted as smooth. Therefore, the tactile device should be able to portray

different roughnesses. In Section 2.2.2, it was discussed that people detect texture

best by rubbing their fingers laterally on a surface. This piece of information is
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important in the design of a tactile device because to imitate reality, the hand move-

ments of the users should be as natural as possible. Furthermore, the roughness

should be portrayed via direct finger contact instead of using a probe since direct

contact gathers the most information. Such a design places further constraints:

1. The device must be attached to an existing force feedback device, thus it must

be compact and light to reduce loading on the force feedback device.

2. The existing force feedback device must be chosen such that the user can

perform lateral motions that are required to detect textures.

3. The device must be able to portray different magnitudes of roughness without

changing the stimulus mechanically.

4. Direct contact with the hand and fingers requires that the device must have

smooth edges and feel comfortable to the users.

5. To increase comfort, the users hand must not be tied to the device so that

they can let go of it whenever they wish.

Several ideas using pin arrays, magnetorheological (MR) fluids and SMA springs

were formed. However each one of these violated one or more constraints. The

pin array devices are generally bulky and heavy due to large number of actuators

that are required. A design using MR fluids introduces much more complexity.

For texture display, several spikes in the fluid need to be created and this is not

possible. SMA springs have the same problem as pin array devices. A matrix

of springs would need to be used and a fine resolution of the display may not be

achieved due to physical limitations.

The design of the device to be studied in this thesis allows users to place their

fingertip on an aperture and a stimulus is created on the finger through the aperture

at different speeds. The stimulus is created by using a spiral brush. This employs

one actuator and one spiral brush. A chassis is designed so that the actuator and
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brush can be overlayed on top of an existing force feedback device. In this way, this

tactile device meets all of the above constraints. The force feedback device to be

used is the PHANTOM Omni R© due to its ease of use with the software that will

be discussed later in Section C.2. For the purposes of this research, joints 2 and

3 of the device, as shown in Figure 3.1, are locked in fixed positions so that the

only motion possible is the radial motion due to revolute joint 1. A more detailed

description of the device and its components is provided in the following section.

Joint 1

Joint 2 Joint 3

Figure 3.1: Joints 1 to 3 of the PHANTOM Omni R©. c© Copyright SensAble

Technologies, Inc [Sensable Technologies, 2009]

3.2 Device Description

The tactile device is a one degree of freedom device consisting of a DC motor and

a spiral brush. The brush is attached to the motor and the speed of the brush is

varied to provide different stimuli. The motor and brush combination is inserted

into the chassis as shown in Figure 3.2. A small aperture is cut out at the top of

the chassis. The subjects place their index finger on the aperture and can feel the

brush rubbing against their finger. The device is designed to be able to fit on top

of the PHANTOM Omni R©. This is achieved by removing the end cap of the stylus

45



of the Omni and inserting the tactile device in its place. The complete design is

shown in Figure 3.3.

Chassis

Brush

Collar

Motor

Aperture

Figure 3.2: Exploded view of the tactile device

3.2.1 DC Motor and Spiral Brush

The tactile device should be as small as possible and as lightweight as possible

in order to reduce loading on the force feedback device. Consequently, the DC

motor inherits these specifications as well. For speed control, the motor has to be

equipped with an encoder. The motor has to be bi-directional. It must have low

friction in order to mitigate any non-linearities. From preliminary prototypes with

hobby motors, it is found that the motor stall torque has to be at least 0.014Nm.

The specifications of the DC motor that meet these constraints are given in Table

C.1 in Appendix C

Since only a small part of the brush comes in contact with the fingertip, the

length and diameter of the brush can be arbitrary. The only requirements for the

46



(a) Attached to PHANTOM Omni R©

(b) Tactile device in use

Figure 3.3: Tactile device
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brush are that it must not be painful to the user and that it stiff enough so that

the forces generated on the fingertip are noticeable. On one end, the brush is

attached to the motor shaft while the other end is unsupported. This cantilever

design requires that the brush should be rigid to reduce deflection when it brushes

against the finger. This is required in order to decrease the friction that is created

if the brush comes into contact with the inside walls of the chassis. A bent brush

also creates unwanted vibrations. It is not necessary for the brush to be spiral.

This happened to be the case because the only commercially available brushes in

small quantities that have a rigid structure are the twisted-in-wire spiral brushes

as shown in Figure 3.4. The bristles of this brush are made of nylon. The end of

the brush is threaded for ease of installation. This is one of the strong features of

this brush because the brush can be easily coupled to the motor shaft via a collar.

The motor shaft is friction fit into the collar whereas the brush is twisted in using

the coupling.

Figure 3.4: Spiral Brush [Torrington Brush Works, 2009]

3.2.2 Chassis

The chassis of the device is made of plastic. The motor and the brush combination

are fitted into the chassis. Any unnecessary material is removed in order to reduce

the weight. The aperture size of the chassis is approximately 1cm x 0.3cm rect-

angular. This size was chosen through user testing with various prototypes. The

size was meant to be as small as possible and still be able to provide contact with

the brush. Male and female subjects with various different finger sizes were used
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to decide the final size of the aperture. The chassis has three holes, labeled A, B

and C on Figure 3.5. Hole A is for the motor, hole B for the brush and hole C

is for the stylus of the PHANTOM Omni R©. The stylus is friction fit, whereas the

motor is secured with three equally spaced set-screws. The hole diameter for the

brush is slightly bigger than the diameter of the brush itself in order to prevent the

brush from rubbing against the inside walls. Detailed measurements of the chassis

are provided in Appendix D.

Hole A

Hole B
Hole C

Aperture

Set screw hole

Figure 3.5: Chassis design

3.3 Control

PD control is used to control the speed of the motor. A block diagram of the

control is provided in section C.5 in Appendix C. To give the subjects the feeling

that they are feeling a stimulus as they are moving their hand back and forth on a

surface, the motor is turned on only when the users start moving their hand at the

beginning of each trial. As soon as the motor starts, it runs independently of the

motion of the subject’s hand. This is to ensure that the speed of the motor remains

constant. The speeds chosen for the experiments, in revolutions per second (RPS),

are 20RPS, 40RPS and 60RPS. Once again, these are chosen experimentally as
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speeds that are most comfortable to the subjects while covering a wide range. The

step response of the motor to these speeds is shown in Figure 3.6.

Time (s)

Sp
ee
d 
(R
PS
)

Figure 3.6: Step Response to three different speed levels

There are no kinesthetic forces applied to the subjects through the PHANTOM

Omni R© device. This device is used only to monitor the position and velocity of

the user’s hand for graphical purposes and to provide a proof of concept that this

tactile device can be overlayed on an existing force feedback device.
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Chapter 4

Design of Experiments

The experimental setup consists of a desk with two chairs on opposite sides for the

subject and the experimenter. On the desk, the tactile device is placed inside a

large box with a large opening on the experimenter’s side and a smaller opening

on the subject’s side. There are two monitors as well - one facing the subject and

the other facing the experimenter. The subject’s monitor shows a graphical display

only while the experimenter changes the control variables. In this way, the subject

cannot see what parameters the experimenter is changing.

4.1 Graphical Interface

The general format of the experiments is for the users to place their index finger

on the aperture while moving the entire tactile device in a horizontal motion (left-

right-left...). To complete the loop between vision and touch, their hand motion

is also shown to them on a graphical display using a spherical avatar. As the

subjects move back and forth with the device, the avatar represents their motion

on the interface. The subjects watch the avatar move on a planar surface so that

they feel the virtual texture of the planar surface. The mapping between their

hand motion and the avatar is one-to-one. In other words, 5cm displacement of

their hand corresponds to 5cm displacement in the same direction of the avatar.
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The size of the planar surface in the x-dir, as shown in Figure 4.1, is 10cm. The

avatar movement is 1-DOF; it moves in the x-dir only. The subjects are asked

not to move past the side boundaries of the surface, thus their hand motion is

approximately 8cm. Due to the base revolute joint of the PHANTOM Omni R© and

the fact that joints 2 and 3 are locked, pure x movement is not possible. There is

a small z component, which is ignored for simplicity. The maximum value of the z

component is 1.5cm.

x

y

z

Figure 4.1: Graphical interface

The graphical display is designed to be simple and easy to understand for the

subjects. The graphics are created in V-Realm Builder and incorporated into

Simulink R© using the Virtual Reality Toolbox. The graphics are rendered at 30

frames/sec. The colour of the planar surface is arbitrary. However, the colour of

the avatar is not. To maintain consistency in the rate of hand motion between all

subjects, their lateral speed has to be constrained. The subjects are told that there

is a range of speed that they should try to stay within. When they are in that
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range, the colour of the avatar is green, otherwise it is red. This range is chosen by

experimenting with various subjects and finding the range that is most achievable.

This range is between 1cm/s to 3.5cm/s inclusive. To ensure that the ball stays

green at the end points, the moving average over the previous 0.5s of their speed

is used to check if the speed is within the given range or not. This is necessary

because at the end points, when the subjects change the direction of movement,

the speed drops to zero. Taking instantaneous speed would cause the colour of the

avatar to turn red. To avoid distracting the subjects, the average of the speed over

the last 0.5s is used to control the avatar colour since it does not change abruptly.

4.2 Training Subjects

At the beginning of each experiment, subjects are trained how to use the tactile

device. First of all, since all subjects are experimentally naive and many have

not had any previous experience in haptics, they are given a brief description of

haptics. Then, they are explained how lateral motion plays an important role in

texture perception. Following this, the experimenter tells the subjects that the

tactile device they will be using is hidden inside the box. They are not allowed

to look inside the box in order to ensure that their response is not biased by the

appearance of the device. The experimenter gives a demonstration of what the

subjects will be required to do. They are told how to keep the ball green and are

asked to keep a light pressure on the aperture.

Once the subjects have adjusted their chair to a comfortable position, the ex-

perimenter, helps them place their index finger on the aperture. The subjects then

move their hand from the elbow in a sideways motion while trying to keep the

ball green. With speed regulation turned off, the speed of the motor is used as an

indication of how much load the subjects are applying. Free running, the speed

of the motor is approximately 24RPS at 2V . The subjects are asked to adjust

their finger pressure until the speed is approximately 22RPS as shown in Figure
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4.2. They are asked to practice at this pressure and rate of motion until they are

comfortable. Then they are asked to switch hands and repeat the procedure with

the other hand.
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Figure 4.2: Indication of load on the motor with and without the finger in an open

loop control

It is important to note that while the load on the motor can be judged in the

training phase, it is not possible to judge this load during the actual testing because

the motor speed is regulated automatically. During the testing, the subjects are

reminded frequently about keeping the pressure light. However, it is likely that

their finger pressure varies throughout the testing. This is not considered an issue

here because Lederman et al. [2004] have shown that small variations in finger

pressure do not affect texture perception. This may seem to contradict their earlier

results [Lederman and Taylor, 1972, Lederman, 1974] that increasing fingertip forces

increases the perceived roughness of grooved surfaces. However, their recent results

show that while this is still the case when force variation is large (from 0.27N to

4.4N in their previous experiment), for small variations, the texture perception is
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not affected. They found that when the users were asked to maintain a “light” force,

the variation in force throughout the experiment did not affect their perception

significantly. Thus, the force is not monitored in these experiments; instead the

subjects are asked to apply “light pressure”.

The subjects are asked to keep their hand motion between the side boundaries

of the planar surface on their screen. Speed ranges from 20RPS to 70RPS in both

clockwise (CW) and and counter-clockwise (CCW) directions are applied in the

training phase for their awareness. However, they are not told the actual speeds

that will be used during the experiments. Subjects are asked to focus on the

sensation in their fingertip only and not in the rest of their hand.

4.3 Areas of Investigation

The purpose of the device is to be able to portray various levels of roughness.

To check whether the device is capable of meeting this criterion, psychophysical

experiments have to be conducted. The experiments conducted in Chapters 5 to 7

are designed to study the following factors:

• Intensity JND — How does the JND with respect to speed differ at two

different levels of base speed?

• Speed — What is the effect of changing the speed of the brush on the rough-

ness perception?

• Direction — Is the change in the direction of rotation of the brush detectable?

If so, then does it affect the roughness perception?

These questions will be answered using the results from three separate exper-

iments. The hypotheses related to each will be presented in the corresponding

chapters.
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Chapter 5

Experiment 1: Just Noticeable

Difference

5.1 Introduction

The purpose of this experiment is to determine the just noticeable difference (JND)

with respect to speed at two different levels of base speed. The levels of base speed

used in this experiment are the low speed, 20RPS and the high speed, 60RPS.

Two levels of speed are deemed sufficient to characterize how the JND changes with

speed. For similar reasons, the experiments are performed in CCW direction only.

The interweaving staircase method is used to determine the JND. This method

is chosen to reduce response bias, which is more common in the other methods

outlined in Section 2.5.3.

5.2 Hypothesis

The hypothesis tested in this experiment is as follows:

H1: The JND with respect to speed decreases as the speed of the brush increases.

This hypothesis is driven by the the results of Salada et al. [2004], who found
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that as the speed of a rolling wheel increases underneath the fingertip, the slip

sensitivity to speed decreases.

5.3 Participants

There were 13 subjects (9 male, 4 female) between the ages of 18 and 32 who took

part in this experiment. All subjects are different from those in experiment 2 and

experiment 3. All subjects are students at the University of Waterloo. All are right-

handed. None of the subjects have any neurological or physical injury that affected

sensitivity of the index fingers of both hands. This experiment is approved by the

office of research at the University of Waterloo (ORE # 15667). The experiment is

performed according to the ethical guidelines. Each subject signed a consent letter

prior to beginning the experiments.

5.4 Method

The experiment is conducted in two separate sessions with a time gap of at least

24 hours in between to prevent fatigue due to long experiment times. One of the

two base speeds is tested on day one and the other on day two. For 6 subjects,

the 20RPS level is used on day one and for 7 subjects, the 60RPS level is used on

day one. If all the subjects are tested with 20RPS level on day one, then perhaps

the effects of the speed used on day one could be confounded with the average

results. However, by testing half of the subjects with 60RPS on day one, any

effects introduced by the order of the speed will cancel out when the average is

taken across all subjects.

For each level of speed, there are 40 trials. Half of the trials are in the in-

crementing direction and the other half are in the decrementing direction from the

base. The incrementing and decrementing trials are randomly spaced among the 40

trials. The resolution for increment and decrement is chosen to be 1RPS. This is
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chosen in part to ensure that the actual speed can be read from the motor without

any overlap in the signal. Furthermore, from pilot studies, it was found to be the

resolution that is low enough to be undetectable and high enough to avoid large

number of trials. Figure 5.1 shows the actual speed read from the motor when

the base speed is 20RPS and a 1RPS change is applied in the incrementing and

decrementing directions.

Time(s)

Sp
ee
d 
(R
PS
)

Figure 5.1: The speed of the brush shown at 20RPS base speed and an increment

and decrement of 1RPS

The effects of adaptation are reduced by having the subjects switch hands on

alternating trials. Half of the subjects that start the experiment with 20RPS base

speed on day one, start with their right hand and the other half start with the left

hand. Same applies to the subjects that start with 60RPS base speed on day one.

If all the subjects start the experiment with their right hand, then perhaps the

effects of hand could be confounded with the average results. However, by asking

half of the subjects to start with the left hand, any effects of hand will cancel out

when the average is taken across all subjects. The organization of subjects can be
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seen in Figure 5.2.

13 
subjects

6 start with 
20RPS on day 1

7 start with 
60RPS on day 1

3 start the 
experiment with 

right hand

3 start the 
experiment with left 

hand

4 start the 
experiment with 

right hand

3 start the 
experiment with left 

hand

Figure 5.2: Organization of subjects

Each trial is 16s long. At the beginning of each trial, the base speed is applied

for at least 5s. The speed then increments or decrements automatically by the

appropriate amount according to the interweaving staircase method. The speed

change occurs anywhere between 5s to 10s so that the subjects do not expect the

change to occur at the same time in every trial. The range 5s to 10s is chosen

so that the base stimulus and the comparison stimulus are presented for at least

5s in every trial. Through pilot experiments, it was determined that 5s is enough

time for subjects to grasp the stimulus. Long trial times are avoided to reduce

adaptation. The stimuli are presented successively and the standard stimulus (base

speed) is always presented first. This method introduces time errors discussed

in 2.5.3. However, the effect of these errors is assumed to be negligible in this

experiment because there is no time gap between the two stimuli.

During each trial, the stimulus begins only when the subjects start moving

their hand (see Section 3.3). A “thumbs up” signal from the experimenter is used

to indicate the start of each trial.

When the step changes are around 4RPS to 5RPS, the noise made by the device

59



becomes audibly different. To prevent subjects from using the change in noise as

an indication of stimulus change, they are asked to wear earmuffs throughout the

experiment. The training plus testing session on each day takes approximately

30min to finish.

5.5 Procedure

Each subject starts with a training session outlined in Section 4.2 before beginning

the experiment on each day. The subjects are allowed to train for as long as neces-

sary to get used to the hand motion needed to keep the colour of the avatar green

and the applied vertical pressure light. Prior to beginning the actual experiment,

a ceiling test is performed in which subjects are provided large changes (between

±8RPS to ±15RPS) in order to ensure that they are able to at least detect these

extremes. These numbers were experimentally determined from pilot studies as

being detectable 100% of the time for both speed levels in both incrementing and

decrementing directions. This technique also allows for the subjects to learn what

type of change in stimulus to expect. They are informed that during the actual

testing, the intensity of the change will be smaller and that they should pay close

attention. The subjects are given the following information:

There will be 40 trials on the first day and 40 trials on the second

day. Begin the experiment with your right1 hand. Each trial will be 16s

long. For each trial, I will wait for you to place the index finger of the

appropriate hand on the device. Once you are ready, wait for my signal

to begin moving back and forth. When you begin moving your hand,

the stimulus will start automatically. During the trial, there may or

may not be a change in the stimulus. When you feel that the stimulus

changed, immediately tell me how the signal changed. Say “Increase”

1Seven subjects are asked to start with their right hand and six subjects are asked to start

with their left hand.
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if you feel that the stimulus frequency increased and say “Decrease” if

you feel that the stimulus intensity decreased. Do not wait to tell me

this at the end of the trial2. If there is going to be a change, then it

will be a step change. At the end of the trial, the stimulus will stop

automatically. At this point, remove your hand from the box and replace

it with the opposite hand and wait for my signal to begin moving. You

may ask me to repeat any trial if you feel it necessary. You must wear

earmuffs throughout testing in order to reduce ambient noise and most

importantly, to block audio clues from the device.

5.6 Results

The JND results for each subject are shown in Table A.1 in Appendix A. The

first 20 trials for the 20RPS base speed for one of the subjects are shown in the

interweaving staircase plot in Figure 5.3. This subject has 12 transition points in

the first 20 trials. Points t1 - t4 and t6 - t7 are used to find the upper limen (Lu)

JND and points t5 and t8 - t12 are used to find the lower limen (Ll) JND.

The upper limen and lower limen JND found by averaging across all subjects for

the two speeds are shown in Table 5.1. The results are presented as a percentage

of the base speed. The average data is shown graphically in Figure 5.4 along with

the standard errors.

Table 5.1: The upper and lower limen JND for the two base speeds.

Base speed [RPS] Lu JND [%] Ll JND [%]

20 17.2 15.2

60 8.15 9.63

2This allows for further rejection of response bias as the subjects are not given the opportunity

to guess at the end of the trial.
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Figure 5.3: A typical test scenario at 20RPS base speed. (E = equal to, G =

greater than, L = less than)
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Figure 5.4: JNDs for each speed along with standard errors

Between each speed, the 20RPS level shows higher JNDs than the 60RPS

level. This indicates that as the speed of the brush increases, the JND for speed

decreases. The statistical significance of this difference is found by performing a 2-
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Figure 5.5: Average JNDs

way within subject analysis of variance (ANOVA). Detailed description of ANOVA

can be found in Appendix B. The two factors are the base speed and the direction

of stimulus increase (upper and lower limens). The analysis is performed using

SAS, a statistical analysis software. The results are based on a 0.05 rejection level.

The detailed results of ANOVA are shown in Table A.2 in Appendix A.

The ANOVA results show that there is no significant interaction between the

speed and direction, F(1,12)= 3.24 and p = 0.0969. The level of speed significantly

affects the JND, F(1,12) = 25.04 and p = 0.0003. Consequently, Figure 5.5a shows

that there is a large difference between the two levels of speed, when the upper and

lower limen JNDs within each speed are averaged. The direction (upper or lower)

shows no significance, F(1,12) = 0.04 and p = 0.8432. This can be observed in

Figure 5.5b, where the upper and lower limen JNDs are found by averaging across

both base speeds.

5.7 Conclusion

This analysis shows that as the speed of the brush increases, the upper and the

lower limen JNDs decrease significantly. The upper limen JND and the lower limen

JND for a single level of speed are not significantly different from each other. The
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upper limen JND of the low speed is significantly greater than the upper limen

JND of the high speed. Similarly with the lower limen JNDs. These results are

analogous to the ones found by [Salada et al., 2004].

In order to provide a change in stimulus, the speed has to increase or decrease

by at least 17.2% or 15.2% respectively when the base speed is 20RPS and at least

8.15% or 9.63% respectively when the base speed is 60RPS. These results will

be used to determine the levels of speed that can be used to test for roughness

perception in the next experiment. In order to provide distinct stimuli, the levels

of speed should be appropriately far away from each other so that the change in

speed is detectable.

This experiment confirms the hypothesis H1.
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Chapter 6

Experiment 2: Roughness

Magnitude

6.1 Introduction

Recall that the original goal of the device is to mimic different levels of roughness.

The purpose of this experiment is threefold. First, the goal is to determine if the

subjects can detect roughness using this tactile device. Second, if the texture is

classified as rough, then the goal is to study if different speeds of the brush can

be used to convey different magnitudes of roughness. Third, the objective is to

determine if the direction of rotation of the brush affects the roughness perception.

Three speed levels are considered in this experiment: 20RPS, 40RPS and 60RPS.

According to the results of the previous experiment, these speeds can be differen-

tiated by all users. This range of speed also allows for a better resolution to study

the effects of speed on roughness perception. The experiments are conducted using

both CW and CCW directions.

6.2 Hypotheses

The hypotheses tested in this experiment are as follows:
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H2: The texture represented by the brush is rough.

H3: The speed of the brush can be used to control the perceived roughness.

H4: Increasing the speed of brush decreases the magnitude of roughness.

H5: The direction of the brush does not change the magnitude of roughness.

All of these hypotheses are tested in a single experiment outlined in the following

sections.

6.3 Participants

There were 17 subjects (16 male, 1 female) between the ages of 22 and 30 who

took part in this experiment. All subjects are different from those in experiment

1 and experiment 3. All subjects are from the University of Waterloo. All but

2 subjects are right handed. None of the subjects have neurological or physical

injury that affects sensitivity of the index finger of both hands. This experiment is

approved by the office of research at the University of Waterloo (ORE # 15667).

The experiment is performed according to the ethical guidelines. Each subject

signed a consent letter prior to beginning the experiments.

6.4 Method

The experiment is conducted in three separate sessions with a time gap of at least

24 hours in between to prevent fatigue due to long experiment times. There are

60 trials in total split over three days (20 trials/day). To reduce the effects of

adaptation, left and right hands are used on alternating trials.

Nine subjects start the experiment with left hand and eight subjects start with

the right hand. If all the subjects start the experiment with their right hand, then

perhaps the effects of hand could be confounded with the average results. However,

by asking half of the subjects to start with the left hand, any effects of hand will
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cancel out when the average is taken across all subjects. The 60 trials are split into

levels shown in Table 6.1. All levels are randomly distributed among 60 trials.

Table 6.1: Distribution of trials in experiment 2.

Speed [RPS] Direction Number of Trials

20 CW 10

20 CCW 10

40 CW 10

40 CCW 10

60 CW 10

60 CCW 10

Each trial is 10s long. Only one level of stimulus is presented in each trial. The

10s period was chosen experimentally in a pilot study to be sufficient time to grasp

the stimulus. Long trial times are avoided to reduce adaptation.

During each trial the stimulus begins only when the subjects start moving their

hand as explained in Section 3.3. A “thumbs up” signal from the experimenter is

used to indicate the start of each trial.

The noise made by the device is audibly different at each speed. To prevent re-

sponse bias resulting from this noise, subjects are asked to wear earmuffs throughout

the experiment. The training plus the testing session on each day takes approxi-

mately 20min.

6.5 Procedure

Prior to beginning the experiment on each day, subjects start with a training session

as outlined in Section 4.2. The subjects are allowed to train for as long as necessary

to get used to the hand motion needed to keep the colour of the avatar green and the

applied vertical pressure light. The subjects are given the following information:
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There will be 20 trials on each day. Begin the experiment with

your right1 hand. Each trial will be 10s long. For each trial, I will

wait for you to place the index finger of the appropriate hand on the

device. Once you are ready, wait for my signal to begin moving back

and forth. When you begin moving your hand, the stimulus will start

automatically. During the trial, the stimulus will remain constant. At

the end of each trial, I will ask you two questions:

1. What real world texture or material does the sensation remind you

of?

2. On a scale of 1 to 100, how would you rate the sensation at your

fingertip? Choose 1 as “least rough” and 100 as “most rough”.

Choose a number that you feel is appropriate for the sensation.

You do not have to compare a trial to the previous trials. For each

trial, you may give a number independent of what you said in the

previous trials.

At the end of the trial, the stimulus will stop automatically. At this

point, remove your hand from the box and replace it with the opposite

hand and wait for my signal to begin moving. You may ask me to repeat

a trial if you feel it necessary. You must wear earmuffs throughout

testing in order to reduce ambient noise and most importantly, to block

audio clues from the device.

Subjects are asked not to compare a trial with the previous trials in order to

reduce memory demands. It has been shown by Stevens and Harris [1962], that

in the absence of a standard given by the experimenter, subjects perform better.

Thus, in this test, the subjects are given the freedom to assign numbers on their own.

The first question allows for the experimenter to determine the type of textures or

materials this device represents. The second question is used to determine if the

1Eight subjects are asked to start with their right hand and nine subjects are asked to start

with their left hand.

68



device is able to represent different magnitudes of roughness. Moreover, the effects

of direction on roughness perception can be derived from this question as well.

Together these questions test all the hypotheses.

6.6 Results

6.6.1 Texture

This section presents the analysis derived from the first question that is meant to

determine the type of textures that this setup represents. Given 60 trials and 17

subjects, theoretically there should be 1020 responses. Subjects are not expected

to provide 60 unique responses. Thus, many of the responses are repetitive not

only within the subjects but also between the subjects. However, not all subjects

are able to give an answer for every trial because for some trials those subjects can

not relate the sensation to any real world material or texture. Thus, the number of

collected responses is not 1020, it is 734. Table 6.2 shows a summary of the number

of response from the subjects.

Table 6.2: Number of subjects in given number of response ranges.

Number of Responses Number of Subjects

60 4

50-59 8

10-19 2

< 10 3

The responses collected from all subjects are grouped into 11 main categories

as shown in Table 6.3. Note that the frequency of the “Sandpaper” response is

the greatest. While it seems that the next two categories follow sandpaper closely,

it is important to note that sandpaper is recorded only when the subject strictly
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says “Sandpaper”. The other categories include various responses. For instance

the “Rough Fabric” category includes responses such as “chair covers”, “corduroy”

etc. Given that a response is classified under the sandpaper category under strict

naming convention while the other categories are more lenient, it can be concluded

that the setup resembles sandpaper more closely than anything else. Sandpaper is

not only the most frequently occurring response, tied with rough fabric, it is also

the response mentioned by the most number of subjects (13 out of 17). There are

nine subjects that fit into the wide category of “Rock/Stone/...”.

Table 6.3: Categories of responses and their frequencies.

Texture/ Material Frequency [%] Number of Subjects

Sandpaper 19.1 13

Rock/Stone/Brick/Wall/

Concrete/Sidewalk/ Gravel

18.1 9

Rough Fabric 17.7 13

Regularly Spaced Bumps 9.53 9

Corrugated Steel/ Card-

board/plastic

8.58 8

Wood 7.9 6

Brush 4.36 4

Tree Bark/Plants/Fruits 3.13 7

Vibration 1.23 2

Animal Skin 0.82 2

Miscellaneous 9.54 14

All of these categories are of rough nature. Thus, it is concluded that the texture

represented by this setup is rough and most like sandpaper.
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6.6.2 Roughness Magnitude

This section presents the analysis derived from the second question that is meant

to determine the effect of changing the speed and the direction of rotation on the

roughness perception. An unexpected observation made in this experiment is that

some subjects scale the stimuli such that when the speed of the brush increases,

their roughness perception decreases. Other subjects think in an opposite manner.

These subjects perceive roughness to increase as the speed increases. In order to

classify the subjects into two groups without using the experimental data itself, at

the end of each experiment, the subjects are asked the following qualitative question

regarding their perception of the texture.

Did the roughness increase or decrease with speed?

Their response can be paraphrased as follows:

Case 1: 9 of 17 subjects mentioned that at low speeds, the surface

feels like it had bigger “bumps”. As the frequency increases, they feel

that the surface becomes more continuous. They relate continuity with

roughness such that the more continuous it feels, the less rough it be-

comes. Thus, higher speeds decrease the roughness. These subjects are

classified into the “Dec” group.

Case 2: 8 of the 17 subjects mentioned that at high speeds, the

intensity of the stimulus feels greater and the “bumps” are “hitting the

finger” much faster. They relate bumps with roughness such that the

more the bumps, the rougher the surface feels. At low frequencies,

there are fewer bumps and thus it feels less rough. Thus, higher speeds

increase the roughness. These subjects are classified into the “Inc”

group.

The data from the 17 subjects along with their group is shown in Table A.3 in

Appendix A. The results for the two groups for CW and CCW directions are shown
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in Figure 6.1 and Figure 6.2. The solid lines, representing the “Inc” group, have a

generally increasing trend and the dotted lines, representing the “Dec” group, have

a generally decreasing trend.
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Figure 6.1: Roughness magnitudes for the two groups in CW direction. Solid line

= “Inc” Group and dotted line = “Dec” Group
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Figure 6.2: Roughness magnitudes for the two groups in CCW direction. Solid line

= “Inc” Group and dotted line = “Dec” Group

72



If the analysis is performed by taking the average across all 17 subjects, the

different trends in two groups make the average across each category nearly constant

and show no significant results as shown in Figure 6.3. Note that for each speed

the roughness magnitudes for directions do not differ by much, especially at the

low and high speeds. Although, there might appear a slight increasing trend from

20RPS to 60RPS, an analysis of variance shows no statistical significance. Using

SAS and a 0.05 rejection level for the two factors (speed and direction), a 2-way

within subject ANOVA shows no significance for speed or direction, F(2,32)= 0.28,

p = 0.76 and F(1,16) = 2.62, p = 0.13, respectively. It also shows no interaction

between speed and direction, F(2,32) = 0.9, p = 0.42. The detailed ANOVA results

for this are shown in Table A.4 in Appendix A. Description of ANOVA can be found

in Appendix B.
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Figure 6.3: Roughness magnitudes averaged across all subjects for each direction

and speed

If the data is split into two groups, a 3-way ANOVA (one between subject

factor (group) and two within subject factors (speed and direction)) results show

no statistically significant interaction between direction, speed and group, F(2,30)

= 0.63, p = 0.54. As before, there is no significant interaction between direction

and speed either, F(2,32) = 0.96, p = 0.40. This shows that the direction does

not play a significant role in roughness perception. At a given level of speed, the

roughness magnitude remains the same for both directions.

73



There is a statistically significant interaction between speed and group as ex-

pected, F(2,30) = 24.99, p < 0.0001. This interaction is more obvious in Figure 6.4

due to the intersection of the two lines. Given this interaction, the main effects of

speed cannot be directly observed from the ANOVA results. The complete ANOVA

results for this are shown in Table A.5 in Appendix A.
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Figure 6.4: Roughness magnitudes averaged across all subjects in “Dec” group for

each direction and speed

In Figure 6.4, note that the magnitude mean of 40RPS is nearly equal for

both groups. This indicates that every subject, regardless of group, perceives the

roughness magnitude of 40RPS similarly.

The average results for the two groups, along with the standard errors, are

shown in Figure 6.5 and Figure 6.6. Note that for both groups, within each speed,

the magnitude for direction is approximately equal. This is further evidence to the

fact that the role of direction of rotation is insignificant in roughness perception.

To check if the speed has a significant effect within each group, the data within

each group is averaged across direction since it has no effect and post-hoc T-tests

are performed on the three levels of speed. Description of T-tests is given in Ap-

pendix B. The results show that the magnitude differences between low and medium

speeds and low and high speeds are statistically significant. The difference between
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Figure 6.5: Roughness magnitudes averaged across all subjects in “Dec” group for

each direction and speed

40

50

60

70

Ro
ug
hn

es
s 
fr
om

 
o 
10
0

CCW I

0

10

20

30

40

50

60

70

20 40 60

M
ag
ni
tu
de

 o
f R

ou
gh
ne

ss
 fr
om

 
1 
to
 1
00

Speed[RPS]

CCW Inc

CW Inc

Figure 6.6: Roughness magnitudes averaged across all subjects in “Inc” group for

each direction and speed

medium and high speeds is approaching significance. The p values for this test are

shown in Table 6.4. The results are shown in more detail in Tables A.6 to A.9 in

Appendix A.
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Table 6.4: Post-hoc T-test results. low = 20RPS, med = 40RPS high = 60RPS.

Difference Group “Dec” p Value Group “Inc” p Value

low - med 0.0262 0.006

low - high 0.0054 0.0062

med - high 0.0076 0.0602

6.7 Conclusion

This analysis shows that the texture represented by this tactile device is rough.

When trying to relate this texture with a real life texture or material, the majority

of the subjects relate it to sandpaper.

In this experiment, subjects are asked to rate the magnitude of roughness on a

scale of 1 to 100 for different levels of speed and direction of rotation of the brush.

Subjects are not given a bias and are expected to use the biases from their personal

experiences to assign magnitudes. It is found that there are two different ways in

which people perceive roughness. One group of subjects feel that as the speed of

the brush increases, the surface becomes more continuous. Thus, they associate

higher speeds with decreasing roughness. The other group of subjects feel that

as the speed of the brush increases, there are more bumps on the surface. Thus,

they associate higher speeds with increasing roughness. Given this conflict, the

17 subjects in this experiment are split into two groups, 9 of which think that the

roughness increases with speed while the other 8 think that the roughness decreases

with speed.

It is entirely possible that this contradiction is a result of a real phenomenon

much like an optical illusion. A Necker Cube is an example of an analogous optical

illusion. It has two equally likely orientations that it may be viewed at. Often people

are able to switch back and forth between these perceptions, an event known as

Multistable Phenomenon [Leopold and Logothetis, 1999]. It refers to the sudden

reversal in visual perception. It is possible that an ambiguity such as this exists in
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tactile perception as well.

Within each group the speed of the brush plays a significant role. However, the

direction of rotation does not. Hypothesis H2 and H3 are confirmed. Hypothesis H4

is only partially confirmed; increasing the speed decreases the roughness magnitude

for some subjects. For other subjects, the opposite has been shown to be true. The

null hypothesis, H5 is not rejected.
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Chapter 7

Experiment 3: Roughness

Magnitude: Effects of Direction

7.1 Introduction

In the previous experiment, the subjects were asked to use their own personal biases

to rate the roughness on a scale of 1 to 100. It was found that subjects were divided

into two groups. Some subjects relate continuity of the surface to the roughness

and some relate the number of bumps on the surface to roughness. This creates a

conflict. The results show that some subjects think that the roughness increases

with speed while the others think that it decreases. The different definitions of

roughness used by the subjects is introducing bias.

In this experiment, the subjects are given standard stimuli to which they could

compare the roughness created by the tactile device. The standard stimuli are five

different grits of sandpaper as it was found to be the most common response in the

previous experiment. They are asked to scale the roughness magnitude displayed by

the tactile device according to the roughness of the sandpapers. This is an attempt

to provide a consistent definition of roughness to the subjects. The smallest grit

sandpaper being the roughest and the largest grit being the least rough.
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In the previous experiment, it was concluded that the direction of rotation of

the brush does not affect the roughness perception. The direction of rotation was

kept constant during each trial. However, it is arguable that memory demands from

one trial to the next could interfere such that the subjects do not feel the difference

in two directions because there is a 10s− 20s time gap between each trial. In this

experiment, the time gap is shortened to determine the effects of direction more

closely.

7.2 Hypothesis

The hypotheses tested in this experiment are as follows:

H6: The direction of rotation of the brush is not detectable.

H7: As the speed of the brush increases, the perceived roughness resembles the

higher grit sandpapers (less rough).

H8: The direction of the brush does not change the magnitude of roughness.

7.3 Participants

There were 16 subjects (15 male, 1 female) between the ages of 20 and 27 who

took part in this experiment. All subjects are different from those in experiment 1

and experiment 2. All subjects are from the University of Waterloo. All but two

subjects are right handed. None of the subjects have a neurological or physical

injury that affects sensitivity of the index finger of both hands. This experiment is

approved by the office of research at the University of Waterloo (ORE # 15667).

The experiment is performed according to the ethical guidelines. Each subject

signed a consent letter prior to beginning the experiments.
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7.4 Method

The experiment is conducted in two separate sessions with a time gap of at least

24 hours in between to prevent fatigue due to long experiment times. There are

48 trials in total split over two days (24 trials/day). To reduce the effects of

adaptation, left and right hands are used on alternating trials. Eight subjects

start the experiment with their left hand and the other eight subjects start the

experiment with their right hand. If all the subjects start the experiment with

their right hand, then perhaps the effects of hand could be confounded with the

average results. However, by asking half of the subjects to start with the left hand,

any effects of hand will cancel out when the average is taken across all subjects.

Each trial is 16s long. After 8s into each trial, the stimulus pauses for 0.5s

and restarts. The 16s time period was chosen experimentally in a pilot study to

be sufficient time to grasp the stimulus. Mechanically, it is not possible to switch

the direction of motor without a momentary stop. Thus, a 0.5s pause is placed in

every trial so that all trials are the same. In other words, the motor pauses at the

8s mark whether the direction changes or not.

During each trial, the speed of the brush remains constant. However, the direc-

tion of rotation either changes or remains the same before and after the 0.5s pause.

In the previous experiment, it was found that all subjects, regardless of group, per-

ceived the roughness of the 40RPS level equally. This middle level of speed does

not create a conflict between the two groups. Thus, this test is performed with

20RPS and 60RPS speeds only. The 48 trials are split into levels shown in Table

7.1.

Half the trials in each level are done with the left hand and the other half with

the right hand. The trials are randomly distributed. During each trial the stimulus

begins only when the subjects start moving their hand as explained in Section 3.3.

A “thumbs up” signal from the experimenter is used to indicate the start of each

trial.
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Table 7.1: Distribution of trials in experiment 3.

Speed [RPS] Stimulus Pair Number of Trials

20 CCW—CCW 6

20 CCW—CW 6

20 CW—CW 6

20 CW—CCW 6

60 CCW—CCW 6

60 CCW—CW 6

60 CW—CW 6

60 CW—CCW 6

The noise made by the device is audibly different at each speed. To prevent re-

sponse bias resulting from this noise, subjects are asked to wear earmuffs that block

out the noise. The training plus the testing session on each day takes approximately

20min.

The sandpapers chosen for scaling are of grit sizes 40D, 80D, 120C, 180C and

320C. These are the commonly available girt sizes. They are laid out in an ascending

order from left to right in front of the subjects.

7.5 Procedure

Prior to beginning the experiment on each day, subjects start with a training phase.

The subjects are allowed to train for as long as necessary to get used to the hand

motion needed to keep the colour of the avatar green and the applied vertical

pressure light. The subjects are given the following information:

There will be 24 trials on each day. Begin the experiment with

your right1 hand. Each trial will be 16 seconds long. For each trial, I

1Eight subjects are asked to start with their right hand and eight with their left hand.
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will wait for you to place the index finger of the appropriate hand on

the device. Once you are ready, wait for my signal to begin moving

back and forth. When you begin moving your hand, the stimulus will

start automatically. At the half way mark in each trial, that is at 8s,

the stimulus will take a pause for 0.5s and restart. You have to pay

attention to the stimuli before and after the pause as you will be asked

to compare them. At the end of each trial, I will ask you two questions:

1. Did the stimulus change before and after the pause?

2. On a scale of 1 to 100, how would you rate the sensation at your

fingertip. Choose 1 as the least rough sandpaper (Grit 320C) and

100 as the most rough sandpaper (Grit 40D). Scale everything in

between according to grit sizes 80D, 120C, and 180C placed in

front of you. Choose a number that you feel is appropriate for the

sensation. If you feel that the roughness of the two stimuli are

different, scale them using two numbers. If you feel the roughness

is the same throughout, then scale it using one number. You do not

have to compare a trial to the previous trials. For each trial, you

may give a number independent of what you said in the previous

trials.

7.6 Results

7.6.1 Detecting Direction

This section presents the analysis from the first question the subjects answered.

It is meant to determine whether the subjects are able to detect a change in the

stimulus due to a change in the direction of rotation of the brush. The subjects’

results are recorded as hit and false alarm rates discussed in Section 2.5.2. A hit

is recorded when the stimulus presented in the trial is (CCW,CW) or (CW,CCW)
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Table 7.2: Stimulus response matrix for 20RPS level.

Stimulus Pair
Response Number

“Different” “Same” of Trials

(CCW,CW) or (CW,CCW) 0.67 0.33 24

(CCW,CCW) or (CW,CW) 0.34 0.66 24

Table 7.3: Stimulus response matrix for 60RPS level.

Stimulus Pair
Response Number

“Different” “Same” of Trials

(CCW,CW) or (CW,CCW) 0.82 0.18 24

(CCW,CCW) or (CW,CW) 0.51 0.49 24

and the response of the subjects is “Different”. A false alarm is recorded when the

stimulus presented in the trial is (CCW,CCW) or (CW,CW) and the response of

the subjects is “Different”. The data for each subject is shown in A.11 in Appendix

A. The stimulus-response matrices for the two levels of speed are given in Table 7.2

and Table 7.3.

Since the subjects are unaware of the experimental setup and are not told that

the direction of rotation will be changing during each trial, it is difficult for the

experimenter to explain the nature of the change. The subjects choose their own

metrics for defining what is meant by “change” and this may be different for each

subject. For this reason, the Same-Different procedure is chosen to perform the

analysis as it takes into account this anomaly. Within each level of speed, there

are only two different stimuli (CCW,CW). According to Macmillan and Creelman

[1991], an independent-observation strategy can be used in this situation.

The measure of detectability, d′, discussed in Section 2.5.2 for the 20RPS level
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of speed is calculated as

H = 0.67, z(H) = 0.44

F = 0.34, z(F ) = −0.412

z(H)− z(F ) = 0.852

d′ = 1.59

The measure of detectability, d′ for the 60RPS level of speed is calculated as

H = 0.82, z(H) = 0.915

F = 0.51, z(F ) = 0.025

z(H)− z(F ) = 0.89

d′ = 1.63

d′ for both levels of speed is greater than 1, which is the level of satisfactory perfor-

mance. Higher d′ values indicate that subjects are able to discriminate between the

direction of rotation at both levels of speed. However, it does not mean that the

magnitude of roughness is different for the two directions. It is possible that even

though the subjects detect a change (due to direction), their perceived roughness

remains the same. This hypothesis is analyzed in the following section.

7.6.2 Roughness Magnitude

It is found that even though each subject is provided the same sandpapers as

references for magnitude scaling, the subjects are still divided into two groups.

Some subjects think that the roughness increases with speed while the others think

the opposite. 7 out of 16 subjects fall into the “Dec” group while the other 9 fall

into the “Inc” group. As in the previous experiment, the subjects are placed in

these group according to their answer to the same qualitative question. The groups

are not made from the results of their experimental data. The qualitative question

is asked to each subject at the end of the experiment.
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The average magnitude ratings given by each subject along with their group

designation are shown in Table A.10 in Appendix A. The results for the two groups

for CW and CCW directions are shown in Figure 7.1 and Figure 7.2. The solid

lines, representing the “Inc” group, have a generally increasing tend and the dotted

lines, representing the “Dec” group, have a generally decreasing trend.
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Figure 7.1: Roughness magnitudes for the two groups in CW direction. Solid line

= “Inc” Group and Dotted line = “Dec” Group

As in the previous experiment, performing the analysis on all subjects together

shows no significance of speed or direction. Figure 7.3 shows that the roughness

magnitudes for both speeds and directions are approximately the same when the

data is averaged across all subjects. Using SAS and a 0.05 rejection level for the two

factors (speed and direction), a 2-way within subject ANOVA shows no effect of

speed (F(1,15) = 0.57 and p = 0.4582) or direction (F(1,15) = 0.11 and p = 0.7468)

on the magnitude estimates. This is a direct result of the two groups averaging to

nearly constant values. The detailed ANOVA results are given in Table A.12 in

Appendix A. Description of ANOVA can be found in Appendix B.

By splitting the data into two groups, ANOVA can be re-performed as a 3-way
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Figure 7.2: Roughness magnitudes for the two groups in CCW direction. Solid line

= “Inc” Group and Dotted line = “Dec” Group
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Figure 7.3: Roughness magnitudes averaged across all subjects for each direction

and speed

analysis with one between subject factor (group) and two within subject factors

(speed and direction). The results show that there is no interaction between speed,

direction and group (F(1,14) = 1.24 and p = 0.2852), or between speed and direction
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(F(1,14) = 3.42 and p = 0.0856). There is a significant interaction between direction

and group (F(1,14) = 9.05 and p = 0.0094) and between speed and group (F(1,14)

= 43.37 and p < 0.0001). The detailed ANOVA results are shown in A.13 in

Appendix A. The interaction in direction and group is clear in Figure 7.4 because

the magnitudes estimates for the two directions are different within each group.

The interaction between speed and group is more obvious because the two groups

have differing trends (increasing vs. decreasing), see Figure 7.5. These interactions

make it difficult to study the main effects of speed and direction independently.
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Figure 7.5: Results averaged across speed

To study the main effects of speed and direction, the results of post-hoc T-

tests are shown in Table 7.4. Description of T-tests can be found in Appendix B.
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From the previous experiment, it is expected that the effect of direction would be

insignificant within each level of speed. However, the results here show that for

group “Dec”, at high levels (highccw - highcw), direction significantly affects the

magnitude estimates while for group “Inc”, the effects of direction are significant for

low speeds (lowccw - lowcw). These results are an indication that in the previous

experiment, the effects of direction were confounded with memory demands. There

was a 10s to 20s time delay between each trial and the subjects may not have been

able to retain tactile information over this period. However, in this experiment, the

time delay between successive changes in direction is only 0.5s and the effects of

direction are more prominent. This is analogous to the results of Cashdan [1968],

who found that the difficulty in retaining tactual information reduces performance

of haptic tasks.

The remaining two differences (lowccw - highccw and lowcw - highcw) check

for significance between the two speeds at a given level of direction. These results

indicate that speed also affects magnitude estimates. The detailed T-test results

for this analysis are shown in Tables A.14 to A.17 in Appendix A.

Table 7.4: Post-hoc T-test results.

Difference Group “Dec” p Value Group “Inc” p Value

lowccw - lowcw 0.6781 0.0214

lowccw - highccw 0.0298 <0.0001

lowcw - highcw 0.0116 0.001

highccw - highcw 0.0544 0.4669

The average results for both groups along with the standard errors are shown

in further detail in Figure 7.6 and Figure 7.7. For the “Dec” group, the difference

in means between CCW and CW is larger at higher speeds whereas for the “Inc”

group, this difference is higher at lower speeds. This is consistent with the results

shown in Table 7.4. For both of these significant levels, the standard error is higher

than the other two levels as well. It appears that, as the perceived roughness
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decreases for both groups, the error in magnitude estimation increases. Also, the

effects of direction become more statistically significant.
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Figure 7.6: Roughness magnitudes averaged across all subjects in “Dec” group for

each direction and speed
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Figure 7.7: Roughness magnitudes averaged across all subjects in “Inc” group for

each direction and speed
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7.7 Conclusion

This analysis shows that when the subjects are presented CCW and CW direc-

tions with 0.5s gap between direction change, they are able to detect a change

in stimulus at all levels of speed. However, their roughness magnitude is affected

by direction only when their perceived roughness is lower. At higher perceived

roughness, the effects of direction are statistically insignificant. In this experiment,

the subjects are provided different grits of sandpaper to use when estimating the

roughness magnitude. This is intended to provide a consistent definition of rough-

ness to every subject (lower grits being rougher). However, even with this bias,

the subjects are divided into two groups as in the previous experiment. Out of 16

subjects, 9 subjects feel that the roughness increases with increasing speed while

7 subjects feel that the roughness decreases with increasing speed. It is apparent

that presenting sandpapers to use as real comparison stimulus did not eliminate

the tactile perception ambiguity.

This analysis rejects all three hypotheses, H6, H7 and H8.
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Chapter 8

Conclusions and Future Research

This thesis presents the design of a device that can be used to stimulate rough

textures at the fingertip. Three different experiments are conducted to determine

how this device can relate to real world objects and to determine the parameters

of the device that affect roughness perception.

Through these experiments, it is found that this tactile device is able to simulate

rough textures of various magnitudes. It is found that by changing the speed of

the brush, the roughness perceived by the users can also be changed. However,

there is not a unique relationship between roughness perception and speed of the

brush. In fact, there are two distinct relations. For some users, the magnitude

of the roughness increases as the speed increases because the higher speeds give

the impression of the surface having more bumps. For other users, the magnitude

of the roughness decreases as the speed increases because higher speeds make the

surface feel more continuous. This contradiction exists even when the subjects are

presented with real comparison textures (sandpaper) and are asked to relate the

least rough stimuli to the highest grit sandpaper. This creates a conflict and makes

it difficult to use the same control for all users. However, this is an important

observation that has to be considered when designing a tactile device.

Furthermore, it is found that the time gap between two similar stimuli (same

speed, different direction) also affects roughness perception. With a larger time

91



gap (10s− 20s), the users are unable to distinguish between the stimuli. However,

when the time gap is decreased to 0.5s, the users are able to detect that the two

stimuli are slightly different. As a result, their roughness perception is affected.

This result is also important in the design of a tactile device. The designers have

to consider the time gap between two different stimuli. If the time gap is large and

the stimuli are similar, then this change cannot be detected by the user and is not

as important to portray. However, if the time gap is small, smaller changes can be

detected and may be important to portray.

It is also found that in order for the users to detect a change in the speed of

an already rotating brush, the speed has to change by a certain threshold. This

threshold is dependent on the level of base speed and decreases as the base speed

increases. Thus, if this device is used to stimulate rough textures, then in order

to change the roughness perception (by changing the speed and not direction), the

speed of the brush has to change, at minimum, by the appropriate threshold. In

this experiment, only two levels of base speed are tested and stimuli are presented

to the user without any time gap in between. Thus, the thresholds are represen-

tative of scenarios when the stimulus changes suddenly. These thresholds are not

representative of scenarios when there is a larger time gap between stimuli.

In conclusion, this tactile device can be used to simulate varying magnitudes of

roughness. The roughness can be controlled by changing the speed of the brush.

However, there are two opposite relationships between speed and roughness percep-

tion. To simulate different roughness, while keeping the direction of rotation the

same, the speed has to change at least by the pre-determined threshold value. The

effects of direction of rotation are dependent on the time gap between the stimuli.

The study of the tactile perception presented in this research is the beginning

of an exploration of displaying rough textures in virtual environments. Roughness

perception has been studied by psychophysicists for decades. However, the psy-

chophysical experiments conducted in this research are the first to study roughness

perception in a virtual environment. This work is fundamental to the understand-
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ing of human roughness perception in virtual environments. A touch ambiguity

similar to the one found in vision (Necker Cube) has been discovered.

Since roughness perception is linked to the speed of the brush, this tactile actu-

ator can present a large number of roughness magnitudesb which may prove useful

in many of the applications listed in Section 1.1.

8.1 Future Experiments

In the future, it should be investigated whether it is possible to train all users

to perceive roughness in the same way so that increasing the speed of the brush,

changes the perception of all users similarly. This can be tested by telling each user

one of the following two definitions of rough:

1. Roughest surfaces have the most bumps

2. Roughest surfaces are most discontinuous

Two groups of subjects corresponding to each definition of rough should be tested

to check which definition is more easy to understand for all users. In this way,

it may be possible to use the same control logic to increase or decrease perceived

roughness. These tests may also help investigate the existence of a tactile perception

ambiguity analogous to optical illusions such as the Necker Cube.

The influence of visual stimuli on roughness perception may also be tested in

roughness perception. This can be achieved by keeping the setup of experiment 2

the same and changing the visual display only. As the speed of the brush increases,

the display should become visually rougher or smoother. Then it should be checked

whether subjects change their roughness magnitude according to the visual display

or not.

In the experiments presented in this thesis, the effect of time gap between two

stimuli is not fully studied. In the future, the maximum time that the users can
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recall a stimulus should be determined. This can be done by providing two stimuli

(same speed, different direction) to the user with varying time gaps. The critical

time will be that at which the users begin to think that the stimuli are the same.

This critical time will be an important design consideration in designing tactile

devices.

Furthermore, the JND should also be determined for stimuli that are presented

within and beyond the critical time. This will allow for the designers to determine

the minimum change in speed that will be detectable by the users depending on

how long it has been since the previous stimulus was presented.

In all of these experiments, the subjects moved their hand in a sideways motion.

During the JND experiment, it is reported by a few subjects that if the stimulus

changes near the end points of the graphical display (the point at which they

reverse the hand motion), it is harder to detect the change. This is due to their

inability to determine if they have actually detected a change in stimulus or a

change in direction of motion. Thus, in future experimentation, users should move

in a circular motion to avoid this problem.

Many users also reported that sometimes the rate of their hand motion did not

match up with the rate at which the stimulus is presented. Future experiments

should try to determine how the users would change their hand motion when the

speed of the brush changes. This should be done by asking the users to move at

whatever pace they feel comfortable at and monitoring their hand velocity. This

information can be used to vary the speed of the brush according the speed of the

user’s hand.

8.2 Design of the Device

A number of changes can be made to the physical design of the device. First of all, a

non-spiral brush should be used. Asymmetry of the brush may be confounded with

the effects of direction of rotation. Furthermore, the cantilever design of the brush
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should be changed. Although the subjects applied light pressure on the aperture,

over time it caused the brush to bend and rub against the inside walls of the chassis.

Hence, the brush had to be realigned from time to time. In the future, the free end

of the brush should be supported using bearings or bushings. The length of the

brush can be decreased to decrease the deflection due to finger pressure.
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Table A.1: JND results for 13 subjects in experiment 1.

Subject

20 RPS 60 RPS

Upper Limen Lower Limen Upper Limen Lower Limen

JND JND JND JND

AA 15.42 12.50 7.00 13.89

AB 11.67 10.42 3.70 11.67

AC 12.08 11.50 6.53 6.15

AD 12.73 16.11 7.50 9.24

AE 11.25 21.67 7.33 10.74

AF 9.06 13.85 6.06 8.33

AG 38.50 22.50 13.13 6.83

AH 12.50 17.22 8.89 7.71

AI 26.25 12.81 8.79 9.07

AJ 16.36 11.92 15.00 14.38

AK 19.00 14.58 7.92 8.33

AL 28.50 16.50 8.54 9.33

AM 10.91 16.00 5.61 9.50

Table A.2: 2-way ANOVA results for experiment 1.

Source DF Type III SS Mean Square F Value Pr > F

speed 1 698.89 698.89 25.04 0.0003

Error(speed) 12 334.93 27.91

dir 1 1.07 1.07 0.04 0.8432

Error(dir) 12 313.77 26.15

speed*dir 1 40.41 40.41 3.24 0.0969

Error(speed*dir) 12 149.50 12.46
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Table A.3: Roughness magnitude for 17 subjects along with their group in experi-

ment 2.

Subject
CCW CW

Group
20 RPS 40 RPS 60 RPS 20 RPS 40 RPS 60 RPS

AN 50.5 44 33.5 52.2 41.5 35.5 Dec

AO 27.5 31 35 32.5 34 37.5 Inc

AP 69.5 56.5 50.8 56 56 47.5 Dec

AQ 47 48 49 62 51 47.5 Dec

AR 38.5 51.9 68.1 31 57.7 64.6 Inc

AS 13.5 22.5 37 11.5 26 37 Inc

AT 29 34.5 48.5 25 36 54 Inc

AU 50 49 43.5 46 52.5 48 Dec

AV 62 56 58.5 61.5 61 62 Dec

AW 57 38.5 38.5 59.5 41 39.5 Dec

AX 53.5 45 36 60.5 43.5 42 Dec

AY 53 63.5 68.5 49.5 62 71 Inc

AZ 25 69 84.9 30 66.5 84.6 inc

BA 39.3 32.3 26.9 33.2 37.8 19.6 Dec

BB 37 44 46 32.5 52.5 47.5 Inc

BC 48.5 22.5 13.1 55.5 19 11.8 Dec

BD 31.5 45 43.8 45 63.5 46.5 Inc
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Table A.4: 2-way ANOVA results for experiment 2.

Source DF
Type III Mean

F Value Pr > F
Adj Pr > F

SS Square G - G H - F

dir 1 53.54 53.54 2.62 0.125

Error(dir) 16 326.87 20.43

speed 2 168.37 84.19 0.28 0.7593 0.6291 0.6338

Error(speed) 32 9698.90 303.09

Greenhouse-Geisser Epsilon 0.5557

Huynh-Feldt Epsilon 0.5673

dir*speed 2 24.88 12.44 0.9 0.4181 0.4098 0.4181

Error(dir*speed) 32 444.21 13.88

Greenhouse-Geisser Epsilon 0.9033

Huynh-Feldt Epsilon 1.0115

100



Table A.5: 3-way ANOVA results for experiment 2.

Source DF
Type III Mean

F Value Pr > F
Adj Pr > F

SS Square G - G H - F

dir 1 55.93 55.93 2.64 0.1252

dir*group 1 8.76 8.76 0.41 0.53

Error(dir) 15 318.10 21.21

speed 2 306.63 153.32 1.26 0.2971 0.2883 0.2917

speed*group 2 6060.98 3030.49 24.99 <.0001 <.0001 <.0001

Error(speed) 30 3637.92 121.26

Greenhouse-Geisser Epsilon 0.66

Huynh-Feldt Epsilon 0.75

dir*speed 2 27.18 13.59 0.96 0.3958 0.3896 0.3958

dir*speed*group 2 17.80 8.90 0.63 0.5415 0.5282 0.5415

Error(dir*speed) 30 426.41 14.21

Greenhouse-Geisser Epsilon 0.91

Huynh-Feldt Epsilon 1.10
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Table A.10: Roughness magnitude for 16 subjects along with their group in exper-

iment 3.

Subject
20 RPS 60 RPS

Group
CCW CW CCW CW

BE 86.25 85.83 50.63 37.5 Dec

BF 32.71 38.13 75.63 70.42 Inc

BG 65 73.33 52.5 53.75 Dec

BH 86.25 79.17 44.17 43.75 Dec

BI 60.21 55.83 79.38 78.75 Inc

BJ 60.42 64.38 64.04 62.92 Inc

BK 26.67 33.547 62.08 77.08 Inc

BL 65.21 59.58 59.17 59.17 Dec

BM 84.38 86.63 85.21 78.29 Dec

BN 72.25 84.67 64.98 43.09 Dec

BO 27.75 38.96 65.54= 60.46 Inc

BP 90.63 88.96 39.38 23.17 Dec

BQ 15.42 14 60.63 65.21 Inc

BR 31.25 38.54 73.96 78.96 Inc

BS 31.25 40.83 65.83 56.25 Inc

BT 12.13 16.25 54.21 72.92 Inc
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Table A.11: Hit and false alarm rates for all 16 subjects in experiment 3.

Subject

20 RPS 60 RPS

Hit Rate
False

d′ Hit Rate
False

d′

Alarm Rate Alarm Rate

BE 0.83 0.25 2.03 0.75 0.58 1.14

BF 1.00 0.58 3.54 0.92 0.83 1.11

BG 0.42 0.17 1.48 0.67 0.50 1.18

BH 0.75 0.58 1.14 0.92 0.58 1.96

BI 0.67 0.58 1.39 0.67 0.83 1.19

BJ 1.00 0.42 3.90 0.92 0.33 2.58

BK 0.50 0.33 1.10 0.83 0.25 2.03

BL 0.83 0.08 3.05 0.67 0.33 0.67

BM 0.42 0.17 1.48 0.75 0.17 2.37

BN 0.42 0.33 0.80 0.67 0.25 0.81

BO 0.75 0.42 1.62 0.92 0.58 1.96

BP 0.50 0.17 1.70 1.00 0.75 3.11

BQ 0.50 0.42 0.72 0.83 0.33 2.14

BR 0.67 0.33 1.62 0.75 0.50 1.39

BS 0.83 0.58 1.48 0.92 0.67 1.72

BT 0.67 0.08 1.39 0.92 0.67 1.72
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Table A.12: 2-way ANOVA results for experiment 3.

Source DF Type III SS Mean Square F Value Pr > F

speed 1 706.30 706.30 0.58 0.4582

Error(speed) 15 18270.43 1218.03

dir 1 3.62 3.62 0.11 0.7468

Error(dir) 15 502.82 33.52

speed*dir 1 116.96 116.96 2.93 0.1077

Error(speed*dir) 15 599.53 39.97

Table A.13: 3-way ANOVA results for experiment 3.

Source DF Type III SS Mean Square F Value Pr > F

speed 1 136.36 136.36 0.43 0.5235

speed*group 1 13811.77 13811.77 43.37 <.0001

Error(speed) 14 4458.65 318.48

dir 1 0.02 0.02 0 0.9778

dir*group 1 197.45 197.45 9.05 0.0094

Error(dir) 14 305.37 21.81

speed*dir 1 134.59 134.59 3.42 0.0856

speed*dir*group 1 48.60 48.60 1.24 0.2852

Error(speed*dir) 14 550.93 39.35
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Appendix B

Analysis

B.1 Analysis of Variance

The most widely used tool in statistics is called the analysis of variance (ANOVA).

It is a test of significance among or between treatment means. It presents the

probability of the difference between means being purely due to chance [Damon

and Harvey, 1987]. For simplicity, this discussion will be concentrated on a 2-way

ANOVA. A 2-way ANOVA has two independent variables. Consequently, one can

have a 3-way ANOVA, where there are three independent variables. Much of the

discussion on 2-way ANOVA can be extended to 3-way ANOVA as well.

A 2-way ANOVA has two independent variables or factors, A and B. There is

also a dependent variable, C. The factors A and B may have two or more levels as

well. Assume that in this example, A has three levels, a1, a2 and a3 and B has two

levels, b1 and b2. The purpose of the ANOVA is to determine if the factors of A

and B have a significant affect on the value of C. More specifically, there are two

types of effects that are presented:

1. Main effects - These are the effects of A and B independently on C. These

effects show if the levels within each factor affect C without considering the

other factor.
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Table B.1: Data set for factors A and B.

a1 a2 a3

b1 b2 b1 b2 b1 b2

3 9 3 6 6 8

2 10 4 8 7 6

2 10 5 10 5 9

2 10 3 9 8 4

3 10 5 7 6 6

1 10 5 10 6 3

1 11 3 6 4 6

2. Interaction effects - This is the interaction between A and B. That is, does A

affect C in the same way at both levels of B and vice versa?

If there is an interaction between A and B, then the main effects may not be

analyzed directly because there is information hidden in the interaction that the

main effects do not account for. A hypothetical data is given in Table B.1. The

average results of this data are shown in Figure B.1.

Figure B.1a is obtained by average each column of Table B.1 to graph the

relationship between each level of A and B. The graph shows that there is a strong

interaction between factors A and B. At level b1, the value of C decreases from

level a1 to a3. On the other hand, at level b2, the value of C increases from level

a1 to a3. Given this interaction, Figure B.1b shows that if the main effects of A are

observed independent of B (average b1 and b2 together for each level of A), then

A has no affect on C (the value of C is constant for all levels of A). However, this

is not true. A does have an affect of C, although it is dependent on the level of B.

Figure B.1c shows that if the effect of B is observed independently of A (average

a1, a2 and a3 together for all levels of B), then B has an effect on C. This is an

example where one one of the main effects, A, cannot be directly observed from the
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Figure B.1: Affects of A and B on C

ANOVA results due to the significant interaction.

Performing an ANOVA analysis on this gives the results shown in Table B.2.

Here, the analysis is presented for source A only.

The sources of variation are A and the random error associated with each obser-

vation in A, called Error(A). DF is the degrees of freedom related to each source.

In this case, A has three levels. Therefore, it has 2 DF. There are six observations

in each level, a1 and a2. The random error is associated with 12 observations.

Therefore, Error(A) has 12 DF. Type III SS is a sum of squares or the least squares

analysis. There are 4 types of sums of squares. Details of each are provide in

Freund and Littell [1981].

The Mean Square associated with A, estimates the variation among all of the

observations in A and the variation due to the three levels of A. The Mean Square

associated with Error(A), estimates the variation among all observations only. F

value, given by Equation (B.1), is the ratio of these two Mean Squares. F value is 1
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Table B.2: 2-way ANOVA results.

Source DF Type III SS Mean Square F Value Pr > F

A 2 0 0 0 1

Error(A) 12 21 1.75

B 1 168 168 120.96 <0.0001

Error(B) 6 8.33 1.39

A*B 2 112 56 24.29 <0.0001

Error(A*B) 12 27.67 2.31

when the two means are equal meaning the levels of A have no effect on C [Damon

and Harvey, 1987].

F =
Mean Square of A

Mean Square of Error
(B.1)

The p value is the probability that the difference in means resulting from the

three levels of A is due to chance only. Generally a 0.05 or a 0.01 rejection level is

used to check for significance. For a 0.05 rejection level, a p value < 0.05 indicates

that the probability of the difference in means due to chance is less than 5%. Thus,

a p value < 0.05 indicates that the effects of A on C are statistically significant. A

larger p value indicates the opposite.

In this example, the results of the ANOVA will state that there is no statistically

significant effect of A on C, F(2,12) = 0, p = 1.

This example showed a scenario with two within subject factors. A within

subject factor implies that the each subject is tested using all levels of that factor.

In this example, A and B are within subject factors because each combination of

A and B was tested with each user. Within subject designs are often referred to

as repeated measures design because multiple measurements are taken from each

subject for a given level of treatment.

Another type of factor, known as a between subject factor, is that in which one

set of subjects are tested using one level while the other set of subjects are tested
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using a different level.

B.2 T-tests

T-tests are performed to check for significance of the difference between two means

or the difference between a mean and a given value [Damon and Harvey, 1987].

Similar to the ANOVA test, these tests are also based on the probability that the

difference in means is due to chance only. The t-test results for the example in the

previous section are given in Table B.3. These results compare the means between

each level of A when factor B is held constant at b1. All of the p values in the

table are less than 0.05. This indicates that the effect of A on C is significant at

b1. Similar analysis can be performed to check for the effect of A on C at b2.

Table B.3: T-test results.

Difference DF t Value Pr > |t|

a1b1 - a2b1 6 -4.1 0.0064

a1b1 - a3b1 6 -8.2 0.0002

a2b1 - a3b1 6 -3.06 0.0224

The t ratio is given by

t =
d− µo

sd

(B.2)

where d is the difference between the two means, µo is the value the difference has

to be compared against and sd is the standard error of the difference between the

means.

B.3 Measure of Detectability

One of the problems in measuring the sensitivity of subjects to stimuli is the cri-

terion that the subjects choose to give a response. For instance, in the yes-no
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procedure, the subjects can choose a conservative criterion to differentiate between

a signal plus noise (SN) and a noise (N) trials so that their hit and false alarm rates

both decrease. On the other hand, a relaxed criterion results in higher hit and

false alarm rates. It is apparent, that the criterion the subjects choose affects the

results. Thus, there needs to be a way that can estimate the subjects’ sensitivity

regardless of their criterion. The measure of detectability, d′, is a measure of the

subjects’ sensitivity that is independent of their criterion. As a result, this measure

can be stated without the need for calculating the response bias (for instance, the

tendency of the subjects to say “Yes” over “No” in a yes-no procedure).

To calculate d′, the location of the criterion has to be calculated on the normal

curves of the N and SN distributions. d′ is simply the distance between these two

locations [Gescheider, 1997]. The steps for calculating d′ are as follows

1. Find the p values corresponding to hit (H) and false alarm (F) rates by

subtracting H and F from 1.

PF = 1− F (B.3)

PH = 1−H (B.4)

2. Convert PF and PH to z-scores. A z-score of PF , called ZN , is the value on

the x-axis of a normal distribution curve, below which the area under the

curve is equal to PF . The z-score of PH , called ZSN is calculated similarly.

3. Find d′ using

d′ = ZN − ZSN (B.5)

To understand the above steps, take an example where H = 0.35 and F =

0.02. Then PF = 0.98 and PH = 0.65. As shown in Figure B.2, these p values

correspond to ZN = 2.05 and ZSN = 0.39. In this example, d′ = 1.66. The z-

scores corresponding to each p value are tabulated in Table A of the Appendix in

Gescheider [1997].
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Figure B.2: N and SN distributions to find d′ [Gescheider, 1997]

Macmillan and Creelman [1991] calculate d′ directly by converting H and F into

z scores.

d′ = Z(H)− Z(F ) (B.6)

Where Z(H) and Z(F) are the z-scores of H and F respectively. The underlying

concept behind this approach is the same as highlighted above. The z-scores for

the corresponding H and F values for this approach can be found in Table A5.1 of

Appendix 5 in Macmillan and Creelman [1991].
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Appendix C

Design Specifications

C.1 DC Motor

The coreless DC motor is obtained from MicroMo Electronics. The motor is

equipped with an encoder. The main specifications of the motor are provided

in Table C.1.

Table C.1: Coreless DC motor specifications.

Part Number 2224U012SRIE2-512

Nominal Voltage (Motor) 12V

Stall Torque 0.019Nm

Continuous Current 0.5A

Encoder Resolution 512 lines per revolution

Supply Voltage (Encoder) 4.5V - 5.5V

Number of channels on encoder 2

Weight (Motor + Encoder) 46g

Size envelope (including encoder) 34.7mm x 22mm
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C.2 Software

The Software packages used for communication are MATLAB R© and Simulink R©. In

addition, Quanser’s real time control software, QuaRC, is used for connecting with

the PHANTOM Omni R© and the Sensoray Model 626 data acquisition card (DAC).

QuaRC integrates with Simulink R© and provides blocks to interface with both of

these components.

C.3 Interfacing

The tactile device is interfaced to the software using the Sensoray DAC. Of interest

are its analog output channels and the single-ended encoder channels. The analog

channels have a range of ±10V . These are available in the form of RCA connectors.

The encoder channels support 5-pin round DIN connectors for channels A, B and I

and 5V power supply to the encoder and a ground. The embedded 5V supply signal

makes it easy to connect it to the encoder directly. The board is connected to the

motor through a high-current half-H driver, L293D from Texas Instruments. It can

provide current up to 1.2A which is sufficient for the DC motor since its continuous

current intake is only 0.5A. The chip supports bi-directional motor functionality.

The details of the connections are shown in Figure C.1. It also shows the logic for

the motor driver required to control the direction of rotation.
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EN 1A 2A Function

H L H Turn CW

H H L Turn CCW

H L L Fast motor stop

H H H Fast motor stop

L X X Fast motor stop

Figure C.1: Schematic and control logic for direction of rotation
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C.4 Logic

All of the the models are created in Simulink R© using standard Simulink R© blocks,

QuaRC for interfacing in real-time with the PHANTOM Omni R© and the Sensoray

DAC and the Virtual Reality toolbox for graphics. The general control logic for

the models is shown in Figure C.2.

PHANTOM® Omni

PositionVelocity

Determine 
the colour of 

the avatar

Virtual Reality Toolbox 
(update the position 

and colour of the 
avatar)

Reference 
signal

Direction Speed

Is 
abs(velocity) 

> 0?

Start motor at 
desired speed 
and direction

YES

NO

Keep 
motor off

e®

Figure C.2: Block Diagram of the Simulink R© model

C.5 Control

The block diagram of the control system is shown in Figure C.3. θ̇d is the desired

speed of the motor and θ̇ is the actual speed. A PD controller is used to control

the speed of the motor. The transfer function from θ̇d to e is given by

E(s)

Θd(s)
=

αs+ 1

(α +Kd)s+ 1 +Kp

(C.1)

Then for a unit step input and according to the final value theorem, the steady

state error is given by

e∞ = lim
s→0

sE(s) =
1

1 +Kp

(C.2)
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+
‐

dθ& θ&
1

1
+sα

sKK dp +
e

Figure C.3: Block diagram of the control

Then by using large gains, the steady state error can be made small. This

does not achieve perfect steady state tracking. However, the speed of the motor

is constantly monitored for every user in order to ensure that it is consistent from

user to user and close to the specified speed.
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Appendix D

CAD Drawing
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