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Abstract 

The purpose of this study was to determine if there are sex differences in induced heat 

shock protein 70 (Hsp70) expression in human skeletal muscle under basal conditions 

and in response to intense intermittent isometric exercise.  Furthermore, this study 

examined potential sex differences in muscle fatigability and sarcoplasmic reticulum (SR) 

function for up to 9 days following the bout of exercise.  In total, 6 male (20 ± 0.5 years 

of age, 70.88 ± 10.25 kg, mean ± SE) and 6 female participants (19 ± 0.25 years of age, 

58.02 ± 5.82 kg, mean ± SE) were recruited for this study to do one legged intermittent 

isometric exercise with a 50% duty cycle (5 sec contraction: 5 sec relaxation) at 60% of 

their maximal voluntary contraction (MVC) for 30 minutes. Muscle biopsies, blood 

samples and muscle stimulation measurements were taken prior to starting exercise for 

assessment of baseline values. These same measures were taken immediately POST 

exercise and at 24(R1), 72(R3), 144(R6) and 216(R9) hours following the exercise. 

Muscle samples were analyzed for exercise and recovery response of Hsp70, 

sarco(endo)plasmic reticulum Ca2+ATPase (SERCA)1 and SERCA2 protein content, as 

well as measurements of maximal Ca2+ ATPase activity and Ca2+ uptake. Blood 

samples were also analyzed for serum estrogen and creatine kinase concentrations.  The 

results from this study show that there are no differences in basal Hsp70 protein content 

between males and females, and that females have a blunted (no increase up to 9 days 

post exercise) Hsp70 response following a bout of intense exercise in comparison to 

males who had a robust response. Immediately following exercise females had smaller 

decrements in MVC and electrically stimulated force (10 and 100Hz). It was also found 
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that at low frequencies of stimulation (10Hz), females were able to recover at a quicker 

rate than males. There was no evidence that the decrements in force or the differences in 

recovery time between males and females were due to alterations in SERCA protein 

content or function. This thesis is the first study in humans to show that there is sexual 

dimorphism in the exercise induced Hsp70 response to exercise. 
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Chapter 1: Introduction 

The adult human being is comprised of a series of complex physiological systems. 

As humans progress through life, it is well documented that males and females have 

numerous differences in structural, functional and psychological physiology (Denton et al, 

2007, Wheeler et al., 1991, Tarnopolsky et al, 2007).  The term sexual dimorphism has 

commonly been used to define a scenario where genetic or biological differences exist 

between sexes (Nickerson et al, 2006). In comparison, the term gender refers to the 

sociological status of male and females and their place in society and should not be used 

to describe biological differences between males and females.  Examples of physiological 

sexual dimorphism that are well established include differences in muscle mass and 

strength (Perez-Gomez et al, 2008), fibre type distribution (Komi et al, 1978), and 

contractile properties (Clark et al, 2003).  Overall it appears that adult females have 40% 

less overall strength and significantly less muscle cross sectional area, when compared to 

males (Komi et al., 1978). Females may also be more susceptible to decrements in 

muscle mass and strength with aging compared to males (Mazaretti et al., 2009). This 

process is referred to as sarcopenia and it may have functional consequences as older 

adults lose their ability to be independent (Mazaretti et al, 2009, Lee et al., 2007 and 

Doherty et al., 2003). Another example is the difference between males and females in 

skeletal muscle fatigability, as females may be more fatigue resistant than males although 

this finding is inconsistent (Clarke et al., 2005; Tiidus et al., 2007).  The differences in 

development and physiology are not just limited to the skeletal muscle. The risk of 

developing pathologies such as osteoporosis and coronary artery disease also appear to be 

sex dependent (Reviewed by Polk et al., 2005 and Balasch et al, 2003). 
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Role of Estrogen in Skeletal Muscle Physiology 

The distinct differences between sexes have led researchers to examine potential 

biological mechanisms underlying the sexual dimorphism commonly observed in disease 

and function. The ovarian sex hormone estrogen, (17β-estradiol), and its effects on 

various physiological pathways in the human body have been proposed as one of the 

primary mechanisms behind the differences between sexes in muscle metabolism 

(Tarnopolsky et al, 2008, Paroo et al, 2002 and Tiidus et al., 2009). Estrogen (or 17β-

estradiol) is a four ringed steroidal hormone (Figure 1) produced by developing granulosa 

cells in the ovaries of females. Estrogen is a molecule that contains an extra hydroxyl that 

may serve as a natural reducing agent in the muscle cell (Knowlton et al 2005). As a 

female matures and begins to menstruate, estrogen is released in a cyclical fashion. The 

female menstrual cycle is described in detail in Silverthorn et al., (2007). Briefly, every 

28-30 days the female goes through the menstrual cycle where estrogen rises slowly 

during the first 7 days and spikes from days 8-14 to promote development of the uterine 

lining (Figure 2). During this time, referred to as the follicular phase, follicle stimulating 

hormone (FSH) increases as well to promote early maturation of oocytes. Once serum 

estrogen concentrations have peaked, concentrations of luteinizing hormone (LH) surge.  

This surge in LH stimulates the final stage of ovum maturation and is an important step to 

initiate ovulation. Following ovulation, production of other ovarian sex hormones 

(progesterone and FSH) increases to promote further development of the uterine wall.  If 

fertilization and implantation does not occur, menstruation takes place and all of the 

ovarian sex hormones return to baseline concentrations, and the cycle repeats itself.  As 

females age and follicular maturation ceases, endogenous production of estrogen is 
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greatly reduced.  This transition is called menopause and is associated with many changes 

to the female body (Copeland et al, 2004). 

 

Figure 1: 17B-Estradiol (Estrogen) Biochemical Structure: 
http://healthpsych.psy.vanderbilt.edu/SoyBreastCancer_files/image002.gif 

 

Figure 2: The female menstrual cycle- This figure illustrates the typical patterns of ovarian sex 
hormone release into the blood stream throughout the 28 day cycle. 
http://en.wikipedia.org/wiki/Menstrual_cycle
 
 

3 

http://en.wikipedia.org/wiki/Menstrual_cycle


As a result, females may supplement estrogen via oral or transdermal methods to 

maintain their circulating estrogen levels to help offset some of the complications known 

to be caused by a lack of the hormone. Estrogen is also responsible for the development 

of secondary sex characteristics in females, as well as numerous other physiological 

processes such as bone and muscle metabolism (Ropero et al., 2007 and Tarnopolsky et 

al, 2007). Estrogen is also known to influence the function of organs throughout the body 

including bone, brain, heart and skeletal muscle (Leung et al, 2007, Polk et al., 2005 and 

Balasch et al, 2003). LH, progesterone, and FSH may also contributed to sexual 

dimorphism in neural tissue (Mitsushima et al, 2003 and Gonzalez-Hernadez et al, 2000), 

but very little research has been done on the role of these hormones in skeletal muscle 

physiology.  The remainder of this thesis will focus on the role that estrogen plays in 

sexual dimorphism involving skeletal muscle physiology. 

Recently it has been shown that skeletal muscle expresses estrogen receptors (ERs) 

(Stice et al., 2008).  Skeletal muscle has two types of ERs; ERα and ERβ.  These ERs are 

responsible for transducing an extracellular signal to modulate various intracellular 

signalling pathways. One of the primary effects of estrogen in skeletal muscle, which 

appears to be acting primarily through the NFκβ pathway, is to upregulate various stress 

proteins and possibly attenuate the inflammatory processes caused as a result of various 

physiological stressors such as exercise (Paroo et al, 2002, Voss et al, 2003 and 

Knowlton et al., 2001), ischemia reperfusion, acidosis and hyperthermia (Knowlton et al., 

2001 and Stice et al., 2008).  Furthermore, estrogen has been described as a membrane 

stabilizing molecule (Tiidus et al., 2003). Due to its lipophilic properties, estrogen has the 

ability to interact with the phospholipid bilayer of cells and possibly protect them from 
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damaging stressors. Cumulatively, these properties of estrogen suggest that females may 

be less susceptible to stress and better able to retain function or be more resistant to 

fatigue compared to males.  One of the primary proteins associated in the stress response 

in Heat Shock Protein 70 (Hsp70).  Therefore, it stands to reason that the Hsp70 response 

may display sexual dimorphism following periods of stress. 

Heat Shock Proteins and the cellular stress response 

 Heat Shock Proteins (HSPs) are a family of highly conserved proteins that are 

upregulated in response to various physiological insults to a cell and are ubiquitous 

among all mammalian species (as reviewed by Noble et al., 2007).  The first HSP was 

discovered in 1962 when Drosophila Melanogaster larvae were exposed to an intense 

heat stress. The resulting upregulation of these proteins in response to heat is what gave 

them the name “Heat Shock Proteins”.  Much research has been conducted in the over 

forty plus years following the first discovery and there is now evidence to suggest that 

HSPs function to protect cells against a variety of biological and environmental stresses.  

There are many different isoforms of the HSPs including Hsp27, Hsp32, Hsp70 and 

Hsp90 to name just a few, which are named based upon their molecular weights.   

There are only a limited number of studies investigating the role of these proteins 

in human skeletal muscle physiology and the majority of studies have focused on Hsp70.  

Hsp70 is highly inducible and rapidly upregulated when cells are exposed to various 

forms of stress such as exercise (Noble et al., 2007 and Locke et al., 1991), hyperthermia 

(Morton et al., 2007), hypoxia (Iwaki et al, 1993) and reactive oxygen species 

(Madamanchi et al, 2001). Hsp70 has been shown to be responsible for folding 

un/misfolded proteins, chaperoning newly synthesized proteins to their target location 
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and preventing damaged proteins from aggregating which would render them 

unfunctional (Lui et al., 2006).  There are two types of Hsp70 in skeletal muscle, a non-

inducible isoform present under basal conditions, termed heat shock cognate 70 (Hsc70) 

and an inducible form (Hsp70) which is up regulated in response to myocellular stress 

(Reviewed in Noble et al., 2007). This isoform is also commonly referred to as Hsp72 in 

the literature based on its molecular weight and difficulty distinguishing it from Hsp70 

during western blotting procedures (Noble et al, 2007). The remainder of this thesis will 

focus on the inducible form, Hsp70. Under basal, unstressed conditions, Hsp70 molecules 

are bound to a transcription factor named heat shock factor 1 (HSF1) in the cytosol of a 

cell. When a physiologic stress is imposed upon the muscle and oxidative damage occurs, 

causing protein denaturation, Hsp70 identifies hydrophobic residues of denatured 

proteins, dissociates from HSF1 and binds to denatured proteins (Noble et al., 2007 and 

Knowlton et al., 2001). Unbound HSF1 then trimerizes, becomes phosphorylated and 

translocates to the nucleus. A “transcriptional complex” then forms and gains the ability 

to bind with the transcriptional factor Heat Shock Element (HSE), causing the 

upregulation of hsp70 messenger ribonucleic acid (mRNA) (Figure 3).  This cycle will 

continue to occur until the stimulus to induce the Hsp70 response has ended (Noble et al., 

2007). 

 Numerous studies have shown that exercise can directly increase the Hsp70 

content in the muscle cell (Noble et al., 2006, Tupling et al., 2007, Paroo et al, 2002 and 

Punschart et al, 1996).  The extent of the Hsp70 response may be accentuated with 

exercise of longer duration (Febbraio et al., 2000), higher intensity (Lui et al., 1999) and 

using a more eccentric type of exercise compared to concentric (Paulsen et al., 2007).  It 
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has also been demonstrated that the exercise induced Hsp70 response is muscle fibre type 

specific, with a more robust response seen in type I fibres compared to type II fibres 

(Tupling et al, 2007 and Bombardier et al, 2009).  Type I fibres are characterized by the 

slow myosin heavy chain I and have a higher oxidative capacity compared to the more 

anaerobic type II fibres which express a fast type II myosin heavy chain isoform 

(Reviewed by Fitts et al., 1994). It was speculated that the greater response observed in 

type I fibres was due to higher levels of oxidative stress compared to type IIA and IIX 

fibres (Tupling et al., 2007).  Moreover, protein isoforms expressed in type I fibre types 

may be more susceptible to oxidative damage compared to protein isoforms expressed in 

type II muscle fibres. For example, the sarco(endo)plasmic reticulum Ca2+-ATPase 

(SERCA) protein is highly susceptible to oxidative stress (Holloway et al., 2005) and 

research has shown that high levels of oxidative stress and nitration (via reactive nitrogen 

species) can decrease its activity, therefore resulting in functional decrements of the 

muscle cell, such as decreased force production, rate of relaxation (-dF/dt), and rate of 

force production (+dF/dt) (reviewed by Tupling et al, 2004).   These findings show that 

exercise of various intensities and types is capable of inducing an Hsp70 response. 

Sex Differences in Heat Shock Protein 70: Basal and exercise induced responses 

Recently, the number of studies comparing the male and female response to 

various forms of stress has increased (Reviewed by Noble et al, 2007).  More specifically, 

researchers have been trying to determine if the Hsp70 stress response in various tissues, 

including heart and skeletal muscle is sex dependent.  To date, much of the research has 

been done using a rodent model, either by using direct male/female comparisons or using 

an ovariectomized model (Paroo et al, 2002, Voss et al., 2003 and Knowlton et al, 2001).   
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Figure 3: HSF1 dissociation/binding cascade and hsp70 mRNA production. Stice et al. (2008) Mol. 
Med. 14(7-8). This diagram illustrates the events following stress that lead to Hsp70 binding to proteins and 
the resulting upregulation of hsp70 mRNA. HSF-1-Heat Shock Factor 1; HSE- Heat Shock 
Elemement. 
 

Ovariectomized rats do not have an endogenous source of estrogen and 

researchers use this model to replicate the male response.  The ovariectomized rat can 

also be supplemented with other ovarian sex hormones via time release pellet or injection, 

which will bring the hormone of interest back to physiologic levels.  This allows for 

assessment of the independent effects of a single ovarian sex hormone (i.e. estrogen) (For 

full review see Paroo et al, 2002 or Bombardier et al, 2009).  Another less commonly 

used method utilizes pre/post menopausal women to examine the extent of the changes 

which occur once a female loses her ability to produce endogenous sources of estrogen.  

Finally, males can be supplemented with an exogenous source of estrogen to test the 

effect of an acute estrogen exposure on various physiological pathways. Considering sex 

differences in cardiovascular disease is a very popular area of research, a number of 
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studies have examined sexual dimorphism in Hsp70 protein and hsp70 mRNA expression 

in cardiac muscle.  In contrast, only a few studies have investigated if sexual dimorphism 

exists in the Hsp70 stress response in skeletal muscle and these have been limited to 

rodent models. 

There is evidence suggesting that Hsp70 can be upregulated in heart using various 

stresses such as ischemia reperfusion, heat (Mestril et al, 1994), pharmacologic 

treatments, or a pre conditioning exercise bout in cardiac muscle (Paroo et al., 2002).  

However, following a bout of treadmill exercise, Hsp70 protein content in cardiac muscle 

is increased twice as much in males than it is in females.  It has also been shown in 

rodents that basal Hsp70 levels are higher in females hearts compared to male hearts 

(Voss et al., 2003 and Paroo et al., 2002).   

Consistent with cardiac muscle, under resting conditions in skeletal muscle there 

is some Hsp70 available to cope with low levels of stress. The only study to date that 

directly compares male and female rodents has shown that there is no significant 

difference in basal Hsp70 protein content (Voss et al., 2003).  In comparison, a separate 

study using an ovariectomized rodent model (no endogenous estrogen) that is 

supplemented with a time released estrogen pellet, showed that rodents with estrogen had 

a significantly higher level of basal Hsp70 compared to sham rodents (no estrogen) 

(Bombardier et al., 2009).  These two studies are the only studies that have examined the 

differences in basal Hsp70 content in rodent skeletal muscle and to date no study has 

examined this in human skeletal muscle.  

 The exercise induced Hsp70 response in skeletal muscle is similar to that of 

cardiac muscle.  To date, research that has been done in rodent models suggests that 
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females have a blunted Hsp70 response following a bout of intense exercise (Paroo et al., 

2002 and Nickerson et al., 2008).  Conversely, males display a significant elevation in 

Hsp70 following a similar bout of exercise.  The blunted Hsp70 response in females also 

appears to be mediated by estrogen.  Bombardier et al., (2009) showed that soleus muscle 

of ovariectomized female rats displayed an exercise induced Hsp70 response similar to 

that observed in males of other studies.  When these ovariectomized females were 

supplemented with estrogen, the Hsp70 response was blunted.  A separate study by Paroo 

et al., (2002) showed that administering an estrogen receptor blocker (Tamoxifan) to 

gonadally intact females, resulted in an Hsp70 response similar to males.  

The data showing that females have a significantly higher level of basal Hsp70 

and a blunted Hsp70 response to exercise have all been accumulated from rodent studies.  

To date, no controlled study using human participants has examined sex differences in 

the Hsp70 response to an intense bout of exercise.  Since Hsp70 is a cytoprotective 

protein capable of binding to and protecting muscle proteins, it stands to reason that 

female skeletal muscle function may be better protected than males when exposed to 

exercise. 

Sexual Dimorphism in Hsp70 and muscle fatigability: Is there a link? 

When a contraction cycle is initiated, an action potential is transmitted from the 

post synaptic neuron, down the sarcolemma of the muscle. Through activation of the 

dihydropyridine receptor and the ryanodine receptor a resulting influx of calcium into the 

cytosol of the fibre ensues, causing activation of the contractile apparatus.  Once the 

stimulus from the neuron has ceased, the SERCA pump acts to sequester Ca2+ ions back 

into the sarcoplasmic reticulum, allowing relaxation to occur.  The result of numerous 
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sequential contractions is an increase of various metabolic by-products such as hydrogen 

ions (Bangsbo et al., 1993), reactive oxygen species (Andrade et al.,2001), lactate, and 

inorganic phosphate (Pi) (Murphy et al., 1999). These metabolic by-products and other 

structural/functional changes to either the contractile proteins or the proteins involved in 

excitation-contraction coupling have been proposed as some of the main contributors to 

the development of fatigue.  

Fatigue is defined as the inability to produce a desired level of force (Allen et al., 

2007).  The mechanistic basis of fatigue is complex and is dependent upon numerous 

factors including exercise intensity, contraction type, rest intervals (Sale et al., 1987) and 

individual muscle fibre type profile (Essen et al., 1975).  Decrements in force are 

commonly observed after periods of strenuous activity. In most cases, the ability to 

restore its maximal force producing capacity of skeletal muscle is restored within 30 

minutes following exercise, depending on the exercise intensity (Baker et al., 1993).  In 

some cases when the exercise intensity is extreme, although maximal force producing 

capacity may recover relatively quick, other indices of fatigue may be present for longer 

periods of time (Edwards et al., 1977).  

  Along with maximal voluntary contraction (MVC) and supramaximal twitch 

force, low frequency fatigue (LFF) and high frequency fatigue (HFF) are two 

measurements commonly used when assessing fatigue. HFF is a term used to describe 

force decrements which occur when a muscle is electrically stimulated at high 

frequencies (50 and 100 Hz). It has been suggested that HFF is likely a result of an 

impairment of the Na+/K+ ATPase, which is located within the sarcolemma of skeletal 

muscle (Fowles et al., 2002).  Impairment of the Na+/K+ ATPase would result in an 
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inability to maintain the proper ion gradient needed to repolarize the cell and allow action 

potentials to be transmitted down the T-tubules. Low frequency fatigue is a term used to 

describe force decrements which occur when a muscle is electrically stimulated at low 

frequencies (10 and 20 Hz). It has been suggested that LFF is caused in part by 

impairments of calcium release from the SR and decrements in the ability of the SERCA 

pumps to sequester Ca2+ back into the lumen of the SR (Tupling et al., 2000, Enns et al., 

1999, Tupling et al., 2004).  The inability to sequester Ca2+ back into the SR can result in 

prolonged calcium transients within the cytosol of the cell and a loss of Ca2+ homeostasis, 

which may activate calpains/apoptotic pathways (Murphy et al., 2006) and decrease the 

ability to transmit signals from the t-tubules to the SR to initiate calcium release (as 

reviewed by Tupling et al, 2004).. The mechanistic basis of fatigue is complex but clearly 

SERCA pumps are extremely important in the performance of skeletal muscle and 

decrements in their ability to sequester Ca2+ may result in fatigue. 

As previously mentioned, although controversial, there is evidence to suggest that 

sex differences exist in skeletal muscle fatigability following intense exercise. More 

specifically, females may be more resistant to fatigue when compared to males, in that 

they have longer endurance times and less force reduction following a bout of intense 

exercise. (Clark et al, 2005, Russ et al, 2003 and Hunter et al, 2001).  Most of these 

studies utilized a low intensity sub-maximal contraction protocol and measured 

endurance time as an indicator of fatigue.  In contrast, some evidence suggests that no sex 

difference exists in human skeletal muscle fatigability following exercise (Phillips et al., 

2003), which was also replicated in rodent EDL muscles (Tiidus et al, 1999).   
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Hsp70 is known to be a cytoprotective protein that can bind to and protect 

functional proteins within the skeletal muscle. Recently it has been shown that Hsp70 has 

the ability to bind to SERCA1 (Tupling et al., 2004) and SERCA2a (Fu et al., 2007) 

isoforms and prevent thermal deactivation of both isoforms.  More specifically, it was 

shown that human embryonic kidney cells (HEKs) which were transfected with their 

respective SERCA isoform cDNAs and then exposed to a heat stress, had a significant 

decrease in maximal SERCA activity; however when these same cells were cultured with 

Hsp70, they found that the heat induced decrements in SERCA activity were attenuated. 

Therefore, the findings that LFF is, at least in part, caused by decrements in 

SERCA pump activity and the notion that Hsp70 is a cytoprotective protein capable of 

protecting SERCA pumps against damaging stress, suggests that the sexual dimorphism 

observed in skeletal muscle fatigue could be a result of the higher basal Hsp70 levels 

observed in females compared to males (Figure 4).  This would theoretically allow 

females to be more protected and maintain skeletal muscle performance better than males.  

 

Basal Hsp70 SERCA

Fatigue
 

Figure 4: SERCA:Hsp70 Interaction and Fatigue- illustrates potential interaction 
between higher basal Hsp70 concentrations, SERCA and fatigue, and suggests Hsp70 
may protect SERCA function in females which may help attenuate fatigue. 
 
   Previous work by Tupling et al (2000 and 2007) using a single legged isometric 

knee extension exercise model, where participants contract at 60% of their MVC, has 
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proven to be effective in inducing a robust Hsp70 response in males (Tupling et al, 2007), 

as well as post contractile depression (PCD) in both males and females.  PCD is defined 

as prolonged fatigue at both low and high frequencies of stimulation following numerous 

tetanic contractions (Tupling et al, 2000).  This model has shown that females display 

PCD for up to at least 1 hour following exercise (Tupling et al, 2000 and Fowles et al., 

2002) and that males can display PCD for up to 6 days following the same exercise bout. 

Since these studies did not assess the time course of recovery beyond 1 hour in females 

(Tupling et al, 2000), it remains to be determined if sex differences exist in the time 

course of PCD and when full recovery of force occurs.  Moreover, this study did not 

assess the Hsp70 response to this type of exercise in females. Therefore the current thesis 

will utilize the same exercise protocol to determine if sex differences exist in the time 

course of PCD and if differences exist, are they associated with basal and exercise 

induced Hsp70 content within human skeletal muscle.  

Purposes: 

1. To determine if there are sex differences in basal and exercise induced Hsp70 

levels in human skeletal muscle. 

2. To determine if there are sex differences in skeletal muscle fatigability in 

response to an acute bout of intense intermittent isometric exercise in human 

quadriceps. 

3. To determine if there are sex differences in the effects of exercise on SERCA 

pump function in human skeletal muscle. 
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4. To determine if there are sex differences in the time course of recovery for all 

variables following intense intermittent isometric exercise. 

 

Hypotheses: 

1. Basal Hsp70 levels will be higher in females than males and females will have a 

blunted Hsp70 response in comparison to the more robust response displayed by 

males. 

2. Females will demonstrate less fatigue and recovery muscle contractile function 

more quickly than males in response to the intense isometric exercise. 

3. Females will have smaller decrements in maximal SERCA activity and Ca2+ 

uptake following the exercise bout compared with males due expected higher 

basal Hsp70 expression in females. 

4. Females will recover markers of PCD and SERCA function earlier in the time 

course of the study compared to males. 

5. Recovery of all parameters will be complete within 9 days following the exercise 

in both males and females. 
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Chapter 2: Methods 

Participant Info  

 Twelve untrained but healthy participants (6 male and 6 female) were recruited 

for this study and all completed the study. The height, weight and peak VO2 of the male 

participants were 180.3 ± 2.36 cm, 70.88 ± 1.71 kg, and 41.95 ± 1.54 ml/kg/min, 

respectively (Mean ± S.E.).  For the females, height, weight and VO2 peak were 164 ± 

0.97cm, 58.02 ± 0.97 kg and 37.9 ± 2.77 ml/kg/min (Mean ± S.E.), respectively.  All 

participants were asked to refrain from exercise, caffeine and alcohol for one week prior 

to the exercise day and throughout the remainder of the entire study. Participants were 

informed of all risks associated with the study and were asked to sign an information 

consent form before partaking in the experiment. All females were asked to come in 

between days 1 and 3 of their menstrual cycles (See results for serum estrogen 

concentrations).   

Experimental Design 

On the Thursday, 5 days prior to the exercise test, participants took park in an 

introductory session in the laboratory.  During this session participants performed single 

legged isometric knee extensions each both legs and maximal voluntary contraction 

(MVC) was assessed (see Muscle Stimulation and Force Analysis Section for procedure 

details). A stimulation voltage that would elicit a peak force during 100 Hz stimulation 

that was comparable to ~ 60% MVC was also determined.  On the following Tuesday, 

participants came back to the laboratory to complete the exercise session. Legs were 

randomly assigned to either the exercise (E) condition or the non-exercising control (C) 

condition. Prior to the exercise, MVC and force frequency measurements were made on 
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both E and C legs (see Muscle Stimulation and Force analysis), muscle biopsies were 

taken from the C leg only and venous blood samples were taken to serve as baseline 

(PRE) levels. The participants then underwent a 30 minute intermittent exercise protocol, 

where they performed a single legged isometric knee extension exercise at 60% of their 

MVC.  The study utilized a 50% duty cycle, in which participants contracted for 5 

seconds and relaxed for 5 seconds. The control leg remained unstrapped and was 

relatively inactive for the exercise protocol. Using an oscilloscope to monitor force 

output, the participant was encouraged to maintain the preset force for as long as possible 

throughout the exercise protocol.  On average, participants (males and females) could 

maintain the target force for ~ 20-25 minutes; however, all participants completed the full 

30 minutes of exercise.  Immediately following the exercise (Post), MVC and force 

frequency measurements were made on both legs, muscle biopsies were taken from the 

exercise leg only and venous blood samples were taken. The participants were then asked 

to come back to the laboratory on recovery days 1 (R1), 2 (R2), 3 (R3), 6 (R6) and 9 (R9) 

following the exercise protocol and MVC, force-frequency measurements, and muscle 

biopsies were taken from both E and C legs and venous blood samples were taken 

(except day 6, where only force measurements were taken) (See Figure 5).  

Muscle Stimulation and Force Measurements 

The protocol used for electrical stimulation and force measurements has been 

described previously in detail (Tupling et al., 2000; Fowles et al, 2002). Briefly, subjects 

were seated in a specially designed straight-backed chair such that their hips and legs 

were secured and their knee was at ~90o to their thigh. 
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Figure 5: Experimental Design: Illustrates the time course for experimental protocols 

and measurements throughout the study. 

 

A 5 cm plastic cuff was placed around the lower leg just proximal to the ankle. Voluntary 

and electrically evoked force production was measured using a linear variable differential 

transducer (LVDT). The LVDT signal was passed through a Daytronic carrier amplifier 

(11 Hz), converted to a digital signal and recorded on a laboratory computer for analyses. 

Electrical stimulation was applied over a range of frequencies (150 V supramaximal 

twitch, 10-100 Hz) using two aluminum chloride electrodes (8 x 13 cm) and a Grass 

model S48 stimulator. The ground electrode was positioned centrally on the anterior 

aspect of the thigh just proximal to the patella, whereas the active electrode was placed 

toward the hip on the belly of the vastus lateralis. The electrodes were coated in pre 

warmed electrode gel and secured in place using a high quality athletic tape. Locations of 

the electrodes were marked prior to exercise with permanent marker to ensure minimal 
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variability in placement on recovery days. At the beginning of each experimental day, all 

equipment was calibrated. 

 Measures of muscle activation were taken using electromyography (EMG).  Two 

EMG electrodes (Ambu A/S, Denmark) were placed across the belly of the vastus 

medialis of both the control and exercise legs and a reference electrode was placed on the 

head of the fibula. All EMG electrode locations were shaved, abraded and cleaned with 

alcohol to maximize the signal. The locations of the biopsy sample sites and the muscle 

stimulation pads prevents measuring EMG from vastus lateralis, so the medialis muscle 

was chosen for measurement of muscle activation.   To maintain signal reliability the 

location of the electrodes was marked with a black marker to minimize day-to-day 

variation.  

Muscle Biopsies and Sample Preparation 

 Tissue samples (~50mg) from the vastus lateralis of the C leg were obtained via 

needle biopsy technique under suction immediately prior to the 30 minute exercise 

protocol (will serve as PRE exercise baseline values), and from the E leg immediately 

upon stopping exercise. On recovery days 1, 3, 6 and 9 muscle biopsies were obtained 

from both the E and C legs.  Each biopsy was taken from a separate sampling site, under 

local anaesthetic (1% xylocaine).  The muscle samples were diluted in a pre made sample 

buffer (PMSF) (250 mM Sucrose, 5mM HEPES, 0.2mM PMSF and 0.2% NaN3; pH 7.5) 

and homogenized in a crucible immersed in an ice bath.  The diluted muscle homogenate 

was aliquoted into microtubes and immediately frozen in liquid nitrogen, then stored at -

80◦C for later analysis of protein and Hsp70 content and calcium handling properties. 
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Western Blotting and Protein Content Determination 

 Western blot analysis was performed to measure the muscle protein content of 

Hsp70, SERCA2a and SERCA1 in whole muscle homogenate.  Band linearity and 

loading concentrations were determined prior to running homogenate samples.   The 

diluted samples were run on a 7.5% polyacrylamide gel and the proteins were separated 

using standard SDS-page protocols (Laemmli et al., 1970) and then transferred to 

polyvinylidene difluoride membranes (Roche Diagnostics, Mannheim, Germany). After 

blocking with 10% skim milk suspension, the membranes containing the high molecular 

weight proteins (above 60 kDa) were incubated for either 16 hours with anti-Hsp70 

monoclonal antibody SPA-810 (Stressgen Biotechnologies) or 1 h with either anti-

SERCA1a monoclonal antibody A52 (Zubrzcka-Gaarn, E, 1984) or anti-SERCA2a 

antibody 2A7-A1 (Affinity Bioreagents) and the membranes containing lower molecular 

weight proteins (below 60 kDa) were incubated for 1 hour with anti-α-sarcomeric actin 

antibody 5C5 (Sigma) to control for protein loading. Membranes were then washed for 

30 minutes using Tris-HCl, pH 7.5 and Tween (TBS-T). The membranes were treated 

with horseradish peroxidase-conjugated goat anti-mouse secondary antibody (Hsp70-

1:2000, SERCA1-1:10000, SERCA2a-1:2000), washed again with TBS-T and then the 

protein bands were detected with an enhanced chemiluminescence kit (Amersham 

Pharmacia Biotech) using a bio-imaging system. Densitometric analysis was performed 

using a software program (GeneSnap) to measure the band density, allowing for 

quantification of the specific protein relative to total whole muscle homogenate protein.  

All specific protein measurements were expressed relative to the values obtained in the 

pre-exercise muscle biopsy and normalized to the concentration of α-actin and standard. 
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The standard used was a known amount of each protein of interest that was loaded on 

every gel.  The standard was used so direct comparisons could be made between male 

and female protein contents. 

Measurement of SERCA Activity   

The protocol for measuring SERCA activity in homogenates prepared from 

human vastus lateralis muscle is summarized by Duhamel et al., 2007.  Briefly, maximal 

SERCA activity was measured using a spectrophotometric assay technique developed by 

Simonides and van Hardeveld (1990). Homogenate (25 μL) was added to a calcium 

ATPase reaction buffer containing 100mM KCl, 20 mM HEPES, 15 mM MgCl2, 1 mM 

EGTA, 10 mM NaN3 and 10 mM of phosphenolpyruvate (PEP) (pH 7.0) at 37οC. 

Immediately prior to initiating the reaction, 18 µL lactate dehydrogenase (LDH), 18 µL 

pyruvate kinase (PK), 10.5 µL calcium ionophore, (Sigma-A23187) 100 µL ATP and 

25µL  of whole muscle homogenate were added to 5 mL of the pre-made calcium 

ATPase reaction buffer, vortexed vigorously and kept on ice.  A range (27-30.6µL) of 

calcium chloride (CaCl2) concentrations was added to microtubes. This pre-determined 

range of CaCl2 additions was intended to achieve a plateau and subsequent decline in 

Ca2+ ATPase activity were observed (Vmax).  Also 2 µL of cyclopiazonic acid (CPA) a 

specific inhibitor of SERCA activity was added to the two highest CaCl2 additions to 

represent a baseline ATPase value, based on Duhamel et al (2007). A total volume of 300 

µL of the reaction cocktail (calcium ATPase buffer plus other additions), was added to 

the varying calcium concentrations.  After vortexing vigorously, 100 µL of this cocktail 

was pipetted in duplicate into a 96 well plate,  1 µL of 0.3mM NADH (previously made 

that day and kept in a dark environment) was then pipetted into each well, and quickly 
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inserted into the plate reader and read at a wavelength of 340 nm to determine the 

fluorescence of NADH. Ca2+ ATPase activity was calculated as the difference between 

the total ATPase activity measured without CPA and the basal ATPase activity with CPA.  

All measurements of Ca2+ ATPase activity were expressed relative to whole muscle 

homogenate protein concentrations determined via the Lowry Protein Assay (Schacterle 

and Pollock, 1973). 

SERCA Calcium Uptake Analysis 

Calcium uptake measurements were made using a Photon Technology 

International (PTI) dual photon flourometer, as described in detail by Duhamel et al 

(2007). Briefly, fluorescence measurements were collected on a dual-emission wave-

length spectrofluorometer.  The excitation wavelength was set at 355 nm and 405 and 

485 nm correspond to the emission wavelengths for bound (F) and free (G) indo-1, 

respectively. Photon counts were collected simultaneously for each wavelength.  Before 

each trial session, the background fluorescence was determined in the absence of INDO-1 

and subtracted prior to starting of each analysis.  In brief, a reaction buffer consisting of 

200mM KCl, 20mM HEPES, 10mM NaN3, 7uM TPEN, 5mM Oxalate, 15mM MgCl2; 

(pH 7.0 at 37°C), was made prior to the measurements and stored at -20°C.  Whole 

muscle homogenate (30μL), ~2.5µL of 10mM CaCl2 and 1µL of INDO-1, was added to a 

2mL four sided cuvette containing 1.9mL of the reaction buffer.  The cocktail was 

warmed to 37°C before starting the reaction by adding 40µL of 5mM ATP.  As Ca2+ 

decreased because of active SR Ca2+ transport, F decreases and G increases.  Using the 

PTI software, the ratio of F/G (R) is used to calculate the decrease in free calcium.  Free 

calcium was determined by the software using the following equation: 
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(Ca2+)f=Kd x (Gmax/Gmin)(R-Rmin)(Rmax-R) 

Where, Rmin and Rmax represent the min and max F/G ratios respectively, Kd represents 

the equilibrium constant for the interaction between Ca2+ and indo-1 (Set at 250) and Gmin 

and Gmax represent the min and max values for free indo 1 

Measurements of calcium uptake were taken at 2000, 1500, 1000 and 500 nM free 

Ca2+ concentrations and rates were determined as reviewed by Tupling et al (2007).  All 

uptake measurements were done in duplicate. All measurements of calcium uptake are 

expressed relative to whole muscle homogenate protein concentrations. 

Serum Creatine Kinase Measurements 

 To detect the severity of sarcolemmal damage caused by the intermittent exercise 

protocol, measures of serum creatine kinase concentrations were taken.  Venous blood 

samples were taken during each testing session, in order to track the changes in serum 

creatine kinase concentrations which were measured using a fluorometric assay according 

to the methods of Szasz et al. (1976). 

Measures of serum estrogen  

 In order to assess the consistency of the menstrual cycle stage between females, 

circulating estrogen levels were determined. Venous blood samples were taken from the 

anti-cubital vein to measure serum estrogen concentrations.  Using a commercially 

available radioimmunoassay kit (Coat-a-Count, Inter Medico, Markham, ON), estrogen 

levels were analyzed prior to exercise and on subsequent recovery days, to confirm there 

was no large variability within the study period.  
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Data Analysis 

 Three two-way repeated ANOVAs were performed for each of the Hsp70 

measures (except basal Hsp70, where a t-test was used). More specifically, within the 

male and female groups, exercise and control legs were compared across the entire time 

course, to determine the effect of exercise and time. Males and females were then 

compared across the time course of the study, by just analyzing the exercise leg with each 

value being normalized to female PRE measurements. For all enzyme activities (CK and 

SERCA activity), estrogen concentrations and force measurements two way repeated 

measure ANOVAs were used. When comparing within group force response for males 

and females, force was expressed as absolute values.  When comparing males and female 

force responses, all values were expressed relative to within group PRE values. 

Neumann-Kewls post-hoc comparisons were then done to compare specific means for 

each ANOVA.  The level of significance was established at p values less than 0.05. 
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Chapter 3: Results 

Heat Shock Protein 70 Sexual Dimorphism 

When examining the differences in basal Hsp70 expression between male and 

female participants it was found that there were no statistical differences (p=0.123). 

(Figure 6) (Note: representative protein blots can be found in Appendix II).   

 

Figure 6: Male vs. Female Basal Hsp70 Content- Measurements were taken Pre 
exercise as baseline (basal) values. Values are expressed as Mean ± SE.  
 

In males, intense isometric exercise caused a significant 35% increase (p<0.05) in 

Hsp70 content at R1 in the exercise leg compared to the pre exercise values, which 

remained elevated (p<0.05) until R3, decreased (p<0.05) to baseline at R6, then 

unexpectedly increased (p<0.05) again at R9 (Figure 7A). There were no differences 

(p=0.873) between PRE and POST levels. In females, there was a significant decrease 

(p<0.05) in Hsp70 content in the control leg at R3 but no significant changes (p=0.812) at 

any other time point in either the exercise or control leg (Figure 7B).  Furthermore, it 
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was found that male Hsp70 content in the exercise leg was significantly higher (p<0.05) 

than females at R1 and R9 (Figure 8).    

* *
*

*
AMale

 

 

*

BFemale

 

Figure 7 A/B: Male/Female Hsp70 Protein Content- Measurements were taken Pre, 
Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h post exercise in both the exercise (E) and 
control (C) legs. Values are expressed as Mean ± SE and are normalized to protein 
standard and α-actin levels. *Significantly different than Pre (p<0.05). 
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Figure 8: Male vs. Female Hsp70 Protein Content- Measurements were taken Pre,  
Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h Post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE. All values are normalized to standard 
and alpha actin protein concentrations and expressed relative to female pre values. 
*Significantly greater than male Pre (p<0.05), # Significantly different than females 
(p<0.05). 
 
 
Force Analysis 

Maximal Voluntary Contraction (MVC) 

Intense isometric exercise resulted in a 60% reduction (p<0.05) in MVC force of the 

exercise leg immediately POST exercise in males, which remained depressed (p<0.05) 

until R3 (Figure 9A).  There was also a decrease (p<0.05) in MVC in the control leg 

immediately POST exercise in males, which recovered by R2. Females displayed an 

immediate ~25% reduction (p<0.05) in MVC in the exercise leg, which recovered 

completely by R1 (Figure 9B). There were no significant changes (p>0.05) in MVC 

force in the control leg of females at any time point. Furthermore, it appears that females 

are more fatigue resistant and able to recover force more quickly compared to males.  
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Figure 10 shows that females have less (p<0.05) reductions (~25%) in force in the 

exercised leg immediately following exercise compared to males (~60%), and completely 

recover force by R1 (p<0.05). Males did not fully recover maximal force until R3 of the 

exercise protocol.  

*

* *#

A

*

B

 

Figure 9A/B: Male/Female MVC- Measurements were taken Pre, Post, 24 (R1), 48  
(R2) 72 (R3), 144(R6) and 216(R9) h post exercise in both the exercise (E) and control 
(C) legs. Values are expressed as Mean ± SE. *Significantly different than Pre (p<0.05). 
# Significantly different than Post E (p<0.05). 
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Figure 10: Male vs. Female MVC- Measurements were taken Pre, post, 24 (R1), 48 (R2) 
72 (R3), 144 (R6) and 216 (R9) h post exercise. Values are from the exercise leg only 
and are expressed as Mean ± SE. All values are expressed relative to pre exercise values. 
*Significantly different than Pre (p<0.05). # Significantly different than Post (p<0.05). $ 
Significantly different than male Post (p<0.05). 
 

Twitch 

Intense isometric exercise resulted in a decrease (p<0.05) in peak twitch tension 

in the exercise leg immediately POST by 38% in males (Figure 11A) and 26% in 

females (Figure 11B). Peak twitch tension returned to baseline by R1 in the exercise leg 

of both male and female participants. The peak twitch tension of the control leg in male 

and female participants remained unchanged (p>0.05) following exercise and throughout 

the recovery period (Figure 11A/B). Furthermore there was no change in +dF/dt or  

–dF/dt for males until R6, where there was an unexpected increase in both exercise and 

control leg for both measures (Table 1). Female +dF/dt decreased (p<0.05) at R1 in the 

exercise leg and R1 and R2 in the control leg (p<0.05). There were no further changes in 

either exercise or control leg for females in either +dF/dt or –dF/dt. 
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Figure 11A/B: Male/Female peak twitch tension (Po) - Measurements were taken Pre, 
Post, 24 (R1), 48 (R2) 72 (R3), 144(R6) and 216 h post exercise in both the exercise (E) 
and control (C) legs.. Values are expressed as Mean ± SE. * Significantly different than 
Pre (p<0.05). 
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Figure 12: Male vs. female peak twitch tension - Measurements were taken Pre, Post, 
24 (R1), 48 (R2) 72 (R3), 144 (R6) and 216 (R9) h post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE. All values are expressed relative to 
pre exercise values. *Significantly different than Pre (p<0.05) 
 
Table 1: Twitch Kinetics (+dF/dt)- Measurements were taken PRE, POST, 24 (R1), 48 
(R2) 72 (R3), 144(R6) and 216 h POST exercise. Values are expressed as Mean ±SE. * 
Significantly different than PRE. $ Significantly different than R3. 

 Male Female 

 E SE Cont SE Ex SE Cont SE 
PRE 1734 115 1645 111 1688 106 1579 106 

POST 1962 122 1752 163 1567 108 1599 116 
R1 1890 124 1716 144 1494* 73 1424* 50 
R2 1876 220 1782 154 1655 75 1401* 33 
R3 1966 186 1875 48 1581 161 1548 100 
R6 2446* 229 2456* 164 1485 102 1642 156 

 
Table 2: Twitch Kinetics (-dF/dt)- Measurements were taken Pre, Post, 24 (R1), 48 (R2) 
72 (R3), 144(R6) and 216 h POST exercise. Values are expressed as Mean ±SE. * 
Significantly different than PRE. $ Significantly different than R3. 
 

 Male Female 
 Ex SE Cont SE Ex SE Cont SE 

PRE 1017 197 1121 121 815 61 799 111 
POST 1108 144 1097 97 725 58 775 68 

R1 1035 92 962 75 833 93 681 68 
R2 1016 108 973 122 768.2 81 647 47 
R3 1102 111 850 58 792 51 887 87 
R6 1291$ 101 1127$ 71 757 54 821 64 
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Low Frequency Force 

At the low frequencies of stimulation (10 Hz) peak tension in the exercise leg was 

depressed (p<0.05) immediately post exercise in males and did not recover until R3 

(Figure 13A).  There was an unexpected decrease (p<0.05) in 10 Hz force at R3 in the 

control leg, but all other time points remained unchanged (p>0.05).  Low frequency (10 

Hz) force for females was significantly depressed (p<0.05) in the exercise leg 

immediately post exercise, which remained depressed until R2 (Figure 13B).  

*

* * *
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Figure 13A/B: Male/Female 10 Hz peak tension - Measurements were taken Pre, Post, 
24 (R1), 48 (R2) 72 (R3), 144(R6) and 216 (R9) h post exercise in both the exercise (E) 
and control (C) legs. Values are expressed as Mean ± SE. *Significantly different than 
Pre (p<0.05). 
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There were no significant changes (p>0.05) in 10 Hz force in the control leg at 

any time point during the protocol for females (Figure 14). Males also displayed a 

greater relative force reduction (p<0.05) immediately POST in the exercise leg compared 

to females (Figure 14). 

 
 

 

Figure 14: Male vs. Female 10 Hz peak tension - Measurements were taken Pre, Post, 
24 (R1), 48 (R2) 72 (R3), 144(R6) and 216 (R9) h post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE. All values are expressed relative to 
pre exercise values. *Significantly different than Pre (p<0.05). #Significantly different 
than males (p<0.05).$ Significantly different than Post (p<0.05) 
 

 

High Frequency Force 

At the high frequencies (100 Hz) of stimulation, males had a significant 33% 

reduction (p<0.05) in force immediately POST exercise in the exercise leg, which 
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remained depressed (p<0.05) until R3 (Figure 15A). There were no significant decreases 

(p>0.05) in 100 Hz tension in the control leg of males, until R2  

*
* *
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*

B

  

Figure 15A/B: Male/Female 100 Hz peak tension - Measurements were taken 
Pre, Post, 24 (R1), 48 (R2) 72 (R3), 144(R6) and 216 (R9) h post exercise in both the 
exercise (E) and control (C) legs. Values are expressed as Mean ± SE. *Significantly 
different than Pre (p<0.05). 

 

where there was an unexpected decrease (p<0.05). In females, there was an immediate 

25% drop (p<0.05) in 100 Hz peak tension in the exercise leg, which recovered 

completely by R1 (Figure 15B). No changes (p>0.05) were observed in the control leg of 
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females throughout the recovery period. There were no interaction effects (p>0.05) when 

comparing the high frequency force between males and females (Figure 16). 

 
Figure 16: Male vs. Female 100 Hz peak tension (Po) - Measurements were 

taken Pre, Post, 24 (R1), 48 (R2) 72 (R3), 144(R6) and 216 h post exercise. Values are 
from the exercise leg only and are expressed as Mean ±SE. All values are expressed 
relative to pre exercise values. *Significantly different than Pre (p<0.05) 

 

Figure 17 A/B shows that low frequency fatigue is more prevalent in males than females.  

More specifically, Figure 21A shows that low frequency fatigue is present in males at R1, 

but not in females, and Figure 21B shows that low frequency fatigue recovers in both 

males and females by R6. 
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Figure 17: Male and Female Force Frequency Response: A, compares Pre to Post and 
R1 for males and females. B, compares Pre to R2 and R6. All force measurements (10, 20, 
50 and 100 Hz) are expressed relative to pre 100 Hz levels. All male values are dashed 
lines and all female values are solid red lines. 
Maximal SERCA Activity 

Following exercise there were no changes (p>0.05) in maximal SERCA activity 

(Vmax) at any time point throughout the experimental protocol in the exercise or control 

leg in either males or females (Figure 18A-male and B-female). Furthermore, there were 
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no significant differences (p>0.05) in the absolute Vmax between male and female 

participants (Figure 19). 

A

 

B

 

Figure 18A/B: Male/Female Maximal Ca2+ ATPase Activity - Measurements were 
taken Pre, Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h Post exercise in both the 
exercise (E) and control (C) legs. Values are expressed as Mean ± SE. 
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Figure 19: Male vs. Female Maximal Ca2+ ATPase Activity - Measurements were 
taken Pre, Post, 24 (R1), 72 (R3), 144 (R6) and 216h (R9) post exercise. Values are from 
the exercise leg only and are expressed as Mean ± SE. All values are expressed relative to 
pre exercise values. 
 
 
Calcium Uptake 

It was found that there were no differences (p>0.05) in the rates of calcium uptake 

(measured at 1500nM Ca2+) immediately POST and throughout the recovery period in 

either males (Figure 20A) or females (Figure 20B). The only point of significance was 

at the R3 time point in females, where uptake was decreased (p<0.05) in the exercise leg. 

There were no significant differences (p>0.05) between the exercise and control legs in 

males or females.  Furthermore, no statistical differences (p>0.05) were found when 

comparing the rates of Ca2+ uptake between males and females prior to exercise or at any 

time point throughout the recovery period (Figure 21). Results of measurements at other 

Ca2+ concentrations (2000, 1000 and 500nM) are not shown because they showed the 

same trends as the values measured at 1500nM. 
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Figure 20A/B: Male/Female Ca2+ Uptake at 1500nM - Measurements were taken Pre, 
Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h POST exercise in both the exercise (E) 
and control (C) legs. Values are expressed as Mean ± SE. 
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Figure 21: Male vs. Female Ca2+ Uptake at 1500nM - Measurements were taken Pre, 
Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE.  
 
 
SERCA Protein Content 

Western blotting was performed on whole muscle homogenate to quantify 

SERCA1a and SERCA2a protein content in male and female vastus lateralis. SERCA1a 

protein content was unchanged (p>0.05) by exercise or recovery in either the exercise and 

control legs in both males (Figure 22A) and females (Figure 22B). Furthermore, there 

were no differences (p>0.05) in absolute SERCA1a protein content between males and 

females at any time point (Figure 23). (Note: representative blots can be found in 

appendix II).   

. 
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Figure 22A/B: Male/Female SERCA1a Protein Content - Measurements were taken 
Pre, Post, 24 (R1), 72 (R3), 144(R6) and 216 (R9) h POST exercise in both the exercise 
(E) and control (C) legs. Values are expressed as Mean ± SE and are normalized to 
protein standard and α-actin levels. 
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Figure 23: Male vs. Female SERCA1a Protein Content - Measurements were taken 
Pre, Post, 24 (R1), 72 (R3), 144(R6) and 216 (R9) h post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE. All values are normalized to standard 
and α-actin protein concentrations and expressed relative to female pre values. 

 

In males, there was a significant increase (p<0.05) in SERCA2a protein content in 

the exercise leg at R1 and in the control leg at R3 and R6 (Figure 24A).  In females, 

SERCA2a content was not different (p>0.05) in either the exercise or control leg at any 

time point throughout the study (Figure 24B).  When comparing male and female 

SERCA2a protein content, it was found that females have significantly more (p<0.05) 

SERCA2a Pre and immediately Post (Figure 25). 
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Figure 24A/B: Male/Female SERCA2a Protein Content - Measurements were taken 
Pre, Post, 24 (R1), 72 (R3), 144 (R6) and 216 (R9) h post exercise in both the exercise (E) 
and control (C) legs. Values are expressed as Mean ± SE and are normalized to protein 
standard and α-actin levels. *Significantly different than Pre (p<0.05). 
 

 

. 
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Figure 25: Male vs Female SERCA2a Protein Content - Measurements were taken Pre, 
Post, 24 (R1), 72 (R3), 144(R6) and 216 (R9) h post exercise. Values are from the 
exercise leg only and are expressed as Mean ± SE. All values are normalized to standard 
and alpha actin protein concentrations and expressed relative to female pre values. 
*Significantly different than male (p<0.05). # Significantly different than female Pre 
(p<0.05). 
 

Serum Creatine Kinase 

In males, serum creatine kinase activity was elevated (p<0.05) immediately Post 

exercise and returned to baseline values by R1, whereas in females, serum creatine kinase 

activity did not change (p<0.05) at any time point throughout the study (Figure 26).  
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Figure 26: Serum Creatine Kinase (CK) Concentrations in Males and Females - 
Measurements were taken Pre, Post, 24 (R1), 72 (R3) and 144(R6) h post exercise. 
Values are expressed Mean ± SE. *Significantly different than Pre (p<0.05). 
 

Serum Estrogen 

Serum estrogen concentration was significantly higher (p<0.05) in females 

compared to males at all time points during the experimental protocol (Figure 27). Serum 

estrogen levels were stable over time in both males and females. 

 

Figure 27: Serum Estrogen Concentrations in Males and Females - Measurements 
were taken Pre, Post, 24 (R1), 72 (R3), 144(R6) and 216 (R9) h post exercise. Values are 
expressed Mean ± SE. There was a significant main effect (p<0.05) for sex 
(Females>males).  
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Averaged electromyography (aEMG) during exercise 
 

The results for aEMG show that neural activation of the vastus lateralis muscle 

increased in both males and females during the first 15 minutes of exercise, then 

reached a plateau during the last 15 minutes (Figure 28).  There were no significant 

differences between aEMG activation between males and females at any time point 

during the exercise bout (Figure 29).  Furthermore, it is apparent that the control leg 

was slightly active during the exercise protocol in both males and females. 

 

 
 

Figure 28A/B: Mal/Female aEMG during exercise: measurements were taken 0, 5, 
10, 15, 20, 25, and 30 min throughout the exercise protocol.  Values are expressed as 
Mean ± SE. 
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Chapter 4: Discussion 
 
 The major purpose of this study was to determine if sexual dimorphism exists in 

the basal and exercise induced Hsp70 protein content in human skeletal muscle.  

Furthermore, a major goal was to determine if any differences in Hsp70 content between 

males and females might be associated with skeletal muscle fatigability and mechanical 

function and changes in SERCA pump function in response to intense, intermittent, 

isometric exercise. The final purpose was to determine if the time course of recovery in 

all measurements differed between males and females. 

Sexual dimorphism in basal Hsp70 protein content 

 It was found that there were no significant differences in basal Hsp70 content 

between males and females. In contrast with the initial hypothesis, pre-exercise muscle 

biopsy samples of the vastus lateralis showed that with no previous exposure to stress, 

there are no differences between males and females in Hsp70 expression.  This finding is 

in agreement with one rodent study (Voss et al., 2003) which also showed no significant 

differences in the male/female basal Hsp70 content of skeletal muscle in rats.  However, 

these results are in contrast to the findings by Bombardier et al (2009) who showed that 

ovariectomized rats that were supplemented with estrogen had a significantly greater 

amount of basal Hsp70 in soleus, compared to ovariectomized sham-supplemented 

females. The findings from this thesis also conflict with data from cardiac muscle, which 

showed that female rat heart had twice as much basal Hsp70 compared to male heart 

(Voss et al, 2003 and Paroo et al, 2002).  Our hypothesis was also based on the finding 

that estrogen can activate the HSF1 pathway, which has been shown to increase basal 

levels of Hsp70 (Knowlton et al., 2003) 
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It was hypothesized that females would have higher basal Hsp70 levels due to the 

influence of estrogen on skeletal muscle physiology. As expected, compared with male 

participants, serum estrogen levels were two times higher in female participants; however, 

it’s possible that basal Hsp70 expression in female skeletal muscle fluctuates over the 

course of the estrus cycle, and since female participants were tested between days 1-3 of 

their menstrual cycle, Hsp70 expression may not have been at its peak.  It is unlikely that 

other sex hormones (progesterone and testosterone) have an influence on basal Hsp70 

content in skeletal muscle.  Milne et al. (2005) showed that castration of male rats 

(removing endogenous testosterone) had no effect on basal Hsp70 content in skeletal 

muscle and Bombardier et al. (2009) showed that administering exogenous progesterone 

to ovariectomized females did not increase basal Hsp70 content in soleus muscle. 

Bombardier et al. (2009) only measured Hsp70 content in rat soleus muscle, which is 

primarily composed of Type I muscle fibres. Since human vastus lateralis is composed of 

a mixture of fibre types (Green et al, 1981), it is possible that having more glycolytic 

fibre types dilutes the higher levels of Hsp70 in oxidative cells. Finally, it is possible that 

the observed lack of sexual dimorphism in basal Hsp70 expression in human skeletal 

muscle is due to the lack of statistical power and small sample size.  In order to determine 

a significant difference of 25% in basal Hsp70, with a power of 0.90, it was calculated 

that a sample size of 15 male and 15 female participants would be needed.  Therefore, 

this serves as a limitation of this study. Nevertheless, based on the results from this thesis, 

it is concluded that sexual dimorphism does not exist in humans with respect to basal 

Hsp70 content in skeletal muscle. 
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Sexual dimorphism in the exercise induced Hsp70 response 

 Previous studies have shown that exercise has the ability to upregulate Hsp70 

protein content in order to protect the muscle against further damaging/lethal stresses in 

male human and rodent models (Paroo et al., 2002, Locke et al, 1991, Morton et al, 2006 

and Tupling et al., 2007).  It was hypothesized that following 30 minutes of intense 

intermittent single legged isometric knee extension exercise, females would have a 

blunted Hsp70 response compared with males.  This study found that the exercise 

protocol employed has the ability to stimulate a robust Hsp70 response in male skeletal 

muscle, similar to findings from previous work which used the exact same exercise 

protocol (Tupling et al, 2007).  Furthermore, as was hypothesized, this was the first study 

to show in humans that females have a blunted Hsp70 response following exercise. 

Several mechanisms may be responsible for the blunted Hsp70 response in 

females.  First, increased serum creatine kinase (CK) following intense exercise, which is 

indicative of sarcolemmal damage (Tiidus et al., 1996), was significantly increased one 

day after exercise in males, but not in females. This finding is consistent with previous 

work which shows that females have less overall damage compared to males following 

exercise (Tiidus et al., 1996, Bombardier et al, 2009 and Enns et al, 1999).  This would 

suggest that since females have less muscle damage and potentially less protein 

denaturation, the stimulus to upregulate Hsp70 expression is lower in females compared 

with males. Secondly, estrogen has been described as an antioxidant molecule similar to 

vitamin E, capable of reducing the effects of increased levels of oxidative stress in 

skeletal muscle (Persky et al, 1999).  Estrogen has these antioxidant properties because it 

has an extra hydroxyl group, capable of accepting free electrons (free radicals) which 
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accumulate in the cell during high periods of stress. If estrogen has the ability to 

minimize the accumulation of ROS/RNS which normally increase with exercise and can 

cause protein denaturation (Stice et al, 2008), this would suggest that less Hsp70 would 

be needed to counter the increase in ROS/RNS. Although ROS/RNS accumulation was 

not measured in this thesis, this may provide another explanation for the attenuated 

Hsp70 response in females. 

 The exercise induced increase in Hsp70 of male skeletal muscle probably 

occurred primarily in Type I fibre types.  Using immunohistochemistry, Tupling et al 

(2007) showed that Type I muscle fibres had significantly more Hsp70 following exercise 

compared to type II fibres.  This thesis did not confirm if fibre type differences occurred 

in either males or females so further work should be done to determine if the fibre type 

specific Hsp70 response displays sexual dimorphism. This study also found that there 

was a trend showing male Hsp70 would have completely recovered by R9 but instead 

there was an unexpected increase in Hsp70 at R9 in both E and C legs. This finding 

suggests that most likely participants did not follow pre-experimental instructions to not 

exercise during the experiment. Previous work by Tupling et al (2007) showed that 

Hsp70 protein content in male skeletal muscle was still higher than basal levels at R6, but 

was beginning to show signs of recovery. 

Muscle Fatigability and Mechanical Function 

 Alterations to mechanical function in skeletal muscle are common following a 

bout of intense activity and can be associated with decreased force and slowing of muscle 

contraction (i.e. muscle fatigue) (Allen et al., 2007 and Tupling et al, 2004).  It was 

hypothesized that female skeletal muscle function would be more protected compared to 
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males following intense exercise, which would be associated with less fatigue 

immediately post exercise, less decrements in low frequency fatigue (LFF) and a more 

accelerated force recovery compared to males. It was found that following the bout of 

exercise maximal voluntary contraction (MVC) was decreased by ~25% in females 

compared to the much larger ~60% decrease observed in males.  It was also discovered 

that MVC of males took longer to return to baseline levels (recovered by R2), than 

females (recovered by R1). These findings support the hypotheses that females are more 

resistant to fatigue and recover mechanical function following fatiguing exercise more 

quickly than males.  

Similar results were observed for both low and high frequency force. At low 

frequencies of stimulation (10 Hz), there was a significant 75% decrease in peak tension 

for males with females showing only a 55% decrease immediately post exercise. Females 

also had full recovery of low frequency force by R2, while males did not fully recover 

until R3. This finding is similar to previous work from our lab which has shown peak 

tension elicited at 10 Hz to be attenuated for up to 4-6 days following the bout of exercise 

(Fowles et al, 2001). Intense isometric exercise also resulted in a significant decrease of 

peak tension of the vastus lateralis muscle stimulated at high frequencies (100 Hz) in both 

males and females.  More specifically, males had a significant ~30% decrease in 100 Hz 

peak tension immediately post exercise, which remained depressed until R3 of the 

experimental protocol.  Females displayed a similar ~30% decrease in 100 Hz peak 

tension immediately post exercise; however, force was fully recovered by R1. These 

findings are consistent with the results from Fowles et al (2001), which showed HFF to 

be present for up to 4 days following the bout of exercise.  
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Force depressions at both high and low frequencies that persist past one day of 

recovery have been termed post contractile force depressions (PCDs) (Fowles et al, 2002 

and Tupling et al, 2000). Decrements in force stimulated at high frequencies have been 

associated with alterations to the Na+/K+ ATPase. The Na+/K+ ATPase is responsible for 

maintaining a proper ion gradient across the sarcolemma to maintain excitability of the t-

tubules. Fowles et al (2002) suggested that decrements in Na+/K+ ATPase are at least in 

part due to accumulation of ROS.  This may provide one mechanism by which females 

experience less fatigue and recover quicker than males.  

Low frequency fatigue (LFF) is a prolonged reduction in force when stimulated at 

low frequencies (Tupling et al, 2004 and Allen et al, 2007).  LFF is a common 

observation following a bout of intense exercise.  At low frequencies of stimulation, force 

development relies upon the release of Ca2+ from the SR.  In situations where LFF is 

present, Ca2+ release from the SR is impaired and the rise in intracellular Ca2+ needed to 

cause contraction is less. The result in an increase of intracellular calcium concentrations, 

which has been associated with the activation of various proteolytic calpains capable of 

further catabolic reactions (Murphy et al, 2006) The results of this thesis suggest that LFF 

is present in both males and females, but females recovery more quickly.  Figure 16A/B 

uses values at various frequencies (10, 20, 50 Hz) expressed relative to force elicited at 

100 Hz.  Figure 16 A shows that male Post and R1 are not only lower than male Pre, but 

also lower than female Pre, Post and R1.  Furthermore, in Figure 16B it is apparent that 

LFF does not exist in either males or females any further than R2 since force is recovered 

by R3.  It is likely that since females did not have as much damage as males, as illustrated 

by less CK activity post exercise, the total amount of damage to membranous and 
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intracellular structures in females was less.  This would potentially mean that there is less 

impairment of calcium release in females and less activation of calpains, which may help 

explain why females are more fatigue resistant than males. 

Previous research has examined whether sexual dimorphism exists in skeletal 

muscle fatigability.  The evidence that currently exists is equivocal, in that some studies 

show females to be more fatigue resistant than males (Clark et al, 2005, Russ et al, 2003 

and Hunter et al, 2001), while others show no differences (Buckley-Bleiler et al., 1989, 

Savage et al, 2002 and Thompson et al, 1997).  Most previous work supporting fatigue 

resistance in females used a much lower intensity of contraction (~25% MVC) and 

measured endurance time (time to failure) rather than directly measuring skeletal muscle 

contractile properties. These studies found that females were able to maintain the 

intensity of exercise longer than males, which they attributed to differences in muscular 

blood flow (Clark et al., 2005 and Russ et al, 2003).  Conversely, studies which 

contended the notion that females are more fatigue resistant than males utilized higher 

exercise intensities and showed there were no differences in fatigue resistance between 

males and females during exercise. Furthermore, these same studies suggest that there is 

no difference in recovery of force in the days following exercise. In this thesis, a high 

intensity exercise protocol was employed but unlike other studies that employed higher 

intensity exercise protocols, the findings support the notion that females are more fatigue 

resistant immediately following exercise and that females recover force more quickly 

than males.  Differences between this study and others that contend fatigue resistance in 

females is associated with the protective effects of estrogen may be due to a couple of 

reasons.  First, previous work showing females were not fatigue resistant which used 
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isometric exercise used a longer work:rest ratio.  Buckly-Bleiler et al (1989) used a 10:20 

sec (work:rest ratio) compared to our 5:5 sec ratio. This longer work to rest ratio may 

have resulted in more recovery time in between contractions, which may be the reason no 

differences were detected. This same study contending fatigue resistance in females only 

used a total of 40 contractions, whereas this thesis had the participants doing 180 

contractions. These two differences may result in less damage to skeletal muscle and 

more recovery during the exercise bout, which may help explain the discrepancy in 

results compared to this thesis. Finally, previous work suggesting there is no differences 

in fatigue between males and females following exercise, did not actually use a direct 

male to female comparison.  These studies utilized pre-menopausal comparisons 

(Buckley-Bleiler et al., 1989, Savage et al, 2002 and Thompson et al, 1997) in 

comparison to the male-female comparison used in this thesis. 

Another debate that currently exists in the literature is whether the examination of 

fatigue between males and females should be studied with respect to absolute or relative 

force production.  This debate stems from the finding that under low intensity 

contractions, which is expressed relative to the individual’s MVC, females are more 

fatigue resistant compared to males (Hunter et al., 2001, Clark et al., 2005, Russ et al., 

2003).  When the intensity is increased there appear to be no differences in fatigability 

between males and females (Maughan et al., 1986, Phillips et al., 1993). This argument is 

based on the notion that at low intensities, although both male and female subjects 

contract at a certain percentage of their MVC, males have higher absolute force 

production, which results in more occlusion of peripheral vasculature and therefore puts 

them under more ischemic conditions (Clark et al., 2005, Wust et al., 2008 and Maughan 
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et al., 1986). When intensity is increased, both males and females are shown to have the 

same amount of occlusion, which explains the lack of sexual dimorphism observed in 

fatigability at higher intensities (Maughan et al., 1986 and Russ et al., 2003). The results 

of this thesis cannot rule out the fact that males may have been under more ischemic 

conditions compared to females since male participants would have been producing 

higher absolute forces than females due to the relative force production of the exercise 

protocol.  Although using a force expressed relative to an individual’s MVC is generally 

accepted as a valid method of analysing fatigue between people, future studies may aim 

to recruit male and female participants that have similar MVCs. This type of design 

would rule out the fact that blood flow restrictions and absolute force production in males 

is what is causing the sexual dimorphism observed in skeletal muscle fatigability since 

both groups would be contracting with the same absolute force. 

The observed sexual dimorphism in muscle fatigability and rate of fatigue 

recovery is not associated with Hsp70 as hypothesized, given that no differences in basal 

Hsp70 expression were observed between males and females. It is possible that the 

increased fatigue resistance observed in females can be explained by estrogen having a 

stabilizing effect on the cell membranes or acting as an antioxidant and preventing 

oxidative damage to key cellular proteins involved in excitation-contraction coupling. 

 

Sex Differences and the Effects of Exercise on Calcium Handling Properties in Muscle 

The decrements observed in force generated by low frequency stimulations have 

been associated with impairment to SERCAs ability to sequester Ca2+ back into the 

lumen of the SR (Allen et al, 2007, Duhamel et al., 2007, Tupling et al, 2000). More 
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specifically, it could be a result of impaired calcium release, which associated with a 

disabled excitation-contraction coupling mechanism. Since Hsp70 can bind to and protect 

SERCA function, and females may have higher basal Hsp70 compared males, it was 

hypothesized that SERCA function in females would be better protected during exercise 

when compared to males (Tupling et al., 2004 and Fu et al., 2007).  

Contrary to the hypothesis that exercise would result in a decrease in maximal 

SERCA activity and Ca2+ uptake, there were actually no changes in either measure in 

both males and females at any time point throughout the study protocol.  These findings 

do not agree with those found from other studies which showed that exercise causes 

impairment of SR pump function (decrease in activity and uptake) in human skeletal 

muscle (Tupling et al, 2000 and Duhamel et al, 2007). It is unlikely that the discrepancies 

observed in this study are due to analytical error since both maximal SERCA activity and 

calcium uptake showed similar patterns throughout the recovery period for both males 

and females. Another suggestion may be that Pre values of maximal SERCA activity and 

calcium uptake are lower compared to previous studies. Duhamel et al (2007) found that 

maximal SERCA activity (Vmax) in males was ~150-170 µM/g protein/min prior to 

exercise and decreased to ~120 µM/g protein/min immediately Post exercise, a value 

which is closer to the Pre values of this thesis.  Discrepancies between this thesis and 

previous work may be a result of participants not following pre experimental procedures 

or analytical error, in that Vmax was not actually reached in the Pre samples.  It was 

assumed that the CaCl2 additions which were used to determine calcium dependent 

SERCA activity would be the same for each participant but it is possible that some 

samples had different CaCl2 requirements than others. 
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There were no differences between males and females in SERCA1a expression 

but SERCA2a content was higher in females than males at Pre. There were no changes 

with exercise or recovery in protein content of either SERCA isoform in males whereas 

in females SERCA2a content was decreased  6 days following the exercise and remained 

lower at R9. The significance of these results is unknown but further work investigating 

sexual dimorphism in the regulation of SERCA isoform expression is warranted.  

Given the uncertainty in the SERCA activity results in this thesis, it is difficult to 

make any conclusions regarding the role of SERCA in sexual dimorphism in muscle 

fatigability.  The mechanisms underlying sexual dimorphism in muscle fatigability may 

related to the ability of estrogen as an antioxidant to protect Ca2+ release from the SR or 

the Ca2+ sensitivity of the contractile apparatus.  Unfortunately, due to limitations of this 

study, these proposed mechanisms cannot be confirmed. 
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Limitations 

 Due to time and cost restraints, this thesis had a relatively small sample size 

which may have precluded detection of potentially significant differences between males 

and females, especially in basal Hsp70 expression which tended to be higher in females. 

This thesis was also unable to determine fibre type differences in Hsp70 protein content 

through immunohistochemistry which is a more sensitive technique than Western blotting 

Therefore, it is possible that sexual dimorphism in basal Hsp70 expression does exist in 

different fibre types.  The fact that Hsp70 increased at R9 suggests that participants did 

not fully follow pre experimental instructions.  This unfortunate occurrence does not 

allow conclusions to be drawn regarding the time course of complete Hsp70 recovery 

following exercise in male skeletal muscle.  

The finding that SERCA function (maximal SERCA activity and Ca2+ uptake) 

was unaltered by exercise disagrees with previous studies that employed the exact same 

exercise protocol (Tupling et al, 2000 and Duhamel et al., 2007). The results from this 

study on the effects of exercise on SERCA function are therefore questionable due to the 

reasons stated above. This thesis did not examine the role of calcium release as a 

mechanism for low frequency fatigue.  Since other studies have found that LFF is 

associated with impaired calcium release, it would have been useful to determine if 

fatigue in this study was related to impairments in SR Ca2+ release. 

 This thesis was also unable to elucidate the effects of individual sex hormones 

(estrogen, progesterone, testosterone) on human skeletal muscle physiology.  Future 

studies should aim to use different populations (pre/post menopausal women for example) 
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to determine effects of endogenous estrogen/progesterone depletion on the Hsp70 stress 

response and resulting effects on human skeletal muscle physiology. 
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Future Directions 
 
 Considering the most important finding from this study was that there is sexual 

dimorphism in the exercise induced Hsp70 protein content, future studies should focus on 

populations where muscle mass and function are important for independence and 

function. We were unable to detect any significant differences in basal Hsp70, therefore 

future studies should aim to increase sample size to determine if basal differences do 

exist between males and females. Furthermore, our laboratory has found that Hsp70 

expression following exercise is fibre type specific in males.  Therefore, future work may 

try to determine if the response in females is similar.  Future studies may also try to look 

at different phases of the menstrual cycle to determine if varying serum estrogen 

concentrations in the blood effects the basal and exercise induced Hsp70 response in 

females. 

 Future studies should aim to work with the elderly individuals and comparing pre 

and post menopausal females to determine the significance of Hsp70 at that point in the 

life cycle. Future studies should also aim to elucidate the mechanism by which sexual 

dimorphism in muscle fatigability exists and the interaction of Hsp70 and SERCA 

between males and females. 
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Conclusion 

The results of this thesis suggest that basal Hsp70 expression in skeletal muscle 

does not display sexual dimorphism in humans.   However, there is sexual dimorphism in 

the exercise-induced Hsp70 response in skeletal muscle in humans as it was found that 

males have a more robust Hsp70 response in the recovery days following exercise 

compared with females.  The findings of this thesis are most likely attributable to the 

differences in circulating estrogen between males and females.   

 The results of this thesis were also able to confirm sexual dimorphism in muscle 

fatigability and function.  It was found that females were more fatigue resistant than 

males and were able to recover force at an accelerated rate.  The causes of fatigue, which 

have commonly been associated with alterations in SERCA function and activity could 

not be confirmed in this thesis as exercise had no effects on maximal SERCA activity, 

Ca2+ uptake or SERCA protein content. 
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Appendix 1:  
Homogenate Ca2+ ATPase Buffer 

Reagent Molecular Weight Mass(g) Concentration (mM)
KCl 74.56 1.6 100 

HEPES 238.3 1.02 20 
NaN3 65.01 .13 10 
EGTA 380.4 .082 1 
MgCl2 95.21 .2046 10 

PEP 465.3 1 10 
 

- All reagents were combined in a beaker and mixed with a magnetic stir bar, then 
190mL of H20 was added 

- Substance was heated to 37 oC and pH was brought to 7.0 
- Mixture was then brought to a volume of 215 mL and aliquoted into tubes to be 

stored at -20oC 
 

Homogenizing Buffer Recipe 
 

Reagent Molecular weight Mass (g) Concentration 
Sucrose 343.3 85.6 250 
HEPES 238.3 1.19 5 
PMSF 174.19 .034 .2 
NaN3 65.01 2 .2% 

- PMSF was added to 800mL of Hs0 in a beaker and mixed with a magnetic stir bar.  
It was then covered with parafilm and placed on a hot plate set at a temperature of 
35-40 oC. 

- The PMSF was then brought to a pH of 7.5 with KOH and brought to a volume of 
1L and pH was rechecked. 
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Appendix II- Representative Blots 
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Appendix II: Western blotting for Hsp70, SERCA1, SERCA2a and Alpha Actin.  
All blots were done pairing one female and one male participant in each casting unit
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