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Abstract

We de�ne the notion of monotone operations admitted by partially ordered sets,
speci�cally monotone near-unanimity functions and J�onsson operations. We then
prove a result of McKenzie's in [8] which states that if a �nite, bounded poset P
admits a set of monotone J�onsson operations then it admits a set of monotone
J�onsson operations for which the operations with even indices do not depend on
their second variable. We next de�ne zigzags of posets and prove various useful
properties about them. Using these zigzags, we proceed carefully through Z�adori's
proof from [12] that a �nite, bounded poset P admits a monotone near-unanimity
function if and only if P admits monotone J�onsson operations.
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Chapter 1

Introduction

In the �rst section of this chapter, we go over some basic de�nitions that we will
need for the rest of the thesis. We then give some background and motivation for
the thesis and prove a basic result about monotone J�onsson operations and near-
unanimity functions admitted by posets. Following that, we de�ne zigzags of posets
and give some basic examples. In the last section, we give an outline of what lays
ahead in the following chapters.

1.1 Preliminary de�nitions

The following de�nitions are taken from [12], [8], and [4].

Let P be a set. An n-ary relation r on P is any subset r � P n. A partial order
on P is a binary relation �P on P that is reexive, antisymmetric, and transitive.
With this relation, the pair (P;�P) forms a relational structure called a partially
ordered set or poset which we will usually just denote P. When it is apparent by
context, we will often drop the subscript of �P.

Now, let a and b be elements in a poset P. If (a; b) 2�P, we often denote this
a �P b, and if a � b but a 6= b, then we denote this a < b. As well, if a < b and
for every c 2 P we have that a � c � b implies either a = c or b = c, then we say
that b covers a or a is covered by b. We also call a a lower cover of b and b an
upper cover of a and denote this by writing a �P b. In fact, the covering relation
�P of P is equal to the set of all covering pairs of �P. It is clearly contained
in �P. Notice that there is a natural partial order on P n induced by �P where
(x1; : : : ; xn) �Pn (y1; : : : ; yn) if and only if xi � yi for 1 � i � n.

A poset P is bounded if there exists some top element 1 2 P and bottom element
0 2 P such that for all x 2 P, we have 0 � x � 1. A poset P is said to be a �nite
poset if the underlying set P has �nitely many elements. Also, we say that an
element x is maximal in P if for all y 2 P, whenever x � y we have x = y. We
de�ne minimal elements dually. Finite posets have the nice property that we can
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often draw them in a diagram using their covering relation. We use a circle � to
represent each element and edges between the circles to indicate a covering pair with
the lesser element being lower on the diagram than the greater element. We then
see that for any a and b in our poset, a � b if and only if a = b or there exists some
set fc1; : : : ; cng � P such that a � c1 � � � � � cn � b. Consider the example given
in Figure 1.1 with P = f1; a; b; c; dg and �P= f(c; a); (a; 1); (d; a); (d; b); (b; 1)g.

��������1

��������a

������ �������� b

??????

��������
c

��������

d

OOOOOOOOOO

Figure 1.1: A diagram of the poset P

Next, de�ne an n-ary operation f on a set P to be function from P n to P . We
say that f is monotone for a poset P if for all (x1; : : : ; xn) and (y1; : : : ; yn) in P n,
whenever (x1; : : : ; xn) �Pn (y1; : : : ; yn) we have f(x1; : : : ; xn) � f(y1; : : : ; yn). If f
is monotone for P, we often say that P admits f or f preserves P.

A projection operation on P n is an n-ary operation pi : P
n ! P de�ned such

that p(x1; : : : ; xn) = xi for all (x1; : : : ; xn) 2 P n and for some 1 � i � n. Also, if
g1; : : : ; gn are all k-ary operations on P and f is some n-ary operation on P , then
the composition f(g1; : : : ; gn) is the k-ary operation on P de�ned such that

f(g1; : : : ; gn)(x1; : : : ; xk) = f(g1(x1; : : : ; xk); : : : ; gn(x1; : : : ; xk)):

A set of �nitary operations on a set P that contains all the projection operations
and is closed under the composition just described is called a clone for P . It is easy
to see that for a poset P, both projection operations and compositions of monotone
operations are monotone. Hence we can de�ne the monotone clone of a poset P to
be the clone of all monotone operations for P.

Finally, de�ne a partial n-ary operation f on a set P to be an n-ary operation
from Q to P where Q � P n. If f is monotone for P on its domain Q, then we say
that f is a partial n-ary monotone operation.

1.2 Monotone clones, near-unanimity functions,

and J�onsson operations

Many questions have been asked about monotone clones of �nite, bounded posets.
In particular, what kinds of operations are admitted by a particular �nite, bounded
poset P and what are the implications? For n � 3, we say that n-ary function f is
a n-near unanimity function (or n-nuf ) if the identity

f(x; : : : ; x; y
i

; x; : : : ; x) = x

2



holds for every 1 � i � n. It is known thanks to the Baker-Pixley Theorem (see
[2]) that if the monotone clone of P admits a monotone n-nuf, then it is �nitely
generated but it is still undecided as to whether a �nitely generated monotone clone
of a �nite, bounded poset always admits a n-nuf. If we lose the bounded condition,
then there are examples of �nite posets whose monotone clones are �nitely generated
but do not admit an n-nuf [5].

In fact, the study of near-unanimity functions has important consequences in
areas besides that of partially ordered sets. One example is that of the area of con-
straint satisfaction problems (or CSPs) which has seen much new research lately.
It has been shown that if a �nite relational structure P admits a near-unanimity
function, then the problem CSP(P ) of determining which �nite relational struc-
tures Q of the same signature as P admit a homomorphism into P is solvable in
polynomial-time [9].

Now, near-unanimity functions are related to sets of operations called J�onsson
operations. To motivate this connection, we mention that algebras whose term op-
erations include a near-unanimity function generate a variety V that is congruence-
distributive (every algebra in V has a distributive congruence lattice). It is well-
known in universal algebra that congruence-distributivity of the variety generated
by an algebra is equivalent to an algebra including a certain set of operations in
its term operations. These operations d0; : : : ; dN are J�onsson operations and they
satisfy the following set of J�onsson equations :

x = d0(x; y; z) = di(x; y; x) = dN(z; y; x) for 0 � i � N

d2i(x; x; y) = d2i+1(x; x; y) for 0 � i � (N � 1)=2 (1.1)

d2i�1(x; y; y) = d2i(x; y; y) for 1 � i � N=2

Z�adori mentions in [12] the following question, \Does a �nite, bounded poset
admit an n-nuf if and only if it admits a set of J�onsson operations?" and in the
same paper he answers this question in the positive. It is the goal of this thesis
to present his proof in a detailed manner. One direction is straightforward as is
seen in the next lemma. We note that the lemma actually holds for any relational
structure although it is only stated here in terms of posets.

Lemma 1.1. Let P be a poset. Then (1)) (2)) (3)) (4)) (5) where

(1) For some n � 3, P admits an n-ary monotone near-unanimity function.

(2) For some n � 3, there exists a partially de�ned n-ary monotone operation h
on P with domain

An =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P; 1 � i � n

�

which satis�es h(a; : : : ; a; b
i
; a; : : : ; a) = a for all a; b 2 P and 1 � i � n.
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(3) For some k � 1, P admits monotone ternary operations D1; : : : ; Dk satisfying
the following equations:

D1(x; x; y) = Dk(y; x; x) = Di(x; y; x) = x for 1 � i � k; (1.2)

Di(x; y; y) = Di+1(x; x; y) for 1 � i � k � 1:

(4) For some k � 1, P admits monotone J�onsson operations d0; : : : ; d2k which have
the additional property that for 0 � i � k, the operation d2i does not depend on
its middle variable.

(5) P admits monotone J�onsson operations.

Proof. (1) ) (2): This is immediate once we let h be our monotone n-nuf.

(2) ) (3): Let k = n� 2 and for 1 � i � k, de�ne

Di(x; y; z) = h(z; : : : ; z; y
i+1

; x; : : : ; x):

The �rst line of (1.2) holds immediately by the property of h and the second
line is true since for 1 � i � k � 1,

Di(x; y; y) = h(y; : : : ; y; y
i+1

; x; : : : ; x) = h(y; : : : ; y; x
i+2

; x; : : : ; x) = Di+1(x; x; y):

(3) ) (4): Given D1; : : : ; Dk satisfying (1.2), let us de�ne d0; : : : ; d2k by �rst
de�ning d0(x; y; z) = x. Then for 1 � i � k, de�ne d2i�1(x; y; z) = Di(x; y; z)
and d2i(x; y; z) = Di(x; z; z). It is clear from the de�nitions that for all
1 � i � k the operation d2i does not depend on its second variable.

Now, clearly by our de�nitions the �rst line of (1.1) is satis�ed as well as
d2i�1(x; y; y) = d2i(x; y; y) for all 1 � i � k. Then, for all 0 � i � (k � 1) we
have

d2i(x; x; z) = Di(x; z; z) = Di+1(x; x; z) = d2(i+1)�1(x; x; z) = d2i+1(x; x; z):

Thus d0; : : : ; d2k are J�onsson operations.

(4) ) (5): This is immediate.

�

In order to prove the other direction when P is �nite and bounded, Z�adori relies
heavily on the idea of zigzags in �nite, bounded posets. We introduce these in the
next section.
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1.3 Zigzags

We begin our discussion of zigzags by de�ning some important concepts and note
that the de�nitions given in this section come directly from [12].

Let P be a poset. Now, let T � (P [ �P) such that P * T . We say that T is
cancelled from P by denoting the corresponding poset PnT = (PnT; (�P jPnT )nT ):
As an example, consider the posets Q and QnT with T = fa; (d; b)g in Fig. 1.2.

��������1

��
��
��

??
??

??

��������a �������� b

��������
c

??
??

??
��������

d

��
��
��

��������

0

Q

��������1

��
��
��
��
��

??
??

??

//
//
//
//
//

�������� b

��
��
��
��
��

��������
c

??
??

??
��������

d

��
��
��

��������

0

QnT

Figure 1.2: T cancelled from Q

Next, let us say a poset Q is contained in a poset P if Q � P and �Q��P jQ.
We write this as Q � P. In the case where Q � P but Q 6= P, we say that Q is
properly contained in P. The two posets in Fig. 1.3 illustrate this.

��������1

��
��
��

??
??

??

��������a

//
//
//
//
//

�������� b

��������

d

��������

0

Q

��������1

??
??

??

��
��
��

��������a �������� b

��������
c

??
??

??
��������

d

��
��
��

��������

0

P

Figure 1.3: Q � P

Next, for posets P and H, call a pair (H; f) a P-coloured poset if f is a partially
de�ned map from H to P . If we can extend f to a fully de�ned, monotone map
f 0 from H to P, then we say (H; f) is P-extendible. If not, then we say f and
(H; f) are P-nonextendible. Under the partial map f , call the set of elements in
the domain of f the coloured elements of (H; f) and denote it C(H; f). Call the
set N(H; f) = HnC(H; f) the noncoloured elements of (H; f). In the case where
these sets are non-empty, de�ne the posets C(H; f) and N(H; f) to be given by
the restriction of �H to C(H; f) and N(H; f), respectively. Let (Q; g) also be a P-
coloured poset. We say that (H; f) is contained in (Q; g), written (H; f) � (Q; g) if
the poset H � Q and the function f = gjH . Let T � (H [ �H) such that H * T .
We say that T is cancelled from (H; f) by denoting the corresponding P-coloured
poset (H; f)nT = (HnT; f jHnT ):
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We are now able to de�ne and give examples of zigzags. A P-zigzag is a P-
nonextendible, P-coloured poset (H; f), where H is �nite and for every poset K
properly contained in H, the P-coloured poset (K; f jK) is P-extendible. In the
following �gures, let the black dots indicate the coloured elements of a P-coloured
poset.

Example 1.2. Let Q be the poset in Figure 1.4. The Q-coloured poset (H; f) in
Figure 1.4 is a Q-zigzag.

��������a �������� b

Q

�
a

�
b

��������

�������

???????

(H; f)

Figure 1.4: Q and (H; f)

Proof. First note that (H; f) is notQ-extendible as all the elements ofQ are incom-
parable. We need to show that (H; f) is minimal in terms of P-nonextendability.
Let n denote the single noncoloured element in (H; f). If we cancel n from (H; f),
then (H; f)n fng will have a fully-de�ned map f jHnfng. Hence (H; f)n fng will be
P-extendible. If we cancel the element coloured a, then we can just de�ne n to be b
under our new map and this will yield a fully de�ned map. The case for cancelling
b follows the same.

Next, consider (H; f)n f(n; a)g. This is Q-extendible by just mapping n to
b. Removal of the other covering pair yields a similar result. Thus (H; f) is a
Q-zigzag. �

Example 1.3. Let P be the poset in Figure 1.5. Then the P-coloured poset (H; f)
in Figure 1.5 is a P-zigzag.

��������a

??
??

??
??

??
??

? �������� b

��
��
��
��
��
��
�

��������
c

??
??

??
��������

d

��
��
��

��������

0

P

�
a

�
b

��������

�������

???????

�c

�������
�
d

???????

(H; f)

Figure 1.5: P and (H; f)

Proof. Clearly (H; f) is not P-extendible as there is no element x 2 P such that
c � x � a and d � x � b. Let n denote the single noncoloured element in (H; f).
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If we cancel n from (H; f), then (H; f)n fng will have a fully-de�ned map f jHnfng.
Hence (H; f)n fng will be P-extendible. If we remove the element coloured a, then
we can just de�ne n to be b under our new map and this will yield a fully de�ned
map. The cases for the other coloured elements follow similarly.

�
a

�
b

��������

�������

�c

�������
�
d

///////////

Figure 1.6: (H; f)n f(a; n)g

Finally, consider (H; f)n f(n; a)g in Figure 1.6. Notice that (H; f)n f(n; a)g is
P-extendible if we just let n map to the element b 2 P. Removal of any of the
other covering pairs yields a similar result. Thus (H; f) is a P-zigzag. �

The natural question to ask is when is the partially de�ned map f already
monotone in a zigzag (H; f). Call such coloured posets monotone zigzags and
nonmonotone zigzags otherwise. It turns out there is only one possibility for non-
monotone zigzags and we describe it in the next proposition.

Proposition 1.4. Let P be a poset and (H; f) a nonmonotone P-zigzag. Then
(H; f) is a two element chain and, for some a; b 2 P with a � b, the bottom
element maps to a and the top element maps to b.

Proof. Let (H; f) be a P-coloured poset such that (H; f) is a two element chain
and, for some a; b 2 P with a � b, the bottom element maps to a and the top
element maps to b. Clearly the map f is nonmonotone. The cancellation of either
element of H or the single covering pair will yield a P-extendible poset so (H; f)
is a nonmonotone P-zigzag.

Now suppose (H; f) is some arbitrary nonmonotone P-zigzag. Since f is not
monotone, there exist x; y 2 H such that x � y but f(x) � f(y). If we cancel
from (H; f) all but fx; y; (x; y)g we are left with a two element chain as described
in the previous paragraph. By the minimality of (H; f), this must be the same as
(H; f). �

It also easy to see that a monotone zigzag must have at least three elements.
We prove this in detail in the Chapter 4. As well, this means we can also assume
that every monotone zigzag has at least one noncoloured element and two coloured
elements.

As we will see in the upcoming chapters, the structure of P-zigzags of a �nite,
bounded poset P yield some very important results concerning the monotone op-
erations admitted by P. The next easy but important lemma is from a remark
by Tardos in [10]. It relates monotone near-unanimity functions to the maximum
number of coloured elements in any P-zigzag of a poset P.
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Lemma 1.5. Let P be a poset and n � 3. If for every P-zigzag (H; f), we have
jC(H; f)j � n� 1, then P admits an n-near-unanimity function.

Proof. We de�ne a new P-coloured poset (Pn; g) as follows. For 1 � i � n, consider
the set of n-tuples

Ci =

�
(x; : : : ; x; y

i

; x; : : : ; x) : x; y 2 P

�
and let C = [n

i=1Ci. Clearly C � P n. Next de�ne g : C ! P such that
g(x; : : : ; x; y

i

; x; : : : ; x) = x; that is, let g be the partially de�ned n-nuf on P that is

fully-de�ned on C. Now notice that g is monotone for, since n � 3, we have that

(x1; : : : ; x1; y1
i

; x1; : : : ; x1) � (x2; : : : ; x2; y2
j

; x2; : : : ; x2)

implies x1 � x2.

Suppose, for a contradiction, that (Pn; g) is not P-extendible. Then it must
contain some P-zigzag (Q; gjQ). But now notice that by our original assumption,
C(Q; gjQ) has at most n � 1 elements. Thus by the pigeonhole principle there
is some i such that for each (x; : : : ; x; y; x; : : : ; x) in the domain of gjQ, the pro-
jection pi(x; : : : ; x; y; x; : : : ; x) = x. This implies that gjQ(x; : : : ; x; y; x; : : : ; x) =
pi(x; : : : ; x; y; x; : : : ; x) for all (x; : : : ; x; y; x; : : : ; x) 2 C(Q; gjQ). Hence gjQ acts as
a coordinate projection on Q and this is clearly extendible monotonically to all of
Q. As this is a contradiction, it must be that our partially de�ned map n-nuf g
can be extended to all of Pn and we are done. �

We �nish this section by mentioning and proving an interesting fact stated but
not proved by Z�adori in [12]. It is not particularly useful for the upcoming work but
does give us a little more insight into the structure of the posets we are going to be
dealing with. De�ne a �nite lattice L to be a �nite, bounded poset for which each
pair of elements in L has a unique greatest lower bound and unique least upper
bound. For any subset S of a lattice L, let S� = fx 2 L : x � s for all s 2 Sg.

Proposition 1.6. Let L be a �nite lattice. The only L-zigzags possible are non-
monotone.

Proof. Suppose otherwise. Then there exists a monotone L-zigzag (H; f) such that
N(H; f) 6= ;. Pick some x 2 N(H; f) and consider fxg�. De�ne f(x) to be the least
upper bound in L of all the elements in f(C(H; f) \ fxg�) (if C(H; f) \ fxg� = ;,
then f(x) = 0). Now, if y � x and y 2 C(H; f), then y � z and f(y) � f(z)
for all z 2 C(H; f) \ fxg�. It follows that, since f(x) is the unique least upper
bound, f(y) � f(x). This means we have just extended f monotonically to another
noncoloured element of (H; f). If we continue this process with each other non-
coloured element of (H; f), we will get a monotone extension of f and this will be
a contradiction. Thus (H; f) cannot be a monotone L-zigzag. �

We note that, in fact, by the preceding proof L need only be a �nite join-
seimlattice with a bottom element and every L-zigzag will be nonmonotone.
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1.4 Outline of thesis

In the upcoming chapters, we will work carefully through the proof that a �nite,
bounded poset which admits monotone J�onsson operations also admits an n-near-
unanimity function for some n � 3. We do this by working backwards in implication
from properties (5) down to (1) from Lemma 1.1. Note that the results in sections
2.1 and 2.2 come directly from McKenzie's work in [8] and the results in the follow-
ing sections and chapters are directly from Z�adori in [12]. I have expanded heavily
on the details of the proofs and added various examples throughout to help clarify
the meaning of many of the lemmas.

In Chapter 2, we prove that (5) implies (4) in Theorem 2.11; that is, we show
that a �nite, bounded poset which admits monotone J�onsson operations also admits
monotone J�onsson operations for which the operations with even indices do not
depend on their second variable. We then show in Lemma 2.12 that if a �nite
bounded poset P admits operations described in (4) then it also admits operations
satisfying (3). The �nal important result of this chapter uses monotone ternary
operations satisfying (1.2) to de�ne an operation satisfying (2). Thus, in Chapter
2, we prove most of the converse of Lemma 1.1: (5) ) (4) ) (3) ) (2).

In Chapter 3, we prove various properties about zigzags of �nite, bounded
posets. We de�ne the notion of diameter in a poset and then prove that if a
�nite, bounded poset P satis�es (2) of Lemma 1.1, then we can �nd a �nite bound
on the diameters of all P-zigzags.

In Chapter 4, we come to the most technical part of Z�adori's proof. We state and
prove various lemmas and then prove in Theorem 4.9 that if there exist P-zigzags of
arbitrarily large size, then we can �nd P-zigzags of arbitrarily large diameter. As a
corollary to this, we show that if P is a �nite, bounded poset for which there exists
a �nite bound on the diameter of all P-zigzags, then there exist at most �nitely
many P-zigzags. Finally, we apply Lemma 1.5 which implies that if P has as at
most �nitely many P-zigzags, then P admits a near-unanimity function. This �nal
piece, combined with the main results of Chapters 3 and 4, proves that in a �nite,
bounded poset (2) implies (1). Hence we will conclude that a �nite, bounded poset
P admits a monotone n-near-unanimity function if and only if P admits a set of
monotone J�onsson operations.
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Chapter 2

Monotone J�onsson operations

In this chapter, we will consider �nite, bounded posets P that admit monotone
J�onsson operations. We will show that from these operations we can derive mono-
tone J�onsson operations d0; : : : ; dn on P such that the operations with even indices
do not depend on their second variable. With these, we will prove that for some
n � 3 there exists a partially de�ned near-unanimity function fully de�ned on a
certain subset of Pn.

2.1 Re�ning monotone J�onsson operations

For the following arguments in this chapter, let P be a �nite, bounded poset which
admits monotone J�onsson operations d0(x; y; z); : : : ; dn(x; y; z) for some positive
integer n. In [8], McKenzie de�nes binary operations b0(x; y); : : : ; b2n�2(x; y) on P
by

b0(x; y) = d1(x; x; y); (2.1)

b2i�1(x; y) = di(x; 1; y) for 1 � i � n� 1;

b4i+2(x; y) = d2i+1(x; y; y) for 0 � i � (n� 2)=2; and

b4i(x; y) = d2i(x; x; y) for 1 � i � (n� 1)=2:

These operations are important to us for the following reason.

Lemma 2.1. The operations b0(x; y); : : : ; b2n�2(x; y) on P are monotone and satisfy
the following equations:

x = b0(x; y) = bi(x; x) = b2n�2(y; x) for 0 � i � 2n� 2; (2.2)

b2i(x; y) � b2i+1(x; y) for 0 � i � n� 1;

b2i+1(x; y) � b2i+2(x; y) for 0 � i � n� 2:

11



Proof. The monotonicity of the bi follows immediately by the monotonicity of
the J�onsson operations. Then, by (1.1), for 1 � i � n � 1, we have b0(x; y) =
d1(x; x; y) = d0(x; x; y) = x, b2i�1(x; x) = di(x; 1; x) = x, b2i(x; x) = di(x; x; x) = x,
and either we have b2n�2(y; x) = dn�1(y; x; x) = dn(y; x; x) = x or b2n�2(y; x) =
dn�1(y; y; x) = dn(y; y; x) = x.

Now, by the monotonicity of the J�onsson operations,

b0(x; y) = d1(x; x; y) � d1(x; 1; y) = b1(x; y):

As well, for 0 � i � (n� 1)=2,

b4i(x; y) = d2i(x; x; y) = d2i+1(x; x; y)

� d2i+1(x; 1; y) = b2(2i+1)�1(x; y) = b4i+1(x; y)

and, for 0 � i � (n� 2)=2),

b4i+2(x; y) = d2i+1(x; y; y) = d2i+2(x; y; y)

� d2i+2(x; 1; y) = b2(2i+2)�1(x; y) = b4i+3(x; y):

Hence the second line of (2.2) is satis�ed.

Finally, for 0 � i � n� 2, if i is odd, then

b2i+1(x; y) = di+1(x; 1; y) � di+1(x; x; y) = b2i+2(x; y):

If i is even,

b2i+1(x; y) = di+1(x; 1; y) � di+1(x; y; y) = b2i+2(x; y):

Thus the last inequality is also satis�ed. �

In Theorem 2.3 of [8], McKenzie derives from b0(x; y); : : : ; b2n�2(x; y) monotone
J�onsson operations d0; : : : ; dk on P such that the operations with even indices do
not depend on their second variable. The majority of this chapter is devoted to a
more detailed look at the proof of this theorem. Before the proof is given, however,
we provide some preliminary lemmas which will prove useful.

De�ne a semigroup S to be a set of elements S with an associative binary
operation �. The following lemma will provide a useful result about the order of
elements in a semigroup.

Lemma 2.2. Let S be a �nite semigroup. Then there exists an integer N � 1 such
that for all a 2 S, a2N = aN .

Proof. Let m = jSj. Fix a 2 S and consider the set fa; a2; : : : ; am+1g. Then
au = au+v for some 1 � u � m and 1 � v � m. Notice that this implies

au = auav = au+vav = au+2v = au+3v = � � � = au+nv

for all positive integers n. Hence au = au+m! = auam! yielding am! = a2(m!). Thus,
since a was arbitrary, the result follows by letting N = m!. �
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Let S = ff : P � P ! Pg and de�ne the binary operation fg on S such that
fg(x; y) = f(g(x; y); y) for all x; y 2 P . Notice that

f(gh)(x; y)) = f((gh)(x; y); y) = f(g(h(x; y); y); y) = (fg)(h(x; y); y) = (fg)h(x; y):

Hence the operation is associative so we have the following useful corollary.

Corollary 2.3. There exists a positive integer N such that f (N)(x; y) = f (2N)(x; y)
for all f : P � P ! P and x; y 2 P .

Let m = 2n�2. In the following series of lemmas, we iterate the bi's to obtain a
new set of bi's satisfying various equations. In each instance we replace the original
bi's with our \improved" set of bi's. Our goal is to show that we can choose the bi's
to satisfy (2.2) and the following equations:

b2j(x; y) � y ) b2j(x; y) = b2j+1(x; y) 8j � (m� 1)=2 (2.3)

b2j+1(x; y) � y ) b2j+1(x; y) = b2j+2(x; y) 8j � (m� 2)=2

In order to do so, for 0 � i � m, we de�ne b
(0)
i (x; y) = x and inductively de�ne

b
(j+1)
i (x; y) = bi(b

(j)
i (x; y); y).

Lemma 2.4. If there exist binary operations b0(x; y); : : : ; bm(x; y) on P satisfying

(2.2), then for some N the operations b
(N)
0 (x; y); : : : ; b

(N)
m (x; y) satisfy (2.2) and

b
(N)
i (b

(N)
i (x; y); y) = b

(N)
i (x; y) 8i:

Proof. By Corollary 2.3 and the associativity of the operations, there exists a pos-
itive integer N such that, for 0 � i � m,

b
(N)
i (x; y) = b

(2N)
i (x; y) = b

(N)
i (b

(N)
i (x; y); y):

We claim that the operations b
(N)
0 (x; y); : : : ; b

(N)
m (x; y) satisfy (2.2). For the

following assume that 0 � k < N . Suppose b
(k)
0 (x; y) = x. Then b

(k+1)
0 (x; y) =

b0(b
(k)
0 (x; y); y) = b

(k)
0 (x; y) = x. Hence by induction b

(N)
0 (x; y) = x. As well, if

b
(k)
i (x; x) = x, then b

(k+1)
i (x; x) = bi(b

(k)
i (x; x); x) = bi(x; x) = x: And again by

induction b
(N)
i (x; x) = x Finally, suppose that b

(k)
m (y; x) = x. This implies that

b
(k+1)
m (y; x) = bm(b

(k)
m (y; x); x) = bm(x; x) = x by our previous argument. Thus

b
(N)
m (y; x) = x and the �rst equation of (2.2) holds.

Next, for 0 � j � (m� 1)=2, notice that if for all x; y 2 P , we have b
(k)
2j (x; y) �

b
(k)
2j+1(x; y) for some k where 0 � k < N , then

b
(k+1)
2j (x; y) = b2j(b

(k)
2j (x; y); y)

� b2j+1(b
(k)
2j (x; y); y)

� b2j+1(b
(k)
2j+1(x; y); y) (monotonicity of b2j+1)

= b
(k+1)
2j+1 (x; y):
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Hence, by induction b
(N)
2j (x; y) � b

(N)
2j+1(x; y) for 0 � j � (m � 1)=2. Similarly

we have b
(N)
2j+1(x; y) � b

(N)
2j+2(x; y) for 0 � j � (m � 2)=2 and the rest of (2.2) is

satis�ed. �

Let us now rede�ne each bi(x; y) to be b
(N)
i (x; y) so that our bi's also satisfy

bi(bi(x; y); y) = bi(x; y) 8i: (2.4)

Our next step towards satisfying (2.3) will be to show that we can produce bi's
satisfying (2.2) and (2.4) for which

bi(bj(x; y); y) = bi(x; y) whenever i � j: (2.5)

We prove this in the following lemma.

Lemma 2.5. There exist binary operations b0(x; y); : : : ; bm(x; y) on P satisfying
(2.2) and (2.5).

Proof. From the previous lemma, we can assume the bi's already satisfy (2.2) and
(2.4). We proceed through the proof using an inductive argument on iterations of
our operations.

We start our base case by de�ning c0 = b0 and ci(x; y) = bi(b1(x; y); y) for
1 � i � m. From (2.4), we have

ci(c1(x; y); y) = bi(b1(b1(b1(x; y); y); y); y)

= bi(b1(b1(x; y); y); y) = bi(b1(x; y); y) = ci(x; y)

for all i � 1: Also notice that since b0(x; y) = x,

ci(c0(x; y); y) = bi(b1(b0(x; y); y); y) = bi(b1(x; y); y) = ci(x; y):

Hence the operations c0 : : : ; cm satisfy (2.5) for j 2 f0; 1g. We need to show that
they still preserve (2.2). The �rst line is satis�ed since

c0(x; y) = b0(x; y) = x = bm(b1(y; x); x) = cm(y; x)

and ci(x; x) = bi(b1(x; x); x) = bi(x; x) = x for 1 � i � m. As well,

c0(x; y) = b0(x; y) � b1(x; y) = b1(b1(x; y); y) = c1(x; y):

The rest of inequalities hold from the de�nitions of the ci. Thus the operations
c0; : : : ; cm satisfy (2.2).

By Lemma 2.4, the iterated operations c
(N)
0 ; : : : ; c

(N)
m satisfy (2.2) and (2.4).

As well, to show (2.5) still holds for j 2 f0; 1g we need to use induction. For

0 � i � m, we have ci(c
(N)
0 (x; y); y) = ci(x; y) by Lemma 2.1. If we assume, for

some 1 � k < N , that c
(k)
i (c

(N)
0 (x; y); y) = c

(k)
i (x; y), then

c
(k+1)
i (c

(N)
0 (x; y); y) = ci(c

(k)
i (c

(N)
0 (x; y); y); y) = ci(c

(k)
i (x; y); y) = c

(k+1)
i (x; y):
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Hence c
(N)
i (c

(N)
0 (x; y); y) = c

(N)
i (x; y). Then, since ci(c1(x; y); y) = ci(x; y), we have

ci(c
(N)
1 (x; y); y) = ci(c1(c

(N�1)
1 (x; y); y); y) = ci(c

(N�1)
1 (x; y); y) = : : : = ci(x; y):

Thus by a similar argument c
(N)
i (c

(N)
1 (x; y); y) = c

(N)
i (x; y). Thus (2.5) holds for

j 2 f0; 1g as does the base case of our main induction.

Now, for our inductive hypothesis assume that for 0 < k < m there exists a
set of operations f0(x; y); : : : ; fm(x; y) satisfying (2.2), (2.4), and (2.5) for j � k.
Consider the operations g0; : : : ; gm de�ned such that

gi(x; y) =

(
fi(x; y); if 0 � i � k

fi(fk+1(x; y); y); if k + 1 � i:

We need to show that our new operations satisfy (2.5) for j 2 f0; : : : ; k + 1g. If
i � k, then this is immediate from our inductive hypothesis. If k + 1 � i and
j = k + 1, then (2.4) gives

gi(gj(x; y); y) = fi(fk+1(fk+1(fk+1(x; y); y); y); y)

= fi(fk+1(fk+1(x; y); y); y) = fi(fk+1(x; y); y) = gi(x; y):

If k + 1 � i and j < k + 1, then by our hypothesis

gi(gj(x; y); y) = fi(fk+1(fj(x; y); y); y) = fi(fk+1(x; y); y) = gi(x; y):

Thus (2.5) is satis�ed up to j = k + 1.

We claim that g1; : : : ; gm also satisfy (2.2). By our hypothesis,

g0(x; y) = f0(x; y) = x = fm(fk+1(y; x); x) = gm(y; x):

As well for 1 � i � k, we immediately have gi(x; x) = fi(x; x) = x. For k + 1 �
i � m, we get gi(x; x) = fi(fk+1(x; x); x) = fi(x; x) = x: To prove the inequalities
of (2.2), we only need consider fk and fk+1 as the rest follow by our inductive
hypothesis. If k is even, then

gk(x; y) = fk(fk+1(x; y)) � fk+1(fk+1(x; y)) = gk+1(x; y)

and the odd case follows dually. Hence (2.2) is satis�ed and we can proceed with
the iterating the operations.

By Lemma 2.4, the iterated operations g
(N)
0 ; : : : ; g

(N)
m satisfy (2.2) and (2.4).

By associativity, since g0; : : : ; gm satisfy (2.5), we can show that g
(N)
0 ; : : : ; g

(N)
m also

satisfy (2.5) for j 2 f0; : : : ; k + 1g. Thus our main inductive argument holds.

Therefore we can �nd operations b0(x; y); : : : ; bm(x; y) on P for which (2.2) holds
and (2.5) also holds for all 1 � j � m. �

We end this section by proving there are operations on P for which both the
equations of (2.2) and the implications of (2.3) hold.
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Theorem 2.6. There exist operations b0(x; y); : : : ; bm(x; y) on P satisfying (2.2)
and (2.3).

Proof. Firstly, by Lemma 2.5, there exist operations b0(x; y); : : : ; bm(x; y) on P

satisfying (2.2) and (2.5). Suppose that b2j(x; y) � y for some j � (m� 1)=2. This
implies that

b2j+1(x; y) = b2j+1(b2j(x; y); y) (by (2.5))

� b2j+1(b2j(x; y); b2j(x; y))

= b2j(x; y) (by (2.2)):

On the other hand, by (2.2) we have b2j(x; y) � b2j+1(x; y). Thus b2j(x; y) =
b2j+1(x; y). The second implication of (2.3) follows by a dual argument. �

2.2 Modifying the J�onsson operations with even

indices

In this section, we derive monotone J�onsson operations on P for which the oper-
ations with even indices do not depend on their second variable. We create these
from the operations given by Theorem 2.6.

First, though, for every element x in a poset Q, de�ne lQ(x) to be the maxi-
mum cardinality of all chains in Q with top element x. Then, de�ne mQ(x) to be
the maximum cardinality of all chains in Q with bottom element x. Finally, let
Dk = fx 2 P : lP(x) � k + 1g and Uk = fx 2 P : mP(x) � k + 1g. As an example,
consider the following poset:

��������

��
��
��
��

??
??

??
??

1

��������a

//
//
//
//
//
//
/ �������� b

�������� c

��
��
��
��

��������

0

In this case, D0 = f0g, D1 = f0; a; cg, D2 = f0; a; c; bg, D3 = f0; a; c; b; 1g, U0 =
f1g, U1 = fa; b; 1g, U2 = fc; a; b; 1g, and U3 = f0; c; a; b; 1g.

We note some facts about Dk and Uk in the following lemma.

Lemma 2.7. 1. There exists a positive integer m0 such that Dm0
= P and

Di ( Di+1 for 0 � i � m0 � 1.

2. There exists a positive integer m1 such that Um1
= P and Ui ( Ui+1 for

0 � i � m1 � 1.
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3. If u < v in P and u 2 Ui+1, then v 2 Ui.

4. If u < v in P and v 2 Di+1, then u 2 Di.

The general idea behind the proofs in the following lemmas and theorem is that
we are building a ladder of di's leading from b0 to b1 and then from b1 to b2 and so
on up to bm. This ladder will allow us to work our way up through the Uk's and
Dk's and the �rst element of this ladder, b0, and the last element, bm, will satisfy
the �rst equation of (1.1). At each level, the di's will be monotone, satisfy all of
(1.1), and for every even index i and any triple (x; y; z) 2 P3, we can �nd j such
that di(x; y; z) = bj(x; z).

For any subset S in a poset Q, let S� = fz 2 Q : z �Q x for all x 2 Sg. For
the rest of this section, let b0(x; y); : : : ; bm(x; y) be the operations on P given by
Theorem 2.6. We proceed with the main argument of this section.

Lemma 2.8. There exist monotone operations d
(0)
0 ; : : : ; d

(0)
2m1+1

satisfying all of

(1.1) except possibly dN(z; y; x) = x. Moreover, d
(0)
0 (x; y; z) = b0(x; z), d

(0)
2m1+1

(x; y; z) =

b1(x; z), and for 1 � k � m1 the operation d
(0)
2k (x; y; z) does not depend on its second

variable.

Proof. First de�ne d
(0)
0 (x; y; z) = x and de�ne

d
(0)
1 (x; y; z) =

(
b1(x; z); if fx; yg� [ fx; zg� � U0

x; otherwise.

Note that d
(0)
0 is monotone and clearly satis�es the �rst line of (1.1). We claim that

d
(0)
1 (x; y; z) is monotone and satis�es the necessary J�onsson equations.

Suppose (x1; y1; z1) � (x2; y2; z2). If fx1; y1g
� [ fx1; z1g

� � U0, then fx2; y2g
� [

fx2; z2g
� � U0. Hence d

(0)
1 (x1; y1; z1) = b1(x1; z1) � b1(x2; z2) = d

(0)
1 (x2; y2; z2). If

not, then either

d
(0)
1 (x1; y1; z1) = x1 = b0(x1; z1) � b1(x1; z1) � b1(x2; z2) = d

(0)
1 (x2; y2; z2)

or

d
(0)
1 (x1; y1; z1) = x1 � x2 = d

(0)
1 (x2; y2; z2):

Thus d
(0)
1 (x1; y1; z1) is monotone. Moreover, since b1(x; x) = x, then d

(0)
1 (x; y; x) = x

and if d
(0)
0 (x; x; y) = x = d

(0)
1 (x; x; y) then (1.1) holds. If fx; xg� [ fx; yg� � U0,

then notice that x is the maximal element of P. Thus, since x = b0(x; z) � b1(x; z),

d
(0)
0 (x; x; y) = x = b1(x; z) = d

(0)
1 (x; x; y)

and (1.1) still holds as does our claim.
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Now, let us de�ne the rest of the d
(0)
i 's. For 1 � i � m1, let d

(0)
2i (x; y; z) =

d
(0)
2i�1(x; z; z) and let

d
(0)
2i+1(x; y; z) =

(
b1(x; z); if fx; zg� � Ui�1 or fx; yg

� [ fx; zg� � Ui

x; otherwise.

Because of the de�nition of d
(0)
2i it is su�cient to just show monotonicity of the op-

erations with odd indices. So let us suppose (x1; y1; z1) � (x2; y2; z2). If fx1; z1g
� �

Ui�1, then fx2; z2g
� � Ui�1 and we have

d
(0)
2i+1(x1; y1; z1) = b1(x1; z1) � b1(x2; z2) = d

(0)
2i+1(x2; y2; z2):

The argument for the other two cases is the same as the argument for d
(0)
1 .

Finally, we show that d
(0)
2i and d

(0)
2i+1 preserve (1.1). Note �rst that d

(0)
2i (x; y; x) =

d
(0)
2i�1(x; y; x) = b1(x; x) = x: The third equation of (1.1) follows immediately from

the de�nition of d
(0)
2i . To show the second equation is satis�ed, �x i and suppose

�rst that fx; zg� � Ui�1. Then

d
(0)
2i (x; x; z) = d

(0)
2i�1(x; z; z) = b1(x; z) = d

(0)
2i+1(x; x; z):

If fx; xg� [ fx; zg� � Ui and fx; zg
� * Ui�1, then fxg

� � Ui which implies x 2 Ui.
But there exists some w =2 Ui�1 such that w � x. If w =2 Ui then we have a
contradiction to Lemma 2.7 (3), so it must be that w = x. Hence z � x = b0(x; z)
and by equation (2.3) we have b1(x; z) = b0(x; z) = x. Thus

d
(0)
2i+1(x; x; z) = x = d

(0)
2i�1(x; z; z) = d

(0)
2i (x; x; z):

The �nal case occurs when fx; xg� [ fx; zg� * Ui and fx; zg
� * Ui�1. But in this

case fx; zg� * Ui�2, so we immediately have

d
(0)
2i+1(x; x; z) = x = d

(0)
2i�1(x; z; z) = d

(0)
2i (x; x; z):

Therefore our d
(0)
i 's as de�ned above are all monotone and satisfy the equations

of (1.1) except possibly dN(z; y; x) = x. �

Let S� denote the set of all lower bounds of a set S in a poset Q. The next
lemma gives the operations leading from b2i�1(x; y) to b2i(x; y) for 1 � i � n.

Lemma 2.9. There exist monotone operations d
(2i�1)
0 ; : : : ; d

(2i�1)
2m0+1

satisfying

d
(2i�1)
2j (x; x; y) = d

(2i�1)
2j+1 (x; x; y) for 0 � j � m0;

d
(2i�1)
2j�1 (x; y; y) = d

(2i�1)
2j (x; y; y) for 1 � j � m0;

and d
(2i�1)
j (x; y; x) = x for 1 � j � 2m0 + 1. Moreover, for 1 � i � m, we have

d
(2i�1)
0 (x; y; z) = b2i�1(x; z), d

(2i�1)
2m0+1

(x; y; z) = b2i(x; z), and for 1 � k � m0 the

operation d
(2i�1)
2k (x; y; z) does not depend on its second variable.
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Proof. We proceed similarly to the previous lemma. First de�ne d
(2i�1)
0 (x; y; z) =

b2i�1(x; z) and de�ne

d
(2i�1)
1 (x; y; z) =

(
b2i(x; z); if fb2i�1(x; z); zg� [ fb2i�1(x; z); b2i�1(y; z)g� � D0

b2i�1(x; z); otherwise.

Note that d
(2i�1)
0 is monotone. We claim that d

(2i�1)
1 (x; y; z) is monotone and sat-

is�es (1.1).

Suppose (x1; y1; z1) � (x2; y2; z2). If

fb2i�1(x2; z2); z2g� [ fb2i�1(x2; z2); b2i�1(y2; z2)g� � D0;

then
fb2i�1(x1; z1); z1g� [ fb2i�1(x1; z1); b2i�1(y1; z1)g� � D0:

Hence

d
(2i�1)
1 (x1; y1; z1) = b2i(x1; z1) � b2i(x2; z2) = d

(2i�1)
1 (x2; y2; z2):

If not, then either

d
(2i�1)
1 (x1; y1; z1) = b2i�1(x1; z1) � b2i�1(x2; z2) = d

(2i�1)
1 (x2; y2; z2)

or, by (2.2),

d
(2i�1)
1 (x1; y1; z1) = b2i(x1; z1) � b2i�1(x1; z1) � b2i�1(x2; z2) = d

(2i�1)
1 (x2; y2; z2):

Thus d
(2i�1)
1 (x; y; z) is monotone. Now, if d

(2i�1)
0 (x; x; y) = b2i(x; z) = d

(2i�1)
1 (x; x; y)

then our hypothesis holds. If fb2i�1(x; y); yg� [ fb2i�1(x; y); b2i�1(x; y)g� � D0,
then notice that b2i�1(x; y) is the minimal element of P. Thus, since b2i(x; z) �
b2i�1(x; z),

d
(2i�1)
0 (x; x; y) = b2i�1(x; z) = b2i(x; z) = d

(2i�1)
1 (x; x; y)

and the hypothesis still holds.

We now de�ne the rest of the d
(2i�1)
j 's. For 1 � i � m0, let d

(2i�1)
2j (x; y; z) =

d
(2i�1)
2j�1 (x; z; z) and let

d
(2i�1)
2j+1 (x; y; z) =

8><
>:
b2i(x; z); if fb2i�1(x; z); zg� � Di�1

or fb2i�1(x; z); zg� [ fb2i�1(x; z); b2i�1(y; z)g� � Di

b2i�1(x; z); otherwise.

Because of the de�nition of d
(2i�1)
2j it is su�cient to just show monotonicity of

the operations with odd indices. So let us suppose (x1; y1; z1) � (x2; y2; z2). If
fb2i�1(x2; z2); z2g� � Di�1, then fb2i�1(x1; z1); z1g� � Di�1 and we have

d
(2i�1)
2j+1 (x1; y1; z1) = b2i(x1; z1) � b2i(x2; z2) = d

(2i�1)
2j+1 (x2; y2; z2):
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The argument for the other two cases is the same as the argument for d
(2i�1)
1 .

Next, we show that d
(2i�1)
2j and d

(2i�1)
2j+1 preserve the equations given. The sec-

ond equation follows immediately from the de�nition of d
(2i�1)
2j . To show the �rst

equation is satis�ed, �x j and suppose �rst that fb2i�1(x; z); zg� � Di�1. Then

d
(2i�1)
2j (x; x; z) = d

(2i�1)
2j�1 (x; z; z) = b2i(x; z) = d

(2i�1)
2j+1 (x; x; z):

If fb2i�1(x; z); zg�[fb2i�1(x; z); b2i�1(x; z)g� � Di and fb2i�1(x; z); zg� * Di�1, then
fb2i�1(x; z)g� � Di which implies b2i�1(x; z) 2 Di. But there exists some w =2 Di�1

such that w � b2i�1(x; z). If w =2 Di, then we have a contradiction to Lemma 2.7 (3)
so it must be that w = b2i�1(x; z). Hence z � b2i�1(x; z) and by equation (2.3) we
have b2i(x; z) = b2i�1(x; z). Thus

d
(2i�1)
2j+1 (x; x; z) = b2i�1(x; z) = d

(2i�1)
2j�1 (x; z; z) = d

(2i�1)
2j (x; x; z):

The �nal case occurs when fb2i�1(x; z); zg� [ fb2i�1(x; z); b2i�1(y; z)g� * Di and
fb2i�1(x; z); zg� * Di�1. But in this case fb2i�1(x; z); zg� * Di�2, so we immedi-
ately have

d
(2i�1)
2j+1 (x; x; z) = b2i�1(x; z) = d

(2i�1)
2j�1 (x; z; z) = d

(2i�1)
2j (x; x; z):

Finally, for 0 � j � 2m0 + 1, we immediately have d
(2i�1)
j (x; y; x) = b2i(x; x) =

b2i�1(x; x) = x and our proof is complete. �

A dual argument to the proof of Lemma 2.9 connects b2i(x; z) to b2i+1(x; z) in
the next lemma.

Lemma 2.10. There exist monotone operations d
(2i)
0 ; : : : ; d

(2i)
2m1+1

satisfying

d
(2i)
2j (x; y; y) = d

(2i)
2j+1(x; y; y) for 0 � j � m1;

d
(2i)
2j�1(x; x; y) = d

(2i)
2j (x; x; y) for 1 � j � m1;

and d
(2i)
j (x; y; x) = x for 1 � j � 2m1 + 1. Moreover, for 1 � i � m � 1, we

have d
(2i)
0 (x; y; z) = b2i(x; z), d

(2i)
2m1+1

(x; y; z) = b2i+1(x; z), and for 1 � k � m1 the

operation d
(2i)
2k (x; y; z) does not depend on its second variable.

We are now able to put it all together and produce monotone J�onsson operations
that are independent of their second variable.

Theorem 2.11. There exist monotone J�onsson operations on P for which the
operations on the even indices do not depend on their second variable.

Proof. From Lemmas 2.8, 2.9, and 2.10, we can produce a series of monotone
operations

d
(0)
0 ; : : : ; d

(0)
2m1+1

= d
(1)
0 ; : : : ; d

(1)
2m0+1

= d
(2)
0 ; : : : ; d

(m�1)
0 ; : : : ; d

(m�1)
2m0+1

when we recall thatm = 2n. By de�nition, and since d
(m�1)
2m0+1

(z; y; x) = bm(z; x) = x,
these operations completely satisfy (1.1). More importantly, by de�nition each d
with even indices is independent of its second variable. �
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2.3 A partially de�ned n-nuf on Pn

For any positive integer n, de�ne

An =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P; 1 � i � n

�
:

In this section, we return to Z�adori's argument and prove that (4) implies (3) and
(3) implies (2) from Lemma 1.1. First, we need to produce a set of operations
D1; : : : ; Dk satisfying the equations of (1.2):

D1(x; x; y) = Dk(y; x; x) = Di(x; y; x) = x for 1 � i � k

Di(x; y; y) = Di+1(x; x; y) for 1 � i � k � 1

Lemma 2.12. For some k � 1, suppose P admits monotone J�onsson operations
d0; : : : ; d2k�1 which have the additional property that for 0 � i � k�1, the operation
d2i does not depend on its middle variable. Then P admits operations D1; : : : ; Dk

satisfying (1.2).

Proof. Let Di(x; y; z) = d2i�1(x; y; z) for 1 � i � k. First, by (1.1), we note that
D1(x; x; y) = d1(x; x; y) = d0(x; x; y) = x and Dk(y; x; x) = d2k�1(y; x; x) = x: As
well, for 1 � i � k, we have Di(x; y; x) = d2i�1(x; y; x) = x so the �rst line of (1.2)
is satis�ed. To satisfy the second line, just use (1.1) to get

Di(x; y; y) = d2i�1(x; y; y) = d2i(x; y; y) = d2i(x; x; y) = d2i+1(x; x; y) = Di+1(x; x; y):

�

Now, in order to de�ne our n-nuf properly, we need to �rst de�ne certain subsets

of Pn. For 1 � i � n, let Bi =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P

�
where Bi � Pn.

We can now describe An in terms of the Bi's

Lemma 2.13. For any positive integer n � 2, the set An =
Sn�1

i=2 Bi:

Proof. Just notice that B1 � B2 and Bn � Bn�1. �

We are now able to produce, for some n, a partially de�ned n-near-unanimity
function that is fully de�ned on the set An � Pn.

Theorem 2.14. If P admits operations D1; : : : ; Dk satisfying (1.2), then for some
n, there exists a partially de�ned, monotone n-nuf on Pn that is fully de�ned on

An =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P; 1 � i � n

�
:
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Proof. For 2 � i � k + 1, partially de�ne a function f on Pk+2 such that

f(x; : : : ; x; y
i

; z; : : : ; z) = Di�1(z; y; x)

where (x; : : : ; x; y
i

; z; : : : ; z) 2 Bi and the Di's satisfy (1.2).

We start by claiming that f is well-de�ned. Suppose, for 2 � i < j � k + 1,
that (a; : : : ; a; b

i
; c; : : : ; c) 2 Bi \ Bj. This means either a = b = c, a = b 6= c, or

a 6= b = c. If a = b = c, then

Di�1(c; b; a) = Di�1(a; a; a) = a = Dj�1(a; a; a) = Dj�1(c; b; a) by (1.2).

Otherwise, a = b 6= c implies that j = i+ 1. Hence, by (1.2) again,

f(a; : : : ; a
i
; c; : : : ; c) = Di�1(c; a; a) = Dj�1(c; c; a) = f(a; : : : ; a; c

i+1
; : : : ; c):

A similar argument holds for a 6= b = c and it follows that f is well-de�ned. By
Lemma 2.13, f has domain equal to Ak+2. That f is an (k+2)-nuf now falls easily
from the �rst equation of (1.2).

Now we show that f is monotone. Let us suppose that

(a; : : : ; a; b
i
; c; : : : ; c) � (d; : : : ; d; e

j
; f; : : : ; f)

where (a; : : : ; a; b
i
; c; : : : ; c) and (d; : : : ; d; e

j
; f; : : : ; f) are both elements of Ak+2. We

have a few cases to consider. First, if i = j, then, by the monotonicity of the Di's,
we immediately have

f(a; : : : ; a; b
i
; c; : : : ; c) = Di�1(c; b; a) � Di�1(f; e; d) = f(d; : : : ; d; e

i
; f; : : : ; f):

Next, let us assume i < j. Then a � d, b � d, c � e, and c � f . If j � i+ 2, then
we also get c � d which gives us

f(a; : : : ; a; b
i
; c; : : : ; c) = Di�1(c; b; a)

� Di�1(c; d; d) (by monotonicity)

= Di(c; c; d) (by (1.2))

� Di(c; d; d)

= : : :

� Dj�2(c; d; d)

= Dj�1(c; c; d)

� Dj�1(f; e; d) = f(d; : : : ; d; e
j
; f; : : : ; f):

If j = i+ 1, however, we get

f(a; : : : ; a; b
i
; c; : : : ; c) = Di�1(c; b; a) � Di�1(c; d; d) = Di(c; c; d)

� Di(f; e; d) = Dj�1(f; e; d) = f(d; : : : ; d; e
j
; f; : : : ; f):

When j < i, proceed dually. Thus f is monotone and our proof is complete. �
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In the next chapter, we will begin to explore in more depth the idea of zigzags in
�nite, bounded posets. We will then use Theorem 2.14 and various other properties
of these zigzags to show that we can �nd a sort of bound on the size of these
subposets.
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Chapter 3

Zigzags in �nite, bounded posets

In the �rst section of this chapter we will give some useful properties of the zigzags
and show that for every zigzag (H; f), we can �nd a standard zigzag which has
(H; f) as a monotone image. In the second section we prove that if a �nite, bounded
poset P satis�es property (2) of Lemma 1.1, then we can place a �nite bound on
the diameter of all P-zigzags.

3.1 Standard P-zigzags

We start with some basic de�nitions. The comparability graph of a poset P is the
undirected graph on the set P such that there is exactly one pair fa; bg in the edge
set if and only if a is comparable to b in P for any a 6= b in P . Similarly, the
covering graph of P is the undirected graph on the set P such that fa; bg is in the
edge set if and only if a �P b. The poset P is called connected if its comparability
graph is a connected graph. Now, if the comparability graph of P forms sequence
of vertices such that from each of its vertices there is an edge to the next vertex in
the sequence and in the sequence no vertex is repeated, then P is called a fence.

In a connected poset P, de�ne the distance between two elements a and b in
P to be n � 1 where n is the smallest integer for which there exists an n-element
fence contained in P connecting a and b. We denote it d(a; b). Next, de�ne the
up distance from elements a to b in P to be the least positive integer n such that
there is a subset fa0; : : : ; ang � P with a = a0, b = an, and a0 � a1 � a2 � � � � :
The down distance from a to b is de�ned dually. Finally, the diameter of P is the
supremum of the set fd(a; b) : a; b 2 Pg. As an example, consider Figure 3.1 and
notice that the diameter of P is 3 and the up distance from a to f is 3 but the
down distance from a to f is 2.

For the rest of this chapter, P will always be a �nite, bounded poset. We are
now able to restate and prove Proposition 3.1 and Claims 3.2 through 3.4 of [12]
in the following lemmas, the �rst of which gives us an alternate characterization of
monotone zigzags.
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Figure 3.1: A poset P and its comparability graph

Lemma 3.1. Let (H; f) be a �nite P-coloured poset. Then (H; f) is a P-zigzag
if and only if H is connected, (H; f) is not P-extendible, and by cancelling any
covering pair in (H; f), the resulting coloured poset is P-extendible.

Proof. The nonmonotone case is immediate from Proposition 1.4. So let us assume
that f is monotone on its domain. For the �rst direction, we only need show that
the P-zigzag (H; f) is connected as the rest follows from the de�nition. Suppose
otherwise. Then the comparability graph of H contains at least two distinct dis-
connected components H1; : : : ; Hn. Since (H; f) is a zigzag, each P-coloured poset
(Hi; f jHi

) is P-extendible. Let f 0jHi
be the fully-de�ned monotone map on Hi.

Then f 0 is a fully-de�ned monotone map on H. This is a contradiction so (H; f)
must be connected.

Now assume H is connected, (H; f) is not P-extendible, and by cancelling
any covering pair in (H; f), the resulting coloured poset is P-extendible. Let
(H0; f jH0) be a P-nonextendible P-coloured poset contained in (H; f). We show
that (H0; f jH0) must equal (H; f). First note that (H0; f jH0) must contain all the
covering pairs in (H; f). This implies that H0 contains all elements in the compa-
rability graph of H that are in components of size greater than or equal to 2. But
H is connected so the comparability graph has only one component and it is of
size greater than 1 (otherwise (H; f) would be P-extendible). Thus H � H0 which
means H0 = H. Hence f jH0 = f and (H0; f jH0) = (H; f). �

The next lemma gives us more information about the noncoloured elements of
a monotone P-zigzag.

Lemma 3.2. In any monotone P-zigzag (H; f), the subgraph spanned by N(H; f)
in the covering graph of H is connected. Moreover, if a 2 C(H; f) and there exists
a b 2 H such that a � b or b � a, then b 2 N(H; f).

Proof. Suppose otherwise. Then the subgraph spanned by N(H; f) has at least two
components. Pick one component; call it H1. The P-coloured poset (H; f)nH1 is
P-extendible as is (H; f)n(N(H; f)nH1). Since all the elements in H1 are incompa-
rable to the elements in N(H; f)nH1, these two extensions yield a piecewise fully-
de�ned extension of (H; f). This contradicts (H; f) being a P-zigzag so N(H; f)
must be connected.
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Now let a 2 C(H; f) and suppose a � b. If b 2 C(H; f), then cancelling the
covering pair (a; b) would yield a P-extendible poset. Since a and b are already
coloured in (H; f), it follows that f(a) � f(b) so putting (a; b) back yields a mono-
tone extension of (H; f). This is a contradiction so it must be that b 2 N(H; f).
A similar argument shows that b 2 N(H; f) when b � a. �

Lemmas 3.1 and 3.2 begin to give us a good idea as to the general structure of
monotone P-zigzags. They are connected posets with a central, connected subposet
of noncoloured elements with single coloured elements attached in covering pairs
to this central subposet. Consider again the zigzags given in Examples 1.2 and 1.3
and ahead in Figure 3.2.

This added structure comes in very handy in the following chapter but it also
allows us to prove the next lemma. Before that, though, we must de�ne a monotone
map between two P-coloured posets (H0; f 0) and (H; f) to be a monotone map g :
H0 ! H such that for all x 2 C(H0; f 0), we have f 0(x) = f(g(x)) and g(N(H0; f 0)) �
N(H; f). If such a monotone map exists and it is onto, then we say (H; f) is a
monotone image of (H0; f 0).

Lemma 3.3. For every P-zigzag (H; f), there exists a P-zigzag (H0; f 0) (possibly
the same) such that

1. N(H; f) = N(H0; f 0);

2. every coloured element of (H0; f 0) occurs in exactly one covering pair of H0;

3. (H; f) is a monotone image of (H0; f 0) under a map g which is the identity
on N(H0; f 0) and which sends covering pairs of H0 to covering pairs of H.

Before we prove this, consider the posets in Figure 3.2. The P-zigzag (H; f) is
a monotone image of (H0; f 0) under the mapping �xing the non-coloured elements
and collapsing the corresponding coloured elements together.
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Figure 3.2: (H; f) as a monotone image of P-zigzag (H0; f 0)
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Proof. The nonmonotone case is trivial so assume for the following that (H; f) is a
monotone P-zigzag. We �rst de�ne a certain P-coloured poset (H0; f 0), then show
that it is a P-zigzag using Lemma 3.1. First, de�ne the following sets

N = N(H; f);

C1 = f(x; y) : x 2 C(H; f); y 2 N(H; f); and x �H yg ; and

C2 = f(x; y) : x 2 N(H; f); y 2 C(H; f); and x �H yg :

Let H 0 = N [ C1 [ C2. Next, let us de�ne the following relation on H 0:

�H0 = f(x; y) : x; y 2 N; x �H yg

[ f((x; y); y) : (x; y) 2 C1g [ f(x; (x; y)) : (x; y) 2 C2g :

Note that elements of C1 are C2 are now in only one pair from �H0 .

We claim that �H0 does not contain any cycles. If we suppose otherwise, then
there exists an element a 2 H 0 and fb1; : : : ; bng � H 0 such that a �H0 b1 �H0

� � � �H0 bn �H0 a. If a 2 N , then for some 1 � i � n, there must be a bi 2 C1 [ C2

since �H is a proper covering relation. But if bi 2 C1, then there does not exist an
element z 2 H 0 with z �H0 bi while if bi 2 C2, then there does not exist an element
z 2 H 0 with bi �H0 z. If a 2 C1, then b1 2 N and we eventually run into the same
contradiction and if a 2 C2, then a is not covered by any elements. Hence �H0 does
not contain any cycles and generates a partial order H 0.

Now we claim that if a �H0 b, then there does not exist a non-empty set
fb1; : : : ; bng � H 0 such that a �H0 b1 �H0 � � � �H0 bn �H0 b. The case where
a 2 C2 does not make sense so suppose a 2 C1. Then a is covered by only one
element b so b = b1. Thus by our previous cycle argument, we cannot get a chain
a �H0 b1 = b �H0 � � � �H0 bn �H0 b. If a 2 N , then either b 2 C2 or b 2 N . If
b 2 C2, then we are done. If b 2 N , then clearly either fb1; : : : ; bng � N and we
are done since �H is a proper covering relation or, for some 1 � i � n, the element
bi 2 C2 and any covering chain ends. Thus, let �H0 be the partial relation on H 0

generated by �H0 (that is, the reexive, transitive closure of �H0 in (H 0)2.) We
have proved that �H0 is the covering relation for �H0 .

To �nish our de�nition, let f 0 be the partial map on H 0 fully de�ned on C1[C2

such that

f 0((x; y)) =

(
f(x); if (x; y) 2 C1, and

f(y); if (x; y) 2 C2

to get the P-coloured poset (H0; f 0). To summarize, we have taken each element
x 2 C(H; f) and replaced it with numerous elements, speci�cally one for each
covering pair that x is in. We note that for each copy x0 of x corresponding to
the covering pair x �H y, the covering pair x0 �H0 y is the unique covering pair
to which x0 belongs. We then de�ned the colouring of H0 so that f 0(x0) = f(x) for
each copy x0 of x.

28



We now show that (H0; f 0) satis�es our hypothesis. De�ne g : H 0 ! H such
that

g(z) =

8><
>:
z; if z 2 N ,

x; if z = (x; y) 2 C1, and

y; if z = (x; y) 2 C2.

By our de�nition of H 0, it should be clear that g is onto. As well, g preserves
colourings since for (x; y) 2 C1 we have f(g((x; y))) = f(x) = f 0((x; y)) and simi-
larly for C2. So we only need show is that g is monotone. It su�ces to prove that
x �H0 y implies that g(x) �H g(y). In fact, we can easily see that x �H0 y implies
g(x) �H g(y). Thus g is monotone and by our previous observations, (H; f) is a
monotone image of (H0; f 0).

Now we need to prove that (H0; f 0) is a P-zigzag. Note that the subgraph
spanned by N(H0; f 0) in the covering graph of H0 is equal to the subgraph spanned
by N(H; f) in the covering graph of H. By Lemma 3.2, the latter is connected
so N(H0; f 0) must be as well. Then, every other element of H0 is in C1 [ C2 and
either has an upper or lower cover in N . Hence these elements are comparable to
something in N and the comparability graph of H0 is connected. Thus (H0; f 0) is
connected.

Next, suppose for a contradiction that (H0; f 0) were extendible. Then there
would be a monotone extension of f 0 preserving every covering pair. Without loss of
generality, for every y 2 N(H0; f 0), we can then de�ne f 0(y) such that f 0(x0) � f 0(y)
for all x0 �H0 y. But then f(x) = f 0(x0) � f 0(y) for all x �H y and this will extend
f as well. This is a contradiction so (H0; f 0) must be non-P-extendible.

Finally, suppose we cancel a covering pair (a; b) in (H0; f 0). Notice that g(a) �H
g(b), so the coloured poset (H; f)n f(g(a); g(b))g is P-extendible since (H; f) is a P-
zigzag. Let h be the extension of f to N(H; f). Then, since N(H0; f 0) = N(H; f),
the map h is monotone on N(H0; f 0) as well. Now without loss of generality,
if we consider any cover pair (w; z) with w 2 C1 and z 2 N , we get f 0(w) =
f(g(w)) � h(z). Thus h is a monotone extension of f 0 to N and (H0; f 0)n f(a; b)g
is P-extendible. Therefore, by Lemma 3.1 the P-coloured poset (H0; f 0) is a P-
zigzag. �

Call a coloured poset for which every coloured element is in exactly one covering
pair a standard coloured poset.

3.2 Bounding the diameter of a P-zigzag

Before we prove the main result of this chapter, we need a lemma relating the
diameter of monotone P-zigzags to the diameter of their monotone images.

Lemma 3.4. Let (H; f) be a monotone P-zigzag and let (H0; f 0) be the P-zigzag
given by Lemma 3.3. The diameter of (H0; f 0) is greater than or equal to the diam-
eter of (H; f).
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Proof. Let g be the onto, monotone map from (H0; f 0) to (H; f). Suppose the
diameter of H is equal to n. Then there exists elements a and b in H with distance
n between them. In H0, pick some a0 2 g�1(a) and b0 2 g�1(b). Now suppose
d(a0; b0) = k < n in H0. Then there exists a (k � 1)-element subfence between a0

and b0. But since g is onto and monotone, this implies that there exists a (k � 1)-
element subfence inH between g(a0) = a and g(b0) = b. This contradicts d(a; b) = n
so d(a0; b0) � n. Hence the diameter of H0 must be greater than or equal to the
diameter of H. �

We now have enough information to put another piece together in the main
argument of this thesis. In order to do so, de�ne an up set of P to be a subset S
of P such that, for all x 2 S and y 2 P , if x � y, then y 2 S. De�ne a down set
of P dually. We now prove in the next theorem that there exists a bound on the
diameter of all P-zigzags when P satis�es (2) of Theorem 1.1.

Theorem 3.5. If for some n, there exists a partially de�ned, monotone n-nuf on

Pn that is fully de�ned on An =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P; 1 � i � n

�
,

then there exists a �nite m such that every P-zigzag has a diameter at most m.

Proof. Suppose that there is a P-zigzag (Q; g) with a diameter of at least n + 2.
Clearly (Q; g) is a monotone P-zigzag. We shall prove that this yields a contradic-
tion hence giving a bound on the diameters of all P-zigzags. By Lemma 3.3, we
can �nd a standard monotone P-zigzag (H; f) with monotone image (Q; g) such
that N(H; f) = N(Q; g). Then, by Lemma 3.4, the diameter of (H; f) is at least
n+ 2. Hence, since (H; f) is standard, the diameter d of N(H; f) satis�es d � n.

Now, this means there exists some a and b in N(H; f) such that d(a; b) = d.
If we cancel the element a, then we can �nd a monotone extension of (H; f)n fag.
Call it fa. Similarly, let fb be a monotone extension of (H; f)n fbg. In addition, we
need to de�ne, for 1 � i � d+ 1,

Bi = fh 2 N(H; f) : h has down distance i from a 2 N(H; f)g :

Clearly a 2 B1. Also, de�ne d0 = d if Bd+1 = ; and let d0 = d+1 otherwise. Notice
now that, for 1 � i � d0, the sets B1; : : : ; Bd0 are non-empty and form a partition
of N(H; f). As well, we have b 2 Bd0 .

We now make two important observations about B1; : : : ; Bd0 . The �rst obser-
vation is that, for 1 � i � d0, when i is odd the set Bi is a down-set and when
i is even Bi is an up set. We argue the odd case only as the even case follows
dually. Suppose i is odd and x � y for some x 2 N(H; f) and y 2 Bi. Then there
exists fa0; : : : ; aig � N(H; f) such that a = a0 � a1 � � � � � ai�1 � ai = y � x.
Hence a = a0 � a1 � � � � � ai�1 � x and the down distance from a to x is at
most i. Suppose the down distance from a to x is some j < i. If j is odd, then
j + 1 < i so there exists fb0; : : : ; bjg � N(H; f) such that a = b0 � b1 � � � � �
bj�1 � bj = x � y. This would imply that the down-distance from a to y is less
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than or equal to j + 1 which is a contradiction. If we suppose j is even, then there
exists fc0; : : : ; cjg � N(H; f) such that a = c0 � c1 � � � � � cj = x � y which
yields a similar contradiction. Hence it must be that x 2 Bi and it follows that Bi

is a down set.

Our second observation is that when 2 � i � d0 the set N(H; f)n
Si

j=1Bj andSi�1
j=1Bj span two subposets that are not connected in N(H; f)nBi. If we suppose

otherwise, then for some i < j � d0 and x 2 Bj there would exist a y 2
Si�1

j=1Bj

with either x < y or y < x. This would imply that the down distance from a to
x is either less than or equal to i � 1 or (i � 1) + 1 = i which is a contradiction.
Hence our second observation holds.

We now have enough information to de�ne a monotone map from H to P which
will extend (H; f) and give us the contradiction necessary to complete the proof.
For 1 � i � d0, de�ne gi : H ! P in the following way. For x 2 N(H; f), and
i � 1, de�ne

gi(x) =

8>>><
>>>:
fb(x); if x 2

Si�1
j=1Bj

fa(x); if x 2 N(H; f)n
Si

j=1Bj

0; if x 2 Bi and i is odd

1; if x 2 Bi and i is even:

For each x 2 C(H; f), by Lemma 3.2 there is a unique covering pair with element
y 2 N(H; f) so this allows us to de�ne

gi(x) =

8><
>:
0; if x 2 C(H; f), y 2 Bi, and i is odd

1; if x 2 C(H; f), y 2 Bi, and i is even

f(x); if y 2 N(H; f)nBi.

Since B1; : : : ; Bd0 are mutually disjoint, the functions gi are well-de�ned on H.

We claim that they are monotone as well. Suppose w <H z and i is odd. Then

gi(x) =

8>>>>>><
>>>>>>:

fb(x); if x 2
Si�1

j=1Bj

fa(x); if x 2 N(H; f)n
Si

j=1Bj

0; if x 2 Bi

0; if x 2 C(H; f), y 2 Bi, and x �H x0 or x0 �H x

f(x); otherwise.

We have a few cases to consider.

Case 1: Suppose z 2 Bj. Then either w 2 N(H; f), so since Bi is a down-set,
w 2 Bi or w �H w0 2 Bi. Either way, gi(w) = 0 �P 0 = gi(z).

Case 2: If z 2 C(H; f) and z �H z0 2 Bi, then w <H z doesn't make sense since
(H; f) is standard.

Case 3: If z 2 C(H; f) and z0 �H z for some z0 2 Bi, then since z is in only one
covering pair, w � z0. By a similar argument to Case 1, gi(w) = 0.
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We are now able to assume that w and z are in cases 1, 2, or 5 of the de�nition of gi.
Moreover, we can assume they are in di�erent cases otherwise we can can just use
the monotonicity of fa, fb, and f . Now by our second observation, it is not possible
to have one of w and z in x 2

Si�1
j=1Bj and the other in N(H; f)n

Si

j=1Bj. Hence
one of w and z is in the �rst two cases of gi and one is in the �fth. Thus without
loss of generality, if w in

Si�1
j=1Bj, then z is also must be in the domain of fa and

we can just use the monotonicity of fa. If one of w and z is in N(H; f)n
Si

j=1Bj,
then we just use a similar argument. This covers all possible cases so we always
have gi(w) �P gi(z) when w <H z. Therefore gi is a monotone map from H to P
when i is odd and the even case follows dually.

The functions gi are monotone but do not necessarily extend f . We need to use
our original assumption to complete the proof. Recall that there exists monotone
partial n-nuf that is fully de�ned on An. Call it Mn. Since d0 � n, de�ne the map
Md0 on Ad0 such that Md0(xd0) = Md0(x1; : : : ; xd0) = Mn(x1; : : : ; xn) = Mn(xn). It
is easy to see that Md0 is a partial d0-nuf fully de�ned on Ad0 since, for n < i � d0,

Md0(x; : : : ; x; y
i

; x; : : : ; x) = Mn(x; : : : ; x) = x:

Is it monotone? Yes, for if kd0 = (k; : : : ; k; l
i
;m; : : : ;m) � (o; : : : ; o; p

j

; q; : : : ; q) = od0

in Pd0 , then kn � on in Pn, and hence Md0(kd0) = Mn(kn) �Mn(on) = Md0(od0):

Now, we claim that the monotone mapMd0(g1; : : : ; gd0) : H! P extends f . We
must �rst ask if it is actually even a well-de�ned, total map onH. More speci�cally,
is (g1(x); : : : ; gd0(x)) 2 Ad0 for all x 2 H? Suppose x 2 N(H; f). Then there exists
an i such that x 2 Bi. Consequently, we have

(g1(x); : : : ; gd0(x)) = (fb(x); : : : ; fb(x); gi(x); fa(x); : : : ; fa(x)) 2 Ad0 :

Otherwise, if x 2 C(H; f), then for some 1 � i � d0, the element x is in a covering
pair with an element in Bi. Hence

(g1(x); : : : ; gd0(x)) = (f(x); : : : ; f(x); gi(x); f(x); : : : ; f(x)) 2 Ad0 :

Moreover,

Md0(g1(x); : : : ; gd0(x)) = Md0(f(x); : : : ; f(x); gi(x); f(x); : : : ; f(x)) = f(x)

which shows that our map restricts to f on C(H; f). Thus we have a monotone
extension of f to P which contradicts the fact that (H; f) is a P-zigzag. Conse-
quently, our assumption that there exists a P-zigzag with diameter of at least n+2
must be false. This completes the proof. �

Theorem 3.5 gives us a bound on the diameters of P-zigzags and we will use
this to show in Chapter 4 that there are actually only a �nite number of P-zigzags.
It is important to note that in [10] Tardos gives an example of a �nite, bounded
poset P with P-zigzags which can be constructed to have diameters of any size.
These can be seen in Figure 3.3 on the following page.
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Figure 3.3: A P-zigzag with unbounded diameter
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Chapter 4

Bounding the number of zigzags

of a �nite, bounded poset

We begin this chapter with various lemmas that give us a better idea of the shape
of zigzags of �nite, bounded posets. Using those results, we proceed with a fairly
long and technical proof that a �nite, bounded poset P with arbitrarily large P-
zigzags must have P-zigzags with arbitrarily large diameter. For us, the useful
consequence is that P can have at most �nitely many P-zigzags if it has a �nite
bound on the diameter of its zigzags. Then, in the last section we complete the
proof that a �nite, bounded poset P admits J�onsson operations if and only if it
admits a near-unanimity function. Note again that for the following chapter, P is
always a �nite, bounded poset.

4.1 The shape of a zigzag

In Section 1.3, we started to get some idea of the structure of P-zigzags. In the
following lemmas in this section, we �ll in the details. The �rst lemma of this
chapter gives us more information about the colouring of elements in a P-zigzag.

Lemma 4.1. Let (H; f) be a monotone P-zigzag and let a and b be two distinct
elements in C(H; f).

1. If a < b, then f(a) 6= f(b).

2. If there exists a c 2 N(H; f) such that c � a and c � b, then f(a) � f(b).

Proof. 1. Suppose a < b but f(a) = f(b). Lemma 3.2 tells us that there must be
a c 2 N(H; f) such that a < c < b. If we consider the P-coloured poset given
when c is cancelled from (H; f), we can �nd a monotone extension f 0. Since
f 0 preserves f , we can put c back and colour it such that f(a) = f(c) = f(b).
But this will yield a P-extension of (H; f) which cannot happen. Hence
f(a) 6= f(b).
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Figure 4.1: Lemma 4.1

2. Let c � a; b but suppose f(a) � f(b). If we consider (H; f)n f(c; b)g, then we
can extend f fully to all of H. Since f(c) � f(a) � f(b), we can put (c; b)
back and we will have a P-extension of (H; f). This is a contradiction so
f(a) � f(b).

�

De�ne, for any poset Q, an element a 2 Q to be retractable if we can �nd some
non-onto monotone map on Q that is the identity on Qn fag. The next lemma tells
that only the coloured elements of a monotone zigzag are retractable.

Lemma 4.2. If (H; f) is a monotone P-zigzag, then N(H; f) has no retractable
elements of H.

Proof. We claim that every monotone map g from H to itself that �xes elements
of C(H; f) must be onto. Suppose g is the identity on C(H; f) but g(H) ( H.
Then there exists an extension f 0 of g(H) to P since (H; f) is a P-zigzag. But
this means that, since f 0 � g is monotone and restricts to f on C(H; f), our P-
zigzag (H; f) is P-extendible. This contradiction must mean that g is onto and our
claim holds. Consequently, the only possible retractable elements in (H; f) are the
coloured elements. �

This next lemma gives us more information about the maximal chains in a
P-zigzag.

Lemma 4.3. In any P-zigzag, the top and bottom elements of a maximal chain are
coloured.

Proof. The nonmonotone case is trivial. For the monotone case, if we suppose
otherwise, then we can remove the o�ending element to get a P-extendible poset.
Then all we need do is put the o�ending element back and colour it 0 or 1 to extend
(H; f). �

For posets Q and K, de�ne a bijective map f : Q ! K to be an order-
isomorphism when, for all a and b inQ, we have a � b inQ if and only if f(a) � f(b)
in K. The next lemma will give us the complete picture of monotone P-zigzags
with only one or two noncoloured elements. It will also provide the base case for
the theorem that follows.
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Lemma 4.4. Let (H; f) be a monotone P-zigzag.

1. If jN(H; f)j = 1, then (H; f) is the �rst poset seen in Figure 4.2 where m
and n are nonnegative integers such that m+n > 0 and m and n do not equal
1. Moreover, f is an order-isomorphism on its domain.

2. If jN(H; f)j = 2, then (H; f) is the second poset in Figure 4.2 where k � 1,
l � 1, and m and n do not equal 1. Moreover, the only comparable pairs of
elements in the range of f but not seen in the �gure are of the form di < cj,
cj < bs, or at < di for 1 � i � k, 1 � j � l, 1 � s � m, and 1 � t � n.

�

b1

??
??

??
?

�

b2 � � � � � � �
bm

ooo
ooo

ooo
oo

��������

��
��
��
�

OOO
OOO

OOO
OO

�a1
�a2
� � � � � � �an

�

b1

??
??

??
?

�

b2 � � � � � � �
bm

ooo
ooo

ooo
oo

��������

WWWWW
WWWWW

WWWWW
WWWW

��
��
��
�

OOO
OOO

OOO
OO �

c1

??
??

??
?

�

c2 � � � � � � �
cl

ooo
ooo

ooo
oo

�
d1

�
d2

� � � � � � �
dk

��������

��
��
��
�

OOO
OOO

OOO
OO

�a1
�a2
� � � � � � �an

Figure 4.2: Zigzags with one or two noncoloured elements

Proof. 1. First, notice that the picture comes immediately from our assump-
tion and Lemma 3.2. As well, it should be clear that m + n > 0. Also,
without loss of generality, m 6= 1 otherwise the noncoloured element would
be retractable by mapping it to bm, contradicting Lemma 4.2. Finally, f is
an order-isomorphism on its domain since, without loss of generality, for all
1 � i; j � m with i 6= j, the element f(bi) is not comparable to f(bj) in P by
Lemma 4.1.

2. We know from Lemma 3.2 that N(H; f) is connected and every coloured el-
ement is in a covering pair with noncoloured. Moreover, (H; f) is standard
since, without loss of generality, if a coloured element is above the great-
est noncoloured element then it is already above the least noncoloured ele-
ment. Hence it would only ever be connected in the covering graph to one
noncoloured element. Thus we get the second �gure seen. Now, without
loss of generality, if k = 0 then the greatest noncoloured element would be
retractable by sending it to the least noncoloured element and for similar
reasons, m;n 6= 1.

For the �nal claim, suppose there exists f(x) and f(y) in the range of f such
that f(x) � f(y) but x � y in H. Clearly, y � x since f is monotone so
y and x must be incomparable. By Lemma 4.1(2), there does not exist a
z 2 N(H; f) in a covering pair both with x and y. So let us suppose for
some 1 � j � l and 1 � s � m that f(x) = bs and f(y) = cj. Then cj � bs
so in (H; f)n fcjg any colouring of the least noncoloured element will still
have to preserve the same inequalities as (H; f). Thus (H; f)n fcjg is not

37



P-extendible which contradicts the minimality of (H; f). Hence cj � bs and
using similar arguments for the other cases, we are left only with the strict
inequalities given in the hypothesis.

�

We now have a complete picture of P-zigzags with one or two noncoloured
elements. De�ne the length between two elements a and b in a poset Q to be the
maximum cardinality of all chains between a and b and denote it lQ(a; b). The next
theorem lets us produce standard monotone P-zigzags whose maximal chains have
lengths with bounds related to the lengths of the corresponding chains in P.

Theorem 4.5. For every monotone P-zigzag (H; f), there exists a standard mono-
tone P-zigzag (H0; f 0) such that (H; f) is a monotone image of (H0; f 0) and for every
maximal chain a = a1 < � � � < an = b in H0, we have n � lP(f

0(a); f 0(b)) + 1.
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(H; f)

Figure 4.3: The length lH(a; e) = 5 � 4 = lP(f(a); f(e)) + 1

Proof. First recall that, by Lemma 4.3, the top and bottom elements of a maximal
chain in a P-zigzag are coloured. Hence it is reasonable to consider the length
between their images in P.

Now, the main idea of this proof is an induction on the cardinality of N(H; f).
The base case jN(H; f)j = 1 follows quickly from Lemma 4.4 when we notice that
the zigzag is already standard and every maximal chain has at most 3 elements.
Hence for any two elements a and b in C(H; f) we have f(a) 6= f(b) so certainly
3 � lP(f(a); f(b))+1. Thus let (H; f) be a P-zigzag such that jN(H; f)j = m � 2.
As our inductive hypothesis, suppose that every P-zigzag with m� 1 noncoloured
elements satis�es the theorem. We produce a P-zigzag (H0; f 0) satisfying the claim
using the following steps:

Step 1: Fix some maximal element h 2 N(H; f). For each p 2 P, let f+p (h) = p and
f+p (c) = f(c) for c 2 C(H; f) to get a new P-coloured poset (H; f+p ). Then, since
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(H; f) is nonextendible, (H; f+p ) must be nonextendible so we can �nd a P-zigzag
(Hp; fp) contained in it. Moreover, we can assume h 2 Hp since otherwise (H; f)
would properly contain a P-zigzag. Now, if there exists a nonmonotone zigzag
contained in the poset, then let that be (Hp; fp). Let tp be the monotone map
embedding (Hp; fp)n fhg in (H; f). (Consider the poset P and P-zigzag (H; f) in
Figure 4.3 and then consider the corresponding coloured posets and P-zigzags in
Figure 4.4.)
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Figure 4.4: First step of Theorem 4.5

Step 2: If (Hp; fp) is nonmonotone, then let (Qp; gp) be the same coloured poset
as (Hp; fp). Otherwise, fp will be monotone and (Hp; fp) will satisfy the inductive
hypothesis. Hence there exists a standard P-zigzag (Qp; gp) with monotone image
(Hp; fp) that satis�es our claims about maximal chain lengths. For each p 2 P, let
sp be the onto monotone map taking (Qp; gp) to (Hp; fp). It is important to note
that, in the monotone case, all the elements in (Qp; gp) mapping to h 2 (Hp; fp)
under sp are maximal in (Qp; gp). (In our example from Figure 4.4, every (Hp; fp) =
(Qp; gp) for all p 2 P and each one looks like one of the two P-zigzags shown.)

Step 3: Now let us create a new standard P-coloured poset (Q; g). We do this
by gluing all the elements which are preimages of h in each (Qp; gp) together in
a noncoloured point h0 but preserve all the other colourings and orders of the
P-zigzags. In more detail, let Q = fh0g

S
p2P Qpn

�
s�1p (h)

	
with the colourings

inherited from each gp (except on h0). De�ne the covering relation of Q to be

�Q =
[
p2P

n
�
Qpnfs�1p (h)g

o
[
�
(x; h0) : x �Qp

y for some p 2 P; y 2 s�1p (h)
	

[
�
(h0; x) : y �Qp

x for some p 2 P; y 2 s�1p (h)
	
:

Then, using the fact that cancelling h0 from (Q; g) would only disconnected compo-
nents with distinct partial relations, it is straightforward to show that �Q generates
a partial relation �Q on Q. (See Figure 4.5, a continuation of the example in Fig-
ure 4.4.)
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Figure 4.5: Third step of Theorem 4.5

Step 4: Finally, notice that (Q; g) is not extendible as any colouring of h0 by some
p 2 P will cause (Qp; gp) � (Q; g). Hence (Q; g) must contain a P-zigzag, call
it (Q0; g0), and we can standardize (Q0; g0) using Lemma 3.3 to get a standard P-
zigzag (H0; f 0). Let q be the monotone map embedding (Q0; g0) into (Q; g) and let
r be the monotone map from (H0; f 0) onto (Q0; g0). (See Figure 4.6.)
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Figure 4.6: Fourth step of Theorem 4.5

We claim that this new P-zigzag (H0; f 0) has (H; f) as a monotone image. Let
m : (H0; f 0)! (H; f) be de�ned such that

m(x) =

(
h; if x = h0

tp(sp(q(r(x)))); if x 2 (Qp; gp)n fh
0g:

On C(H0; f 0), the map m is simply a composition of monotone maps so it clearly
preserves colourings. To show monotonicity between H0 and H, suppose a < b
in (H0; f 0). If, for some p 2 P, the elements q(r(a)) and q(r(b)) are in the same
component (Qp; gp)ns

�1
p (h) of Q or a = h or b = h, then m(a) � m(b) by our

construction of Q. If q(r(a)) 2 (Qp1 ; gp1)ns
�1
p1
(h) and q(r(b)) 2 (Qp2 ; gp2)ns

�1
p2
(h),

then m(a) = tp1(sp1(q(r(a)))) < h < tp2(sp2(q(r(b)))) = m(b): To see that it is onto,
just notice that if m(H0; f 0) ( (H; f), then m(H0; f 0) would be extendible causing
(H0; f 0) to be as well. Thus m is an onto, monotone map from (H0; f 0) to (H; f).
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Finally, to complete our induction we show that (H0; f 0) satis�es our claims
about the lengths of maximal chains. Let a = a1 < � � � < an = b be a maximal
chain in (H0; f 0). If ai 6= h0 for all i, then it must be that q(r(faig

n

i=1)) � (Qp; gp)
for some p. Otherwise, for some p1 and p2 there exists a j with q(r(aj)) 2 (Qp1 ; gp1)
and q(r(aj+1)) 2 (Qp2 ; gp2). Hence aj < h < aj+1 and our chain would not be
maximal. Thus, either n = 1 and we are done or by our inductive hypothesis,
n � lP(f

0(a); f 0(b)) + 1.

However, if h0 is in our maximal chain, then by our construction it must be
that an�1 = h0 (the preimages of h in (Qp; gp) are maximal elements). This means
that if (Qp; gp) is monotone, then a = a1 < � � � < an�1 = h0 is maximal in the
preimage of some (Hp; fp) for some p so by our induction applied to (Qp; gp), we have
n� 1 � lP(gp(a); gp(h)) + 1 = lP(gp(a); fp(h)) + 1. Now notice that, since (Hp; fp)
is monotone, it must be that fp(h) � f 0(b). Since h is a maximal noncoloured
element in (H; f), by Lemma 4.1, if there was more than one coloured element
above h, then fp(h) � f 0(b). On the other hand, if h has only one coloured cover
in (H; f), then h is retractable which contradicts Lemma 4.2. Thus fp(h) < f 0(b).
Since f 0(a) = gp(a), this gives lP(gp(a); fp(h))+1 � lP(f

0(a); f 0(b)) and, combining
this with the previous inequality, we get n � lP(f

0(a); f 0(b)) + 1. In the case where
(Qp; gp) is nonmonotone, we have n = 3 and since a and b are distinct it follows
immediately. �

4.2 Finitely many P-zigzags

We now have enough details to proceed with the most technical part of this thesis.
The idea of Theorem 4.9 is this: we pick a P-zigzag of size at least

Pm+1
i=0 kik.

Using the following series of lemmas, we will recursively de�ne a series of P-zigzags
of strictly increasing minimum diameter.

We need some preliminary lemmas which will help us prove Theorem 4.9. Before
we get to the �rst lemma, for a �nite poset Q let us de�ne l(Q) to be the number
of elements of a chain in Q with maximum cardinality. As well, for any a 2 Q,
let lQ(a) be the number of elements in a chain with top element a of maximum
cardinality and note that, for all a 2 Q, we have lQ(a) � l(Q). As well, for any
subset S � Q, the set S� is the set of all lower bounds of S in Q.

This �rst lemma tells us that for every down-set D of a P-zigzag (H; f), we
can �nd another P-zigzag (H0; f 0) which preserves most of (H; f) but now has the
added property that in the corresponding down-set D0, every element has at most
k lower covers.

Lemma 4.6. Let jPj = k, let (H; f) be a P-zigzag, and let D be a down-set of
H. There exist a P-zigzag (H0; f 0), down-set D0 in H0, and onto, monotone map g
such that (H; f) is the monotone image of (H0; f 0) under g and the following hold:

(a) H0nD0 = HnD,
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(b) g(u) = u for all u 2 H 0nD0,

(c) g(D0) = D,

(d) j fd0g� j < klH(g(d
0)) for all d0 2 D0,

(e) l(H0) � l(H).

Proof. We proceed with the proof by using induction on the size of the down-set
D. If jDj = 0, then just let g be the identity map and we are done. So let jDj � 1
and suppose that the induction hypothesis holds for (H; f) and all down-sets D0 of
H where jD0j < jDj. Pick some maximal element d in the poset D spanned by D
in H. Now, our induction hypothesis applies to Dn fdg so we can �nd a P-zigzag
(H0; f0), a down-set D0 in H0, and an onto, monotone map g0 such that (H; f) is
the monotone image of (H0; f0) under g0 and the following hold:

(a0) H0nD0 = Hn(Dn fdg),

(b0) g0(u) = u for all u 2 H0nD0,

(c0) g0(D0) = Dn fdg,

(d0) j fd0g� j < klH(g(d0)) for all d0 2 D0,

(e0) l(H0) � l(H).

We claim that in H0, the set fdg� n fdg � D0. By (a0), the element d 2 H0nD0

and by (b0), we get g0(d) = d. Now for any x 2 fdg� n fdg, since x � d, by the
monotonicity of g0, we have g0(x) � d. Then, since D is a down-set, it must be
that g0(fdg� n fdg) � D. Hence by (b0) and (c0), it follows that fdg� n fdg � D0.

We have two cases.

Case 1: If d already has at most k lower covers in H0, then just let (H0; f 0) =
(H0; f0). Thanks to our hypothesis, we only need to check that (d0) holds for
d0 = d. Notice that, for d0 < d in D0 we have g(d0) < g(d) = d which implies
lH(g(d0)) � lH(g(d)) � 1 (this follows since g(d) = d by (b0) and g(d0) 2 Dn fdg).
Thus

j fdg� j �
X
d0�d

j fd0g� j < kklH(g(d0)) � kklH(g(d))�1 = klH(g(d)):

Therefore, in this case, (H0; f 0) already satis�es (a) through (e) and we are done.

Case 2: Things are a lot trickier if d has more than k lower covers in H0. If
so, then we must de�ne a new P-coloured poset (H1; f1) in the following way.
Let A1; : : : ; At range over the k-element subsets of the set of lower covers of d.
For each such set, create a new element di. Let C = fc 2 H0 : d �H0

cg. De�ne
H1 = (H0n fdg) [ fd1; : : : ; dtg and de�ne the covering relation for H1 to be

�H1
= (�H0

jH0nfdg) [ f(di; c) : 1 � i � t; c 2 Cg [t
i=1 f(a; di) : a 2 Aig :
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It is easy to see that this relation contains no cycles and will generate a proper
partial relation onH1 whose covering relation is�H1

. To complete the construction,
for all i, leave the di noncoloured if d 2 N(H0; f0) and let f1(di) = f0(d) otherwise.

We claim that (H1; f1) is not P-extendible. Suppose otherwise. Then there
exists some extension f 01 of f1 to all of H1. Now this means f 01jH0nfdg is an ex-
tension of f0 to H0n fdg, since H0n fdg = H1n fd1; : : : ; dtg. However, if we look
at (H0; f

0
1jH0nfdg), we �nd that, since (H0; f0) is not extendible, it is also not ex-

tendible. So this means there exists some P-zigzag (Q; g) � (H0; f
0
1jH0nfdg) and

d must be in Q since otherwise f 01jQ would extend it. Now, because (Q; g) �
(H0; f

0
1jH0nfdg), we know that either (Q; g) is nonmonotone if d 2 C(Q; g) or

N(Q; g) = fdg. In either case, by Lemma 4.4 this implies that C(Q; g) � fdg� [
fdg�. Moreover, (Q; g) \ fdg� n fdg forms an antichain and, by Lemma 4.1, it has
no more than k elements. But this means that d covers an antichain of no more
than k elements so the P-zigzag (Q; g) can be embedded by a monotone map into
(H1; f

0
1jH1nfd1;:::;dtg). This is a contradiction since (H1; f

0
1jH1nfd1;:::;dtg) isP-extendible

but (Q; g) is not. Hence our original claim - that (H1; f1) is not P-extendible - must
be true. Moreover this means that there exists a P-zigzag (H0; f 0) � (H1; f1).

Let g1 : H1 ! H0 be de�ned such that

g1(x) =

(
x; if x 2 H1n fd1; : : : ; dtg ;

d; if x 2 fd1; : : : ; dtg.

It is clear from our construction that g1 is an onto, monotone map. Now we
claim that there does not exist a nonempty set T such that (H0; f 0) has (H0; f0)nT
as a monotone image. Otherwise, if we let h be a monotone extension of f0 to
(H0; f0)nT , we could compose h � g0jH0 , a monotone extension of (H0; f 0). Thus
g1(H

0) = H0 which implies that H0n fd1; : : : ; dtg = H1n fd1; : : : ; dtg and for some
i, the element di 2 H0. We are now able to de�ne g = g0 � g1jH0 and note that it
is an onto, monotone map from (H0; f 0) to (H; f). Consequently, D0 = g�1(D) will
be a down-set in H0.

The �nal step to complete this proof is to show that (a) through (e) are all
satis�ed.

(a) Since H0n fd1; : : : ; dtg = H1n fd1; : : : ; dtg, it follows from (a0) that

H0nD0 = H0ng�1(D) = H1ng
�1
0 (D) = H0ng

�1
0 (D) = HnD:

(b) For all u 2 H 0nD0, by (b0) we have g(u) = g0 � g1jH0(u) = g0(u) = u:

(c) This follows immediately from our de�nition of D0.

(d) Let x 2 D0. Firstly, if x =2 fd1; : : : ; dtg, then x 2 H1n fd1; : : : ; dtg = H0n fdg.
Even better, since x < di for some i, it must be that x 2 D0. Hence (d) holds
thanks to (d0).
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Now suppose x 2 fd1; : : : ; dtg. If x is minimal in H1, then (d) holds since
j fxg� j = 1. Otherwise, x is not minimal and by our construction, the number
of elements covered by x is between 1 and k. Now our inductive hypothesis
becomes very useful when we notice that by the de�nition of H1, all elements
covered by x must be in D0. Hence each element covered by x satis�es (d0) and
so, for some x0 2 D0, it must be that j fxg� j < k � klH(g(x0)). Moreover, since
g is monotone and g(D0n fd1; : : : ; dtg) = Dn fdg, the element g(x0) <H g(x).
Thus lH(g(x0)) � lH(g(x))� 1 and we have j fxg� j < k � klH(g(x))�1 = klH(g(x)).

(e) Notice that (H0; f 0) � (H1; f1) so l(H0) � l(H1). Now, from our de�nition of
H1 it should be clear that l(H1) = l(H0). Then by applying (e0) we are able to
get l(H0) � l(H1) = l(H0) � l(H).

Therefore, the P-zigzag (H0; f 0), monotone map g, and down-set D0 satisfy the
necessary claims and our induction holds. �

For the next small but useful lemma, we need another de�nition. Let Q be a
connected poset and let a 2 Q and B � Q. De�ne dQ(a;B) = minb2B fdQ(a; b)g
where dQ(a; b) is the distance between a and b in Q.

Lemma 4.7. Suppose (H; f) is a monotone image of (H0; f 0) via the map g, B0 �
H 0, and a0 2 H 0. Then dH0(a0; B0) � dH(g(a

0); g(B0)).

Proof. Pick b0 2 B0 such that dH0(a0; b0) = dH0(a0; B0) = n. Then there exists
an (n + 1)-element fence in H0 from a0 to b0. By the monotonicity of g, there
exists an (n + 1)-element fence in H from g(a0) to g(b0). But g(b0) 2 g(B0) so
dH(g(a

0); g(B0)) � dH(g(a
0); g(b0)) � n and the result follows. �

This is the last lemma we will need before we prove the main theorem of this
chapter.

Lemma 4.8. Let jPj = k and let (H; f) be a P-zigzag with w 2 H. Suppose that

(A) H = A [B [ C where A, B, and C are all pairwise disjoint,

(B) B and C are nonempty and B is an up-set of H,

(C) For all a 2 A and c 2 C, a is not comparable to c in H, and

(D) w 2 A [B.

Then there exist a P-zigzag (H0; f 0) and w0 2 H0 such that

(a) H 0 = A0 [B0 [ C 0 where A0, B0, and C 0 are all pairwise disjoint,

(b) B0 is a nonempty up-set of H0, jB0j � jBj and jCj � jC 0j,
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(c) For all a0 2 A0 and c0 2 C 0, a0 is not comparable to c0 in H0,

(d) w0 2 A0 [B0,

(e) dH0(w0; B0) � dH(w;B),

(f) l(H0) � l(H), and

(g) If d = maxc2C j fcg� j, then the number of elements c0 2 C 0 with c0 < b0 for some
b0 2 B0 is at most kdjBj.

This is probably the most technical result of this thesis and the most opaque as
far as meaning goes. Because of this, before we begin the proof we will motivate
it with a relatively simple example. Let us suppose (H; f) is a P-zigzag with some
maximal element w. If for some positive integer n, we de�ne

An = fx 2 H : dH(x;w) < ng ;

Bn = fx 2 H : dH(x;w) = ng ; and

Cn = fx 2 H : dH(x;w) > ng ;

and assume that Cn 6= ;, then (H; f), w, An, Bn and Cn satisfy (A) through (D).
Notice in this case that An and Cn are down-sets, dH(w;B) = n, and the set

fc 2 Cn : c < b for some b 2 Bng = fx 2 H : dH(x;w) = n+ 1g = Bn+1:

Lemma 4.8 tells us that, speaking somewhat inaccurately, we can modify (H; f)
so that Bn+1 is made fairly small; thus if the original Cn were large enough, then
the new CnnBn+1 = Cn+1 will be non-empty. By iterating this process in the main
theorem after this lemma, we will be able to produce P-zigzags of strictly increasing
diameter. We now prove the lemma.

Proof. Before we begin, observe from assumptions (B) and (C) that in addition to
B being an up-set, the sets A and C are both down-sets in H.

There is no induction in this proof. We just construct from (H; f) a nonex-
tendible coloured poset (Q; g). We then let (H0; f 0) be any P-zigzag in (Q; g),
de�ne w0 and sets A0, B0, and C 0, and show that they satisfy the necessary proper-
ties. So �rst let us de�ne the coloured poset (Q; g) and then we will show that it
is not P-extendible. We break it down into steps.

Step 1: Given properties (A) and (B), we have H 6= A [ B so it is reasonable to
de�ne the poset C = Hn(A [ B). Then, since (H; f) is a P-zigzag, there exist a
set of extensions ft1; : : : ; tng of (C; f jC) to all of C. Now, for 1 � i � n, the map
f restricted to C \ domf is equal to ti so for each i, let us consider the coloured
poset (H; f [ ti) where f [ ti is the partially de�ned map from H to P given by

(f [ ti)(x) =

(
f(x); if x 2 dom f ,

ti(x); if x 2 C.
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Since (H; f) is nonextendible, we can �nd some P-zigzag (Qti ; gti) � (H; f [ ti).

Step 2: Fix i. We make some observations about (Qti ; gti). First, Qti \ C must
be nonempty; otherwise, (Qti ; gti) � (HnC; f jHnC) which is extendible since C is
nonempty. Second, note that Qti * C since ti fully extends C and tijdomgti

= gti .
Thirdly, Qti \ C consists of coloured elements of (Qti ; gti) since gti extends f jC to
all of C. Moreover, the elements in Qti \ C must be minimal in Qti since C is
a down-set. Fourth and �nally, we claim that every upper cover of an element in
Qti \ C is in Qti \ B. If (Qti ; gti) is a monotone P-zigzag, by Lemma 3.2 all the
elements in Qti covering elements in Qti \C are noncoloured and so must be from
Qti \ (A[B). Then by property (C), our claim follows. In the nonmonotone case,
we also have the bottom element of Qti \C covered by an element of Qti \B since
the top element of Qti is in B (Qti \ C 6= ; but ti is a monotone extension of
(C; f jC) so this follows from (B) and (C)).

Step 3: Let C0 be a disjoint copy of C and for 1 � i � n and let Qti;0 be the
same for Qti . Let p0 : C0 ! C and pi : Qti;0 ! Qti be the corresponding order-
isomorphisms. Now, de�ne the set Q = C0 [

n
i=1 (Qti;0np

�1
i (Qti \C)) and de�ne the

covering relation for Q to be

�Q=�C0
[n
i=1 �Qti;0

jQti;0
np�1i (Qti

\C)

[n
i=1

�
(x; y) : x 2 C0 \ p�10 (Qti \ C);

y 2 Qti;0 \ p�1i (Qti \B); and p0(x) �H pi(y)
	
:

The basic idea is that we are gluing the disjoint copies of (Qti ; gti) together with
the copy of C at the points in Qti \ C that they originally shared. Notice that,
since for all i every upper cover of an element in p�1i (Qti \C) is in p

�1
i (Qti \B) and

p�1i (B) is an up-set, this covering graph does not contain any cycles and generates
a partial relation �Q on Q. (Consider the example given in Figure 4.7 where
C = fc1; c2; c3g.)
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Figure 4.7: Third step of Lemma 4.8

Finally, de�ne the partial colouring g : Q! P such that

g(x) =

(
f(p0(x)); if x 2 C0 and p0(x) 2 C(H; f);

f(pi(x)); if x 2 Qti;0 and pi(x) 2 C(H; f)
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to get the P-coloured poset (Q; g).

Step 4: The last step is to show that (Q; g) is not P-extendible to get our P-zigzag
(H0; f 0). But this is easy thanks to our construction, since any extension t of (Q; g)
will restrict to an extension tjC0 of (C0; gjC0). For some i, this will correspond to
the extension ti of C which would mean the exact copy of (Qti ; gti) in (Q; g) would
also be extended by t. But this is a contradiction as (Qti ; gti) is a P-zigzag. Thus
(Q; g) is not extendible and must contain a P-zigzag (H0; f 0).

Now, let us de�ne h : H0 ! H such that

h(x) =

(
p0(x); if x 2 C0;

pi(x); if x 2 Qti;0nC0 for some 1 � i � n.

Since the Qti;0's are disjoint outside of C0, the map is well-de�ned. It is easy to see it
is monotone, for if we suppose that x � y we only need check the case where x 2 C0

and y 2 Qti;0nC0 for some i. In this case, there must be some w 2 C0\p
�1
0 (Qti\C)

such that x � w � y. Then h(x) = p0(x) � p0(w) � pi(y) = h(y): As well, h
preserves the colourings of elements since f 0 = gjH0 . Finally, notice that h must
be an onto map; otherwise, h(H0; f 0) ( (H; f) and hence would be P-extendible,
yielding an extension of (H0; f 0).

The last thing to do before we verify properties (a) through (g) is to de�ne w0,
A0, B0 and C 0. Since h is onto, let w0 be some element of H 0 such that h(w0) = w.
Given this w0 and property (D), there must exist some j such that w0 2 Qtj ;0, the
complete copy ofQtj inQ. Let us de�neA0 = h�1(A)\Qtj ;0 andB

0 = h�1(B)\Qtj ;0.
Then the only logical choice to satisfy (a) is to let C 0 = H 0n(A0 [ B0). We now
check to see if (a) through (g) are satis�ed.

(a) Since h�1(A) \ h�1(B) = ;, this is immediate.

(b) Note �rst that C0 � H 0 since h is an onto map. Moreover, C0 � C 0 which
implies that jCj � jC0j � jC 0j. Next note that B0 is an up-set for if we suppose
otherwise then there is an x 2 H0 and y 2 B0 such that x � y but x =2 B0. But
then h(x) 2 A or h(x) 2 C and this contradicts (A) as h(x) � h(y) implies
h(x) 2 B. Hence B0 is an up-set and we also have

jB0j = jh�1(B) \Qtj ;0j � jB \Qtj j � jBj:

Finally, since H0 is connected, there must be a fence connecting w0 to some
x 2 C0. Now this fence is preserved by h so consider the corresponding fence
connecting h(w0) = w to h(x) 2 C. By (D), the element w is either in A or B.
If w 2 B, we are done as w0 2 B0. If w 2 A, then by (C) there must be an
element b of B in the fence connecting w and h(x). Hence h�1(b) 2 B is in our
original fence between w0 and x and B 6= ;.

(c) Let a0 2 A0 = h�1(A)\Qtj ;0 and c0 2 C 0. If c0 2 C0, then h(c0) 2 C. Hence the
result follows from (C) since h(a0) 2 A and h is monotone. Otherwise, for some
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s, we have c0 2 h�1(A)\Qts;0 or c
0 2 h�1(A)\Qts;0. Then a0 is not comparable

to any elements in Qts;0 \ C0 so a
0 is not comparable to c0.

(d) From (D) we see that w0 2 h�1(A) [ h�1(B). Then, since w0 2 Qtj ;0, it must
be that w0 2 A0 or w0 2 B0. Hence w0 2 A0 [B0.

(e) This follows directly from Lemma 4.7.

(f) This is immediate as l(H0) � l(Q) � l(H).

(g) Notice �rst that every coloured element of (Qtj ; gj) covers at most one coloured
element in (Qtj ; gj) (there is one in the nonmonotone case and zero otherwise
by Lemma 3.2). As well, every noncoloured element of (Qtj ; gj) covers at most
k coloured elements by Lemma 4.1. Consequently, the set of coloured elements
in Qtj \ C covered by elements in Qtj \B is at most kjQtj \Bj � kjBj. Since
Qtj \ C consists of all coloured elements, we have jQtj \ Cj � kjBj.

Now consider fc0 2 C 0 : c0 < b0 for some b0 2 B0g. Clearly this set contains no
elements of B0 or A0 so we can break it into two subsets

D1 = fc0 2 H 0 \ C0 : c
0 < b0 for some b0 2 B0g

and

D2 =

(
c0 2 H 0 \

[
i6=j

(Qti;0nC0) : c
0 < b0 for some b0 2 B0

)
:

If c0 2 D1, then there exists a b0 2 B0 and c00 2 Qtj ;0 \ p
�1
0 (C) with c0 � c00 < b0.

Hence c0 2 fc00g� and we have

jD1j � max
c002Qtj ;0

\p�1
0

(C)
fc00g� jQtj ;0 \ p�10 (C)j

� max
c2Qtj

\C
fcg� jQtj \ Cj

� max
c2C

fcg� kjBj:

In the case where c0 2 D2, just recall that for all i, the set Qti;0 \C0 consists of
minimal elements of Qti;0. Thus D2 is empty by the de�nition of �Q.

Thus (a) through (g) are satis�ed and our proof is complete. �

Before we proceed with the main theorem of this chapter, just note that we are
able to state and prove duals of both Lemma 4.6 and Lemma 4.8. We leave the
details out. In the next theorem, we prove that if we can �nd P-zigzags of large
enough size, then we can also �nd P-zigzags of correspondingly large diameter.

Theorem 4.9. Let jP j = k. If there exists a P-zigzag (H; f) such that jHj �Pm+1
i=0 kik, then there exists a P-zigzag of diameter at least m+ 1.
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Proof. Assume that there exists a P-zigzag (H; f) such that jHj �
Pm+1

i=0 kik. By
Theorem 4.5, we can choose (H; f) such that l(H) � k � 1.

We are going to construct a series of P-zigzags (Hi; fi), the �rst being (H; f),
such that each (Hi; fi) has a diameter of at least i. The P-zigzag (Hm+1; fm+1) will
give us our result. For 0 � i � m+ 1, consider the following set of properties:

(ai) Hi = Ai [Bi [ Ci where Ai, Bi, and Ci are all pairwise disjoint.

(bi) If i is even, then Bi is a nonempty up-set of Hi and if i is odd, then Bi is a
nonempty down-set of Hi. Either way, jBij � kik and jCij � jHj �

Pi

j=0 k
jk.

(ci) For all a 2 Ai and c 2 Ci, a is not comparable to c in Hi.

(di) The element ai 2 Ai [Bi.

(ei) dHi
(ai; Bi) � i.

(fi) l(Hi) � k � 1.

For each i, we are going to recursively de�ne (Hi; fi) and element ai and sets Ai,
Bi, and Ci contained in Hi that satisfy (ai) through (fi).

To start, let (H0; f0) = (H; f) and let a0 be a maximal element in H. Now,
de�ne A0 = ;, B0 = fa0g, and C0 = Hn fa0g. Hence it follows immediately from
our de�nitions that (H0; f0) satis�es properties (a0) through (f0).

Now, for i � 1 where i is odd, assume that we have a P-zigzag (Hi�1; fi�1)
with subsets Ai�1, Bi�1, and Ci�1 and element ai�1 all satisfying properties (ai�1)
through (fi�1). We will de�ne (Hi; fi) in the following steps using Lemmas 4.6 and
4.8.

Step 1: First, notice that Bi�1 is an up-set since i � 1 is even and hence Ci�1 is
a down-set by property (ci�1). Now, if we de�ne D = Ci�1, then by Lemma 4.6
we get a new P-zigzag (H0

i�1; f
0
i�1) with subsets A0

i�1 = Ai�1, B
0
i�1 = Bi�1, and

C 0
i�1 = D0 and element a0i�1 = ai�1. As well, there is an onto, monotone map g from

(H0
i�1; f

0
i�1) to (Hi; fi). We show that this new zigzag still satis�es (ai�1) through

(fi�1) using (a) through (e) of Lemma 4.6.

(ai�1) This follows from (a) since A0
i�1 \B0

i�1 = ;.

(bi�1) Since g is monotone and by (b) we have g(u) = u, it follows that B0
i�1 is

a nonempty up-set of Hi. We also have jB0
i�1j = jBi�1j � k(i�1)k and, since g is

onto, jC 0
i�1j � jCi�1j � jHj �

Pi�1
j=0 k

jk.

(ci�1) If we suppose otherwise, then there exists an a 2 A0
i�1 = Ai�1 and c 2 C 0

i�1

with a � c. But a = g(a) � g(c) 2 Ci�1 and this contradicts our original (ci�1).

(di�1) This is immediate.
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(ei�1) From Lemma 4.7, we have

dH0

i�1
(a0i�1; B

0
i�1) = dH0

i�1
(ai�1; Bi�1) � dHi�1

(ai�1; Bi�1) � i� 1:

(fi�1) Immediately from (c).

We note that, in addition to still satisfying these properties, since l(Hi�1) � k� 1,
from (d) we get that j fcg� j � kk�1 for all c 2 C 0

i�1.

Step 2: We now apply Lemma 4.8. Let A = A0
i�1, B = B0

i�1, and C = C 0
i�1 and

element w = a0i�1. By Lemma 4.8, there exists a P-zigzag (Hi; fi) with subsets
A0, B0, and C 0 and element w0 2 Hi such that (a) through (g) are satis�ed. From
these, let us de�ne Ai = A0 [ B0 and Bi = fc 2 C 0 : c < b for some b 2 B0g : Then,
let Ci = Hin(Ai [Bi) and set ai = w0. We show, using properties from Lemma 4.8
and 4.6, that (Hi; fi) satis�es (ai) through (fi).

(ai) This follows directly from our de�nitions and (a) from Lemma 4.8.

(bi) It follows from the de�nition that Bi is a down-set. Moreover, as B0 and C 0

are nonempty, by property (c) of 4.8 and the fact that Hi is connected it must
be that Bi is nonempty.

Now, from (g) of 4.8 we get jBij � kdjBj = kdjB0
i�1j = kdjBi�1j, where d =

maxc2C j fcg� j. In addition, since C = C 0
i�1 we have d � kk�1 and from (bi�1)

we get jBi�1j � k(i�1)k. Thus jBij � kkk�1k(i�1)k = kik.

Finally, by (b) of 4.8 we have jC 0j � jC 0
i�1j and by (c) of 4.6 we have jC 0

i�1j �
jCi�1j. Now, once we notice that Ci = C 0nBi and Bi � C 0, thanks to (bi�1) we
get

jCij = jC 0j � jBij � jCi�1j � jBij � jHj �
i�1X
j=0

kjk � kik = jHj �
iX

j=0

kjk:

(ci) Let a 2 Ai = A0 [ B0 and c 2 Ci � C 0. If a 2 A0, then we are done by (c)
of 4.8. If a 2 B0, then c � a since c =2 Bi. But B

0 is an up-set so c � a either.
Hence a is not comparable to c.

(di) This follows from (d) of Lemma 4.8 as ai = w0 2 A0 [B0 = Ai � Ai [Bi.

(ei) From (bi) we have Bi nonempty. We claim that dHi
(ai; Bi) > dHi

(ai; B
0).

If ai 2 B0, then we are done. Otherwise, suppose ai 2 A0 and let b 2 Bi

be some element such that d = dHi
(ai; b) = dHi

(ai; Bi). Hence there exists a
(d + 1)-element subfence of elements fb0; : : : ; bdg where b0 = ai and bd = b.
Since b0 2 A0, bd 2 C 0, and bi is comparable to bi+1 for all i < d, property (ci)
implies that there must be some 1 � j < d such that bj 2 B0 and this implies
dHi

(ai; B
0) < d = dHi

(ai; Bi).

Thus by (e) of 4.8 and (ei�1),

dHi
(ai; Bi) > dHi

(ai; B
0) = dHi

(w0; B0) � dH0

i�1
(w;B) = dH0

i�1
(ai�1; Bi�1) � i�1:
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(fi) From (f) of 4.8 and (e) of 4.6, we have l(Hi) � l(H0
i�1) � l(Hi�1) � k � 1.

In the case where i � 1 and i is even, we proceed dually using dual state-
ments of Lemma 4.6 and Lemma 4.8. Thus we are able to de�ne a P-zigzag
(Hm+1; fm+1) with element am+1 and subset Bm+1 that satis�es (em+1) which says
dHm+1

(am+1; Bm+1) � m+1. Therefore the diameter of (Hm+1; fm+1) is also greater
than or equal to m+ 1. �

The following corollary gives us the biggest piece of Z�adori's proof.

Corollary 4.10. Let P is a �nite, bounded poset. If there exists a �nite m such
that every P-zigzag has a diameter at most m, then there exist a �nite number of
P-zigzags.

Proof. If we assume otherwise, then there must be a P-zigzag of size at leastPm+1
i=0 kik. By Theorem 4.9, there exists a P-zigzag of diameter m+ 1. �

We have now completed the toughest part of this thesis. In the next section, we
conclude by showing that �nite, bounded posets admit J�onsson operations if and
only if they admit a near-unanimity function.

4.3 Conclusion

We now complete the last piece of the main idea of this thesis. This �nal theorem
synthesizes the main results of the last four chapters and answers the main question
posed in Chapter 1.

Theorem 4.11. Let P be a �nite, bounded poset. Then P admits a monotone n-
near-unanimity function for some n � 3 if and only if P admits a set of monotone
J�onsson operations.

Proof. The forward direction was proved in Lemma 1.1.

If P admits monotone J�onsson operations, then by Theorem 2.14, there exists
for some n a partially de�ned, monotone n-nuf on Pn that is fully de�ned on

An =

�
(x; : : : ; x; y

i

; z; : : : ; z) : x; y; z 2 P; 1 � i � n

�
:

By Theorem 3.5, we can then place a �nite bound on the diameters of all P-zigzags.
Consequently, there can be at most �nitely many P-zigzags by Corollary 4.10.
Hence we can �nd some n such that the number of coloured elements in each
P-zigzag is at most n�1. Therefore, by Lemma 1.5, the poset P admits an n-near-
unanimity function for some n � 3. �
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In [12], Z�adori provides an example of an in�nite, bounded poset which admits
J�onsson operations but does not admit a near-unanimity function. It is important
to mention also that in a later paper, Larose and Z�adori extend the main result
of this thesis by proving that an arbitrary �nite poset P admits a near-unanimity
function if and only of P admits J�onsson operations [7].

Since Lemma 1.1 is actually true for relational structures in general, the big
question that this result pushes us towards is whether all �nite relational structures
with a �nite set of relations admit near-unanimity functions if and only if they admit
J�onsson operations. This conjecture is now being referred to as Z�adori's conjecture
[11] and up to this point there is no published answer. However, there is active
work in the area and the conjecture has been discussed and worked on at recent
workshops (see [1]). This has led to at least one mathematician claiming to have
proved this conjecture [3] and the validity of this proof is still being veri�ed at the
time that this thesis was completed.
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