Effects of Mixed Stabilizers (Nanoparticles and Surfactant) on Phase Inversion and Stability of Emulsions

by

Varun Malhotra

A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering

Waterloo, Ontario, Canada, 2009

© Varun Malhotra 2009

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ABSTRACT

Immiscible dispersions of oil and water are encountered in many industries such as food, pharmaceuticals, and petroleum. Phase inversion is a key phenomenon that takes place in such systems whereby the dispersed phase and the continuous phase invert spontaneously. Stabilizers such as surfactants or solid nanoparticles have been used in the past to improve the stability of emulsions. However, the combined effects of surfactants and nanoparticles on phase inversion and stability of oil and water emulsions have not been studied.

This study investigates the synergistic effects of silica nanoparticles (of varying hydrophobicities) and non-ionic surfactant on phase inversion of water-in-oil emulsion to oil-inwater emulsion. The effect of oil viscosity on phase inversion phenomenon is also studied. Stabilizers were initially dispersed in the oil phase with the help of a homogenizer. The water concentration of the system was gradually increased while maintaining the mixing. Online conductivity measurements were carried out to obtain the phase inversion point. Experimental results on the effects of pure stabilizers (either silica nanoparticles or surfactant) and mixed stabilizers (combined silica nanoparticles and surfactant) on phase inversion of emulsions are presented. The stability of these emulsions is also investigated.

From the results obtained in this study it is clear that catastrophic phase inversion phenomenon and stability of water-in-oil emulsions can be controlled with the help of different stabilizers. In order to extend the critical dispersed phase volume fraction at which phase inversion occurs surfactant type stabilizer was found to be more effective than solid nanoparticles. On the other hand, emulsion stability was mainly dominated by solid nanoparticles. The hybrid of the two stabilizers and its effect on phase inversion and stability are discussed in the thesis.

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Rajinder Pal for giving me the confidence and support to pursue a graduate study in his Rheology and Emulsion Technology group. Professor Pal challenged me to set my benchmark even higher and to focus more on the solution than on the problem. I am deeply grateful for his guidance and valuable advice. His encouragement and suggestions guided me throughout my research and helped me in writing my thesis. I also appreciate his efforts in thoroughly revising the thesis.

Financial support for this research was provided by NSERC in the form of a discovery grant awarded to Professor R. Pal.

Important individuals outside of the University of Waterloo who supported my graduate studies include my family and friends who helped me immensely by encouraging me to grow and expand my ideas. They provided the necessary love and support to continuously encourage me to do my best.

I dedicate this thesis to my mother, father, and sister.

TABLE OF CONTENTS

LIST OF TABLE	S	viii
LIST OF FIGUR	RES	ix
Chapter 1.	INTRODUCTION AND OBJECTIVES	1
1.1. Ove	rview of Emulsions	1
1.1.1.	Definition of an Emulsion	1
1.1.2.	Emulsion Stabilizers	2
1.1.2.2	I. Surfactants	2
1.1.2.2	2. Solid Nanoparticles	3
1.1.3.	Emulsion Applications	3
1.2. Pha	se Inversion Phenomenon	6
1.2.1.	Transitional Phase Inversion	6
1.2.2.	Catastrophic Phase Inversion	7
1.3. Stat	pility of Emulsions	8
1.3.1.	Flocculation	9
1.3.2.	Coalescence	9
1.3.3.	Sedimentation and Creaming	10
1.4. THE	SIS OBJECTIVES	11
Chapter 2.	LITERATURE BACKGROUND	12
2.1. Pha	se Inversion and Emulsion stability using Solid Particles as stabilizers	12
2.2. Pha	se Inversion and Emulsion stability using Surfactants	
Chapter 3.	MATERIALS AND METHODOLOGY	26
3.1. Mat	erials	26
3.1.1.	Types of Oils	26
3.1.2.	Type of Surfactant	27
3.1.3.	Types of Silica Nanoparticles	28
3.1.4.	Aqueous Phase	29
3.2. Equ	ipment	29
3.3. Exp	erimental Procedures	
3.3.1.	Calibration of Conductivity Meter	

	3.3.	2.	Study of Phase Inversion	30
	3.3.	3.	Stability Study	32
Cł	apter 4	4.	EXPERIMENTAL RESULTS	33
	4.1.	Pure	e Surfactant as Stabilizer	33
	4.2.	Silic	a Nanoparticles as Stabilizers	36
	4.2.	1.	50% Hydrophobic Nanoparticles	36
	4.2.	2.	30% Hydrophobic Nanoparticles	38
	4.3.	Mix	ed Surfactant/Nanoparticles as Stabilizer	41
	4.3.	1.	Surfactant and 50% Hydrophobic Nanoparticles	41
	4.3.	2.	Surfactant and 30% Hydrophobic Nanoparticles	44
	4.4.	Stab	ility Study of Emulsions stabilized with Individual and mixed stabilizers	47
Cł	apter !	5.	DISCUSSION	52
	5.1.	Effe	ct of dispersed phase volume fraction on stability and phase inversion	52
	5.2.	Effe	ct of stabilizer on stability and phase inversion	54
	5.3.	Effe	ct of Oil Viscosity on stability and phase inversion	57
Cł	apter	6.	CONCLUSIONS	60
RE	FEREN	CES.		62
AF	PENDI	CES.		67
	Appen	dix A	: Raw Data	67
	Арр	endix	A-1: Experimental Data Points for Oil A, Viscosity: 22.9mPa.s	67
	N	o Sta	bilizer Added	68
	E	MSO	RB 2503 – Surfactant Only	69
	н	DK H	20 (50% hydrophobic) – Silica Nanoparticle Only	73
	н	DK H	KS D (30% hydrophobic) – Silica Nanoparticle Only	77
	C	ombi	nation – HDK H20 (50 Silica Nanoparticle) + EMSORB 2503 (Surfactant)	82
	C	ombi	nation – HDK HKS D (30% Silica Nanoparticle) + EMSORB 2503 (Surfactant)	86
	Арр	endix	A-2: Experimental Data Points for Oil B, Viscosity: 64.5mPa.s	91
	N	o Sta	bilizer Added	92
	EI	MSO	RB 2503 – Surfactant Only	93
	Н	DK H	20 (50% hydrophobic) – Silica Nanoparticle Only	96
	н	рк н	KS D (30% hydrophobic) – Silica Nanoparticle Only	.100
	C	ombi	nation – HDK H20 (50% Silica Nanoparticle) + EMSORB 2503 (surfactant)	. 104
	-			

Combination – HDK HKS D (30% Silica Nanoparticle) + EMSORB 2503 (surfactant)	108
Appendix A-3: Phase Inversion Points, Oil A; Viscosity: 22.9mPa	113
Appendix A-4: Phase Inversion Points, Oil A; Viscosity: 64.5mPa.s	114
Appendix A-5: Stability Data Points, Oils A and B, Silica Nanoparticles and Surfactant	115
Appendix B: Material Specifications	116
Appendix B-1: Material Specifications, Mineral Oils	116
Appendix B-2: Material Specifications, Silica Nanoparticles	119

LIST OF TABLES

Table 2.1. Inversion time and critical dispersed phase fraction with respect to the concentration of surfactants [19].	19
Table 3.1 Physical properties for the two viscous oils, Purity FG WO 15, WO 35 (Reference: Petro- Canada Tech Data Specification Sheet, Appendix B)	26
Table 3.2 Physical Properties of EMSORB 2503, Sorbitan trioleate [26]	28
Table 3.3 General properties of both hydrophilic and hydrophobic silica nanoparticles, HDK HKS D and HDK H20	d 28
Table 3.4 Physical-Chemical Properties for the two individual silica nanoparticles, HDK HKS D and HDK H20	29
Table 3.5 Specifications of equipment used in the experiments	29
Table 3.6 Experiments conducted using individual and mixed stabilizers (Oil Grade - Purity FGWO15)	31
Table 3.7 Experiments conducted using individual and mixed stabilizers (Oil Grade - Purity FGWO35)	32

LIST OF FIGURES

Figure 2.6 Example of phase inversion map for heptanes and SML surfactant at 2 wt% [20]20
Figure 2.7 Change in drop size distribution with stirrer speed for inverted emulsions. Water addition rate is kept constant at 20dm ³ /min [21]
Figure 2.8 Effect of oil viscosity on critical water volume fraction at the point of phase inversion [22]22
Figure 2.9 Drop size comparisons between Direct and Transitional phase inversion methodology for PIB- cyclohexane-NPE system [23]
Figure 2.10 Size of oil droplets with respect to time in the post-inversion regime for different surfactant and HLBs [24]
Figure 2.11 Phase inversion points for emulsions going from W/O to O/W morphology as a function of $\Delta \varphi_W$ [26]25
Figure 3.1 Chemical Structure of EMSORB 2503, Sorbitan trioleate [27]
Figure 4.1 Conductivity data for emulsions stabilized with EMSORB 2503 at different surfactant concentrations (Oil A, Viscosity – 22.9mPa.s)
Figure 4.2 Phase Inversion concentration of water as a function of surfactant (EMSORB 2503) concentration (Oil A, Viscosity – 22.9mPa.s)
Figure 4.3 Conductivity data for emulsions stabilized using EMSORB 2503 at different surfactant concentrations (Oil B, Viscosity – 64.5mPa.s)
Figure 4.4 Phase inversion concentration of water as a function of surfactant (EMSORB 2503) concentrations for oils A and B
Figure 4.5 Conductivity data for emulsions stabilized with HDK H20 at different solids (HDK H20) concentrations (Oil A, Viscosity – 22.9mPa.s)
Figure 4.6 Phase Inversion concentrations of water as a function of solids (HDK H20) concentration (Oil A, Viscosity – 22.9mPa.s)
Figure 4.7 Conductivity data for emulsions stabilized with HDK H20 at different solids (HDK H20) concentrations (Oil B, Viscosity – 64.5mPa.s)
Figure 4.8 Phase inversion concentration of water as a function of HDK H20 concentrations for oils A and B
Figure 4.9 Conductivity data for emulsions stabilized with HDK HKS D at different solids (HDK HKS D) concentrations (Oil A, Viscosity – 22.9mPa.s)
Figure 4.10 Phase Inversion concentration of water as a function of HDK HKS D concentration (Oil A, Viscosity – 22.9mPa.s)
Figure 4.11 Conductivity data for emulsions stabilized with HDK HKS D at different solids (HDK HKS D) concentrations (Oil B, Viscosity – 64.5mPa.s)

Figure 4.12 Phase inversion concentration of water as a function of HDK HKS D concentration for oils A and B
Figure 4.13 Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK H20. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)
Figure 4.14 Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)
Figure 4.15 Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK H20. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)
Figure 4.16 Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)
Figure 4.17 Phase inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer for oils A and B
Figure 4.18 Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK HKS D. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)
Figure 4.19 Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)
Figure 4.20 Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK HKS D. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)
Figure 4.21 Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)
Figure 4.22 Phase inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer for oils A and B
Figure 4.23a) Emulsions prepared using EMSORB 2503 as a lone stabilizer. EMSORB 2503 concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark
Figure 4.23b) Emulsions prepared using HDK H20 as a lone stabilizer. HDK H20 concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark
Figure 4.23c) Emulsions prepared using HDK HKS D as a lone stabilizer. HDK HKS D concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark
Figure 4.24 Emulsions stabilized using mixed stabilizers. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark

Figure 4.25 Emulsions stabilized using mixed stabilizers with increasing surfactant composition. All samples were collected at $\phi_w = 0.2$ and monitored at the 60 minute mark
Figure 4.26 Volume of coalesced aqueous phase for emulsions stabilized using individual and mixed stabilizers
Figure 5.1 a) Initially water is dispersed in oil forming W/O emulsion with hydrophobic tails of surfactant pointing towards oil and polar heads facing the water b) Addition of water increases the number of water droplets c) Oil is trapped in between the water droplets d) magnified image showing entrapment of oil e) Eventually, phase inversion takes place reversing the surfactant orientation
Figure 5.2 Water in Oil emulsion with the hydrophobic end of the surfactant molecule pointing towards the oil and the hydrophilic head submerged in the non-aqueous phase
Figure 5.3 Oil in Water emulsion with the hydrophobic end of the surfactant molecule concentrating at the non-polar core and the hydrophilic head surrounding the water phase
Figure 5.4 a) Ampiphilic Silica Nanoparticle with high hydrophobicity with contact angle < 90°, promoting enhanced wetting of nanoparticles by the oil phase b) Silica Nanoparticle with 50% hydrophobicity forming a 90° contact angle c) Low hydrophobic nanoparticle forming a contact angle > 90°, forming unstable emulsions due to reduced wetting of nanoparticles by the oil phase
Figure 5.5 Comparison trends showing the effect of hydrophobicity of silica nanoparticles on the phase inversion points (Oil A)
Figure 5.6 Comparison trends showing the effect of hydrophobicity of silica nanoparticles on the phase inversion points (Oil B)
Figure 5.7 The effect of oil viscosity on coalescence behaviour of emulsions stabilized with surfactant alone

Chapter 1. INTRODUCTION AND OBJECTIVES

1.1. Overview of Emulsions

1.1.1. Definition of an Emulsion

An emulsion is a blend of two immiscible liquids where one liquid (*dispersed or internal phase*) is suspended into another (*continuous or external phase*) in the form of microscopically visible droplets. They are mechanical mixtures of liquids that are immiscible under ordinary conditions, and which may be separated into layers on standing, heating, freezing, by agitation or the addition of other chemicals [1]. Emulsions are generally formed using an organic fluid (mineral oil, silicone oil, kerosene oil, etc.) and a polar liquid (water). Emulsions formed using oil-water systems exist in two morphologies, either water-in-oil (W/O) emulsion or oil-in-water (O/W) emulsion. The microscopic representation of the two types of emulsion formations is shown in Figure 1.1 below:

a)

Figure 1.1 Optical micrographs of water-oil emulsion systems, a) W/O and b) O/W [2]

b)

1.1.2. Emulsion Stabilizers

The droplets of emulsions can be stabilized against coalescence either by a surfactant or by solid particles. Emulsions stabilized using solid particles are known as Pickering emulsions [1]. In our study, we have utilized a non-ionic surfactant and amorphous silica nanoparticles as the two stabilizers.

1.1.2.1. Surfactants

Surfactants are traditional surface active agents used to lower interfacial tension between two liquids thereby improving the wetting ability as well allowing easier spreading of one liquid on the other. The interfacial tension is lowered due to the adsorption of surfactant molecules at the oil-water interface.

Surfactants are ampiphilic compounds composed of a hydrophobic tail and a hydrophilic head allowing them to be soluble in both the organic and inorganic phases as shown in Figure 1.2. The higher the hydrophobicity (hydrophilicity) of the surfactant molecules, the more soluble it is in the organic (aqueous) phase.

Figure 1.2 Schematic representation of water-in-oil emulsion stabilized using a surfactant

1.1.2.2. Solid Nanoparticles

Solid Nanoparticles are also used as stabilizers to assist in the stabilization of emulsions. Solid nanoparticles rest at the oil-water interface forming a contact angle with the two liquids depending on the hydrophobicity of the particle. A schematic representation of solid particles resting at the oil water interface is shown in Figure 1.3. Lower contact angles favour stable emulsions since they improve the wettability of the dispersed phase on the continuous medium.

Figure 1.3 Schematic representation of water-in-oil emulsion stabilized using solid particles

Emulsions have numerous applications in several industries. Some emulsion applications are listed in the following section.

1.1.3. Emulsion Applications

The oil and water emulsions are a common occurrence in several industries such as pharmaceuticals, petroleum, food and cosmetics.

a) <u>Pharmaceutical Industry</u>: Since the early days, emulsions have been used as a vehicle for delivery and administration of drugs. Different emulsion systems are also used for drug diagnostic and nutritional purposes. Furthermore, novel emulsion systems have also been developed for improving the availability of drugs in the body (Figure 1.4) and targeting specific sites to ensure more efficient drug targeting [3].

<u>Figure 1.4</u> Possible mechanisms of release of drug from multiple-emulsion systems. A, diffusion of nonionized drug through oil; B, diffusion of ionized drug through the oil-water lamellae; C, coalescence of internal aqueous phase and rupture of oil droplet [3]

b) <u>Petroleum Industry:</u> Oil recovery from naturally occurring crude oil produced from onshore and offshore wells often contains large quantities of water in the form of dispersed droplets that need to be accounted for when designing transport pipelines [4]. Approximately 50 percent of the oil present in sedimentary reservoirs remains behind after the use of conventional production methods [4]. Various surfactant containing systems with water as the external phase have been designed and used to enhance oil recovery from reservoirs. Due to the presence of surfactants, oil-aqueous interfacial tension is lowered, which results in enhanced wettability of the oil towards the designed system rather than the rock itself [5]. The designed system must also be able to scrape out rather than bypassing the residual oil. The enhanced recovery methods often produce oil in emulsion form.

c) <u>Food Industry</u>: Processed food items such as butter, milk, mayonnaise are a few examples of food items in emulsion form. For instance, milk or cream is an oil-in-water type emulsion (see Figure 1.5) composed of butterfat triglycerides as the dispersed phase and the aqueous solution of milk proteins, salts and minerals as the continuous phase. Butter is a water-in-oil emulsion with milk proteins, phospholipids and salts as the dispersed phase and the butterfat triglycerides as the external phase [6].

<u>Figure 1.5</u> An example of a food oil-in-water emulsion (salad dressing) consisting of oil droplets dispersed in aqueous medium [7]

d) <u>Cosmetic Industry</u>: Several cosmetic products are developed using emulsion technology and are known as "cosmetic emulsions". Cosmetic emulsions provide an impenetrable surface layer, which not only prevents penetration of unwanted material but also moderates undue losses of water from skin [8]. Furthermore, they also prove functional in delivering material that filter out UV radiation that could damage the skin. Some of the attributes of cosmetic emulsions include spreadability, smoothness, lustre, and richness of cream. Emulsion technology is also used in various other industrial fields including [3, 9]:

- 1. Agriculture
- 2. Coating and Adhesives
- 3. Water Treatment
- 4. Asphalt and explosives
- 5. Polymerization, and
- 6. Cleaning and polishing

1.2. Phase Inversion Phenomenon

Phase Inversion is a key phenomenon that takes place in emulsion systems whereby the dispersed phase and the continuous phase invert spontaneously. This phenomenon can occur due to changes in the dispersed phase volume fraction, homogenizing velocity, phase viscosity and stabilizer hydrophobicity etc.

For any emulsion system, there are two ways to attain phase inversion, namely transitional phase inversion and catastrophic phase inversion.

1.2.1. Transitional Phase Inversion

Transitional phase inversion can be achieved by altering the Hydrophile-Lipophile balance (HLB) of any emulsion system at a fixed volume fraction of the dispersed phase. The HLB number is assigned to each surface-active agent. Surface-active compounds with a HLB value that ranges between 3 and 6 are suited to form water-in-oil (W/O) emulsions, while compounds ranging from 8 and 18 are more suitable to form oil-in-water (O/W) emulsions [1].

Figure 1.6 Schematic representation of transitional phase inversion phenomenon. Paths 1 to 2 and 2 to 1 depend on the system HLB value [2]

Factors that affect the HLB of any system include properties such as temperature, electrolyte concentration, type of emulsifier etc [10]. As shown in the above figure (Figure 1.6), transitional phase inversion from W/O to O/W emulsion can be achieved by increasing the HLB of the system. In a mixed surfactant system consisting of two surfactants the changes in HLB can be achieved by increasing the ratio of hydrophilic surfactant to hydrophobic surfactant.

1.2.2. Catastrophic Phase Inversion

Catastrophic Phase Inversion is brought about by changing the dispersed phase volume fraction of the system keeping the other parameters constant. The dispersed phase volume fraction at which phase inversion occurs is known as critical dispersed phase volume fraction or the phase inversion point. This system represents a catastrophe showcasing a sudden change in the behaviour of the system due to the gradual change in the system conditions. A diagrammatic representation of catastrophic phase inversion is shown in Figure 1.7:

<u>Figure 1.7</u> Schematic representation of catastrophic phase inversion of a system going from O/W to W/O and vice versa by increasing the dispersed phase fraction of the system [11]

Catastrophic phase inversion also depends on the agitation speed as well as the rate of addition of the dispersed phase. Furthermore, the concentration of dispersed phase (water) at which the system inverts from W/O emulsion to O/W emulsion is not the same as the dispersed phase (oil) concentration at which inversion occurs from O/W emulsion to W/O emulsion morphology.

1.3. Stability of Emulsions

An emulsion is considered to be in a stable state when the dispersed phase droplets are uniformly dispersed in the continuous phase. Emulsion instabilities and breakdown processes that are known to exist include Sedimentation/Creaming, Flocculation, Coalescence, and Ostwald ripening. More details can be found in the following subsections.

1.3.1. Flocculation

Flocculation is a phenomenon whereby the dispersed phase droplets in an emulsion come together to form aggregates (see Figure 1.8). These aggregated droplets are formed due to diffusion or stirring and also due to a weak repulsion potential [10]. Aggregated droplets are separated by a thin layer of film that separates the small droplets and allows them to remain flocculated.

Stable Emulsion

Flocculated Emulsion

<u>Figure 1.8</u> Schematic representation of a stable emulsion and a flocculated emulsion. Flocculation occurs as the dispersed phase droplets come together to form flocs [12]

Flocculation usually leads to enhanced creaming since flocs rise faster than individual droplets due to their larger effective radius. Hence, the creamed layer formed due to the creaming process is essentially a large floc. Flocculation eventually leads to another form of instability in emulsions known as coalescence.

1.3.2. Coalescence

After flocculation, coalescence is the next step in the destabilization of emulsions. Once the dispersed phase droplets flocculate, the thickness of the thin layer separating these droplets tends to reduce due to van der Waals attraction [10]. When this thin film ruptures, the flocculated droplets combine to form a larger single droplet. This irreversible phenomenon is known as coalescence (see Figure 1.9).

<u>Figure 1.9</u> Schematic representation of a stable emulsion, flocculated emulsion and a coalesced emulsion. The smaller flocculated droplets fuse together to form larger coalesced droplets [12]

The two deciding factors that lead to coalescence include the rate of film thinning and the eventual rupture of the film. The rate of film thinning depends on the hydrodynamics of film flow and on the forces acting across the film [10]. The film rupture on the other hand depends on the fluctuations in film thickness and on the mechanical properties of the film [10].

1.3.3. Sedimentation and Creaming

For any emulsion system, the dispersed droplets rise through the medium or sink to the bottom of the emulsion based on the difference in the density of the internal and external phases. Depending on the direction of the movement of droplets, the terms sedimentation (*droplets sinking to the bottom*) or creaming (*droplets rising to the top*) are associated with unstable emulsions [10]. The phase separation phenomenon of sedimentation and creaming is enhanced by the dispersed phase droplet size since larger droplets or aggregates move faster through any medium compared to smaller dispersed droplets.

Stable Emulsion

Flocculated Emulsion

Coalesced Emulsion

Phase Separation (Creaming/Sedimentation)

Figure 1.10 Schematic representation of the entire instability process from a stable emulsion to phase separation [12]

Creaming or sedimentation is a result of the action of gravity on droplets. This phenomenon is reversible; with the help of gentle agitation, the droplets can be redistributed uniformly [10]. Emulsion stability is not only dependent on the physical and chemical attributes of the organic and inorganic phases used but also the type of stabilizer used to form the emulsion.

1.4. THESIS OBJECTIVES

In this study, we investigate the synergistic effects of surfactants and silica nanoparticles on catastrophic phase inversion. To our knowledge, no one has studied the effects of mixed stabilizers (nanoparticles and surfactant) on catastrophic phase inversion in emulsions. Specific objectives addressed in the thesis are:

- to study the effect of individual and mixed stabilizers (surfactant, solid nanoparticles, and mixed surfactant-nanoparticles) on catastrophic phase inversion and stability of emulsions
- 2. to study the effect of nanoparticle hydrophobicity on the catastrophic phase inversion concentration and stability of emulsion
- to study the effect of oil viscosity on catastrophic phase inversion using two oils of different viscosities of mineral oil
- 4. finally, to study the stability of emulsions with respect to coalescence and separation of the dispersed phase in W/O emulsions

Chapter 2. LITERATURE BACKGROUND

There have been numerous studies conducted on emulsion properties in the past. However, extensive technical literature on phase inversion phenomenon is lacking. In recent years, a few research studies have been conducted on phase inversion and stability of emulsions stabilized using different stabilizers [13, 14, 19, and 20].

2.1. Phase Inversion and Emulsion stability using Solid Particles as stabilizers

During the past few years, there has been a growing interest in studying the phase inversion phenomenon in emulsions stabilized with solid particles. Binks and Lumsdon [13] studied phase inversion in pickering emulsions stabilized solely by silica particles. The effects of particle concentration, type of oil, and oil/water ratio on the type and stability of emulsions stabilized by silica particles were determined.

<u>Figure 2.1</u> Conductivity of toluene-water emulsions stabilized using hydrophobic silica particles. Oil contained 2 wt% particles; water sequentially added to oil (open points) or oil added sequentially to water (closed points) [13]

According to their results (Figure 2.1), the dispersed phase volume fraction where catastrophic phase inversion of emulsion from O/W to W/O morphology and vice versa occurred was around 0.70. They further stated that the preferred emulsion type is W/O irrespective of the type of oil used. They also confirmed that water-in-toluene emulsions stabilized using hydrophobic silica particles can be prepared with a smaller droplet size, which makes the emulsion more stable to coalescence. Furthermore, increasing the particle concentration increased the viscosity of the continuous phase, which improved the stability of emulsions towards sedimentation.

The transitional phase inversion of solid-stabilized emulsions was investigated by Binks and Lumsdon [2] using particle types of different wettability. The oil to water ratio was fixed as 1:1. Using equal volumes of toluene-water emulsion systems, they discovered that inversion from an O/W system to a W/O system occurred on addition of hydrophobic silica to emulsions stabilized by hydrophilic silica particles (see Figure 2.2). Similarly, the inversion of W/O emulsion to O/W emulsion occurred upon the addition of hydrophilic silica particles to a W/O system initially stabilized using hydrophobic silica particles. The emulsions were observed to be very stable towards coalescence before the phase inversion point; however, they showed a significant instability (creaming/sedimentation) around the phase inversion point. Also, the droplet sizes were maximum at the point of inversion, showing greater instability and signs of gravity-induced separation. The authors also reported that an increase in the proportion of hydrophilic silica to hydrophobic silica in a mixed stabilizer system resulted in de-flocculation of water droplets in W/O emulsions.

<u>Figure 2.2</u> Conductivity data for water-toluene emulsion system at $\phi_W = 0.5$ containing 2.5 wt% total particles as a function of weight fraction of H30. The hydrophilic particles are initially dispersed in water and hydrophobic particles are initially dispersed in oil [2]

Transitional phase inversion has also been reported by Binks et al. [14]. They showed that emulsions composed of equal volumes of silicone oil and water can be inverted from O/W emulsion to W/O emulsion by increasing the concentration of silica particles (see Figure 2.3). They found that inversion only occurs for systems stabilized with particles of intermediate hydrophobicity. They also confirmed that hydrophobic particles stabilize only W/O emulsions and highly hydrophilic particles stabilize only O/W emulsions. With regards to the stability of emulsions, they also reported that all emulsions produced using different hydrophobic particles were completely stable to coalescence; however, the emulsions did show signs of creaming and sedimentation with time.

<u>Figure 2.3</u> Conductivity of silicon oil-water (1:1) emulsions stabilized using silica particles of different hydrophobicities as a function of particle concentration in oil [14]

Binks and Rodriguez [15] studied the effects of initial particle location, oil to water ratio and agitation times on phase inversion in water-triglyceride oil system. They have reported their findings for emulsions prepared in either batch or continuous manner. They found that for the preferred emulsion systems, the preferred continuous phase is the one in which the particles should be dispersed (see Figure 2.4). Thus the inversion of emulsion can be affected by changing the initial particle location, varying the oil:water ratio, and by continued agitation.

<u>Figure 2.4</u> Conductivity and type of water-tricaprylin batch emulsions stabilized by silica particles with 79.9% SiOH as a function of water volume fraction. Open circles, 2wt% particles initially in water; filled circles, 2 wt % particles initially in oil; triangles, 1wt% particles in emulsion originating in oil [15]

Silicone oil and water emulsion systems stabilized solely by silica nanoparticles has been investigated by Binks and Whitby [16]. They studied the influence of particle concentration, oil:water ratio, and emulsification time. They found that as the particle concentration is increased, the coalescence of droplets decreases due to a decrease in the average drop diameter (see Figure 2.5). This in turn lowers the extent of coalescence during drop formation [16]. Also, by increasing the oil volume fraction in emulsions stabilized at fixed particle concentration, the average drop diameter increases until catastrophic phase inversion takes place. For low oil volume fractions, it was observed that the droplet size decreases with increasing emulsification time, thereby limiting coalescence.

<u>Figure 2.5</u> Effect of particle concentration on the fraction of water released in emulsions stabilized using hydrophobic silica due to the creaming effect. The concentration of particles in the aqueous phases of the emulsions are (from top to bottom) 0.5, 1, 2, and 5 wt% [16]

The effect of silica particle flocculation on the stability of O/W emulsion systems stabilized by silica particles was studied by Binks and Lumsdon [17]. The addition of different types of electrolytes on emulsion stability was also investigated. They concluded that the stability of emulsion towards creaming and coalescence is low in the absence of an electrolyte. Moreover, the effect of addition of an electrolyte on emulsion and its stability are dependent on the type of salt used. For NaCl, they reported weak emulsion stability when the particles were flocculated. For LaCl₃ and tetraethylammonium bromide (TEAB) the emulsion stability increased drastically when silica particles were weakly flocculated. However, extensive flocculation of silica particles led to the destabilization of emulsions.

2.2. Phase Inversion and Emulsion stability using Surfactants

In comparison with pickering (solid-stabilized) emulsions, inversion and stability of emulsions stabilized with surfactants have been studied in greater details. Rondon-Gonzalez et al. [18] discussed the effect of phase viscosity on the inversion point produced by continuous stirring. The trend they observed for any given oil:water ratio; by increasing the viscosity of either of the two phases the inversion point for the system decreases.

They also stated that emulsion inversion produced by continuous stirring is affected by the change in phase viscosity. Different morphologies have been discussed where the change in phase viscosities (oil or water) affect the inversion mechanisms. They have reported that if the viscosities of both mediums are increased at the same time, the inversion occurs through multiple inversion morphology.

They continued their study on catastrophic phase inversion by studying the effect of water:oil ratio and surfactant concentration on inversion produced by continuous stirring in batch and continuous emulsion systems [19]. They have reported that for inversion occurring from normal to abnormal morphology, the water to oil ratio plays a critical role in determining the stirring required and the kinetics of phase inversion process. The general trend observed from their experiments was that at low dispersed phase volume fraction, it takes longer for the water droplets to incorporate in the oil phase. This slows down the swelling of the oil phase, which increases the critical dispersed phase value that prompts inversion to take place as presented in Table 2.1.

total surfactant	dispersed phase fraction (ϕ) at the inversion point			inversion time, s		
concn, wt %	fw 0.6	fw 0.7	fw 0.8	fw 0.6	fw 0.7	fw 0.8
2	0.87	0.86	0.84	6630	8680	15770
4.5	0.83	0.84	0.83	6930	7220	11880
7	0.85	0.85	0.85	7680	11760	19380

<u>Table 2.1.</u> Inversion time and critical dispersed phase fraction with respect to the concentration of surfactants [19]

Surfactant concentration was also shown to influence the inversion point. At higher water fractions, optimal concentration of surfactants has been shown to achieve shorter inversion times compared to lower water fractions where the time remains the same regardless of the surfactant concentration.

In their preliminary work, Brooks and Richmond [20] studied the phase inversion phenomenon in agitated oil-water systems stabilized with non-ionic surfactants. They established the different types of phase behaviour and clarified the role of surfactant. Their study reports two types of mechanisms: transitional phase inversion which is brought about by changing the HLB of the system and is reversible, and catastrophic inversion caused by changing the water:oil ratio and is irreversible. They also concluded that the inversion behaviour is influenced by the type of surfactant used. Different surfactants have different CMC values and do not provide the same results for different hydrocarbon/water systems. They developed phase diagrams of the type shown in Figure 2.6 for each oil-water-surfactant system.

HEPTANE/TWEEN20 - SPAN20

Figure 2.6 Example of phase inversion map for heptanes and SML surfactant at 2 wt% [20]

Brooks and Richmond [21] examined the catastrophic phase inversion of W/O emulsion to O/W system stabilized with non-ionic surfactants. They also studied drop sizes prior to and at the point of catastrophic phase inversion. They concluded that the drop size distribution depends on the stirring speed (see Figure 2.7) and on the rate of addition of the internal phase.

<u>Figure 2.7</u> Change in drop size distribution with stirrer speed for inverted emulsions. Water addition rate is kept constant at 20dm³/min [21]

The changes in the drop size distribution during catastrophic phase inversion were shown to be compatible with different mechanisms of drop formation. They also found that direct emulsification produces smaller droplets than those produced through catastrophic phase inversion. This is because droplet coalescence is more efficient than drop breakage.

In a separate article, Brooks and Richmond [22] discussed the effect of oil viscosity on phase inversion. A quantitative analysis of the relationship between drop size of the emulsions prior to inversion and after inversion was also presented. According to their results, an increase in the oil viscosity affects the phase inversion of W/O to O/W morphology. The droplet sizes in any emulsion are controlled by the rate of coalescence whereas the volume fraction of dispersed phase at inversion depends on the oil-phase viscosity as shown in Figure 2.8.

Figure 2.8 Effect of oil viscosity on critical water volume fraction at the point of phase inversion [22]

To supplement their previous work, Brooks and Richmond [23] discussed the phase behaviour of surfactant-oil-water systems. They also discussed the effect of altering the surfactant affinity towards oil or water on transitional phase inversion. Their paper was mainly concerned with the droplet sizes, encountered during transitional phase inversion. They studied the effects of agitation conditions, oil-phase viscosity and surfactant concentration on drop sizes of emulsions produced during transitional phase inversion. They concluded that transitional phase inversion is more efficient than direct emulsification since it produces extremely fine emulsions requiring lower energy input. A comparison between direct emulsification and transitional phase inversion is shown in Figure 2.9.

<u>Figure 2.9</u> Drop size comparisons between Direct and Transitional phase inversion methodology for PIBcyclohexane-NPE system [23]

Jahanzad et al. [24] recently carried out an investigation where catastrophic phase inversion technique was used to produce finer droplets in comparison with direct emulsification. They utilized cyclohexane/water system with non-ionic surfactants as stabilizers. They concluded that catastrophic phase inversion produces finer emulsions only if multiple droplets are formed at the pre-inversion stage. The phenomenon whereby the droplets of the internal phase are formed in the pre-inversion stage and then released into the region of post-inversion is responsible for the formation for finer droplets. They also found that multiple droplets are formed containing preformed fine droplets in their internal structure are formed only at high surfactant concentrations. Figure 2.10 shows some of their results on droplet sizes.

Figure 2.10 Size of oil droplets with respect to time in the post-inversion regime for different surfactant and HLBs [24]

Formation of nano-emulsions by means of emulsion phase inversion was studied in detail by Fernandez et al. [25]. They studied emulsion systems consisting of paraffin oil, water and a mixture of non-ionic surfactants and fatty alcohols. Their work determined the effects of route of preparation of emulsions and surfactant concentration on drop size distribution. They concluded that emulsions prepared through phase inversion have much finer droplets than the ones produced through mechanical shear alone. Also, low interfacial tension facilitates the droplet formation as the resulting droplet size distribution is highly dependent on surfactant to oil ratio.
The mechanism of catastrophic phase inversion has been studied in detail by Bouchama et al. [26]. They studied paraffin oil-water—Triton X-100 systems. The incremental volume of the dispersed phase that is added sequentially to the emulsion before phase inversion plays a vital role in determining the point of phase inversion (see Figure 2.11).

Figure 2.11 Phase inversion points for emulsions going from W/O to O/W morphology as a function of $\Delta \phi_W[26]$

They found that for smaller aliquots of the dispersed phase addition, the dispersed phase volume fraction at which phase inversion occurs shifts to a much higher value [26]. This behaviour was explained in terms of the formation of multiple emulsions. This concept whereby small amounts of dispersed phase are added sequentially provides a better control over the phase inversion point allowing formation of emulsions with higher dispersed phase volume fractions.

Chapter 3. MATERIALS AND METHODOLOGY

A series of experiments were carried out to study the effects of pure and mixed stabilizers on phase inversion in oil-water emulsion systems. The first three sets of experiments were conducted with three pure stabilizers (non-ionic surfactant, 50% hydrophobic nanoparticles, and 30% hydrophobic nanoparticles) with varying concentrations. The other two sets of experiments dealt with the effects of mixed nanoparticle/surfactant stabilizers on phase inversion in emulsions. Similar experiments were repeated for a higher viscosity oil to comprehend the effect of oil viscosity.

3.1. Materials

Specifications for all materials used in the experimental work are outlined in this section.

3.1.1. Types of Oils

The two oils used in this work were white mineral oils obtained from Petro-Canada. The oils were 99% pure and crystal clear with excellent low pour characteristics. They were low in volatility, odourless and colourless [Appendix B]. The specifications are provided in table 3.1:

<u>Table 3.1</u> Physical properties for the two viscous oils, Purity FG WO 15, WO 35 (<u>Reference:</u> Petro-Canada Tech Data Specification Sheet, Appendix B)

PROPERTY	TEST	PURITY FG WO	
	METHOD	WO 15	WO 35
Density, kg/L @ 15°C	D1298	0.847	0.855
Viscosity			
cSt @ 25°C	D445	27	75.4
mPa.s @ 25°C		22.9	64.5
Flash Point, °C	D92	180	220
Pour Point, °C	D97	-18	-18

3.1.2. Type of Surfactant

In our experiments, we used a highly hydrophobic surfactant. The surfactant used was EMSORB 2503, which is a non-ionic surfactant. The chemical name of EMSORB 2503 is sorbitan trioleate, which is a form of ester. Being a sorbitan ester, EMSORB 2503 tends to be more lipophilic or hydrophobic in nature. Exhibiting a low HLB (Hydrophile-Lipophile Balance) value of 1.8 [1] allows EMSORB 2503 to have greater affinity for lipids or water-insoluble compounds. Due to the highly hydrophobic nature of the surfactant, it is widely used to stabilize W/O emulsions.

The chemical structure of the surfactant is shown in Figure 3.1. The physical properties of the surfactant are given in table 3.2.

Figure 3.1 Chemical Structure of EMSORB 2503, Sorbitan trioleate [27]

PROPERTIES	VALUE
Chemical Formula	$C_{60}H_{108}O_8$
Molecular Weight, g/mol	957.51
Derivation	Sorbitol, Fatty Acid
Boiling Point, °C	> 100
Specific Gravity	0.95
Flash Point, °C	> 140
HLB Value	1.8

Table 3.2 Physical Properties of EMSORB 2503, Sorbitan trioleate [26]

3.1.3. Types of Silica Nanoparticles

Silica nanoparticles were used as alternative stabilizers. The two grades of silica nanoparticles used were hydrophobic in nature. Pure amorphous silicon dioxide (hydrophilic silica nanoparticle) is reacted with reactive silanes, such as methyl chlorosilanes and hexamethyldisilazane to produce the hydrophobic grade silica. The extent of coating on the hydrophilic silica determines the grade of the hydrophobic silica. They were produced using hydrophilic silica nanoparticles.

In our experiments, we used 30% hydrophobic grade (HDK HKS D) and 50% hydrophobic (HDK H20) grade silica nanoparticles. Some common properties for both grades are given in table 3.3. The physical-chemical properties of the individual silica grades are given in Table 3.4.

<u>Table 3.3</u> General properties of both hydrophilic and hydrophobic silica nanoparticles, HDK HKS D and HDK H20

TYPICAL GENERAL PROPERTIES	TEST PROCEDURE	VALUE
Si-O ₂ Content, %	DIN EN ISO 3262-19	> 99.8
Density of SiO ₂ , g/l		2200
Silanol group density, SiOH/nm ²		1
Electric resistivity (density 40 g/l), [Ω cm]		$> 10^{13}$
BET-Surface Area, m ² /g	DIN ISO 9277/DIN 66132	ca. 170

<u>Table 3.4</u> Physical-Chemical Properties for the two individual silica nanoparticles, HDK HKS D and HDK H20

PHYSICAL-CHEMICAL PROPERTIES	HDK H20	HDK HKS D
BET, Specific Surface Area, m ² /g	200	200
Hydrophobicity, SiOH content	50%	30%
Hydrodynamic Diameter, nm	100	100

3.1.4. Aqueous Phase

The aqueous phase used throughout the experiments was 0.01M NaCl solution. The solution was prepared using deionized water and 99% pure sodium chloride purchased from Sigma-Aldrich. The conductivity of the aqueous phase was 1100 μ S/cm.

3.2. Equipment

The equipment used to conduct the experiments are listed with general specifications in table 3.5.

Equipment	Make	Specification
Homogenizer	Greerco Corporation	Gifford Wood, 1-L, 0-140V
5200 Digital Camera	Nikon	5 MP
Conductivity Meter	Thermo Orion	3-Star Meter
Dual Channel Conductivity Probe	Thermo Orion	013005 MD, 0-200 mS/cm

<u>Table 3.5</u> Specifications of equipment used in the experiments

3.3. Experimental Procedures

3.3.1. Calibration of Conductivity Meter

In order to calibrate the conductivity meter, the nominal cell-constant selection method with a single calibration standard was used [28]. The details of the calibration procedure are described below:

- 1. Turn on the Thermo Orion 3-star conductivity meter and press the setup key. Select Thermo Orion conductivity standard with a conductivity value of 1413 μ S/cm.
- 2. Using the "up" arrow key, select "COnd" calibration setup. Press the line key to move the icon and the "up" arrow key until CELL is displayed on the screen.
- 3. Rinse the conductivity probe with deionized water and blot dry with lint free tissue. Insert the conductivity probe into the conductivity standard and stir gently.
- 4. Press the line select key to move the icon to the bottom line. Manually enter the cell constant value by using the up/down arrows to adjust each digit.
- 5. Press the line select key to move the icon to the top line and press the measure key to return to the measurement mode.

3.3.2. Study of Phase Inversion

In order to achieve catastrophic phase inversion in different emulsion systems, the following procedure was followed.

 A known amount of stabilizer (surfactant, silica nanoparticles, or mixed surfactantnanoparticles) was initially dispersed in the oil phase using a Gifford-Wood homogenizer. In order to allow complete dispersion, the solution was continuously homogenized for 30 minutes.

- The dispersed phase (0.01M NaCl aqueous solution) was then sequentially added to the oil phase while maintaining the mixing. After each addition of the dispersed phase, the emulsion was homogenized for about 5 minutes before the measurement of the electrical conductivity.
- 3. The conductivity was measured using Thermo Orion 3-star conductivity meter with a dual channel probe. The conductivity of water-in-oil (W/O) emulsion was very low.
- 4. Upon inversion of water-in-oil (W/O) emulsion to oil-in-water (O/W) emulsion, a sudden jump in the conductivity was observed. This was due to the presence of electrolytes in the aqueous phase, which allowed the emulsion to conduct electricity when the aqueous phase was the continuous phase.
- 5. The exact same procedure was followed to obtain phase inversion results for the higher viscosity oil.

As mentioned earlier, five sets of experiments were conducted to study the effects of pure and mixed stabilizers on phase inversion in emulsion systems. The first three sets of experiments were conducted with three pure stabilizers (surfactant, 50% hydrophobic nanoparticles, or 30% hydrophobic nanoparticles) with varying concentrations. The other two sets of experiments dealt with the effect of mixed nanoparticle/surfactant stabilizers on phase inversion in emulsions. In the case of the mixed nanoparticle/surfactant stabilizer, the total combined concentration of the two stabilizers (nanoparticles and surfactant) was held constant at 0.1 wt%. However, the proportion of surfactant (EMSORB 2503) in the mixed stabilizer was varied from 0 to 100 percent. Further details about the experiments conducted using individual stabilizers and the mixed stabilizers are summarized in Tables 3.6 and 3.7:

INITIAL OIL (gm) (Viscosity: 22.9mPa.s)	STABILIZER	STABILIZER CONCENTRATION (wt% in Oil)
500	EMSORB 2503	0.004 - 0.1
500	HDK H20	0.05 - 1.0
500	HDK HKS D	0.05 - 3.0
500	EMSORB 2503 + HDK H20	0.1 (total combined concentration)
500	EMSORB 2503 + HDK HKS D	0.1 (total combined concentration)

Table 3.6 Experiments conducted using individual and mixed stabilizers (Oil Grade - Purity FGWO15)

INITIAL OIL (gm) (Viscosity: 64.5mPa.s)	STABILIZER	STABILIZER CONCENTRATION (wt% in Oil)
500	EMSORB 2503	0.005 - 0.1
500	HDK H20	0.1 - 1.0
500	HDK HKS D	0.1 - 3.0
500	EMSORB 2503 + HDK H20	0.1 (total combined concentration)
500	EMSORB 2503 + HDK HKS D	0.1 (total combined concentration)

Table 3.7 Experiments conducted using individual and mixed stabilizers (Oil Grade - Purity FGWO35)

3.3.3. Stability Study

In order to investigate the impact of stabilizers on emulsion stability, emulsion samples were collected at a water fraction of $\phi_w = 0.2$ and their stability were studied as described below:

- 1. The samples were dispensed in 10ml glass vials and images were captured at regular time intervals (30 seconds to 2 hours) using Nikon 5200, 5 MP digital camera.
- 2. The de-stabilization trends were studied by observing the sedimentation of emulsions (settling of the aqueous phase at the bottom of the emulsion) stabilized with different stabilizers.
- In order to obtain quantitative results, 100ml samples of different emulsions were obtained in graduated cylinders and the coalescence of aqueous phase at the bottom was monitored with respect to time

Chapter 4. EXPERIMENTAL RESULTS

This chapter consists of four sections. In section 4.1, experimental results for emulsions stabilized with surfactant (EMSORB 2503) alone are described. In section 4.2, experimental results for emulsions stabilized with silica nanoparticles are described. Section 4.3 describes the experimental results for emulsions stabilized with mixed stabilizers. The last section (section 4.4) deals with experimental results on the stability of emulsions.

4.1. Pure Surfactant as Stabilizer

Figure 4.1 shows the conductivity plots for emulsions stabilized with pure surfactant (EMSORB 2503). The surfactant concentration in the oil phase (Oil A of viscosity 22.9mPa.s) was varied from 0.004 wt% to 0.1 wt%. With the increase in water volume fraction, the conductivity remained negligibly small until the phase inversion point.

<u>Figure 4.1</u> Conductivity data for emulsions stabilized with EMSORB 2503 at different surfactant concentrations (Oil A, Viscosity – 22.9mPa.s)

Upon inversion of water-in-oil (W/O) emulsion to oil-in-water (O/W) emulsion, a sharp increase in the conductivity occurred. As shown in Figure 4.2, the phase inversion point was delayed to higher water concentrations by increasing the surfactant concentration in the oil phase. The phase inversion point shifts from about 32 vol. % to over 70 vol. % water upon increasing the surfactant concentration from 0 to 0.1 wt%.

<u>Figure 4.2</u> Phase Inversion concentration of water as a function of surfactant (EMSORB 2503) concentration (Oil A, Viscosity – 22.9mPa.s)

Figure 4.3 shows the conductivity plots for surfactant stabilized emulsions prepared from the higher viscosity oil (Oil B, viscosity 64.5mPa.s). Trends similar to lower viscosity oil are observed for the higher viscosity oil. Increasing the surfactant concentration raises the phase inversion concentration. However, in comparison to the lower viscosity oil, the phase inversion concentrations are lower for the higher viscosity oil (see Figure 4.4).

<u>Figure 4.3</u> Conductivity data for emulsions stabilized using EMSORB 2503 at different surfactant concentrations (Oil B, Viscosity – 64.5mPa.s)

<u>Figure 4.4</u> Phase inversion concentration of water as a function of surfactant (EMSORB 2503) concentrations for oils A and B

4.2. Silica Nanoparticles as Stabilizers

4.2.1. 50% Hydrophobic Nanoparticles

Figure 4.5 shows the conductivity plots for emulsions stabilized with 50% hydrophobic nanoparticles (HDK H20). The concentration of the nanoparticles was varied from 0.05 wt% to 1.0 wt% based on the oil phase (Oil A). As expected, a sharp increase in the conductivity occurs upon inversion of water-in-oil (W/O) emulsion to oil-in-water (O/W) emulsion.

<u>Figure 4.5</u> Conductivity data for emulsions stabilized with HDK H20 at different solids (HDK H20) concentrations (Oil A, Viscosity – 22.9mPa.s)

From Figure 4.6, it is clear that the water volume fraction where phase inversion takes place increases with the increase in the nanoparticle concentration. However, it is important to note that in the present case of nanoparticle stabilizer, a significantly higher stabilizer concentration is required to achieve the same phase inversion concentration as attained in the pure surfactant case (see Figure 4.2).

<u>Figure 4.6</u> Phase Inversion concentrations of water as a function of solids (HDK H20) concentration (Oil A, Viscosity – 22.9mPa.s)

For the higher viscosity oil (Oil B), the phase inversion concentrations were lower than those of oil A up to a silica concentration of 0.3 wt%. However, at higher silica concentrations the opposite trend was observed (see Figures 4.7 and 4.8).

<u>Figure 4.7</u> Conductivity data for emulsions stabilized with HDK H20 at different solids (HDK H20) concentrations (Oil B, Viscosity – 64.5mPa.s)

Figure 4.8 Phase inversion concentration of water as a function of HDK H20 concentrations for oils A and B

4.2.2. 30% Hydrophobic Nanoparticles

To investigate the effect of hydrophobicity of nanoparticles, silica nanoparticles of 30% SiOH content (HDK HKS D) were used to stabilize the emulsions. The particle concentration was varied from 0.1 wt% to 3.0 wt% in the oil phase (Oil A). The phase inversion concentration of water initially decreased and then increased with the increase in the nanoparticle concentration (see Figures 4.9 and 4.10).

<u>Figure 4.9</u> Conductivity data for emulsions stabilized with HDK HKS D at different solids (HDK HKS D) concentrations (Oil A, Viscosity – 22.9mPa.s)

<u>Figure 4.10</u> Phase Inversion concentration of water as a function of HDK HKS D concentration (Oil A, Viscosity – 22.9mPa.s)

It is important to note that phase inversions in the present case of 30% hydrophobic nanoparticles occurs at a lower water concentration when comparison is made with the more hydrophobic grade (50% hydrophobicity) nanoparticles at the same solids concentration.

Similar trends were exhibited by emulsions prepared from the higher viscosity oil (Oil B) and stabilized by 30% hydrophobic nanoparticles (HKS D). The conductivity plots showing phase inversion of W/O system to O/W system for HKS D stabilized emulsions prepared from oil B are shown in Figure 4.11. The water volume fraction at which inversion occurs is slightly lower in the case of high viscosity oil when comparison is made with the data for lower viscosity oil (See Figure 4.12).

<u>Figure 4.11</u> Conductivity data for emulsions stabilized with HDK HKS D at different solids (HDK HKS D) concentrations (Oil B, Viscosity – 64.5mPa.s)

Figure 4.12 Phase inversion concentration of water as a function of HDK HKS D concentration for oils A and B

4.3. Mixed Surfactant/Nanoparticles as Stabilizer

4.3.1. Surfactant and 50% Hydrophobic Nanoparticles

For the mixed surfactant/nanoparticles experiments, the first set of experiments were conducted with EMSORB 2503 and 50% hydrophobic grade (HDK H20) silica nanoparticles. The total concentration of the mixed stabilizer was fixed at 0.1 wt% in oil but the composition of the mixed stabilizer was varied from 0 to 100 % surfactant. Figures 4.13 and 4.14 show that with increasing the proportion of surfactant in the mixed stabilizer, the water volume fraction at which phase inversion occurs also increases. This clearly demonstrates that the surfactant is much more effective than nanoparticles in delaying the phase inversion of W/O emulsion to O/W emulsion.

<u>Figure 4.13</u> Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK H20. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil A, Viscosity -22.9mPa.s)

<u>Figure 4.14</u> Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)

Figures 4.15 and 4.16 show the phase inversion data for emulsions prepared from higher viscosity oil (Oil B).

<u>Figure 4.15</u> Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK H20. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil B, Viscosity -64.5mPa.s)

<u>Figure 4.16</u> Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)

For oil B of viscosity 64.5mPa.s, the water volume fraction at which phase inversion takes place from W/O to O/W emulsion is much lower. This can be seen clearly in Figure 4.17.

<u>Figure 4.17</u> Phase inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer for oils A and B

4.3.2. Surfactant and 30% Hydrophobic Nanoparticles

The second set of experiments were conducted with the mixed surfactant/nanoparticles consisting of EMSORB 2503 and 30% hydrophobic grade (HDK HKS D) silica nanoparticles. According to the plots shown in Figures 4.18 and 4.19, the behaviour of this mixed surfactant/nanoparticles system is similar to that of the earlier system (Figures 4.13 and 4.14) indicating that the surfactant is more effective than nanoparticles in delaying the phase inversion point.

<u>Figure 4.18</u> Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK HKS D. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)

<u>Figure 4.19</u> Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil A, Viscosity – 22.9mPa.s)

Figures 4.20 and 4.21 show the data for the higher viscosity oil (Oil B of viscosity 64.5mPa.s). The trends observed for the higher viscosity oil are similar to those observed for the lower viscosity oil.

<u>Figure 4.20</u> Conductivity data for emulsions stabilized with mixed stabilizers: EMSORB 2503 and HDK HKS D. The data are monitored for increasing EMSORB proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)

<u>Figure 4.21</u> Phase Inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer (Oil B, Viscosity – 64.5mPa.s)

However, the phase inversion concentration of water is lower for the higher viscosity oil (see Figure 4.22).

<u>Figure 4.22</u> Phase inversion concentration of water as a function of EMSORB 2503 proportion in the mixed stabilizer for oils A and B

4.4. Stability Study of Emulsions stabilized with Individual and mixed stabilizers

Emulsion stability was examined for emulsions prepared from oil A (Viscosity 22.9 mPa.s) using individual and mixed stabilizers. Emulsions were prepared using different concentrations of surfactant, silica nanoparticles, and combination of the two stabilizers. Samples of W/O emulsions containing 20% of the dispersed phase (water) were observed and pictures were taken at different time intervals to study the effect of coalescence of the dispersed phase that eventually settled down at the bottom of the sample.

Figures 4.23 (a)-(c) show the images of the emulsion samples prepared from single stabilizers. The figures reveal that the emulsion stabilized using the surfactant alone separates faster than the emulsions prepared using silica nanoparticles as the sole stabilizers. After a one minute mark, no separation takes place in any of the systems.

<u>Figure 4.23a</u>) Emulsions prepared using EMSORB 2503 as a lone stabilizer. EMSORB 2503 concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark

<u>Figure 4.23b</u> Emulsions prepared using HDK H20 as a lone stabilizer. HDK H20 concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark

<u>Figure 4.23c</u>) Emulsions prepared using HDK HKS D as a lone stabilizer. HDK HKS D concentration = 0.1 wt% in oil. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark

However, during the course of time there occurs a significant separation of water at the bottom of the emulsion sample for the emulsion stabilized with surfactant alone (Figure 4.23a). It should also be noticed that emulsions stabilized using silica nanoparticles hardly show any separation of the dispersed aqueous phase (see Figure 4.23(b)-(c)).

<u>Figure 4.24</u> Emulsions stabilized using mixed stabilizers. All samples were collected at $\phi_w = 0.2$ and monitored for time intervals at 1, 5, 15, 30, and 60 minute mark

Figure 4.24 shows the images of the emulsion samples prepared from mixed stabilizers, EMSORB 2503 and nanoparticles, in the ratio of 1:1 at a total stabilizer concentration of 0.1 wt% based on oil. It can be seen from Figure 4.24 that by using a more hydrophobic grade of silica nanoparticles, a more stable emulsion is formed. Emulsion stabilized with 50% hydrophobic nanoparticles (HDK H20) shows no significant separation compared to the emulsion stabilized with 30% hydrophobic particles (HDK HKS D).

Figure 4.25 shows the images of the emulsion samples prepared from mixed stabilizer (total concentration = 0.1 wt% based on oil) with varying proportions of surfactant in the mixed stabilizer. The images are taken after a fixed time interval of 60 minutes. With increasing proportion of surfactant in the mixed stabilizer, separation of water tends to become faster especially for HDK HKS D nanoparticles.

a) Emulsions prepared using mixed stabilizers (HKS D and EMSORB) with increasing surfactant proportion. Total stabilizer concentration was constant at 0.1 wt%. Surfactant proportion starts at 10% and goes to 50% with increasing intervals of 10%.

b) Emulsions prepared using mixed stabilizers (H20 and EMSORB) with increasing surfactant proportion. Total stabilizer concentration was constant at 0.1 wt%. Surfactant proportion starts at 10% and goes to 50% with increasing intervals of 10%.

These results are further confirmed by the data shown in Figure 4.26 where the volume of aqueous phase separated from the emulsion sample (100 ml) is plotted as a function of time. Emulsion stabilized by surfactant alone (0.1 wt% based on oil) shows a high separation of water whereas emulsions stabilized by nanoparticles alone show little separation. With the increasing proportion of surfactant in the mixed stabilizer, the separation of water increases. However, the degree of separation of water is small in the presence of silica nanoparticles as partial stabilizers. For silica nanoparticles to surfactant ratio of 20:80 a separation of about 2 ml of water is seen at the bottom of the emulsion, and for 80:20 ratio of nanoparticles to surfactant, only about 1 ml of water separation is observed.

<u>Figure 4.26</u> Volume of coalesced aqueous phase for emulsions stabilized using individual and mixed stabilizers

Chapter 5. DISCUSSION

The emulsion morphology (either water-in-oil or oil-in-water) and the phase inversion phenomenon depend on three variables: formulation, composition, and protocol variables [29]. *Formulation variables* are independent of the quantity and are characterized based on the individual phase properties as well as nature of the stabilizing components. *Composition variables*, on the other hand, are quantitative variables such as the concentration of stabilizer and the volume fractions of the two phases. Finally, *protocol variables* define the conditions under which the emulsion is formed, such as homogenizing speed, type of vessel used to form the emulsion etc.

In our study, we have focused mainly on the effects of formulation and composition variables on phase inversion phenomenon and stability of emulsions. The formulation variables investigated in this study include the type of stabilizer used (surfactant, nanoparticles, or their mixture) the hydrophobicity of silica nanoparticles and the viscosity of oil used.

The composition variables investigated are: surfactant concentration and the volume fractions of the two phases. The protocol variables are kept constant throughout the experimental work.

5.1. Effect of dispersed phase volume fraction on stability and phase inversion

In our work, oil containing the stabilizer was the continuous phase at the start of the experimental runs. The dispersed phase was an aqueous solution consisting of 0.01 M NaCl. With the increase in the dispersed phase concentration and due to the presence of the homogenizing effect, the number of dispersed phase droplets is increased.

Near the phase inversion point, the aqueous phase droplets touch each other trapping the oil phase. At the phase inversion point, coalescence of aqueous droplets takes place thereby inverting the emulsion system. Hence, the emulsion that started off as a water-in-oil (W/O) emulsion is now in the oil-in-water (O/W) emulsion form [29, 30].

The above mechanism is shown schematically in Figure 5.1.

<u>Figure 5.1</u> a) Initially water is dispersed in oil forming W/O emulsion with hydrophobic tails of surfactant pointing towards oil and polar heads facing the water b) Addition of water increases the number of water droplets c) Oil is trapped in between the water droplets d) magnified image showing entrapment of oil e) Eventually, phase inversion takes place reversing the surfactant orientation

5.2. Effect of stabilizer on stability and phase inversion

Upon addition of dispersed phase to the continuous phase (containing surfactant), the surfactant molecules align themselves at the interface of the droplets with the hydrophobic tail pointing towards the oil-continuous phase and the hydrophilic head submerged in the aqueous phase. Figure 5.2 shows a depiction of the water-in-oil system and Figure 5.3 shows the oil-in-water system. The presence of the surfactant layer at the interface of the droplets inhibits the coalescence process and as a result, the phase inversion point is shifted to a higher dispersed phase volume fraction (see Figure 4.2).

<u>Figure 5.2</u> Water in Oil emulsion with the hydrophobic end of the surfactant molecule pointing towards the oil and the hydrophilic head submerged in the non-aqueous phase

<u>Figure 5.3</u> Oil in Water emulsion with the hydrophobic end of the surfactant molecule concentrating at the non-polar core and the hydrophilic head surrounding the water phase

The silica nanoparticles used in this work are ampiphilic in nature and it is their wetting ability at the oil-water interface that determines the stability and the phase inversion point of emulsion. Emulsions stabilized using silica nanoparticles allow the nanoparticles to settle at the oil-water interface forming a contact angle between the particles and the oil-water interface as described in Figure 5.4.

<u>Figure 5.4</u> a) Ampiphilic Silica Nanoparticle with high hydrophobicity with contact angle < 90°, promoting enhanced wetting of nanoparticles by the oil phase b) Silica Nanoparticle with 50% hydrophobicity forming a 90° contact angle c) Low hydrophobic nanoparticle forming a contact angle > 90°, forming unstable emulsions due to reduced wetting of nanoparticles by the oil phase

The contact angle formation between the oil-nanoparticle-water determines how stable the emulsion will be. It is likely that due to the high hydrophobicity of the nanoparticles, the contact angle formation between the nanoparticle and oil-water interface is much smaller than 90°. In such a case, the nanoparticles are preferentially wetted by the oil phase resulting in stable water-in-oil emulsions. The silica nanoparticles of low hydrophobicity tend to form a contact angle greater than 90 degrees at the oil-water interface thereby improving water wetting of particle surface resulting in an unstable water-in-oil emulsion [31, 32].

The hydrophobic nature of silica nanoparticles also affects the inversion point. As observed in Figures 5.5 and 5.6, the more hydrophobic silica (HDK H20) increases the dispersed phase volume fraction where phase inversion occurs as compared with less hydrophobic HDK HKS D.

<u>Figure 5.5</u> Comparison trends showing the effect of hydrophobicity of silica nanoparticles on the phase inversion points (Oil A)

<u>Figure 5.6</u> Comparison trends showing the effect of hydrophobicity of silica nanoparticles on the phase inversion points (Oil B)

This once again is due to the wetting property of silica nanoparticles at the oil-water interface. More hydrophobic HDK H20 forms a contact angle less than 90 degrees whereas HKS D tends to form a contact angle greater than 90 degrees resulting in unstable water-in-oil emulsions.

5.3. Effect of Oil Viscosity on stability and phase inversion

As discussed earlier in the results, experiments were conducted with two different viscosity oils (Oil A - 22.9mPa.s and Oil B – 64.5mPa.s). The volume fraction of water at phase inversion was significantly lower for the higher viscosity oil. The effect of viscosity has been explained earlier by Paul and Barlow [33] for phase inversion of different immiscible polymer blends. According to their explanation, the water volume fraction at which phase inversion occurs is given by:

$$\phi_W = \frac{1}{1+\lambda} \qquad (1)$$

where, $\lambda = \frac{\eta_o}{\eta_w}$, $\eta_o =$ viscosity of oil, and $\eta_w =$ viscosity of water

Consequently, as the viscosity of oil is raised the denominator increases due to an increase in the value of λ . Therefore, from equation 1 above, it is determined that with an increase in the denominator caused by an increase in the oil viscosity, the volume fraction at which phase inversion occurs goes down. This is further confirmed by Utracki [33], who proposed:

$$\phi_W = \frac{1 - 0.5263 \log \lambda}{2} \tag{2}$$

Once again, the λ value increases with increasing oil viscosity. This causes a reduction in the numerator which implies that the phase inversion point also reduces. These calculations produce similar trends to the ones observed in the experimental data.

The stability of water-in-oil emulsions prepared from the two oils of different viscosities was also studied. Figure 5.7 clearly show that the rate of separation of water slows down considerably with the increase in the viscosity of oil.

<u>Figure 5.7</u> The effect of oil viscosity on coalescence behaviour of emulsions stabilized with surfactant alone

By using higher viscosity oil, the rate of coalescence of water-in-oil emulsion is reduced as gravitational settling of the water droplets slows down considerably. Furthermore, the thinning of oil film between the water droplets, and hence coalescence, takes a longer time when the oil viscosity is increased.

Chapter 6. CONCLUSIONS

The phenomenon of phase inversion from W/O (water-in-oil) emulsion to O/W (oil-in-water) emulsion was studied using surfactant, solid nanoparticles, and mixed surfactant-nanoparticles as stabilizers. The effect of oil viscosity on phase inversion was also investigated. Finally, the stability of emulsions was investigated using individual and mixed stabilizers. Based on the experimental results, the following conclusions can be made:

- Surfactant is much more effective in delaying the phase inversion of W/O emulsion to O/W emulsion as compared with the nanoparticles, when comparison is made at the same stabilizer concentration. For the same concentration of 0.1 wt% stabilizer initially dispersed in oil, surfactant stabilized W/O emulsion inverted to O/W emulsion at 72% by volume water whereas silica nanoparticle stabilized emulsion inverted at 31% by volume water. This is probably due to the greater affinity of surfactant for the oil-water interface.
- For emulsions stabilized with silica nanoparticles, the higher hydrophobic grade particles are more effective in delaying the phase inversion of W/O emulsion to O/W emulsion. At 0.1 wt% concentration of silica nanoparticles (based on oil phase) HKS D (30% hydrophobic) gives a phase inversion value of 18 percent by volume compared to 32% given by H20 (50% hydrophobic), the higher hydrophobic grade. This can be explained in terms of the wetting ability of the solid nanoparticle at the oil-water interface.
- With increasing proportion of surfactant in the mixed surfactant/nanoparticles stabilizer, the water fraction at which phase inversion occurs increases. This proves that the surfactant plays a more dominant role in determining the phase inversion point.
- With increasing proportion of silica nanoparticles in the mixed surfactant/nanoparticle stabilizer, the emulsion formed is much more stable as compared to emulsion formed using a lower nanoparticle to surfactant ratio. Surfactant alone gives an unstable W/O emulsion and leads to quick separation of the aqueous phase.
- By increasing the viscosity of oil, the dispersed volume fraction of the aqueous phase at which phase inversion occurs is reduced significantly. However, increasing the oil viscosity improves the emulsion stability significantly with respect to coalescence.

REFERENCES

- [1] Becher, P., "Theory of Emulsions: Creaming, Inversion, and Demulsification", in "Emulsions: Theory and Practice," Paul Becher, Reinhold Publishing Corporation, New York, NY (1957), pp. 125-131.
- [2] Binks, B.P. and Lumsdon, S.O., "Transitional Phase Inversion of solid-stabilized emulsions using particle mixtures," Langmuir, 16, 3748-3756 (2000b).
- [3] Davis, S.S., "Medical and Pharmaceutical Applications of Emulsions," in "Encyclopedia of Emulsion Technology: Volume 2," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1985), pp. 159-239.
- [4] Nadler, M. and Mewes, D., "Flow Induced Emulsification in the Flow of Two Immiscible Liquids in Horizontal Pipes," Int. J. Multiphase Flow, 23, No.1, pp. 55-68 (1997).
- [5] Davis, B.W., "Applications in the Petroleum Industry," in "Encyclopedia of Emulsion of Technology: Volume 3," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1988), pp. 307-397.
- [6] Krog, N.J., "Applications in the Food Industry: I," in "Encyclopedia of Emulsion Technology: Volume 2," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1985), pp. 321-367.
- [7] McClements, D.J., "Food Emulsions: Principles, Practices, and Techniques," CRC Press, Second Edition, Boca Raton, (2004), pp. 3
- [8] Breuer, M.M., "Cosmetic Emulsions," in "Encyclopedia of Emulsion Technology: Volume 2," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1985), pp. 385-425.

- [9] Torrey, S., "Emulsions and Emulsifier Applications," edited by S. Torrey, Noyes Data Corporation, New Jersey, USA (1984), pp. 217, 234, 285-294.
- [10] Binks, B.P., "5. Emulsions," Annual Reports Section 'C' (Physical Chemistry), Royal Society of Chemistry, vol. 92 (1995), pp. 97-133
- [11] Hu, B. and Panagiota, A., "Phase Inversion and Associated Phenomena in Oil-Water Vertical Pipeline Flow," The Canadian Journal of Chemical Engineering, 84, 94-107 (2006).
- [12] Malvern Instruments Ltd., "Colloid Stability," Malvern Instruments Ltd., Available at http://www.malvern.com/LabEng/industry/colloids/colloids_stability.htm (2009).
- [13] Binks, B.P. and Lumsdon, S.O., "Catastrophic Phase Inversion of Water-in-oil Emulsions stabilized by Hydrophobic Silica," Langmuir, 16, 2539-2547 (2000a).
- [14] Binks, B.P., Philip, J. and Rodrigues, J.A., "Inversion of Silica-Stabilized Emulsions induced by Particle concentration," Langmuir. 21, 3296-3302 (2005).
- [15] Binks, B.P. and Rodrigues, J.A., "Types of Phase Inversion of Silica Particle Stabilized Emulsions containing Triglyceride Oil," Langmuir 2003, 19, 4905-4912 (2002).
- [16] Binks, B.P. and Whitby, C.P., "Silica Particle-Stabilized Emulsions of Silicone Oil and Water: Aspects of Emulsification," Langmuir, 20, 1130-1137 (2003).
- [17] Binks, B.P. and S.O. Lumsdon, "Stability of oil-in-water emulsions stabilized by silica particles," Phys. Chem. Chem. Phys., **1**, 3007-3016 (1999).

- [18] Rondon-Gonzalez, M., Madariaga, L.F., Sadtler, V., Choplin, L., Marquez, L. and Salagar, J.L., "Emulsion Catastrophic Inversion from Abnormal to Normal Morphology.
 6. Effect of Phase Viscosity on the Inversion Produced by Continuous Stirring," Ind. Eng. Chem. Res. 2007, 46, 3595-3601 (2007).
- [19] Rondon-Gonzalez, M., Sadtler, V., Choplin, L., and Salagar, J.L., "Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 6. Effect of the Water-to-Oil Ratio and Surfactant Concentration on the Inversion Produced by Continuous Stirring," Ind. Eng. Chem. Res., 45, 3074-3080 (2007).
- [20] Brooks, B.W. and Richmond, H.N., "Dynamics of liquid-liquid phase inversion using non-ionic surfactants," Colloids and Surfaces, Vol. 58, pp. 131-148 (1991).
- [21] Brooks, B.W. and Richmond, H.N., "Phase Inversion in Non-Ionic Surfactant-Oil-Water Systems – 2. Drop Size Studies in Catastrophic Inversion with Turbulent Mixing," Chemical Engineering Science, Vol. 49, No. 7, pp. 1065-1075 (1994).
- [22] Brooks, B.W. and Richmond, H.N., "Phase Inversion in Non-Ionic Surfactant-Oil-Water Systems – 3. The Effect of the oil-phase viscosity on catastrophic phase inversion and the relationship between the drop sizes present before and after catastrophic phase inversion," Chemical Engineering Science, Vol. 49, No. 11, pp. 1843-1853 (1994).
- [23] Brooks, B.W. and Richmond, H.N., "Phase Inversion in Non-Ionic Surfactant-Oil-Water Systems – 1. The effect of Transitional Inversion on Emulsion Drop Sizes," Chemical Engineering Science, Vol. 49, No. 7, pp. 1053-1064 (1994).
- [24] Jahanzad, F., Crombie, G., Innes, R., Sajjadi, S., "Catastrophic phase inversion via formation of multiple emulsions: A prerequisite for formation of fine emulsions," Chemical Engineering Research and Design, 87, 492-498 (2009).

- [25] Fernandez, P., Andre, V., Rieger, J., Kuhnle, A., "Nano-emulsion formation by emulsion phase inversion," Colloids and Surfaces A: Physiochem. Eng. Aspects 251, pp. 5-58 (2004).
- [26] Bouchama, F., Aken, G.A. van, Autin, A.J.E., Koper, G.J.M., "On the mechanism of catastrophic phase inversion in emulsions," Colloids and Surfaces A: Physiochem. Eng. Aspects 231, pp. 11-17 (2003).
- [27] Chemical Land, "Sorbitan Trioleate," Chemical Land 21, Available at http://chemicalland21.com/lifescience/foco/SORBITAN%20TRIOLEATE.htm (2009).
- [28] Thermo Fisher Scientific Inc., "Orion Star Series Conductivity Meter Quick Start Guide", Rev A, Available at: www.thermo.com/water (2009).
- [29] Salager, J.L., "Emulsion Phase Inversion Phenomenon," in "Emulsions and Emulsion Stability: Volume 132," edited by Paul Sjoblom, Taylor and Francis Group, LLC, Boca Raton, FL (2006), pp. 189-213.
- [30] Salager, J.L., "Phase Transformation and Emulsion Inversion on the Basis of Catastrophe Theory," in "Encyclopedia of Emulsion of Technology: Volume 3," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1988), pp. 79-137.
- [31] Tadros, T.F., "Emulsion Stability," in "Encyclopedia of Emulsion Technology: Volume 1," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1983), pp. 145-150, 170-200 and 228-231.
- [32] Breen, P.J., "Emulsions and Emulsion Stability," in "Emulsions and Emulsion Stability: Volume 61", edited Paul Sjoblom, Marcel Dekker, Inc., New York, NY (1996), pp. 270-276.

[33] Pal, R., "Rheology of Emulsions Containing Polymeric Liquids," in "Encyclopedia of Emulsion Technology: Volume 4," edited by Paul Becher, Marcel Dekker, Inc., New York, NY (1996), pp. 238-245.

APPENDICES

Appendix A: Raw Data

Appendix A-1: Experimental Data Points for Oil A, Viscosity: 22.9mPa.s

No Stabilizer Added, Oil-Water Emulsion System

Surfactant-Soli	0.0 wt%, EMSORB	
Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01
20	0.038	0.01
40	0.074	0.01
60	0.107	0.01
79	0.139	0.01
89	0.153	0.01
109	0.182	0.01
129	0.208	0.01
137	0.221	0.01
157	0.245	0.01
177	0.268	0.01
197	0.290	0.01
207	0.300	0.01
217	0.310	0.01
227	0.320	0.64
237	0.329	174.7
257	0.347	225.4
267	0.356	268
287	0.373	282.6
327	0.404	312
353	0.425	344
393	0.452	368
423	0.470	387
483	0.503	401
523	0.523	431
593	0.554	484
633	0.570	497
723	0.603	531
793	0.624	561
893	0.652	587
973	0.671	604
1133	0.704	669
1233	0.721	684
1433	0.750	737

EMSORB 2503 – Surfactant Only

Surfactan	t Concentration	0.1 wt%, EMSORB	Surfactant Concentration		0.05 wt%, EMSORB
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
10	0.038	0.01	10	0.032	0.01
20	0.074	0.01	20	0.063	0.01
30	0.107	0.01	35	0.104	0.01
40	0.138	0.01	44	0.131	0.01
50	0.167	0.01	54	0.157	0.01
60	0.194	0.01	64	0.180	0.01
70	0.219	0.01	74	0.203	0.01
80	0.242	0.01	82	0.225	0.01
90	0.265	0.01	92	0.245	0.01
100	0.286	0.01	102	0.265	0.01
110	0.306	0.01	112	0.284	0.01
120	0.324	0.01	122	0.301	0.01
130	0.342	0.01	132	0.318	0.01
140	0.359	0.01	142	0.334	0.01
150	0.375	0.01	152	0.349	0.01
160	0.390	0.01	162	0.364	0.01
170	0.405	0.01	172	0.378	0.01
180	0.419	0.01	182	0.391	1.36
190	0.432	0.01	192	0.404	1.5
200	0.444	0.01	198	0.417	1.69
210	0.457	0.34	208	0.429	1.71
220	0.468	1.16	218	0.440	1.72
230	0.479	1.97	228	0.451	2.17
240	0.490	2.23	238	0.462	2.41
250	0.500	2.26	248	0.472	2.48
270	0.519	2.57	268	0.492	2.49
290	0.537	2.97	288	0.510	2.84
310	0.554	3.79	308	0.526	4.5
330	0.569	4.5	328	0.542	7.33
350	0.583	4./4	348	0.557	7.96
380	0.603	5.4	378	0.577	9.65
420	0.627	5.52	418	0.601	11.//
470	0.653	5.8	448	0.618	13.76
530	0.679	8.82	508	0.647	9.76
590	0.702	9.34	548	0.664	12.88
650	0.722	624	648	0.701	445
/50	0.750	688	6/8	0./10	503
8/0	0.///	/5/	/18	0.722	533
1000	0.800	800	808	0.745	581
1250	0.833	860	928	0.770	640
13/0	0.846	888	988	0./81	669

Surfactant	Concentration	0.03 wt%, EMSORB	Surfactant	Concentration	0.02 wt%, EMSORB
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
10	0.032	0.01	20	0.038	0.01
20	0.063	0.01	40	0.074	0.01
35	0.104	0.01	60	0.107	0.01
44	0.131	0.01	79	0.139	0.04
54	0.157	0.01	89	0.153	0.05
64	0.180	0.01	109	0.182	0.09
74	0.203	0.01	129	0.208	0.1
82	0.225	0.01	137	0.221	0.11
92	0.245	0.01	157	0.245	0.13
102	0.265	0.01	187	0.279	0.2
112	0.284	0.05	207	0.300	0.22
122	0.301	0.09	237	0.329	0.23
132	0.318	0.42	267	0.356	0.28
142	0.334	1.94	287	0.373	0.3
152	0.349	1.5	307	0.389	0.3
162	0.364	2.28	327	0.404	0.31
172	0.378	1.86	363	0.432	0.32
182	0.391	1.25	383	0.445	0.5
192	0.404	1.22	393	0.452	0.52
198	0.417	2.01	423	0.470	0.55
208	0.429	2.85	443	0.482	0.86
218	0.440	3.03	463	0.493	0.92
228	0.451	3.45	483	0.503	1.22
238	0.462	4.5	503	0.513	1.47
248	0.472	6.2	523	0.523	1.53
268	0.492	2.54	543	0.532	1.68
288	0.510	2.17	573	0.546	1.82
308	0.526	10.17	593	0.554	1.89
328	0.542	12.54	613	0.562	3.92
348	0.557	14.86	633	0.570	4.65
378	0.577	16.05	663	0.582	326
418	0.601	21.86	693	0.592	362
458	0.623	370	723	0.603	393
508	0.647	424	783	0.621	448
568	0.672	471	893	0.652	537
648	0.701	528	973	0.671	582
718	0.722	567	1133	0.704	617
848	0.754	634	1233	0.721	651
938	0.772	663	1393	0.745	686

Surfactant	Concentration	0.01 wt%, EMSORB	Surfactant	Concentration	0.007 wt%, EMSORB
Matar			Mater		
(mL)	Water Fraction	Conductivity (mS)	(mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
10	0.032	0.01	10	0.032	0.01
20	0.063	0.01	20	0.063	0.01
35	0.104	0.01	35	0.104	0.01
44	0.131	0.01	44	0.131	0.01
54	0.157	0.01	54	0.157	0.01
64	0.180	0.01	64	0.180	0.01
74	0.203	0.01	74	0.203	0.01
82	0.225	0.01	82	0.225	0.01
92	0.245	0.01	92	0.245	0.02
102	0.265	0.01	102	0.265	0.04
112	0.284	0.01	112	0.284	0.05
122	0.301	0.01	122	0.301	0.11
132	0.318	0.01	132	0.318	0.19
152	0.349	0.01	152	0.349	0.27
162	0.364	0.01	162	0.364	0.31
172	0.378	0.01	172	0.378	0.35
182	0.391	0.02	182	0.391	0.41
192	0.404	0.02	192	0.404	0.45
208	0.429	0.01	208	0.429	0.5
228	0.451	0.03	228	0.451	0.71
238	0.462	0.08	238	0.462	0.73
248	0.472	0.11	248	0.472	0.82
258	0.482	0.14	258	0.482	0.83
268	0.492	0.16	268	0.492	1.04
288	0.510	0.28	278	0.501	1.21
298	0.518	0.34	293	0.514	1.45
308	0.526	0.51	308	0.526	2.08
318	0.534	297.1	318	0.534	399
328	0.542	353	328	0.542	437
348	0.557	397	348	0.557	446
373	0.574	415	373	0.574	485
418	0.601	467	418	0.601	495
458	0.623	495	458	0.623	542
518	0.652	531	518	0.652	576
568	0.672	575	568	0.672	611
648	0.701	630	648	0.701	644
718	0.722	642	718	0.722	683
848	0.754	701	848	0.754	732
948	0.774	756	948	0.774	774

Surfactant Concentration		0.004 wt%, EMSORB	
Water (mL)	Water Fraction	Conductivity (mS)	
0	0.000	0.01	
20	0.032	0.01	
40	0.063	0.01	
70	0.104	0.01	
89	0.131	0.01	
109	0.156	0.01	
129	0.179	0.01	
149	0.201	0.01	
167	0.223	0.01	
187	0.243	0.01	
207	0.262	0.02	
227	0.280	0.05	
247	0.298	0.06	
267	0.314	0.1	
287	0.330	0.09	
307	0.345	0.07	
327	0.359	0.1	
347	0.373	0.1	
367	0.386	0.15	
387	0.399	0.23	
397	0.405	0.29	
413	0.417	0.28	
433	0.429	0.35	
453	0.440	254.1	
473	0.450	296	
493	0.461	311	
513	0.471	346	
583	0.503	377	
633	0.523	395	
713	0.553	417	
783	0.576	461	
868	0.601	496	
948	0.622	513	
1078	0.651	551	
1178	0.671	561	
1348	0.700	577	
1508	0.723	669	
1608	0.736	725	

Silica (H20) Concentration	1.0 wt%, HDK H20	Silica Concentration (H20)		0.6 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
167	0.257	0.01	167	0.257	0.01
187	0.279	0.01	187	0.279	0.01
207	0.300	0.01	207	0.300	0.01
217	0.310	0.04	237	0.329	0.04
237	0.329	0.07	257	0.347	0.01
267	0.356	0.15	267	0.356	0.01
287	0.373	0.09	287	0.373	0.03
327	0.404	0.08	307	0.389	0.02
353	0.425	0.15	327	0.404	0.04
373	0.439	0.15	347	0.421	0.1
393	0.452	0.16	382	0.445	0.34
423	0.470	0.19	392	0.451	0.37
483	0.503	0.39	427	0.472	0.45
503	0.513	0.32	462	0.492	0.64
513	0.518	0.43	482	0.503	0.83
543	0.532	0.62	512	0.518	0.94
593	0.554	1.36	552	0.536	1.17
613	0.562	1.62	572	0.545	1.42
633	0.570	346	592	0.554	2.87
663	0.582	425	612	0.562	290.7
693	0.592	464	637	0.572	337
713	0.599	489	717	0.601	397
783	0.621	520	782	0.621	454
893	0.652	568	892	0.652	493
973	0.671	597	972	0.671	520
1133	0.704	645	1132	0.704	567
1233	0.721	669	1232	0.721	590
1393	0.745	703	1402	0.746	627

HDK H20 (50% hydrophobic) – Silica Nanoparticle Only

Silica Conc	entration (H20)	0.25 wt%, HDK H20	Silica Concentration (H20)		0.18 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.02	157	0.245	0.01
177	0.268	0.05	177	0.268	0.01
187	0.279	0.26	187	0.279	0.01
207	0.300	0.4	207	0.300	0.01
217	0.310	0.68	217	0.310	0.01
237	0.329	0.67	237	0.329	0.01
257	0.347	0.7	257	0.347	0.01
267	0.356	0.73	267	0.356	0.73
287	0.373	1	287	0.373	0.63
327	0.404	1.32	297	0.381	2.34
343	0.418	1.37	317	0.396	1.51
363	0.432	1.28	327	0.404	4.45
373	0.439	1.3	343	0.418	7.27
393	0.452	1.68	363	0.432	8.23
423	0.470	2.4	373	0.439	7.62
443	0.482	4.3	393	0.452	4.62
463	0.493	4.37	403	0.458	6.59
483	0.503	5.31	423	0.470	8.45
488	0.506	5.8	443	0.482	345
508	0.516	380	463	0.493	382
543	0.532	418	488	0.506	406
573	0.546	443	513	0.518	434
593	0.554	455	593	0.554	475
633	0.570	479	633	0.570	496
713	0.599	516	713	0.599	533
783	0.621	545	783	0.621	561
893	0.652	586	893	0.652	598
973	0.671	611	973	0.671	622
1133	0.704	659	1133	0.704	668
1233	0.721	686	1233	0.721	692
1433	0.750	729	1403	0.746	729

Silica Conc	entration (H20)	0.16 wt%, HDK H20	Silica Concentration (H20) 0.14		0.14 wt%, HDK H20
Water	Water Fraction	Conductivity (mS)	Water	Water Fraction	Conductivity (mS)
(mL)	water Flaction	conductivity (iiis)	(mL)		conductivity (iiis)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.04	60	0.107	0.01
79	0.139	0.17	79	0.139	0.09
89	0.153	3.74	89	0.153	0.09
109	0.182	3.96	109	0.182	0.09
129	0.208	4.7	129	0.208	0.1
137	0.221	5.16	137	0.221	0.12
157	0.245	5.34	157	0.245	0.13
167	0.257	5.49	167	0.257	0.13
187	0.279	5.54	187	0.279	0.13
207	0.300	5.64	207	0.300	0.13
217	0.310	5.89	237	0.329	1.53
237	0.329	6.16	247	0.338	1.63
247	0.338	6.2	267	0.356	1.81
257	0.347	6.49	277	0.364	1.99
267	0.356	6.51	287	0.373	2.47
277	0.364	6.63	297	0.381	2.72
287	0.373	6.85	317	0.396	2.83
297	0.381	7.15	327	0.404	3.03
317	0.396	7.2	333	0.411	3.06
327	0.404	7.37	353	0.425	3.27
333	0.411	7.57	368	0.436	3.41
353	0.425	7.76	378	0.442	3.54
368	0.436	8.26	393	0.452	3.64
378	0.442	8.57	408	0.461	275.5
393	0.452	9.16	423	0.470	303
408	0.461	10.1	453	0.487	356
423	0.470	10.76	483	0.503	393
453	0.487	276.9	523	0.523	432
483	0.503	313	593	0.554	469
518	0.521	334	633	0.570	490
593	0.554	373	723	0.603	525
723	0.603	432	793	0.624	530
893	0.652	491	893	0.652	583
1113	0.700	556	973	0.671	611
1263	0.726	589	1113	0.700	630
1353	0.739	622	1263	0.726	671
			1413	0.748	706

Silica Conc	entration (H20)	0.1 wt%, HDK H20	Silica Conce	entration (H2O)	0.05 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
167	0.257	0.12	167	0.257	0.01
187	0.279	0.12	187	0.279	0.01
207	0.300	0.13	207	0.300	0.01
237	0.329	0.41	217	0.310	0.01
257	0.347	1.28	237	0.329	0.01
267	0.356	1.58	247	0.338	0.51
277	0.364	1.64	257	0.347	7.32
287	0.373	1.72	267	0.356	195.8
297	0.381	1.82	277	0.364	221.4
317	0.396	1.82	287	0.373	248.5
327	0.404	202.1	327	0.404	280.2
333	0.411	224.1	357	0.425	297.5
353	0.425	248.6	397	0.451	367
368	0.436	291.7	427	0.469	399
378	0.442	308	487	0.502	414
393	0.452	319	517	0.517	429
423	0.470	335	597	0.553	467
483	0.503	365	637	0.569	490
523	0.523	401	717	0.598	519
593	0.554	437	787	0.620	548
633	0.570	443	887	0.647	589
723	0.603	472	987	0.671	618
793	0.624	492	1117	0.698	660
893	0.652	542	1267	0.724	693
973	0.671	590	1447	0.750	727
1113	0.700	630			
1263	0.726	669			
1433	0.750	703			

Silica Conce	entration (HKS D)	3 wt%, HKS D	Silica Concentration (HKS D)		2 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
177	0.268	0.01	177	0.268	0.01
197	0.290	0.01	197	0.290	0.01
207	0.300	0.01	207	0.300	0.01
237	0.329	0.03	237	0.329	0.01
267	0.356	0.04	267	0.356	0.02
287	0.373	0.06	287	0.373	0.06
307	0.389	0.14	307	0.389	0.06
327	0.404	0.14	327	0.404	0.07
353	0.425	0.16	353	0.425	0.08
393	0.452	0.23	373	0.439	0.09
413	0.464	0.24	383	0.445	0.11
423	0.470	0.28	393	0.452	0.21
443	0.482	0.35	413	0.464	0.24
483	0.503	0.43	423	0.470	0.31
503	0.513	0.55	443	0.482	1.72
523	0.523	1.08	463	0.493	2.21
553	0.537	356	483	0.503	348
573	0.546	408	523	0.523	373
593	0.554	423	593	0.554	423
633	0.570	454	633	0.570	443
723	0.603	494	723	0.603	489
793	0.624	537	793	0.624	529
893	0.652	564	893	0.652	564
973	0.671	583	973	0.671	589
1133	0.704	645	1133	0.704	640
1233	0.721	663	1233	0.721	667
1423	0.749	710	1433	0.750	711

Silica Conce	ntration (HKS D)	1 wt%, HKS D	Silica Concentration (HKS D)		0.5 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.02
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.02
177	0.268	0.01	177	0.268	0.01
197	0.290	0.01	197	0.290	0.04
207	0.300	0.01	207	0.300	0.01
217	0.310	0.01	217	0.310	0.01
237	0.329	0.01	237	0.329	0.01
257	0.347	0.01	257	0.347	0.01
267	0.356	0.01	267	0.356	0.01
287	0.373	0.01	287	0.373	1.31
307	0.389	0.01	307	0.389	3.28
327	0.404	0.01	327	0.404	314
343	0.418	0.01	343	0.418	328
353	0.425	0.18	353	0.425	333
373	0.439	0.19	393	0.452	357
393	0.452	296	423	0.470	375
423	0.470	328	483	0.503	422
443	0.482	351	523	0.523	442
463	0.493	369	593	0.554	481
483	0.503	386	633	0.570	500
523	0.523	404	723	0.603	526
593	0.554	448	793	0.624	575
633	0.570	472	893	0.652	608
723	0.603	515	973	0.671	629
793	0.624	533	1133	0.704	650
893	0.652	576	1233	0.721	707
973	0.671	597	1433	0.750	750
1133	0.704	662			
1233	0.721	689			
1343	0.738	712			

Silica Conce	ntration (HKS D)	0.3 wt%, HKS D	Silica Concentration (HKS D)		0.25 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.02	109	0.182	0.01
129	0.208	0.03	129	0.208	0.01
137	0.221	0.03	137	0.221	0.01
157	0.245	0.04	157	0.245	0.01
177	0.268	0.07	177	0.268	0.01
197	0.290	0.07	197	0.290	0.03
207	0.300	0.09	207	0.300	0.04
217	0.310	0.13	217	0.310	0.04
237	0.329	0.15	237	0.329	0.05
257	0.347	0.26	257	0.347	0.09
267	0.356	0.84	267	0.356	195.4
287	0.373	262.4	287	0.373	257.6
307	0.389	287.3	307	0.389	296
327	0.404	324	327	0.404	296.3
353	0.425	348	353	0.425	336
393	0.452	368	393	0.452	352
423	0.470	393	423	0.470	370
483	0.503	425	483	0.503	401
523	0.523	446	523	0.523	425
593	0.554	477	593	0.554	471
633	0.570	500	633	0.570	481
723	0.603	533	723	0.603	516
793	0.624	562	793	0.624	544
893	0.652	596	893	0.652	572
973	0.671	622	973	0.671	604
1133	0.704	664	1133	0.704	652
1233	0.721	688	1233	0.721	678
1423	0.749	728	1443	0.752	729

Silica Conce	ntration (HKS D)	0.2 wt%, HKS D	Silica Conce	entration (HKS D)	0.15 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.03
109	0.182	0.01	109	0.182	0.06
129	0.208	0.01	129	0.208	0.07
137	0.221	0.06	137	0.221	0.08
157	0.245	0.14	157	0.245	0.17
177	0.268	0.15	167	0.257	0.24
197	0.290	0.18	177	0.268	0.56
207	0.300	197.1	187	0.279	2.56
217	0.310	214.3	197	0.290	155.6
237	0.329	229.6	207	0.300	176.2
267	0.356	272.8	237	0.329	208
287	0.373	293.7	267	0.356	235.2
327	0.404	312	287	0.373	256
353	0.425	334	327	0.404	287.5
393	0.452	360	353	0.425	301
423	0.470	382	393	0.452	342
483	0.503	412	423	0.470	357
523	0.523	437	483	0.503	398
593	0.554	470	523	0.523	414
633	0.570	492	593	0.554	443
723	0.603	531	633	0.570	465
793	0.624	558	723	0.603	508
893	0.652	590	793	0.624	537
973	0.671	622	893	0.652	572
1133	0.704	668	973	0.671	602
1233	0.721	684	1133	0.704	656
1443	0.752	728	1233	0.721	678
			1483	0.757	734

Silica Conc	entration (HKS D)	0.1 wt%, HKS D	Silica Con	centration (HKS D)	0.05 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.03	60	0.107	0.01
79	0.139	0.04	79	0.139	0.01
89	0.153	0.05	89	0.153	0.01
109	0.182	0.06	99	0.168	0.04
129	0.208	0.06	109	0.182	94.3
137	0.221	0.09	129	0.208	121.2
157	0.245	144.7	137	0.221	124.3
177	0.268	151.2	167	0.257	152.3
197	0.290	171.4	187	0.279	170.2
207	0.300	181.5	207	0.300	189.6
237	0.329	182.2	237	0.329	236.4
267	0.356	236.7	267	0.356	256.3
287	0.373	250	287	0.373	271.1
327	0.404	295.8	327	0.404	307
353	0.425	303	353	0.425	331
393	0.452	353	393	0.452	356
423	0.470	380	423	0.470	387
483	0.503	405	483	0.503	428
523	0.523	438	523	0.523	471
593	0.554	472	593	0.554	487
633	0.570	491	633	0.570	527
723	0.603	532	723	0.603	571
793	0.624	561	793	0.624	587
893	0.652	598	893	0.652	615
973	0.671	638	973	0.671	656
1133	0.704	678	1133	0.704	690
1233	0.721	690	1233	0.721	718
1473	0.755	744	1433	0.750	751

Surfactant	- EMSORB 2503	0.003 wt%	Surfactant	- EMSORB 2503	0.007 wt%
Silica Conce	entration (H2O)	0.095 wt%	Silica Conce	entration (H20)	0.093 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	80	0.138	0.01
89	0.153	0.01	90	0.153	0.01
109	0.182	0.01	110	0.180	0.01
129	0.208	0.01	130	0.206	0.01
137	0.221	0.01	150	0.231	0.01
157	0.245	0.01	170	0.254	0.01
177	0.268	0.01	180	0.265	0.01
187	0.279	0.01	190	0.275	0.01
207	0.300	0.01	200	0.286	0.01
217	0.310	0.01	220	0.306	0.01
237	0.329	0.01	240	0.324	0.01
267	0.356	0.01	270	0.351	0.01
287	0.373	1.78	300	0.375	0.01
297	0.381	3.37	310	0.383	0.01
317	0.396	6.28	340	0.405	0.01
327	0.404	6.47	350	0.412	0.01
333	0.411	214.28	370	0.425	0.01
353	0.425	265.9	390	0.438	0.01
373	0.439	322	400	0.444	301
393	0.452	367	410	0.451	358
433	0.476	384	450	0.474	365
483	0.503	417	510	0.505	419
523	0.523	448	550	0.524	425
593	0.554	462	620	0.554	451
643	0.574	471	670	0.573	471
723	0.603	512	760	0.603	503
793	0.624	552	820	0.621	541
893	0.652	585	930	0.650	575
983	0.673	603	1030	0.673	607
1133	0.704	617	1190	0.704	634
1233	0.721	642	1290	0.721	667

0.747

0.750

Surfactant - EMSORB 2503		0.01 wt%	Surfactant	- EMSORB 2503	0.02 wt%
Silica Conce	entration (H20)	0.09 wt%	Silica Conce	entration (H2O)	0.08 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
177	0.268	0.01	177	0.268	0.02
187	0.279	0.01	187	0.279	0.02
207	0.300	0.01	207	0.300	0.03
217	0.310	0.01	237	0.329	0.03
237	0.329	0.01	257	0.347	0.03
257	0.347	0.01	267	0.356	0.04
277	0.364	0.01	287	0.373	0.04
287	0.373	0.01	297	0.381	0.04
297	0.381	0.01	327	0.404	0.04
317	0.396	0.02	343	0.418	0.04
327	0.404	0.04	363	0.432	0.04
343	0.418	0.04	373	0.439	0.04
363	0.432	0.14	393	0.452	0.07
393	0.452	0.19	423	0.470	0.16
423	0.470	0.21	463	0.493	0.78
443	0.482	0.25	483	0.503	1.84
463	0.493	3.21	513	0.518	2.24
483	0.503	298	543	0.532	299.5
493	0.508	346	563	0.541	346
513	0.518	361	583	0.550	374
583	0.550	388	613	0.562	414
633	0.570	424	633	0.570	424
713	0.599	463	713	0.599	464
783	0.621	495	783	0.621	488
893	0.652	549	893	0.652	537
973	0.671	574	973	0.671	573
1133	0.704	616	1133	0.704	603
1233	0.721	654	1233	0.721	653
1413	0.748	705	1403	0.746	688

Surfactant - EMSORB 2503		0.03 wt%	Surfactan	t - EMSORB 2503	0.04 wt%
Silica Conc	entration (H20)	0.07 wt%	Silica Con	centration (H20)	0.06 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
177	0.268	0.01	177	0.268	0.01
207	0.300	0.01	207	0.300	0.01
237	0.329	0.01	237	0.329	0.01
257	0.347	0.02	257	0.347	0.01
267	0.356	0.02	267	0.356	0.01
287	0.373	0.03	287	0.373	0.01
297	0.381	0.03	297	0.381	0.01
327	0.404	0.03	327	0.404	0.01
363	0.432	0.05	343	0.418	0.01
403	0.458	0.06	363	0.432	0.01
423	0.470	0.06	403	0.458	0.01
443	0.482	0.05	423	0.470	0.01
463	0.493	0.11	443	0.482	0.01
483	0.503	0.16	483	0.503	0.01
513	0.518	0.23	523	0.523	0.01
543	0.532	0.32	563	0.541	0.01
563	0.541	0.54	583	0.550	0.03
583	0.550	1.55	613	0.562	0.04
613	0.562	1.66	633	0.570	0.06
633	0.570	313	663	0.582	0.07
663	0.582	391	693	0.592	0.15
693	0.592	434	718	0.601	351
713	0.599	455	743	0.611	442
783	0.621	504	782	0.623	487
893	0.652	547	893	0.654	509
973	0.671	581	973	0.673	529
1133	0.704	625	1133	0.705	578
1233	0.721	655	1233	0.723	624
1393	0.745	705	1343	0.740	654

Surfactant	- EMSORB 2503	0.05 wt%	Surfactan	t - EMSORB 2503	0.07 wt%
Silica Conc	entration (H20)	0.05 wt%	Silica Concentration (H20)		0.03 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	80	0.138	0.01
89	0.153	0.01	90	0.153	0.01
109	0.182	0.01	110	0.180	0.01
129	0.208	0.01	130	0.206	0.01
137	0.221	0.01	150	0.231	0.01
157	0.245	0.01	170	0.254	0.01
177	0.268	0.01	190	0.275	0.01
187	0.279	0.01	220	0.306	0.01
207	0.300	0.01	240	0.324	0.01
237	0.329	0.01	270	0.351	0.01
267	0.356	0.01	290	0.367	0.01
287	0.373	0.01	300	0.375	0.01
327	0.404	0.01	340	0.405	0.01
353	0.425	0.01	370	0.425	0.01
393	0.452	0.01	410	0.451	0.01
423	0.470	0.01	450	0.474	0.01
483	0.503	0.01	510	0.505	0.01
523	0.523	0.01	530	0.515	0.01
583	0.550	0.01	550	0.524	0.01
613	0.562	0.01	570	0.533	0.01
633	0.570	0.01	590	0.541	0.01
663	0.582	0.01	620	0.554	0.01
693	0.592	0.01	670	0.573	0.01
718	0.601	0.27	760	0.603	0.01
743	0.611	1.5	820	0.621	0.01
783	0.623	2.79	930	0.650	0.01
813	0.632	503	1030	0.673	0.01
853	0.643	526	1070	0.682	0.01
893	0.654	567	1120	0.691	0.01
973	0.673	601	1190	0.704	451
1133	0.705	634	1240	0.713	488
1233	0.723	654	1290	0.721	584
1313	0.735	691	1430	0.741	674

Surfactant	- EMSORB 2503	0.005 wt%	Surfactant	- EMSORB 2503	0.01 wt%
Silica Conce	ntration (HKS D)	0.095 wt%	Silica Conce	ntration (HKS D)	0.09 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	79	0.139	0.01
90	0.153	0.01	89	0.153	0.01
110	0.180	0.01	109	0.182	0.01
130	0.206	0.01	129	0.208	0.01
150	0.231	0.01	137	0.221	0.01
160	0.242	0.01	167	0.257	0.01
170	0.254	0.01	177	0.268	0.02
190	0.275	0.01	187	0.279	0.03
220	0.306	0.01	207	0.300	0.05
240	0.324	0.01	237	0.329	0.1
250	0.333	0.01	267	0.356	0.29
260	0.342	0.01	287	0.373	0.71
270	0.351	161.3	297	0.381	0.84
290	0.367	182.1	327	0.404	1.94
300	0.375	202.5	343	0.418	2.16
340	0.405	232.6	353	0.425	2.87
370	0.425	254.9	363	0.432	3.16
390	0.438	272.4	383	0.445	3.56
400	0.444	301	393	0.452	290.4
410	0.451	358	403	0.458	331
450	0.474	365	423	0.470	361
510	0.505	419	483	0.503	398
550	0.524	425	523	0.523	423
620	0.554	451	583	0.550	458
670	0.573	471	633	0.570	480
760	0.603	503	723	0.603	519
820	0.621	541	783	0.621	542
930	0.650	575	893	0.652	579
1030	0.673	607	973	0.671	607
1190	0.704	634	1133	0.704	649
1290	0.721	667	1233	0.721	670
1480	0.747	715	1423	0.749	707

Surfactant - EMSORB 2503		0.02 wt%	Surfactant	- EMSORB 2503	0.03 wt%
Silica Conce	ntration (HKS D)	0.08 wt%	Silica Conce	ntration (HKS D)	0.07 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
167	0.257	0.01	177	0.268	0.01
177	0.268	0.01	197	0.290	0.01
187	0.279	0.01	207	0.300	0.01
197	0.290	0.01	237	0.329	0.01
207	0.300	0.02	267	0.356	0.01
237	0.329	0.03	287	0.373	0.03
267	0.356	0.04	307	0.389	0.03
287	0.373	0.05	327	0.404	0.04
327	0.404	0.08	343	0.418	0.05
343	0.418	0.1	363	0.432	0.06
353	0.425	0.11	393	0.452	0.08
393	0.452	0.2	413	0.464	0.11
413	0.464	0.24	443	0.482	0.13
423	0.470	0.28	463	0.493	0.14
443	0.482	0.3	483	0.503	0.15
483	0.503	0.47	503	0.513	0.21
503	0.513	0.63	523	0.523	0.25
523	0.523	0.71	543	0.532	0.26
553	0.537	328	563	0.541	0.34
563	0.541	357	583	0.550	1.57
583	0.550	372	613	0.562	384
633	0.570	403	633	0.570	402
723	0.603	458	723	0.603	443
783	0.621	484	783	0.621	473
893	0.652	528	893	0.652	517
973	0.671	558	973	0.671	545
1133	0.704	604	1133	0.704	592
1233	0.721	636	1233	0.721	623
1443	0.752	684	1443	0.752	668

Surfactant - EMSORB 2503		0.04 wt%	Surfactant	- EMSORB 2503	0.05 wt%
Silica Cond	centration (HKS D)	0.06 wt%	Silica Conce	entration (HKS D)	0.05 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
177	0.268	0.01	177	0.268	0.01
197	0.290	0.01	197	0.290	0.01
207	0.300	0.01	207	0.300	0.01
237	0.329	0.01	237	0.329	0.01
267	0.356	0.01	267	0.356	0.01
287	0.373	0.02	287	0.373	0.01
307	0.389	0.03	307	0.389	0.01
327	0.404	0.04	327	0.404	0.01
363	0.432	0.06	363	0.432	0.01
383	0.445	0.06	383	0.445	0.01
403	0.458	0.07	403	0.458	0.01
433	0.476	0.08	433	0.476	0.02
483	0.503	0.13	483	0.503	0.05
503	0.513	0.15	503	0.513	0.08
523	0.523	0.17	523	0.523	0.09
543	0.532	0.18	543	0.532	0.11
563	0.541	0.22	563	0.541	0.14
583	0.550	0.43	583	0.550	0.17
613	0.562	0.51	613	0.562	0.21
633	0.570	0.83	643	0.574	0.24
663	0.582	355	663	0.582	0.3
693	0.592	403	693	0.592	0.36
723	0.603	428	723	0.603	399
783	0.621	467	783	0.621	443
893	0.652	507	893	0.652	495
973	0.671	540	973	0.671	529
1133	0.704	606	1133	0.704	585
1233	0.721	634	1233	0.721	617
1403	0.746	661	1413	0.748	655

Surfactant - EMSORB 2503		0.06 wt%	Surfactant - EMSORB 2503		0.07 wt%	
Silica Conce	ntration (HKS D)	0.04 wt%	Silica Conc	entration (HKS D)	0.03 wt%	
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)	
0	0.000	0.01	0	0.000	0.01	
20	0.038	0.01	20	0.038	0.01	
40	0.074	0.01	40	0.074	0.01	
60	0.107	0.01	60	0.107	0.01	
79	0.139	0.01	79	0.139	0.01	
89	0.153	0.01	89	0.153	0.01	
109	0.182	0.01	109	0.182	0.01	
129	0.208	0.01	129	0.208	0.01	
137	0.221	0.01	137	0.221	0.01	
157	0.245	0.01	157	0.245	0.01	
177	0.268	0.01	177	0.268	0.01	
197	0.290	0.01	197	0.290	0.01	
207	0.300	0.01	207	0.300	0.01	
237	0.329	0.01	237	0.329	0.01	
267	0.356	0.01	267	0.356	0.01	
287	0.373	0.01	287	0.373	0.01	
307	0.389	0.01	307	0.389	0.01	
327	0.404	0.01	327	0.404	0.01	
363	0.432	0.01	363	0.432	0.01	
403	0.458	0.02	403	0.458	0.02	
433	0.476	0.03	433	0.476	0.02	
463	0.493	0.03	463	0.493	0.03	
483	0.503	0.04	483	0.503	0.03	
523	0.523	0.07	523	0.523	0.05	
543	0.532	0.09	543	0.532	0.06	
563	0.541	0.12	563	0.541	0.08	
583	0.550	0.15	583	0.550	0.15	
613	0.562	0.16	613	0.562	0.2	
643	0.574	0.24	643	0.574	0.23	
673	0.585	0.42	673	0.585	0.28	
693	0.592	0.53	693	0.592	0.32	
723	0.603	0.71	723	0.603	0.44	
753	0.612	441	753	0.612	0.52	
783	0.621	479	783	0.621	391	
893	0.652	522	893	0.652	492	
973	0.671	568	973	0.671	518	
1133	0.704	603	1133	0.704	571	
1233	0.721	638	1233	0.721	607	
1343	0.738	662	1413	0.748	650	

Surfactant - EMSORB 2503		0.08 wt%	Surfactant	0.09 wt%	
Silica Conce	ntration (HKS D)	0.02 wt%	Silica Conce	Silica Concentration (HKS D)	
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
79	0.139	0.01	79	0.139	0.01
89	0.153	0.01	89	0.153	0.01
109	0.182	0.01	109	0.182	0.01
129	0.208	0.01	129	0.208	0.01
137	0.221	0.01	137	0.221	0.01
157	0.245	0.01	157	0.245	0.01
177	0.268	0.01	177	0.268	0.01
197	0.290	0.01	197	0.290	0.01
207	0.300	0.01	207	0.300	0.01
237	0.329	0.01	237	0.329	0.01
267	0.356	0.01	267	0.356	0.01
287	0.373	0.01	287	0.373	0.01
307	0.389	0.01	307	0.389	0.01
327	0.404	0.01	327	0.404	0.01
363	0.432	0.01	363	0.432	0.01
403	0.458	0.01	403	0.458	0.01
433	0.476	0.01	433	0.476	0.01
483	0.503	0.01	483	0.503	0.01
523	0.523	0.01	523	0.523	0.01
583	0.550	0.01	583	0.550	0.01
643	0.574	0.01	643	0.574	0.01
673	0.585	0.01	673	0.585	0.01
723	0.603	0.17	723	0.603	0.01
753	0.612	0.23	753	0.612	0.01
783	0.621	0.31	783	0.621	0.01
813	0.630	0.47	813	0.630	0.01
853	0.641	0.5	853	0.641	0.04
893	0.652	0.56	893	0.652	0.11
933	0.662	429	933	0.662	0.18
973	0.671	474	973	0.671	0.25
1133	0.704	540	1023	0.682	0.85
1233	0.721	593	1073	0.692	1.07
1413	0.748	632	1133	0.704	553
			1233	0.721	606
			1413	0.748	663

Appendix A-2: Experimental Data Points for Oil B, Viscosity: 64.5mPa.s

Surfactant-So	0.0 wt%, EMSORB	
Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01
20	0.038	0.01
40	0.074	0.01
60	0.107	0.01
70	0.125	0.01
90	0.155	0.01
110	0.183	0.01
130	0.209	0.01
140	0.225	139.3
160	0.249	152.1
180	0.271	171.5
200	0.293	201.6
210	0.303	212
230	0.323	237.1
270	0.359	272.1
290	0.375	297
330	0.406	317
360	0.430	354
400	0.456	370
430	0.474	393
490	0.507	424
530	0.526	438
600	0.557	483
640	0.573	493
730	0.605	534
800	0.626	554
900	0.654	605
980	0.673	632
1140	0.705	651
1240	0.722	675
1470	0.755	707

No Stabilizer Added, Oil-Water Emulsion System

EMSORB 2503 – Surfactant Only

Surfactant Concentration		0.1 wt%, EMSORB	Surfactant	Concentration	0.05 wt%, EMSORB
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
170	0.254	0.01	170	0.254	0.01
190	0.275	0.01	190	0.275	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	300	0.375	0.01
340	0.405	0.01	340	0.405	0.01
370	0.425	0.01	370	0.425	0.01
410	0.451	0.01	410	0.451	0.01
450	0.474	0.01	430	0.462	0.01
510	0.505	0.01	450	0.474	0.01
550	0.524	0.01	470	0.485	0.01
570	0.533	0.01	490	0.495	0.01
590	0.541	0.01	510	0.505	0.01
620	0.554	0.01	530	0.515	0.01
650	0.565	0.01	550	0.524	164.5
670	0.573	0.01	570	0.533	185.9
700	0.583	0.01	590	0.541	216.5
730	0.593	0.01	620	0.554	254.9
770	0.606	0.01	670	0.573	297.1
800	0.615	403.2	770	0.606	360
820	0.621	438.9	820	0.621	384
930	0.650	487.1	930	0.650	426
1030	0.673	527	1030	0.673	477
1190	0.704	576	1190	0.704	513
1290	0.721	603	1290	0.721	556
1400	0.737	649	1400	0.737	610

Surfactant Concentration		0.03 wt%, EMSORB	Surfactant Concentration		0.02 wt%, EMSORB
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
170	0.254	0.01	170	0.254	0.01
190	0.275	0.01	190	0.275	0.01
200	0.286	0.01	200	0.286	0.01
210	0.296	0.01	210	0.296	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
250	0.333	0.01	250	0.333	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	290	0.367	0.01
340	0.405	0.01	300	0.375	0.01
370	0.425	0.01	310	0.383	0.01
380	0.432	0.01	320	0.390	0.01
400	0.444	0.01	340	0.405	0.01
410	0.451	0.01	360	0.419	0.01
430	0.462	0.01	370	0.425	0.01
450	0.474	0.01	380	0.432	0.01
460	0.479	183.5	400	0.444	87.4
470	0.485	194.5	410	0.451	108.9
490	0.495	225.7	450	0.474	148.7
510	0.505	251.2	510	0.505	177.5
550	0.524	284.6	550	0.524	219.8
620	0.554	308	620	0.554	271.5
670	0.573	345	670	0.573	309
770	0.606	387	770	0.606	342
820	0.621	411	820	0.621	381
930	0.650	461	930	0.650	407
1030	0.673	507	1030	0.673	465
1190	0.704	551	1190	0.704	507
1290	0.721	581	1290	0.721	547
1420	0.740	624	1460	0.745	612

Surfactant Concentration		0.01 wt%, EMSORB	Surfactant Concentration		0.005 wt%, EMSORB
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	140	0.219	0.01
160	0.242	0.01	150	0.231	0.01
170	0.254	0.01	160	0.242	0.01
180	0.265	0.01	170	0.254	0.01
190	0.275	0.01	180	0.265	0.01
200	0.286	0.01	190	0.275	0.01
210	0.296	0.01	200	0.286	0.01
220	0.306	0.01	210	0.296	70.8
240	0.324	0.01	220	0.306	73.1
250	0.333	0.01	240	0.324	85.4
260	0.342	0.01	270	0.351	93.1
270	0.351	0.01	280	0.359	105.8
280	0.359	83.8	300	0.375	128.5
300	0.375	94.7	340	0.405	148.7
310	0.383	108.5	370	0.425	169.4
320	0.390	125.8	410	0.451	178.1
340	0.405	147.8	450	0.474	219.1
370	0.425	164.9	510	0.505	249.8
410	0.451	185.8	550	0.524	296.3
450	0.474	216.7	620	0.554	308
510	0.505	252.5	670	0.573	351
550	0.524	294.1	770	0.606	390
620	0.554	310	820	0.621	428
670	0.573	352	930	0.650	457
770	0.606	386	1030	0.673	503
820	0.621	421	1190	0.704	531
930	0.650	460	1290	0.721	559
1030	0.673	501	1400	0.737	610
1190	0.704	535			
1290	0.721	562			
1400	0.737	612			

Silica (H20) Concentration		1.0 wt%, HDK H20	Silica Conc	entration (H20)	0.5 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
90	0.155	0.01	80	0.140	0.01
130	0.209	0.01	90	0.155	0.01
160	0.246	0.01	110	0.183	0.01
210	0.300	0.01	130	0.209	0.01
220	0.309	0.01	140	0.225	0.01
230	0.319	0.01	160	0.249	0.01
250	0.337	0.01	180	0.271	0.01
270	0.359	0.01	210	0.303	0.01
290	0.375	0.01	220	0.313	0.01
300	0.383	0.01	260	0.350	0.01
330	0.406	0.01	290	0.375	0.01
350	0.420	0.01	320	0.402	0.01
400	0.453	0.01	350	0.423	0.01
430	0.471	0.01	400	0.456	0.01
490	0.504	0.01	430	0.474	0.01
530	0.526	0.01	480	0.502	0.01
600	0.557	0.01	520	0.522	0.01
620	0.565	0.01	590	0.553	0.01
640	0.573	0.01	620	0.565	0.01
670	0.584	0.01	640	0.573	0.01
700	0.595	0.01	670	0.584	0.01
730	0.605	0.01	700	0.595	0.01
760	0.614	0.01	720	0.602	0.01
800	0.626	0.01	750	0.611	0.01
830	0.635	0.01	790	0.624	410
860	0.643	0.01	830	0.635	429
900	0.654	420	860	0.643	451
980	0.673	487	900	0.654	471
1140	0.705	509	980	0.673	511
1240	0.722	591	1140	0.705	570
1410	0.747	645	1240	0.722	612
			1440	0.751	671

HDK H20 (50% hydrophobic) – Silica Nanoparticle Only
Silica Conc	entration (H20)	0.4 wt%, HDK H20	Silica Concentration (H20)		0.3 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
140	0.219	0.01	140	0.219	0.01
150	0.231	0.01	150	0.231	0.01
160	0.242	0.01	160	0.242	0.01
170	0.254	0.01	170	0.254	0.01
180	0.265	0.01	180	0.265	0.01
190	0.275	0.01	190	0.275	0.01
200	0.286	0.01	200	0.286	0.01
210	0.296	0.01	210	0.296	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	300	0.375	0.01
340	0.405	0.01	340	0.405	0.01
370	0.425	0.01	370	0.425	0.01
410	0.451	0.01	410	0.451	0.01
450	0.474	0.01	450	0.474	0.01
510	0.505	0.01	490	0.495	0.01
550	0.524	0.01	510	0.505	0.01
570	0.533	0.01	530	0.515	0.01
590	0.541	0.01	550	0.524	0.01
620	0.554	0.01	570	0.533	355
640	0.561	0.01	590	0.541	381
670	0.573	378	620	0.554	407
700	0.583	392	670	0.573	442
720	0.590	425	770	0.606	497
770	0.606	446	830	0.624	532
930	0.650	492	930	0.650	563
1030	0.673	550	1030	0.673	592
1190	0.704	611	1190	0.704	646
1290	0.721	650	1290	0.721	678
1440	0.742	682	1460	0.745	719

Silica Conc	entration (H20)	0.25 wt%, HDK H20	Silica Concentration (H20)		0.2 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
170	0.254	0.01	170	0.254	0.01
180	0.265	0.01	180	0.265	0.01
190	0.275	0.01	190	0.275	0.01
210	0.296	0.01	200	0.286	0.01
220	0.306	0.01	210	0.296	0.01
240	0.324	0.01	220	0.306	0.01
270	0.351	0.01	230	0.315	0.01
290	0.367	0.01	240	0.324	0.01
300	0.375	0.01	250	0.333	0.01
310	0.383	0.01	260	0.342	0.01
320	0.390	0.01	270	0.351	165.9
340	0.405	0.01	290	0.367	187.4
360	0.419	0.01	300	0.375	219.5
370	0.425	0.01	310	0.383	231.5
380	0.432	0.01	320	0.390	258.9
400	0.444	0.01	340	0.405	273.5
410	0.451	287.4	370	0.425	297.6
450	0.474	301	410	0.451	312
510	0.505	335	450	0.474	348
550	0.524	351	510	0.505	362
590	0.541	391	550	0.524	397
620	0.554	416	620	0.554	430
670	0.573	439	670	0.573	453
770	0.606	491	770	0.606	482
830	0.624	529	830	0.624	524
930	0.650	567	930	0.650	558
1030	0.673	601	1030	0.673	581
1190	0.704	638	1190	0.704	612
1290	0.721	674	1290	0.721	655
1460	0.745	717	1440	0.742	696

Silica Cono	centration (H20)	0.15 wt%, HDK H20	Silica Con	centration (H20)	0.1 wt%, HDK H20
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.140	0.01
90	0.153	0.01	90	0.155	0.01
110	0.180	0.01	110	0.183	0.01
130	0.206	0.01	130	0.209	0.01
140	0.219	0.01	140	0.225	0.01
150	0.231	0.01	160	0.249	133.2
160	0.242	0.01	180	0.271	185.4
170	0.254	0.01	210	0.303	226.5
180	0.265	0.01	230	0.323	276.3
190	0.275	0.01	270	0.359	302
200	0.286	0.01	290	0.375	330
210	0.296	0.01	330	0.406	361
220	0.306	145.1	350	0.423	434
240	0.324	155.9	400	0.456	491
270	0.351	171.5	430	0.474	519
300	0.375	221.3	490	0.507	556
340	0.405	276.4	520	0.522	571
370	0.425	301	600	0.557	588
410	0.451	315	640	0.573	597
450	0.474	341	720	0.602	615
510	0.505	365	790	0.624	628
550	0.524	392	900	0.654	644
620	0.554	428	980	0.673	657
670	0.573	456	1140	0.705	671
770	0.606	480	1240	0.722	710
830	0.624	529	1450	0.752	768
930	0.650	553			
1030	0.673	576			
1190	0.704	609			
1290	0.721	643			
1440	0.742	692			

Silica Conce	ntration (HKS D)	3 wt%, HKS D	Silica Concentration (HKS D)		2 wt%, HKS D
			14 /21/22		
(mL)	Water Fraction	Conductivity (mS)	(mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
90	0.155	0.01	90	0.155	0.01
130	0.209	0.01	130	0.209	0.01
160	0.246	0.01	160	0.249	0.01
210	0.300	0.01	210	0.303	0.01
270	0.359	0.01	270	0.359	0.01
330	0.406	0.01	330	0.406	0.01
400	0.453	0.01	340	0.413	0.01
430	0.471	0.01	350	0.423	0.01
450	0.482	0.01	370	0.437	0.01
470	0.493	0.01	400	0.456	0.01
490	0.504	0.01	420	0.468	0.01
510	0.514	0.01	430	0.474	0.01
530	0.526	0.01	450	0.485	0.01
550	0.536	0.01	470	0.496	0.01
580	0.549	0.01	490	0.507	305
600	0.557	0.01	510	0.517	314
620	0.565	0.01	530	0.526	345
640	0.573	0.01	600	0.557	371
670	0.584	0.01	640	0.573	403
700	0.595	0.01	730	0.605	437
730	0.605	250.3	800	0.626	471
800	0.626	330	900	0.654	503
900	0.654	388	980	0.673	548
980	0.673	423	1140	0.705	594
1140	0.705	476	1240	0.722	618
1240	0.722	535	1490	0.757	682
1400	0.746	654			

HDK HKS D (30% hydrophobic) – Silica Nanoparticle Only

Silica Conce	ntration (HKS D)	1 wt%, HKS D	Silica Conce	ntration (HKS D)	0.5 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.140	0.01	80	0.140	0.01
90	0.155	0.01	90	0.155	0.01
110	0.183	0.01	110	0.183	0.01
130	0.209	0.01	130	0.209	0.01
140	0.225	0.01	140	0.225	0.01
160	0.249	0.01	160	0.249	0.01
180	0.271	0.01	180	0.271	0.01
200	0.293	0.01	200	0.293	0.01
210	0.303	0.01	210	0.303	0.01
220	0.313	0.01	220	0.313	0.01
240	0.332	0.01	240	0.332	0.01
260	0.350	0.01	260	0.350	0.01
270	0.359	0.01	270	0.359	0.01
290	0.375	0.01	290	0.375	249.1
310	0.391	0.01	310	0.391	263.3
330	0.406	258.3	330	0.406	289.3
350	0.423	275.6	350	0.423	316
400	0.456	302	400	0.456	333
430	0.474	330	430	0.474	364
450	0.485	351	490	0.507	390
490	0.507	370	530	0.526	410
530	0.526	394	600	0.557	447
600	0.557	432	640	0.573	467
640	0.573	449	730	0.605	500
730	0.605	485	800	0.626	524
800	0.626	517	900	0.654	561
900	0.654	551	980	0.673	583
980	0.673	574	1140	0.705	629
1140	0.705	616	1240	0.722	654
1240	0.722	649	1460	0.754	697
1460	0.754	695			

Silica Conce	ntration (HKS D)	0.3 wt%, HKS D	Silica Concentration (HKS D)		0.25 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.140	0.01	80	0.140	0.01
90	0.155	0.01	90	0.155	0.01
110	0.183	0.01	110	0.183	0.01
130	0.209	0.01	130	0.209	0.01
140	0.225	0.01	140	0.225	0.01
160	0.249	0.01	160	0.249	186
180	0.271	0.01	180	0.271	196
200	0.293	0.01	200	0.293	209
210	0.303	0.01	210	0.303	217
220	0.313	0.01	220	0.313	224.8
240	0.332	218	240	0.332	236.9
260	0.350	225.4	260	0.350	242.5
270	0.359	230	270	0.359	258.7
290	0.375	252.3	290	0.375	284.7
310	0.391	271.4	330	0.406	317
330	0.406	305	350	0.423	354
350	0.423	321	400	0.456	376
400	0.456	341	430	0.474	389
430	0.474	364	490	0.507	405
490	0.507	397	530	0.526	429
530	0.526	416	600	0.557	455
600	0.557	434	640	0.573	486
640	0.573	477	730	0.605	505
730	0.605	511	800	0.626	568
800	0.626	535	900	0.654	576
900	0.654	569	980	0.673	608
980	0.673	587	1140	0.705	635
1140	0.705	628	1240	0.722	678
1240	0.722	663	1460	0.754	721
1490	0.757	720			

Silica Conce	entration (HKS D)	0.2 wt%, HKS D	Silica Conc	entration (HKS D)	0.1 wt%, HKS D
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.140	0.01	70	0.125	0.01
90	0.155	0.01	90	0.155	0.01
110	0.183	0.01	110	0.183	108.5
130	0.209	165.7	130	0.209	114.7
140	0.225	173.4	140	0.222	131.1
160	0.249	184.6	160	0.249	146.6
180	0.271	198.1	180	0.271	158.4
200	0.293	201.5	200	0.293	176.5
210	0.303	219.8	210	0.303	189.2
220	0.313	223.2	230	0.323	212.6
240	0.332	237.1	270	0.359	258.4
260	0.350	245.3	290	0.375	275.3
270	0.359	257.9	330	0.406	307
290	0.375	281.4	360	0.427	322
330	0.406	314	400	0.453	360
350	0.420	356	430	0.474	373
400	0.453	369	490	0.507	404
430	0.471	381	530	0.526	424
490	0.504	409	600	0.557	464
530	0.523	421	640	0.573	485
600	0.554	449	730	0.605	531
640	0.570	480	800	0.626	552
730	0.602	510	900	0.654	575
800	0.624	556	980	0.673	595
900	0.651	580	1140	0.705	650
980	0.670	611	1240	0.722	682
1140	0.702	633	1470	0.755	745
1240	0.720	674			
1460	0.751	719			

Silica Concentration (H20) 0.095 wt% Silica Concentration (H20) 0.09 wt% Water (mL) Water Fraction Conductivity (mS) Water Fraction Conductivity (mS) 0 0.000 0.01 0 0.000 0.01 20 0.038 0.01 0 0.000 0.01 40 0.074 0.01 40 0.074 0.01 60 0.107 0.01 60 0.107 0.01 90 0.133 0.01 80 0.138 0.01 110 0.180 0.01 110 0.180 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 160 0.242 0.01 190 0.275 0.01 180 0.265 0.01 240 0.324 0.01 190 0.275 141.5 250 0.333 0.01 270 0.351	Surfactant	- EMSORB 2503	0.005 wt%	Surfactant	- EMSORB 2503	0.01 wt%
Water (mL) Water Fraction Conductivity (mS) 0 0.000 0.01 0 0.000 0.01 20 0.038 0.01 20 0.038 0.01 40 0.074 0.01 40 0.074 0.01 60 0.107 0.01 60 0.107 0.01 80 0.138 0.01 80 0.138 0.01 110 0.180 0.01 110 0.180 0.01 130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 160 0.242 0.01 220 0.306 0.01 180 0.255 0.01 240 0.324 1192 220 0.306 164.9 260 0.342 11892 240 0.324 191.8 270 0.351	Silica Cond	centration (H20)	0.095 wt%	Silica Conc	entration (H20)	0.09 wt%
Water (mt) Water Fraction 0 Conductivity (ms) (mt) Water (mt) Water Fraction (mt) Conductivity (ms) 0 0 0.000 0.01 0 0.000 0.01 20 0.038 0.01 20 0.038 0.01 40 0.074 0.01 40 0.074 0.01 60 0.107 0.01 60 0.107 0.01 80 0.138 0.01 80 0.138 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 110 0.180 0.01 140 0.219 0.01 150 0.231 0.01 150 0.242 0.01 190 0.275 0.01 170 0.254 0.01 240 0.324 0.01 180 0.265 0.01 240 0.324 0.01 190 0.275 141.5 250 0.333 0.01						
0 0.000 0.01 0 0.000 0.01 20 0.038 0.01 20 0.038 0.01 40 0.074 0.01 40 0.074 0.01 60 0.107 0.01 60 0.107 0.01 80 0.138 0.01 80 0.138 0.01 90 0.153 0.01 10 0.180 0.01 110 0.180 0.01 110 0.180 0.01 130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 160 0.242 0.01 190 0.275 0.01 170 0.254 0.01 240 0.324 0.01 190 0.275 141.5 250 0.333 0.01 270 0.351 219.2 300 <th>Water (mL)</th> <th>Water Fraction</th> <th>Conductivity (mS)</th> <th>Water (mL)</th> <th>Water Fraction</th> <th>Conductivity (mS)</th>	Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
20 0.038 0.01 20 0.038 0.01 40 0.074 0.01 40 0.074 0.01 60 0.107 0.01 60 0.107 0.01 80 0.138 0.01 80 0.138 0.01 90 0.153 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 150 0.231 0.01 160 0.242 0.01 190 0.275 0.01 170 0.254 0.01 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339 51	0	0.000	0.01	0	0.000	0.01
40 0.074 0.01 60 0.107 0.01 80 0.138 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 110 0.180 0.01 110 0.180 0.01 110 0.180 0.01 110 0.266 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 180 0.265 0.01 190 0.275 141.5 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328	20	0.038	0.01	20	0.038	0.01
60 0.107 0.01 60 0.107 0.01 80 0.138 0.01 80 0.138 0.01 90 0.153 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 160 0.242 0.01 170 0.254 0.01 170 0.254 0.01 120 0.306 0.01 180 0.265 0.01 240 0.324 191.8 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.573 451	40	0.074	0.01	40	0.074	0.01
80 0.138 0.01 80 0.138 0.01 90 0.153 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 160 0.242 0.01 190 0.275 0.01 180 0.265 0.01 240 0.324 0.01 190 0.275 141.5 250 0.333 0.01 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339	60	0.107	0.01	60	0.107	0.01
90 0.153 0.01 90 0.153 0.01 110 0.180 0.01 110 0.180 0.01 130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 150 0.231 0.01 160 0.242 0.01 190 0.275 0.01 170 0.254 0.01 220 0.306 0.01 180 0.265 0.01 240 0.324 0.91 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339 510 0.505 351 510 0.505 351	80	0.138	0.01	80	0.138	0.01
110 0.180 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 160 0.242 0.01 170 0.254 0.01 170 0.254 0.01 180 0.265 0.01 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.505 351 510 0.504 376 620 0.554 421 670 0.573 451 760 0.603 488 820 0.621 502 930 0.650 522 930 0.673 <t< td=""><td>90</td><td>0.153</td><td>0.01</td><td>90</td><td>0.153</td><td>0.01</td></t<>	90	0.153	0.01	90	0.153	0.01
130 0.206 0.01 130 0.206 0.01 140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 170 0.254 0.01 190 0.275 0.01 180 0.265 0.01 220 0.306 0.01 190 0.275 141.5 250 0.333 0.01 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.4351 328 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 760 0.660 522 1030 0.673 569 1030 0.673 569 1190	110	0.180	0.01	110	0.180	0.01
140 0.219 0.01 150 0.231 0.01 150 0.231 0.01 170 0.254 0.01 170 0.254 0.01 190 0.275 0.01 180 0.265 0.01 220 0.306 0.01 190 0.275 141.5 250 0.333 0.01 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 620 0.554 421 670 0.573 451 620 0.555 3522	130	0.206	0.01	130	0.206	0.01
150 0.231 0.01 170 0.254 0.01 160 0.242 0.01 190 0.275 0.01 170 0.254 0.01 220 0.306 0.01 180 0.265 0.01 240 0.324 0.01 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 510 0.554 421 670 0.573 451 620 0.554 421 670 0.573 451 620 0.663 488 820 0.621 502 930 0.650 522 1030 0.673 569 1030 0.673 569 1190	140	0.219	0.01	150	0.231	0.01
160 0.242 0.01 170 0.254 0.01 180 0.265 0.01 190 0.275 141.5 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.505 351 550 0.524 376 620 0.554 421 670 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 930 0.650 522 1030 0.673 569 1030 0.721 624 1290 0.721 624 1480 0.747 671	150	0.231	0.01	170	0.254	0.01
170 0.254 0.01 180 0.265 0.01 190 0.275 141.5 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.4375 250 370 0.425 304 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 930 0.650 522 930 0.673 569 1030 0.771 671 1480 0.747 671 1480 0.747 671 1480 0.747 671<	160	0.242	0.01	190	0.275	0.01
180 0.265 0.01 190 0.275 141.5 220 0.306 164.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.375 256.9 300 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 620 0.554 421 670 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	170	0.254	0.01	220	0.306	0.01
190 0.275 141.5 250 0.333 0.01 220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339 450 0.474 339 510 0.505 351 510 0.524 376 620 0.554 421 620 0.554 421 670 0.573 451 670 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.744 671 1290 0.721 624 1480 0.747 671 1480 0.747 671 <t< td=""><td>180</td><td>0.265</td><td>0.01</td><td>240</td><td>0.324</td><td>0.01</td></t<>	180	0.265	0.01	240	0.324	0.01
220 0.306 164.9 260 0.342 198.9 240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 450 0.474 339 510 0.505 351 510 0.505 351 550 0.524 376 620 0.554 421 620 0.554 421 670 0.573 451 502 930 0.650 522 1030 0.663 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1190 0.721 624 1480 0.747 671 671	190	0.275	141.5	250	0.333	0.01
240 0.324 191.8 270 0.351 219.2 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671	220	0.306	164.9	260	0.342	198.9
270 0.351 219.2 300 0.375 256.9 300 0.375 256.9 340 0.405 290.4 370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 480 0.747 671	240	0.324	191.8	270	0.351	219.2
300 0.375 256.9 340 0.405 290.4 340 0.405 290.4 370 0.425 304 370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	270	0.351	219.2	300	0.375	256.9
340 0.405 290.4 370 0.425 304 370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 450 0.474 339 510 0.505 351 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1290 0.721 624 1480 0.747 671	300	0.375	256.9	340	0.405	290.4
370 0.425 304 410 0.451 328 410 0.451 328 450 0.474 339 450 0.474 339 510 0.505 351 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 480 0.747 671	340	0.405	290.4	370	0.425	304
410 0.451 328 450 0.474 339 450 0.474 339 510 0.505 351 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	370	0.425	304	410	0.451	328
450 0.474 339 510 0.505 351 510 0.505 351 550 0.524 376 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	410	0.451	328	450	0.474	339
510 0.505 351 550 0.524 376 550 0.524 376 620 0.554 421 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.704 607 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	450	0.474	339	510	0.505	351
550 0.524 376 620 0.554 421 620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671 1480 0.747 671	510	0.505	351	550	0.524	376
620 0.554 421 670 0.573 451 670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 930 0.650 522 930 0.650 522 1030 0.673 569 1190 0.704 607 1190 0.721 624 1480 0.747 671 1480 0.747 671 1190 0.747 671	550	0.524	376	620	0.554	421
670 0.573 451 760 0.603 488 760 0.603 488 820 0.621 502 820 0.621 502 930 0.650 522 930 0.650 522 1030 0.673 569 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	620	0.554	421	670	0.573	451
760 0.603 488 820 0.621 502 820 0.621 502 930 0.650 522 930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.704 607 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	670	0.573	451	760	0.603	488
820 0.621 502 930 0.650 522 930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.704 607 1190 0.704 607 1290 0.721 624 1480 0.747 671 1480 0.747 671	760	0.603	488	820	0.621	502
930 0.650 522 1030 0.673 569 1030 0.673 569 1190 0.704 607 1190 0.704 607 1290 0.721 624 1290 0.721 624 1480 0.747 671 1480 0.747 671	820	0.621	502	930	0.650	522
1030 0.673 569 1190 0.704 607 1190 0.704 607 1290 0.721 624 1290 0.721 624 1480 0.747 671 1480 0.747 671	930	0.650	522	1030	0.673	569
1190 0.704 607 1290 0.721 624 1290 0.721 624 1480 0.747 671 1480 0.747 671	1030	0.673	569	1190	0.704	607
1290 0.721 624 1480 0.747 671 1480 0.747 671	1190	0.704	607	1290	0.721	624
1480 0.747 671	1290	0.721	624	1480	0.747	671
	1480	0.747	671			

Surfactant	- EMSORB 2503	0.02 wt%	Surfactant - EMSORB 2503		0.03 wt%
Silica Conc	entration (H20)	0.08 wt%	Silica Con	centration (H20)	0.07 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
160	0.242	0.01	160	0.242	0.01
170	0.254	0.01	170	0.254	0.01
190	0.275	0.01	190	0.275	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	300	0.375	0.01
310	0.383	0.01	310	0.383	0.01
320	0.390	0.01	320	0.390	0.01
340	0.405	0.01	340	0.405	0.01
350	0.412	0.01	350	0.412	0.01
370	0.425	0.01	370	0.425	0.01
380	0.432	0.01	380	0.432	0.01
400	0.444	200.4	400	0.444	0.01
410	0.451	245.7	410	0.451	0.01
450	0.474	308	430	0.462	0.01
510	0.505	332	450	0.474	0.01
550	0.524	367	470	0.485	0.01
620	0.554	412	490	0.495	0.01
670	0.573	446	510	0.505	328
770	0.606	471	550	0.524	348
820	0.621	489	620	0.554	364
930	0.650	515	670	0.573	379
1030	0.673	521	770	0.606	421
1190	0.704	549	820	0.621	453
1290	0.721	585	930	0.650	467
1450	0.744	654	1030	0.673	502
			1190	0.704	541
			1290	0.721	574
			1460	0.745	615

Surfactant	Surfactant - EMSORB 2503 0.04 wt% Surfactant -		t - EMSORB 2503	0.05 wt%	
Silica Cond	centration (H20)	0.06 wt%	Silica Con	centration (H20)	0.05 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
160	0.242	0.01	160	0.242	0.01
170	0.254	0.01	170	0.254	0.01
190	0.275	0.01	190	0.275	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
290	0.367	0.01	290	0.367	0.01
300	0.375	0.01	300	0.375	0.01
310	0.383	0.01	310	0.383	0.01
340	0.405	0.01	340	0.405	0.01
370	0.425	0.01	370	0.425	0.01
380	0.432	0.01	380	0.432	0.01
410	0.451	0.01	410	0.451	0.01
430	0.462	0.01	450	0.474	0.01
450	0.474	0.01	470	0.485	0.01
470	0.485	0.01	510	0.505	0.01
490	0.495	0.01	530	0.515	0.01
510	0.505	0.01	550	0.524	0.01
530	0.515	0.01	570	0.533	0.01
550	0.524	0.01	590	0.541	0.01
570	0.533	322	620	0.554	0.01
620	0.554	384	640	0.561	333
670	0.573	431	670	0.573	379
770	0.606	472	770	0.606	425
820	0.621	506	820	0.621	461
930	0.650	539	930	0.650	490
1030	0.673	551	1030	0.673	513
1190	0.704	582	1190	0.704	565
1290	0.721	604	1290	0.721	590
1490	0.749	647	1400	0.737	603

Surfactant	0.07 wt%	
Silica Conc	entration (H20)	0.03 wt%
Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01
20	0.038	0.01
40	0.074	0.01
60	0.107	0.01
80	0.138	0.01
90	0.153	0.01
110	0.180	0.01
130	0.206	0.01
150	0.231	0.01
160	0.242	0.01
170	0.254	0.01
190	0.275	0.01
220	0.306	0.01
240	0.324	0.01
270	0.351	0.01
300	0.375	0.01
340	0.405	0.01
350	0.412	0.01
370	0.425	0.01
410	0.451	0.01
430	0.462	0.01
450	0.474	0.01
510	0.505	0.01
530	0.515	0.01
550	0.524	0.01
570	0.533	0.01
590	0.541	0.01
620	0.554	0.01
640	0.561	0.01
670	0.573	0.01
700	0.583	0.01
730	0.593	366
770	0.606	391
820	0.621	457
930	0.650	490
1030	0.673	509
1190	0.704	528
1290	0.721	544
1450	0.744	588

Surfactant - EMSORB 2503		0.01 wt%	Surfactant	- EMSORB 2503	0.02 wt%
Silica Conce	ntration (HKS D)	0.09 wt%	Silica Conce	ntration (HKS D)	0.08 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
140	0.219	0.01	150	0.231	0.01
150	0.231	0.01	160	0.242	0.01
160	0.242	0.01	170	0.254	0.01
170	0.254	0.01	190	0.275	0.01
180	0.265	0.01	220	0.306	0.01
190	0.275	0.01	240	0.324	0.01
200	0.286	0.01	250	0.333	0.01
210	0.296	0.01	260	0.342	0.01
220	0.306	0.01	270	0.351	0.01
230	0.315	116	290	0.367	0.01
240	0.324	138.5	300	0.375	0.01
270	0.351	163.7	310	0.383	0.01
300	0.375	185.4	320	0.390	0.01
340	0.405	229.1	340	0.405	212.3
370	0.425	241.6	370	0.425	235.4
410	0.451	268.4	410	0.451	251.3
450	0.474	298.7	450	0.474	284.9
510	0.505	333	510	0.505	312
550	0.524	359	550	0.524	346
620	0.554	372	620	0.554	375
670	0.573	436	670	0.573	401
770	0.606	467	770	0.606	432
820	0.621	509	820	0.621	462
930	0.650	550	930	0.650	489
1030	0.673	578	1030	0.673	515
1190	0.704	610	1190	0.704	562
1290	0.721	636	1290	0.721	586
1470	0.746	679	1430	0.741	618

Combination – HDK HKS D (30% Silica Nanoparticle) + EMSORB 2503 (surfactant)

Surfactant - EMSORB 2503		0.03 wt%	Surfactar	t - EMSORB 2503	0.04 wt%
Silica Conce	ntration (HKS D)	0.07 wt%	Silica Con	centration (HKS D)	0.06 wt%
Water	Water Fraction	Conductivity (mS)	Water	Water Fraction	Conductivity
(mL)	water machon	conductivity (mo)	(mL)	Water Haction	(mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
160	0.242	0.01	160	0.242	0.01
170	0.254	0.01	170	0.254	0.01
190	0.275	0.01	190	0.275	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
290	0.367	0.01	300	0.375	0.01
300	0.375	0.01	340	0.405	0.01
310	0.383	0.01	350	0.412	0.01
320	0.390	0.01	370	0.425	0.01
340	0.405	0.01	380	0.432	0.01
370	0.425	0.01	400	0.444	0.01
380	0.432	0.01	410	0.451	0.01
400	0.444	0.01	430	0.462	0.01
410	0.451	127.5	450	0.474	0.01
430	0.462	157.6	470	0.485	0.01
450	0.474	185.9	490	0.495	0.01
510	0.505	254.4	510	0.505	272.1
550	0.524	281.3	550	0.524	301
620	0.554	326	620	0.554	338
670	0.573	358	670	0.573	369
770	0.606	397	770	0.606	427
820	0.621	411	820	0.621	452
930	0.650	459	930	0.650	475
1030	0.673	522	1030	0.673	508
1190	0.704	540	1190	0.704	557
1290	0.721	575	1290	0.721	588
1440	0.742	611	1430	0.741	624

Surfactant - EMSORB 2503		0.05 wt%	Surfactant - EMSORB 2503		0.06 wt%
Silica Conce	ntration (HKS D)	0.05 wt%	Silica Con	centration (HKS D)	0.04 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
160	0.242	0.01	160	0.242	0.01
170	0.254	0.01	170	0.254	0.01
200	0.286	0.01	200	0.286	0.01
210	0.296	0.01	210	0.296	0.01
220	0.306	0.01	220	0.306	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	300	0.375	0.01
340	0.405	0.01	340	0.405	0.01
370	0.425	0.01	370	0.425	0.01
380	0.432	0.01	380	0.432	0.01
410	0.451	0.01	410	0.451	0.01
430	0.462	0.01	430	0.462	0.01
450	0.474	0.01	450	0.474	0.01
470	0.485	0.01	470	0.485	0.01
490	0.495	0.01	490	0.495	0.01
510	0.505	0.01	510	0.505	0.01
530	0.515	0.01	530	0.515	0.01
550	0.524	0.01	550	0.524	0.01
570	0.533	0.01	570	0.533	0.01
590	0.541	231.5	590	0.541	0.01
620	0.554	274.1	620	0.554	245.3
670	0.573	305	670	0.573	297.4
770	0.606	367	770	0.606	324
820	0.621	409	820	0.621	369
930	0.650	461	930	0.650	401
1030	0.673	492	1030	0.673	425
1190	0.704	532	1190	0.704	467
1290	0.721	570	1290	0.721	542
1440	0.742	611	1450	0.744	612

Surfactant - EMSORB 2503		0.07 wt% Surfactant - E		: - EMSORB 2503	0.08 wt%
Silica Conce	entration (HKS D)	0.03 wt%	Silica Conc	entration (HKS D)	0.02 wt%
Water (mL)	Water Fraction	Conductivity (mS)	Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01	0	0.000	0.01
20	0.038	0.01	20	0.038	0.01
40	0.074	0.01	40	0.074	0.01
60	0.107	0.01	60	0.107	0.01
80	0.138	0.01	80	0.138	0.01
90	0.153	0.01	90	0.153	0.01
110	0.180	0.01	110	0.180	0.01
130	0.206	0.01	130	0.206	0.01
150	0.231	0.01	150	0.231	0.01
170	0.254	0.01	170	0.254	0.01
180	0.265	0.01	180	0.265	0.01
190	0.275	0.01	190	0.275	0.01
220	0.306	0.01	220	0.306	0.01
230	0.315	0.01	230	0.315	0.01
240	0.324	0.01	240	0.324	0.01
270	0.351	0.01	270	0.351	0.01
300	0.375	0.01	300	0.375	0.01
340	0.405	0.01	340	0.405	0.01
370	0.425	0.01	370	0.425	0.01
410	0.451	0.01	410	0.451	0.01
450	0.474	0.01	450	0.474	0.01
510	0.505	0.01	510	0.505	0.01
530	0.515	0.01	550	0.524	0.01
550	0.524	0.01	590	0.541	0.01
570	0.533	0.01	620	0.554	0.01
590	0.541	0.01	640	0.561	0.01
620	0.554	0.01	670	0.573	0.01
640	0.561	0.01	700	0.583	0.01
670	0.573	211.3	720	0.590	292.3
770	0.606	345	760	0.603	320
820	0.621	409	820	0.621	382
930	0.650	450	930	0.650	411
1030	0.673	493	1030	0.673	491
1190	0.704	529	1190	0.704	542
1290	0.721	540	1290	0.721	583
1480	0.747	605	1470	0.746	643

Surfactant -	EMSORB 2503	0.09 wt%
Silica Conce	ntration (HKS D)	0.01 wt%
Water (mL)	Water Fraction	Conductivity (mS)
0	0.000	0.01
20	0.038	0.01
40	0.074	0.01
60	0.107	0.01
80	0.138	0.01
90	0.153	0.01
110	0.180	0.01
130	0.206	0.01
150	0.231	0.01
170	0.254	0.01
180	0.265	0.01
190	0.275	0.01
220	0.306	0.01
240	0.324	0.01
270	0.351	0.01
290	0.367	0.01
300	0.375	0.01
340	0.405	0.01
370	0.425	0.01
410	0.451	0.01
430	0.462	0.01
450	0.474	0.01
510	0.505	0.01
550	0.524	0.01
570	0.533	0.01
590	0.541	0.01
620	0.554	0.01
640	0.561	0.01
670	0.573	0.01
700	0.583	0.01
720	0.590	0.01
760	0.603	0.01
790	0.612	250.7
820	0.621	321
930	0.650	378
1030	0.673	419
1190	0.704	477
1290	0.721	529
1420	0.740	566

EMSORB 2503 - SURFACTANT ONLY		HDK H20 (50% H NANOPA	ydrophobic) - SILICA RTICLE ONLY	HDK HKS D (30% Hydrophobic) - SILICA NANOPARTICLE ONLY		
Water Fraction	Surfactant Concentration	Water Fraction	Silica Concentration	Water Fraction	Silica Concentration	
0.329166667	0	0.329166667	0	0.329166667	0	
0.439805825	0.004	0.356	0.05	0.181666667	0.05	
0.534453782	0.007	0.425301205	0.1	0.2453125	0.1	
0.534453782	0.01	0.461016949	0.14	0.289705882	0.15	
0.581578947	0.02	0.487096774	0.18	0.3	0.2	
0.623129252	0.03	0.515736041	0.25	0.356	0.25	
0.700540541	0.05	0.561983471	0.6	0.372727273	0.3	
0.722222222	0.1	0.57027027	1	0.403703704	0.5	
				0.451724138	1	
				0.503125	2	
				0.536893204	3	

Appendix A-3: Phase Inversion Points, Oil A; Viscosity: 22.9mPa.

COMBINATION + + EMSORB	- HDK H20 (50% Silica Nanoparticle) 2503 (Hydrophobic Surfactant)	COMBINATION - HDK I + EMSORB 2503	HKS D (30% Silica Nanoparticle) (Hydrophobic Surfactant)
Water Fraction	EMSORB Proportion	Water Fraction	EMSORB Proportion
0.403703704	0	0.2453125	0
0.41111111	5	0.350649351	5
0.44444444	7	0.451724138	10
0.503125	10	0.536893204	20
0.532352941	20	0.562385321	30
0.57027027	30	0.581578947	40
0.60083682	40	0.6025	50
0.632192846	50	0.612195122	60
0.712643678	70	0.621428571	70
0.722222222	100	0.661702128	80
		0.703726708	90
		0.722222222	100

EMSORB 2503 - SURFACTANT ONLY		HDK H20 (50% H NANOPA	lydrophobic) - SILICA ARTICLE ONLY	HDK HKS D (30% Hydrophobic) - SILICA NANOPARTICLE ONLY	
Water Fraction	Surfactant Concentration	Water Fraction	Silica Concentration	Water Fraction	Silica Concentration
0.224719101	0	0.224719101	0	0.224719101	0
0.295774648	0.005	0.248833593	0.1	0.183028286	0.1
0.358974359	0.01	0.305555556	0.15	0.209339775	0.2
0.44444444	0.02	0.350649351	0.2	0.248833593	0.25
0.479166667	0.03	0.450549451	0.25	0.331950207	0.3
0.523809524	0.05	0.53271028	0.3	0.375161708	0.5
0.615384615	0.1	0.572649573	0.4	0.390920555	1
		0.623520126	0.5	0.50672182	2
		0.653594771	1	0.604805302	3

Appendix A-4: Phase Inversion Points, Oil A; Viscosity: 64.5mPa.s

COMBINATION + EMSORB	- HDK H20 (50% Silica Nanoparticle) 2503 (Hydrophobic Surfactant)	COMBINATION - HDK F + EMSORB 2503	HKS D (30% Silica Nanoparticle) (Hydrophobic Surfactant)
Water Fraction	Emsorb Concentration	Water Fraction	Surfactant Concentration
0.248833593	0	0.183028286	0
0.275362319	5	0.315068493	10
0.342105263	10	0.404761905	20
0.44444444	20	0.450549451	30
0.504950495	30	0.504950495	40
0.53271028	40	0.541284404	50
0.561403509	50	0.553571429	60
0.593495935	70	0.572649573	70
0.615384615	100	0.590163934	80
		0.612403101	90
		0.615384615	100

	Stabilizer/Concentration						
Time	EMSORB 2503	EMSORB 2503	HDK H20	HKS D	HDK H20	H20:EMSORB	H20:EMSORB
(seconds)	0.1 wt%	0.1 wt%	0.1 wt%	0.1 wt%	0.1 wt%	0.1:0.4	0.4:0.1
0:00:15	0	0	0	0	0	0	0
0:00:30	0	0	0	0	0	0	0
0:01:00	0	0	0	0	0	0	0
0:02:00	1	0	0	0	0	0	0
0:05:00	1	0	0	0	0	0	0
0:10:00	1	0	0	0	0	0	0
0:15:00	1	0	0	0	0	0	0
0:20:00	1	0	0	0	0	0	0
0:30:00	2	0	0	0	0	0	0
0:45:00	2	0	0	0	0	1	0
1:00:00	3	0	0	0	0	1	0
1:15:00	3	0	0	0	0	1	0
1:30:00	4	0	0	0	0	1	0
1:45:00	4	0	0	0	0	1	0
2:00:00	5	0	0	0	0	1	0
2:15:00	6	0	0	0	0	1	0
2:30:00	7	0	0	0	0	1	0
2:45:00	7	0	0	0	0	1	0
3:00:00	8	0	0	0	0	1	0
3:15:00	9	0	0	0	0	1	0
3:30:00	9	0	0	0	0	1	0
3:45:00	9	0	0	0	0	1	0
4:00:00	10	0	0	0	0	1	0
4:15:00	10	0	0	0	0	1	0
4:30:00	10	0	0	0	0	1	1
5:00:00	10	0	0	0	0	1	1
5:30:00	11	0	0	0	0	1	1
6:00:00	12	0	0	0	0	1	1
6:30:00	13	0	0	0	0	1	1
7:00:00	14	0	0	0	0	1	1
14:00:00	15	0	0	0	0	1	1
24	15	1	0	0	0	2	1
48	16	1	0	0	0	2	1
72	16	1	0	0	0	2	1
96	16	2	0	0	0	2	1
120	16	2	0	0	0	2	1
144	16	2	0	0	0	2	1
168	16	2	0	0	0	2	1

Appendix A-5: Stability Data Points, Oils A and B, Silica Nanoparticles and Surfactant

Appendix B: Material Specifications

Appendix B-1: Material Specifications, Mineral Oils

Petro-Canada TechData

PURITY* FG WO WHITE MINERAL OILS

Introduction

Forto-Danada's FUEITY* 76 WD oils are uitra auto, food grade write namers' oils specially fortoulated for fond processing. µl anticopolitical and certoutural industries.

Using the actorited HT builty process. Petro-Catala produces 99,998 prim, crystal over white others, ors in the purest in the word. Blended with a sublicer for extanded shelf life, PUBITY PG WIT bits are kinedly suited for applications that regulars a strength, non-basic white minoral oil.

PURITY FG Wr0 oils need too highest loop inclusibly ouncy standards and th parfeolity in NACCP (Hessed Analysis and Criuchi Compol Point) and GMT (Good Manufacturing Proction) plans. They are Hit and St loopstated by Waand is and L3 registered by Ste Canadian Face Inspection Agglesy.

Features and Benefits

- Low volatility.
 - Minimizes consumption.
- Includes an oxidation inhibitor for stability
- Estendos: shelt life
 Odnuriese and castelese
- Rapidly separates from water
- Excellent low pour characteristics.
- Goad Cuidity at trwitcingerstures
- Water white in colour, dues not stain.
- Fully approved for itse in and around food processing areas
 - F1 registered by NSF as a transent with incluental foot contact for use in and braund food processing sread
 - Bill registered by NSF for use as a reason ASCNL on that is infected to measure too;
 1000 Eal ering downg processing.

 Resistered in and n3 by the Canadian roop lospertion Agency (CHA)

'n.

- Certifieal Roston and Parevolog Star K
- BomiCed Palatiby IEANCA.
- Mexic United States Hop and Drug Administration (FEW) regulations:
 - CED 21. Section 172,878 While Mineral Cil
- CFR 21, Section 178,3620 (a) -Write Mineral Of
- OF / 23, Moralum 278,95 //L-Lubricants with the dental lond. Contect.
- CFR 21, Section 179, 170 -Concernents of paper and paperhoard PLCONSCE with any notice and fatty foods.
- PURITY PG W0 as and 90 meet naneval oils, USP (United States Phamiacopocka stendards)
- PURITY FG W0 15 meats Light Mineral
 OIL NF (Netional Formulary)
- PURITY FG WQ 15 is approved by the United States Department of Agriculture (USDA) for use as a protecting off on Shell Eggs processed in plants operating, under the USDA voluntary shell egg grading program

Maintains fooil allergy safety

- Ree of gluton
 - Contain no prianulisi tree nutsi sritmein dortvativeisi
- Monumptured in a facility that does not many facture, store or otherwise facility any openuts or thee avaigneduct.

When is now Hill Offices wes?

Folio Canada Caloria Historia (La Colorada Historia (La Colorada La Colorada Martina (La Colorada) Participation (La Colorada) Angla State Caloria (La Colorada) Participation (La Colorada)

Applications

PURITY FG WO oils may be safely used where an approved food grade or inert white mineral oil is required. General applications include direct and indirect food contact in producing, manufacturing, packing, processing, preparing, treating or packaging food. PURITY FG WO oils may also be used in cosmetics, pharmaceutical plastics and chemical processing and textile production.

Specific applications include:

Typical Performance Data

 Rust and corrosion prevention for knives and cutting tables used in food preparation

- Coatings for fruits and vegetables
- Carrier and release agent for pharmaceutical capsules
- Release agents for molds and bakery pans
- Plasticizers
- Moisture resistant coatings on food packaging
- Dust suppressants
- Cleaning agent for stainless steel
- Shell egg protecting oil to retain freshness (15 grade only)

	TEST	PURITY* FG WO		
	METHOD	WO 15	WOE5.	WO 90
Density, kg/L @ 15°C	D1298	0.847	0.855	0.872
Gravity, *API	D1298	35.4	33.9	30.6
Viscosity. cSt @ 40°C / SUS @ 100°F cSt @ 100°C / SUS @ 212°F	D445 D445	15 / 82 3.4 / 38	34 / 176 5.8 / 46	100 / 522 11.3 / 65
Viscosity Index	D2270	98	111	97
Flash Point, °C / °F	D92	180 / 356	220 / 428	250 / 482
Pour Point, °C / °F	D97	-18 / 0	-18 / 0	-12 / 10
Colour, Saybolt	D156	30	30	30

The values quoted above are typical of normal production. They do not constitute a specification.

Health and Safety

Petro-Canada PURITY FG WO White Minerals oils have no adverse effect on health, provided they are used as directed. To obtain Material Safety Data Sheets (MSDS), contact your Petro-Canada Lubricants representative, or one of Petro-Canada's TechData Info Lines.

TechData Info Lines

If you would like to know more about Petro-Canada PURITY FG WO White Mineral oils, or any other product in our complete line of quality lubricants, please contact us at:

Lubricants Head Office Petro-Canada 2310 Lakeshore Road West Mississauga, Ontario Canada L5J 1K2

 Canada - West.
 Phone 1.800-661-1199

 - East (English)
 Pnone 1.800-268-5850

 (French)
 Phone 1.800-576-1686

 Other Areas
 Phone (416) 730-2408

 E-mail
 Iubecsr@petro-canada.ca

 Internet
 www.petro-canada.com

IM-7873E (05.07) Menore de concretere de Percet andre - Teulemark

Revond today's standards.

Appendix B-2: Material Specifications, Silica Nanoparticles

WACKER SILICONES

HDK[®] H20

Pyrogenic Silica - Fumed Silica

Characteristics

Synthetic, hydrophobic amorphous silica, produced via flame hydro ysis

Special characteristics

White colloidal powder of high purity

Application

HDK[®] H20 is applied as a thickening and thixotropic agent in coatings, printing links, adhesives, cosmetics and others. It is used as a reinforcing filler in elastomers, mainly silicone-elastomers. HDK[®] H20 acts as a free flow additive in the production of technical powders.

Processing

A good dispersion of HDK⁶ H2C is a must to assure optimum performance. More cetalled information about the application and processing of HDK⁶ H2O is available in our HDK-brochures and on the WACKER web site (http://www.wacker.com/hdk)

Storage

HDK⁸ H20 has a shelf life of at least 24 months when stored in unbroken original packaging in dry storage areas. The "Best use before end" - date of each batch is shown on the product label.

If the material is kept beyond the shelf life recommended on the product label, it is not necessarily unusable, but a quality control should be performed on the properties relevant to the application.

Product data

Typical General Properties	Test procedure	Unit	Value
SIO ₂ -content 1)	DIN EN ISO 3262- 19	56	>99.8
density of SiO,		<u>p</u> /1	2200
silanol group density		SIOH/nm	1
electric resistivity (density 40 g/l)		[Ω cm]	>1013
BET-surface area	DIN ISO 9277/ DIN 66132	m ⁴ /g	ca.170

Physical-chemical properties	Test procedure	Unit	Value
BET-surface area of hydrophilic silica	DIN ISO 9277/ DIN 66132	mf/g	170 - 230
Carbon content		%	ca. 1.1
pH, in 4 % dispersion ²⁰	DIN EN ISO 787-9		3.8 - 4.8
tamped density	DIN EN ISO 787-11	<u>o</u> /1	ca. 40
loss on drying ⁱⁿ (2 h at 105°C)	DIN EN ISO 787-2	56	< 0.6
sleve residue, acc. to Mocker > 40 µm	DIN EN ISO 787-18	56	< 0.05
Surface modification		-OSI(CH ₃) ₂ -	

1) based on the substance heated at 1000 °C for 2 h

2) 1:1 mixture of water-methanol

ex works

Version 3.47 30 01 067 JD HDK* H20

Page 17.2