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Abstract

The need for rapid, non-invasive techniques to screen specimens is becoming more
critical as chemical laboratories enter the automation era. Near-infrared spectroscopic
instrumentation is capable of meeting the requirements for specimen screening in the
automated environment. However, some measurements from near-infrared
spectroscopic instruments yield very low signal-to-noise-ratios. Therefore, the data
analysis method used to calibrate such instrumentation must optimise the performance

and should also provide a parsimonious solution to maintain a rapid measurement.

[n this thesis urine, serum, plasma, and plasma anticoagulant spectroscopic data
were collected, processed and studied to evaluate the performance of various
classification methods, namely, K-Nearest Neighbour and Mahalanobis Distance
methods. Wavelengths were transformed into principal component scores, to reduce
the number of features. The Mahalanobis Distance method was also optimised using a
Genetic algorithm to select the best wavelengths, thus reducing the number of

wavelengths required.

The conclusion is that the Mahalanobis Distance method is superior to the
K-Nearest Neighbour method in terms of predictability. The Genetic algorithm was
able to increase predictability even further, while reducing the number of wavelengths

required in the Mahalanobis Distance model.
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Chapter 1

Introduction

1.1 Background

Clinical laboratories in North America have come under increasing governmental and
economic pressures to provide higher quality services at reduced costs. These pressures
have necessitated re-engineering and automating the laboratory operations, a process
MDS Laboratory Services [1] launched in 1992 and from which it is now starting to reap
benefits. Responsibilities that were once the lab technician's now are being performed
by a complex network of conveyance devices, robotic arms, bar-code readers, expert
system decision makers, and automated analysers. This rapid, automated system can
no longer rely on visual inspection by the technician to monitor specimen integrity, that
is, specimen quality and type. New instruments are arising and are about to arise which
fit into the automated laboratory and fill the gaps in checking specimen integrity. One
such instrument is the CME-Automated Specimen Screening (CASS) system [2]. This
instrument is capable of measuring the concentration of three potentially interfering
conditions or substances: hemolysis, turbidity, and biliverdin. It is important to many
analysers to pre-screen these interfering conditions or substances. Incorrect
measurements of analytes can occur if the level of one or more of the interfering

substances exceeds specified thresholds, appropriate for the specific analyser. The
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CASS system is capable of measuring the concentrations of all three interfering
substances simultaneously within five seconds. The CASS instrument is based on a

Vis-NIR (Visible-Near Infrared) spectroscopic measurement of the specimen.

Another aspect in checking specimen integrity is to verify the specimen type or species.
Two major specimen types or species are urine and blood. Serum and plasma are both
derived from blood. A plasma specimen contains one of several anticoagulants: citrate,
oxalate, iodoacetate, EDTA, or heparin. Presently, no instrument can measure all of

these as a pre-screen function, within an automated environment.

The spectroscopic data studied for this thesis were collected from various specimen
types using a CASS system. The data were analysed to determine if sufficient signal
was present to distinguish the various specimen types or species from each other.
Several methods were employed to analyse the data and to optimise the classification
rate of unknown specimens. K-Nearest Neighbour (KNN) and Mahalanobis Distance
(MD) were used to classify the specimens. A wavelength selection method employing a
Genetic Algorithm (GA) was also implemented to form a new method: GA optimised
MD (GA-MD) method.

The thesis is divided into seven chapters. Chapter 1 provides background to the
problem, the science, the data collection method, and the analysis methodologies.
Chapter 2 describes the data transformation methods and outlier detection. Chapter 3
describes the K-Nearest Neighbour classification method. Chapter 4 describes the
Mahalanobis Distance classification method. Chapter 5 describes the Genetic Algorithm
used to select wavelengths in optimising the Mahalanobis Distance results. Chapter 6

outlines the results of the analyses. Chapter 7 provides conclusions to the study.

1.2 Specimens

Spectroscopic data were collected on a CASS spectrophotometer. Approximately 350
separate specimens were measured once each, one specimen at a time, by the CASS

system. Each specimen was either a urine specimen or a blood! specimen. The blood

! Blood, here, means specimens derived from the whole blood specimens. Generally, whole blood
is rarely required for clinical chemistry tests.
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specimens were further identified as either serum or plasma. Each plasma specimen
contained an anti-coagulant. The possible anti-coagulants tested were citrate, EDTA,

oxalate, iodoacetate, and heparin.

A specimen was categorised according to the hierarchy shown in Figure 1.1.

Specimen
i
Blood
Urine Serum Plasma Anticoagulants N
JV
—.L Citrate
lI EDTA
II Oxalate
I lodoacetate
___{ Heparin
——

Figure 1.1 Specimen Categorisation

For data analysis purposes the specimens were divided into seven groups or species and

identified by a single numeral from 1 to 7 as shown in Table 1.1.

Table 1.1: Specie Identification

Specie Specie
Number

Urine 1
Serum 2
Citrate 3
EDTA 4
Oxalate 5
[odoacetate 6
Heparin 7
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Species 2 to 7 are part of the higher category or specie: blood. Species 3 to 7 are part of
the higher category or specie: plasma.

Each spectroscopic measurement is an absorbance measurement of the specimen for
255% separate wavelengths ranging from 602 to 1042 nanometers (nm). Therefore, each
measurement consists of a vector having 255 elements (or pixels). Each measurement is
an average of 32 scans of the instrument spectrometer. There are approximately 50

specimens of each specie.

1.3 Objectives

The ultimate objective is to accurately classify an unknown specimen as one of the seven
specie types. An error rate of less than or equal to 5% is the requirement for accurate
classification of a given specie. In other words, a given specie must be classified
accurately at least 95% of the time. The ultimate objective can be broken down into 3

smaller objectives or steps:

L The first objective is to accurately classify an unknown specimen according to

one of the two major categories: urine or blood.

2. Given that the first objective is satisfied, the second objective is to accurately
classify an unknown blood specimen into one of the two sub-groups: serum or

plasma.

3. The third objective is to correctly classify an unknown plasma specimen into one

of the five anticoagulant categories.

1.4 Spectroscopy

To better understand the spectral data that are collected, a basic understanding of
spectroscopy is necessary. This section will provide this understanding and provide a
cursory glimpse into what sort of signal can be expected from each specie.

*The CASS system actually provides 256 wavelengths but the longest wavelength was "lost” in
the data processing due to matrix size limitations of one of the off-the-shelf software programs.
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Spectroscopy is the science of the interaction between electromagnetic radiation and
matter. Specifically, we are dealing with absorption spectroscopy in the Visible and
Near Infrared (Vis-NIR) regions of the electromagnetic spectrum. The wavelength
ranges for the Visible and NIR regions are 380 to 780 nanometers and 780 to 2526
nanometers respectively, in a vacuum. However, the discussions in this thesis will
focus on the wavelengths from 602 to 1042 nanometers; the measurement range of the

CASS system used for data collection.

NIR spectroscopy can be traced back to 1800 but practical applications were not
developed until the 1950s, when NIR spectroscopy was used to determine the quality of
grain in the agriculture industry. Since then, a number of applications have been
developed including those in the pharmaceutical, petroleum, biomedical, and textile
industries. Edward Stark, Karen Luchter, and Marvin Margoshes [3| provide more
detail on these applications. Figure 1.2 shows the basic configuration for a transmission

spectrophotometer.

Incident N Transmitted
~ Radiation K4 ' Radiation
\— Lamp Detector

Figure 1.2:  Basic Configuration for a Transmission Spectrophotometer
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1.4.1 Interaction of Electromagnetic Radiation and Matter

Electromagnetic radiation, or “light”3 as we shall call it, interacts with matter in several
ways: emission, absorption and scatter. Emission is not applicable to this application.
These interactions are due to the nature of light, that is, energy carried by

electromagnetic waves [4]. The wavelength of a travelling wave in a vacuum is given

by

=5x10° (1.1)
\}

where A is the wavelength in nanometers (nm), ¢ is the speed of light
(2998 x 108 m/s) and v is the frequency of the light in Hertz. The energy in this

travelling wave or photon is given by
E=hv (1.2)

where E is the energy of a single photon (Joules) and h is Planck’s constant

(6.63 x 10-34 J-sec). Combining Equations 1.1 and 1.2, we obtain:
E=hc/A. (1.3)

The electrons in atoms, molecules and ions possess discrete (quantized) energies.
Therefore, a change in the energy of a molecule must result from a quantum jump. An

interaction* between a photon and a molecule is given by

E =AE =hc/A (1.4)

photon

where AE is the energy difference between state 1 (initial state) and state 2 (final state).
The energy increase of a molecule due to absorption of photons in the infrared region,
according to C.N Banwell [5, p. 7], causes the molecule to undergo a "change of
configuration”. The change in configuration is due to the vibrations of the bond(s) of a

3Light normally refers to the part of the electromagnetic spectrum that is visible to the human
eye, ie., wavelength range of approximately 400 to 750 nanometers. Since a portion of the
spectrum used is in the visible range, we shall refer to electromagnetic radiation as “light” for
the sake of communication and interpretation.

*In our case, this will be absorption (or absorption response due to scatter). The photon energy
will be absorbed by a molecule, increasing its energy level.
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molecule. Vibrations can be classified as either bending (change in bond angle;
scissoring) or stretching (change in interatomic distance along the bond axis). The
modes of vibration for a triatomic molecule such as water (H20) or NH> are shown in
Figure 1.3. For functional groups such as NH2 bonded to an organic framework,
bending is further classified into three other types: rocking, wagging, or twisting.

H H H H H Qﬂ
0] 0] 0
Symmetrical stretching Asymmetrical stretching Symmetrical in-plane
deformation (scissoring)

+ + + -
H H H H H H
N N N
Asymmetrical in-plane Symmetrical out-of-plane Asymmetrical out-of-plane
deformation (rocking) deformation (wagging) deformation (twisting)

Figure 1.3:  Modes of Vibration for Triatomic Molecule

As an example, the equation for the frequency V, of a stretch vibration for a diatomic

molecule is given by

(1.5)

where T is the constant 3.14159..., k is the force constant of the bond, m, is the mass of
atom 1 and m, is the mass of atom 2. Thus the force constant (related to the strength of
the chemical bond) can be determined from measurements of bond frequencies. For

polyatomic molecules the procedure is extended through the use of normal co-ordinate
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calculations. The carbon-hydrogen (C-H) bond stretch is 2900 cm! (or a wavelength of
3440 nanometers in vacu) which occurs in the mid-IR5 region. This is referred to as the
fundamental frequency. Overtone (or harmonic) frequencies also occur. Table 1.2

shows observed NIR absorption bands.

The absorbance response to the concentration of a puret absorber follows the

Beer-Lambert law. This relationship is fundamental to spectroscopy and is given by

I l
A= log-l'—' =lo T= kel (1.6)

I

where A is the absorbance response, /, is the intensity of the incident light, /, is the
intensity of the transmitted radiation, T is the transmittance response, & is the extinction
coefficient (proportionality constant of molecular absorption), ¢ is the concentration of

the absorber and [ is the effective pathlength of the specimen.

Table 1.3 shows typical, relative absorbances of different overtone responses. Although
there is a larger response (i.e., due to fundamental) in the mid-IR region, NIR has the
advantage of being able to measure higher concentration specimens transmissively
(i.e., straight through the specimen), using longer pathlengths. Typically, specimen
preparation, such as dilution, is not required for NIR, allowing rapid, non-destructive

measurement of the specimen.

NIR spectroscopy responds chiefly to the chemical bonds: C-H, O-H, and N-H and their

combinations as pointed out by Kirsch and Drennen [6, p. 141] and others.

The absorbance interaction assumes that the radiation path follows a straight-line
through the specimen. However, interactions can occur between the matter and the
radiation which will change the radiation direction. These interactions are due to
reflections off particles in the specimen, or refraction due to changes in index of
refraction within the specimen, if it is not homogeneous, or at the optical interfaces to

and from the specimen. These retlection and refraction interactions lead to "scatter".

>mid-IR covers the range of 2,500 to 50,000 nanometers.

¢ Pure, meaning a substance which does not scatter the light. Scatter will be explained later in this
section.
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Table 1.2: Chemical Assignments of Some Observed NIR Absorption Bands
Wavelength (nm) Bond Vibration Structure
713 C-H str. fourth overtone benzene
738 O-H str. third overtone ROH
740 C-H str. fourth overtone CHs
746 C-H str. fourth overtone CH>
747 O-H str. third overtone ArOH
760 O-H str. third overtone H-O
762 C-H str. fourth overtone CHo
779 N-H str. third overtone RNH;
790 N-H str. third overtone ArNH>
806 N-H str. third overtone RNH,
808 2xN-Hstr. + 2xN-Hdef. + 2x C-Nstr. RNHR’
815 N-H str. third overtone RNHR’
832 2x N-Hstr. + 2x N-H def. + 2x C-Nstr. RNHR’
840 3 x C-H str. + 2 x C-C str. benzene
874 C-H str. third overtone benzene
880 C-H str. third overtone CHCI;
900 C-H str. third overtone CHs
910 C-H str. third overtone protein
913 C-H str. third overtone CHa,
928 C-H str. third overtone oil
938 C-H str. third overtone CHa»
970 O-H str. second overtone ROH, H20
990 O-H str. second overtone starch
1000 O-H str. second overtone ArOH
1015 2x C-H str. + 3 x C-H def. CHs
1020 2x N-H str. + 2 x amide [ protein
1020 N-H str. second overtone ArNH>
1030 N-H str. second overtone RNH;>
1037 2x C-H str. + 2 x C-H def. + (CH2)n oil
1053 2x C-H str. + 2 x C-H def. + (CH2)n CHa>
1060 N-H str. second overtone RNH;
1080 2xC-H str. + 2x C-C str. benzene
1097 2x C-Hstr. + 2x C-Cstr. cyclopropane

Source: Osborne, B.G., Fearn, T. and Hindle, P.H.; Practical NIR Spectroscopy with

Applications in Food and Beverage Analysis (Second Edition). Longman Group, Essex,
England, 1993. pp. 29-30 Table 2.4.
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Table 1.3: Typical Changes in Intensity of Absorbance at Different Overtone Levels

Transition Overtone No. Relative Absorbance

(v,tov,) for 1-cm Cell
1 Fundamental 100
2 First 9
3 Second 0.3
4 Third 0.01

Source: Williams, P.C. and Norris, K. Editors; Near-Infrared Technology in the Agricultural
and Food Industries. American Association of Cereal Chemists, Inc., St. Paul,
Minnesota, 1987. Chapter 2 p. 19 Table I.

Typically, the reflection component has a larger effect on the measured or "perceived
absorbance”. One consequence of scattering is that the effective or "perceived
pathlength” appears to be longer than for the case where the scatterer was not present.
This leads to an increase in the actual and perceived absorbances. What is meant by
this, is that the actual absorbance increases due to the mean path being longer for the
radiation, and the perceived absorbance increases due to light being scattered outside of
the optical collection area, i.e., where the radiation is detected exiting the specimen.
This "lost” radiation appears as increased absorbance. The changes to the measured
absorbance due to the scatterer has three basic components: a baseline shift due to pure
scattering effects, a proportional change due to increased effective pathlength and thus
increased absorbance, and a wavelength dependent component due to reflection
characteristics of the particles and refraction characteristics of the media. A number of
models have been developed for characterising scattering effects. These are discussed

briefly in Chapter 2.

1.5 Expected NIR Response of the Specimens

NIR responses of similar substances have been studied by a number of researchers, with

some reporting success in quantifying analytes in urine [9] and blood [10] [11].



CHAPTER1. INTRODUCTION 11

1.5.1 Urine Versus Blood

Urine is a waste product of the human body excreted by the kidneys. It consists of
about 96 per cent water, 2 per cent urea, creatinine, 0.5 per cent uric acid and
15 per cent inorganic salts such as sodium, potassium, ammonia, calcium and
magnesium [12, p. 701]. The kidney acts as a filter?, filtering most of the smaller
molecules to excretion. Negatively charged molecules are filtered less easily than
positively charged molecules [13, pp. 321-322]. The filterability of large molecules such
as albumin and proteins is very low and so only a very small percentage of large

molecules is filtered through to excretion.

Whole blood is made up of red blood cells, white blood cells, platelets and a yellow
liquid called plasma. Plasma consists of approximately 90 per cent water and 10 per
cent dissolved matter. The dissolved matter consists of approximately 70 per cent
plasma proteins, 20 per cent organic metabolites, urea, and uric acid, and 10 per cent

inorganic salts [14, pp. 706-707].

One obvious difference between blood and urine is that blood contains a relatively large
concentration of proteins (contained in plasma) compared to urine. Many types of
proteins are found in blood but the major ones are: serum albumin, ai-globulins,
ax-globulins, B-globulins, y-globulins, fibrinogen, and prothrombin. Protein is
synthesised from amino acids. Amino acids contain a basic amino group (-NH>) and an
acidic carboxyl group (-CO2H). A larger NIR response to the NH2 structure is expected
for blood than for urine. The concentration of serum albumin, for example, is
approximately 3500 mg/dL, a relatively high concentration for producing an NIR
response. The NH> structure has responses from 779 to 1060 nanometers. Therefore, a
distinguishable NIR response should be obtained between urine and blood based on the
NHz2 response alone.

"However, urine is not an ultra-filtrate of blood because after the filtering process, the kidney has
the ability to selectively absorb small molecules as required for maintaining homeostasis.
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1.5.2 Serum Versus Plasma

Plasma can be separated from the cells by centrifugation. An anticoagulant
(e.g., heparin) is added to the blood to prevent coagulation. Serum is formed when the
whole blood is allowed to coagulate. If an anticoagulant is not added, the cells will
form a clot which can be separated from the serum by centrifugation. Serum, thus, is the
blood plasma minus some clotting proteins used to form the clot; the plasma will also

contain the added anticoagulant while serum will not.

Serum and plasma, for the most part, are very similar in composition. The amount of
protein used in the clot formation is relatively small compared to the overall amount of
protein and the variance in specimens. Therefore, we expect the anticoagulants’ NIR
response to provide the strongest spectral information to distinguish serum from

plasma.

1.5.3 Plasma Anticoagulants

The plasma specimens contain one of five anticoagulants: citrate, oxalate, iodoacetate,

ethylenediaminetetraacetic acid (EDTA), and heparin.

Citrate [14, p.442] contains an O-H bond and two CH> bonds. Therefore an NIR

response is expected.

Sodium oxalate’s [15, p.8603] chemical formula is Na2C20s. This contains C-C and CO»
groups which may have overtone vibrations, although Table 1.2 does list these.

The chemical formula for iodoacetate (14, p.409] is ICH2COO". The CH; bond has an
NIR response.

EDTA's [15, p.3752] chemical formula is [(O2C CHa2) 2N-CHa2-CH2-N(CH2COn)aJ*.
Therefore, at least CH2 and NR2 groups are contained in EDTA. An NIR response is
expected.

Heparin [15, p.4575] is a more complicated structure compared to other anticoagulants.
It is a mixture of variably sulphated polysaccharide chains composed of repeating units

of D-glucosamine [15, p.4353] and either L-iduronic or D-glucuronic acids.
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Glucosamine contains C-H, O-H and N-H bonds. Therefore an NIR response is

expected.

Therefore, it is possible for an NIR response to occur for all the anticoagulants except,

possibly, for oxalate.

1.6 Measurement Methods and Materials

1.6.1 Instrumentation

The spectrophotometer and associated instrumentation used in this investigation were
designed and built by CME Telemetrix Inc., Waterloo, Ontario, Canada. The system is
referred to as CASS (CME-Automated Specimen Screening). The specimen is placed
inside a cylindrical translucent tube or vial. An unmarked, white, adhesive label covers
over half of the circumference of the tube. The specimen interface is remote from the
spectrophotometer; radiation is channelled via 3.2 millimetre diameter fibre-optic
bundles to and from the specimen. Broadband Visible and NIR radiations are
transmitted simultaneously through the label, tube wall, specimen, and again through
the tube in that sequence. A representative optical schematic of the system is shown in
Figure 14 [16, p.6]. The instrument is a double-beam-in-time spectrophotometer,
having two paths which are measured in time sequence (i.e., time-division multiplexed).
The light source is a quartz-tungsten-halogen lamp. A holographic grating is used to
disperse the broadband radiation into its component wavelengths. A linear silicon
photodiode array of 256 elements or pixels is used to collect the transmitted radiation of

each component wavelength.

The absorbance is calculated based on the ratio of the transmitted radiation of the

specimen to transmitted radiation of the reference. Dark measurements and differences
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in optical gain of the two paths are used to compensate the absorbance measurements.
The pixels were calibrated with respect to their wavelength correspondence. The

wavelength calibration equation is
M pixel) = A +A, % pixel (1.7)

where pixel is the pixel number from 1 to 255, A is the wavelength in nanometers for
pixel 1, A, is the wavelength step in nanometers/pixel between adjacent pixels, and
).( pixel) is the wavelength in nanometers for pixel number pixe/. The wavelength
calibration values for this particular investigation are: A = 602.8259 nanometers and
Ay = 1729639 nanometers/pixel. The wavelength calibration table is found in
Appendix A.  The model and serial numbers for the CASS instrument were
NIM-DBVT1000 and 9205-4004 respectively.

1.6.2 Measurement Protocol

Specimens were collected from Credit Valley Hospital, Mississauga, Ontario over a one
week period. Forty-nine specimens each of urine, serum, and iodoacetate were
obtained; fifty specimens each of citrate, EDTA and oxalate were obtained; and fifty-
one specimens each of heparin were obtained, providing 348 specimens altogether. The
specimens were refrigerated prior to spectrophotometric measurement. The specimens
were measured in seven batches of approximately fifty on five different days over a
seventeen day period, after the first specimens were obtained. The specimen
distribution with respect to specie, for the seven batches, is shown in Table 1.4. The

specimens in each batch were measured in random order.

*However, the absorbances were not calibrated using standard references and an arbitrary bias
offsets the absorbances. The untransformed absorbances should not be compared with
standard absorbances. ~Spectrophotometric measurements are comparative or secondary
measurements and as such require calibration against a standard measure of the specimen
feature in question. Therefore, it is typically not required to standardise the absorbances as
these are intermediate measures of the specimen. In other words, in practice, steps are avoided
if nothing is gained by them. Absorbances of high precision are usually more important than
accurate absorbances in practical calibration.
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Table 1.4: Specimen Distribution by Batch

Batch  Specimen Type = Number of Specimens

1 urine 19
citrate 20
oxalate 11
2 heparin 11
EDTA 10
serum 9
oxalate 9
iodoacetate 11
3 iodoacetate 10
heparin 10
EDTA 10
serum 10
urine 10
4 citrate 10
iodoacetate 10
oxalate 10
serum 10
EDTA 10
5 heparin 10
serum 10
oxalate 10
iodoacetate 10
urine 10
6 heparin 10
serum 10
EDTA 10
iodoacetate 9
citrate 10
7 urine 10
EDTA 10
citrate 10
heparin 10

oxalate 10
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Quality control measurements were performed before and after each batch. Five
measurements each of an empty vial and a distilled-water-filled vial were performed as

QC measurements.

Specimens for the batch being measured were removed from the refrigerator one hour
prior to measurement to acclimatise. The specimens were transferred from their storage
vials to the measurement vials. Each specimen was numbered and specimen
information recorded. The Auto-gain feature on the CASS instrument was used for the

specimen spectral scan while fixed gain was used for the reference optical scan.

Thirty-two scans were averaged for each measurement. Each specimen was measured
once (i.e. one mean of thirty-two scans). Specimen number, gain, filename and any

observed abnormalities were recorded in a logbook.

1.6.3 Data Description

Each spectroscopic measurement of a specimen is an absorbance measurement
comprised of 255 separate wavelengths from 602 to 1042 nanometers. Therefore, each

spectroscopic measurement consists of a vector having 255 elements (or pixels).

1.7 Data Analysis Methodology

1.7.1 General Approach

The approach used here for analysing the data involves four steps:
1. Pre-processing
2. Calibration
3. Validation

4. Optimisation
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The Pre-processing phase consists of transforming the data so as to emphasise and
"show” the signal. The Pre-processing phase also consists of detecting outliers which

may occur due to specimen problems, instrumentation problems, or operator error.

The Calibration phase consists of calibrating or classifying training or known specimen

data to produce a model that can be used to predict or classify unknown specimens.

The Validation phase consists of applying the model determined in the Calibration

phase to classify unknown specimens.

The Optimisation phase consists of seeking out the most parsimonious solution (i.e., one

which balances optimum classification rate with simplicity, according to a criterion).

To facilitate the validation of the classification methods, the specimen data were divided
into two parts: training data and prediction data. The training data are used to calibrate
the classification method to form a model. The prediction data are used to check the
validity or predictability of the model. The prediction data consist of 140 specimens
(i.e., 20 per specie) while the training data consist of approximately 200 specimens,
depending on the number of outliers removed. The prediction data are created by
randomly choosing 20 specimens from each of the species. The rest are used for the
training data. Three data sets of training/prediction data are created from the 348
specimens so that the results are not affected by specific set anomalies. All specimens
are included in each data set, with the assignment of each specimen, to either training or
prediction, performed in a random manner. Therefore, each data set contains the same
(i.e., all) specimens but individual specimen assignments (i.e., to training or prediction)
may be different. The three data sets are used to evaluate the methods with respect to

their ability to correctly classify unknown specimens.

Another approach, if more specimens per specie were available, would be to divide up
the data into three data sets but with different specimens in each data set. Using this
approach, the training data from one data set could be used to predict on the training
and prediction data from another data set. This would force each specimen to be part of
both, a training data set and a prediction data set. The present approach does not force
a specimen to be part of both. However, statistically, most specimens will be

represented in both a training data set and a prediction data set.
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Figure 1.5 shows the general approach to calibration while Figure 1.6 shows the general
approach to validation. The first step is to transform the absorbance data. The second
step involves identifying and removing outliers from the data set. The third step, for
calibration, involves creating a model using the training data. The first two steps for
validation are the same as for calibration, with the third step being different. The third
step, for validation, involves applying the model to the prediction data.

Transform
the Data

y

Detect
Outliers

.

Calibrate
Classification
with Training Data

Figure 1.5:  General Approach to Calibration

Transform
the Data

I

Detect
Qutliers

L

Predict
Classification
of Prediction Data

Figure 1.6:  General Approach to Validation

The methodologies were developed using either Pirouette™ or Matlab™ software.
Pirouette™ is an end-user software package incorporating built-in classification and data
transformation functions. Matlab™ allows the user to program the user's own
algorithms. KNN was implemented using Pirouette™, while MD and GA-MD were

implemented using Matlab™.
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1.7.2 Pre-processing of the Data

Pre-processing of the data involves transforming the data and detecting outliers. Data

transformations and outlier detection are introduced in the following two sections.

1.7.2.1 Data Transformations

Spectroscopists utilise a number of data transformations including: derivativation
(technically, differentiation in the case of discrete wavelengths), smoothing,
autoscaling, multiplicative scatter corrections, and principal components derivations.
Reasons for transforming spectroscopic data include: reduction of noise, reduction of
the effects of scatter (i.e., offsets that may be dependent or independent of wavelength)
or increased resolution of overlapping bands (since NIR responses tend to be broader®
than the instrument adjacent wavelength resolution, and may also overlap with each

other), such that the signal is emphasised.

Derivativation involves calculating the derivative (i.e., this can be the 1st, 2nd, or higher
order) of each absorbance spectrum. First derivativation will remove additive offsets
independent of wavelength while second derivativation will remove additive offsets
that change linearly with wavelength. Therefore, derivativation can minimise the
etfects of scattering. Derivativation can also accentuate sharp spectral features, thus

helping to resolve overlapping spectral bands (17, p.335].

Smoothing is often done in conjunction with derivativation as the later tends to amplify
high frequency noise. The smoothing and derivativation calculations can be done

simultaneously.

Autoscaling involves scaling the absorbance spectra to produce absorbance spectra that

have a mean of zero and a variance of one at each wavelength.

Multiplicative scatter correction (MSC), as proposed by Geladi et. al. [18], attempts to
correct the scatter of each spectrum to that of an “ideal” spectrum, usually the mean

* Although molecular vibrations in vacu produce quantified frequency responses, vibrations in the
condensed (e.g. liquid) state are much more complex. This complexity is due to the partial
electrostatic bondings between atoms of the various molecules, which creates many frequency
combinations. An apparent broadening of the NIR response is the result. Also, the optical
resolution of the instrument may broaden the response beyond the instrument adjacent
wavelength resolution.
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spectrum. It involves finding the best fit line for each spectrum by linear regression and
then correcting each spectrum such that its best fit line matches those of the "ideal”
spectrum. Therefore additive effects, both independent and varying linearly with
wavelength, can be minimised. Depending on the data, the effect of applying MSC can

be similar to that of a second derivativation.

Principal components analysis involves finding new data dimensions or features that
are uncorrelated with each other, and are ordered in descending order with respect to
variation (19, p. 76].  Considering that absorbance spectral data often have high
correlation with respect to adjacent wavelengths (i.e., multicollinearity), the
dimensionality typically can be reduced, ie., the number of principal components
required will be less than the number of wavelengths required. It is possible to
transform many wavelengths into a few principal components. Outliers can be detected
using principal components analysis; also physical interpretation of the principal

components is possible.

The data were analysed using all of the transforms mentioned here except for MSC.
Considering that second derivativation (2D) can have a similar effect as MSC, 2D is
simpler to implement than MSC, and 2D can be combined with smoothing, MSC was
not implemented. While MSC maintains the "appearance” of the spectra, second

derivativation enhances the signal to the observer.

1.7.2.2 Outlier Detection

An outlier is a specimen measurement that is considered erroneous or atypical.
Erroneous outliers can occur due to operator errors, instrumentation problems or
specimen problems. For example, some of the plasma specimens in this study
experienced clotting, which led to measurements very different from the typical
specimen’s. This problem resulted in errors in absorbance spectra. Problems which
lead to extreme absorbance effects can be identified and the measurement flagged as

erroneous. Corrective measures can then be implemented.

Outliers were identified by studying the transformed spectra and the principal
component scores. The principal component scores can be used to automatically detect

outliers, as is demonstrated in Section 2.4.
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1.7.3 Classification Methods

A number of classification methods have been used in NIR spectroscopy for classifying
species, including: Bayesian [20], K-Nearest Neighbour, Mahalanobis Distance,
Information Theory [21], and Soft Independent Modelling of Class Analogy (SIMCA).
Bayesian and SIMCA are suited to specimen-rich situations, i.e., where there are many
specimens per class, while KNN is suited to specimen-poor situations, i.e., where there
are few specimens per class. The distance measure for MD is really an extension of that
used for KNN, making it suitable to specimen-medium situations. Information Theory
methods could be applicable but are optimally suited to qualitative or mixed-mode data.
Therefore, KNN and MD were chosen as the classification methods for this study.
Specifically, the KNN method provides a baseline for the MD and GA-MD methods.

1.7.3.1 K-Nearest Neighbour Classification Method

K-nearest neighbour (KNN) is a nonparametric similarity distance measure
(22, pp. 303-322], calculated between specimens. The distance between a specimen and
another in the data set is calculated according to the Euclidean distance given by

N
dub = "2( f\j-Bj)z
Jj=l

where d,, is the distance measure between specimen a and specimen b, A, is the
absorbance for specimen a at wavelength j, B, is the absorbance for specimen b at

wavelength j, while Nis the number of wavelengths.

To classify an unknown specimen, the distances between the unknown specimen and all
other specimens in the training set are calculated. An appropriate number of
neighbours is chosen to have voting privileges. The maximum number of neighbours
was chosen to be 10 for this application, considering there are approximately 20 to 30
specimens in the training set for each specie. For a given number of neighbours, K, the
K closest training neighbours to the unknown specimen each votes once for its specie.
The specie with the most votes is chosen to be the specie for the unknown specimen.

When there is a tie, the shortest accumulated distance is used to break the tie.



CHAPTER1. INTRODUCTION 23

To determine calibration error, each specimen in the training set is held-out in turn and
classified according to the rest of the training specimens. This is called leave-one-out

cross-validation procedure.

Chapter 3 provides more detail on KNN.

1.7.3.2 Mahalanobis Distance Classification Method
This method determines a distance measure which is an extension of the Euclidean
distance. The Mahalanobis Distance (MD) [19, p.62-63] is more complex and includes

the variances and covariances of the dimensions as given by
D* =(x—x,) M(x-x,)

where X = point in the dimensional space for a particular specimen, X, = centre of
specie i , M = inverse covariance matrix for the dimensions, and D = Mahalanobis

distance (i.e., MD) from specimen to specie i .

The same basic equation can be used to calculate the distance between the specie

. 2 . . N
centres, i.e., D; forspeciesi{ and ;.
if J

The MD has several advantages over an equivalent Euclidean distance measure, these

being:

* The MD takes into account not only the centre of the specie, but the
distribution about the specie centre. Therefore, if there are significant
differences in variance between species or between dimensions, these will be

accounted for by normalising the distance calculation.

* The MD can be interpreted more universally since it is a normalised distance

(i.e., unit distance vector with N dimensions).

e.g,an MD of 6 between two species indicates the species’ centres are

separated by 6 standard deviations (i.e., 3 standard deviations each).

* a rule of thumb: in practice a MD of 6 between a specie and all others is
required to achieve 95% predictability. Therefore the MD will give you an

idea how well an unknown specimen can be predicted.
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Chapter 4 describes MD in more detail.

1.7.4 Genetic Algorithm Selection of Wavelengths

Genetic Algorithms (GA's) are classified as "simulated evolution” methods, that is,
problem solving methods that simulate the natural evolution process as theorised by
Charles Darwin in 1859. The general components contained in the natural evolution
theory are mimicked in the GA: an ensemble or population of creatures or members,
competition and selection of the members on the basis of some observable fitness
quality, reproduction and parenting of the members and modifications or mutations of
the members. Although the general principles for genetic algorithms were in place over
100 years ago, GA methodology is still in its infancy, with the first international
conference held in 1985 and the first comprehensive textbook published in 1989 [24].

GA's are used as global search methods to find optimum solutions. GA's are starting to
be used in chemometrics to select wavelengths as proposed by Lucasius [25],
Leardi [26], and others. Lucasius’ study of three wavelength selection methods~GA,
simulated annealing and stepwise elimination—-showed that GA's generally performed
the best [25, p.263]. One of the drawbacks of a GA is that it is an interactive technique
and thus very computationally intensive. One analysis can literally run for days in
optimising the calibration. However, computational speed can be increased in the
prediction phase if the number of features required are reduced. Therefore,
computational speed may suffer in the calibration phase but will improve in the

prediction phase, which typically has greater time constraints thrust upon it.

In this investigation, genetic algorithms were used to optimise the Mahalanobis
Distance calibration by selecting the best features or, in this case, wavelengths.

The general flow of a genetic algorithm is shown in Figure 1.7. The steps
include: Generate an Initial Population, Evaluate the Population with respect to a
Fitness Criterion (Terminate if Conditions Met), Replace the Worst Members with the
Best Members, Recombine the Members to Parent a new Population, Mutate the

Population Members.
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Figure 1.7:  Genetic Algorithm to Select Wavelengths
The genetic algorithm steps are described below.

Initial Population: Each member of the population consists of a solution vector
(i.e. wavelength selection vector) whose elements select or deselect a particular
wavelength. Each element's status is determined randomly for the initial population
based on a predefined distribution for selection or deselection. Population size varies
according to the number of features or wavelengths. Generally, too small a size will
result in quick convergence to a possible non-optimal solution, while too many will

result in excessive computation. An enumerative search method would suggest that
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approximately 2" subsets be scanned, where n is the number of features (in our case
wavelengths). For 255 wavelengths, the amount of computation would be prohibitive.
Therefore, a practical implementation for a GA, for general spectroscopic problems, is
really a non-local search method that finds an adequate local solution [25, p- 263].
Typical population sizes vary from 30 to 200 (26, p. 77] members with convergence
typically occurring in 100 to 500 generations.

Fitness Criterion: A fitness value or quality is calculated for each member of the
population. The purpose of the fitness criterion is to direct selection of members from
one generation to the next. The fitness criterion includes a factor related to the error rate
and a factor related to the number of wavelengths. In this way a parsimonious solution

can be achieved. An example of a fitness criterion is shown below:

Fit=1/ (), Error (N)

where Error, is the number of errors associated with predicting specie i , and N is the
number of wavelengths selected. The errors are summed over the number of species.
This particular criterion would be maximised by the algorithm. Also, the fit criteria are
evaluated on their ability to predict unknown specimens. If the “error” factor is too
dominant, then the calibration will tend to overfit. [f the "wavelength” factor is too
dominant, then the calibration will tend to underfit. A balance of these two factors

provides the most parsimonious and useful solution.

Replacement: This step allows preservation of the "good” population members
and disposition of the "bad" population members. The population members are ordered
with respect to the calculated fit value. A certain proportion of the worst members are

replaced with the top members.

Recombination: The purpose of this step is to help identify better solutions while
maintaining the gains made in the GA selection process. To a certain extent, it is a local
exploration; although if there is enough diversity in the population, a large portion of
the solution space can be explored by recombination alone. This step involves pairing
up members (i.e., parents) randomly, then replacing the parents with offspring derived

from the parents. The most common recombination operator is the cross-over. Cross-
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over involves defining cross-over points randomly. Up to the first cross-over point the
string elements are kept the same. The string elements between the second and third
cross-over points are swapped between the two parents. The string elements between
the third and fourth cross-over points are kept the same. This process continues in like

manner to the end of the strings.

Mutation: The purpose of this step is to maintain diversity in the population so that
the whole solution space can be explored. It is possible for the status of a particular
wavelength to be the same for all population members. An optimal solution may be
missed if this wavelength is always included or always excluded. Mutation prevents
this loss of diversity by randomly toggling the status of a certain proportion of elements

in the population. The mutation rate is typically low, on the order of 0.001 to 0.05.

Chapter 5 provides more detail on the GA implemented.



Chapter 2

Pre-processing of the Data

2.1 Introduction

Transforming or pre-processing data has several purposes: to emphasise the signal
component, de-emphasise the noise component, or reduce the dimensionality or feature
space. This chapter discusses the data transforms used in this
investigation: derivativation, smoothing, autoscaling, and principal components
derivation or analysis. The applicability of each transform is based on its ability to
enhance or "show” the signal, and ultimately the transform’s effect on the ability to
predict unknown specimens. The effect on the KNN calibration error rate was also
evaluated to select the best data transform (from those studied), as illustrated in Section

2.2.4. The transforms were tested individually and in combination with each other.

2.2 Untransformed Absorbance Spectra

The raw or untransformed data, based on the spectrophotometric measurement, are
shown in Appendix B. The untransformed data for urine are shown in Figure 2.1. Itis
clear from these figures that there is large variability among measurements within a

specie and that there appears to be few distinguishable differences between the species.
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Therefore, it is desirable to transform the data to minimise the variability within a specie
and emphasise distinguishing characteristics between the species. It appears from
Appendix B and Figure 2.1 that, at least, a bias correction independent of wavelength

would be useful. Therefore, a first or second derivativation is likely required.
The absorbance spectral data are of the form A, an mXn matrix, whose individual
elements, a;, correspond to the absorbance for specimen i and wavelength j

(i.e, a row of Ais the spectrum for a given specimen). The data are arranged such that
the first m, rows are for specimens belonging to specie 1, the next m, rows are for

specie 2 and so on with specie 7 data residing in the last m, rows.

Untranstormed Urine Absorbances
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Figure2.1:  Untransformed Absorbance Spectra for Urine
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2.3 Data Transformations

2.3.1 Derivativation and Smoothing

Performing derivativation on data will remove offsets (1st derivative) and slopes
(2nd derivative). However, derivativation tends to amplify high frequency noise,
making smoothing a necessary complementary function. The derivativation and
smoothing functions performed here are based on a Savitzy-Golay (S-G) (28]
polynomial filter as corrected by Steiner et. al. [29] with end point modifications
proposed by Gorry [30]. The S-G filter applies a convolution to a data point by
considering the n points on either side of the given or centre data point. Savitzky and
Golay have shown that the coefficients that they have derived for the convolution
window produce exactly the same result as doing a least squares fit to an rth order
polynomial using the same, 2n + 1, data points, for the centre point. The filtering
implemented in this investigation used a second order or quadratic polynomial. For
example, the convolution coefficients for an 11 (i.e., n =5) point (quadratic) window are

shown in Table 2.1.

Table 2.1: Convolution Coefficients for 11 point Smooth and 2nd Derivative
Point 5 4 -3 -2 -1 0 +1 +2 +3 +4 +5 [ Norm
Smooth 36 9 4 69 84 89 84 69 44 9 -36|429
2nd 5 6 -1 -6 -9 -10 9 -6 -1 6 15 |429
Derivative

Appendix C shows the spectral data transformed using an 11 point (quadratic) smooth
and 11 point 2nd derivativation; this transform will be henceforth referred to as
transform SM11-2D11. Figure 2.2 shows the transformed data for urine based on the
aforementioned transform. This transform significantly reduces the intra-specie
variability. Figure 2.3 shows the median transformed (i.e., SM11-2D11) absorbances for
each specie after subtraction with the median QC water absorbance. It is clear from this
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graph that urine is easily distinguished from blood specimens at wavelengths above 878
nm (i.e., pixel 160) to 1042 nm (pixel 255). Oxalate and iodoacetate show strong
differences from the other species at wavelengths between 602 nm (pixel 1) and 635 nm
(pixel 20). Oxalate also shows spectral differences from the other species at wavelengths
around 912 nm (pixel 180). It is not clear if significant differences exist to separate
serum, citrate, EDTA and heparin from each other. Spectrally, in this range, these

species look very similar to each other.

Transformed Urine Absorbances
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Figure2.2:  Transformed (No Autoscaling) Absorbance Spectra for Urine
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Median Transformed Absorbances Differenced with Water
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Figure23:  Median of Transformed (SM11-2D11) Absorbance Spectra for each Specie
differenced with Median of QC Water Absorbances

2.3.2 Autoscaling

Transforming data by autoscaling will normalise the mean of each feature
(ie., wavelength) to zero and the variance to one. Data that exhibit large statistical
differences between features may profit from autoscaling by normalising the leverage
between the features. Autoscaling is performed in two steps: mean-centring and
variance scaling. All the specimens in the training data are used to calculate the mean
and variance with respect to wavelength. The mean and variance calculated from the
training data are then used to transform both the training and prediction data.
Mean-centring transforms the data such that the new mean is zero for all wavelengths.

Variance scaling transforms the data such that the new variance is one. The steps are
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described below.

1. Calculate the mean.

The mean, (Z , is calculated using equation 2.1 below:

—_
a=—)>a.. 21
= (21)
2. Calculate the variance.
The variance, s, is calculated using Equation 2.2 below:
M l m - :
s = m—‘l;(aq ~a,). (2.2)
3. Apply the autoscale parameters to the data.

The autoscaled data, @, ,, are calculated by subtracting the mean from the

original data and then dividing by the standard deviation, as shown below in

Equation 2.3:

a, —da,

.= (2.3)
{us) 5,

Figure 24 shows transformed (SM11-2D11) and autoscaled spectra for urine.
Figure 2.4 shows a significant reduction in the differences between the means of the
features (i.e., wavelengths) with possibly a small reduction of variance between the
wavelengths, as compared to Figure 2.2. Therefore, autoscaling may help the
performance. However, autoscaling is sensitive to outliers (this is why Figure 2.4 is
shown with outliers removed) and may not help if statistical differences between
features are not significant. In addition, the parameters are based on the statistical
characteristics of the data (i.e., mean and variance) which may change over time if

instrumental drift and environmental changes exist (and are not compensated for).
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Transformed (With Autoscaling) Urine Absorbances for Training Data of Set 1
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Figure 2.4 Transformed (SM11-2D11) and Autoscaled Absorbance Spectra for Urine

with Outliers Removed for Training Data Set 1

2.3.3 Principal Components Analysis

The purpose of transforming data using principal components analysis is to reduce the
dimensionality or number of features. A large number of wavelengths may be

transformed into a relatively small number of principal components. Principal

components analysis (PCA) involves expressing the variables A = {a o= l,2,....n}
(in our case absorbance spectra) in terms of a lower number of new, uncorrelated
variables T, ={t,‘,k =12,....s}, that is, the principal components or scores. This is
accomplished such that: s <n; the t,'s are orthogonal to each other; t, accounts for the
largest amount of variation in the data and each subsequent t, accounts for less and less
variation, with t_accounting for the smallest amount of variation in the data. The main
advantage of PCA is that a large number of variables can be compressed into a fewer

number of variables that explain the data adequately. If the original variables are
uncorrelated with each other then PCA will not be an advantage. However, spectral
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data are highly correlated, making the reduction of dimensionality possible without a
significant loss of information.

To determine T, from A, the following relationship, as defined by Equation 2.4 is used:
A=TL' (2.4)

where T is the uncompressed mXn matrix for the principal components, L is the
uncompressed weighting or loading matrix such that each principal component is a
linear combination of the variables a,,a,,...,a,. As an example, the expression for
principal component 1 (PC 1) is t, =/,a, +/,a,+..+/,a, with 1, being the PC 1
element calculated for specimen / . Equation 2.4 is re-expressed as Equation 2.5, using
the compressed matrices T, and L_ for the principal components and loadings

respectively.
A=TL, +¢ (2.5)

where € represents a small error introduced by the compression.

To determine the loading matrix, L, three constraints are introduced. The first one
is: the sum of the squares for each row totals 1. For example, for
row 1: f} +1}+..4]] = 1. The second constraint is: the variance for the first PC is the
highest, the variance for the second PC is the second highest, and so on with the last
PC's variance being the smallest (ie., var(t,) > var(t,) > .. > var(t ). The third
constraint is: the t,’s must be orthogonal to each other. [t can be shown [31, p.99] that
the sample covariance matrix (i.e., covariance across wavelengths not specimens), C, a
symmetric nXn matrix, produces eigenvectors that fit the constraints of the loading
matrix, L, except for scaling (i.e., constraint 1). The eigenvalues of C are used to scale
C and order the principal components in descending order, such that L is produced.
The components that do not contribute significantly to the variance are truncated to

produce L.

To calculate the principal components matrix, T,, Equation 2.5 is rewritten as Equation

2.6 given that the expression, L'L  =1L.

T, =AL.. (2.6)

¥ T
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The loading matrix is calculated for the training data and is used to determine the
principal components for both the training and the prediction data, thus maintaining a

consistent transformation.

Figure 2.5 shows the first 4 principal components for the data shown in Appendix C,
except with autoscaling also. Appendix D shows the first 24 principal components.
PC 1 and PC 7 both show strong differences with respect to classifying urine from
blood. Several other PC's show weak but detectable signal differences for
distinguishing urine from blood. PC 4 and, to a lesser extent, PC 5 show differences
capable of classifying oxalate from the other species. PC 12 appears to be the strongest
one for classifying iodoacetate from the other species. A number of PC's show strong
signals for subsets of species and it may be that other PC's are required to account for

interferences which weaken the "signal” for other specimens for a given specie.
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Figure 2.5:  First 4 Principal Components for Transformed (SM11-2D11) and
Autoscaled Data
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2.3.4 KNN Calibration Error Rate Dependence on Data Transform

To select the optimum transform (i.e., SM11-2D11), the whole data set, including
outliers, was analysed using KNN, with a variety of transforms and parameters. The
calibration error rates of these analyses are shown in Table 2.2. The results of this show
that 1st derivativation is better than no transformation and 2nd derivativation is better
than the 1st derivativation. The Pirouette™ software does not go to orders higher than
the 2nd derivative. Smoothing up to 11 points improves the calibration error.
Smoothing beyond 11 points does not make significant improvements. Autoscaling
does not appear to make much difference when smoothing is not performed. However,
autoscaling did make a significant improvement to the transform SM11-2D11. These

results suggest that the best transform is SM11-2D11 with autoscaling, for KNN

analysis.

Table 2.2 KNN Calibration Error Rate Versus Data Transform
Derivative Smoothing Autoscaling  Calibration Error Rate (%)
No No No 66.67
No No Yes 66.38
1st No No 46.84
1st No Yes 47.70
1st, 5 point Yes, 5 point Yes 47.13
2nd No No 54.60
2nd No Yes 53.45
2nd, 5 point Yes, 5 point Yes 50.47
2nd, 7 point Yes, 7 point Yes 47.87
2nd, 9 point Yes, 9 point Yes 41.67
2nd, 11 point  Yes, 11 point No 42.53
2nd, 11 point  Yes, 11 point Yes 36.49
2nd, 13 point  Yes, 13 point Yes 35.92
2nd, 15 point  Yes, 15 point Yes 35.92
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2.4 Outlier Detection

Errors can occur in the measurement of a specimen due to specimen problems, operator
errors, and/or instrument problems. It is important to flag or identify a measurement
as being erroneous (i.e., an outlier) so that classification errors are minimised. This is
especially important during the calibration phase since error rates will undoubtedly be
adversely affected if a calibration is based on erroneous measurements. In this study
erroneous data were identified by studying the transformed spectra and by studying the
principal components. Outlier detection was automated by determining appropriate
thresholds for the principal components to exclude spectra. The criteria for determining
when a measurement is an outlier will, in practice, be based on the training data. The
criteria then are applied to prediction data to flag any outliers. However, in this study
the outlier criteria were determined based on all the data, with outliers being removed
before the data sets were created. [n this way, the results could be compared directly,

since all the data sets use the same specimens.

2.4.1 Using Transformed Spectra

Figure 2.2 shows the complete set of transformed spectra for the urine specimens. It is
obvious that specimen or sample 324 is significantly different from the other spectra
while sample 330 is somewhat different. Appendix C shows the spectra for the other
species. Altogether, 8 specimens out of 348 were identified as outliers from visual
observations of the transformed spectra. This is a 2.3% rejection rate, which is
considered reasonable. It is likely this rejection rate would be smaller in practice, than
that experienced in this study, as the specimens would typically be fresher at the time of
measurement. The outliers identified included two urine specimens (samples 324, 330),
four oxalate specimens (samples 81, 147, 148, 169) and two heparin specimens
(samples 285, 305).

2.4.2 Using Principal Component Scores

From the visual observations of the transformed data, appropriate thresholds were

determined for the first ten principal components such that the outliers detected
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visually were identified as outliers automatically by PCA. The thresholds determined

are shown in Table 2.3.

Table 2.3: Principal Component Threshold Values for Identifying Outliers

Principal Components  Threshold Values

l1to5 +/-15
6to8 +/-1.0
9to 10 +/-0.75

Spectra which exceeded these values were flagged as outliers and excluded from the
data set. Altogether, ten specimens were identified, including all eight as identified by
studying the transformed spectra. The additional two, identified by PCA, were both
oxalate types (samples 46, 163).

The statistics of the PC scores, calculated after the outliers were removed, were used to
determine the probability of accepting a "good” specimen, as shown in Table 2.4.
Statistically, PC 1 will flag the most "good" specimens as outliers, at a rate of 1 in 1250

specimens. Therefore, very few normal or typical specimens will be rejected.

Table 2.4: Principal Component Statistics and Specimen Acceptance Rate

PPC Score Mean  Standard Deviation  Acceptance Rate (%)

1 0.1914 0.4468 99.9212
2 -0.0349 0.3832 99.9909
3 -0.2343 0.3218 99.9997
4 0.0429 0.2440 100.0000
5 -0.0266 0.2000 100.0000
6 0.0334 0.1910 100.0000
7 -0.0148 0.1771 100.0000
8 -0.2306 0.1605 100.0000
9 0.0949 0.1423 100.0000
10 -0.1226 0.1183 100.0000




CHAPTER 2. PRE-PROCESSING OF THE DATA 40

2.4.3 Operator Observations

Table 2.5 shows the Operator’s comments on the specimens identified as outliers. All
outliers but two have observations recorded that could explain degradation of the
specimens, and thus poor results for these specimens. There were other specimens with
similar observations, but the interfering component, e.g., a clot, may not have been in
the path of the spectrophotometric beam. The locations of the interfering components

with respect to the spectrophotometric beam were not recorded.

Table 2.5: Operator Observations

Sample Number  Operator Observation

16 very pink
81 small clot
147 -
148 -
163 50% clotted
169 40% clotted
285 cloudy
305 cloudy
324 cloudy

330 cloudy 2+ lipemic




Chapter 3

K-Nearest Neighbour Classification

3.1 Introduction

KNN is a relatively simple classification method and is readily available in off-the-shelf
software. KNN, therefore, is ideal to use for a baseline comparison against MD. KNN is
a nonparametric classification method whose similarity measure is based on a
multidimensional distance measure, i.e., the Euclidean distance, between the specimens.
Since its discrimination measures are not based on estimated statistics of the data, it
performs well in extreme situations such as sample-poor/variable-rich (even as low as
one specimen per specie) environments and many class environments {22, p. 284]. The
error rate is, at most, two times that of the Bayesian error; the Bayesian error being the

lowest statistically possible [22, p. 310].

The closest K neighbours to an unknown specimen are used to determine the class of
the unknown specimen. Figure 3.1 shows the four closest neighbours to a point of
interest, for a two-dimensional case. Most of the information is contained in the first
(i.e., K=1) neighbour, however, error rates can be reduced for a larger K (i.e., K=3 to 5)
when there is good separability between the species [32, p. 145]. Typically, the optimal

K is 1 when there is poor separability among the species.

41



CHAPTER3. K-NEAREST NEIGHBOUR CLASSIFICATION 42

o
@
Point of Interest
@
o
® & Area enclosing
Py closest 4
o neighbours

Figure 3.1:  Four Closest Neighbours to a Point of [nterest

3.2 Calibration using KNN

To be able to classify unknown specimens, training specimens are used to create a KNN
model. Calibrating training data to create a KNN model involves 6 steps, as shown in
Figure 3.2, which are: Calculate the interspecimen distances, Derive voting matrix,
Determine optimal K from the misses vector, Calculate misclassification matrix, and
Save the KNN model.

Calculate the
Interspecimen Distances

Derive Voting Matrix
using Leave-one-out
Method

_

Determine Optimal K from
the Misses Vector

Calculate Misclassification
Matrix

Save KNN Model

Figure3.2:  Calibration using KNN
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3.2.1 Interspecimen Distance Calculation

The interspecimen distances between a specimen of interest and each of the other
specimens are used to determine which specimens are the closest neighbours to the
specimen of interest. The distance between a specimen and another in the data set is

calculated according to the Euclidean distance given by

(3.1)

where d,, is the distance measure between specimen ¢ and specimen b, A W is the
absorbance for specimen a for wavelength j, B, is the absorbance for specimen b for

wavelength j, and N is the number of wavelengths.

3.2.1.1 A Simple Cartesian Example
To help illustrate some of the calculations for KNN, MD and GA-MD, a simple
Cartesian example is created. This simple example will only be used to illustrate

calculations, and will not be used to compare performances of the various methods.

Suppose that we have seven data points (or specimens), A to G, which are defined in
3-dimensional space. Data points A to C belong to specie “ONE” while D to F belong to
specie “TWO”. The specie of data point G is unknown. Data points A to F form the
training data while G forms the prediction data. Table 3.1 shows the Cartesian
co-ordinates of each data point, while Figure 3.3 illustrates these graphically.

10 If principal components are used, A is the transformed principal component vector for
specimen @, B is the transformed principal components vector for specimen b, and N is the
number of principal components.
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Table 3.1: Cartesian Co-ordinates for Simple Example

Data Point X Co-ordinate Y Co-ordinate Z Co-ordinate

A 0.34 2.00 0.51
B 0.23 2.16 0.31
C 0.12 1.85 0.66
D 0.85 1.02 0.94
E 1.13 0.86 0.98
F 1.01 1.15 1.17
G 0.45 1.82 0.71

Simple Cartesian Example

1.2
14 E

.g 0.8\ G + D
<
N 0.64 A F

0.4

0.2
25

©v

Y-Axis 05 0 X-Axis

Figure3.3:  Graphical Representation of Data Points for Simple Cartesian Example

The interspecimen distances for the training data points, A to F, are calculated according
to Equation 3.1 and are tabulated in Table 3.2.
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Interspecimen Distances for Training Data of Simple Cartesian Example

A B C D E F
A 0 0279 0306 1186 1464 1.268
B 0 0480 1443 1717 1.539
C 0 1.140 1450 1.242
D 0 0.325 0.309
E 0 0.367
F 0

3.2.2 Voting Matrix

The purpose of the voting matrix is to identify which specimens or data points are

closest to the specimen or point of interest. The interspecimen distances are used to

order the specimens with respect to the specimen of interest. The voting matrix is

formed by ordering the neighbours for each specimen from closest to furthest away

(based on the interspecimen distances) for the first K neighbours. The voting matrix for

the Simple Cartesian Example is shown in Table 3.3. This matrix is derived from the

interspecimen distances in Table 3.2.

Table 3.3: Voting Matrix for Training Data of Simple Cartesian Example
K1 K2 K3 K4 K5 Ké

A B (ONE) C (ONE) D (TWO) F (TWO) E (TWO)

B A (ONE) C (ONE) D (TWQO) F (TWO) E (TWO)

C A (ONE) B (ONE) D (TWQ) F (TWO) E (TWO)

D F (TWO) E(MWO) C (ONE) A (ONE) B (ONE)

E D ((TWO) F((TWO) C (ONE) A (ONE) B (ONE)

F D (TWO) E((TWO) C (ONE) A (ONE) B (ONE)

Table 3.4 shows the voting matrix for fifteen urine specimens. This was based on the

transform: SM11-2D11 and autoscaling.
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Table 3.4: Voting Matrix for Transformed Urine Specimen Data

ki k2 k3 k4 k5 kb6 k7 k8 k9 k10
10 1 1 1 1 1 1 1 1 L 1
321 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
343 1 1 1 1 1 1 1 1 1 1
336 1 1 1 1 1 1 1 1 1 1
341 1 1 1 1 1 1 1 1 1 1
327 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 L 1
12 1 1 1 1 1 1 1 1 l 1
3 5 5 5 5 5 3 3 3 3 3
7 1 1 1 1 1 1 1 1 1 1

To validate the calibration of the training data, the leave-one-out method is used. Each
specimen is left out of the training data and the rest are used to "predict” the specie for
the "left-out” specimen. For a given K, the predicted class or specie is the one which
receives the most votes, where each nearest neighbour, k1 to kK, is allowed one vote. In
the case of a tie, (i.e., in the case where K is even) the summations of the interspecimen
distances for the tied species are used to break the tie. The specie with the lowest

interspecimen distance sum gets assigned to that specimen.

3.2.3 Optimal K based on the Misses Vector

To optimise the results, the number of nearest neighbours which produces the best
validation results, for the training data, is used. The optimal number of nearest

neighbours minimises the number of misclassifications.

The total number of misclassifications is determined for K=1 to K=Kmax. An arbitrary
high number for Kmax (i.e., 10) is chosen at the time of calibration. If the number chosen
proves to be insufficient a higher number is then chosen and the calibration is re-run.
Figure 3.4 shows the misses vector for transformed (i.e., SM11-2D11, autoscaled)
training data set 1 (three data sets were created from the data as defined in Section 1.7.1.
The optimal K for this calibration was 1. This suggests the class separation was not
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high. However, the optimal K for the highly separable, simple Cartesian example was

also 1 or 2, but it could have been higher if more specimens were used.

Misses Vector for Transformed Training Data Set 1

95

Number of Misses
8

75

70

1 2 3 4 5 6 7 8 9 10
Kth Neighbour

Figure 3.4:  Misses Vector for Transformed Training Data Set 1

3.2.4 Misclassification Matrix

The misclassification matrix breaks down the errors by specie. An example, based on
the transformed training data set 1, is shown in Table 3.5. The misclassification matrix
helps identify which species can be expected to predict accurately. The misclassification
rate matrix converts the absolute numbers in the misclassification matrix to percentages.
The absolute numbers in Table 3.5 are converted to percentages as shown in Table 3.6.

Refer to Table 1.1 for specie to specie number correspondence.

As Table 3.6 shows, only urine (i.e., specie 1) meets the objective of 95% for classification

accuracy for this particular training data set.
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Table 3.5: KNN Misclassification Matrix for Transformed Training Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7
1 26 0 0 0 1 0 0
2 0 19 2 2 0 3 3
3 0 5 16 4 1 0 +
4 0 4 2 16 0 3 5
5 0 1 5 0 14 4 0
6 0 5 0 2 0 19 3
7 0 6 5 ) 0 1 1

48

Table 3.6: KNN Misclassification Rate Matrix for Transformed Training Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7

1 9.3 O 0 0 3.7 0 U
2 0 655 69 69 0 10.3 103
3 0 16.7 533 133 33 0 13.3
4 0 133 6.7 533 0 100 1l6.7
5 0 42 208 0 583 167 0
6 0 172 0 6.9 0 655 103
7 0 207 172 207 0 345 379

3.2.5 KNN Model

To be able to classify unknown specimens, the critical parameters of the model,

determined using the training data are saved.
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The model contains two components:
a. Training Data (transformation parameters also).
b. Optimal K.

Both of these components are saved to create the KNN model, which will be used to
predict the class of unknown specimens. [f the training data contain many specimens

then the model will be relatively large.

3.3 Prediction using KNN Model

Classifying unknown specimens based on a KNN model involves 3 steps: Calculate
Interspecimen Distances, Derive Voting Matrix, and Classify Unknown Specimens
according to Voting Matrix and Optimal K. A fourth step is added, only for validation,
using “"held-out” data, where the "held-out" specimens are known. These steps are

shown in Figure 3.5.

Calculate the
Interspecimen Distances

v
Derive Voting Matrix

r

Classify Unknown
Specimens based on
Voting Matrix and
Optimal K

L

Determine
Misclassitication Matrix

< For Validation
Only

Figure3.5:  Prediction of Unknown Specimens based on KNN Model
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3.3.1 Interspecimen Distances

The interspecimen distances are calculated as described in Section 3.2.1 except that the
distances are between each unknown specimens and the training specimens. For the
simple Cartesian example, the distances between unknown G and the training data are

shown in Table 3.7.

Table 3.7 Interspecimen Distances between Unknown G and Training Data

Training Specimen A B C D E F
Unknown G 0291 0569 0335 0924 1.207 0987

3.3.2 Voting Matrix

The derivation of the voting matrix for prediction is similar to that described for
calibration in Section 3.2.2, except that all the training data are used to vote for the
specie for each unknown specimen, in the case of prediction. For example, the voting
matrix (a vector in this case since there is only one unknown data point) is derived for
unknown data point G, as shown in Table 3.8. To save computational time, only the
matrix elements up to the optimal K need to be calculated. For illustration purposes, all

matrix elements are shown in Table 3.8.

Table 3.8: Voting Matrix for Unknown Specimen G

K1 K2 K3 K4 K5 K6
G|A (ONE) C (ONE) B (ONE) F (TWO) E (TWO) E (TWO)

3.3.3 Classify Unknown Specimens

This process is similar to that described for calibration in Sections 3.2.2 and 3.2.3, except
that the optimal K is known. Optimal K for the Cartesian example is 1 or 2. Assuming
K=2, then specie ONE would have two votes while specie TWO would have zero votes
for unknown specimen G. Therefore, G is classified as specie ONE.
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3.3.4 Misclassification Matrix

The misclassification matrix is determined in similar fashion for the prediction data as
for the training data as described in Section 3.2.4. Tables 3.9 and 3.10 show the
misclassification matrix and the misclassification rate matrix respectively for prediction
data set 1, which is transformed similarly to the training data set 1, as outlined in
Section 3.2.4 .

Table 3.9: KINN Misclassification Matrix for Transformed Prediction Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7
1 19 0 0 1 0 0 0
2 0 1 2 1 0 2 4
3 0 3 12 2 0 2 1
4 0 8 1 7 0 1 3
5 0 0 4 2 10 1 3
6 0 3 0 1 0 15 l
7 0 3 5 0 1 0 11

Table 3.10: KNN Misclassification Rate Matrix for Transformed Prediction

Data Set 1
Actual Predicted Specie
Specie
1 2 3 4 5 6 7

1 950 0 0 5.0 0 0 0
2 0 550 100 50 0 10.0 200
3 0 150 600 100 0O 100 5.0
4 0 400 50 350 0 50 150
5 0 0 200 100 500 50 150
6 0 150 0 5.0 0 750 50
7 0 150 25.0 0 5.0 0 550
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Table 3.11 shows the comparison between the training data and prediction data
predictabilities (predictability for the training data is determined by the leave-one-out

validation method) rates for data set 1.

Table3.11:  Predictability Rate Comparison between Training and Prediction Data

Specie 1 2 3 4 5 6 7

No. of Specimen Training Set 1 27 29 30 30 24 29 29

No. of Specimen PredictionSet1 20 20 20 20 20 20 20
Predict. Rate Training Set1 (7o) 963 655 53.3 3 5383 655 379
Predict. Rate PredictionSet1 (%) 950 550 600 350 500 750 55.0

The error rates for training and prediction were 38.9% and 39.3% respectively. Only
urine meets the classification accuracy objective of 95% for classifying unknown

specimens. The results are presented formally in Chapter 6.



Chapter 4

Mahalanobis Distance
Classification

4.1 Introduction

The Mahalanobis!! Distance (MD) classification method is a more sophisticated method
than KNN. The distance measure for MD is an extension of the distance measure for
KNN. MD takes into account the distribution (i.e., variance) about a specie’s mean
location and inter-relationships (i.e., covariances) between the features. Due to the more
computationally intensive nature of MD, principal component scores are used for the
features instead of the wavelengths, in an effort to reduce the number of features and
minimise the computation time. Note: the term factors will be used instead of features

to refer to the PC's.
The Mahalanobis distance is defined by Equation 4.1:
D* =(x-x,) M(x-x,) (4.1)

where X = point in the dimensional space for a particular specimen, X, = centre of

specie i , M = inverse covariance matrix for the dimensions, and D = Mahalanobis

11 Named after P.C. Mahalanobis.

53
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distance (i.e.,, MD) from specimen to specie i . Equation 4.1 is used as the basis for

interspecie distances and for specie to specimen distances.

This method was implemented using the principal components of the data as the
dimensional space. Wavelengths were not implemented as the direct input features to
the MD analysis.

4.2 Calibration using Mahalanobis Distance

As in the case for KNN, calibration using the training data is necessary to create a MD
model that can be used to classify unknown specimens. Calibrating, using training
data, to create a Mahalanobis Distance model involves 7 steps, as shown in
Figure 4.1: Calculate Specie Statistics on Transformed Data, Calculate Interspecie
Mahalanobis Distances, Calculate Mahalanobis Distances between Species and
Specimens, Classify Specimens by Minimum Mahalanobis Distance for each Specimen,
Derive Misclassification Matrix, Determine Optimal Number of Factors, Save MD
Model.



CHAPTER4. MAHALANOBIS DISTANCE CLASSIFICATION 55

Calculate Specie
Statistics on Transtormed
Data

y

Calculate Interspecie
Mahalanobis Distances

Calculate Mahalanobis
Distances between
Species and Specimens

Classify Specimens by
Minimum Mahalanobis
Distance

y
Derive Misclassification
Matrix

l

Determine Optimal
Number of Factors

L

Save MD Model

Figure4.1:  Calibration using Mahalanobis Distance

4.2.1 Specie Statistics

Statistics—-i.e., mean, variance, and covariances—are calculated for each specie based on
the features, in this case the principal component scores. The results of these
calculations are a mean vector and a covariance matrix. The specie statistics form the

basis from which the MD (Equation 4.1) can be calculated.
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The mean vector, X, , and specimen variance-covariance matrix, C , are calculated for
each specie 5. The elements of the mean vector are calculated according to Equation 4.2

as given by
Xy =2~ (42)

where x . is the (i , j)tll element of the m, X p matrix, X, m, is the number of specimens

for specie 5, and p is the number of principal components. The matrix X, is a subset of

the transformed data matrix, X, where X=T,, the principal component matrix as

defined in Equation 2.4.

The elements, ¢, of the sample variance-covariance matrix, C,, are given by

Equation 4.3:

xe )/ (p=1) (4.3)

where x_; and x, are elements of the matrix X, ¢, and x, are elements of the mean

vector X, for specie 5, and p is the number of principal components.

For j = k, Equation 4.3 reduces to:

¢, =5 = f:(xw - r—,) I(p-1) (4.4)

=1
where sf, is the sample variance for variable (i.e., principal component) jand specie s .

The individual sample variance-covariance matrices are combined together, as
suggested by Mark and Tunnel [33], to form the pooled covariance matrix. The
advantage of this is that fewer specimens are required for calibration. It is expected that
the differences between species with respect to the covariances will be subtle; therefore,
pooling the covariances is a reasonable step to reduce computation time. The pooled

covariance matrix, C, is calculated as the mean of the individual covariance
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matrices as shown in Equation 4.512:

C‘i =

-

S
Ye, (4.5)
5=l
where ¢, is an element of C and § is the number of species.

4.2.1.1 A Sample Calculation of the Specie Statistics
To illustrate the calculations of the specie statistics, the simple Cartesian example from
Chapter 3 is used. The groupmeans (i.e., specie means) for the training data are

calculated and shown in Table 4.1. The variance-covariance matrices are shown in

Figure 4.2.
Table 4.1: Groupmeans for Simple Cartesian Example
X co-ordinate Y co-ordinate  Z co-ordinate
Specie "ONE" 0.23 2.00 0.49
Specie "TWO" 1.00 1.01 1.03

(00121 00082 -00083]
C,e =| 00082 00240 -00272
| -00083 -0.0272 00308 |

(00197 -0.0098 0.0042]
Cro =|-00098 00211 00131
| 00042 00131 00151

00159 -0.0008 -0.0020
C=|-00008 00226 -0.0070
-0.0020 -0.0070 0.0230

Figure4.2:  Variance-Covariance Matrices for Simple Cartesian Example

12A weighted mean could be used if the number of specimens were different on a specie-by-
specie basis. Also, the variance-covariance matrix could be calculated directly using the whole
data set instead of doing of calculating on a specie-by-specie basis and then pooling.
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The Z-plane projections of the groupmeans and the three standard deviation borders
(as calculated from the individual covariance matrices) are plotted in Figure 4.3. Good
separability exists if there is no overlapping between species of their three standard
deviation zones, about their respective groupmeans. Therefore, the simple example

shows good separability in the Z-plane projection.

Projection of Specie Statistics onto Z-Plane

25 T ™ r
3SD
2F Mean x + .
+
C
2
@ 1.5F 3SD. 1
>
1 L -
0.5 . : :
-05 0 0.5 1 15

X-axis

Figure4.3:  Projection of Specie Statistics onto Z-Plane for Simple Cartesian Example

4.2.2 Interspecie Mahalanobis Distances

The interspecie MD's (as derived from Equation 4.1) are calculated from the specie
statistics. The interspecie MD's give an indication how separable the species are from
each other. An interspecie MD greater than 6 between two species indicates that the

two species are highly separable, while an interspecie MD less than 6 between two
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species indicates that the species are not highly separable, compared to classifying

unknown specimens at a 95% accuracy rate.

Equation 4.1 is re-expressed to calculate the distance between the specie centres, i.e., Dif
for species i and j, as shown in Equation 4. 6:

DZ=(xi—x,.)M(x,—xl) (4.6)

i

where M = C™', the inverse sample variance-covariance matrix.

4.2.2.1 A Sample Calculation of the Interspecie MD
Using the simple Cartesian example, the Mahalanobis Distance, D, .. is calculated
using the species statistics calculated in Section 4.2.1.1 and using Equation 4.6. The

calculation is shown below:

00159 -00008 -00020]"[[023] [L00
Dierwo =[[023 200 049]-[100 101 103]]-00008 00226 -00070| ||200|-| 101}
-00020 -0070 00230 | ||049] | 103

2

Performing the matrix operations, Dy wo= 82.87 , or Dyye nvo = 9.10. Since the

Mahalanobis distance between the means of the two species is greater than six standard

deviations, good separability exists between them.

The Mahalanobis distances between all species of the biological data
(e, urine, serum, etc.), with data transformation SM11-2D11, autoscaling, 255
wavelengths, and 19 PC's; are shown in Table 4.2. For example, the element in Row 2

and Column 3 is the MD between species 2 and 3.

From Table 4.2, it is observed that specie 1, or urine, is highly separable from all the
other species with a minimum interspecie MD of 10.48. This is significantly higher than
the 6 standard deviations required for good separability. Species 5 (oxalate) and 6
(iodoacetate) are reasonably separable with minimum interspecie MD's of 4.57 and 4.19
respectively. Species 2, 3, 4, and 7 (i.e., serum, citrate, EDTA, and heparin) are not very
separable from each other with minimum interspecie MD's of 1.64, 1.96, 1.67 and 1.64
respectively.
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Table 4.2: Mahalanobis Distances between Species

1 2 3 4 5 6 7
1 0 1048 1071 1067 1135 1232 11.22
2 0 2.60 1.67 4.78 4.19 1.64
3 0 2.67 4.57 4.94 1.96
4 0 5.11 +.66 2.02
5 0 5.37 +.67
6 0 1.4
7 0

4.2.3 Mahalanobis Distances between Species and Specimens

The MD between a specimen and a particular specie is used to determine if the
specimen belongs to the particular specie. The minimum MD between a specimen and
the species is used to classify the specimen as specie S, where the MD between specie S

and the particular specimen is a minimum.

To calculate the MD between a specimen and a specie, Equation 4.1 is applied.

D* =(x—x, )'M(x—x,) (4.1)

where X = point in the dimensional space for a particular specimen, X, = centre of
specie i , M = inverse covariance matrix for the dimensions, and D = Mahalanobis

distance (i.e., MD) from specimen to specie i .

4.2.3.1 A Sample Calculation of the MD between a Specimen and a Specie

Using the simple Cartesian example, the Mahalanobis distance, D ,,,, between data

point A and specie ONE is calculated using the vectors and matrices as shown below:

00159 -00008 -000201"'[T034] [023
Dy e =[[034 200 051]-[023 200 049]]-00008 00226 -00070| ||200]-|200||
-00020 -0070 00230 | {|049| |049
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After performing the matrix operations: D} ;= 0.8083 , or D, one = 0.8991. Table 4.3

shows the specimen to specie MD's for the training data.

Table 4.3: Specimen to Specie Mahalanobis Distances

Training Data Point  Specie ONE  Specie TWO

A 0.8891 8.4994
B 1.4014 10.1227
C 1.5463 8.8921
D 8.1808 1.3855
E 10.3771 1.5271
F 8.9912 1.6078

4.2.4 Classification of Specimen by Minimum Mahalanobis
Distance

The minimum specie to specimen Mahalanobis distance is used to classify a specimen.
For example, the minimum MD for specimen A is determined by min{DM} for all

s=1 to S, where § is the number of species. For the simple Cartesian example,

D, oxe < Do (e, 0.8891 < 8.4994 from table 4.3); therefore specimen A is classified

as specie ONE. From table 4.3, specimens A, B, C are classified as ONE's while

specimens D, E, F are classified as TWO's. These classifications are correct.

4.2.5 Misclassification Matrix

The misclassification matrix breaks down the errors by specie, as described in
Section 3.2.4. The misclassification matrix is used to identify which species are expected
to have high classification rates and which will not. The misclassification rate matrix
converts the absolute errors to percentages. For example, the misclassification matrix

for the transformed training data set 1 is shown in Table 4.4.
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Table 4.4: MD Misclassification Matrix for Transformed Training Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7
1 27 0 0 0 0 0
2 0 21 0 5 0 0 3
3 0 1 20 1 1 0 7
4 0 5 0 2 0 0 5
5 0 0 2 0 2 0 0
6 0 2 0 0 0 26 1
7 0 8 4 2 0 0 15

Table 4.5: MD Misclassification Rate Matrix for Transformed Training Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7

1 100 0 0 0 0 0 0
2 0 724 O 172 0 0 10.3
3 0 33 667 33 33 0 23.3
4 0 16.7 0 66.7 0 0 16.7
5 0 0 83 0 91.7 0 0
6 0 6.9 0 0 0 89.7 3.4
7 0 276 138 69 0 0 51.7

4.2.6 Optimal Number of Factors

As in the case for KNN, the optimal number of factors (i.e., principal components for
MD) are determined such that the calibration error rate (i.e., error rate of training data

set) is minimised. The determination of the optimal number of principal components is
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accomplished according to the following algorithm:

FOR PC =1TO PCmax STEP =1
1. Calculate Misclassification Matrix
2. Calculate Aggregate Error

END FOR

FORPC =1TO PCmur-1 STEP=1
3. Calculate Test Statistic

END FOR

where PC is the number of principal components and PCmar is an arbitrarily high
number of principal components (e.g., 40). The calculation of the misclassification
matrix is described in Section 4.2.5. The aggregate error is simply the summation of the
errors in the misclassification matrix. For example, the aggregate error for the data in
Table 4.4 would be 48 (i.e., 1+5+3+1+1+1+7+5+5+2+2+1+8+4+2). The aggregate error

rates for these data are plotted as shown in Figure 4.4.

Percentage Error Versus Number of Principal Components

50 1 —&—Training
—— Prediction

Percentage Error

1 3 § 7 9 11 13 15 17 19 21 23 25 27 29

Number of Principal Components

Figure44:  Aggregate Error Rates Versus Number of Principal Components



CHAPTER4. MAHALANOBIS DISTANCE CLASSIFICATION 64

4.2.6.1 Test Statistic

To determine the optimal number of principal components, each principal component is
tested to determine if its addition statistically reduces the error rate. A hypothesis test
is set-up to determine this. In quantitative problems, the statistic used is the F-statistic.
[t compares the variance (i.e., the error rate) between two cases. In classification
problems the F-statistic cannot be used since the error rate determined is not a measure
of its variance, but rather an estimate of its mean. This is due to the fact that errors in a
classification problem are positive only. Therefore, a hypothesis test concerning two
means is used. In this situation, the Z-statistic is chosen over the Student t-statistic since
a relatively large number of specimens (i.e., 198 in training data) are available to

estimate the mean and variance. The Z-statistic is given by:

L (E_XPCH)—S 47)

- = B
c— —
Vo= Tpcsg

where Zis the Z-statistic, X, and v,.,, are the estimates of the mean aggregate errors

for the number of principal components PC and PC+1 respectively, 6 — — is the

LORY

standard deviation of the sampling distribution of the difference between the sample
means, and § is a specified constant (of difference between the means). The

variance, g 1 __, is estimated according to Equation 4.8 [34, p. 216]:

. 6l g )
C;—_ = PC + PC+} . (48)
TR Mpe Mg,

Combining Equations 4.7 and 4.8 yields

_ (xPC ~ Xpca ) = ‘ 49)

h o
Gy Cp
J PC | ZFPCs

Mpe  Mpc,,

To determine if W,. > Wpc,, (ie., if error rate is decreasing), 8 is set to 0; the null
hypothesis, {1, ~ W, =0, is tested against the alternate hypothesis, 1 pe — Wpe,, > 0.
The null hypothesis is rejected if 7> z,, where @ is the significance level.
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To estimate the means and variances, the curve shown in Figure 4.4 is smoothed using a
five point moving average. The smoothed curve is used to estimate the means. The
smoothed curve is differenced with the original curve to determine residuals. Standard
deviations are estimated using five points (i.e., two points on either side of the centre
point). The estimated standard deviation curve is then smoothed using a five point

moving average.

Figure 4.5 shows the calculated Z-statistic for the data shown in Figure 4.4. Figure 4.6 is
the same as Figure 4.5 except the vertical axis is expanded for Figure 4.6, to show the
crossings more clearly. Table 4.6 shows the number of principal components

determined for several values of «.

Z-Statistic Versus Number of PCs for Data Set 3

50 T
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—{i— Prediction

— ——99% Confidence
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—¥—90% Confidence
—@—75% Confidence

Z-Statistic Value

Number of Principal Components

Figure4.5:  Z-Statistic Versus Number of Principal Components

Table 4.6: Optimal Number of Principal Components

a % PC
025 06745 23
0.10 12816 16
005 16449 16
001 23263 16
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Z-Statistic Versus Number of PCs for Data Set 3
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Figure4.6:  Z-Statistic Versus Number of Principal Components
(Expanded Vertical Scale)

An o of 0.25 was chosen considering that the Z-statistic is a relatively gross estimate.

4.2.7 Save Mahalanobis Distance Model

To be able to classify unknown specimens, the necessary parameters, i.e., specie

statistics and optimal number of factors (# of PC's), are stored.
The parameters that form the MD Model are:
e the optimal number of principal components, PC.

e the species’ mean vectors, X,, for s=12,...,S, where X, has PC number of

elements.

o the pooled variance-covariance matrix, C, a PC x PC matrix.



CHAPTER4. MAHALANOBIS DISTANCE CLASSIFICATION 67

4.3 Prediction using Mahalanobis Distance Model

Predicting or classifying unknown specimens involves two steps:  Calculate
Mahalanobis Distances from the Specimen to Each Specie and Classify the Specimen
based on the Minimum Mahalanobis Distance. A third step, Derive Misclassification
Matrix, is used to validate the method using held-out specimens. These steps are shown

in Figure 4.7.

Calculate Mahalanobis
Distance from Specimen
1o each Specie

L 4
Classify Specimens
according to Minimum
Mahalanobis Distance

4
Derive Misclassification o

Matrix 4— For Vulidation
Only

Figure4.7:  Prediction using Mahalanobis Distance Model

4.3.1 Mahalanobis Distance between Species and Specimen

The MD between a specimen and a particular specie is used to determine if the
specimen belongs to that specie. The minimum MD between a specimen and the
species is used to classify the specimen as Specie S, where MD between Specie S and the
particular specimen is a minimum. This calculation is the same as described in Section
4.2.3, using Equation 4.1, except that prediction specimens are used instead of training
specimens. Table 4.7 shows the MD's for the “unknown" data point G of the simple

Cartesian example.

Table 4.7: Specimen to Specie Mahalanobis Distances

Specie ONE  Specie TWO
G 2.4757 6.8553
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4.3.2 Classification of Specimen by Minimum Mahalanobis
Distance

The minimum specie to specimen Mahalanobis distance is used to classify a specimen.
This step is the same as described in Section 4.2.4, except that prediction specimens are
used instead of training specimens. From Table 4.7, data point G is classified as specie
ONE since the MD between G and specie ONE is the smallest.

4.3.3 Misclassification Matrix

The misclassification matrix breaks down the errors by specie, as described in
Section 3.2.4. The misclassification matrix is determined as described in Section 4.2.5,
except that prediction specimens are used instead of training specimens. In actual
practice, the misclassification matrix for prediction cannot be determined since the
actual classification of a prediction specimen is unknown. Therefore, this step will only
be necessary when known specimens are held-out (i.e., left-out) from the training data
to validate the method. Tables 4.8 and 4.9 show the misclassification and

misclassification rate matrices for prediction data set 1.

Table 4.8: MD Misclassification Matrix for Transformed Prediction Data Set 1

Actual Predicted Specie
Specie
1 2 3 4 5 6 7

1 19 1 0 0 0 0 0
2 0 12 1 1 0 1 5
3 0 4 12 0 0 1 3
4 0 12 0 6 0 0 2
5 0 0 0 0 2 0 0
6 0 3 0 0 0 16 1
7 0 5 2 3 0 0 10




CHAPTER4. MAHALANOBIS DISTANCE CLASSIFICATION

69

Table 4.9: MD Misclassification Rate Matrix for Transformed Prediction Data Set 1

~

Actual Predicted Specie
Specie
1 2 3 4 5 6

1 95 5 0 0 0 0
2 0 600 50 50 0 5.0
3 0 200 600 O 0 5.0
4 0 600 0 300 0 0
5 0 0 0 0 100 O
6 0 150 0 0 0 80.0
7 0 250 100 150 0O 0

250
15.0
10.0

5.0
50.0

Table 4.10 shows the comparison between the training and prediction predictability

rates for data set 1.

Table4.10:  Predictability Rate Comparison between Training and Prediction

Specie 1 2 3 4

7

No. of Specimen Training Set 1 27 29 30 30
No. of Specimen Prediction Set 1 20 20 20 20
Predict Rate Training Set 1 (%) 1000 724 66.7 667
Predict Rate Prediction Set1 (%) | 95.0 60.0 60.0 300

| 724
20
91.7
100.0

29
20
517
50.0

The error rates for training and prediction were 23.7% and 32.1%

results are presented formally in Chapter 6.

respectively. The



Chapter 5

Genetic Algorithm Selection of
Wavelengths

5.1 Introduction

A Genetic Algorithm (GA) is used to search the solution space for an optimum solution.
In this application, a GA is used to optimise the MD classification by identifying the
features or wavelengths that are most important for an optimum MD model. A GA
searches the solution space iteratively via a combination of exploration (i.e., random
searching) and incremental improvement. The GA terminates when a predefined
criterion is achieved; the termination criterion may be a given number of iterations or
generations, or the termination criterion may be exceeding a specified threshold for the

fitness.

To date, investigations involving feature selection in chemometrics, using a genetic
algorithm, have almost exclusively focused on quantitative problems, i.e., those which
attempt to minimise the error due to fitting to a regression equation (e.g., Multiple
Linear Regression, Partial Least Squares, or Principal Component Regression); e.g., [25],
[26], [35] and [36]. Little work has been done in applying GA feature selection to
classification problems; in fact only a few papers even address the quantitative

chemometric situation.

70
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The approach taken here is to minimise the error rate of a Mahalanobis distance
calibration, using the principal components. The principal components transformation
is performed for each member during each generation. The principal components
transformation is performed using the selected wavelengths only, as defined by the
particular member. The other data transformations (i.e., SM11-2D11, and autoscaling)

occur only once, at the beginning.

Approximately thirty GA analyses were run to determine reasonable values for the
population size (i.e., 100), the mutation rate (i.e., 0.05) and the replacement rate (i.e.,
0.20).  Results are not particularly sensitive to these parameters but the number of
generations, and thus the computation time, is sensitive to these GA parameters.
Another seventy GA analyses were run to provide the results as presented in Chapter 6.
Each GA analysis took twelve to forty-eight hours to run on a 486 DX2 personal
computer operating at 66 MHz.

The next section will outline in detail the GA algorithm used in this investigation.

5.2 Selection of Wavelengths and Calibration

To understand how a GA works, it is important to first understand the concept of a
population. A population consists of a set of members whose elements determine
whether a given feature is selected or not. Table 5.1 shows an example of a population.
This population shown in Table 5.1 has five members and five features. In our
application, the features are wavelengths. The elements of the population matrix are
select status bits. A select status value of "1" means that feature is selected for the
particular member. A select status value of "0" means that feature is deselected, or not
selected, for that member. Selected features are used in calculations involving the

member while deselected features are not used.

A complete MD calibration is performed for each member of a population, using the
training data. Based on the calibration error rate and the number of features used, a
fitness value is determined for each member, as well as a mean fitness value for the
population. A new population is then created for the next generation based on the

current members' fitness values. Some members are eliminated, while others are
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cloned. Parenting and mutating of these members adds diversity to the new
population. The steps are formalised as shown in Figure 5.1. The steps
include: Generate an Initial Population, Evaluate the Population with respect to a
Fitness Criterion (Terminate if Conditions Met), Replace the Worst Members with the
Best Members, Recombine Members to Parent a new Members, Mutate Members, Create
Wavelength Selection Vector, and Calibrate. These steps are described in detail in
Sections 5.2.1 to 5.2.8.

Table 5.1: Example of a Population

Feature  Feature Feature Feature Feature

1 2 3 4 5
Member 1 1 0 1 0 1
Member 2 0 1 1 0 0
Member 3 1 0 0 1 1
Member 4 0 0 1 1 0
Member 5 1 1 0 0 1
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Create an Initial, Random
Population of
Wavelengths

|

Evaluate each Member of
Population with respect to
a Fitness Calculation

A4

|

Reduce Final Population
Matrix to Wavelength
Selection Vector

Terminate
it Criterion
Met

:

Calibrate based on
Wavelength Selection

Replace the worst

members with the best Vector
members l
l Done

Recombine members to
parent new members

Mutate Members

Figure5.1:  Genetic Algorithm to Select Wavelengths and Calibrate

5.2.1 Initial Population

To start off the GA process, an initial population matrix is defined, whose elements are
chosen randomly. This is done only once, at the beginning of the algorithm. The initial
population, obviously, is not based on known good features, thus the early results
(i.e., mean error rates of the early generations) are typically worse than if all the features
are used. Each member is used to define a wavelength selection vector, which is used to

"filter” the spectral data, thereby defining new spectral data composed of the selected
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features or wavelengths only. A calibration, along with calibration error, is determined

for each member.

Each member of the population consists of a 255 element vector of binary values. A "0"
deselects the corresponding wavelength, while a "1" selects the corresponding
wavelength. The population size (i.e., number of members) was chosen to be 100. An

element of the population matrix, W, is expressed as w,, for member i and

wavelength j. A member is expressed by the vector, w,. Each element has a 50%

chance of being selected or deselected.

For example, a four member, initial population for the simple Cartesian example is

defined below:

[t o 1]
W ;0 0 l{
Tt oof
lo 1 of
Therefore, member 3 would be expressedas w, =[I | 0].

5.2.2 Evaluation

An evaluation is performed for each member, based on the member's selected features.
Each evaluation results in a calibration of the training data. The calibration error and

the number of features are used to calculate the fitness value for each member.
The evaluation process is shown in more detail below:

FOR [ =1 TO Number of Members in Population (i.e., 100)

1 Create New Transformed Absorbance Matrix using only Selected
Wavelengths.
2. Determine Principal Components of New Transformed

Absorbance Matrix.

3. Perform Mahalanobis Distance Calibration
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4. Calculate Fitness Value.

END FOR

5.2.2.1 Absorbance Matrix with only Selected Wavelengths

The first step in the evaluation process is to create new spectral or transformed
absorbance data from the training data, based on the members’ selected wavelengths.
The derivativation, smoothing, and autoscaling transforms have been performed prior,
using all of the wavelengths. Only the PCA transformation is performed with the
reduced feature set. The new spectral data are used to determine calibration and to

evaluate fitness.

The transformed absorbance matrix A, an mxn matrix, is compressed to form B, an
mX L matrix, where n>L, such that B is the A matrix with the deselected columns
(ie., wavelengths) removed, as defined by the selection vector, w,, for population

member k.

The algorithm for compressing A to form B is shown below:

I=1;
FORj=1toN
[Fw, 20
FORI=1toM
b, =w,xa,;
END FOR
[=1+1;
END IF
END FOR

where b, is the (i,/)th element of matrix B, wy, is the (k. j)th element of the matrix W

and ais the (4, j)th element of matrix A.

For example, the Cartesian matrix shown in Table 3.1 would be compressed by member
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W, as defined in Section 5.2.1, as shown below:

[034 2.00]
023 216
0.12 185
085 102
LI3 086
L0l L5
045 182 ]

5.2.2.2 Principal Components Analysis
As previously mentioned, the PCA is performed on the new spectral data with the
reduced or selected feature set, for a particular member. The principal component

scores that are produced, are used in the MD calibration.

The principal component matrix, T, of the compressed and transformed absorbance

matrix, B, is determined such that:

B=TL’

as defined by Equation 2.4 in Section 2.33. The truncated principal component

matrix, T,, where p is the number of principal components, is determined according to

Equations 2.5 and 2.6. The optimal number of PC's determined in the Mahalanobis
distance calibration, for a given data set, is used for the GA optimisation process for the

same data set.

5.2.2.3 Mahalanobis Distance Calibration

The PC scores produced from the PCA analysis, on the reduced feature set for a
particular member, are used as the data input for the MD calibration. As outlined in
detail in Section 4.2, the MD calibration requires 7 steps: Calculate Specie Statistics on
Transformed Spectra, Calculate Interspecie MD's, Calculate MD's between Species and
Specimens, Classify Specimen by Minimum MD, Derive Misclassification Matrix,
Determine Optimal Number of Factors (i.e., PC's) and Save MD Model. The calculations
are identical to those outlined in Section 4.2, even though there are now fewer

wavelengths, since the MD input feature spaces consist of PC scores, in both cases.
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5.2.2.4 Fitness Criteria

The fitness value for each member is calculated based on a fitness criterion calculation.
The fitness criterion is then used to "order" the members, as explained in Section 5.2.4.
The fitness criterion includes a factor related to the error rate and a factor related to the
number of wavelengths. The correct "balance” between the "error factor” and the
“wavelength factor” provides the most parsimonious solution. A number of criteria
were tested, each with a different balance between the two factors. The criteria

evaluated, for classifying all species simultaneously, are shown below:

FTEALLNIL: Fit=1/ [(iErmr; ](N)]

=l

FTEALLN2: Fit=1/|| ¥ Error, }Jﬁ)

FTEALLN3: Fit=1/ (iErron j(W)
\ +=!

S
FTEALLN& Fit=1/|| Y Error, }‘JN)
\ =!I
where Error, is the number of errors associated with predicting actual specimens of
specie §, and N is the number of wavelengths selected. The errors are summed over

the number of species. These criteria are maximised in the GA process.

A number of criteria were tested that classified only one specie (i.e., urine), from the rest
(ie., blood). This could be used for a hierarchical classification as the top-level
classification. That is, a model for classifying the various blood species could be

determined, once it was known that a particular specimen was categorised as blood.
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The "urine versus blood" fitness criteria equations are:

FTEIN&:  Fit=1/ ((Error, + Error, + HEN))
FIEIN&  Fit=1/ ((Error, + Error, + )N )
FTEIN2:  Fit=1/ ((Error, + Error, + )N )
FTEIN1: Fit=1/ ((Error, + Error, +1)(N))

FTEINSQR:  Fit =1/ ((Error, + Error, +1)(N*))

FTEINSR4:  Fit=1/ ((Error, + Error, +1)(N*))

where Error, is the number of errors associated with predicting actual urine specimens
(ie., specie 1) and Error, is the number of errors associated with predicting actual
blood specimens (i.e., species 2 to 7). In this case, unity is added to Error, + Error,,
since Error, + Error, can become zero, so that the denominator of the fit value does not
go to zero. This was not required for the summation of the errors of all the species, since

this did not go to zero, in any situation.

The fitness vector, f, comprised of K elements, contains the individual fitness
values, f,, where K is the number of members in the population. For the example
population described in Section 5.2.1, using the fitness criterion, FTEALLN1 (modified
by adding 1 to the error summation as in FTEIN1 to prevent the denominator going to

zero), yields the fit values, as shown in Table 5.2.

Table 5.2: Fit values for Example Population for Simple Cartesian Example
Member, & > Fit, f,
i Z Error, +1 N Sy
v=i
1 0+1=1 2 0.5
2 0+1=1 1 1.0
3 0+1=1 2 0.5
4 0+1=1 1 1.0
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5.2.3 Termination Criterion

The termination criterion is used to stop the GA iteration process, and thus finalise the
wavelength set and the calibration model. The termination criterion can be defined in
several different ways including:
¢ the fitness value exceeds a predefined threshold
* the fitness value change from generation to generation is less than a
predefined threshold
* the population reaches a certain level of homogeneity

* a predefined number of generations is exceeded.

The termination criterion used here, is that when a given number of generations is
exceeded, the GA process is instructed to stop. This appears to be a reasonable criterion

based on the data, as the following discussion indicates.

The minimum number of generations produced for most of the analyses was 500. This
number was determined empirically by running a number of analyses and studying the
fitness trends, the populations’ homogeneity, and the error trends. For example, the

fitness trend (for maximum, mean, and minimum values) for data set 1 is shown in

Figure 5.2.
x1 0'3 Fitness Value Trend
13 T T T T T T T
12 1
1 Maximum J

Fitness Value

L Il A i

0 50 100 150 200 250 300 350 400 450 500
Generation

Figure5.2:  Fitness Trend for Training Data Set 1
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Figure 5.3 shows the wavelength selection histogram for generation 400. Figure 5.4

shows the wavelength selection histogram for generation 500.

Wavelength Selection Histogram
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Figure5.3:  Wavelength Selection Histogram for Generation 400

The fitness trend in Figure 5.2 shows that the most significant improvements occur in
the first 50 generations, for these data. After generation 50, the fitness keeps increasing
but at a slower rate. The wavelength selection histograms for generation 400 and 500
are very similar but exhibit some differences. It is difficult from the fitness trend and
the histogram homogeneity to state definitely that there is a significant amount of
settling. Therefore, a study of the error trend is necessary. Figure 5.5 shows the error
trend for the fitness criterion that yielded the best results for training data set 1. Figure
5.5 shows that the error rate has significantly settled after generation 200. Note: the
error rates for generation 1 and generation 50 were estimated based on the known
fitness value as the error rates were not stored for generation 1 and 50. Convergence
was not expected to be attained for generations below 50; therefore, error rates were not

stored for generations below 50.
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Figure5.4:  Wavelength Selection Histogram for Generation 500
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Figure5.5:  Error Trend for Best Fitness Criterion
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5.2.4 Member Replacement

To make incremental improvements in the selection of features, the members with the
worst fitness values are replaced by the members with the best titness values. The
member replacement is a straight substitution. The bottom twenty percent of the
members are directly replaced by the top twenty percent of the members. The details of

member replacement are described below.
Member replacement is performed in two steps:
1. Order the members according to the fitness calculated.

2. Replace the worst members with the best members.

5.2.4.1 Order the Members
The first step in ordering the members is to determine their relative order based on the

fitness vector. The order vector, o , specifies in ascending order, the relative position of

each member k such that o, identifies the member with the maximum fitness value

and o, identifies the member with the minimum fitness value. That is, o, identifies the
member k& which has the ¢ lowest fitness value such that fuq> f, where g > r, and
f:'., < f,, where ¢ < 1. The order vector is determined by comparing the f, values with
each other.

The second step is to create an ordered population matrix, W, from the unordered
population matrix, W, such that f, > f, where ¢> r. This is accomplished

according to the algorithm below:

FORg=1TO K
Wia =W,
fau =1,

END FOR

For example, the ordered population matrix, W,, for the simple Cartesian example
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would be:

S - O -
—_ O — O

For this case, there was a tie between some members. The algorithm assumes, in the
case of a tie, the first member found, i.e., lower &, is placed ahead of the second member

found.

5.2.4.2 Replace Worst Members with Best Members

This step involves replacing the members with the lowest fitness values with those
having the highest fitness values. In other words, the new population, W,, is created
trom the ordered population, W, such that the members with the lowest N, fitness
values are replaced directly by the members having the highest V, fitness values. The
members with the highest (K - V,) fitness values remain unchanged. The algorithm

for creating W, is shown below:
FOR¢=1TO N,

wB.q =W AK-g-N,

END FOR
FORy =N, +ITOK
=w’w

END FOR

A 20% replacement rate was used for our analyses. [n other words, N, was 20 for a

population size K = 100.

Using the simple Cartesian example and N, =1, the new population matrix, W,, is
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created as shown below:

o - O O

5.2.5 Recombination

To this point, the new population matrix that has been created, has only had
incremental improvements made to it. To add diversity and explore the solution space
a little more, the members that were replaced, now called parents or the replacement
population, are recombined to form new members, that is, children. Recombining only
the members that were replaced, leaving the other members as they were, eliminates the
need to recalculate the fitness value for the members that were not recombined. This
reduces the computation time while still allowing adequate exploration. The population
matrices before and after recombination have the same wavelength selection histogram,
but the information is mixed up among the members that were replaced. The number

of members to replace must be an even number for recombination.

Recombination involves creating a new population matrix, W,., from the population
matrix, Wy, which was created during the replacement stage. The new population
matrix is created by forming new members, ie., children, by recombining paired

members, i.e., parents, that were replaced in the member replacement step.

The recombination method used here is Holland's classical one-point crossover, 1X.
This method swaps bitsegments between two specified members of the population after
a common breakpoint or crossover point. Each pairing, i.e., a set of parents, produces a

second pairing, i.e., two children. An example is shown in Figure 5.6.
The recombination steps are:
1. Pair up the members that were replaced, in a random fashion.

2. For each pair determine randomly a crossover point according to a

uniform distribution.
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3. Recombine each pair, i.e., parents, to form a new pair, i.e., children.

EEEEEEEE -

Crossover Point ——— X

Parent 2

.-. Child 1
..-.. Child 2

Figure 5.6 Example of 1X Recombination

5.2.5.1 A Recombination Example

Using the W, determined from the simple Cartesian example, as defined in Section
5.2.4.2, suppose that the population members are paired randomly to form the following

pairings:
Pair 1: (wa.lvwiu)

Pair 2: (WB_:~WB.3)-

Suppose then, that the crossover point for Pair 1 is after feature 1, and for Pair 2 is after

feature 2. The resultant children are shown below:

Parents Children
Wsi =[O 0 l] Weu =[0 0 []
Pair 1 X =
Was =[O 0 l] Wea =[0 0 []
Wgo = [l 0 l] we,=[l 0 O]
Pair 2 X =

w8.5=[0 1 O] wc.4=[0 L l]'



CHAPTERS. GA SELECTION OF WAVELENGTHS 86

Therefore, the new population, W_., is produced as shown below:

[0 0 1]
wJoo 1{
<71 0 of

lo 1 1]

5.2.6 Mutation

Mutation, like recombination, is a step in the exploration search of the solution space.
Mutation involves randomly toggling or inverting the select status for a small
percentage (i.e., in our case five percent) of the population matrix elements (for the same
reasons given in recombination, only the replacement population is mutated). The
purposes of mutation are to create greater diversity, and to prevent features or
wavelengths from disappearing from the solution space. The details of mutation are

discussed below.

The result of the mutation step is a new population matrix, W, created from the
population matrix, W .. To maintain diversity in the population, a certain proportion of
the replacement members’ elements of W are toggled in a random fashion. If a given
element is chosen to be toggled, and its present status is a "0" (or "1") then it will be

changed toa "1" (or "0").

Suppose the population matrix, W_., is defined as shown below:

—

o © o O
o p—
-

The second dimension in this W, is deselected for all members. Therefore, without the
mutation operator, this dimension is lost to future generations. However, the mutation
operator can, statistically, bring this dimension back into a future population, so that it

is not lost forever from the solution search space.

The mutation rate used for our data was 0.05; or 5% of the replacement members’

elements were toggled.
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5.2.6.1 A Mutation Example

Using the simple Cartesian example for W, from Section 5.2.5, suppose that our
mutation rate is 0.10. Considering that our population matrix has twelve elements, on

average one element will be chosen to be toggled. Suppose that w,.,, is chosen to be

toggled, therefore W, is formed as shown below:

[0 1 1]
WJOO 1}
Pt oof

lo 1 1]

Note that w.. |, has now become a "1" from a "0".

5.2.7 Wavelength Selection Vector

The wavelength selection vector is the final result of the GA process. [t specifies which
wavelengths are to be used in the MD model. It is determined from the histogram of the
final population (i.e., the population at termination). The wavelength selection vector is
saved so that the MD calibration can be determined using the wavelengths identified in

the wavelength selection vector.

The wavelength selection vector, w, is created by reducing the population matrix, W,

of the final generation. This is done in two steps as shown below:
1. Determine the wavelength selection histogram of the population matrix.

2. Discretise the wavelength selection histogram.

5.2.7.1 Histogram of Population Matrix
The histogram of W is created by calculating the relative proportion of selections of a
particular wavelength across the members, for each wavelength. The elements of the

wavelength selection histogram vector, w,, are expressed mathematically in
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Equation 5.1:

l N
Wy, = N ZWDJ,- (5.1)
1=l

where w, ; is an element of the wavelength selection histogram vector, w,, for
wavelength j, and w/,, is an element of the population matrix, W,,, after mutation, for

member i and wavelength j. Using W, from the simple Cartesian example in Section

5.2.6, w, is:

w, =[025 050 075].

5.2.7.2 Discretise the Histogram

The wavelength selection vector, w,, is created from the wavelength selection

histogram vector, w,,, by discretising the elements of w,, according to the algorithm

below:
[Fw, 205
THEN w, , =1
ELSE wg , =0
END IF.

An element of w,, must equal or exceed the defined threshold of 0.5 for that wavelength

to be selected.

Using w,, from the simple Cartesian example, w becomes:
w,=[0 I 1}

5.2.7.3 An Example using the Biological Data

The histogram produced from training data set 1 is shown in Figure 5.7 while the

corresponding wavelength selection vector is shown in Figure 5.8.
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Figure5.7:  Wavelength Selection Histogram of Population Matrix
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Figure 5.8: = Wavelength Selection Vector
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5.2.8 Calibrate Based on Wavelength Selection Vector

The final step in the GA process is to create and save the MD calibration model, from
which classification can be performed on unknown specimens. This step is essentially
one iteration of the evaluation stage as described in Section 5.2.2, except without the
fitness calculation. Also, the only member to be evaluated is the wavelength selection

vector. The steps are:

1. Create New Transformed Absorbance Matrix using only Selected
Wavelengths.

2 Determine Principal Components of New Transformed Absorbance
Matrix.

3. Perform Mahalanobis Distance Calibration.

These steps are described in detail in Section 5.2.2.

5.3 Prediction Algorithm Modification Using
Selected Wavelengths

To classify an unknown specimen using the reduced wavelength set, the MD prediction
algorithm described in Section 4.3 requires modification. The new algorithm is
essentially identical to the previous one, except for the data transformation step. The
data transformation modifications are as described in Section 5.2.2, i.e., all transforms
are performed excluding PCA, then the new reduced transformed absorbance matrix is
created as specified by the wavelength selection vector, and then PCA is performed.
The complete algorithm is shown in Figure 59. All steps have previously been

described either in Chapter 4 or 5.
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Figure 5.9:

Data Transformation
Excluding PCA

y

Create New Transtformed
Absorbance Matrix Using
Selected Wavelengths

PCA

y

Calculate Mahalanobis
Distances from
Specimens to each Specie

_

Classify Unknown
Specimens according to
Minimum MD

L

Derive Misclassification
Matrix

44— For Vulidation
Only

Modified Mahalanobis Distance Prediction Algorithm

91



Chapter 6

Results of Analyses

6.1 Introduction

Analyses were performed to classify all seven species simultaneously, as well as the case
of classifying urine from blood. The analyses discussions in this chapter are divided
into two sections: one (i.e., Section 6.2) that deals with the analyses that attempt to
classify all seven species, and one (i.e., Section 6.3) that deals with the analyses
classifying urine from blood. KNN, MD and GA-MD methods were used to classify all
species while MD and GA-MD were used to classify urine from blood. All analyses
used data that were transformed using SM11-2D11. Some of the analyses used
autoscaling while others did not. All MD and GA-MD analyses used principal
component scores for the final features while KNN analyses used either wavelengths or
PC scores. As defined in Section 1.7.1, three separate data sets were created, consisting
of training and prediction data. For final comparisons of the methods, analyses were
performed with each data set, and the results averaged over the three data sets, for a

given case. Examples of results of analyses are provided in Appendix E.
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6.2 Classification of All Species

The data were first analysed using the KNN method. The results were then compared
against those obtained using the MD method. Section 6.2.1 covers this comparison. The
MD method was then optimised using GA selected wavelengths. The results of this
optimisation are described in Section 6.2.2.

6.2.1 KNN Versus Mahalanobis Distance Classification

The data were analysed using the data transformation SM11-2D11 and autoscaling.
Both the wavelength and the principal component dimensional spaces were used for the
KNN analysis. Only the principal components were used for the MD analysis. The

results are shown in Table 6.1.

Table 6.1: Error Rates for KNN and Mahalanobis Distance with Autoscaling

KNN Mahalanobis
Distance
Using Wavelengths Using Principal Using Principal
Components Components

Data | Train'g Predn #of Train'g Predn #of #of { Train'g Pred'n #of
Set Error Errocr  NN's  Error Error NN's PCs | Error Error PC's

Rate Rate Rate Rate Rate Rate

(%) (%) (%) (%) (") (%)

1 38.89  39.29 1 3838  40.00 l 26 1263 3071 26

2 3990 37.86 1 1040 3643 1 31 1263 3071 31
3 41.41 4143 1 1141 3857 1 29 15.15  30.00 29
Mean | 40.07 3953 1 40.06  38.33 1 28.7 | 1347 3047 287

S.D. 1.27 1.80 - 1.54 1.80 - 25 145 0.41 25

Note: Train'g Error Rate is the Error Rate calculated by applying the calibration model to the training
data. Pred'n Error Rate is the Error Rate calculated by applying the calibration model to the
prediction data. Therefore Predictability = 100% - Pred'n Error Rate ().

The prediction error rates for the KNN method are not significantly different whether
using wavelengths or whether using PC scores for the features. The training and

prediction error rates for KNN are essentially the same, with the prediction error rate
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slightly better than the training error rate. The prediction error rate for the MD method
is significantly lower than for the KNN method--38.33% and 30.47% for KNN and MD
respectively. Therefore, under these conditions, the MD prediction error rate is 20.5%
lower than that for KNN. The improvement is expected as the MD method is a more
sophisticated method than the KNN method.

The data were also analysed without autoscaling. The results of these are shown in
Table 6.2. The spread between the prediction error rates for the MD and KNN methods
is even larger for this condition, i.e., prediction error rates being 46.19% and 25.72% for
KNN and MD respectively, giving a 44.3% improvement. The autoscale transform
improves the predictability for the KNN method but degrades the predictability for the
MD method.

Table 6.2: Error Rates for KNN and Mahalanobis Distance with No Autoscaling

KNN Mahalanobis Distance
Using Wavelengths Using Principal
Components
Data | Training Predn  #of | Training Pred'n  #of
Set Error Rate  Error NN's Error Error  PC's
(") Rate (%) Rate ("% Rate (")
1 37.37 50.71 5 11.62 2429 29
2 40.91 42.86 3 12.63 26.43 23
3 43.94 45.00 5 13.64 26.43 23
Mean 40.74 16.19 +.3 12.63 2572 250
S.D. 3.29 4.06 1.15 1.01 1.24 346

Table 6.3 shows the specie by specie, mean predictability for the best individual
conditions (i.e., best transforms), for each of the KNN and MD methods--autoscale for

KNN and no autoscale for MD.
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Table 6.3: Comparison of Individual Mean Specie Predictability for Best KNN and

Best MD Conditions
Specie 1 2 3 4 5 6 7 ERrar:)er
(%)
KNN  Training Mean 975 540 567 578 542 632 379 40.06
(with S.D. 214 105 335 1.91 415 1.96 0 1.54
AS Pred'n Mean 933 600 617 400 567 625 51.7 3833
& PC'’s) S.D. 2.89 5.0 126 866 2.89 822 289 1.80
MD Training Mean 100 805 811 R56 4 vps 750 1263
{with S.D. 0 525 381 196 237 345 345 1.01
PC'sbut Pred'n Mean 967 583 717 67 850 5.7 600 2572
no AS) S.D. 289 577 577 189 132 289 8.66 1.24

Note: AS = autoscaling

Comparing the results using the best individual conditions for KNN and MD yields
prediction error rates of 38.33% and 25.72% for KNN and MD respectively. Therefore,
under these conditions, MD produced a 32.9% improvement over KNN in prediction

error rate.

Urine (specie 1) is the only specie to achieve 95% predictability, and that using the MD
method. Using KNN, urine predictability is only slightly lower, at 93.3%. Oxalate
(specie 5) and iodoacetate (specie 6) are close to the 95% rate, achieving predictability

rates of 85.0% and 81.7"% respectively, using the MD method.

Table 6.4 shows the interspecie MD’s for data set 1, without autoscaling. The mean
interspecie MD's are also calculated. The means are calculated two ways: including and
excluding the interspecie MD with respect to Urine. Since the interspecie MD’s with
respect to Urine are all relatively high, interpretation is enhanced by excluding it. This

is indicated by the significant drop in the standard deviations.

Table 6.5 shows the relationship, i.e., correlation, between the mean interspecie MD’s
and the predictability of that specie. Even without plotting the numbers, the correlation
is evident. As the MD approaches 6 and greater, the predictability approaches the 95%
level as expected.
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Table 6.4: Interspecie Mahalanobis Distances for Data Set 1 for Best MD Conditions

Specie Y Specie X Including Excluding

Specie 1 Specie 1

1 2 3 4 5 6 7 Mean S.D. Mean S.D.
1 0 1162 1158 1150 1280 13.18 12.19 1215 0.71 - -

2 - 0 321 253 537 454 224 492 349 358 134

3 - - 0 289 490 539 218 503 344 371 137

4 - - - 0 566 522 248 505 345 376 155

5 - - - - 0 592 191 6.59 307 535 045

6 - - - - - 0 +78 651 331 517 054

7 - - - - - - 0 480 383 332 140

Table 6.5: Correlation Between Predictability and Interspecie MD

Specie 1 2 3 4 5 6

~

Predictability (%) 9.7 583 717 667 S50 8.7 600
(Mean for all Data Sets)

Mean Interspecie MD for DataSet 1 1215 358 371 376 535 517 332
(Excluding Specie | MD for 2-7)

6.2.1.1 Summary of KNN Versus MD

The Mahalanobis Distance method outperformed the KNN method in terms of
classificaion accuracy for unknown specimens. The results are summarised in
Table 6.6. The autoscaling transform improved the performance of the KNN method
but degraded the performance of the MD method. This may be due to the fact that MD
inherently performs its own scaling, which may be more optimised than the autoscale
transtorm. This redundancy may be the cause for the degradation using autoscaling for
MD. This suggests that caution should be used when applying the autoscale transform.

There is good correlation between the mean interspecie MD and the predictability of a

specie.

Note: The test statistic for determining the number of PC's was not monotonic for a few
of the analyses; therefore some judgement was used in determining the number of PC's

for these cases. Although the smoothing of the test statistic helped significantly, the
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nature of the data (i.e., discrete number of errors) precluded the test statistic from

working perfectly for every case.

Table 6.6: Error Rate Summary

Method Prediction Data Error Rate (%)
KINNN (with autoscale) 38.33
KNN (no autoscale) 46.19
MD (with autoscale) 30.47
MD (no autoscale) 25.72

6.2.2 MD Versus GA Optimised MD (GA-MD) Classification

An overlay to applying the GA as defined in Chapter 5, is the process of determining
the best fitness criterion. The most important variable in the GA is the fitness criterion

and its identity is crucial. Section 6.2.2.1 describes how this is done.

6.2.2.1 Identification of the Best Fitness Criterion

To identify the best fitness criterion, data set 1 with autoscaling was analysed using the
GA-MD method using several fitness criteria. The selection of the best fitness criterion
was done using the autoscaling transform as the autoscaling transform had produced
the best results for KNN. The no autoscaling analyses were not done until the late
stages of the study; the no autoscaling analyses used the best fitness criterion as
determined by the autoscaling case. The fitness equations are described in Section
5.2.2.4. Figure 6.1 shows the prediction error rate versus number of generations for four
of the fitness criteria. FTEALLNI is the most aggressive in reducing the number of
wavelengths, while FTEALLN¢ is the least aggressive. The trend for both FTEALLN1
and FTEALLN2 is that the error rate increases from generation 200 to 500. This suggests
that underfitting is occurring as the algorithm was attempting to reduce the number of
wavelengths quite aggressively. The trend for FTEALLN4 is that the error rate
decreases from generation 200 to 500 but its end value is higher than for FTEALLN3.
This suggests that overfitting is occurring as FTEALLN4 is not reducing the number of
wavelengths aggressively enough. The trend for FTEALLN3, an intermediately
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aggressive calculation with respect to reducing wavelengths, is that the error rate has a

decreasing trend up to generation 200, then the error rate is reasonably constant from

generation 200 to 500.

for the other three fitness criteria. This suggests that an appropriate level of fitting is

Also, the error rate that FTEALLN3 settles to is lower than those

occurring for the FTEALLNS3 fitness criterion.
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Figure 6.1:  Prediction Error Rate Trend for Various Fitness Criteria

Another way to look at the error rate is to plot it versus the number of wavelengths.

This is shown in Figure 6.2.
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Figure 6.2:  Prediction Error Rate Versus Number of Wavelengths
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Figure 6.2 shows that the error rate is minimised when the number of wavelengths is
between 77 and 96. Error rates are larger outside this range. This is independent of the
fitness criterion. However, the criterion FTEALLN3 tended to be maximised when the
number of wavelengths was in the range of 87 to 96, which is within the optimum range
for number of wavelengths according to Figure 6.2. Based on these results, FTEALLN3
was chosen as the best fitness criterion for these data, i.e., transform SM11-2D11 and

autoscaling.

6.2.2.2 Results of Analyses using the Best Fitness Criterion
Table 6.7 shows results of analysing the data using fitness criterion FTEALLN3, with

and without autoscaling.

Table 6.7: GA-MD Results Using FTEALLN3

CA-MD GA -MD
with Autoscaling with No Autoscaling
Data | Training Pred’'n #of #of | Training Pred'n #of #of
Set | Error Rate ErrorRate A's PC's | Error Rate Error Rate A's PC's
(%) (%) (%% (")

1 10.61 27.86 96 20 8.59 33.57 107 22

2 I1.11 27.14 98 20 8.08 30.71 104 22

3 10.10 30.00 99 20 10.61 257 97 23
Mean 10.61 28.33 97.7 20 9.09 30.00 1027 223
S.D. 0.51 1.49 1.5 0 1.34 3.98 5.1 0.58

The number of wavelengths (# of i's) ranged between 96 and 99 for autoscaling and
between 97 to 107 for no autoscaling. The mean prediction error rates are 28.33% and
30.00% for autoscaling and no autoscaling respectively. However, the mean training
error rates are 10.61% and 9.09% for autoscaling and no autoscaling respectively. This
suggests that some overfitting is occurring for the no autoscaling case. The fitness
criterion, i.e., FTEALLN3, was determined by optimising the autoscaling case, and is
possibly not optimum for the no autoscaling case. A fitness criterion which more

aggressively reduces the number of wavelengths is likely required for the no
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autoscaling situation. For example, FTEALLN2 may work better for the no autoscaling
case, or perhaps a calculation somewhere between FTEALLN3 and FTEALLN?2 may
perform better. These re-ults suggest that it is important to determine the best criterion
for a particular set of data, with a particular transformation, to optimise performance.
These results also suggest that an algorithm which determines the optimum number of

wavelengths, for a particular set of data, would also be appropriate.

Table 6.8 shows the comparison of the classification performances of MD versus

GA-MD for both the autoscaling and no autoscaling cases.

Table 6.8: Comparison of MD Versus GA-MD Results

Mahalanobis Distance GA-MD
Data Stat. | Training Predn #of #of | Training Predn #of #of
Transform Error Error A's PC's Error Error A's PC's
Rate (%) Rate (%) Rate (%) Rate (%

Autoscale Mean 13.47 30.47 255 28.7 10.61 28.33 97.7 20

SD. | 145 0.41 0 25| 051 149 15 0
No Mean | 1263 2572 255 250 [ 9.09 3000 1027 223
Autoscale
sD. | Lot 1.24 0 346 | L34 3.98 51 058

GA-MD was able to reduce the error rate to 28.33% from 30.47" for MD, for the
autoscaling case. This 7.0% reduction in error rate is statistically significant as the mean
error rates for MD and GA-MD, for the autoscaling case, are more than 2 standard
deviations apart. The percentage improvement was even larger for the four species
with the worst predictabilities (i.e., serum, citrate, EDTA, and heparin) and that
improvement was 8.0%. However, for the no autoscaling case, GA-MD increased the

error rate to 30.00% from 25.72% for MD. There are two reasons for this.

The first reason for the increase in error for the no autoscaling case is that the fitness
criterion was optimised for the autoscaling case and not for the no autoscaling case.
Table 6.7 and Figure 6.2 show that when the number of wavelengths exceeds 98, the

error rate increases significantly. Two of the data sets for the no autoscaling case
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exceeded 98 wavelengths, thus producing a larger error rate. If only the one data set
(ie., data set 3) is considered for the no autoscaling case, when the number of
wavelengths was 97, the error rate was reduced to 25.71% from 26.43%, when GA
optimisation was used. Therefore, if an optimised fitness criterion had been used for the

no autoscaling scale, the data suggest that an improvement would be achieved.

The second reason for the increase in error rate for the no autoscaling case is contained
in Table 6.9. Table 6.9 is derived from the same data analysis as that used for Table 6.8,
except that the number of PC's selected in determining the results shown in Table 6.9,
optimised the error rate for the prediction data rather than for the training data.
Comparing the number of PC's shown in Tables 6.8 and 6.9, the no autoscaling case for
GA-MD shows a greater difference in the number of PC's between those required for
optimising the training error rate and those required for optimising the prediction error
rate, than for the other 3 situations (i.e., MD with no autoscaling, MD with autoscaling,
and GA-MD with autoscaling). The PC difference, between optimising for prediction
and training, for the GA-MD no autoscaling case, is 3.7 while it is less than 2.4 for the
other 3 cases. This suggests that using cross-validation or a separate validation data set
within the training algorithm may help in choosing a more optimum number of PC's,
thus reducing the differences. In any case, the results as tabulated in Tables 6.7 and 6.9
provide strong evidence that GA-MD does produce better results than MD, and does it
with fewer wavelengths, and possibly with fewer PC's, given that proper optimisation is

done.

Table 6.9: Comparison of MD Vs. GA-MD Results with Optimising # of PC's for

Best Prediction Results
Mahalanobis Distance GA-MD
Data Stat. | Training Pred'n #of #of | Training Predn  #of #of
Transform Error Error As  PCs Error Error A's PC’s
Rate (%) Rate (%) Rate (%) Rate ("%

Autoscale Mean 17.01 26.67 255 263 11.79 2o.43 97.7 21.7
S.D. 4.21 1.49 0 25 1.27 1.24 1.5 1.2
No Mean 14.14 23.57 255 26.3 11.28 25.24 102.7 26.0

Autoscale
S.D. 2.20 1.24 0 38 0.29 1.09 5.1 26
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6.2.2.3 Discussion on the Wavelengths Selected

A question that may be asked is, "Are the same wavelengths selected each time (i.e., for
the same type of data and from run to run) and if not does this matter? ". Figures 6.3
and 6.4 show the wavelengths selected for data sets 1 and 3 respectively, for the
autoscaling case. There are a number of similarities between these two wavelength
sets those being: most of the wavelengths in the pixel 35 to 60 range are selected, there
are wavelengths selected across the whole spectrum, and there are no spectral gaps
wider than 10 or 12 pixels. But there are also significant differences: data set 3 has few
wavelengths selected below pixel 25, and approximately only half of the wavelengths
selected across the spectrum are common between the two data sets. Despite these
significant differences, Table 6.10 shows there is no loss in mean predictability
(if anything a slight improvement) when wavelengths selected from the GA analysis of
one data set are used to predict on the other data set. The slight improvement when
using wavelengths from another data set is likely due to the fact that some of the
specimens in the prediction data of one data set are used in the training data of the other
data set. Therefore, the apparent significant differences in wavelength selection are
really not that significant in terms of predictability. This is likelv due to the fact that
there is high correlation between adjacent pixels (especially at the wavelength
resolution used) and this makes predictability not particularly sensitive to whether pixel
p is selected or whether pixel p£1 is selected. In other words, the solution space with
respect to wavelengths, is relatively shallow. Even though different wavelengths may

be chosen from one analysis to another, each wavelength set has utility.

For future work: to reduce the apparent differences in wavelength sets, the resolution
could be reduced by excluding wavelengths or by grouping the wavelengths into
subsets of w wavelengths, where w could be on the order of 10. The analysis would

then be based on the reduced or grouped set.
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Figure 6.3:  Wavelengths Selected for Data Set 1
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Figure 6.4:  Wavelengths Selected for Data Set 3
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Table 6.10:  Error Rates using Wavelengths from Optimisation with another Data Set

(with Autoscaling)
GA-MD GA -MD
( Using Wavelengths from ( Using Wavelengths from
Same Data Set) Other Data Set )
PC's Data | Training Pred'n #of #of Training Pred'n  #of #of
Optimised Set Error Error  1's PCs | Error Error As  PCs
for Rate (%) Rate (%) Rate (%) Rate (%)
Training 1 10.61 27.86 96 20 13.13 30.71 99 27
3 10.10 30.00 99 20 12.63 22.86 96 21

Mean 10.36 893 975 20 12.88 26.79 975 M4

S.D. 0.36 1.51 21 0 0.35 5.55 21 42
Prediction 1 10.61 25.71 96 21 13.13 786 99 30
3 13.13 27.86 99 23 12.63 2286 96 21

Mean 11.87 26.79 975 22 12.88 25.36 975 255

S.D. 1.78 1.52 21 14 0.35 3.54 21 636

6.2.3 Summary of the Results of Analyses Classifying All Species

To properly compare the performance of all three methods, i.e., KNN, MD and
CGA-MD, the same data including the same transformations (i.e., whether autoscaling is
used or not) are used. Table 6.11 shows this comparison using the transform SM11-
2D11, PC’s, and autoscaling. The mean prediction error rates are summarised into
Table 6.12. MD was able to reduce the prediction error rate by 20.5% over that
produced by KNN. GA-MD improved the prediction error rate by a further 7.0%.
These are statistically significant improvements. These improvements are also
conservative estimates, as MD performed better without autoscaling (refer to Tables 6.1
and 6.2). In fact, MD reduced the prediction error rate by 32.9% over that produced by
KNN, comparing the best conditions for each. However, this study did not have a
proper comparison for the GA-MD case without autoscaling, as the fitness criterion was

not optimised for this case. The data, however, did provide evidence
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(refer to Table 6.7 - data set 3) that an improvement would be achieved for GA-MD

without autoscaling, using an optimised fitness criterion.

Table 6.11: ~ Comparison of KNN Vs. MD Vs. GA-MD Results Using the Same Data
Transform (i.e., SM11-2D11, PC’s, and Autoscaling)

Error
Rate
(M)

(38
W
-
W
o
~

Specie 1

KNN Training Mean 975 540 567 578 542 632 379 4006
S.D. 214 105 335 191 415 196 0 1.54

Predn Mean 933 600 61.7 400 567 625 517 3833

S.D. 2.89 5.0 126 866 289 822 289 1.80

MD Training Mean 100 828 778 856 944 920 759 1347
S.D. 0 690 508 196 237 196 345 145

Predn Mean 983 600 683 483 817 767 533 3047
S.D. 2.89 0 289 161 126 289 764 041

GA-MD Training Mean 100 862 844 911 931 931 793 1061
S.D. 0 345 510 697 237 345 915 051
Predn Mean 967 567 733 617 783 783 567 2833

S.D. 289 104 764 104 104 Ted 764 1.49

Table 6.12:  Comparison of Mean Prediction Error Rates for KNN, MD and GA-MD
under the Same Conditions

Method KNN MD GA-MD

Prediction Error Rate 38.33  30.47 28.33
(%)

Table 6.13 shows the best performance of the analyses, which used MD with
transform: SM11-2D11, PC’s, and no autoscaling. As already mentioned, if an optimised
fitness criterion had been used for the no autoscaling case, GA-MD would likely have

outperformed MD for the no autoscaling case also.
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Table 6.13: Prediction Performance using Best Method (i.e., MD with transform
SM11-2D11, PC's, No autoscale)

Specie 1 2 3 4 5 6 7 Mean Pred'n
Error Rate (%)

Mean 9.7 583 717 667 850 8.7 600 25.72

Predictability

(%)

MD is able to classify urine (specie 1) to the 95% accuracy rate, while oxalate (specie 5)
and iodoacetate (specie 6) are close to the 95% accuracy rate; viz., at 85.0% and 81.7%
respectively. Serum (specie 2), citrate (specie 3), EDTA (specie 4), and heparin (specie 7)
appear to be part of the same class, for this wavelength range, as their MD's are
relatively small. A small surprise was that oxalate produces such a good NIR response,
since the possible vibrational overtones are not listed in a common NIR response table,

as shown in Table 1.2.

6.3 Classification of Urine Versus Blood

Since only the first objective (i.e., classifying urine from blood) has been achieved by
classifying all species simultaneously, there may be a simpler solution, than the one
found by classifying all species. This is done by reducing the problem to the simpler
case of classifying urine (specie 1) from blood (i.e., species 2-7) only. The analyses
involving the classification of urine (specie 1) from blood (species 2-7) used the
Mahalanobis Distance method and the GA-MD method. The data were not analysed
using KNN since MD was proven superior in classifying all the species. Also,
autoscaling was not used as the previous analyses had shown that it did not enhance

the performance.

6.3.1 Mahalanobis Distance Analyses

Table 6.14 shows the results of the MD analyses. The mean predictability rates for urine
and blood are 95% and 99.72% respectively. Therefore, the MD method is able to
achieve 95% predictability in classifying urine from blood. Nine (9) PC's were required
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for classifying urine from blood versus more than 20 PC's when classifying all the

species.

Table 6.14:  Error Rates for Mahalanobis Distance with No Autoscaling for
Classifying Urine Vs. Blood

Mahalanobis Distance Method
Data | Training Pred'n Predictability Predictability # of
Set Error Error of Urine (%)  of Blood (*») PC's
Rate (%) Rate (%)
1 0.51 1.43 90.00 100.00 9
2 0.00 0.71 100.00 99.17 9
3 0.51 0.71 95.00 100.06 9
Mean 0.34 0.95 95.00 99.72 9
S.D. 0.29 0.42 5.00 0.48 0

6.3.2 Genetic Algorithm Optimised Mahalanobis Distance
Analyses

6.3.2.1 Finding the Best Fitness Criterion for Urine Versus Blood Classification
A variety of fitness criteria were tested on data sets 1 and 2 to determine the best
criterion. Table 6.15 shows the results. For data set 1, criteria FTEINS to FTEINSQR
required 26 wavelengths and 9 PC’s for optimum predictability. FTEINSR4 required
fewer wavelengths, i.e., 24, but more PC's, i.e., 11. For data set 2, criteria FTEIN2 to
FTEINSQR, all required 24 wavelengths and 10 PC’s. Therefore, there is little difference
in the results with respect to fitness criteria. This is likely due to the fact that each
criterion is able to push the reduction of wavelengths to a minimum and achieve perfect
classification, i.e., 100% for the training data. Therefore, the criterion chosen as

optimum was FTE1IN]I, since it provided the most efficient calculation.



CHAPTER6. RESULTS OF ANALYSES 108

Table 6.15:  Predictability of Various Fitness Criteria for Urine Vs. Blood Using
GA-MD with No Autoscaling

GA-MD
Fitness Data | Training Predn Predictability Predictability #of #of
Criterion Set Error Error of Urine (%)  of Blood (%) i's PC's
Rate (%) Rate (%)
FTEINS 1 0.00 0.71 95.0 100.00 26 9
FTE1IN4 1 0.00 0.71 95.0 100.00 26 9
FTEIN2 1 0.00 0.71 95.0 100.00 26 9
FTEIN1 1 0.00 0.71 95.0 100.00 26 9
FTEINSQR 1 0.00 0.71 95.0 100.00 26 9
FTE1INSR4 1 0.00 071 95.0 100.00 24 11
FTEIN2 2 0.51 0.71 95.0 100.00 24 10
FTEIN1 2 0.51 0.71 95.0 100.00 24 10
FTEINSQR 2 0.51 0.71 95.0 100.00 24 10

6.3.2.2 Analyses Results using the Best Fitness Criterion

The results of applying FTEIN1 to all the data sets are shown in Table 6.16. The
predictabilities of urine and blood are 95% and 100% respectivelv. This is achieved
using an average of 23.7 wavelengths and 10.3 PC's. The predictabilities are slightly
better, although not statistically significant, than those achieved by MD. However,
GA-MD achieved it using significantly fewer wavelengths (i.e., 23.7 and 255 for GA-MD
and MD respectively), although 1 more PC.

The GA analyses were then allowed to run past 500 generations, up to 999 generations,
to determine if any more optimisation was possible. Figure 6.5 shows the predictability
versus number of wavelengths for generations 500, 600, 800 and 999, for all 3 data sets.
Although it was possible to lower the number of wavelengths and achieve 100%
calibration, the predictability dropped to 90% for some of the analyses. Therefore, it
appears that the minimum number of wavelengths is on the order of 25 or 26, to

maintain a mean predictability of 95%.
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Table 6.16:  Predictability of Urine Vs. Blood with No Autoscaling Using GA-MD
with Fitness Criterion, FTEIN1

GA-MD
Data | Training Pred'n  Predictability —Predictability #of # of
Set Error Error of Urine (%)  of Blood (%) i's PCs
Rate ("%} Rate (%)

1 0.00 0.71 95.00 100.00 26 9
2 0.51 0.71 95.00 100.00 24 10
3 0.00 0.71 95.00 100.00 21 12
Mean 0.17 0.71 95.00 100.00 23.7 103
S.D. 0.29 0 0 0 25 15
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Figure 6.5:  Predictability of Urine Versus Number of Wavelengths

Table 6.17 shows the interspecie Mahalanobis distances for data set | using the MD and
the GA-MD methods. The mean interspecie MD's for the two methods are not
significantly different. Both are above 6, consistent with achieving predictability better
than 95%. These interspecie MD's, however, are significantly lower (i.e., 8.31 vs. 12.15),
than those obtained when more PC's (i.e., approx. 25) are used, as shown in Table 6.5.

Therefore, if better predictability than 95% is desired, more PC's should be used.
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Table 6.17:  Interspecie Mahalanobis Distances for Data Set 1 for MD and GA-MD
Methods for Urine Vs. Blood Classification

Method  Specie Y Specie X
1 2 3 4 5 6 7 Mean S.D.
MD 1 0 738 817 722 943 953 814 831 098
GA-M.D 1 0 825 850 817 832 93¢ 855 852 043

Figures 6.6 to 6.8 show the wavelengths selected for data sets 1 to 3 respectively. All
three wavelength sets show wavelengths selected in the upper end of the spectrum, as
expected from the spectral plots of the transformed data (refer to Figure 2.3). However,
as in the "all specie” case, there are few common, coincidental wavelengths. For the

same reasons given in Section 6.2.3.3, this can occur and not degrade predictability.

Wavelength Sefection Vector

Select Status

O i ise s AWttt M B osms i S
1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253
Pixel

Figure 6.6:  Wavelengths Selected for Data Set |
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Figure6.7:  Wavelengths Selected for Data Set 2
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Figure6.8: = Wavelengths Selected for Data Set 3
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6.3.3 Summary of Results in Classifying Urine from Blood

As mentioned previously, the data were analysed using MD and GA-MD using the
transform SM11-2D11, no autoscaling, and PC's, for classifying urine from blood. The

summary of the results is tabulated in Table 6.18.

Table 6.18 Summary of Results for Classifying Urine Versus Blood

Prediction Urine Blood Number of  Number of
Error Rate  Prediction  Prediction ~Wavelengths PC's
(%) Rate (Y%) Rate (%)
MD 0.95 95.00 99.72 255 9.0
GA-MD 0.71 95.00 100.00 23.7 10.3

These results indicate that urine and blood can be distinguished from each other at the
95% predictability level using less information than that determined when all species
were classified simultaneously. The required number of features dropped from
97.7 wavelengths and 20 PC's, to 23.7 wavelengths and 10.3 PC’s, without any loss in
predictabilities. Therefore, the first objective has been achieved more efficiently, by

optimising the classification for urine and blood species only.



Chapter 7

Conclusions

7.1 Were the Objectives Achieved?

The definition of success for each of the methodologies adopted in this study, is to
achieve one or more of the objectives as stated in Section 1.3. Brietly, the first objective
was to distinguish urine from blood; the second objective was to classify serum from
plasma; and the third objective was to classify the five anticoagulants from each other;

each at a classification accuracy of 95% or better.

The first objective was achieved relatively easily. Mahalanobis Distance and GA
optimised MD were successful in achieving 95% predictability for classifving urine from
blood. KNN was nearly successful in classifying urine from blood with predictabilities
of 93.3% for urine and greater than 95% for blood. Therefore, the first objective, as

outlined in Section 1.3, was achieved.

The second objective was not achieved, as the best predictability for serum was

approximately 60%.

The third objective was being approached for oxalate and iodoacetate, using MD and
GA-MD , with predictabilities of 85.0% and 81.7% respectively for the best case. The

113
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predictabilities of the other anticoagulants ranged between 60% and 72% for the best
case.

Table 7.1 summarises the predictabilities for each of the species using the method that
achieved the best results; i.e., MD with transform SM11-2D11, PC's, and no autoscaling.

Table 7.1: Prediction Performance using Best Method
Specie 1 2 3 4 5 6 7 Mean Pred'n
Error Rate (%)
Mean 9.7 583 717 667 850 817 600 25.72
Predictability

(%)

A small surprise was that oxalate produces such a good NIR response, since the possible

vibrational overtones are not listed in a common NIR response table.

7.2 Comparison of the Methodologies

The three methods used--KNN, MD and GA-MD--were compared for classifying all
species simultaneously. Only MD and GA-MD were used to classify urine from blood.
The classification performance results are summarised in Table 7.2. The data transform
used was SM11-2D11, PC's, and autoscaling.

Table 7.2: Comparison of Mean Prediction Error Rates for KNN, MD, and GA-MD
under the Same Conditions

Method KNN MD GA-MD

Prediction Error Rate 3833 3047 28.33
(%)

MD reduced the prediction error rate by 20.5% over that produced by KNN. GA-MD
improved the prediction error rate by a further 7.0%. These are statistically significant
improvements. These improvements are conservative estimates, as MD performed

better without autoscaling. Unfortunately, this study did not have a proper comparison
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for the GA-MD case without autoscaling as the fitness criterion was not optimised for
that case. The data, however, did show evidence that an improvement would be
achieved for GA-MD without autoscaling, using an optimised fitness criterion
determined for the no autoscaling case. This is the reason why the best results, overall,

were achieved with MD without autoscaling, as shown in Table 7.1.

Table 7.3 shows how efficient MD and GA-MD performed with respect to the amount of
information required. All the results in Table 7.3, except for GA-MD in classifying all
species, did not use autoscaling. GA-MD required fewer wavelengths and fewer PC's
than for MD (while achieving a 7.0% performance improvement); i.e., mean of 97.7
wavelengths and 20 PC's for GA-MD, and 255 wavelengths and 25 PC's for MD, for
classifying all species. In classifying urine from blood, GA-MD, even more significantly,
reduced the number of wavelengths over MD; from 255 to 23.7 with only a small
increase in the number of PC's, i.e., from 9 to 10.3. There was no significant difference in
predictability for the urine versus blood case, between that achieved by MD and that
achieved by GA-MD.

Table 7.3: Number of Features Required to Achieve Optimum Results

Classifying Number of Wavelengths ~ Number of PC's
MD All Species 255 Y
GA-MD  All Species 97.7 20
MD Urine from Blood 255 9
GA-MD  Urine from Blood 23.7 10.3

Therefore, GA optimisation of MD is able to achieve the same or better performance

than MD alone, while reducing the amount of information required to achieve this.

Future Work

A number of items that can be considered for future investigational work are identified

briefly in the following discussions.
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The best GA-MD fitness criterion for the no autoscaling case could be determined, and
complete analyses for this case could be performed. It is expected this would achieve

even better results for the "all species” case.

To enhance interpretation of the wavelengths selected, it may be useful to group the
wavelengths into sets of 5 or 10 wavelengths, and then select or deselect groups. The
expectation is that the homogeneity of the wavelengths (in this case groups of
wavelengths) selected would increase between data sets, and between runs, thus

enhancing interpretation.

To optimise the number of PC's and enhance predictability, the data could be
re-analysed using a separate validation data set (or use cross-validation) in the training

process.

As indicated by the data, there was significant correlation between the number of
wavelengths selected and the predictability. It may prove useful to modify the genetic
algorithm to search for the best wavelengths given a particular number of wavelengths.
The data would be analysed using a variety of the number of wavelengths, in order to
find the optimum number of wavelengths. The process would be similar to finding the
optimum fitness criterion except that the process would find the optimum number of

wavelengths.

[t may prove enlightening to optimise the classification of each specie separately, that is,

determine which wavelengths are important for each specie.

To achieve more of the objectives it may require more sensitive instrumentation or a

different wavelength range. These could be investigated.
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Wavelength Wavelength Wavelength Wavelength Wavelength Wavelength|
Pixel {(nm) Pixel (nm) Pixel {nm) Pixel (nm) Pixel (nm) Pixal (nm)

1 €02.83 51 689.311 101 775.79] 151 862.27 201 948.75| 251 1035.24

2 604.56 52 691.04| 102 777.52] 152 864.00| 202 95048 252 1036.97

3 606.29 53 692.77] 103 779.25| 153 865.73;] 203 952.21| 253 1038.69|

4 608.01 54 694.50| 104 780.98| 154 867.46] 204 953.94| 254 1040.42

5 609.74 55 696.23] 105 782.71] 155 869.19] 205 955.67 255 1042.15
6 611.47 56 697.96| 106 784.44| 156 870.92| 206 957.40
7 613.20 57 699.69] 107 786.17| 157 872.65] 207 959.13
8 614.93 58 701.42] 108 787.90] 158 874.38f 208 960.86
9 616.66 59 703.14 109 789.63| 159 876.11] 209 962.59
10 618.39 60 704.871 110 791.36) 160 87784 210 364.32
11 620.12 61 706.60] 111 793.08| 161 879.57} 211 966.05
12 621.85 62 708.33] 112 794.82] 162 881.30] 212 967.78
13 623.58 63 710.06] 113 796.55| 163 883.03] 213 969.51
14 625.31 64 711.791 114 798.28| 164 884.76) 214 971.24
15 627.04 65 713.52| 115 800.00| 165 886.49| 215 972.97
16 628.77 66 716.25] 116 801.73] 166 888.22] 216 974.70
17 630.50 67 716.98{ 117 803.46| 167 889.95( 217 976.43
18 632.23 68 718.71} 118 805.19| 168 891.68| 218 978.16
19 633.96 69 720.44] 119 806.92| 169 893.41| 219 979.89
20 635.69 70 722.17| 120 808.65| 170 895.13] 220 981.62
21 637.42 7 723.90| 121 810.38| 171 896.86| 221 983.35
22 639.15 72 725.63| 122 812.11] 172 898.59| 222 985.08
23 640.88 73 727.36] 123 813.84| 173 900.32f 223 986.81
24 642.61 74 729.09] 124 81557 174 902.05| 224 988.54
25 644.34 75 730.82| 125 817.30f 175 903.78( 225 990.27
26 646.07 76 732.55] 126 819.03( 176 905.51 226 991.99
27 647.80 77 734.28| 127 820.76| 177 907.24| 227 993.72
28 649.53 78 736.01| 128 822.49! 178 908.97| 228 995.45
29 651.26 79 737.74] 129 824.22] 179 910.70] 229 997.18
30 652.99 80 739.47| 130 825.95| 180 91243| 230 998.91
31 654.72 81 741.20| 131 827.68f 181 914.16| 231 1000.64
32 656.44 a2 74293} 132 829.41] 182 915.89] 232 1002.37
33 658.17 83 74466/ 133 831.14] 183 917.62] 233 1004.10
34 659.90 84 746.39| 134 832.87| 184 919.35| 234 1005.83
35 661.63 85 748.12] 135 834.60| 185 921.08| 235 1007.56
36 663.36 86 749.85] 136 836.33] 186 922.81| 236 1009.29
37 665.09 87 751.57| 137 838.06{ 187 924.54| 237 1011.02
38 666.82 a8 753.301 138 839.79] 188 926.27} 238 1012.75
39 668.55 89 755.03f 139 841.52| 189 928.00| 239 1014.48
40 670.28 90 756.76| 140 843.25{ 190 929.73] 240 1016.21
41 672.01 91 758.49| 141 844.98| 191 93146 241 1017.94
42 673.74 92 760.22| 142 846.70| 192 933.19| 242 1019.67
43 675.47 93 761.95| 143 848.43| 193 934.92] 243 1021.40
4 677.20 94 763.68] 144 850.16] 194 936.65| 244 1023.13
45 678.93 95 765.41] 145 851.89) 195 938.38| 245 1024.86
46 680.66 96 767.14| 146 853.62| 196 940.11| 246 1026.59
47 682.39 97 768.87| 147 865.35] 197 941.84| 247 1028.32
48 684.12 98 770.60| 148 857.08] 198 943.56| 248 1030.05
49 685.85 99 772.33] 149 858.81] 199 945.29] 249 1031.78
50 687.58] 100 774.06f 150 860.54f 200 947.02] 250 1033.51
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Untransformed Citrate Absorbances
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Absorbance (OD)
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Untransformed Heparin Absarbances
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Absorbance (OD)

Absorbance (OD)

TRANSFORMED DATA
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Transformed Heparin Absorbances
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Analysis Conditions
Classification Method KNN Data Processing Second Derivative 11 pts
Data Set 1 S-G Smooth 11 pts
Number of Generations N/A Autoscale Yes
Reference Resit07.xIs PCA Yes
Analysis Resuits
Misclassification Matrix Misclassification Rate Matrix
For Training Data No. of For Training Data
Actual Predicted Specie No. of Spec- | [Actal Predicted Specie
Speciel 1 2 3 4 5 6 7]|Erors imens Specie 1 2 3 4 5 6 7
1126 0 0 0 t 0 O 1 27 11 0.9630 0.0000 0.0000 0.0000 0.0370 0.0000 0.0000
2 019 1 2 0 3 4 10 29 2| 0.0000 0.6552 0.0345 0.0690 0.0000 0.1034 0.1379
3 0 516 4 t 0 4 14 30 3| 0.0000 0.1667 0.5333 0.1333 0.0333 0.0000 0.1333
4 0 4 2 17 0 3 4 13 30 4| 0.0000 0.1333 0.0667 0.5667 0.0000 0.1000 0.1333
55 0 1 5 0 14 4 0 10 24 5/ 0.0000 0.0417 0.2083 0.0000 0.5833 0.1667 0.0000
66 0 5 0 2 0 19 3 10 29 6} 0.0000 0.1724 0.0000 0.0620 0.0000 0.6552 0.1034
71 0 7 3 6 L 2 1 18 29 71 0.0000 0.2414 0.1034 0.2069 0.0000 0.0690 0.3793
Totals 76 198]
Misclassification Matrix Misclassification Rate Matrix
For Prediction Data No. of For Prediction Data
Actual | Predicted Specie No. of Spec- Actual Predicted Specie
Specie 1 2 3 4 5 6 7]Erors imens) |Specie 1 2 3 4 5 6 7
1119 0 0 1+ 0 0 O} 1 20 11 0.9500 0.0000 0.0000 0.0500 0.0000 0.0000 0.0000
2l 011 1 1t 0 3 4 9 20 2/ 0.0000 0.5500 0.0500 0.0500 0.0000 0.1500 0.2000
3 0 31312 2 0 2 1 8 20 3[ 0.0000 0.1500 0.6000 0.1000 0.0000 0.1000 0.0500
4 0 8 t 6 0 1 4 14 20| 4| 0.0000 0.4000 0.0500 0.3000 0.0000 0.0500 0.2000
55 0 0 3 211 1 3 9 20 5{ 0.0000 0.0000 0.1500 0.1000 0.5500 0.0500 0.1500
6 0 3 0 1 1t 15 0 S 20 6} 0.0000 0.1500 0.0000 0.0500 0.0500 0.7500 0.0000
7 0 3 4 2 1_ 0 10 10 20| 7] 0.0000 0.1500 0.2000 0.1000 0.0500 0.0000 0.5000
Totals 56 140}
Interspecie Mahalanotis Distances
Specie Specie
1 2 3 4 5 6 7|
1|N/A N/A N/A N/A N/A N/A N/A
2|NVA N/A N/A N/A N/A N/A N/A
3|N/A N/A N/A N/A N/A N/A N/A
4IN/A N/A N/A N/A N/A N/A N/A
5{N/A N/A N/A N/A N/A N/A N/A
6|\NVA N/A N/A N/A N/A N/A N/A
7IN/A N/A N/A N/A N/A N/A N/A
Analysis Summary
Number of Wavelengths [255 Data {Error Data Predictability by Specie
Number of NNs 1 Set |Rate Set 1 2 3 4 5 6 7
Number of PCs 26 Train. | 0.3838 Train. 0.963 0.655 0.533 0.567 0.583 0.655 0.379
Pred. | 0.4000 Pred. 0.950 0.550 0.600 0.300 0.550 0.750 0.500
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Analysis Conditions
Classification Method Mabhalanobis Distance Data Processing Second Derivative 11 pts
Data Set 1 S-G Smooth 11 pts
Number of Generations NA Autoscale Yes
Reference Resit10T .xls PCA Yes
Analysis Results
Misclas?iﬁcation Matrix Misclassification Rate Matrix
For Training Data No. of For Training Data
Actual Predicted Specie No. of Spec- Actual Predicted Specie
Specie] 1 2 3 4 5 6 7|Errors imens Specie 1 2 3 4 5 6 7
1122 0 0 0 0 0 O 0 27 1} 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000|
2l 026 0 0 0 O 3I 3 29 2|/ 0.0000 0.8966 0.0000 0.0000 0.0000 0.0000 0.1034
3 0 22 0 0 0 6 8 30 3| 0.0000 0.0667 0.7333 0.0000 0.0000 0.0000 0.2000
4 0 3 025 0 0 2 5 30 4] 0.0000 0.1000 0.0000 0.8333 0.0000 0.0000 0.0667
5§ 0 0t 023 0 O 1 24 5] 0.0000 0.0000 0.0417 0.0000 0.9583 0.0000 0.0000
66 0 1 0 0 0 27 1 2 29 6] 0.0000 0.0345 0.0000 0.0000 0.0000 0.9310 0.0345
77 0 2 2 2 L 0 23] 6 29 7] 0.0000 0.0690 0.0690 0.0690 0.0000 0.0000 0.7931
Totals | 25  198]
Misclassification Matrix Misclassification Rate Matrix
For Prediction Data No. of For Prediction Data
Actual | Predicted Specie No. of Spec- Actual Predicted Specie
Specie 1 2 3 4 5 6 7|Erors imens Specie 1 2 3 4 5 6 7
1119 1 0 0 0 0 O 1 20 11 0.9500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000
21 012 2 1 0 2 3 8 20 2] 0.0000 0.6000 0.1000 0.0500 0.0000 0.1000 0.1500
3 0 114 3 0 1 1 6 201 3| 0.0000 0.0500 0.7000 0.1500 0.0000 0.0500 0.0500
4 0 9 1t 6 0 0 4 14 20 4| 0.0000 0.4500 0.0500 0.3000 0.0000 0.0000 0.2000
55 0 0 0 0 19 1t 0 1 20 5{0.0000 0.0000 0.0000 0.0000 0.9500 0.0500 0.0000
6 0 3 0 O 0 16 1 4 20 6{ 0.0000 0.1500 0.0000 0.0000 0.0000 0.8000 0.0500
71 0 3 2 4 OIO 11 9 20 7] 0.0000 0.1500 0.1000 0.2000 0.0000 0.0000 0.5500
Totals 43 140
Interspecie Mahalancbis Distances
Specie Specie
1 2 3 4 5 6 7
1 000 1102 1118 1111 11.94 1286 11.79
2l - 000 278 223 504 432 203
3 - - 000 289 493 510 216
4 - - - 000 570 485 246
5 - - - - 0.00 568 4.99
6] - - - - - 0.00 5.52
77 - - - - - - 0.00
Analysis Summary
Number of Wavelengths |255 Data |Error Data Predictability by Specie
Number of PCs 26 Set |Rate | Set 1 2 3 4 5 6 7
Optimized for Train.| 0.1263] |Train. 1.000 0.897 0.733 0.833 0.958 0.931 0.793
Training Data Predictability Pred. | 0.3071] [Pred. 0.950 0.600 0.700 0.300 0.950 0.800 0.550
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Analysis Conditions
Classification Method G.A.-M.D. Data Processing Second Derivative 11 pts
Data Set 1 S-G Smooth 11 pts
Fitness Criterion FTEALLN3 Autoscale Yes
Number of Generations 500 PCA Yes
Reference Reslt18T xls
Analysis Results
Misclassification Matrix Misclassification Hate Matrix
For Training Data No. of For Training Data
Actual Predicted Specie No. of Spec- Actual Predicted Specie
Specie| 1 2 3 4 5 6 7]|Errors imens Specie 1 2 3 4 5 6 7
1127 0 0 0 0 O 01 0 27 1} 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 02 1 1 0 0 2 4 29 2] 0.0000 0.8621 0.0345 0.0345 0.0000 0.0000 0.0690
3 0 t 24 0 0 0 5 o 30 3| 0.0000 0.0333 0.8000 0.0000 0.0000 0.0000 0.1667|
4 0 3 025 0 0 2 5 30 4] 0.0000 0.1000 0.0000 0.8333 0.0000 0.0000 0.0667
5 0 0 1 022 0 1 2 24 5/ 0.0000 0.0000 0.0417 0.0000 0.9167 0.0000 0.0417
66 0 1t 0 0 0 28 O 1 29 6| 0.0000 0.0345 0.0000 0.0000 0.0000 0.9655 0.0000
7.0 2 0 1 0 _0 26 3 29 7} 0.0000 0.0690 0.0000 0.0345 0.0000 0.0000 0.8966
Totals 21 198]
Misclassification Matrix Misclassification Rate Matrix
For Prediction Data No. of For Prediction Data
Actual | Predicted Specie No. of Spec- Actual Predicted Specie
Specie 1 2 3 4 5 6 7lErors imens Specie 1 2 3 4 5 6 7
1119 1t 0 0 0 0 0 1 20, 11 0.9500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000
2l 0 9 3 3 0 2 3 " 20 2| 0.0000 0.4500 0.1500 0.1500 0.0000 0.1000 0.1500
3 0 213 4 0 1t O 7 20 3] 0.0000 0.1000 0.6500 0.2000 0.0000 0.0500 0.0000
4 0 4 1 14 0 0 1 6 20 4{ 0.0000 0.2000 0.0500 0.7000 0.0000 0.0000 0.0500
5 1+ 0 0 0 18 1 0 2 20 5| 0.0500 0.0000 0.0000 0.0000 0.9000 0.0500 0.0000
66 0 2 0 1 0 17 0 3 20 6] 0.0000 0.1000 0.0000 0.0500 0.0000 0.8500 0.0000
71 0 3 2 4 0 0 11 9 20 7{ 0.0000 0.1500 0.1000 0.2000 0.0000 0.0000 0.5500
~ Totals 39 140|
Interspecie Mahalanobis Distances
Specie Specie
1 2 3 4 5 6 7|
1| 000 956 976 9.48 10.57 1142 10.22
2 - 000 271 1.94 4.69 4.34 1.99
3 - - 000 270 457 499 202
49 - - - 000 493 475 225
5 - - - - 0.00 507 4.44
6 - - - - . 0.00 4.60
7] - - - - - - 0.00
Analysis Summary
Number of Wavelengths 96 Data |Error Data Predictability by Specie
Number of PCs 20 Set |Rate Set 1 2 3 4 5 6 7
Optimized for Train. | 0.1061 Train. 1.000 0.862 0800 0.833 0917 0966 0.897
Training Data Predictability Pred. { 0.2786 Pred. 0.950 0.450 0.650 0.700 0.900 0.850 0.550
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Analysis Conditions
Classification Mathod GA-MD Data Processing Second Derivative 11 pts
Data Set 1 S-G Smooth 11 pts
Fitness Criterion FTEIN1 Autoscale No
Number of Generations 500 PCA Yes
Reference Resit33.xls (GAOE8)
Analysis Results
Misclassification Matrix Misclassification Rate Matrix
For Training Data No. of For Training Data
Actual Predicted Specie No. of Spec- Actual Predicted Specie
Specie}] 1 2 to 7 Errors imens Specie 1 2t07
1 27 0 0 27 1] 1.0000 0.0000
21 0 29 0 29 2| 0.0000 1.0000
31 O 30 0 30 3] 0.0000 1.0000
4 0 30 0 30 4} 0.0000 1.0000
5 0 24 0 24 5| 0.0000 1.0000
6] 0 29 0 29 6| 0.0000 1.0000
7] O 29 — 0 29 7} 0.0000 1.0000
Totais 0 198
Misclassification Matnx Misclassification Rate Matrix
For Pradiction Data No. of For Prediction Data
Actual | Predicted Specie No. of Spec- Actual Predicted Specie
Specie 1 2 to 7 Errors imens Specie 1 2107
11 19 1 1 20 1{ 0.9500 0.0500
21 0 20 20 2] 0.0000 1.0000
3] O 20 0 20 3| 0.0000 1.0000
49 0 20 0 20 4} 0.0000 1.0000
5! 0 20 0 20 5{ 0.0000 1.0000
6l 0 20 0 20 6| 0.0000 1.0000
71 0 20 N 0 20 7] 0.0000 1.0000
Totals 1 140
Interspecie Mahalanobis Distances
Specie Specie
1 2 3 4 5 (] 7
tff 000 825 850 817 832 934 855
2 - - - - - . -
3 - - - - - - -
4] - . . . R - .
5 . . - R . - .
6 . - . . . . -
7 . . - - . . .
Analysis Summary
Number of Wavelengths 26 Data |Error Data Predictability by Specie
Number of PCs 9 Set |Rate Set 1 2 3 4 5 ] 7
Train. | 0.0000| |Train. 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Pred. | 0.0071 Pred. 0.950 1.000 1.000 1.000 1.000 1.000 1.000
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