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Abstract

A brief introduction to cancer biology and treatment is presented with a fo-

cus on current clinical advances in the delivery of chemotherapy and antiangiogenic

therapies. Mathematical oncology is then surveyed with summaries of various mod-

els of tumor growth, tumor angiogenesis and other relevant biological entities such

as angiogenic growth factors. Both strictly time-dependent ordinary differential

equation (ODE)-based and spatial partial differential equation (PDE)-based mod-

els are considered. These biological models are first developed into an ODE model

where various treatment options can be compared including different combinations

of drugs and dosage schedules. This model gives way to a PDE model that includes

the spatially heterogeneous blood vessel distribution found in tumors, as well as

angiogenic growth factor imbalances. This model is similarly analyzed and impli-

cations are summarized. Finally, including the effects of interstitial fluid pressure

into an angiogenic activity model is performed. This model displays the importance

of factor convection on the angiogenic behaviour of tumours.
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Chapter 1

Biological and Medical

Background

1.1 Cancer

Cancer is a disease that occurs as a result of genetic mutations in cells due to

any number of causes. It is the culmination of these mutations being passed on

through the generations of a cell’s progeny that leads to tumour formation. A

cell population is referred to as being cancerous when these mutations lead to

their uncontrolled proliferation and intrusion on nearby tissues. These cancer cells

interfere with the normal functioning of cells and are detrimental to the organism’s

survival. While some forms of cancer do not form a solid mass (such as leukemia),

the most common quality associated with cancer is the ability to form an aggressive

tumour; the culmination of mutations that usually give the cells all of the following

capabilities:

1. Apoptosis avoidance: the ability to escape the natural cell death trigger.

2. Self-sufficient growth signalling: increased production of progrowth factors or

heightened sensitivity to them.
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3. Antigrowth signal insensitivity: avoidance of differentiation or quiescent state.

4. Angiogenesis promotion: upregulation of proangiogenic factors and insensi-

tivity to antiangiogenic factors, leading to tumour vasculature (see Section

1.2).

5. Senescence prevention: unlimited replicative potential.

6. Invasion: can move to surrounding tissues.

7. Metastasis: can travel through vasculature to colonize other regions of the

organism.

This partial list of prevalent cancer traits are based on ‘The Hallmarks of Cancer’

laid out by D. Hanahan and R. A. Weinberg in the paper of the same name [1].

They make the observation that while most cancers exhibit all these qualities to

a degree, these traits can be acquired in practically any order. They also make

it clear that cancer cells should not be considered as separate entities from their

environment since “mutant cancer cells have conscripted and subverted normal

cell types to serve as active collaborators in their neoplastic agenda.” They are

referring to the many cell types that play a role in cancer cell survival including

normal parenchymal cells of the host tissue, endothelial cells that comprise blood

vessels, fibroblasts of connective tissue along with many others.

The distinction between a cancerous and a benign tumour is somewhat of a

grey area, but the most common classification is that benign tumours are those

non-invasive and non-metastatic growths that are typically non-life threatening

(although benign tumours that develop in some parts of the body can be fatal).

So-called benign tumours may develop into cancerous tumours if they acquire ad-

ditional mutations that make them dangerous to their host.

The unlimited replicative potential of cancer cell lines is most commonly en-

dowed by increased levels of telomerase [2], an enzyme responsible for maintaining

the telomers. Apoptosis is often triggered by the shortening of these telomers, a
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process that occurs naturally when a cell divides. However, since the telomers of

cancer cells shorten negligibly, they can now evade death, allowing them to divide

indefinitely; this is referred to as ‘immortalization’.

The invasive nature of cancer cells is a result of decreased cell-cell adhesion

due to disruption of the normal production of integrins that tether cells to the

extracellular matrix (ECM). In addition, they can often degrade the surrounding

ECM in order to facilitate their movement within the tissue. The invasiveness

of cancer cells poses a threat to the viability of normal cell populations as they

become crowded and react naturally by triggering their own death or those of

surrounding normal cells. The normal cells are also deprived of oxygen and nutrients

as these invaders use their resources to fuel their movements and proliferation.

This invasion is often not limited to those tissues that are directly adjacent to the

tumour. Tumour cells often metastasize, making their way into blood vessels or the

lymphatic system, using them for transportation to other parts of the body. This

process is very complex and includes the original event of entering the vasculature,

the process of eventually extravasating into a new tissue, adapting to this new

microenvironment and finally the development of another cancer cell colony that

could lead to a secondary tumour. While many pioneering attempts by cancer

cells from the original tumour will most likely fail, the ones that do succeed will

themselves have the potential to further colonize other parts of the body.

Each of these cancer cell traits must be taken into consideration when attempt-

ing to treat a tumour. Their ability to avoid apoptosis and senescence implies that

natural cell death is relatively rare and must therefore be triggered (directly or indi-

rectly) by an agent. Their upregulated proliferation can be exploited by using drugs

that target rapidly dividing cells. The promotion of angiogenesis can be countered

by antiangiogenic agents and will be described in detail later. The invasive nature

of cancer implies that in many tissues, the surrounding area must also be treated

in case cancer cells have migrated to these areas. While metastasis continues to be

the most consistent indicator of negative prognosis, this is countered primarily by
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expedient treatment and early detection efforts.

1.2 Tumour Angiogenesis

Ever since the extremely important connection between angiogenesis and tumour

growth was established in [3], the field of oncology has been revitalized by antian-

giogenic treatments. These agents will be discussed in the next section; for now the

process they are targeting will be discussed: the formation of tumour vasculature.

When a tumour begins to form, its existence and growth depend on the diffu-

sion of oxygen and nutrients in its immediate vicinity. However, tumour growth is

diffusion-limited, that is, after it reaches a certain size, approximately 2-3mm in

diameter, the center of this cell cluster can no longer be sustained by the amount of

oxygen attainable via simple diffusion. In response to this, the effected cells begin

to release hypoxia-induced factors (HIFs). These HIFs are then responsible for trig-

gering the release of proangiogenic factors in nearby cells, most prominently (and

heavily-studied) among them being vascular endothelial growth factor (VEGF).

While this signalling cascade will begin the process of tumour vascularization,

it is also the case in many types of cancer that certain genes are upregulated caus-

ing high levels of VEGF production or various other modifications of the balance

between angiogenic inducers and inhibitors [4].

These processes compound and are very effective in causing blood vessels to

sprout from nearby existing vasculature, however, unlike the normal process of an-

giogenesis, this process is hasty and unregulated. Tumour vasculature is most often

highly tortuous and inefficiently structured leading to spatially and temporally het-

erogeneous blood flow. In addition they have large fenestrations leading to leaky

vessels and highly compromised nutrient delivery. The cancer cells that originally

triggered the angiogenic switch rarely see the benefit of their efforts since these

incoming vessels usually penetrate only the tumour rim, leaving the bulk of the tu-

mour lacking any consistent oxygen supply. As a result, the center of a tumour often
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develops into a necrotic core and the hypoxic cells that surround this core maintain

constant angiogenic signalling. As the tumour grows the very dense blood vessels

and tumour cells become compacted leading to collapsed blood vessels, restricted

blood flow and high interstitial fluid pressure.

1.3 Cancer Treatment

Prior to the seminal work of Folkman [3], and the subsequent initiation of antiangio-

genic therapy, the focus had always been on surgical techniques and cytotoxic agents

aimed at directly removing or killing cancer cells. The three central categories that

traditional treatments fell into were: surgery, chemotherapy and radiotherapy.

1.3.1 Surgery and Radiotherapy

Surgery to remove cancerous tumours has been performed for almost two thou-

sand years, however, cancer was generally considered to be incurable by medical

practitioners. After a tumour was surgically removed, it was often observed to re-

cur. Surgery did not become a standard form of treatment until the 19th century

with the advent of anesthesia. While surgical techniques have come a long way

since then, it still remains likely that the cancer will recur, even after ‘successful’

surgery. This is due to the fact that even the most precise surgical techniques often

leave cells behind because the cancer has already metastasized or they were left

undetected in the surrounding normal tissues. Due to this, surrounding normal

tissue is often purposefully removed during surgery but in most cases, specifically

in the brain or other vital organs, the desire to minimize normal tissue damage is

paramount. This is the motivation behind many of the current and novel treatment

strategies that are considered in this thesis along with traditional radiation therapy

and chemotherapy.

The main limitation of radiotherapy is that it kills surrounding normal cells.

Despite the fact that the ionizing radiation is directed at the tumour, all cells which
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are exposed are damaged to some extent (and can even themselves be mutated).

Many forms of accurate radiotherapy techniques have been developed and it is still

a very popular form of treatment.

Both of these therapies have been refined over the years, but since they will not

be the subject of the mathematical models to follow, no further detail will be given

about surgery or radiotherapy techniques.

1.3.2 Chemotherapy

Chemotherapy involves the administration of drugs that kill cancer cells directly.

Unfortunately, this cytotoxicity is rarely specific to tumour cells alone leading to

the death of many normal cells. This results in a wide array of side effects that

limit both the size of the dosage and the minimum time interval between successive

administrations. In addition, there is a negative impact on the patient’s physical

and psychological well-being over the course of treatment. Initially, chemother-

apy agents were used primarily on those tumours that were beyond the physical

limitations of the surgical and radiotherapy techniques of the time.

The combination of different treatments presented a major leap forward, starting

with adjuvant therapy, the administration of chemotherapy agents after surgery

to kill the remaining cells. The next step was combination chemotherapy which

employed different cytotoxic agents administered concurrently. These were met

with success in certain forms of leukemia and lymphoma and these types of drug

cocktails are still researched extensively today.

Most often, these drugs damage the DNA or inhibit microtubule formation

which kills rapidly dividing cells. One of the most popular chemotherapy agents

is doxorubicin that induces apoptosis by essentially wedging itself between the two

DNA strands (intercalation) inhibiting transcription and replication.

One of the main current concerns in chemotherapy is the preferential targeting

of cancer cells over normal cells. This will be described later when drug delivery

6



vehicles are introduced.

1.3.3 Antiangiogenic Agents

In recent years the focus of cancer treatments has shifted dramatically. Up until

the past 10 to 15 years, the central concern was killing the cells which comprised

the tumour bulk. However, with the realization that angiogenesis was a crucial part

of sustained tumour growth, much energy and effort has been expended on the de-

velopment of antiangiogenic drugs. Originally the rationale was that destroying all

tumour vasculature would lead to the tumour being starved of essential nutrients

and oxygen leading to tumour cell death. When endothelial cell killing drugs such

as combretastatin were first injected into a tumour, the antiangiogenic effects were

deemed to be significant and fast-acting [5], yet the majority of tumour cells re-

mained unaffected. This is due to a number of factors but most importantly, many

forms of cancer can survive under hypoxic conditions. Not only does the tumour

survive, it also implies that a source of angiogenic signalling remains. Moreover,

with no vasculature in the tumour, it is then impossible to deliver chemotherapy

drugs to the interior of the tumour. An alternative to this approach, called vascular

normalization [6], involves applying enough antiangiogenic drugs to prune under-

developed and unnecessary vessels which would theoretically lead to a more regular

blood vessel structure. While this would likely improve the delivery of oxygen

and nutrients to the tumour, it would also provide a means of effectively delivering

chemotherapy drugs in a more homogeneous fashion to the tumour. Some successes

have been documented, the main limitation being that this state of normalized

vasculature lasts for a very brief period of time, referred to as the normalization

window, followed by either a return to an irregular, dense system or an overkill of

the endothelial cells.

While the efficacy of different treatment strategies remains far from established,

there have been a number of different angiogenic mechanisms successfully exploited

for antiangiogenic treatments. There are many types of drugs which target endothe-
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lial cell proliferation in various ways, some similar to regular chemotherapy drugs,

others with differing levels of specificity. While not specifically antiangiogenic,

standard chemotherapy agents have been shown to have antiangiogenic effects even

before they begin to kill tumour cells [7]. There are a few that do attack endothelial

cells directly such as combretastatin, angiostatin and endostatin. Combretastatin

disrupts the cytoskeletal structure of the endothelial cells causing them to change

into a balloon-shape resulting in vasculature breakdown [8]. Others inhibit the

migration or adhesion of endothelial cells. The other key area of antiangiogenic

therapy are those that indirectly target the endothelial cells by instead targeting

various signalling integrins and factors.

Naturally, due to its large role in tumour angiogenesis, VEGF is a prime target

of antiangiogenic therapy. The two most common ways to inhibit the action of

VEGF are by receptor-blocking or factor inhibition. In the former case, a small

molecule which blocks tyrosine kinase receptors is taken (most commonly an oral

administration), preventing the binding of VEGF. Two of these drugs are now

commercially available, sunitinib (Sutent) and sorafenib (Nexavar) while there are

a handful more in clinical trials. Sunitinib is commonly prescribed for the treatment

of gastrointestinal stromal cancer while sorafenib treats some liver cancers; both are

effective in treating kidney cancer. The side effects of these treatments are rarely

serious but due to their differing nonspecific receptor targeting there is an extremely

wide array of possible side effects. Factor inhibiting agents were the first type of

anti-VEGF drug developed and the monoclonal antibody bevacizumab was the first

anti-angiogenesis drug approved by the FDA mostly due to its successful combina-

tion with chemotherapy in a Phase III trial outlined in [9]. Bevacizumab recognizes

all of the VEGF isoforms and has widespread clinical applications. Shrouded in

some controversy due to questionable approvals for some types of cancer, it also

remains one of the most expensive drugs to manufacture. The most serious side

effects include the impairment of wound healing and the suspension of the body’s

natural blood vessel maintenance which has made the research focus turn to drug

localization. Large fenestrations in the tumour vasculature lead to some natural
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targeting of the areas around the tumour but nanoparticle and nanocell delivery

vehicles are currently a very hot area of cancer research. Both forms of anti-VEGF

treatments are now primarily used in combination with chemotherapy drugs or

radiotherapy.

Not mentioned in the previous discussion, it should be noted that destroying

tumour vasculature also has a double-edged sword effect on the likelihood of metas-

tasis. On one hand, destroying tumour vasculature eliminates the avenues to other

areas of the body. On the other hand if too much vasculature is destroyed, hypoxia

levels increase which has been shown to induce invasion [10] and promote metastasis

[11] in tumour cells.

Other forms of antiangiogenic treatment have been proposed, some the result of

mathematical models which show a specific mechanism to be a worthwhile target.

For instance, the blockade of the coupling between VEGFR-2 and its co-receptor

NRP1 was shown to be a good strategy in [12] yet such an inhibitor has not been

developed.

1.3.4 Other Treatments

While the most popular forms of treatment have been outlined, there are many oth-

ers which will not be included in the mathematical models to follow but those with

potential for significant clinical benefits should be considered in future modelling

attempts. Various hormonal therapies have gained prominence across genders since

breast and prostate cancers rely heavily on specific hormones for tumour growth.

In the case of prostate cancer, the paramount concern is the prevention of tumour

cells from obtaining dihydrotestosterone (DHT) by preventing its production or

blocking its activity. For breast cancer, the actions of the female sex hormones

progesterone and estrogen are inhibited.

Immunotherapy is a treatment that relies on the patient’s immune system to

fight the cancer. This can be achieved by giving monoclonal antibodies that can
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identify antigens specific to the tumour cells. In fact, the antiangiogenic drug beva-

cizumab can be thought of as a form of immunotherapy against tumour vasculature.

The developing field of radioimmunotherapy which uses radioactively conjugated

antibodies to target tumour antigens holds promise in treating radio-sensitive tu-

mours (such as lymphomas [13]).

For the past couple of decades, a plethora of reports have gained widespread

media attention for touting various foods as cancer-preventing or cancer-causing.

While there have been many misinterpretations of studies, there is scientific evi-

dence for the benefits of many agents that can be obtained through diet. While

these primarily serve as preventative measures, the treatment of cancer without

the use of ‘drugs’ has gained prominence in naturopathic circles. Those which

have been well-studied and found to be advantageous are usually encouraged by

oncologists to be used as complementary treatments to their conventional therapy

regimes.

1.4 Treatment Strategies

1.4.1 Maximum Total Dosage

The maximum total dosage (MTD) method has traditionally been the most popular

treatment schedule among oncologists. Since the vast majority of chemotherapy

drugs have serious side effects and are toxic to normally functioning cells as well as

cancer cells, there is an upper limit on how much of the drug can be administered

to an individual in a single administration. This amount is referred to as the MTD

and anything above this amount would cause the side effects of treatment to be

potentially lethal. Taking the MTD requires there to be a break of weeks between

each administration allowing the patient to recover from the treatment and healthy

cells that were effected to repair. The serious side effects incurred with this strategy

are detrimental to the patient on both a physical and emotional level. In addition,

research efforts have been forced to focus on drugs which counter side effects of these
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strenuous treatments rather than those which would cure the cancer. While this

method has fallen out of favour, the MTD is still often explored during experiments,

clinical trials and at certain critical points during a patient’s treatment.

1.4.2 Metronomic

The metronomic technique, coined in [14], is different from MTD in both the

scheduling and dosage of treatments. Dosages much lower than the MTD are

used and thus less recovery time is needed between treatments. These treatments

are applied more frequently, even daily and have been shown to cause less side

effects and improved tumour response. This technique has been shown to provide

increased antiangiogenic effects (reviewed in [15]) since the tumour vasculature does

not have time to repair during breaks in treatment [16]. It is surmised that this an-

tiangiogenic effect is achieved since metronomic scheduling can prevent the action

of circulating endothelial progenitor cells (EPCs) which are key components of the

vasculature repair [17].

1.4.3 Cancer Control vs. Cancer Cure

The predominant mindset for cancer treatment has always been to eradicate the

tumour, curing the disease. This goal has been met with varying success, most of

the time subjecting the cancer patient to the rigours of cytotoxic chemotherapy or

radiotherapy with their array of negative side effects and the subsequent palliative

care for these symptoms. In cases that are beyond cure, the clinical prerogative is

changed to extending life. This means that the tumour is no longer aggressively

attacked and instead only the drugs necessary to prevent patient death are applied

until the inevitable occurs. Perhaps this mindset shift is unnecessary; instead the

goal could always be control of the tumour, whether that be successful eradication

or not, this would be a more realistic yardstick for treatment success. As suggested

recently in [18], by controlling the tumour, specifically by preventing metastasis and
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its consequences, it may be possible in many cases to extend patient life beyond

that afforded by traditional rigourous treatment regimes.

1.5 Drug Delivery Vehicles

Encapsulating drugs in liposomal or polymer-based nanoparticles is a promising

field of recent medical experimentation, for a detailed review see [19]. By adminis-

tering drugs in these delivery vehicles, many advantages over direct administrations

as free agents have been observed. Improved tumour cell specificity can be achieved

by employing natural and engineered targeting and longer circulation times are ob-

tained by immune system avoidance leading to sustained drug release. The natural

targeting is enjoyed by most nanoparticles of an appropriate size (usually larger

than 100nm). The typical pore size in normal blood vessels is approximately 50nm

while the size of tumour vasculature pores can be upwards of 500nm. Due to their

size, the nanoparticles cannot escape the tight gap junctions of the normal blood

vessels leading to their extravasation primarily in the tumour vicinity. Once they

exit the blood vessel, they are now essentially trapped in the tumour tissue. This

leads to an increased efficiency of the contained agents and decreased side effects

in the normal tissue. This natural targeting process is referred to as the enhanced

permeability and retention (EPR) effect and was coined in [20].

1.5.1 Phospholipid-based Nanoparticles

Micelles are single-layered spheres of phospholipids, good for carrying hydrophobic

agents and are relatively easy to create. However, they have relatively short release

times since after injection they are rapidly dissolved to below the minimum micelle

concentration. Active areas of micelle research center around improved stability,

likely by incorporating polymers into their structure.

Double-layered phospholipid carriers are called liposomes and have the advan-

tage of being able to carry both hydrophobic and hydrophilic drug in a single
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Figure 1.1: Crossections of the two classes of phospholipid-based nanoparticles

commonly used in cancer treatment. Source: Wikipedia.

delivery vehicle. Longer circulation times can be achieved due to increased sta-

bility of the structure. These also have the advantage of being able to fuse with

other lipid bilayers such as the cell membrane. Crossections of these two delivery

vehicles, which both have many applications outside the field of drug delivery, can

be seen in Figure 1.1. The main disadvantage of lipid-based vehicles is that their

surfaces are not easily modifiable for targeting or immune system avoidance.

1.5.2 Polymer-based Nanoparticles

There are a couple broad categories of polymer-based nanoparticles with varying

levels of effectiveness that will be described.

Dendrimers

Dendrimers are manmade, branched polymers that have the ability to bind to var-

ious different molecules on their many terminal ends. Since the exact structure is

known, they can be loaded precisely. They gained prominence in medical research
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when their drug-trapping capabilities were first uncovered, but they remained rel-

atively unpopular in the field due to their increased toxicity over lipid-based and

other polymer-based nanoparticles. With the advent of various non-toxic struc-

tures, they are often used as drug-loading devices that are then encapsulated in

another of the liposomal or polymer-based nanoparticles about to be described.

Nanospheres

Polymer-based nanoparticles, usually forming a nanocapsule or nanosphere, are

typically upwards of 100nm in diameter and hence able to take advantage of the

natural targeting granted by the large fenestrations in tumour vasculature via the

EPR. While methods are being improved, there is still a relatively large variance

in size compared to that of phospholipid-based nanoparticles (there is negligible

variance in dendrimer size), leading to the necessity to filter out those which are

too small or too large to be effective for the desired clinical purpose.

The major advantage of polymer-based nanoparticles is that their stable surface

allows for surface modifications. As a result, in addition to this natural targeting,

these nanoparticles also enable bioengineered attempts at increasing cancer cell tar-

geting capabilities. Most commonly, a ligand is attached to the nanoparticle surface

whose corresponding receptor is overexpressed on the cancer cell membrane. The

prime example of this technique is folate targeting since folate receptors are overex-

pressed on the cell membrane of many different cancers. Due to the comparatively

low concentration of folate receptors on most types of healthy cells, this was identi-

fied as a possible marker that could be targeted, see Figure 1.2. By attaching folic

acid to both liposomal [23] and polymer nanoparticle surfaces, these nanoparticles

would be preferentially taken up by the tumour cells, leaving normal cells mostly

unaffected [24]. Folate-targeting has also been shown to be a good method for

overcoming multi-drug resistance in some cancer cell lines [25].

Many other cell surface receptors have been exploited for cancer treatment tar-

geting. Tumour vasculature has also been targeted, commonly using the αvβ3 inte-
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Figure 1.2: Comparing the levels of folate receptors on the cell membrane of normal

tissues with medium or high grade tumours. Recreated from [21] using data from

[22].

grin as a target for antiangiogenic therapies [26]. Recently, targeted nanoparticles

were not loaded with a specifically antiangiogenic drug, instead the chemotherapy

drug doxorubicin was used to kill the endothelial cells of the tumour vasculature

and some of the surrounding cancer cells. Effects of this treatment on vasculature

is shown in Figure 1.3.

The immune system is a large obstacle to overcome for successful drug deliv-

ery. As soon as a foreign substance is detected in our bloodstream, our immune

system tags them for removal (opsinization) and then macrophages remove them.
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Figure 1.3: Control case using phosphate buffer solution (PBS) and the effect of

RGD (integrin-targeting peptide)-Dox(doxorubicin)-NPs. Image from [26].

Therefore, the drug delivery system must attempt to avoid this natural process. By

attaching certain polymers to the surface of the nanoparticle envelope, the tagging

proteins are prevented from binding to the nanoparticle. A concern that must be

kept in mind is that in order to successfully target cancer cells via receptor-ligand

binding, the density of these polymers cannot be so high as to interfere with this

process.

A very promising area is the apparent ability of nanoparticles to smuggle ge-

netic material into the cell. Typically, cells employ various mechanisms to prevent

this from happening, degrading those nucleic acids which are fortunate enough to

pass through the cell membrane. However, using nanoparticles, treatments can

be developed that directly influence gene expression. Figure 1.4 shows a confocal

fluorescence microscopy of gold nanoparticles loaded with oligonucleotides that can

effect genes targeting a HeLa cell (immortal cell line from the cervical cancer of

Henrietta Lacks).

Nanocells

Pioneered by Shiladitya Sengupta at the labs of MIT, the nanocell is the term

attached to delivery vehicles that have the ability to trap different agents in separate
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Figure 1.4: Gold nanoparticles of diameter 13-nm (left) and 5-nm (right) targeting

HeLa cells. Image from [27].

layers of lipids and polymers. They attempted to achieve the same goals in targeting

and immune system avoidance as was done with nanoparticles. These nanocells are

approximately 150nm in diameter, allowing them to take advantage of the EPR

effect. Initial trials were reported in [28] and used a nanoparticle core (nanocore)

loaded with doxorubicin (chemotherapy) inside of a lipid envelope containing the

antiangiogenic drug combrestatin. The nanoparticles were heterogeneous in size, so

only those between 80-120nm were covered in lipids to form nanocells; see Figure

1.5 for the comparative size of the nanoparticle and the complete nanocell. This

delivery vehicle enables the controlled temporal release of two separate drugs in

a single administration. First, the outer lipid-bound antiangiogenic agents are

released and destroy or prune the surrounding vasculature. The chemotherapy

nanoparticles are now captured inside the tumour, liberating cytotoxic agents as

they erode. This proces is described in Figure 1.6.

This is an active area of research with recent attempts at improving folate-

targeted nanocells reported in [29]. A subsidiary goal in this thesis was to create

the nanocell out of cheaper materials, specifically chitosin. Unfortunately, this goal

was considered a failure but future research should attempt to provide an alternative

to the expensive polyethylene glycol (PEG)-disteroyl phosphatidylethanolamine

(DSPE).
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Figure 1.5: Approximate sizes of nanocell and nanoparticle core. Recreated from

[28].

In summary, while both liposomes and polymer nanoparticles have these distinct

advantages over free agents, each has their own unique disadvantages. Polymer-

based nanospheres have limitless potential for surface modification but there is typ-

ically a large variance in their size. Before administration, it is necessary to remove

those that are too small or too large. Man-made branched polymers (dendrimers)

are an ongoing area of research; favourable because of their precise branched struc-

ture that could attach many different molecules but risky since they usually are

highly toxic. Phospholipid-based micelles are single-layered entities which have

shown limited usefulness as nanoparticles due to their relative instability while

double-layered liposomes have displayed much longer release times. Both nanocap-

sules and liposomes seem to be the most widely used although advances in drug-

loading due to dendrimers and potential release mechanisms such as an electric

or sonar pulse for micelles could make these nanoparticles more popular. In the

future, it seems likely that the precise release of more than one agent by nanocells

will become the standard for cancer treatment regimes.
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Figure 1.6: The antiangiogenic agent in nanocells leads to tumour vasculature

normalization and the trapping of chemotherapy agents in the tumour.

1.6 Summary

The understanding of cancer biology has expanded exponentially over the past cou-

ple of decades; historically one of the largest threats to life with no known cure,

advanced treatment techniques greatly improve chances of survival. The discovery

of the important role of tumour angiogenesis led to the development of antiangio-

genic treatments which in combination with traditional chemotherapy agents have

improved clinical outcomes. Improved targeting and increased circulation time are

achieved due to the creation of drug delivery vehicles such as liposomes and polymer

nanoparticles. The surface of nanoparticles can be manipulated to target specific

cancer cell receptors and to degrade in a controlled way. The recent advent of

nanocells that have the aforementioned advantage along with the ability to carry

multiple agents could be the next leap forward for efficient delivery and tumour

eradication.

Our attention will now turn to modelling the processes of tumour growth and

angiogenesis. These will be reviewed with the end goal of predicting the outcome

of various combinations of treatments in drug delivery vehicles.
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Chapter 2

Mathematical Oncology

The search for a mathematical model that accurately predicts tumour growth has

been an ongoing field of research for over fifty years. The first models were simple

growth functions fitted to clinical data. These led to ordinary differential equation

(ODE) models usually borrowed from ecology. While this line of modelling has been

supplanted to a large extent by more advanced models that consider spatial effects,

recent ODE models have considered the tumours interactions with its microenvi-

ronment along with the effects of treatments including chemotherapy, surgery and

radiotherapy.

Spatio-temporal models, typically using partial differential equations (PDEs),

have enabled modellers to discard the commonly used tumour homogeneity and

symmetry assumptions. Incorporating heterogeneity by adding tumour vascula-

ture, growth factors, and hence more accurate drug distribution profiles have been

achieved in simulations using these various methodologies. Efforts continue to de-

velop spatial models that include accurate tumour vasculature and dosages of var-

ious treatment types; these will be the focus of my modelling attempts.

Some of the predominant mathematical oncology models will be presented along

with those that have guided my work.
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2.1 ODE Models

A number of the classical, strictly time-dependent models will be briefly explained

and their solutions presented.

2.1.1 Tumour Growth

Tumour growth has been traditionally modelled using ODEs, where a function for

their growth rate is formulated based on the qualities that the modeller observes

the tumour to exhibit. In other words, a function f is sought so that the tumour

cell population (or volume) n is described by

dn

dt
= f(n), n(0) = n0(> 0). (2.1)

The simplest form for this function f assumes that the growth rate is pro-

portional to the present population only, giving f(n) = rn where r > 0 is the

proliferation rate. This leads to exponential growth where n(t) = n0 exp(rt). How-

ever, this assumption holds only for a limited time since this growth describes

cell populations with a constant division time, abundant resources and unlimited

replicative potential. While the latter applies to tumours to a greater extent than

normal tissues, tumours still do not have an unlimited growth potential and are of-

ten subject to insufficient resources and most likely restricted in size due to spatial

constraints and other biological restrictions. In order to account for this, instead

of taking a constant proliferation rate, the proliferation rate k is taken to be a

decreasing function of n. That is, f(n) = k(n)n where k′(n) < 0. Most commonly,

a static ‘carrying capacity’ n∞ is imposed on the tumour cells, so that k(n) → 0

as n → n∞ causing n(t) to approach a finite limit corresponding to the maximum

tumour size independent of n0. A classical form for k(n) would be r(1 − n/n∞)

where r > 0 corresponding to logistic growth (first proposed by Pierre-Francois

Verhulst in ecology), giving

f(n) = rn

(
1− n

n∞

)
. (2.2)
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Intuitively this represents a growth rate that is proportional to the current popu-

lation and the amount of available resources where this resource competition is the

population-limiting factor. The solution of this equation is the logistic equation,

n(t) =
n0n∞

n0 + e−rt(n∞ − n0)
. (2.3)

This is the most well-known sigmoid (S-shaped) function where if n0 < n∞, the

solution increases to n∞, while if n0 > n∞, the solution decreases to this value. If

n0 = n∞, the constant solution n(t) = n0 arises.

This equation can be generalized to

f(n) =
rn

ν

(
1−

(
n

n∞

)ν)
(2.4)

where ν > 0 (ν = 1 is the usual logistic case). This leads to the Richards differential

equation which can be solved to find

n(t) =
n0n∞

(nν0 + e−rt(nν∞ − nν0))1/ν
. (2.5)

The solution has an inflection point at t∗ = 1
r

ln
(
nν∞−nν0
νnν0

)
, which corresponds to

n(t∗) = n∞/(ν + 1)1/ν . This is the point where the growth rate hits a maximum

and begins to decrease.

Taking the limit of (2.4) as ν → 0+ yields the Gompertz function

f(n) = rn ln
(n∞
n

)
.

While originally and independently formulated as a law for mortality [30], the above

relation with generalized logistic growth was first observed by Richards in [31]. This

can be seen by noting that

lim
ν→0

1

ν
(1− xν) = ln(x).

A very simple proof of this can be obtained by noting that this limit is equivalent

to the definition of the derivative of the function f(y) = xy at y = 0. The solution

of this ODE is

n(t) = n∞

(
n0

n∞

)e−rt
, (2.6)
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Figure 2.1: Analyzing the proliferation rate of tumour cells as a function of n in

various models gives insight into the tumour behaviour.

with an inflection point at t∗ = ln(lnn∞− lnn0)/r, when n(t∗) = n∞/e. A criticism

of the Gompertz model is that the proliferation rate for small cell populations is

unbounded. That is, the proliferation rate limit

lim
n→0+

k(n) = lim
n→0+

r ln
(n∞
n

)
=∞,

whereas in the generalized logistic case there is a finite limit for this proliferation

rate given by k(0) = r/ν < ∞. This is a more reasonable situation since the

proliferation rate of small populations is bounded by the rate of cell division. In

addition, it has been noted in [32] that the role of the body’s immune system is

precluded in any model where k(0) is unbounded. Comparing the growth rates of

these models occurs in Figure 2.1 and displays the finite limits at n = 0 of the other

models. It should be noted though that the Gompertz model still does accurately

fit many sets of tumour data. The actual growth curves given in Equations 2.3, 2.5

and 2.6 are displayed non-dimensionally in Figure 2.2. For a brief summary of the

nondimensionalization of these ODEs see A.1.
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Figure 2.2: Comparison of the classical tumour growth models (non-

dimensionalized) showing the inflection point when growth begins to slow.

There are many other variations, generalizations and combinations of the above

forms, attempting to more accurately represent tumour growth. However, the one

feature they have in common is their s-shaped sigmoid function behaviour. One

commonly used combination is the Gomp-ex model proposed in [33] which assumes

the tumour is initially experiencing exponential growth since its growth is not yet

limited by a lack of resources but at some point competition is introduced leading

to Gompertz growth (this eliminates issues with the unbounded growth rate). By

taking

f(n) = nmax
(
r1, r2ln

(n∞
n

))
the aforementioned transition would occur at

nc = n∞e
−r1/r2 .
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2.1.2 The Effect of Chemotherapy

From an intuitive standpoint, it is expected that chemotherapy will have a negative

population-dependent effect on the growth rate, and hence we add a term −g(n)

to (2.1). For g there are several viable forms. Denoting the known time-dependent

chemotherapy dosage by c(t), g is often considered to be proportional to c(t)n (the

log-kill model). This model assumes that a given dosage kills a fixed fraction of

the tumour cells, not a fixed number of cells and was first applied successfully to

leukemia cell populations [34].

While the assumption of a fixed fraction cell-kill is adequate for most applica-

tions, it has been observed that this fraction likely reaches a maximum and then

begins to decline to some fixed value (usually zero) as treatment progresses. This is

due to the fact that many cancer types have the ability to gain drug resistance prop-

erties or possibly some subpopulations of the original cancer were always unaffected

by the drug. A simple way to incorporate this would be to make g proportional

to c(t)f(n): the Norton Simon (NS) model [35]. In this case, the tumour equation

would simplify to
dn

dt
= f(n)(1− c(t)).

2.1.3 Angiogenesis and the Effect of Antiangiogenic Ther-

apy

Our understanding of tumour growth will now be augmented by expanding our

notion of a carrying capacity. Instead of having a static maximum size, the work of

Hahnfeldt et al. [36] is followed where they take this carry capacity to be a function

of t, that is proportional to the amount of vasculature m, present in the tumour.

The evolution of m is described by a function h giving a second ODE

dm

dt
= h(m,n, t).

The function m will now reflect the largest size of tumour that is sustainable given

the current amount of vasculature present in the tumour. Clearly, if n = m, then
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the size of the vasculature is just adequate to support the tumour, if n < m then

the tumour has the ability to grow and if n > m, the tumour must regress.

It is assumed that the process of angiogenesis depends on four key factors: (i)

the intrinsic or spontaneous loss rate of vasculature, (ii) proangiogenic factors from

the tumour cells, (iii) antiangiogenic factors and (iv) administered antiangiogenic

therapies. These are represented respectively in a proposed form for h given by

h(m,n, t) = −km+ bS(m,n)− dI(m,n)− Ama(t)

where k is the spontaneous loss rate, b, c and A are constants, the functions S

and I correspond to the effects of proangiogenic (stimulation) and antiangiogenic

(inhibition) factors respectively and a(t) is the concentration of administered anti-

angiogenic agents. Formulating a diffusion-consumption equation for the concen-

tration f of stimulator or inhibitor inside and outside the tumour gives

∂f

∂t
= D∇2f − kff + g, (2.7)

where g = 0 outside the tumour and g = g0 inside the tumour. Along with the

assumptions that the tumour is in a quasi-steady state (setting ∂f/∂t = 0) and

radially symmetric, the form of I is found to be cmn2/3. Hahnfeldt et. al go on to

show that the inhibitor term should grow mpmnpn times faster than the stimulation

term, where pm + pn = 2/3. Choosing pm = 1 and pn = −1/3 gives

dm

dt
= −km+ bn− dmn2/3 − Ama(t). (2.8)

It should be noted that in their analysis k was set to 0, assuming that the natural

endothelial cell loss is a neglible effect.

For b > k, a unique steady state exists:

n∞ = m∞ =

(
b− k
d

)2/3

. (2.9)

In [37], the optimal combination of radiotherapy and angiogenic inhibitors was

treated as as an optimal control problem using a modification of (2.8) where they
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replace n by m but retain the results of Hanhfeldt’s spatial analysis, so that

dm

dt
= bmp − dmp+2/3.

It should be noted that for all values of p, the steady-state solution of this equation

along with any of the possible forms of generalized logistic growth is the same as

that for the original equation (2.8), given by (2.9). While taking p = 1 would be

equivalent to simply replacing m by n, they sought to retain the behaviour of the

original system and found p = 2/3 to be more suitable for this giving the equation

dm

dt
= bm2/3 − dm4/3.

In [38] the dependence on the tumour size was retained in the equation for the

carrying capacity, it was simply suggested that the function S(m,n) be taken to

be m instead of n. This is an intuitive switch to make since this implies that the

vasculature growth is proportional to the present amount of blood vessels rather

than the tumour size. This by itself says that endothelial cell populations will

rise exponentially, but once again, when the inhibitor is taken into consideration

a saturating state is reached. By antiangiogenic therapy alone, an eradication

condition was derived, specifically eradication was achieved for a periodic treatment

of period T if and only if
A

T

∫ T

0

a(t) dt ≥ b− k.

2.2 Spatial Models

An outline of some previous spatial modelling attempts, some based on the above

work, will be overviewed and additional biological features such as blood vessel

network structure will be included in our discussion. First growth factors modelling

will be outlined, leading to vasculature modelling before showing how these can be

incorporated into a tumour model.
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2.2.1 Modelling Growth Factor Activity

Following [39] for the preliminary modelling, let f ej denote the concentration of

factor j where the factor can either be considered to be proangiogenic (p) or an-

tiangiogenic (a) in behaviour, in an environment e, where the environment can be

malignant (m) inside the tumour or host (h) outside the tumour. Assuming these

factors are produced at a constant rate gej , degrade exponentially at a rate kej and

diffuse with diffusion constant De
j , all of which differ inside and outside the tumour

and for anti- and proangiogenic factors, the PDE

∂f ej
∂t

= De
j∇2f ej − kejf ej + gej (2.10)

is obtained giving a more generalized version of equation (2.7). However, now

instead of incorporating this into an equation for vasculature, this equation is now

explicitly retained for the growth factors. Now by making a similar pseudo steady-

state assumption, it is assumed that local changes in factor concentration are very

small: ∂f ej /∂t = 0. Further assuming radial symmetry with a tumour of radius R,

solutions of the moving boundary problem governed by the equation

De
j

1

r2

∂

∂r

(
r2
∂f ej
∂r

)
− kejf ej + gej = 0 (2.11)

with suitable boundary conditions can be derived. Since the assumption of radial

symmetry will not be used, these solutions are omitted; further details are given in

Appendix A.2.

Angiogenic Activity

The balance between the proangiogenic and antiangiogenic factors is the deter-

minant of whether or not angiogenesis will be suppressed or initiated. This was

represented in [39] by the parameter αGF and is defined by

αGF =
fp
fa
− 1 (2.12)

where αGF > 0 corresponds to angiogenesis being initiated, αGF = 0 when angio-

genesis is just suppressed and αGF < 0 implies no angiogenesis is taking place and
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Figure 2.3: Areas of angiogenic suppression and stimulation based on the balance

of angiogenic factors. Image from [39].

vessels are degrading. This measure of angiogenic activity could be incorporated

into blood vessel development models based on the previous observations. A typical

scenario of an angiogenic activity radial profile displaying angiogenic repression at

the tumour core and angiogenic stimulation around the rim is shown in Figure 2.3.

Angiogenesis and Vasculogenesis

In [40], the measure of angiogenic activity αGF (2.12) is included in a model for

endothelial cell growth. Letting m denote the concentration of endothelial cells,

they formulated the empirical relation (based on tissue perfusion data from [41]),

m = m0e
k1αGF , (2.13)

where m0 is the vascular density of normal tissue and k1 > 0.

As discussed, angiogenesis, the development of blood vessels from pre-existing

vasculature, plays a large role in tumour growth and development. Vasculogenesis,
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the formation of new blood vessels where there were none before, was believed

to only occur during embryonic blood vessel development (embryogenesis) when

endothelial cells arise from endothelial progenitor cells (EPCs). However, it has

been observed to play a role in tumour vascularization as well [42]. Along with

equation (2.13), they include the contribution of vasculogenesis by formulating a

PDE for the concentration of EPCs mEPC in the system,

∂mEPC

∂t
= k2mEPC

(
1− mEPC

m∞

)
+

k3mq αGF if αGF > 0,

0 if αGF ≤ 0,

(2.14)

where the first term represents the logistic growth of EPCs and the second term

describes the rate of adhesion of EPCs to tumour vasculature. This adhesion is

proportional to the product of EC density m, the flux of EPCs q and the level of

angiogenic activity αGF. They then use a formula for symmetric tumour growth

with a growth rate dependent on mT = mEPC +m.

Endothelial progenitor cells have been touted in the literature (for example in

[43]) as a potential target for antiangiogenic therapy. As such, further modelling

attempts should attempt to include them; however, for our purposes their effect on

the system is considered to be negligible.

2.2.2 Modelling Tumour Vasculature

There are an abundance of different mathematical methods for simulating vascu-

lature networks in the literature. A few general techniques that have inspired the

models to follow will be presented here.

Continuous Models

Instead of incorporating the exact structure of the blood vessel network into a

model, continuous models could be used instead that uses a more coarse-grain

concentration of endothelial cells on some domain.
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A model of tumour-induced angiogenesis was given in [44] where Anderson and

Chaplain developed a mathematical model that incorporated a number of differ-

ent forms of cell movement in response to various environmental factors. In their

model they consider endothelial cell density, proangiogenic factor concentration

(they called these tumour angiogenesis factors (TAFs) in their model) and the

ECM-bound ligand fibronectin. Fibronectin is primarily responsible for the adhe-

sion of cells, including endothelial cells to the ECM. Using just these three biological

entities they were able to consider endothelial cells moving due to three separate

phenomena: (i) random motion modelled using simple diffusion, (ii) chemotaxis

induced by the proangiogenic factors and (iii) haptotaxis in response to the ligand

fibronectin. This leads to the equation for endothelial cell density,

∂m

∂t
= Dm∇2m−∇ · (χ(fp)m∇fp)−∇ · (ρ0m∇l), (2.15)

where Dm is the random-motility (diffusion) coefficient, χ(fp) is the chemotactic

function, and ρ0 is the haptotactic coefficient. The chemotactic function was typ-

ically taken to be a constant in previous models but here they use the function

χ(fp) = χ0k1/(k1 + fp) where χ0 is the chemotactic coefficient and k1 > 0 in order

to achieve decreased chemotactic sensitivity as the proangiogenic factor concentra-

tion increases. Given some initial amount of angiogenic factors produced by the

tumour cells (note that they are not included in this model), they then assume

these factors satisfy the equation

∂fp
∂t

= Dp∇2fp − kpfp,

where Dp is the diffusion coefficient and kp is the natural decay rate. Using the

steady state of this equation as the initial condition, they then evolve the factor

concentration by
∂fp
∂t

= −µpmfp, (2.16)

representing the binding of these factors to endothelial cells. Fibronectin is con-

sidered to be produced by endothelial cells only and the binding of fibronectin to
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endothelial cells will once again be modelled using a simple uptake term giving

∂l

∂t
= ωm− µlml, (2.17)

where the production rate ω and the uptake rate µl are both positive constants.

Performing simulations of the above system, this model shows a wide array of

potential behaviours. Considering haptotaxis, their inclusion or exclusion effects

the migration pattern of endothelial cells toward a tumor. Without haptotaxis,

endothelial cells migrate directly to the tumour while when it is included, the

migration is slower and there is notable lateral movement of the cell clusters as

they move through the ECM. The chemotactic term influences the behaviour as

certain parameters can be chosen in the chemotactic function that can lead to

endothelial cells never connecting with the tumour that they are moving toward.

There has also been a continuous model developed that simply identifies areas

as vascularized or non-vascularized. This PDE formulation was given in [45] where

m denotes average blood vessel distribution and

∂m

∂t
= Dm∇2m+ g(m),

where the appropriate choice of g(m) ensures the development of vascular and

non-vascular domains within the tumour as follows. Taking this function to be

g(m) = αm+ βm2 + γm3 enables us to have three fixed points (when α < 0, β > 0

and γ < 0). By taking α = −Z, β = 3Z and γ = −2Z (where Z > 0) there

are two stable fixed points at 0 and 1, along with an unstable equilibrium at 1/2.

This corresponds biologically to immature vessels either maturing or regressing,

they do not remain in an in-between state normally. Starting from a random initial

condition of values between 0 and 1, this system evolves into distinct areas that are

absent of blood vessels (m = 0) or fully vascularized (m = 1). Taking Z = 1 gives

the model they used

∂m

∂t
= Dm∇2m+m(−1 + 3m− 2m2). (2.18)

With the growth term being fixed, the remaining parameter Dm describes the speed

at which endothelial cells spread out. As can be seen in Figure 2.4, this parameter
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effects the spatial vascularization pattern although in the infinite time limit any

Dm > 0 will result in a fully vascularized region.

Figure 2.4: Increasing Dm leads to larger areas of vascularization. Images shown

are at day 50. Dark blue corresponds to m = 0, dark red to m = 1.

This vasculature model was coupled with a PDE for tumour growth along with

oxygen concentration to study the effects of combination chemotherapy and an-

tiangiogenic therapies. These antiangiogenic therapies were assumed to perform a

log-kill of the endothelial cells in the system.

Discrete Models

To generate an initial distribution of microvessels, Torquato et al. created an al-

gorithm [46] to approximate the microvascular network of the brain. This model

could be considered as a random analog of the Krogh cylinder model, a model that

was shown to be a poor approximation for vessels in the brain in [47] since it as-

sumes that the vessels are straight, parallel and uniformly spaced while in reality

the structure is much more complex. For the model, they assumed the vasculature

exists on a triangular lattice that is overlaid on a more complex random lattice

that corresponds to individual cells with nonuniform shapes and sizes. None of our

tumour models will use automation cells or discrete cell units in general, so the
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details of their tumour model and its interaction with the blood vessel model are

omitted. To simulate their network the following steps were taken:

1. A random node on the lattice is chosen.

2. A random angle (from the six possibilities) is chosen.

3. The vessel extends at this angle from the original node until one of the fol-

lowing occurs

(a) The vessel reaches the boundary of the grid.

(b) The vessel penetrates within a radius of one lattice unit about an existing

vessel oriented at the same angle.

(c) The vessel would cause the intersection of three blood vessels at a single

node. If this occurs the vessel is truncated at its last intersection with

another vessel.

4. If the vessel does not vascularize at least one unvascularized cell, it is dis-

carded, otherwise, it is incorporated into the network. Repeat.

The above steps are taken in the interest of preserving some of the optimal design

characteristics of normal vasculature. It should be noted that while five- and six-way

intersections are prevented, the unnatural four-way intersection is still permitted.

An example of one of their microvessel network simulations is shown in Figure 2.5.

Random walk techniques have been widely employed to model angiogenesis, in

fact the model outlined above by Anderson and Chaplain has a discrete analog

that they also outlined in [44]. Probabilities of moving in specific directions are

assigned based on the stimuli of factors and fibronectin in their environment. This

has the effect of producing vessels that develop according to a directed random

walk from a parent vessel in the direction of the tumour mass. This model was

successful at reproducing the ‘brush border’ of dense blood vessels at the tumour
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Figure 2.5: A sample simulation of the Torquato et al. microvessel algorithm

(showing underlying cell lattice). Image from [46].

periphery. In addition, branching and anastosmosis (blood vessel connections) were

observed for some parameter values. This model from [44] has been expanded in

many different ways, but perhaps most importantly, the flow through the network

and chemotherapy schedules have been considered [48]. The flow was originally

found after generating a hollow blood vessel network but has been improved to

have this flow effect the network development, leading to the so-called dynamic

adaptive tumour-induced angiogenesis (DATIA) model [49] which has been used to

test treatments and suggest treatment targets.

In a recent paper [50], random walk vasculature implemented in 3D has been

used to study the effect on blood perfusion when tumour vasculature normalization

is initiated by antiangiogenic therapy.
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Invasion percolation, a technique successfully applied in previous papers in other

areas, was applied to tumour vasculature in [51] and works as follows. First, each

grid point is assigned a random value, usually uniformly distributed although other

distributions could (and probably should) be used. Starting from some point on

the grid (conventionally the bottom left corner) the adjacent point with the lowest

random value assigned to it is chosen. This process is continued until the desired

grid occupancy is reached. The network is formed by connecting all adjacent points

that have been chosen. Flow can be added to the model by assuming that the source

of blood is the bottom left corner while fluid can exit the grid via the top right

corner. Those vessels which have nonzero flow are referred to as the backbone

while the rest are assumed to be non-perfused and are pruned from the system

when considering the vasculature of healthy tissue. It has been suggested that the

fractal dimension of the vasculature structure could be an important quality in

judging the validity of vasculature models. Various vasculature network generating

schemes can be evaluated in this matter including the invasion percolation method

which seems to correspond well with the fractal dimension of tumour vasculature.

The fractal dimension of the vasculature structure dm is calculated using the box-

counting method which is calculated by finding

dm := lim
l→0

lnNm(l)

ln(1/l)
,

where Nm is the number of boxes with side length l needed to cover all the vessels

in the vasculature network. This implies that Nm ∝ l−dm .

Using a hexagonal lattice as the basis for vascular development was proposed in

[53] and developed in [52] has been applied to tumour vasculature in [54] and more

recently in [55]. An underlying triangular lattice was added in order to incorporate

tumour cells at these sites. The basis for the vasculature is a tripod consisting of

three tubes of length l separated by 120◦. A difference in [55] compared to [52] is

the first step in creating the initial vessel structure. In [52] the entire network was

created by randomly attaching tripods to the terminal points of pre-existing tripods.

The initial condition was three source tripods equally spaced on the periphery of
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Figure 2.6: The development of blood vessel networks on a hexagonal lattice. Image

reproduced from [52].

the roughly circular domain with three sink tripods placed in the center of the

domain. See Figure 2.6 to see the development of this 2D network. In [55] there

are a handful of initial vessels simulated first with directed random walks that are

taken to be either sources or sinks. Tripods are then randomly attached to points

on these vessels or to tripods which have already been placed. Tripods continue

to be randomly placed until no permissible location remains. With arteries and

veins corresponding to sources and sinks respectively, the tripod networks of the

disconnected veins or arteries are connected with single tubes which are considered

to be capillaries. These vessels have different diameters based on ‘Murray’s Law’

[56] that relates the parent vessel radius r0 to the radii of its two branches r1 and

r2 by the equation

rα0 = rα1 + rα2 ,

where α > 0 is called the diameter (or bifurcation) exponent. Originally shown

by Murray that α = 3 minimizes the energy required for blood transport [56],

observations have suggested a lower value and it was found in fact that α = 2.7

minimizes the amount of vascular wall material needed [57]. By fixing the radii of

the tips of these trees, the radii of a vessel can be found recursively once all its

descendants’ radii have been found. These networks are then remodelled due to

pressure or shear force dependent processes and further development of this model

depends on both the oxygen concentration provided by the vasculature and the
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concentration of growth factors being excreted by tumour cells. See Figure 2.7 for

a couple simulations of their algorithm with different initial conditions.

Figure 2.7: Sample simulations from initial conditions given in top right corner of

images. Images from [55].

The main reason vasculature was originally included in tumour growth models

was to better predict tumour growth and gain an understanding of the dynamics

of their interaction. For a more detailed review of tumour-induced angiogenesis see

[58]. The other added benefit of including blood vessels is the ability to calculate

an accurate drug distribution. To this end, drug delivery models dependent on the

blood vessel network will be outlined.

2.3 Pressure and Drug Delivery

In [59] Jain reviews a model that describes, “the transport of molecules across

tumour vasculature”. The mathematical formulation appears to be important in

describing the distributions of various agents in the tumour. In [60], it is shown

using a mathematical model that the heterogeneous (and hence, unfavourable) dis-

tribution of monoclonal antibodies (MAbs) is primarily due to interstitial fluid pres-

sure (IFP). They even show that in a tumour, despite the homogenizing effects of

high vascular permeability and interstitial transport coefficients, the heterogeneous
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antigen distribution and blood perfusion along with hindered interstitium diffusion

and extravascular MAb binding are not sufficient to describe this heterogeneous

MAb distribution. This model was further developed and analyzed in [61]. Their

formulation will be outlined here for incorporating IFP into a drug distribution

model. This will be needed later to formulate the PDE for other macromolecules

(specifically nanoparticles and angiogenic factors).

Assuming a radially symmetric tumour mass, the radially outward fluid velocity

at the tumour periphery, uR, can be found by dividing the fluid loss by the total

tumour surface area:

uR = ρV QIF/A = ρRQIF/3,

where ρ is the tumour density (g/mL), QIF is the net fluid loss from the tumour

periphery and R, A and V are the tumour radius, surface area and volume (cm,

cm2, cm3) respectively. Values for QIF have been obtained in a number of studies

[62, 63, 64] with values around 0.14-0.22 mL/h/g-tissue, much larger than the

typical lymphatic drainage in normal tissues (0.002-0.07 mL/h/g).

From Starling’s Law, the net fluid loss from a single vessel, Jf (mL/s), is given

by

Jf = LpS[pv − pi − σT (πv − πi), ] (2.19)

where Lp is the hydraulic conductivity of the vascular wall (cm/mmHg-s), S is the

total exchange area of the vessel (cm2), pv(i) is the vascular (interstitial) pressure

(mmHg), πv(i) is the plasma (interstitial) osmotic pressure and σT is the osmotic

reflection coefficient of plasma proteins (the fraction of solute filtered through a

membrane if there is zero concentration difference with high filtration rate). In

normal tissues, the excess fluid Jf would be removed by the lymphatic system; in

tumours the fluid can either leak toward the core of the tumour, or toward the

periphery. Inward flow would lead to increased IFP until an effective pressure,

pe = pv − σT (πv − πi), is reached at which point Jf = 0. Outward flow would lead

to excess fluid entering the interstitium. The interstitial velocity of this fluid, ui, is
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related to the IFP by Darcy’s Law:

ui = −Kdpi
dr
, (2.20)

where K is the hydraulic conductivity of the interstitium and r is the distance from

the tumour core.

Considering the conservation of mass between the fluid filtered from the vessels

with the fluid moving toward the periphery gives

1

r2

d(r2ui)

dr
=
Jf
V
. (2.21)

Substituting equations (2.19) and (2.20) into (2.21) yields

1

r2

d

dr

(
r2dpi
dr

)
= −Lp

K

S

V
(pv − pi − σT (πv − πi)). (2.22)

The transport of solute molecules Js due to extravasation from blood vessels,

described by the membrane pore model, can be written as a sum of its diffusive

and convective parts, where diffusion is proportional to the difference between the

plasma concentration cp and the interstitial concentration ci and convection is pro-

portional to the fluid leakage Jf in (2.19) giving

Js = PS(cp − ci)Pe/(ePe − 1) + Jf (1− σ)cp, (2.23)

where Pe is the Peclet number defined by

Pe =
Jf (1− σf )

PS
,

P is the vascular permeability coefficient and σf is the osmotic reflection coefficient

for the solute. For most molecules the first term can be ignored since they do not

diffuse very much, instead their primary means of movement is convection.

Once the macromolecule leaves the blood vessel and enters the interstitial space,

diffusion may become a more important factor in its movement. Its diffusion is pro-

portional to dci/dr while the convection is proportional to interstitial fluid velocity

ui given in (2.20). This gives the interstitial flux

I = rfuici −D
dci
dr
, (2.24)
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where D is the constant interstitial diffusion coefficient and rf is the retardation

factor (the ratio of solute velocity to fluid velocity). Now, balancing the solute

extravasation from blood vessels in (2.23) with the solute moving in the interstitial

space gives a convection-diffusion equation for solute concentration in the intersti-

tium
∂ci
∂t

=
D

r2

∂

∂r

(
r2∂ci
∂r

)
− rf

1

r2

∂

∂r
(r2uici) +

Js
V
.

The above equation can be useful when considering the extravasation of drug de-

livery vehicles from tumour vasculature and the release of the agents contained

therein and could be easily expanded to a non-radially symmetric case.

Drug delivery models have now been reviewed, specifically the extravasation

from blood vessels and its spread through tissue. However, the actual interactions

between the agent and the targeted tumour cell have not been considered. To this

end, models for the binding between ligands present on delivery vehicles and the

cell membrane receptors will be evaluated now.

2.4 Receptor-Ligand Binding Models

When a cell receptor and a nanoparticle conjugated with ligands are brought close

to each other due to non-specific interactions (Brownian motion, van der Waals

forces, etc.), receptor-ligand binding may occur. It will be suggested here that a

model developed by Bell [65] to describe binding events between two cells could be

potentially extended to this situation.

2.4.1 Bell’s Deterministic Model

LettingN1 be the density of total available receptor, N2 the density of total available

ligand, Niu the density of unbound receptor/ligand respectively for i = 1, 2 and Nb

the density of bound receptor-ligand, they satisfy

Ni = Niu +Nb, i = 1, 2. (2.25)
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Assuming bond formation is governed by the simple kinetic equation

dNb

dt
= k+N1uN2u − k−Nb, (2.26)

where k+/− is the forwards/backwards (association/disassociation) kinetic rate con-

stant. Using (2.25), (2.26) becomes

dNb

dt
= k+(N1 −Nb)(N2 −Nb)− k−Nb. (2.27)

If it is further assumed that N1 � Nb, then (2.27) simplifies to

dNb

dt
= k+N1(N2 −Nb)− k−Nb, (2.28)

and at equilibrium,

N∞ = KN1N2/(1 +KN1), (2.29)

where K = k+/k− and is referred to as the association constant.

Binding is assumed to be a (conceptually separated) two-step reaction, where

at first they diffuse into sufficiently close proximity to permit the second reaction

step (as in [66]). Denoting the so-called “encounter complex” where receptor and

ligand are within some critical radius C by R ◦L and the bound receptor-ligand by

RL, this concept can be represented as the chemical reaction

R + L
d+

GGGGGGBFGGGGGG

d−
R ◦ L

r+

GGGGGGBFGGGGGG

r−
RL

where d, r+/− are the appropriate directional reaction rates.

In many cases, since the concentration of the encounter complex is low compared

to receptor or ligand concentration, it is assumed that the rate of change of the

encounter complex is negligible, i.e. d[R◦L]/dt = 0. Thus, the kinetic rate constants

can be approximated by

k+ = d+r+/d− + r+ and k− = d−r−/d− + r+.

If it is further assumed that r+ � d−, i.e. the encounter complex is much

more likely to react than to dissociate, which is true in a viscous membrane, then

k+ = d+ and k− = d−r−/r+.
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Determining the strength of bonding between a ligand-conjugated nanoparticle

and a receptor-rich cell is important so now the force necessary to separate the

cell-particle bond is calculated. From kinetic theory for the strength of solids (see

[67]), the lifetime τ of one of these bonds is given by

τ = τ0e
(E0−γf)/kBT , (2.30)

where τ0 is the reciprocal of a natural frequency of oscillation of atoms in solids

(≈ 10−13s), E0 is the bond energy, f is the applied force per bond, γ is an empir-

ically determined parameter to account for structure and imperfections (reactive

compliance), kB is the Boltzmann constant (≈ 8.617 × 10−5eV/K) and T is tem-

perature.

It is natural to identify τ(f = 0) with the inverse reverse rate constant (k−)−1.

Suppose a force F is attempting to separate the cells where each bond is equally

stressed, so the force per bond is F/Nb. Then the reverse reaction rate k− in (2.28)

should be modified to

k− = k−0 e
γF/kBTNb , (2.31)

where k−0 is the unstressed rate of disassociation. The revised ODE is given by

dNb

dt
= k+N1(N2 −Nb)−Nbk

−
0 e

γF/kBTNb . (2.32)

If the force is zero before t = 0, there is initially an equilibrium given by (2.29).

After a while, a new equilibrium will be reached where N∞ is given by (2.29) except

K = k+/k−0 and is multiplied by e−γF/kBTNb .

To find the critical force FC , which is just strong enough to detach the ligand

and receptor, the two terms on the RHS of (2.32) are considered. Refer to Figure

2.8 to see that for F = FC , the two terms are equal at their point of tangency, i.e.

when their slopes are equal. Thus, the critical force per potential bond, fC , is

fc =
FC
N1

=
kBTαc
γ

, (2.33)

where αc is the solution of αce
αc+1 = KN2.
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Figure 2.8: Equilibrium solutions of (2.32) correspond to equality of the first and

second terms. Observe that for the critical force, the curves are tangent. Figure

from [65].

2.4.2 A Stochastic Model

This stochastic formulation is based upon the deterministic equation derived by

Bell and was derived in [68]. Letting Xt denote the concentration of bound ligand-

receptors at time t and A = γ/kBT , the assumption N1 � Xt is used but now Xt

at any given time is a probability distribution of bonds, not a particular value. Our

focus is limited to one square unit of area (to ensure Xt is discrete).

Letting X∆t = Xt+∆t −Xt, for 1 ≤ Xt ≤ N2 − 1,

P{X∆t = i|Xt} =

k
+N1(N2 −Xt)∆t+ o(∆t) if i = 1

k−e
AF
Xt Xt∆t+ o(∆t) if i = −1.

(2.34)

Making adjustments for Xt = 0 and Xt = N2, a system of PDEs can be formu-
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lated for the discrete probabilities pi(t) = P{Xt = i},

∂p0(t)

∂t
=k−eAFp1(t)− k+N1N2p0(t),

∂pi(t)

∂t
=k+N1(N2 − (i− 1))pi−1(t) + (i+ 1)k−eAF/(i+1)pi+1(t),

− (k+N1(N2 − i) + ik−eAF/i)pi(t) for 0 < i < N2,

∂pN2(t)

∂t
=k+N1pN2−1(t)−N2k

−eAF/N2pN2(t).

(2.35)

Since
∑
pi = 1, the distribution of X∞ is found by solving the steady-state

solution of (2.35):

pi(∞) =
N2!

(N2 − i)!
(KN1)ip0(∞)∏

1≤j≤i
jeAF/j

,

p0(∞) =

1 +

N2∑
i=1

N2!

(N2 − i)!
(KN1)i∏

1≤j≤i
jeAF/j


−1

.

(2.36)

In the case where there is no separating force, the probability-generating func-

tion (PGF) P (θ) =
∑
piθ

i is found to be the Taylor expansion of g(θ) = (1 +

KN1)−N2(1 +KN1θ)
N2 , i.e.

P (θ) =

N2∑
i=0

g(i)(0)

i!
θi. (2.37)

The mean is P ′(1) = KN1N2/(1+KN1) which agrees with the previous model’s

equilibrium solution in (2.29).

Turning our attention again to the force necessary to separate all bonds, it is

necessary to focus on p0(∞), the probability that there are no bonds formed. If

F = FC , then p0 = 1 to many decimal places, but even when F = FC/2, p0 > 0.99,

a stark contrast with the predictions from the deterministic model.
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2.4.3 Cell Adhesion with Two Receptors

The model in [69] will be followed in order to consider the situation where a large

number of adhesion molecules are randomly placed on both the surface of the sphere

(nanoparticle) and the plane wall (cell membrane). In their paper they considered

the binding of leukocytes to the vascular endothelium. However, some of the meth-

ods outlined below could prove useful. Receptor-ligand pairs are randomly tested

for bond formation according to deviation length-dependent binding kinetics. A

bond formation is thought of as a spring with fixed (with respect to the appropri-

ate surface) endpoints. The force and torque exerted by a bond on the sphere and

its probability of bond breakage are dependent on the length and orientation of

the spring. Summing external forces and torques determines the translational and

rotational velocities of a sphere under flow.

The kinetics of a single bond are described using Bell’s model, specifically Equa-

tion 2.31, which relates the rate of dissociation with the applied force F . Now using

the Boltzmann distribution of affinity (see [70]),

k+

k−
=
k+

0

k−0
exp

(
−σ|xb − λ|2

2kBT

)
, (2.38)

where σ is Hooke’s Law spring constant, |xb − λ| is the deviation bond length and

k+
0 is the unstressed association rate (has not been experimentally measured), we

find

k+ = k+
0 exp(σ|xb − λ|(γ − 1

2
|xb − λ|)/kBT ).

A short-range repulsive force between the surfaces has the form

Frep = F0
δe−δε

1− e−δε
,

where 1/δ is the length scale (on the order of angstroms) and ε is the separation

between the surfaces. The direction of this force is normal to the plane or in

interactions between two particles, along the line which connects their centers.

The roughness of the cell and the particle is assumed to be caused by ‘bumps’;

these bumps are dense enough to support the particle but spread out enough that
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they do not substantially effect the flow of the objects. The adhesion or repulsion

between these surfaces is assumed to take place between the tips of these bumps.

Gravitational force is also added since most particles of interest are more dense

than the liquid that they are in.

For small particles, the particle’s inertia can be neglected and we need only look

at the motion of the fluid which is given by the Stokes and continuity equations

−∇p+ µ∇2u = 0, ∇ · u = 0.

where p is the pressure, u is velocity and µ is the fluid viscosity.

So-called no-slip conditions are imposed at the cell surface:

u = Uα + ωα × (x− xα), x ∈ Sα

where Uα and ωα are the translational and rotational velocities of the particle α,

xα is its center of mass and Sα is its surface.

2.5 Summary

The classical tumour growth models along with the effects of chemotherapy form

the simplest class of tumour-treatment models. The addition of angiogenesis as

an effect on the tumour carrying capacity improved the validity of non-spatial

models. In Chapter 3 an extension of this model was considered that includes

both chemotherapy agents and antiangiogenic agents. These ODE models have

the distinct advantage of intuitive and computational simplicity while those that

include spatial effects have more detailed and accurate heterogeneities.

The many spatial models of angiogenesis presented here represent a very small

fraction of those that exist in the literature but serve as a brief survey of important

classes of models. Along with angiogenic factor concentrations, it is believed that a

continuous formulation for endothelial cell density can be useful in tumour growth

models and will be used to predict treatment outcomes in Chapter 4.
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Incorporating the effects of convection and interstitial fluid pressure on the

extravasation of molecules from blood vessels will make the prediction of drug

distribution through a tumour more accurate. This model will be further developed

in the future and is outlined in Chapter 5. New work that incorporates convection

of angiogenic factors and its effect on the overall angiogenic activity of the tumour

will also be shown.

The necessary groundwork has been laid out to consider a model of the binding

of drug delivery vehicles to the cancer cell membrane and will be considered in

future models. Along with these considerations, it is believed that the future of

angiogenesis models lies in including the specific structure of tumour blood vessel

networks in order to consider the precise flow and perfusion in these vessels. A novel

algorithm for generating these blood vessel networks will also briefly presented in

future work. Depending on the application, many of these existing tumour growth

and angiogenesis models will continue to be relevant to mathematical oncologists.

The development of mathematical oncology will continue to provide insight and

understanding into the biological processes of cancer and the outcomes of various

treatments.
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Chapter 3

Cancer Modelling with ODEs

A general ODE model for tumour growth and chemotherapy will be coupled with

the Hahnfeldt model for incorporating a vasculature-dependent carrying capacity

and antiangiogenic treatments. Various treatment scenarios and parameters are

evaluated and discussed.

3.1 Tumour Growth and Chemotherapy

Letting n(t) denote the mass of cancer cells present in a tumour at time t, it is

assumed that tumour growth is governed by the differential equation

dn

dt
= f(n)− g(n, t), n(t0) = n0(> 0) (3.1)

where the function f describes the growth rate of the tumour and g describes

the negative effect of the drug on the tumour size. We use a simple case for the

chemotherapy effect given by log-kill:

g(n, t) = Anc(t)n,

where An > 0 is the strength of the chemotherapeutic agent being administered

and c is the temporal profile of the drug concentration.
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First, the tumour growth function f is taken to be logistic as in equation (2.2).

Now, solving the equation

dn

dt
= rn

(
1− n

n∞

)
− Anc(t)n

gives the solution

n(t) =
n0n∞ exp(rt− An

∫ t
0
c(s)ds)

n∞ + rn0

∫ t
0

exp(rq − An
∫ q

0
c(s)ds)dq

. (3.2)

Tumour eradication occurs when the average chemotherapy-induced death rate is

larger than the proliferation rate. That is, limt→∞ n(t) = 0 when the condition

An
T

∫ T

0

c(t) dt > r

is satisfied. Assuming only that the function c is piecewise continuous, this function

has been taken to be many different forms in various scenarios. In some applications

c has been taken to be a periodic function, a constant value or in our case the sum

of exponentially decaying functions; this will be described shortly.

If the model is complicated slightly by taking tumour growth to be generalized

logistic, the expected curve for n,

n(t) =
n0n∞ exp( rt

ν
− An

∫ t
0
c(s)ds)

(nν∞ + rnν0
∫ t

0
exp(rq − νAn

∫ q
0
c(s)ds)dq)1/ν

is found. A similar condition for tumour eradication can be easily observed to be

An
T

∫ T

0

c(t) dt >
r

ν
.

The final scenario considered is tumour growth in the Gompertz regime. This

leads to the following solution:

n(t) = n∞ exp

[
e−rt

(
ln
n0

n∞
− An

∫ t

0

c(s)ersds

)]
.

Without knowledge of the analysis to follow, it should be noted now that with

log-kill chemotherapy, the quantity
∫ t

0
c(s)ds occurs in the solution for generalized

logistic tumour growth while
∫ t

0
c(s)ersds appears in the solution for Gompertz.

This will be important later, since for treatment comparisons a positive normal-

ization constant C is chosen so that
∫ tf

0
c(s)ds = C where tf is the final time

considered for the simulations, so that fair treatment comparisons are made.
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Parameter Value Units

r 1 day−1

b 0.25 day−1

d 3.63 ×10−4 day−1mm−2

k 0.001 day−1

Table 3.1: Parameters for the biological model based on those from [36].

3.2 The Effect of Angiogenesis

While tumour growth was originally taken to be Gompertz growth in [36], we will

heed the advice given in [38] on the grounds of cell doubling time and assume the

tumour growth to be logistic, thus,

dn

dt
= rn

(
1− n

m(t)

)
− Anc(t)n. (3.3)

It is important to note that while the form of the above equation is ‘logistic’, tu-

mour growth is now highly dependent on the dynamics of tumour angiogenesis and

is bounded only by the vasculature support present at the time. If the endothelial

cells were to proliferate exponentially, then the tumour would similarly exhibit this

type of growth. However, this situation will not arise, since the original equation

suggested in [36] is used where d > 0, ensuring that the tumour size will saturate:

dm

dt
= bn− dmn2/3 − km− Amma(t). (3.4)

The suggested replacement of n with m in the growth term [37] (or any other

alterations [38]) is not performed since the effect of chemotherapy would be proan-

giogenic due to the fact that tumour cell density would be present only in the

angiogenic inhibition term.

For our treatment simulations, the parameters in Table 3.2 are used. A schematic

of the biological model with treatments included as defined by (3.3) and (3.4) is

given in Figure 3.1. While growth factor concentrations are not explicitly modelled,

their contribution comes as the inhibitory and stimulatory terms in the ODE for
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Figure 3.1: Schematic diagram of the ODE model showing interactions between

the model variables and treatments.

the carrying capacity. The thickest arrow pointing from vasculature to tumour cells

represents the primary interaction in the model.

3.3 Drug Dosages

The equations used for drug delivery equations will be outlined here and applied

to describe the concentrations of chemotherapy and antiangiogenic agents in and

around the tumour.
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3.3.1 Free Agents

To describe the release of drugs not encapsulated in a delivery vehicle (or assuming

that one does not exist), a purely exponential release is typically used. That is, for

a single drug administration at time t = ti the dosage contribution is given by

ci(t) = H(t− ti)e−(t−ti)/τ , (3.5)

where H(t) denotes the Heaviside function defined by

H(t) =

0 t < 0,

1 t ≥ 0,

and τ is the time constant of the exponential decay process of the drug. This τ is

related to the commonly measured values of decay rate λ and drug half-life t1/2 by

the equations

τ =
1

λ
=

t1/2
ln(2)

.

The main drawback to the exponential decay model is that ci(t) achieves its

maximum at t = ti, the time of administration. More realistically, this maximum is

not reached until some later time t > ti. This is usually due to two factors, the first

being that it takes some time for the drug to circulate through the bloodstream and

end up in the tumour vicinity. The second is that if the drug is in a delivery vehicle,

it does not release its load of drug immediately and typically takes some time to

erode. It should be noted that the amount of drug administered and the amount

that enters the tumour depends on many factors including the immune system

avoidance and tumour targeting of the delivery vehicle along with the tumour

vasculature network (specifically the extent of perfusion and fenestration). If we

wanted to capture these phenomena in a simple way and move the maximum of the

drug release equation to some time later than immediately after administration,

the purely exponential equation could be modified by multiplying by a factor of

(t− ti)p where p ≥ 0 giving

ci(t) = H(t− ti)(t− ti)pe−(t−ti)/τ , (3.6)
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where clearly now ci(ti) = 0 and p = 0 gives the usual exponential decay case.

This shifts the maximum from t = ti to t = τp, allowing us to choose p based on

this criteria assuming knowledge of when this maximum occurs and a measurement

of τ (or λ or t1/2). To describe the drug dosage on a treatment schedule where

treatments are administered at times (t1, t2, . . . , tN), we use the equation

c(t) =
1

C

N∑
i=1

ci(t) =
1

C

N∑
i=1

H(t− ti)(t− ti)pe−(t−ti)/τ , (3.7)

where C is an appropriately chosen constant that will discussed later.

It is assumed that the antiangiogenic agent concentration a(t) has the same

form as (3.7) with altered constants (τ ,N ,C,p) and schedule (ti) having a subscript

a (and now denote the constants for cytotoxic drugs with a subscript c).

3.3.2 Dosage Normalization

Considering the tumour size at some time tf of interest, after the treatment schedule

has finished, we wish to compare the tumour response to that of other schedules.

In order to compare the effectiveness of different treatment schedules of com-

bined antiangiogenic and cytotoxic therapies, the dosages involved with the different

treatment techniques are normalized by setting the integrals of the different dosages

to some appropriate constant. Assuming treatment starts at t0 = 0, we will require

the entire treatment regime to take place over a period of tf (> tN) days (or other

time unit) and hence we impose

1

C
(1)
c

∫ tf

0

c(1)(t) dt = · · · = 1

C
(k)
c

∫ tf

0

c(k)(t) dt = Ic,

and
1

C
(1)
a

∫ tf

0

a(1)(t) dt = · · · = 1

C
(k)
a

∫ tf

0

a(k)(t) dt = Ia,

where {c(1), a(1)}, . . . , {c(k), a(k)} are the k different treatment regimes that we will

consider. Typically we will set Ic = Ia = 1 since we independently control the

strength of the drug by the log-kill parameters Ac and Am. This allows us to

simply take C equal to the dosage integral.
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Figure 3.2: Control case of the ODE model based on the model by Hahnfeldt et al.

[36].

If the dosage is of the form given in equation (3.5) and ti = iT (and tf =

(N + 1)T ) where T is the constant time between treatments, then by taking

C = τ

(
N +

1− exp(−NT/τ)

1− exp(T/τ)

)−1

,

we achieve normalization. However, for a more complicated form, such as the one

given in (3.6), we would simply need to approximate the dosage integrals with a

numerical integration scheme and take

Cc ≈
∫ tf

0

c(t) dt, Ca ≈
∫ tf

0

a(t) dt.

3.4 Model Simulations

The control case using initial conditions of n0 = m0 = 3mm3, represents a primitive

tumour preparing to throw the angiogenic switch and recruit its own blood supply.

While m0 > 0, initially there is no vasculature present, this is simply representing

that there is adequate resources to maintain the tumour’s current size. At this

point it will now have to rely on more than the diffusion of oxygen. For the control

case (see Figure 3.2), it is observed that just before day 33, the tumour reaches
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Figure 3.3: Comparison of normalized dosages (normalization constant C = tf so

that average dosage is 1) for 12-week schedules with drug half-life of 1 day and a

delay constant of p = 1.

a size of 1cm3 and it is at this point in time that we assume that the tumour is

detected in the patient and (while unrealistic in most cases) when treatment begins.

It should be noted that the growth dynamics are fast, reaching its maximum size

in less than 3 months, and assumedly leading to death in around 2 months, this

would be considered an extremely aggressive tumour.

3.4.1 MTD vs. Metronomic Therapy

These treatment scheduling regimes are two different methodologies employed widely

by oncologists depending on the type of cancer, whether the cancer has metasta-

sized along with other factors. There is a spectrum of treatment strategies in

between these two depending on the frequency and size of the individual doses.

Using equation (3.7) for these schedules, the difference between giving frequent

administrations and giving the MTD is shown in Figure 3.3.
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In Figure 3.4, the results of the three chemotherapy schedules are shown. The

MTD scheme shows the typically observed initial cell-kill success of the treatment,

followed by the rapid regeneration of the tumour between administrations. The

enforced delay between successive treatments allows the body to recover, specifically

the damage done to normal cells, but unfortunately this also gives the tumour a

chance to proliferate uncontrollably after the initial anti-tumoural effects of the

drug wear off. With each large dosage a significant portion of the tumour cells are

killed but due to the breaks the population always recovers. It should be noted that

we have also assumed that there is no chemo-resistance, whereby certain tumour

subpopulations are immune to the treatment or the tumour develops a resistance to

specific agents as the treatment progresses meaning these results are mostly likely a

best-case scenario. As this MTD schedule progresses, the tumour growth between

treatments is such that critical life-threatening tumour sizes are still reached which

could lead to patient death mid-schedule. In addition to the negative outcome, this

treatment regime is also associated with increased severity of side effects.

The tumour growth pattern exhibited by metronomic schedules with weekly and

daily administrations exhibit similar behaviour with the weekly treatments showing

less tumour size variation than the MTD schedule but still fluctuating more than

the consistent daily schedule. Using these therapies eradication is not achieved, but

the tumour size is controlled within a fixed nonlethal range for an extended period

of time. Simply controlling the cancer is a valid strategy in some cancer cases but it

still leaves the door open for metastases to form in other parts of the body. It should

be noted that these simulations are slightly biased toward a favourable outcome of

the MTD schedule since the dosage integrals are normalized, ignoring the fact that

these metronomic schedules could in practice use slightly larger individual dosages

without encountering the severe side effects of the MTD.

Indeed, while employing the MTD is most likely not beneficial for outcome, it

remains very likely that at some time a high dose would be the optimal strategy.

Since the dosages are assumed to be equal with constant-sized breaks between these
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Figure 3.4: Tumour volume subject to the drug schedules depicted in Figure 3.3.

For these simulations the chemotherapy log-kill An = 0.08.

dosages, the upside of a strategic MTD is not encountered in this model. With these

schedule-limiting assumptions, the optimal schedule will continue to lay somewhere

closer to constant continuous treatment rather than the MTD.

3.4.2 Drug Release

We will now look at the effect of altering τ in our dosage equations (Figure 3.5).

For these simulations it should be noted that for longer release times, less of the

drug is actually administered since it will stay in the tumour or circulate in the

blood for longer periods of time. This is due to dosage normalization even though

the dosage schedules will be identical.

These results align with our intuition that a longer circulating agent will yield

better results. However, we must remember that the drugs that decay faster are

administered in larger doses. Thus, it remains surprising that even after dosage

normalization, this model predicts that quickly cleared agents will be less effective
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Figure 3.5: Daily administration schedule normalized over 84 days but only one

week shown to display the effect of modifying the release profile.

than those with staying power; see Figure 3.6.

3.4.3 Combination Therapy

Of the greatest relevance to potential applicability in clinical settings is the effective

modelling of treatments that include more than one form of therapy, specifically

those that combine chemotherapy agents with antiangiogenic agents. Since the

effects of both of these agents are incorporated into the model, any given com-

bination schedule can be evaluated. Combining these therapies has been widely

touted in the literature as superior to either on their own. Whether the result of

increased chemotherapy toxicity due to tumour vasculature normalization or (as in

the model) by the deprivation of nutrients due to antiangiogenic agents, the tumour

response has been shown to be significant in clinical settings.

Now considering Figure 3.7, using a daily schedule of chemotherapy alone, the

tumour size is suppressed to approximately 40% of the size of the control case.

While not eradicated this tumour is controlled at a specific level. The angiogenic-
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Figure 3.6: Even though the dosages have been normalized, a longer release results

in a smaller tumour.

based carrying capacity has also decreased but in this case by only 25%. This is a

result of the lack of proangiogenic factors being produced by the smaller tumour.

In reality chemotherapeutic agents that act predominantly against rapidly divid-

ing cells would also kill a substantial amount of cells that comprise the tumour

vasculature. While this is not explicitly addressed in the model, it is evident that

metronomic chemotherapy regimes do have antiangiogenic effects (as suggested in

[15]).

For an antiangiogenic agent acting alone, the effect is assumed to be against

the carrying capacity of the tumour since the specific mechanism that is targeted

(endothelial cells , angiogenic factors, etc.) is not included in this ODE model. The

antiangiogenic agents still reduce the carrying capacity, by the same amount as the

chemotherapy agent did, but since the tumour cells are not directly targeted, the

tumour is still able to grow all the way to this reduced carrying capacity instead of

being forced to an even lower value.

When the combination of these two therapies are administered, the above effects
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Figure 3.7: Improved tumour response to combination therapy due to cytotoxic

and antiangiogenic agents working in tandem.

compound to be extremely effective. The tumour size is suppressed by chemother-

apy while antiangiogenic agents force down the carrying capacity, resulting in the

tumour being reduced to less than 25% of the control tumour volume. As in the

previous cases, the tumour is not eradicated and if therapy were stopped, the model

would still predict a rapid increase to the carrying capacity. However, if treatment

continued to be administered the tumour would be controlled at a size that is theo-

retically nonlethal. However, there is still a chance that the primary tumour could

metastasize to a different region of the body.

It may be obvious that both agents working together will work more effectively

than either on its own, however the question of optimal scheduling and dosage

remains. While this has been treated as an optimal control problem, our attention

will be turned to including spacial inhomogeneity into the model before detailed

analysis is resumed.
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3.5 Model Evaluation

In Equation (2.7), the assumptions on the production of angiogenic factors will

lead to inaccuracies since these factors are produced at some constant rate outside

the tumour, while inside the tumour this production rate depends on a number of

factors, most importantly the tumour size and local levels of hypoxia.

The inaccuracy that arises from the assumption of radial symmetry is made

in practically all ODE models, in order to make the model non-spatial. While

this assumption could be viewed as some sort of average or homogenization of the

tumour, angiogenic signalling and tumour growth are generally highly heteroge-

neous processes. In the early stages of tumour growth, they can be observed to

form spheroids, but once angiogenesis begins tumours form highly irregular shapes

based on the local oxygen and nutrient supply along with spatial constraints and

surrounding host tissue type. Hypoxic regions within a tumour are also character-

ized by temporal and spatial irregularity. Due to these concerns, we will turn to

spatial models in order to capture the more complex interactions that occur in the

growth of cancer cell populations.
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Chapter 4

Cancer Modelling with PDEs

To facilitate the incorporation of the spatial heterogeneities present in tumours, a

two-dimensional PDE model that does not assume radial symmetry will be consid-

ered. Proangiogenic and antiangiogenic factor equations will be linked to tumour

growth, while their imbalances will be included in the equation for vasculature

development. The presence of vasculature will then be assumed to positively influ-

ence tumour cell proliferation. Extensions to this model will be considered and the

results of treatment schedules will be given.

4.1 Angiogenic Factors

The production of angiogenic factors is modelled using an equation similar to (2.10).

Instead of assuming that the production, degradation and diffusion parameters are

different outside and inside the tumour, a term is added that corresponds to the

upregulation of these factors which is dependent on the tumour cell density n (due to

this the superscript e indicating the environment is discarded). A phenomenological

term is also added to capture the observation that these factors are typically pushed

out of the tumour. While this is due primarily to outward convection as a result of

high interstitial fluid pressure inside the tumour, pressure will be omitted in this

simple model. In the next chapter effects of including pressure will be considered,
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but for now it is assumed that these angiogenic factors slide along the tumour cell

density gradient toward the periphery. The equation for these factors is given by

∂fj
∂t

= Dj∇2fj − kjfj + gj + βjn+ γj∇ · (fj∇n), (4.1)

where j = a, p (antiangiogenic, proangiogenic). The constant production rates gi

are typically taken to be the rates in normal tissue. However, locally around the

tumour, many normal cells have also upregulated their production due to stimuli

from the tumour cells. Due to this phenomena, the base production rates will be

taken to be slightly higher than that of host tissue to account for this.

The balance between these factors, represented by αGF = fp/fa − 1 is taken

to be an indicator of angiogenesis stimulation as in [39]. Negative values indicate

antiangiogenic activity, most likely induced by antiangiogenic agents while posi-

tive values indicate tumour angiogenesis, the formation of new vasculature due to

angiogenic factor imbalance.

4.2 Angiogenesis

The endothelial cell density will now be dependent on growth factor balance αGF

via a PDE instead of the previously formulated dependence given in the empirical

formula (2.13). To model the vascularization of our tumour the equation (2.18) is

used but to this the contribution of the growth factor balance αGF is added giving

∂m

∂t
= Dm∇2m+m(−1 + 3m− 2m2) + αmmαGF.

The growth factors will have the desired effect of increasing the upper fixed point

when αGF > 0 or pushing it down when αGF < 0.

In essence, an additional step has been inserted into our modelling instead of

the tumour cells and endothelial cells directly influencing each other, they inter-

act through the action of proangiogenic and antiangiogenic factors. It must be

kept in mind that while this is an improvement, it still does not model specific
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factor concentrations. It simply categorizes them into these two broad categories

of proangiogenic and antiangiogenic factors. However, many molecules do act in

both of these roles concurrently or depending on the microenvironment (or do so

indirectly), so these factor concentrations must only be considered as a means of

measuring heterogeneous angiogenic activity.

4.3 Tumour Growth

Incorporating spatial effects into the tumour equation (3.1) was performed in [45].

Regular logistic growth is retained and can be interpreted as the maximum cell

density attainable before the angiogenic switch is thrown. The effect of increased

proliferation of tumour cells near nutrient-providing blood vessels is added, re-

placing the previous assumption of the vasculature increasing the tumour carrying

capacity. Tumour growth is coupled to tumour vasculature by assuming they are

positively and linearly related with coefficient αn > 0. The invasive random walks of

individual tumour cells are approximated by assuming that the tumour cells diffuse

with diffusion coefficient Dn. The PDE for tumour vasculature will be presented

shortly, for now note that the vasculature distribution is denoted by m. This gives

the following equation for tumour growth

∂n

∂t
= Dn∇2n+ rn

(
1− n

n∞

)
+ αnm(x, t)n. (4.2)

It should be noted that in the presence of vasculature, there is exponential

tumour growth present in that area. While most likely this growth would eventually

reach a maximum possible value, the exponential growth is justified since times of

interest to treat the tumour occur while it is experiencing this growth rather than

after it reaches the carrying capacity since the patient will most likely not live until

the point when the tumour approaches the carrying capacity.
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4.4 Directed Cell Movements

Not considered in detail in this model, but a potentially important further consider-

ation is the directed cell movements in response to stimuli in their environment. In

[45] these movements were modelled using a term similar to one used in the equa-

tion for growth factor concentrations to move out of the tumour. The following

terms were added to the equations indicated:

∂n

∂t

∣∣∣∣
DCM

= γn∇ · (n∇m(x, t)),

∂m

∂t

∣∣∣∣
DCM

= γm∇ · (m∇n(x, t)),

where the vertical line with subscript indicates the directed cell movements (DCM)

contribution to their respective PDEs. With the addition of angiogenic factors

to the model, these cell movements can be in reaction to their stimuli instead of

the more general observation that endothelial cells and tumour cells tend to move

toward each other. Instead, endothelial cells could move toward areas of high

angiogenic activity (αGF > 0) and tumour cells (assuming the omission of oxygen

or nutrient profile from the model) would remain attracted to areas of increased

vascularization. This would result in an altered term in the PDE for blood vessel

distribution given by,

∂m

∂t

∣∣∣∣
dcm

= βm∇(m · ∇αGF(x, t)).

These directed cell movements are an interaction term that could be considered

as a measure of tissue invasion capabilities in the case of tumour cells or as a

measure of the speed of angiogenesis in the case of endothelial cells. For the sake

of simplicity, we do not include thes terms in the model to follow.

4.5 Drug Distributions

Treatment dosages will be briefly outlined and are similar to the equations used in

the previous chapter. However, we now add spatial effects on the drug distribution.
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4.5.1 Dosages

Let us consider a drug treatment consisting of N administrations of a specific drug.

Denoting the amount of the drug administered to the patient by the ith treatment

at time ti by di(t), i = 0, . . . , N , then the amount of drug entering the patient’s

tumour at time t, would be given by the dosage rate function

Γ(t) =
1

C

N∑
i=0

H(t− ti)di(t), (4.3)

where C > 0 is the appropriately chosen normalization constant. The normalization

procedure for the temporal release function is identical to that given in Section

3.3.2. The simplest form for di(t) would assume that the drug delivery is purely

exponential and hence

di(t) = e−(t−ti)/τ , (4.4)

where τ is the rate of decay of drug delivery. A more accurate form to consider for

this function as mentioned before would be

di(t) = (t− ti)pe−(t−ti)/τ , (4.5)

where the maximal delivery occurs at a time later than administration.

4.5.2 Free Agents

Along with the temporal delivery functions, the spatially dependent framework al-

lows for the addition of other processes that effect the distribution of chemotherapy

and antiangiogenic therapy concentrations. The first obvious inclusion is the simple

diffusion of these agents. A term including the temporal delivery and another with

the natural decay of the agent are added. Another important determinant of drug

release is drug reabsorption by nearby blood vessels. This is modelled by a usual

uptake term with coefficient µc. This gives the equation

∂c

∂t
= Dc∇2c+ λcΓc(t)m exp

(
−
(

m

mlim

)2
)
− kcc− µccm,
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Figure 4.1: The efficiency of drug delivery as a function of vascular density.

where the term f(m) = m exp(−(m/mlim)2) plays the role of delivery efficiency.

This function has the form shown in Figure 4.1 with a maximum occurring at

m = 1 corresponding to normal vasculature. For values of m > 1, this corresponds

to tumour vasculature and leads to decreased delivery efficiency of the drug. This

decreased delivery efficiency is predominantly due to a lack of perfusion of tumour

blood vessels and inconsistent flow along with the other characteristics of tumour

vasculature such as elevated IFP. Similarly for m < 1 representing immature or

degrading vessels, less drug is delivered in this situation as well.

4.5.3 Delivery Vehicles

For delivery vehicles, we will consider their size to be such that their diffusion and

reabsorption are negligible and take

∂Si
∂t

= λsdi(t)m exp

(
−
(

m

mlim

)2
)
− ksSi, i = 1, . . . , N,
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where di has the form of (4.4). The release of the free agents would be modified

(for example the chemotherapy dosage) so that their evolution is given by

∂c

∂t
= Dc∇2c+ λcΓc(t)− kcc− µccm,

where now

Γc(t) =
1

C

N∑
i=0

ci(t)Si,

and ci has the form of (4.5).

Note that while only the equations for chemotherapy concentration c has been

given, similar equations are employed for anti-endothelial cell treatments am and

proangiogenic factor inhibitors af . Typically when considering nanocell treatments,

the value of p in (4.5) for the antiangiogenic treatment is smaller than that for

chemotherapy indicating it is released faster than chemotherapy.

The effect of different forms of therapy are incorporated by adding a treatment

term to the appropriate equations. For example, in (4.2) the term would have the

form: −Acnc(x, t). Other treatment terms could be added to the PDEs describing

proangiogenic factor concentration for antiangiogenic treatments which block or in-

activate these factors and endothelial cell density for drugs which attack endothelial

cells. Complicated combination therapies could then be tested using the full set of

equations. Also the effects of nanocells which carry more than one type of drug

could be studied. A schematic of the primary interactions in the full PDE model is

given in Figure 4.2; note that arrows connecting vasculature to the antiangiogenic

treatments are omitted along with the arrow from cancer cells to antiangiogenic

factors since this production is relatively small.

4.6 Model Simulation

The initial condition for cancer cell density will be a Gaussian distribution centered

at (0,0) representing a tumour about to transition out of a diffusion-limited pseudo-

steady state. While the tumour is considered to be in a pseudo steady-state while
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Figure 4.2: Schematic of the biological interactions and treatments of the PDE

model. Notice the balance between the factors and the various treatment mecha-

nisms.

the tumour is small, this assumption must be discarded at later times. Hence, the

equations (2.10) are used to evolve the pro- and antiangiogenic factor concentrations

through time. These concentrations will have an initial condition of a constant value

corresponding to their concentration in the hose tissue.

For the endothelial cell density some random initial condition is set and then

evolved through time for some pre-determined amount of time until a steady state

is reached. These non-symmetric and random initial conditions will lead to het-

erogeneous tumours. However, even though the assumption of radial symmetry

is not used, symmetric initial conditions for tumour and endothelial cell density

along with antiangiogenic and proangiogenic factors will lead to strictly symmetric

tumour growth.
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4.6.1 Parameters

Tumour growth:

Parameter Value Source

Dn 0.035 mm2/day [45]

r 0.16/day [45]

n∞ 2× 106 cells/mm2 [45]

αn 0.1-0.3 cells/mm2/day this work

Table 4.1: Dimensional parameters for the tumour growth equation.

The parameters in this table were primarily given in [45] and based on experi-

mental data for glioma from [71].

Angiogenesis:

Parameter Value Source

Dm 0.005 [45]

α -1 [45]

β 3 [45]

γ -2 [45]

αm 0.5-1 this work

Table 4.2: Nondimensional parameters for the vasculature equation.

The nondimensional parameters for angiogenesis (see A.4) are also based on

values from [45] with α, β and γ being selected for specific fixed point behaviour.

The range of reasonable values for the interaction term αm is based on the speed

of tumour growth/regression from areas of angiogenic activity/suppression.

Angiogenic factors:

These angiogenic factor parameters are predominantly from [39] and assumed

due to a distinct lack of experimental data. The upregulation coefficient is based on

approximated upregulation parameters from [39] as well. The convection parame-
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Parameter Pro Anti Source

D 2 1.5 [39]

k 1.3 1.5 [39]

g 0.3 0.3 [39]

β 0.15 0.01 this work

γ 2.5-15 3.5-21 this work

Table 4.3: Nondimensional parameters for the angiogenic factor equations.

ters are assumed, the range representing the possible speeds at which the factors

approach the tumour rim.

Treatment parameters depend not only on the form of treatment (chemotherapy,

anti-endothelial or proangiogenic inhibitor) but also the specific agent that is be-

ing used. The relationship between diffusion coefficient and molecular size, shape,

weight, etc. is not an exact science and is typically found from experiments. Degra-

dation rate, reabsorption rate and treatment strength also vary from drug to drug.

For example for a typical antibody, such as Immunoglobin G (IgG), a diffusion

coeffcient of D = 0.11mm2/day is reasonable [60]. For antiangiogenic agents decay

rates have been found to range from τ = 2.6/day for angiostatin to τ = 0.6/day

for endostatin [36]. Due to a lack of experimentation on drug reabsorption rates of

cancer treatments, we will uses values ranging from 1-10mg/mm2/day.

It should be noted that the constants for tumour growth correspond to those

in the full system of equations, whereas all simulations were performed using non-

dimensionalized equations (see A.4 for details) and the scaled parameters found in

the other tables above.

4.7 Results

First, some qualitative results from the model will be shown displaying the effect

on the biological system due to specific treatments. In Figure 4.3, the tumour is
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Figure 4.3: Control case for the PDE model.

shown after 3 months of unperturbed growth as well as the areas of vascularization

and angiogenic activity. As can be seen, the tumour has invaded nearby tissues

and displays typical invasive ‘fingering’ behaviour along with irregular density and

shape. The vasculature shows higher than normal concentration in the tumour

in a large area of vascularization along with areas that are non-vascularized (and

presumedly hypoxic) shown in blue. The angiogenic imbalance is evident since the

entire domain of consideration has a positive measure of angiogenic activity αGF.

Those areas directly outside of the tumour have the highest levels of angiogenic

activity representing areas that will be vascularized next, leading to additional

tumour growth around the tumour rim.

This control case will be contrasted with a couple of treatment possibilities.

Applying a free agent proangiogenic inhibitor on a metronomic daily schedule will

decrease the angiogenic activity throughout the tumour microenvironment, see Fig-

ure 4.4. The areas of highest angiogenic activity continue to reside in the tumour

periphery but have decreased approximately twenty-fold. Regarding the vascula-

ture, the vasculature structure is now seen to be somewhat normalized leading to

improved chemotherapy delivery. Mathematically, this is achieved via the delivery

efficiency term since values of m closer to 1 leads to improved delivery of all agents.

While these antiangiogenic agents do have an anti-tumoural effects, decreasing the

tumour density significantly, the tumour can rarely be eradicated using this method

alone.
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Figure 4.4: The effect of antiangiogenic treatment on the model.

Figure 4.5: The effect of combination treatment on the model.

A diagram of chemotherapy alone is omitted since its temporal performance

will be considered later but the combination of these agents will be considered (see

Figure 4.5), utilizing the power of vascular normalization to apply a more potent

chemotherapeutic payload. This improved performance leads to a significant reduc-

tion in tumour volume and controls its spatial spread, potentially blocking attempts

at metastasis. In this case the vasculature is reduced to a further extent than anti-

angiogenic agents alone since the tumour reduction leads to decreased levels of

angiogenic factor production and hence greater vessel regression. It can be seen

that the temporal sequence of these combinations is very important since destroy-

ing too much of the tumour vasculature before applying sufficient chemotherapy

would lead to suboptimal treatment outcome and unnecessary toxicity. This sug-

gests that at some point in time the antiangiogenic agents should be stopped or the

dosages tapered back.

Before taking a look at the temporal evolution of the tumour size, we will look

74



Case Percentage Vascular Area

Control 29.2%

Chemotherapy 21.0%

Anti-endothelial 9.7%

Proangiogenic inhibitor 13.5%

Combination (C+A-E) 6.1%

Combination (C+P.I.) 8.1%

Table 4.4: Comparison of the effect of individual treatments and combination treat-

ments of chemotherapy and antiangiogenic agents.

briefly at a measure of tumour vascularization that is commonly measured exper-

imentally. The tumour area will be considered to be the area of the grid that has

a tumour cell density above a (nondimensional) threshold of 0.2 which is assumed

to correspond to the detectable boundary of a tumour. Within this area of the

grid, we consider those parts of the tumour with m > 0.5 as vascularized. Using

this methodology to calculate percentage vascular area, we can compare the vas-

cular effect of various treatments and combination treatments. See Table 4.7 for a

summary of these values after three weeks of daily administrations of drug. As ex-

pected, the compounded anti-vascualr effect of chemotherapy with anti-endothelial

cell treatment provides the largest decrease in vascular area. With many of the

anti-angiogenic treatments, this percentage would eventually decrease to 0 if the

schedule was continued. This highlights the importance of the temporal scheduling

of combinations to ensure that chemotherapy is applied before all vasculature is

destroyed (preferably during the normalization window) and that anti-angiogenic

treatments are halted before this occurs.

Figure 4.6 shows that chemotherapy remains the most effective single free agent,

outperforming both forms of antiangiogenic therapies. These two therapies have

very similar results with the proangiogenic inhibitor slightly outperforming the

anti-endothelial cell treatment as time passes.

In Figure 4.7, a similar conclusion to one from the ODE model is reached. Specif-
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Figure 4.6: Free agent results.

ically the conclusion that suggests longer release vehicles improve treatment efficacy

despite dosage normalization. However, in this case, the combinations considered

include chemotherapy with one of two agents that target different antiangiogenic

mechanisms. Once again, it is observed that the anti-endothelial cell agent has

greater initial success followed by the proangiogenic inhibitor working better down

the stretch. This is thought to be a result of the anti-endothelial cell killing initially

returning the vasculature to a normalized state but during the course of treatment

it destroys too much of the tumour vasculature leading to decreased chemotherapy

being delivered to the tumour. In the case of proangiogenic inhibitors the normal-

ization process happens indirectly through the action of angiogenic repression and

does not destroy as much of the vasculature as those that directly target endothelial

cells leading to prolonged tumour normalization.

Now considering a shorter time frame, rather than the 3 months schedules, we

will see the effect of a high-dose administration of combination therapy given ev-
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Figure 4.7: Combining chemotherapy and anti-angiogenic agents as free agents and

in a nanoparticle.

ery other day over a 2 week period. In Figure 4.8, the results of a few treatment

possibilities are shown. Since combination therapies are typically delivered with

an initial antiangiogenic therapy, followed by a chemotherapy agent in order to

facilitate normalization, we will first consider single agent administrations of both

antiangiogenic forms in liposomal delivery vehicles (faster release) and chemother-

apy in a polymer nanoparticle (slower release). Over this short time period, the

chemotherapy does perform better, and this improvement would become more evi-

dent over time. These were simply for comparison’s sake in order to contrast them

to delivery vehicles that contain both types of agents. In the liposomal carrier, both

agents are released simultaneously over a fast timescale, resulting in the best re-

sults initially. The staggered release from a nanocell shows better results leading to

potential tumour eradication within months (assuming no chemo-resistance). This

is due to the tumour vasculature normalization performed before the chemotherapy
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Figure 4.8: Combining treatments in a nanocell shows improvement over simulta-

neous release from a liposome.

is applied.

4.8 Model Evaluation

This model proves to be a useful empirical method of analyzing the results of

various treatment regimes on the spatial distribution of the tumour, the tumour

vasculature and the angiogenic activity in this system. By integrating over the

domain a meaningful quantitative comparison of treatment schedules can also be

acquired and results similar to those from the ODE model can be reached. While

this model incorporates the spatial distribution of drugs, handicapping the delivery

of those found in the tumour vasculature, it does not capture the full extent of the

poor delivery of drugs to the tumour cells. Another key player is interstitial fluid

pressure, a factor that wreaks havoc on the efficient delivery of drugs. The outward

convection caused by the IFP will have an effect on both the distribution of drugs
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as well as the angiogenic factor concentrations.
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Chapter 5

Interstitial Fluid Pressure in Solid

Tumours

Elevated interstitial fluid pressure is a tumour phenomenon resulting primarily from

highly fenestrated tumour vasculature leaking large volumes of fluid into the tumour

bulk. Without functional lymphatics, the tumour does not have the capability to

dispose of this excess fluid leading to the outward convection of molecules and highly

compromised drug delivery. Including pressure into the drug delivery equations

could make simulations more realistic in future models. Here, we will look at the

effect of IFP on proangiogenic and antiangiogenic factors, with a focus on their

balance.

5.1 IFP Modelling in a Tumour

We will model the interstitial fluid pressure pi using the equation (2.22), given

below in its general form

∇2pi = −α
2

R2
(pv − σT (πv − πi)− pi) (5.1)

where α = R
√
LpS/KV is a nondimensional parameter. For details of the deriva-

tion, see Section 2.3. The various parameters are the hydraulic conductivity of
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Parameter Units Normal Tumour

R cm 0.4 0.4

K cm2/s/mm Hg 2.5×10−7 2.5×10−7

Lp cm/s/mm Hg 3.6× 10−8 1.86×10−7

S/V cm2/cm3 50–250 50–250

pv mm Hg 15-25 5.5-34

σT (πv − πi) mm Hg 9.1 2.2×10−4

Table 5.1: Parameters for the pressure model [72].

microvascular wall Lp, the surface area of vessel wall per volume of tumour S/V ,

the vascular pressure pv, the average osmotic reflection coefficient for plasma pro-

teins σT and the plasma (interstitial) osmotic pressure πp(i). Typical parameters

for normal and tumour tissues are given in Table 5.1.

This equation can be nondimensionalized by scaling the length scale with R and

setting pi = pep̃i with the effective pressure pe = pv − σT (πv − πi), giving

∇2p̃i = α2(p̃i − 1). (5.2)

We can solve for pi (dropping tildes) analytically by assuming radial symmetry and

a fixed value at the tumour rim. The boundary conditions at the tumour core and

the tumour boundary are respectively

∂pi
∂r

∣∣∣∣
r=0

= 0, pi(1) = 0,

and using these analytical solutions can be found; see A.3 for details. In Figure 5.1

the solutions of (5.2) corresponding to a reasonable range of α values are shown.

These solutions show the highest pressure present in the center of the tumour along

with the typical sharp drop-off in pressure moving toward the tumour periphery.

Larger values of α show sharper declines and higher pressures at the core.

It may be observed that these solutions are obvious given the nature of the

boundary conditions imposed, however, only the one ensuring symmetry at the core

is natural. The other is forced and can only be justified if the tumour is isolated
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Figure 5.1: Radial solutions of the interstitial fluid pressure in a tumour.

in a medium that would ensure zero pressure at the tumour boundary. More likely

the pressure slowly decreases as you move away from the tumour. Due to this, we

will now consider a tumour to be present in some host tissue. To account for this,

the normal tissue outside the tumour will be considered to have a different value of

α. Once again analytical solutions are presented in A.3. For the simulations, the

value in the normal tissue (r > 1) is α = 2. In Figure 5.2, the same values of α as

Figure 5.1 are used but now instead of enforcing Dirichlet boundary conditions at

the boundary, we have imposed continuity and smoothness conditions

pi|r=1− = pi|r=1+ and
∂pi
∂r

∣∣∣∣
r=1−

=
∂pi
∂r

∣∣∣∣
r=1+

.

Along with these, it is a requirement that

lim
r→∞

pi(r) = 0,

a weaker condition than pi(1) = 0. These solutions show a steep decline approaching

the tumour boundary but then slowly level off to normal values.
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Figure 5.2: Radial solutions of the interstitial fluid pressure in a tumour.

5.2 IFP and Angiogenic Factors

When including interstitial fluid pressure, it is natural to consider the effect on drug

concentration in the tumour. However, its effect on the concentrations of other

entities in the model should also be considered. While interstitial fluid pressure

may also directly effect the proliferation of tumour cells or tumour endothelial

cells, these processes (in most cases) occur on a much longer time scale than those

of interstitial fluid pressure, drug distribution and growth factor production and

diffusion. Due to this, we should consider a pressure-dependent equation for the

concentrations of proangiogenic and antiangiogenic factors. To facilitate this, we

will identify interstitial convection as an important transport mechanism for these

molecules and add a convection term to (2.10) giving

∂fj
∂t

= Dj∇2fj +K∇ · (fj∇pi) + gj − kjfj (5.3)
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Figure 5.3: Sensitivity of the angiogenic activity behaviour due to the diffusion

coefficient of proangiogenic and antiangiogenic factors. Image from [39].

for j = a, p. In fact, in [39], it is mentioned that, “Interstitial convection is not

addressed independently but is lumped together with diffusion, characterized by

an effective diffusion coefficient,” indicating that convection was considered but

absolved by a simplifying assumption. We simply seek to treat this convection as

a separate process from diffusion.

Considering just the interior of the tumour, with the noted motivation of incor-

porating interstitial fluid pressure into the behaviour of angiogenic factor concentra-

tions, the parameters from [39] will be used for proangiogenic and antiangiogenic

factor diffusion, production and degradation inside the tumour. The boundary

condition of fi(R) = gi/(ki)
2 (the host tissue factor concentration) will be imposed

along the boundaries of the grid.

Radially symmetric solutions to (5.3) can be found numerically by solving the

related inverse matrix problem. Setting K = 0, a sensitivity analysis originally

performed in [39] is reproduced in Figures 5.3 and 5.4. As can be seen, only

84



Figure 5.4: Sensitivity to the tumour cell production rates. Image from [39].

specific parameters will give the focally suppressive behaviour, that is for some

value r0 ∈ [0, 1] we have αGF(r) ≤ 0 for r ∈ [0, r0] and αGF(r) ≥ 0 for r ∈ [r0, 1].

The other reasonable possibilities for angiogenic behaviour are global suppression

(αGF(r) ≤ 0, ∀r) and global angiogenesis (αGF(x) ≥ 0, ∀r) which can also be found

in this model. These two possibilities do happen in some cases where tumours are

either thoroughly vascularized or on the other hand, unable to grow due to a global

suppression of angiogenic activity (potentially due to antiangiogenic therapies). In

the case of the tumour production parameter, it is interesting to note that focal

necrosis is observed only for a narrow sliver of the parameter space. This is realistic

since one would assume that the behaviour is extremely sensitive to the the balance

of these factors production.

As can be seen in Figure 5.6, this model suggests that the convection of these

factors could also lead to very different angiogenic behaviours in the tumour. The

sensitivity to the convection parameters (hydraulic conductivities) is a more compli-

cated relationship than those for the other angiogenic factor parameters. Depending

on the pressure gradient, we can see that for low values of α the region of angiogenic
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Figure 5.5: Concentrations of proangiogenic and antiangiogenic factors in an iso-

lated tumour.

suppression (RAS) is conserved while for mid-values of α the core of the tumour is

seen to be an area of angiogenic activity as well, although to a lesser degree than

the rim. For high values of α the core once again becomes a RAS with the high

levels of angiogenic activity occurring closest to the tumour rim.

The switch from suppression to stimulation of angiogenesis (when αGF changes

from a negative value to a positive value) or vice versa occurs when the angiogenic

factor concentrations intersect each other as shown in Figure 5.5. As observed

above, a change in any of the parameters from the base case given in Table 4.6.1 can

elicit a change in the global behaviour of the solution. An analytical determination

of what parameter conditions, specifically for the convection parameters, would

elicit an intersection of the factor concentrations would be a worthwhile endeavour.
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Figure 5.6: Angiogenic activity of an isolated tumour.

5.3 Model Evaluation

Once again, we are assuming radial symmetry for the pressure-related models just

presented. Due to this, we are not able to observe a number of phenomena in-

cluding the heterogeneous production of angiogenic factors and multiple areas of

angiogenic suppression. While tumour cells are not explicitly modelled, typically

angiogenic suppression is correlated with cell death. A fairly global phenomenon is

that tumours exhibit necrosis at the core, however, this area is usually irregular in

shape and potentially disconnected.

A goal for the future remains to incorporate these pressure equations and effects

into a three-dimensional model that includes clinically relevant distributions of

tumour cell density and tumour vasculature networks.
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Chapter 6

Conclusions

6.1 Summary and Implications of Findings

The ODE model used to analyze the results of combination therapies comprising

chemotherapy and antiangiogenic therapies has given some insight into the rela-

tionship between the mechanisms of the two drug types working in tandem. The

central assumption to this model is that the vasculature is the growth-limiting fac-

tor and is used to represent the carrying capacity of the tumour size [36]. The

resulting explanation of the success of combination therapies is the compounding

effects of the carrying capacity decrease associated with antiangiogenic agents and

the tumour suppression granted by the chemotherapy agent. While either alone has

a significant impact on tumour size, the combination of both results in a greater

potentiality for treatment success. Also briefly considered are the benefits of metro-

nomic treatment schedules and the advantage of longer release drugs, touting the

advantages of longer circulation delivery vehicles.

The PDE model allows the addition of specific antiangiogenic mechanisms due

to the inclusion of angiogenic factors. These factors can be inhibited or the en-

dothelial cells can be directly attacked. Due to a delivery efficiency term added

to the chemotherapy and antiangiogenic therapy dosages, the inefficiency of the

irregular tumour vasculature is represented while the vasculature that has been
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normalized by antiangiogenic agents allows the successful delivery of chemother-

apy drugs. The antiangiogenic agents still have some anti-tumoural effects since

the presence of vasculature is coupled to tumour growth. Qualitatively, the two-

dimensional simulations show reasonable representations of the spatial distributions

of tumour cells and vasculature before and after treatment. Considering specific

treatment schedules shows that comparable levels of both types of antiangiogenic

agents with chemotherapy give similar results. However, those combinations deliv-

ered in longer (and staggered) release nanoparticles shows improved results, a more

general result than the one obtained in the ODE chapter.

The final chapter of results shows the beginnings of incorporating pressure into

a drug distribution model and some preliminary simulations show how the pres-

sure gradient induced convection effects the behaviour of angiogenic activity. The

specific relationship between the relevant convection parameters and the possible

behaviours of focal suppression, global suppression and global stimulation remains

unknown but all of these can be observed by altering the convection parameters

alone.

These models can be expanded on many fronts and many of these will be incor-

porated in the future; a few possibilities are outlined now.

6.2 Possible Extensions and Open Problems

6.2.1 Tumour Growth

When it was realized that tumour growth was more accurately modelled when spa-

tial effects were included, we expanded our mathematical framework from ordinary

to partial differential equations. However, we only considered logistic growth for

the tumour cell proliferation when we outlined a number of alternatives in the

ODE section, not to mention the countless additional extensions to these basic

models which exist in the literature to describe the growth of numerous forms of
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cancers. The merits of each model have been debated extensively in the litera-

ture, but for illustrative purposes logistic growth is sufficient since it is an accurate

enough approximation based on a simple assumption. To model this process more

convincingly, we must choose a model which more accurately describes the increase

in tumour cell density over time while not introducing additional complexity or

parameters. Creating a more biologically sound and more realistic tumour growth

equation would still be a worthwhile area of further research.

6.2.2 Vasculature Modelling

The area of three-dimensional vasculature modelling, with specific emphasis on

tumour vasculature, has been widely reported in the literature with many viable

models recently coming to the forefront, incorporating many biological consider-

ations across many scales. Going forward, a model must be developed that is

comprehensive enough for spatially dependent heterogeneous tumour growth and

drug distributions that can be compared to and reconciled with experimental data.

We have developed a couple of possibilities for simulating vasculature networks.

Inspired by the work in [46], we attempt to improve the vessel structures while

omitting their considerations of the underlying cellular network. We propose the

following steps:

1. A random point (x0, y0) is generated on a N × N grid and a random angle

θ0 ∈ [0, π] is generated.

2. The vessel extends from (x0, y0) at the angle θ and in the other direction at

the angle θ0 + π until the boundary of the grid is reached.

3. A point (x, y) is chosen on the pre-existing vessel(s) at which a vessel will

extend unless a vessel already has sprouted from this vessel within a distance

∆ of this point.
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4. A vessel extends at a random angle θ ∈ [0, 2π) from the point (x, y) until one

of the following occurs

(a) The vessel reaches the boundary of the grid.

(b) The vessel intersects a pre-existing vessel.

(c) The vessel comes within a distance ∆ of a previous vessel intersection.

5. We repeat steps 3-4 until the occupancy of our grid reaches a certain threshold.

The above algorithm prevents intersections of vessels that create a four-way

junction, a consideration that corresponds to the branching typically observed in

nature.

Random walk techniques have been widely employed with an example in [44]

whereas random tripod placement was used in [52]. We derive inspiration for the

initial conditions from [54] to simulate the vasculature for our model. We dismiss

the hexagonal lattice used since this is not easily extended to 3-D and simply use a

standard rectangular lattice. First we simulate a number of initial source and sink

vessels (that come from one of the boundaries of our domain) to establish some sort

of basic structure; we distinguish between them by using the colours red and blue

respectively. After these are in place, we randomly choose a node with exactly two

edges connected to it. Again, this prevents nodes from having four edges radiating

from them (unlike in [46]). Once a node is selected we randomly walk under the

following conditions:

1. The vessel can not intersect a vessel of the same colour. Note that we do not

terminate the vessel if a direction that would cause an intersection is chosen

in the random walk, we simply choose from the admissible directions.

2. When a vessel intersects a vessel of the other colour, it terminates at the node

of their intersection.

3. A vessel is not allowed to form a 1× 1 square on the lattice (preventing small

loops in the vasculature).
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Figure 6.1: A blood vessel network developed using the random walk algorithm

with a length restriction of 5 steps..

The above conditions imply that a vessel terminates when all four possible directions

would lead to a violation of one of the rules. This process does not require the

additional step of capillary formation (as in [52]) since we add random walk vessels

instead of discrete elements (such as tripods). The simulation ends when every

node on the lattice has at least one edge connected to it (unless this is impossible),

corresponding to a fully vascularized tissue. A slight alteration allows walks of a

specific length or less; in Figure 6.1 a maximum walk length of 5 grid spaces is

imposed.
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6.2.3 Receptor-Ligand Binding

As outlined in Section 2.4, receptor-ligand binding between nanoparticles or nanocells

and cancer cells would be a worthwhile research topic. Specifically, the spatial dis-

tribution of conjugated ligands that would optimize the binding of delivery vehicles

to cancer cell receptors. The concentration of polymer chains that prevent removal

from the blood vessels by the immune system would have to be considered when

examining this problem.

6.2.4 Optimal Scheduling

Many of these models have been treated as control problems in the literature in

order to uncover the ‘optimal’ treatment based on the model equations and dosage

possibilities subject to some constraints. Our model has not undergone such a

process but it would be a worthy endeavour to better quantify the relationships

that exist between changes in the biological parameters and their effect on the best

treatment schedule.

6.2.5 Parameter Estimation

The parameters used in the simulations and studies come from a variety of studies

and some correspond to observations made on more than one form of cancer while

others are set to values dependent on a crude sensitivity analysis alone. Clearly, the

initial conditions and some key parameters must be altered in order to differentiate

the tumour behaviour in varying tissues with specific mutations. For instance, the

invasiveness of a tumour could be measured on some scale and associated with the

parameter responsible for incorporating the speed of directed cell movements (βn).

While treatment parameters have been chosen to correspond to specific drugs,

certain parameters such as diffusion coefficient are not as widely available as the

more commonly used decay constant. The parameters associated with proangio-
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genic and antiangiogenic factors from [39] are all assumed due to a lack of experi-

mental data. Since these concentration do not correspond to specific molecules, we

must take this a a qualitative model only.

6.2.6 Interstitial Fluid Pressure

As mentioned in the previous chapter, the effect of IFP should be included in

future drug distribution models. As in the model developed for macromolecule

extravasation from tumour vasculature [59] (see Section 2.3), the following equation

describes the concentration of drug delivery vehicles Ci in the interstitium of the

tumour
∂Ci
∂t

= D∇2Ci −∇ · (rfuiCi) +
Js
V

(6.1)

where ui = −K∇pi is the interstitial fluid velocity and Js is the flux across the

vessel given by

Js = Jv(1− σ)Cp + PS(Cp − Ci)
Pe

ePe − 1
(6.2)

where Jv is the volume flux through vessel wall given by

Jv = LpS(pe − pi), (6.3)

Cp is the concentration of delivery vehicles present in the blood plasma, P is the

permeability of the vessel and Pe= Jv(1− σ)/PS is the Peclet number. To model

this concentration, we would use the typical dosage equations exponential decay

(3.5) or delayed exponential (3.6).

Rewriting equation (6.1) in its full form, we get

∂Ci
∂t

= D∇2Ci+K∇pi ·∇Ci+
LpS

V
(pe−pi)(1−σ)Cp+

PS

V
(Cp−Ci)

Pe

ePe − 1
. (6.4)

While this full equation will be useful for macromolecules of a specific size, for

some molecule sizes only some of interstitial/vessel diffusion/convection are impor-

tant processes in their transport. For large liposomes containing cytotoxic agents,

evidence suggests that the most important transport mechanism is interstitial con-

vection.
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While simulations have been performed for a angiogenic factor concentration

model that incorporates interstitial convection, these should be extended to include

the embedded tumour case and more accurate angiogenic factor parameters should

be sought out.
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Appendix A

Calculations

A.1 Nondimensionalization of ODEs

For logistic growth (see equation 2.2), we can easily nondimensionalize the tumour

cell density by setting ñ = n/n∞ which (dropping tildes) reduces the ODE to

dn

dt
= rn(1− n).

By further scaling of the time t̃ = t/r, we get dn/dt = n(1 − n), a first-order

non-linear parameter-free ordinary differential equation.

For generalized logistic growth, given in (2.4), we can nondimensionalize in a

very similar fashion, the only difference being the time nondimensionalization is

now t̃ = νt/r, giving
dn

dt
= n(1− nν),

while Gompertz growth equation is nondimensionalized in exactly the same manner

as logistic growth giving
dn

dt
= n ln(1/n).

Note how in each case we were able to eliminate the two key parameters: n∞ and

r. The solutions of these basic equations are easily found by plugging in r = 1 and

n∞ = 1 into the dimensional solutions.
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A.2 Growth factor solutions

In section 2.2.1, solutions to the moving boundary problem governed by the equa-

tion,

De
j

1

r2

∂

∂r

(
r2
∂f ej
∂r

)
− kejf ej + gej = 0 (A.1)

were not presented or derived. Here we show some further details of the solution

since it differs slightly from the solution originally given in [39] where this model

was initially proposed.

Non-dimensionalization of (A.1) can be achieved by setting r = Rr̃, f ej = Lj f̃
e
j

and by defining the rescaled parameters κej =
√
kejR

2/De
j and γej = gejR

2/De
jLj

where

Lj := lim
r→∞

fhj (r) =
ghj
khj
.

Dropping tildes, this gives the equation

1

r2

∂

∂r

(
r2
∂f ej
∂r

)
− (κej)

2f ej + γej = 0. (A.2)

Solutions to equation (A.2) are of the form

fmj (r) = Amj
sinh(κmj r)

r
+Bm

j

cosh(κmj r)

r
+ Ωj, 0 ≤ r ≤ 1 (A.3)

fhj (r) = Ahj
sinh(κhj r)

r
+Bh

j

cosh(κhj r)

r
+ 1, 1 < r <∞. (A.4)

where Ωj = γmj /(κ
m
j )2. Considering boundary conditions, we require the concentra-

tion to approach the steady state value as we move into the host tissue and this can

occur if and only if Ahj +Bh
j = 0. At the center of the tumour, we will enforce sym-

metry and so ∂fmj /∂t|r=0 = 0 leading to Bm
j = 0. This gives fmj (0) = Amj κ

m
j + Ωj

at the tumour core. To ensure that the solutions in each environment smoothly

match up at the boundary of the tumour we must also have fmj (1) = fhj (1) and

∂fmj (r)/∂r
∣∣
r=1

= ∂fhj (r)/∂r
∣∣
r=1

. These two equations along with our previous

observations allow us to solve for the remaining constants,

Amj = ωj
1 + κhj

sinh(κmj )
, (A.5)

Ahj = −Bh
j = ωj

1− κmj coth(κmj )

sinh(κhj )− cosh(κhj )
, (A.6)
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where ωj = (1− Ωj)/(κ
h
j + κmj cothκmj ). Thus, the final solution is given by

fmj = ωj
1 + κhj

sinh(κmj )

sinh(κmj r)

r
+ Ωj, 0 ≤ r ≤ 1 (A.7)

fhj = ωj
1− κmj coth(κmj )

sinh(κhj )− cosh(κhj )

(
sinh(κhj r)− cosh(κhj r)

r

)
+ 1, 1 < r <∞.

(A.8)

A.3 Pressure solutions

Performing similar calculations as the ones performed above, we will derive the

solutions to the non-dimensional pressure equation

∇2p = α2(p− 1), (A.9)

as done in the supplementary material in [72]. The general solution is of the form

p(r) = A
sinh(αr)

r
+B

cosh(αr)

r
+ 1.

Considering the case of an isolated tumour, we enforce the boundary condition

∂p

∂r

∣∣∣∣
r=0

= 0

by taking B = 0. At the tumour boundary, the pressure is zero and hence take

p(1) = 0. This gives A = −1/ sinh(α) and so the solution is

p(r) = 1− sinh(αr)

r sinh(α)
.

The more realistic boundary conditions associated with the embedded tumour

case are:

p|r=1− = p|r=1+ and
∂p

∂r

∣∣∣∣
r=1−

=
∂p

∂r

∣∣∣∣
r=1+

.

Enforcing these conditions gives the analytical solution and denoting tumour tissue

parameters with a subscript t and host tissue parameters with a subscript h

p(r) = 1− (1 + αh) sinh(αtr)

r(φ+ θ)
, r ≤ 1

p(r) =
θeαt(1−r)

r(φ+ θ)
, r > 1,
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where θ = K[αt cosh(αt) − sinh(αt)] and φ = (1 + αh) sinh(αt). The relative hy-

draulic permeability K is given by Kt/Kh (and is typically greater than one).

A.4 Nondimensionalization of PDEs

To nondimensionalize (4.2), we set t = t̃/r, x =
√
Dn/rx̃ and n = n∞ñ , we get

∂ñ

∂t̃
= ∇2ñ+ ñ(1− ñ) + α̃nmñ, (A.10)

where α̃n = αn/r.

Substituting these rescaled variables into (2.10) and setting fj = (gj/r)f̃j (j =

p, a) gives

∂f̃j
∂t

= D̃j∇2f̃j − k̃jfj + 1 + β̃jñ+ γ̃j∇ · (fj∇n), (A.11)

where D̃j = Dj/Dn, k̃j = kj/r, β̃j = βjn∞/gj and γ̃j = γjn∞/Dn.

Since m is already a nondimensional variable, we have

∂m

∂t
= D̃m∇2m+ g̃(m) + α̃mmα̃GF, (A.12)

where D̃m is scaled with Dn, g̃ and α̃m with r and α̃GF = gpfp/gafa−1. These four

dimensionless PDEs give all the equations for a basic biological model for tumour

growth.

We can similarly nondimensionalize the equations that model the behaviour of

chemotherapy and antiangiogenic therapies in a tumour along with their delivery

vehicles allowing the inclusion of treatments.

100



References

[1] D. Hanahan and R. A. Weinberg. The hallmarks of cancer. Cell, 100:57–70,

2000. 2

[2] J. W. Shay and S. Bacchetti. A survey of telomerase activity in human cancer.

Eur. J. Cancer, 33:787–791, Apr 1997. 2

[3] Judah Folkman. Tumor angiogenesis: therapeutic implications. N. Engl. J.

Med., 285:1182–1186, 1971. 4, 5

[4] D. Hanahan and J. Folkman. Patterns and emerging mechanisms of the an-

giogenic switch during tumorigenesis. Cell, 86:353–364, 1996. 4

[5] G. M. Tozer. Measuring tumour vascular response to antivascular and antian-

giogenic drugs. Br. J. Radiol., 76 Spec No 1:23–35, 2003. 7

[6] R.K. Jain. Normalizing tumor vasculature: an emerging concept in anti-

angiogenic treatment. Science, 307:58–62, 2005. 7

[7] Judah Folkman. Angiogenesis and apoptosis. Seminars in Cancer Biology,

13(2):159 – 167, 2003. 8

[8] G. M. Tozer, C. Kanthou, C. S. Parkins, and S. A. Hill. The biology of the

combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol.,

83:21–38, 2002. 8

[9] H. Hurwitz et. al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin

for metastatic colorectal cencer. N. Engl. J. Med., 350:2335–2342, 2004. 8

101



[10] S. Pennacchietti, P. Michieli, M. Galluzzo, M. Mazzone, S. Giordano, and P. M.

Comoglio. Hypoxia promotes invasive growth by transcriptional activation of

the met protooncogene. Cancer Cell, 3:347–361, 2003. 9

[11] E. K. Rofstad, H. Rasmussen, K. Galappathi, B. Mathiesen, K. Nilsen, and

B. A. Graff. Hypoxia promotes lymph node metastasis in human melanoma

xenografts by up-regulating the urokinase-type plasminogen activator receptor.

Cancer Res., 62:1847–1853, 2002. 9

[12] F. Mac Gabhann and A.S. Popel. Targeting neuropilin-1 to inhibit VEGF

signaling in cancer; comparison of therapeutic approaches. PLoS Comput.

Biol., 2, 2006. 9

[13] A. V. Rao, G. Akabani, and D. A. Rizzieri. Radioimmunotherapy for non-

Hodgkin’s lymphoma. Clin. Med. Res., 3:157–165, 2005. 10

[14] D. Hanahan, G. Bergers, and E. Bergsland. Less is more, regularly: metro-

nomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J.

Clin. Invest., 105:1045–1047, 2000. 11

[15] Robert S. Kerbel and Barton A. Kamen. The anti-angiogenic basis of metro-

nomic chemotherapy. Cancer Rev., 4:423–436, 2004. 11, 60

[16] S. Man, G. Bocci, G. Francia, S. K. Green, S. Jothy, D. Hanahan, P. Bohlen,

D. J. Hicklin, G. Bergers, and R. S. Kerbel. Antitumor effects in mice of low-

dose (metronomic) cyclophosphamide administered continuously through the

drinking water. Cancer Research, 62:2731–2735, 2002. 11

[17] F. Bertolini et. al. Maximum tolerable dose and low-dose metronomic

chemotherapy have opposite effects on the mobilization and viability of cir-

culating endothelial progenitor cells. Cancer Res., 63:4342–4346, 2003. 11

[18] R. A. Gatenby. A change of strategy in the war on cancer. Nature, 459:508–509,

2009. 11

102



[19] S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-

specific nanoparticles: theory to practice. Pharmacol. Rev., 53:283–318, 2001.

12

[20] Y. Matsamura and H. Maeda. A new concept for macromolecular therapeutics

in cancer chemotherapy: mechanisms of tumoritropic accumulation of protein

and the antitumor agent smancs. Cancer Res., 46:6387–6392, 1986. 12

[21] Y. Lu and P. S. Low. Folate-mediated delivery of macromolecular anticancer

therapeutic agents. Adv. Drug Deliv. Rev., 54:675–693, 2002. 15

[22] J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate

receptor isoforms in normal and malignant tissues in vivo and in established

cell lines. Physiologic and clinical implications. Cancer, 73:2432–2443, 1994.

15

[23] R. J. Lee and P. S. Low. Folate-mediated tumor cell targeting of liposome-

entrapped doxorubicin in vitro. Biochim. Biophys. Acta, 1233:134–144, 1995.

14

[24] J. Sudimack and R. J. Lee. Targeted drug delivery via the folate receptor.

Adv. Drug Deliv. Rev., 41:147–162, 2000. 14

[25] D. Goren, A. T. Horowitz, D. Tzemach, M. Tarshish, S. Zalipsky, and A. Gabi-

zon. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass

of multidrug-resistance efflux pump. Clin. Cancer Res., 6:1949–1957, 2000. 14

[26] P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier,

and D. A. Cheresh. Integrin alpha v beta 3 antagonists promote tumor regres-

sion by inducing apoptosis of angiogenic blood vessels. Cell, 79:1157–1164,

1994. 15, 16

[27] P. C. Patel, D. A. Giljohann, D. S. Seferos, and C. A. Mirkin. Peptide antisense

nanoparticles. Proc. Natl. Acad. Sci. U.S.A., 105:17222–17226, 2008. 17

103



[28] S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, and

R. Sasisekharan. Temporal targeting of tumour cells and neovasculature with

a nanoscale delivery system. Nature, 436:568–572, 2005. 17, 18

[29] S. Awasthi. A dendrimer-based prodrug for use in an anti-cancer nanocell.

Master’s thesis, Massachusetts Institute of Technology, 2007. 17

[30] Benjamin Gompertz. On the nature of the function expressive of the law of

human mortality, and on a new mode of determining the value of life contin-

gencies. Philos. Trans. R. Soc. Lond., 115:513–585, 1825. 22

[31] F.J. Richards. A flexible growth function for empirical use. J. Exp. Bot.,

10:290–300, 1959. 22

[32] A. d’Onofrio. A general framework for modeling tumor-immune system compe-

tition and immunotherapy: Mathematical analysis and biomedical inferences.

Physica D, 208:220–235, 2005. 23

[33] T. E. Wheldon. Mathematical Models in Cancer Research. Taylor & Francis,

1988. 24

[34] H. E. Skipper, F. M. Schabel, and W. S. Wilcox. Experimental evaluation of

potential anticancer agents. XIII. On the criteria and kinetics associated with

curability of experimental leukemia. Cancer Chemother. Rep., 35:1–111, 1964.

25

[35] L. Norton and R. Simon. Tumor size, sensitivity to therapy, and design of

treatment schedules. Cancer Treat. Rep., 61:1307–1317, 1977. 25

[36] P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky. Tumor development

under angiogenic signaling: A dynamical theory of tumor growth, treatment

response and postvascular dormancy. Cancer Res., 59:4770–4775, 1999. ix, 25,

51, 55, 72, 88

104



[37] A. Ergun, K. Camphausen, and L. M. Wein. Optimal scheduling of radio-

therapy and angiogenic inhibitors. Bull. Math. Biol., 65:407–424, 2003. 26,

51

[38] A. d’Onofrio and A. Gandolfi. Tumor eradication by antiangiogenic therapy:

analysis and extensions of the model by hahnfeldt et al., (1999). Math. Biosci.,

191:159–184, 2004. 27, 51

[39] S. Ramanujan, G.C. Koenig, T.P. Padera, B.R. Stoll, and R.K. Jain. Local

imbalance of proangiogenic and antiangiogenic factors: a potential mechanism

of focal necrosis and dormancy in tumors. Cancer Res., 60:1442–1448, 2000.

x, xi, 28, 29, 64, 71, 72, 84, 85, 94, 98

[40] B.R. Stoll, C. Migliorini, A. Kadambi, L.L. Munn, and R.K. Jain. A mathemat-

ical model of the contribution of endothelial progenitor cells to angiogenesis in

tumors: implications for antiangiogenic therapy. Blood, 102:2555–2561, 2003.

29

[41] B. Endrich, H. S. Reinhold, J. F. Gross, and M. Intaglietta. Tissue perfu-

sion inhomogeneity during early tumor growth in rats. J. Natl. Cancer Inst.,

62:387–393, 1979. 29

[42] D.J. Nolan, A. Ciarrocchi, A.S. Mellick, J.S. Jaggi, K. Bambino, S.Gupta,

E. Heikamp, M.R. McDevitt, D.A. Scheinberg, R. Benezra, and V. Mittal.

Bone marrow-derived endothelial progenitor cells are a major determinant of

nascent tumor neovascularization. Genes & Dev., 21:1546–1558, 2007. 30

[43] S. Rafii, D. Lyden, R. Benezra, K. Hattori, and B. Heissig. Vascular and

haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature

Rev. Cancer, 2:826–835, 2002. 30

[44] A.R.A. Anderson and M.A.J. Chaplain. Continuous and discrete mathematical

models of tumor-induced angiogenesis. Bull. Math. Biol., 60:857–900, 1998. 31,

34, 35, 91

105



[45] M. Kohandel, M. Kardar, M. Milosevic, and S. Sivaloganathan. Dynamics

of tumor growth and combination of anti-angiogenic and cytotoxic therapies.

Phys. Med. Biol., 52:3665–3677, 2007. 32, 65, 66, 71

[46] J.L. Gevertz and S. Torquato. Modeling the effects of vasculature evolution

on early brain tumor growth. J. Theor. Biol., 243:517–531, 2006. 33, 35, 90,

91

[47] T. W. Secomb, R. Hsu, N. B. Beamer, and B. M. Coull. Theoretical simulation

of oxygen transport to brain by networks of microvessels: effects of oxygen

supply and demand on tissue hypoxia. Microcirculation, 7:237–247, 2000. 33

[48] S. R. McDougall, A. R. Anderson, M. A. Chaplain, and J. A. Sherratt. Mathe-

matical modelling of flow through vascular networks: implications for tumour-

induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64:673–

702, 2002. 35

[49] S. R. McDougall, A. R. Anderson, and M. A. Chaplain. Mathematical mod-

elling of dynamic adaptive tumour-induced angiogenesis: clinical implications

and therapeutic targeting strategies. J. Theor. Biol., 241:564–589, Aug 2006.

35

[50] J. Wu, Q. Long, S. Xu, and A. R. Padhani. Study of tumor blood perfusion and

its variation due to vascular normalization by anti-angiogenic therapy based

on 3D angiogenic microvasculature. J. Biomech., 42:712–721, 2009. 35

[51] J. W. Baish, Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter, and R. K. Jain.

Role of tumor vascular architecture in nutrient and drug delivery: an invasion

percolation-based network model. Microvasc. Res., 51:327–346, 1996. 36

[52] R. Gdde and H. Kurz. Structural and biophysical simulation of angiogenesis

and vascular remodeling. Dev. Dyn., 220:387–401, 2001. x, 36, 37, 91, 92

106



[53] K. Sandau and H. Kurz. Modelling of vascular growth processes: a stochastic

biophysical approach to embryonic angiogenesis. J. Microsc., 175:205–213,

1994. 36

[54] M. Welter, K. Bartha, and H. Rieger. Emergent vascular network inhomo-

geneities and resulting blood flow patterns in a growing tumor. J. Theor.

Biol., 250:257–280, 2008. 36, 91

[55] M. Welter, K. Bartha, and H. Rieger. Vascular remodelling of an arterio-

venous blood vessel network during solid tumour growth. J. Theor. Biol.,

2009. x, 36, 37, 38

[56] C. D. Murray. The physiological principle of minimum work: I. The vascular

system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A., 12:207–

214, 1926. 37

[57] K. Sandau and H. Kurz. Measuring fractal dimension and complexity–an

alternative approach with an application. J. Microsc., 186:164–176, 1997. 37

[58] N. V. Mantzaris, S. Webb, and H. G. Othmer. Mathematical modeling of

tumor-induced angiogenesis. J. Math. Biol., 49:111–187, 2004. 38

[59] R. K. Jain. Transport of molecules across tumor vasculature. Cancer Metas-

tasis Rev., 6:559–593, 1987. 38, 94

[60] R. K. Jain and L. T. Baxter. Mechanisms of heterogeneous distribution of

monoclonal antibodies and other macromolecules in tumors: Significance of

elevated interstitial pressure. Cancer Res., 48:7022–7032, 1988. 38, 72

[61] L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumors.

I. Role of interstitial pressure and convection. Microvasc. Res., 37:77–104,

1989. 39

[62] T. P. Butler, F. H. Grantham, and P. M. Gullino. Bulk transfer of fluid in

the interstitial compartment of mammary tumors. Cancer Res., 35:3084–3088,

1975. 39

107



[63] E. M. Sevick and R. K. Jain. Blood flow and efferent blood ph of tissue-isolated

walker 256 carcinmoa during hyperglycemia. Cancer Res., 48:1201–1207, 1988.

39

[64] P. Vaupel, H. P. Fortmeyer, S. Runkel, and F. Kallinowski. Blood flow, oxygen

consumption, and tissue oxygenation in human breast cancer xenografts in

nude rats. Cancer Res., 47:3496–3503, 1987. 39

[65] G. I. Bell. Models for the specific adhesion of cells to cells. Science, 200:618–

627, 1978. x, 41, 44

[66] M. Eigen. Diffusion control in biochemical reactions. Quant. Stat. Mech. Nat.

Sci., pages 37–61, 1974. 42

[67] S. N. Zhurkov. Int. J. Fract. Mech., 1:311–323, 1965. 43

[68] John P. Sinek, Hermann B. Frieboes, B. Sivaraman, S. Sanga, and V. Cristini.

Mathematical and computational modeling: Toward the development and ap-

plication of nanodevices for drug delivery. In Challa S. S. R. Kumar, editor,

Nanodevices for the life sciences Vol. 4, chapter 2, pages 29–66. WILEY-VCH

Verlag GmbH & Co. KGaA, Weinheim, 2006. 44

[69] S. K. Bhatia, M. R. King, and D. A. Hammer. The state diagram for cell

adhesion mediated by two receptors. Biophys. J., 84:2671–2690, 2003. 46

[70] G. I. Bell, M. Dembo, and P. Bongrand. Cell adhesion. Competition between

nonspecific repulsion and specific bonding. Biophys. J., 45:1051–1064, 1984.

46

[71] F. Winkler, S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth, I. Garkavtsev,

L. Xu, D. J. Hicklin, D. Fukumura, E. di Tomaso, L. L. Munn, and R. K.

Jain. Kinetics of vascular normalization by VEGFR2 blockade governs brain

tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix

metalloproteinases. Cancer Cell, 6:553–563, 2004. 71

108



[72] R. K. Jain, R. T. Tong, and L. L. Munn. Effect of vascular normalization by

antiangiogenic therapy on interstitial hypertension, peritumor edema, and lym-

phatic metastasis: insights from a mathematical model. Cancer Res., 67:2729–

2735, 2007. ix, 81, 99

[73] C. Phipps, G. Powathil, S. Speziale, and M. Kohandel. Effects of combina-

tion treatments on tumor microenvironment: a mathematical approach. In

preparation.

[74] M. Kohandel, S. Sivaloganathan, and A. Oza. Mathematical modeling of ovar-

ian cancer treatments: Sequencing of surgery and chemotherapy. J. Theor.

Biol., 242:62–68, 2006.

[75] S. Takano, Y. Yoshii, S. Kondo, H. Suzuki, T. Maruno, S. Shiral, and T. Nose.

Concentration of vascular endothelial growth factor in the serum and tumor

tissue of brain tumor patients. Cancer Res., 56:2185–2190, 1996.

[76] A. Obermair, E. Kucera, K. Mayerhofer, P. Speiser, M. Seifert, K. Czerwenka,

A. Kaider, S. Leodolter, C. Kainz, and R. Zeillinger. Vascular endothelial

growth factor (VEGF) in human breast cancer: correlation with disease-free

survival. Int. J. Cancer (Pred. Oncol.), 74:455–458, 1997.

[77] N. H. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic

modeling in vivo. Crit. Rev. Bioeng., 5:273–322, 1981.

[78] M. O. Stefanini, F. T. H. Wu, F. Mac Gabhan, and A. S. Popel. A compartment

model of VEGF distribution in blood, healthy and diseased tissues. BMC

Systems Biology, 2, 2008.

[79] G. A. Truskey, F. Yuan, and D. F. Katz. Transport phenomena in biological

systems. Pearson Prentice Hall, 2004.

[80] F. Mac Gabhann and A.S. Popel. Interactions of VEGF isoforms with VEGFR-

1 and VEGFR-2, and neuropilin in vivo: a computational model of human

skeletal muscle. Am. J. Physiol. Heart Circ. Physiol., 292:459–474, 2007.

109



[81] F. Mac Gabhann, J.W. Ji, and A.S. Popel. Multi-scale computational models

of pro-angiogenic treatments in peripheral arterial disease. PLoS Comput.

Biol., 35:982–994, 2006.

[82] C. S. Patlak, D. A. Goldstein, and J. F. Hoffman. The flow of solute and

solvent across a two-membrane system. J. Theor. Biol., 5:426–442, 1963.

110


	List of Tables
	List of Figures
	Biological and Medical Background
	Cancer
	Tumour Angiogenesis
	Cancer Treatment
	Surgery and Radiotherapy
	Chemotherapy
	Antiangiogenic Agents
	Other Treatments

	Treatment Strategies
	Maximum Total Dosage
	Metronomic
	Cancer Control vs. Cancer Cure

	Drug Delivery Vehicles
	Phospholipid-based Nanoparticles
	Polymer-based Nanoparticles

	Summary

	Mathematical Oncology
	ODE Models
	Tumour Growth
	The Effect of Chemotherapy
	Angiogenesis and the Effect of Antiangiogenic Therapy

	Spatial Models
	Modelling Growth Factor Activity
	Modelling Tumour Vasculature

	Pressure and Drug Delivery
	Receptor-Ligand Binding Models
	Bell's Deterministic Model
	A Stochastic Model
	Cell Adhesion with Two Receptors

	Summary

	Cancer Modelling with ODEs
	Tumour Growth and Chemotherapy
	The Effect of Angiogenesis
	Drug Dosages
	Free Agents
	Dosage Normalization

	Model Simulations
	MTD vs. Metronomic Therapy
	Drug Release
	Combination Therapy

	Model Evaluation

	Cancer Modelling with PDEs
	Angiogenic Factors
	Angiogenesis
	Tumour Growth
	Directed Cell Movements
	Drug Distributions
	Dosages
	Free Agents
	Delivery Vehicles

	Model Simulation
	Parameters

	Results
	Model Evaluation

	Interstitial Fluid Pressure in Solid Tumours
	IFP Modelling in a Tumour
	IFP and Angiogenic Factors
	Model Evaluation

	Conclusions
	Summary and Implications of Findings
	Possible Extensions and Open Problems
	Tumour Growth
	Vasculature Modelling
	Receptor-ligand Binding
	Optimal Scheduling
	Parameter Estimation
	Interstitial Fluid Pressure


	APPENDICES
	Calculations
	Nondimensionalization of ODEs
	Growth factor solutions
	Pressure solutions
	Nondimensionalization of PDEs

	References

