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Abstract

Superconducting circuits have recently become a major contender for the im-
plementation of quantum computers owing to their compatibility with existing mi-
crochip fabrication technologies. Their utility stems largely from their ability to
be coupled with resonant cavities for the purposes of trapping and relaying mi-
crowave radiation. Because of this feature, scientists are able to transmit quantum
information from a variety of qubits. Though quantum-limited amplifiers exist,
unfortunately there currently exists no microwave photon counter capable of single
shot quantum detection.

Hence, we use superconducting circuits with Josephson junctions to design a
microwave photon detector based on a modified phase qubit that exhibits a band-
width of 4GHz, and a detection fidelity of 98%. We use metastable barrier transi-
tion (driven by incident photons) to create an avalanche effect analogous to current
photo-diodes. Linear coupling of the junction flux with the radiation permits pho-
todetection from an arbitrary quantum source in the GHz range. We show the
device to be robust to changes in drive-frequency, temporal photon width, and res-
onator quality factor, and we optimize our device with respect to these parameters.
We show the device to be stable over the necessary time scales, and yet sensitive
enough to accurately measure photons on demand.
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Chapter 1

Introduction

Research dating back to the 1980s[1, 2, 3] has demonstrated that macroscopic
variables such as voltage and current can exhibit non-classical behaviour. Such
quantum-mechanical phenomena can be seen using non-linear inductors (specifi-
cally, Josephson junctions) The energetics of which depend on the relative phase of
the many-body electronic wave-function across the junction. Since then, the last
two decades have brought about rapid evolution in the field of circuit quantum
electrodynamics [4, 5, 6], and further research has shown the potential for coherent
energetic coupling between the electrostatic properties of Josephson circuits and
the electromagnetic modes of a resonant cavity [7, 8, 9, 10, 11]. Furthermore, the
scientific community has explored increasingly broad avenues for development in
this field ranging from pure mesoscopic science, to the wily challenges of quantum
information processing.

Hence, it has been established that, just as optical photons represent a cou-
pling mechanisms between the quantum states of atoms and molecules, microwave
photons hold great potential for the coupling between ‘artificial atoms’ that can
be fabricated on a microchip to serve as elementary building blocks for quantum
computers [12]. For this reason, much work has been invested in the creation of
non-classical radiation within on-chip superconducting circuit components. Indeed,
with the generation of non-classical propagating fields [7], and the demonstrated
potential for microwave radiation to act as a mediator in the coupling of solid state
logic devices [4], the field of circuit quantum electrodynamics (CQED) has become
a rapidly evolving test-bed for a wealth of mesoscopic quantum phenomena. One
cumbersome deficiency within the established infrastructure, however, is the lack
of a detector sensitive to single photons in the microwave regime.

While quantum-limited amplifiers exist [13, 14], single photon detectors with
quantum sensitivity scale do not –an omission in the available resources for the
implementation of quantum circuits which we seek to rectify. Single photon detec-
tors have been proposed in parallel to this thesis [15], though the dependence of
such detection on essential circuit and photon parameters has not been explored.
Furthermore, there is a need within the community for a ‘broadband’ detector that
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is not so sensitive to changes in the frequency of the photon; the above proposal,
however, claims a bandwidth on the order of ‘several MegaHertz’, and a maximum
detection probability of 50% [15]. We propose a detection scheme with a detection
fidelity of over 98% and a bandwidth of 4 GigaHertz –an improvement by a factor
of over one-thousand in this criteria. Furthermore, the proposed model does not
afford a natural reset mechanism, nor a clear accounting for the rate of spurious
detections, or ‘dark counts.’ Here, we fully account for the rate of false-positive
detection.

To reiterate, we present a new detection scheme vastly improved in both band-
width and fidelity. We show the system to be robust to changes in all relevant
parameters (such as the temporal width of the photon, the photon frequency, and
the rate of dissipation) at an idealized metastable barrier height which we deter-
mine. We determine precisely the confidence with which the detector can be trusted
to minimize spurious detection, and the time-scales over which detection processes
occur; We show that it is possible to manage these effects and still detect microwave
photons when present.

1.1 Outline.

In this thesis, we will introduce a series of increasingly detailed models to recre-
ate the behaviour of Josephson circuits, using the initial, preliminary models to
strengthen the credibility of the latter ones by corroborating some of the results
from each.

• In chapter 2 we will introduce a common model for optical photo-detection
[16] that provides the underpinnings for the numerical simulations we will use
later. This model shows the basic excitation and evolution process that we
are interested in in the trivial case of excitation into a band of levels with
uniform energy spacing and coupling strength to the initial state.

• In chapter 3 we will introduce the eigenstates that we generate for the po-
tential well created by our circuit (which, we shall see, takes the form of an
asymmetric bistability.) We will show methods of energy-eigenstate solution
based on the harmonic eigenstate basis, and on the discrete variable repre-
sentation (DVR) [17], and explain why, in our circumstances, the latter is
preferable.

• In chapter 4 we will restrict ourselves to purely classical simulations of the
system, and we will consider driven anharmonic oscillations using the pertur-
bative response theory [18]. In this model, we note the three resonance points
in these results that serve to corroborate resonances observed in the quantum
model which we will explore later. We will then proceed to calculate the dark
escape rate using the metastable escape rate determined by Kramer [19, 20].
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• Since the above calculations do not account for quantum tunnelling, in chapter
5 we introduce the imaginary part of the free energy and show how it can be
used to calculate the escape rate, accounting for both thermal excitations, and
quantum mechanical tunnelling. Since this method assumes instantaneous
thermalization of the state’s energy distribution, we cannot rely on this model
for predictions of the dark current; we can, however, corroborate our estimates
of the dark-current using mean first-passage time theory [21] in the high-
damping limit.

• In chapter 6 we introduce our working model, exploiting the density matrix of
states in the DVR basis determined from chapter 3. We introduce the various
parameters that require optimization for a detector, such as the temporal
pulse width, resonator quality factor, photon frequency, and barrier height
and we scan through these parameters to determine both the false and true
positive detection probabilities of our system.

At the optimal parameters, we determine a bandwidth of 4 GHz and we
characterize the range of our sensitivity to variations in the other pertinent
parameters (such as the temporal width of the photon wave-packet, and the
dissipation rate of the circuit.) The robustness of our detection scheme is a
key selling point of our model, and in chapter 6 we optimize our detector to
assure maximal true positive detection probability, and minimal false-positive
probability. As we shall see, this can be achieved with a great deal of flexibility
in the aforementioned parameters.

• Finally, in chapter 7 we provide a discussion and summary of the key findings
in the above.

Before delving into the dynamics of our Josephson circuit, however, we consider
a simplified model of photo-detection used in the optical regime [16], and compare
analytic results obtained from perturbation theory with computational results. The
agreement between the two will serve to establish confidence in the computational
techniques that will be employed later.
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Chapter 2

A conventional optical
photo-detection model

We consider a stable initial quantum state with a band of unoccupied energy levels
above it, separated from the former by energy ω0 with internal energy separation
dω. A photon with frequency ωR (‘R′ for ‘Radiation′) is incident upon the system,
and we wish to model the probability that the state will be excited into the band
of levels above it (see figure 2.1 for schematic illustration.)

We treat the electromagnetic field as a classical source, while the states of
the system are quantum-mechanically discretized. We define our probability of
excitation by applying the time evolution operator to the initial state, and by
determining the consequent amplitudes of the system in each of the states above
the initially populated one (we refer to these levels collectively as ‘the band’.) That
is to say: given N states (including the initial state) for integer f , where |f〉 is the
f th energy eigenstate of the whole system,

PE(t) =
N∑
f=1

|〈f |Û1(t)|0〉|2. (2.1)

Naturally, then, the probability of non-excitation is given by

PNE(t) = |〈0|Û1(t)|0〉|2. (2.2)

Here Û1(t) is the time evolution operator due to the perturbation introduced to
the system from the incident photon. We will first evaluate this probability with
a perturbative method[16] by approximating the time evolution operator Û over
short time scales. We will then analyze the system using more precise numerical
techniques –the latter of which will mirror our final approach in chapter 6 much
more closely.
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Figure 2.1: Graphical representation of the excitation process due to radiation
with frequency ωR. The initial state undergoes transition across an energy gap
ω0 into a band with level spacing dω, the timescale of this excitation and the
distribution amongst each of the states in the band is discussed herein. For the
sake of concreteness, let us assume all frequencies are in units of 109 radians per
second.

2.1 Perturbative approach

The time evolution operator Û1(t) evolves a quantum state from some point in time
(presumably t = 0) to time ‘t′ and is defined by

|Ψ(t)〉 = Û1(t)|Ψ(0)〉 (2.3)

where our state |Ψ(t)〉 is defined in the interaction frame. Assuming the photon
in our detection system gives rise to a Hamiltonian interaction H1(t) (also in the
interaction frame,) the Schrödinger differential equation describing its evolution is
given by:

d

dt
|Ψ〉 =

−iH1(t)

~
|Ψ〉 (2.4)

If we substitute |Ψ(t)〉 = Û1(t)|Ψ(0)〉 into (2.4) we see that

d

dt

[
Û1(t)|Ψ(0)〉

]
=
−iĤ1(t)

~

[
Û1(t)|Ψ(0)〉

]
(2.5)

Û1(t)
∂

∂t
|Ψ(0)〉+ |Ψ(0)〉 ∂

∂t
Û1(t) =

−iĤ1(t)

~

[
Û1(t)|Ψ(0)〉

]
(2.6)

We assume that all time dependence is manifested in the operator Û(t), and
that therefore the first term in (2.6) is zero, consequently
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∂

∂t
Û1(t) =

−iĤ1(t)

~
Û1(t). (2.7)

Integrating this equation results in expressions involving Û1(t), Û1(0). If we
recognize that evolving through a period of time zero amounts to no change in the
state (and that such an operator is therefore equivalent to the identity operator)
this expression is equivalent to:

Û1(t) = 1− i

~

∫ t

0

H1(t′)Û1(t′)dt′ (2.8)

One can then place the expression for Û1(t) on the left in the term on the right,
recursively generating higher-order terms in dt′ to define Û1(t) in terms of Ĥ1(t).
For example:

Û1(t) = 1 +
−i

~

∫ t

0

H1(t′)dt′ +

(
−i

~

)2 ∫ t

0

dt′
∫ t′

0

dt′′H1(t′)H1(t′′)

+

(
−i

~

)3 ∫ t

0

dt′
∫ t′

0

dt′′
∫ t′′

0

dt′′′H1(t′)H1(t′′)H1(t′′′) + . . . (2.9)

This is often referred to as the Dyson series expansion of time-ordered pertur-
bation. Note that each successive term involves a higher-order term of dt; hence,
for short time-intervals, we will take expression 2.9 only to first order (i.e. we will
consider only the first two terms.)

In our case, the perturbing Hamiltonian that causes the excitation described
above is given asH1(t) = I(t)φ(t)[22], where I(t) is the current being driven through
the system, and φ(t) is the flux (the flux is written in time-dependent form because
our analysis is confined to the interaction frame.) Equation (2.1), evaluated using
first-order time evolution as in (2.9) then corresponds to

PE(t) =
∑
f=1

∣∣∣∣〈f |(1− i

~

∫ t

0

I(t′)φ̂(t′)dt′
)
|0〉
∣∣∣∣2 . (2.10)

Since the initial state is defined to be orthogonal to the band of levels, the unity
term in expression (2.8) yields precisely zero. To calculate the contribution from
the second term we express the operator φ̂(t) in a more convenient form. This can
be accomplished using an expansion in the eigenstate basis |n〉, |m〉 as

I(t)φ̂(t) = I(t)
∑
n,m

Û †0 |n〉〈n|φ̂|m〉〈m|Û0 (2.11)
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where Û0 = e

»
−i

Ĥ0t
~

–
, is the time-evolution mapping between Schrödinger and inter-

action frames, and Ĥ0 is the unperturbed Hamiltonian of the system (of which |n〉,
and |m〉 are eigenstates.) It follows then that

I(t)φ̂(t) = I(t)
∑
n,m

φnmÛ
†
0 |n〉〈m|Û0

= I(t)
∑
n,m

φnme

»
iĤ0t

~

–
|n〉〈m|e

»
−iĤ0t

~

–

= I(t)
∑
n,m

φnme[i (εn−εm)t
~ ]|n〉〈m| (2.12)

where φnm are time independent, and εn, εm are the eigen-energies of state |n〉, |m〉
respectively. We assume I(t) has the form I(t) = I0 sin(ωRt), Applying the result
obtained in (2.12) to (2.10) we arrive at

PE(t) =
∑
f=1

∣∣∣∣∣〈f |
(

i

~

∫ t

0

I(t′)
∑
n,m

φnme

h
i
(εn−εm)t′

~

i
|n〉〈m|dt ′

)
|0〉

∣∣∣∣∣
2

=
∑
f=1

∣∣∣∣∣−i

~

∫ t

0

I(t′)φf0e

»
i
(εf−ε0)t′

~

–
dt′

∣∣∣∣∣
2

=
∑
f=1

I2
0 |φf0|2

~2

∣∣∣∣∫ t

0

sin(ωRt
′)e[iωf0t′]dt′

∣∣∣∣2 . (2.13)

In any realistic system, of course, φf0 would become negligibly small for very
large ‘f ′; for the moment we assume that φf0 is constant (unity) over the band of
levels considered, and zero elsewhere. For compactness, we define γf (t) as

γf (t) ≡

∣∣∣∣∣
∫ t

0

sin (ωRt
′) e

»
i
ωf0t′

~

–
dt′

∣∣∣∣∣
2

=
(
ω2
R

[
1 + cos2(ωRt)

]
+ ω2

f0

[
1− cos2(ωRt)

]
− 2

[
ω2
R cos(ωRt) cos(ωf0t) + ωRωf0 sin(ωRt) sin(ωf0t)

]) (
ω2
R − ω2

f0

)−2
.

(2.14)

Hence, we express (2.10) in the form

PE(t) =
∑
f=1

γf (t)I0|φf0|2

~2
. (2.15)
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This is our perturbative excitation probability; it does not conserve probability,
and is valid only on short time scales. In the following section we will derive
methods of obtaining more precise probabilities through computational methods,
and compare the results of each.

2.2 Numerical approach

We now consider a more precise calculation of the probability of excitation. We
begin with the Schröedinger equation as in (2.4) with the same Hamiltonian as in
2.12. We represent the state as a combination of energy eigenstates |p〉

|Ψ〉 =
∑
p

cp(t)|p〉 (2.16)

where cp(t)|t=0 = δ0p. Substituting this into (2.4) in conjunction with (2.12) yields:

∂

∂t

(∑
p

cp(t)|p〉

)
=
−i

~
I(t)

∑
n,m

φnme[i (εn−εm)t
~ ]|n〉〈m|

(∑
q

cq(t)|q〉

)
. (2.17)

Therefore (taking the inner product with 〈n|):

∂

∂t
cn(t) =

−i

~
I(t)cm(t)

∑
m

φnme[i (εn−εm)t
~ ] ∀ n. (2.18)

In principle, for a system involving (N−1) states in the band, in addition to the
initial state, the N coupled differential equations corresponding to (2.18) describe
the time-evolution of the system entirely. In practise, equation (2.18) is broken up
into real and imaginary components yielding the 2N differential equations given as:

∂

∂t
Re {cn(t)} =

I(t)

~
∑

m

[Im {cm(t)} cos ((εn − εm)t) + Re {cm(t)} sin ((εn − εm)t)]φnm

∂

∂t
Im {cn(t)} =

I(t)

~
∑

m

[−Re {cm(t)} cos ((εn − εm)t) + Im {cm(t)} sin ((εn − εm)t)]φnm.

(2.19)

These equations can be solved numerically using the Runge Kutta optimized
coupled differential equation solver, implemented in the GNU standard library soft-
ware package [23]. By taking the squared modulus of each of these amplitudes we

8



Figure 2.2: Probability of excitation into the band of levels described above. An
initial state seperated by energy ω0 (~ = 1) from a band of levels with unity
level and coupling driven at various frequencies ωR. All frequencies are in units
of rad s−1. We observe that the excitation probability is relatively independent of
ωR, provided ωR is tuned to excitation well within the energy band of the band (i.e.
boundary effects come into play as ωR approaches ω0 or (ω0 + Ndω)). The brief
dip in probability occurs at a point termed the ‘Recurrence time’ and is a function
of the level spacing, dω, only.

can assess the probability as a function of time that the state is excited into the
band.

PE(t) =
∑
n=1

|cn(t)|2. (2.20)

For example, assuming I(t) = I0 sin(ωRt), and setting ~ = I0 = dω = 1, ω0 =
5000, and assumingN = 50 states, the probability of excitation as a function of time
for various driving frequencies ωR is shown in figure 2.2 Note the recurrence time ‘T ′R
evident in the figure. Since the initial state oscillates between the different states
within the band at different frequencies, we attribute this brief ‘dip’ to momentary
phase-matching between the various cycles. The dependence of the recurrence time
on the energy level spacing of the band is shown in figure 2.3

Furthermore, the distribution of probabilities within the band is shown in figure
2.4. Note the peak at the tuning level (i.e. the state closest in energy to ωR
above the initial state) as well as the decreasing ‘sharpness’ of the peak in energy
distribution with increasing time. Naturally, this is the result of state excitation
being closely tuned to one region of levels, and then dispersing outward from it (in
the absence of dissipation.)

Finally, the probability of excitation (as defined in (2.1)) using the computation

9



Figure 2.3: Recurrence time as a function of band level spacing. For each value of
dω, 5 different driving frequencies were selected using random number generation
confined to tuning within the middle 75% of the band. In many cases the resulting
data were so consistent that they have the appearance of a single datum; this
demonstrates that the excitation is independent of the driving frequency, and that
recurrence time is inversely proportional to level spacing.
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Figure 2.4: Probability distribution amongst the states in the band for given tuning
and level spacing - these results are typical. Excitation is tuned to a small subset
of levels, from which population gradually disperses.

results from the coefficients cn can be directly compared with the results of equation
(2.15) -with the latter referred to as the ‘Perturbative solution.’ Figure 2.5 shows a
typical comparison between the two results for two values of dω, each with the same
driving frequency for the two models. The agreement is evident and representative,
and serves to validate the numerical approach that we will employ in subsequent
chapters.

2.3 Discussion

In the preceding, we analyzed photo-excitation from an initial state into a band of
energy eigenstates from the incidents of a photon with characteristic frequency. We
show a short-term perturbative model for excitation, as well as a direct numerical
evaluation of the coupled differential equations describing the amplitudes of the
evolving system in each of the energy eigenstates. We show that on short time scales
the two methods have excellent agreement, and that in the latter case, probability
distribution throughout the states satisfies normalization constraints.

Furthermore, although the drive frequency determines the peak in the energy
spectrum of the excitation probability of the states, the overall excitation probabil-
ity is independent of the driving frequency. This is important since any real photon
will be made up of a range of frequencies associated to a wave-packet -however it
should be noted that this model assumes equal coupling of the initial state to all

11



Figure 2.5: Typical probabilities of excitation as a function of time using the results
of (2.15), and (2.20). The results of (2.15) show strong agreement for short time
intervals, but develop errors that scale with t2, and eventually violate normalization.
Equation (2.18) however, maintains normalization; the fact that it agrees with the
predictions of (2.15) over short time scales reinforces our confidence in it.
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levels in the band -an assumption that will not hold in the model we employ in
chapter 6. We also show that the recurrence time is inversely proportional to the
level spacing of the band; this will be a useful relationship since we wish to engi-
neer our system such that dissipative effects take place on a shorter time scale than
recurrence. Describing the full dynamics of state relaxation and dissipation will
require making use of density matrices instead of amplitude coefficients, however
the treatment will employ is very much analogous to equation (2.19).

When we consider the physics of photodetection, involving irreversible dissipa-
tion, our numerical simulations will more closely resemble the form:

d

dt
ρnm(t) = −i

∑
j

Hnjρjm+i
∑

j

Hjmρnj +κρn+1,m+1

√
(n + 1)(m + 1)−κ

2
nρnm−

κ

2
mρnm .

(2.21)

The latter terms in (2.21) describe the de-excitation process by which the system
emits its energy to the environment where κ represents a phenomenological con-
stant. An actual photodetection process will necessarily involve considering states
with energy below the prepared state, into which the band of levels irreversibly
decay.

Of course the simplifications of this model are evident. In our actual system the
initial state will not exhibit uniform coupling with the energy levels above it, and
those levels will not be of uniform spacing. Hence, the next step in building a more
realistic model is resolving the energy eigenstates that exist within our bounded
potential, and determining the coupling strength of each to the initial state.

13



Chapter 3

System energetics

We return now from our consideration of existing photo-detection schemes in the
optical regime to the microwave system of our interest. We pause here to consider
the coupling of microwave wave-guide with our device, and the delivery of radiative
power from the former to the latter. We then present the Hamiltonian we will
employ to determine the energy eigenstates of our detector in the absence of any
disturbing drive from an incident photon. These states will not only determine the
spontaneous escape rate (or dark count rate) in the absence of photonic drive, but
they will also form the basis of time evolution for our density matrix as we will see
in chapter 6.

3.1 Our proposed circuit.

We begin by considering the circuit of parallel components shown in figure 3.1; the
circuit consists of a Josephson junction, a linear, externally biased inductor, and
a resistor to encapsulate the effects of the surrounding thermal bath. The former
components will determine the energy eigenstates of our model, while the effects
of the latter will be captured in the time dynamics of our system via bath-induced
transitions between the energy eigenstates (see chapter 6.) To determine the energy
eigenstates of this system, we introduce the reduced branch flux,

φ =
2π

Φ0

Φ =
2π

Φ0

∫ t

−∞
v(t′)dt′ (3.1)

and branch charge

q =
Φ0

2π~
Q =

Φ0

2π~

∫ t

−∞
I(t′)dt′ (3.2)

where Q, and Φ are as defined by Devoret [24]. In equations 3.1 and 3.2 we
have used v(t) and I(t), the voltage and current, respectively across the Josephson
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Figure 3.1: Schematic of the Josephson circuit coupled via capacitor C1 to the
cavity resonator. State changes in any qubit coupled to this transmission line
cavity generate cavity modes which induce current flow through the circuit -our
detector. The circuit consists of a parallel combination of a linear, externally biased
inductors with a collective effective inductance LS, a Josephson junction (which we
model using a non-linear inductor LJ , and a capacitor C ′J ,) and a resistor to account
for dissipation.
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element at time t, and Φ0 = h
2e

, the flux quantum. We will see in a moment,
why these parameters play such an important role, and why it is convenient to
use the dimensionless parameters q and φ instead of the generalized charge Q and
flux Φ. Neglecting, for the moment, the thermal bath surrounding the system, we
observe an asymmetric bistability in the above model [25] resulting from the free,
or undriven Hamiltonian[6] which takes the form

Ĥ0 =
Q̂2

2CJ
+

(
Φ̂− Φx

)2

2Ls
− EJ cos

(
2πΦ̂

Φ0

)

= EJ

(
Ec
EJ

q̂2 +
(φ− φx)2

2β
− cos(φ̂)

)
. (3.3)

In equation 3.3 EJ is the Josephson energy IcΦ0/(2π) (Ic is the critical cur-
rent of the junction1 ), Ec = 2e2/CJ is the charge energy, and φx is the effective
biasing flux introduced to the circuit via its coupling to the control applied as
shown in figure 3.1. It has been shown[6] that for the many-body electronic wave-

function,
[
φ̂, q̂
]

= i; hence, equation 3.3 can be conveniently treated with the same

‘momentum-position’ paradigm that has been employed to solve for the wave equa-
tion of electrons and other particles. The precise position, or flux, wave-functions
of our energy eigenstates will be explored later in this chapter. The interaction
of the circuit with the current driven by the incident photon will be captured by
the standard atom-photon dipole interaction scheme [22] which gives an interaction
Hamiltonian of

ĤI(t) = I(t)φ̂ (3.4)

where I(t) is the current being driven through the circuit at time t. This is the basic
premise behind our photo-detector. At the left in figure 3.1 is a terminal connected
across any resonating cavity from which the photon originates; a 1-dimensional
wave-guide along which at some point there is coupling to a qubit –perhaps a
charge qubit, for example [10].

We define the power flowing out of the transmission [29] line as

P =
I(t)2

2
Z0. (3.5)

1Although the critical current Ic can be altered to change the shape of the potential, this
would be primarily for the purpose of altering the height of the potential metastable barrier –a
change that can also be accomplished by altering the external biasing φx. Since Ic is a physical
property of the circuit, and φx is a control parameter (and resonance requirements constrain our
metastable-well curvature to a single degree of freedom), we will manipulate the potential via
φx, and assume constant Ic = 2µA (a value consistent with experiment [26] [27] [28]) yielding
EJ = 6.58× 10−22J
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Figure 3.2: Norton equivalency of our detector circuit, where CJ , Ls are the
effective capacitances and inductances of the whole circuit, Z0 is the impedence of
the transmission line, and the photon is treated as a current source.

Here Z0 is the impedence of the transmission line, which, due to geometrical con-
siderations, is approximately Z0 = 50Ω. We will assume that the resistance of the
detector circuit, R, is sufficiently large that negligible power is dissipated into it
on the time scale of the photon period 2π

ω
. To be assured of energy conservation,

we consider the power emitted from the transmission line (equation 3.5) and apply
this relation to equation 3.4 to impose the constraint that

∞∫
t=−∞

I(t)2

2
Z0 dt = ~ωR, (3.6)

where ωR is the drive frequency of the photon.

Once the current has excited the system, energy is then dissipated from the
tank circuit into the environment through the resistor, a process which we model
using incoherent state transitions (see chapter 6.) The rate at which this occurs is
inversely proportional to the quality factor of the circuit Q, which, for a parallel
RLC circuit with resonant frequency ω0 is given by

Q =
RT

ω0L
, (3.7)

where RT is the total real impedence of the circuit. To make this quantity more
transparent, we construct a Norton equivalent of our circuit, including the trans-
mission line, as shown in figure 3.2. Here it is apparent that the total real resistance
is

RT =
RZ0

R + Z0

. (3.8)

Given equation 3.8, an upper limit to RT (and thereby also Q) arises, since RT → Z0

in the limit of R→∞. Assuming Ls = 266pH, ω0 = 37Grps (these quantities are

17



Figure 3.3: The double well, generated in the φ dimension, by quadratic, and
cosine terms in equation 3.3, and the three harmonic approximations applicable
to it. The curvature of these latter wells will be used in analytic estimations of
the periodicity of the system, and level separation, as well as its decay rate. Note

that the middle frequency ωb denotes
√

V ′′(q)
m

, at the barrier peak, a characteristic

feature of the barrier that will be used in chapter 5

constrained by resonance requirements), and Z0 = 50Ω we obtain an upper limit
of Q = 5 from equation 3.7. Assuming that transmission lines can, in principle, be
fabricated with an impedence as high as 100Ω, we can obtain a Q-factor as high
as 10, though higher Q values than this do not seem feasible. As it turns out, this
constraint is immaterial, since we will observe in chapter 6 an optimal quality factor
of approximately 7.

Having explored the delivery mechanism of energy into our detector, we now
turn our attention to the energy eigenstates of our circuit.

3.2 Harmonic basis expansion

We have still yet to assign specific numeric values to many of the constants involved
in equation 3.3, however, we know that the shape of the potential defined by the
φ-dependent terms of 3.3 can -with appropriate biasing in the form of φx- be made
to look like an asymmetric, or tilted, double well in flux. Each of these two wells
can in turn be approximated by a harmonic well, as shown in figure 3.3.

The energy eigenstates |σn〉 to the harmonic well, of course, constitute a well-
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Figure 3.4: The 4 ×109− th eigenstate solution to the harmonic oscillator in units

of x0 =
√

~
mωc

. In practise, the reconstruction of our eigenstates requires only a

linear combination of eigenstates up to n ≈ 6, 000, but the above plot shows the
robustness of our approach.

known and fully analytic set of solutions, given by:

〈φ|σn〉 =
1√
n!
〈φ|(a†)n|0〉

=
1√
n!

(√
mωc
2~

)n(
φ− ~

mωc

d

dφ

)n (mωc
π~

) 1
4

e

»
−mωc

φ2

2~

–

=
mωc
π~

1√
2nn!

Hn

(√
mωc

~
φ

)
e

»
−mωc

φ2

2~

–
(3.9)

where Hn(x) represents the nth-order Hermite polynomial of x. Naturally, for
large n, direct evaluation of 3.9, becomes intractable; we may still evaluate the
position-basis wave function, however, by exponentiating the sum of the logarithms
of each factor in 3.9. This method requires asymptotic analysis of the Hermite
polynomials -a result which is provided by Dominici [30]. Using this definition of
the wave-functions, and manipulating the relevant terms in this way, practically
arbitrarily large order solutions to the harmonic well can be generated. Figure 3.4
shows the 4-billionth solution to the harmonic well as a function of position.

While the energetic parabolas serve as a useful approximation to either of the
wells in our potential, over the entire range of interest, the double well in figure 3.3
can be approximated by a 4th order polynomial in the position coordinate.

V (φ̂) =
(φ̂− φx)2

2β
− cos(φ̂) ≈ c1φ̂

4 + c2φ̂
3 + c3φ̂

2 + c4φ̂+ c5 (3.10)
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for c1−5 to be determined by least-squares regression. Choosing the harmonic
system as a basis, and expressing the potential as in 3.10 allows us to insert the
position and momentum operators of the harmonic well

φ̂ =

√
~

2mωc

(
â+ â†

)
(3.11)

q̂ = −i

√
mωc~

2

(
â− â†

)
(3.12)

into the polynomial terms of (3.10).

These operators can then be inserted into equation 3.3 which, when diago-
nalized, produces eigenstates comprised of superpositions of the harmonic states
|Ψn〉 =

∑
i ci|σi〉. Provided sufficiently large number of basis states are taken (≈

6000), the eigenstate solutions generated exhibit localized densities in the valleys
of the double well as expected.

3.3 Discrete variable representation

A far more efficient and accurate method exists –as we have found from the work of
Colbert et al [17]– in the discrete variable representation (DVR.) This is a preferable
method of resolving the position-basis wave-functions of our eigenstates for three
reasons. First, the exact potential well can be considered, as opposed to harmonic
method above, in which a polynomial approximation to the potential must be
employed.

If we generate the polynomial coefficients c1−5 in equation 3.10 using regression
over the whole double well, then our profile of the potential tends to break down
as an approximation in the vicinity of the metastable well (precisely the region in
which we are most interested in accurately reproducing the potential curvature.)
This discrepancy casts the spatial resolution of the energy eigenstates from the
harmonic basis expansion in doubt.

Secondly, the number of basis states required to generate our eigenstates using
DVR is about 1

6
the basis set size necessary in the above method. Since the time

required for diagonalization scales with the basis size according to a power law, this
speeds up our calculations significantly. Finally, the errors associated with both the
eigenenergies, and the wave-function profiles scale with a single parameter ∆x which
we will consider below:

To reproduce the discrete variable representation, we discretize the position
dimension into positions with indices φi. Our position-space Hamiltonian then
need not be approximated as in 3.10; we express our Hamiltonian in the form [17]
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Figure 3.5: The potential well 3.10 alongside its polynomial approximation, with
the metastable eigenstate and an example state within the stable well plotted. Note
the discrepancies between the approximation and the actual potential – accurate
representations of the metastable curvature necessarily entail inaccurate widths of
the potential well on the right.

Ĥ = V̂ + T̂ =
∑
j,k

|j〉〈k|

(
δjkV (φj) +

~2(−1)j−k

2CJ∆x2

{
π2

3
, if(j = k)
2

(j−k)2 , if(j 6= k)

})
. (3.13)

In equation 3.13, T̂ is the kinetic energy operator expressed as an infinite order
finite difference approximation for the second derivative [17] for uniformly spaced
positions φi. This process amounts to taking a basis of states |αn〉 that solve the
infinite square well over some bounded region of a potential and, through diagonal-
ization, obtaining the energy eigenstates |Ψn〉 =

∑
k ck|αk〉.

The key control variable in this entire process is the external flux, φx, from
equation 3.10, since it determines the asymmetry of the potential. A few examples
of the resulting eigenstates using this method are shown in figure 3.5, assuming
sufficient external flux to generate a potential well such that the left minimum is
separated from the right well by a potential barrier of height VB = 0.016EJ (all
data presented in this chapter assume this barrier height; the reason for this choice
of potential profile will be explained in chapter 6.)

Using the same set of eigenstates, state energies, En, are plotted against their
index n in figure 3.6, exhibiting a surprisingly linear dependence on n –in marked
similarity to a harmonic system despite the obvious anharmonicities of the poten-
tial.
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Figure 3.6: Eigen-energies resulting from the solution of 3.13. the metastable
barrier generates a change in the slope, but otherwise the energy dependence is
very much linear, despite the obvious anharmonicity of the potential shown in
figure 3.5.

Furthermore, since our driven Hamiltonian will depend on the coupling strength
between each of these eigenstates φjk = 〈j|φ̂|k〉, we determine these coupling coef-
ficients not by the definition given in 3.11, but by numerical integration

φjk =

∞∫
φ=−∞

dφ〈φ|Ψj〉φ〈Ψk|φ〉 (3.14)

using the trapezoidal integration rule. Of course, these wave functions are entirely
real in the Schrödinger frame, hence we need not concern ourselves with the complex
conjugates implied by equation 3.14.

3.4 Coupling coefficients

As we will see in chapter 6, the coefficients of 3.14 play a pivotal role in the time
evolution of our system; for computational considerations, however, it is useful for
us to restrict the Hilbert space used in this time evolution to states near in energy
to the metastable barrier. We justify this truncation by considering the exponential
decay of the coupling strengths in equation 3.14 with the energy difference between
the given states. To demonstrate this, figure 3.7 shows the coupling strength of each
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Figure 3.7: coupling strength, 〈Ψn|φ̂|Ψms〉, of each state with the lowest-energy
metastable state –which we presume to have unity occupation probability at time
t = 0. For VB = 0.016, this metastability occurs for state ms=284. The exponential
decay is an indication that states very high above the barrier will have negligible
probability of direct excitation.

state with the initial state (i.e. the lowest energy state localized to the metastable
region) – an exponential decay is evident.

Figure 3.8 shows the coupling strengths, as a function of n, the eigenstate index
(indexed such that En ≤ En+1∀n), for states and their nearby energy states. It
is clear that neighbouring states will dominate the coupling via φ; we will see in
chapter 6 that this indicates the state will generally make low-energy transitions
between neighbouring states until it decays to stability –radiating away its energy
gradually in the process.

With these coupling strengths we are able to add great depth to the model
introduced in chapter 2, and proceed to more realistic photo-detection models. It
is useful, however, to also consider the activation of such a metastable system in
a classical model; doing so will allow us to generate analytic predictions of the
spontaneous, or dark, rate of the system, as well as driven resonance responses and
compare both with our quantum model.
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Figure 3.8: Coupling strengths 〈Ψn|φ̂|Ψn+m〉. as a function of n for m = 1 . . . 5 for
VB = 0.016. Clearly the 〈Ψn|φ̂|Ψn+1〉 term dominates, indicating that excitation
and decay process are likely to occur along a ‘staircase’ of adjacent levels.
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Chapter 4

Classical activation

Although the bulk of our results and work will stem from the numerical work under-
taken in chapter 6, it is always useful to have an analytic approximation as a gauge
for comparison. To this end, we study the classical activation rates of metastable
systems -first by considering driven anharmonic oscillations of a classical particle
in a well[18], and secondly, by exploring the stochastic methods of various authors
[19, 31, 20] applied to classical probability distributions in metastable potentials.
These approximations, of course, have their shortcomings when applied to the sys-
tem under consideration; level discretization, finite barrier widths, and tunnelling
amplitudes all undermine the applicability of these models to the system of in-
terest. Nevertheless, they elucidate the resonance frequencies of our system for a
given potential well, and provide an analytic expression for the escape rate as a
function of the barrier height, both of which we will compare against the results of
our quantum model in chapter 6.

4.1 Classical anharmonic drive

Consider, as in equation 3.10, a polynomial approximation to our double well V (q)
(we will use q to denote position, only throughout this chapter); we begin by defining
our system Lagrangian

L =
1

2
mq̇2 − c1q

4 − c2q
3 − c3q

2 − c4q − c5 (4.1)

and we apply the classical Euler-Lagrange equations

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (4.2)

to obtain our equations of motion. We define q̃ = q− q0, where q0 is the metastable
minimum such that 4c1q

3
0 + 3c2q

2
0 + 2c3q0 + c4 = 0, and insert q = q̃ + q0 into our

potential to obtain
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¨̃q + ω2
0 q̃(t) = −αq̃(t)2 − βq̃3 (4.3)

with above constants defined as follows:

ω2
0 =

(12c1q
2
0 + 6c2q0 + 2c3)

m

α =
12c1q0 + 3c2

m

β =
4c1

m
. (4.4)

The solution to equation 4.3 can be expressed using perturbation theory; hence,
we assume that position as a function of time can be expressed as a perturbative
sum q(t) = q(1)(t) + q(2)(t) + q(3)(t) + . . ., and the anharmonic frequency ω =
ω0+ω(1)+ω(2)+. . .. Through expansion in an arbitrary, normalized order parameter
1 a, we determine the order terms of the position coordinate

q(1)(t) = a cos(ωt)

q(2)(t) =
−αa2

2ω2
0

+
αa2

6ω2
0

cos(2ωt)

q(3)(t) =
a3

16ω2
0

(
α2

3ω2
0

− β

2

)
cos(2ωt). (4.5)

While the zeroth order oscillation frequency is given above, the higher order terms
are determined to be:

ω(1)(t) = 0

ω(3)(t) = a2

(
3β

8ω0

− 5α2

12ω3
0

)
. (4.6)

If we insert a driving force into equation 4.3 we obtain the driven equation of
motion

¨̃q + 2λ ˙̃q + ω2
0 q̃(t) = (f/m) cos(ωRt)− αq̃2 − βq̃3. (4.7)

Given (4.7), we consider the dependence of the system dynamics on the driving
amplitude f , and frequency ωR, as shown in figure 4.1. One notices two key aspects
of this data: first, an optimum drive frequency is illuminated which is slightly ref-
shifted from the from the harmonic approximation of 41 Grad/s to the metastable

1the term ‘order parameter’ here is used in the sense of perturbative expansion, not to be
confused with the term ‘order parameter’ as used in a superconducting electronic context.
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well, and secondly, higher-order resonant frequencies appear. According to Landau
[18], a resonance point is to be expected for ever drive frequency that satisfies
ωR = j

k
ω0, where j and k are integers; the two ancillary resonances observed in

figure 4.1 appear to be 1
2
ω0 and 2ω0 respectively. Both of these characteristics will

be reproduced in the results of our quantum mechanical model in chapter 6.

The data shown in figure 4.1 are a scan over the f−ωR parameter space assuming
V B = 0.016EJ –we will see in chapter 6 why this particular barrier height is
significant. Figure 4.2 shows the trajectory of such a particle as a function of time
at this barrier height, on resonance with the minimal drive amplitude f necessary
to elicit a transition seen at time t ≈ 1ns followed by dissipative oscillation in the
stable well.

One must also ascertain, at what rate the particle will relax into the ground
state once transition has occurred. To this end, figure 4.3 shows the fraction of
energy that is dissipated per cycle as a function of the dissipation constant λ, from
equation 4.7. This measure of damping magnitude on energy dissipation will serve
as a gauge of validity for dissipation rates used in our quantum model in chapter 6.

Naturally, in any quantum-mechanical system, we cannot restrict our model
to point-particles. Hence, in the following section we consider the stochastic dif-
ferential equations necessary for the time evolution of a realistic open probability
distribution in a metastable well.
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Figure 4.1: Classical activation as a function of the drive frequency and forcing
amplitude for a point particle in a double well analogous to the flux bistability with
the energetic metastable barrier (henceforth denoted VB) set to VB = 0.016. The
2-D plane above is in the dimension of drive frequency and amplitude per unit mass
(in units of N/kg ≡ m/s2 for such a classical analogy). In the dark-shaded region
the particle will transition over the barrier eventually, while in the light-shaded
region it never will. Note that the local minimums in necessary drive amplitude
denote resonances at ω = 37, 78, and 19Grad/s (a minor resonance point as well
may be noticed at ω = 13Grad/s,) we will see these same resonance peaks nearly
exactly in the quantum model in chapter 6.
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Figure 4.2: Position of a point particle as a function of time with minimal necessary
drive amplitude at resonance assuming VB = 0.016. the point of transition from
metastability is apparent, after which point the system dissipates energy until it
relaxes in the stable position.

4.2 The Langevin treatment

We begin by considering a probability distribution spread through a metastable
potential well, as in the metastable state shown in figure 3.5. We presume the
right, or stable, well to be sufficiently deep to prevent return, and treat entry into
this well as an absorbing boundary conditions. We consider a particle somewhere
in this distribution, and use its equations of motion to derive the full Fokker-
Planck differential equation describing the evolution of the probability distribution
associated with it. The deterministic differential equations describing the motion
of a particle in this potential, with zero forcing, are given by 4.8.

q̈ + γq̇ +K(q) = 0 (4.8)

where γ represents the damping of the system divided by it’s mass and K(q) =
U ′(q)
m

is the first derivative of the potential divided by mass. Considering the scaled
dimensions of equation 4.8 (where m = 1) we can set the momentum of the system
p = q̇ in order to reduce the 2nd order differential equation to a first order problem.
Applying these relations to equation 4.8 we see that
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Figure 4.3: Energy fraction dissipated per unit cycle as a function of the dissipation
constant divided by mass –2λ in equation 4.7. This quantity will guide our selection
of desired quality factor, since we will ultimately desire a system with sufficiently
fast dissipation to relax the state once transition has occurred, but not so rapidly
as to dissipate energy before then.
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q̇ = p (4.9)

ṗ = −K(q)− γp. (4.10)

We now consider an arbitrary function f(p, q) and its average time derivative

d

dt
〈f(p, q)〉 =

〈
df(p, q)

dt

〉
. (4.11)

Here the brackets 〈〉 denote time-averages over the time scale of one period 2π
ω0

. We
can still, however, compute its change in time dt, over longer time scales

d 〈f(p, q)〉 = 〈d f(p, q)〉 . (4.12)

The left hand side of equation 4.12 can be written as:

LHS =
d

dt

∞∫∫
−∞

dpdqf(p, q)W (p, q, t) (4.13)

where W (p, q, t) is the probability density, or weighting as a function of p and q.
The right hand side of equation 4.12 can be written as

RHS =

∞∫∫
−∞

dp dq

[
∂f(p, q)

∂q

(
dq

dt

)
dt +

∂f(p, q)

∂p

(
dp

dt

)
dt +O(dt2)

]
W (p, q, t)

=

∞∫∫
−∞

dp dq

[
p
∂f(p, q)

∂q
dt+ (−K(q)− γp) ∂f(p, q)

∂p
dt+O(dt2)

]
W (p, q, t)

(4.14)

(where we have Taylor expanded f(p, q), keeping only terms which are first order
in dt.)

Given equations 4.13 and 4.14, we proceed along a derivation outlined in ap-
pendix A to obtain the time evolution of the weighting function assuming no ther-
mal disturbances to the system:

∂

∂t
W (p, q, t) = −p ∂W (p, q, t)

∂q
+K(q)

∂W (p, q, t)

∂p
+ γ

∂ (pW (p, q, t))

∂p
. (4.15)

Equation 4.15 gives us the Fokker-Planck equation for the above problem. Of
course, thermal effects are central to our evaluation of dark currents, and hence we
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return to relations 4.8 - 4.10 and introduce stochastic driving. We accomplish this
by defining a Gaussian random variable w (lower-case w to distinguish this variable
from the probability density W above) with zero mean, such that

d

dt
w = ξ(t) (4.16)

where ξ(t) is a stochastic function of t. Hence, we adapt the relations given in
4.10 to account for the above effects:

q̇ = p

ṗ = −K(q)− γp+
√
Nξ(t) = −K(q)− γp+

√
N
dw

dt
. (4.17)

As with equations 4.13 4.14, we again we proceed from this partial differential
equation to determine the dynamics of the diffusion of the weighting function (again,
see appendix A), this time with drive incorporated explicitly:

∂

∂t
W (p, q, t) = K(q)

∂W (p, q, t)

∂p
−p ∂W (p, q, t)

∂q
+
∂

∂p

(
γ pW (p, q, t) +

N

2

∂W (p, q, t)

∂p

)
.

(4.18)

Equation 4.18 is the Kramer’s equation with stochastic driving; it is the foun-
dation for the diffusion rates which we will determine throughout the remainder of
this chapter.

4.3 The small damping limit

We consider an anharmonic potential well with two local minima as shown in figure
4.4

Assuming the noise and damping effects on the system are sufficiently small, we
assume that energy is approximately conserved on the time scale of one oscillation
(this is the energy-diffusion regime.) For a given energy then, the particle will trace
out a characteristic path in phase-space. A probability distribution of particles
along different phases (for a symmetric potential well, unlike figure 4.4 ) in this
oscillation is shown in figure 4.5 [19].

The non-uniformity shown by the localized ‘clump’ at the bottom-right in figure
4.5 is reflective of the fact that the distribution - at least initially - could move as a
cluster throughout phase space. For this reason, it is convenient to take an average
of W (p, q, t) over this closed loop, or equivalently, at a given point p, q averaged
over one period in time. Since the trajectory in phase space is characteristic of the
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Figure 4.4: A potential well with two local minima in which a particle will oscillate
with -initially- enough energy to surmount the barrier in between. We assume that
dissipative forces are sufficiently weak that the change in energy of the system upon
completion of one period is small. Image adapted from Hänggi et al [19]

Figure 4.5: The domain, in phase space, occupied by the probability distribution
of a particle with a given energy at a snapshot in time. Note the non-uniformity
(digitally added) demonstrated by the high density packet near the bottom right.
As time goes on, this packet will travel along the trajectory traced out clock-wise,
eventually returning (approximately) to its starting point. Image adapted from
Hänggi et al [19].
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particle’s energy, we can define such an average in terms of energy and time in two
ways.

ρ(E, t) =

∮
W (p, q, t)dI =

∞∫∫
−∞

dp dq δ (E − E ′(p, q))W (p, q, t) (4.19)

where T is the period of oscillation, I is the area circumscribed by the phase-
space path, and dI is the area of a loop, or trajectory, in phase space. Applying
this definition to 4.18 we can take γ and N to be arbitrarily small; in the limit
γ,N → 0 the energy of the system will not change, hence, the area within the
phase space path should remain constant, therefore:

d

dt
ρ(E, t) = K(q)

∂ρ(p, q)

∂E

dE

dt
− p ∂ρ(E, t)

∂E

dE

dq
= 0. (4.20)

That is to say, the distribution will migrate neither outward nor inward, hence,
if we are concerned only with the change in energy of the distribution with time,
the first two terms of 4.18 can be neglected.

For the remaining term, we note that

∂

∂p

(
γ pW (p, q, t) +

N

2

∂W (p, q, t)

∂p

)
=

∂

∂p

(
γ p ρ(E, t) +

N

2

∂ρ(E, t)

∂E

dE

dp

)
= γ

(
ρ+ p2

dρ

dE

)
+
N

2

(
∂ρ(E, t)

∂E
+ p2

∂2ρ(E, t)

∂E2

)
=

(
1 + p2

∂

∂E

)(
γρ+

N

2

∂ρ

∂E

)
. (4.21)

If we now exploit the relations p2 = Iω, and ω = dE
dI

, and simplify expression
4.21 we obtain:

∂ρ

∂t
=

∂

∂I

(
Iγρ+

N

2
I
∂ρ

∂I

)
(4.22)

This is the diffusion relation along the action, or equivalently, energy dimension.
As the distribution spreads further, we can calculate the fraction of the distribution
that accumulates sufficient energy to surmount the barrier by seeing if the phase-
space trajectory crosses the threshold of the potential’s local maxima. At this
point, we employ a steady-state analysis. We assume that some arbitrary outside
source is injecting additional probability to the system in the metastable well, and
that particle-probability distribution is destroyed and removed from the system
upon transition over the barrier. At steady state then, the addition and removal
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of probability from the system should reach equilibrium for a given current J of
probability across the barrier.

In order to do this, it is convenient to convert from derivatives with respect to
E in 4.22 to derivatives with respect to the action I, keeping in mind that:

∂E

∂I
=
ω(I)

2π
. (4.23)

Hence, we express 4.22 as

∂

∂I

(
Iγρ+

2πN

2ω(I)
I
∂ρ

∂I
+ J

)
= 0;

∂ρ(I, E)

∂t
= 0. (4.24)

Here we have mapped our density equation from functions of position to func-
tions of action or energy. We assume that particles start with zero action, or mini-
mal energy and diffuse upward from thermal activation until they reach a threshold
energy VB, or action IB at which point they immediately escape. In this case, the
distribution remains constant, The situation is analogous to (an oddly shaped) wa-
ter container with a hose feeding into it at the bottom, spilling out over the top
with various -but constant- amounts of water at any given height in between; we
seek to determine the rate of flow in from the hose. Note, this effectively implies
that the well to the right in figure 4.4 is so deep that particles falling into it never
return –a reasonable approximation given the large disparity in well depths of our
system.

If we define N as 2γkBT , then 4.24 becomes equivalent to the steady-state
expression of equation 4.12 in Hänggi et al [19]. As formulated by Kramer [20], the
metastable escape rate is found to be

k =
γIB
kBT

ω0

2π
e

h
− VB

kBT

i
. (4.25)

Additional details of the above derivation are provided in appendix B.

4.4 The metastable action

We now seek to define the action IB when the energy is just at the cusp of transi-
tioning over the barrier, but remains trapped in the metastable well. To accomplish
this we note that the action, in general, is defined as

I =

∮
p dq (4.26)

where p is the particle momentum, and q the particle position. We use the potential
approximation given in 3.10 (again, replacing φ̂ with q) with one small notational
change: we replace φx with (π + δ), that is to say:
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Figure 4.6: Energy of a metastable particle against the quartic approximation
to the tilted bistability of figure 4.4. The total energy of the state E minus the
potential energy yields, at most, 4 roots –points of physical significance in our
model. The roots of equation 4.28 are indicated.

U(q) =
(q − (π + δ))2

2β
− cos (q) ≈ c0q

4 + c1q
3 + c2q

2 + c3q + c4. (4.27)

This change in notation in 4.27 -isolating the factor δ- is to highlight the fact
that δ represents the degree of ‘tilting’ introduced to the bistability –when δ = 0
the bistability is perfectly symmetric. We express the action of a particle with
energy E as:

I =

∮
p dq = 2

∫ √
2m (E − U(q))

= 2

q̃1∫
qL

√
2m (E − c0q4 − c1q3 − c2q2 − c3q − c4)

= 2
√
−2mc0

∫ √
(q − qL) (q − q̃1)(x− q̃2)(q − qR) (4.28)

where qL and qR are the left and right-most roots respectively, and q̃1,2 are the
intermediate roots of the state-energy-potential difference, as shown in figure 4.6.

We, however, are concerned with the action just at the cusp of the energy level
of the barrier, that is, where q̃1 and q̃2 become coincident. Equation 4.28 then
becomes
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IB = 2
√
−2mc0

q̃∫
qL

√
(q − qL) (q − qR)(q − q̃)

= 2
√
−2mc0

q̃∫
qL

√
(q2 − (qL + qR)q + qLqR)(q − q̃). (4.29)

However, referring to tabled integrals [32] (pg. 99) we see that if we define
R = a+ bq + cq2 and ∆ = 4ac− b2 then we have the following identities:

∫ √
Rdq =

(2cq + b)
√
R

4c
+

∆

8c

∫
dq√
R

(4.30)∫
q
√
Rdq =

√
R3

3c
− (2cq + b)b

8c2

√
R− b∆

16c2

∫
dq√
R

(4.31)∫
dq√
R

=
1√
c

ln
(

2
√
cR + 2cq + b

)
(4.32)

assuming c > 0. We now apply these relations to equation 4.29 with the param-
eters in R and ∆ defined as: a = qLqR, b = qL + qR, c = 1. Using these relations
(and mathematical software) we arrive at

IB =

c0mq̃

((√
(qL−qR)(qR−q̃)

qL−q̃
− 2
√

(qL−q̃)(qR−q̃)
qL−qR

)
(ql − q̃) + (qL + qR)

3
2 sin−1

[
1q

qL−qR
qL−q̃

])
√

2
√
−c0m
qL−qR

−
√
c0m

6
√

2

(
(qL − q̃)

√
q̃ − qR
qL − q̃

(
3q2
L − 2qLqR + 3q2

R + 2qLq̃ + 2qRq̃ − 8q̃2
)

+

3(qL − qR)2(qL + qR) sin−1

[√
qL − q̃
qL − qR

])
.

(4.33)

Equation 4.33 may seem a bit cumbersome, and practical estimates for IB may
be more easily obtained by applying numerical techniques to equation 4.26. Never-
theless, this analytic result serves as a useful benchmark to validate these numerical
results. Over the range of barrier heights which we are concerned with, we note
agreement between these two methods of calculating the metastable action. Natu-
rally, the cusp action decreases as δ is increased, since the metastable well shrinks

37



Figure 4.7: The cusp action over the metastable range as a function of barrier
height, VB in units of the Josephson energy (EJ), the relationship is essentially
linear.

with increasing asymmetry, and decreasing VB; the dependence of action on barrier
height VB is determined numerically, and is shown in figure 4.7. Evidently the har-
monic approximation of a linear relationship between these two variables is quite
reasonable.

4.5 Escape rate results

We now return to the definition of k in equation 4.25, and see how the time-
evolution of the probability distribution can be controlled by the parameters used
in this derivation. The harmonic frequency ω0 is defined as:

ω0 =

√
1

m

[
∂2U(q)

∂q2

]
q=qA

. (4.34)

Using this harmonic approximation, we express the quality factor of the metastable
well Q, as

Q =
ωc
γ
. (4.35)

Here we use the curvature of the stable well (on the right) to define Q since
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it is more consistent across different barrier heights VB.2 Furthermore, neglecting
backwards reaction into the metastable position, the metastable probability, as a
function of time is given by

ρ(t) = e[−kt] (4.36)

and the mean transition time 〈T 〉 of the particle to go over the barrier is then given
by

〈T 〉 =

∞∫
0

t e[−kt] dt. (4.37)

=
1

k
(4.38)

We assume, provisionally, that δ = 0.63, since this happens to be the value nec-
essary to ensure that only one quantum state is strongly localized in the metastable
range. With this value of δ, the barrier height is VB = 0.01364EJ , the action is
IB = 15.8, and the metastable harmonic frequency is ω0 = 40Grad/s, with an
effective mass of CJ = 1pF . The mean life time, for various Q is plotted against
temperature in figure 4.8. Unfortunately, with a potential such as this, the spon-
taneous transition times may be too short to be useful for a practical standing
photo-detector. Hence, we attempt to raise the metastable barrier in order to in-
crease the mean life time; the resulting mean life time will determine whether our
detection will be useful as a standing detector, or whether a ‘pulse protocol’ will be
necessary to detect photons only for a specific time-intervals of sensitivity. In the
latter case, we may simply lower the barrier (by changing δ via φx) to a specific
height that amounts to the optimal trade-off between true-positive detection, and
false-positive avoidance.

For example, experiments have found that keeping the system stable over the
desirable time scales requires reducing the external biasing such that six metastable
states are confined to the metastable region [27, 28] with VB = 0.05EJ. With this
arrangement, the increased barrier height significantly reduces the escape rate, as
shown by the time scales of figure 4.9. As we will see in chapter 6, a barrier height of
this magnitude unfortunately prevents accurate detection when a photon is indeed
present; hence, some intermediary value will become a necessary compromise. It
turns out that this ideal compromise is reached at VB = 0.016EJ, for reasons which
we will explore in chapter 6; figure 4.10 shows a plot of the mean transition time
as a function of T , and Q with this potential.

2That is to say: by changing the bias flux φx, we alter both curvature of the metastable well
and the barrier height, thus changing ω0. We therefore use ωc to define Q, to provide consistent
quality factors to compare between various different levels of biasing, since ωc changes very little
over the range of φx we are concerned with.
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Figure 4.8: Mean transition time as a function of the thermal energy T , for various
values of Q between 10 and 1000 for the Martinis qubit system (i.e. with Ic =
2µA, CJ = 1pF , Ls = 720pH, δ = 2.75, VB = 0.01416EJ , IB = 15.76 -sufficient
metastability to yield only a single quantum state residing in the metastable well.)
These time scales are sufficiently short that we must conclude standing photo-
detection at 0.1K with this arrangement is not possible.
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Figure 4.9: mean transition time as a function of the thermal energy T , for various
values of Q between 10 and 1000 for the Martinis qubit system, (with Ic = 2µA,
CJ = 1pF , Ls = 720pH, VB = 0.045EJ , IB = 15.76. except now with asymmetry
characterized by δ = 2.56 -sufficient metastability to yield six distinct quantum
states localized within the metastable well.) This arrangement has much more
potential to be stable on the necessary time-scales for standing photodetection, but
may not exhibit sufficient sensitivity.

Figure 4.10: Mean transition time, in [log(seconds)], as a function of the ambient
temperature T , and the Quality factor Q.
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All of the preceding naturally presumes the small damping limit applied to our
system, which turns out to be the case. Hence, we need not concern ourselves
with the limiting case of large damping, or the spatial-diffusion limited regime ; the
above limit will suffice.
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Chapter 5

The IM-F method

The imaginary part of the Helmholtz free energy holds special significance for
metastable system, as an indicator of escape rate. To see this, we employ a number
of calculations on this quantity; first we take a thermal average of the tunnelling
rates, and use basic statistical mechanics to show how transmission is related to this
quantity. Second, we introduce the Euclidean action and perform path integrals
through imaginary time over stationary paths in the action. Although our calcu-
lation of dark escape rates assumes a more computational approach, the following
should be considered valid for very low Q-factor resonators, in which the system
reaches thermal equilibrium effectively instantly.

5.1 Thermally averaged tunnelling rates

We begin with a thermal average over the quantum tunnelling rates out of a
metastable well, taking temperature into account, but not specifically dissipative
dynamics. In the following section, we extend this methodology to dissipative pro-
cesses by calculating the partition function, Z, using another method developed by
Ingold [33, 34].

From statistical mechanics, it is known that the partition function of an ensem-
ble is given by

Z =
∑
n

e[−βEn] (5.1)

where En is the energy of state n, and β = 1
kBT

, assuming E0 is the system ground
state. The situation becomes more complex –in both the literal and mathematical
senses– when one considers a metastable ensemble where n = 0 no longer corre-
sponds to the ground state of the system, as shown in figure 5.1.

Here, qA = 0 corresponds to a local minimum at the origin and qb is a local
maximum to the right. Furthermore, we define the following frequencies:
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Figure 5.1: A schematic of the potential well V (q) (which can be treated as ap-
proximately cubic in q) confining a number of quantum states. We assign ω2

0 and
ω2
b to the curvatures of the potential at its extrema divided by system mass at the

points qA = 0, and q = qB respectively.
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ω0 =
√
V ′′(0)/m ωb =

√
V ′′(qb)/m. (5.2)

One may note a certain ambiguity associated with the definition of energies
in this context; the energies En given in equation 5.1 are defined relative to the
ground state, but the potential in figure 5.1 is not bounded, and the energy of the
states illustrated can only be defined relative to the metastable bottom. To account
for this we assign complex values to the eigen-energies En; in doing so, with time
evolution taking the form e[−iEnt], exponential decay can be accounted for as well
as the usual rotations in phase space that are associated with real eigenenergies.
Hence, we reformulate our partition function as

Z =
∑
n

e[−β(En−i~Γn/2)] (5.3)

where the parameter Γn will be determined shortly. Furthermore, if we assume
dense levels, i.e., that VB � ~ω0 then it follows that ~Γn � En for all n. Thus for
large barriers we can Taylor expand about parameter i~βΓn

2
taking only the zeroth

and first order term. Equation 5.3 then becomes

Z = Z0 + iZb ≈
∑
n

e[−βEn] + i
~β
2

∑
n

Γne[−βEn]. (5.4)

Here the real part is determined by the properties of the well, and the imaginary
part is determined by the properties of the barrier. Recall that the free energy is
given by

F =
−1

β
lnZ. (5.5)

Also recall that for small x, ln(1 + x) ≈ x, hence

F =
1

β
ln (Z0 + iZb) =

1

β
ln

(
Z0

(
1 + i

Zb
Z0

))
(5.6)

=
1

β

(
lnZ0 + ln

(
1 + i

Zb
Z0

))
(5.7)

≈ 1

β
lnZ0 + i

1

β

Zb
Z0

(5.8)

provided |Zb| � |Z0|. The thermal quantum escape rate ‘k′ is related to the
imaginary part of the free energy by

k = −2

~
Im {F} . (5.9)

45



Figure 5.2: Cubic approximation to the potential well in the region of interest.

This relation becomes apparent when one considers applying the time-evolution
operator to states with such energy. Using the real and imaginary components of
relation 5.8, we find that

k =

∑
n

Γne[−βEn]∑
n

exp−βEn
. (5.10)

Note that this expression for the escape rate is valid only if the distribution within
the well-levels is well thermalized; i.e. that the T1 relaxation time is much shorter
than the escape time. All that remains now is to determine the quantum tunneling
escape rate for each energy level, i.e. the coefficients Γn. It turns out that the
regular (non-inverted) potential can be approximated by a cubic of the form:

V (q) ≈ 1

2
mω2

0q
2

(
1− 2q

3qb

)
. (5.11)

The validity of this approximation is demonstrated in figure 5.2.

then Γ0 is the tunneling rate of the ground state, given by WKB analysis as:

Γ0 = ω0C0

√
S0

2π~
e[−S0/~]. (5.12)

Here C0 is a numerical factor which depends on the shape of the barrier, S0 is the
bounce action in the inverted potential at zero energy
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S0 = I(VB) = 2

∮
dq
√

2mVinv(q), (5.13)

and the tunnelling rates of the excited states are again given by WKB analysis as
[35]

Γn =
1

n!

(
C2

0

S0

~

)n
Γ0. (5.14)

Note that for the cubic potential described above, we find C0 =
√

60, and S0 =
6
5
mω0q

2
b , and the barrier height is given as

Vb = mω2
0q

2
b/6 , ω0 = ωb. (5.15)

5.2 Bath and system dynamics in damping mech-

anisms

The partition function, equation 5.3, can also be expressed in another way. To see
how this can be done, while incorporating dissipation into a bath coupled to the
system, we consider the action of a particle in a well with potential V (q) and mass
M over time s from s = 0 to time s = t.

S[q, t] =

t∫
0

ds

(
M

2

(
dq(s)

ds

)2

− V (q(s))

)
. (5.16)

We now perform a Wick rotation on the time variable by making the substitu-
tions t→ −i~β, and s→ −iτ yielding the Euclidean action SE[q, ~β]

SE[q, ~β] = S[q,−i~β] = i

~β∫
0

dτ

(
M

2

(
dq(τ)

dτ

)2

+ V(q(τ))

)
. (5.17)

The utility of this rather unintuitive step lies in it’s application to a system’s
equilibrium density matrix, given by

〈q′′|ρβ|q′〉 = Z−1

q(~β)=q′′∫
q(0)=q′

Dqe[−SE[q]/~] (5.18)
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For an arbitrary ensemble of systems. Naturally, the partition function Z is
then

Z =

∞∫
−∞

dq〈q|ρβ|q〉 =

q(~β)=q′∮
q(0)=q′

Dqe[−SE[q]/~]. (5.19)

Here, the
∮

symbol simply denotes that the starting and end points are the same,
and therefore the action must be taken over periodic paths. In order to determine
Z we also must define a Hamiltonian H given by:

H = HS +HB +HSB (5.20)

where

HS =
p2

2M
+ V (q) (5.21)

is the system Hamiltonian for mass M and potential V (q),

HB =
∑
i

[
p2
i

2mi

+
mi

2
ω2
i x

2
i

]
(5.22)

is the bath Hamiltonian, for N harmonic oscillators, and

HSB = −q
N∑
i

cixi + q2

N∑
i

c2
i

2miω2
i

(5.23)

is the Hamiltonian describing the coupling between the two. Applying the Heisen-
berg equation of motion (5.24) to 5.20,

dA

dt
=

i

~
[H,A] (5.24)

we find that this degree of freedom obeys the relation

q̈ +
1

M

(
dV

dt
+ q

N∑
i=1

c2
i

miω2
i

)
=

1

M

N∑
i=1

cixi (5.25)

and for the bath:

ẍ+ ω2
i xi =

ci
mi

q(t). (5.26)
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Now solving equation 5.26 using a Greens function method to evaluate the re-
sponse to its coupling with the system (we assume the bath modes are independent
of each other) as well as its initial conditions, we see that

xi(t) = xi(0) cos(ωit) +
pi
miωi

sin(ωit) +

t∫
0

ds
ci

miωi
sin (ωi(t− s)) q(s). (5.27)

Inserting this function into 5.25, we find that

Mq̈ +M

t∫
0

dsγ(t− s)q̇(s) +
dV

dq
= ξ(t) (5.28)

where γ(t) is the damping kernel given by

γ(t) =
1

M

N∑
i=1

c2
i

miω2
i

cos(ωit) (5.29)

and ξ(t) is the inhomogeneity, or bath driving which takes the form

ξ(t) =
N∑
i=1

[(
xi(0)− ci

miω2
i

q(0)

)
cos(ωit) +

pi(0)

miωi
sin(ωit)

]
. (5.30)

So far, we have explored the relationship between the system and an arbitrary,
but finite number of bath modes. Suppose we characterize the ensemble of bath
modes given in 5.29 by a spectral density of bath modes. For a discrete number
of such bath modes with characteristic frequencies, this spectral density takes the
form of a sum over Dirac functions

J(ω) = π
N∑
i=1

c2
i

2miωi
δ(ω − ωi) (5.31)

and the damping kernel can be expressed as

γ(t) =
2

M

∞∫
0

dω

π

J(ω)

ω
cos(ωt). (5.32)

With appropriate choices of ci,mi, ωi (which can be chosen phenomenologically)
the spectral density can take various forms depending on the type of dissipation we
intend to model; for example, if we set J(ω) = Mγω, we find that γ(t) = 2γδ(t)
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and equation 5.28 reduces to the usual memory-less equation of motion with forcing
ξ(t), potential V (q), and damping occurring only ‘locally’ -i.e. instantaneously- in
time with strength γ(t) = γδ(t), (the integration over s, terminating at time t,
stops half-way through the delta function, contributing one-half.) Although the
ohmic spectral density discussed above may work well in principle, it diverges for
large ω, hence, practical models require some high-frequency cut-off. To this end,
the Drude model is proposed:

J(ω) = Mγω
ω2
D

ω2 + ω2
D

(5.33)

which is linear for small ω, but tends smoothly to zero as ω exceeds ωD. For finite
ωD we find that damping is not exclusively instantaneous, or ‘local’, but that

γ(t) = γωDe[−ωDt], (5.34)

hence, our model gives rise to memory effects on the order of t < ω−1
D . If we

take ωD to be sufficiently large, and are not interested in time scales shorter than
it’s reciprocal, then these memory effects can be neglected and the Drude model
reduces to the Ohmic model.

5.3 Tracing out the bath coordinates

The Euclidean action determined in 5.17 contains extra terms when the system is
coupled to a bath of harmonic oscillators (SE in equation 5.18.) each of which can
be separated into components describing the system (S), bath(B), and coupling
between each (SB) as follows:

SE[q, xi] = SES [q] + SEB [xi] + SESB[q, xi] (5.35)

with

SES [q] =

~β∫
0

dτ

(
M

2
(q̇)2 + V (q)

)
(5.36)

SEB [xi] =

~β∫
0

dτ
∑
i

mi

2

(
ẋ2
i + ω2

i x
2
i

)
(5.37)

and
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SESB[q, xi] =

~β∫
0

dτ

[
−q
∑
i

cixi + q2

N∑
i

c2
i

2miω2
i

]
. (5.38)

Note that both equation (5.37) and (5.38) can be conveniently expressed into one
action which we call the ‘influence’ action of a single bath oscillator

SEinfl[q, xi] =

~β∫
0

dτ
mi

2

[
ẋ2
i + ω2

i

(
xi −

ci
miω2

i

q

)2
]
. (5.39)

Moreover, the actions associated with each of the system and bath coordinates can
be factorized from the exponential argument as follows:

∮
Dqe[SS[q]+S1[q,x1]+S2[q,x2]+...] =

∮
Dqe[SS[q]]e[S1[q,x1]]e[S2[q,x2]] × . . . (5.40)

Hence, we define a functional for each bath oscillatorFi[q]

Fi[q] =

∫
dxi

∮
Dxie

[− 1
~ SE

infl[q,xi]] (5.41)

and an overall influence functional

F [q] =
N∏
i=1

1

Zi
Fi[q]. (5.42)

Equation 5.42 contains all the information of the influence of the bath as a whole
on the system. As shown in appendix C, we can determine the influence functional
to be

F [q] = exp

"
− 1

2~

~βR
0

dτ
~βR
0

dσk(τ−σ)q(τ)q(σ)

#
(5.43)

and thereby determine our final partition function. We will restrict ourselves to
considering the region above the crossover temperature, where only the stationary
solutions q = 0, and q = qB contribute to our partition function, and the bounce,
or instanton solution can be ignored. The end result is then
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Z =

∮
Dqe[−SE[q]/~] =

∮
q=0

Dqe[−SE[q]/~] +

∮
q=qb

Dqe[−SE[q]/~]

=
1

ω0

√
2π

Mβ

∞∏
n=1

π
Mβ

2
(ν2
n + |νn|γ̂(|νn|) + ω2

0)

− i

2ωb
e−βVb

√
2π

Mβ

∞∏
n=1

π
Mβ

2
(ν2
n + |νn|γ̂(|νn|)− ω2

b )
(5.44)

where νn are the Matsubara frequencies (see appendix C.)

Here, the real and imaginary components of the partition function are clearly
separated. If we further assume that βVb � 1 then we may apply the same reasoning
as in equations 5.6 through 5.8 to deduce the imaginary part of the free energy,
and thereby the escape rate k.

k =
−2

~
ImF =

−2

~β
Zb

Z0

=
ω0

~βωb

e[−βVb]

∞∏
n=1

ν2
n + νnγ̂(νn) + ω2

0

ν2
n + νnγ̂(νn)− ω2

b

. (5.45)

Figure 5.3 shows an Arrhenius plot of the escape rate vs. temperature de-
termined from the methods discussed in this chapter, and the previous, for the
metastable well with VB = 0.016EJ , a two-level system. Ingold cites a crossover
temperature, T0 = ~ωb

2πkB
, separating the regions where the barrier crossing process is

dominated by thermal excitation, and quantum tunnelling respectively; a crossover
which we see clearly between the results of equation 5.10 and 4.25. At large tem-
perature, figure 5.3 shows large discrepancies between the tunnelling average, and
the classical rate, as expected, since the former does not account for states that
would otherwise have significant populations –the latter is the more trust-worthy
result. The classical Kramer’s result, however, is still in disagreement with the
results of equation 5.45 by a factor of approximately 4-5. The reason for this is
most likely the fact that equation 5.45 accounts only for the extremal positions
that yield stationary points in the Euclidean action, and therefore do not account
for the nonlinear aspects of our potential. Also, for our potential VB and ~ω0 differ
by about a factor of 3, undermining confidence in the Taylor expansion that we
employed in equation 5.4, since we assumed VB � ~ω0; since this assumption was
also made in our classical escape rate, however, it must be noted that all escape
rate calculations fail at sufficiently high temperature. 1

Nevertheless, the IM-F method gives us the thermal-averaged tunnelling es-
cape rate below T0, to complement the classical escape rate we employ at higher
temperature. The fact that the results of the IM-F method using the Matsubara
expansion are not wildly disparate –despite the many approximations made above–
adds credence to our calculations.

1Though at such temperatures, the device would have unacceptably high dark count rates, and
we would have little interest in further investigation.
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Figure 5.3: Arrhenius plot of the ratio between escape rate and harmonic frequency
using the path integral approach (equation 5.45), the thermally averaged tunnelling
rate (equation 5.10), and the classical Kramer’s escape rate (equation 4.25) assum-
ing Q=1 and a metastability with VB = 0.016EJ . Note that the latter two intersect
at almost precisely the crossover temperature T0 = ~ωb

2πkB
; the thermally averaged

tunnelling rate gives an excellent approximation to the zero-temperature tunnelling
escape rate but breaks down when there is appreciable thermal excitation into states
not accounted for with the expansion in equation 5.10. Equation 4.25, on the other
hand, accounts for thermal excitation at finite temperature, until the assumption
that VB � kBT fails, at which point it too breaks down.
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Chapter 6

Numerical simulation of the
detection process

We have now seen several analytic models of the metastable escape process, due
to thermal excitation, quantum tunnelling, and direct current drive. Each of these
models contains some of the aspects of our detection process, but a thorough rep-
resentation of the entire system dynamics requires a numerical approach of the sort
introduced by Larkin and Ovchinikov [25], and later developed by Chow, Browne
and Ambegaokar [36, 37] –the latter of whom will be the focus of our attention.

6.1 Equations of motion.

Chow, Browne and Ambegaokar[36] consider a metastable Josephson circuit with
sufficiently deep metastability to permit on the order of ‘tens of levels’ and restrict
their consideration of the system to this region of flux as they develop a dynamic
model for state transition and metastable escape. Hence, their model is equally
applicable to systems which exhibit a tilted washboard potential (as considered by
Romero et al [15]) as well as asymmetric bistability.

According to Larkin and Ovchinikov[25], low energy states deep in the well have
finite escape amplitudes that are well approximated by the semiclassical formula

Γn ≈
e

h
2SE(En)

~

i
T (En)

, (6.1)

where T (En) = 2
∮

dx/ẋ is the period of classical motion at energy En above the
‘ground’ state1 and SE(En) =

∮
pEdq is the Euclidean action under the barrier for

1the term ‘ground state’ is used loosely here, and refers to the lowest energy state confined
to the metastable well, since the cited authors restrict their consideration of flux space to the
metastable well, hence other states are unbounded.
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states of that energy. However, the escape amplitude of these levels is exponentially
suppressed in favour of levels with energy close to the barrier maximum. To calcu-
late the escape rates of these states, a numerical approach that captures tunnelling
and thermal effects must be employed.

Instead of restricting our region of interest to the metastable well and deriving
escape rates as in Chow and Ambegaokar (CA) [37], our approach is to employ the
same methodology while considering explicitly the states on the other side of the
barrier; thus making our system bounded, unlike CA. To see this, we begin with
equations 3.3 - 3.4 from reference [37], omitting the escape terms

˙̂ρjj =
1

i~
〈j| [HI , ρ̂] |j〉+

∑
k

Wk→j ρ̂kk −
∑
k

Wj→kρ̂jj

˙̂ρjk =
1

i~
〈j| [HI , ρ̂] |k〉 − ρ̂jk

2

(∑
n

(Wj→n +Wk→n)

)
+

∑
l 6=j,m6=k

ρ̂lmRjk;lm.

(6.2)

Note that equation 6.2 is written in the interaction representation –that is to say,

HI = e[−iH0t
~ ]φ̂I(t)e[ iH0t

~ ], with H0 given in 3.3. The thermal transition rates Wj→k
are given by

Wk→j =
2

~
|φjk|2J(|ωjk|) [(1 + n(ωjk)) Θ(ωjk) + n(ωkj)Θ(ωkj)] . (6.3)

Here ~ωjk = Ej − Ek, n(ωjk) is the Bose distribution, J(ω) =
CJωω

2
D

Q(ω2+ω2
D)

is the

spectral distribution of the oscillator bath, and Θ is the Heaviside function. The
last summation in 6.2 represents the summation over the bath-induced off-diagonal
coupling terms

Rjk;pq =
φjpφqk

~
J(|ωjp|) [(1 + n(ωjp)) + n(ωqk)(1 + ωqk)] . (6.4)

Previous work [36] has shown that the contribution to 6.2 from equation 6.4 is gen-
erally negligible and we independently concur. As noted in chapter 3, the coupling
strengths φjk of these states decrease exponentially with |Ej−Ek|, thus permitting
us the numerical expedience of restricting our Hilbert space to states with energy
near the barrier.

6.2 Measuring detection.

We use numerical solution methods on equation 6.2 analogous to those explored
in chapter 2 and note that the probability distribution function in φ and time can
then be written as
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α(φ, t) =
∑
n

ρnn(t) |〈φ|Ψn〉|2 (6.5)

using the basis of energy eigenstates Ĥ0|Ψn〉 = En|Ψn〉, determined in chapter
3. Furthermore, we define the switching probability Ps as the likelihood that the
system has transitioned to the other side of the barrier:

Ps(t) =

∞∫
φ′

α(φ, t)dφ (6.6)

where φ′ is the position of barrier maximum. Hence, while the CA method defines
escape as the loss of probability from the region of interest, we maintain probability
conservation and explicitly calculate the full probability distribution as a function of
flux. The barrier maximum φ′ is then a natural coordinate to choose as a threshold
delineating the bound of our detection criteria since states that are excited to this
level will decay (and therefore be diverted away from this position) along a time
scale given, at most, by

τ = 2πQ

(
1

ωa
+

1

ωc

)
. (6.7)

In (6.7) we have taken 2π
ωa

+ 2π
ωc

as an upper-bound to the period of oscillation
throughout the anharmonic double well, assuming no critical slow-down in the
region of the barrier maximum. We now define the electric current applied to the
circuit via the Hamiltonian HI(t) in equation 6.2 as a sinusoid with a Gaussian
envelope:

I(t) = Ae

»
− (t−µ)2

2σ2

–
sin(ωRt) (6.8)

where σ is as yet unconstrained. Since σ describes the temporal width of the
pulse, the amplitude A is constrained by energy conservation, which we maintain
by performing integration over equation 3.5 [29]

∞∫
−∞

A2

2
e

»
− (t−µ)2

σ2

–
sin2(ωRt) = ~ωR. (6.9)

We may now show the reasons behind the ostensibly arbitrary choice of circuit
components CJ , Ls, and biasing φx introduced in chapter 3 which led to the barrier
height of VB = 0.016EJ that we have been assuming throughout much of the
preceding discourse. In so doing, we will also determine the optimal quality factors,
and temporal pulse widths for our detector. By ‘optimal’ parameters, we mean that
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Figure 6.1: The exponential constant kD of equation 6.10 as a function of barrier
height, assuming a quality factor of unity (kD scales inversely with Q.) In the limit
of VB → 0 this quantity diverges, but we may draw a piece-wise best fit to it over
the region of our interest.

which will maximize the probability of legitimate detection due to a single photon,
while minimizing the likelihood of false-positive detection due to ambient noise. We
assume the the process of photodetection is effectively complete after a time-scale
of t1 = 4σ + 4τ 2 and seek to minimize the probability of false-positive detection
over this time scale. Hence, we designate the following joint probability PJ as the
measure of success for various parameter designs

PJ =

 ∞∫
φb

α(φ, t1)dφ

× (1− e[−kD(VB)t1]
)
. (6.10)

The exponential escape constant kD has been determined already by a number
of different methods; we may determine this constant again empirically, by evolving
a metastable system along equation 6.2, with current set to zero, and measure the

decay rate of
∫ φ′
−∞ α(φ, t)dφ –the likelihood that the system remains metastable.

We then compare this decay constant with the reaction coefficient determined using
equation 4.25. The resulting plot is shown in figure 6.1

Given our dark escape constant as a function of barrier height, we are now in
a position to predict the false-positive probability for a given time interval at a

2a time scale chosen somewhat arbitrarily, but based on the observation that the lingering
solution leaves only a e[−4] ≈ 2 % error residual

57



Figure 6.2: PJ and Ps as functions of the barrier height, in units of EJ ; above
VB ≈ 1.5EJ dark counts are essentially negligible, and the two probabilities are
identical. Note that the ‘spikes’ in this quantity (having the appearance of noise) are
actually due to resonant tunnelling processes, and coincide precisely with potential
arrangements in which the highest-energy metastable state is closely matched to
an energy state on the opposite side of the barrier. The precipitous drop in Ps
is due to the loss of coupling to other metastable states, and has been observed
experimentally according to personal correspondence with J. Martinis.

specific barrier height – i.e. the second factor in equation 6.10. We then determine
the first factor by returning to equations 6.2, and 6.5. Figure 6.2 shows a plot of
the maximal quantity 6.10, and of the raw transition probability as a function of
barrier height VB after scanning over the pulse width and quality factor for optimal
σ and Q – that is to say, each datum in figure 6.2 corresponds to a different value
of Q and σ –each determined to be ideal for that VB after a scan throughout the 2-
dimensional σ−Q surface. Comprehensive sampling of this parameter space was by
far the most challenging and time-consuming component of this work; see appendix
D for a synopsis of what was necessary to overcome this challenge. Naturally, with
increasing barrier height, larger numbers of localized states are able to be confined
in the well; figure 6.3 shows a plot of the number of confined metastable states
against the height of the barrier, VB.
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Figure 6.3: The number of confined metastable states as a function of the barrier
height, VB. We define a state |Ψn〉 to be metastable iff for potential V (q) the
state has energy V (qA) < En < V (qB), and a wave function profile such that
〈Ψn|q̂|Ψn〉 < qB (see figure 5.1.) Naturally, the number of states increases with VB,
and our optimum parameter set occurs when we have a two-level system. It should
be noted, however, that the barrier height is mainly controlled by the external flux,
a parameter that also has a minor effect on the width of the metastable well. The
fact that increasing the bias not only increases the barrier height, but also contracts
the spatial width of potential well, could account for the fact that the number of
confined states is not perfectly monotonically increasing in the figure.
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Figure 6.4: Transition probabilities as a function of drive (photon) frequency for
various quality factors; note the response peaks at ω = 37, 19.1, and 73.2 Grad/s
–in excellent agreement with the resonance points determined in our classical model
in chapter 4 (see figure 4.1 –these resonance points are indicated by arrows in the
above figure.)

From the data in figure 6.2 it is clear that the optimal barrier height for this
trade-off is at VB = 0.016EJ . Although the erratic jumps in the lines in figure
6.2 have the appearance of noise, this is actually the result of resonant tunnelling
–an effect that occurs when the more energetic states in the metastable well are
closely matched in energy to states on the other side of the barrier. To reduce
the dimensionality of parameter space which we were required to scan over, the
above optimizations were performed assuming an ideal drive frequency given by a
harmonic approximation.

Having optimized the detector over the pulse-width, barrier height, and dis-
sipation rate we must then determine the sensitivity of the detection mechanism
to changes in the drive frequency, or the bandwidth of the detector. Figure 6.4
shows that although the optimum drive frequency is slightly red-shifted from the
harmonic approximation, the bandwidth is amply wide enough to include the har-
monic frequency, validating the optimization procedure used above. We also observe
a bandwidth of 25.4 Grad/s, or 4 GHz. In fact, not only is our proposed detector
effective over a wide range of frequencies, but also over σ, and Q as well, as seen
in figure 6.5.

One possible explanation for the robustness of our model over the above pa-
rameters is that our detection scheme relies on irreversible decoherence, and is not
dependent on any particular intermediary states –the parameters of the photon
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Figure 6.5: Joint probability PJ (see 6.10) across the barrier, after photon absorp-
tion, as a function of the quality factor of the resonator (Q,) and the pulse-width of
the photon (σ) for the optimal barrier height VB = 0.016EJ . Note the robustness
of this value in the ranges σ > 0.05ns, and Q > 5; clearly demonstrating a great
deal of flexibility in the values of these parameters.

and circuit do not then need to be tuned to accommodate such specific states. For
example, over the range of frequencies in the bandwidth shown in figure 6.4, the
transition across the barrier is mediated by a variety of different intermediary states,
the population of each depending on its energy difference from the initial state, and
how well this difference is matched to the frequency of the photon. Similarly, with
large Q-values, incoming energy from the photon is better conserved, while lower
Q values entail level-broadening which facilitates tunnelling and other transitions.
Since we are neither concerned with how the barrier-crossing is mediated, nor about
which states act as intermediaries, we can assume a great deal of latitude in our
choices of Q, and ωR –the different mechanisms by which these different parameter
sets give rise to transition is of no concern to us, so long as the bulk of systems
probability distribution crosses the barrier by one of the above methods.

The dependence of PJ on σ is a bit more nuanced; we find that Ps decays
exponentially with σ for large VB, hence short, intense bursts of radiation are
strongly preferred, though the rate at which Ps decays with σ varies depending
on Q. As the barrier is reduced, Ps becomes effectively independent of σ, as we
can see in figure 6.6. For the optimal barrier height determined above, the strong
σ-dependence has disappeared implying a great deal of flexibility in σ as well.
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Figure 6.6: Raw transition probability (PS, ignoring dark count rates), as a function
of the pulse width σ, in nanoseconds, for various barrier heights VB. Note that with
large barriers, transition favours short, intense pulses, while with more shallow
metastabilities, the transition probability is essentially independent of the pulse
width.
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Figure 6.7: Time-line of the detection process; when a photon is anticipated, the
biasing flux is momentarily increased to reduce the effective barrier height to the
optimum value determined above and increase the system’s sensitivity. W

6.3 Discussion

The results of the optimization process shown in figure 6.2 indicate that the opti-
mum potential profile for detection does not permit standing detection. The size
of the potential barrier is more similar to that of figure 4.8 than that of figure 4.9,
and the dark counts predicted from figure 6.1 indicate that the mean life-time of
this circuit is too short to be used as a standing photon-detector. Hence, a pulse
protocol is necessary, this entails biasing the external flux for a window of time to
detect photons as shown in figure 6.7.

It should be noted that this assertion can only be made under the assumption
that the detector is subjected to an ambient temperature of 0.1K. Should a lower
temperature be obtained, mean metastable lifetimes of detectors at the barrier
heights described above would be greatly enhanced.

Nevertheless, we fully optimize the detector and show the robustness of our
detection scheme to changes in the aforementioned parameters for our assumed
operating temperature of 0.1K. It should also be noted that with increasing VB,
higher Q-values tend to be preferred since it is necessary to preserve the photon’s
energy to surmount the barrier. However, time-limitations prevented a thorough
scan of Q-values above approximately 100, hence it is quite possible that data
points to the right of VB = 0.016EJ in figure 6.2 could be pushed upward with
additional scans. Nevertheless, with the scan of parameter space we have performed,
we obtained a fidelity of PJ = 98%, and it is possible that this number could
be improved upon. To see the detection process in action with these idealized
parameters, we plot band probabilities for the state in figure 6.8 as a function of time
against the applied current for two different Q values. The pronounced probability
of excitation into the band of levels with energy above the top of the barrier for
the higher Q value makes it clear that this transition is mediated primarily by
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excitation above the barrier, and not quantum-mechanical tunnelling through it;
for lower Q, the transition process seems to take place through a combination of
both excitation/decay, and quantum tunnelling –the discrepancy in the mechanism
of transfer for these two scenarios is accounted for by level broadening of the low-Q
system, thus facilitating tunnelling.
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Figure 6.8: The cumulative probabilities of the system being in any of the states
with energy above the barrier peak (the excitation band), any of the states with
energy below the metastable basin (the decay band), and the current I(t) driving
these transitions. Note the differences in the population of the excitation band
between the two Q-values; for Q ≤ 7 significant barrier transition is achieved de-
spite little population in the excitation band –this is due to a combination of two
effects: (1) excitation band levels decaying very rapidly, and (2), level broaden-
ing with decreased Q permitting greater tunnelling. With Q = 25, slightly lower
transition probability is achieved, despite significantly greater population of the
excitation band. Evidently, optimal transition is achieved with a combination of
both excitation/decay and tunnelling processes.
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Chapter 7

Conclusion

In this work, we have seen that superconducting circuits, coupled to resonant cav-
ities present great promise as a medium for quantum information. The existing
work [7] that has been established on the coupling mechanisms between transmis-
sion lines and qubits has shown that single photons can be generated with the
quantum state transitions of qubits -artificial atoms, for example- but that there
remains to be seen a design of a device capable of detecting these photons, once
generated.

Hence, we proposed a parallel circuit model with a nonlinear Josephson inductor
to create a bistable potential in the branch-flux. To detect the arrival of a photon,
we scan out the parameter space of the components of this circuit to ensure that re-
liable detection can be made while limiting the effects of extraneous false-positives,
or ‘dark counts.’ We then developed increasingly sophisticated models to capture
the dynamics of this process.

In chapter 2 we showed that a common model for optical photodetection [16]
can be reproduced computationally, and we proved that such a numerical approach
produced results that were consistent on short time-intervals with analytic results
using perturbation theory.

We then showed, in chapter 3, how the discrete variable representation [17] can
be used to determine position-space wave functions of eigenstates in an arbitrary
potential, and why this solution method is preferable to a harmonic basis expansion.
We also showed that the coupling strengths between the various eigenstates in such
a system decreases exponentially with the energy difference between them, and
that any excitation that may occur, would therefore be limited to a relatively small
group of energy levels –thus permitting us to truncate the dimensionality of our
Hilbert space in the dynamic equations employed in chapter 6.

In chapter 4 we ignored the discrete energy solution set, and considered a purely
classical model. We showed that the perturbative expansion of anharmonic systems
generally gives rise to multiple resonance frequencies characterized by simple ge-
ometric fractions of the harmonic approximation taken at local minimum of the
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potential. This analytic result was borne out in classical computational time evolu-
tion simulations showing local minima, in frequency space, of the drive amplitude
necessary to achieve transition over a barrier for a point particle. The frequencies
at which we observed these resonant responses exhibit excellent agreement with the
resonance peaks of the transition amplitude determined by our quantum mechani-
cal model in chapter 6. We then derived the classical escape rate by considering a
steady-state probability distribution in energy for a metastable system –this escape
rate was then shown to be in excellent agreement with the escape rates observed
from our quantum mechanical model in the absence of any drive mechanism due to
a photon. Using this classical model we then showed the dependence of the mean
life time of the metastable system on the quality factor of the resonator, and the
ambient temperature.

In chapter 5 we showed how stationary points in the action of imaginary time
path-integrals can be used to determine escape rates of metastable systems via the
Im-F method –results which we showed are within a factor of 5 of escape rates deter-
mined using the methods described above. We also showed how the Im-F method
can be used to justify taking a thermally-averaged tunnelling rate to determine the
escape rate of the system below the crossover temperature, where transition is dom-
inated by tunnelling, rather than thermal excitation. Since this method assumes
instantaneous thermalization of the states energy distribution, however, and since
it fails to account for non-linearities in the potential, its applicability to our model
–outside of the low-Q limit–of photodetection is dubious, and we opt instead for
escape rates determined from the other methods above.

In chapter 6 we presented the most noteworthy results of this study. We intro-
duced our working model using density matrix of states in the DVR basis deter-
mined from chapter 3, and the equations of motion which we showed to be reliable
in chapter 2. The quantum mechanical analog of these equations has two main
components: the drive due to interaction with the photon, and the dissipation of
energy from the circuit. We demonstrate the validity of the former by showing
identical resonance peaks of the system with those determined from classical equa-
tions of motion, and of the latter by comparing the escape rate in absence of drive,
and the Kramer’s escape rate which we derived in chapter 4. We also proposed a
quantity PJ , which we dubbed the fidelity, to measure our success in finding a com-
promise between the competing needs of detecting legitimate photons, and avoiding
false-positives. Then, most importantly, after demonstrating the dependence of the
barrier transition on σ, Q, VB, and ωR, we showed that with an optimal choice
of these parameters, a transition probability of Ps = 99.9% can be achieved, as
well as a fidelity of PJ = 98.04% assuming Q = 7, σ = 0.6ns, VB = 0.016EJ ,
ωR ≈ 37Grads−1, though as figures 6.4, 6.5 and 6.6 indicate, we have a great deal
of flexibility in these parameters.

It must be said that with further scanning of the above parameter space, this
result may be improved further still –most likely by altering the parameters CJ and
Ls, although these could only be altered with a concurrent lowering of the ambient
temperature; temperatures of 20mK have been reported, and such temperature
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ranges would greatly reduce dark counts, bringing our fidelity PJ closer in line with
the raw switching probability Ps. This added dimensionality to our parameter space
could improve our overall fidelity though it must be said that there is, in principle,
no upper limit to the amount of time and computer resources that could be devoted
to sampling this parameter space with ever-increasing scope and resolution.
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Appendix A

The Fokker-Planck, and Kramer’s
Relations

We wish to derive the Fokker-Planck and Kramer’s relations given in chapter 4,
starting from the differential equations of motion for an arbitrary distribution
f(p, q)

d

dt

∞∫∫
−∞

dp dqf(p, q)W (p, q, t)

=

∞∫∫
−∞

dp dq

[
∂f(p, q)

∂q

(
dq

dt

)
dt +

∂f(p, q)

∂p

(
dp

dt

)
dt +O(dt2)

]
W (p, q, t)

=

∞∫∫
−∞

dp dq

[
p
∂f(p, q)

∂q
dt+ (−K(q)− γp) ∂f(p, q)

∂p
dt+O(dt2)

]
W (p, q, t) (A.1)

where W (p, q, t) is the probability density function of p and q. We note that the
first term on the right hand side of equation A.1 can be written as

∫∫ ∞
−∞

dp dq p
∂f(p, q)

∂q
W (p, q, t) dt

=

∫ ∞
−∞

dp

(
[p f(p, q)W (p, q, t)]q=∞q=−∞ −

∫ ∞
−∞

dq p f(p, q)
∂W (p, q, t)

∂q

)
dt. (A.2)

Similarly, the second term

∞∫∫
−∞

dp dq (−K(q)− γp) ∂f(p, q)

∂p
W (p, q, t) dt (A.3)
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can be written as

∞∫
−∞

dq

[f(p, q)(−K(q)− γp)W (p, q, t)]p=∞p=−∞ −
∞∫

−∞

dp f(p, q)
∂ (W (p, q, t)(−K(q)− γp))

∂p

 dt.

(A.4)

At this point we impose boundary conditions on the system on physical grounds:
it must be the case that lim

p→±∞
W (p, q, t) = lim

q→±∞
W (p, q, t) = 0, both because

of probability normalization constraints, and conservation of energy (since the
above argument holds, even for an arbitrarily increasing potential -not just the
one sketched in figure 3.5 - having finite distribution at these limits would violate
energy conservation.) Therefore, the terms of integration limits in expressions A.2
and A.4 can be neglected.

Expression A.5 then reduces to

∞∫∫
−∞

dq dp

(
f(p, q)K(q)

∂W (p, q, t)

∂p
+
∂ (W (p, q, t)γp)

∂p

)
dt. (A.5)

Equating 4.13 to A.2 and A.5 we obtain

d

dt

∞∫∫
−∞

dp dq f(p, q)W (p, q, t) =

∞∫∫
−∞

dp dq

(
−p f(p, q)

∂W (p, q, t)

∂q
+

+ f(p, q)K(q)
∂W (p, q, t)

∂p
+ γ f(p, q)

∂ (pW (p, q, t))

∂p

)
.

(A.6)

Now recall that f(p, q) is an arbitrary function. We could very easily choose a
f(p, q) that is zero everywhere with the exception of an infinitesimal region dp dq,
and equation A.6 must still hold; hence we set the integrands themselves in equation
A.6 equal. if we then choose f(p, q) = 1 we see that:

∂

∂t
W (p, q, t) = −p ∂W (p, q, t)

∂q
+K(q)

∂W (p, q, t)

∂p
+ γ

∂ (pW (p, q, t))

∂p
. (A.7)

Equation A.7 gives us the Fokker-Planck equation, assuming no external noise
is applied to the system. We must now return to relations 4.8 - 4.10 and consider
the same case with finite N , thereby introducing stochastic driving ξ(t).
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A.1 with thermal drive

The same expansion we employed in expression 4.14, now requires us to include
2nd-order derivatives of ‘f ′ to expand to 1rst order in dt, since under the Ito
interpretation dw2 = dt

∫∫ ∞
−∞

dp dq

dt

[
∂f(p, q)

∂q

(
dq

dt

)
dt+

∂f(p, q)

∂p

(
dp

dt

)
dt+

∂2f(p, q)

2∂p2

(
dp

dt

)2

(dt)2 + . . .

]
W (p, q, t)

=

∫∫ ∞
−∞

dp dq

dt

[
p
∂f(p, q)

∂q
dt+ (−K(q)− γp) ∂f(p, q)

∂p
dt

+
√
N
∂f(p, q)

∂p
dw +

N

2!

∂2f(p, q)

∂p2
dw2 +O(t2)

]
W (p, q, t) (A.8)

Note that the first order derivative ∂f
∂p

dp
dt

contain a term of order dw, but since

w has zero mean, this term vanishes when averaged over; dw2 = dt, however, has
finite mean. The last term in expression A.8 can be treated similar to the above:

∞∫∫
−∞

dp dq
∂2f

∂p2

(
N

2
+O(dt2)

)
W (p, q, t) =

N

2

∞∫
−∞

dq

[[
W
∂f

∂p

]p=∞
p=−∞

−
[
f
∂W

∂p

]p=∞
p=−∞

+

∞∫
−∞

dp f
∂2W

∂p2

 . (A.9)

Again, the limits terms can be neglected. Incorporating this term into our
previous analysis of A.6, we arrive at

∂

∂t
W (p, q, t) = K(q)

∂W (p, q, t)

∂p
−p ∂W (p, q, t)

∂q
+
∂

∂p

(
γ pW (p, q, t) +

N

2

∂W (p, q, t)

∂p

)
.

(A.10)

This is the Kramer’s relation cited in equation 4.18.
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Appendix B

The Classical Escape Rate.

Having defined the magnitude of thermal perturbation N as 2γkBT , we return to
the partial differential equations given in chapter 4 in the action dimension

∂ρ

∂I
+

ω(I)ρ

2πkBT
=
−Jω(I)

2πγIkBT
. (B.1)

Recall that all first order differential equations of the form

∂y

∂x
+ f(x)y = g(x) (B.2)

can be expressed in the form

∂

∂x
(yP (x)) = g(x)P (x) (B.3)

where P (x) = e
R
f(x) dx. Hence, we simplify B.1 to:

∂

∂I

ρ exp

"
IR
0

ω(I′)
2πkBT

dI′

# =
−ω(I)J

γI2πkBT
exp

"
IR
0

ω(I′)
N

dI′

#
(B.4)

∴ ρ(I) = − exp

"
−
IR
0

ω(I′)
2πkBT

dI′

#
J

γ2πkBT

I∫
0

ω(I ′′′)dI ′′′

I ′′′
exp

"
I′′′R
0

ω(I′′)
N

dI′′

#
+C. (B.5)

We now apply equation 4.23 to the exponential arguments in B.5 to obtain:

∴ ρ(I) = − exp

h
− 1
kBT

(E(I)−E(0))
i

J

γ2πkBT

I∫
0

ω(I ′)dI ′

I ′
exp

h
1

kBT
(E(I′)−E(0))

i
+C.

(B.6)
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Further, we impose boundary conditions on the system such that ρ(IB) = 0,
since we assume that as soon as particles obtain this energy they escape the system.

Note that for any f(x) =
x∫
0

g(x′) dx′ + C, if we wish to impose the condition

that f(x0) = 0, then we simply choose the integration constant C such that C =

−
x0∫
0

g(x′) dx′ leaving f(x) = −
x0∫
x

g(x′) dx′. So it is with the integration constant C

in B.6.

Also, since the reaction rate k is defined as the ratio of the probability current
to the total population,

k =
J

n0

=
J

IB∫
0

ρ(I) dI

(B.7)

we see that

k−1 =

IB∫
0

dI
exp

h
− 1
kBT

(E(I)−E(0))
i

γ2πkBT

IB∫
I

ω(I ′)dI ′

I ′
exp

h
1

kBT
(E(I′)−E(0))

i
. (B.8)

Furthermore, we choose an energy gauge such that E(0) = 0, effectively defining
the bottom of the metastable well as our zero-energy reference; B.8 then becomes
equivalent to expression 4.48 from Hanggi et al [19]. We also recall that the integral
IB∫
I0

f(I)dI =
E(IB)∫
E(I0)

f(E) dI
dE
dE provided we can express f, E as functions of I. This

allows us to express B.8 as:

k−1 =

VB∫
0

dE
2π

ω(E)

exp

h
− E
kBT

i
γkBT

VB∫
E

dE ′

I(E ′)
exp

h
E

kBT

i
. (B.9)

Now if we make the assumption that VB � kBT then it follows that exp
[

E
kBT

]
varies much more rapidly than I(E), and hence, the tail end of the above integrand
(i.e. the E-values near VB) will convey the lions share of the integral result. We
then treat I(E) in the second integrand as effectively constant at IB. This yields:

k−1 =

VB∫
0

dE
2π

ω(E)

exp

h
− E
kBT

i
γkBT

1

IB

[
kBT

(
exp

h
E

KBT

i)]E=VB

E=0

, (B.10)

or equivalently
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k−1 =
2π

γIB
exp

h
VB
kBT

i VB∫
0

dE exp

h
− E
kBT

i
ω(E)

(B.11)

where we have assumed exp[βE0] = 1� exp[βVB ] and can therefore be neglected.

By the same logic that allowed us to assume a constant I(E)→ IB in B.9 we can
assume that the integral in B.10 will be dominated by E values near E = 0 (since
the exponent is negative this time) and therefore assume a constant oscillatory
frequency ω(E) → ω0, where ω0 is the oscillation frequency at the bottom of the
shallow well. Evaluating the integral in B.10 then results in

k−1 =
2πkBT

γIBω0

exp

h
VB
kBT

i [
− exp

h
− VB
kBT

i
−− e[0]

]
, (B.12)

Finally, taking the inverse gives us the rate of excitation over the potential
barrier

k =
γIB
kBT

ω0

2π
exp

h
− VB
kBT

i
(B.13)

Valid only when VB � kBT . This is the Kramer’s escape rate cited in chapter
4
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Appendix C

The escape rate using the IM-F
method.

The following is derived mainly from the published work of Ingold [33, 34] with some
additional details provided in areas of conceptual importance, and other details
of arithmetic concern omitted; the purpose of this appendix is to establish the
methodology in applying path integrals to deduce the partition function of an open
quantum system.

We consider the influence functionals given in equation 5.42, and proceed by
inserting the sum of actions given in equation 5.35 (from all of the bath modes)
into the exponential of equation 5.18 and expressing it as a product (as in 5.42),
we arrive at the reduced equilibrium density matrix

〈q′′|ρβ|q′〉 = ρβ(q′′, q′) =
1

Z

q(~β)=q′′∫
q(0)=q′

Dqe[−SE[q]/~]F[q]. (C.1)

Note that for our actual ensemble, the density matrix given in equation 5.18
would have dimensionality of 2 + 2N for all of the system and bath coordinates,
and would take a form such as Wβ(q′, q′′, ~x′, ~x′′); equation C.1 amounts to taking a
trace over the bath coordinates x′ and x′′.

To perform this trace, we follow the derivation of Ingold[33] and expand the
position coordinates xi(τ) in a Fourier series

xi(τ) =
n=∞∑
n=−∞

ξne[iνnτ ] (C.2)

where νn are the Matsubara frequencies

νn = n
2π

~β
. (C.3)
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Note that each oscillator’s classical trajectory must solve the classical equation of
motion (since the oscillators assume a harmonic form, this is exact)

ẍcli (τ)− ω2
i x

cl
i (τ) = − ci

mi

q, (C.4)

an imaginary time analog to the classical equations of motion given in 5.26, however
expression C.4 is obtained by variational calculus from seeking a stationary action.
If we impose the boundary conditions xcli (0) = xcli (~β) = xi we find a solution of
the form

xcli (τ) =
sinh(ωiτ)

sinh(~βωi)

xi +
ci

miωi

~β∫
τ

dσ sinh [ωi(~β − σ)q(σ)]


+

sinh [ωi(~β − τ)]

sinh(~βωi)

xi +
ci

miωi

τ∫
0

dσ sinh [ωiσ]

 . (C.5)

Furthermore, if we seek to simplify the expression for the oscillator’s classical action
given in 5.39, we can perform partial integration on the product of

∫
dτẋiẋi to

obtain xi(~β)ẋi(~β)− xi(0)ẋi(0)−
∫
dτxiẍi; we may then employ equation C.4 to

cancel this latter expression against the potential terms of 5.39 leading us to rewrite
equation 5.39 as:

SE,cli [q, xi] =
mi

2

[
xcli (~β)ẋcli (~β)− xcli (0)ẋcli (0)

]
+

~β∫
0

dτ
mi

2

[
− ci
mi

qxcli +
c2
i

m2
iω

2
i

q2

]
(C.6)

If we insert the result of C.5 into C.6 (and then proceed through a certain
amount of algebra which we omit here for brevity) we obtain an expression for the
action of the oscillator

SE,cli [q, xi] = miωi
cosh(~βωi)− 1

sinh(~βωi)
(xi − x(0))2 −

~β∫
0

dτ

τ∫
0

dσKi(τ − σ)q(τ)q(σ)

+
c2
i

2miω2
i

~β∫
0

dτq2(τ) (C.7)

where we have defined the integral kernel as
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Ki(τ) =
c2
i

2miωi

cosh
[
ωi
(~β

2
− τ
)]

sinh
(~βωi

2

) = Ki(~β − τ). (C.8)

In the above equation the following Fourier series expansion can be applied

cosh
[
ωi
(~β

2
− τ
)]

sinh
(~βωi

2

) =
2

~β

+∞∑
l=−∞

ωi
ω2
i + ν2

l

e[iνlτ ], (C.9)

hence:

Ki(τ) =
c2
i

~βmiωi

+∞∑
l=−∞

ωi
ω2
i + ν2

l

e[iνlτ ]

=
c2
i

~βmiωi

+∞∑
l=−∞

e[iνlτ ] − c2
i

~βmiωi

+∞∑
l=−∞

νl

ω2
i + ν2

l

e[iνlτ ]

=
c2
i

miωi

+∞∑
j=−∞

δ(τ − j~β)− ki(τ). (C.10)

We therefore define a new kernel as:

ki(τ) =
c2
i

~βmiω2
i

+∞∑
l=−∞

ν2
l

ν2
l + ω2

i

e[iνlτ ] (C.11)

and exploit orthogonality and periodicity relations in q(τ) in conjunction with C.11,
and C.10 to obtain:

SE,cli [q, xi] = miωi
cosh(~βωi)− 1

sinh(~βωi)
(
xi − x(0)

)2 −
~β∫

0

dτ

τ∫
0

dσki(τ − σ)q(τ)q(σ)

− c2
i

2miω2
i

~β∫
0

dτ

τ∫
0

dσδ(τ − j~β)q(σ)q(τ) +
c2
i

2miω2
i

~β∫
0

dτq2(τ)

= miωi
cosh(~βωi)− 1

sinh(~βωi)
(
xi − x(0)

)2

−
~β∫

0

dτ

τ∫
0

dσki(τ − σ)
− ((q(τ)− q(σ))2 − (q(τ)2 + q(σ)2))

2
. (C.12)

We further note that the quantum fluctuations of bath oscillator around the classical
path yield a second order contribution to the action given by:
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S
E,(2)
i =

~β∫
0

dτ
mi

2
(ξ̇2 + ω2

i ξ
2
i ) (C.13)

and that this contribution is independent of xi, thus yielding only a simple numerical
factor. This factor can be captured (along with the first term of C.12) in the
partition function of the single bath oscillator, by setting ci = 0∀i. After some
arithmetic work with the second term in expression C.12 we obtain the influence
function of the bath oscillator:

Fi[q] = Zie

"
− 1

2~

~βR
0

dτ
~βR
0

dσki(τ−σ)q(τ)q(σ)

#
. (C.14)

Inspired by equation 5.42, we seek to express our sum of bath oscillator actions
within the exponential argument above as a product, thereby redefining 5.42 more
explicitly as

F [q] = exp

"
− 1

2~

~βR
0

dτ
~βR
0

dσk(τ−σ)q(τ)q(σ)

#
. (C.15)

To determine k(τ) we observe that our single oscillator kernel just so happens
to look very much like a Laplace transform γ̂(z) of the original damping kernel γ(t),
as defined in 5.32.

γ̂(z) =

∞∫
0

dte[−tz]γ(t) =

∞∫
0

dte[−tz] 2

M

∞∫
0

dω

π

J(ω)

ω
cos(ωt)

=
2

M

∞∫
0

dω

π

J(ω)

ω

z

z2 + ω2
(C.16)

and hence, k(τ) =
N∑
i=1

ki(τ) can be expressed more succinctly as

k(τ) =
M

~β

∞∑
n=−∞

|νn|γ̂(|νn|)e[iνnτ ]. (C.17)

Thus we fully determine the net effect of the dissipative path on the system.
Considering the entirety of the above discussion, the effective Euclidean action to
be minimized in equations 5.18 and 5.19 is
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S
(E)
eff [q] =

~β∫
0

dτ

(
1

2
mq̇(τ) + V (q(τ))

)
+

1

2

~β∫
0

dτ

τ∫
0

dτ ′k(τ − τ ′)(q(τ)− q(τ ′))2.

(C.18)

We now make the substitution

q(τ) = qcl(τ) + ξ(τ) (C.19)

Where ξ(τ), the quantum fluctuation about the classical path, can be expanded
in a Fourier series

ξ(τ) =
+∞∑

n=−∞

ξne[iνnτ ] (C.20)

which is assured to sum to zero at both endpoints τ = 0, and τ = ~β as required.
If we substitute C.19 into C.18 we obtain:

S
(E)
eff [q] =

~β∫
0

dτ

M
2
q̇cl

2(τ) + V (qcl(τ)) +
1

2

τ∫
0

dτ ′k(τ − τ ′)(qcl(τ)− qcl(τ ′))


+

~β∫
0

dτ

M
2
ξ̇2(τ) + V (qcl(τ))ξ2 +

1

2

τ∫
0

dτ ′k(τ − τ ′)(ξ(τ)− ξ(τ ′))2

 .
(C.21)

According to 5.19, we require periodic paths to contribute to the partition func-
tion. We note the periodic paths for this action in the inverted potential: (1)
resting precariously at the top of the left extrema (q = 0), (2) resting at the mini-
mum (qB) indefinitely, and (3) beginning at the top of the left maxima, proceeding
right until stopping at the same height on the slope, and returning, adiabatically
to the left maxima. The latter path is referred to as the ‘bounce’, or ‘instanton’
action, and contributes only below the crossover temperature, a region we will not
concern ourselves with, since the thermally averaged tunnelling rate accounts for
this region.

If we substitute the first scenario (i.e. q = 0 ∀ t) into C.21 we obtain

SE1 =
M~β

2

∞∑
n=−∞

(
ν2
n + |νn|γ̂(|νn|) + ω2

0

)
|ξ2
n| (C.22)

whereas if we substitute the second scenario (i.e. q = qB ∀ t) into C.21 we obtain:
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SE2 = ~βVb +
M~β

2

∞∑
n=−∞

(
ν2
n + |νn|γ̂(|νn|)− ω2

b

)
|ξ2
n|, (C.23)

an expression which can be further simplified by constraining ξn to ensure real
paths; hence we set ξn = an + ibn with an = a−n, and b−n = −bn. Thus

SE1 =
M~β

2

(
ν2

0 + |ν0|γ̂(|ν0|) + ω2
0

)
|ξ0|2 +

M~β
2

∞∑
n 6=0

(
ν2
n + |νn|γ̂(|νn|) + ω2

0

)
|ξn|2.

(C.24)

Similarly, equation C.23 becomes

SE2 = ~βVb+
M~β

2

(
ν2

0 + |ν0|γ̂(|ν0|)− ω2
b

)
|ξ0|2+

M~β
2

∞∑
n6=0

(
ν2
n + |νn|γ̂(|νn|)− ω2

b

)
|ξn|2.

(C.25)

Note that we have separated the n = 0 terms from the summation in the above
relations since from C.3 we see that ν0 = 0; this will be useful shortly. At this point
we are reminded that the path integrals indicated in equation 5.19 take place over
all positions q during the process. and hence, in Fourier representation, we have
still to integrate over the possible values of each ξn in equation C.23. Recall that a
Gaussian integral is calculated in general using:

I(a) =

∞∫
−∞

dxe−ax2

=

√
π

a
(C.26)

Our final partition function is then:
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Z =

∮
Dqe[−SE[q]/~]. =

∮
q=0

Dqe[−SE[q]/~] +

∮
q=qb

Dqe[−SE[q]/~]

≈
∫

dξodξ1dξ2 . . . e
[Mβ

2
ω2

0 |ξ0|2+Mβ
P∞

n=1(ν2
n+|νn|γ̂(|νn|)+ω2

0)|ξn|2]

+

∫
dξodξ1dξ2 . . . e

[Mβ
2

(−ω2
b)|ξ0|2+Mβ

P∞
n=1(ν2

n+|νn|γ̂(|νn|)+ω2
0)|ξn|2]

=

√
π

Mβω2
0

2

∏
n 6=0

√
π

Mβ
2

(ν2
n + |νn|γ̂(|νn|) + ω2

0)

+ e−βVb
√

π
Mβ(−2ω2

b )

2

∏
n6=0

√
π

Mβ
2

(ν2
n + |νn|γ̂(|νn|)− ω2

b )

=
1

ω0

√
2π

Mβ

∏
n=1

π
Mβ

2
(ν2
n + |νn|γ̂(|νn|) + ω2

0)

− i

2ωb
e−βVb

√
2π

Mβ

∏
n=1

π
Mβ

2
(ν2
n + |νn|γ̂(|νn|)− ω2

b )
. (C.27)

As shown in equation 5.44 (Note, we have actually cheated somewhat in this
derivation, since Gaussian integrals of the form given in equation C.26 cannot be
performed for a < 0 as in the case of the third line of 5.44 where a takes the value
−ω2

b . This problem is rectified by taking an analytic continuation of the integral
along the ‘direction of steepest descent’ that is to say, along the imaginary axis.
The result is essentially the same with an additional factor of 1

2
.)
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Appendix D

Computational challenges.

The bulk of time and effort that this project required was spent scanning through
the parameter space of the variables available to the system. A single detection
simulation for a given frequency, barrier height, pulse width, and quality factor
could take a single processor as long as 1 day, if the Q-value of that iteration was
particularly large (since the decay process takes place at a rate proportional to
1
Q

, this made thorough scans of the high Q and high σ region of parameter space

difficult.) Initial coarse scans involved sampling 20 values of σ, and 5 values of Q
over 40 different potentials, each with their own characteristic VB

After scanning out the three dimensional Q-σ-VB space roughly, a region of
local maximum fidelity began to emerge, which seemed to rely on a combination
of excitation and tunnelling through a low-Q, short σ process. It remains entirely
possible that other regions of parameter space relying more heavily on excitation
and decay could evince a seperate local maximum of improved detection fidelity,
most likely at a longer pulse width.

To give an idea of the computational demands of this project, figure D.1 shows a
plot of the average use of computer resources on SHARCNET. This was only one of
two SHARCNET accounts being used for this project, as well as the SGI computers
at the physics department at Dalhousie University. There were, at times, over 3024
CPU-hours being devoted to this project per day.
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Figure D.1: CPU-hours consumed per day, on one account devoted to scanning
out parameter space for this project for the period from May through July 2009.
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