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Abstract

Economic changes such as rising acai prices and the availability of off-farm em-
ployment are transforming the landscape of the Amazonian vdrzea, subject to
decision-making at the farming household level. Land use change results from
complex human-environment interactions which can be addressed by an agent-based
model. An agent-based model is a simulation model composed of autonomous
interacting entities known as agents, built from the bottom-up. Coupled with
cellular automata, which forms the agents’ environment, agent-based models are
becoming an important tool of land use science, complementing traditional methods
of induction and deduction. The decision-making methods employed by agent-
based models in recent years have included optimization, imitation, heuristics,
classifier systems and genetic algorithms, among others, but multiple methods have
rarely been comparatively analyzed. A modular agent-based model is designed
to allow the researcher to substitute alternative decision-making methods. For a
smallholder farming community in Marajé Island near Ponta de Pedras, Pard, Brazil,
21 households are simulated over a 40-year period. In three major scenarios of
increasing complexity, these households first face an environment where goods sell ata
constant price throughout the simulated period and there are no outside employment
opportunities. This is followed by a scenario of variable prices based on empirical data.
The third scenario combines variable prices with limited employment opportunities,
creating multi-sited households as members emigrate. In each scenario, populations
of optimizing agents and heuristic agents are analyzed in parallel. While optimizing
agents allocate land cells to maximize revenue using linear programming, fast and
frugal heuristic agents use decision trees to quickly pare down feasible solutions and
probabilistically select between alternatives weighted by expected revenue. Using
distributed computing, the model is run through several parameter sweeps and results
are recorded to a central database. Land use trajectories and sensitivity analyses
highlight the relative biases of each decision-making method and illustrate cases where
alternative methods lead to significantly divergent outcomes. A hybrid approach
is recommended, employing alternative decision-making methods in parallel to
illustrate inefficiencies exogenous and endogenous to the decision-maker, or allowing
agents to select among multiple methods to mitigate bias and best represent their

real-world analogues.
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Chapter 1

Introduction

1.1 Background

Agent-based modelling has recently become an important tool of land use science.
Building upon the scientific methods of induction and deduction, simulation has
become a “third science”, allowing researchers to codify assumptions and test them in
a virtual environment. An agent-based model is a specific type of simulation, built
from individual interacting entities known as agents. Agents have the ability to sense
aspects of their environment, but are not necessarily perfect observers. They possess

some cognitive ability, ranging in complexity from reactive to deliberative.

Agent-based models have been applied to the study of land use/cover change
(LUCC) in the last decade (Parker et al., 2003). ABM/LUCC are often coupled
with one or more layers of cellular models to represent the agents’ environment.
Cellular transition rules simulate natural transitions and socioeconomic institutions
such as land markets. Examples of such models include FEarLus (Gotts et al., 2003;
Polhill et al., 2001), Sypria (Manson, 2004, 2006a) and Lucrta (Deadman et al.,
2004; Lim, 2000; Robinson, 2003). Early versions of Fearrus, such as the version
described by Polhill et al., emulated no specific study area but served to explore
the land use actions of land managers in a spatially and temporally heterogeneous
environment. Other models were developed as case-specific models, based on field
data and remotely sensed images. SyPRria, for instance, was used to explore the
Southern Yucatdn Penninsula and the area of Transamazon Highway west of Altamira,

Brazil was simulated by Lucrra.

With the same basic design as these agent-based models, a new agent-based model,

Maria (Multi-Agent Reasoning in Amazonia), is designed to explore alternative

1



decision-making strategies in the context of certain drivers of land use change in
the Amazonian floodplain, focusing on the community of Paricatuba near Ponta de
Pedras, Brazil. Like Sypria and Lucrta, agents in this model are capable of agricultural
activities, in addition to other economic activities. While Lucrta used a classifier
system and, later, decision-tree heuristics, and SyPria used genetic algorithms, neither
of these models were used to evaluate significantly differing alternative models side by
side. The choice of decision-making method is a matter of debate (Schreinemachers
and Berger, 2006), but to date, a case-specific agent-based model has not been

presented with alternative decision-making methods.

1.2 Economic opportunities and land use change in the

Amazonian varzea

Throughout the history of the Amazonian vdrzea (floodplain forest), local households
extracted, cultivated and consumed agai palm fruit (Euterpe oleracea) and manioc flour
as a significant part of their diet (Brondizio et al., 1994; Murrieta et al., 1999; Wallace,
1853). The last few decades have seen a boom in the acai market, which can be
characterized in stages. Prior to the 1970s, agai was consumed and extracted from
the local forest and made available in markets in the rural estuary. As early as the
19" century, noted by Wallace, acai was routinely prepared as a sweet beverage when
mixed with water and sugar. In the past, acai harvesting practices were characterized as
extractivist, but have recently been recognized as agroforestry management (Brondizio

and Siqueira, 1997).

In the 1970s, the migration of low-income earners from rural to urban areas has led
to a trend of “ruralization”. This term does not describe emigration toward rural areas,
but refers to an increasing influence of rural preferences in urban centres. Specifically,
ruralization has led to an increased demand of agai in urban markets, transforming
it from a strictly rural and indigenous staple to an urban staple food by the 1990s
(Brondizio, 2004). Agai soon became available in urban and regional markets, in

addition to those found in the rural estuary.

More recently, ease of transportation, better agai preservation technology, and the
trend of globalization has opened up markets for agai on a world stage. Beginning in
the mid 1990s, demand for agai in goods as a healthy fashion food has led to a dramatic

increase in the price of agai (Brondizio et al., 1994). Acai in a refined form, derived



from acai pulp and powder, can now be found in grocery stores worldwide within

products such as health drinks and yogurt.

These trends have had a net positive effect on the price of agai, leading to an
increase in intensive agai management, from smallholder households to commercial
farms (Brondizio, 2004). In addition, the difficulty in transporting agai has led to

additional economic opportunities such as agai trading (marretagem).

1.3 Motivation for research

In the Amazonian wvarzea, land use change is resulting from shifting economic
opportunities. Recent economic changes include rising selling prices of goods and
the availability of alternative sources of employment. Traditional farming practices in
this region include extensive cultivation, such as intensive acai management and the
farming of annuals and biannuals, and extraction of acai fruit and timber. This, in
turn, has led to a further intensification in agai management in an effort to produce

more yield. However, the degree to which this has occurred is difficult to evaluate.

The observability of land use change is made difficult by the challenge of
differentiating unmanaged floodplain forest from intensively and intermediately-
managed agai agroforestry in remotely-sensed imagery. Field observations in this
area were recorded for a very limited number of sites in the period of 1991-1994 by
Brondizio (2008). This includes the yields of intensively and intermediately-managed
acaizals (agai stands) in a few experimental sites, as well as local demographics. This
data is supplemented by classified Landsat and IKONOS images, which roughly
estimate the degree of intensive agai production and other land cover such as savannas.
However, the resolution of these images limits their usefulness as housegardens are
typically too small and sparse to be shown. An agent-based model, a bottom-up
system designed based on assumptions of social institutions, economic opportunities
and constraints, will aid in the exploration and explanation of drivers of land use
and economic change. Often facilitated by a coupled cellular model, an agent-based
model can also produce spatial output. A model of incentives and constraints is
developed, presenting utility-maximizing agents with an environment of agricultural
and economic activities. Specific variables to be examined include the prices of goods,
labour requirements of agricultural practices and employment requiring temporary or

permanent emigration from the farm.



With respect to the decision-making capacity and strategy taken by agents, the use
of rational versus boundedly rational decision-making methods is subject to much
debate (Gigerenzer and Todd, 1999; Schreinemachers and Berger, 2006). Agent-
based models in studies of LUCC are typically implemented with only one major type
of decision-making method at a time. FEARLUS is one exception, a version of which
was tested among many imitative, optimizing and randomizing algorithms (Polhill
et al., 2001). A model by Jager et al. (2000) developed two types of agents, Homo
economicus and Homo psychologicus, differed by their aspiration levels and perceived
uncertainty, and in turn, the decision-making method employed (among deliberation,
repetition, imitation and social comparison). However, neither of these models was
applied to the study of a real-world study area. Overall, boundedly rational agents
are the most common in ABM/LUCC, as they characterize local decision-making

without assuming infinite cognitive capacity on the part of the decision-maker.

This thesis attempts to evaluate the utility of rational versus boundedly rational
agents in the context of land use change in the Amazonian vdrzea. This comparison
will be made in a case-specific model, unlike the general, theoretical environments
used in FEARLUS, a model by Jager et al. (2000), and Axelrod’s Prisoner’s Dilemma

tournaments (Axelrod, 1984), where such comparisons have already been made.

1.3.1 Problem definition

Given the rapid economic changes in this area and the difficulty in observing land use
change, an alternative approach to facilitate scientific exploration is desired. Agent-
based models are beginning to be proven as a scientific approach, using bottom-up
design to test assumptions. The interactions of agents in these models often produce
emergent effects which may be difficult to predict—based on the design of individual
agents—before the model is tested. That is, by designing individual rules from
the bottom-up, complex phenomena can be produced from a comparatively simple

model.

The decision-making method employed by agents has been identified as a research
issue (Schreinemachers and Berger, 2006), but to date, a comparison has not been
made for a real-world study area. Between two broad classes of decision-making,
optimization and bounded rationality, which is more suitable for a case-specific agent-
based model of land use/cover change? Using heuristics as an example of bounded
rationality, this thesis will explore this question in the context of shifting economic

opportunities within the Amazonian varzea.

4



1.4 Goals and objectives

Using an agent-based model, this thesis sets out to explore decision-making methods
employed by agents in the Amazonian floodplain within an environment of rising sell-
ing prices and other economic opportunities related to intensive forest management
and agriculture. The role of multi-sited households are introduced, in the current
incarnation of the model, as resulting from migration to pursue employment, but
other economic linkages and reciprocities based on property encroachment, fishing
and trade exist in the area. This thesis will include migration-related linkages only,
explicitly modelling the movement of labour between farming and non-farming

practices.

Furthermore, the question of the utility of rational agents will be explored in
comparison to fast and frugal heuristics. In separate simulations, two populations of
agents will be formed, each utilizing one decision-making method between rationality
and heuristics. These populations will be compared in terms of land use trajectories
and relative economic success. Fast and frugal heuristics are quick and require little
information on the part of the decision-maker, but require that case-specific beliefs,
desires and decision-making methods must be modelled explicitly. In contrast,
rational agents require the definition of an objective function, codifying the needs and
desires of an agent in terms of an expression to be maximized or minimized, subject to
constraints which are expressed as equations. The rational decision-making process is
treated as a black box, producing the optimal solution without emulating case-specific
decision-making methods. Positive and negative arguments exist for both approaches,
but an explicit comparison between the two methods in a case-specific ABM is yet to

be made.

These two primary goals will be realized using an agent-based model named
Maria (Multi-agent reasoning in Amazonia). Some components of MaR1a are influ-
enced by an earlier model, Lucrta, which was developed as a pioneering, deforestation
model of the Transamazon Highway near Altamira, Brazil. However, the biophysical
and socioeconomic attributes of the study areas differ greatly, especially as Lucrra
was developed for an upland area far from the floodplain study area modelled by
Magria. This necessitates the creation of a new model, since most assumptions from
one model cannot be said to hold in the other. Maria is developed as a modular
system, allowing for the addition and replacement of agents and methods. This
facilitates rapid evaluation of alternative decision-making models under a variety of

scenarios, including price variation and urbanization. As this model is being created



in parallel with ongoing research, this system should also accept new data and better
models (such as demographic or soil models) as they become available. The objectives

of this thesis are:

1. Develop a modular architecture and implementation of MARIA, integrating as-
sumptions derived from Brondizio (2008) and other sources while considering

future uses of the model and expected data.

2. Evaluate and compare the suitability of optimizing and heuristic algorithms for
ABM/LUCC using scenarios based on theoretical and empirical data, where

available.

3. Qualitatively evaluate spatial land use allocation, as it reflects the transition from

shifting agriculture to intensive management in the model.

4. Explore the drivers of land use change, considering market prices, labour

requirements and multi-sited households.

1.5 Structure of this thesis

This chapter presented an introduction to agent-based models and a few examples
of applications in land use science. Some of the drivers of land use change in the
Amazonian estuary were discussed, as were some of the issues concerning decision-
making in agent-based models. Chapter 2 is comprised of a brief history and
description of the study area within Marajé Island near Ponta de Pedras, Par4, Brazil,
focusing on smallholder farming characterized by the small rural community of
Paricatuba. Chapter 3 presents the current state of agent-based models and decision-
making methods, discussing the distinction between rational and boundedly rational
models. The design, implementation and analysis methodology of MaRia is discussed
in Chapter 4, followed by results in Chapter 5. The final chapter discusses the

limitations of the model as well as potential future uses of MaRiAa.

Appendix A describes the distributed computing strategy used to perform large
parameter sweeps and Monte Carlo simulation across an ad hoc cluster of computing
nodes. Appendix B contains the list of parameters used to generate the model results

presented in Chapter 5.



Chapter 2

Land Use and Economic Opportunity

in Maraj6 Island, Brazil

2.1 Introduction

The purpose of this chapter is to provide the reader with some context of the forces
affecting land use change and decision-making in the riverine Brazilian Amazon. The
content of this chapter is the basis of the design of the human and environmental
models forming Mar1a. In particular, Maria will develop selected components of
farming and other local activities, such as acai cultivation and emigration leading
to multi-sited households. Other characteristics of the study area, though not
implemented in the first version of the model, will be provided for through its design,
which will provide a framework to implement these in the future. This chapter first
presents a background and a short history of Marajé Island, while the subsequent
sections discuss the present demographic, social and economic characteristics of three
communities within Marajé Island near Ponta de Pedras. The chapter concludes with

a discussion of social changes and potential implications on land use change.

2.2 Geography

Ponta de Pedras is a municipality located in the lower Amazonian estuary at the
southeast part of Marajé Island, in the state of Pard, Brazil (Brondizio et al., 1994).
The Pard River flows to the east and south of the island. The annual mean temperature

of Ponta de Pedras is 27 °C (Murrieta et al., 1999). There are two main seasons,



rainy and dry. Average monthly rainfall ranges from approximately 500-800 mm
between December and April, dropping from 400 to nearly 0 mm between May and
November. Total rainfall is approximately 3000 mm/year.

Ponta de Pedras has a population of 25 743 and is located just west of Belém,
the capital of Par4, a city of 1 408 847 (IBGE, 2007). Near Ponta de Pedras,
there are three small farming communities, each characteristic of a distinct type of
farming arrangement to be discussed later in this chapter (Section 2.4): Paricatuba
(smallholder), Marajé-Acu (sharecropper), and Praia Grande (co-operative). These
communities are shown in Figure 2.1 (Environmental Systems Research Institute,
1992; MDA Federal, 2004). In 1994, these three communities had populations of
144, 371, and 117, respectively. Paricatuba is a small riverine community located
south of Ponta de Pedras, along the Paricatuba river. Marajé-Agu is located northwest
of Paricatuba on the north side of Rio Maraj6-Acu. It, too, is a riverine community.
Upland, to the east of both communities, north of Rio Marajé-Acu, is the community
of Praia Grande.

Para River

“Paricatuba .'?/'0 Marajé-agu

- Marajo Island
0N

‘e

Bell
‘! D . elem
2v. g 24

Figure 2.1: Communities near Ponta de Pedras, on a Landsat 4/5 TM image.

Marajé Island contains regions ranging from upland forest, floodplain forest
and grassland savannas. Transitional forests are present between areas of forest and
savannas. The community of Paricatuba, representing the smallholder focus of this
thesis, is located in the floodplain region. This area consists primarily of dense

floodplain forest (vdrzea), with several species of palm as well as dominant families of
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leguminosae and arecaceae (Brondizio et al., 1994). These species are highly adapted
to frequent tidal flooding. Unlike many other areas of the Amazon, characterized by
small numbers of many species of vegetation, the vdrzea is dominated by relatively few
species. As such, this area of forest can be classified as an oligarchic forest (Peters et al.,
1989). In terms of individual numbers, acai (Euterpe oleracea) is one such dominant
species in this area. Agai is a slender palm tree, about 60-80 ft. high, providing
fruit in the form of berries (Wallace, 1853). The fruit of the acai palm is a local
staple, comprising as much as 30% of the diet of the local population (Murrieta
et al., 1999). Although acaf is the dominant palm species in the area, other palm
trees are economically significant, providing goods such as lumber and medicinal
oil. Agai may also be used for lumber, but is often regarded as too valuable for this
purpose due to its fruit. Overall, the floodplain forest is spatially heterogeneous, with
areas regarded as unsuitable for intensive management due to existing land cover or

topography (Brondizio, 2008).

The built environment in the community of Paricatuba consists primarily of
wooden homes and elevated walkways. Paths near the household are elevated above
the tide. In contrast, pathways in the upland and transitional forested areas are created

through the annual burning of dense grass.

Transportation is facilitated through the many streams and rivers in the area. The
nearby state capital city of Belém is located across the Pard River and is accessible
from Ponta de Pedras by a five-hour ferry ride offered twice daily. Another mode
of transporting goods to market is through the employment of middlemen, though
some smallholders have invested in motorboats to deliver goods to market directly
(Brondizio, 2008).

2.3 A brief history of Marajé Island

Maraj6 Island was home to some of the earliest settlements in the Amazon. The
Caboclo populations are the largest non-tribal native population of the Brazilian
Amazon, a racial mixture of Amerindians, Europeans and Africans (Pace, 1997). In a
non-racial context, the term Caboclos is often used to refer to the poor peasantry in the
Amazonian estuary. Since the term “Caboclo” is also a stigma, implying degrading
racial connotations, it should be noted that the term is used by Brondizio (2008)
and Siqueira (1997) as a social category in reference to a portion of the Amazonian

peasantry, uniquely identifying this population to contrast them from more recent



immigrants. Much debate has been ensued over the use of this term (Cleary,
1993; Nugent, 1993; Pace, 1997), in terms of racial overtones and its adequacy for
describing the indigenous population, but that will not be addressed in any further
detail here. Another term used in the literature includes ribesieros (riverine people), but
this term applies to a much wider range of people and has been used to describe similar
peoples in Peru (Brondizio et al., 1994). Meanwhile, the Caboclo identifier applies
to urban residents with roots in this community. As described by Siqueira, the term
Caboclos is used in an academic context to refer to the traditional, rural occupants of
the area to contrast them from recent immigrants. For lack of a suitable alternative
term (Brondizio, 2009), the Caboclo identifier is used here. Encouragingly, however,
one community has been recorded as identifying itself as Caboclo, in a positive sense,
to reflect its identity as native to the area with deep knowledge of the forest (Silva-
Fosberg, 1996, cited by Siqueira, 1997). Ideally, the use of the term Caboclo with a
positive meaning can help wear away the social stigmas of the past and recognize this

population as uniquely knowledgeable.

The Caboclos cultivated and managed the Marajé Island region for the last 150
years. Traditional activities of the Caboclos include fishing, shrimping, swidden agri-
culture, agroforestry (management and extraction of forest products) and gathering
(Murrieta et al., 1999). These activities are a result of the assimilation of Portuguese
and other European immigrants whose culture combined with that of the native
Amerindians (Siqueira, 1997). European colonization also involved the subjugation
of the Caboclos, resulting in uprisings in the mid-19 century with little long-term
effect. The rubber boom of the late 19™ century and early 20" century resulted in

further immigration and assimilation into Caboclos society.

Demand for rubber derived from the local plant Hevea brasiliensis resulted in an
economic boom in the late 19" century, followed by a bust in the early 20t century.
Accordingly, most available labour was allocated to rubber production, resulting in
the abandonment of much of the food plantations in the estuarine region. Caboclos
labour and knowledge were both highly useful in harvesting naturally-growing rubber
in this area. However, as Caboclos typically did not own land, they would extract
rubber for landowners. Under a patron-client relationship (Siqueira, 1997), they
would be supplied all rubber-tapping equipment exclusively from the landowner at
above-market prices and forced to sell all rubber to the landowner at the landowner’s
price, keeping the worker indebted to the landowner. This kept the rubber boom
from improving the economic welfare of the Caboclo people. Eventually, the rubber

economy in the Amazon declined as seeds were smuggled to create large plantations in
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Malaysia. Uncontrolled tapping also led to decreasing yields, year by year. A smaller
rubber boom followed during World War II, since the Allies did not have access to
Malaysian rubber, but this boom was followed by a bust at the end of the war.

Economic development programs have since been sponsored by the government,
attempting to integrate and develop Caboclos society. Many of these programs have
been regarded as failures, due to their inability to improve their economic welfare.
Instead, programs often focus on replacing traditional practices with technology
to improve export. Investments have been said to “manufacture invisibility” of
the Caboclos, keeping them without new infrastructure or better living conditions
(Brondizio, 2009). Initially, government programs favoured small landownership,
but later abandoned this in order to encourage large-scale production by the mid-
1970s. In combination with the development of highway infrastructure, the latter
large-scale programs resulted in significant deforestation and the displacement of
landless farmers westward. Many of the Caboclos lost their land during this process.
By the mid-1980s, local knowledge and tradition was seen as a potential economic

boon, in addition to providing environmental sustainability (Padoch et al., 1985).

A boom in acai has been present since the 1970s. Urbanization of nearby centres
such Belém has led to an increase in “rural” preferences in these areas, including diet.
This, in combination with economic programs intended to increase the export of
goods (including agai) from the Amazon, resulted in its availability in wider areas. The
price of agai increased fourfold in the approximate period of 1984-1994 (Brondizio
et al., 1994) as it became an urban staple. A worldwide trend of fashion food
has increased demand for acai further, as it is valued for its antioxidants and its
environmental sustainability (Brondizio, 2004). This acai boom has translated in
a shift in the production of acai, evolving from indigenous extraction to intensive
management, and later, corporate farms. Small-scale production remains viable for
both smallholders and sharecroppers, as evidenced by continuing production trends
in the community of Marajé-Acu and, to a lesser extent, Paricatuba. Marajé-Agu has
moved largely to intensive agai management, while Paricatuba maintains a significant

amount of traditional forest-fallow agroforestry.

2.4 Farming households and activities

Farming household arrangements in the Amazonian estuary can be classified as

sharecroppers, co-operative communities and small landowners (Brondizio, 2008).
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Sharecroppers are farmers who reside on and cultivate land for a resident or absentee
landowner, sharing their harvest with them based on an informal agreement. For
instance, such an arrangement may assign half of agai production to the owner.
More informally, this arrangement may preclude the granting of prized game to
the landlord, while the owner will provide needed medicine to the sharecropping
family. Sharecroppers are assigned a clear designation of agai stands, which they
reside near, while areas for extraction may be shared among many sharecroppers
(though only within land owned by the same landlord). In other cases, such as crop
production, areas and land uses are explicitly delineated by or encouraged through

prior arrangements.

Medium landowners (proprietdrios), which include both resident and absentee
landlords employing a small number of sharecroppers, own 50-200 ha of land. In
contrast, large landowners (fazendeiros) own over 200 ha of land or more. Typically,
these large landowners are non-resident, dividing their land among many sharecrop-
pers. As many as dozens of sharecroppers occupy a property, each residing near their
assigned acai groves. Smallholder houses in Paricatuba are separated by a distance
of 20-300 m, varying to a range of 10-500 m apart in the mainly sharecropping
community of Marajé-Acu (Brondizio, 2008; Siqueira et al., 2000).

Acai production practices are often characterized as extractivist, despite the
intensive management practices which are followed in many cases (Brondizio and
Siqueira, 1997). The management of acai can be divided into steps: selective
thinning of undesirable species, pruning, planting of palm seeds and annual weeding.

Undesirable species include other forest species, understory vegetation and vines.

These and other agricultural activities performed by the sharecroppers may have
longer-term implications on their land tenure rights. Sharecroppers do not own
their own land, nor do they acquire their land over time. However, they may
claim compensation if the land has increased in value during their residence. For
this reason, landlords often restrict the practice of infrastructure building and slash
and burn agriculture, since these actions may increase the value of the land and
thus the sharecroppers’ rights to land tenure or compensation. In contrast, other
practices which increase return on land without implicitly providing additional land
tenure rights may be encouraged. Examples of such practices include intensive agai
agroforestry and swine husbandry. In one experimental area discussed by Brondizio
(2008), a sharecropper was restricted to thinning and pruning and was unable to
perform more intensive management of agai. Due to these restrictions, a household

may not be able to grow subsistence crops. However, households may be able to
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purchase these and other desired goods, such as manioc flour, through profits from

agaf production (Siqueira, 1997).

In a sharecropping arrangement, landlords control when the harvest is reaped.
Landlords may schedule harvesting during September to November, when prices are
lower, forcing sharecroppers to harvest unripe fruit which would be better suited
for harvesting in later months for a higher profit. Local interviews conducted by
Brondizio (2008) indicate that an unlimited amount of agai can be consumed by the
sharecropping household, but their studies have indicated that landlords may reserve

agaf as it becomes scarce or profitable.

The length of sharecropper tenure in this area varies from under one year to as
many as three generations. However, among newer sharecroppers, there is a great
deal of turnover: More often than not, sharecroppers do not stay long due to mutual
mistrust. Between 1990 and 1994, more than 50 % of sharecroppers emigrated and
were replaced by new sharecroppers (Brondizio, 2008). Absentee landlords believe

sharecroppers are withholding acai production, while sharecroppers feel exploited by

their landlords.

There is no evidence of sharecroppers who later become owners of their assigned
land. Instead, the tradition of sharecropping has often been broken through external
intervention. For instance, the Roman Catholic diocese in the area has purchased
land from large landowners to establish co-operatives, such as COPIUPPE in Praia

Grande (Siqueira, 1997).

A number of small landowners have been able to inherit or purchase land from a
larger land owner. Small landowners, or smallholders, are farmers who cultivate their
own land, owning as little as 1 ha of land to as much as 50 ha. Another community
near Mazagao is held by smallholder farmers, who do not hold official tenure to the
land, but treat it as such (Menzies, 2007).

Smallholder farmers are free to exercise actions based on their own interests, but
are still subject to constraints of land, labour and capital. Small landowners perform
intensive and intermediately-managed acai agroforestry, like sharecroppers. However,
without restrictions on agricultural activities, small landowners are able to practice
intensive management as well as swidden agriculture on both floodplain and upland
forests (Brondizio et al., 1994). This includes the production of rocado de virzea, a
type of floodplain garden involving a mixture of annuals and biannuals, followed by
the planting of acaizals (Brondizio et al., 2002).
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Households in the mainly smallholder community of Paricatuba practice shifting
agriculture, shrimping, fishing, hunting, forest cultivation and extraction of other
forest products (Siqueira et al., 1993, cited by Siqueira, 2009). Paricatuba is
representative of traditional farming, in the sense that they practice diverse agricultural
activities. Siqueira et al. (2000) note that in this community, unlike Marajé-A¢u and

Praia Grande, economic activities do not compromise any subsistence activities.

Across these three study areas, where swidden agriculture is practiced, the fallow
period is about 5 years. This period depends on available labour, available land and
quality of soil (Siqueira et al., 2000). In other riverine study areas, the fallow period
is closer to 10 years. However, this swidden-fallow agriculture does not refer to the
complete abandonment of the fallowed plot, but to the mixture of annual crops and
perennials with natural forest regrowth (Dufour, 1990). In this manner, farmers are

able to extract resources from the area throughout the fallow period.

2.5 Demographics of local communities

Three populations near Ponta de Pedras were studied by a multi-disciplinary, multi-
institutional team from 1989 onward (Siqueira, 1997). These populations are
characteristic of three types of farming household arrangements in the area: small
landownership, sharecropping and co-operative. Paricatuba, located south of Ponta
de Pedras, comprises 21 households, 26 families and 144 individuals, according
to demographic data collected in 1994. Paricatuba consists primarily of small
landowners, but includes two absentee medium owners (owning approximately

50-200 ha. of land each) employing four sharecroppers in total.

Marajé-Acu is a community of 43 households, 46 families and 371 individuals.
More than 65 % of households in Marajé-Agu are sharecroppers, working the land
of three large land owners. Most of these sharecroppers inherited the land through
family, though many have arrived recently, replacing other sharecroppers who have

emigrated.

Praia Grande, a co-operative community of 19 households, 21 families and 117
individuals, is located upland along the shoreline of Maraj6é Bay. The local Roman
Catholic diocese purchased a tract of land in order to form this community. Collec-
tively, the community maintains land ownership, as the entire community belongs
to COPIUPPE (Cooperativa Mista Agropecudria Irmdos Unidos de Ponta de Pedyas), an

agropastoral co-operative. Through the development processes establishing this co-
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operative community, residents have moved from floodplain forest to upland terrain
along a dirt road (Siqueira, 1997). This community practices mechanized agriculture,
producing beans, corn, coconuts, and rice, as well as the mechanized preparation
of land for cattle and pasture. Praia Grande is the only community out of these
three which practices mechanized agriculture and cattle ranching. This community
is supported by subsidies from the church and has eliminated the practice of swidden
cultivation (Brondizio, 2009).

Households in all of these communities may also include agregados, extended
(“aggregated”) household members not necessarily linked by kinship. While these
household members share no biological ties of kinship, they may sleep under the
same roof and contribute labour. Other “household members” do not necessarily
reside at the same location, but contribute labour, food or money (Siqueira, 2009).
Such households can be regarded as multi-sited and often result from circular or
impermanent migration to nearby urban centres. Unlike a single-sited household,
a multi-sited household has distributed labour and capital resources, presenting a

challenge in estimating labour and capital constraints.

2.6  Other economic activities

Employment in nearby urban centres has allowed individuals to pursue work other
than farming. However, the limited availability of urban employment has led to
impermanent or circular migration. Migration patterns differ among women and
men (Siqueira, 1997): Women often leave the rural household as teenagers in order
to work as maids for landowners living in Belém, returning later in life to marry
local men. Men, on the other hand, practice more circular migration, moving
between urban centres and their rural origin throughout life. Men pursue economic
enterprises, either by commercializing their household’s farm products or trading the

goods of others as middlemen or brokers.

Fishing and shrimping are also important activities in this area. Though acai and
manioc flour comprise over 60 % of local diet in Paricatuba (Murrieta et al., 1999),
fishing is the most important source of protein, followed by pork. The long stretch
of land required to implement shrimp traps is often a source of conflict between
neighbouring properties, as the catching area of shrimp often extends beyond the

property line.
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Outside of the local agai growth season, males engage in acai trading as middle-
men, especially in Marajé-Acu. This trading is locally known as marretagem (Murrieta
et al., 1989, cited by Siqueira, 2009). Agai is available elsewhere in the region, but
unavailable locally. They travel up to 2—4 days by boat to purchase acai, then resell
it in Belém, culminating in a trip as long as 15 days. In the region of Maraj6-Agu,
marretagem is one of the main economic activities, along with agai production and

shrimp fishing (Siqueira, 2009).

Swine husbandry is encouraged by landlords in the area, since it is highly
compatible with acai production and offers high economic return for the land.
However, swine requires the implementation of some infrastructure such as fencing,
as loose pigs can damage manioc gardens. Fencing and other measures do not offer
complete protection, so farmers face a choice between pork husbandry and some loss
of manioc. Nevertheless, pork husbandry is an attractive option: It requires only
a small amount of labour (other than infrastructure if desired) and provides a high

return, since pork meat is undersupplied in the area.

Deforestation, while prevalent in much of the Amazon from the mid-1970s to the

mid-1980s, was not experienced to the same degree in the floodplain regions.

Other activities in the region include the preparation of agai baskets and shrimp
traps, made from the wood of agai palm. Acai baskets are made to hold a standard

amount, approximately 12 kg, and are thus marketable in the region.

2.7 Markets

Brondizio (2008, Ch. 8) discusses the price dynamics of agaf in three scales: daily,
seasonal and decadal. On a daily scale, the market prices vary greatly, according to
the supply of agai unloaded from boats, as well as the quality of the berries. The
originating location of acai is important, since agai spoils quickly. Acai is only fit
for consumption during the three days following harvest (Brondizio et al., 2002).
Agai originating further inland, such as from Maranhio, is less desirable than that
cultivated from Ponta de Pedras or the islands near Belém such as Ilha das Ongas.
Acai producers consider the quality of their goods, sorting goods into barrels of similar

quality, presenting the most perfect berries on top.

There are three general roles taken at the agal market: producers, middlemen
and brokers. Producers may sell to brokers directly, but they must arrange their own

transport. Alternatively, middlemen may purchase goods from producers at a lower
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rate to resell to brokers at the market price, handling the transportation from the farm
to the market then selling to brokers (Mufiz-Miret et al., 1996; Siqueira, 1997).

There are three price models taken between sellers (producers and middlemen)
and brokers. At the peak of the agai harvesting season, when supply is greater than
demand, an average pricing model is often followed. Through this pricing model,
the seller is paid by the purchaser at the end of the market day, either by the average
of the opening price and the closing price or at the closing price. This protects the
broker from buying high and selling cheap, instead making transactions at an average
price. An alternative price model is the hourly price, in which the current price of
agai is paid to the seller on delivery. When demand is greater than supply, sellers may
select purchasers based on their bids. Larger producers, such as corporate farms, may
also use a contracted price model, in which a price is prearranged for the duration of
each season. This arrangement buffers the prices when harvesting times cannot be
controlled. Otherwise, agai is best harvested when prices are highest to provide the

most profit.

The seasonal scale highlights price manipulation on the part of larger producers.
Large landowners create scarcity by controlling sharecropper production. These large
landowners control a supply sufficient to influence price. Brondizio (2008) refers
to a group of 5 large producers which produce 7 000-29 000 baskets per season.
This price manipulation affects the staple food industry more than that of the fashion
food. While fashion foods, locally and internationally, use processed and preserved
acai pulp and powder, agai as a staple fruit or pulp is required to be fresh, making it
more sensitive to changes in price. Preservation technology is beginning to dampen

seasonal price variation outside of the peak season through stock control.

On an annual scale, year-over-year growth in acai prices becomes readily apparent.
As it has been previously discussed, agai prices rose as demand for acai as a fashion
food grew. This rise in agai prices is also a result of inflation, as indicated by its
comparison with IPA-PARA, the Agricultural and Husbandry Price Index for the state
of Pard. Both the API (Agai Price Index) and IPA-PARA showed significant growth
throughout the rampant inflationary period, with agai showing growth beyond
inflation. However, acai sells for a significantly higher price during the second
half of its harvesting season, as much as 2-2.5 times IPA-PARA (Brondizio, 2008).
Ultimately, agai producers achieve a better than average return over other agroforestry

and husbandry goods.
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2.8 Chapter summary

This chapter introduced the Caboclos society in the floodplains of Marajé Island,
near Ponta de Pedras, Pard, Brazil. The Maraj6 Island area has seen rapid economic
changes as a result of market demands for rubber and, more recently, acai. As
a result, Caboclo farmers have been exploited for their labour, but have recently
been recognized as having local knowledge of sustainable farming practices. In the
community of Paricatuba, there are approximately 21 smallholder households who
practice swidden-fallow cultivation and intensive agai management, in addition to
other economic activities such as employment as middlemen or in urban areas. Urban
employment has led to long-term or short-term circular migration, as an individual
may perform work off-farm and return during the agai season. Such processes have
led to multi-sited households, in which members living outside the physical home
may contribute labour or money. The most recent market shift has been a boom in

agai, as it has evolved from a rural staple to an international fashion food.

Research in this area has identified agai prices and multi-sited households as drivers
of change. Broadly speaking, to what degree have these drivers influenced land use
change and household decision-making? Recent research (Siqueira, 2009) has begun
to address internal household decision-making as a research issue. In turn, how does

decision-making affect land use change and economic welfare?
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Chapter 3

Agent-based models of land use change

3.1 Introduction

Agent-based modelling (ABM) is a technique coming to popularity in recent years,
a branch of multi-agent systems (MAS) of distributed systems research and artificial
life (Bousquet and Le Page, 2004; Matthews et al., 2007; Robinson et al., 2007). It
is undergoing increasing popularity in the land use science community, especially in
the last decade. Beginning with theoretical models such as SugarScape (Epstein and
Axtell, 1996), ABM:s have since evolved into modern tools of virtual experimentation
based on empirical data (Deadman et al., 2004; Manson, 2006a), policy analysis
(Berger, 2001), and scientific or participatory collaboration (Castella et al., 2005;
Pignotti et al., 2004). However, agent-based models have not become operational
decision support systems, lacking numerical accuracy and relevance to end users,
among other issues (Matthews et al., 2007). Nevertheless, such models can be useful
for illustrating the dynamics of a complex system, explaining causative factors of some

phenomenon or as a teaching tool (Axelrod, 2003; Epstein, 2008).

An agent-based model is a model based on autonomous software entities, agents,
which sense and act upon their simulated environment. They are typically designed
with a bottom-up approach, the modeller having codified the attributes and behaviour
of individual agents and their environment into software form. Stochastic methods
compensate for uncertainties in model parameters. Running the model once or
several times in a Monte Carlo simulation, the interactions between agents and their
environment result in emergent macro-properties that cannot necessarily be predicted

from the behaviours of the individual.
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The simulation of interacting individuals in a common environment leads to the
concept of emergence. ABM/LUCC often illustrates emergence due to its bottom-
up design. The concept of emergence may be explained, quite simplistically, as “the
whole is greater than the sum of its parts” (Parker et al., 2003). In other words, micro-
interaction of individuals leads to observable higher-order macro-patterns. Given
the uncertainties involved in modelling a real-world system, agent-based models use
probability distributions as a proxy for uncertain outcomes. Due to the stochastic
nature of ABM and the uncertainties involved in modelling a real-world system, an
ABM should only be expected to model possibilities, not to predict outcomes with
absolute certainty. Each run of an ABM, associated with some random seed, produces
one possibility. Running an ABM several times produces a set of possibilities,

enhancing its use as an exploratory tool.

Agent-based modelling has been combined with cellular automata models to
create ABMs of land use and land cover change (ABM/LUCC) (Parker et al., 2003).
This chapter will discuss agent-based modelling as a tool for studying LUCC. It begins
with a discussion on a rationale of modelling as a viable tool. This is followed by a
discussion on the history and state of cellular automata and agent-based modelling
as it relates to LUCC. A brief discussion of modelling tools will be provided. Given
the variety of agent-based models developed for land use/cover change and the broad
backgrounds of model developers, many fundamental components are implemented
in novel ways. The bulk of this chapter consists of a review of the decision-
making models and spatial methods employed by ABM/LUCC. Finally, the chapter
concludes with a discussion on the feasibility of verification and validation on an

ABM/LUCC.

3.2 Why model?

Explicit models, such as agent-based models, simplify a system into a form of codified
assumptions and data which can be analyzed to highlight theoretical properties
and outcomes which cannot be observed in the real-world system. Supplementing
field observations and laboratory experimentation, an agent-based model allows a
researcher to perform experimentation on a virtual population which would otherwise
be infeasible or unethical. Such experiments may include price manipulation, for

instance.

A significant challenge faced by land use scientists is posed by the complexity of

human-environment interactions. Land use change is a complex process, resulting
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from feedbacks in biophysical and socioeconomic systems (Aspinall, 2008). It is
argued that such a process may not be evident when studied in the frame of one
system alone (Liu et al., 2007): Systems such as climate, ecology, demographics,
landscape, economics and culture may define or influence local behaviour and land
use change. Modelling can integrate these systems into an experimental frame, in
which the assumptions of each of these systems can be codified. An experimental
frame, as defined by Ziegler (1976), is a limited set of circumstances observed in
the real system. A modeller may not necessarily have expertise in each system, but
expert input can help shape the model and its assumptions. In this case, modelling
can be used as an experimental tool and, among multiple experts, a collaborative
tool. Ultimately, a model provides, at the very least, a definition of a system as a
set of rules which can be analyzed in terms of its design and the data it generates.
Furthermore, by the nature of its bottom-up design, agent-based modelling often
results in the discovery of emergence in the system. Emergence refers to macro-scale
properties which are not easily predictable based on the individuals the model is built
upon (Verburg et al., 2004). Emergence occurs as a result of interactions among

individuals and their environment.

Epstein (2008) argues in support of modelling, first contrasting between implicit
and explicit models. Implicit models, he states, include those created in the human
imagination. By defining modelling this way, he argues that all people are modellers
when constructing their understanding of a system based on their observations or
data. This obviates the modelling argument. However, the question remains of
whether explicir modelling is useful. The remainder of this discussion will discuss
explicit models, where assumptions are recorded and codified. Core to Epstein’s main
argument is that in an explicit model, assumptions are defined and can be tested.
In an agent-based model, these assumptions are defined in terms of parameters and
computer code. By modifying the parameters and aspects of the code, assumptions
can be tested. Best-available data and expert knowledge related to the problem
domain can be integrated to gain a fuller understanding of the system under a variety

of scenarios.

Box and Draper (1987) famously stated that, “Essentially, all models are wrong,
but some are useful.” Epstein makes an important related note, distinguishing
prediction from explanation. While a model cannot and should not be expected to
predict future events with absolute certainty, the model may serve to explain certain
aspects of the system. At best, model outputs may provide bounds on future events

or estimates on likely outcomes. Depending on the quality of data, likely outcomes
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may be predicted with reasonable confidence. In the case of a more theoretical
model, prediction is not necessarily the goal. Instead, trends in the simulation
outcome may aid scientific explanation or discovery (Axelrod, 2003). With this in
mind, the purpose of modelling is not merely the study the end state of a system:
Instead of regarding the end state as the only model output, the researcher can study
the functionality of the system, the relationship of its components and the trends
experienced throughout the simulation. In this manner, the model may be used as
a virtual laboratory, allowing the researcher to manipulate a hypothetical system and
study causality on a deeper level than can be observed in a real-world system, especially

when the system is unobservable or complex.

However, there are arguments against the use of agent-based modelling. Beyond
simple models like SugarScape (Epstein and Axtell, 1996) and early versions of
Fearrus (Gotts et al., 2003; Polhill et al., 2001), significant amounts of data are
required to capture site-specific intricacies. An agent-based model cannot include all
of the complexity of the real-world system: Some simplifying assumptions must be
made to ensure it is feasible to implement and test. As more complexity is introduced
into a model, it becomes much more difficult to attribute outcomes to causative
factors. Couclelis (2001) briefly highlights some challenges faced by the modelling
paradigm and questions the “considerable” effort placed into adding complexity into
ABM/LUCC models and whether the benefits of complexity outweigh its costs. Just
as Couclelis notes the failure of modelling to find its place as a decision support tool
in planning and policy-making, ABM has not realized the same level of applicability
with end-users as it has within academia (Matthews et al., 2007). This is related to
the current limitations and data requirements of ABM, as well as the poor usability of
ABM software as a decision-support tool. The latter issue can be addressed through
end user training and improved software packaging targeted toward decision-support
end users, or as Matthews et al. suggest, end user participation throughout the model

design process.

3.3 History of agent-based modelling

3.3.1 The software agent

The software “agent” has evolved from research of artificial intelligence (Al), specif-
ically distributed artificial intelligence (DAI). In the field of DAI, the research

objective is not to emulate or provide the knowledge and reasoning of a single
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intelligent agent, but to study the knowledge, reasoning and co-ordination of multiple
heterogeneous agents (Bousquet and Le Page, 2004). DAI can be classified into
two main areas of research, one of which is the area of multi-agent systems (MAS)
(Moulin and Chaib-draa, 1996). MAS use autonomous, possibly heterogeneous,
software entities—agents—in co-ordination to solve problems. An agent can be
loosely defined as an autonomous software entity which is capable of sensing its
environment and acting upon it (Russell and Norvig, 2002). Finer definitions and
classifications of agents, particularly those described by Russell and Norvig (2002)
and Moulin and Chaib-draa (1996), are described in Section 3.6.1.

3.3.2 Cellular automata

Cellular automata are uniformly shaped cells arranged in a discrete lattice, most
often in a two-dimensional rectangular arrangements for geographic applications
(Torrens and O’Sullivan, 2000), though alternative lattices such as 2D hexagonal
and cubic are possible. For each cell comprising the lattice, a set of rules is
applied once per simulation step, which modifies the cell’s state based on its
previous state and that of its neighbours. In terms of a rectangular lattice, a
cell’s neighbours are those it is adjacent to, either vertically or horizontally, in the
case of von Neumann neighbourhoods. Moore neighbourhoods include cells in
the von Neumann neighbourhood, in addition to diagonally-adjacent neighbours.
Beyond these neighbourhood-based rules, generalized cellular automata (GCA) may
use rules which are not limited to adjacent neighbours (Takeyama and Couclelis,

1997).

One of the first cellular automata models was developed by John Conway in 1967
(Gardner, 1970). Using a physical checkerboard and flat counters with two colours,
representing two states, “alive” and “dead”, Conway devised Life as a “simulation
game” meant to represent the rise and fall of several generations of organisms. He
achieved this by creating rules which satisfied certain criteria, namely preventing
(provably) unbounded population growth while giving the ability to create patterns
which oscillate or stabilize into a steady state. Cell transitions in Conway’s Game
of Life, as it is now popularly known, are based on states of cells in the Moore
neighbourhood. A dead cell comes to life if it has exactly 3 live neighbours. A live cell
dies from overcrowding if it has four or more neighbours or dies from isolation if it has
less than two neighbours. In other cases, the cell retains its previous state. Running

complex cases on physical counters proved infeasible, so a computer program was
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developed for the PDP-7, allowing Conway and other researchers to discover more
complex patterns (Poundstone, 1985). This “game” stands as a precursor to more

modern agent-based models.

Cellular automata formed the basis for simulated virtual agent worlds, intended
to illustrate social phenomena with a simple set of rules. Schelling (1971) developed
a model illustrating the emergent effects of individual preferences for like-neighbours
toward a more global trend of segregation. In this model, an agent (coloured black or
white) seeks an aspiration level of a certain number or percentage of like-neighbours
and will move if this aspiration level is not met. A very segregated neighbourhood
results even with a common aspiration level of as little as 30 %. More advanced
virtual worlds have been developed through the field of agent-based computational
economics (ACE) (Tesfatsion, 2006).

Approaching the application of models to land use/cover change, successive mod-
els of cellular automata were used to simulate patterns of urban growth. Described as
a “computer movie”, Tobler (1970) used a deterministic model of cellular automata to
simulate urban growth patterns in Detroit from 1910 through 2000. Tobler observed
that “everything is related to everything else, but near things are more related than
distant things”, naming this the First Law of Geography. Applying this Law to a
computer model, with the spatial population distribution of Detroit expressed as
attributes assigned to cells in a rectangular lattice, Tobler created a demographic model
based on a linear relationship between neighbouring cells across time. The cellular
automata rule governing the next population of a cell is an equation stating that the
population is based on a weighted sum of cells within a Chebyshev distance of 2, with
nearer cells weighted more than farther cells. Through these rules, the model takes
into account net migration (the difference between immigration and emigration),
birth rates, death rates and population migration to adjacent cells (spread). Given
these rules, a computer movie is produced with a temporal resolution of 0.05 or
0.5 years/step. The computer movies were developed for educational and illustrative

purposes rather than for population prediction.

Moving closer to a land use model, rather than a strict population model, Batty
(1997) created a CA-based model of urban growth. Cells in this model carry one of
two states, developed or undeveloped. A cell becomes developed with probability p
if one adjacent cell is developed. If the cell is not developed on its first attempt (with
probability 1 — p), then its subsequent probability of development is p?. This pattern
is continued, with the probability of development on the n™ attempt equal to p",

approaching zero as n — oco. This model was applied to the area surrounding Niagara
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Falls, where initial seeds placed in the centers of the municipalities of Niagara Falls,
Buffalo and St. Catharine’s in a combined cellular landscape produced approximate
shapes of these cities resembling their real-life counterparts. A more complex model,
the SLEUTH model, also uses self-modifying cellular automata to model urban growth.
For a variety of cities worldwide, SLEUTH is calibrated with input maps of slope, land
use and other factors, to determine parameters of diffusion (spontaneous growth),
breed (growth of urban centers), road gravity and other factors (Silva and Clarke,
2002). With such flexibility, SLEuTH is developed as a “first vision” of a universal

urban growth model, subject to appropriate calibration.

3.3.3 Agent-based modelling for land use/cover change

Agent-based models of land use/cover change have come to popular use in the last
decade (see Bousquet and Le Page (2004); Matthews et al. (2007); Parker et al. (2001,
2003)). These models range from the theoretical to the empirical, with theoretical
models leaning toward simple, generalizable concepts and empirical models requiring
more complexity and case-specific data (Berger et al., 2001; Robinson et al., 2007).
There have been a few attempts to organize or describe agent-based models of
land use/cover change under a continua (Berger et al., 2001), taxonomy (Hare and
Deadman, 2008), ontological framework (Polhill et al., 2008), or conceptual design
pattern (Parker et al., 2008). Each of these discussions includes a review of the state

of the art in ABM/LUCC.

Cellular models have been coupled with agent-based models, using the cellular
model as the agent’s environment. An example of a theoretical (non-LUCC) model
is SugarScape, a very simple environment which Epstein and Axtell (1996) used to
model trade, combat, disease transmission and a myriad of other social issues. This
arrangement has become popular for land use/cover change applications (Parker et al.,
2001). In an ABM/LUCC, agents typically reside on a cellular grid, owning a set of
cells constituting a parcel of land (for examples see Deadman et al. (2004); Manson
(2004); Polhill et al. (2001)). While the agents themselves are not necessarily cellular,
the land they manipulate is represented by cellular automata. The modelling of agents
upon a cellular automata allows researchers to model spatial processes and agent-

environment interaction.

An example of an ABM/LUCC coupled with cellular automata is Lucrta (“Land
Use Change in the Amazon”). LucrTa was developed to study deforestation and land

use change in a rural area along the Transamazon Highway west of Altamira, Brazil
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(Deadman et al., 2001, 2004). Lucrra is a model of smallholder farming households
in the Amazon who produce cash and subsistence crops, subject to constraints of land,
labour and capital. In a recent version (Deadman et al., 2004), households in Lucrta
select land use activities with price-weighted probability, until capital, labour or land
resources are extinguished. An older version of Lucrta (Lim, 2000) used genetic
algorithms and a classifier system, shared among all agents. Through a bitstring, an
agent specifies its available resources to the classifier system. The agent also provides a
list of possible land use strategies and the past effectiveness of each one. The classifier
system then performs rule matching and determines the set of rules which should be

implemented.

Between both versions of the model and a more recent unpublished one, the
landscape is divided into cells of 1ha with similar environmental models. The
equations of Fearnside (1986) were used to model soil conditions at each cell. These
equations govern changes in soil variables (N, B, Al, pH, C), which in turn affect
crop yield. Though cultivation reduces soil nutrients, as practitioners of swidden
cultivation, farmers can conduct burns to return nutrients to the soil. Lucrra’s
environmental model uses cellular transitions which are based on the previous state
of the cell and the agent’s inputs into the cell. Other models take a similar approach,

codifying environmental transition rules within cellular automata, including Sypria
(Manson, 2006a).

Sypria (Southern Yucatdn Penninsular Region Integrated Assessment), another
model of land use change in the tropics, focuses on the spatial allocation of land use
activities. The cellular environment is based on cellular automata. The environmental
model is implemented using cellular transitions, which are based on the state of
adjacent cells. Agent decision-making processes have a spatial focus, taking into
account relative theories of space and absolute theories of space. Relative theories
of space infer that relative distances are strongly factored into decision-making,
while absolute theories of space postulate that spatial heterogeneity is key. Using
genetic algorithms, agents in this model consider factors such as soil quality (spatial

heterogeneity) and distances to market when making land use decisions.

Current agent-based models of land use/cover change have integrated a wide range
of environments and human decision-making strategies. Environments have ranged
from simple bitfields (Polhill et al., 2001) to transitions of soil characteristics based
on mathematical models (Lim, 2000; Matthews, 2006). Decision-making methods
have included optimization, random selection, imitation, heuristics, classifier systems

and genetic algorithms. Current challenges of models of LUCC which have been
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addressed are verification and validation (Berger et al., 2001; Ormerod and Rosewell,
2009; Pontius and Schneider, 2001; Qudrat-Ullah, 2005; Xiang et al., 2005),
spatial representation (Huigen et al., 2006; Manson, 2006a), and data collection
methodology (Huigen, 2004). Decision-making has been identified as a research
issue (Schreinemachers and Berger, 2006), but has only been tested in theoretical
models lacking empirical data (Jager et al., 2000; Polhill et al., 2001).

3.4 Software

There are a variety of open source and commercial software packages for creating
agent-based models. Currently-maintained software platforms include NetLogo
(Wilensky, 1999), Repast Simphony (North et al., 2007) and Swarm (Minar et al.,
1996), among others. These software platforms vary in their ease of use, performance

and potential for complexity, so models have often been ported across platforms to
satisfy particular needs (Millington et al., 2008; Parker et al., 2008).

Based on Logo, a programming language featuring a “turtle” who responds to
movement commands, NetLogo and StarLogo each offer a high-level programming
language and environment for creating agent-based models. NetLogo is developed at
Northwestern University on a Java and Scala platform. Scala is a functional program-
ming language built upon the Java Virtual Machine. Although NetLogo programs
are written in a high level interpreted language, intended for easy accessibility for
non-programmers at the expense of performance, code is partially compiled to Java

bytecode for performance improvement (Wilensky, 1999).

StarLogo is developed at the MIT Media Lab and has been used to implement
agent-based model models, including an urban growth model developed by Batty
(1997). Inspired by an early version of StarLogo, NetLogo was developed as an
alternative with additional features and has since been applied to several land use
models (Gilbert et al., 2008; Millington et al., 2008; Parker et al., 2008). Often,
models are prototyped in NetLogo for its simple syntax and ease of use and ported to

Swarm, Repast or outside a software framework in a language such as C++.

While NetLogo and StarLogo are high-level simulation platforms, which provide
a closed environment and a custom high-level language, Swarm and Repast are
framework and library systems (Railsback et al., 2006). In such as system, the model is
developed using a lower-level language such as Java in a loose conceptual framework

made to organize model development. Software libraries provide common tools,
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such as a scheduler or a pseudorandom number generator. High-level platforms like
NetLogo are easier to use, but have less potential than framework and library systems

such as Swarm (Bousquet and Le Page, 2004).

Swarm is a simulation package allowing models to be written in Objective-C or
Java and has been used to develop land use models such as Fearrus (Gotts et al.,
2003). Repast was originally derived from Swarm as a Java-based simulation package.
It has recently evolved into Repast Simphony, allowing ABMs to be written using
flowcharts, Java or Groovy, a dynamic language built onto the Java Virtual Machine.
Flowcharts greatly simplify the modelling process for simple models, but greater
complexity requires the use of Groovy or Java. Prior to Repast Simphony, earlier
versions of Repast (North et al., 2006) have been applied to land use models such
as MameLuke (Huigen, 2004), SLunGe (Parker and Meretsky, 2004) and Lucrra
(Deadman et al., 2004).

All of the aforementioned platforms are free or open source software. In contrast,
AnyLogic is an example of commercial software. It has been used to implement
land use models such as the farming structural change model by Albisser and
Lehmann (2007). While AnyLogic provides agent-based modelling capabilities in
a Java environment like Repast, AnyLogic provides support for system dynamics and
discrete-event modelling. Repast Simphony is beginning to include these features as

well.

A comparison of several simulation software packages is provided by Nikolai
and Madey (2009) for a broad audience. LUCC and pattern-oriented directed
comparisons between a much smaller set of software packages have been prepared
by Berger et al. (2001) and Railsback et al. (20006), respectively. Railsback et al.
compared NetLogo 2.1, MasoN (another Java-based simulation framework) version
10, Repast 3.1 and Swarm 2.2—versions current as of September 2005—comparing
ease of development and performance, to a certain degree. As Railsback et al. noted,
their comparison was outdated even at the time of publication, as new features and
platforms were developed in the meantime. Having implemented one model across
all platforms, their comparison was meant to be more qualitative than quantitative,
but found that their model was fastest on Mason. Repast was found to perform
almost as quickly, with a negligible difference for complex models. Swarm was, by

far, the slowest platform for complex models, but fastest for the simplest models.

In terms of the ease of development on the various platforms, documentation
for MasoN, Swarm and Repast was found to be lacking. NetLogo was found to

be the easiest to use, due to its simplified programming model. As models become
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more complex, the simplicity of the programming language may become a limitation.
Furthermore, all model code is to be included in one file, which may be difficult to
manage in a large model. The development of complex models was identified as a
potential difficulty in MasoN, due to the platform’s restrictive scheduling framework

and confusing terminology.

3.5 Scheduling

Discrete-time simulations can be implemented with either fixed-time or discrete-
event scheduling. The distinction between these is that fixed-time scheduled models
execute actions at predetermined intervals, while discrete-event models execute events
on a dynamic schedule. Cellular automata models are examples of fixed-time

scheduled models: A/ cells execute their actions at every simulation step.

The length of a simulation step is specific to the model. In some cases, a step or tick
represents nothing particularly analagous to a real-world amount of time, especially in
general, theoretical models. Models of real-world systems may assign a fixed length
of time to be represented by a simulation step: For instance, the Sypria (Manson,
2005) and Lucrta (Deadman et al., 2004) models use a step measuring one year.
Tobler’s computer movie of urban growth in Detroit (1970) uses a simulation step
measuring either 5 % or 50 % of one year, with a finer temporal resolution resulting

in a smoother computer movie.

In contrast to a fixed-time scheduled model, discrete-event models are reactive,
executing or scheduling actions in response to events. In a discrete-event model,
the schedule is initialized by placing one or more events onto the schedule. A
schedule can be expressed as a table of events and their execution times, sorted in
chronological order (most immediate first). To execute the next event, the simulation
clock increments to the time of the most immediate event—the topmost row. This
event is executed, removed from the schedule and may explicitly schedule future

events. This process is repeated until there are no more events to be executed.

A discrete-event schedule allows for finer temporal resolution without necessitat-
ing the execution of every event at every time step, since the model only executes
scheduled events. In between scheduled events, the simulation clock immediately
increments to the time of the next event, regardless of the time interval between events.
In contrast, an increase in the temporal resolution of fixed-time scheduled models

would schedule every agent’s actions more often. However, running a discrete-event
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model requires support on the part of the scheduler: While Repast and Swarm provide
facilities to create a discrete-event model, NetLogo abstracts the scheduler, preventing

the explicit scheduling of future events (Railsback et al., 20006).

In the case of many ABMs, a fixed-time scheduler is as appropriate as a discrete-
event scheduler, if all agents execute methods at the same temporal resolution. While
fixed-time systems execute all actions at every step, discrete-event systems require the
explicit scheduling of future actions, requiring an increase in code complexity which

may be unnecessary.

If multiple actions are scheduled at the same step, they will execute in priority
order. Actions executing with the same priority and at the same time should execute
in random order. While this rule is not followed for all models, this mitigates any
consistent advantage or disadvantage resulting from execution order, especially when

multiple runs are analyzed through Monte Carlo simulation.

3.6 Reasoning and decision-making methods

3.6.1 Agent categories

While agents are typically described in ABM literature as autonomous or interdepen-
dent software entities, Russell and Norvig (2002) define an agent as one who senses
its environment through sensors and acts upon its environment through actuators.
This latter definition necessitates a differentiation between human agents and artificial
agents, such as software agents. Couclelis (2001) discusses designed vs. analyzed agents,
where designed agents refer to software or hardware (robot) agents and analyzed agents
refer to natural subjects such as human or animal. In discussing the model, this thesis
restricts the discussion of agents to software agents, though they may be representative

of human or other physical counterparts in the real world.

Agents can be classified by their problem-solving capabilities: Moulin and Chaib-
draa (1996) classify agents as reactive, intentional and social agents, based on
classifications made by Demazeau and Miiller (1991). Similarly, Russell and Norvig
(2002) classify agents as simple-reflex, model-reflex, goal-based and utility-based

agents, in order of increasing cognition.

A reactive or reflex agent simply reacts to environmental changes or received
messages without the ability to “reason” its own intentions. Another term for this type

of agent is a rule-based agent, as a reactive agent’s behaviour is based on the execution
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of pre-defined rules. The reactive agent classification can be sub-divided into Russell
and Norvig’s simple-reflex and model-reflex categories: The simple-reflex agents has
no concept of history, while the model-reflex agent has a concept of its internal state.
The model-reflex agent updates its internal state to keep track of what it can no longer
observe. However, the model-reflex agent uses the same rule-based reasoning as the

simple-reflex agent, but has knowledge from its internal state to draw from.

Agents more advanced than reflex agents can be classified as intentional agents.
Intentional agents have the capability of reasoning, whether in order to find a goal or
resolve conflicts. (Moulin and Chaib-draa (1996) add a third classification, a social
agent, to the classifications of Demazeau and Miiller (1991). A social agent is said to
contain models of other agents, containing the beliefs, goals and plans of these agents,

so that it can plan and act with respect to the behaviours and actions of other agents.)

As a subset of intentional agents, goal-based agents have the capacity for some
level of reasoning: They have an idea of some desired binary or discrete state, such as
“happy”. In addition, agents can estimate or have knowledge of potential results of
possible actions to be taken. Instead of pure reactive rules, goal-based agents utilize
their notion of how their environment is changing, the consequences of their actions,
and a set of goals to decide on a particular plan of action. These agents use reasoning

such as searching and planning,.

Another subset of intentional agents, more complex than the goal-based agent,
is the utility-based agent. This type of agent is distinguished from the goal-based
agent: Utility is not a binary or discrete state, but a function mapped onto the set of
real numbers. The utility function is a mapping of a state to a real number, which
expresses the “goodness” of the state. Russell and Norvig (2002) argue that an agent
is only rational if it acts “as if it possesses a utility function whose expected value it
tries to maximize”. Given the uncertainty of a partially observable environment, an
agent cannot calculate the exact utility at any point in the future, but can determine

the best course of action by calculating the expected utility of the action.

A classification scheme employed by Schreinemachers and Berger (2006) cate-
gorizes agents by their decision-making methods and application. Agents are first
classified as either optimizing or heuristic agents. Optimizing agents are further
classified by their application, those used for normative purposes and those used
for positive purposes. Normative agents are used to discover new, optimal solutions
within resource constraints, while positive agents are used in empirical models to

represent some real-world analogue. As this research is focused on the positive
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exploration of land use dynamics of rural Maraj6 Island, rather than, say, a search

for more optimal farming practices, this thesis will focus on positive agents.

3.6.2 Unbounded rationality

Traditional economic models assume rational behaviour. A rational agent, homo
economicus, will always act on the optimum solution, having clear preferences and
given all available information. Given the uncertainties in the future, the rational
strategy may not make the most optimal choice in hindsight, but chooses the most
optimal alternative given all information known at the time. Such unbounded
rationality can be regarded as unrealistic, given that unlimited time is necessary
to enumerate the outcome of all possible solutions. Nevertheless, proponents of
unbounded rationality argue that humans act as if they are rational, so they consider

an unboundedly rational model to be a suitable model for human decision-making.

Russell and Norvig (2002) assert that a rational agent must act as if it is optimizing
some utility function. Mapping the expected value of each available action to a
numerical value, rational agents are able to objectively rank the expected value of

each action in order to select the most optimal course.

Linear programming

In order to make an optimal, purely rational decision, a solver must find the most
desirable action or set of actions. Given that every possible solution can be mapped
to a numerical value of desirability, the calculation of this value for every available
action is computationally infeasible, given the potentially infinite number of possible
actions or action paths. Therefore, it is desirable to find the optimal solution in an

efficient manner by evaluating a minimal number of solutions.

Optimization may be implemented using mathematical models known as linear
programs, introduced into widespread use in 1947 by George Dantzig. Linear
programs were not invented by Dantzig, as they were described by Fourier and de
la Vallée Poussin in 1823 and 1911 respectively. However, it was Dantzig’s novel
method of solving these linear programs as well as its applicability for solving military-
related problems which allowed linear programming to achieve popularity. A more
detailed history of linear programs is recalled by Dantzig (2002) as part of a 50t

anniversary issue of the journal, Operations Research.
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A linear program expresses an optimization problem as a linear objective function
combined with a set of linear constraints expressed as equalities or inequalities. The
solution to a linear program is the set of variables which maximizes or minimizes the
value of this objective function (utility function). (Historically, the term “program”
in this case refers to military plans, such as logistics or schedules, which were
early applications of this mathematical model.) The maximum (or minimum, if
appropriate) value of the objective function corresponds to the optimal solution.
Linear programming can be used to find an optimal solution provided that the
decision-maker’s objective and constraints can be expressed as linear inequalities and
that at least one feasible solution exists within the constraints. As a decision-method
within a (non-ABM) model of LUCC, Chuvieco (1993) used linear programming as

a land allocation method.

A sample problem to illustrate optimization: Suppose an agent wishes to develop
5 plots of land and may choose from land uses A and B. Land use A requires 1 units
of material and 9 units of labour, while B requires 2 units of material and 4 units
of labour. Profits from land uses A and B will be $2 and $3 respectively. The agent
has 8 units of material and 36 units of labour. Wishing to maximize profit, a linear

program can be developed, where a and b refer to the number of plots of A and B,

respectively.
maximize 2a + 3b (profit)
subject to
a+2b<8 (material)
9a + 4b < 36 (labour)
a+b<5b (land)
a,b>0

Since it operates in only 2 dimensions, a and b, this linear program can also be

expressed graphically, as shown in Figure 3.1.

The first equation of this linear program specifies the objective function, in this
case, a maximization of profit. The inequalities specify constraints of material, labour
and number of available plots (assuming that up to a single land use can be used
to develop each plot). The final inequality is a non-negativity constraint, used to
prevent invalid solutions, such as a negative number of plots of either land use. The

intersection of these inequalities is the feasible region of solutions.
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feasible region

Figure 3.1: Graphical representation of a linear program

The optimal solution is found by exploring the space of all feasible solutions while
traversing only a small set of nodes. Solution algorithms, such as the Simplex method
developed by Dantzig (Dantzig, 2002; Nash, 2000), may employ admissible heuristics
to perform an efficient enumeration of feasible solutions. The Simplex algorithm
traverses only a few nodes at the edge of the feasible region, shown by the circles. The

solution which maximizes the objective function is shown by the largest circle, in red.

3.6.3 Alternative models of rationality

Models of rationality can be divided into two major categories, shown in Figure
3.2. Jager and Janssen (2003) argue for the use of behaviourally realistic agents. A
purely optimal approach to rationality can be regarded as unrealistic, given that it
also assumes that the search cost is zero or, in other words, that the homo economicus
decision-maker possesses “demonic powers of reasoning” (Gigerenzer and Todd,
1999). There is an alternative model of rationality, bounded rationality, in which the

decision-maker has limited computational ability, time or cognitive capacity (Simon,
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1957). This notion of rationality has been explored in LUCC literature (Manson,
2004, 2006b). While pure rationality assumes access to perfect information or
infinite ability, bounded rationality accounts for the fact that this may be impossible.

Bounded rationality also accounts for the need to learn or adapt.

Visions of Rationality

Demons Bounded Rationality

Unbounded Optimization Fast and Frugal

Salsncy Heuristics

Rationality under Constraints

Figure 3.2: Models of rationality, from Gigerenzer and Todd (1999)

Similar to bounded rationality, in recognition of limited cognitive capacity, there
is an alternative model of rationality termed optimization under constraints (Gigerenzer,
20006; Gigerenzer and Todd, 1999). The optimization under constraints model
recognizes a non-zero search cost. As solutions are considered, a stopping criterion
determines when the search for a more optimal solution should be stopped. This
stopping criterion stops the search at the point in time when the search cost matches or
exceeds the expected benefit from a continued search. Optimization under constraints
is 7ot a model of bounded rationality: The optimization under constraints model
requires more information and computation than an unboundedly rational model,
since the expected remaining search time must be recalculated when considering each
subsequent alternative to determine the optimal stopping time. In contrast, bounded

rationality uses fast and frugal heuristics to determine stopping time.

Other than limits in time and cognitive ability, sources of irrational behaviour are
said to be related to cognitive biases, such as availability, anchoring and loss aversion
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1973, 1974). These biases
are said to influence decision-making toward the irrational. In facing a choice between
alternatives where the expected value of each choice could be calculated, rationality
would prescribe that the alternative with the highest expected value be chosen. These

cognitive biases suggest other factors be taken into account. For instance, a loss averse

35



decision-maker would underweigh a choice with a high probability of failure (loss),
even if the net expected value was positive. In contrast, a risk seeking agent would
overweigh low probabilities of large success. A bias in either direction can lead to an

irrational decision.

Gigerenzer (20006) argues against the use of unbounded optimization, optimiza-
tion under constraints and cognitive biases to model human behaviour. He dismisses
unbounded rationality and optimization under constraints since they present a
decision-making model with unlimited computational resources. Cognitive biases
proposed by Tversky and Kahneman, he argues, are untestable. Instead, Gigerenzer
opts for ecological rationality. Ecological rationality is Gigerenzer’s term for Simon’s
original definition of bounded rationality, which was originally postulated with
two components (Simon, 1956): The first component refers to the limitation in
cognitive capacity and time. The second component, which is often ignored in the
literature (Gigerenzer and Todd, 1999), refers to the decision-maker’s environment
and social norms. Ecological rationality stresses that the decision-maker’s rationality
is closely tied with the decision-maker’s environment. (Simon (1956) uses the
term “environment” to refer to the needs, goals and drives of the decision-maker.)
Depending on this environment, a decision-maker may not employ utility functions

or a full enumeration of all alternatives.

Without simulating the psychology of agents too deeply, current ecological-
economic literature suggests that decision-makers employ simple heuristics to make
decisions, such as social comparison, imitation and repetition (or autoimitation) (Jager
et al., 2000; Polhill et al., 2001). Heuristics are rules which are used to govern
decision-making (Schreinemachers and Berger, 2006). Gigerenzer and Todd (1999)
argues that humans employ fast and frugal heuristics. Heuristics are fast if they can be

computed in little time and frugal if they can be computed with little information.

Rational vs. heuristic decision making

It has been said that models using optimal solutions tend to look for inefficiencies
exogenous to the agents’ internal cognition, while satisficing methods model ineffi-
ciencies in the decision-making process itself (Schreinemachers and Berger, 2000).
“Satisficing” is a term coined by Herbert Simon, combining the words “satisfying”
and “sufficing” (Simon, 1976). Satisficing agents (whether human or artificial),
unlike optimizing decision-makers, search for a solution until one is found that is

“good enough”. Alternatively, satisficing may be described as a recognition that
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there are non-zero search costs involved in solution-finding, whereas an optimizing
calculation is assumed to be costless (Schreinemachers and Berger, 2006). Therefore,
a decision-maker may prefer to stop enumerating further options rather than search

for a definitively optimal—or better—solution.

Schreinemachers and Berger (2006) argue that both optimizing and non-optimizing
methods are useful as tools in empirical models of land use/cover change. Optimizing
algorithms are regarded as unrealistic, since they assume perfect information and
can consider an infinitesimal amount of possible actions. However, they suggest
that optimizing algorithms can be combined with heuristic algorithms to produce
a more realistic result: Heuristics are used to limit the solution space to a set of
perceived available options. An optimizing algorithm can be used to determine the

most desirable solution from this subset of feasible solutions.

Satisficing

Pettit’s method of satisficing (1984) involves choosing an aspiration level, at or above
which a solution is deemed “good enough”. Then, each solution is evaluated, one at a
time in some unspecified order, until a solution is found which satisfies the aspiration
level. A version of Fearrus, a MAS/LUCC, utilizes this decision-making method
explicitly (Gotts et al., 2003). For this method to be feasible, the solutions must be
commensurate and comparable with the aspiration level. In a computational model,
the aspiration level is expressed as a scalar value, so the goodness or desirability of
each solution must be quantifiable as a comparable scalar value. Byron (1998) states
that the aspiration level need not be chosen in advance, since the decision to satisfice

(instead of optimize) may be taken while enumerating solutions.

This method can be contrasted with an optimizing one, in which the decision-
maker evaluates (or appears to evaluate) every solution. If all solutions are evaluated,
then the most optimal solution can be chosen. However, a satisficing algorithm
does not evaluate all solutions, but evaluates solutions until one satisfies some level
of desirability. In what order are potential solutions evaluated? Alternatively, how
are solutions selected for evaluation or disregarded? The following sections discuss
decision-making methods, each of which choose a solution from the same solution
space. Many of these methods do not have stated aspiration levels, but instead select

an option based on some heuristic.
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Decision trees

Decision trees represent hierarchical sets of condition-action (if-then) rules and
are an example of fast and frugal heuristics. Decision trees are often used for
decision analysis and support, but can also be applied to classifier systems (Friedl
and Brodley, 1997) and as a decision-making method in ABMs (Robinson, 2003).
In fact, most ABM/LUCC use a condition-action rule system to model behaviour
(Schreinemachers and Berger, 2006). Each non-leaf node represents a choice or an
uncertain condition (chance). The leaf nodes of a decision-tree represent alternative

solutions which are feasible if their ancestor choices and conditions are satisfied.

Choice nodes are often expressed as squares. An example used in the design of
Maria is illustrated by Figure 4.9 on page 65. The outbound edges from a choice node
represent the feasible choices. Chance nodes, not shown in the figure, are represented
as circles, often posing the unknown as a question or variable. Each outbound edge
represents a particular circumstance, specified as an answer to the question or an exact
value or range of the variable. When the decision tree is constructed for decision
analysis, the outcomes of chance nodes are also assigned expected probabilities so
that the expected value of each alternative can be calculated (Peterman and Anderson,
1999). However, for a decision tree in an agent-based model, chance nodes are unused
since the agent uses the decision tree as a fast and frugal heuristic without calculating
expected values. Therefore, chance nodes are unnecessary (assuming the agent itself

does not perform decision analysis as part of its cognitive process).

As a fast and frugal heuristic, a decision tree can be used in a divide and
conquer strategy to quickly pare out infeasible or undesirable solutions from a large
solution set (Quinlan, 1990). In this case, a traversal through a decision tree leads
to a set of actions, rather than to a single solution. These actions represent the
feasible alternatives available given a set of choices and circumstances. Among these
alternatives, another decision-making method is used to select a solution. This is
a useful arrangement when the other decision-making method is computationally

intensive or if a satisficing solution is desired.

Another, possibly complementary, use of decision trees in agent-based modelling
is to explicitly codify the decisions made by the agents’ human or physical coun-
terparts. Unlike many other black box decision-making methods, which have no
clear real-world analogue, human knowledge and behaviour can be represented as
condition-action rules. This is the approach taken by (Deadman et al., 2004) in

creating the decision-making algorithm for farmers in Lucrra. In this case, the
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non-leaf nodes are all chance nodes and all leaf nodes are actions or sets of actions.
The agent makes a decision by traversing down chance nodes, selecting branches
which satisfy the current circumstances. The agent arrives at a set of one or more
actions, which can be reduced to one solution by adopting another decision-making
algorithm. In the case of Lucrta, the decision tree is applied multiple times as many

land use decisions are made before resources are exhausted for the current year.

Black box decision-making methods

Black box decision-making methods, like black box algorithms, hide their implemen-
tation from the decision-maker. Given a set of inputs, the black box produces a
decision. These methods may either be invariant or adaptive over time. Genetic
algorithms are an example of a black box decision-making method and have also
been used as a proxy for bounded rationality (Manson, 2006b). Genetic algorithms
produce novel solutions and can also be used as a toolbox for memory and learning
(Manson, 2005). While this and other black box methods like neural networks have
proven to be successful in ABM, they have been said to confound even their inventors

(Gigerenzer and Todd, 1999).

3.7 Spatial methods in land use/cover change models

According to the formulation test (Berger et al., 2001), a model is spatially explicit
if spatial concepts are present in behavioural rules. Agent behaviours in the ABM to
be discussed require two spatial methods: one for settlement (land tenure allocation)
and the other for land use allocation. Furthermore, there remains the question of
how models deal with the initial conditions of the landscape, specifically its spatial
variation across the landscape. In the absence of data, such as a DEM or classified
land use image, a model must explicitly state the initial conditions of the landscape,

whether spatially homogeneous or heterogeneous.

3.7.1 Settlement patterns

A spatial method for a settlement pattern involves the initial placement of agents onto
the landscape. By far the simplest settlement pattern is random placement, adopted

by such theoretical models as SugarScape (Epstein and Axtell, 1996).
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The imitative, competitive FEARLUS model (Gotts et al., 2003) populates its entire
landscape with land manager agents, each owning one cell. When an agent fails and
vacates the simulation, its cell may be claimed by its adjacent (surviving) neighbours or
a land manager new to the simulation. One claimant is selected among the candidates

with equal probability.

Building upon the random placement strategy, Sypria (Manson, 2004) uses an
exogenous population density map to probabilistically allocate immigrating agents
into the landscape. Agents randomly select a cell, each weighted by its relative
population density. This approach requires the availability of spatial population
distribution data. The SLEuTH urban growth model is calibrated with external maps

to determine cellular growth parameters.

Lucrta uses a simple boundedly rational approach for its settlement pattern,
limiting land parcel search to exactly 3 parcels from the set of vacant parcels. Each
parcel would be evaluated for its distance to the Transamazon Highway. After
3 parcels were evaluated, the household would select the land parcel which was
closest to the highway. This simple algorithm was sufficient to produce a fish-
bone deforestation pattern evident in this area, with relatively more deforestation in

properties closer to the highway, due to longer settlement time.

Batty’s (1997) cellular automata model of the settlement and urban sprawl of St.
Catharine’s, Niagara Falls and Buffalo used probabilities based on adjacency and land
history to model settlement (development) patterns. In this model, cells take on a
binary state (settled or unsettled). At each time step, a cell adjacent to a settled cell
becomes settled with probability p (where 0 < p < 1). However, if the cell remains
unsettled, when reconsidered at the next (second) time step, it is settled with a lesser
probability p?, reflecting a diminished land value. The exponent increases by one at

each subsequent time step until settled.

Each settlement method is appropriate to the study in question. Ultimately,
an appropriate settlement pattern is chosen based on theory (Batty), available data
(Sypria, SLEUTH) or heuristics (Lucrta). FearLus was developed to illustrate the
relative strengths between algorithms, so a competitive land claim structure was

appropriate.

3.7.2 Land Use Allocation Methods

Lucrta imposes an absolute ordering on plots of land, irrespective of the land use to

be allocated onto a cell. Prior to the model run, each cell is ranked by its distance
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from the highway with respect to the other cells in the same property. Agents use this
ranking to allocate land: The available cell closest to the highway is chosen. No effort
was made to cluster similar land uses or model any specific land use patterns within
a property. However, the Lucrta null model worked well to illustrate a clearcut fish-
bone deforestation pattern model in the binary case of forested vs. deforested cells.
Since a household will always cut forest closest to the highway, this method would
not model selective deforestation without necessitating some degree of increased

complexity.

Sypria uses multicriteria analysis and multiobjective land allocation (Manson,
2004, 2006a). For a given production activity, agents in SYPRIA attempt to evaluate
the suitability of a set of cells (S5), expected as a weighted sum (with weights
W = wy,ws,...,wy,) of production factors (V = vy, vs, ..., vy), subject to Boolean
constraints (B = by, b, ...,b,). Boolean constraints rule out infeasible actions, such
as unavailable land due to land tenure arrangements. Agents determine weights, W,

based on environmental and institutional factors, considering constraints B.

S = zm: W;V; ﬁ bj
i=1 =1

However, agents are boundedly rational and are unable to evaluate the optimal

solution directly. Instead, agents approximate suitability using genetic algorithms.

3.7.3 Spatial variation

One test or criterion to determine if a model is spatially explicit is the spatial invariance
test (Berger et al., 2001). If the agents in an ABM can be rearranged spatially without
affecting the results, the model is not spatially invariant and—by this test—not
spatially explicit. Existing ABMs treat the spatial variation of cells in different
ways. FEARLUS, representing a theoretical landscape, used bitstrings to represent
the characteristics of each cell (Gotts et al., 2003). This bitstring was derived by
combining two strings, one representing spatial variance (biophysical characteristics)
and the other, temporal variance (external conditions). The external conditions
bitstring changes at every time step, but is common to all cells, while each cell’s
biophysical characteristics bitstring remains constant over time but is an attribute

of each cell.

Lucrta represents a pioneering model, where the landscape was unsettled prior

to 1970. It was therefore a reasonable assumption that the land was homogeneous
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prior to this time. In this model, spatial invariance resulted from the cultivation of
the land. A similar approach can be taken for a non-pioneering model lacking data
regarding initial conditions: The simulation’s warm-up period, the time taken for
the model to reach an initial steady state from some initial condition, can be used to
model the period prior to the time in study. It can be assumed that the landscape was
once virgin and homogeneous sometime in the past. To control the initialization bias
resulting from this artificial initial condition, statistics and model output should only
be analyzed from the run period following this warm-up period. Output truncation
is one of the simplest and most common methods to mitigate initialization bias
(Schruben, 1982). In this case, the warm-up period would begin from a homogeneous
landscape, but agents would alter the landscape through cultivation prior to the run

period.

3.8 Verification and validation

The modelling process occurs by defining and codifying assumptions, then observing
emergent behaviour, unlike a data-driven approach which comes from the observation
of a real-world system. One such methodology for this process is the Third Science
methodology introduced by Platt (1964) and applied to ABM/LUCC by Robinson
(2003). Simulation is a “third” science in the sense that it is contrasted with
traditional scientific methods of induction, the discovery of patterns in empirical
data, and deduction, the formulation and scrutiny of hypotheses based on real-world
observation (Axelrod, 2003). Simulation, as Axelrod describes, “aids intuition” by
allowing the researcher to analyze data generated from rigorous sets of rules rather

than proving hypotheses from real-world data.

While verification and validation both refer to the assessment of a model, they
should be distinguished. The verification of a model refers to the assessment that the
model has been transferred from another model (such as a conceptual model) with
sufficient accuracy (Banks, 1998; Xiang et al., 2005). In other words, verification
ensures that the model has been programmed as intended. Verification is performed
using the process of debugging and sensitivity analysis (Manson, 2001; Parker et al.,
2003). By sweeping model parameters across a wide spectrum of values, shortfalls in
the model and its parameter limitations can be identified. Since uncertainties in the
model are often described by stochastic processes, Monte Carlo simulation is useful
for analyzing the distribution of output variables. Several samples of outcomes can

be obtained using Monte Carlo simulation, where a model is run several times with
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different random seeds. A Monte Carlo simulation provides a set of both likely and
unlikely outcomes. While an outcome may not be predicted with absolute certainty,

the probability or likelihood of certain outcomes can be estimated.

Validation, on the other hand, refers to the assessment that the model correctly
represents the real world. Ormerod and Rosewell (2009) describe verification as
“the process of determining that the equations are solved correctly” and validation
is “the process of determining that we are using the correct equations”. Furthermore,
validation can be subdivided into structural validation or outcome validation. Similar
to verification, structural validation is the assessment that the software model repre-
sents the conceptual model correctly (Manson, 2001). Outcome validation involves
comparing the model results with empirical data. Structural validation is especially
useful in bringing confidence in the model despite poor representation of empirical
outcomes (Qudrat-Ullah, 2005).

There are significant challenges in the validation of agent-based models of land
use change, particularly outcome validation, due to the complexity of the real-
world environment and the relative simplicity of the model. While a model may
be validated, it can only be regarded as valid in a certain experimental frame with
respect to certain criteria (Ziegler, 1976). In the case of the land use change
model under discussion, while the model may consider changes in market prices
and urban employment, it ignores pension programs and middlemen. The model
may be considered valid in the context of prices and employment, but would not be
considered valid if the scope of observations is widened or shifted to include pension

programs or middlemen.

3.9 Chapter summary

Agent-based models have been introduced in this chapter, beginning with an dis-
cussion on the usefulness of modelling for scientific exploration. While agent-based
models have found a niche in academic and scientific exploration, significant inroads
as decision support tools have not been made. However, agent-based models have
evolved from theoretical exploration, through models such as SugarScape, to site-
specific analysis in land use science. The role of coupled cellular models has also been
discussed, as it provides an environment for the agents, often in the form of land cover
and soil characteristics. ABM software has been discussed, highlighting the evolution
from Logo to NetLogo and more recent software packages such as Repast Simphony.
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Spatial algorithms for ABM/LUCC are discussed in terms of settlement patterns
and land use allocation algorithms, ranging from random or pre-determined ordered
placement to multicriteria analysis and multiobjective allocation. This chapter
concludes with a brief discussion on verification and validation, highlighting the use

of Monte Carlo simulation and sensitivity analyses.

The nature of human rationality has taken the form of two major types of
“visions”, unbounded rationality, common in economic models, and bounded
rationality, which accounts for limitations in cognitive capacity. Bounded rationality
has been interpreted in two ways. Satisficing accounts for the fact that humans seek
a solution which is “good enough”, but can be swayed by psychological influences
such as anchoring and loss aversion. Alternatively, one school of thought proposes
ecological rationality, in which fast and frugal heuristics—based on environmental
factors such as social norms—are used to make decisions quickly and with little

information. An example of a fast and frugal heuristic is a decision tree.

Decision-making methods, especially among rational and boundedly rational
agents, have been identified as a research issue of agent-based models in general,
where comparisons in case-specific models have not been made. The following
chapter discusses the implementation of an agent-based model which addresses this
issue by allowing alternative decision-making models to be compared in a common
framework. MARIA presents a comparison of rational and boundedly rational agents

within the community of Paricatuba in Chapter 5.
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Chapter 4

Methodology

4.1 Overview

This chapter presents the methodology undertaken in the design, implementation
and analysis of an agent-based model, Mar1a (Multi-Agent Reasoning in Amazonia).
Maria is being developed to study the role of decision-making, whether rational or
boundedly rational, on land use change and economic welfare. First, the design of
the model is presented, providing a broad overview of the scope and architecture of
the model and its human and environmental sub-models. Data preparation is briefly
discussed, covering the conversion of remotely sensed imagery into suitable data for
the model. The bulk of the chapter concerns the implementation of the model, from
the selection of its software platform to more detailed implementation decisions, made
to allow the model to encompass multiple decision-making algorithms and future
empirical data, should it become available. The implementation section also includes
a discussion of data output, including 3D GIS visualization, sensitivity analyses and
database design. The chapter concludes with a brief description of the runs and

analyses to be presented in the next chapter.

Maria has been developed to evaluate alternative decision-making methods in
the context of external markets and economic opportunity in the community of
Paricatuba, Pard, Brazil. Paricatuba, a small community just south of Ponta de Pedras
and west of Belém, was chosen for its relative simplicity in comparison to other
study areas nearby. While Praia Grande is a unique co-operative community and
Maraj6-Agu is populated with many sharecroppers, Paricatuba is primarily composed
of smallholder households (Brondizio, 2008). In the model, it is assumed that the

decision-making of a smallholder family is made at the household level only, without
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the influence of an external landlord nor through the internal negotiation of its

members.

To create this first version of the model, a framework is established in which
classes can be injected into the code or substituted through polymorphism, a feature
of object-oriented programming. Typically, polymorphism is implemented through
inheritance: An object class may extend another object class, overriding its methods.
The extending class can be treated with the same interface as the original class, though
the extending class’ methods will be called instead of the original class. Alternatively,
an interface may be defined to be common among multiple classes, allowing these

classes to be utilized through the same interface.

This framework recognizes a future need to replace simplified assumptions
with more realistic realizations as more complex data becomes available or desired.
Substituted classes can be alternative implementations of the same agent type, such
as the Household class. In this thesis, two alternative implementations of household
agents are used to compare and contrast optimal and non-optimal decision-making

algorithms.

In addition, the scheduler is set up such that agents may schedule themselves
without modifying code outside the agent. This allows for entirely new agents, such

as employers in nearby urban centres, to be injected into the model.
v y J

The model description is separated into two sections, a broad overview of its
design followed by a detailed description of its implementation. These model-related
sections are separated by a discussion of data preparation methods. The remainder of

this chapter discusses parameter sweeps and the analysis of the model results.

4.2 Design

4.2.1 Collaboration

The agent-based model fits into a broader study facilitated by a National Science
Foundation grant in the area of Human and Social Dynamics (Behavioral and
Cognitive Sciences). The grant focuses on the study of the effects of global economic
change on local socioeconomic and biophysical dynamics in the Amazonian estuary,
a broader study area than the one discussed in this thesis. Through this grant,
research teams at the Anthropological Center for Training and Research on Global

Environmental Change (ACT) at Indiana University-Bloomington and the Center
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for Environmental Research and Conservation (CERC) at Columbia University,
collaborated with the author and the author’s advisor, Peter Deadman (also a co-
Principal Investigator). These other teams, consisting of anthropologists, a botanist,
ecologists, and remote sensing experts, conducted field and studies of the area. The
author’s input was the design and development of an agent-based model which would
integrate recent and historical data. Model development was iterative, providing
illustrative prototypes to the other researchers at the meetings, first demonstrating
the capabilities of agent-based models, and later, preliminary results. For brevity, this

thesis discusses only the most recent iteration of the model.

4.2.2  Scope

MARIA is a designed as an empirical model of smallholder households and land use
change in rural Amazonia. It is an empirical model, as opposed to a theoretical one,
as it integrates case-specific data for the purposes of extrapolating emergent data in
hypothetical, yet realistic scenarios. The complexity of the model has been chosen
to sufficiently include a certain scope of detail. Meetings with research teams from
ACT and CERC have highlighted global markets (specifically that of agaf) and multi-
sited households as two key components to include in the model, building upon the
demographic and land use models explored in LucrTa.

Market prices are modelled as exogenous factors, externally driven by forces far
more global than the small set of household agents composing the majority of the
model. The main scenario of market prices is that of steeply-rising prices of agai,
using the acai price index derived by Brondizio (2008). The prices of other goods
are derived from IPA-PARA (Agroforestry and Husbandry Price Index for the state of
Pard) published by the Fundagao Getulio Vargas (FGV).

The definition of a multi-sited household was a source of contention in the
meetings. For the purposes of model development, the term is defined to indicate
households who maintain economic linkages and mutual interest, though these
households are not necessarily linked through kinship. This definition is meant to
include agregados, aggregated household members who are not related, but maintain
a relationship with the household. In this first version of Maria, multi-sited
households are generated by household members moving from the household to
urban areas seeking employment. The new household maintains economic linkages
with the old household, creating a multi-sited household. The kinship relationship

of household members, whether in a single-sited or multi-sited household, is not
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defined: Agregados are treated the same as family members, as far as economic

decisions are concerned.

Magria is developed with the community of Paricatuba (Brondizio, 2008; Siqueira,
1997) in mind, but can be adapted between alternative study areas in the region, such
as Maraj6-Agu, Praia Grande and communities near Mazagio. These areas differ
primarily in household behaviour, as far as the model is concerned. Sharecropping
arrangements and community behaviours would need to be modelled explicitly, as
they would affect the decision-making and constraints placed upon household agents.
Local knowledge and preferences vary slightly. For example, intensive agricultural
periods of 2 years—involving cultivation of floodplain gardens—are preferred by
those near Ponta de Pedras while periods of 2.5 years are preferred by those near
Mazagao. Furthermore, the locations of markets and waterways would need to be
adapted to represent those in the study area. This can be done by replacing the
underlying rasters used for calculation in the model. These assumptions would have
to be modified between the two study areas, but the model architecture and decision-

making processes as a whole would remain the same.

4.2.3 Model architecture

Maria is developed using Repast Simphony, chosen due to familiarity with the Java
programming language, in addition to its features of distributed computing and
GIS integration. The model divided into two sub-models, or “contexts”, as they
are termed in Repast Simphony. As Lucrta is separated into soil, land cover and
human sub-models (Deadman et al., 2004), MARIA is separated into sub-contexts,
one for the natural environment and the other for human interaction and decision-
making. These sub-models are not independent, as the human model will manipulate
the environmental model through cultivation and feedbacks from the environmental
model will affect the human model. The models, as implemented, begin with
an initial state of homogeneous floodplain forest with heterogeneity resulting from

cultivation.

The environmental context can be described in terms of layers. Like several land
use models, such as Lucrra, Fearlus , and Sypria (Manson, 2006a), the environmental
model is based on cellular automata arranged in rectangular grids. Cells in these grids
have several attributes for soil, land cover and history. For the purposes of discussion,
the cellular grid, and thus each cell, can be divided into two layers: soil and land

cover. The land cover layer, modified through human interaction or natural, internal
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transitions, is affected by the soil layer in terms of yield. The soil layer’s fertility—in
a sense, its carrying capacity—is affected by land cover, increasing in period of fallow

and natural succession and decreasing through intensive cultivation.

Human Context

Economically-
. Priceg Linked Household
Market /
o
e
Decision-Making
Cl//[,'[,
1 ‘3170,7
Employer Agent \_/ \—
wages A,
Job offers: W Land Use
Environmental Context Land Cover

Land Cover Transitions

Figure 4.1: Human and environmental contexts

The human context introduces a layer above that of the environment. The human
context includes farming households, who manipulate land cover for cultivation, as
well as external markets and employers which do not interact directly with the land.
External markets and employers do, however, influence the decision-making and
resources of farming households. External markets influence selling prices, which
in turn affect the desirability to cultivate certain goods. Employers may encourage
farmers to take up non-farming vocations, potentially resulting in increased capital

or decreased labour, which may increase or reduce cultivation.

The interaction of these two contexts is expected to result in a dynamic system in
which market feedbacks and economic opportunities influence a changing landscape.
By modifying the initial parameters of the model and by manipulating yearly events,

experiments can be run to diagnose key influences of land use change.
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4.2.4 Environmental context

The environmental context is designed as a cellular automata model, based on rules
derived from research in the region (Brondizio, 2008). These rules constrain land
cover transitions, as determined by typical regrowth periods and soil characteristics as
well as current and historical land cover. While a detailed environmental model would
include soil characteristics such as phosphorus, pH, and nitrogen, in MARia, these
are abstracted as a fuzzy variable, fertility. The fertility variable allows the model to
abstract biophysical changes in the soil without introducing unnecessary complexity
into the model. Future models may implement a more detailed soil model, but the

current focus of this initial version of MAaRiA is the human model.

Cells are arranged in a rectangular 5 x 5m grid. The source data for these cells
(SRTM and Landsat images), have been interpolated from their original resolution
using Kriging, as discussed in Section 4.3. Cells are classified into land and water cells.
Water cells remain in the model, but are currently unused. Future uses for water cells
may include shrimp farming and transportation. However, agents are aware of the
distances from each land cell to the nearest water cell, as this data is stored as an

attribute in each land cell.

Land cells contain constant attributes set before runtime, including distances,
elevations and other terrain attributes, as well as soil and land cover variables. Soil
conditions are aggregated as a single fertility variable. Land cells can support multiple
land uses, provided they do not exceed the carrying capacity of the cell. A cell stores
its land use composition and land use attributes as a set of fuzzy variables: age, density
and health. Age and health are modified internally, depending on soil conditions and
actions performed by the agent on the cell, while density is manipulated directly by
the agent. Cell-level constraints prevent invalid states, such as an attempt to cultivate
too much on one cell, or invalid variable values, such as fuzzy variables greater than
one or less than zero. For density, fuzzy variables are used instead of crisp variables to

allow agents to make land use decisions at a scale smaller than the cell size.

Land use and land cover transitions

Possible land cover in MaRi1a are reflective of the most important land uses in the
riverine study area: intensive agai, gardens, forest and forest-fallow. The “gardens”
land use type is used to represent both housegardens and ro¢ado de virzea (floodplain

gardens). Other land uses, which would be included in a more upland study area,
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include cattle fields and slash-and-burn fallow. Feasible land use transitions based on

field studies in the floodplain region (Brondizio, 2008) are shown in Figure 4.2.
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Figure 4.2: Land use transitions in MARI1a, adapted from Brondizio (2008)

Figure 4.2 shows cellular states and processes required or occurring between
states. The processes (in rectangular containers) in the two center columns are
related to human actions, whereas the outer processes are more natural. During
secondary succession, households may continue to extract resources despite decreased

management.

Within the model, the suitability of a particular cell for cultivation is based on
the cell’s internal land cover state, which is in turn based on its land use history. An
attempt to cultivate an unsuitable cell will result in a poor yield. The yield of a cell
is determined by multiplying the potential yield of the cultivated good by the cell’s
fuzzy fertility variable. Since the domain of a fuzzy variable is between zero and one,
or 0% to 100 %, fertility can be regarded as the percentage of potential yield which
can be harvested from the cell. However, farming agents do not know the value of

the fertility variable and must rely on their internal knowledge base to know where
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and where not to plant. This abstraction forces some amount of boundedness on the

agents rationality.

Intensively-cultivated cells only produce ideal yield during a certain cultivation
period, which is determined by land use history (as a proxy for modelling soil
characteristics). Cells will not produce ideal yield if cultivated within a period of
time affer an intensive cultivation. For floodplain gardens, which can be intensively

cultivated for 2.5 years, the recovery time is 5 years.

After the cultivation period, the fertility variable drops to nearly zero quickly.
During the recovery time, which begins after deintensification, the fertility variable
rises to its maximum value of 1 linearly. Vegetation on a cell with low fertility will
produce little yield. However, a fallowed cell continues to produce yield (Hedden-
Dunkhorst et al., 2003).

Unlike gardens, agai grows naturally in the area and can be extracted immediately.
However, to reach full potential, intensive management strategies are adopted,
involving pruning, weeding and the selective cultivation of agaizals (acai stands)
(Brondizio, 2008). Intensively managed acaizals may continue to bear ideal yield
for many years, as long as continuous management is practiced. Through secondary
succession, an abandoned acai plot returns to a more natural forest state or advanced

secondary succession within 5-10 years.

4.2.5 Human context

The human context is an agent-based model, wherein households are represented
as the primary agents of the model. While the members of the households are also
implemented as agents, they play a lesser role, providing some amount of labour to the
household without any personal capacity for decision-making. Households aggregate
the contribution of their members to determine available resources, such as capital
and labour, similar to Lucrra (Robinson, 2003).

Markets

The rising price of agai is implemented in the variable price scenarios as a list of
prices determined a priori, but revealed to agents year by year. Market prices are
revealed by Market agents, who send messages in each step containing the year’s prices
before the household decision-making stage. Future models may incorporate market

prices which react to supply of rural households and the increasing demand of urban
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households, reflecting as the recent trend of ruralization of urban areas (Padoch et al.,
2008). However, this would require an economic sub-model. The current model

treats market prices as externally driven.

In particular, rising prices of agai are derived from studies conducted by Brondizio
(2008) and are defined in terms of an inflation and currency-adjusted price index,
since the Brazilian currency changed five times during the period under study
(1984-1999). Agai prices are assigned the values of the agai price index (Ar1) shown
in Figure 4.3, normalized to an index price of 100 in the year 1994.

Prices of other agricultural activities are published in the monthly journal Con-
juntura Econémica by Fundagao Getilio Vargas (FGV). IPA-PARA (Agricultural and
Husbandry Price Index for the state of Pard) is an index for 24 farming products and
7 husbandry products, but does not include agai, so it is used as the price of “other”
goods produced by the general “gardens” land use type, for lack of an index that
excludes husbandry products. Brondizio adjusted IPA-PARA to the same timeframe
and index as the API. Prices for agai and other goods will be derived from the API
and IPA-PARA. Since these are in the same units, they will be scaled by the same
multiplier during model calibration. (Model calibration will involve the sweeping of

many input parameters in order to create a balanced steady-state system.)

Since available price data for both indices are only available during the period of
1987-1999, the years of 1970-1984 and 2000-2008 have been extrapolated. The
acai price during early years is assumed to have been very low and has plateaued in
recent years. As discussed by Brondizio, IPA-PARA, also indicates that prices of other

goods have remained relatively steady in recent years.

This scenario is intended to illustrate agent behaviour in 3 phases: The first, in
which agents cultivate acai only as a subsistence good, followed by a second phase
when acai surpasses other goods in value. Finally, the price of aai plateaus at a steady

state, along with the prices of other goods.

Households

A household is a family unit of one or more members living in one settlement.
Extended households spanning more than one settlement are implemented as mul-
tiple households linked together. Each household has some amount of capital,
which is increased or decreased through revenue and expenses from farming and

transportation. Farming households own land, while urban households do not as
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