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Abstract

Over the last few decades, many good image compression schemes have been devel-
oped. The performance of these schemes varies from low to high compression ratios with
low to high levels of degradation of the decompressed images. Since the end users of
decompressed images are usually human beings, consequently, it is natural that attempts
should be made to incorporate some of the human visual system properties into the
encoding schemes to achieve even further compression with less noticeable degradations.

This thesis presents a new digital image compression scheme which exploits one of the
human visual system properties—namely that of, recognizing images by their regions—to
achieve high compression ratios. It also assigns a variable bit count to each image region
that is proportional to the amount of information it conveys to the viewer. The new
scheme copes with image non-stationarity by adaptively segmenting the image—using
quad-trees segmentation approach—into variable-block sized regions, and classifying them
into statistically and perceptually different classes. These classes include, a smooth class,
a textural class, and an edge class. Blocks in each class are separately encoded. For
smooth blocks, a new adaptive prediction technique is used to encode block averages.
Meanwhile, an optimized DCT-based technique is used to encode both edge and textural
blocks.

Based on extensive testing and comparisons with other existing compression tech-
niques, the performance of the new scheme surpasses the performance of the JPEG stan-
dard and goes beyond its compression limits. In most test cases, the new compression
scheme results in a maximum compression ratio that is at least twice of JPEG, while ex-
hibiting lower objective and subjective image degradations. Moreover, the performance of
the new block-based compression is comparable to the performance of the state-of-the-art
wavelet-based compression technique and provides a good alternative when adaptability
to image content is of interest.

iv
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Chapter 1

Introduction

It is widely believed that a picture is worth more than a thousand words. However, dealing
with digital pictures (images) requires far more computer memory and transmission time
than that needed for plain text. To be able to handle, efficiently, the huge amount of
data associated with images, compression schemes are needed. Image compression is a
process intended to yield a compact representation of an image, hence, reducing the image
storage/transmission requirements.

This chapter provides a general introduction to the digital image compression field
and its applications. It also presents the motivations and objectives of this thesis. Finally,

it gives an outline of later chapters in the thesis.

1.1 Introduction to Digital Image Compression

Since the very beginning of digital image processing in the 1950’s, image compression has
been recognized as an important field. This is due to the large amount of data which
need to be handled for transmission or storage of digital images. The objective of image

compression is to achieve a low bit rate in the digital representation of an input image (i.e.,
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compact digital image representation) with a minimal perceived loss of picture quality.

To appreciate the need for image compression, consider the storage and transmission
requirements of a typical gray scale digital image of size 512 x 512 with 256 gray levels.
Such an image requires at least 262144 bytes of storage space. To transmit this uncom-
pressed image over a 64 Kbits/second channel, it would take more than half minute. With
a good compression scheme that offers an excellent quality of the reproduced image with,
for example, a bit rate of 0.25 bit/pixel, or less, these requirements can be dramatically
reduced. With such a compression scheme, the storage required to save the above image
may be reduced to 8192 bytes, or less. At the same time, its transmission time over the
above mentioned communication channel may be reduced to less than a second.

Applications of image compression are numerous. These applications range from:

1. image communication applications, including facsimile machines, television sets,

picture phones, and video conferencing; and

2. image retrieval applications, including desktop publishing, real estate, education,

security, internet shopping, and printing industry;
up to:

1. the use of satellite imagery for weather and other earth-resource applications (i.e.,

remote sensing applications);
2. the control of remotely piloted vehicles in military applications;
3. space control applications; and

4. hazardous waste control applications.

All these applications require transmission and storage of a huge amount of image data.
Hence, without a doubt, one can say that image compression is still an important present

day research issue, and it is likely to stay as such for years to come.
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1.2 Motivations

Decompressed images are usually observed by human beings. Therefore, their fidelities
are subject to the capabilities and limitations of the Human Visual System (HVS). A
significant property of the HVS is the fact that it recognizes images by their regions
and not by the intensity value of their pixels [1]. Figure 1.1 illustrates this property.
Although the two rectangular stripes in the figure have an identical intensity grey-level,
64, they appear to have different brightnesses. This is because they are placed in different
surroundings.

In addition to the above property, when an observer looks to an image trying to
understand it, he/she searches for distinguishing features such as edges (not pixel values)
and, mentally, combines them together into recognizable groupings. In support of this,
Figure 1.2(a) shows the Goldhill image, whereas Figure 1.2(b) shows the image after
applying a Sobel operator [2] and a threshold. Even though Figure 1.2(b) consists of just
a small number of lines, we can easily understand the content of the image and associate
it with the original Goldhill image. It can also be concluded from this figure that when
the HVS tries to recognize a scene, it focuses on edge information more than textural
information.

Studies on some psycho-visual properties of the HVS (3] indicate that:

1. the collection of the individual pixel intensity values without any interaction be-

tween them is not what produces the visual perception,
2. the edge regions in an image is responsible for our perception, and
3. edge regions are of higher importance to our perception than textural regions.

This suggests that this HVS property (recognizing images by their regions) can be ex-

ploited by segmenting images into regions based on the amount of information each region
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Figure 1.1: An example showing that HVS recognizes images by their regions, not by the
two rectangular strips which are
intensity identical but as they lie on backgrounds with different intensity, they appear to
have different brightness; and (b) shows the pixel intensity values along the horizontal

intensity value of their pixels. (a) is an image having

center line of the image in (a).



CHAPTER 1. INTRODUCTION

o

(a) (b)

Figure 1.2: An example showing that HVS focuses on edge information when trying to
recognize a scene. (a) The Goldhill image and (b) the image after applying a Sobel
operator and a threshold.

conveys to the viewer. Then, regions of each category could be encoded using a distinct
encoding procedure. This encoding procedure should preserve the main visual charac-
teristics of this particular category (focusing on useful information) while reducing the
existing correlation (reducing redundant information), and neglecting some of the irrele-

vant details (omitting irrelevant information).

1.3 Objectives

The objectives of this thesis is to develop a general technique for digital image compression

that meets a number of diverse requirements, such as:

1. achieving high compression ratios by exploiting the HVS property of recognizing
images by their regions, and assigning bits in each region proportional to the amount

of information conveyed;
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2. exceeding the compression performance of the current image compression standards,

and providing a state-of-the-art block-based compression technique;

3. giving the users the ability to trade off between desired compression and image

quality;

4. being dynamically adaptive without requiring training or a priori knowledge about

the image being compressed;
5. having modest computational complexity; and

6. being amenable to hardware implementation.

1.4 Outline of Thesis

This thesis is divided into five chapters and two appendices. Chapter 1 provides a general
introduction to the image compression field, as well as the motivations and the objec-
tives of this thesis. Chapter 2 classifies and reviews image compression techniques. In
Chapter 3, the proposed compression technique is described. In Chapter 4, the choice of
performance metrics for evaluating the new technique and the results of its performance
in comparison with existing techniques are presented and discussed. Chapter 5 gives some
concluding comments as well as some possible improvements and potential extensions of
this work for future research. Finally, Appendix A and Appendix B present more results

of the comparison with other compression techniques.



Chapter 2

Image Compression Techniques:

A Review

Research in visual communications has advanced very rapidly in the last few decades.
Over the years, an enormous number of different image compression techniques have
been developed for still-images. All these techniques try, by one way or another, to
represent image data by a minimal (in some sense) amount of information sufficient to
maintain a certain quality level.

In this chapter, types of image information are identified. Then, image compression
techniques are classified. Further, the basic idea, as well as some examples, of each class
of compression techniques are briefly stated. Finally, previous work most relevant to this

thesis is reviewed.

2.1 Types of Image Information

Generally, images carry three main types of information: redundant, irrelevant, and useful.

Redundant information is the deterministic part of the information which can be repro-
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duced, without any loss, from other information contained in the image (i.e., inter-pizel
redundancy), for example, low varying background information. Irrelevant information is
the part of information that has enormous details which is beyond the limit of perceptual
significance (i.e., psycho-visual redundancy). Useful information is the part of information
which is neither redundant nor irrelevant.

The ultimate goal of any lossy compression system is to encode an image in its mini-
mal representation while ensuring that it can be clearly reconstructed with the minimal
possible distortion. This compression task can be accomplished by focusing on the use-
ful information while reducing the redundant information and omitting the irrelevant
information. When more useful information is considered, less distortion and lower com-
pression ratios are achieved. On the other hand, when more redundant and irrelevant
information are reduced, higher compression ratios are reached without introducing much

distortion.

2.2 Classifications of Image Compression Techniques

Image compression techniques can be classified in several ways. One such classifications
is based on the reversibility property of the compression technique, i.e., whether the
technique is reversible or irreversible. Reversible techniques (also called information-
lossless, or lossless, techniques) are able to reconstruct the same original image exactly.
Conversely, irreversible techniques (also called information-lossy, or lossy, techniques)
introduce some distortions which should be kept as un-noticeable as possible.

Another way of classification is often made based on the adaptivity property of the
compression technique, i.e., whether the technique is fixed or adaptive, in a sense that
the parameters used are fixed or adjusted as a function of the local image data.

Perhaps the most comprehensive way to classify image compression techniques can be
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based on the compression space-domain, i.e., the domain where the compression technique

is applied. These domains include:

1. spatial-space-domain, where pixel intensity values are combined in an appropriate

way and encoded;

2. transform-space-domain, where an image is transformed to another domain—which
is significantly different from the image pixel intensity domain—and the transformed

coefficients are combined in an appropriate way and encoded; and

3. feature-space-domain, where higher-level image features—which is above the level of

individual pixel intensity values—are extracted and their parameters are encoded.

Spatial-, transform-, and feature-space-domain compression techniques are called wave-
form, transform, and model-based compression techniques, respectively. Figure 2.1 shows
this classification of image compression techniques with examples of each class. The fol-
lowing sections (Section 2.3-Section 2.6) give brief description of the basic idea, with

some examples, of each class.

2.3 Waveform Compression Techniques

In waveform compression techniques, image pixel intensity values (or some simple vari-
ations of them) are quantized and, then, encoded. These techniques attempt to exploit
the existing correlation among pixel intensity values to reduce the inter-pixel redundancy.
Simplicity is the main advantage of waveform compression techniques. On the other hand,
they do not achieve high compression ratios. Typically, they achieve compression in the
order of a single digit to 1 ratio.

Waveform compression techniques can be further classified into two main categories:

predictive and non-predictive compression techniques. The main difference between these
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Figure 2.1: A classification of image compression techniques.
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two categories is whether pixel intensity values are predicted before encoding or not.

2.3.1 Non-predictive Waveform Techniques

Non-predictive waveform compression techniques include:

1. Pulse Code Modulation (PCM)—the simplest waveform compression technique—,

which is nothing but quantizing and encoding the image pixel intensity values; and

2. Block Truncation Coding (BTC), where an image is divided into small blocks and
pixels are quantized into two levels such that some of the original block statistics
are preserved (4, 5]. In the basic form, the first and the second moments (i.e., the

block mean and the variance, respectively) are preserved.

2.3.2 Predictive Waveform Techniques

In a general predictive waveform encoding scheme, the correlation between the neighbor-
ing pixel intensity values is used to form a prediction for each pixel. Then, the predicted
value is subtracted from the actual pixel intensity value to form an error image, which is
much less correlated than the original image data. Finally, the error image is quantized

and encoded. Predictive waveform compression techniques include:

1. Differential Pulse Code Modulation (DPCM), where the current encoded pixel inten-
sity value is predicted—by using the most recently encoded pixel intensity values—

and the prediction error is quantized and encoded [6]; and

2. Delta Modulation (DM), which is a special case of DPCM where the prediction

errors are quantized into only two levels [6)].
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2.4 Transform Compression Techniques

In transform compression techniques (7, 8], the transformed coefficients are quantized and,
then, encoded. The main differences among these techniques come from the properties
and the characteristics of the transformation that each technique uses. These properties

and characteristics include:

1. the capability to reduce the correlations among transformed coefficients, hence,

achieving compression (correlation reduction property);

2. the capability to concentrate a large amount of energy in a small set of transformed
coefficients, hence, many transformed coefficients can be discarded without seriously

affecting the fidelity of the reconstructed image (energy compaction property);

3. the existence of efficient way to compute the transformed coefficients and their

inverse (fast implementation characteristic); and

4. the ability to decompose the two-dimensional transformation, and its inverse, into

two one-dimensional transformations (separability characteristic).

In general, transform compression techniques perform significantly better and achieve
higher compression ratios than those achieved by waveform compression techniques. How-
ever, they are computationally more expensive than waveform compression techniques.

Transform compression techniques can be further classified into two main categories:
block- and filter-transform compression techniques. The main difference between these
two categories exist in the way of transforming images. In the former category, the
image is first sub-divided into blocks, ther, these blocks are transformed individually.
Meanwhile, in the latter category, the image is transformed as a whole using a filtering

scheme.



CHAPTER 2. IMAGE COMPRESSION TECHNIQUES: A REVIEW 13

2.4.1 Block-transform Techniques

A general block-transform encoding scheme involves:
1. sub-dividing images into smaller m x m blocks,
2. applying a transformation on each block, and finally
3. quantizing and encoding the transformed coefficients.

The decoding scheme reverses the encoding scheme. Figure 2.2 shows a block diagram of

the basic block-transform encoding/decoding schemes.

Compressed
Image

Compressed

Reconstructed
Image

(b)

Figure 2.2: General block-transform encoding/decoding block diagrams. (a) encoder and
(b) decoder.
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A block transformation can be interpreted in several ways. One way is to consider
it as a rotation of the block coordinate axes, where the various transformations merely
differ in the nature of the rotation. Another interpretation is to view the transformation
as a decomposition of the original block data into a set of transformed coefficients for a
given set of basis functions, where the various transformations merely differ in their basis
functions. Examples of block-transform compression techniques include the Karhunen-
Loéve Transform (KLT) [9] and the Discrete Cosine Transform (DCT) [10, 11].

The KLT is the optimal transformation, in an energy-packing sense [12]. Unfortu-
nately, the KLT basis functions—which are the eigen vectors of the blocks covariance
matrix—are image dependent. This means that they must be estimated, individually, for
each image to be compressed. Furthermore, there is no fast algorithm to implement the
KLT. Hence, the KLT utilization for image compression is limited.

The DCT, on the other hand, uses image independent cosine basis functions. In fact,
the DCT is the closest image independent transformation to the KLT. Furthermore, there
are so many fast algorithms to implement it [13, 14, 15, 16, 17, 18]. Because of these
advantages, the DCT has become, by far, the most widely used block-transform for image

compression.
2.4.2 Filter-transform Techniques

A general filter-transform encoding scheme involves:

1. performing a set of filtering operations on an image to divide it into n spectral

sub-image components, and
2. quantizing and encoding each of these components to form the compressed image.

Figure 2.3 shows block diagrams of the basic filter-transform encoding/decoding schemes.

The basis for these techniques is that, each sub-image component does not need to be
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Figure 2.3: General filter-transform encoding/decoding block diagrams. (a) encoder and
(b) decoder.

quantized with the same quantizer. For example, in some encoders, some sub-image
components are often encoded with minimal, or no, quantization—in general, the higher
the frequency component, the more coarsely the quantizer used is. Examples of filter-
transform compression techniques include multi-resolution pyramids and wavelet encoding
techniques.

In multi-resolution pyramid encoding schemes, the original image is successively low-
pass filtered and sub-sampled to produce a pyramid which consists of reduced resolution
versions of the original image. Each low-pass filtered image is, then, expanded (by up-

sampling and filtering) to the dimension of the next level to provide a predicted image
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for that level. By subtracting these predicted images from their corresponding images in
the pyramid, a residual pyramid of images is created. Finally, all the residual images, as
well as the lowest resolution image in the pyramid, are quantized and encoded. Since the
residual images have smaller variances and are less correlated than the original image,
they can be encoded efficiently. Hence, compression can be achieved. Depending on
which low-pass filter is used, and how the low-pass filtered image is sub-sampled, many
variations are possible, see for example [19, 20, 21, 22].

The wavelet encoding scheme can be interpreted as a multi-resolution image decompo-
sition in a set of independent and spatially oriented—horizontal, vertical, and diagonals—
frequency representations, where the band-widths of the different multi-resolution levels
are on a logarithmic scale. The collection of the impulse responses of the wavelet band-
pass filters is called a wavelet family. A wavelet family is a set of functions that are
generated from a single function—which must satisfy certain conditions such as decaying
to zero rapidly (i.e., small wave), and having a zero DC value—using dilation and trans-
lation operations [23]. In 1989, Mallat showed that the wavelet representation of a signal
can be computed using a pyramid filter structure of a Quadrature Mirror Filter (QMF)
filter pair [24, 25]. Note that, compression efficiency and overall performance depend not
only on the choice of the wavelet filter bank, but also on the compression method that
will be used on the sub-band filtered data—which is the case with other compression
schemes. Examples of excellent wavelet compression implementations include Shapiro’s

[26] and Said-Pearlman’s [27].

2.4.3 DCT-based Versus Wavelet-based Compressions

Without a doubt, both the DCT-based and the wavelet-based compression approaches
provide a localized frequency representation of the original image. However, there are

some differences between them. These differences lie, primarily, in:
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1. the way they transform images, and

2. the manner in which the transformed data are organized and encoded.

At low bit-rate compression, while the DCT-based encoding schemes may suffer from
the blocking artifact, the wavelet-based encoding schemes suffer from the ringing effect.
Besides, from a computational cost point of view, the wavelet-based encoding schemes

are more expensive than the DCT-based encoding schemes.

2.5 Model-based Compression Techniques

In model-based compression techniques, also called knowledge-based compression tech-
niques, an image, or some portion of an image, is modeled and the model parameters are
used for image synthesis. At the encoding side, the model parameters are estimated by
analyzing the image. Meanwhile, at the decoder side, the image is synthesized from the
estimated and quantized model parameters. In other words, a model-based compression
technique can be viewed as an analysis/synthesis system. Figure 2.4 shows block diagrams
of the basic model-based encoding/decoding schemes.

Model-based compression techniques have the prospect of further reducing the bit
rate, compared to waveform and transform compression techniques. However, estimating
model parameters and synthesizing an image from them is likely to be, computation-
ally, very expensive. Examples of these techniques include contour- and fractal-based
compression techniques.

Contour-based compression schemes are based on the idea that a small number of
well-placed contours can retain a great deal of information pertaining to the objects they
represent [28]. A contour-based compression technique encodes an image by a set of
locations and intensities of the extracted image contours. Using this set of locations and

intensities, an approximate version of the original image is generated [29].
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Figure 2.4: General model-based encoding/decoding block diagrams. (a) encoder and (b)
decoder.

Fractal compression schemes achieve compression by exploiting the self-similarities

between different image regions. Basically, a fractal-based compression technique encodes

a given image as a set of mathematical functions. In fact, it consists of four basic steps:

1.

partitioning a given image into blocks, called range-blocks;

domain-blocks;

. identifying a corresponding domain-block for each range-block; and

. defining an equal number of other larger image blocks which may overlap, called

. for each domain-range block pair, identifying an intensity transform that maps the
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domain-block intensity values onto the intensity values of its corresponding range-

block.

A decoding process may start from any arbitrary image. Then, the above mentioned in-
tensity transforms are iteratively applied. This yields a sequence of images that converges

to an approximation of the original image [30, 31].

2.6 Hybrid Compression Techniques

Hybrid compression techniques refer to compression schemes that combine together more
than one compression approach. Examples of hybrid techniques include block-transforms/
DPCM compression (32], DCT/fractal compression [33], DCT /contour-based compression
[34], and wavelet/contour-based compression [34].

Generally, hybrid techniques may achieve better performance than any of the indi-
vidual compression schemes being combined. At the same time, their complexity is not
much higher than the complexity of any of the individual compression schemes being

combined.

2.7 Quantization

Generally, output data values from a quantization process have less resolution than its
input data values. This, in turn, is translated into a reduction in the psycho-visual

redundancy. Quantization of data can be performed in either one of two ways:
1. individually (scalar quantization), or

2. jointly (vector quantization).
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2.7.1 Scalar Quantization

In scalar quantization [35], a data value is quantized to a particular quantization level out

of L possible levels. There are two main issues to be addressed with scalar quantization:
1. what is a best number of quantization levels to use, and
2. where to locate these levels.

The number of the quantization levels represents a tradeoff. When more quantization
levels are used, more bits are assigned to each quantized value, hence, less compression
ratios are achieved. At the same time, when more quantization levels are used, less
distortion is achieved, and vice versa.

The location of the quantization levels may be selected to divide the space uniformly
(uniform quantization) or non-uniformly (non-uniform quantization). Uniform quantiza-
tion is a straightforward process. However, it may not be optimal. In non-uniform quan-
tization, the probability density function of the data values to be quantized is exploited

to minimize the error between the quantized and un-quantized data values {36, 37).

2.7.2 Vector Quantization

Prior to 1980, almost all image compression techniques employed scalar quantization
techniques to quantize image data. In 1980, and based on Shannon'’s theory [38], the idea
of the scalar quantization was generalized to the notion of Vector Quantization (VQ) [39].
Since then, much attention has been directed to VQ [40, 41].

The basic idea of VQ is to divide the image into small blocks (vectors), then, match
each block to one of a set of predetermined prototype blocks so that the distortion between
them is minimized. The set of all predetermined prototype blocks is usually called a
codebook, where each prototype block is called a codeword. The codebook is generated a
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priori from a collection of representative images. Compression is achieved by transmitting
the index of the block’s best matched codeword. Decoding in the VQ approach is much
simpler than encoding. The decoder, which has an identical codebook as that of the
encoder, uses the codeword index and a simple table look-up operation to reconstruct the
image.

As with scalar quantization, there are two main issues to be addressed with VQ:

1. how to design a good codebook that is representative of all the possible occurrences

of pixel value combinations in a block, and
2. how to find a best match, efficiently, in the codebook during the encoding process.

Linde et al [39] and Equitz [42] have suggested various clustering techniques to design
good codebooks. Partitioning the search space and tree search algorithms have been
proposed to speed up the code vector search process [43, 44].

The VQ can be considered as a waveform compression technique. However, it may be

used in a hybrid scheme in conjunction with any other compression technique.

2.8 Previous Work Most Relevant to This Thesis

The compression technique proposed in this thesis relies on classifying image-blocks
into different perceptual classes. This process requires segmenting an image into non-
overlapping homogeneous regions. Many segmentation techniques have been proposed
in the literature [45, 46, 47, 48]. One of the most simple, yet efficient, segmentation
techniques is quad-tree segmentation [49].

In [50, 51], quad-trees are used to segment a given image into smooth-blocks of variable
sizes and non-smooth blocks of a fixed smaller size. In [50], three-level 4 x 4 to 16 x 16

bottom-up quad-trees were used. The DCT followed by a fixed step-size quantizer was
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used to encode each of these blocks but with coarser quantization applied to smooth-blocks
(large-blocks). In [51], two-level 4 X 4 to 2 X 2 top-down quad-trees were used. The block
average was exploited to encode smooth-blocks while Absolute Moment Block Truncation
Coding (AM-BTC) [4] and AM-BTC with lookup tables (based on block activities) were
used to encode non-smooth-blocks. The results reported in both of these papers showed
good-quality reconstructed images with compression ratios of less than 12:1, i.e., at a bit
rate of more than 0.66 bits per pizel (bpp). The reason for these high bit rates might be

either:

1. using the same fixed step-size quantizer for all DCT coefficients regardless of their

locations within the transformed-block, or
2. using the BTC encoding algorithm which has a limited compression capability.

In [52], three-level 16 x 16 to 4 x 4 top-down quad-trees were used. The non-smooth-
blocks were further classified into 8 classes according to the orientation of their edges.
Then, VQ in the DCT domain was used to encode the AC-coefficients of each class,
separately, while the DC coefficients were DPCM encoded. Although both textural- and
edge- (non-smooth-) blocks represent high frequency data, textural-blocks usually convey
a low amount of information to the viewer and should, therefore, be assigned less bits. In
(53], this idea was exploited. In the first stage, an initial four-level 32x32 to 4x4 top-down
quad-tree segmentation of the input image was performed to locate regions which have
homogeneous mean values. Then, the mean of each block was encoded to form the mean
image which was, then, smcothed to generate an interpolated image. The interpolated
image was subtracted from the input image to obtain a residual image. The residual
image was segmented by another four-level 32 x 32 to 4 x 4 top-down quad-trees and their
leafs were classified into three classes (smooth, textural, and edge classes). Finally, the

classified residual-blocks were vector-quantized at different bit rates according to their
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levels of information (i.e., according to the class to which they belong). The reported
results show that these two techniques achieved good-quality reconstructed images with
compression ratios between 10:1 and 32:1, i.e., at bit rates between 0.8 bpp and 0.25
bpp, depending on the nature of the original image. The main disadvantage of these two
techniques is the long time needed to execute them. For example, the latter technique
typically takes about 10 minutes of CPU time on a SUN 3/260 computer with a floating
point accelerator to encode a 512 x 512 image. Most of this time is devoted to searching
the codebooks.

Another simple, yet efficient, segmentation technique, which segments a given image
into variable size smooth regions, is binary-tree segmentation. In binary-trees, a straight
line is used to binary-divide a given image domain into two sub-image domains. The
orientation and the location of this line are chosen so as to minimize the reconstruction
error. This procedure is repeated until the reconstruction error goes under a certain
threshold.

In [54, 55], instead of using quad-trees, the binary-trees have been used, and each leaf
region was represented by a first order polynomial function. The polynomial function
coefficients were determined using the least-square approximation method. The main
difference between these two techniques is that the former restricts the dividing line ori-
entations to one of four possible orientations, namely, 0°, 45°, 90°, and 135°. Hence, the
latter technique provides a more general framework, yet requires higher computational
complexity, than the former technique. The reported results show that these two tech-
niques obtained a fair-quality reconstructed images with compression ratios between 80:1
and 160:1, i.e., at bit rates between 0.1 bpp and 0.05 bpp.

Other segmentation techniques, such as region growing {56, 57], perform a more precise
isolation on statistically-homogeneous regions. However, both the number of regions and

their shapes are determined solely by the contents of the examined image. This implies
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that a very large number of bits may be needed to represent the shape and the location
of each region.

Another approach for compressing images [34], is to decompose images, instead of
segmenting them, into three components (namely, strong edge, smooth, and textural
components). The model used is the curvature energy minimization model (developed in
(3]). The intensity and geometric information of strong edge contours in the strong edge
component were encoded separately using the chain encoding technique [58, 59]. Two
alternatives for encoding the smooth and textural components were suggested, namely,
entropy-encoded fixed block-size adaptive DCT encoding and entropy-encoded subband
encoding. It has been reported that this technique has better performance over the
JPEG continuous-tone image compression standard [60]. However, its main disadvantage
is that it is extremely time consuming. The main bulk of complexity resides in the
three-component decomposition. For example, it typically takes about 23 minutes of
CPU time on a SUN SPARC-station 1 just to decompose a 256 x 256 image. Table 2.1
presents performance results of this technique as well as several other encoding techniques

mentioned in this section.
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Table 2.1: Performance results of various encoding techniques for the 512 x 512 Lena

image. _
Method Ref. CR RMSE
Segmentation: tri-level quad-trees {4, 8, 16}, (50] 6.62:1 5.50
Encoding: DCT.
Segmentation: di-level quad-trees {4, 2}, [51] 5.88: 1 5.47
Encoding: average/AM-BTC. 6.40: 1 5.70
10.53: 1 9.10
Segmentation: tri-level quad-trees {16, 8, 4}, (52) | 22.28:1 5.87
block classification, 23.95:1 6.11
Encoding: DPCM/VQ in DCT domain. 25.89:1 6.37
28.17:1 6.68
Segmentation: quadruple-level quad-trees {32, 16, 8, 4}, | (53] | 22.04:1 6.90
block classification, 28.88:1 7.88
Encoding: VQ.
Segmentation: binary-trees, [65] | 80.00:1 13.23
Encoding: 1* order polynomial fitting. 114.00: 1 14.84
image decomposition, (34] | 10.94:1 3.20
Encoding: chain encoding/DCT /subband. 1643:1 3.94
3239:1 5.62
64.00: 1 8.52




Chapter 3

ABC-SC: A New Adaptive

Compression Technique

One approach to develop efficient compression technique is to:
1. know the different types of information that are carried within images,
2. understand the main characteristics of each type, and

3. handle each of them with an appropriate resolution according to its importance and

impact on the HVS.

In this chapter, the new compression technique, which was developed by following the

above three steps, is described and a way to identify its parameters is suggested.

3.1 An Overview of the Proposed Compression Technique

The proposed compression technique is called Adaptive Block Compression method based

on Segmentation and Classification [61, 62], hence, the naming abbreviation ABC-SC. A

26
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general block diagram of ABC-SC is shown in Figure 3.1, and detailed encoding/decoding
block diagrams are shown in Figures 3.2 and 3.3, respectively.

In the ABC-SC technique, a given input image is first subdivided into super-blocks of
32x 32 pixels. Then, for each of these super-blocks, a quad-tree with minimum sub-blocks
of 8 x 8 pixels is built. A block is declared to be a leaf block if its homogeneity measure
satisfies a certain threshold or if the bottom of the tree is reached, otherwise the tree is
traversed down further. The leaf-blocks are then classified into three perceptual classes
according to the amount of information each block conveys to the viewer. These percep-
tual classes are: a smooth class, a textural class, and an edge class. As a result of this
classification, three segments of the image are produced (one per each perceptual class).
Each of these segments is then encoded separately. For the smooth image segment, only
the quantized average of each block is encoded using a new Adaptive Differential Pulse
Code Modulation (ADPCM) technique. In ADPCM, different linear prediction rules, in-
cluding 2" and 3"¢ order two-dimensional prediction rules, are utilized to predict the
current block average—only one rule per prediction is applied. The choice of a predic-
tion rule is based on the differences between the neighboring encoded block averages.
For the textural and the edge image segments, blocks are DCT-transformed. Then, the
transformed coefficients are quantized, where the quantization matrix for each of the two
classes is optimized based on the amount of information conveyed in each region—coarser
quantization is applied to the textural-blocks than to the edge-blocks. This is due to the
fact that the textural-blocks convey less information to the viewer than edge-blocks.
Since the averages of the adjacent blocks are strongly correlated, the DC-coefficients are
ADPCM encoded. Meanwhile, the AC-coefficients of each block are zigzag-ordered and
then Run-Length (RL) encoded [63]. Finally, each group of encoded data, the quad-tree
structures (also called the side information); the encoded average of each smooth block

with the encoded DC-coefficients; and the encoded AC-coefficients, are arithmetically and
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separately encoded to produce the compressed image.

At the receiver’s side, each group of data is arithmetically decoded. Then, using
the decoded side information, the quad-trees are reconstructed. Next, the quantized
coefficients are multiplied by the quantization step-size and decoded, to form a recon-
structed image segment. For the smooth segment, the Inverse ADPCM (I-ADPCM) is
applied. Meanwhile, the run-length decoding, the inverse zigzag-ordering, the Inverse
DCT (I-DCT), as well as the inverse ADPCM are applied to the edge and textural image
segments. Finally, all of these reconstructed image segments are gathered to form the
reconstructed image.

At high compression levels, smooth-block boundaries may become visible and viewers
might suffer from the annoying intra-blocking effect. The reason for having this blocky
appearance is that smooth-blocks were represented only by their quantized averages, al-
though their pixel intensity values might not be close enough to this quantized average.
Since it is always desired to reach high compression ratios and still have a good reconstruc-
tion quality, a post-processing filtering scheme should be applied to reduce this annoying
intra-blocking-effect and return the lost grey-levels continuity back to the reconstructed

image.

3.1.1 Quad-tree Representation

Quad-tree is an efficient data structure that provides an effective compromise between
the accuracy, with which the region boundaries are determined, and the number of bits
required to specify the segmentation information. Quad-tree starts by dividing a given
image into blocks of equal size. Then, the homogeneity of each of these blocks is measured
(Section 3.1.2). If the homogeneity of a given block does not exceed a certain threshold
(i-e., non-leaf-block), it is further subdivided into four smaller quadrant sub-blocks. This

dividing process goes on until the homogeneity criterion is satisfied or a certain minimum
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block-size is reached (i.e., leaf-blocks). Figure 3.4 shows an example of segmenting an
image-block and its corresponding quad-tree. Quad-trees require only a small overhead
bit rate (side information). This is due to the restriction put on the shapes and the sizes
of their leafs (to be selected from a predetermined set of options). In fact, the quad-tree
structure is represented by one bit of side information per node to indicate whether that
node is a non-leaf or a smooth leaf node. However, if the node is corresponding to an
8 x 8 block, two bits are needed to indicate whether the node is a smooth, an edge, or
a textural leaf node. The side information corresponding to each four neighboring nodes
are then combined together to form a 4-bit or an 8-bit side information word. This word

is arithmetically and separately encoded.

3.1.2 Homogeneity Criteria
Smoothness Criterion

Many smoothness criteria have been proposed in previous studies [64, 65, 66, 67]. As a
simple and adequate measure, the block variance is selected to be the smoothness criterion
in this work. To identify an m x m block to be a smooth-block, its variance o2, must be

less than or equal to a certain threshold T,,,, i.e.,

02 < Tn. (3.1)

Since ABC-SC is not sensitive to segmentation errors, it is believed that the variance
criterion is sufficient for the purpose of this research. This is the case since even if a

segmentation error is made, it would only result in a small change in the bit rate.
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Textural Criterion

It was found [53] that a block belonging to the textural class must have high level of
details and exceed a minimum size. Also, the block’s contents together with the contents
of its surrounding blocks must be homogeneous. It was shown, experimentally, that 8 x 8
may be an adequate size for textural-blocks. Therefore, the candidates for the textural
class are those 8 x 8 blocks which do not satisfy the smoothness criterion. To test the
textural surrounding of a given candidate block, a 16 x 16 augmented block which has the
candidate block at its center, is considered, as shown in Figure 3.5. This augmented block
is then broken up into four non-overlapped sub-blocks of size 8 x 8. Next, the variances of
these four blocks (02, 03, 03, and 02), as well as the variance of the candidate block (o),
are calculated. The candidate block is declared as a textural-block if the average of these
5 variances is greater than or equal to a threshold Tyyerage, and the relative absolute

deviation between each of them and their average is less than or equal to a threshold

Tdcviationt i'e'v

T3ug 2 Taverage, (3.2)
and \ ,
”—;3-%";" < Tieviation: i=1,2,...,5,  (33)
where
o2, = of + o3+ ;3 toit+af (3.4)

In other words, these conditions ensure that blocks classified into the textural class are

located in a region exhibiting a homogeneous high value variance.
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Figure 3.5: A textural candidate block and its augmented block.

Edge Criterion

If a block is neither classified as a smooth-block nor a textural-block and the bottom of

the quad-tree is reached, then the block is simply declared an edge-block.

3.1.3 Adaptive Differential Pulse Code Modulator

In ADPCM, as shown in Figure 3.6, an attempt is made to predict the block average to
be encoded. Note that the DC-coefficient is exactly m times the block average. The pre-
diction is made using the already encoded block averages. Only the prediction error, i.e.,
the difference between the predicted and the current block average values, is quantized.
The absolute quantized prediction error is, then, arithmetically encoded while the sign of
each non-zero quantized prediction error is encoded separately in a single bit.

During the adaptive prediction process, different linear prediction rules are utilized
to predict the current block average (only one rule per prediction is applied). These rules
include 2™ order two-dimensional prediction rules, (e.g., 1A+ 3C, 34+ 1C,134- 1C,
and —14 + 11C), and 3¢ order two-dimensional prediction rules (e.g., A — B + 3C,
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(b)
Figure 3.6: The ADPCM block diagram. (a) encoder and (b) decoder.
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tA-iB+C,A-1B+3C,1A-1B+C,and 34— 3B+ 3C), where A, B, and C are
the neighboring block averages.

The choice of a prediction rule is based on encoded block averages local statistics,
namely, the differences between the neighboring encoded block averages. Table 3.1 shows
all the different cases of A, B, and C with all the possible relative distances between
them, whereas Table 3.2 shows the corresponding prediction rule, the prediction range,
and the expected shape of this area for each case. Note that the term small or large
in Table 3.1 means that the difference between the neighboring encoded block averages
is less or greater, respectively, than a certain value v. In this work, the value of v
is empirically determined so that the prediction rule usage is partitioned as evenly as

possible (Section 3.2.2).

3.1.4 Discrete Cosine Transform

The DCT (10, 11] is a block-transform encoding technique which transforms a given image
to the frequency domain. During this transformation, the DCT attempts to reduce the
correlation that exists among image pixel intensity values. Moreover, the DCT has an
excellent energy compaction property, which means that a large amount of the energy
is concentrated in a small set of transformed coefficients. Hence, by concentrating on
this set of coefficients, high compression can be achieved, without seriously affecting the
reconstructed quality.

For an m x m image-block, the DCT and the I-DCT coefficients can be calculated

according to (3.5) and (3.6), respectively.

Flu,v) = C(u)C( ) "'E‘l "lz‘:l £, ) cos ((21-{- 1)1ru) ((2j+ 1)1rv) (3.5)

i=0 j=0 2m
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Table 3.1: All possible relative pixel values of A, B, and C.
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Table 3.2: The ADPCM prediction rules.

Rule no. Prediction Prediction Expected
rule range shape

A>B>C |Rule 0|34-1B+3C| €[C 4] flat

Rule 1 |34A-1B+3C| €(C,4A) flat

Rule 2| 1A-3B+C | €[C,B) edge

Rule 3 | A-1B+1C | €(B,A4] edge

Rule 4 |34-1B+3C | €(C,A) |strong edge/texture
A>C>B |Rule 5 3A+3C € [C, 4] flat

Rule 6 | A-1B+1C > A edge

Rule 7 141.4 - %C > A edge/texture

Rule 8 | A-3B+1iC > A edge

Rule 9 | A-iB+1C >A strong edge/texture
B>A>C |Rule10 A+3C € [C, 4] flat

Rule 11 %A - -;-B +C <C edge

Rule12 | 1A-1B+C <C edge

Rule13 | -14+14C <C edge/texture

Rule14 | 1A-3B+C <C strong edge/texture

39
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Table 3.2: The ADPCM prediction rules, (continued).

Rule no. Prediction Prediction Expected
rule range shape

B>C> A |Rulel5 2A+ic € (4,C) flat

Rule16 | A- -;-B + %C <A edge

Rulel17 | A-1B+ ic <A edge

Rule 18 134-1c <A edge/texture

Rule19 | A- ;';B + %C <A strong edge/texture

| C > A> B | Rule 20 1A+3C € (4,0) flat ]

Rule 21 | 1A - %B +C >C edge

Rule 22 | -4 +1iC >C edge/texture

Rule23 | 1A-1B+C >C edge

Rule24 | $A-1B+C >C strong edge/texture
C>B>A|Rule25 |34-1B+3C| €(4,0) flat

Rule 26 | 3A-{B+3C | €(4,0) flat

Rule 27 -3B+3C | €(AB) edge

Rule28 | ;A-31B+C | €(B,C) edge

Rule29 | 34~ 1B +3C | €(A,C) | strong edge/texture

40
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@, 7) mz-:l mz-l C(u)C(v F(u, v) cos (w) cos (ﬁl’]-{-—l)wv_) (3.6)

=6 o 2m 2m

where
1 forz = 0,

C(z) =
V2 forz =12, m-1,
f(3, 7) : An input image pixel intensity value,
F(u,v) : A transformed coefficient value, and

m :  The block width.

Conventionally, the DCT coefficient with a zero frequency in both dimensions—i.e.,
F(0,0)—, is called the DC-coefficient, since it is related to the block average (in fact,
it is exactly m times the block average). The remaining DCT coefficients are called
AC-coefficients. The AC-coefficients generally diminish as the frequency variables—i.e.,
the transformed-block coordinates u and v—increase. This property is exploited while

encoding the AC-coefficients.

3.1.5 Quantizers
ADPCM Quantizer

Typically, ADPCM prediction errors have a greatly reduced variance, compared to the
variance of the original average values. However, more bit rate reduction can be achieved
by quantizing these prediction errors prior to encoding them. For this purpose, a simple
scalar quantizer is designed. In this quantizer, each prediction error value is quantized

using a simple scalar value defined by

256

RE.an] -

ADPCM-quantization-step = [
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where K ;;:,'; (@ F) is a class dependent positive non-zero integer function of the Quality-
Factor QF, and class can be any of the three perceptual classes. The K A‘Z‘:;M is used

as a scaling factor to compromise between the compression ratio and the quality of the

reconstructed images. The range of K A‘;’;’; ar 1S

2< K23 < 256. (3.8)
On the other hand, the K;’,‘:’;M domain is arbitrarily set between 1 and 256, where a

maximum reconstruction quality, with a minimum compression ratio, is achieved when
QF = 256 while a maximum compression ratio, with a minimum reconstruction quality,

is achieved when QF = 1.

AC Quantizer

For most natural scene images, the majority of the AC-coefficients have small magnitudes.
Hence, these coefficients have the smallest impact on the reconstructed image quality.
Consequently, they can be coarsely quantized, or even discarded entirely, with the trade-
off of having a little image distortion.

The role of the AC quantizer is to eliminate selectively or quantize coarsely the AC-
coefficients that carry the least information. In this quantizer, the AC-coefficient in row

i and column j is quantized using a scalar value defined by

i . class
if g;; %256 > K (QF),
AC-quantization-step = |.K Ac(_‘.a“ (QF)/ 256J N “e (3.9)
1 otherwise.

where ¢;; € Q, Q is an 8 x 8 normalization matrix and K ::m (QF) is a class depen-

dent positive non-zero integer function of the quality-factor QF while class is restricted
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only to either textural or edge class. The Q normalization matrix, shown in (3.10), is
adopted after the JPEG standard [60]. The role of this Q matrix, which was heuristically

determined, is to weight the AC-coefficients according to their perceptual importance.

( « 11 10 16 24 40 51 61 \
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
Q = (3.10)
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99)

claas

Similar to the K ADPCAL)

the K ::,a" is used as a scaling factor to compromise between
the compression ratio and the quality of the reconstructed images. As the smallest and
the largest element in Q are equal to 10 and 121, respectively, and the range of the

AC-coefficients is between +(2® — 1) x block_size/2, the range of K Ac:m will be

class

2< K" < 30076. (3.11)

class

At K, =2, all of the AC-coefficients will be quantized to zero, i.e., a given image-block
belongs to this class will be represented by its DC-coefficient only. On the other hand,
at K Ai“": 30976 all of the AC-coefficients will be un-quantized at all. Meanwhile, the
K Accl,a" domain is arbitrarily set between 1 and 256, where a maximum reconstruction

quality, with a minimum compression ratio, is achieved when Q F = 256 while a maximum

compression ratio, with a minimum reconstruction quality, is achieved when QF = 1.
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3.1.6 Zigzag-ordering

After quantization, many of the AC-coefficients are set to zero, especially at higher fre-
quencies. To take advantage of these zeros, the 2-D block of the AC-coefficients is re-
formatted into 1-D vector using a zigzag-order, as shown in Figure 3.7. Zigzag-ordering
places low-frequency coefficients, which are more likely to have non-zero values, before
high-frequency coefficients. As a result of this ordering process, the AC-coefficients are

re-arranged in order of both increasing spatial frequency and decreasing absolute value.

Start of AC coefficients Horizontal frequency
0 1 2 3 4 5 6 1

DC coefficient

Vertical
frequency

End of AC coefficients

Figure 3.7: The zigzag-ordering sequence.

3.1.7 Raun-length Encoder

After performing the zigzag-ordering process, several long runs of zero values are created.
To capitalize on this situation, these runs of zero values are run-length encoded, as in [63]
(i.e., these runs of zero values are replaced with a count of their number). In run-length

encoding, each non-zero AC-coefficient is represented by a composite word of s + r bits.
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The composite word consists of two parts: the s most significant bits, and the remaining
r least significant bits. The first part is devoted to represent the magnitude of the
coefficient, whereas the second part is devoted to represent the current coefficient position
relative to the previous non-zero coefficient, i.e., the run-length of the zero coefficients
between the non-zero coefficients. This means that the second part’s range is between 0
and 2" —1. A distinct composite word, which is 2" ~1, is defined to represent a run-length
of 27 zero coefficients. If the run-length exceeds 2" zero coefficients, it is encoded by using
multiple composite words. In addition, another distinct composite word, which is 0, is
used to encode the end of block (EOB). The EOB word specifies that all the remaining
coefficients in the block are quantized to zero. Finally, the sign of each non-zero coefficient
is determined and encoded, separately, by using a single bit per sign.

It might seem that run-length encoding expands, instead of compressing, the number
of bits required to encode the AC-coefficients by r bits. However, this is not true, since
not all the AC-coefficients are represented by run-length words. In fact, run-length words
are reserved only for non-zero coefficients or runs of more than 2" — 1 zero coefficients.
Also, EOB word saves so many words that may be needed to represent the trail run of
zero coeflicients at the end of the block. Moreover, the bulk of the most significant s bits
in any run-length word are zeros which are dealt with, efficiently, through the arithmetic
encoding.

The value of s depends on the values of both the AC-coefficients and their quantiza-

tion. It can be determined according to the expression given by

(3.12)

5= [lo ( maximum |AC coefficient value| )]
= 1"°82 \ (minimum AC quantization value /| °

As the range of the AC-coefficients is between +(28—1) x block_size/2, s can be re-written
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s 2 10 — [log, (minimum AC quantization value)] . (3.13)

Note that the value of the AC-quantization is a function of QF. Hence, the s will be a
function of the QF too.

As both textural and edge-blocks are considered to be among the 8 x 8 blocks (i.e.,
there is a maximum of 64 coefficients per block), the range of r is between 0 and 6,
where » = 0 means that run-length encoder is not presented at all. Note that the
increasing/decreasing of the r value will decrease/increase the overall number of run-
length words required to encode the AC-coefficients. However, the length of each of these
words will be longer/shorter. At high compression ratios, most of the high frequency
AC-coefficients are vanished to zero. Hence, after encoding a very few AC-coefficients,
the EOB word will be used to declare that all the remaining coefficients in the block
are quantized to zero. This means that the possibility of having long runs of zero values
becomes lower. Therefore, a smaller value of » might be a good choice. On the other
hand, at low compression ratios, the possibility of having an un-vanished high frequency
AC-coefficient becomes higher. This means that the possibility of having long runs of zero
values becomes higher too. Therefore, a larger value of » might be a good choice. In this
work, the value of r is empirically determined to improve the compression performance

of ABC-SC (Section 3.2.3).

3.1.8 Arithmetic Encoder

Although the ADPCM, the DCT, and the run-length encoding techniques reduce the
inter-pixel correlations significantly, the resulting codewords are still correlated slightly.
To further reduce the remaining correlations, the resulting codewords are arithmetically

encoded [68]. The arithmetic encoding technique works by representing a given sequence
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of codewords by an interval of real numbers between 0 and 1. As the number of codewords
increases, the interval needed to represent them becomes smaller. Consequently, the
number of bits needed to specify this interval increases. The reduction of the interval
corresponding to a given codeword is based on the probability of this codeword. Instead
of using a fixed probability model, an adaptive binary-tree state model is used [69], where
each codeword to be compressed is decomposed into bits in order to fit into the model. In
this model, the most significant bit of each codeword starts the tree at its root node. As
more bits are considered, the tree is traversed downwards. The adaptability of this model
comes from the way of updating the frequencies based on the seen codewords. At the
beginning, all counts are equally initialized (reflecting no initial information). Then, as
each codeword is seen, the counts are updated to approximate the observed frequencies.
As both of the encoder and decoder use the same initial values (e.g., equal counts) and
the same updating algorithm, their models will remain in step concurrently.

The arithmetic encoding technique compresses a sequence of codewords at least as
compact as the Huffman encoding technique [70]. Moreover, it accommodates adaptive
models easier, and it is computationally less expensive than the adaptive Huffman en-

coding technique.

3.1.9 Post-processing

As most of the compression techniques start to achieve very high compression ratios,
artifacts which severely degrade the perceived quality of the reconstructed images start
to appear. As ABC-SC is a block-based encoding technique, the most noticeable artifact
is generally the discontinuities present at block boundaries, which is called blocking-
artifacts. The blocking-artifacts distinctively occur in smooth regions, where blocks are
represented by their quantized averages. As pixels intensity values might not be close

enough, the difference between two adjacent block averages might be significantly large,
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especially at high compression ratios, due to the coarse quantization. Hence, the bound-
aries of these blocks might become visible. To cope with this annoying intra-blocking
degradation artifact without increasing the bit rate, a post-processing filtering scheme is
needed to restore the nice continuity of the grey-scale intensities over the entire recon-
structed image regions.

In [71, 72], a low-pass filtering scheme is carried out only on the block boundary pixels
to remove the high frequency part of the visible block boundaries. However, this approach
might introduce unnecessary blurring to the edge regions and hence, degrades edges.
Several techniques attempt to overcome this smoothing edges problem by estimating the
edge locations in the reconstructed image first to avoid blurring [73, 74]. This, however, is
a very difficult task for very high compression ratios, where the actual edge information
is somewhat scrambled. Note that ABC-SC decoder receives the blocks classification
information within the compressed image data and hence, the edge location estimation
process is no longer needed.

The proposed post-processing filtering scheme consists of two phases. In the first
phase, the smooth regions are adaptively blurred, whereas in the second phase, the con-
nection between the smooth and the non-smooth regions is performed.

In the adaptive blurring phase, each pixel in the smooth region is blurred twice: one in
a row-wise order and the other in a column-wise order (or vice versa, i.e., in a column-wise
order then in a row-wise order), where the blurring starts at the boundary rows/columns
and ends at the center of the block. The following adaptive formulas are used to blur
upper rows, lower rows, left columns, and right columns, respectively.

. 1 2 1 .
fey) =z Y Y flz+Aaz, y+4y) (3.14)

6 Az = -1 Ay = -1
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1 1
feo) =3 ¥ Y fe+be y+ay (3.15)
Az = 0 Ay = -1
- 1 0 ~
feo =: ¥ Y fet+asy+ay (3.16)
Az = -1 Ay = -1
1 1
feon) =3 ¥ X fe+hsy+tay (317)
Az =-1 Ay= 0

where f(z, y) is the reconstructed pixel intensity value at row z and column y. The
order of performing the row- or the column-wise blurring process is adaptively determined
based on the values of the vertical and the horizontal boundaries variations (B, and By,

respectively). These are defined by

B, = Z: lf(zv y)—f(z—l, y)l + Z lf(zv y) —f(t-i-l, y)l (318)

V upper pixels V lower pixels

and

B = Z lf.(zl y)—f(zr y_l)l + Z |f(2, y) —f(zi y+1)|, (319)

V left pixels V right pixels

where z and y represent the block boundary row and column locations, respectively.
Note that the upper, lower, left and right pixels mean the block boundary pixels in the
uppermost row, lowermost row, leftmost column and rightmost column, respectively. For
blocks with B, greater than B}, the row-wise blurring process is carried out before the
column-wise. Otherwise, the column-wise blurring process is carried out first. This could
also be viewed as a two-step process. The first step serves to reduce major variations at
boundary pixels of smooth-blocks in one direction. The second step implements a fine
tuning operation in a perpendicular direction to that of the first step. After performing

both of the row- and the column-wise blurring processes, a constant value is added to
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each pixel in the block to maintain the block average as it was before blurring. The entire
blurring process is performed on all smooth-blocks starting with the 32 x 32 blocks down
to the 8 x 8 blocks. Figure 3.8 demonstrates the steps of the blurring process.

In the second post-processing phase (i.e., the connection between the smooth and
non-smooth regions), the pixels in the block corners at the boundary between the smooth
and non-smooth regions are adjusted in order to reduce the boundary stair-like shape.
This task is accomplished in two steps. The first step interpolates any smooth corner
which is horizontally and vertically neighbored by non-smooth-blocks. This is carried out
by diagonally linear interpolating corners using the two neighboring non-smooth pixels
in the direction of the diagonal extension. The second step is to blur any non-smooth
corner which is surrounded by smooth blocks. This is carried out by averaging each pixel
in the corner with its three neighbor (towards the corner) pixels. The interpolation and
the averaging processes start from the corner pixel and continue diagonally towards the
block center. Figure 3.9 demonstrates the definition of locations within the corner and

Figure 3.10 demonstrates the steps of the connection process.

3.2 Parameters Adjustment

3.2.1 Thresholding and Quantization Functions

There is no doubt that the impact of the quantization functions on the ABC-SC per-
formance is affected by the values of the thresholding parameters. The T' thresholding
parameters control the routing of the blocks to the different compression modules. In the
same time, the impact of the T thresholding parameters on the ABC-SC performance is
also affected by the definition of the K quantization functions, which control the allowed
amount of distortions that might occur to the blocks of each class. Therefore, care should

be taken when identifying these parameters and functions.
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Figure 3.8: A post-processing example. (a) before post-processing, where B, = 432
and B, = 344; (b) after horizontal blurring; (c) after vertical blurring; (d) after average
adjustment; and (f) after full blurring.
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Figure 3.9: The naming conventions of the locations within the corner.

In this work, the parameters and functions’ identification process is divided into two
phases. In the first phase, all the non-smooth-blocks are dealt with as if they are edge-
blocks, i.e., only two classes of blocks are considered (smooth and edge classes). Con-
sequently, only the non-texture-related parameters and functions (i.e., Trm, K A'::,o:;:,

K ,cf:;w and K ::ge) are identified in this phase. Then, in the second phase, the rest
of the parameters and functions (i.e., the texture-related parameters functions, namely,
Taverages Tdeviations K A‘;fg;:, and K At:,zme) are identified, based on the value of the

already-identified non-texture-related parameters and functions.

Non-texture-related Functions

To add more adaptability to ABC-SC, each of the T,, thresholding parameters is con-
sidered a function of the QF, rather than just a scalar value. The role of these T,
thresholding functions depends on the value of the QF. For high QF values, the role of

these functions -is to facilitate the conditions on blocks to be classified as non-smooth-
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blocks. Hence, the blocks gain less distortions. On the other hand, for low QF values,
their role is to ease the conditions on blocks to be classified as smooth-blocks. Hence,
they can be compressed further.

Theoretically speaking, any decreasing function can be considered as a valid definition
for any of the T}, thresholding functions. Also, any increasing function can be considered
as a valid definition for any of the non-texture-related K quantization functions, namely,

K

smooth edge

worea K and K A'::gc. However, as the performance of ABC-SC strongly de-

ADPCM!?
pends on the definition of these functions, they should be chosen carefully.

Since optimizing both of the T and the K functions simultaneously is not an easy
optimization problem, we propose an iterative solution for identifying them sequentially.
The basic idea is to adjust only one function at a time, while fixing the rest of the
functions, and repeat doing this adjustment in sequence until no change occurs during
one full iteration.

During this identification process, each of these functions is assumed to be a continu-
ous piece-wise linear function between some pre-determined QF values, namely, 1, 8, 16,
32, 64, 96, 128, 160, 192, 224, 240, 248, and 255. At QF = 256, all the T, thresholding
functions are set to zero so that all blocks are classified as edge-blocks. In the same time,
the K :Cd"e and K A?:CCM quantization functions are set to a large number. This allows all
the AC- and the DC-coefficients to be preserved without any quantization at all. Hence,
the lowest reconstruction degradation is achieved.

Note that the piece-wise linear assumption is a reasonable assumption, as each of these
functions is either an increasing or a decreasing function. Also note that the domains of
the piece-wise segments are selected to be equal, except at low and high QF values where
the changing rate of the T}, thresholding functions and the K quantization functions are
expected to be higher than the changing rate for the rest of the QF values. With this

assumption, our goal now is to determine the output values of each function at these
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pre-determined QF values.

During this phase, determining the functions output values is based on 8 different 512
512 images. These 8 images are selected to represent different image classes including,
edge images (e.g., the Monarch and the Boats images); textural images (e.g., the Rocks
and the Barbara images); smooth images (e.g., the Zelda and the Peppers images); and
natural scene images (e.g., the Goldhill and the F16 images). Figure 3.11 shows these 8
images.

In this phase, the determination of the output values of a given function is achieved
by considering all the valid output values of this function. Then, for each QF value, a
rate-distortion curve, based on compressing the 8 images, is generated. Note that each
point on this curve corresponds to one of the valid output values. Then, an envelope
curve for all these rate-distortion curves, which maximizes the compression ratio and, at
the same time, minimizes the root mean squared error, is generated. The envelope curve
may be approximated by a continuous piece-wise linear curve. The first segment of this
curve is the line tangent to the rate-distortion curve corresponding to QF = 255 starting
from the rate-distortion point corresponding to QF = 256. The second segment of this
curve is the line tangent to the next rate-distortion curve (i.e., the curve corresponding
to QF = 248) starting from the current tangent point (which is locating on the curve
corresponding to QF = 255), and so on. Finally, the output values corresponding to the
tangent points between the envelope and each rate-distortion curve are determined and
assigned to the value of the function at the corresponding QF values. This procedure
is repeated for all the non-texture-related functions until no change occurs to any of
them over a one full iteration. Note that after the adjustment of each function, the
performance of ABC-SC is either improved, from a rate-distortion point of view, or at
worst it is remained the same, if the unchanged function case is encountered. Hence, the

procedure convergence is guaranteed. Figures 3.12 and 3.13 show the algorithmic steps of
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@ @)

Figure 3.11: The 8 original images which are used during the functions’ identification
process. (a) Monarch; (b) Boats; (c) Rocks; (d) Barbara; (e) Zelda; (f) Peppers; (g)
Goldhill; and (h) F16.
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(h)

Figure 3.11: The 8 original images which are used during the functions’ identification
process, (continued).
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the non-texture-related functions identification procedure, and an example of an envelope

smooth

curve for rate-distortion curves which are generated for K, . -

during the functions’

second identification iteration, respectively.

Note that this identification procedure is insensitive to initial conditions, i.e., any in-
creasing function can be considered as a valid initial definition for any of the T, thresh-
olding functions, and any decreasing function can be considered as a valid initial definition
for any of the K quantization functions. To show this insensitivity, the initial definitions

smooth edge

of K, .., and K, . quantization functions are selected to be constant functions, as

given by (3.20) and (3.21), respectively.

amooth

KT = 256 (3.20)
edge
K5 =256 (3.21)

Meanwhile, the initial definitions of T3,, Ti6, and T functions are selected to be contin-

uous piece-wise linear decreasing functions, as given by (3.22)-(3.24), respectively.

|-3/8xQF + 60 if 1 <QF < 64

Ta=4 |-2/8xQF + 52 if 64 < QF < 160 (3.22)
|-1/8xQF + 32 if 160 < QF < 255
|-9/2x QF + 528 f 1 <QF < 64

Twe=9{ |-4/2xQF + 368 if 64 < QF < 160 (3.23)
|-1/2x QF + 128] if 160 < QF < 255



CHAPTER 3. ABC-SC: A NEW ADAPTIVE COMPRESSION TECHNIQUE 59

Algorithm: Non-terture-related-functions-identification

Step 0: Begin algorithm:
. edge edge smooth
Step 1:  Let functionsbe { K,.° , K K Ts, Te, and T3, }.

't ADPCM! TTADPCM!

Step 2: Let QF-values be { 1, 8, 16, 32, 64, 96, 128, 160, 192, 224, 240, 248,

and 255 }.
Step 3: Repeat:
Step 3.1: For each function in functions do:

Step 3.1.1: For each QF-value in QF-values do:

Step 3.1.1.1: Let valid-outputs be samples from all possible valid outputs for
function (QF-value).

Step 3.1.1.2: For each valid-output in valid-outputs do:

Step 3.1.1.2.1: Compress the 8 images at quality-factor = QF-value, while

assuming that function (QF-value) = valid-output.

Step 3.1.1.2.2: Calculate the average compression ratio over the 8 images.

Step 3.1.1.2.3: Decompress the 8§ images.

Step 3.1.1.2.4: Calculate the average Root Mean Squared Error (RMSE) over

the 8 images.

Step 3.1.1.3: End for.

Step 3.1.1.4: Generate rate-distortion (@QF-value) curve over the 8 images.

Step 3.1.2: End for.

Step 3.1.3: Generate envelope (function) for all the rate-distortion (QF-value)

curves generated in this iteration.

Step 3.1.4: For each QF-value in QF-values do:

Step 3.1.4.1: Let the current value of function (QF-value) be the value of
valid-output corresponding to the tangent point between
envelope (function) and rate-distortion (QF-value).

Step 3.1.5: End for.

Step 3.2: End for.

Step 4:  Until no change is happened to any function during a one full iteration.

Step 5: End algorithm.

Figure 3.12: The non-texture-related functions’ identification algorithm.
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Figure 3.13: An example of an envelope curve for rate-distortion curves which are gener-

ated for K A'D":’:;f during the functions’ second identification iteration.
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| -54 x QF + 5184] if 1 <QF < 64
Ts =1 [-16 xQF + 2752 if 64 < QF < 160 (3.24)
| =2xQF + 512 if 160 < QF < 255

After the second full iteration, all functions are converged to their final definitions. Ta-
ble 3.3 shows the definition of each function (the initial and after each iteration defini-

amooth edge

tions), where the changed values are highlighted. Note that the K, =~ and K, .
quantization functions took almost an extra iteration, than T,, thresholding functions, to
converge, i.e., the initial conditions might change the number of the iterations needed to

let the identification procedure converge.

Texture-related Functions

In general, the objective of the T and K parameter and function identification process is
to maximize the compression ratios and, at the same time, minimize the reconstruction

errors. However, the texture-related parameters and functions (i.e., Tayerages Tdeviation:

tezture
K

opcart 30d K A‘;ﬂun) might have different objectives according to the application.

For example, in some image compression applications, more reconstruction errors in the
textural regions might be allowed in order to achieve higher compression ratios. The
reason is that textural regions usually convey a low amount of information to the viewer.
However, there are image processing applications where the textural regions might be
of interest. Hence, reducing their reconstruction errors may be more significant, to the
viewer, than achieving higher compression ratiocs.

ABC-SC deals with these different situations by allowing users to define the quality of
the reconstructed textural regions relative to the quality of the reconstructed edge regions
(Texture-Quality-Ratio or, simply, TQR). If this ratio is less than one, this means that



CHAPTER 3. ABC-SC: A NEW ADAPTIVE COMPRESSION TECHNIQUE

Table 3.3: The outputs of all non-texture-related functions.

after the first iteration; and (c) after the second iteration.

62

(a) initial conditions; (b)

or [ k2 [ [k | T [ D] T
1 - 256 256 5130 | 523 | 59
8 - 256 256 4752 | 492 | 57
16 - 256 256 4320 | 456 | 54
32 - 256 256 3456 | 384 | 48
64 - 256 256 1728 | 240 | 36
96 - 256 256 1216 | 176 | 28
128 - 256 256 704 | 112 | 20
160 - 256 256 192 | 48 | 12
192 - 256 256 128 | 32| 8
224 - 256 256 64 (| 16 | 4
240 - 256 256 32 8 2
248 - 256 256 16 4 1
255 - 256 256 2 0| O

(a)
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Table 3.3: The outputs of all non-texture-related functions, (continued).

QF | K2 | K ptes | Kippowe | To | Tio | Tx
1 10 14 12 4300 | 700 | 58
8 12 15 13 |/ 2600 | 800 | 57
16 13 16 14 2000 | 500 | 56
32 14 16 14 1700 | 400 | 50
64 || 18 17 19 || 1400 | 240 | 36
96 || 18 18 20 || 1216 | 176 | 26
128 | 32 32 32 550 | 112 | 18
160 | 64 44 52 224 | 48 | 12
192 98 56 72 128 | 36 | 8
224 | 128 72 26 80 | 20| 4
240 | 208 96 144 40 | 12 | 2
248 | 512 160 160 20 86| 1
255 | 4086 | 256 256 o o] o

63
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Table 3.3: The outputs of all non-texture-related functions, (continued).

QF | Ko™ | Kprew | Kippens | To | Tis | Tz
1 10 12 12 | 4000 | 700 | 58
8 12 12 13 2600 | 600 | 57
16| 13 12 18 || 2000 | 500 | 56
32| 14 13 18 || 1700 | 400 | 50
64 | 16 15 19 1400 | 240 | 36
9% || 18 16 20 1216 | 176 | 26
128 | 32 26 32 550 | 112 | 16
160 | 64 36 48 224 | 48 | 12
192 96 52 64 128 | 36| 8
224 | 128 68 22 80 | 20| 4
240 || 208 88 128 40 | 12 2
248 || 512 160 208 20| 6| 1
255 || 4096 | 256 256 0] 0] o0

(),

64
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the user is willing to sacrifice some of the reconstruction quality in the textural regions in
order to achieve higher compression ratios. On the other hand, if this ratio is greater than
one, this means that the user is interested in the textural regions. Hence, less degradation
is allowed in these regions even if the compression ratio is decreased. Finally, if this ratio
is equal to one, this means that both of the edge and the textural regions have the same
interest to the user and there is no need to differentiate between them (two-class case),
i.e., as done in the first phase.

The main difference between edge- and textural-blocks is the level of activities within
the block and not in its average (i.e., the AC-coefficients and not the DC-coefficient).
This suggests that the texture-related K quantization functions, K :::‘:;: and K ;:zm",

may be defined as follows.

texture edge
ADPCM = KADPC’A! (3'25)
texture edge
K, =TQRxK (3.26)

The values of Tyyerage and Tdeviation have been determined experimentally by visually
examining many textural and non-textural-blocks in the 8 images shown in Figure 3.11.

Based on these examinations, the following values are suggested.

Taucrage =400 (327)

Tiieviation = 0.96 (3.28)

According to experimentations, we found that these thresholding values are quite
successful in separating textural-blocks from edge-blocks. Figure 3.14 shows a sample
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of segmentation results for the Lena image at QF equals 200, and Figure 3.15 shows
the pixel distribution for the different image classes for the Lena image at different QF

values.

3.2.2 Neighboring Block Averages Parameter

To achieve a maximum benefit from all prediction rules, it is required to choose the value
of v so that all these prediction rules are utilized evenly. To do so empirically, the 8 images,
shown in Figure 3.11, are re-considered. This time, these images are used for studying
the effect of v on partitioning the usage of the prediction rules. This can be done by
compressing these images and counting the number of times each prediction rule is used.
Since the variance of these counts gives an indication about how even the utilization of
the prediction rules is (the higher/lower the variance value, the less/more even utilization
of the prediction rules is), the required v value is chosen to be the value corresponding
to the minimum variance for each QF value. Figure 3.16 shows the variance values for

different values of v and QF, and Figure 3.17 shows the chosen v values as a function of

QF.

3.2.3 Run-length Parameter

The last parameter that need to be adjusted is r, the width of the run-length field. Similar
to v, the 8 images are re-considered. This time, for each » value in {1, 2, 3, 4, 5, 6},
all these images are compressed then decompressed. Then, the average overall Q F-rate
relation is generated. The required r value is chosen to be the value corresponding to the
maximum compression ratio for each QF value. Figure 3.18 shows the relation between
the QF and the compression ratio for different r values, after subtracting the compression
ratio for the r = 6 case from each of them (i.e., normalized to the » = 6 case) Figure 3.19

shows the chosen r values as a function of QF.
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Figure 3.14: Segmentation results for the Lena image at QF equals 200. (a) the original
Lena image; (b) smooth segment image; (c) textural segment image; and (d) edge segment
image.
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Figure 3.15: Pixels distribution for the Lena image.
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Figure 3.16: The effect of both v and QF on the utilization of the prediction rules.
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Note that ABC-SC is insensitive to the value of r. This appears in the maximum peak
to peak difference in compression ratio between any two cases of r (which is always less
than 2) for the same value of QF. Hence, just a minor improvement in the compression
ratio is gained when using the adaptive r value. However, the improvement due to the
presence of the run-length encoding is not minor. Figure 3.20 shows the effect of using
run-length encoding with the adaptive r value, after subtracting the compression ratio for

the » = 0 case from it (i.e., normalized to the the case of not using run-length encoding).
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Figure 3.18: The relation between QF and compression ratio for different » values, nor-
malized to the r = 6 case.
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Figure 3.19: The values of r as a function of QF.
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Figure 3.20: The relation between QF and compression ratio for the adaptive r value
case, normalized to the case of not using run-length encoding (i.e., the r = 0 case).



Chapter 4

Results and Discussion

This chapter shows results and evaluation of the performance of the ABC-SC technique
on different images. It also provides representative performance comparisons with other
well known image compression techniques. Additional comparative results are included

in Appendix A and Appendix B.

4.1 Performance Metrics

Since ABC-SC is a lossy technique, its reconstructed image may have some loss of infor-
mation which may be visually useful. To assess the loss of fidelity in reconstructed images,
a measurement of distortion should be used. As most decompressed images ultimately
are viewed by human beings, it is appropriate to measure their qualities by subjective
evaluations of human observers. Unfortunately, a simple convenient subjective evaluating
mechanism does not exist.

As alternative measures, Peak Signal-to-Noise-Ratio (PSN R) and Root Mean Squared

75
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Error (RMSE) are usually used to accomplish this task.

PSNR = 10logq (R—:Z—E)zda (4.)
] M-IN-1 2
RMSE = \|zx 3 3 (fe 9) - (=, v) (4.2)
z=0 y=0

where,

f(z, y) : The original image,

f(z, y) : The reconstructed image,
M : The height of the image, and
N : The width of the image.

Although PSNR (and RMSE) are widely used in the lossy-comnpression literature, they
are sometimes misleading and not indicative of the actual loss of fidelity. This is especially
critical for low values of PSNR (or the high values of RMSE). For example, consider the
images in Figure 4.1(b)-(d). They are a histogram flattening, a Gaussian blurred, and
a zero mean Gaussian noisy versions, respectively, of the 512 x 512 Lena image shown
in Figure 4.1(a). The histogram flattening is an image enhancement technique which
considerably improves the appearance of an image by increasing its dynamic range. On
the other hand, the Gaussian blurring is a low pass filtering technique which removes most
of the image details and reduces its fidelity. Even though, the PSNR and the RMSE
between any of these three images and the original Lena image are identical. Their values
are 26.29 dB and 12.36, respectively. Hence, according to any of the two measurements,
the quality of any of these images is considered the same, which is not true.

Note that since PSNR is a log function of RMSE, it exaggerates differences in the

near-lossless range (perceptually lossless range) and suppresses differences in the highly-
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Figure 4.1: An example showing how PSNR and RMSE are sometimes misleading when
judging the actual loss of fidelity. (a) the original Lena image; (b) histogram flattening
version of the Lena image (PSN R = 26.29 dB and RM SE = 12.36); (c) Gaussian blurred
version of the Lena image using a mask of size 15 x 15 with a standard deviation = 2.992
(PSNR =26.29 dB and RMSE = 12.36); and (d) noisy version of the Lena image using
random Gaussian noise (PSNR = 26.29 dB and RMSE = 12.36).
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lossy range. This makes the PSN R, as a measure of improvement, non-quantitative. For
example, improving RMSE from 0.8 to 0.2 leads, virtually, to an invisible improvement
and from 20 to 5 leads, visually, to a big significant improvement. However, the improve-
ment of PSN R are the same in both cases and equals to 12.04 dB (i.e., from 50.07 dB
to 62.11 dB or from 22.11 dB to 34.15 dB, respectively).

Since there is a lack of other alternative measures and based on the above arguments,
the RM SE measure is used during this work to assess the reconstructed images degrada-
tion. However, when RM SFE gets large, a subjective judgement should be considered, for
example by visually examining the loss of fidelity in some samples of the reconstructed
images!.

Finally, the Compression Ratios (CRs) are calculated from the actual size of the

compressed files, not entropy estimates, as follows:

CR = image width x image height
~ actual compressed file size

(4.3)

4.2 Results

The validity of ABC-SC is demonstrated by compressing then decompressing several im-
ages, and comparing the input with the reconstructed images. Also other existing com-
pression techniques are used in the comparison, including the Joint Photographic Ezperts
Group (JPEG) [60] and the Set Partitioning in Hierarchical Trees (SPIHT) [27]. JPEG is
a widely accepted industrial standard for continuous-tone natural scene image compres-
sion, whereas SPIHT is believed to be the state-of-the-art still-image lossy-compression

method. While JPEG is a fixed block-size DCT-based compression technique, SPIHT

!Since output devices’ resolution is one of the major factors that influences image visual-quality, it is
worth mentioning that all images in this work are printed on a 600 dot per inch HP laser jet printer.
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is an embedded wavelet-based compression technique which is based on the Embedded
Zero-tree Wavelet approach (EZW) [26].
The JPEG version that is used in this thesis is obtained via the internet from the

Independent JPEG Group, the source code is available by anonymous FTP from

ftp.uv.net:/graphics/jpeg/jpegsrc.vb.tar.gz.

This JPEG version has two modes of operation: the baseline JPEG mode and the Im-
proved JPEG (IJPEG) mode. The only difference between these two modes of operations
is that the IJIPEG employs a multiple-pass Huffman encoder to determine an optimal
symbol code.

Similarly, the SPIHT version that is used in this thesis is obtained via the internet,

where the source code is available by anonymous FTP from
ipl.rpi.edu:/pub/EW_Code/codetree.tar.gz.

SPIHT exists in slow and fast versions. The slow version (SPIHT-A) uses an Arithmetic
encoder to improve compression and the fast version (SPIHT-B) produces a Binary-
uncoded bit stream. Hence, the former version has the ability to compress images slightly
more than that in the latter version.

During this work, ABC-SC is extensively tested and compared with JPEG, IJPEG?,
SPIHT-A and SPIHT-B. However, bear in mind that while testing against JPEG is fair
enough (since both of ABC-SC and JPEG are DCT-based techniques), testing against
SPIHT (the state-of-the-art) is a kind of an ultimate comparison.

From now on, the TQR parameter has been set to 1.00, unless otherwise specified.

This means that each block is classified into one of two perceptual classes, i.e., either a

2In most image compression literature, researchers compare their compression results with JPEG
results, but not with IJPEG results, even though the latter performance outperforms the former.
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smooth or a non-smooth-block. The 512 x 512 Lena image®, shown in Figure 3.14(a), is

chosen to demonstrate the results.

4.2.1 Two-class Case

Figure 4.2(a)—(c) shows the decompressed Lena images using ABC-SC at QF equals 147,
IJPEG at QF equals 6, and JPEG at QF equals 2, respectively. While the compres-
sion ratios of these three reconstructed images are almost the same (62.47:1, 59.89:1,
and 62.22:1, respectively), ABC-SC has the smallest RMSE reconstruction error (8.43,
9.86, and 20.42, respectively). From the subjective-quality point of view, the ABC-SC
reconstructed image is much better than the [JPEG reconstructed image. This appears
especially at smooth areas, where the blocking-effect is almost removed completely with
ABC-SC. The ABC-SC reconstructed image is also far much better than the JPEG re-
constructed image.

Figure 4.2(d) shows the rate-distortion curves for the Lena image using ABC-SC,
IJPEG, and JPEG. As the curves indicate, ABC-SC outperforms both JPEG and IJPEG
for all compression ratios under consideration. Moreover, ABC-SC can achieve high
compression ratios—with a reasonable RMSE reconstruction error—which can not be
achieved at all by either JPEG or IJPEG. In fact, for most of the testing images, ABC-SC
resulted in at least twice the maximum compression ratio achieved with IJIPEG and more
than five times the maximum compression ratio achieved with JPEG.

Figure 4.3(a)—(b) shows the decompressed Lena images using ABC-SC at QF equals

3This 8 bpp grey-levels version of the Lena image is the Y luminance component of the original 24 bpp
RGB (Red, Green, and Blue) Lena image, where the Y pixel values are obtained from the RGB pixel
values using the following linear transform.

Y(i, §) = 0.299 x R(5,3) +0.587 x G(4, 5) +0.114 x B(i, j).

The other way of getting an 8 bpp grey-levels version from a 24 bpp RGB image is by using only the G
component. However, the G component is darker and has slightly less fidelity than the Y component.
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Figure 4.2: ABC-SC, IJPEG, and JPEG compression results for the Lena image. (a)
ABC-SC (QF = 147, TQR = 1.00, CR = 62.47, and RMSE = 8.43); (b) UPEG
(QF = 6, CR = 59.89, and RMSE = 9.86); (c) JPEG (QF = 2, CR = 62.22, and
RMSE = 20.42); and (d) rate-distortion curves.
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184 and IJPEG at QF equals 11. The compression ratios are 36.81:1 and 36.69:1 and
the RMSE reconstruction errors are 6.50 and 7.39. From the subjective-quality point of
view, both images are almost the same, except for some minor blocking-artifact in the
flat areas in Figure 4.3(b), e.g., the Lena’s cheek and shoulder areas.

Figure 4.3(c)-(d) shows the decompressed Lena images using ABC-SC at QF equals
89 and IJPEG at QF equals 1. The compression ratios are 177.01:1 and 176.05:1 and
the RMSFE reconstruction errors are 12.66 and 32.23. From the subjective-quality point
of view, the difference is clear. Note that this is the maximum compression ratio that
IJPEG can achieve for the Lena image. Table 4.1 provides a summary of rate-distortion
performance for the decompressed images shown in Figures 4.2 and 4.3.
Table 4.1: A summary of the rate-distortion performance for decompressed images shown

in Figures 4.2 and 4.3.
Compression Figure 4.2 Figure 4.3(a)-(b) || Figure 4.3(c)-(d)

technique CR | RMSE | CR | RMSFE CR | RMSE
ABC-SC 62.47 | 8.43 36.81 6.50 177.01 12.66
IJPEG 59.89 | 9.86 36.69 7.39 176.05 | 32.27
JPEG 62.22 | 20.42

Figure 4.4 shows the rate-distortion performance of ABC-SC, IJPEG, JPEG, and a
number of other segmentation-based compression techniques—which have been reported
in recent compression literature (Section 2.8). As seen from the figure, ABC-SC outper-
forms all these techniques, except for the technique which was reported in [34]. Neverthe-
less, the improvement in the RMSE reconstruction error is minor—less than 0.5—and
takes place in the perceptually lossless range. This means that it is really hard to see

any difference between the two reconstructed images, for example, compare Figure 4.3(a)



CHAPTER 4. RESULTS AND DISCUSSION 83

© | (@)

Figure 4.3: ABC-SC and IJPEG compression results for the Lena image. (a) ABC-SC
(QF = 184, TQR = 1.00, CR = 36.81, and RMSE = 6.50); (b) IPEG (QF = 11,
CR = 36.69, and RMSFE = 7.39); (c) ABC-SC (QF =89, TQR = 1.00, CR = 177.01,
and RMSE = 12.66); and (d) IJPEG (QF =1, CR =176.05, and RMSFE = 32.27).
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with Figure 9(d) in [34]. On the other hand, from the practical point of view, the tech-
nique in [34] is practically unacceptable, since it takes about 23 minutes of CPU time to

decompose just a 256 x 256 image. The ABC-SC average execution time on a comparable

task is less than 1 second (see Section 4.2.7).
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Figure 4.4: Comparison of rate distortion results between ABC-SC, IJPEG, JPEG, and
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some other recent segmentation based encoding techniques for the Lena image.

Figure 4.5(a)-(c) shows the decompressed Lena images using ABC-SC at QF equals
32, SPIHT-A, and SPIHT-B, respectively. While the compression ratio of any of these
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three reconstructed images is 235.11, the RMSE reconstruction errors are 13.97, 12.29,
and 12.95, respectively. This does not represent a major differences. From the subjective-
quality point of view, while ABC-SC start suffering from the blocking-artifact, both
SPIHT-A and SPIHT-B are suffering from the ringing-effect—which is a well-known arti-
fact in sub-band encoders in general, especially near strong edges. However, in ABC-SC,
there is always a chance for restoring the blocking artifact—since the exact deformity
locations are known. At the same time, in SPIHT-A and SPIHT-B, there is no chance at
all to restore ringing-effect.

Figure 4.5(d) shows the rate-distortion curves for the Lena image using ABC-SC,
SPIHT-A, and SPIHT-B. The figure shows that the ABC-SC rate-distortion curve is
following both SPIHT-A and SPIHT-B rate-distortion curves, while maintaining a minor
increase in the RM S E reconstruction error.

Figures 4.6 and 4.7 show another two sets of reconstructed Lena images using ABC-
SC, SPIHT-A, and SPIHT-B, where the compression ratios are equal to 91.95 and 374.49,
respectively. From the subjective-quality point of view, there is no major difference
between images in the first set. However, the blocking and the ringing-artifacts are
obvious in the second set of reconstructed images. Table 4.2 provides a summary of

rate-distortion performance for the decompressed images shown in Figures 4.5-4.7.

Table 4.2: A summary of the rate-distortion performance for decompressed images shown
in Figures 4.5-4.7.

Compression Figure 4.5 Figure 4.6 Figure 4.7
technique CR |RMSE ) CR |RMSE| CR | RMSE
ABC-SC 235.11 | 13.97 (| 9195} 9.90 | 374.49 | 16.34

SPIHT-A 235.11 | 12.29 | 91.95| 8.37 | 374.49 | 14.70

SPIHT-B 23511 1295 | 91.95| 8.83 374.49 | 15.12
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Figure 4.5: ABC-SC, SPIHT-A, and SPIHT-B compression results I for the Lena image.
(a) ABC-SC (QF =32, TQR=1.00, CR = 235.11, and RMSE = 13.97); (b) SPIHT-A
(CR=235.11, and RMSE = 12.29); (c) SPIHT-B (CR = 235.11, and RMSE = 12.95);
and (d) rate-distortion curves.
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(b) (c)

Figure 4.6: ABC-SC, SPIHT-A, and SPIHT-B compression results II for the Lena image.
(a) ABC-SC (QF =128, TQR = 1.00, CR = 91.95, and RMSE = 9.90); (b) SPIHT-A
(CR =91.95, and RMSE =8.37); and (c) SPIHT-B (CR = 91.95, and RMSE = 8.83).
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(b)

Figure 4.7: ABC-SC, SPIHT-A, and SPIHT-B compression results III for the Lena image.
(a) ABC-SC (QF =1, TQR = 1.00, CR = 374.49, and RMSE = 16.34), (b) SPIHT-A

(CR = 374.49, and RMSE = 14.70), and (c) SPIHT-B (CR = 374.49, and RMSE =
15.12).
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According to Figures 4.5-4.7, we believe that although ABC-SC is maintaining a minor
increase in the RM SF reconstruction error, it does not really make a major difference in
the subjective-quality of the reconstructed images.

For more comparative results with JPEG/IJPEG and SPIHT-A/SPIHT-B, see Ap-
pendix A and Appendix B.

4.2.2 Three-class Case

Figure 4.8(a)—(b) shows two reconstructed Lena images using ABC-SC at QF equals
200, where the TQR parameter is set to 1.0 and 0.3. Although the difference between
the RMSE reconstruction errors in these two images is 1.28—between 6.11 and 7.38—,
it is hard to see any major difference between them. This is because all the differences
occur in textural areas which convey low amount of information to the viewer. Hence,
degradation in these areas is less noticeable. To clarify the locations of these differences,
Figure 4.8(c)—(d)* shows the absolute differences between images in Figure 4.8(a)-(b),
respectively, and the original Lena image, shown in Figure 3.14(a). Note that most of the
differences between these two error images are located in the feather area, which coincides
with the location of the Lena image textural segment shown in Figure 3.14(c).
Interestingly, this increase in the RMSE reconstruction error is associated with a
decrease in the compressed image file-size—the compressed file-size of the image shown
in Figure 4.8(b) is reduced by 16% compared to the compressed file-size of the image
shown in Figure 4.8(a), i.e., the compression ratio increased from 32.05:1 to 38.14:1.
Figure 4.9 demonstrates the amount of reduction in the compressed Lena image file-
size—due to setting the TQR parameter to 0.3—for different QF values. Figure 4.9(a)

shows the compressed file sizes when TQR is set to 1.00 (i.e., two-class case). Figure 4.9(b)

1For the sake of improving the fidelity, each pixel in these error images is multiplied by 8 before
printing.
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() (d)

Figure 4.8: The effect of texture-quality-factor on the performance of ABC-SC for the
Lena image. (a) QF = 200, TQR = 1.00, CR = 32.05, and RMSE = 6.11; (b) QF =
200, TQR = 0.30, CR = 38.14, and RMSE = 7.38; (c) and (d) the absolute differences
between the original Lena image and the images in (a) and (b), respectively.
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shows the compressed file sizes—normalized to the file-sizes in Figure 4.9(a)— when TQR
is set to 0.3 (i.e., three-class case). This amount of reduction in the compressed Lena
image file-size can be as high as 18.64% compared to the two-class case (i.e., increasing

in the compression ratio from 63.47:1 to 78.02:1), when the QF is set to 146.
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Figure 4.9: The compressed file-sizes for the Lena image. (a) two-class case and (b)
three-class case at TQR = 0.30, normalized to the two-class case.

Figure 4.10(a)-(c) shows three reconstructed Barbara images using ABC-SC at QF
equals 137, where the TQR parameter is set to 1.0, 0.5, and 2.0, respectively. The
compression ratios are 54.53:1, 73.45:1, and 34.54:1, respectively, and the RMSE re-
construction errors are 14.90, 16.43, and 12.63, respectively. Figure 4.10(d) shows the
textural segment for the Barbara image, shown in Figure 3.11(d). The figure shows that
when the TQR parameter is set to a value less than 1.0, more compression is achieved
with a higher RMSE reconstruction error. However, most of these errors occur in a
non-noticeable areas (e.g., in the stripes of Barbara clothes). On the other hand, when

it is set to a value greater than 1.0, less compression is achieved with a lower RMSE
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reconstruction error, where most of the improvement occurs in the textural areas. Note
that the appropriate TQR value is left to the user to set it according to the application

of interest.

4.2.3 ADPCM Effect

Figure 4.11 shows the rate-distortion curves for the Lena image using three different
versions of ABC-SC. The only difference between these three versions is the DC-coeflicient
predictor. In the first version, the ADPCM predictor—introduced in Section 3.1.3—is
used. In the second version, the JPEG/IJPEG DC-coefficient predictor is used—where
the predicted value is always the previous DC-coefficient value of the block to the left of
the current block. Finally, in the third version, there is no prediction at all. The figure
shows the superiority of the ADPCM predictor version over the two other versions. We
believe that this superiority justifies the additional complexity introduced by the ADPCM

predictor, which is an insignificant extra complexity after all.

4.2.4 Lossless Encoder Effect

As an alternative to the arithmetic encoder, we have also considered the Huffman encoder.
Figure 4.12 shows the rate-distortion curves for the Lena image using two different ver-
sions of ABC-SC. The only difference between these two versions is the lossless encoder
used. While the first version uses the arithmetic encoder mentioned in Section 3.1.8,
a two-pass Huffman encoder is used in the second version. The figure shows a minor
rate-distortion improvement when the arithmetic encoder is used. Note that the Huff-
man encoder is considered to be an optimal lossless encoder only when all the symbols’

probabilities are governed by the 2" formula, where n is any positive integer number.
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(c)

Figure 4.10: The effect of texture-quality-factor on the performance of ABC-SC for the
Barbara image. (a) QF = 137, TQR = 1.00, CR = 54.53, and RMSE = 14.90; (b)
QF =137, TQR = 0.50, CR = 73.45, and RMSE = 16.43; (c) QF = 137, TQR = 2.00,
CR = 34.54, and RMSE = 12.63; and (d) textural segment image.
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Figure 4.11: The ADPCM effect for the Lena image.
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Figure 4.12: The effect of the lossless encoder on the performance of ABC-SC for the
Lena image.
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4.2.5 Post-processing Effect

Figure 4.13(a)-(b) shows two decompressed Lena images using ABC-SC before and after
post processing. While the compression ratios of this two images are the same and
equal to 105.07:1, the RMSE reconstruction error is improved by 1.15—from 11.61 to
10.46. Figure 4.13(c)® shows the absolute difference between images in Figures 4.13(a)
and 4.13(b), which is basically the blocking-artifact locations. This means that most of

the improvement in the RM S E reconstruction error is due to the block-artifact removal.

4.2.6 Quad-tree Overhead

Figure 4.14 shows the quad-tree overhead in ABC-SC for the Lena image at TQR equals
1.00 (i.e., two-class case) and 0.3 (i.e., three-class case). Figure 4.14(a) shows the quad-
tree overhead in bytes and Figure 4.14(b) shows the quad-tree overhead normalized to
the compressed image file-size. The figure shows that the maximum quad-tree overhead
is as small as 444 and 587 bytes for the two- and three-class cases at QF equals 233,
respectively. When the QF increases, the quad-tree overhead increases until it reaches its
maximum value. However, its percentage share in the compressed image file is decreasing
from about quarter of the whole compressed image file to almost zero. This means that,
at high compression ratios, the cost of determining the positions of the few significant
coefficients represents a significant portion of the compressed-image file-size. As the
compression ratio decreases, further coefficients are considered. Consequently, the cost
of determining their locations is increased. However, this cost is negligible relative to the

coefficient encoding cost.

For the sake of improving the fidelity, each pixel in this error image is multiplied by 8 before printing.
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Figure 4.13: Enhancement results for the Lena image due to the post-processing (QF =
122, TQR = 1.00, and CR = 105.07). (a) before post-processing (RMSE = 11.61); (b)
after post-processing (RMSE = 10.46); (c) absolute difference between images (a) and
(b); and (d) rate-distortion curves before and after post-processing.
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Figure 4.14: The quad-tree overhead in ABC-SC for the Lena image at TQR = 1.00 (i.e.,
two-class case) and at TQR = 0.30 (i.e., three-class case). (a) overhead in bytes and (b)
overhead normalized to the compressed file-size.

4.2.7 Execution Time

Table 4.3 shows the average amount of time in seconds required to execute ABC-SC at

TQR equals 1.00 and 0.3, SPIHT-A, SPIHT-B, JPEG, and IJPEG on a SUN Ultra 1

computer for the Lena image. These averages are calculated based on actual runs over

all QF values, in case of ABC-SC, JPEG, and IJPEG; and equivalent compression ratios,
in case of SPIHT-A and SPIHT-B.

From the table, we can conclude the following:

1. The ABC-SC compression/decompression time falls between the SPIHT-A and

SPIHT-B compression/decompression times.

2. The increase in the average compression time due to dealing with three classes,

instead of two classes, is minor (i.e., 0.151 seconds). Meanwhile, the average de-

compression time decreased by 0.031 seconds.
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Table 4.3: The average compression/decompression time (in seconds) for the Lena image.

Average ABC-SC SPIHT-A | SPIHT-B | JPEG | IJPEG
execution time | TQR =1.0 | TQR =10.3
Compression 0.919 1.070 1.253 0.763 0.109 | 0.122
Decompression 0.846 0.815 1.051 0.532 0.084 | 0.081
Enhancement 0.414 0.414

3. The enhancement time is almost half the decompression time. However, this time

always can be waived, especially at low compression ratios, where the blocking-

artifact is non-noticeable.

4. The execution time of JPEG/IJPEG is, dramatically, less by an order of magnitude,

than the execution time of the rest of the techniques.

Finally, it is worth mentioning that we have not made a major effort to reduce the

complexity or optimize the implementation of ABC-SC. In fact, we believe that ABC-

SC could be further optimized and we anticipate that its execution time could be re-

duced to a value in the vicinity of JPEG/IJPEG execution time, since both ABC-SC and

JPEG/IJPEG are DCT-based techniques. However, this needs further investigation to

support this believe.

4.3 Discussion

Based on the results reported in Section 4.2, it is clear that, in spite of the fact that

ABC-SC and the JPEG/IJPEG are both DCT-based techniques, the former consistently

outperforms the latter not only from the rate-distortion point of view, but also from

the subjective-quality point of view (i.e., having sharper edges with smoother outlook
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reconstructed images). This is true especially at high compression ratios. This is because
ABC-SC attempts to distribute the degradation over the entire image taking into account
the relative importance of the different image regions. This is accomplished by compress-
ing each region according to the amount of information it conveys to the viewer. On the
other hand, JPEG/IJPEG treats different image regions in the same manner, and lience,
distributes the degradation uniformly over the entire image.

ABC-SC moves block-based compression beyond the limits of JPEG/IJPEG. In fact,
for most testing images, the maximum compression ratio that can be achieved with ABC-
SC is, at least, twice that of IJIPEG and five times that of JPEG, with even less objective
and subjective degradations.

For all the testing images, ABC-SC produced a performance which is comparable to
the state-of-the-art wavelet compression technique from both the rate-distortion and the
subjective-quality points of view.

The execution time of ABC-SC is somewhere between the execution time of SPIHT-A
and SPIHT-B. However, we have not made a major effort yet to reduce the complexity or
optimize the implementation of ABC-SC. In fact, ABC-SC is a similar technique to the
JPEG/IJPEG technique and the latter execution time is less, by an order of magnitude,
than the execution time of ABC-SC, SPIHT-A, and SPIHT-B. Therefore, we believe that
ABC-SC has the potential to be further optimized and its execution time can be dropped
by an order of magnitude, or so, too.

ABC-SC can be considered as a multi-adaptive compression technique, where the

adaptability is achieved through the following features:

1. adaptive block-size determination, where a block-size is determined according to

the information and the activities within blocks;

2. adaptive multi-block-encoding techniques, where the encoding technique is deter-
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mined according to the information and the contents of blocks;

3. adaptive block-average prediction, where a prediction rule is chosen based on some

encoded block average local statistics;

4. adaptive arithmetic encoding, where the adaptive probability model is updated

based only on the already encoded codewords; and

5. adaptive post-processing, where the post-processing scheme used for a given block

is chosen based on its content and the contents of its surrounding blocks.
The adaptability of ABC-SC gives at least two advantages:

1. better consistent image quality, and

2. low average bit-rate for a wide variety of images.

Although the ABC-SC uses a simple segmentation criterion, which is sufficient to
identify the different block classes, it is not sensitive to errors that might occur in the
segmentation process.

While the current mechanism for scaling the quantization matrix in JPEG/IJPEG
is known not to be very good at low QF values, ABC-SC introduces another scaling
mechanism which exhibits an excellent behavior at all Q F values. This excellent behavior
of the proposed quantization mechanism—which is a group of non-linear scaling functions

of the Q F—may be attributed to:
1. the distinction between the quantization of each perceptual class of blocks, and
2. the distinction between the quantization of the DC- and the AC-coefficients.

Hence, ABC-SC can achieve very high compression ratios while maintaining a reasonable
reconstructed image fidelity. In fact, it can be stated that ABC-SC shows the capabilities
of the DCT transform more than JPEG/IJPEG.
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ABC-SC is one of very few of compression techniques which give users the ability to
adjust and control the quality of the reconstructed textural areas—independent from the
rest of the reconstructed image areas. This feature gives ABC-SC further flexibility and
controllability more than other compression techniques which deal with images, globally,
as a whole, e.g. JPEG/IJPEG and SPIHT-A/SPIHT-B.

It should be noted that:

1. there is no training of any kind and no ensemble statistics of images are required
(except the parameters adjustment which might be considered as a sort of ensemble

statistic);

2. in ABC-SC, as the QF decreases, the degradation gradually increases, rather than

making a sudden drop in quality;

3. the significance of the variable block-size is more noticeable at high compression

ratios, whereas it is almost negligible at low compression ratios;

4. while the ABC-SC parameters have been adjusted based on minimizing the RMSE
reconstruction errors, however, it had an insight about the locations of the useful,

the irrelevant, and the redundant information;

5. although ABC-SC parameters have been adjusted based on some general images,

these parameters are still valid over wider classes of images; and

6. since ABC-SC is a memoryless block technique, it is amenable to parallel processing.
Moreover, the DCT transform can be computed using fast algorithms and efficiently

implemented using Very Large Scale Integration (VLSI) techniques 75, 76, 77, 78].



Chapter 5

Concluding Remarks and Future
Work

This thesis began by showing the motivation for this work. After providing a review
of image compression techniques, the proposed compression technique was introduced
and described. The previous chapter showed the results achieved with the proposed
compression technique, as well as comparisons with other compression techniques. This
final chapter has two sections. In the first section, conclusions based on observations
made throughout this thesis, and on the previously reported results, are presented. In
the second and final section of this chapter, recommendations to further improve the

proposed compression technique are listed.

5.1 Conclusions

In this thesis, a new adaptive compression technique is proposed. Adaptability has been
incorporated into many aspects of this technique, including adaptive block-size deter-
mination, adaptive multi-block-encoding techniques, adaptive block-average prediction,

103
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adaptive arithmetic encoding, and adaptive post-processing. The proposed compression
technique also exploits one of the HVS properties, which is, recognizing images by their
regions, to get high compression ratios. Based on extensive test results and comparisons

with other existing compression techniques, the following conclusions can be made:

1. ABC-SC produces good-quality reconstructed images at both high and low bit-rates;

2. it also produces a good rate-distortion performance as well as good subjective-

quality reconstructed images;

3. in spite of the fact that ABC-SC and the JPEG/IJPEG techniques are both DCT-
based techniques, the former technique consistently exhibits a significantly better

performance than the latter, especially at high compression ratios;

4. ABC-SC moves block-based compression beyond the limits of JPEG/IJPEG—
usually, the maximum compression ratio that can be achieved with ABC-SC is,
at least, twice that of IJIPEG and five times that of JPEG, with even less objective

and subjective degradations;

5. in all of the testing cases, the ABC-SC performance is comparable to that of the
wavelet compression technique from both the rate-distortion and the subjective-

quality points of view;

6. the execution time of ABC-SC is somewhere between the execution time of SPIHT-
A and SPIHT-B, the slow and the fast versions of SPIHT. However, ABC-SC has
a potential to be further optimized so that its execution time can be reduced by an

order of magnitude or so;

7. ABC-SC provides users with the ability to give certain classes of image segments
more importance over others, so that they are less affected by the compression

process; and
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8. ABC-SC provides a good alternative to wavelet-based compression techniques, spe-

cially when adaptability to image content is of interest.

5.2 Future Work

The post-processing filtering technique introduced in this thesis is simple, efficient, and
its blocking artifact reduction is quite remarkable. However, we still believe that there is
more work to be done in this direction to further improve the overall performance.

ABC-SC classifies the segmented blocks into several perceptually distinct classes and
encodes each class separately. It uses the same DCT-based compression scheme, but
with a different bit assignment, to encode each of them. We believe that a moderate
improvement to ABC-SC could be achieved by using a specialized encoding scheme for
each class. However, a considerable effort should be made to search for such appropriate
compression schemes for each class. With this improvement, ABC-SC can become a fully
heterogeneous compression technique.

Although we have put some effort into optimizing the current implementation of ABC-
SC from an execution time point of view, some further improvements in this regard could
be realized by optimizing various modules of this technique, especially the segmentation
procedure.

The current ABC-SC implementation version does not have a progressive mode of
operation. However, it can be easily modified to handle this mode by coming up with an
efficient scheme to reorder the compressed image data to facilitate an effective progressive
mode operation.

Finally, the current ABC-SC implementation version deals only with 8-bit images. It
would be interesting to find suitable thresholding and quantization functions for color

images, hence, extending the scope of ABC-SC to deal with color images too.



Appendix A

Results of the Comparison with

JPEG /IJPEG

This appendix provides additional comparison results with the JPEG and IJPEG com-
pression techniques. Figure A.1 shows four additional testing images, namely, the Woman,
the Tulips, the Bridge, and the Man images. Figures A.2-A.13 show some supplementary
examples of decompressed images and rate-distortion curves for the Monarch, the Boats,
the Rocks, the Barbara, the Zelda, the Peppers, the Goldhill, the F16, the Woman, the
Tulips, the Bridge, and the Man images—shown in Figures 3.11 and A.1—using ABC-
SC, IJPEG, and JPEG. In addition, Table A.1 provides a summary of rate-distortion

performance for the decompressed images shown in Figures A.2-A.13.
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(c) (d)
Figure A.1: Original test images. (a) Woman; (b) Tulips (c) Bridge; and (d) Man.
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Figure A.2: ABC-SC, IJPEG, and JPEG compression results for the Monarch image.
(a) ABC-SC (QF =138, TQR = 1.00, CR = 41.04, and RMSE = 11.25); (b) JPEG
(QF = 6, CR = 40.90, and RMSE = 12.59); (c) JPEG (QF = 4, CR = 40.49, and
RMSE = 15.58); and (d) rate-distortion curves.
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Figure A.3: ABC-SC, IJPEG, and JPEG compression results for the Boats image. (a)
ABC-SC (QF = 141, TQR = 1.00, CR = 54.72, and RMSE = 10.54); (b) IJPEG
(QF = 6, CR = 54.36, and RMSE = 11.62); (c) JPEG (QF = 3, CR = 54.58, and
RMSE = 16.19); and (d) rate-distortion curves.
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Figure A.4: ABC-SC, IJPEG, and JPEG compression results for the Rocks image. (a)
ABC-SC (QF = 140, TQR = 1.00, CR = 40.91, and RMSE = 10.37); (b) JPEG
(QF = 6, CR = 40.52, and RMSE = 11.59); (c) JPEG (QF = 4, CR = 40.83, and

RMSFE =14.61); and (d) rate-distortion curves.
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Figure A.5: ABC-SC, IJPEG, and JPEG compression results for the Barbara image.
(a) ABC-SC (QF = 137, TQR = 1.00, CR = 54.53, and RMSE = 14.90); (b) DPEG
(QF = 6, CR = 54.26, and RMSE = 15.97); (c) JPEG (QF = 4, CR = 49.05, and
RMSFE =18.03); and (d) rate-distortion curves.
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Figure A.6: ABC-SC, IJPEG, and JPEG compression results for the Zelda image. (a)
ABC-SC (QF = 184, TQR = 1.00, CR = 56.91, and RMSE = 5.42); (b) IJPEG
(QF =9, CR = 55.81, and RMSE = 6.71); (c) JPEG (QF = 4, CR = 56.93, and
RMSE =10.99); and (d) rate-distortion curves.
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Figure A.7: ABC-SC, IJPEG, and JPEG compression results for the Peppers image.
(a) ABC-SC (QF = 146, TQR = 1.00, CR = 57.31, and RMSE = 8.39); (b) UPEG
(QF = 6, CR = 57.27, and RMSE = 10.10); (c) JPEG (QF = 3, CR = 54.20, and
RMSE = 14.80); and (d) rate-distortion curves.



APPENDIX A. RESULTS OF THE COMPARISON WITH JPEG/IJPEG 114

(b)

R.M.S. error

0 60 120 180 240 300 360 420 480

Compression ratio

(d)

Figure A.8: ABC-SC, IJPEG, and JPEG compression results for the Goldhill image.
(a) ABC-SC (QF = 146, TQR = 1.00, CR = 62.67, and RMSE = 10.56); (b) IJPEG
(QF = 6, CR = 61.87, and RMSE = 11.56); (c) JPEG (QF = 3, CR = 58.55, and
RMSE = 15.96); and (d) rate-distortion curves.
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Figure A.9: ABC-SC, IJPEG, and JPEG compression results for the F16 image. (a)
ABC-SC (QF = 141, TQR = 1.00, CR = 56.09, and RMSE = 9.24); (b) HPEG
(QF = 6, CR = 55.40, and RMSE = 10.73); (c) JPEG (QF = 3, CR = 53.55, and
RMSE = 16.27); and (d) rate-distortion curves.
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Figure A.10: ABC-SC, IJPEG, and JPEG compression results for the Woman image.
(a) ABC-SC (QF = 197, TQR = 1.00, CR = 64.63, and RMSE = 4.28); (b) IJPEG
(QF = 10, CR = 64.11, and RMSE = 5.40); (c) JPEG (QF = 4, CR = 60.49, and
RMSE = 9.66); and (d) rate-distortion curves.
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Figure A.11: ABC-SC, IJPEG, and JPEG compression results for the Tulips image. (a)
ABC-SC (QF = 140, TQR = 1.00, CR = 44.89, and RMSE = 10.53); (b) IJPEG
(QF = 6, CR = 44.04, and RMSE = 11.70); (c) JPEG (QF = 4, CR = 43.03, and
RMSE = 14.49); and (d) rate-distortion curves.
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Figure A.12: ABC-SC, IJPEG, and JPEG compression results for the Bridge image. (a)
ABC-SC (QF = 126, TQR = 1.00, CR = 49.98, and RMSE = 17.42); (b) JPEG
(QF = 5, CR = 47.03, and RMSE = 17.92); (c) JPEG (QF = 3, CR = 49.87, and
RMSE = 21.72); and (d) rate-distortion curves.
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Figure A.13: ABC-SC, IJPEG, and JPEG compression results for the Man image. (a)
ABC-SC (QF = 142, TQR = 1.00, CR = 54.64, and RMSE = 11.12); (b) JPEG
(QF = 6, CR = 54.08, and RMSE = 12.10); (c) JPEG (QF = 4, CR = 48.64, and
RMSE = 14.71); and (d) rate-distortion curves.
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Table A.1: A summary of rate-distortion performance for the decompressed images shown

in Figures A.2-A.13.

Compression Monarch Boats Rocks
technique CR RMSE CR | RMSE CR | RMSE
ABC-SC 41.04:1 11.25 || 54.72:1 10.54 || 40.91:1 10.37
IJPEG 40.90:1 12.59 || 54.36:1 11.62 || 40.52:1 11.59
JPEG 40.49:1 15.58 || 54.58:1 16.19 || 40.83:1 14.61
Compression Barbara Zelda Peppers
technique CR {RMSE| CR |RMSE|| CR |RMSE
ABC-SC 54.53:1 14.90 || 56.91:1 5.42 | 57.31:1 8.39
PEG 54.26:1 15.97 || 55.81:1 6.71 || 57.27:1 10.10
JPEG 49.05:1 18.03 || 56.93:1 10.99 || 54.20:1 14.80
Compression Goldhill F16 Woman
technique CR |RMSE| CR |RMSE| CR | RMSE
ABC-SC 62.67:1 10.56 || 56.09:1 9.24 || 64.63:1 4.28
IJPEG 61.87:1 11.56 || 55.40:1 10.73 || 64.11:1 5.40
JPEG 58.55:1 15.96 || 53.55:1 16.27 || 60.49:1 9.66
Compression Tulips Bridge Man
technique CR |RMSE| CR |RMS i CR | RMSFE
ABC-SC 44.89:1 10.53 || 49.98:1 17.42 | 54.64:1 11.12
UPEG 44.04:1 11.70 || 47.03:1 17.92 || 54.08:1 12.10
JPEG 43.03:1 14.49 || 49.87:1 21.72 || 48.64:1 14.71 |




Appendix B

Results of the Comparison with

SPIHT-A /SPIHT-B

This appendix provides additional comparison results with the SPIHT-A and SPIHT-A
compression techniques. Figures B.1-B.12 show some supplementary examples of de-
compressed images and rate-distortion curves for the Monarch, the Boats, the Rocks,
the Barbara, the Zelda, the Peppers, the Goldhill, the F16, the Woman, the Tulips, the
Bridge, and the Man images—shown in Figures 3.11 and A.1—using ABC-SC, SPIHT-A,
and SPIHT-B. In addition, Table B.1 provides a summary of rate-distortion performance

for the decompressed images shown in Figures B.1-B.12.
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Figure B.1: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Monarch
image. (a) ABC-SC (QF = 32, TQR = 1.00, CR = 104.03, and RMSE = 17.61);
(b) SPTHT-A (CR = 104.03, and RMSE = 14.89); (c) SPIHT-B (CR = 104.03, and
RMSE = 15.77); and (d) rate-distortion curves.
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Figure B.2: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Boats image.
(a) ABC-SC (QF =32, TQR = 1.00, CR = 212.09, and RMSE = 16.38); (b) SPIHT-A
(CR =211.92, and RMSE = 15.11); (c) SPIHT-B (CR = 212.09, and RMSE = 15.60);
and (d) rate-distortion curves.
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Figure B.3: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Rocks image.
(a) ABC-SC (QF =32, TQR =1.00, CR = 156.22, and RMSE = 17.93); (b) SPIHT-A
(CR = 156.22, and RMSE = 16.21); (c) SPIHT-B (CR = 156.22, and RMSE = 16.87);
and (d) rate-distortion curves.
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Figure B.4: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Barbara image.
(a) ABC-SC (QF =32, TQR =1.00, CR = 209.38, and RMSE = 19.28); (b) SPIHT-A
(CR = 209.38, and RMSE = 18.04); (c) SPIHT-B (CR = 209.38, and RMSE = 18.44);
and (d) rate-distortion curves.
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Figure B.5: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Zelda image.
(a) ABC-SC (QF =32, TQR =1.00, CR = 391.85, and RMSE = 11.75); (b) SPIHT-A
(CR = 391.85, and RMSE = 10.00); (c) SPIHT-B (CR = 391.85, and RMSE = 10.34);
and (d) rate-distortion curves.
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Figure B.6: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Peppers image.
(a) ABC-SC (QF =32, TQR = 1.00, CR = 188.32, and RMSE = 13.94); (b) SPIHT-A
(CR =188.32,and RMSE = 12.50); (c) SPIHT-B (CR = 188.32, and RMSE = 13.20);

and (d) rate-distortion curves.
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Figure B.7: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Goldhill image.
(a) ABC-SC (QF =32, TQR=1.00, CR = 310.23, and RMSE = 15.63); (b) SPIHT-A
(CR =310.23, and RMSE = 14.54); (c) SPIHT-B (CR = 310.23, and RMSE = 14.79);
and (d) rate-distortion curves.
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Figure B.8: ABC-SC, SPIHT-A, and SPIHT-B compression results for the F16 image.
(a) ABC-SC (QF =32, TQR =1.00, CR = 203.53, and RMSE = 15.84); (b) SPIHT-A
(CR = 203.53, and RMSE = 14.30); (c) SPIHT-B (CR = 203.53, and RMSE = 15.06);
and (d) rate-distortion curves.
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Figure B.9: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Woman image.
(a) ABC-SC (QF = 32, TQR = 1.00, CR = 422.13, and RMSE = 9.74); (b) SPIHT-A
(CR = 421.45, and RMSE = 8.25); (c) SPIHT-B (CR = 422.13, and RMSE = 8.82);
and (d) rate-distortion curves.
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Figure B.10: ABC-SC, SPTHT-A, and SPIHT-B compression results for the Tulips image.
(a) ABC-SC (QF =32, TQR = 1.00, CR = 148.78, and RMSE = 16.77); (b) SPIHT-A
(CR =148.86, and RMSE = 14.90); (c) SPIHT-B (CR = 148.78, and RMSE = 15.68);

and (d) rate-distortion curves.
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Figure B.11: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Bridge image.
(a) ABC-SC (QF =32, TQR = 1.00, CR = 156.04, and RMSE = 21.73); (b) SPIHT-A
(CR = 156.13, and RMSE = 20.71); (c) SPIHT-B (CR = 156.13, and RMSE = 21.22);
and (d) rate-distortion curves.
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Figure B.12: ABC-SC, SPIHT-A, and SPIHT-B compression results for the Man image.
(a) ABC-SC (QF = 32, TQR = 1.00, CR = 222.53, and RMSE = 16.54); (b) SPIHT-A
(CR = 222.53, and RMSE = 15.31); (c) SPIHT-B (CR = 222.34, and RMSE = 15.80);
and (d) rate-distortion curves.
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Table B.1: A summary of rate-distortion performance for the decompressed images shown

in Figures B.1-B.12.

Compression Monarch Boats Rocks
technique CR RMSE CR RMSE CR | RMSE
ABC-SC 104.03:1 17.61 || 212.09:1 16.38 || 156.22:1 17.93
SPIHT-A 104.03:1 14.89 || 211.92:1 15.11 || 156.22:1 16.21
SPIHT-B 104.03:1 15.77 || 212.09:1 15.60 || 156.22:1 16.87
Compression Barbara Zelda Peppers
technique CR RMSE CR RMSE CR | RMSE
ABC-SC 209.38:1 19.28 || 391.85:1 11.75 || 188.32:1 13.94
SPIHT-A 209.38:1 18.04 || 391.85:1 10.00 || 188.32:1 12.50
SPIHT-B 209.38:1 18.44 || 391.85:1 10.34 || 188.32:1 13.20
Compre;sion Goldhill F16 Wom:
technique CR RMSE CR RMSE I CR | RMSE
ABC-SC 310.23:1 15.63 || 203.53:1 15.84 I 422.13:1 9.74
SPIHT-A 310.23:1 14.54 || 203.53:1 14.30 || 421.45:1 8.25
SPIHT-B 310.23:1 14.79 || 203.53:1 15.06 || 422.13:1 8.82
Compression —;ulip:— Bridge ] Man
technique CR RMSE CR RMSE I CR | RMSE
ABC-SC 748.78:1 16.77 || 156.04:1 21.73 | 222.53:1 16.54
SPIHT-A 148.86:1 14.90 || 156.13:1 20.71 || 222.53:1 15.31
SPIHT-B 148.78:1 15.68 || 156.13:1 21.22 || 222.34:1 15.80
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