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Abstract 

 

Additional cognitive deficits, including impairments in spatial working memory and/or saccadic 

remapping processes, have recently been implicated in unilateral neglect – a neurological 

condition classically characterized as a disorder of attention. The interactions between saccadic 

remapping and three memory processes (position memory, object memory and object-location 

binding) were investigated in healthy young (n=27) and elderly (n=20) participants to establish a 

baseline of comparison for future use with neglect patients and to study the effects of aging on 

these processes. In a computerized task, participants were instructed to first detect a target, and 

then hold in memory either its position, identity or both over a delay period. Subsequently, 

participants were tested on their memory for that particular task. The saccadic remapping 

component was introduced at the onset of the delay period with the fixation cross shifting either 

to the left, or right, requiring participants to remap the visual array into either right or left space, 

or remaining in the centre of the screen (i.e., no remapping condition). In the position memory 

and object-location binding task, a consistent cost to memory performance was found when 

remapping right only for the young participants. Overall the elderly did not perform any of the 

tasks involving a position memory component as well as the young participants and showed 

spatial asymmetries in the target detection task. The lack of an effect of remapping in the elderly 

group may be due to a general decrement in performance. These results are discussed in terms of 

hemispheric asymmetries and cognitive theories of aging.  
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Introduction 

Unilateral neglect is a neurological condition that most commonly arises following right 

parietal damage. Classically, the disorder has been defined as a failure to orient towards or 

respond to stimuli in contralesional, left space (Danckert & Ferber, 2006; Driver & Mattingley, 

1998; Halligan & Marshall, 1993; Heilman, Watson & Valenstein, 2003). In severe cases, the 

patient may act as though the left side of space has ceased to exist (e.g., they may leave food 

uneaten on the left side of a plate, bump into objects on the left side of space, etc.; Danckert & 

Ferber, 2006). The classic conceptualization of neglect focuses on the most salient impairment – a 

deficit in spatial attention. Two interacting components have been implicated: an attentional bias 

towards ipsilesional space (Kinsbourne, 1993) and difficulty orienting away from ipsilesional 

space towards contralesional space – the so-called disengage deficit (Posner, Walker, Friedrich & 

Rafal, 1984).  

More recent models of neglect have suggested that the disorder cannot be fully explained 

by an attentional deficit (Pisella & Mattingley, 2004; Danckert & Ferber, 2006). Instead, it has 

been suggested that several component deficits, including spatial and non-spatial impairments of 

attention, poor spatial working memory and impaired saccadic remapping, comprise what may be 

more appropriately termed the “neglect syndrome” (Danckert & Ferber, 2006; Pisella & 

Mattingley, 2004). Impairments in spatial working memory (SWM) have been recently 

demonstrated on both clinical and experimental tasks. For example, on cancellation tasks, neglect 

patients may cancel targets in ipsilesional space multiple times, indicating that the patient is 

treating a previously viewed or „old‟ target, as if it were „new‟ (Parton et al., 2006; note, patients 

are often unaware they have made multiple cancellations). In addition, while there is an obvious 

spatial deficit on cancellation tasks (i.e., contralesional targets are omitted more frequently than 

ipsilesional targets) it is still true that patients often fail to cancel targets in right, putatively „non-

neglected‟ space. In experimental studies exploring SWM it has been shown that patients fail to 



2 
 

recall a relatively small number of locations over very brief delays (Malhotra et al., 2005; 

Mannan et al., 2005; Husain et al., 2001; Wojciulik, Husain, Clarke & Driver, 2001; Ferber & 

Danckert, 2006). Perhaps the most important facet of these demonstrations is that impaired SWM 

has been observed for stimuli presented in central or right space – putatively non-neglected 

regions (Malhotra et al., 2005; Ferber & Danckert, 2006).  

Re-visiting behaviour has also been observed in several studies utilizing visual search 

tasks (Husain et al., 2001; Mannan et al., 2005; Wojciulik et al., 2001). In one study, one neglect 

patients was asked to search for targets on a computer while eye movements were monitored 

(Husain et al., 2001). He was instructed to click a response button only when he was looking at a 

„new‟ (i.e., previously unexplored) target and to avoid looking at previously viewed targets. The 

patient repeatedly re-fixated previously viewed targets in right space and often failed to remember 

that he had already visited these targets (Husain et al., 2001). In contrast, healthy age-matched 

controls rarely re-fixated already viewed targets and when they did so, they infrequently 

misjudged old locations as new. Moreover, there was a positive correlation between the patient‟s 

frequency of re-visiting behaviours and the severity of his neglect based on standard clinical tests. 

This re-visiting behaviour is thought to reflect an impairment in maintaining (or updating) spatial 

locations across saccades (i.e., a SWM and/or saccadic remapping (SR) deficit). In addition, 

Wojciulik and colleagues (2001) found that neglect patients showed more neglect on a 

cancellation task in which their cancellation marks were invisible to them, forcing them to rely 

solely on SWM to remember which targets were cancelled. Again, it has been suggested that the 

combination of the lateralized deficits in spatial attention and SWM and/or SR deficits together 

result in the classic symptom of neglect – the loss of awareness for contralesional space (Husain 

et al., 2001; Danckert & Ferber, 2006; Pisella , Berberovic & Mattingley, 2004). Moreover, the 

SWM deficit may exacerbate the lateral attentional bias if patients forget that they have already 
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searched rightward targets and continually return to them, hence, contributing to the neglect of 

left space (Wojciulik et al., 2001). 

 While the studies cited above make it clear that neglect is not just a disorder of attention, 

the nature of these additional cognitive deficits is not fully understood. While the re-visiting 

behaviour may be driven by a spatial working memory deficit (i.e., an inability to keep in mind 

visited locations), it is possible that the problem may relate to a deficit in programming 

successive eye movements (Pisella & Mattingley, 2004; Duhamel, Goldberg, Fitzgibbon, Sirigu 

& Grafman, 1992; Heide, Blankenburg, Zimmermann & Kompf, 1995). Considering that many of 

the aforementioned studies use paradigms requiring multiple eye movements, it is possible that 

the observed impairments result from a deficit in remapping space as a consequence of previously 

executed saccades (i.e., saccadic remapping; Pisella & Mattingley, 2004).     

Saccadic remapping is the process of updating the internal representation of space in 

anticipation of the sensory consequences of intended eye movements (Duhamel, Colby & 

Goldberg, 1992; Colby & Goldberg, 1999). Early studies on this process come from monkey 

neurophysiology literature and have employed the double step saccade task (Duhamel, Colby et 

al., 1992). In this task, participants direct successive eye movements to two targets that are briefly 

presented one after the other and are extinguished in under 200ms thereby preventing the monkey 

from making a saccade to the first target while it is still visible. To accurately acquire both targets 

then, the monkey could employ two strategies; first, he could rely on the retinal coordinates of the 

target locations. This would lead to an erroneous saccade to the second target as the retinal 

position of that target is no longer relevant once the monkey has already executed the saccade to 

the first target. Instead, the monkey could anticipate the sensory outcomes of the first saccade and 

use this information to plan the subsequent eye movement to the second target. In other words, an 

accurate saccade to the second target cannot be based solely on retinal coordinates. This is 

precisely what the monkey does, with saccadic remapping taking into account the intended eye 
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movement to the first target (via corollary discharge) and updating the internal representation of 

space allowing for accurate programming of the saccade to the second target. The lateral 

intraparietal region (LIP) of the monkey has been implicated as the neural substrate for these 

remapping processes (Colby, Duhamel & Goldberg, 1995). Enhanced neural firing occurs in the 

LIP in anticipation of a saccade to a visual stimulus (i.e., even before the eye movement is 

initiated: pre-saccadic remapping).  

In addition to the monkey neurophysiology evidence discussed above, human patients 

with parietal lesions also demonstrate impairments in saccadic remapping (Duhamel, Goldberg, et 

al., 1992; Heide et al., 1995; Vuilleumier et al., 2007). In one study, the double step saccade task 

was performed by a patient with a right frontoparietal lesion resulting in unilateral neglect 

(Duhamel, Goldberg et al., 1992). The patient showed no impairment when the first target was 

presented in right visual space and the second target in left visual space. However, when the first 

target was presented in left, contralesional space and the second in right space, the patient never 

acquired the second target. The authors suggest that this represents an inability to anticipate the 

sensory consequences of a contralesional saccade – a process that is critical for then accurately 

updating the internal representation of space such that the second target in ipsilesional space can 

be accurately acquired. This finding has been replicated in a larger sample of patients with 

parietal lesions (Heide et al., 1995). In this study, patients with left and right parietal lesions 

demonstrated impaired saccadic remapping on the double step saccade task when the second 

saccade was presented to either hemifield, although the deficit was more marked when the first 

saccade was made to contralesional space as was the case for Duhamel, Goldberg et al.‟s (1992) 

patient, and was especially true for the right parietal group. Patients with right parietal damage 

also showed impairment when both targets were presented solely in the contralesional hemifield, 

whereas patients with left parietal damage showed no such within-hemifield impairment (Heide et 

al., 1995). Note that these deficits in remapping are independent of the impaired initiation of 
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contralesional saccades that has previously been demonstrated in neglect (Behrmann, Ghiselli-

Crippa, & Dimatteo, 2001/2002; Behrmann, Ghiselli-Crippa, Sweeney, Dimatteo, & Kass, 2002). 

Pisella and Mattingley (2004) postulate that a deficit in spatial remapping (not just 

saccadic remapping) in combination with a pathological attentional gradient favouring 

ipsilesional space, leads to the classic loss of awareness for contralesional space in neglect. In 

their model, a „salience map‟ codes and prioritizes salient or relevant stimuli in the environment, 

which may be subsequently selected for further attentional processing (i.e., brought to a conscious 

level of visual representation). This salience map is essentially an internal representation of space 

that is continually updated (i.e., remapped) to take into account changes in the environment, as 

well as overt (i.e., eye movements) and covert shifts of attention. The authors claim that visual 

space on the level of the salience map is represented contralaterally in the superior parietal lobe 

(SPL) of each hemisphere (i.e., the left SPL represents the right visual field, and vice versa) and 

that the right inferior parietal lobule (IPL) is thought to represent both the left and right visual 

fields (Corbetta, Miezin, Schulman & Petersen, 1993; Corbetta, Kincade, Ollinger, McAvoy & 

Shulman, 2000). In other words, Pisella and Mattingley (2004) posit that the right hemisphere 

maintains a salience map for the whole visual field. They claim that leftward saccades in patients 

with damage to the right parietal cortex (encompassing the IPL) will result in an „overwriting‟ of 

the salience map (i.e., a deficit in remapping) that will affect the entire visual field. This 

hypothesis is consistent with neglect patients with right-hemisphere damage showing deficits not 

limited to contralateral space (e.g., the re-visiting behaviour and omission of targets in 

cancellation tasks in ipsilesional space).  

Though many of the aforementioned studies have implicated SWM and/or SR deficits in 

neglect, the relationship between the two processes warrants further exploration. Both SWM and 

saccadic remapping involve the ability to keep in mind spatial locations of stimuli and their 

relationship to one another, however, the two processes operate on vastly different time scales 
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(milliseconds for SR and seconds to minutes for SWM). Moreover, SR processes occur in 

response to overt and covert shifts of attention in any direction, whereas SWM processes are 

enhanced by attention directed towards the to-be-remembered target location (Awh, Jonides, & 

Reuter-Lorenz, 1998). In other words, spatial attention plays a functional role in the active 

maintenance of information in SWM by directing focal shifts of attention towards the to-be-

remembered location (Smyth, 1996; Awh et al., 1998; Postle, Awh, Jonides, Smith, D‟Esposito, 

2004). In addition, SWM and spatial attention processes are subserved by a right-hemisphere 

dominant circuit of frontal and parietal sites, which are involved in the rehearsal of spatial 

information for SWM (Awh & Jonides, 2001), as well as the medial temporal lobe which is 

involved in the encoding and storage of SWM (Campo et al., 2005; O‟Keefe & Nadel, 1978).  

It may be the case that deficits in SWM and SR interact in neglect patients to exacerbate 

the disorder. Thus, it is of interest to understand how the two processes interact in healthy 

individuals and in patients with neglect. The effects of SR on SWM were investigated with 

neglect patients in a perceptual discrimination study (Vuilleumier et al., 2007). In this task, 

participants initially fixated a central cross, then directed attention to a target that was either on 

the left or right of fixation and identified whether it was green or red. A delay period followed in 

which the screen was either blank (i.e., the no remapping condition) or a single letter appeared at 

either the far-left or far-right of the screen inducing a gaze shift that would then require the initial 

target location to be remapped (i.e., rightward remapping is required following a leftward gaze 

shift and vice versa). Subsequently, a probe appeared (i.e., the previously presented coloured 

target) and participants made a SWM judgement indicating whether or not the probe was in the 

same location as the target (i.e., a same/different verbal judgement). It was found that remapping 

influenced spatial working memory in the neglect patients such that remapping left space (i.e., 

following rightward gaze shifts) resulted in large decrements in SWM performance whereas 
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remapping right space (i.e., following leftward gaze shifts) resulted in no such costs to SWM 

performance (Vuilleumier et al., 2007).   

While this study shows an interaction between SWM and SR it also contradicts previous 

work in neglect patients in that rightward (i.e., ipsilesional) gaze shifts led to the greatest 

impairment in contrast to previous demonstrations of impaired remapping following 

contralesional gaze shifts (Duhamel, Goldberg et al., 1992; Heide et al., 1995). This discrepancy 

between studies may be explained, in part, by the notion that deficits in remapping do not just 

arise due to initial saccade direction; they are also dependent on the location of the second target 

for a saccade (Heide et al., 1995; Pisella & Mattingley, 2004). Unfortunately, Vuilleumier and 

colleagues did not produce separate results for the different manipulations of initial and 

subsequent target locations making a direct comparison between the two studies impossible. In 

addition, several methodological issues make the data somewhat difficult to interpret. First, the 

task performed required a fine grained discrimination of location (targets moved only 2  of visual 

angle), making this an extremely difficult task for neglect patients to perform. Second, and 

perhaps more importantly, the task required several eye movements (and thus requiring space to 

be remapped several times within a trial commonly in opposite directions). Finally, during the 

delay in the no remapping condition participants were not instructed to fixate on any particular 

location. Therefore, one could keep their eyes fixed on the location of the initial target awaiting 

the probe to appear, thereby minimising the SWM component of the task. 

In an attempt to address some of these issues, Vasquez and Danckert (2008) explored the 

effect of SR on SWM in which the locations of targets and probes were clearly distinguishable 

and only one gaze shift was required on individual trials. This study investigated the effects of 

saccadic remapping on SWM performance in healthy, young controls (note that healthy controls 

exhibited no remapping deficits in the study by Vuilleumier and colleagues, 2007). In addition, 

this study explored both saccadic and spatial (covert) remapping processes for horizontal and 
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vertical gaze shifts. Participants initially fixated centrally with an array of five open circles 

presented around fixation. Participants were first asked to detect whether or not one of the five 

circles had a gap in it to ensure that there were no systematic perceptual biases across different 

target locations that would subsequently influence SWM performance. Targets were present for 

500 ms. After a delay of 1500 ms, a probe stimulus (i.e., a filled circle) appeared in any of the 

five previous target locations. Participants then indicated whether the probe was presented in the 

location previously occupied by the gapped circle. Saccadic remapping was introduced in some 

instances at the onset of the delay period in which the fixation cross could either remain in the 

same location (no remapping), or shift left, right, up or down (remapping conditions). Participants 

were instructed to keep their eyes fixed on the cross at all times and to re-fixate on the new 

location of the cross after a shift. A decrement to SWM performance was found when participants 

were required to remap the visual array into right space (following a leftward saccade) for both 

overt and covert shifts (there was also a cost to SWM for saccadic remapping in the downward 

direction and for upward covert remapping; Vasquez & Danckert, 2008). Thus, remapping had a 

clear directional influence on the accuracy of SWM. Hemispheric differences in spatial 

processing might account for this finding as the right hemisphere has been found to be more adept 

at processing specific metric information (i.e., position memory) than the left hemisphere (Hellige 

& Michimata, 1989; Kessels, Kappelle, de Haan & Postma, 2002; Kosslyn et al., 1989). Such 

differences might explain why remapping right space (which presumably relies on the less 

spatially adept left parietal cortex) results in a significant decrement to SWM. Moreover, 

hemispheric differences may exist in the control of attention with the right hemisphere controlling 

attention to both left and right space, whereas the left hemisphere directs attention only towards 

contralateral (right) space (Heilman & Van Den Abell, 1980; Weintraub & Mesulam, 1987).  

Vasquez and Danckert (2008) studied the effects of saccadic remapping on one particular 

type of spatial memory process, (i.e., positional memory). However, spatial memory can be 
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divided into two types of processes: memory for locations and memory for routes and paths (De 

Renzi, Faglioni & Villa, 1977). Memory for locations can be further subdivided into categorical 

spatial memory (often referred to as object-location binding) and co-ordinate spatial memory 

(commonly referred to as position memory). Object-location binding occurs through the 

association of object-identities and the positions they occupy relative to one another (i.e., the 

ability to remember the positions occupied by objects with reference to one another; Chalfonte, 

Johnson, Verfaillie & Reiss, 1996). Position memory refers to the ability to remember the specific 

metric coordinate information about a location occupied by an object (McNamara, Hardy & 

Hirtle, 1989).  

The current study sought to replicate the influence of saccadic remapping on position 

memory performance seen in healthy young participants in the Vasquez and Danckert (2008) 

study, and to extend this by examining the influence of saccadic remapping on memory for object 

identity (hereafter referred to as „object memory‟) and object-location binding. We also decided 

to investigate how position memory and these additional memory processes are affected by aging 

in a group of healthy, elderly adults. The elderly participants were also included to provide an 

age-appropriate control group for future studies with neglect patients. Moreover, it has been 

shown that older individuals have difficulty with memory for object position and object-location 

binding (Chalfonte & Johnson, 1996). These experimenters carried out separate experiments in 

young and elderly individuals to investigate how aging affects memory for feature information 

(i.e., location, color, item) and the processes responsible for binding features together. 

Participants were independently assigned to study a particular feature (location only, color only, 

or item only) or a combination of features in the bound memory condition (location and item, or 

color and item) of 30 common objects presented on a grid. Participants were informed that they 

would be subjected to a recognition test shortly thereafter. When tested on memory for particular 

features, older adults had equivalent recognition memory for items and for colours with young 
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adults, but had a disproportionate deficit in memory specifically for the feature of location. With 

regard to bound information, older adults showed poorer recognition memory than the young 

group for both bound item and location information and bound item and color information. This 

impairment in remembering bound information regardless of which features were bound together 

suggests that older adults experience difficulty in the ability to bind features together, and not in 

memory for the particular features themselves with the possible exception of position memory. 

Also, in a separate task, the elderly performed more poorly than the young adults when 

acquisition of bound information was intentional vs. incidental (at least for bound items and 

colors).   

The authors linked the poor memory for locations to age-related changes in the 

hippocampus and surrounding areas (Davis & Bernstein, 1992; Selkoe, 1992; regions implicated 

in the computation and storage of spatial location information; O‟Keefe & Nadel, 1978). 

Moreover, the authors make mention of a particular cognitive process critical to the binding 

process: reactivation. Presumably reactivation brings no longer active information back to a more 

„active state‟ through internally generated repetition and is thought to promote binding and 

strengthen already-bound features (Johnson & Hirst, 1991). The hippocampal region is also 

implicated in reactivation and, as mentioned above, has been shown to be affected by aging. 

Therefore, this might help explain elderly adults‟ impairments in memory for bound information. 

In addition, the frontal lobes have been implicated in the reactivation processing and are also 

sensitive to the effects of aging (Craik & Grady, 2002). In light of the above findings on the 

effects of aging on memory, we were interested in observing the performance of the elderly 

participants on the memory tasks in the current study.  

For the position memory task, we hypothesized that both the young and elderly groups 

would show a cost in performance when remapping right space based on the results of the study 

by Vasquez and Danckert (2008). We also expected that there would be no effect of remapping 
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on memory for objects‟ identities (i.e., object memory). This hypothesis was based on the finding 

of impaired working memory for object position but spared memory for other features of objects, 

such as colour and shape, that can be considered to be more critical to determining an object‟s 

identity in a group of patients with neglect (Pisella et al., 2004). Presumably memory for 

positions (as well as SR) relies, at least in part, on parietal structures (i.e., the dorsal visual 

stream) and memory for object identities relies predominantly on the ventral visual stream 

(Owen, Milner, Petrides & Evans, 1996; Goodale & Milner, 1992; Milner & Goodale, 2006). 

Thus, we did not anticipate any directional effects of remapping on memory for object identities. 

For the object-location binding task, we expected a decrement for remapping right space (since 

this task involves a position memory component) though to a lesser extent than the cost expected 

in the position memory task. This hypothesis is based on the possibility that in the object-location 

binding task, individuals may be capable of „bootstrapping‟ superior identity memory skills onto 

the positional components of the task to improve overall performance. We also speculated that 

performance on the position and object-location binding memory tasks may be worse for the 

elderly compared to the young group based on the research discussed above suggesting age-

related deficits in memory for spatial locations and object-location binding (Chalfonte & Johnson, 

1996).  
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Methods 

 The current study set out to examine the interactions between saccadic remapping and 

three related memory processes (i.e., position memory, object memory, and object-location 

binding) in healthy younger and older individuals.  

 

Participants 

 Twenty-seven healthy young participants (12 females; mean age=20 years, ±SD=2.18; 

range=18–26; 1 left handed) participated in this experiment. These participants were 

undergraduate students recruited from the University of Waterloo. Two participants were 

excluded from analysis for failing to follow task instructions. Twenty healthy elderly participants 

were recruited from the Waterloo Research in Aging Pool (WRAP; 15 females; mean age=69 

years, ±SD=5.31; range=61–82; 3 left handed). Two participants were excluded from analysis 

due to technical issues with the experiment resulting in unusable data. All participants had either 

normal or corrected to normal vision, were free from any neuropsychological conditions and 

provided written informed consent prior to commencing the study. Participants from the 

undergraduate population received research credit in their introductory psychology course for 

participation and WRAP participants received $10.00 in compensation for their time and 

reimbursement for any parking fees.  

Procedure 

 Participants were seated before a 15.4-inch computer screen at a distance of 

approximately 57 cm with their head placed in a chin rest. The task was designed using E-Prime 

software and ran on a Dell Optiplex GX260 computer. All stimuli were black line drawings of 

common objects (e.g., scissors, a banana) derived from a standardized set (Snodgrass 

&Vanderwart, 1980). An equal proportion of animate and inanimate objects were included in the 
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set and stimuli were sampled from a random pool across trials. Each stimulus had either the width 

or height of 162 pixels with the other side varying in size but all under 162 pixels. Each 

participant completed 30 practice trials (i.e., 10 practice trials per memory condition – position 

memory, object memory and object-location binding). Two blocks of 84 trials were allocated for 

each of the three memory conditions comprising a total of 504 experimental trials. A short break 

was provided between each block and between memory conditions. The order in which memory 

conditions were presented was randomized across participants.  

Each trial began with central fixation followed 1 s later by four target stimuli surrounding 

the fixation cross in pseudorandom locations. Participants were instructed to press a button 

labeled “YES” with their left index finger if an oddball stimulus appeared in the array or to press 

“NO” with their right index finger if an oddball was not present. Responses were made on a 

Cedrus RB-530 response pad. An oddball was defined as a red object (as it would stand out from 

the other objects in the array which were all black) and appeared on 80% of trials. As in the 

Vasquez and Danckert (2007) study, the oddball (a gapped circle in their case) was intended to 

determine whether or not there were systematic biases in perception across different regions of 

the display. That is, if participants were more accurate in detecting oddballs in left versus right 

space this would obviously have an impact on their subsequent memory performance. Thus, this 

component of the task allowed us to first determine if such biases existed and second, to control 

for the impact of biases, where they exist, on subsequent memory performance. The array of 

targets remained on screen for 1400ms during which participants indicated whether or not an 

oddball was present. Participants were also instructed to keep in mind, over a 1 s delay period, a 

certain aspect of the oddball depending on the instructions given for that particular memory task 

(i.e., its absolute position on the display screen for the position memory task, the object‟s identity 

for the object memory task, or both its position and identity for the object-location binding task). 

After the delay, a probe appeared (a randomly selected single black object) in one of sixteen 
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possible locations. Probes remained on screen until participants responded based on instructions 

they had been given earlier pertaining to a particular memory condition. Thus, in the position 

memory task, participants were instructed to determine whether or not the probe appeared in the 

same position as the oddball, regardless of its identity. In the object memory task, participants 

were instructed to determine whether or not the identity of the probe matched that of the oddball, 

regardless of its position. Finally, in the object-location binding condition, participants were 

instructed to determine whether or not the probe‟s location and identity both matched that of the 

oddball stimulus (Figure 1).  
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Figure 1. 

Schematic representation of the time course for a single trial. The control condition in which the 

fixation cross remains in the center is shown (i.e., no remapping required), along with the two 

saccadic remapping conditions. Note that remapping of the stimulus array was in the opposite 

direction to the gaze shift. Participants were asked to identify the presence of an „oddball‟ (i.e., a 

red object) and to keep in mind either the spatial location, identity or both. Following the delay, 

participants responded to a probe indicating whether it was in the same position, had the same 

identity, or both depending on the task. In this example, the probe is in the same location as the 

target but does not have the same identity.  
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The saccadic remapping component of the task was initiated at the onset of the delay 

period with the fixation cross shifting either to the left, right or remaining in the centre of the 

screen (i.e., no remapping condition). Participants were instructed to keep their eyes fixated on 

the cross at all times and to re-fixate the new location of the cross when it shifted. Eye 

movements were monitored in a subset of participants using a Canon ZR500A camcorder to 

ensure fixations were accurate throughout the task. None of the participants had any difficulty 

following the instructions to fixate in this task. 

The stimulus array was designed with certain characteristics to ensure that any effects of 

saccadic remapping on the memory tasks were not dependent on the potential effects of the initial 

eccentricity of targets. Targets positions were chosen from regions that surrounded the fixation 

point along two concentric circles (note that no actual circles existed in the stimulus array; Figure 

1). The outer rim of the first circle was 7° from fixation and the outer rim of the second circle was 

15° from fixation. This design allowed for the presentation of oddballs (i.e., red objects) to appear 

close to or further away from fixation. Thus, initial target detection served to inform us of any 

differences in perceptual ability for detecting targets based on their location (i.e., visual quadrant 

and distance from fixation) that could later affect performance on the tasks requiring a position 

memory component. The appearance of an oddball close to or further away from fixation was 

randomly distributed across trials. On trials in which the fixation point shifted at the onset of the 

delay period, the proximity of the fixation point to the location in which the target appeared (i.e., 

whether it was now closer to the target position or further away) was also randomized across 

trials. All individual stimuli subtended a visual angle that ranged from 2.19° to 6.22°. The range 

is due to the assortment of stimuli used in the study which vary in their dimensions (though recall 

the constraint of at least one side of the stimulus measuring 162 pixels; Figure 2). 
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Figure 2. 

Examples of stimuli: a) two inanimate objects and b) two animate objects. The first of each pair is 

longer than it is wide, the second of each is wider than it is long. 

a) Inanimate objects 

         

b) Animate objects 
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The four stimuli could appear in sixteen possible locations on the screen with the 

constraint that each quadrant must occupy one stimulus. The fixation cross would remain in the 

centre of the screen or shift to the left or right an equal number of times (56 trials each per 

memory task). When the fixation cross shifted left or right the visual angle of the displacement 

was 16.2°. Probes occupied the same location as the previously presented oddball (i.e., the target) 

on 50% of trials, had the same object identity on 50% of trials, and were in both the same location 

and of the same identity as the oddball in 25% of trials. Instructions explicitly pertaining to each 

memory task were provided prior to the initiation of each block of trials for that task. 

Data Analysis 

First, we investigated the accuracy with which participants were able to detect the target 

(i.e., the oddball) based on its location in the array (prior to any memory component of the task). 

This was carried out using an omnibus mixed ANOVA with the between-subjects factor of group 

(young, old) and within-subject factors of distance from fixation (near, far) and visual quadrant 

(lower right, upper right, upper left, lower left). Subsequently, responses to the probe stimulus 

were examined to assess performance in the memory tasks (i.e., position memory, object memory 

and object-location binding). Accuracy scores were calculated by subtracting the proportion of 

false alarms (e.g., in the position memory task, indicating that the probe was in the same position 

as the target when it was not) from the proportion of hits (e.g., accurately indicating that the probe 

was in the same position as the target). Accuracy scores were compiled for each individual for 

each of the three memory tasks from which group means were calculated. Separate mixed 2 x 3 

ANOVAs were carried out for each memory task with the between-subjects factor of group 

(young, elderly) and the within-subjects factor of remapping direction (remapping right, no 

remapping, remapping left). In addition, the current design allowed for further analysis of 

performance related to the irrelevant stimulus attribute. That is, when performing a position 

memory task, the probe stimulus had the same identity as the oddball on half the trials in which 
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the probe was presented at the same location. Thus, we could explore whether or not memory 

performance was improved for position memory when the object‟s identity, although irrelevant to 

the task, was also the same (and vice versa for the object memory condition). This was assessed 

for both the position memory and the object memory tasks by calculating accuracy scores 

(number of hits out of total number of possible hits for trials in which the target and probe 

matched vs. mismatched on the irrelevant attribute) in the remapping right and remapping left 

conditions. Paired t-tests were then used comparing accuracy in the matched vs. mismatched trials 

for remapping right and remapping left. Performance on the three memory tasks was only 

analyzed for trials in which the oddball had been accurately detected. 
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Results 

Oddball Detection 

A 2 (group; old vs. young) x 2 (distance from fixation; near vs. far) x 4 (quadrant; upper 

left, upper right, lower left, lower right) mixed ANOVA showed a main effect for distance from 

fixation with both groups demonstrating more accurate target detection in locations near (M=.97, 

SD=.01) vs. far (M=.94, SD=.01) from fixation (F(1,41)=86.37, p<.001; see Table 1a for group 

means). This result yielded a large effect size (1.28) as calculated by Cohen‟s D. While there was 

no main effect of group (F(1, 41)=1.91, p=.18), a significant main effect of quadrant (F(2.14, 

87.92)=8.20, p<.001) was subsumed by a significant group by quadrant interaction (F(2.14, 

87.92)=3.87, p<.05).  

To investigate the interaction, a simple repeated measures ANOVA was conducted for 

each group separately. The analysis for the young participants yielded no significant effect of 

visual quadrant on accuracy in target detection (F(3, 72)=2.01, p=.12). For the elderly group, 

there was a significant effect of quadrant (F(3, 51)=5.76, p<.01) with pairwise contrasts revealing 

enhanced target detection in the upper left vs. upper right quadrant and the lower left vs. lower 

right quadrant (Table 1b). A paired t-test comparing difference scores between the upper left vs. 

upper right quadrant contrast and the lower left vs. lower right quadrant contrast found no 

significant difference (t(17)=.408, p=.69). Thus, while the elderly clearly show a left hemifield 

advantage for oddball detection (t(17)=3.29, p=.01), they did not show a difference in target 

detection accuracy between upper and lower space. Finally, the upper left vs. upper right quadrant 

contrast showed a large effect size (.89) and the lower left vs. lower right quadrant contrast 

showed a more moderate effect size (.52) as calculated by Cohen‟s D.  
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Table 1. 

Comparison of mean accuracy % (±S.D.) for detection of an oddball a) close to (near) and further 

away from (far) fixation and b) between the four visual quadrants. 

a) 

 

 

 

 

b) 

Quadrant 

Comparison 

Group 

Young Elderly 

Upper right .969(.02) .931 (.09) 

Lower right .963 (.03) .928 (.11) 

p-value .323 .611 

Upper left  .975 (.02) .959 (.08) 

Lower left .969 (.02) .962 (.06) 

p-value .150 .748 

Upper right .969(.02) .931 (.09) 

Upper left .975 (.02) .959 (.08) 

p-value .212 .002 

Lower right .963 (.03) .928 (.11) 

Lower left .969 (.02) .962 (.06) 

p-value .315 .041 

Overall 

(whole display) 

.969 (.005) .945 (.02) 

Note: Two comparisons are not presented in this table –upper left vs. lower right and upper right 

vs. lower left – because they were not considered meaningful. 

 

Target Location Group 

Young Elderly 

Near .984 (.02) .961 (.07) 

Far .956 (.02) .931 (.09) 

p-value .000 .000 

Target Location Group 

Young Elderly 

Near .984 (.02) .961 (.07) 

Far .956 (.02) .931 (.09) 

p-value .000 .000 
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We compared the lateral asymmetry discovered in the elderly group directly with the 

young group via difference scores. Difference scores were calculated for the upper left vs. upper 

right quadrant contrast (i.e., upper left – upper right accuracy scores) and the lower left vs. lower 

right quadrant contrast (i.e., lower left – lower right accuracy scores) for both groups and were 

then analyzed using independent samples t-tests. No difference was found between groups for the 

lower quadrant difference scores (t(20.83)=-1.75, p=.10). In contrast, a significant difference 

between groups was found for the upper quadrant comparison, (t(41)=-2.61, p<.05), with elderly 

participants showing an upper left quadrant advantage for target detection compared to the upper 

right quadrant, whereas no such difference was found in the young controls. Moreover, when 

performance on the left side of the display (collapsed across upper and lower space) was 

compared to performance on the right side, elderly individuals showed a significantly larger 

hemispheric asymmetry than the young group with enhanced target detection in left vs. right 

space (t(20.49)=-2.55, p<.05). 

Order Effects 

We examined whether the order in which memory tasks were presented to participants 

had an effect on performance and found that order had no effect on accuracy in the position 

memory task (F(2, 22)=.83, p=.45), the object memory task (F(2, 21)=1.39, p=.27) and the 

object-location binding task (F(2, 22)=1.03, p=.38) in the young group. Order also had no effect 

on memory performance in the elderly group (position memory, (F(2, 14)=.53, p=.60), object 

memory (F(2, 14)=.03, p=.97), and object-location binding, (F(2, 15)=.023, p=.98)).  

 

Position Memory Analysis 

Position memory was initially analyzed in the no remapping condition to determine 

whether there were any biases in memory performance relative to the position of the to-be-

remembered target. Repeated measures ANOVA examined position memory in each of the four 
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quadrants and found no significant differences in the young group (F(3, 72)=.034, p=.99), and a 

trend for a significant effect in the elderly group, (F(3, 48)=2.62, p=.06). This trend was 

examined using paired t-tests with Bonferroni corrections accounting for the number of 

comparisons made setting alpha at .05/4 = .0125. These analyses revealed no significant effect of 

quadrant on positional memory in the no remapping condition for the elderly group (Table 2). 

Thus, despite the fact that oddballs themselves were detected slightly more accurately when they 

appeared closer to fixation (and in left space for the elderly participants), this did not lead to any 

inherent biases in subsequent position memory performance.  
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Table 2. 

Between-quadrant comparison of the elderly group‟s mean accuracy % (±S.D.) in the no 

remapping condition of the position memory task.  

Quadrant Comparison 

  

Upper right .766 (.15) 

Lower right .790 (.23) 

p-value .731 

Upper left  .887 (.15) 

Lower left .880 (.16) 

p-value .865 

Upper right .766 (.15) 

Upper left .887 (.15) 

p-value .048 

Lower right 790 (.23) 

Lower left .880 (.16) 

p-value .124 

Note: Two comparisons are not presented in this table –upper left vs. lower right and upper right 

vs. lower left – because they were not considered meaningful. 

α = .05/4 = .0125 
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An omnibus 2 x 3 mixed repeated measures ANOVA examined the effect of group 

(young, elderly) and saccadic remapping direction (remap left, no remapping, remap right) on 

position memory performance. Note that the direction of remapping is opposite to that of the 

direction in which the fixation cross was shifted. For example, in the remapping right condition, 

the fixation cross was shifted to the left requiring the participant to remap the visual array into 

right space. This analysis revealed a trend for a group effect with a higher position memory 

accuracy score in the young group (M=.84, SE=.02) than the elderly group (M=.78, SE=.02; F(1, 

40)=3.13, p=.085). A main effect of remapping (F(2, 80)=5.41, p<.01) was found with paired t-

tests collapsed across group showing a higher position memory accuracy score in the no 

remapping condition (M=.86, SD=.11) compared to both the right (M=.78, SD=.13) and left 

remapping conditions (M=.81, SD=.14; t(41)=-3.44, p<.01, and, t(41)=-2.27, p<.05, respectively). 

Difference scores were calculated (i.e., no remapping condition minus the remapping condition of 

interest) and paired t-tests were ran between the two difference scores so that the direct cost 

associated with each remapping direction could be compared. There was no difference in the cost 

to position memory performance when remapping right vs. remapping left (t(41)=1.37, p=.18). 

No interaction was found between remapping and group (F(2, 80)=.47, p=.62).  

 

Within-Group Analyses 

 The trend above towards a main effect of group warranted further investigation of each 

group separately. 

Young Controls 

 Repeated measures ANOVA was carried out with the factor of saccadic remapping 

direction (no remapping, remap right, remap left). A significant effect of remapping direction was 

found, (F(2, 48)=6.60, p<.01) with a cost to memory performance in the remapping right 
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condition relative to the no remapping condition (t(24)=-3.46, p<.01; Figure 3). Pairwise t-tests 

revealed a trend for a significant cost in memory for positions in the remapping left vs. no 

remapping condition, (t(24)=2.01, p=.06). A paired samples t-test between the costs of each 

specific remapping direction (i.e., difference scores calculated by subtracting the remapping 

condition of interest from the no remapping condition) on position memory performance revealed 

a trend for a greater cost associated with remapping right vs. remapping left (t(24)=1.73, p=.09).  

 

Elderly Controls 

The same analysis for the elderly controls yielded no significant effect of remapping 

direction on position memory performance, (F(2, 32)=1.02, p=.37; Figure 3).  

 

Between-Group Post-hoc Tests 

We ran post-hoc independent samples t-tests between the young and elderly groups to 

examine whether there were age differences in position memory performance in any of the 

remapping conditions (though we were primarily interested in determining whether there were 

any age differences in position memory performance independent of remapping (i.e., in the no 

remapping condition) since older adults have been known to perform more poorly than young 

adults in tests of spatial memory; Chalfonte & Johnson, 1996). Bonferroni corrections accounting 

for the number of comparisons made set alpha at 0.05/5 = .01. These t-tests were not significant 

(remap left, t(40)=1.43, p=.16; remap right t(24.06)=.625, p=.54) however, there was a trend for a 

higher position memory accuracy score in the no remapping condition for the young group 

(M=.88, SD=.09) compared to the elderly group (M=.82, SD=.13; t(40)=1.978, p=.06; Figure 3).  
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Figure 3. 

Mean accuracy (±SE) in young (black bars) and elderly (grey bars) participants as a function of 

remapping direction. † represents a significant difference between conditions at p < .01. 
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It is of interest to note that Levene‟s test for equality of variances was significant between 

groups for position memory when remapping right (p<.01). In this case, the elderly group showed 

more variability in terms of mean standard deviation than the young group (.162 vs. 098 for 

elderly versus young respectively). We also examined whether the directional costs of saccadic 

remapping for position memory (i.e., difference scores calculated by subtracting the remapping 

condition of interest from the no remapping condition) were significantly different between age 

groups. There was no difference between young and elderly adults in the costs to position 

memory performance associated with remapping right (t(40)=.882, p=.38) and remapping left 

(t(40)=.145, p=.89; Figure 4).  
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Figure 4. 

Remapping cost represented as difference scores for position memory accuracy contrasting 

remapping right and left each with the no remapping condition. A difference score approaching 

zero indicates no significant cost to position memory performance.  The schematic below the data 

illustrates the method used to calculate each cost. 
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Matching on the Irrelevant Attribute 

Young Controls 

Next we explored whether participants had a higher position memory accuracy score in 

trials in which the probe matched the target in position and on the irrelevant attribute (i.e., object 

identity) compared to trials in which the target and probe matched in terms of position only (i.e., 

the probe was mismatched on the irrelevant attribute). Paired t-tests for the remapping right 

condition revealed a significantly higher accuracy score in trials in which probes matched the 

target on the irrelevant attribute (i.e., identity) compared to trials in which probes differed on the 

irrelevant attribute, (t(24)=3.17, p<.01), however no significant difference was found when 

participants were required to remap left, (t(24)=1.53, p=.14; Figure 5). A t-test between 

remapping right and remapping left when identity did not match revealed higher accuracy scores 

in position memory performance for remapping left, (t(24)=-2.50, p<.05) but no such difference 

was found between remapping conditions when target and probe matched on the irrelevant 

attribute, (t(24)=-.469, p=.64). This analysis suggests that remapping left does not incur a 

significant decrement to SWM performance when the probe and target are not matched on the 

irrelevant dimension. In contrast, when remapping right, performance is enhanced when the probe 

matches the target on the irrelevant condition.  

 

Elderly Controls 

As with the young group, target-probe matching on the irrelevant attribute was examined 

to determine whether a boost in accuracy occurs when the position and identities are matched 

compared to when the same position is occupied but identities mismatch. Paired t-tests revealed 

significantly higher accuracy scores in the matched vs. mismatched trials in both the remapping 

right (t(16)=2.94, p<.05) and remapping left (t(16)=5.03, p<.001) conditions (Figure 5). 



31 
 

Figure 5. 

Effect of matching on the irrelevant feature (i.e., identity) on position memory performance in 

young and elderly participants in the a) remapping right condition and b) remapping left 

condition. Same position, same identity = matching; same position, different identity = 

mismatching. Performance is measured as an accuracy score by dividing the number of hits for a 

specific scenario (e.g., when the target and probe matched in object identity) by the total number 

of possible hits one could have made for that particular scenario.* represents a significant 

difference at p < .05, and † represents a significant difference at p < .01. 
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b) 
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Object Memory Analysis 

 Object memory was initially analyzed in the no remapping condition to determine 

whether there were any biases in memory performance relative to the position of the to-be-

remembered target. Repeated measures ANOVA examined object memory in each of the four 

quadrants and found no significant differences in the young group (F(1.67, 38.32)=1.27, p=.29) 

and the elderly group (F(2.13, 34.01)=.93, p=.41). 

A 2 (group; young vs. elderly) x 3 (remapping condition; remap right, no remap vs. 

remap left) repeated measures mixed ANOVA showed no main effects of group (F(1, 39)=.11, 

p=.74) or remapping (F(2, 78)=.60, p=.55), and no interaction between group and remapping 

(F(2, 78)=.18, p=.83). Nevertheless, the mean accuracy scores for both groups are presented in 

Figure 6.  
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Figure 6. 

Mean accuracy (± SE)  performance in young (black bars) and elderly (grey bars) participants as a 

function of remapping direction.  
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Matching on the Irrelevant Attribute 

Young Controls 

As with the position memory task, we examined whether accuracy was higher when the 

target and probe matched in terms of identity and position vs. when the identities were the same 

but the positions differed. Paired t-tests revealed a significantly higher accuracy score when the 

irrelevant feature was matched vs. mismatched between target and probe for remapping right 

(t(23)=2.76, p<.05), and a trend in the same direction was found for remapping left (t(23)=1.74, 

p=.10; Figure 7).  

 

Elderly Controls 

Paired t-tests revealed significantly higher accuracy scores in the matched vs. 

mismatched trials in both the remapping right (t(16)=2.35, p<.05) and remapping left (t(16)=2.36, 

p<.001) conditions (Figure 7). 
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Figure 7. 

Effect of target-probe matching on the irrelevant feature (i.e., position) on object memory 

performance in young and healthy participants in a) remapping right condition and b) remapping 

left condition. Same position, same identity = matching; different position, same identity = 

mismatching. Performance is measured as an accuracy score by dividing the number of hits for a 

specific scenario (e.g., when there was target-probe matching) by the total number of possible hits 

one could have made for that particular scenario.* represents a significant difference at p < .05. 
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b) 
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Object-Location Binding Task 

 Memory for both object identity and object location was initially analyzed in the no 

remapping condition to determine whether there were any biases in memory performance relative 

to the position of the to-be-remembered target. Repeated measures ANOVA examined memory 

performance in each of the four quadrants and found no significant differences in the young group 

(F(2.11, 50.64)=1.62, p=.21) and in the elderly group (F(1.39, 23.56)=.48, p=.56). 

 A 2 (group; young vs. elderly) x 3 (remapping condition; remap right, remap left and no 

remapping) repeated measures mixed ANOVA showed a significant main effect of remapping 

(F(1.45, 59.51)=4.99, p<.05), with paired t-tests collapsed across groups revealing a greater cost 

associated with remapping right (M=.83, SD=.17) compared to the no remapping condition 

(M=.91, SD=.10; (t(42)=-2.84, p<.01) and a trend in the same direction when remapping right 

was compared to remapping left (M=.86, SD=.16; t(42)=1.73, p=.09). No main effect was found 

for group (F(1, 41)=1.43, p=.24) and the interaction between group and remapping was not 

significant (F(1.45, 59.51)=.09, p=.86). However, since the young group showed a decrement for 

remapping right compared to no remapping in the position memory task discussed above, and 

because we had hypothesized a priori that the position aspect of the object-location binding task 

might result in a decrement for remapping right, we decided to examine the effects of remapping 

within-group. 

 

Within-Group Analyses 

Young Controls 

A repeated measures ANOVA with the three levels of saccadic remapping (no 

remapping, remap right, remap left) revealed a significant effect of remapping, (F(2, 48)=7.59, 

p<.01; Figure 8). Paired samples t-tests showed a significant decrement in performance for both 
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remapping right and remapping left when each were compared to the no remapping condition 

(t(24)=-4.02, p<.01 and t(24)=-2.10, p<.05 respectively). A pairwise t-test comparing difference 

scores (i.e., the remapping direction of interest subtracted from the no remapping condition) 

revealed a trend for a greater cost to memory performance for remapping right vs. remapping left, 

(t(24)=1.73, p=.096).  

Elderly Controls 

The same analysis carried out in the elderly control group found no significant effect of  

remapping (F(1.24, 21.09)=1.28, p=.28; Figure 8). 
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Figure 8. 

Mean accuracy (±SE) in young (black bars) and elderly (grey bars) participants as a function of 

remapping direction. * represents a significant difference between conditions at p < .05, and † 

represents a significant difference at p < .01. 
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Between-Group Post-hoc Tests 

We ran post-hoc independent samples t-tests between the young and elderly groups to 

examine whether there were age differences in object-location binding performance in any of the 

remapping conditions (though we were primarily interested in determining whether there were 

any age differences in memory for bound information independent of remapping (i.e., in the no 

remapping condition) since older adults have been known to perform more poorly than young 

adults when tested on memory for bound information; Chalfonte & Johnson, 1996). Bonferroni 

corrections accounting for the number of comparisons made set alpha at 0.05/5 = .01. These t-

tests were not significant (remap left, t(41)=1.10, p=.30, remap right, t(41)=.76, p=.32, no remap, 

t(25.67)=1.03, p=.31). However, it is notable that Levene‟s test for equality of variances was 

significant between groups for object-location binding memory performance when no remapping 

was required (p<.05). In this case, the elderly group showed more variability in terms of mean 

standard deviation than the young group (.073 vs. .122 for young versus old respectively). To 

assess differences in performance between groups, independent samples t-tests were conducted 

using difference scores. Difference scores were derived by subtracting accuracy in the remapping 

condition of interest from accuracy in the no remapping condition (i.e., no remapping – remap 

right, and no remapping – remap left). The analysis showed no difference between young and 

elderly controls in the remap right (t(41)=-1.09, p=.91) and remap left conditions (t(41)=-.349, 

p=.73; Figure 9).  
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Figure 9. 

Remapping costs represented as difference scores for object-location binding accuracy 

contrasting remapping right and left each with the no remapping condition. A difference score 

approaching zero indicates no significant cost to object-location binding performance.  The 

schematic below the data illustrates the method used to calculate each cost. 
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Finally, we decided to test the hypothesis that performance in the object-location binding 

task will result in less of a cost to memory in the remapping right condition compared to the 

position memory task since participants might be able to benefit from bootstrapping the identity 

memory processes onto the position memory system. Paired t-tests revealed no significant 

difference in the young group (t(24)=.58, p=.57) and in the elderly group (t(16)=-.60, p=.56). 
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Discussion 

The current experiment found a consistent effect of saccadic remapping only in tasks that 

involved a positional memory component. Specifically, the influence of saccadic remapping on 

position memory and object-location binding in young adults revealed that remapping the target 

array towards right space incurs a cost to memory performance (Figures 3 and 8). These effects 

were largely absent in the healthy elderly group although in general, the elderly did not perform 

any of the tasks involving a position memory component as well as the younger participants and 

also demonstrated spatial asymmetries in the target detection task suggesting that the lack of an 

effect of saccadic remapping on SWM may be due to a general decrement in performance in this 

group (note: in addition, the elderly tended to be more variable and demonstrated smaller effect 

sizes than the younger controls). Several aspects of the results warrant further discussion. 

 

Oddball Detection 

Target detection was better in both groups for near versus far targets. However, overall 

target detection across the display was quite high for both groups (i.e., greater than 92% accuracy 

in all conditions; Table 1). Whereas the young group showed no effect of visual quadrant on 

target detection, the elderly were better at detecting targets on the left vs. right side of the display. 

This asymmetry could be accounted for by the right-hemisphere‟s dominance for spatial 

attentional processes. Across a variety of studies and methodologies, the right hemisphere has 

been shown to direct attention to both the left and right visual fields, whereas the left hemisphere 

modulates attention only in right space (Corbetta et al., 1993; Mesulam, 1999; Gitelman et al., 

1999; Mesulam, 1981; Kim et al., 1999). Thus, right hemisphere specialization for attention may 

explain, at least in part, the left hemifield advantage in target detection seen in the elderly. 

Although not significant, the elderly participants had lower oddball detection accuracy in all 

conditions when compared with the younger participants (Table 1). It may be the case then that 
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the younger participants were performing at ceiling on this component of the task thereby 

masking any asymmetries in performance. In contrast, the elderly participants revealed an 

asymmetry in the context of slightly worse overall performance (Table 1).  

Although there was no significant difference in target detection accuracy between upper 

and lower space in the elderly participants, it is noteworthy that a large effect size was found for 

the contrast between left and right quadrants in upper space (.89 vs. .52 for the contrasts between 

left and right in upper and lower space respectively). In other words, the left-right asymmetry 

evident in elderly participants was strongest in upper space. This finding may be best understood 

in the context of Previc‟s (1990, 1998) neuropsychological model of three-dimensional space. 

This model posits that different brain regions are specialized for processing information in 

specific regions of space, or more importantly, these regions show distinct functional 

specialisation. The ventral visual stream (from primary visual cortex to inferotemporal cortex) is 

known to support conscious visual perception (Milner & Goodale, 2006) and in Previc‟s model is 

thought to demonstrate a preference for processing information in extrapersonal (far) space such 

that processes such as visual search and visual memory have been shown to be superior in upper 

visual space – an analogue of far, extrapersonal space (e.g., Previc & Intraub, 1997). In contrast, 

the dorsal visual stream (from primary visual cortex to posterior parietal cortex; Milner & 

Goodale, 2006) is specialized for the control of visually guided actions and has been shown to 

demonstrate a bias towards processing information in peripersonal (near) space (Danckert & 

Goodale, 2001, 2003). Remembering spatial locations in the current experiment bears some 

similarities to visual search tasks and may therefore employ some of the same neural substrates 

purported to be more efficiently executed in extrapersonal (far) space
1
. In light of this, the large 

effect size of the upper left vs. upper right contrast in the elderly group may reflect an influence 

of the evolved specialization of the ventral visual stream for enhanced visual processing in upper 

                                                           
1 In the current study, upper visual space serves as an imperfect analogue to extrapersonal space. 
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visual space. Once again, the lack of any such asymmetry in the younger group may simply 

reflect the fact that they were performing at ceiling to begin with. It is perhaps worth noting, 

however, that the young group shows the same direction of effects that were significant in the 

elderly in all instances (i.e., higher accuracy for left versus right space and higher accuracy for 

upper vs. lower space; Table 1).    

 

Memory Tasks 

In the young group we replicated the earlier results of Vasquez and Danckert (2008) such 

that there was a significant cost in position memory performance when remapping right space 

compared to the no remapping condition (Figure 3). Hemispheric differences in the ability to 

process spatial information may account, at least in part, for such findings. Several studies have 

demonstrated more efficient processing of metric information (i.e., specific, coordinate-based 

information about distance and direction) by the right hemisphere compared to the left (Hellige & 

Michimata, 1989; Kessels et al., 2002; Kosslyn et al., 1989). As mentioned above, the right 

hemisphere has also been shown to be dominant for spatial attention (Corbetta et al., 1993; 

Mesulam, 1981). These hemispheric asymmetries may explain the decrement in position memory 

for remapping right space, given that this condition presumably relies on the less spatially adept 

left hemisphere structures.  

As expected, remapping had no influence on young participants‟ ability to remember 

object identities. Recall that in the change-detection study, by Pisella and colleagues (2004), for 

neglect patients working memory for an object‟s color and shape were spared whereas memory 

for object locations was impaired. It is likely then that the recall of object identities, independent 

of space, relies on the ventral visual stream whereas the position memory and SR tasks likely rely 

more so on the dorsal visual stream (Owen et al., 1996). Since the object-location binding task 

also involved a position memory component, we were not surprised to see a cost to memory 
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performance when remapping right space was required in this task. That is, although object 

memory appears to suffer no consequences from saccadic remapping, when location is bound to 

identity the same costs found in location memory alone are observed (Figures 3 and 8). This can 

be seen in the fact that there was no difference in terms of cost to position memory from 

remapping right space in the position memory and object-location binding tasks. It seems then 

that rather than „bootstrapping‟ onto the success (in terms of no SR cost) of object identity 

processes, position memory processes instead dominate in this task leading to the same costs 

observed when only position memory is tested.  

We also examined the interaction between saccadic remapping processes and the three 

memory tasks (position memory, object memory, and object-location binding) in a group of 

elderly individuals to explore how these processes are affected by aging. No significant effect of 

remapping was found in any of the memory tasks for the elderly group (Figs. 3, 6 and 8). It may 

be the case that the lack of a significant effect of remapping was due to the large between-subject 

variability in the elderly group‟s data compared with the younger group. This was certainly the 

case in the position memory task. In the object-location binding task, the elderly were 

significantly more variable (p < .05) than the young group in terms of mean standard deviations 

in the no remapping condition (.12 vs. .07 for the elderly and young groups respectively). No 

such differences in variability were found between groups in the object memory task. It appears 

then that there is a tendency for the elderly group to show more variability than the young group 

in the tasks involving a position memory component. Considering that age has a detrimental 

effect on position memory and object-location binding performance (Chalfonte & Johnson, 1996), 

the increased variability in the elderly in these tasks is not particularly surprising. To examine this 

further, we correlated age and accuracy in the no remapping condition for the elderly group in 

both the position memory and object-location binding tasks. The correlations between age and 

accuracy were not significant in either task, though a trend was found in the position memory task 
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(r = -.415, p = .098; object-location binding task r = -.210, p = .402). Despite the lack of 

significance, it is interesting to note that both correlations were negative suggesting that as age 

increases performance on the two tasks decreases.  

When examining differences between the young and the elderly groups in performance 

on each memory task when remapping was not required (i.e., in the no remapping condition), we 

did not find any significant differences. However, we did find a trend toward better position 

memory performance in the young group compared to the elderly group. This trend coincides 

with previous work in which elderly adults, compared to young adults, showed deficiency in 

remembering the locations of objects in space (Chalfonte & Johnson, 1996, but see Olson et al., 

2004). Moreover, it has been found that elderly adults perform more poorly on memory tests for 

bound information compared to young adults, (Chalfonte & Johnson, 1996; Mitchell, Johnson, 

Raye, Mather & D‟Esposito, 2000). Although the elderly performed more poorly on the object-

location binding memory task than the young group, this difference was not statistically 

significant. 

Alternatively, the lack of a remapping effect on memory performance in the elderly may 

be due to hemispheric changes in the brain as a result of aging (Cabeza, 2002). Behavioural 

studies have revealed that the cerebral hemispheres age in different ways with more obvious 

impairments for right-hemisphere dominant skills (Goldstein & Shelly, 1981; Cherry, Adamson, 

Duclos & Hellige, 2005). In other words, the right hemisphere is more sensitive to the detrimental 

effects of aging than the left hemisphere (Daselaar & Cabeza, 2005). Moreover, research suggests 

that lateral asymmetries in a variety of domains diminish with age (e.g., right hand dominance, 

Kalisch, Wilimzig, Kleibel, Tegenthoff & Dinse, 2006; episodic memory, Cabeza, Grady, et al., 

1997; sensorimotor processing, Grady et al., 2000; inhibition, Nielson, Langenecker & Garavan, 

2002). For example, in a positron emission tomography (PET) study investigating spatial working 

memory, Reuter-Lorenz and colleagues (2000) found that older adults showed a pattern of 
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anterior bilateral frontal lobe activation whereas young adults demonstrated more lateralized 

activation in the right anterior frontal regions. Assuming that spatial working memory and 

saccadic remapping processes are controlled largely by right hemisphere structures, right-

hemisphere aging and/or the decreased lateralization of these functions may explain the lack of a 

directional remapping effect on position memory in our elderly group (but see Meadmore, Dror & 

Bucks, 2009 for evidence of preserved spatial processing asymmetries with age).   

In the current study we also examined whether performance in a particular memory task 

was boosted when additional, though irrelevant, information was matched between the target and 

the probe (e.g., in the position memory task, were participants better at remembering the position 

of targets when the target and probe also matched in terms of identity?). In the position memory 

task, the young group exhibited a benefit in position memory performance when the probe and 

target were also the same object, however this only occurred for remapping right space (Figure 5). 

It appears then that the benefit of bootstrapping the additional object-identity information onto the 

position information only emerged when participants actually needed the aid (i.e., in the 

remapping right condition where a cost to position memory was incurred). In the object memory 

task, memory was improved when the target and probe were also in the same position, but again 

only for remapping right space (Figure 7). The elderly group exhibited a benefit from target-probe 

matching on the irrelevant stimulus in both the position memory and identity memory tasks for 

both left and right remapping conditions. Because this group was slightly less accurate in memory 

performance than the young group (Table 3), they may have needed to make use of the additional 

information in both remapping conditions to improve performance.  
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Table 3. 

Hits and false alarm data for all tasks and conditions. 

Position Memory Task                

 

Object Memory Task 

 

 

 

 

 

 

                           Young Participants                                    Elderly Participants 

 Hits False 

Alarms 

 Hits False 

Alarms 

Remap 

Right 

.88 (.08) .09 (.06)  .86 (.14) .09 (.07) 

No 

Remapping 

.94 (.06) .06 (.06)  .90 (.09) .09 (.09) 

Remap Left .92 (.08) 

 

.08 (.06)  .86 (.10) .08 (.10) 

                               Young Participants                                Elderly Participants 

 Hits False 

Alarms 

 Hits False 

Alarms 

Remap 

Right 

.91 (.10) .06 (.04)  .93 (.08) .06 (.06) 

No 

Remapping 

.96 (.06) .04 (.03)  .95 (.10) .06 (.06) 

Remap Left .92 (.09) .04 (.04)  .93 (.09) .05 (.04) 
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Object-Location Binding Task 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Young Participants                                     Elderly Participants 

 Hits False 

Alarms 

 Hits False 

Alarms 

Remap 

Right 

.93 (.07) .02 (.04)  .94 (.06) .03 (.06) 

No 

Remapping 

.93 (.07) .04 (.06)  .94 (.07) .05 (.07) 

Remap Left .93 (.09) .04 (.06)  .93 (.09) .02 (.05) 
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In conclusion, the current study replicated an effect of remapping on position memory 

such that there was a cost to position memory performance when remapping right space (Vasquez 

& Danckert, 2008). No such costs were observed in an elderly group perhaps due to diminished 

lateralisation of function (Reuter-Lorenz et al., 2000). In other words, if the normal right 

hemisphere advantage for spatial processing leads to improved leftward vs. rightward remapping 

performance in the young adults, this asymmetry would be diminished in a group of elderly adults 

who fail to demonstrate that normal asymmetry in the first instance. Further studies of this kind 

could benefit from the inclusion of a neuropsychological assessment of hemisphere-dominant 

skills (e.g., spatial attention, finger tapping, visuoconstructional skills, etc.). Performance on such 

a battery could then be correlated with SWM and remapping performance to determine the extent 

to which each domain relates to functions known to be lateralised to the right hemisphere. 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

References 

Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working 

memory. Trends in Cognitive Sciences, 5(3), 119-126.  

Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. 

Journal of Experimental Psychology: Human Perception and Performance, 24(3), 780-790.  

Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. 

Psychology and Aging, 17(1), 85-100.  

Cabeza, R., Grady, C. L., Nyberg, L., & McIntosh, A. R. (1997). Age-related differences in 

neural activity during memory encoding and retrieval: A positron emission tomography 

study. Journal of Neuroscience, 17(1), 391-400.  

Campo, P., Maestú, F., Capilla, A., Fernández, S., Fernández, A., & Ortiz, T. (2005). Activity in 

human medial temporal lobe associated with encoding process in spatial working memory 

revealed by magnetoencephalography. European Journal of Neuroscience, 21(6), 1741-

1748.  

Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older 

adults. Memory & Cognition, 24(4), 403-416.  

Chalfonte, B. L., Verfaillie, M., Johnson, M. K., & Reiss, L. (1996). Spatial location memory in 

amnesia: Binding item and location information under incidental and intentional encoding 

conditions. Memory, 4(6), 591-614.  

Cherry, B. J., Adamson, M., Duclos, A., & Hellige, J. B. (2005). Aging and individual variation 

in interhemispheric collaboration and hemispheric asymmetry. Aging, Neuropsychology, and 

Cognition, 12(4), 316-339.  



54 
 

Colby, C. L., Duhamel, J., & Goldberg, M. E. (1995). Oculocentric spatial representation in 

parietal cortex. Cerebral Cortex.Special Issue: Spatial Vision and Movement in the Parietal 

Lobe, 5(5), 470-481.  

Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of 

Neuroscience, 22, 319-349.  

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). 

Voluntary orienting is dissociated from target detection in human posterior parietal cortex. 

Nature Neuroscience, 3(3), 292-297.  

Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of 

visuospatial attention. Journal of Neuroscience, 13(3), 1202-1226.  

Craik, F. I. M., & Grady, C. L. (2002). Aging, memory, and frontal lobe functioning. New York, 

NY, US: Oxford University Press.  

Danckert, J. A., & Goodale, M. A. (2003). Ups and downs in the visual control of action. In S. H. 

Johnson-Frey (Ed.), Taking action: Cognitive neuroscience perspectives on intentional acts. 

(pp. 29-64). Cambridge, MA, US: The MIT Press.  

Danckert, J., & Ferber, S. (2006). Revisiting unilateral neglect. Neuropsychologia, 44(6), 987-

1006.  

Danckert, J., & Goodale, M. A. (2000). Blindsight: A conscious route to unconscious vision. 

Current Biology, 10(2), R64-R67.  



55 
 

Daselaar, S., & Cabeza, R. (2005). Age-related changes in hemispheric organization. In R. 

Cabeza, L. Nyberg & D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive 

and cerebral aging. (pp. 325-353). New York, NY, US: Oxford University Press.  

Davis, H. P., & Bernstein, P. A. (1992). Age-related changes in explicit and implicit memory. In 

L. R. Squire, & N. Butters (Eds.), Neuropsychology of memory (2nd ed.). (pp. 249-261). 

New York, NY, US: Guilford Press.  

de Renzi, E., Faglioni, P., & Villa, P. (1977). Topographical amnesia. Journal of Neurology, 

Neurosurgery & Psychiatry, 40(5), 498-505.  

Driver, J., & Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature 

Neuroscience, 1(1), 17-22.  

Duhamel, J., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual 

space in parietal cortex by intended eye movements. Science, 255(5040), 90-92.  

Ferber, S., & Danckert, J. (2006). Lost in space--the fate of memory representations for non-

neglected stimuli. Neuropsychologia, 44(2), 320-325.  

Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y., Meyer, J. R., et al. (1999). A 

large-scale distributed network for covert spatial attention: Further anatomical delineation 

based on stringent behavioural and cognitive controls. Brain: A Journal of Neurology, 

122(6), 1093-1106.  

Goldstein, G., & Shelly, C. (1981). Does the right hemisphere age more rapidly than the left? 

Journal of Clinical Neuropsychology, 3(1), 65-78.  



56 
 

Goodale, M., & Milner, D. (2006). One brain--two visual systems. The Psychologist, 19(11), 660-

663.  

Goodale, M., & Milner, D. (2006). One brain--two visual systems. The Psychologist, 19(11), 660-

663.  

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. 

Trends in Neurosciences, 15(1), 20-25.  

Grady, C. L., McIntosh, A. R., Horwitz, B., & Rapoport, S. I. (2000). Age-related changes in the 

neural correlates of degraded and nondegraded face processing. Cognitive 

Neuropsychology.Special Issue: The Cognitive Neuroscience of Face Processing, 17(1-3), 

165-186.  

Halligan, P. W., & Marshall, J. C. (1993). The history and clinical presentation of neglect. In I. H. 

Robertson, & J. C. Marshall (Eds.), Unilateral neglect: Clinical and experimental studies. 

(pp. 3-25). Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.  

Heide, W., Blankenburg, M., & Kömpf, D. (1995). Cortical control of double-step saccades: 

Implications for spatial orientation. Annals of Neurology, 38(5), 739-748.  

Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: The 

mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 

327-30.  

Heilman, K. M., Watson, R. T., & Valenstein, E. (2003). Neglect and related disorders. In K. M. 

Heilman, & E. Valenstein (Eds.), Clinical neuropsychology (4th ed.). (pp. 296-346). New 

York, NY, US: Oxford University Press.  



57 
 

Hellige, J. B., & Michimata, C. (1989). Categorization versus distance: Hemispheric differences 

for processing spatial information. Memory & Cognition, 17(6), 770-776.  

Husain, M., Mannan, S., Hodgson, T., Wojciulik, E., Driver, J., & Kennard, C. (2001). Impaired 

spatial working memory across saccades contributes to abnormal search in parietal neglect. 

Brain: A Journal of Neurology, 124(5), 941-952.  

Johnson, M. K., & Hirst, W. (1991). Processing subsystems of memory. In R. G. Lister, & H. J. 

Weingartner (Eds.), Perspectives on cognitive neuroscience. (pp. 197-217). New York, NY, 

US: Oxford University Press.  

Kalisch, T., Wilimzig, C., Kleibel, N., Tegenthoff, M., & Dinse, H. R. (2006). Age-related 

attenuation of dominant hand superiority. PLoS One, 90  

Kessels, R. P. C., Kappelle, L. J., de Haan, E. H. F., & Postma, A. (2002). Lateralization of 

spatial-memory processes: Evidence on spatial span, maze learning and memory for object 

locations. Neuropsychologia, 40(8), 1465-1473.  

Kim, Y. H., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., & Mesulam, M. M. 

(1999). The large-scale neural network for spatial attention displays multifunctional overlap 

but differential asymmetry. Neuroimage, 3, 269-77.  

Kinsbourne, M. (1993). Orientational bias model of unilateral neglect: Evidence from attentional 

gradients within hemispace. In I. H. Robertson, & J. C. Marshall (Eds.), Unilateral neglect: 

Clinical and experimental studies. (pp. 63-86). Hillsdale, NJ, England: Lawrence Erlbaum 

Associates, Inc.  

Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). 

Evidence for two types of spatial representations: Hemispheric specialization for categorical 



58 
 

and coordinate relations. Journal of Experimental Psychology: Human Perception and 

Performance, 15(4), 723-735.  

Malhotra, P., Jäger, H. R., Parton, A., Greenwood, R., Playford, E. D., Brown, M. M., et al. 

(2005). Spatial working memory capacity in unilateral neglect. Brain: A Journal of 

Neurology, 128(2), 424-435.  

Mannan, S. K., Mort, D. J., Hodgson, T. L., Driver, J., Kennard, C., & Husain, M. (2005). 

Revisiting previously searched locations in visual neglect: Role of right parietal and frontal 

lesions in misjudging old locations as new. Journal of Cognitive Neuroscience, 17(2), 340-

354.  

McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 211-227.  

Meadmore, K. L., Dror, I. E., & Bucks, R. S. (2009). Lateralisation of spatial processing and age. 

Laterality: Asymmetries of Body, Brain and Cognition, 14(1), 17-29.  

Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals 

of Neurology, 10, 309-25.  

Mesulam, M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to 

the mental representation and attentional targeting of salient extrapersonal events. Philos 

Trans R Soc Lond B Biol Sci, 354(1387), 1325-46.  

Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M., & D'Esposito, M. (2000). Aging and 

reflective processes of working memory: Binding and test load deficits. Psychology and 

Aging, 15(3), 527-541.  



59 
 

Nielson, K. A., Langenecker, S. A., & Garavan, H. (2002). Differences in the functional 

neuroanatomy of inhibitory control across the adult life span. Psychology and Aging, 17(1), 

56-71.  

O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. (). Oxford: Clarendon 

Press.  

Olson, I. R., Zhang, J. X., Mitchell, K. J., Johnson, M. K., Bloise, S. M., & Higgins, J. A. (2004). 

Preserved spatial memory over brief intervals in older adults. Psychology and Aging, 19(2), 

310-317.  

Owen, A. M., Milner, B., Petrides, M., & Evans, A. C. (1996). A specific role for the right 

parahippocampal gyrus in the retrieval of object-location: A positron emission tomography 

study. Journal of Cognitive Neuroscience, 8(6), 588-602.  

Parton, A., Malhotra, P., Nachev, P., Ames, D., Ball, J., Chataway, J., et al. (2006). Space re-

exploration in hemispatial neglect. Neuroreport: For Rapid Communication of Neuroscience 

Research, 17(8), 833-836.  

Pisella, L., Berberovic, N., & Mattingley, J. B. (2004). Impaired working memory for location but 

not for colour or shape in visual neglect: A comparison of parietal and non-parietal lesions. 

Cortex.Special Issue: Spatial Neglect: A Representational Disorder? A Festschrift for 

Edoardo Bisiach, 40(2), 379-390.  

Pisella, L., & Mattingley, J. B. (2004). The contribution of spatial remapping impairments to 

unilateral visual neglect. Neuroscience & Biobehavioral Reviews, 28(2), 181-200.  



60 
 

Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on 

covert orienting of attention. The Journal of Neuroscience : The Official Journal of the 

Society for Neuroscience, 4(7), 1863-1874.  

Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D'Esposito, M. (2004). The where and how of 

attention-based rehearsal in spatial working memory. Cognitive Brain Research, 20(2), 194-

205.  

Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its 

ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 

13(3), 519-575.  

Previc, F. H. (1998). The neuropsychology of 3-D space. Psychological Bulletin, 124(2), 123-

164.  

Previc, F. H., & Intraub, H. (1997). Vertical biases in scene memory. Neuropsychologia, 35(12), 

1513-1517.  

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. 

(2000). Age differences in the frontal lateralization of verbal and spatial working memory 

revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174-187.  

Selkoe, D. J. (1992). Alzheimer's disease: New insights into an emerging epidemic. Journal of 

Geriatric Psychiatry, 25(2), 211-227.  

Smyth, M. M. (1996). Interference with rehearsal in spatial working memory in the absence of 

eye movements. The Quarterly Journal of Experimental Psychology A: Human 

Experimental Psychology, 49A(4), 940-949.  



61 
 

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name 

agreement, image agreement, familiarity, and visual complexity. Journal of Experimental 

Psychology: Human Learning and Memory, 6(2), 174-215.  

Vasquez, B., & Danckert, J. (2008). Direction specific costs to spatial working memory from 

saccadic and spatial remapping. Neuropsychologia, 46(9), 2344-2354.  

Vasquez, B., & Danckert, J. (2008). Direction specific costs to spatial working memory from 

saccadic and spatial remapping. Neuropsychologia, 46(9), 2344-2354.  

Vuilleumier, P., Sergent, C., Schwartz, S., Valenza, N., Girardi, M., Husain, M., et al. (2007). 

Impaired perceptual memory of locations across gaze-shift in patients with unilateral spatial 

neglect. Journal of Cognitive Neuroscience, 19(8), 1388-1406.  

Weintraub, S., & Mesulam, M. -. (1987). Right cerebral dominance in spatial attention: Further 

evidence based on ipsilateral neglect. Archives of Neurology, 44(6), 621-625.  

Wojciulik, E., Husain, M., Clarke, K., & Driver, J. (2001). Spatial working memory deficit in 

unilateral neglect. Neuropsychologia, 39(4), 390-396.  

 


