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Abstract

Given a matrix A ∈ F(t)[D; δ]n×n over the ring of di�erential polynomials, we �rst
prove the existence of the Hermite form H of A over this ring. Then we determine
degree bounds on U and H such that UA = H. Finally, based on the degree bounds
on U and H, we compute the Hermite form H of A by reducing the problem to
solving a linear system of equations over F(t). The algorithm requires a polynomial
number of operations in F in terms of the input sizes: n, degDA, and degtA. When
F = Q it requires time polynomial in the bit-length of the rational coe�cients as
well.
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Chapter 1

Introduction

Ore polynomials are mathematical generalizations of linear di�erential, di�erence,
and q-di�erence polynomials. These polynomials di�er from ordinary polynomials
in that the ring multiplication is noncommutative. Since Ore [22], many researchers
have studied the mathematical properties of these rings. The Ore polynomials share
many properties with the usual polynomials. Because the Ore polynomials are a left
(and right) ideal domain, they admit a unique monic greatest common right (left)
divisors (GCRDs) and least common left (right) multiples (LCLMs). Those GCRD
and LCLM computations are important in that the GCRD of two linear di�erential
polynomials represents the intersection of the solution spaces of them. On the other
hand, the LCLM represents the sum of the solution spaces. The GCRD and LCLM
computations can be used to compute canonical forms of the Ore polynomial ma-
trices. In commutative rings, canonical forms have played signi�cant roles because
they expose useful mathematical properties such as rank and equivalence and can
be used in computing other operations. Canonical forms of matrices over the Ore
polynomials are also useful because solving systems of di�erential and di�erence
operators can be transformed into working with matrices over the same domain.
The most well-known canonical forms for commutative rings are the Popov [24],
Hermite [14], and Smith forms [25]. The Popov form is useful for representing
high-order terms with respect to lower-order terms. On the other hand, the Her-
mite form can be used to solve a system of linear Diophantine equations over a ring
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because it is triangular. The Popov and Hermite forms are canonical with respect
to multiplication by a unimodular matrix on one side. The Smith/Jacobson form
determines equivalence with respect to left and right multiplication by a unimod-
ular matrix. Also, we can use the Smith form to check if two given matrices are
equivalent. For example, if two matrices A and B are equivalent, which means
they have the same properties such as rank, then they have the same Smith form.
Since Kannan [16] proposed the �rst polynomial-time algorithm to compute the
Hermite and Smith forms over Z, many researchers have developed fast algorithms
for computing these canonical forms over Z and F[x]. However, compared to the
development of fast algorithms for computing these canonical forms over commuta-
tive rings, algorithms over non-commutative rings such as the Ore polynomial ring
have only been explored recently. A main di�culty in developing fast algorithms for
non-commutative rings is that many fast algorithms over a commutative ring make
use of the properties such as determinant, which are not generally available in non-
commutative rings. In addition, since the entries of matrices in non-commutative
rings are not commutative, techniques based on the property of commutativity in
linear algebra can not be directly applied. Nevertheless, we are interested in ex-
tending this algorithmic technology for matrices over Z and F[x] to matrices over
di�erential rings.

In this thesis, we focus on developing algorithms for a di�erential polynomial
ring though most presented algorithms can be extended to the Ore polynomial rings.
In particular, we consider the di�erential polynomials over a rational function �eld
F(t), where F is a �eld of characteristic zero, typically an extension of Q, or some
representation of C. The main result of this thesis is to give a polynomial-time
algorithm to compute the Hermite form of a matrix over di�erential polynomials
in terms of matrix size, entry degree, and coe�cient size.

1.1 Applications

The main bene�t from the Hermite form computation is that it is very useful for
solving system of linear Diophantine equations. For example, we can consider the
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following system of equations:

ty1(t) + (t+ t2)y2(t) + ty2(t)′ − y3(t)′ = −t

ty1(t)′ + ty2(t) + (t2 + t+ 1)y2(t)′ + ty2(t)′′ + y3(t) + (t+
1

t
)y3(t)′ = 1

This system of equations can be represented by the matrix multiplication as follows:

[
t t2 + t+ tD −D
tD t+ (t2 + t+ 1)D + tD2 1 + (t+ 1

t
)D

] y1(t)

y2(t)

y3(t)

 =

[
−t
1

]
.

Here we employ Hermite form computation in order to solve the above system. Let

A =

[
t t2 + t+ tD −D
tD t+ (t2 + t+ 1)D + tD2 1 + (t+ 1

t
)D

]
,

and compute the Hermite form of A such that UA = H as follows:[
D −1

1
t
−D 1

]
· A =

[
1 t+ 1 −1− (t+ 1

t
)D −D2

0 D 1 + tD +D2

]
.

By using backward substitution we solve for

[
D −1

1
t
−D 1

]
· A

 y1(t)

y2(t)

y3(t)

 =

[
−tD − 2

tD + 1

]
,

[
1 t+ 1 −1− (t+ 1

t
)D −D2

0 D 1 + tD +D2

] y1(t)

y2(t)

y3(t)

 =

[
−tD − 2

tD + 1

]
.
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We now have the new system of Diophantine equations, which has same solutions
as the previous one:

y1(t) + (t+ 1)y2(t)− y3(t)− (t+
1

t
)y3(t)′ − y3(t)′′ = −tD − 2

y2(t)′ + y3(t) + ty3(t)′ + y3(t)′′ = tD + 1.

From the equations, we see that

y2(t)′ + y3(t) + ty3(t)′ + y3(t)′′ = tD + 1

y2(t)′ = −y3(t)− ty3(t)′ − y3(t)′′ + tD + 1

Dy2(t) = −Dty3(t)−D2y3(t) +Dt.

Since both sides of the equation are divisible by D on the left, we know that the
system of Diophantine equations has a solution. One possible solution is given
below.

y1(t) = −2− t− t2 − tD,

y2(t) = t,

y3(t) = 0.

1.2 Main Results

In this thesis we consider matrices whose entries are di�erential polynomials. In the
�rst part of the thesis we present a thorough discussion in terms of the GCRD and
LCLM computations of di�erential polynomials. We compute the upper bound of
the size of coe�cients for those two operations. Then we propose an algorithm to
compute the Hermite form of di�erential polynomial matrices by using the GCRD
and LCLM operations. The main results of this thesis can be summarized as follows:
• We prove the existence of the Hermite form over the di�erential polynomial
ring and show the uniqueness of the Hermite form.

• We compute degree bounds on U and H for the di�erential polynomial matrix
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A, where H is the Hermite form of A and U the corresponding unimodular
matrix. That is, they have the relationship UA = H.

• We show how to reduce solving this di�erential system of equations into solv-
ing a system of (usual) linear equations over a (commutative) �eld, based on
the degree bounds on U and H. Based on this, we propose a polynomial-time
algorithm to compute the Hermite form of di�erential polynomial matrices.

• We generalize our algorithm for rectangular matrices and the shift polynomial
ring.

The main results of this thesis have been reported in [12].

1.3 Outline

This thesis is organized as follows. In Chapter 2 we de�ne some basic properties
of di�erential polynomial rings and notation which is used through the thesis. In
Chapter 3 we consider the basic operations of di�erential polynomials and analyze
the cost of each operation. In Chapter 4 we explore an algorithm, which is presented
in [6], for computing the GCRD of di�erential polynomials and then analyze the
cost of the algorithm. We also introduce a new algorithm for computing the LCLM
of two di�erential polynomials. In Chapter 5 we �rst present a naive algorithm,
using the GCRD and LCLM computations, for computing the Hermite form of
a matrix over the di�erential polynomial ring. Then we propose a polynomial-
time algorithm for the Hermite form computation. To the best of our knowledge,
it is the �rst polynomial-time algorithm for the Hermite form computation. In
Chapter 6 we compare an implementation of our polynomial-time algorithm with
the naive method for the Hermite form computation of a matrix over the di�erential
polynomial ring.

5



Chapter 2

Preliminaries

In this chapter we give some de�nitions used throughout the thesis and discuss
normal forms of matrices over F(t)[D; δ].

2.1 Basic De�nitions and Notations

A di�erential indeterminate D is adjoined to a �eld (typically a function �eld) to
form the ring of di�erential polynomials F(t)[D; δ]. The ring F(t)[D; δ] consists
of the polynomials in F(t)[D] under the usual addition and a non-commutative
multiplication such that Da = aD + δ(a), where δ(a) = a′ (the usual derivative of
a) for any a ∈ F(t). In this thesis, a polynomial in F(t)[D; δ] is typically written
with respect to the di�erential variable D as

f = f0 + f1D + f2D2 + · · ·+ fmDm, (2.1)

where f0, . . . , fm ∈ F(t), with fm 6= 0. Note that we insist on writing the fi to
the left of the Di to make the representation unique (the ring is non-commutative).
Ore [22] de�nes all such operators in a uni�ed way as follows.

De�nition 2.1. (Ore polynomial ring) Let K be a commutative �eld and σ an
isomorphism of K. A function δ : K→ K is called a pseudo-derivation with respect
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to σ if it satis�es

δ (a+ b) = δa+ δb and δ (ab) = σ (a) δ (b) + δ (a) b, for any a, b ∈ K.

The set of polynomials in K [X ;σ, δ] is called an Ore polynomial ring if the ring
multiplication obeys the following rule

Xa = σ (a)X + δ (a) , for all a ∈ K.

Generally we will work over a function �eld K = F(t). In addition, we are most
interested in the di�erential and shift operators among Ore operators. We here
de�ne the di�erential and shift polynomial rings as follows.

De�nition 2.2. (Di�erential polynomial ring) Let F be a commutative �eld
of characteristic zero and D denote di�erentiation with respect to the independent
variable t. We set δ(f(t)) = d

dt
f(t) and σ (f(t)) = f(t). Then we call the set of

polynomials in F(t)[D; δ] a di�erential polynomial ring.

De�nition 2.3. (Shift polynomial ring) Let F be a commutative �eld of char-
acteristic zero and E denote a linear shift operator such that Ef(t) = f(t + 1)E .
We set σ (f(t)) = f(t+ 1) and δ(f(t)) = f(t). Then we call the set of polynomials
in F(t)[E ;σ] a shift polynomial ring.

The di�erential and shift polynomials are only two of many examples of Ore
polynomial rings. We refer readers to [22] for more detail about Ore rings.

De�nition 2.4. For u, v ∈ F[t] relatively prime, we can de�ne degt(u/v) = max{degt u,

degt v}. This is extended to f ∈ F(t)[D; δ] as in (2.1) by letting degt f = maxi{degt fi}.

De�nition 2.5. Let u, v ∈ F[t] and degt u, degt v ≤ l. Then M(l) denotes the cost
of multiplying u and v.

In this thesis, we consider a matrix over F(t)[D; δ] where each entry is a di�er-
ential polynomial. We think of degt as measuring coe�cient size or height. Let
A∈ F(t)[D; δ]m×n. We use the following conventions for the thesis.
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De�nition 2.6. (Matrix notation)

1. Aij denotes the element in the i-th row and j-th column of A.

2. Ai∗ denotes the i-th row of A; A∗j the j-th column of A.

3. ‖A‖ denotes the maximum entry of A, and Ai∼j,k∼l the submatrix of A con-
sisting of the i to j-th rows and the k to l-th columns.

4. The i-th principal minor of A is the submatrix of A consisting of the �rst i
rows and the �rst i columns.

We consider as input size not only matrix dimensions but also entry degrees
with respect to D and t.

De�nition 2.7. Let degD A = d denote the degree of A in D so that d ∈ Z≥0 ∪
{−∞} is the smallest integer such that degD Aij ≤ d for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Let degtA = e denotes the degree of A in t, so that degtAij ≤ e for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Thus, each entry Aij can be expressed as

Aij = Aij0 + Aij1D + . . .+ Aij(d−1)D(d−1) + AijdDd

where Aijk ∈ F(t).

Also, it is sometimes useful to discuss the degree of each row of a matrix instead
of the degree of the whole matrix.

De�nition 2.8. (Row degree) A matrix A ∈ F(t)[D; δ]m×n has row degree −→u =

(u1, . . . , un) ∈ (Z≥0 ∪ {−∞})m if the i-th row of A has degree ui in D. We write
rowdeg−→u .

The leading row coe�cient matrix is used to check if a matrix is in row-reduced
form.

De�nition 2.9. (Leading row coe�cient matrix) Let A and −→u be same as
those in De�nition 2.8 . Set N = degDA and S = diag(DN−u1 , . . . ,DN−um). We
write

SA = LDN + lower degree terms in D,
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where the matrix L = LCrow(A) ∈ F(t)m×n is called the leading row coe�cient
matrix of A.

The following example shows how the row degree and leading row coe�cient
matrix are computed from a di�erential polynomial matrix.
Example 2.10. Let

A =

[
−2t−D2 t2 + 1 + tD
t+ 1 + t2D 3t+ 2tD

]
∈ F(t)[D; δ]2×2.

Then it is clear that the row degree of A is −→u =

(
2

1

)
and degDA = 2. So, we

set S =

[
1 0

0 D

]
and then computing SA gives the leading row coe�cient matrix

of A:

SA =

[
1 0

0 D

][
−2t−D2 t2 + 1 + tD
t+ 1 + t2D 3t+ 2tD

]

=

[
−2t−D2 t2 + 1 + tD

1 + (3t+ 1)D + t2D2 3 + (3t+ 2)D + 2tD2

]

=

[
−1 0

t2 2t

]
D2 + lower degree terms in D.

Thus, LCrow(A) =

[
−1 0

t2 2t

]
.

De�nition 2.11. For A ∈ F(t)[D; δ], the leading coe�cient of A in D is denoted
by LC(A).

2.2 Normal Forms

Normal forms of a matrix are a unique representation of an equivalence class of
matrices in F(t)[D; δ]n×n. We consider one-sided equivalence, so the normal form of
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A is same as the normal form of UA where U is any unimodular matrix. In other
words, we say that A and B are row equivalent if there exists a unimodular matrix
V such that A = V B. Moreover, when A and B are row equivalent, their rows
generate the same F(t)[D; δ]-module.

De�nition 2.12. (Unimodular matrix) Let U ∈ F(t)[D; δ]n×n and suppose there
exists a V ∈ F(t)[D; δ]n×n such that UV = In, where In is the identity matrix over
F(t)[D; δ]n×n. Then U is called a unimodular matrix over F(t)[D; δ].

This de�nition is in fact symmetric, in that V is also unimodular, as shown in
the following lemma.

Lemma 2.13. Let U ∈ F(t)[D; δ]n×n be unimodular such that there exists a V ∈
F(t)[D; δ]n×n with UV = In. Then V U = In as well.

Proof. We multiply UV = In on the right by U , which gives UV U = U , or equiva-
lently U(V U − In) = 0. Since U has a right inverse, we know that the free module
spanned by the columns of U has row rank n, and that the columns of U are
F(t)[D; δ]-linear independent. It follows that there is no non-zero column vector w

such that Uw = 0. Thus, V U − In must be zero and V U = In.

De�nition 2.14. (Row equivalence) Let A,B ∈ F(t)[D; δ]. It is said that A is
row equivalent to B if there exists a unimodular matrix U such that UA = B.

De�nition 2.15. (Row-reduced form) A matrix T ∈ F(t)[D; δ]m×n with rank r
is in row-reduced form if T has r nonzero rows and rank LCrow(T ) = r.

The row-reduced form can be used for �nding the rank and left nullspace of
a matrix of di�erential polynomials. Also, it is shown in [3] that a row reduction
algorithm can be used for computing a weak Popov form of a matrix of skew
polynomials.

De�nition 2.16. (Row Popov form) Let G ∈ F(t)[D; δ]n×n and let di denote the
i-the row degree. G is in Popov form if it satis�es the following properties.

1. The diagonal entries are monic and degDGii = di for 1 ≤ i ≤ n.
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2. All entries in a column have degrees lower than that of the diagonal element.

3. The leading row coe�cient is triangular.

Example 2.17. Let

G =

 1 +D2 2 +D 1 + tD3

2t+ tD t+D3 4t+ t2

3 + 2tD D2 7 + 8t+D3

 .
G is not in Row Popov form because it does not obey the second requirement.

So, we multiply G on the left as follows:

G′ =

 1 0 −t
0 1 0

0 0 1

G =

 1− 3t− 2t2D +D2 2 +D − tD2 1− 7t− 8t2

2t+ tD t+D3 4t+ t2

3 + 2tD 2 + tD +D2 7 + 8t+D3

 .
Since G′ satis�es all requirements, G′ is in Row Popov form.

One of the advantages of using the Popov form is that the highest degree of
the entries of the Popov form of a matrix is no greater than that of the matrix.
So, the Popov form is widely used in linear system control theory. However, since
a matrix in Popov form is not triangular, it is not as directly useful for solving
systems of linear Diophantine equations. The Hermite form was �rst introduced in
1851 for integer matrices by Hermite [14]. He used row operations to compute the
triangular matrix of an integer matrix. After Hermite, many researchers [16, 15,
10, 30, 26, 27, 21] have investigated this special form not only for integer domain
but also for other domains such as the ordinary polynomial domain. Here we de�ne
the Hermite form over the di�erential polynomial ring.

De�nition 2.18. (Hermite form) Let H ∈ F(t)[D; δ]n×n with full row rank. The
matrix H is in Hermite form if H is upper triangular, if every diagonal entry of H
is monic, and if every o�-diagonal entry of H has degree (in D) strictly lower than
the degree of the diagonal entry below it.

Example 2.19. Let
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A =

 1 + (t+ 2)D +D2 2 + (2t+ 1)D 1 + (1 + t)D
2t+ t2 + tD 2 + 2t+ 2t2 +D 4t+ t2

3 + t+ (3 + t)D +D2 8 + 4t+ (5 + 3t)D +D2 7 + 8t+ (2 + 4t)D

 .
Then A has the Hermite form

H =

 2 + t +D 1 + 2t −2+t+2t2

2t
− 1

2t
D

0 2 + t+D 1 + 7t
2

+ 1
2
D

0 0 −2
t

+ −1+2t+t2

t
D +D2

 ,
and unimodular matrix

U =


1−t
2t

1
t

+ 1
2t
D − 1

2t
t
2
− 1

2
D −1

2
D 1

2
1+2t2

t
+ (t− 1)D 2

t
+ 1−2t

t
D −D2 −1

t
+D

 .
One can check that UA = H.
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Chapter 3

Basic Operations in F[t][D; δ]

In this chapter we discuss the basic operations in F(t)[D; δ] and some straightfor-
ward algorithms for their computation. We make no claim that these algorithms are
the most e�cient algorithms possible, only that they are reasonable, and more im-
portantly are completely analyzable. First, some well-known properties of F(t)[D; δ]

are worth recalling; see [4] for an algorithmic presentation of this theory. F(t)[D; δ]

is a left and right principal ideal domain. Given f, g ∈ F(t)[D; δ], this implies the
existence of a right (and left) division with remainder algorithm such that there
exists unique q, r ∈ F(t)[D; δ] such that f = qg + r where degD(r) < degD(g). This
allows for a right (and left) euclidean-like algorithm which shows the existence of a
greatest common right divisor, h = GCRD(f, g) ∈ F(t)[D; δ], a polynomial of max-
imum degree (in D) such that f = uh and g = vh for u, v ∈ F(t)[D; δ]. The GCRD
is unique up to a left multiple in F(t)\{0}, and there exist co-factors a, b ∈ F(t)[D; δ]

such that af + bg = GCRD(f, g). There also exists a least common left multiple
LCLM(f, g) ∈ F(t)[D; δ]. Analogously, there exists a greatest common left divi-
sor, GCLD(f, g), and least common right multiple, LCRM (f, g), both of which are
unique up to a right multiple in F(t)\{0}. The complexity and further properties
of some of these operations are explored in [18].
Let

f =
n∑
i=0

fiDi ∈ F[t][D; δ], g =
m∑
j=0

gjDj ∈ F[t][D; δ]

13



for f0, . . . , fn, g0, . . . , gm ∈ F[t]. In general we will work with di�erential polynomials
in F[t][D; δ], as opposed to F(t)[D; δ] and will manage denominators explicitly. This
will make our computations and their analyses simpler. Assume that degtf ≤ d,
degtg ≤ d, and fn, gm 6= 0. The sum f + g is computed coe�cient-wise, and so
degD(f+g) ≤ max{degDf , degDg} and degt(f+g) = max{degtf, degtg}. We write
the product h = fg = h0 + h1D + · · · + hn+mDn+m. Without loss of generality we
may suppose n ≥ m. The costs of addition and subtraction are given by O(nd)

�eld operations in F. Expanding the multiplication, we �nd

h = fg =
n∑
i=0

m∑
j=0

d∑
k=0

fiDigk,jtkDj =
n∑
i=0

m∑
j=0

d∑
k=0

figk,jDitkDj,

where gj =
∑d

k=0 gk,jt
k for gk,j ∈ F. Bostan et al. [2] show, by using Leibniz's

formula, the canonical form of Ditk (with coe�cients in F[t] on the left) can be
computed in O(min(i, k)) �eld operations in F. For example,

Ditk =

min(i,k)∑
l=0

(k)l

(
i

l

)
tk−lDi−l,

where (k)l+1 = (k)l(k − l) and so the canonical form of Ditk is computed in
O(min(i, k)) operations. Thus, the total cost of computing the canonical form
of the product is

n∑
i=0

m∑
j=0

d∑
k=0

min(i, k) ≤
n∑
i=0

m∑
j=0

d∑
k=0

k ∈ O(nmd2).

Since if Dkg =
∑k

j=0 gjDj where g, gj ∈ F[t] then degtgj ≤ d because degtg ≤ d,
the cost of polynomial multiplications in F[t] when computing f · g is bounded by
O(nmd2) operations as well. We have the following.

Lemma 3.1. Let f, g ∈ F[t][D; δ] with n = degDf and m = degDg and degtf ≤ d

and degtg ≤ d. The product h = fg has degDh = n+m and degth ≤ 2d. The cost
of computing h is O(nmd2) operations in F.
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We can similarly analyze division with remainder. Suppose f and g are the
same as above with the property n ≥ m. We want to �nd k, q, and r such that

kf = q · g + r

where k ∈ F[t], q and r ∈ F[t][D; δ] with degDr < degDg. The introduction of k
cancels denominators introduced by the leading coe�cient of g.

Lemma 3.2. Let f ∈ F[t][D; δ] where degDf = n and LC (f) = fn. Then the
leading coe�cient of the canonical form of Dif is fn for i ≥ 0.

Proof. The proof follows easily by induction on i.

We construct the matrix G as follows:

G =


g

[0]
0 g

[0]
1 · · · g

[0]
m−1 g

[0]
m

g
[1]
0 g

[1]
1 · · · · · · g

[1]
m g

[1]
m+1

· · · · · · · · · · · · · · · · · ·
g

[n−m−1]
0 g

[n−m−1]
1 · · · · · · · · · · · · g

[n−m−1]
n−1

g
[n−m]
0 g

[n−m]
1 · · · · · · · · · · · · · · · g

[n−m]
n

 .

The i-th row of the matrix G corresponds to the coe�cients of the canonical form
of Dig. In other words, Dn−mg = g

[n−m]
n Dn + g

[n−m]
n−1 Dn−1 + · · · + g

[n−m]
1 D + g

[n−m]
0

where g[n−m]
i ∈ F[t] and degD g = m. Then three row vectors F , Q, and R are

constructed as follows:

F = ( f0 f1 · · · fn ), Q = ( q0 q1 · · · qn−m ), and R = ( r0 r1 · · · rm−10 · · · 0 )

where R ∈ F(t)1×(n+1) and its last n−m+ 1 entries are all zeros. Given G and F ,
we would like to �nd Q and R such that

F = Q ·G+R.

Moreover, we note that the row vector Q can be solved for using the submatrix of
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G and the subvector of F :
F ′ = Q ·G′,

where F ′ and G′ are obtained from F and G respectively by taking the last n−m+1

columns. As shown above, G′ is a lower triangular matrix, and by Lemma 3.2 all
diagonal entries are equal to LC (g). Since G′ is the triangular matrix, we can use
backward substitution to �nd all entries of Q:

Qi =
F ′i −

∑n−m+1
j=i+1 G′j,iQj

LC(g)
for i = n−m+ 1, n−m, . . . , 1.

Lemma 3.3. Let Ki = (LC (g))n−m+2−iQi. Then Ki ∈ F[t] for i = n−m+ 1, n−
m, . . . , 1.

Proof. We prove this by induction on i. For the base case i = n −m + 1, we use
backward substitution:

Kn−m+1 = (LC (g))
F ′n−m+1

LC (g)
= F ′n−m+1 = fn.

Since fn ∈ F[t], Kn−m+1 ∈ F[t]. We assume our claim is true for i > r where
r < n −m + 1 and need to show that Kr ∈ F[t]. By using backward substitution,
we know that

Kr = (LC (g))n−m+2−rQr

= (LC (g))n−m+2−r F
′
r −

∑n−m+1
j=r+1 G′j,rQj

LC(g)

= (LC (g))n−m+1−r

(
F ′r −

n−m+1∑
j=r+1

G′j,rQj

)
.

By the induction hypothesis, we know that ∑n−m+1
j=r+1 (LC (g))n−m+1−rQj ∈ F[t] and

hence Kr ∈ F[t].

By Lemma 3.3, we know that (LC (g))n−m+1 Q ∈ F[t]1×(n−m+1) and so let k =
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(LC (g))n−m+1 , q = (LC (g))n−m+1 (Qn−m+1Dn−m +Qn−mDn−m−1 + · · ·+Q2D +Q1),
where Qi is the i-th entry of the matrix Q. Accordingly, the row vector R can be
computed as follows:

(LC (g))n−m+1 R = (LC (g))n−m+1 F − (LC (g))n−m+1 Q ·G. (3.1)

Lemma 3.4. degt (LC (g))n−m+1 Qi ≤ d · (n−m+ 1) for i = n − m + 1, n −
m, · · · , 1.

Proof. We prove this by induction on i. For the base i = n − m + 1, by using
backward substitution, we get

(LC (g))n−m+1 Qn−m+1 = (LC (g))n−m+1 F
′
n−m+1

LC (g)
= (LC (g))n−m fn.

Since degt fn ≤ d and degt g ≤ d, degt
(
(LC (g))n−m fn

)
≤ d · (n−m+ 1). We

now assume our claim is true for i > r where r < n − m + 1 and need to show
that degt

(
(LC (g))n−m+1 Qr

)
≤ d · (n−m+ 1) . By using backward substitution,

we know that

(LC (g))n−m+1 Qr = (LC (g))n−m+1 F
′
r −

∑n−m+1
j=r+1 G′j,rQj

LC(g)

= (LC (g))n−m
(
F ′r −

n−m+1∑
j=r+1

G′j,rQj

)
.

By the inductive hypothesis, we know that degt

(∑n−m+1
j=r+1 (LC (g))n−m+1 Qj

)
≤

d · (n−m+ 1) and so

degt

(
n−m+1∑
j=r+1

(LC (g))n−mQj

)
≤ d · (n−m) .
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Then it follows that degt

(
(LC (g))n−m

(
F ′r −

∑n−m+1
j=r+1 G′j,iQj

))
≤ d · (n−m+ 1) .

Since degt
(
LC (g)n−m+1 Qi

)
≤ d · (n−m+ 1) and 0 ≤ (n − m), the cost of

computing each LC (g)n−m+1 Qi is dominated by the cost of computing∑n−m+1
j=i+1 LC (g)n−mG′j,iQj. In particular, the cost of the multiplication LC (g)n−mG′j,iQj

is bounded by M (d (n−m)) because degt
(
LC (g)n−mQj

)
≤ d · (n−m). When

i = 1, we see that there exist at most n − m polynomial multiplications, which
are bounded by O ((n−m)M (d (n−m))). Since we need to compute n −m + 1

entries of the matrix LC (g)n−m+1 Q, the cost is O ((n−m)2 M (d (n−m))
) op-

erations. Moreover, if log d ≤ (n−m)2 then we can compute LC (g)n−m with
O
(
(n−m)2 M (d (n−m))

) operations. From equation (3.1), we see that the cost
of computing the row vector LC (g)n−m+1 R is bounded by O (m2M (d (n−m))).
Thus, we have the following.

Lemma 3.5. Let f, g ∈ F[t][D; δ], with n = degDf and m = degDg and degt f ,
degt g ≤ d. Then there exists a k ∈ F[t] and q, r ∈ F[t][D; δ] such that kf = qg + r,
and degDr < m, degtk, degtq ≤ d(n −m + 1) and degtr ≤ d(n −m + 2). We can
compute k, q, r with O(n2M(d(n−m))) operations in F.
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Chapter 4

Computing GCRD and LCLM over

F[t][D; δ]

4.1 Preliminaries

In this chapter we review the subresultant algorithm, which is introduced in Chardin [6],
as generalized to computing the GCRD of two di�erential polynomials. Then
we extend the idea of the algorithm to compute the LCLM of two di�erential
polynomials. Li and Nemes [19] propose an e�cient modular algorithm for the
GCRD computation. The main di�culty is that evaluation mappings are not Ore
ring homomorphisms. For example, let ψk be an evaluation mapping such that
ψk : F[t][D; δ]→ F[D; δ] and then we see that ψk(Dt) = kD+1 6= kD = ψk(D)ψk(t).
They overcome such a problem by applying the subresultant theory [18] for Ore
polynomials. In other words, they evaluate ψk(GCRD(Ap, Bp)) instead of evaluat-
ing GCRD(ψk(Ap), ψk(Bp)) where Ap, Bp ∈ Fp[t][D; δ]. Since we need the GCRD
and LCLM algorithms for the Hermite form computation of matrices over F[t][D; δ],
we will only go into the detail of the subresultant algorithm where we can deter-
mine an upper bound on the sizes of coe�cients. Chardin de�nes a Sylvester-style
expression for the di�erential subresultants. Here we rede�ne his expression to com-
pute the GCRD of two di�erential polynomials. Let f, g ∈ F[t][D; δ] where degD f

and degD g are n,m respectively with the property m ≤ n. Then f and g can be
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expressed as f =
∑n

i=0 fiDi and g =
∑m

i=0 giDi. Since degD (Df) = degD f + 1,
we can express as Df =

∑n+1
i=0 f

[1]
i Di where each f

[1]
i ∈ F[t]. Moreover, it can be

generalized in such a way that Djf =
∑n+j

i=0 f
[j]
i Di. Now we consider the following

equations:

f
[m−1]
n+m−1Dn+m−1 + f

[m−1]
n+m−2Dn+m−2 + · · ·+ f

[m−1]
0 = Dm−1 · f,

f
[m−2]
n+m−2Dn+m−2 + f

[m−2]
n+m−3Dn+m−3 + · · ·+ f

[m−2]
0 = Dm−2 · f,

· · · · · ·

f [0]
n Dn + f

[0]
n−1Dn−1 + · · ·+ f

[0]
0 = f,

g
[n−1]
n+m−1Dn+m−1 + g

[n−1]
n+m−2Dn+m−2 + · · ·+ g

[n−1]
0 = Dn−1 · g,

g
[n−2]
n+m−2Dn+m−2 + g

[n−2]
n+m−3Dn+m−3 + · · ·+ g

[n−2]
0 = Dn−2 · g,

· · · · · ·

g[0]
mDm + g

[0]
m−1Dm−1 + · · ·+ g

[0]
0 = g.

Based on the above equations, we form the Sylvester matrix of f and g, where the
dimension of the matrix is (m+ n)× (m+ n) :

M =



f
[m−1]
n+m−1 f

[m−1]
n+m−2 · · · · · · f

[m−1]
1 f

[m−1]
0

f
[m−2]
n+m−2 f

[m−2]
n+m−3 · · · f

[m−2]
1 f

[m−2]
0

· · · · · · · · · · · ·
· · · f

[0]
n · · · f

[0]
1 f

[0]
0

g
[n−1]
n+m−1 g

[n−1]
n+m−2 · · · · · · g

[n−1]
1 g

[n−1]
0

g
[n−2]
n+m−2 g

[n−2]
n+m−3 · · · g

[n−2]
1 g

[n−2]
0

· · · · · · · · ·
g

[0]
m · · · g

[0]
1 g

[0]
0


∈ F[t](m+n)×(m+n).

Thus, we have the following de�nition.
De�nition 4.1. Let M be the Sylvester matrix of the di�erential polynomials f

and g. Then the submatrix M i
j is obtained from M by deleting:

• rows 1 to j,

• rows m+ 1 to m+ j,
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• columns 1 to j,

• columns n+m− j to n+m except column n+m− i.

In general, the right divisor of a di�erential polynomial will not be a left divisor
and so we need the following de�nition.

De�nition 4.2. Let f be a di�erential polynomial. If g is a right divisor of f then
we denote by g |r f . Accordingly, if g is a left divisor of f then we denote by g |l f .

4.2 On computing the GCRD over F[t][D; δ]

In this thesis we do not prove correctness of the subresultant algorithm because
this is established elsewhere [6, 17]. Instead, based on the subresultant algorithm
we develop sharp upper bounds on the sizes of coe�cients of the GCRD.

Fact 4.3. (Li, 1996, Proposition 2.2.3) Let f ,g, and M be same as those in De�-
nition 4.1. Then the GCRD r of f and g can be computed as follows:

r =
k∑
i=0

det
(
M i

k

)
Di

where k = degD r.

Example 4.4. Let f = (t2 +t)D2 +2tD−2 and g = t3D2. Suppose we want to �nd
the GCRD r of f and g by using the subresultant algorithm. First we construct
the Sylvester matrix of f and g:

M =


t2 + t 4t+ 1 0 0

0 t2 + t 2t −2

t3 3t2 0 0

0 t3 0 0

 ∈ F(t)4×4.

For simplicity, suppose we already know the degree of r, which is equal to 1. Thus,
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by Fact 4.3,

r = det
(
M1

1

)
D + det

(
M0

1

)
= −2t4D + 2t3.

We observe that f = (− t+1
2t3
D + t+3

2t4
) · r and g = (− 1

2t
D + 3

2t3
) · r. Since there is no

common right factor of (− t+1
2t3
D + t+3

2t4
) and (− 1

2t
D + 3

2t3
), r must be the GCRD of

f and g.
By observing the subresultant algorithm, it is clear that we can compute the

GCRD of two di�erential polynomials in polynomial-time in the matrix dimension.
On the other hand, we are more concerned about the size of coe�cients. In the
following lemma we determine the upper bound of the size of coe�cients.
Lemma 4.5. Let f , g, and M be same as those in De�nition 4.1 and GCRD (f, g) =

r. In addition, suppose degt f, degt g ≤ d. Then degt r ≤ 2dn and there exist
u,v ∈ F[t] such that uf + vg = h where degt u ≤ 2dn and degt v ≤ 2dn.

Proof. By Fact 4.3, the GCRD r of f and g can be computed as follows:

r =
k∑
i=0

det
(
M i

k

)
Di,

where k = degD r. Since M i
k is a submatrix of M , we know that degt (det (M i

k))

is bounded by d (m+ n) and hence degt r ≤ 2dn. In [5], the author shows by
induction that degD u ≤ m − k − 1 and degD v ≤ n − k − 1. Thus, we form row
vectors H and R as follows:

H = [um−k−1, um−k−2, . . . , u1, u0, vn−k−1, vn−k−2, . . . , v1, v0] ∈ F[t]1×(n+m−2k),

R =
[
0, 0, . . . , det

(
Mk

k

)]
∈ F[t]1×(n+m−2k).

By the de�nition of the Sylvester matrix, we have the following:

H ·Mk
k = R.
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Since det
(
Mk

k

)
6= 0, Mk

k is invertible. By using Cramer's rule, we compute the
inverse of Mk

k ,
(
Mk

k

)−1
=

adj(Mk
k )

det(Mk
k )
. Now we solve for H:

H = R ·
(
Mk

k

)−1

= R · adj(Mk
k )

det(Mk
k )

= [0, . . . , 0, 1] · adj(Mk
k ).

Since degt
(
adj(Mk

k )
)
≤ 2dn, degt (H) ≤ 2dn. Therefore, degt u ≤ 2dn and degt v ≤

2dn.

Example 4.6. Let f and g be as in Example 4.4. We know from Example 4.4 that

M1
1 =

[
t2 + t 2t

t3 0

]
,

and so,
adj(M1

1 ) =

[
0 −2t

−t3 t2 + t

]
.

Then, by Lemma 4.5, u = −t3 and v = t2 + t. We verify this result by computing:

uf + vg = −t3((t2 + t)D2 + 2tD − 2) + (t2 + t)(t3D2)

= −2t4D + 2t3 = r.

We now present the subresultant algorithm which returns not only the GCRD
of f and g but also u and v such that uf + vg = r where r = GCRD(f, g).

Lemma 4.7. Let f, g ∈ F[t][D; δ] where degD f and degD g are n,m respectively
with the property m ≤ n and degt f , degt g ≤ d. Then the expected number of �eld
operations of the subresultant algorithm is O∼(mnωd) where ω is the exponent of
matrix multiplication over F and the soft-O notation O∼ indicates some missing
logarithmic factors.
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Algorithm 1 Subresultant algorithm for GCRD of two di�erential polynomials
Require: f, g ∈ F(t)[D; δ] with the property degDf ≥ degDg
1: procedure GCRD(f, g)
2: n← degDf
3: m← degDg
4: M ← SylvesterMatrix(f, g) . M is the Sylvester Matrix of f and g
5: for k ← 0,m do
6: if det(Mk

k ) 6= 0 then
7: break
8: end if
9: end for

10: r ←
∑k

i=0 det (M i
k)Di

11: A← adj(Mk
k ) . A is the Adjoint Matrix of Mk

k

12: u←
∑m−k

i=1 A(n+m−2k,i)Dm−k−i

13: v ←
∑n−k

i=1 A(n+m−2k,m−k+i)Dn−k−i
14: return (r, u, v) . r = uf + vg
15: end procedure

Proof. It is clear that the cost of the subresultant algorithm is bound by the cost
of �nding the degree of the GCRD of f and g. Storjohann [28] shows the deter-
minant of a polynomial matrix with degree d can be computed in O∼(nωd) �eld
operations. Since in the worst case we have to compute determinants (m+1) times,
the algorithm is bounded by O∼(mnωd) �eld operations.

We are also interested in computing the GCRD of several di�erential polyno-
mials. The most obvious way is to compute GCRDs iteratively as follows:

GCRD(f1, f2, . . . , fl−1, fl) = GCRD(f1,GCRD(f2, . . . ,GCRD(fl−1, fl) . . .))

However, this iterative computation is hard to analyze because it is not clear how
many division with remainder operations are used for computing the GCRD of
di�erential polynomials. The following algorithm demonstrates that the number of
division with remainder operations should be less than n+ l, where l is the number
of di�erential polynomials, and n = max(degDf1, . . . , degDfl).

For each recursive call of the algorithm either the degree or the number of dif-
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Algorithm 2 Iterative algorithm for GCRD of several di�erential polynomials
Require: f1, f2, . . . , fl−1, fl are in order of decreasing degree with respect to degD
1: procedure ITR-GCRD(f1, f2, . . . , fl−1, fl)
2: if l = 1 or degDf1 = 0 then
3: return degDf1

4: end if
5: r ← rem(f1, fl)
6: if r = 0 then
7: return ITR-GCRD(f2, . . . , fl−1, fl)
8: else
9: return ITR-GCRD(f2, . . . , fl, r)

10: end if
11: end procedure

ferential polynomials is decreased by 1 so that there exist at most n + l division
with remainder operations. However, by Lemma 3.5, the degree of coe�cient poly-
nomials in t increases more than double at each operation. Thus, we see that a
naive approach can not run in polynomial time in terms of the size of coe�cients.
To the best of our knowledge, Grigor'ev [13] presents the �rst polynomial-time al-
gorithm computing the GCRD of several di�erential polynomials. His approach
is very similar to the subresultant algorithm in that he creates a Sylvester-style
matrix based on input di�erential polynomials. Then he reduces rows and columns
by using Gaussian elimination. On the other hand, we can compute the GCRD of
several di�erential polynomials by using probabilistic approach as follows.
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Algorithm 3 Probabilistic algorithm for GCRD of several di�erential polynomials
Require: f1, . . . , fl ∈ F(t)[D; δ] and l ≥ 2
1: procedure GCRD(f1, . . . , fl)
2: d← degDf1

3: f̂1 ← f1

4: randomly choose c3, . . . , cl such that ci ∈ F
5: f̂2 ← f2 + c3f3 + · · ·+ clfl
6: (ĝ, u, v)← GCRD(f̂1, f̂2) . ĝ = uf̂1 + vf̂2

7: return (ĝ, < u, v >,< c3, . . . , cl >) ;
8: end procedure

Lemma 4.8. Let f1, f2, . . . , fl−1, fl ∈ F[t][D; δ], degD f1 ≤ d, and l ≥ 2. Then for
randomly chosen ci ∈ R, 3 ≤ i ≤ l and R ⊂ F we have

Pr

(
GCRD1≤i≤l (fi) = GCRD

(
f1, f2 +

l∑
i=3

cif3

))
≥ 1− d

#(R)
.

Proof. The proof is based on Diaz and Kaltofen's Lemma 2 [8]. Let

f̂1 = f1, f̂2 = f2 +
l∑

i=3

γifi ∈ E[D], E = F[γ3, . . . , γl][t],

where γ3, γ4, . . . , γl−1, γl are indeterminants. Let g = GCRD1≤i≤l (fi), and so g |r f̂1

and g |r f̂2. Then we let ĝ = GCRD(f̂1, f̂2). Since ĝ |r f1 and since ĝ ∈ F[t][D; δ],
it follows that g |r ĝ. By using the way of evaluating, we can show that ĝ divides
fi for 1 ≤ i ≤ l. For example, if we set γ3 = γ4 = · · · = γl = 0 then we have
f̂2 = f2 and then ĝ |r f2. Since ĝ |r fi for 3 ≤ i ≤ l, ĝ |r g. Hence, we conclude
that g = ĝ. By Diaz and Kaltofen's Lemma 1 [8], we know that GCRD (φc3,··· ,cl

ˆ(f1),

φc3,··· ,cl
ˆ(f2)) = φc3,··· ,cl(GCRD(f̂1, f̂2)) if φc3,··· ,cl(det(M j

j )) 6= 0 where M j
j is a sub-

matrix of the Sylvester matrix M of f̂1 and f̂2, j = degD

(
GCRD(f̂1, f̂2)

)
, and φ

is an evaluation function, evaluating at c3 = γ3, · · · , cl = γl. Since det(M j
j ) ∈

F[γ3, . . . , γl][t] and since the total degree of γi is less than and equal to d, by
Schwartz-Zippel Theorem, Pr

(
φc3,··· ,cl(det(M j

j )) 6= 0
)
≥ 1 − d

#(R)
. Thus, since if
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GCRD(φc3,··· ,cl
ˆ(f1), φc3,··· ,cl

ˆ(f2)) = φc3,··· ,cl(GCRD(f̂1, f̂2)) then g = ĝ, the stated
probability is established.

In this section we have seen algorithms for computing the GCRD of di�erential
polynomials. However, we need not only a GCRD algorithm but also a LCLM
algorithm in order to compute the Hermite form of di�erential polynomial matrices.
Thus, in the following section we will explore an algorithm for computing the LCLM
of two di�erential polynomials based on the result in this section.

4.3 On computing the LCLM over F[t][D; δ]

Since the LCLM computation can be thought as an extension of the GCRD compu-
tation, we can compute the LCLM of two di�erential polynomials based on the sub-
resultant algorithm for the GCRD computation. Let f, g ∈ F[t][D; δ] where degD f

and degD g are n,m respectively with the property m ≤ n and degt f , degt g ≤ d.
Then suppose k = degDGCRD (f, g) and it follows that degD LCLM (f, g) =

n + m − k. Moreover, we note that there exist r and s such that rf + sg = 0,
where degD r = m−k and degD s = n−k. Now, we construct a (n+m− 2k + 2)×
(n+m− k + 1) matrix A in such a way that

A =



f
[m−k]
n+m−k f

[m−k]
n+m−k−1 · · · · · · f

[m−k]
1 f

[m−k]
0

f
[m−k−1]
n+m−k−1 · · · · · · · · · f

[m−k−1]
0

· · · · · · · · · · · · f
[1]
0

f
[0]
n · · · f

[0]
1 f

[0]
0

g
[n−k]
n+m−k g

[n−k]
n+m−k−1 · · · · · · g

[n−k]
1 g

[n−k]
0

g
[n−k−1]
n+m−k−1 · · · · · · · · · g

[n−k−1]
0

· · · · · · · · · g
[1]
0

g
[0]
m · · · g

[0]
1 g

[0]
0


.

As in the case of the Sylvester matrix of f and g, the �rst row corresponds to the
coe�cients of the canonical form of Dm−kf . Accordingly, the (m− k + 1)-th row
corresponds to the coe�cients of f. After the �rst m − k + 1 rows, the i-th row
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corresponds to the coe�cients of Dn−k−i+1g. For example, the �rst row after the
�rst m− k + 1 rows corresponds to the coe�cients of the canonical form of Dn−kg
and the last row the coe�cients of g. From the matrix A, we see that the leftmost
nonzero elements of the �rst m− k + 1 row are equivalent to LC (f) and that the
leftmost nonzero elements of the remaining rows are equivalent to LC (g) . In order
to �nd the coe�cients of r and s, we have to �nd two row vectors R ∈ F[t]1×(m−k+1)

and S ∈ F[t]1×(n−k+1) such that

[R S] · A = [0] ∈ F[t]1×(n+m−k+1).

Example 4.9. Let f and g be same as those in Example 4.4. Also, we have already
seen degD r = GCRD(f, g) = 1. Now, we construct the matrix A in order to �nd
the LCLM of f and g:

A =


t2 + t 4t+ 1 0 0

0 t2 + t 2t −2

t3 3t2 0 0

0 t3 0 0

 .

Then we �nd row vectors R and S such that

[R S] · A = [0],

[−t3, 0, t2 + t, t− 2] · A = [0] .

Thus, the LCLM of f and g is

−t3f = −t3D((t2 + t)D2 + 2tD − 2)

= (−t5 − t4)D3 + (−4t4 − t3)D2

= −((t2 + t)D + (t− 2))t3D2

= −((t2 + t)D + (t− 2))g.

As shown in Example 4.9, the problem of computing the LCLM of f and g is
reduced to the problem of �nding the left nullspace vector of the matrix A.
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Algorithm 4 Left nullspace vector algorithm for LCLM of two di�erential poly-
nomials
Require: degDf ≥ degDg
1: procedure LCLM(f, g)
2: n← degDf
3: m← degDg
4: k ← degDGCRD(f, g)

5: A←



f
[m−k]
n+m−k · · · · · · f

[m−k]
0

· · · · · · · · ·
f

[0]
n · · · f

[0]
0

g
[n−k]
n+m−k · · · · · · g

[n−k]
0

· · · · · · · · ·
g

[0]
m · · · g

[0]
0


. A ∈ F[t](n+m−2k+2)×(n+m−k+1)

6: [Rm−k, . . . , R0, Sn−k, . . . , S0]← LeftNullVector(A)
7: r ←

∑m−k
i=0 RiDi

8: s←
∑n−k

i=0 SiDi
9: return (r, s) . rf + sg = 0

10: end procedure

Since we know from [29] that the cost of computing the left nullspace vector of f
and g is bounded by the cost of computing the GCRD of f and g, we can compute
the LCLM of f and g with O∼(mnωd) �eld operations as well. The existence of
r and s such that rf + sg = 0 guarantees that the rank of A should be less than
(n+m− 2k + 2). Otherwise, r and s must be equal to 0. Let l = rank (A) and
[T ] = [R S] . Since we are interested in degt r and degt s, we can apply fraction
free Gaussian elimination to �nd the row vector T . After permuting rows of A,
we can make the matrix A consist of two parts in such a way that the rows of the
�rst part are linearly independent and that the rows of the second part are linearly
dependent on the rows of the �rst part. If we suppose A′ is a row echelon form of
A, the fraction free Gaussian elimination algorithm [11, pp. 393-399] guarantees
that degtA

′ ≤ d · (n+m− 2k + 1) ≤ d · (n+m+ 1) ≤ 2dn+d. Let W be a matrix
such that W · A = A′. Then it follows by the fraction free Gaussian elimination
algorithm that degtW ≤ 2dn since degtA

′ ≤ 2dn + d and since degtA ≤ d. Now,
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we can get the row vector T by computing

T = [0 · · · 0︸ ︷︷ ︸
l zeros

1 · · · 1] ·W.

Thus, we have the following lemma.

Lemma 4.10. Let f , g be same as those in De�nition 4.1. Then we can �nd r

and s such that rf + sg = 0 and that degt r, degt s ≤ 2dn with O∼(mnωd) �eld
operations.
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Chapter 5

Computing the Hermite form of

matrices over F(t)[D; δ]

In this chapter we will �rst show how to compute the Hermite form of matrices over
F(t)[D; δ] by using LCLM and GCRD computations. However, as we have seen in
Chapter 4, coe�cients grow very rapidly when computing the GCRD and LCLM of
entries. To remedy this we convert the problem of computing the Hermite form of a
matrix over F(t)[D; δ] into a problem of solving a system of equations in F(t). This
gives a polynomial-time bound in terms of the number of operations in F(t) and the
size of coe�cients. The linear system method was �rst proposed for the Hermite
form computation of polynomial matrices by Kaltofen et al. [10], and then improved
by Storjohann [26]. Our approach can be thought as a variant of their methods
for the di�erential polynomial ring. The main bene�t of using the linear system
method is that the �eld F(t) over which we solve is the usual, commutative, �eld
of rational functions. For convenience, we assume that our matrix is over F[t][D; δ]

instead of F(t)[D; δ], which can easily be achieved by clearing denominators with a
scalar multiple from F[t]. For example, we construct a diagonal matrix D in such a
way that the i-th diagonal entry of D is the LCLM of all denominators of coe�cients
of entries in the i-th row of an input matrix. Thus, we can clear all denominators
by multiplying D on the left, which is clearly a unimodular operation. We �rst
concern ourselves with matrices in F(t)[D; δ]n×n of full rank and then generalize our
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algorithm to rectangular matrices.

5.1 Previous Work

In commutative domains such as Z and F[x], it has been more common to compute
the triangular Hermite and diagonal Smith form (as well as the lower degree Popov
form, especially as an intermediate computation). These forms are canonical in the
sense of being a unique invariant of their class under multiplication by unimodular
matrices. Polynomial-time algorithms for the Smith and Hermite forms over F[x]

were developed by Kannan (1985) [15], with important advances by Kaltofen et
al. (1987) [10], Villard (1996) [30], Mulders and Storjohann (2003) [21], and many
others. One of the key features of this recent work in computing normal forms has
been a careful analysis of the complexity in terms of matrix size, entry degree, and
coe�cient swell. Clearly identifying and analyzing the cost in terms of all these
parameters has led to a dramatic drop in both theoretical and practical complexity.

Computing the classical Smith and Hermite forms of matrices over di�erential
(and more general Ore) domains has received less attention though normal forms
of di�erential polynomial matrices have applications in solving di�erential systems
and control theory. Abramov and Bronstein [1] analyze the number of reduction
steps necessary to compute a row-reduced form, while Beckermann et al. (2006)
[3] analyze the complexity of row reduction in terms of matrix size, degree and the
sizes of the coe�cients of some shifts of the input matrix. Beckerman et al. [3]
demonstrate tight bounds on the degree and coe�cient sizes of the output, which
we will employ here. For the Popov form, Cheng [7] gives an algorithm for matrices
of shift polynomials. Cheng's approach involves order bases computation in order
to eliminate lower order terms of Ore polynomial matrices. A main contribution of
Cheng is to give an algorithm computing the row rank and a row-reduced basis of
the left nullspace of a matrix of Ore polynomials in a fraction-free way. This idea is
extended in Davies et al. [23], they reduce the problem of computing Popov form
to a nullspace computation. However, though Popov form is useful for rewriting
high order terms with respect to low order terms, we want a di�erent normal form
more suited to solving a system of linear Diophantine equations. Since the Hermite
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form is upper triangular, it meets this goal nicely, not to mention the fact that
it is a �classical� canonical form. In a slightly di�erent vein, Middeke [20] has
recently given an algorithm for the Smith (diagonal) form of a matrix of di�erent
polynomials, which requires time polynomial in the matrix size and degree (but the
coe�cient size is not analyzed).

5.2 Naive Approach

In commutative rings the GCD and LCM computations are the most popular tech-
niques to compute the Hermite form of an input matrix. Also, those computations
are unimodular operations over commutative rings. In particular, when Kannan
and Bachem [16] proposed a polynomial-time algorithm to compute the Hermite
form of an integer matrix, they showed that the problem of intermediate expression
swell can be controlled by careful use of the GCD algorithm. If r = GCD(a, b)

and a ≥ b then there exists p and q such that r = pa + qb. In [16], the authors
replaces p and q with p = p+

⌊
q
a

⌋
b and q = q−

⌊
q
a

⌋
a respectively if |q| > |a|. This

technique assures that the intermediate expressions such as p and q are controlled
by the size of entries. However, such a technique can not be directly applied to
polynomial rings because the size of the coe�cients is di�cult to controll. Thus, we
believe that it will require a deeper technique to solve the problem of intermediate
expression swell using GCRD and LCLM computations directly. The �rst step to
prove the existence of the Hermite form over F(t)[D; δ] is to show that GCRD and
LCLM computations are unimodular operations.

Theorem 5.1. Let a, b ∈ F(t) [D; δ] be Ore polynomials. Then we can �nd u, v ∈
F(t) [D; δ] such that ua+vb = GCRD(a, b). Also, there exist s, t such that sa+tb = 0

where sa = LCLM(a, b). Then
(
u v

s t

)
is invertible over F(t) [D; δ] and hence is

unimodular. Also, we note that
(
u v

s −t

)(
a

b

)
=

(
g

0

)
.

Proof. Since sa = tb = LCLM(a, b) and GCLD(s, t) = 1, it follows that there exist
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c, d ∈ F(t) [D; δ] such that sc− td = 1. Now, we construct the inverse of
(
u v

s t

)
as follows: (

u v

s −t

)(
ag−1 c

bg−1 d

)
=

(
1 uc+ vd

0 1

)
,(

1 uc+ vd

0 1

)(
1 −uc− vd
0 1

)
=

(
1 0

0 1

)
.

Also, we note that c = ag−1 and d = bg−1 and so uc+ vd = g. Thus, the inverse of(
u v

s t

)
is

(
ag−1 c

bg−1 d

)(
1 −uc− vd
0 1

)
=

(
ag−1 ag−1 (−uc− vd) + c

bg−1 bg−1 (−uc− vd) + d

)

=

(
ag−1 −a+ c

bg−1 −b+ d

)
∈ F(t) [D; δ]2×2 .

The following theorem is very important because it shows the Hermite form of
an input matrix in the di�erential polynomial ring is a normal form of the input
matrix. In other words, if the matrix H is the Hermite form of the matrix A then
there exists a unimodular matrix U such that H = UA.

Theorem 5.2. Let A ∈ F(t)[D; δ]n×n have row rank n. Then there exists a matrix
H ∈ F(t)[D; δ]n×n with row rank n in Hermite form, and a unimodular matrix
U ∈ F(t)[D; δ]n×n, such that UA = H.

Proof. We show this by induction on n. The base case, n = 1, is trivial and we
suppose that the theorem holds for (n−1)×(n−1) matrices. Since A has row rank
n, we can �nd a permutation of the rows of A such that every principal submatrix
of A has full row rank. Since this permutation is a unimodular transformation of A,
we assume this property about A. Thus, by the induction hypothesis, there exists
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a unimodular matrix U1 ∈ F(t)[D; δ](n−1)×(n−1) such that

0

U1 0
...
0

0 0 · · · 0 1


·A = H̄ =



H̄1,1 · · · · · · ∗ ∗
H̄2,2 · · · ∗ ∗

0
. . . ... ...

H̄n−1,n−1 ∗
An,1 An,2 · · · An,n−1 An,n


∈ F(t)[D; δ]n×n,

where the (n− 1)st principal minor of H̄ is in Hermite form. By Theorem 5.1, we
know that there exists a unimodular matrix

W =

(
ui vi

si −ti

)
∈ F(t)[D; δ]2×2 such that W

(
H̄ii

An,i

)
=

(
gi

0

)
∈ F(t)[D; δ]2×1.

This allows us to reduce An,1, . . . , An,n−1 to zero, and does not introduce any non-
zero entries below the diagonal. Also, all o�-diagonal entries can be reduced using
unimodular operations modulo the diagonal entry, putting the matrix into Hermite
form.

Corollary 5.3. Let A ∈ F(t)[D; δ]n×n have full row rank. Suppose UA = H for
unimodular U ∈ F(t)[D; δ]n×n and Hermite form H ∈ F(t)[D; δ]n×n. Then both U

and H are unique.

Proof. Suppose H and G are both Hermite forms of A. Then there exist unimodular
matrices U and V such that UA = H and V A = G, andG = WH whereW = V U−1

is unimodular. Since G and H are upper triangular matrices, we know W is as well.
Moreover, since G and H have monic diagonal entries, the diagonal entries of W
equal 1. We now prove W is the identity matrix. By way of contradiction, �rst
assume that W is not the identity, so there exists an entry Wij which is the �rst
nonzero o�-diagonal entry on the ith row of W . Since i < j and since Wii = 1,
Gij = Hij+WijHjj. BecauseWij 6= 0, we see degDGij ≥ degDGjj, which contradicts
the de�nition of the Hermite form. The uniqueness of U follows similarly.
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The following corollary is a generalization of Theorem 5.2 in terms of a rectan-
gular matrix.

Corollary 5.4. Let A ∈ F(t) [D; δ]n×m with rank m. There exists a unique matrix
H ∈ F(t) [D; δ]n×m with rank m in Hermite form, which is left equivalent to A.

Proof. First we permute rows of A in order that the �rst m rows of A are linearly
independent. Then, by Theorem 5.2, the Hermite form H of A with rank m can be
computed using unimodular operations and then the last n−m rows of the Hermite
form should be zero because those are dependent on the �rst m rows. Thus, by
Corollary 5.3, A has the unique hermite form H with rank m.

We can now give a naive algorithm to compute the Hermite form of matrices
over F(t) [D; δ] by using the GCRD and LCLM computations.
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Algorithm 5 Naive algorithm for Hermite form computation
Require: A is a square matrix with full rank
1: procedure HERMITE(A)
2: n← row-dimension(A)
3: H ← A
4: U ← In
5: for i← 1, n do
6: if Hi,i = 0 then
7: Replace Hi,i with non-zero entry by row permutation
8: end if
9: for j ← i+ 1, n do

10: Calculate r = pHi,i + qHj,i . r = GCRD(Hi,i, Hj,i)
11: Calculate l = sHi,i = tHj,i . l = LCLM(Hi,i, Hj,i)

12: V ←
(
p q
s −t

)
13:

(
Hi,∗
Hj,∗

)
← V

(
Hi,∗
Hj,∗

)
14:

(
Ui,∗
Uj,∗

)
← V

(
Ui,∗
Uj,∗

)
15: end for
16: c← LC(Ai,i)
17: Ai,∗ ← 1

c
Ai,∗

18: Ui,∗ ← 1
c
Ui,∗

19: for j ← 1, i− 1 do
20: Calculate Aj,i = qAi,i + r

21: V ←
(

1 −q
0 1

)
22:

(
Aj,∗
Ai,∗

)
← V

(
Aj,∗
Ai,∗

)
23:

(
Uj,∗
Ui,∗

)
← V

(
Uj,∗
Ui,∗

)
24: end for
25: end for
26: return (U,H) . H = UA
27: end procedure

37



5.3 Degree bounds for H and U

The main di�culty in computing with matrices over the di�erential polynomial
ring is that there is no determinant having the properties found in commutative
linear algebra. Due to such a restriction, we can not directly compute the degree
bounds of H and U required by techniques used in Storjohann [26] and Kaltofen
et al. [10]. The �rst question we must then answer is, can we �nd degree bounds
of H and U without using the properties of determinant? In this section, we prove
su�cient degree bounds on H and U . Also, we employ the result of Beckermann
et al. [3] with respect to upper bounds of row-reduced form.

Fact 5.5. (Theorem 2.2 in [3]) For any A ∈ F(t) [D; δ]m×s there exists a unimodular
matrix U ∈ F(t) [D; δ]m×m, with T = UA having r ≤ min {m, s} nonzero rows,
rowdegT ≤ rowdegA, and where the submatrix consisting of the r nonzero rows of
T are row-reduced. Moreover, the unimodular multiplier satis�es the degree bound

rowdeg U ≤ −→v +

(
|−→u | − |−→v | −min

j
{uj}

)
−→e ,

where −→u := max
(−→

0 , rowdegA
)
, −→v := max

(−→
0 , rowdegT

)
, and −→e is the column

vector with all entries equal to 1.

.

Corollary 5.6. If A ∈ F(t) [D; δ]n×n is a unimodular matrix then the row reduced
form of A is an identity matrix.

Proof. We prove the claim by contradiction. Let T be the row-reduced form of
A where A is a unimodular matrix. Assume, to arrive at a contradiction, that
T is not the identity matrix. By Fact 5.5, we know that there exists a uni-
modular matrix U such that T = UA. Since T is row-reduced, there exists no
−→v ∈ F(t)1×n with −→v 6= −→0 such that −→v L = 0 where L = LCRow (T ). Since T is
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a unimodular matrix, there exist a unimodular matrix S such that In = ST . Let
m := max (deg (sijtjk)) for 1 ≤ i, j, k ≤ n and without loss of generality we can say
that deg (sijtjk) becomes the maximum, m, when i = l1, j = l2, and k = l3. Then
we construct a row vector −→v ∈ F(t)1×n in such a way that for each j = 1, . . . n,
if m = max (deg (sl1jtjk)) for 1 ≤ k ≤ n then vj := lc (sl1j). Otherwise, vj := 0.
Since In = ST , −→v L = 0. Since T is in row-reduced form, −→v should be a zero
vector. However, based on our construction of −→v , the row vector −→v should have
at least one non-zero entry. By contradiction, T is the identity matrix.

The following theorems provide degree bounds on H and U . We �rst compute
a degree bound of the inverse of U by using the properties of the Hermite form and
the idea of backward substitution, and then use the result of Beckermann et al. [3]
to compute degree bound of U .

Theorem 5.7. Let A ∈ F(t)[D; δ]n×n be a matrix with degDAij ≤ d and full
row rank. Suppose UA = H for unimodular matrix U ∈ F(t)[D; δ]n×n and H ∈
F(t)[D; δ]n×n in Hermite form. Then there exists a unimodular matrix V ∈ F(t)[D; δ]n×n

such that A = V H where UV = In and degDVij ≤ d.

Proof. We prove by induction on n. The base case is n = 1. Since H11 =

GCRD(A11, . . . , An1), degDH11 ≤ d and so degDVi1 ≤ d for 1 ≤ i ≤ n. Now,
we suppose that our claim is true for k where 1 < k < n. Then we have to show
that degDVik+1 ≤ d. We need to consider two cases:
Case 1: degDVi,k+1 > max(degDVi1, . . . , degDVik). Since

degDHk+1,k+1 ≥ max(degD H1,k+1, . . . , degDHk,k+1),

degDAi,k+1 = degD(Vi,k+1Hk+1,k+1),

where Ai,k+1 = Vi1H1,k+1 + · · ·+ Vi,k+1Hk+1,k+1. Thus, degDVi,k+1 ≤ d.
Case 2: degDVi,k+1 ≤ max(degDVi1, . . . , degDVik). Thus, by induction hypothesis,
degDVi,k+1 ≤ d.

Corollary 5.8. Let A, V , and U be those in Theorem 5.7. Then degDUij ≤ (n−1)d.
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Proof. By Corollary 5.6, we know that the row reduced form of V is In. Moreover,
since In = UV , we can compute the degree bound of U by using Fact 5.5. Clearly,

−→v + (|−→u | − |−→v | −min
j
{uj})−→e ≤ −→v + (|−→u | −min

j
{uj})−→e ,

where −→u := max(
−→
0 , rowdegV ) and −→v := max(

−→
0 , rowdegIn) =

−→
0 . Since the

degree of each row of V is bounded by d, (|−→u | −minj{uj}) ≤ (n − 1)d. Then, by
Fact 5.5, rowdegU ≤ (n− 1)d. Therefore, degDUij ≤ (n− 1)d.

Thus, we can compute a degree bound of H.

Corollary 5.9. Let H be same as that in Theorem 5.7. Then degDHij ≤ nd.

Proof. Since degDUij ≤ (n− 1)d and degDAij ≤ d, degDHij ≤ nd.

5.4 The linear system method for Hermite form

In this section we present our polynomial-time algorithm for the Hermite form,
which is a variant of the linear system method developed in Kaltofen et al. [10]
and Storjohann [26].

Theorem 5.10. Let A ∈ F[t][D; δ]n×n have full row rank, with degDAi,j ≤ d, and
(d1, . . . , dn) ∈ Nn be given. Consider the system of equations PA = G, for n × n
matrices for P,G ∈ F(t)[D; δ] restricted as follows:

• The degree (in D) of each entry of P is bounded by (n− 1)d+ max1≤i≤n di.

• The matrix G is upper triangular, where every diagonal entry is monic and
the degree of each o�-diagonal entry is less than the degree of the diagonal
entry below it.

• The degree of the ith diagonal entry of G is di.

Let H be the Hermite form of A and (h1, . . . , hn) ∈ Nn be the degrees of the diagonal
entries of H. Then the following are true:
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(a) There exists at least one pair P,G as above with PA = G if and only if di ≥ hi

for 1 ≤ i ≤ n.

(b) If di = hi for 1 ≤ i ≤ n then G is the Hermite form of A and P is a
unimodular matrix.

Proof. The proof is similar to that of [10], Lemma 2.1. Given a degree vector
(d1, . . . , dn), we view PA = G as a system of equations in the unknown entries
of P and G. Since H is the Hermite form of A, there exist a unimodular matrix
U such that UA = H. Thus PU−1H = G and the matrix PU−1 must be upper
triangular since the matrices H and G are upper triangular. Moreover, since the
matrix PU−1 is in F(t)[D; δ]n×n, and Gii = (PU−1)ii · Hii for 1 ≤ i ≤ n, we
know di ≥ hi for 1 ≤ i ≤ n. For the other direction, we suppose di ≥ hi for
1 ≤ i ≤ n. Let D = diag(Dd1−h1 , . . . ,Ddn−hn). Then since (DU)A = (DH), we
can set P = DU and G = DH as a solution to PA = G, and the ith diagonal of G
has degree di by construction. By Corollary 5.8, we know degDUi,j ≤ (n− 1)d and
so degDPi,j ≤ (n− 1)d + max1≤i≤n di. To prove (b), suppose di = hi for 1 ≤ i ≤ n

and that, contrarily, G is not the Hermite form of A. Since PU−1 is an upper
triangular matrix with ones on the diagonal, PU−1 is a unimodular matrix. Thus
P is a unimodular matrix and, by Corollary 5.3, G is the (unique) Hermite form
of A, a contradiction.

Lemma 5.11. Let A, P , (d1, . . . , dn), and G be as in Theorem 5.10, and β :=

(n − 1)d + max1≤i≤n di. Also, assume that degtAij ≤ e for 1 ≤ i, j ≤ n. Then we
can express the system PA = G as a linear system over F(t) as P̂ Â = Ĝ where:

P̂ ∈ F(t)n×n(β+1), Â ∈ F[t]n(β+1)×n(β+d+1), Ĝ ∈ F(t)n×n(β+d+1).

Assuming the entries Â are known while the entries of P̂ and Ĝ are indeterminates,
the system of equations from P̂ Â = Ĝ for the entries of P̂ and Ĝ is linear over
F(t) in its unknowns, and the number of equations and unknowns is O(n3d). The
entries in Â are in F[t] and have degree at most e.
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Proof. Since degDPi,j ≤ β, each entry of P has at most (β + 1) coe�cients in
F(t) and can be written as Pij =

∑
0≤k≤β PijkDk. We let P̂ ∈ F(t)n×n(β+1) be the

matrix formed from P with Pij replaced by the vector (Pijβ, . . . , Pij0) ∈ F(t). Since
degDP ≤ β, when forming PA, the entries in A are multiplied by D` for 0 ≤ ` ≤ β,
resulting in polynomials of degree in D of degree at most µ = β + d. Thus, we
construct Â as the matrix formed from A with Aij replaced by the (β+ 1)× (µ+ 1)

matrix whose `-th row is

(A
[`]
ijµ, A

[`]
ij(µ−1), . . . , A

[`]
ij0) such that D`Aij = A

[`]
ijµDµ + A

[`]
ij(µ−1)D

(µ−1) + · · ·+ A
[`]
ij0.

Note that by Lemma 3.1 we can compute D`Ai,j quickly. Finally, we construct the
matrix Ĝ. Each entry of G has degree in D of degree at most nd ≤ n(β + d + 1).
Thus, initially Ĝ is the matrix formed by G with Gij replaced by

(Gijµ, . . . , Gij0) where Gij = GijµDµ +Gij(µ−1)D(µ−1) + · · ·+Gij0.

However, because of the structure of the system we can �x values of many of the
entries of Ĝ as follows. First, since every diagonal entry of the Hermite form is
monic, we know the corresponding entry in Ĝ is 1. Also, by the vector (d1, . . . , dn),
the degree in D of the i-th diagonal entry of G is bounded by di, and every o�-
diagonal has degree in D less than that of the i-th diagonal below it (and hence less
than di), and we can set all coe�cients of larger powers of D to 0 in Ĝ. The resulting
system P̂ Â = Ĝ, restricted as above according to Theorem 5.10, has O(n3d) linear
equations in O(n3d) unknowns. Since the coe�cients in Â are all of the form D`Aij,
and since this does not a�ect their degree in t, the degree in t of entries of Â is the
same as that of A, namely e.

In [26], Storjohann reduces the size of the system from O(n3d) × O(n3d) to
O(n2d) × O(n2d) essentially by using the fact that we do not need all unknown
entries of Ĝ in order to �nd all unknown entries of P̂ and constructing a system
of equations accordingly. The following example shows how the size of the system
can be reduced when removing all unknown entries of Ĝ.
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Example 5.12. Let

A =

 2tD 0 t+ (1 + 4t)D
2t2 2t 2t+ 4t2

2t+ 2tD 4t+ 2tD 9t− t2 + (1 + 5t)D


For simplicity, suppose that we know the correct degrees of the diagonal entries of
the Hermite form of A, which are (0, 0, 1). Also, note that degD A = 1, n = 3, and
β = 3 since β = (n− 1)d+ dmax. Now, we construct Â, Ĝ, and P̂ based on Lemma
5.10. Â =



2t 6 0 0 0 0 0 0 0 0 1 + 4t 12 + t 3 0 0

0 2t 4 0 0 0 0 0 0 0 0 1 + 4t 8 + t 2 0

0 0 2t 2 0 0 0 0 0 0 0 0 1 + 4t 4 + t 1

0 0 0 2t 0 0 0 0 0 0 0 0 0 1 + 4t t

0 2t2 12t 12 0 0 2t 6 0 0 0 2t + 4t2 6 + 24t 24 0

0 0 2t2 8t 4 0 0 2t 4 0 0 0 2t + 4t2 4 + 16t 8

0 0 0 2t2 4t 0 0 0 2t 2 0 0 0 2t + 4t2 2 + 8t

0 0 0 0 2t2 0 0 0 0 2t 0 0 0 0 2t + 4t2

2t 6 + 2t 6 0 0 2t 6 + 4t 12 0 0 1 + 5t 15 + 9t− t2 27− 6t −6 0

0 2t 4 + 2t 4 0 0 2t 4 + 4t 8 0 0 1 + 5t 10 + 9t− t2 18− 4t −2

0 0 2t 2 + 2t 2 0 0 2t 2 + 4t 4 0 0 1 + 5t 5 + 9t− t2 9− 2t

0 0 0 2t 2t 0 0 0 2t 4t 0 0 0 1 + 5t 9t− t2



,

Ĝ =

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Ĝ130

0 0 0 0 0 0 0 0 0 1 0 0 0 0 Ĝ230

0 0 0 0 0 0 0 0 0 0 0 0 0 1 Ĝ330

 ,
and

P̂ =

 P̂113 P̂112 P̂111 P̂110 P̂123 P̂122 P̂121 P̂120 P̂133 P̂132 P̂131 P̂130

P̂213 P̂212 P̂211 P̂210 P̂223 P̂222 P̂221 P̂220 P̂233 P̂232 P̂231 P̂230

P̂313 P̂312 P̂311 P̂310 P̂323 P̂322 P̂321 P̂320 P̂333 P̂332 P̂331 P̂330

 .

If we remove unknown entries from Ĝ then we have two new matrices Ĝ∗ and P̂ ∗
as follows.

Ĝ∗ =

 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

 ,
and
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Â
∗

=



2t 6 0 0 0 0 0 0 0 0 1 + 4t 12 + t 3 0

0 2t 4 0 0 0 0 0 0 0 0 1 + 4t 8 + t 2

0 0 2t 2 0 0 0 0 0 0 0 0 1 + 4t 4 + t

0 0 0 2t 0 0 0 0 0 0 0 0 0 1 + 4t

0 2t2 12t 12 0 0 2t 6 0 0 0 2t + 4t2 6 + 24t 24

0 0 2t2 8t 4 0 0 2t 4 0 0 0 2t + 4t2 4 + 16t

0 0 0 2t2 4t 0 0 0 2t 2 0 0 0 2t + 4t2

0 0 0 0 2t2 0 0 0 0 2t 0 0 0 0

2t 6 + 2t 6 0 0 2t 6 + 4t 12 0 0 1 + 5t 15 + 9t− t2 27− 6t −6

0 2t 4 + 2t 4 0 0 2t 4 + 4t 8 0 0 1 + 5t 10 + 9t− t2 18− 4t

0 0 2t 2 + 2t 2 0 0 2t 2 + 4t 4 0 0 1 + 5t 5 + 9t− t2

0 0 0 2t 2t 0 0 0 2t 4t 0 0 0 1 + 5t



.

We can construct the system of equations, B−→x = −→y , from P̂ , Â, and Ĝ and
then solving for −→x gives the correct values of all unknown entries in P̂ and Ĝ.

Now we present the polynomial-time algorithm using the linear system method
for computing the Hermite form of matrices over F(t) [D; δ].
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Algorithm 6 Linear System Method for Hermite form computation
Require: A is a square matrix with full rank
1: procedure HERMITE(A)
2: n← row-dimension(A)
3: d← degD A
4: di[1, . . . , n]← {nd, . . . , nd} . Initialize each entry of the vector di with nd
5: for i← 1, n do
6: start← 0
7: end← nd
8: repeat
9: di� ← start+

⌊
start−end

2

⌋
10: di[i]← start+ di�
11: β ← (n− 1)d+ max1≤i≤n di[i]

12: By Lemma 5.11 construct the system of equations, P̂ Â = Ĝ
13: if P̂ Â = Ĝ is consistent then
14: end← di[i]
15: else
16: if di�=0 then
17: start← end
18: di[i]← end
19: else
20: start← di[i]
21: end if
22: end if
23: until start > end
24: end for
25: Construct U,H from entries of P̂ , Ĝ respectively
26: return (U,H) . H = UA
27: end procedure
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So far, we have shown how to convert the di�erential system over F(t) [D; δ]

into a linear system over F(t). Also, we note, by Theorem 5.10, that the correct
degree of the i-th diagonal entry in the Hermite form of A can be founded by
seeking the smallest non-negative integer k such that PA = G is consistent when
degDGj,j = nd for j = 1, . . . , i − 1, i + 1, . . . , n and k ≤ degDGi,i. In Algorithm
6, we employ the idea of the binary search which guarantees that we can �nd the
correct degrees of all diagonal entries by solving at most O(n log(nd)) systems. We
then �nd the correct degrees of the diagonal entries in the Hermite form of A,
solving the system PA = G with the correct diagonal degrees gives the matrices U
and H such that UA = H where H is the Hermite form of A.

Theorem 5.13. Let A ∈ F[t][D; δ]n×n with degDAij ≤ d and degtAij ≤ e for
1 ≤ i, j ≤ n. Then we can compute the Hermite form H ∈ F(t)[D; δ] of A, and
a unimodular U ∈ F[t][D; δ] such that UA = H, with O((n10d3 + n7d2e) log(nd))

operations in F

Proof. Lemma 5.11 and the following discussion, above shows that computing U

and H is reduced to solving O(n log(nd)) systems of linear equations over F(t), each
of which is m ×m for m = O(n3d) and in which the entries have degree e. Using
standard linear algebra this can be solved with O(m4e) operations in F, since any
solution has degree at most me (see [31]). A somewhat better strategy is to use the
t-adic lifting approach of Dixon [9], which would require O(m3 + m2e) operations
in F for each system, giving a total cost of O((n10d3 +n7d2e) log(nd)) operations in
F.

It is often the case that we are considering di�erential systems over Q[t][D; δ]

where we must contend with growth in coe�cients in D, t, and the size of the
rational coe�cients. The following lemma shows there is some small amount of
extra coe�cient growth when going from A to Â.

Lemma 5.14. Let A be same as that in Theorem 5.10 and ||A|| denote the maxi-
mum coe�cient length in Q. In addition, we suppose degtAijk ≤ e for 1 ≤ i, j ≤
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n and 0 ≤ k ≤ d where Aijk ∈ Q[t] . Then we see Size (A) = O (n2de log ||A||).
Now, we claim Size

(
Â
)

= O (n4d2e (log ||A||+ e log e)).
Proof. Since DAijk = AijkD + (Aijk)

′, degtDAijk ≤ degtAijk. Then it follows
degt Âij ≤ e. However, when multiplying Aijk by D on the left side, there is
a change on the size of coe�cients in Q. For example, || (Aijk)′ || ≤ e||Aijk||.
Moreover, we note that the (e+ 1)-th derivative of Aijk is equal to zero because
each derivation decreases the degree of Aijk by 1. So, we conclude || (Aijk)[l] || ≤
e!||Aijk|| for any l ≥ 0 where (Ak,i,j)

[l] denotes the l-th derivative of Aijk. By
Lemma 5.11, we know that the number of entries in Â is bounded by O (n4d2).
Also, each entry of Â is a polynomial in t with degree at most e. As mentioned
above, the maximum coe�cient length of Â in Q is bounded by e!||Aijk||. Thus,
Size

(
Â
)

= O (n4d2e (log ||A||+ e log e)).

Thus, it follows that we can �nd the Hermite form of A ∈ Q(t)[D; δ]n×n in time
polynomial in n, degtAij, degD Aij, and log ‖Aij‖, the maximum coe�cient length
in an entry, for 1 ≤ i, j ≤ n.

5.5 Generalization to rectangular matrices

In this section we generalize our algorithm for rectangular matrices. Suppose A ∈
F[t][D; δ]n×m, n > m, and that the rank of A is m. So, we know that A has m
linearly independent rows over F[t][D; δ]. By Corollary 5.4, we know that A has a
unique matrix H ∈ F(t)[D; δ]n×m with rank m in Hermite form. By Fact 5.5, we
know that there exists a unimodular matrix U1 such that

T = U1A,

where T is a row-reduced form of A and has m nonzero rows. After permuting rows
of T , we can have a new matrix A′, which is of the form

A′ =

(
T ′

0

)
,
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where A′ ∈ F(t)[D; δ]n×m and T ′ ∈ F(t)[D; δ]m×m consists of m nonzero rows of T .
Without loss of generality, we can say that

A′ = U1A.

Beckermann et al. [3] introduce a polynomial time algorithm for �nding such ma-
trices A′ and U1 by performing row reduction of a matrix of Ore polynomials in
a fraction-free way. Since T ′ consists of m linearly independent rows, by applying
the linear system method, we can compute U2 and H for T ′ such that U2T

′ = H

where H is the Hermite form of T ′. Also, we note that by Corollary 5.4, H is the
Hermite form of A as well where a correspondent unimodular matrix is given by
computing U = U2U1. Now, we have the following:

H = UA,

where H is the Hermite form of A. Thus, we have the following lemma.

Lemma 5.15. Let A ∈ F[t][D; δ]n×m with full rank. We can �nd the unique Hermite
form of A in a polynomial time.

5.6 Generalization to matrices over F(t)[E ;σ]

So far we have seen how to convert the di�erential system over F(t) [D; δ] into
a linear system over F(t). In order to generalize our approach to matrices over
F(t) [E ;σ], we also need to covert the polynomial system over F(t)[E ;σ] into a linear
system over F(t). Since we only use the property of the Hermite form and the idea
of backward substitution when computing degree bounds on U and H in F(t) [D; δ],
we can still have same degree bounds on U and H in F(t)[E ;σ]. Thus, the only
thing to be changed is that we have to consider not δ but σ when constructing P̂ ,
Â, and Ĝ. Let

f =
n∑
i=0

fiE i ∈ F[t][E ;σ] for f0, . . . , fn ∈ F[t].
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Then we notice that
Ef =

n∑
i=0

fi(t+ 1)E i+1.

Assume degt f ≤ e and then the cost of computing Ef is O(ne2) operations in F.
Thus the cost of computing Emf requires O(mne2) operations in F. We have the
following lemma.

Lemma 5.16. Let f ∈ F(t)[E ;σ] have degE f = n,degt f = e, and let m ∈ N. Then
we can compute Ekf , for 1 ≤ k ≤ m, with O(mne2) operations in F.

Thus, by Lemma 5.16 we note that Â can be constructed quickly. Moreover, by
Theorem 5.13 we can solve the system P̂ Â = Ĝ with O((n9d3 + n6d2e) operations
in F. Therefore, we have the following lemma.

Lemma 5.17. Let A ∈ F[t][E ;σ]n×n with degE Aij ≤ d and degtAij ≤ e for 1 ≤
i, j ≤ n. Then we can compute the Hermite form H ∈ F[t][E ;σ] of A, and a
unimodular U ∈ F[t][E ;σ] such that UA = H, with O((n10d3 + n7d2e) log(nd))

operations in F
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Chapter 6

Experimental Results

We have implemented both the linear system method and the naive method for com-
puting the Hermite form in Maple, for F = Q. The experiments were performed on
an AMD Opteron 850 CPU at 2.4 GHz with 8GB of RAM. We randomly generated
matrices over F[t][D; δ] and then calculated the elapsed time for computing the Her-
mite forms of input matrices. However, with the degree bound (n−1)d+max1≤i≤n di

for P , the linear system method did not surpass the naive method. Also, note that
the GCRD and LCLM computations in Maple are optimized using the modular ap-
proach of Li and Nemes [19]. Thus, we make a conjecture about the degree bound
of P .

Conjecture 6.1. Let P , A, and G be those in Theorem 5.10. Then the degree of
P is at most (n− 1)d.

By using the idea of Storjohann [26] where the unknown coe�cients of entries
in G are removed, we reduce the size of the system to O(n2d) × O(n2d). Based
on a new degree bound of P and the idea of Storjohann, the size of the system is
reduced by more than a factor of n. All experiments resulted in the correct Hermite
forms for all input matrices. The following table shows how well the reduced linear
system outperformed the naive method. Note that the last two columns denote
the experiments for the linear system method where the sizes of the systems are
O(n3d)×O(n3d) and O(n2d)×O(n2d) respectively.
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Let A be a matrix in F[t][D; δ].

Dimension(A) degD A degtA Naive Method Original system Reduced system
3 1 1 0.425 sec 2.352 sec 0.412 sec
3 1 2 0.903 sec 5.869 sec 0.734 sec
3 2 1 21.870 sec 37.744 sec 2.768 sec
3 2 2 157.160 sec 326.066 sec 6.068 sec
4 1 1 11.263 sec 42.086 sec 4.460 sec
4 1 2 130.736 sec 344.217 sec 9.868 sec
4 2 1 > 20 min > 20 min 114.159 sec
4 2 2 > 20 min > 20 min 557.791 sec
5 1 1 > 20 min > 20 min 101.541 sec
5 1 2 > 20 min > 20 min 300.531 sec
5 2 1 > 20 min > 20 min > 20 min
5 2 2 > 20 min > 20 min > 20 min

As shown above, when the size of the system is reduced to O(n2d)×O(n2d), the
linear system method outperformed the naive method as increasing the dimension
of A, degDA, and degtA.
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Chapter 7

Conclusion and Future Work

We have studied the problem of computing the Hermite form of a matrix over
the di�erential polynomial ring. We �rst compute the upper bound of the size of
coe�cients when computing the GCRD and LCLM of two di�erential polynomials.
Then we give the NAIVE algorithm using the GCRD and LCLM computations
in order to compute the Hermite form of a matrix of di�erential polynomials. By
using the properties of the Hermite form and the idea of backward substitution,
we are able to obtain degree bounds on U and H where H is the Hermite form
of A ∈ F(t) [D; δ]n×n. Based on degree bounds on U and H, we can also apply
the linear system method for the Hermite form computation in the di�erential
polynomial ring. In the method, we convert the di�erential system into a linear
system in a commutative ring, which can be accomplished in a polynomial time in
terms of the matrix size, the degree, and the size of coe�cients. Then we generalize
our algorithm for a rectangular matrix and a matrix of shift polynomials. However,
from a practical point of view our method is still expensive. Thus, we have the
following future research directions.

• Reduce the degree bound of P in Theorem 5.10. In Theorem 5.10, we show
the degree of P is bounded by β, β = (n − 1)d + max

1≤i≤n
di. If it is possible

to show that we can set β = (n − 1)d then we can reduce the size of the
system and have a better running time. One possible solution is to use the
non-commutative determinant of Dieudonné because it has a number of the
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desirable properties of the usual determinant.

• Use a randomized approach to �nd the correct degrees of the diagonal entries.
By using the idea of binary search, we have to solve O(n log(nd)) systems for
�nding the correct degrees of the diagonal entries. Since in general random-
ization gives a better expected cost, randomization approach can reduce the
number of systems to be solved. For example, in general the degrees of the
diagonal entries in Hermite form increase as computing the Hermite form.
Also, we can employ structured matrix techniques because we solve a similar
system repeatedly.

• Compute degree bounds on U , V , and S such that UAV = S where S is the
Smith form of A ∈ F(t) [D; δ]n×n. Computing the Smith form of a matrix
over F(t) [D; δ] in a polynomial time is still open problem. Even though we
propose the polynomial-time algorithm for the Hermite form computation in
this thesis, the Smith form computation is totally di�erent problem because
the di�erential polynomial ring is two-sided ideal domain. However, we believe
it is possible to develop a polynomial-time algorithm for the Smith form
computation. This should be fairly straightforward in the di�erential case
(where the Smith form is always trivial) but more di�cult, and interesting,
in the shift case.
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