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Abstract

Estimating functions have been widely used for parameter estimation in var-
ious statistical problems. Regular estimating functions produce parameter es-
timators which have desirable properties, such as consistency and asymptotic
normality. In quasi-likelihood inference, an important example of estimating
functions, correct specification of the first two moments of the underlying distri-
bution leads to the information unbiasedness, which states that two forms of the
information matrix: the negative sensitivity matrix (negative expectation of the
first order derivative of an estimating function) and the variability matrix (vari-
ance of an estimating function) are equal, or in other words, the analogue of
the Fisher information is equivalent to the Godambe information. Consequently,
the information unbiasedness indicates that the model-based covariance matrix
estimator and sandwich covariance matrix estimator are equivalent. By com-
paring the model-based and sandwich variance estimators, we propose informa-
tion ratio (IR) statistics for testing model misspecification of variance/covariance
structure under correctly specified mean structure, in the context of linear regres-
sion models, generalized linear regression models and generalized estimating
equations. Asymptotic properties of the IR statistics are discussed. In addition,
through intensive simulation studies, we show that the IR statistics are powerful
in various applications: test for heteroscedasticity in linear regression models,
test for overdispersion in count data, and test for misspecified variance function
and/or misspecified working correlation structure. Moreover, the IR statistics ap-
pear more powerful than the classical information matrix test proposed by White
(1982).

In the literature, model selection criteria have been intensively discussed, but
almost all of them target choosing the optimal mean structure. In this thesis,
two model selection procedures are proposed for selecting the optimal vari-
ance/covariance structure among a collection of candidate structures. One is
based on a sequence of the IR tests for all the competing variance/covariance
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structures. The other is based on an “information discrepancy criterion” (IDC),
which provides a measurement of discrepancy between the negative sensitivity
matrix and the variability matrix. In fact, this IDC characterizes the relative ef-
ficiency loss when using a certain candidate variance/covariance structure, com-
pared with the true but unknown structure. Through simulation studies and anal-
yses of two data sets, it is shown that the two proposed model selection methods
both have a high rate of detecting the true/optimal variance/covariance structure.
In particular, since the IDC magnifies the difference among the competing struc-
tures, it is highly sensitive to detect the most appropriate variance/covariance
structure.
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Chapter 1

Introduction

Estimating functions have been widely used for parameter estimation in vari-
ous statistical models. Estimating function theory can be regarded as a general-
ization of maximum likelihood theory, which was originally introduced by [28]
and [29]. An estimating function takes a form Ψ(y, θ), where y represents the
data, and θ is a set of parameters of interest. An estimate of the parameter θ is
obtained as a solution to an estimating equation of the form

Ψ(y, θ) = 0.

Estimating equations may be derived from a fully specified parametric model.
For example, a score equation derived from a log linear regression model for
count data is an estimating equation, where θ is the vector of regression coeffi-
cients. This equation produces the maximum likelihood estimator (MLE) of θ,
known as being a fully efficient estimator. However, often statistical models can-
not be fully specified, due to the lack of enough information or knowledge about
the underlying probabilistic mechanism from which the data are generated. In
other cases, from the previous analysis of similar data, it may be suspected that
some of the distributional assumptions are violated. As a result, investigators are
only able to impose assumptions on some aspects of the probability distribution.
For instance, in least squares estimation for linear regression models (LM), only
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the first two moments of the data distribution are assumed, instead of a complete
parametric distribution.

1.1 Literature Review

The term “equation of estimation” was first used in [30]. [51] presented a
non-trivial example of an estimating function, where estimating equations are
proposed to construct confidence regions for the parameters in Gumbel distribu-
tions. Later, [60] generalized Kimball’s idea of stable estimating equations to
establish a theory of sufficiency and ancillarity for estimating functions.

The theory of optimal estimating functions was first studied by [35]. He in-
troduced a measure, now known as Godambe information, as a criterion to define
an optimal estimating function among the class of regular estimating functions.
In addition, he pointed out that the score function is optimal in the sense that it
has the maximum Godambe information, and this maximum Godambe informa-
tion is equal to the Fisher information (Also see [36]). Moreover, the asymp-
totic covariance matrix of the parameter estimator is equal to the inverse of the
Godambe information. An estimator of this covariance matrix was called the
heteroscedasticity-consistent covariance matrix estimator in the LM (see [45]
and [88]), and was later referred to as the sandwich variance estimator, which
has been widely used in longitudinal data analysis; see [23], [53] and [54]. Even
when the distributional assumption cannot be fully specified or fails to hold, the
sandwich estimator is still able to provide a consistent estimate of the asymp-
totic covariance matrix for parameter estimators. Because of this property, the
sandwich covariance matrix estimator is also called the robust covariance matrix
estimator.

In the theory of maximum likelihood estimation, if the distributional assump-
tion for the data analysis is correct and regularity conditions are satisfied, the
Bartlett identity holds. That is, the Fisher information matrix can be expressed
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as a negative sensitivity or variability matrix form, namely

E
{
−l̈(θ)

}
= Var

{
l̇(θ)

}
,

where l(θ) is the log-likelihood function, and l̇ and l̈ stand for the first order and
second order derivatives of the function l with respect to (w.r.t.) θ, respectively.
This implies that when the Bartlett identity fails, a certain distributional assump-
tion is misspecified. By comparing the negative sensitivity and variability matri-
ces, [87] introduced an information matrix (IM) test for model misspecification.
The IM test can detect the inconsistency of the usual maximum likelihood co-
variance matrix estimator at the very least, as well as possible inconsistency of
the MLE for parameters of interest. This IM test will be reviewed in this thesis.

As an important example of estimating functions, quasi-likelihood inference
in the context of generalized linear models (GLMs) (see [86]) only imposes the
assumptions of the first two moments, instead of fully specifying the parametric
distribution. If the quasi-score function is unbiased, which usually results from
the correct formulation of the mean structure of the responses, the resultant esti-
mator of the parameter of interest is consistent. Moreover, if the assumption of
the variance structure is correctly specified, the resultant estimator will achieve
the same estimation efficiency as that of the most efficient estimator. In the sta-
tistical literature, three test statistics were most commonly considered for testing
the adequacy of the mean structure under the likelihood and quasi-likelihood
theory: the Wald test based on comparison of estimated coefficients with their
standard errors ( [82]); the (quasi) likelihood ratio test based on comparison of
deviances among nested models ( [59] and [6]); and the (quasi) likelihood score
test ( [59], [83] and [69]). In longitudinal data analysis, [68] proposed a method
of quadratic inference functions (QIF) to test for regression misspecification. On
the other hand, it is also of importance to assess the validity of the second mo-
ment assumption for the sake of estimation efficiency.

In the LM setting, it is conventional to assume that the error terms all have
equal variances, which is referred sometimes to as a homogeneity assumption.
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Methods for checking on this assumption have been well investigated in the lit-
erature. [88] obtained a direct test for heteroscedasticity, which is a special case
dealt with by the IM test of [87]. In the literature, many other tests were pro-
posed either on the basis of a specific alternative model for heteroscedasticity
(see for example [5], [7] and [14]), or on the basis of a certain non-parametric
or semi-parametric variance function model (see for example [62] and [22]), or
on the basis of plausible, but ad hoc grounds (see for example [37]; [34]; [42]).
In addition, some robust tests were proposed by [7]; see also [39] and [11].

In the context of GLM, overdispersion is a common case contributing to vi-
olation of the mean-variance relation. It prohibits investigators from using a
specific parametric distribution, for example, a Poisson regression model, for
the count data. [20] proposed score tests against arbitrary mixed Poisson al-
ternatives, which are generalizations of tests of [27] and [13]. See also [21].
However, for other types of misspecification of the mean-variation relation, there
are few proposals available to develop and assess statistical methods for testing
the variance structure. For longitudinal data analysis, in the context of gener-
alized estimating equations (GEE), there is a lack of a thorough investigation
on tests for misspecification of covariance structure, including variance function
and/or working correlation structure.

Model selection is the task of choosing a statistical model, from a set of po-
tential models, which is the best approximation of reality manifested in the ob-
served data. In the statistical literature, numerous model selection criteria have
been intensively discussed. Some model selection procedures can be constructed
based on a sequence of hypothesis testing. For example, forward selection, back-
ward selection and stepwise regression are popular model selection methods in
LM (See [55]). In their applications, controlled by one or two thresholds, the
model is selected based on statistical hypothesis testing. See [52] and [61]. To
avoid the difficulty in the choice of thresholds, some alternative model selection
procedures were suggested based on the prediction errors. [1] defined a final
prediction error (FPE), which is the mean squared prediction error when a model
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fitted to the current data is applied to another independent future observation, or
to make a one step prediction. The FPE is asymptotically equivalent to the Cp

criterion proposed by [56].

In LM, a large number of predictors are usually introduced at the initial stage
of modeling. [80] proposed a new approach, called least absolute shrinkage
and selection operator (LASSO), which simultaneously selects variables and es-
timates parameters. The LASSO is closely related to the penalized likelihood
with the L1 penalty. Cross-validation was discussed as a common method for
model selection in terms of the predictive ability of model. See [78], [24],
[4] and [33]. Some model selection criteria were constructed based upon the
Kullback-Leibler distance (information). One of the most important and popu-
lar criteria is Akaike’s information criterion (AIC) defined by [2], based on the
concept of minimizing the expected Kullback-Leibler distance. The AIC takes
the form:

AIC = −2 log(maximum likelihood) + 2k,

where k is the number of parameters, which provides a balance of goodness of
fit and simplicity of the model. To address the inconsistency of AIC, [3] and
[73] introduced two equivalent consistent model selection criteria, SIC and BIC
respectively, from a Bayesian perspective.

In the context of GEE, if we use a more general working correlation matrix,
there is no guarantee that a corresponding quasi-likelihood exists unless certain
conditions are satisfied ( [59]). Furthermore, even if it exists, in general it is dif-
ficult to construct. [65] proposed a modification to AIC, named the “quasi-log-
likelihood under the independence working correlation information criterion”
(QIC). The QIC involves using the quasi-likelihood constructed under the work-
ing independence model, and the penalty term involves both the model-based
and sandwich covariance matrix estimates of estimated regression coefficients.
However, [43] conducted an investigation about the performance of the QIC
concerning the selection of working correlation structure. They found that the
performance of the QIC is impaired by the fact that the key term of goodness
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of fit, −2 log L(̂θ), is theoretically irrelevant to the parameters in any correlation
structure, but has to be estimated with an error. [43] proposed a correlation in-
formation criterion (CIC), which is defined by only the utility of the penalty term
of the QIC. Extensive simulation studies in this paper have shown that the CIC
has remarkable improvements in selecting the true correlation structure. Almost
all the model selection criteria above aim at selecting the optimal mean struc-
ture. However, there is lack of powerful methods providing systematic criteria
for selecting the optimal variance/covariance structure, even though the CIC is
used to select a working correlation structure.

1.2 Objectives

In this thesis, we focus on the quasi-likelihood inference for independent data
in the context of GLM and the GEE method for longitudinal data analysis. Both
the quasi-score equations and GEE require only the assumptions of the first two
moments. Under the correct formulation of the mean structure, if the variance
structure is correctly specified, two forms of the information matrix, the negative
sensitivity matrix and the variability matrix, will be equivalent. As a result, the
asymptotic covariance matrix of the regression coefficient estimator can be es-
timated by either the model-based covariance matrix estimator, or the sandwich
covariance matrix estimator. On the other hand, certain model misspecifications
of the second moment assumption will lead to a discrepancy between these two
covariance matrix estimators.

Thus, the main objective of the thesis is, through comparison between the
model-based and sandwich covariance matrix estimators, to construct a system-
atic test, called the information ratio (IR) test. This IR test targets testing for
model misspecifications of the variance/covariance structure, assuming that the
mean structure is correctly specified. In addition, the p-values from the pro-
posed IR tests may be used to select the optimal variance/covariance structure
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among a collection of candidates. Moreover, for the variance/covariance selec-
tion, we propose an “information discrepancy criterion” (IDC), which measures
the discrepancy between two forms of information matrices under a general vari-
ance/covariance structure.

1.3 Main Results

(i) We propose a new estimator of the dispersion parameter in the context of
GLM and GEE. In model-based variance estimators, the dispersion param-
eter is usually estimated by the method of moments, if its true value is un-
known. Analogously, we show that the sandwich variance estimator of each
individual regression coefficient estimator provides a Godambian estimator
of the dispersion parameter in the form of a weighted sum of the squared
Pearson residuals for GLM, or a weighted sum of the squared transformed
residuals for GEE. The weights in these Godambian estimators are differ-
ences between the leverage from two hat matrices, which characterize the
influence from the corresponding covariate variables.

(ii) We propose information ratio statistics by taking ratios of the Godambian
estimators to the true value, if known, or the moment estimator, otherwise,
of the dispersion parameter. It shows that the information ratio statistics are
asymptotically distributed as N(0, 1) random variables. The finite-sample
distribution of the proposed IR statistic is found to be heavily right skewed,
but a normalized χ2

ν approximation can improve the performance. Through
several simulation studies, we apply the information ratio statistics to test
for heteroscedasticity in LM, test for overdispersion in count data, and test
for misspecified variance function and/or working correlation structure in
GEE. The simulation experiments have shown that the information ratio
statistics are robustly powerful to reject the null hypothesis under different
scenarios of alternative hypotheses.
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(iii) We propose a new criterion for selecting the optimal variance/covariance
structure. This criterion is constructed on the discrepancy between two
forms of information matrices, so it is called the “Information Discrep-
ancy Criterion” (IDC). We show via simulation studies and data analyses
that the proposed IDC has a high rate of detecting the true/optimal vari-
ance/covariance structure.

1.4 Organization of Thesis

Chapter 2 gives an introduction to the theory of estimating functions. In
this chapter, properties of regular estimating functions are discussed. Quasi-
likelihood inference for GLM and GEE method are studied in detail. In addition,
several simulation studies illustrate the model robustness of the sandwich vari-
ance estimators. At the end of the chapter, we review the information matrix test
proposed by [87], which is one of the important contributions to tests for model
misspecification.

Chapter 3 focuses on the formulation of the Godambian estimators of the
dispersion parameter in the sandwich variance estimators. We show that the
Godambian estimator takes the form of a weighted sum of the squared Pearson
residuals in GLM or the squared transformed residuals in GEE. Properties of the
weights in the Godambian estimators have been investigated in the special case
of LM.

In Chapter 4, we propose information ratio statistics that take ratios of the Go-
dambian estimators to the true value or the moment estimator of the dispersion
parameter. Several simulation studies are carried out to investigate the asymp-
totic distributions of these test statistics under the null hypothesis. Moreover, we
assess and compare the power of the proposed IR tests under different alternative
hypotheses with the information matrix test proposed by [87].
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We propose two model selection procedures in Chapter 5 for selecting the op-
timal variance/covariance structure from a collection of candidates. One is based
on the information ratio tests proposed in Chapter 4, and the other is based on
an “information discrepancy criterion” which measures the discrepancy between
two forms of information matrices under a general variance/covariance structure.
Two simulation experiments are conducted to assess the detection rate of these
two model selection methods. In addition, two data sets are analyzed using these
two model selection methods to choose the most appropriate variance/covariance
structure.

Chapter 6 gives a summary and discussion of future work.
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Chapter 2

Estimating Functions

2.1 Preliminaries

Let y be a point of the sample space Y, on which a measure µ is defined.
Furthermore, let p(y, θ) denote the probability density function w.r.t. µ from
a family of parametric statistical models, which is completely specified for all
y ∈ Y, where θ ∈ Θ ⊂ Rp. An estimating function is a function of the form
Ψ(y, θ), which contains at least p independent components. When the dimension
of the estimating function is larger than p, according to [40], the parameter θ
is said to be over-identified. In this thesis, we consider only the regular case of
non-over-identification. The following definitions are given in [77].

Definition 2.1 (Estimating functions) A function Ψ : Y × Θ → R
p is called

an estimating function (or inference function) if Ψ(·; θ) is measurable for any
θ ∈ Θ and Ψ(y; ·) is continuous in a compact subspace of Θ containing the true
parameter θ0 for any sample y ∈ Y.

Given an estimating function Ψ and a single observation y ∈ Y, an estimating
equation can be defined by

Ψ(y; θ) = 0,
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and as a result, an estimate θ̂ = θ̂(y) of parameter θ is obtained as an solution to
this equation.

Definition 2.2 (Equivalent estimating functions) LetΨ1 andΨ2 be any two es-
timating functions. If they give the same estimate of θ, or equivalently, they lead
to the same solution to the equations Ψ1(y; θ) = 0 and Ψ2(y; θ) = 0 for any given
sample y ∈ Y, Ψ1 and Ψ2 are said to be equivalent, denoted by Ψ1 ∼ Ψ2.

It turns out that with any estimating function Ψ0, we can construct a class of
equivalent estimating functions {Ψ : Ψ(y; θ) = K(θ)Ψ0(y; θ)}, where K(θ) is a p×
p matrix of full rank and independent of observation y.

Definition 2.3 (Unbiased estimating functions) An estimating functionΨ is said
to be unbiased if it has expectation zero in the sense that

Eθ {Ψ(Y; θ)} = 0, ∀ θ ∈ Θ ⊆ Rp.

Consider a sample of observations y = (y1, · · · , yn)T , independently drawn
from a parametric statistical model with the probability density function p(y; θ0),
where θ0 is the true value of the parameter θ. An additive estimating function is
defined by

Ψn(y; θ) =
n∑

i=1

Ψ (yi; θ) .

Note that if Ψ is unbiased, the additive estimating function Ψn is also unbiased.
Consequently, an estimate θ̂n = θ̂n(y) of the parameter θ is obtained by solving
the equation

Ψn(y; θ) =
n∑

i=1

Ψ (yi; θ) = 0. (2.1)

We are interested in defining a class of unbiased estimating functions, within
which the resultant estimators θ̂n, of parameter θ have desirable properties, such
as consistency and asymptotic normality. Let us begin with a simple case where
the parameter θ is one-dimensional (p=1).
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Definition 2.4 An estimating function Ψ is said to be regular, if it satisfies the
following conditions:

(i) Eθ {Ψ(Y; θ)} = 0, ∀ θ ∈ Θ ⊂ R;

(ii) ∂Ψ(y; θ)/∂θ exists, ∀ y ∈ Y;

(iii) The order of integration and differentiation may be interchanged

∂

∂θ

∫
Y

f (y)Ψ(y; θ)p(y; θ)dy =
∫
Y

f (y)
∂

∂θ
{Ψ(y; θ)p(y; θ)} dy

for any bounded measurable function f (y) that is independent of θ;

(iv) 0 < Eθ
{
Ψ2 (Y; θ)

}
< ∞;

(v) 0 < {Eθ |∂Ψ(Y; θ)/∂θ|}2 =
{
Eθ

∣∣∣Ψ̇(Y; θ)
∣∣∣}2
< ∞, where Ψ̇ denotes the first-

order derivative of the estimating function Ψ w.r.t. θ, that is, Ψ̇(y; θ) =
∂Ψ(y; θ)/∂θ.

Let G denote the class of all the regular estimating functions. Given an estimat-
ing function Ψ ∈ G, let Ψ′(y; θ) = k(θ)Ψ(y; θ), where k(θ) , 0 is a differentiable
function of θ in Θ. By the definition 2.2, Ψ′ is an equivalent estimating function
to Ψ. However, the variance of the estimating function Ψ′, given by

Varθ
{
Ψ′(Y; θ)

}
= k2(θ)Varθ {Ψ(Y; θ)} ,

could be substantially smaller or larger than that of Ψ, depending on the choice
of k(θ). Thus, it is not reasonable to compare two estimating functions on the
basis of variance alone. [35] proposed the standardization of estimating func-
tions before comparing their variances. For any estimating function Ψ ∈ G, the
standardized version of Ψ is defined by

Ψs = Ψ/Eθ
{
Ψ̇(Y; θ)

}
.
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Then, the standardized versions, Ψs and Ψ′s, of equivalent estimating functions
Ψ and Ψ′ are equivalent, and consequently, they have the same variance, i.e.,
Varθ

{
Ψ′s(Y; θ)

}
= Varθ {Ψs(Y; θ)}, or equivalently,

Varθ {Ψ′(Y; θ)}[
Eθ

{
Ψ̇′(Y; θ)

}]2 =
Varθ {Ψ(Y; θ)}[
Eθ

{
Ψ̇(Y; θ)

}]2 .

As a result, the variance of the standardized estimating functions is unique among
equivalent estimating functions, and its inverse is referred to as the Godambe in-
formation in the following definition.

Definition 2.5 (Godambe information) For a regular estimating function Ψ ∈
G and a single observation Y ∈ Y,

(i) the sensitivity, denoted by SΨ, of Ψ is defined as

SΨ(θ) = Eθ
{
Ψ̇(Y; θ)

}
= Eθ

{
∂Ψ(Y; θ)
∂θ

}
, θ ∈ Θ;

(ii) the variability, denoted by VΨ, of Ψ is defined as

VΨ(θ) = Eθ
{
Ψ2(Y; θ)

}
= Varθ {Ψ(Y; θ)} , θ ∈ Θ;

(iii) the Godambe information, denoted by JΨ, of Ψ is defined as

JΨ(θ) =
S2
Ψ(θ)

VΨ(θ)
, θ ∈ Θ. (2.2)

A regular estimating function Ψ1 is said to be at least as good as the regular
estimating function Ψ2 if

Varθ(Ψ1)[
Eθ

(
Ψ̇1

)]2 ≤
Varθ(Ψ2)[
Eθ

(
Ψ̇2

)]2 ,
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or equivalently,
JΨ1(θ) ≥ JΨ2(θ).

Moreover, from Theorem 2.2 in Section 2.2, we note that, for large samples, the
asymptotic mean square error of the resultant estimator θ̂n is equal to {nJΨ(θ0)}−1,
where θ0 is the true value of the parameter θ. Then, the larger the Godambe
information is, the more efficient the resultant estimator is. In other words, a
desirable estimating function should have large sensitivity (Ψ(y; θ0 + δθ0) should
be as far away from zero as possible) and small variability (Ψ(y; θ0) should be as
close to zero as possible).

Definition 2.6 A statistical model is said to be regular if its score function

u (y; θ) = ∂ log p(y; θ)/∂θ

is a regular estimating function; that is, u(y; θ) ∈ G, θ ∈ Θ ⊂ R. Moreover, for a
regular model and a single observation Y ∈ Y, the Fisher information is defined
by

I(θ) = −Eθ

{
∂2 log p(Y; θ)
∂θ2

}
= −Eθ

{
∂u (Y; θ)
∂θ

}
.

For a regular score function u(y, θ), the Bartlett identity implies that

Eθ

(
∂u
∂θ

)
+ Eθ(u2) = 0,

or equivalently,
Su(θ) + Vu(θ) = 0.

In other words, the equality of Godambe information and Fisher information
Ju(θ) = I(θ) holds for the regular score function.

Now let us consider the case where the parameter θ = (θ1, · · · , θp)T is a p-
dimensional vector. Similarly to univariate estimating functions, a regular multi-
dimensional estimating function is defined as follows. A p-element estimating
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function
Ψ(y; θ) =

(
Ψ1(y; θ), · · · ,Ψp(y; θ)

)T

is said to be regular if it satisfies the following conditions:

(i) Eθ {Ψ(Y; θ)} = 0, ∀ θ ∈ Θ;

(ii) ∂
∂θk
Ψ j(y; θ) exists, ∀ y ∈ Y, and j, k = 1, · · · , p;

(iii) The order of integration and differentiation may be interchanged

∂

∂θk

∫
Y

f (y)Ψ j(y; θ)p(y; θ)dy =
∫
Y

f (y)
∂

∂θk

{
Ψ j(y; θ)p(y; θ)

}
dy

for j, k = 1, · · · , p, and any bounded measurable function f (y) that is inde-
pendent of θ;

(iv) Eθ
{
Ψ j(Y; θ)Ψk(Y; θ)

}
exists for j, k = 1, · · · , p, and the p × p matrix

VΨ(θ) = Eθ
{
Ψ(Y; θ)ΨT (Y; θ)

}
is positive-definite. VΨ(θ) is called the variability matrix.

(v) Eθ
{
∂
∂θk
Ψ j(Y; θ)

}
exists for j, k = 1, · · · , p, and the p × p matrix

SΨ(θ) = Eθ
{
∇θΨ(Y; θ)

}
is non-singular. SΨ(θ) is called the sensitivity matrix.

Here the ∇θ denotes the gradient operator on real function f (θ) w.r.t. θ, defined
by

∇θ f (θ) =
(
∂ f (θ)
∂θ1
, · · · ,

∂ f (θ)
∂θp

)T

.

Let G denote the class of all p-dimensional regular estimating functions. For
a given regular estimating function Ψ ∈ G, the standardized version of Ψ is
defined by

Ψs(y; θ) = S−1
Ψ (θ)Ψ(y; θ),
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and the Godambe information matrix then takes the form

JΨ(θ) = ST
Ψ(θ)V−1

Ψ (θ)SΨ(θ). (2.3)

Note that the inverse of the Godambe information also equals to the covariance
matrix of the standardized estimating function Ψs. Moreover, similarly to com-
paring univariate estimating functions, the regular p-element estimating function
Ψ1 ∈ G is said to be at least as good as the p-element regular estimating function
Ψ2 ∈ G, if JΨ1 − JΨ2 is non-negative definite, denoted by JΨ1 � JΨ2.

[12] showed that the following three inequalities are equivalent:

(i) matrix inequality: JΨ1 − JΨ2 is non-negative definite;

(ii) trace inequality: tr
(
JΨ1

)
≥ tr

(
JΨ2

)
;

(iii) determinant inequality:
∣∣∣JΨ1

∣∣∣ ≥ ∣∣∣JΨ2

∣∣∣.
2.2 Properties

Consider a regular statistical model p(y, θ), and suppose that the true value of
the parameter θ is θ0. Let Ψ be a regular estimating function in G, and let

{̂
θn

}
be a sequence of roots to the sequence of additive estimating equations (2.1):

Ψn(y, θ) =
n∑

i=1

Ψ (yi; θ) = 0, n = 1, 2, · · · ,

where y = (y1, · · · , yn)T is a sample of independent observations from the sta-
tistical model p(y, θ). The properties of regular estimating functions have been
discussed and summarized in [77]. Here we only list the main properties, and
omit all the proofs of the following theorems shown in [77].
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Theorem 2.1 (Consistency) Let

λ(θ) = Eθ0
{Ψ(X; θ)} =

∫
Ψ(y; θ)p(y; θ0)dy.

If λ(θ) has a unique zero at θ0, then

θ̂n
p
−→ θ0, under Pθ0

.

Let us first discuss other properties of regular estimating functions in G for
the case where the parameter θ is a scalar (p = 1).

Theorem 2.2 (Asymptotic Normality) Suppose that the estimator, θ̂n, of pa-
rameter θ is consistent, namely

θ̂n
p
−→ θ0, under Pθ0.

Moreover, suppose that the second derivative of Ψ w.r.t. θ is bounded in the
sense that there exist a constant c and a Pθ-measurable function M(y) with finite
expectation, i.e. Eθ {M(Y)} < ∞, such that∣∣∣Ψ̈(y; θ)

∣∣∣ < M(y), for θ ∈ (θ0 − c, θ0 + c).

Then,
√

n(̂θn − θ0)
d
−→ N

(
0, J−1

Ψ (θ0)
)
, under Pθ0,

where J−1
Ψ (θ) is the Godambe information of Ψ given by (2.2).

Therefore, as mentioned in Section 2.1, the motivation of defining the class of
all regular estimating functions G is that the resultant estimator of parameter
θ is consistent and asymptotically normally distributed. Among these regular
estimating functions in class G, [35] defined an optimal estimating function as
the one which maximizes the Godambe information. Thus the optimal estimating
function produces an estimator with the smallest asymptotic variance and hence
has the highest asymptotic efficiency.
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Definition 2.7 (Optimal estimating function) A regular estimating functionΨ∗ ∈
G is said to be an optimal estimating function if

JΨ∗(θ) ≥ JΨ(θ), for all Ψ ∈ G, and θ ∈ Θ ⊂ R.

Moreover, [35] also showed that if the class G includes the score function, the
optimal estimating function is equivalent to the score function, which leads to
maximum likelihood estimation.

Theorem 2.3 (Godambe Inequality) Assume an estimating function Ψ ∈ G.
Then

JΨ(θ) ≤ I(θ), ∀θ ∈ Θ ⊂ R,

where the equality holds if and only if Ψ ∼ u, namely Ψ is equivalent to the score
function.

In general, let {Ψi(yi; θ); i = 1, · · · , n} be a set of elementary estimating functions
belonging to the class G. Now define a special subclass Gc, of regular estimating
functions in the following form of a linear combination of elementary estimating
functions,

Ψc(θ) =
n∑

i=1

ci(θ)Ψi(yi; θ), θ ∈ Θ ⊂ R,

where ci(θ) is a non-random function of θ. The resultant estimator of θ, obtained
from solving the equation Ψc(θ) = 0, is consistent. The subclass Gc is referred to
as the Crowder class of regular estimating functions. Furthermore, [17] obtained
the optimal estimating function in class Gc.

Theorem 2.4 (Crowder Optimality) Consider regular estimating functionsΨc ∈

Gc. Then, the optimal estimating function in the class Gc, the one which has the
largest Godambe information, is the one with the ci(·) functions being a ratio of
the sensitivity over the variability, namely

ci(θ) =
Eθ

{
Ψ̇i(Yi; θ)

}
Varθ {Ψi(Yi; θ)}

=
SΨi(θ)
VΨi(θ)

, θ ∈ Θ ⊂ R.
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These properties of univariate regular estimating functions can also be gener-
alized to the case with the p-dimensional parameter θ = (θ1, · · · , θp)T .

Theorem 2.5 (Multivariate Asymptotic Normality) If θ̂n is consistent, and in
a small neighborhood, N(θ0), centered at the true value θ0,

||Ψ̈(y; θ)|| < M(y), θ ∈ N(θ0),

with a Pθ-measurable function M(y) such that Eθ {M(Y)} < ∞, then

√
n(̂θn − θ0)

d
−→ MVNp

(
0, J−1

Ψ (θ0)
)
, (2.4)

where J−1
Ψ (θ) is the Godambe information of Ψ given by (2.3).

Definition 2.8 (Multivariate optimal estimating function) A regular estimat-
ing function Ψ∗ ∈ G is said to be an optimal estimating function if

JΨ∗(θ) � JΨ(θ), for all Ψ ∈ G, and θ ∈ Θ ⊂ Rp.

Theorem 2.6 (Multivariate Godambe Inequality) Consider a regular estimat-
ing function Ψ ∈ G. Then

JΨ(θ) � I(θ), ∀θ ∈ Θ ⊆ Rp,

where the equality holds if and only if Ψ ∼ u, the score function.

Define a Crowder class of regular estimating functions Gc by

Ψc(y; θ) =
n∑

i=1

Ci(θ)Ψi(yi; θ), θ ∈ Θ ⊆ Rp,

where Ci(θ) is a non-random p × p matrix of θ such that the sequence of roots,{̂
θn, n ≥ 1

}
, to the estimating equation Ψc(y; θ) = 0 is consistent.
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Theorem 2.7 (Multivariate Crowder Optimality) Consider regular estimating
functions Ψc ∈ Gc. Then, the optimal estimating function in the Crowder class
Gc, the one which has the largest Godambe information, is the one with the
matrix Ci(·) functions given by

Ci(θ) = ET
θ

{
∇θΨi(Yi; θ)

}
Var−1
θ {Ψi(Yi; θ)} , θ ∈ Θ ⊆ Rp. (2.5)

2.3 Quasi-likelihood Inference

The score function is the optimal estimating function among all the regular
estimating functions. However, in practice, because the underlying mechanism
is not fully understood or there is lack of previous informative experience of
analyzing similar data, it is common that the probability density function from
which the data are generated cannot be fully specified. In addition, in some cases,
from some preliminary analysis, practitioners found that the parametric models
proposed for the data analysis were violated, for example, due to overdispersion.

Usually, the main interest of data analyses attaches to how the response vari-
ables are affected by one or multiple explanatory variables. Often, it is natural for
investigators to propose assumptions on some aspects of the probability mecha-
nisms, such as the first two moments, instead of the full parametric distributions.
[86] proposed an idea of quasi-likelihood estimation for regression coefficients
in the setting of GLM. Also see [59].

2.3.1 Quasi-score equations in GLM for independent data

Consider a set of observations
{
(yi, xT

i ), i = 1, · · · , n
}
, independently drawn

from a regular statistical model, where yi is the response variable, and xi is a p×1
vector of covariates. When the parametric model cannot be fully specified, part
of the objectives in data analysis can be addressed by the following regression
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model, specified only by the first two moments:

µi = E(Yi) = h(xT
i β), (2.6)

where β is a p × 1 vector of regression coefficients, and h(·) is the link function,
which is assumed to be known and continuous; and

Var(Yi) = σ2V(µi), (2.7)

where σ2 is called the dispersion parameter, which is usually unknown in prac-
tice, and V(·) is called the unit variance function. Usually, the intercept term is
included in the covariate vector xi’s. In the rest of the thesis, for each i, the co-
variate vector is a p×1 vector with the first element 1, i.e., xi = (1, xi1, · · · , xi,p−1)T ,
and the coefficient vector is denoted by β = (β0, β1, · · · , βp−1)T .

Let y = (y1, · · · , yn)T be an n × 1 vector of response variables. To estimate
the coefficient vector β, it is suggested to solve a p-element additive estimating
equation,

Ψn(β; y) =
n∑

i=1

(
∂µi(β)
∂β

)T yi − µi(β)
σ2V(µi)

= 0, (2.8)

where Ψn(β) is referred to as a quasi-score function. Correspondingly, it is pos-
sible to yield a function similar to the likelihood function in the MLE setting,
called quasi-likelihood, by taking integration w.r.t. µ, that is,

lq(y; µ) =
∫ µ

y

y − t
V(t)

dt.

For i = 1, · · · , n, define ηi = xT
i β, and then, rewrite ∂µi(β)/∂β as

∂µi(β)
∂β

=
∂µi

∂ηi

∂ηi

∂β
= µ̇ixi,

where µ̇i stands for the first order derivative of µi w.r.t. ηi. For the additive
quasi-score function Ψn(β; y) (2.8), the aggregated sensitivity matrix is given by

SΨn(β) = Eβ

{
∂Ψn(β; Y)
∂β

}
= −

n∑
i=1

µ̇2
i

σ2V(µi)
xixT

i , (2.9)
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and the aggregated variability matrix is given by

VΨn(β) = Eβ
{
Ψn(β; Y)Ψ(β; Y)T

}
=

n∑
i=1

µ̇2
i Var(Yi)(
σ2)2 V2(µi)

xixT
i . (2.10)

The aggregated Godambe information matrix is given by

JΨn(β) = ST
Ψn

(β)V−1
Ψn

(β)SΨn(β). (2.11)

Let β̂n denote the estimator of the parameter β obtained by solving the quasi-
score equation Ψn(β; y) = 0. Under some mild regularity conditions in Theorem
2.1 and Theorem 2.5, the estimator β̂n is consistent, and

√
n(̂βn − β∗) is asymp-

totically multivariate Gaussian distributed with zero mean and covariance matrix
of the form limn nJ−1

Ψn
(β∗), where β∗ is the true value of the parameter β.

In order to use this result to make inference about the parameter β, for exam-
ple, constructing confidence intervals, an estimated Godambe information matrix
with β∗ replaced with β̂n is usually used to obtain an estimate of the asymptotic
covariance matrix of β̂n.

Let us first give some necessary notation which will be used in the rest of the
thesis. Let X denote an n× p matrix, referred to as the design matrix, with the i-th
row given by xT

i . For each i, with the estimator β̂n, the fitted values are defined
by µ̂i = µi(̂βn) = h(xT

i β̂n). Then, the raw residuals are defined by ri = yi − µ̂i, and
the Pearson residuals are given by

rP,i =
yi − µ̂i√

V (̂µi)
, i = 1, · · · , n, (2.12)

the standardized residuals. Let

∆̂ = diag
{̂
µ̇1, · · · ,̂̇µn

}
(2.13)

be an n × n diagonal matrix, where ̂̇µi = µ̇i(̂βn), and let

V̂ = diag
{
V (̂µ1), · · · ,V (̂µn)

}
(2.14)
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be an n × n diagonal matrix, and

R = diag
{
r2

1, · · · , r
2
n

}
. (2.15)

Then, based on the data {(yi, xi); i = 1, · · · , n}, the sensitivity matrix (2.9) is
estimated by

ŜΨn (̂βn) = −
1
σ2

n∑
i=1

̂̇µ2
i

V (̂µi)
xixT

i

= −
1
σ2 XT ∆̂V̂−1∆̂X, (2.16)

when the true value of the dispersion parameter σ2 is known. However, in prac-
tice, the true value is rarely known, so the dispersion parameter σ2 is estimated
by, for example, a moment estimator

σ̂2
m =

1
n − p

n∑
i=1

r2
P,i
. (2.17)

In addition, the variability matrix (2.10) is estimated by

V̂Ψn (̂βn) =
1(
σ2)2

n∑
i=1

̂̇µ2
i

V2(̂µi)
(yi − µ̂i)2xixT

i

=
1(
σ2)2 XT ∆̂V̂−1RV̂−1∆̂X. (2.18)

Consequently, the Godambian information matrix is estimated by

ĴΨn (̂βn) =
{
−ŜΨn (̂βn)

}T {
V̂Ψn (̂βn)

}−1 {
−ŜΨn (̂βn)

}
.

Its inverse can be an estimator of the asymptotic covariance matrix of β̂n, which
is given by{̂

JΨn (̂βn)
}−1
=

{
XT ∆̂V̂−1∆̂X

}−1 {
XT ∆̂V̂−1RV̂−1∆̂X

} {
XT ∆̂V̂−1∆̂X

}−T
. (2.19)
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Because of its unique sandwich structure, this covariance matrix estimator has
been referred to as the “sandwich covariance matrix estimator” in [53]’s paper
on generalized estimating equations. Moreover, its diagonal elements can be
used to estimate the asymptotic variances of individual regression coefficient
estimator β̂ j’s. We will call these estimators the sandwich covariance matrix
estimator, denoted by AS COVs(̂βn), or sandwich variance estimators, denoted
by AS VARs(̂β j), in the rest of the thesis.

There are several appealing features associated with the utility of the quasi-
score equation for the estimator β̂n. First of all, the quasi-score function only
requires the assumptions about the first two moments without specifying the ex-
plicit form of the underlying parametric models. Secondly, it does not need to
estimate the dispersion parameter σ2, because this parameter is a constant which
can be canceled out in the equation Ψn(β; y) = 0, as well as in the calculation of
the sandwich covariance matrix estimator (2.19).

Furthermore, if the two assumptions (2.6) and (2.7) correctly specify the true
mean and variance structures of the responses, the quasi-score function preserves
the two key properties of the real score function. They are:

(1) The quasi-score function is unbiased in the sense that Eβ {Ψ(β; Y)} = 0 if
the mean structure is correctly specified. The unbiasedness of the quasi-
score function guarantees the consistency of the resultant estimator β̂n;

(2) Consider a vector of elementary estimating functions Ψi(β; yi) ∈ G, defined
by

Ψi(β; yi) = yi − µi(β). (2.20)

By the Crowder Optimality Theorem 2.7, in the Crowder class Gc defined
by

Ψc(β) =
n∑

i=1

Ci(β)Ψi(β; yi),
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the optimal estimating function is given by

Ψ∗(β) =
n∑

i=1

ST
Ψi

(β)V−1
Ψi

(β) (yi − µi(β))

= −

n∑
i=1

(
∂µi(β)
∂β

)T yi − µi(β)
Var(Yi)

.

Thus, if the assumption of the second moment (2.7) is correct, the quasi-
score function (2.8) is actually equivalent to the optimal estimating function
among the Crowder class of the elementary estimating functions (2.20).
Moreover, the negative sensitivity matrix (2.9) and the variability matrix
(2.10) are equivalent. In other words, the following identity

Eβ

{
−
∂Ψn(β; Y)
∂β

}
= Varβ {Ψn(β; Y)}

holds if the unit variance function V(·) correctly specifies the true variance
structure of the response variables. This equality ensures that the asymp-
totic covariance matrix of the resultant estimator β̂n equals to that of the
most efficient estimator, i.e., the GLM analogue of the inverse of Fisher in-
formation matrix. If the underlying distribution belongs to the exponential
family, even though explicit parametric models are not assumed, the esti-
mator β̂n can achieve the same estimation efficiency as that of the MLE,
which is the fully efficient estimator.

As a result, the asymptotic covariance matrix of β̂n can be estimated by{
−ŜΨn (̂βn)

}−1
= σ2

(
XT ∆̂V̂−1∆̂X

)−1
, (2.21)

if the true value of the dispersion parameter σ2 is known; otherwise,{
−ŜΨn (̂βn)

}−1
= σ̂2

m

(
XT ∆̂V̂−1∆̂X

)−1
, (2.22)
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where σ̂2
m is the moment estimator of σ2. This covariance matrix estimator

has been referred to as the “model-based covariance matrix estimator”, de-
noted by AS COVm(̂βn). Consequently, its diagonal elements are regarded
as the asymptotic variance estimators of individual regression coefficient
estimators. Here, they are called the model-based variance estimators, de-
noted by AS VARm(̂β j). Therefore, confidence intervals constructed from
the sandwich and model-based variance estimators are called the sandwich
confidence intervals and the model-based confidence intervals, respectively.

Example 2.1 (Linear Regression Models) LM for continuous data is regarded
as a special case of GLM. The first moment assumption is

µi = xT
i β, i = 1, · · · , n,

where the link function h(·) is an identity function, i.e., h(ηi) = ηi. The error
terms are usually assumed to be independent random variables with mean 0 and
constant variance σ2. The second moment assumption is

Var(Yi) = σ2, i = 1, · · · , n,

where the unit variance function V(µi) = 1.

Least squares (LS) estimation provides an estimator of the regression coeffi-
cient vector β, given by

β̂n =
(
XT X

)−1
XT y, (2.23)

by solving the estimating equation

Ψn(β; y) =
1
σ2

n∑
i=1

xi(yi − xT
i β) = 0.

Note that the quasi-score function Ψn(β) is equivalent to the real score function
if the responses y = (y1, · · · , yn) are independent observations from a normal
distribution with the probability density function, given by

p(yi,β) =
1

√
2πσ2

exp
−(yi − xT

i β)2

2σ2

 , i = 1, · · · , n.

26



In this case, the LS estimator β̂n (2.23) is the MLE.

With the estimator β̂n, the sandwich covariance matrix estimator is given by

AS COVs(̂βn) =
(
XT X

)−1 (
XTRX

) (
XT X

)−1
, (2.24)

where the matrix R is given in (2.15). In addition, the model-based covariance
matrix estimator is given by

AS COVm(̂βn) = σ̂2
m

(
XT X

)−1
, (2.25)

where σ̂2
m is a moment estimator of the dispersion parameter σ2, if the true value

is unknown, given by

σ̂2
m =

1
n − p

n∑
i=1

r2
i . (2.26)

Note that in LM, the Pearson residuals reduce to the raw residuals. That is,
rP,i = ri, for i = 1, · · · , n.

2.3.2 Generalized estimating equations (GEE) in longitudinal data analy-
sis

Longitudinal data is a data type frequently encountered in many subject-
matter areas such as biology, medical and public health sciences and social sci-
ence. Since the defining feature of longitudinal data is that the measurements
of the same individuals are taken repeatedly over a period of time, the primary
interest of longitudinal data analysis lies in the mechanism of change over time,
including growth, aging, time profiles or effects of covariates.

In most cases, the maximum likelihood inference is either unavailable or nu-
merically too intricate to be implemented. One of the popular methods is the
generalized estimating equations (GEE) approach proposed by [53], which does
not require us to specify a complete probability model. In fact, the GEE method
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can be viewed as a multivariate extension of the quasi-likelihood method pro-
posed by [86], which only requires us to correctly specify the first two moments
of the underlying data distribution.

Consider a longitudinal data set denoted by

(yi j, xT
i j, ti j), j = 1, · · · , ni, i = 1, · · · ,K,

where yi j is the response variable and xi j is a set of covariate variables observed
at the j-th time point ti j for subject i, and ni is the number of measurements for
the subject i. In total, there are K subjects in the data set. Let yi = (yi1, · · · , yi,ni)

T ,
and µi = (µi1, · · · , µi,ni)

T , for i = 1, · · · ,K. Assume that the first two moments of
the response vector yi are given by

E(Yi) = µi, with µi j = µi j(β) = h(xT
i jβ)

where β is a p × 1 vector of regression coefficients and h(·) is the link function;
and

Cov(Yi) = σ2Σi = σ
2G1/2

i Ri(ρ)G
1/2
i ,

where σ2 is the dispersion parameter, Gi is an ni × ni diagonal matrix given by

Gi = diag
{
V(µi1), · · · ,V(µi,ni)

}
,

with V(·) being the unit variance function, and Ri(ρ) is an ni×ni correlation matrix
that is fully characterized by a q-dimensional correlation parameter vector ρ.
This Ri(ρ) is referred to as a working correlation matrix. A p-element estimating
function is given by

ΨK(β, ρ) =
1
σ2

K∑
i=1

DT
i (β)Σ−1

i (β, ρ)
(
yi − µi(β)

)
= 0, (2.27)

where DT
i (β) = XT

i diag
{
ḣ(µi1), · · · , ḣ(µi,ni)

}
, with Xi being an ni×p design matrix

for the subject i. The equationΨK(β) = 0 is termed as the generalized estimating
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equation (GEE) by [53], where the nuisance parameter ρ is involved, and the
dispersion parameter σ2 is factorized out of the equation (2.27). Consequently,
the estimator, β̂K, of parameter β is obtained as the solution to the GEE (2.27).
[53] showed that the estimators of these coefficients are consistent and asymp-
totically normal even when the correlation structure is incorrectly specified.

For the estimating function ΨK(β), the sensitivity and variability matrices are
obtained, respectively, as

SΨK (β) = −
1
σ2

K∑
i=1

DT
i Σ
−1
i Di

and

VΨK (β) =
1

(σ2)2

K∑
i=1

DT
i Σ
−1
i Cov(Yi)Σ−1

i Di.

Hence the Godambe information matrix is given by

JΨK (β) =
{
−SΨK (β)

}−1 {
VΨK (β)

} {
−SΨK (β)

}−1

=

 K∑
i=1

DT
i Σ
−1
i Di


 K∑

i=1

DT
i Σ
−1
i Cov(Yi)Σ−1

i Di


−1  K∑

i=1

DT
i Σ
−1
i Di

 .
When the covariance structure, including the variance function involved in Gi

and the working correlation structure Ri(ρ), is correctly specified, the following
information matrix equality holds:

SΨK (β) + VΨK (β) = 0, or JΨK (β) = −SΨK (β).

Let D̂i and Σ̂i be the matrices which use the estimates β̂K and ρ̂K in the matrices
Di and Σi. The residuals are defined by

ri j = yi j − µ̂i j = yi j − µi j(̂βK), j = 1, · · · , ni, i = 1, · · · ,K.

Let ri = (ri1, · · · , ri,ni)
T be an ni × 1 vector of the residuals for subject i, for

i = 1, · · · ,K. Then, the sandwich covariance matrix estimator of the parameter
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estimator β̂K is given by

AS COVs(̂βK) =

 K∑
i=1

D̂T
i Σ̂
−1
i D̂i


−1  K∑

i=1

D̂T
i Σ̂
−1
i rirT

i Σ̂
−1
i D̂i


 K∑

i=1

D̂T
i Σ̂
−1
i D̂i


−1

.

(2.28)
Moreover, the model-based covariance matrix estimator is given by

AS COVm(̂βK) = σ2

 K∑
i=1

D̂T
i Σ̂
−1
i D̂i


−1

, (2.29)

if the true value of the dispersion parameter σ2 is known; otherwise,

AS COVm(̂βK) = σ̂2
m

 K∑
i=1

D̂T
i Σ̂
−1
i D̂i


−1

, (2.30)

where σ̂2
m is a moment estimator of the dispersion parameter σ2, suggested by

[53],

σ̂2
m =

1
N − p

K∑
i=1

rT
P,i

rP,i =
1

N − p

K∑
i=1

ni∑
j=1

r2
P,i j
, (2.31)

where N =
K∑

i=1

ni.

2.4 Robustness of Sandwich Variance Estimators

The covariance matrix estimator in LM (2.24) has been referred to as the
heteroscedasticity-consistent covariance matrix estimator, originally introduced
by [45] and [88]. In the context of LM, this method provides a consistent covari-
ance matrix estimator even when the errors of the LM are heteroscedastic. In the
context of GEE for correlated data, efficient estimation for parameters of interest
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requires correct specification of the correlation structure among the observations,
which is, however, typically unknown. Therefore, a so-called working correla-
tion structure is employed in point estimation. The sandwich estimator yields a
consistent estimate of the covariance matrix under a misspecified working cor-
relation matrix as well as under heteroscedastic errors. In both of these two set-
tings, the sandwich method provides asymptotically consistent estimates of the
covariance matrix for parameter estimators when the distributional assumptions
fail to hold or are not specified. Due to these two desirable model-robustness
properties, the sandwich covariance matrix estimator is also called the robust
covariance matrix estimator or the empirical covariance matrix estimator.

[50] commented that the argument in favor of the sandwich estimate is that
asymptotic normality and asymptotic coverage of confidence intervals require
only a consistent variance estimate, so there is no direct need to construct a
highly accurate covariance matrix estimate. But the consistency of the sand-
wich variance estimate has its price in increased variability; that is, sandwich
variance estimators generally have a larger variance than model-based classical
variance estimates. In addition, the authors pointed out that under certain con-
ditions when the model assumptions are correct, the sandwich estimator is often
far more variable than the usual parametric variance estimates. The additional
variability directly affects the coverage probability of confidence intervals con-
structed from the sandwich variance estimates, which is the price one pays to
obtain consistency even when the parametric model fails. More discussions are
given in [91], [9] and among others.

In the quasi-likelihood estimation for GLM, the sandwich covariance matrix
estimators, such as (2.19) and (2.24), lead to a consistent estimation of the covari-
ance matrix even when the variance structure in the second moment assumption
(2.6) is incorrect. Note that under the misspecification of the first moment as-
sumption (2.7), confidence intervals constructed from the sandwich estimators
do not achieve the nominal coverage probability, because the estimators of the
parameters of interest are inconsistent.
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2.4.1 Simulation experiments

In this section, we describe three simulation studies to investigate the cov-
erage probabilities of confidence intervals (CIs) from the sandwich covariance
matrix estimators and the model-based covariance matrix estimators under mis-
specifications of the variance structure or the mean structure.

Simulation 2.1 (LM - Heteroscedastic errors) A sample of observations

{(yi, xi); i = 1, · · · , n}

is generated from the following simplest linear regression model:

yi = β0 + β1xi + ei, i = 1, · · · , n.

Here the covariate xi’s are i.i.d. observations from a Gaussian distribution with
mean 0 and variance 1. In practice, it is common that the sampling errors show
large variability when the observations drawn from the population are far from
the center. Therefore, in this experiment, the error terms ei are independently
generated from a Gaussian distribution with mean 0 and heteroscedastic variance
Var(Yi) = σ2hii, where hii is the i-th diagonal element of the hat matrix H,
defined as H = X

(
XT X

)−1
XT . The true values of the two regression coefficients

are β0 = 1 and β1 = 2, and the parameter σ2 is set to be 100. We generate the
data with different sample sizes n = 20, 50, 100, 200, 500. Note that the average
variance Var(Yi) would be 10, 4, 2, 1, and 0.25, corresponding to each of the
sample sizes.

Based on 1000 replicates, we show, in Table 2.1, the empirical coverage prob-
abilities of the 95% sandwich CIs (95% CIs obtained from the sandwich variance
estimates), and the 95% model-based CIs (95% CIs obtained from the model-
based variance estimates), with different sample sizes n = 20, 50, 100, 200, 500.
Table 2.2 reports the results of the empirical standard deviations of the coefficient
estimates, denoted by S De, the average squared root of the sandwich variance
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estimates, i.e. the average sandwich standard deviations, denoted by S Da
s , and

the average squared root of the model-based variance estimates, i.e. the average
model-based standard deviations, denoted by S Da

m.

Conclusion
As shown in Table 2.1, as the sample size increases, the empirical coverage

probabilities of the sandwich CIs for each regression coefficient, β0 and β1, ap-
proach the nominal value 0.95. Compared to the sandwich CIs, the model-based
CIs perform poorly in the sense that they cannot attain the nominal coverage
probability, especially for the slope parameter β1. Moreover, in Table 2.2, we
find that the average sandwich standard deviations, S Da

s , are closer to the empir-
ical standard deviations S De than the average model-based standard deviations,
S Da

m.

Table 2.1: Empirical coverage probabilities of the 95% sandwich CIs and model-based CIs with
different sample sizes.

β0 β1

sample size model-based sandwich model-based sandwich
20 0.925 0.911 0.820 0.852
50 0.938 0.937 0.819 0.903

100 0.951 0.948 0.820 0.926
200 0.953 0.949 0.830 0.939
500 0.943 0.942 0.836 0.954

Simulation 2.2 (GLM - Misspecified variance structure) A set of observations

{(yi, xi); i = 1, · · · , n}

is generated from the following model:

yi|pi ∼ Negative Binomial(k, pi),

pi =
1

1 + exp(ηi)/k
, where ηi = β0 + β1xi,
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Table 2.2: The empirical standard deviations of the coefficient estimates, denoted by S De, the
average sandwich standard deviations, denoted by S Da

s , and the average model-based standard
deviations, denoted by S Da

m, based on 1000 replicates.

β0 β1

sample size S De S Da
m S Da

s S De S Da
m S Da

s
20 0.752 0.694 0.723 1.038 0.663 0.819
50 0.291 0.281 0.285 0.412 0.278 0.367

100 0.141 0.141 0.142 0.204 0.14 0.19
200 0.07 0.071 0.071 0.101 0.07 0.098
500 0.029 0.028 0.028 0.04 0.028 0.039

for i = 1, · · · , n. Note that the mean and variance of yi from this model are given
by E(Yi) = µi = exp(β0 + β1xi) and Var(Yi) = µi(1 + µi/k), for i = 1, · · · , n.
Here the covariate xi’s are independently sampled from a Gaussian distribution
with mean 0 and variance 0.1. The true values of the regression coefficients are
β0 = 1 and β1 = 2. The sample size is set to be n = 200. In addition, the value of
k is set to be 1, 5, or 9.
We fit the data with a negative binomial log-linear regression model and a Pois-
son log-linear regression model, respectively. That is, for the negative binomial
regression model, the estimate of β = (β0, β1)T is obtained by solving the equa-
tion

n∑
i=1

yi − µi

µi + µ
2
i /k
µixi = 0, (2.32)

where xi = (1, xi)T and µi = exp{ηi}, from the log likelihood function

ln(β) ∝
n∑

i=1

k log pi + yi log(1 − pi).

For the Poisson regression model, the estimate of β = (β0, β1)T is obtained by
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solving the equation
n∑

i=1

yi − µi

µi
µixi = 0, (2.33)

from the log likelihood function

ln(β) ∝
n∑

i=1

yi log µi − µi.

Note that in both of these two models, the mean structure is correctly specified.
The variance structure, given by Var(Yi) = µi + µ

2
i /k, is correctly specified in the

negative binomial regression model, but is misspecified in the Poisson regression
model, with the variance function V(µi) = µi.

We calculate the empirical coverage probabilities of the 95% sandwich CIs
and the 95% model-based CIs under the negative binomial regression model and
the Poisson regression model, based on 5000 replicates. The results are shown in
Table 2.3. Table 2.4 reports the empirical standard deviations of the coefficient
estimates, denoted by S De, the average sandwich standard deviations, denoted
by S Da

s , and the average model-based standard deviations, denoted by S Da
m,

under both of the negative binomial regression model and the Poisson regression
model.

Conclusion

As shown in Table 2.3, under the negative binomial regression model which
correctly specifies the variance structure, the model-based CIs and sandwich CIs
give approximately the same empirical coverage probabilities. In addition, for
the slope parameter β1, the model-based CIs have slightly more stable perfor-
mance than the sandwich CIs. This conclusion agrees with the discussion about
the variability of sandwich variance estimators by [50]. Under the Poisson re-
gression model, for each value of k, the sandwich CIs perform better than the
model-based CIs in the sense that the empirical coverage probabilities of the
sandwich CIs are closer to the nominal value 95% than those of the model-based
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CIs. Moreover, from Table 2.4, we find that under the negative binomial re-
gression model, the average sandwich standard deviations S Da

s and the aver-
age model-based standard deviations S Da

m are approximately equally closer to
the empirical standard deviations S De. However, under the Poisson regression
model, the average sandwich standard deviations S Da

s are closer to the empirical
standard deviations S De than the average model-based standard deviations S Da

m.
In addition, as the value of k increases, the difference between these two average
standard deviations shrinks.

Table 2.3: Empirical coverage probabilities of the 95% sandwich CIs and model-based CIs under
the negative binomial regression model and the Poisson regression model with different values
of k.

Negative Binomial
k β0 β1

model-based sandwich model-based sandwich
1 0.949 0.944 0.952 0.938
5 0.952 0.948 0.951 0.944
9 0.941 0.939 0.952 0.942

Poisson
k β0 β1

model-based sandwich model-based sandwich
1 0.698 0.943 0.689 0.943
5 0.888 0.947 0.880 0.943
9 0.900 0.939 0.912 0.942

Simulation 2.3 (LM - outliers) A sample of observations

{(yi, xi); i = 1, · · · , n}

is generated from the following simplest linear regression model:

yi = β0 + β1xi + ei, i = 1, · · · , n.

Here the covariate variables xi’s are i.i.d. observations from a Gaussian distribu-
tion with mean 0 and variance 1. The error terms ei are independently generated

36



Table 2.4: The empirical standard deviations of the coefficient estimates, denoted by S De, the
average sandwich standard deviations, denoted by S Da

s , and the average model-based standard
deviations, denoted by S Da

m, under both of the negative binomial regression model and the Pois-
son regression model, based on 5000 replicates.

Negative Binomial
β0 β1

k S De S Da
m S Da

s S De S Da
m S Da

s
1 0.0835 0.0831 0.0822 0.7764 0.7881 0.7633
5 0.0536 0.0538 0.0535 0.487 0.4864 0.4771
9 0.051 0.0495 0.0491 0.4897 0.4879 0.4807

Poisson
β0 β1

k S De S Da
m S Da

s S De S Da
m S Da

s
1 0.0836 0.0436 0.0822 0.7902 0.4069 0.7797
5 0.0536 0.0435 0.0535 0.4902 0.3865 0.4785
9 0.051 0.0435 0.0491 0.4900 0.4255 0.4814

from a Gaussian distribution with mean 0 and variance 1. The true values of the
two regression coefficients are β0 = 1 and β1 = 2. The sample size n is set to be
200. In order to create a certain proportion of outliers, we select the observations
with the smallest values of the covariate xi (usually negative), and then drag them
horizontally around the reflect point of zero as they were likely to be recorded
with a mistake of sign, shown in Figure 2.1. The proportion of outliers is set to
be 0.5%, 1%, 1.5% or 2%.

Based on 500 replicates, we show, in Table 2.5, the empirical coverage prob-
abilities of the 95% sandwich CIs and the 95% model-based CIs. In addition,
Table 2.6 reports the average biases of the LS estimates of the regression co-
efficients, based on 500 replicates, with different proportions of outliers for the
given sample size 200. Table 2.7 reports the average biases of the LS estimates
of the regression coefficients, based on 500 replicates, with different sample sizes
for a given proportion 2% of outliers.
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Conclusion

As shown in Table 2.6 and Table 2.7, the biases of the LS estimates of re-
gression coefficients increase as higher proportions of outliers are included in
the data. In addition, in the presence of a certain proportion of outliers, these
biases will not vanish even when the sample size gets larger. Due to the biases,
the sandwich CIs are not able to attain the nominal coverage probabilities ex-
cept for a substantially small proportion of outliers, say 0.5%. The model-based
CIs have even poorer performance. Especially for the slope parameter β1, the
model-based CIs have zero tolerance, namely, they are tolerant at most for 0%
percentage of outliers, but the sandwich CIs are tolerant for a lower percentage
of outliers, say lower than 1%.

Table 2.5: Empirical coverage probabilities of the 95% model-based CIs and the 95% sandwich
CIs with different proportions of outliers. The sample size of the data is 200.

β0 β1

proportion of outliers model-based sandwich model-based sandwich
0.5% 0.950 0.958 0.604 0.976
1.0% 0.926 0.902 0.250 0.922
1.5% 0.870 0.822 0.030 0.752
2.0% 0.838 0.756 0.012 0.374

Table 2.6: Average biases of the LS estimates of regression coefficients, based on 500 replicates,
with different proportions of outliers. The sample size is 200.

proportion of outliers 0.5% 1.0% 1.5% 2.0%
Bias(̂β0) -0.050 -0.084 -0.123 -0.149
Bias(̂β1) -0.153 -0.263 -0.369 -0.453

38



Figure 2.1: A sample of 200 observations from a simple linear regression model with 1% of
outliers (solid square).
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Table 2.7: Average biases of the LS estimates of regression coefficients, based on 500 replicates,
with different sample sizes. The proportion of the outliers is 2%.

sample size 50 100 200 500
Bias(̂β0) -0.153 -0.150 -0.149 -0.151
Bias(̂β1) -0.432 -0.441 -0.445 -0.457

Summary

(1) The first two simulation studies have illustrated the consistency of the sand-
wich variance estimates even when the variance structure is misspecified.

(2) The validity of the consistency property requires the correct specification of
the mean structure. In Simulation 2.3, since outliers violate the mean struc-
ture, neither the sandwich CIs or model-based CIs can attain the nominal
coverage probabilities due to the presence of biases. However, the sandwich
CIs are more tolerant of a low proportion of outliers than the model-based
CIs.

(3) In Simulation 2.2, as k → ∞, the variance structure assumed in a negative
binomial regression model V(µ)→ µ. The sandwich and model-based vari-
ance estimators become closer, as the unit variance function approaches the
true variance structure of the data distribution. Due to this property, a test
statistic is proposed in Chapter 4 by comparing the two types of variance
estimators.

2.5 Information Matrix Test (IM) for Model Misspecification
Proposed by Hulbert White

As shown from the three simulation studies in Section 2.4, if the distributional
model is misspecified, the coverage probabilities differ substantially between the
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sandwich and model-based confidence intervals. This is due largely to the dis-
crepancy between the sandwich variance estimates and the model-based variance
estimates, and furthermore, essentially to the difference between the negative
sensitivity matrix and the variability matrix. According to [88], a direct test for
heteroscedasticity in LM can be constructed by comparing the elements of the
difference between the consistent estimates of the negative sensitivity matrix and
the variability matrix. With the absence of heteroscedasticity, these two matrix
estimates will be approximately equal, but will generally differ otherwise. [87]
extended this test further to more general situations.

Suppose that f (y, θ) is the density function of the parametric distribution im-
posed for the data analysis, where θ = (θ1, · · · , θp) is the parameter of interest.
Define two p × p matrices

A(θ) =
{

E
(
∂2 log f (Y; θ)
∂θi∂θ j

)}
=

{
Ai j(θ)

}
,

B(θ) =
{

E
(
∂ log f (Y; θ)
∂θi

∂ log f (Y; θ)
∂θ j

)}
=

{
Bi j(θ)

}
.

Note that these two matrices are essentially the negative sensitivity and variabil-
ity matrices of the p-element estimating function

∇θ log f (y; θ) =
(
∂ log f (y; θ)/∂θ1, · · · , ∂ log f (y; θ)/∂θp

)T
.

If the model is correctly specified, according to [87], the Bartlett identity holds
at θ = θ0, namely

−Ai j(θ0) = Bi j(θ0), or Ai j(θ0) + Bi j(θ0) = 0, for i, j = 1, · · · , p,

which is called the information matrix equivalence [87], also referred to as the
“information unbiasedness” ( [75]). On the other hand, the failure of the infor-
mation matrix equivalence indicates that the model is misspecified. [87] pro-
posed an information matrix (IM) test for model misspecification based on the
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argument above. First, define another two p × p matrices:

An(θ) =

1
n

n∑
i=1

∂2 log f (yi; θ)
∂θi∂θ j

 ,
Bn(θ) =

1
n

n∑
i=1

∂ log f (yi; θ)
∂θi

∂ log f (yi; θ)
∂θ j

 .
The matrices An(̂θn) and Bn(̂θn) are consistent estimators of A(θ) and B(θ), re-
spectively, where θ̂n is the so-called quasi-maximum likelihood estimator (QMLE),
which maximizes Ln(y; θ) = 1

n
∑n

i=1 log f (yi; θ), the quasi-log-likelihood of the
sample y = (y1, · · · , yn)T . [87] derived the asymptotic distribution of the ele-
ments of

√
n
(
An(̂θn) + Bn(̂θn)

)
. With a consistent estimator for the asymptotic

covariance matrix, denoted by Vn(̂θn), he constructed an asymptotic χ2 statistic
of the [82] type. The IM test by White is discussed in detail in Section 2.5.1.

2.5.1 Information matrix test statistics

Consider the upper triangle elements of A(θ) + B(θ),

dl(y, θ) = ∂ log f (y, θ)/∂θ j · ∂ log f (y, θ)/∂θt + ∂2 log f (y, θ)/∂θ j∂θt,

where l = 1, · · · , p(p + 1)/2; j = 1, · · · , p; t = j, · · · , p. It is useful to consider a
test on certain linear combinations of these elements, or simply a subset of these
elements. This is because, firstly, some may be identically zero, and secondly,
dl(y, θ) may consist of the set of linear combinations of the others.
Define the q × 1 vector d(y, θ), q ≤ p(p + 1)/2. Then

Dn(̂θn) = n−1
n∑

i=1

d(yi, θ̂n) and D(θ) = E {d(Y, θ)}
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are both q × 1 vectors. Also define the q × p Jacobian matrices

∇Dn(θ) =

n−1
n∑

i=1

∂dl(yi, θ)/∂θk

 and ∇D(θ) = {E (∂dl(Y, θ)/∂θk)} .

Define

V(θ) = E
{[

d(Y, θ) − ∇D(θ)A(θ)−1∇ log f (Y, θ)
]

[
d(Y, θ) − ∇D(θ)A(θ)−1∇ log f (Y, θ)

]T
}
.

Note that V(θ0) is the asymptotic covariance matrix of
√

nDn(̂θn) under the null
hypothesis that the model is correctly specified, and it can be consistently esti-
mated by

Vn(̂θn) = n−1
n∑

i=1

[
d(yi, θ̂n) − ∇Dn(̂θn)An(̂θn)−1∇ log f (yi, θ̂n)

]
[
d(yi, θ̂n) − ∇Dn(̂θn)An(̂θn)−1∇ log f (yi, θ̂n)

]T
.

Theorem 2.8 (White’s Information Matrix Test) Under mild regularity con-
ditions, if the model f (y; θ) is correctly specified,

(i)
√

nDn(̂θn) d
−→

MVN (0,V(θ0));

(ii) Vn(̂θn) a.s.
−−→

V(θ0), and Vn(̂θn) is nonsingular almost surely for all n suffi-
ciently large;

(iii) the information matrix test statistic

nDn(̂θn)T Vn(̂θn)−1Dn(̂θn) ∼ χ2
q, asymptotically.
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More details can be found in [87]. In the rest of the thesis, we call this test
the White’s IM test. Rejection of the null hypothesis that the model has been
correctly specified implies that, at least, the model-based covariance matrix es-
timator −An(̂θn) is inconsistent, and possibly, the QMLE θ̂n for the parameters
of interest is inconsistent. However, in practice, the calculation of the estimator
Vn(̂θn) can be cumbersome due to the requirement of third derivatives. Often
it can be shown under the null hypothesis that ∇D(θ0) vanishes, so that V(θ0)
is consistently estimated by n−1 ∑n

i=1 d(yi, θ̂n)d(yi, θ̂n)T . When ∇D(θ0) does not
vanish, V(θ0) can be consistently estimated by

n−1
n∑

i=1

d(yi, θ̂n)d(yi, θ̂n)T − ∇Dn(̂θn)Cn(̂θn)∇Dn(̂θn),

where Cn(θ) = An(θ)−1Bn(θ)An(θ). However, even though these alternative esti-
mators can be employed for simplification, they are neither consistent nor nec-
essarily positive semi-definite when the null hypothesis fails.

Moreover, if the model misspecifications amount only to the loss in efficiency
associated with quasi-maximum likelihood estimation, rather than inconsistency
of the resultant parameter estimator or covariance matrix estimator, the informa-
tion matrix test will lose power. To overcome this shortcoming, in Chapter 4, we
propose an information ratio test, targeting model misspecification of the vari-
ance/covariance structure, but with the correct specification of the mean struc-
ture. Several simulation studies show that the proposed information ratio test is
more powerful than the White’s IM test when the model misspecification leads to
consistent but inefficient estimators of parameters of interest, such as regression
coefficients.
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Chapter 3

Godambian Estimator of Dispersion
Parameter

Model misspecification leads to a large discrepancy between the model-based
and sandwich variance estimators. Usually, the dispersion parameter σ2, in the
model-based variance estimators, is estimated by a moment estimator, if its true
value is unknown. The moment estimators, for example, (2.17) and (2.31), can
be regarded as an equally weighted sum of the squared Pearson residuals. In
this Chapter, it can be shown that in the sandwich variance estimators, compared
with the model-based variance estimators, the dispersion parameter σ2 is anal-
ogously estimated by a weighted sum of the squared Pearson residuals in GLM
or the squared transformed residuals in GEE. This estimator is called the Go-
dambian estimator of the dispersion parameter. In addition, we show that, for
each individual regression coefficient, the weights in the Godambian estimator
take a form of the difference between the diagonal elements of two hat matrices:
one is obtained from the full “weighted” design matrix, and the other is obtained
from the sub-matrix, with the corresponding covariate column deleted from this
full matrix. Moreover, in LM, it can be shown that the weights in the Godambian
estimator, related to a certain individual regression coefficient, characterize the
influence from the corresponding covariate.
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We will start with the GLM for independent data, and then extend the result
to the context of GEE for correlated data.

3.1 Generalized Linear Regression Models

In the context of GLM, the model-based and sandwich covariance matrix es-
timators, (2.22) and (2.19), of the regression coefficient estimator β̂n are given
by, respectively,

AS COVm(̂βn) = σ̂2
m

(
XT ∆̂V̂−1∆̂X

)−1
,

where the matrix ∆̂ is given in (2.13), the matrix V̂ is given in (2.14), and the
dispersion parameter σ2 is estimated by a moment estimator σ̂2

m, if the true value
is unknown, and

AS COVs(̂βn) =
(
XT ∆̂V̂−1∆̂X

)−1 (
XT ∆̂V̂−1RV̂−1∆̂X

) (
XT ∆̂V̂−1∆̂X

)−1
.

Let V̂1/2 be an n× n diagonal matrix with the i-th diagonal element
√

V (̂µi). Let
RP be an n × n diagonal matrix, defined by

RP = diag
{
r2

P,1
, · · · , r2

P,n

}
, (3.1)

where rP,i is the Pearson residual, given by

rP,i =
yi − µ̂i√

V (̂µi)
, i = 1, · · · , n.

Define Û = V̂−1/2∆̂X. Note that the matrix Û consists of the weighted co-
variates with the weights ̂̇µi/

√
V (̂µi) for each subject, so it can be regarded as

a “weighted” design matrix. Then, the model-based and sandwich covariance
matrix estimators, (2.22) and (2.19), can be written as

AS COVm(̂βn) = σ̂2
m

(
ÛT Û

)−1
, (3.2)
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and
AS COVs(̂βn) =

(
ÛT Û

)−1 (
ÛTRPÛ

) (
ÛT Û

)−1
. (3.3)

Theorem 3.1 Suppose that, for the regression coefficient β j−1, j = 1, · · · , p, the
sandwich variance estimator of the coefficient estimator β̂ j−1 can be written as

AS VARs(̂β j−1) = σ̃2
j−1a j, (3.4)

where a j is the j-th diagonal element of the matrix
(
ÛT Û

)−1
, given in the model-

based covariance matrix estimator (3.2).

Here σ̃2
j−1 can be regarded as an estimator of the dispersion parameter σ2,

written as a weighted sum of the squared Pearson residuals, that is,

σ̃2
j−1 =

n∑
i=1

ŵ( j−1)
i r2

P,i
, j = 1, · · · , p. (3.5)

The weights ŵ( j−1)
i are given by

ŵ( j−1)
i = ĥii − ĥ(− j)

ii , (3.6)

where ĥii is the i-th diagonal element of the hat matrix Ĥ, defined as

Ĥ = Û
(
ÛT Û

)−1
ÛT , (3.7)

and ĥ(− j)
ii is the i-th diagonal element of the hat matrix Ĥ(− j), defined as

Ĥ(− j) = Û(− j)

(
ÛT

(− j)Û(− j)

)−1
ÛT

(− j),

obtained from the sub-matrix Û(− j) with the j-th column deleted from Û, for
j = 1, · · · , p.

The estimator σ̃2
j−1 is called the β j−1-specific Godambian estimator of the

dispersion parameter σ2.
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Note that the hat matrix Ĥ (3.7) is also referred to the leverage matrix for Poisson
regression models ( [32] and [89]).

Proof. First of all, suppose that the matrix Û is an orthogonal matrix, i.e.,
ÛT Û = Ip, where Ip is a p-dimensional identity matrix. Its diagonal elements
are a j = 1, for j = 1, · · · , p. In addition, the sandwich variance estimator of β̂ j−1

is given by

AS VARs(̂β j−1) =
n∑

i=1

u2
i, j−1r2

P,i
, j = 1, · · · , p,

where ui, j−1 is the (i, j)-th element of the matrix Û. It follows from (3.4) that

σ̃2
j−1 =

n∑
i=1

ŵ( j−1)
i r2

P,i
=

n∑
i=1

u2
i, j−1r2

P,i
,

where the weights are ŵ( j−1)
i = u2

i, j−1 with
∑n

i=1 ŵ( j−1)
i = 1.

The hat matrix Ĥ (3.7) has the i-th diagonal element ĥii =
∑p

k=1 u2
i,k−1. If we

delete the j-th column from the matrix Û, the resulting matrix Û(− j) is also an
orthogonal matrix, i.e., ÛT

(− j)Û(− j) = Ip−1. Then, the corresponding hat matrix

Ĥ(− j) has the i-th diagonal element ĥ(− j)
ii =

∑
k, j

u2
i,k−1. Thus, the weights

ŵ( j−1)
i = u2

i, j−1 = ĥii − ĥ(− j)
ii .

Secondly, let us consider the case that the matrix Û is an arbitrary matrix of
full rank. By the QR factorization [38], the matrix Û can be decomposed as
follows:

Π = ÛQ, (3.8)

where Q is a p × p upper triangular matrix, and Π is an orthogonal matrix, i.e.,
ΠTΠ = Ip. Under this decomposition, (ÛT Û)−1 = QQT , and the sandwich
covariance matrix estimator (3.3) can be re-written as

AS COVs(̂βn) = Q
(
ΠTRPΠ

)
QT . (3.9)
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Let us start with the parameter βp−1, the last element of the coefficient vector β.
Let Û(−p) denote the sub-matrix which deletes the p-th column from the matrix
Û. Re-express the matrix Π as

Π =
(
Π1 π

)
,

where Π1 is an n× (p− 1) matrix containing the first p− 1 columns of the matrix
Π, and π = (π1, · · · , πn)T is the last column vector of Π. We can also re-express
the matrix Q as

Q =
(

Q11 q12
0 q22

)
,

where Q11 is a (p−1)× (p−1) upper triangular matrix, q12 is a (p−1)×1 vector,
0 is a 1 × (p − 1) zero vector, and q22 is a scalar.

The p-th diagonal element of the matrix (ÛT Û)−1 is ap = q2
22. The sandwich

variance estimator of β̂p−1 can be written as

AS VARs(̂βp−1) = q2
22π

TRPπ = q2
22

n∑
i=1

π2
i r2

P,i
. (3.10)

Then, we can obtain

σ̃2
p−1 =

n∑
i=1

ŵ(p−1)
i r2

P,i
=

n∑
i=1

π2
i r2

P,i
, (3.11)

where the weights are ŵ(p−1)
i = π2

i .

The hat matrices are invariant under orthogonalization. That is, the hat matrix Ĥ
(3.7) w.r.t. Û is equivalent to the hat matrix H

Π
w.r.t. Π, i.e.,

Ĥ = Û
(
ÛT Û

)−1
ÛT = Π

(
ΠTΠ

)−1
ΠT = H

Π
.

Since H
Π
= Π1Π

T
1 + ππ

T , the i-th diagonal element, ĥii, of Ĥ equals to the sum
of the i-th diagonal elements of the matrices Π1Π

T
1 and ππT , for i = 1, · · · , p.
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Moreover, the QR decomposition of Û(−p) is obtained by

Π1 = Û(−p)Q11,

from the QR decomposition (3.8). Then, the i-th diagonal element, ĥ(−p)
ii , of Ĥ(−p)

equals to the i-th diagonal element of Π1Π
T
1 . Because the i-th diagonal element

of ππT is π2
i , we can obtain ĥii = ĥ(−p)

ii + π2
i . Therefore, the weights ŵ(p−1)

i can be
written as

ŵ(p−1)
i = π2

i = ĥii − ĥ(−p)
ii , for i = 1, · · · , p.

Next consider other elements of the coefficient vector β, β0, · · · , βp−2. Given
an index j ∈ {1, · · · , p − 2}, let X̃ be the resulting matrix that swaps the j-th and
last columns of the matrix X, that is,

X̃ = XS,

where the matrix S is a p × p matrix given by

j p
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...

j 0 · · · 0 · · · 0 1
...

...

0 0 0 · · · 1 0
p 0 · · · 1 · · · 0 0


.

Let β̃ = (̃β0, · · · , β̃p−1) denote the vector which switches the j-th and p-th

element of the regression coefficients β, i.e., β̃ = Sβ. Let ̂̃βn = (̂̃β0, · · · ,
̂̃
βp−1)

denote the corresponding estimator of β̃. It is easy to show that ̂̃
βn = Sβ̂n,

which implies that the estimator ̂̃
βn switches the positions of β̂ j−1 and β̂p−1 in
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the estimator β̂n. That is, β̂ j−1 =
̂̃
βp−1. Let ̂̃U = V̂−1/2∆̂X̃ = ÛS, which swaps

the j-th and p-th columns of the matrix Û. Note that the fitted values, variance
function and Pearson residuals remain the same under the swap because they
depend on the regression coefficient estimator only through the linear predictors

X̃̂̃
β = Xβ̂. The sandwich covariance matrix estimator of ̂̃βn can be written as

AS COVs(̂β̃n) = S
{

AS COVs(̂βn)
}
S,

which swaps the j-th and p-th diagonal elements of AS COVs(̂βn). It implies that
the sandwich variance estimator of β̂ j−1, given by

AS VARs(̂β j−1) = σ̃2
j−1a j,

is equivalent to that of ̂̃βp−1, given by

AS VARs (̂̃βp−1) = ˜̃σ2
p−1ãp,

where a j is the j-th diagonal element of
(
ÛT Û

)−1
and ãp is the p-th diagonal el-

ement of
(̂̃UT ̂̃U)−1

. Under the swap,
(̂̃UT ̂̃U)−1

= S
(
ÛT Û

)−1
S, which indicates

that ãp = a j. It follows that ˜̃σ2
p−1 = σ̃

2
j−1.

According to the results (3.11), ˜̃σ2
p−1 =

n∑
i=1

̂̃w(p−1)
i r2

P,i
, where the weights are

̂̃w(p−1)
i =

̂̃hii −
̂̃h(−p)

ii , (3.12)

where ̂̃hii is the i-th diagonal element of the hat matrix ̂̃H = ̂̃U (̂̃UT ̂̃U)−1 ̂̃UT
, and

̂̃h(−p)

ii is the i-th diagonal element of the hat matrix

̂̃H(−p)
=

̂̃U(−p)

(̂̃UT

(−p)
̂̃U(−p)

)−1 ̂̃UT

(−p).
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Here, ̂̃U(−p) is the sub-matrix with the last column deleted from ̂̃U, which is the
same as the sub-matrix Û(− j) with the j-th column deleted from Û. Consequently,̂̃h(−p)

ii = ĥ(− j)
ii . In addition, since the hat matrix is invariant w.r.t. swap, ̂̃hii = ĥii.

Therefore, σ̃2
j−1, given in the sandwich variance estimator AS VARs(̂β j−1), can be

written as

σ̃2
j−1 =

n∑
i=1

ŵ( j−1)
i r2

P,i
, j = 1, · · · , p,

where the weights ŵ( j−1)
i = ĥii − ĥ(− j)

ii . This completes the proof of Theorem 3.1.

3.1.1 Special Case: Godambian estimators of the variance parameter σ2

in LM

In the context of LM, under the assumptions

µi = xT
i β, and V(µi) = 1,

the matrix Û reduces to the original design matrix X, and the Pearson residuals
rP,i reduce to the raw residuals ri.

Corollary 3.1 Suppose that, for the regression coefficient β j−1, j = 1, · · · , p, the
sandwich variance estimator of the coefficient estimator β̂ j−1 can be written as

AS VARs(̂β j−1) = σ̃2
j−1a j, (3.13)

where a j is the j-th diagonal element of the matrix
(
XT X

)−1
, given in the model-

based covariance matrix estimator (2.25).

Here σ̃2
j−1 can be regarded as an estimator of the variance parameter σ2,

written as a weighted sum of the squared residuals, that is,

σ̃2
j−1 =

n∑
i=1

w( j−1)
i r2

i , j = 1, · · · , p. (3.14)
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The weights w( j−1)
i are given by

w( j−1)
i = hii − h(− j)

ii , (3.15)

where hii is the i-th diagonal element of the hat matrix H, defined as

H = X
(
XT X

)−1
XT , (3.16)

and h(− j)
ii is the i-th diagonal element of the hat matrix H(− j) obtained from the

sub-matrix X(− j), with the j-th column deleted from the full design matrix X,
defined as

H(− j) = X(− j)

{
XT

(− j)X(− j)

}−1
XT

(− j). (3.17)

The estimator σ̃2
j−1 is called the β j−1-specific Godambian estimator of the

variance parameter σ2.

Here, the weights take differences between the diagonal elements, also called
leverages, from two hat matrices. [44] discussed that the diagonal element, hii,
of the hat matrix can be interpreted as the amount of leverage or influence of the
i-th observation exerted on the fitted value based on the full model. Specifically, a
large value of hii represents high influence if the i-th observation (xi0, · · · , xi,p−1)
is far away from the sample center in the space Rp. This observation is called a
“high leverage point”. On the other hand, when the observation is closer to the
center, it has lower influence on the fitted value, and consequently, the value of
hii becomes smaller.

Similarly, h(− j)
ii characterizes the amount of influence on the fitted value by

the i-th observation (xi0, · · · , xi, j−2, xi, j, · · · , xi,p−1) in the space Rp−1 based on a
sub-model without the j-th covariate. Therefore, the weights w( j−1)

i = hii − h(− j)
ii

can be interpreted as the amount of influence of the i-th observation on the fitted
value contributed from the j-th covariate. It is worth pointing out that
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(1)
n∑

i=1

w( j−1)
i = 1, for j = 1, · · · , p;

(2) it is expected that when the observation xi, j−1 approaches to the sample
center of the j-th covariate variable, the value of w( j−1)

i tends to get smaller;
on the other hand, the value of w( j−1)

i is likely to get larger if the observation
deviates from the center.

Simulation

Through a simulation study, we will investigate the properties of these Go-
dambe weights in the LM setting with independent covariates. Consider a sam-
ple of observations

{
x11, · · · , xn,1

}
independent drawn from a Gaussian distri-

bution N(1, 1), and another sample
{
x12, · · · , xn,2

}
from a Gaussian distribution

N(2, 0.5). The sample size n is 200. The full design matrix X is given by an
n × 3 matrix with the i-th row (1, xi1, xi2), for i = 1, · · · , n. For each j = 1, 2, 3,
the weights w( j−1)

i , calculated from (3.15), are regressed non-parametrically on
all the three covariate variables

{
x1,k−1, · · · , xn,k−1

}
, k = 1, 2, 3, using a kernel

smoothing technique (see [64] and [74]). That is, for each i, the kernel regres-
sion estimate of the weight w(k−1)

i on the covariate xi, j−1’s is given by

w̃(k−1)
i =

n∑
l=1

κh(xl, j−1 − xi, j−1)w(k−1)
i

n∑
l=1

κh(xl, j−1 − xi, j−1)

, j, k = 1, 2, 3,

where κh(·) is the kernel function, and h is the bandwidth. Here we use a Gaussian
kernel with bandwidth 2. For j = 1, xi,0 = 1, for i = 1, · · · , n. Then, the kernel
estimates of the weights w(0)

i , regressing on the vector of 1’s, is in fact its sample

mean n−1
n∑

i=1

w(0)
i = 1/n = 0.05.
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Figure 3.1 displays the kernel estimates of the weights w(1)
i regressing on xi1

and xi2, respectively. As expected, in the left panel of the figure, the pattern of
the kernel estimates of the weights w(1)

i strongly associated with the covariate xi1

agrees with what we have discussed above. That is, the estimates get smaller
when the covariate xi1 gets closer to the sample center. In addition, the right
panel shows that the kernel estimates are almost constant, without any obvious
relation between the weights w(1)

i and the covariate xi2. Similar results are found
in Figure 3.2, which shows the kernel estimates of the weights w(2)

i regressing on
xi1 and xi2, respectively.

Summary. This simulation experiment shows that the weights w( j−1)
i are strongly

associated with the covariate xi, j−1, but rarely have relation with other covariates,
for j = 1, · · · , p. In LM, the error terms are usually assumed to be independent
random variables with mean 0, and constant variance σ2. Checking on these
assumptions is often carried out by visual examination of appropriate residual
plots. For instance, plotting the residuals versus certain covariate variables is
able to show certain kinds of heteroscedasticity, which violate the assumption of
constant error variance. Let ri denote the residual from the i-th data point. It can
be shown that under the homoscedasticity assumption,

E(r2
i ) = (1 − hii)σ2, i = 1, · · · , n.

Suppose that a certain covariate, say xi, j−1, accounts for the heteroscedasticity in
the model; that is, the squared residuals can be modelled in the following form:

r2
i = (1 − hii)σ2 + g(xi, j−1) + ξi, i = 1, · · · , n,

where g(·) is a certain function defined on only the covariate xi, j−1, and ξi is
an error term, assumed to have expectation 0. Consider a weighted sum of the
squared residuals with a certain standardization procedure,

n∑
i=1

w(k−1)
i∑n

i=1(1 − hii)w
(k−1)
i σ2

r2
i ,
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for k = 1, · · · , p. If k , j, its expectation is

E

 n∑
i=1

w(k−1)
i∑n

i=1(1 − hii)w
(k−1)
i σ2

r2
i

 = 1,

if we assume that the covariate
(
x1,k−1, · · · , xn,k−1

)
is sampled independent of the

covariate
(
x1, j−1, · · · , xn, j−1

)
. If k = j, its expectation is

E

 n∑
i=1

w(k−1)
i∑n

i=1(1 − hii)w
(k−1)
i σ2

r2
i

 = 1 +
∑n

i=1 w( j−1)
i g(xi, j−1)∑n

i=1 w( j−1)
i (1 − hii)σ2

,

which deviates from 1. As a result, this property is helpful to identify the covari-
ate which is responsible for the heteroscedasticity by the information ratio test,
proposed in Chapter 4, when the null hypothesis is rejected.

3.2 Generalized estimating equations

In this section, all the results derived from the quasi-likelihood inference in
GLM for independent data will be extended to the GEE in longitudinal data
analysis. The model-based and sandwich covariance matrix estimators of β̂K are
given by (2.30) and (2.28)

AS COVm(̂βK) = σ̂2
m

 K∑
i=1

D̂T
i Σ̂
−1
i D̂i


−1

,

and

AS COVs(̂βK) =

 K∑
i=1

D̂T
i Σ̂
−1
i D̂i


−1  K∑

i=1

D̂T
i Σ̂
−1
i rirT

i Σ̂
−1
i D̂i


−1  K∑

i=1

D̂T
i Σ̂
−1
i D̂i

 .
Let N =

K∑
i=1

ni. Let y be an N × 1 vector, defined as

yT = (yT
1 , · · · , y

T
K),
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Figure 3.1: The kernel estimates of the weights w(1)
i associated with the covariate xi1, regressing

on both xi1 and xi2, respectively, with the bandwidth 2. The left panel shows the kernel estimates
regressing on xi1, and the right panel shows the kernel estimates regressing on xi2.

57



Figure 3.2: The kernel estimates of the weights w(2)
i associated with the covariate xi2, regressing

on both xi1 and xi2, respectively, with the bandwidth 2. The left panel shows the kernel estimates
regressing on xi1, and the right panel shows the kernel estimates regressing on xi2.
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and µ(β) be an N × 1 vector, defined as

µ(β)T = (µT
1 , · · · ,µ

T
K),

andD(β) be an N × p matrix, defined as

D(β)T =
(
DT

1 , · · · ,D
T
K

)
,

and Σ(β, ρ) be an K × K block diagonal matrix, defined as

Σ(β, ρ) = diag {Σ1, · · · ,ΣK} .

Then, the GEE (2.27) can be written as

ΨK(β, ρ) =
1
σ2D(β)TΣ(β, ρ)−1 {y − µ(β)} = 0. (3.18)

Let β̂K and ρ̂K denote K1/2-consistent estimators of the regression coefficient β
and correlation parameter ρ. Let µ̂, D̂ and Σ̂ denote the vector and matrices µ,
D and Σ evaluated at the estimates β̂K and ρ̂K. Define the residual vector r by

r = y − µ̂. (3.19)

Note that the residual vector can be written as rT = (rT
1 , · · · , r

T
K), where ri =

yi − µ̂i, for i = 1, · · · ,K. The sandwich covariance matrix estimator of β̂K can be
written as

AS COVs(̂βK) =
{
D̂T Σ̂

−1
D̂

}−1 {
D̂T Σ̂

−1
RΣ̂
−1
D̂

} {
D̂T Σ̂

−1
D̂

}−1
, (3.20)

where R is a K × K diagonal block matrix, defined as

R = diag
{
r1rT

1 , · · · , rK rT
K

}
. (3.21)

For i = 1, · · · ,K, suppose that the matrix Ri(̂ρK) is positive definite. By the
Cholesky decomposition ( [31]), this matrix can be decomposed as follows

Ri(̂ρK) = L̂iL̂T
i , (3.22)
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where L̂i is a lower triangular matrix. Define the Pearson residual vector for
subject i, which can be written as

rP,i = (rP,i,1, · · · , rP,i,ni
)T , (3.23)

where rP,i, j is the j-th Pearson residual for subject i, given by

rP,i j =
yi j − µ̂i j

V (̂µi j)
, i = 1, · · · ,K, j = 1, · · · , ni. (3.24)

The Pearson residual vector rP,i for subject i can also be written as rP,i = Ĝ−1/2
i ri.

Define a transformed residual vector for the i-th subject by

r̃i = L̂−1
i Ĝ−1/2

i ri = L̂−1
i rP,i, i = 1, · · · ,K, (3.25)

where the matrix L̂i is given in the decomposition (3.22). In this way, the resid-
uals are so-called “de-correlated” so that they mimic residuals from a standard
linear regression, which have constant variance and zero correlation. [31] gave
an interesting interpretation of the transformed residuals. For example, the first
element of r̃i is the standardized residuals for the first repeated observation (of-
ten the baseline measurement). The subsequent residuals represent standardized
deviations from the conditional mean of the response given all previous observa-
tions. Specifically, the k-th transformed residual r̃ik estimates

yik − E(Yik|Yi1, · · · ,Yi,k−1)√
V(Yik|Yi1, · · · ,Yi,k−1)

, k = 2, · · · , ni.

Let R̃ be a K × K diagonal block matrix, with the i-th diagonal matrix r̃ĩrT
i . Let

Ûi be an ni × p matrix, defined by

Ûi = L̂−1
i Ĝ−1/2

i D̂i,

and let Û be an N × p matrix, defined by

ÛT =
(
ÛT

1 , · · · , Û
T
K

)
.
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Then the model-based and sandwich covariance matrix estimators, (2.30) and
(2.28), can be rewritten as

AS COVm(̂βK) = σ̂2
m

(
ÛTÛ

)−1
, (3.26)

and
AS COVs(̂βK) =

(
ÛTÛ

)−1 (
ÛT R̃Û

) (
ÛTÛ

)−1
.

Theorem 3.2 Suppose that, for the regression coefficient β j−1, j = 1, · · · , p, the
sandwich variance estimator of the coefficient estimator β̂ j−1 can be written as

AS VARs(̂β j−1) = σ̃2
j−1a j, (3.27)

where a j is the j-th diagonal element of the matrix
(
ÛTÛ

)−1
, given in the model-

based covariance matrix estimator (3.26).

Here σ̃2
j−1 can be regarded as an estimator of the dispersion parameter σ2,

written as a sum of quadratic forms in the transformed residuals (3.25), that is,

σ̃2
j−1 =

K∑
i=1

r̃T
i Ŵ ( j−1)

i r̃i, j = 1, · · · , p. (3.28)

The weight matrices Ŵ ( j−1)
i can be written as

Ŵ ( j−1)
i = Ĥii − Ĥ(− j)

ii , (3.29)

where Ĥii is the i-th diagonal matrix of the K ×K block hat matrix Ĥ , defined as

Ĥ = Û
{
ÛTÛ

}−1
ÛT , (3.30)

and Ĥ(− j)
ii is the i-th diagonal matrix of the K ×K block hat matrix Ĥ (− j), defined

as
Ĥ (− j) = Û(− j)

(
ÛT

(− j)Û(− j)

)−1
ÛT

(− j), (3.31)
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obtained from the sub-matrix Û(− j) with the j-th column deleted from Û, for
j = 1, · · · , p.

The estimator σ̃2
j−1 is called the β j−1-specific Godambian estimator of the

dispersion parameter σ2.

Compared to the proof of Theorem 3.1, in the context of GEE, the matrix Û
plays the same role as the matrix Û in GLM. The i-th diagonal element of the
hat matrix is an ni × ni matrix, instead of a scalar. Consequently, the weights are
matrices. Analogous to the form of a weighted sum of the squared residuals in
LM or the squared Pearson residuals in GLM, the Godambian estimator of σ2

can be written as a sum of quadratic forms in the transformed residuals.

Under certain model misspecification of variance/covariance structure, dis-
crepancy between the sandwich and model-based variance estimators will lead
to the discrepancy between the Godambian estimator of the dispersion parameter
and its true value or the moment estimator. In the next section, assuming that the
mean structure of the response is correctly specified, we construct a test statistic
by taking a ratio of the Godambian estimator to its true value or the moment
estimator.
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Chapter 4

Information Ratio Test

Testing for model misspecification of the mean structure has drawn much
attention in the literature. A large class of test statistics has been proposed, in-
cluding the quasi-likelihood ratio tests, Rao’s score tests and Wald’s statistics.
In addition, [68] developed a chi-squared inference function for testing nested
models and a chi-squared regression misspecification test using quadratic infer-
ence functions (QIF) for longitudinal data analysis. More details can be found
in Section 1.1. However, assessing the adequacy of the variance/covariance as-
sumption is also important. For example, it is a common assumption of LM that
the error terms all have equal variances. When this assumption is not met, the
loss in efficiency when using ordinary least squares estimation may be substan-
tial. Moreover, the incorrect estimation of standard errors may lead to invalid
inference. For regression analysis of count data, overdispersion is often encoun-
tered. Although the excess variation has little effect on estimation of the regres-
sion coefficients of primary interest, standard errors, tests and confidence inter-
vals may be seriously in error unless it is appropriately taken into account. The
GEE method for regression modeling of clustered outcomes allows for specifica-
tion of covariance structure, including variance function and working correlation
matrix. Much work has been done on investigating the impact of misspecifying
the correlation structure. [84] pointed out that an inappropriate choice will lead
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to inefficient parameter estimation. Also see [79]. Moreover, [85] studied the
effects of the variance-function misspecification on estimation of the mean pa-
rameters for quantitative responses. Their numerical studies showed that even if
the variance function is misspecified, correct choice of the correlation structure
may not necessarily improve estimation efficiency. Even though some methods
have been considered to test for model misspecification of variance/covariance
structure, e.g. heteroscedasticity and overdispersion, there is no systematic sta-
tistical test available in the framework of regression analysis using GLM for
independent data and GEE for correlated data.

In this chapter, we will develop a statistical test for misspecification of vari-
ance/covariance structures. For independent data, let σ2V∗(µi), i = 1, · · · , n,
denote the true variance structure of the underlying distribution. Let V(·) de-
note the working unit variance function which is actually used in the quasi-score
equation (2.8) in GLM. Analogously, for correlated data, the true covariance
structure is denoted by σ2Σ∗i = σ

2G∗i
1/2R∗i G

∗
i

1/2, where G∗i = diag {V∗(µi)}. Let
Σi = G1/2

i RiG
1/2
i denote the working covariance structure, including the work-

ing unit variance function and the working correlation matrix, used in the GEE
(2.27). We consider to test the null hypothesis

H0 : V(·) = V∗(·), (4.1)

in GLM, or
H0 : Σi = Σ

∗
i , i = 1, · · ·K, (4.2)

in GEE.

By taking a ratio of the Godambian estimator of the dispersion parameter
σ2, given in the sandwich variance estimators, to its true value or the moment
estimator, given in the model-based variance estimators, we propose a statistic,
called the information ratio (IR) statistic, to test for model misspecification of
the variance/covariance structure. When the mean structure is misspecified, test-
ing for misspecifying the second moment is meaningless because the residuals
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would be distorted by the incorrect mean function. Therefore, the test proposed
in this chapter and model selection of the optimal variance/covariance structure
suggested in Chapter 5 are constructed based on the assumption that the mean
structure has been chosen and correctly specified.

4.1 Asymptotic Distributions of the Dispersion Parameter Es-
timators

Both of the Godambian estimators and moment estimators of the dispersion
parameter are functions of the Pearson residuals rP,i (2.12) in GLM, or the trans-
formed residuals r̃i (3.25) in GEE.

4.1.1 Generalized Linear Models

Pearson residuals are based on the Pearson goodness-of-fit statistic

χ2 =

n∑
i=1

(yi − µ̂i)2

V (̂µi)
.

In the literature of GLM, the Pearson residuals have been widely studied. See
[16], [57], [58], [66] and [15].

Let β∗ denote the limiting value of the sequence of the estimators{̂
βn, n = 1, 2, · · ·

}
,

namely, β̂n →p β∗, as n→ ∞.

Note that since the estimator β̂n is consistent, the limiting value β∗ equals to
the true value of the parameter β. Define

ei = yi − µ
∗
i = yi − h(xT

i β∗), i = 1, · · · , n.
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Note that ei’s are independent random variables with mean 0 and variance V∗(µ∗i ).
Let e = (e1, · · · , en)T . Under mild regularity conditions, straightforward asymp-
totic expansion of the residual vector r = y − µ̂ yields

r =
{
In − ∆∗X

(
XT∆∗V

−1
∗ ∆∗X

)−1
XT∆∗V

−1
∗

}
e + op(1),

where ∆∗ and V∗ are the resulting matrices which substitute the estimate β̂n in
the matrices ∆̂ and V̂, (2.13) and (2.14), with its limiting value β∗. See [20].
Then,

(i) the expectation of the Pearson residual rP,i = (yi − µ̂i)/
√

V (̂µi) for the i-th
observation is approximately 0, and

(ii) from [25], it can be shown that, for large sample size, the covariance matrix
of the Pearson residual vector rP = (rP,1, · · · , rP,n)

T may be approximated by
σ2(In − H∗)Ω∗(In − H∗), where the matrix H∗ is given by

H∗ = V−1/2
∗ ∆∗X

(
XT∆∗V

−1
∗ ∆∗X

)−1
XT∆∗V

−1/2
∗ , (4.3)

and the matrix Ω∗ is an n×n diagonal matrix with the i-th diagonal element

ω∗i = V∗(µ∗i )/V(µ∗i ),

for i = 1, · · · , n. Note that under the null hypothesis H0 (4.1), V∗(µ∗i ) =
V(µ∗i ), i.e., ω∗i = 1, and consequently the matrix Ω∗ = In.

Suppose that εP is an n-variate random vector with mean 0 and covariance
matrix σ2Ω∗. Then, for large sample size, the Pearson residual vector can be
approximated by

rP ' (In − H∗) εP. (4.4)

For Gaussian responses, the Pearson residual vector rP is asymptotically multi-
variate normal distributed. However, this statement is not always true for non-
Gaussian responses, e.g., binary data, count data and etc. [47] discussed so-
called “small dispersion asymptotics”. In general, when the dispersion parame-
ter is small, the Pearson residuals are asymptotically normally distributed. Also
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see [48] and [77]. But for the Poisson and binomial cases, this small-dispersion
asymptotic normality needs to be modified because the dispersion parameter σ2

is assumed to be 1 when no over-dispersion or under-dispersion is concerned.
For the Poisson case, the Pearson residuals

rP,i =
yi − µ̂i√
µ̂i

→d N(0, 1), as µ→ ∞.

For the binomial case, the Pearson residuals rP,i are asymptotically normal as the
number of Bernoulli trials m approaches infinity. In this sense, 1/m sometimes
is regarded as the “dispersion” parameter. Note that because of this, the Pearson
residuals in the binary case would not have asymptotic normal distribution.

Godambian estimators

The Godambian estimators of σ2 can be re-written as quadratic forms in the
Pearson residuals rP,i (2.12). Specifically, for j = 1, · · · , p, the β j−1-specific
Godambian estimator of σ2 can be written as

σ̃2
j−1 = rT

P
Ŵ

( j−1)
rP, (4.5)

where the weight matrix Ŵ
( j−1)

is an n× n diagonal matrix with the i-th diagonal
element ŵ( j−1)

i , given in (3.6).

Let W( j−1)
∗ be an n × n diagonal matrix with the i-th diagonal element w( j−1)

i,∗ ,
which substitutes the estimate β̂n, in the weights ŵ( j−1)

i (3.6), with β∗.

Lemma 4.1 Under the null hypothesis H0 (4.1), for j = 1, · · · , p, the β j−1-
specific Godambian estimator (4.5) has expectation

E
(
σ̃2

j−1

)
'

 n∑
k=1

λ
( j−1)
k,∗

σ2,
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where λ( j−1)
k,∗ , k = 1, · · · , n, are the eigenvalues of the matrix

(In − H∗) W( j−1)
∗ (In − H∗) .

Lemma 4.1 is proved in the appendix. Note that
n∑

k=1

λ
( j−1)
k,∗ = tr

{
(In − H∗) W( j−1)

∗ (In − H∗)
}
,

for j = 1, · · · , p, where tr {·} denotes the trace of a matrix. Under the null hy-
pothesis H0 (4.1),

E(σ̃2
j−1/σ

2) '
n∑

i=1

w( j−1)
i,∗ −

n∑
i=1

h∗iiw
( j−1)
i,∗ = 1 + O(1/n),

because h∗ii = O(1/n) and w( j−1)
i,∗ = O(1/n), following from

∑n
i=1 h∗ii = p and∑n

i=1 w( j−1)
i,∗ = 1, where h∗ii is the i-th diagonal element of the matrix H∗. Then,

with the order of O(1/n), the Godambian estimator σ̃2
j−1 is an asymptotically

unbiased estimator of the dispersion parameter σ2, under the null hypothesis H0.

For finite sample size, with a bias correction, an unbiased version of the β j−1-
specific Godambian estimator of σ2 is proposed as

σ̃2
j−1,u =

n∑
i=1

ŵ( j−1)
i

1 −
∑n

k=1 ŵ( j−1)
k ĥkk

r2
P,i
= rT

P
Ŵ

( j−1)
u rP, (4.6)

where Ŵ
( j−1)
u is an n×n diagonal matrix with the i-th diagonal element ŵ( j−1)

i /(1−∑n
k=1 ŵ( j−1)

k ĥkk), for j = 1, · · · , p.

In Section 3.1.1, we have discussed, in LM, the fact that the weights in the
β j−1-specific Godambian estimator characterize the influence from the corre-
sponding covariate xi, j−1’s. To incorporate the overall impact from all the co-
variates, a new Godambian estimator is defined by

σ̃2
pool =

n∑
i=1

ŵpool
i r2

P,i
= rT

P
Ŵ

pool
rP, (4.7)
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where Ŵ
pool

is an n × n diagonal matrix with the i-th diagonal element ŵpool
i =

ĥii/p. Here, since the influences from all the covariates are pooled in the weights
ŵpool

i , this estimator is called the pooled Godambian estimator of the dispersion
parameter σ2. We can also show that the pooled Godambian estimator σ̃2

pool is
asymptotically unbiased with the order of O(1/n), under the null hypothesis H0.
For finite sample size, an unbiased pooled Godambian estimator of σ2 is defined
by

σ̃2
pool,u =

n∑
i=1

ŵpool
i

1 −
∑n

k=1 ĥ2
kk/p

r2
P,i
= rT

P
Ŵ

pool
u rP, (4.8)

where Ŵ
pool
u is an n × n diagonal matrix with the i-th diagonal element ĥii/(p −∑n

k=1 ĥ2
kk).

Moment estimator

The moment estimator (2.17) of the dispersion parameter σ2 can be written
as a quadratic form in Pearson residuals

σ̂2
m = rT

P

(
1

n − p
In

)
rP. (4.9)

It can be shown that under the null hypothesis H0 (4.1), the moment estimator
σ̂2

m is approximately a Pearson χ2 statistic, i.e.,

(n − p)σ̂2
m

σ2 ∼ χ2
n−p.

Also see [59]. Moreover, it is approximately an unbiased estimator of the dis-
persion parameter σ2.
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4.1.2 Generalized Estimating Equations

In the context of GEE, let β∗ be the limiting value of the sequence of the
estimators

{̂
βK,K = 1, 2, · · ·

}
, that is,

β̂K →p β∗ as K → ∞.

The limiting value β∗ equals to the true value due to the consistency of the esti-
mator β̂K.

It is rarely encountered that an arbitrary working correlation matrix with given
values of the correlation parameters is assumed, so we only consider the cases
where the values of the correlation parameters in the working correlation matrix
are unknown. For the sequence of the estimators

{̂
ρK,K = 1, 2, · · ·

}
, suppose that

there exists a limiting value ρ∗, namely,

ρ̂K →p ρ∗ as K → ∞.

Note that if the working correlation matrix correctly specifies the true correlation
structure, the limiting value ρ∗ is equal to the true value of the correlation param-
eter involved in the true correlation structure. On the other hand, if the working
correlation matrix departs from the true correlation structure, the estimator of the
“working” correlation parameter converges to a certain value, which is unlikely
to be equal to the true value of the “true” correlation parameter.

Similarly to GLM, suppose that ε̃ is an N-variate random vector with mean 0
and covariance matrix σ2Ω∗, where Ω∗ is a K × K diagonal block matrix with
i-th diagonal matrix

Ω∗i = L−1
i,∗G

−1/2
i,∗ G∗i

1/2R∗i G
∗
i

1/2G−1/2
i,∗ L−T

i,∗ . (4.10)

The matrix Gi,∗ substitutes the estimate β̂K in the matrix Ĝi with its true value
β∗, and under the null hypothesis H0 (4.2), Gi,∗ = G∗i . The matrix Li,∗ is an
ni × ni lower triangular matrix such that Li,∗LT

i,∗ = Ri(ρ∗), and under the null
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hypothesis H0 (4.2), Li,∗LT
i,∗ = Ri(ρ∗) = R∗i . Thus, the matrix Ω∗ is equivalent to

an identity matrix IN under the null hypothesis H0 (4.2). For large sample size,
the transformed residual vector r̃ can be approximated by

r̃ ' (IN −H∗)̃ε, (4.11)

where H∗ is the matrix substituting the estimate β̂K and ρ̂K with its limiting
values in the hat matrix Ĥ (3.30). Similarly to GLM, in the case of Gaussian re-
sponses, or non-Gaussian responses for small dispersion, the transformed resid-
ual vector r̃ is asymptotically normal distributed.

Godambian estimator

For j = 1, · · · , p, the β j−1-specific Godambian estimator of the dispersion
parameter σ2 can be written as a quadratic form in the transformed residuals r̃i,
i.e.,

σ̃2
j−1 = r̃T

Ŵ( j−1)̃r, (4.12)

where Ŵ( j−1) is a K × K diagonal block matrix with the i-th diagonal matrix
Ŵ ( j−1)

i given in (3.29).

Lemma 4.2 Under the null hypothesis H0 (4.2), for j = 1, · · · , p, the β j−1-
specific Godambian estimator (4.12) has expectation

E
(
σ̃2

j−1

)
'

 N∑
k=1

λ
( j−1)
k,∗

σ2,

where λ( j−1)
k,∗ , k = 1, · · · ,N, are the eigenvalues of the matrix

(IN −H∗)W
( j−1)
∗ (IN −H∗) .
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Lemma 4.2 is proved in the appendix. Similarly to GLM, the β j−1-specific Go-
dambian estimator is an asymptotically unbiased estimator of σ2 to the order of
O(1/K), under the null hypothesis H0 (4.2). Let

b j−1 = tr
{(

IN − Ĥ
)
Ŵ( j−1)

(
IN − Ĥ

)}
.

For finite sample size, an unbiased β j−1-specific Godambian estimator is defined
by

σ̃2
j−1,u = r̃T

Ŵ
( j−1)
u r̃ =

K∑
i=1

r̃T
i Ŵ ( j−1)

i,u r̃i, (4.13)

where Ŵ( j−1)
u is a K × K diagonal block matrix with the i-th diagonal matrix

Ŵ ( j−1)
i,u = Ŵ ( j−1)

i /b j−1, for j = 1, · · · , p.

Moreover, the pooled Godambian estimator of σ2 is defined by

σ̃2
pool = r̃T

Ŵpool̃r =
K∑

i=1

r̃T
i Ŵ pool

i r̃i, (4.14)

where Ŵpool is a K × K diagonal block matrix with the i-th diagonal matrix
Ŵ pool

i = Ĥii/p. Let

b = tr
{(

IN − Ĥ
)
Ŵpool

(
IN − Ĥ

)}
.

The unbiased pooled Godambian estimator of σ2 is defined by

σ̃2
pool,u = r̃T

Ŵ
pool
u r̃ =

K∑
i=1

r̃T
i Ŵ pool

i,u r̃i, (4.15)

where Ŵpool
u is a K × K diagonal block matrix with the i-th diagonal matrix

Ŵ pool
i,u = Ŵi/b.
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Moment estimators

In the context of GEE, the moment estimator (2.31) of the dispersion param-
eter σ2 can also be written as a quadratic form in the transformed residuals

σ̂2
m = rT

P

(
1

N − p
IN

)
rP = r̃T

(
1

N − p
L̂T L̂

)
r̃ = r̃T

ŴP r̃, (4.16)

where rP = (rT
P,1
, · · · , rT

P,K
)T is a K × 1 Pearson vector with the i-th element rP,i,

given in (3.23), and r̃ = (̃rT
1 , · · · , r̃

T
K)T is a K×1 transformed residual vector with

the i-th element r̃i, given in (3.25), and ŴP is a K × K diagonal block matrix
with the i-th diagonal matrix L̂T

i L̂i/(N − p), with the matrix L̂i given in (3.22).
Under the null hypothesis H0 (4.2), this estimator is approximately a Pearson
χ2

N−p
statistic. However, under the null hypothesis H0 (4.2), the expectation of

this “Pearson” moment estimator is given by

E
(
σ̂2

m

)
' σ2tr

{
(IN −H∗)WP,∗ (IN −H∗)

}
= σ2 + O(1/K).

Then, with the order of O(1/K), the “Pearson” moment estimator is asymptoti-
cally unbiased, under the null hypothesis H0. For finite sample size, with a bias
correction, the unbiased “Pearson” moment estimator of σ2 is defined by

σ̂2
m,u = r̃T

(
ŴP/mP

)
r̃, (4.17)

where mP = tr
{(

IN − Ĥ
)
ŴP

(
IN − Ĥ

)}
.

However, Liang and Zeger pointed out that any consistent estimate of σ2 is
admissible. Due to the “de-correlation” property of the transformed residuals, a
new moment estimator of the dispersion parameter σ2 in GEE is defined by

σ̂2
tr = r̃T r̃/(N − p) =

1
N − p

K∑
i=1

r̃T
i r̃i. (4.18)

Under the null hypothesis H0 (4.2), this new moment estimator σ̂2
tr is approxi-

mately an unbiased estimator of σ2, and moreover, is approximately distributed
as a χ2

N−p
statistic.
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4.2 Information Ratio Statistics

As shown in Chapter 3, the discrepancy between the sandwich variance esti-
mators and model-based variance estimators reduces to a discrepancy between
the Godambian estimator of the dispersion parameter (in the sandwich variance
estimators) and the true value, if known, or the moment estimator, otherwise (in
the model-based variance estimators). Thus, a large difference between the Go-
dambian estimator and its true value or the moment estimator indicates a certain
model misspecification of the variance/covariance structure. Here, we will pro-
pose a statistic by taking a ratio of the Godambian estimator of σ2 to its true
value, if known, or the moment estimator, otherwise. Due to the ratio construc-
tion, the statistics proposed are called the information ratio (IR) statistics. In
addition, asymptotic distributions of the statistics are discussed.

4.2.1 If the true value of σ2 is known

In some cases, the true value of the dispersion parameter is assumed to be
known. For example, the variance structure of binary data is usually assumed to
be µ(1 − µ), which implies that the dispersion parameter σ2 is known to be 1.
Generally, if the true value of σ2 is known, define the β j−1-specific information
ratio statistic by taking a ratio of the unbiased β j−1-specific Godambian estimator
of σ2 to its true value

IR j−1 =
σ̃2

j−1,u

σ2 , j = 1, · · · , p, (4.19)

where σ̃2
j−1,u is the unbiased β j−1-specific Godambian estimator, (4.6) or (4.13),

of σ2. Analogously, the pooled information ratio statistic is defined by

IRpool =
σ̃2

pool,u

σ2 , (4.20)
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where σ̃2
pool,u is the unbiased pooled Godambian estimator, (4.8) or (4.15), of σ2.

By Lemma 4.1 and 4.2, these information ratio statistics IR j−1 and IRpool can
be approximated by quadratic forms in random variables. [46] discussed some
central limit theorems for quadratic forms. By normalization, pivotal statistics,
standardized information ratio statistics, are proposed as follows.

Theorem 4.1 In the context of GLM, under the null hypothesis H0 (4.1),

(i) the standardized β j−1-specific information ratio statistic

IRs
j−1 =

IR j−1 − 1√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞, (4.21)

where λ̂( j−1)
k are the eigenvalues of the matrix

(
In − Ĥ

)
Ŵ

( j−1)
u

(
In − Ĥ

)
, and

Ŵ
( j−1)
u is given in (4.6), for j = 1, · · · , p;

(ii) the standardized pooled information ratio statistic

IRs
pool =

IRpool − 1√
2
∑n

k=1

[̂
λ

pool
k

]2
d
−→

N(0, 1), as n→ ∞, (4.22)

where λ̂pool
k are the eigenvalues of the matrix

(
In − Ĥ

)
Ŵ

pool
u

(
In − Ĥ

)
, and

Ŵ
pool

is given in (4.8).

In the context of GEE, under the null hypothesis H0 (4.2),

(iii) the standardized β j−1-specific information ratio statistic

IRs
j−1 =

IR j−1 − 1√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞, (4.23)

where λ̂( j−1)
k are the eigenvalues of the matrix

(
IN − Ĥ

)
Ŵ

( j−1)
u

(
IN − Ĥ

)
,

and Ŵ( j−1)
u is given in (4.13), for j = 1, · · · , p;
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(iv) the standardized pooled information ratio statistic

IRs
pool =

IRpool − 1√
2
∑n

k=1

[̂
λ

pool
k

]2
d
−→

N(0, 1), as n→ ∞, (4.24)

where λ̂pool
k are the eigenvalues of the matrix

(
IN − Ĥ

)
Ŵ

pool
u

(
IN − Ĥ

)
,

and Ŵpool
u is given in (4.15).

The proof of Theorem 4.1 is provided in the appendix.

4.2.2 If the true value of σ2 is unknown

If the true value ofσ2 is unknown, the dispersion parameterσ2 is estimated by
a moment estimator. Then, information ratio statistics can be defined by taking
ratios of the Godambian estimators to the moment estimators of σ2.

Theorem 4.2 In the context of GLM, under the null hypothesis H0 (4.1),

(i) the standardized β j−1-specific information ratio statistic

IRs
j−1 =

σ̃2
j−1,u/σ̂

2
m − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞, (4.25)

where σ̃2
j−1,u is the unbiased β j−1-specific Godambian estimator (4.6), σ̂2

m

is the moment estimator (4.9), and τ̂( j−1)
k are the eigenvalues of the matrix(

In − Ĥ
) (

Ŵ
( j−1)
u −

1
n − p

In

) (
In − Ĥ

)
,

for j = 1, · · · , p;
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(ii) the standardized pooled information ratio statistic

IRs
pool =

σ̃2
pool,u/σ̂

2
m − 1√

2
∑n

k=1

[̂
τ

pool
k

]2
d
−→

N(0, 1), as n→ ∞, (4.26)

where σ̃2
pool,u is the unbiased pooled Godambian estimator (4.8), σ̂2

m is the

moment estimator, and τ̂pool
k are the eigenvalues of the matrix(

In − Ĥ
) (

Ŵ
pool
u −

1
n − p

In

) (
In − Ĥ

)
.

Theorem 4.2 is proved in the appendix.

In the context of GEE, the dispersion parameter σ2 can be estimated by either
the “Pearson” moment estimator σ̂2

m,u (4.16) or the “transformed” moment esti-
mator σ̂2

tr (4.18). Correspondingly, the information ratio statistics are defined by
taking ratios of the Godambian estimators to the “Pearson” moment estimator or
“transformed” moment estimator of σ2.

Theorem 4.3 In the context of GEE, under the null hypothesis H0 (4.2),

(i) the standardized β j−1-specific information ratio statistic

IRs
j−1 =

σ̃2
j−1,u/σ̂

2
m,u − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞, (4.27)

where σ̃2
j−1,u is the unbiased β j−1-specific Godambian estimator (4.13), σ̂2

m,u

is the unbiased “Pearson” moment estimator (4.17), and τ̂( j−1)
k are the

eigenvalues of the matrix(
IN − Ĥ

) (
Ŵ

( j−1)
u − ŴP/mP

) (
IN − Ĥ

)
,

and ŴP is given in (4.17), for j = 1, · · · , p;
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(ii) the standardized pooled information ratio statistic

IRs
pool =

σ̃2
pool,u/σ̂

2
m,u − 1√

2
∑n

k=1

[̂
τ

pool
k

]2
d
−→

N(0, 1), as n→ ∞, (4.28)

where σ̃2
pool,u is the unbiased pooled Godambian estimator (4.15), σ̂2

m,u is

the unbiased “Pearson” moment estimator, and τ̂pool
k are the eigenvalues of

the matrix (
IN − Ĥ

) (
Ŵ

pool
u − ŴP/mP

) (
IN − Ĥ

)
.

Theorem 4.4 In the context of GEE, under the null hypothesis H0 (4.2),

(i) the standardized β j−1-specific information ratio statistic

IRs
j−1 =

σ̃2
j−1,u/σ̂

2
tr − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞, (4.29)

where σ̂2
tr is the “transformed” moment estimator (4.18), and τ̂( j−1)

k are the
eigenvalues of the matrix(

IN − Ĥ
) (
Ŵ

( j−1)
u −

1
N − p

IN

) (
IN − Ĥ

)
,

for j = 1, · · · , p;

(ii) the standardized pooled information ratio statistic

IRs
pool =

σ̃2
pool,u/σ̂

2
tr − 1√

2
∑n

k=1

[̂
τ

pool
k

]2
d
−→

N(0, 1), as n→ ∞, (4.30)

where σ̂2
tr is the “transformed” moment estimator, and τ̂pool

k are the eigen-
values of the matrix(

IN − Ĥ
) (
Ŵ

pool
u −

1
N − p

IN

) (
IN − Ĥ

)
.

The proof of Theorem 4.3 and 4.4 is similar to the proof of Theorem 4.2.
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4.3 Application of Information Ratio Statistics

4.3.1 Test for heteroscedasticity in linear regression models

As discussed in the beginning of this chapter, in LM, it is common to assume
that all the error terms have equal variance. Consider testing the null hypothesis
of homoscedasticity,

H0 : Var(Y1) = · · · = Var(Yn) = σ2. (4.31)

In Simulation 4.1, we investigate the asymptotic distributions of the proposed
information ratio statistics under the null hypothesis H0 (4.31). In addition, in
Simulations 4.2 - 4.7, we compare the power of the proposed IR statistics with
that of the White’s IM test, under different scenarios of heteroscedasticity.

A data sample {(yi; xi1, xi2), i = 1, · · · , n} is generated from the following cen-
tered linear regression model:

yi = β0 + β1(xi1 − x̄1) + β2(xi2 − x̄2) + ei i = 1, · · · , n,

where xi1 and xi2 are both generated from the Gaussian distributions N(0, 1).
Here, x̄1 = n−1 ∑

i xi1 and x̄2 = n−1 ∑
i xi2. The true values of the regression

coefficients are β0 = 1, β1 = 2 and β2 = 2. The sample size n is set to be 20,
100, 200 and 400. For each sample size, we generate 5000 replicates. To stress
that the covariates are here fixed, for a given sample size n, the same covariates
values were used for each replicate.

Note that because the covariate variables are centered, the unbiased β0-specific
Godambian estimator of the variance parameter σ2 is identical to the moment
estimator, i.e., σ̃2

0,u = σ̂
2
m. As a result, if we assume that the true value of σ2 is

unknown, the β0-specific IR statistic IR0 = 1, so it is not included in the compar-
ison.
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Simulation 4.1 To evaluate the null distributions, the error terms ei’s are gener-
ated from a Gaussian distribution with mean 0 and constant variance 0.25. First,
we consider the case that the true value of the variance parameter σ2 = 0.25 is
known. Figures 4.1, 4.2, 4.3 and 4.4 display the kernel density estimates of the
standardized IR statistics IRs

pool, IRs
0, IRs

1 and IRs
2, over different sample sizes.

In addition, we also assume that the true value of σ2 is unknown. Figures 4.5,
4.6 and 4.7 display the kernel density estimates of the standardized IR statistics,
IRs

pool, IRs
1 and IRs

2. Table 4.1 reports their empirical type I errors, the propor-
tions of rejecting the null hypothesis (4.31), among the 5000 replicates, at the
significance level 5%, when the true value of σ2 is either known or unknown.

Conclusion.

As shown in these figures, under the null hypothesis H0 (4.31), the IR statis-
tics are heavily right skewed with small sample sizes, but their performance im-
proves in terms of approaching limiting N(0, 1) distribution as the sample size
increases. Compared to the coefficient-specific statistics, the distributions of the
standardized pooled IR statistics are closer to the limiting N(0, 1).

Similar results are found in Table 4.1. The empirical type I errors of all the IR
statistics approach the nominal level as the sample size gets larger. In addition,
the type I errors of the standardized pooled IR statistics are closer to the nominal
level than those of the coefficient-specific statistics. Compared to these proposed
IR statistics, the empirical type I error of the White’s IM test differs from the
nominal level substantially. Due to the poor performance of the IR statistics with
small sample size, a proper approximation or bootstrap method is required to
obtain the correct upper 5% quartiles.

Finite-sample Approximation

For small sample size, the distributions of the IR statistics are heavily right
skewed. In addition, as shown in Table 4.1, with small sample size, say n = 20,
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Figure 4.1: The kernel density estimates of the standardized pooled IR statistic (4.22) over dif-
ferent sample sizes, under the assumption that the true value of the variance parameter σ2 = 0.25
is known. The solid line is the density function of the limiting normal distribution N(0, 1) under
the null hypothesis. The dashed line represents the kernel density estimates of the standardized
pooled IR statistic IRs

pool.
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Figure 4.2: The kernel density estimates of the standardized β0-specific IR statistic (4.21)
over different sample sizes, under the assumption that the true value of the variance parame-
ter σ2 = 0.25 is known. The solid line is the density function of the limiting normal distribution
N(0, 1) under the null hypothesis. The dashed line represents the kernel density estimates of the
standardized β0-specific IR statistic IRs
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Figure 4.3: The kernel density estimates of the standardized β1-specific IR statistic (4.21)
over different sample sizes, under the assumption that the true value of the variance parame-
ter σ2 = 0.25 is known. The solid line is the density function of the limiting normal distribution
N(0, 1) under the null hypothesis. The dashed line represents the kernel density estimates of the
standardized β1-specific IR statistic IRs
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Figure 4.4: The kernel density estimates of the standardized β2-specific IR statistic (4.21)
over different sample sizes, under the assumption that the true value of the variance parame-
ter σ2 = 0.25 is known. The solid line is the density function of the limiting normal distribution
N(0, 1) under the null hypothesis. The dashed line represents the kernel density estimates of the
standardized β2-specific IR statistic IRs
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Figure 4.5: The kernel density estimates of the standardized pooled IR statistic (4.26) over dif-
ferent sample sizes, under the assumption that the true value of the variance parameter σ2 is
unknown. The solid line is the density function of the limiting normal distribution N(0, 1) under
the null hypothesis. The dashed line represents the kernel density estimates of the standardized
pooled IR statistic IRs
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Figure 4.6: The kernel density estimates of the standardized β1-specific IR statistic (4.25) over
different sample sizes, under the assumption that the true value of the variance parameter σ2 is
unknown. The solid line is the density function of the limiting normal distribution N(0, 1) under
the null hypothesis. The dashed line represents the kernel density estimates of the standardized
β1-specific IR statistic IRs
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Figure 4.7: The kernel density estimates of the standardized β2-specific IR statistic (4.25) over
different sample sizes, under the assumption that the true value of the variance parameter σ2 is
unknown. The solid line is the density function of the limiting normal distribution N(0, 1) under
the null hypothesis. The dashed line represents the kernel density estimates of the standardized
β2-specific IR statistic IRs
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Table 4.1: The empirical type I errors of the standardized IR statistics, IRs
pool, IRs

0, IRs
1, and IRs

2,
as well as the White’s IM test statistic Tw over different sample sizes at the significance level 5%,
under the assumption that the true value of the variance parameter is either known or unknown

sample size IRs
pool IRs

0 IRs
1 IRs

2 Tw

σ2 = 0.25 is known
20 0.0500 0.0434 0.0534 0.0514 0.0032

100 0.0456 0.0540 0.0434 0.0436 0.0308
200 0.0462 0.0532 0.0498 0.0468 0.0718
400 0.0478 0.0478 0.0464 0.0460 0.0736

σ2 is unknown
20 0.0358 - 0.0464 0.0362 0.0032

100 0.0466 - 0.0492 0.0432 0.0308
200 0.0532 - 0.0496 0.0458 0.0718
400 0.0508 - 0.0518 0.0510 0.0736

the type I errors of the proposed IR statistics are considerably smaller than the
nominal level 0.05. Thus, the limiting distribution N(0, 1) is not appropriate in
order to obtain the critical value for the purpose of testing.

As shown in the proof of Theorem 4.1 and Theorem 4.2, the IR statistics
can be approximated by quadratic forms in the vector εP, which has mean 0 and
covariance matrix σ2In under the null hypothesis H0 (4.31). For example, if the
true value of the dispersion parameter σ2 is known, the pooled IR statistic can
be approximated by

IRpool = ε
T
P
(In − Ĥ)Ŵ

pool
u (In − Ĥ)εP.

In the case of Gaussian responses or non-Gaussian responses for small disper-
sion, since the Pearson residuals have asymptotically normal distribution, the
quadratic forms are approximately distributed as weighted sums of χ2

1 distribu-
tions. For example, the pooled IR statistic

IRpool =

n∑
k=1

λ̂
pool
k χ2

1,
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where λ̂pool
k , k = 1, 2, · · · , n, are the eigenvalues of the matrix

(In − Ĥ)Ŵ
pool
u (In − Ĥ).

In this case, a certain proper approximation is required. In the literature, some
approximation methods have been developed. [72] suggested to approximate the
distribution of a quadratic form by that of aχ2

ν, with a and ν chosen to equate the
first two moments of the two distributions. Also see [26]. This approximation
seems to perform well but no theoretical justification has been derived. Another
approximation proposed by [76] is to use a(χ2

ν)
b, with the parameters being

chosen to equate the first three moments. However, this approximation is difficult
to use in practice as the equations defining a, b and ν require an iterative solution.
Later, [10] proposed to use a normalized χ2

ν to approximated the normalized
quadratic forms. The value of ν is chosen by equating the first three moments
of the quadratic form with those of aχ2

ν + b. Here, we used the method of this
normalized χ2 approximation to obtain the upper 5% quartile. Suppose that we
approximate

∑n
k=1 λkχ

2
1 by a normalized χ2

ν, i.e., (χ2
ν − ν)/

√
2ν. The value of ν is

chosen to be

ν =

(∑n
k=1 λ

2
k

)3(∑n
k=1 λ

3
k

)2 .

Therefore, (χ2
ν(0.95)− ν)/

√
2ν can be obtained as the approximate 95% quartile,

where χ2
ν(0.95) is the 95% quartile of the distribution χ2

ν.

Figure 4.8 shows the Q-Q plots of the standardized IR statistics versus the
limiting N(0, 1) distribution, and the normalized χ2

ν distribution, respectively, for
small sample size n = 20, under the assumption that the true value σ2 = 0.25
is known. Figure 4.9 shows the Q-Q plots under the assumption that the true
value of σ2 is unknown. Table 4.2 reports the empirical type I errors of the stan-
dardized IR statistics IRs

pool, IRs
0, IRs

1, and IRs
2 using the critical values at the

significance level 5% obtained from the normalized χ2
ν approximation for small

sample size n = 20. Both of the Q-Q plots and numerical results show that with

89



small sample size, the normalized χ2
ν distribution gives a better approximation to

the distribution of the standardized IR statistics than the limiting N(0, 1) distri-
bution, especially in the cases where the true value of the dispersion parameter
σ2 is unknown. In addition, the empirical type I errors are closer to the nom-
inal level 5% when the normalized χ2

ν approximation is used, compared to the
limiting N(0, 1) distribution.
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Figure 4.8: Q-Q plots of the standardized IR statistics, IRs
0, IRs

1, IRs
2 and IRs

pool, from top to bot-
tom, for small sample size n = 20 under the assumption that the true value ofσ2 = 0.25 is known.
The left panels plot the quartiles of the standard N(0, 1) distribution versus the quartiles of the
standardized IR statistics. The right panels plot the quartiles of the normalized χ2

ν distribution
versus the quartiles of the standardized IR statistics.
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Figure 4.9: Q-Q plots of the standardized IR statistics, IRs
1, IRs

2 and IRs
pool, from top to bottom,

for small sample size n = 20 under the assumption that the true value of σ2 is unknown. The left
panels plot the quartiles of the standard N(0, 1) distribution versus the quartiles of the standard-
ized IR statistics. The right panels plot the quartiles of the normalized χ2

ν distribution versus the
quartiles of the standardized IR statistics.
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Table 4.2: The empirical type I errors of the standardized IR statistics, IRs
pool, IRs

0, IRs
1, and IRs

2

using the normalized χ2
ν approximation for small sample size n = 20 at the significance level 5%.

IRs
pool IRs

0 IRs
1 IRs

2

σ2 = 0.25 is known
N(0, 1) 0.0500 0.0434 0.0534 0.0514

(χ2
ν − ν)/

√
2ν 0.0540 0.0514 0.0524 0.0528

σ2 is unknown
N(0, 1) 0.0358 - 0.0464 0.0362

(χ2
ν − ν)/

√
2ν 0.0450 - 0.0476 0.0428

In LM, the true value of the variance parameter σ2 is usually unknown in
practice. Then, in the following simulation studies, we focus on only the power
of the proposed IR statistics, which take ratios of the Godambian estimators to
the moment estimators, under the assumption that the true value is unknown. In
the following simulation studies, we will carry out power comparison among the
proposed IR statistics and the White’s IM test for small sample size 20 and large
sample size 200. Because the White’s IM test cannot attain the nominal level
5%, the critical values used for comparing power, 7.878 for sample size 20 and
11.758 for sample size 200, are obtained from the empirical 95% quartiles of the
5000 replicates under the null distribution in Simulation 4.1.

In many applications, when the observations drawn from the population are
far from the center, the sampling error variability tends to be larger. Thus, the
error variance could be a function of the leverage hii, the diagonal elements of
the hat matrix H = X

(
XT X

)−1
XT .

Simulation 4.2 In this experiment, the error terms ei’s are generated from a
Gaussian distribution with mean 0 and variance

Var(Yi) = 0.2hii,

for i = 1, · · · , n. Here, we compare the power of the proposed IR statistics with
the White’s IM test to reject the null hypothesis H0 (4.31) under the alternative
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hypothesis,
HA : Var(Yi) = σ2hii, i = 1, · · · , n,

with small sample size n = 20 and large sample size n = 200.

Table 4.3 reports the empirical power, which is in fact the proportion of re-
jecting the null hypothesis (4.31) among the 5000 replicates, of the standardized
IR statistics, IRs

pool, IRs
1, and IRs

2, as well as the White’s IM test statistic Tw, at
the significance level 5%. For small sample size n = 20, the results obtained
from the normalized χ2

ν approximation are also included in this table.

Conclusion.

The power of all the test statistics improves as the sample size increases. For
small sample size n = 20, the normalized χ2

ν approximation improves the power
of the IR tests. Compared with the IR tests, the White’s IM test is much less
powerful to reject the null hypothesis. Moreover, the standardized pooled IR
statistic outperforms the coefficient-specific statistics.

Table 4.3: The empirical power of the standardized IR statistics, IRs
pool, IRs

1, and IRs
2, as well as

the White’s IM test statistic Tw, over different sample sizes 20 and 200, at the significance level
5% to reject the null hypothesis H0 (4.31) under the heteroscedasticity HA : Var(Yi) = σ2hii.

n = 20 n = 200
N(0, 1) (χ2

ν − ν)/
√

2ν
IRs

pool 0.2500 0.2728 0.9964
IRs

1 0.2224 0.2300 0.8894
IRs

2 0.1082 0.1680 0.8804
Tw 0.0992 0.4838

Simulation 4.3 In some applications, the heteroscedasticity in the model is as-
sociated with a certain covariate. For example, when the covariate xi1 is sampled
far from the corresponding population center, the error variance gets large. In
this case, the error variance is a function of the covariate xi1. In this experiment,
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the error terms ei’s are generated from a Gaussian distribution with mean 0 and
variance

Var(Yi) = 0.2h(1)
ii , h

(1)
ii = (xi1 − x̄1)2/

∑
k

(xk1 − x̄1)2,

for i = 1, · · · , n. Then, the alternative hypothesis in this simulation is given by

HA : Var(Yi) = σ2
h

(1)
ii , i = 1, · · · , n.

Table 4.4 reports the empirical power of the standardized IR statistics, IRs
pool,

IRs
1, and IRs

2, as well as the White’s IM test statistic Tw, at the significance level
5% with the sample size 20 and 200. In addition, this table lists the results by
using the normalized χ2

ν approximation for small sample size n = 20.

Conclusion.

Similarly to the results in Simulation 4.2, the power of all the test statistics im-
proves as the sample size increases. The normalized χ2

ν approximation improves
the power of the IR statistics for small sample size. In addition, the White’s IM
test is generally less powerful to reject the null hypothesis H0 (4.31) than the
proposed IR statistics. Among all the IR statistics, the standardized pooled IR
statistic and the β1-specific IR statistic have the top two highest empirical power.
However, at the significance level 5%, there is no evidence to reject the null
hypothesis when using the standardized β2-specific IR statistic.

Simulation 4.4 The error terms ei’s are generated from a Gaussian distribution
with mean 0 and variance

Var(Yi) = 0.2h(2)
ii , h

(2)
ii = (xi2 − x̄2)2/

∑
k

(xk2 − x̄2)2,

for i = 1, · · · , n. Then, the alternative hypothesis in this simulation is given by

HA : Var(Yi) = σ2
h

(2)
ii , i = 1, · · · , n.
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Table 4.4: The empirical power of the standardized IR statistics, IRs
pool, IRs

1 and IRs
2, as well as

the White’s IM test statistic Tw, over different sample sizes at the significance level 5% to reject
the null hypothesis H0 (4.31) under the heteroscedasticity HA : Var(Yi) = σ2

h
(1)
ii .

n = 20 n = 200
N(0, 1) (χ2

ν − ν)/
√

2ν
IRs

pool 0.1840 0.2396 1.0000
IRs

1 0.6016 0.6922 1.0000
IRs

2 0.0126 0.0108 0.2528
Tw 0.1626 0.7650

Table 4.5 reports the empirical power of the standardized IR statistics, IRs
pool,

IRs
1, and IRs

2, as well as the White’s IM test statistic Tw, at the significance level
5% with the sample size 20 and 200. In addition, this table lists the results by
using the normalized χ2

ν approximation for small sample size n = 20.

Conclusion.

The results are similar to those of Simulation 4.2. Among all the proposed
IR statistics, the pooled IR statistic and the β2-specific IR statistic are the most
powerful to reject the null hypothesis H0 (4.31). However, under the significance
level 5%, there is no strong evidence to reject the null hypothesis when using the
standardized β1-specific IR statistic.

In some applications, the error variance is associated with the mean values.
For example, the sampling error variability gets larger when the mean values
increase. In this case, the error variance is a function of the mean values. In
the following three simulation experiments, the error variances are modelled as
exponential functions of the covariates. In addition, we will also investigate the
effect of the covariate variability on the performance of the IR statistics. Thus,
in the following simulation studies, the covariate xi1 is generated from N(0, 1),
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Table 4.5: The empirical power of the standardized IR statistics, IRs
pool, IRs

1 and IRs
2, as well as

the White’s IM test statistic Tw, over different sample sizes at the significance level 5% to reject
the null hypothesis H0 (4.31) under the heteroscedasticity HA : Var(Yi) = σ2

h
(2)
ii .

n = 20 n = 200
N(0, 1) (χ2

ν − ν)/
√

2ν
IRs

pool 0.3834 0.4236 1.0000
IRs

1 0.1204 0.1266 0.2522
IRs

2 0.5954 0.6370 1.0000
Tw 0.1620 0.6638

and the covariate xi2 is generated from N(0, 0.1). Since xi1 and xi2 are generated
independently, their centered versions are approximately orthogonal.

Simulation 4.5 In this experiment, the error terms ei’s are generated from a
Gaussian distribution with mean 0 and variance

Var(Yi) = 0.5 exp{β1(xi1 − x̄1) + β2(xi2 − x̄2)},

for i = 1, · · · , n. Then, the alternative hypothesis here is given by

HA : Var(Yi) = σ2 exp{β1(xi1 − x̄1) + β2(xi2 − x̄2)}, i = 1, · · · , n.

Simulation 4.6 In this experiment, only the covariate xi1 accounts for the het-
eroscedasticity in an exponential form. Therefore, the error terms ei’s are gener-
ated from a Gaussian distribution with mean 0 and variance

Var(Yi) = 0.5 exp{β1(xi1 − x̄1)},

for i = 1, · · · , n. The alternative hypothesis is given by

HA : Var(Yi) = σ2 exp{β1(xi1 − x̄1)}, i = 1, · · · , n.
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Simulation 4.7 The error terms ei’s are generated from a Gaussian distribution
with mean 0 and variance

Var(Yi) = 0.5 exp{β2(xi2 − x̄2)},

for i = 1, · · · , n. The alternative hypothesis is given by

HA : Var(Yi) = σ2 exp{β2(xi2 − x̄2)}, i = 1, · · · , n.

Table 4.6 reports the power of the standardized IR statistics, IRs
pool, IRs

1 and
IRs

2, at the significance level 5% among 5000 replications under the three differ-
ent alternative models in Simulation 4.5, 4.6 and 4.7. For the small sample size
n = 20, the results are obtained from the normalized χ2

ν approximation for small
sample size n = 20.

Conclusion.

The numerical results in Table 4.6 appear similar to the results in Simula-
tions 4.2, 4.3 and 4.4. Since the variability in the covariate xi2 is considerably
smaller than that in the covariate xi1, the heteroscedasticity results from mainly
the covariate xi1 even though the error variances are functions of both of the co-
variates xi1 and xi2. Thus, it shows that the IRs

2 statistic is less powerful than
the IRs

1 statistic as well as the IRs
pool statistic. Especially, in Simulation 4.7, the

error variances are less heteroscedastic due to its form as an exponential of the
value of xi2, so all the IR statistics have a lower frequency of rejecting the null
hypothesis.

Summary

(1) Under the null hypothesis (4.31), the standardized IR statistics are heavily
right skewed for small sample size, but their performance improves as the
sample size increases. In addition, among all the proposed IR statistics, the
pooled IR statistic outperforms the coefficient-specific statistics.
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Table 4.6: The empirical power of the standardized IR statistics, IRs
pool, IRs

1, and IRs
2, as well as

the White’s IM test statistic Tw, over different sample sizes at the significance level 5% to reject
the null hypothesis H0 (4.31) under the alternative hypotheses HA : Var(Yi) = σ2 exp{β1(xi1 −

x̄1) + β2(xi2 − x̄2)}, HA : Var(Yi) = σ2 exp{β1(xi1 − x̄1)} and HA : Var(Yi) = σ2 exp{β1(xi2 − x̄2)}.

HA exp{β1(xi1 − x̄1) + β2(xi2 − x̄2)} exp{β1(xi1 − x̄1)} exp{β2(xi2 − x̄2)}
n = 20 n = 200 n = 20 n = 200 n = 20 n = 200

IRs
pool 0.3884 0.9988 0.4776 0.9998 0.0392 0.0692

IRs
1 0.4170 1.0000 0.4842 1.0000 0.0446 0.0468

IRs
2 0.2564 0.3948 0.2064 0.3902 0.0446 0.1084

(2) Compared with the IR statistics, the White’s IM test has poorer performance
under the null hypothesis. Its type I error differs from the nominal level
substantially.

(3) Compared with the White’s IM test, all the IR tests are more powerful
to reject the null hypothesis under certain alternative hypotheses of het-
eroscedasticity. In addition, if the heteroscedasticity arises from a certain
covariate, say the j-th covariate xi, j−1, orthogonal to the rest, the corre-
sponding β j−1-specific IR statistic is more powerful than the other regres-
sion coefficients. The result illustrates the discussion about the properties
of the weights incorporated in the Godambian estimator in linear regression
models in Section 3.1.1. Since the weights w( j−1)

i characterize the influence
from the j-th covariate, the β j−1-specific IR statistic, IR j−1, is expected to
be far from 1, compared to the other regression coefficients. Therefore, the
statistic IR j−1 is more powerful to reject the null hypothesis. In addition,
since the weights in the standardized pooled IR statistic IRpool reflect the
overall influence from all the covariates, the statistic IRpool is also powerful
to reject the null hypothesis.

In the literature of LM, residuals play an important role in graphical di-
agnostics, such as plotting residuals versus a certain covariate. However,
few statistical methods are available to carry out a formal statistical test for
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dependence of the error variance on a certain variable. The Godambian
estimator of the variance parameter σ2 is able to identify the responsible
covariate variable for the heteroscedasticity in LM, due to the unique form
of a weighted sum of squared residuals, as well as the properties of these
weights. But the IR test is not able to provide any information about the
explicit form of the error variance associated with the responsible covari-
ates. In addition, the test will be less sensitive to capture the dependence
if the heteroscedasticity is caused by complex interactions among multiple
covariates. Thus, the IR test is recommended as part of the exploratory
analysis in LM.

(4) In the literature of LM, some tests for heteroscedasticity are based on spe-
cific alternative hypotheses; see [5]; [7] and [14]. However, these tests
may not be powerful under other types of heteroscedasticity. The simula-
tion studies have shown that the strong power of the proposed IR statistics
are consistent among various scenarios of heteroscedasticity.

(5) A two stage-wise procedure of testing heteroscedasticity can be suggested.
First, if the p value obtained from the standardized pooled IR statistic is
less than 0.05, the null hypothesis of homoscedasticity (4.31) is rejected
at the significance level 5%. Secondly, each regression coefficient specific
test will be carried out. If a certain β j−1-specific IR statistic gives a p value
smaller than 0.05, we may conclude that the error variance is a function of
the j-th covariate.

(6) The proposed IR statistics have poor performance for small sample size us-
ing the limiting N(0, 1) distribution. The simulation studies have shown that
normalized χ2

ν approximation improves the performance for small sample
size.
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4.3.2 Test for overdispersion in count data

Poisson regression models are widely used in analyzing count data. In these
models, given independent responses Yi and associated p×1 covariate vectors xi,
the distribution of Yi, given xi is assumed to be Poisson with mean µi = µi(xi;β),
where β is a p-dimensional vector of regression coefficients. Here, the mean
structure of the responses is given by

µi = E(Yi) = h(xT
i β), i = 1, · · · , n,

where h(.) is the link function associating the mean of the responses with the
covariates. The log-linear regression model, where µi = exp(xT

i β), is most com-
monly considered. The variance structure of the responses is given by

Var(Yi) = µi, i = 1, · · · , n,

which indicates that the unit variance function V(µi) = µi, for i = 1, · · · , n, and
the dispersion parameter is 1.

In this section, we apply the proposed IR statistics to test for overdispersion
in Poisson regression models. Then, the null hypothesis is defined as

H0 : V(µi) = µi, i = 1, · · · , n. (4.32)

Because the dispersion parameter σ2 in Poisson regression models is assumed to
be known as 1, we focus on the IR statistics which take ratios of the Godambian
estimators to the true value, for example, (4.21) and (4.22).

Simulation 4.8 In this simulation study, we investigate the asymptotic distribu-
tions of the proposed IR statistics under the null hypothesis H0 (4.32). A data set
{(yi; xi), i = 1, · · · , n} is generated from a Poisson distribution as follows:

Yi | xi ∼ Poisson(µi)
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where µi = exp(β0 + β1xi), for i = 1, · · · , n. The covariate xi’s are independently
generated from a uniform distribution UNIF(0, 1). We consider two models
where the range of µi’s is moderate or large.

Model 1: The true values of the regression coefficients β0 = 1, and β1 = 1. The
range of µi is 2.72 to 7.39.

Model 2: The true values of the regression coefficients β0 = 1 and β1 = 4. The
range of µi is 2.72 to 148.41.

The sample size is set to be 10, 50, 100 and 200. For each sample size,
5000 replicates are generated. In addition, the same values of the covariates are
used for each replicate to stress that the covariates are fixed. Table 4.7 reports
the empirical type I errors, the proportions of rejecting the null hypothesis H0

(4.32), of the standardized IR statistics (4.21) and (4.22), IRs
pool, IRs

0 and IRs
1,

over different sample sizes at the significance level 10%, 5% and 1% for Model
1 (moderate range of µi’s) and Model 2 (large range of µi’s). The numerical
results show that for larger sample size, the type I errors of the standardized IR
statistics are closer to the nominal levels. Thus, as the sample size increases, the
normal asymptotic distribution is more accurate.

To incorporate possible extra-Poisson variation, we consider alternative mixed
Poisson models. Let ζ1, · · · , ζn be continuous positive-valued independent ran-
dom variables from a certain distribution with finite first and second moments.
For each i = 1, · · · , n, given xi and ζi, Yi is Poisson distributed with mean ζiµi,
where µi = exp(xT

i β). Without loss of generality, we assume that E(ζi) = 1 and
Var(ζi) = $ > 0. If the ζi’s follow a gamma distribution, then Yi has a negative
binomial distribution with the mean

E(Yi) = µi = exp(xT
i β),

and the variance
Var(Yi) = µi +$µ

2
i .
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Table 4.7: The empirical type I errors of the standardized IR statistics, IRs
pool, IRs

0, and IRs
1, from

the limiting N(0, 1) distribution, over different sample sizes at the significance level 10%, 5%
and 1%, under the null hypothesis H0 (4.32) for Model 1 (moderate range of µi’s) and Model 2
(large range of µi’s).

Model 1 Model 2
n .10 .05 .01 .10 .05 .01

IRs
pool

10 0.0650 0.0458 0.0232 0.0628 0.0430 0.0188
50 0.0920 0.0466 0.0132 0.0846 0.0472 0.0186

100 0.0938 0.0504 0.0108 0.0914 0.0472 0.0142
200 0.0966 0.0496 0.0110 0.0956 0.0470 0.0118

IRs
0

10 0.0590 0.0438 0.0222 0.0644 0.0414 0.0180
50 0.0796 0.0450 0.0176 0.0858 0.0440 0.0112

100 0.0998 0.0482 0.0150 0.0984 0.0500 0.0114
200 0.0964 0.0504 0.0118 0.0994 0.0506 0.0120

IRs
1

10 0.0700 0.0506 0.0298 0.0628 0.0440 0.0196
50 0.0890 0.0458 0.0150 0.0798 0.0430 0.0148

100 0.0970 0.0518 0.0138 0.0924 0.0492 0.0124
200 0.0994 0.0524 0.0134 0.0980 0.0500 0.0114
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We will use the simulation studies included in the paper [20] to carry out power
comparisons for the proposed IR statistics; Ta proposed by [20], given by

Ta =

∑n
i=1{(Yi − µ̂i)2 − Yi + ĥiîµi}

(2
∑n

i=1 µ̂
2
i )1/2

,

where ĥii is the diagonal element of the hat matrix Ĥ given in (3.7); Pearson χ2

statistic P, given by

P =
n∑

i=1

(Yi − µ̂i)2

µ̂i
;

and the deviance statistic D, given by

D = 2
n∑

i=1

[yi log(yi/̂µi) − (yi − µ̂i)].

Simulation 4.9 A data set {(yi, xi), i = 1, · · · , n} with sample size n = 15 is gen-
erated from the mixed Poisson model described above. One-third of the xi’s are
equal to each of 0, 0.5 and 1. For each i, given µi and $, generate ζi from a
gamma distribution with the shape parameter 1/$, and the scale parameter $.
Then, generate the response Yi from a Poisson distribution with mean ζiµi. We
will investigate two alternative models with different ranges of µi.

Model 3: µi = exp(2.6 + 2xi) for i = 1, · · · , n. The µi’s range in value from
roughly 13.5 to 99.

Model 4: µi = exp(2.6 + 3xi) for i = 1, · · · , n. The µi’s range from 13.5 to 270.

Table 4.8 reports the empirical power, the proportions of rejecting the null
hypothesis H0, of the standardized IR statistics, IRs

pool, IRs
0, and IRs

1; the score
test Ta proposed by [20]; the Pearson χ2 statistic P; and the deviance statistic D
over different values of $, among 5000 replicates, for Model 3 and Model 4 at
the significance level 5%. For the standardized IR statistics, the results obtained
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from the limiting N(0, 1) distribution as well as the normalized χ2
ν approximation

are listed in the table. For the statistic Ta proposed by [20], the critical value
used at$ = 0 is obtained from the standard normal upper 5% point of 1.645, and
for the Pearson χ2 statistic P and the deviance statistic D, the critical value used
at $ = 0 is the χ2

13 upper 5% point of 22.4. These critical values lead to larger
type I errors, shown with the ∗ in Table 4.8. As a result, at other values of $,
the critical values used are obtained from the empirical 95% quartiles from 5000
replicates under the null hypothesis ($ = 0). For Model 3, the critical values are
1.723 for Ta, 22.494 for P, and 22.732 for D, and for Model 4, the critical values
are 1.779 for Ta, 22.213 for P, and 22.427 for D.

Conclusion.

The type I errors of the standardized IR statistics under the null hypothesis
($ = 0) in both of the models are much smaller than the nominal level 0.05
for small sample size. However, the normalized χ2

ν distribution gives a better
approximation. Among all the IR statistics, the standardized pooled IR statis-
tic is substantially more powerful to reject the null hypothesis under the mixed
Poisson model. Moreover, the performance of the pooled IR statistic using the
normalized χ2

ν approximation is comparable to that of the score statistic Ta pro-
posed by [20], and even better in some cases. In addition, the pooled IR statistic
is generally more powerful than the Pearson χ2 statistic P and the deviance statis-
tic D. The improvement of the pooled IR statistic over other statistics is greater
with larger values of $, which indicate greater levels of overdispersion. More-
over, the difference in power between IRs

pool and Ta (or P, D) is larger when the
covariates effect is larger and the µi’s vary more widely. Note that one of the
appealing feature of the IR statistics is that only the Poisson model needs to be
fit, and there is no requirement of modeling alternative hypotheses.
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Table 4.8: The empirical power of the standardized IR statistics, IRs
pool, IRs

0, and IRs
1, score test

Ta proposed by [20], Pearson χ2 statistic P, and deviance statistic D, among 5000 replicates, for
Model 3 and Model 4 at the significance level 5% to reject the null hypothesis H0 (4.32) under
the mixed Poisson model.

IRs
pool IRs

0 IRs
1 Ta P D

$ N(0, 1) χ2
ν−ν√
2ν

N(0, 1) χ2
ν−ν√
2ν

N(0, 1) χ2
ν−ν√
2ν

Model 3: moderate range
0 0.044 0.050 0.046 0.050 0.042 0.048 0.054∗ 0.052∗ 0.057∗

0.005 0.164 0.177 0.071 0.078 0.109 0.120 0.188 0.154 0.152
0.015 0.456 0.476 0.166 0.177 0.329 0.347 0.481 0.443 0.441
0.025 0.655 0.677 0.280 0.295 0.533 0.556 0.672 0.657 0.651
0.04 0.833 0.843 0.464 0.479 0.752 0.766 0.836 0.837 0.837

Model 4: large range
0 0.043 0.051 0.041 0.048 0.038 0.044 0.058∗ 0.048∗ 0.052∗

0.002 0.164 0.178 0.080 0.087 0.096 0.106 0.180 0.156 0.156
0.005 0.372 0.392 0.112 0.123 0.194 0.214 0.395 0.335 0.333
0.01 0.640 0.654 0.206 0.220 0.403 0.426 0.646 0.595 0.593
0.02 0.870 0.878 0.423 0.440 0.733 0.751 0.858 0.857 0.855
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4.3.3 Test for misspecified variance function and/or working correlation
matrix in GEE

In the context of GEE, misspecification of the covariance structure may re-
sult from misspecification of the variance function and/or misspecification of
the working correlation structure. [85] carried out intensive studies of the im-
pacts of misspecifying the variance function on the mean parameter estimators
for quantitative responses. Their numerical results have shown that (1) correct
specification of the variance function can improve the estimation efficiency even
if the correlation structure is misspecified; (2) misspecification of the variance
function impacts much more on estimators for within-cluster covariates than for
cluster-level covariates; and (3) if the variance function is misspecified, correct
choice of the correlation structure may not necessarily improve estimation ef-
ficiency. Moreover, [84] have shown that the choice of working correlation
structure has a substantial impact on estimation efficiency of regression coeffi-
cients. In this section, we apply the IR statistics to test for misspecification of
variance function and/or working correlation structure in GEE. Since [85] have
shown that misspecified covariance structures have stronger impact for within-
cluster covariates, in the following simulation, the covariates are generated from
a time-dependent distribution. (See [85]).

Suppose that a longitudinal data set{
(yi j, xi j), j = 1, · · · , ni, i = 1, · · · ,K

}
is generated as follows: for each subject i,

• generate a time-dependent covariate xi j from a uniform distribution UNIF( j−
1, j), and let µi j = exp(β0 + β1xi j), for j = 1, · · · , ni;

• given µT
i = (µi1, · · · , µi,ni) and an ni × ni correlation matrix R(i)

∗ (ρ) =
(
r(i)

j,k

)
with a certain value of correlation parameter ρ, generate a random vector
yi from a multivariate Gaussian distribution with mean µi and covariance
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matrix σ2Σ∗i with the ( j, k)-th element σ2√µi j
√
µikr

(i)
jk , where σ2 is the dis-

persion parameter.

The underlying mean and covariance structures of the responses are

µi j = E(Yi j) = exp(β0 + β1xi j), j = 1, · · · , ni, i = 1, · · · ,K,

and
Cov(Yi) = σ2Σ∗i = σ

2G∗(µi)
1/2R∗i (ρ0)G∗(µi)

1/2, i = 1, · · · ,K,

where G∗(µi) is an ni × ni diagonal matrix with the j-th diagonal element µi j, for
j = 1, · · · , ni. Here, R∗(ρ0) is the true correlation matrix with a certain value ρ0

of the correlation parameter, and V∗(µi j) = µi j is the true unit variance function.

Fit the data by a p-element estimating equation

K∑
i=1

(
∂µi(β)
∂β

)T {
G1/2(µi)Ri(ρ)G1/2(µi)

}−1 {
yi − µi(β)

}
= 0, (4.33)

where µi(β) is an ni-dimensional vector with j-th element µi j = exp(β0 + β1xi j),
and G(µi) = diag

{
V(µi j)

}
with V(·) the “working” variance function, and Ri(ρ) is

an ni×ni working correlation matrix, fully specified by the correlation parameter
ρ.

In the following simulation studies, the true values of the regression coef-
ficients are β0 = 1 and β1 = 2. The true value of the dispersion parameter
σ2 = 0.01.

Simulation 4.10 Generate 2000 replicates of the data set{
(yi j, xi j), j = 1, · · · , ni, i = 1, · · · ,K

}
from an exchangeable correlation structure with 5 repeated measurements for
each subject, and different numbers of subjects K = 20, 50, 100. In addition, the
true value of the correlation parameter is ρ = 0.5. Fit the data by GEE (4.33)
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using the variance function V(µ) = µ, and the true correlation structure, i.e.,
exchangeable structure. In this simulation, we will consider IR tests for the null
hypothesis

H0 : V(µi j) = µi j, j = 1, · · · , ni, i = 1, · · · ,K. (4.34)

The previous applications of the IR tests have shown that the pooled IR statis-
tic usually has the best performance. We consider only the pooled IR statistics
(4.28) or (4.30), taking ratios of the Godambian estimators (4.15) to the Pearson
moment estimator (4.17) or transformed moment estimator (4.18).

Table 4.9 reports the empirical type I errors of the standardized pooled IR
statistics, which take ratios of the unbiased pooled Godambian estimator to the
unbiased Pearson moment estimator or the transformed moment estimator over
different sample sizes. The type I errors are obtained at different significance
levels 10%, 5% and 1%. The numerical results have shown that the IR statistics
which use the “transformed” moment estimator have better performance, with
the type I errors closer to the nominal levels, than those with the unbiased “Pear-
son” moment estimator.

Table 4.9: The empirical type I errors of the pooled IR statistic IRs
pool, which take ratios of

the unbiased pooled Godambian estimator to the unbiased Pearson moment estimator or the
transformed moment estimator among 2000 replicates. The type I errors are obtained from the
limiting N(0, 1) distribution, over different sample sizes at the significance levels 10%, 5% and
1%, under the null hypothesis H0 (4.34).

Pearson moment Transformed moment
n .10 .05 .01 .10 .05 .01

20 0.0530 0.0290 0.0075 0.0815 0.0425 0.0160
50 0.0525 0.0215 0.0045 0.0930 0.0510 0.0110

100 0.0505 0.0205 0.0025 0.0985 0.0515 0.0090

Simulation 4.11 Generate 5000 replicates of the data with 5 observations for
each subject and the number of subjects K = 20, and 2000 replicates with sample
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size K = 50 from either exchangeable or AR(1) correlation structure with the
true value of the correlation parameter 0.5. Fit the data by the GEE (4.33) using
three different working variance functions

V1(µ) = 1, V2(µ) = µ, V3(µ) = µ2,

combining with three different working correlation structures: independence
(IND), exchangeable(EXCH), and AR(1). We will assess the power of the pooled
IR statistic to reject the three null hypotheses

H01 : V1(µ) = V∗(µ); H02 : V2(µ) = V∗(µ); H03 : V3(µ) = V∗(µ).

Note that the true variance function is V∗(µ) = µ, so only the null hypothesis H02

is true. Table 4.10 and Table 4.11 show the empirical power of the pooled IR
statistic to reject three different hypotheses H01, H02 and H03 under three different
working correlation structures. They show that the IR statistics are powerful to
detect misspecification of variance function, but they are less powerful to test
for misspecification of working correlation structure. In addition, as shown in
previous simulation studies, the test power becomes stronger as the sample size
increases.

Remark 4.1 If the true value of the dispersion parameter σ2 is assumed to be
known, we can still obtain the moment estimator ofσ2. Thus, the IR statistics can
be constructed by taking ratios of the Godambian estimator of σ2 to the moment
estimator. However, when using the moment estimator, asymptotic distributions
of the IR statistics are based on the first order Taylor approximation of the IR
statistics. Thus, the IR statistics taking ratios of the Godambian estimator to
the moment estimator are likely to perform more poorly than those taking ratios
of the Godambian estimator to its true value. In addition, as shown in Figures
4.1, 4.2 4.3, 4.4, 4.5, 4.6 and 4.7, as well as Table 4.1, Simulation 4.1 indicated
that the distributions of the IR statistics using the true value of σ2 are closer
to the limiting N(0, 1) than those using the moment estimator, especially for
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Table 4.10: The empirical power of the pooled IR statistic IRs
pool, which takes a ratio of the

unbiased pooled Godambian estimator to the unbiased Pearson moment estimator (4.17) or the
transformed moment estimator (4.18). The results are obtained from the limiting N(0, 1) distri-
bution among 5000 replicates for small sample size K = 20, and 2000 replicates for the sample
size K = 50 from the true correlation structure: exchangeable with the correlation parameter 0.5,
at the significance level 5% to reject the null hypotheses H01, H02 and H03.

Godambian versus Pearson moment
H01 : V1(µ) = µ H02 : V2(µ) = µ H03 : V3(µ) = µ

IND 1.0000 0.6338 0.9996
K = 20 EXCH 1.0000 0.0276 0.9996

AR(1) 1.0000 0.1530 0.9998
IND 1.0000 0.9370 1.0000

K = 50 EXCH 1.0000 0.0265 1.0000
AR(1) 1.0000 0.2435 1.0000

Godambian versus Transformed moment
H01 : V1(µ) = µ H02 : V2(µ) = µ H03 : V3(µ) = µ

IND 1.0000 0.6338 0.9996
K = 20 EXCH 1.0000 0.0434 0.9996

AR(1) 1.0000 0.0614 0.9998
IND 1.0000 0.9370 1.0000

K = 50 EXCH 1.0000 0.0540 1.0000
AR(1) 1.0000 0.1735 1.0000
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Table 4.11: The empirical power of the pooled IR statistic IRs
pool, which takes a ratio of the

unbiased pooled Godambian estimator to the unbiased Pearson moment estimator (4.17) or the
transformed moment estimator (4.18). The results are obtained from the limiting N(0, 1) distri-
bution among 5000 replicates for small sample size K = 20, and 2000 replicates for the sample
size K = 50 from the true correlation structure: AR(1) with the correlation parameter 0.5, at the
significance level 5% to reject the null hypotheses H01, H02 and H03.

Godambian versus Pearson moment
H01 : V1(µ) = µ H02 : V2(µ) = µ H03 : V3(µ) = µ

IND 1.0000 0.4616 0.9940
K = 20 EXCH 1.0000 0.1714 0.9942

AR(1) 1.0000 0.0520 0.9918
IND 1.0000 0.8165 1.0000

K = 50 EXCH 1.0000 0.3155 1.0000
AR(1) 1.0000 0.0400 1.0000

Godambian versus Transformed moment
H01 : V1(µ) = µ H02 : V2(µ) = µ H03 : V3(µ) = µ

IND 1.0000 0.4616 0.9940
K = 20 EXCH 1.0000 0.1892 0.9944

AR(1) 1.0000 0.0522 0.9902
IND 1.0000 0.8165 1.0000

K = 50 EXCH 1.0000 0.3420 1.0000
AR(1) 1.0000 0.0430 1.0000
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small sample size. Therefore, in some applications where the true value of the
dispersion parameter σ2 is assumed to be known from external information or
previous studies, it is suggested that we use the IR statistics which take ratios of
the Godambian estimator to its true value.

Remark 4.2 In the literature of GEE, several methods of estimating the corre-
lation parameter in the working correlation structure have been suggested. See
[53], [67] and [84]. No matter which method is used to estimate the correlation
parameter, the only necessary assumption required in Theorem 4.1, Theorem 4.3
and Theorem 4.4 is that the sequence of the estimators

{̂
ρK,K = 1, 2, · · · ,

}
con-

verges to a certain value ρ∗. Moreover, under the null hypothesis H0 (4.2), the
limiting value ρ∗ is equal to the true value of the correlation parameter involved
in the true correlation structure.
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Chapter 5

Model Selection

Model selection problems are encountered almost everywhere. In high di-
mensional data analysis, for example, gene expression analysis, the number of
covariates is considerably larger than the sample size. Variable selection is an
important method to increase the power of statistical conclusions and to facili-
tate the biological interpretation. In the analysis of time series, it is essential to
know the true order of an ARMA model. In the analysis of clustering, it is impor-
tant to determine the number of clusters. In the statistical literature, numerous
model selection procedures have been intensively discussed. They are developed
based on hypothesis testing, prediction errors, cross-validation and information
measurement and so on. [70] surveyed several model selection methods with
reference to regression, categorical data and time series analysis. However, al-
most all of the criteria are for the selection of the optimal mean structure. There
is a lack of a systematic criterion for selecting the variance/covariance structure.

In this section, we will develop two different model selection procedures:
one is based on the information ratio tests proposed in Chapter 4, and the other
is based on a discrepancy measurement related with information matrices. In
addition, these two model selection methods will be illustrated by two simulation
studies: selecting the optimal variance function in compound Poisson models
and selecting the true working correlation structure in GEE (2.27).
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5.1 Model Selection Criterion

Let V =
{
Vγ, γ ∈ Γ

}
be a class of candidate variance or covariance struc-

tures for the given data, where Γ is an index set. For instance, in the analysis of
insurance claim data, Tweedie’s compound Poisson models are commonly con-
sidered. (See [49] and [90]). In these models, the variance function takes a
form of power function as follows:

V(µ) = µκ, 1 < κ < 2.

However, the value of κ is rarely known in practice. Given a list of candidate
values of κ, for example, Γ = {κ = 1.1, 1.2, 1.3, · · · , 1.9}, a class of variance
functions is given by

V = {Vκ : Vκ(µ) = µκ, κ ∈ Γ} ,

where the shape parameter κ is the index. In another example of selecting the
optimal working correlation structure in GEE (2.27), we may define a class of
damped exponential correlation structures proposed by [63]. The correlation
between two observations, taken on the same subject, separated by s-units of
time was modelled as ρsθ , where ρ is the correlation between elements separated
by one s-unit, and θ is a damping parameter which permits attenuation or ac-
celeration of the exponential decay of the autocorrelation function defining an
AR(1). Note that ρ = 0 corresponds to the independence correlation, θ = 0 cor-
responds to the exchangeable (or compound symmetric) correlation, and θ = 1
corresponds to the AR(1) correlation. Then, a class of candidate correlation
structures is given by

V =
{
Rρ,θ; 0 ≤ ρ ≤ 1, θ ≥ 0

}
,

where (ρ, θ) is the index.

We should bear in mind that it is possible that the true variance/covariance
structure is not included in V =

{
Vγ

}
. Then, based on the data, we need to select
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the optimal one among those given in V, which is not necessarily the true one,
but the closest approximation, by using a suitable model selection criterion.

5.1.1 Selection of Variance/Covariance Structure based on Hypothesis Test-
ing

In Chapter 4, IR tests were proposed to test for misspecification of vari-
ance/covariance structure. Several theorems, for example, Theorem 4.1 and
Theorem 4.2, stated that the proposed standardized IR statistics are asymptot-
ically N(0, 1) distributed, under the null hypothesis that the variacne/covariance
structure is correctly specified. In this section, we will propose a model selec-
tion procedure based on a sequence of IR tests. Specifically, for each candidate
variance/covariance structureVγ ∈ V, we will test for the null hypothesis

H0,γ : Vγ = V∗,

using the IR statistic, denoted by IRγ, obtained from the estimating equation
usingVγ as the working variance/covariance structure, whereV∗ represents the
true variance/covariance structure.

Selection of the optimal variance function

Consider a class of candidate variance functions V =
{
Vγ(·), γ ∈ Γ

}
. First of

all, we need to define equivalency of variance functions.

Definition 5.1 Two variance functions V1 and V2 are said to be equivalent up to
a constant, if there exists a constant c such that V1(µ) = cV2(µ) for any value of
µ.

Two assumptions should be made in the following investigation.
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Assumption 5.1 For the given class of candidate variance functions

V =
{
Vγ(·), γ ∈ Γ

}
,

(i) any variance function in V is not equivalent to all the others; and

(ii) if the true variance function V∗(·) is not included in V, it is not equivalent
to any function Vγ(·) ∈ V.

Assumption 5.2 Let Y be the domain of the expectation of the responses. As-
suming that Y is compact, for any candidate variance function Vγ(·) ∈ V and
the true unit variance function V∗(·), there exists a constant M such that∣∣∣∣∣∣V∗(µ)Vγ(µ)

∣∣∣∣∣∣ ≤ M, µ ∈ Y,

where | · | denotes the absolute value of a real number.

In the context of GLM, given an observed sample of size n and a candidate
variance function Vγ ∈ V used in the quasi-score equation (2.8), we consider
an IR statistic, which takes a ratio of an unbiased Godambian estimator of the
dispersion parameter σ2 to its true value, if given. That is,

IRγ,n =
σ̃2

σ2 =

( rP

σ

)T
Ŵ

( rP

σ

)
,

where σ̃2 could be any unbiased individual coefficient-specific Godambian es-
timator σ̃2

j−1,u (4.6), or the unbiased pooled Godambian estimator σ̃2
pool,u (4.8),

and correspondingly, the matrix Ŵ could be Ŵ
( j−1)
u or Ŵ

pool
u . Shown in the proof

of Theorem 4.1, in the context of GLM, the statistic IRγ,n can be approximated
by

IRγ,n '
(εP

σ

)T
{(In − H∗) W∗ (In − H∗)}

(εP

σ

)
.
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Note that tr {(In − H∗) W∗ (In − H∗)} = 1. The vector εP/σ is multivariate dis-
tributed with mean 0 and covariance matrix Ω, an n× n diagonal matrix with the
i-th diagonal element ωi = V∗(µi,∗)/Vγ(µi,∗). The expectation of the statistic IRγ,n
is given by

ςγ,n = E
(
IRγ,n

)
' tr

{
Ω1/2 (In − H∗) W∗ (In − H∗)Ω1/2

}
.

If the null hypothesis H0,γ : Vγ(·) = V∗(·) is true, so that the matrix Ω = In, then
ςγ,n = E

(
IRγ,n

)
' 1. On the other hand, if the null hypothesis H0,γ is not true,

the matrix Ω is no longer an identity matrix. In this case, the expectation can be
expressed as

ςγ,n '

n∑
i=1

ωiϑii = 1 +
n∑

i=1

(ωi − 1)ϑii, (5.1)

where ϑii are the diagonal elements of the matrix (In − H∗) W∗ (In − H∗). Note
that

∑n
i=1 ϑii = 1.

If an IR statistic takes a ratio of an unbiased Godambian estimator to the
moment estimator of the dispersion parameter, it can be approximated by

IRγ,n ' 1 +
(εP

σ

)T
{

(In − H∗)
(
W∗ −

1
n − p

In

)
(In − H∗)

} (εP

σ

)
.

If the null hypothesis H0,γ is true, the expectation, denoted by ςγ,n, of IRγ,n is
approximately 1; otherwise, the expectation is given by

ςγ,n ' 1 +
n∑

i=1

(ωi − 1)ϑii −

n∑
i=1

(ωi − 1)
1 − h∗ii
n − p

, (5.2)

where h∗ii is the i-th diagonal element of the matrix H∗. Note that under the
Assumption 5.1, ςγ,n − 1 is a nonzero constant.

Equations (5.1) and (5.2) indicate that the expectation ςγ,n is a function of ωi.
It can show that, under the Assumption 5.2, |ωi| =

∣∣∣V∗(µi,∗)/Vγ(µi,∗)
∣∣∣ is bounded,
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and consequently, |ωi − 1| is also bounded. Since
∑n

i=1 ϑii = 1, from the equation
(5.1), ∣∣∣ςγ,n − 1

∣∣∣ = ∣∣∣∣∣∣∣
n∑

i=1

(ωi − 1)ϑii

∣∣∣∣∣∣∣ = O(1).

Similarly, from the equation (5.2),

∣∣∣ςγ,n − 1
∣∣∣ = ∣∣∣∣∣∣∣

n∑
i=1

(ωi − 1)ϑii −

n∑
i=1

(ωi − 1)
1 − h∗ii
n − p

∣∣∣∣∣∣∣ = O(1),

Moreover, the magnitude of |ςγ,n − 1| depends on the departure of the candidate
variance function Vγ(·) from the true one V∗(·). That is, the larger the relative
discrepancy, i.e. V∗/Vγ − 1 is, the further the expectation ςγ,n differs from 1. Let
λ̂k, k = 1, · · · , n, be the eigenvalues of the matrix(

In − Ĥ
)
Ŵ

(
In − Ĥ

)
or

(
In − Ĥ

) (
Ŵ −

1
n − p

In

) (
In − Ĥ

)
.

The standardized IR statistic

IRs
γ,n =

IRγ,n − 1√
2
∑n

k=1 λ̂
2
k

d
−→

N(0, 1), as n→ ∞,

if the null hypothesis H0,γ : Vγ(·) = V∗(·) is true. Then, given a significance level
α, the p-value

pγ(α) = 2P
(
Z ≥ |IRs

γ,obs|
)

is equal to or larger than α, where Z is a N(0, 1) random variable, and IRs
γ,obs is

the observed value of the statistic IRs
γ,n obtained from the given data.

If the null hypothesis H0,γ is false,

IRγ,n − ςγ,n√
2
∑n

k=1 υ
2
k

d
−→

N(0, 1), as n→ ∞,
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where ςγ,n is given in (5.1) or (5.2), and υk, k = 1, · · · , n are the eigenvalues of
the matrix

Ω1/2 (In − H∗) W∗ (In − H∗)Ω1/2,

or

Ω1/2 (In − H∗)
(
W∗ −

1
n − p

In

)
(In − H∗)Ω1/2.

In this case, for large sample size n,

IRs
γ,n =

IRγ,n − 1√
2
∑n

k=1 λ̂
2
k

∼ N

 ςγ,n − 1√
2
∑n

k=1 λ̂
2
k

,

√√∑n
k=1 υ

2
k∑n

k=1 λ̂
2
k

 ,
approximately. Since

∑n
k=1 λ̂k = 1, then

√
2
∑n

k=1 λ̂
2
k = o(1), and consequently,

the magnitude of (ςγ,n−1)/
√

2
∑n

k=1 λ̂
2
k is considerably large valued. In addition,

under the Assumption 5.2,
∑n

k=1 υ
2
k/

∑n
k=1 λ̂

2
k is bounded. Therefore, the p-value

pγ(α) = 2P
(
Z ≥ |IRs

γ,obs|
)

is much smaller than α. Thus, a model selection procedure can be suggested
as follows. Given a class of variance functions V =

{
Vγ(·), γ ∈ Γ

}
, for each

candidate variance function Vγ, a p-value, pγ, is obtained from the test for H0,γ :
Vγ = V∗, using a standardized IR statistic at a significance level α. The optimal
variance function is the selected one with the maximum p-value, i.e.,

Vopt = arg max
Vγ∈V

{
pγ(α), γ ∈ Γ

}
,

for a given significance level α. A same model selection procedure may be ob-
tained for the selection of the optimal variance function in GEE.
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Selection of the optimal working correlation structure in GEE

Suppose that the variance function is correctly specified in the context of
GEE, that is, Gi = G∗i , for i = 1, · · · ,K. In this section, we want to select the
optimal working correlation structure from a given class of working correlation
matrices V =

{
Rγ, γ ∈ Γ

}
.

Given a candidate working correlation matrix Rγ, an IR statistic can be ap-
proximated by

IRγ,K '
(
ε̃

σ

)T

{(IN −H∗)W∗ (IN −H∗)}
(
ε̃

σ

)
,

which is a ratio of an unbiased Godambian estimator of σ2 to its true value, or

IRγ,K ' 1 +
(
ε̃

σ

)T

{(IN −H∗) (W∗ −Wm) (IN −H∗)}
(
ε̃

σ

)
,

which is a ratio of an unbiased Godambian estimator to the moment estima-
tor. For example, the matrixW∗ could beW( j−1)

u,∗ for the unbiased β j−1-specific
Godambian estimator (4.13), orWpool

u,∗ for the unbiased pooled Godambian es-
timator (4.15), and the matrix Wm could be W∗

P
/m∗

P
for the unbiased Pear-

son moment estimator (4.17), or 1
N−p IN for the transformed moment estimator

(4.18). The vector ε̃/σ is multivariate distributed with mean 0 and covariance
matrix Ω, where Ω is a K × K diagonal block matrix with the i-th diagonal ma-
trix Ωi = L−1

γ,i,∗R
∗
i L−T
γ,i,∗, because the variance function is correctly specified, i.e.,

Gi = G∗i . If the null hypothesis H0,γ : Rγ = R∗ is true, the matrix Ω = IN . Then,
the expectation, ςγ,K, of the IR statistic IRγ,K is approximately 1.

By the Cholesky decomposition, the matrix R∗i can be decomposed as

R∗i = L∗i L∗i
T , i = 1, · · · ,K,

where L∗i is a lower triangular matrix. If the null hypothesis H0,γ is false, the
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expectation of the IR statistic is given by

ςγ,K '

K∑
i=1

tr
{
L−1
γ,i,∗L

∗
i ziiL∗i

T L−T
γ,i,∗

}
= 1 +

K∑
i=1

tr
{(

L∗i
T R−1
γ,i,∗L

∗
i − Ini

)
zii

}
,

where zii is the diagonal block matrix of

(IN −H∗)W∗ (IN −H∗) ,

or

ςγ,K ' 1 +
K∑

i=1

tr
{
L−1
γ,i,∗L

∗
i ziiL∗i

T L−T
γ,i,∗

}
= 1 +

K∑
i=1

tr
{
L∗i

T R−1
γ,i,∗L

∗
i zii

}
,

where zii is the diagonal block matrix of

(IN −H∗) (W∗ −Wm) (IN −H∗) .

Note that zii has the same role as ϑii given in (5.1) or (5.2). Similarly to the
selection of the optimal variance function, the magnitude of |ςγ,K − 1| depends
on the eigenvalues of the matrix L∗i

T R−1
γ,i,∗L

∗
i , which characterizes the departure

of the candidate working correlation structure from the true one. If the null
hypothesis H0,γ is true, the p-value obtained from the standardized IR statistic is
equal to or larger than α, for a given significance level α. If the null hypothesis
is false, the p-value is considerably smaller than α. Thus, among the class of
working correlation structures V =

{
Rγ, γ ∈ Γ

}
, the optimal one Ropt leads to the

maximum p-value.

However, from Section 4.3.3, we have noticed that the IR statistics are rela-
tively less sensitive to the discrepancy of the working correlation structures than
that of variance functions. Thus, the model selection procedure based on the IR
tests might not be powerful to detect the optimal correlation structure.

121



5.1.2 Information Discrepancy Criterion

Several model selection criteria have been built upon the use of Kullback-
Leibler distance (or information) between the true underlying distribution and the
distributional model imposed for parameter estimation. For example, Akaike’s
information criterion (AIC) and the Bayesian information criterion (BIC) take a
form of −2 log L(̂θ) plus a certain penalty term, where L(̂θ) is the maximum like-
lihood, which is the likelihood function evaluated at the maximum likelihood
estimate θ̂ of the parameter θ. In the context of estimating equations, because no
parametric density function is assumed, the likelihood function is unavailable.
Thus, these popular information criteria cannot be directly used. [65] proposed
a modification to AIC, named the “quasi-log-likelihood under the independence
working correlation information criteria” (QIC). Later, [43] suggested to use
only the penalty term in the QIC for selecting a working correlation structure.
The penalty term takes a ratio of two information matrices: one is the model-
based covariance matrix estimator using the independence working correlation,
and the other is the sandwich covariance matrix estimator using a general correla-
tion structure. It indicates that the departure of the candidate working correlation
structure from the true one can be reflected from the ratio of the model-based and
sandwich covariance matrix estimators.

Let V =
{
Vγ, γ ∈ Γ

}
be a class of variance or covariance structures for the

data, where Γ is an index set. Corresponding to the candidate variance or co-
variance structures, we define a class of candidate estimating equations G ={
Ψγ(β), γ ∈ Γ

}
.

Selection of the optimal variance function in GLM

In the context of GLM, given a candidate variance function Vγ ∈ V, a quasi-
likelihood method requires us to specify an additive estimating function Ψγ,n(β),
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given by (2.8)

Ψγ,n(β) =
1
σ2 XT∆V−1

γ (y − µ(β)) ,

which is used to estimate the regression coefficients β, based on the data

{(yi, xi), i = 1, · · · , n} .

Given the estimating function Ψγ,n(β), the aggregated sensitivity and variability
matrices are given by, respectively, (2.9) and (2.10)

SΨγ,n(β) = E
{
∂Ψγ,n(β)
∂β

}
= −

1
σ2 XT∆V−1

γ ∆X,

and
VΨγ,n(β) = E

{
Ψγ,n(β)ΨT

γ,n(β)
}
=

1
σ2 XT∆V−1

γ V
∗V−1
γ ∆X,

where Cov(Y) = σ2V∗. Given any value of β, define two limiting information
matrices by

Sγ(β) = lim
n→∞

1
n

SΨγ,n(β),

and
Vγ(β) = lim

n→∞

1
n

VΨγ,n(β).

To measure the discrepancy between these two information matrices, under a
certain candidate variance function, we define an information matrix ratio by

IMRγ(β) =
{
−Sγ(β)

}−1
Vγ(β). (5.3)

If the variance function is correctly specified, i.e., Vγ(·) = V∗(·), the information
unbiasedness holds at the true value β∗ of the parameter β, that is,

−Sγ(β∗) = Vγ(β∗).

Thus, in this case, the information matrix ratio is an identity matrix under the
true variance function, that is, IMR∗(β∗) = Ip.
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Let D(Vγ,V∗) be a function characterizing the discrepancy between the can-
didate variance function and the true one. It can be defined by a measurement
of the discrepancy between these two information matrices, which is the dis-
tance between IMRγ, the information matrix ratio under the candidate variance
function Vγ, and IMR∗ = Ip under the true variance function V∗. (See [81]).
Define

D(Vγ,V∗) = tr
{
[IMRγ(β∗) − IMR∗(β∗)]

2
}
= tr

{
[IMRγ(β∗) − Ip]2

}
. (5.4)

However, in practice, the true value of β is unknown, and the explicit forms of the
limiting matrices Sγ and Vγ are not available. Based on the data, the sensitivity
and variability matrices are estimated by (2.16) and (2.18)

Ŝγ,n(̂β) = −
1
σ2 XT ∆̂V̂−1

γ ∆̂X,

and
V̂γ,n(̂β) =

1
(σ2)2 XT ∆̂V̂−1

γ RV̂
−1
γ ∆̂X,

if the true value of σ2 is known; otherwise, it is replaced by a moment estimator.
Then, the information matrix ratio can be estimated by

IMRγ,n(̂β) =
{
−

1
n

Ŝγ,n(̂β)
}−1 {

1
n

V̂γ,n(̂β)
}
=

{
−Ŝγ,n(̂β)

}−1
V̂γ,n(̂β),

and consequently, the estimated information discrepancy function can be ob-
tained by

d(Vγ,V∗) = tr
{
[IMRγ,n(̂β) − Ip]2

}
. (5.5)

Let λγ = (λγ,1, · · · , λγ,p), be the eigenvalues of the matrix IMRγ,n(̂β). Then,
the estimated information discrepancy function can be re-written as

d(Vγ,V∗) =
p∑

j=1

(λγ, j − 1)2 =‖ λγ − 1p ‖
2,
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where 1p is a p × 1 vector of 1’s, and ‖ · ‖ denotes the Euclidean distance. Let
Û = V̂−1/2

γ ∆̂X, then the estimated sensitivity and variability matrices can be
re-written as, respectively,

−Ŝγ,n(̂β) =
1
σ2 ÛT Û,

V̂γ,n(̂β) =
1

(σ2)2 ÛTRPÛ,

where RP = diag
{
r2

P,i

}
. By the QR decomposition, the matrix Û can be decom-

posed by
Û = ΠQ,

whereΠ is an n×p orthogonal matrix, and Q is a p×p matrix. Then the estimated
information matrix ratio IMRγ,n(̂β) can be written as

IMRγ,n(̂β) =
1
σ2 Q−1ΠTRPΠQ.

By the eigen-decomposition, there exists a p × p matrix E such that

IMRγ,n(̂β) = EΛE−1,

where Λ = diag
{
λγ,1, · · · , λγ,p

}
. Thus,

Λ =
1
σ2E

−1Q−1ΠTRPΠQE =
1
σ2PRPQ,

where P = E−1Q−1ΠT is an p× n matrix with (i, j)-th element pi j, and Q = ΠQE
is an n × p matrix with (i, j)-th element qi j. It can be shown that λγ, j can be
written as a quadratic form in Pearson residuals. That is,

λ j =

n∑
i=1

p jiqi jr2
P,i
/σ2 =

( rP

σ

)T
K j

( rP

σ

)
, j = 1, · · · , p,
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whereK j is an n× n diagonal matrix with the i-th diagonal element κ( j)
i = p jiqi j,

for i = 1, · · · , n. Note that
∑n

i=1 κ
( j)
i = 1 for j = 1, · · · , p, from PQ = Ip. From

the approximation (4.4), the eigenvalue λ j can be approximated by

λ j '

(εP

σ

)T
(In − H∗)K∗j (In − H∗)

(εP

σ

)
,

where εP/σ is a multivariate random vector with mean 0, and covariance ma-
trix Ω, which is an n × n diagonal matrix with the i-th diagonal element ωi =

V∗(µi,∗)/Vγ(µi,∗).

Let η1, · · · , ηn be the eigenvalues of the matrix

Ω1/2 (In − H∗)K∗j (In − H∗)Ω1/2.

Then the expectation of λ j is
∑n

k=1 ηk and its variance is 2
∑n

k=1 η
2
k. If Vγ = V∗,

the covariance matrix of εP/σ is In, then the bias of λ j,
∣∣∣E(λ j) − 1

∣∣∣, is of the order
o(1), and the variance of λ j is of the order o(1). Consequently, E(λ j − 1)2 = o(1),
and then,

E
[
d(Vγ,V∗)

]
=

p∑
j=1

E(λ j − 1)2 = o(1).

If Vγ , V∗, the bias
∣∣∣E(λ j) − 1

∣∣∣ is of the order O(1), and the variance is still of the
order o(1). Consequently, E

[
d(Vγ,V∗)

]
= O(1). The optimal variance function

is defined as the one with the minimum estimated information discrepancy, that
is,

Vopt = arg min
Vγ∈V

{
d(Vγ,V∗), γ ∈ Γ

}
.

We call d(Vγ,V∗) the information discrepancy criterion (IDC).

Remark 5.1 The model-based and sandwich covariance matrix estimators of β̂
are given by

AS COVm(̂β) =
{
−Ŝγ,n(̂β)

}−1
,
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and
AS COVs(̂β) =

{
−Ŝγ,n(̂β)

}−1
V̂γ,n(̂β)

{
−Ŝγ,n(̂β)

}−1
.

If the variance structure is misspecified, there is loss of efficiency when using the
model-based covariance matrix estimator. Thus, since AS COVs(̂β) is a consis-
tent covariance estimator, then

IMRγ,n(̂β) = AS COVs(̂β)
{
AS COVm(̂β)

}−1
� Ip.

In this case, the IDC characterizes the loss in relative efficiency under the can-
didate variance structure.

Selection of the optimal working correlation structure in GEE

In the context of GEE, let V be a class of candidate working correlation ma-
trices

V =
{
Rγ, γ ∈ Γ

}
.

Given a longitudinal data
{
(yi j, xT

i j), j = 1, · · · , ni, i = 1, · · · ,K
}
, the GEE is an

additive estimating function Ψγ,K(β), given by (2.27)

Ψγ,K(β) =
1
σ2

K∑
i=1

DT
i (β)Σ−1

γ,i
(
yi − µi(β)

)
,

which is used to estimate the regression coefficients β, where Σγ,i = G1/2
i RγG

1/2
i .

Given the estimating function Ψγ,K(β), the aggregated sensitivity and variability
matrices are given by

SΨγ,K (β) = −
1
σ2

K∑
i=1

DT
i (β)Σ−1

γ,i Di(β),

and

VΨγ,K (β) =
1
σ2

K∑
i=1

DT
i (β)G−1/2

i R−1
γ R∗R−1

γ G−1/2
i Di(β),
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where Cov(Yi) = σ2G1/2
i R∗G1/2

i , when the variance function is correctly speci-
fied. Given any value of β, define two limiting information matrices by

Sγ(β) = lim
K→∞

1
K

SΨγ,K (β),

and
Vγ(β) = lim

K→∞

1
K

VΨγ,K (β).

Based on the data, the sensitivity and variability matrices are estimated by

ŜΨγ,K (β) = −
1
σ2

K∑
i=1

D̂T
i Σ̂
−1
γ,i D̂i,

and

V̂Ψγ,K (β) =
1

(σ2)2

K∑
i=1

D̂T
i Σ̂
−1
γ,i rirT

i Σ̂
−1
γ,i D̂i

where the true value of σ2 is known; otherwise, it is replaced by a moment
estimator. Then, the estimated information matrix ratio is

IMRγ,K (̂β) =
{
−Ŝγ,K (̂β)

}−1
V̂γ,K (̂β),

and consequently, the IDC is given by

d(Vγ,V∗) = tr
{
[IMRγ,K (̂β) − Ip]2

}
.

The optimal working correlation is defined as the one with the minimum IDC,
that is,

Vopt = arg min
Vγ∈V

{
d(Vγ,V∗), γ ∈ Γ

}
.

Remark 5.2 The correlation information criterion (CIC) proposed by [43] is
defined by

CIC(Rγ) = tr
{
Ω̂IV̂γ

}
,
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where

Ω̂I = −ŜI,K (̂βRγ , σ̂
2
Rγ) =

1
σ̂2

K∑
i=1

D̂T
i Ĝ−1

i D̂i

evaluated at the estimators of β and σ2 from the GEE with the candidate working
correlation matrix Rγ, and

V̂γ =
{
−Sγ,K (̂βRγ)

}−1
Vγ,K (̂βRγ)

{
−Sγ,K (̂βRγ)

}−1

=

 K∑
i=1

D̂T
i Σ̂
−1
γ,i D̂i

−1  K∑
i=1

D̂T
i Σ̂
−1
γ,i rirT

i Σ̂
−1
γ,i D̂i

  K∑
i=1

D̂T
i Σ̂
−1
γ,i D̂i

−1

evaluated at the estimator of β from the GEE with the candidate working corre-
lation matrix Rγ.

The optimal working correlation structure is the one with the minimum CIC,
that is,

Ropt = arg min
Rγ∈R

{
CIC(Rγ), γ ∈ Γ

}
.

Remark 5.3 Both of these two model selection procedures can work for select-
ing the optimal covariance structure from a general class of candidate covari-
ance structures. This class of candidates could be a closed collection of arbitrary
covariance structures, or the combination of a class of variance structures and
a class of correlation structures.

5.2 Numerical Illustration

5.2.1 Selection of Variance Function

Through the following simulation studies, we will evaluate the two model
selection procedures based on the IR tests and the IDC. A data set

{(yi; xi1); i = 1, · · · , n}
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is generated from a compound Poisson model through the following steps: for
each i = 1, · · · , n,

(i) generate xi1 from a uniform distribution UNIF(0, 1);

(ii) let ηi = β0 + β1xi1, where the true values of the regression coefficients are
β0 = 10, β1 = 5, and let µi = exp(ηi);

(iii) let

λi =
µ2−κ0

i

σ2(2 − κ0)
, 1 < κ0 < 2,

where the true value of σ2 is 1.5; and then generate a random number Ni

from a Poisson distribution with mean λi;

(iv) generate Ni random numbers
{
zi1, · · · , zi,Ni

}
from a gamma distribution with

the shape parameter α = 2−κ0
κ0−1 , and the scale parameter ζ = σ2(κ0 − 1)µκ0−1

i ;

(v) let yi =

Ni∑
j=1

zi, j.

According to [47], the true mean and variance of the responses in the underlying
distribution are given by

E(Yi) = µi = exp {β0 + β1xi1} , and Var(Yi) = σ2µκ0i ,

for i = 1, · · · , n.

The task of this simulation study is to select the optimal variance function
from a collection of candidate variance functions

V = {V(µ; κ) = µκ, κ = 1, 1.2, 1.5, 1.8, 2} .

For each candidate variance function, the regression coefficients β = (β0, β1)T

are estimated from solving the quasi-score equation
n∑

i=1

xiµi
yi − µi

σ2µκi
=

1
σ2

n∑
i=1

xiµ
1−κ
i (yi − µi) = 0,
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where xi = (1, xi1)T and µi = exp{β0 + β1xi1}.

Given a value of κ0, we generate 1000 replicates for each of the sample sizes
n = 20, 50, 100, 200. Table 5.1 reports the empirical selection frequencies of
each candidate variance function among 1000 replicates using the two model
selection procedures based on the IR tests and the IDC, over different sample
sizes and different values of κ0. The numerical results suggest that

(i) both of these two model procedures have higher detection rate with larger
sample size;

(ii) the detection rate of the model selection procedure based on the IR tests
increases as κ0 increases. Figure 5.1 illustrates the relative discrepancy be-
tween the true variance function and candidate variance structure

V∗(µ)
Vγ(µ)

− 1 =
µκ0

µκ
− 1

evaluated at smaller value µ = 10 and larger value µ = 100. The plots
show that for larger value of κ0, the relative discrepancy is larger, and con-
sequently, the IR tests are more sensitive to detect the departure of the can-
didate variance function from the true one in this case. Correspondingly,
the model selection procedure based on the IR tests is more powerful to
detect the true variance function for large value of κ0;

(iii) the IDC has higher detection rate than the model selection based on the IR
tests for all the values of κ0.

5.2.2 Selection of Working Correlation Structure

In this section, we will assess and compare the performance of the IDC, QIC
and CIC in detecting the true working correlation structure among independence,
exchangeable and AR(1), for continuous and discrete responses.
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Table 5.1: The empirical frequencies of selecting each candidate variance function in V among
1000 replicates using the two model selection procedures based on the IR tests and the IDC over
different sample sizes and different true values of κ0. The numbers in the parentheses are the
ratios of the detection rate, obtained from the model selection procedure based on the IDC, to
the detection rate, obtained from the model selection based on the IR tests, of the true variance
function.

IRs
pool,u d(Vγ,V∗)

1 1.2 1.5 1.8 2 1 1.2 1.5 1.8 2
κ0 = 1.2

20 245 157 319 201 78 502 233(1.48) 179 40 46
50 234 220 169 264 113 391 455(2.07) 153 1 0

100 171 310 78 334 107 308 591(1.91) 101 0 0
200 139 500 138 222 1 164 803(1.61) 33 0 0

κ0 = 1.5
20 113 184 273 262 168 172 207 389(1.42) 197 35
50 47 156 329 234 234 37 221 616(1.87) 125 1

100 16 108 375 407 94 9 125 824(2.20) 42 0
200 5 61 350 331 253 3 76 886(2.53) 35 0

κ0 = 1.8
20 47 109 207 293 344 64 76 227 334(1.14) 299
50 4 47 231 463 255 5 15 159 595(1.29) 226

100 0 11 165 444 380 0 2 95 756(1.70) 147
200 0 1 130 539 330 0 0 31 875(1.62) 94
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Figure 5.1: The relative discrepancy between two variance functions, measured by |V∗(µ)/Vγ(µ)−
1| = |µκ0/µκ − 1| evaluated at small and large values of µ. The solid line represents κ0 = 1.2. The
dashed line represents κ0 = 1.5. The dotted line represents κ0 = 1.8.
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Simulation 5.1 We conduct a simulation study with 1000 replicates for each of
the following settings:

Model 1: Gaussian response with the mean structure µi j = 3 + 5xi j. The true
correlation structure is either exchangeable or AR(1). The true value of the dis-
persion parameter is 1. For this model, three studies will be investigated.

Study 1: For each replicate, we generate a set of balanced longitudinal data of
size K = 30 with 5 repeated measurements taken for each subject. We will gen-
erate two types of covariate: time-dependent and time-independent but individ-
ual level. Time-dependent covariate xi j is generated from a uniform distribution
UNIF( j, j + 1), and individual level covariate xi j’s are independently generated
from UNIF(0, 1). The true value of the correlation parameter is 0.5.

Study 2: For each replicate, we generate a set of balanced longitudinal data of
size K = 30 with different number of measurements 5 and 10 for each sub-
ject. The covariate xi j is time-dependent, generated from a uniform distribution
UNIF( j, j + 1). The true value of the correlation parameter is 0.5.

Study 3: For each replicate, we generate a set of balanced longitudinal data with
5 observations for each subject. The covariate xi j is time-dependent, generated
from a uniform distribution UNIF( j, j + 1). The sample size K = 20, 100, and
the true value of the correlation parameter is ρ = 0.1, 0.5, 0.9.

Model 2: Binary response with the mean structure with logistic link

µi j =
exp(−1 + 1/6xi j)

1 + exp(−1 + 1/6xi j)
.

The true correlation structure is either exchangeable or AR(1). The true value
of the dispersion parameter is 1. In this setting, we generate 1000 replicates of
balanced longitudinal data with sample size K = 30 and 5 observations for each
subject. The covariate xi j is time-dependent, generated from a uniform distribu-
tion UNIF( j, j+1). Binary responses in Model 2 are generated using the 
library in R, which requires some constraints on the correlation parameter. In the
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case that the true correlation structure is exchangeable, the true value of the cor-
relation parameter is set to be 0.2, 0.5; for AR(1), the true value of the correlation
parameter is 0.2, 0.5, 0.7.

Table 5.2, 5.3, 5.4 and 5.5 report the empirical selection frequencies of each
candidate working correlation structure: independence, exchangeable and AR(1)
for the three studies of Model 1. These empirical frequencies are obtained from
the criteria QIC, CIC and IDC using the true value, the Pearson moment es-
timator (4.17) and the transformed moment estimator (4.18) of the dispersion
parameter σ2. The numerical results have shown that:

(i) In general, the CIC has higher detection rate than the QIC, which agrees
with the conclusions in [43]. Moreover, the performance of the IDC is
better than both of the QIC and CIC, except in the case when the true corre-
lation is AR(1) and the covariate is time-independent. The advantage of the
IDC over the QIC or CIC is stronger when the covariate is time-dependent.

(ii) If the true value of the dispersion parameter is assumed unknown, it can
estimated by the Pearson residuals or the transformed residuals. The IDC
has a higher detection rate when when using the transformed moment es-
timator than using the Pearson moment estimator. However, when the true
correlation structure is exchangeable, both of the QIC and CIC, when using
the transformed moment estimator, lead to an incorrect conclusion, that is,
AR(1) is selected as the optimal working correlation. When the true corre-
lation structure is AR(1), both the QIC and CIC have a higher detection rate
when using the Pearson moment estimator than when using the transformed
moment estimator.

(iii) The QIC, CIC and IDC all have better performance as the sample size in-
creases. However, more repeated measurements do not necessarily improve
the performance of these three criteria.

Table 5.6 reports the empirical selection frequencies of each candidate work-
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ing correlation structure: independence, exchangeable and AR(1) for the Model
2. For binary data, the dispersion parameter is usually assumed to be known as 1.
Then the empirical frequencies are obtained from the QIC, CIC and IDC criteria
using the true value 1. The numerical results are consistent with the results ob-
tained from Model 1. The proposed criterion IDC performs better than the QIC
and CIC.

5.3 Data Analysis

We will analyze two data sets to illustrate the two model selection methods of
the most appropriate variance/covariance structure, proposed in Chapter 5.

5.3.1 Vehicle Insurance Data

This data set records one-year vehicle insurance policies taken out in the year
2004 or 2005, provided in [19]. Among 67856 policies, 4624 (6.8%) had at least
one claim. There are two response variables: the number of claims, and the claim
size. Several explanatory variables were also recorded, shown in the following
Table 5.7. Given these variables, we define the covariates, shown in Table 5.8,
which will be used in the analysis. Note that xv.age1, xv.age2, xv.age4 are the dummy
variables for the vehicle age categories, with category 3 as the baseline; xgender

is the dummy variable for the gender of policy holder, with male as the baseline;
xage1, xage2, xage4, xage5 and xage6 are the dummy variables for the age categories
of policy holders, with the category 3 as the baseline; xareaA, xareaB, xageD, xageE

and xageF are the dummy variables for the residence area, with area C as the
baseline; xbus, xconvt, xcoupe, xhback, xhdtop, xmcara, xmibus, xpanvn, xrdstr, xstnwg, xtruck,
and xute are the dummy variables for the vehicle body type, with “sedan” as the
baseline.
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Table 5.2: The empirical frequencies of selecting each of the independence (IND), exchange-
able(EXCH) and AR(1) correlation structures, among 1000 replicates using the QIC, CIC and
IDC for the Study 1 of Model 1. QIC∗, CIC∗ and IDC∗ represent the QIC, CIC and IDC using the
true value of σ2. QICP, CICP and IDCP represent the QIC, CIC and IDC using the Pearson mo-
ment estimator (4.17) of σ2. QICtr, CICtr and IDCtr represent the QIC, CIC and IDC using the
transformed moment estimator (4.18) of σ2. For each replicate, the data is of size K = 30, with
5 observations for each subject. The true correlation structure is either exchangeable or AR(1),
and the true value of the correlation parameter is 0.5. Two types of covariate are generated:
time-dependent and time-independent but individual-level.

True correlation: Exchangeable with ρ = 0.5
xi j: time-dependent xi j: individual-level

IND EXCH AR(1) IND EXCH AR(1)
QIC∗ 416 519 65 267 638 95
CIC∗ 310 546 144 45 795 160
IDC∗ 1 742 257 0 758 242
QICP 303 549 148 37 796 167
CICP 303 549 148 37 796 167
IDCP 0 713 287 0 839 161
QICtr 0 0 1000 0 0 1000
CICtr 4 3 993 4 11 985
IDCtr 0 926 74 0 766 234

True correlation: AR(1) with ρ = 0.5
xi j: time-dependent xi j: individual-level

IND EXCH AR(1) IND EXCH AR(1)
QIC∗ 208 147 645 169 210 621
CIC∗ 127 99 744 36 122 842
IDC∗ 13 146 841 24 524 252
QICP 125 97 778 32 115 853
CICP 125 97 778 32 115 853
IDCP 0 82 918 0 553 447
QICtr 242 239 519 104 429 467
CICtr 138 106 756 42 105 853
IDCtr 0 108 892 0 527 473
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Table 5.3: The empirical frequencies of selecting each of the independence (IND), exchange-
able(EXCH) and AR(1) correlation structures, among 1000 replicates using the QIC, CIC and
IDC for the Study 2 of Model 1. QIC∗, QICP, QICtr, CIC∗, CICP, CICtr, IDC∗, IDCP, and IDCtr

are the same as Table 5.2. For each replicate, the sample size is K = 30, and 5 or 10 repeated
measurements were taken for each subject. The true correlation structure is either exchangeable
or AR(1), and the true value of the correlation parameter is 0.5. The covariate is time-dependent.

True correlation: Exchangeable with ρ = 0.5
5 repeated measurements 10 repeated measurements
IND EXCH AR(1) IND EXCH AR(1)

QIC∗ 391 538 71 466 517 17
CIC∗ 280 585 135 411 538 51
IDC∗ 1 747 252 0 695 305
QICP 272 589 139 410 538 52
CICP 272 589 139 410 538 52
IDCP 0 749 251 0 697 303
QICtr 0 0 1000 0 0 1000
CICtr 2 3 995 1 0 999
IDCtr 0 929 71 0 995 5

True correlation: AR(1) with ρ = 0.5
5 repeated measurements 10 repeated measurements
IND EXCH AR(1) IND EXCH AR(1)

QIC∗ 200 158 642 172 160 668
CIC∗ 111 112 777 87 91 822
IDC∗ 15 111 874 0 43 957
QICP 110 108 782 86 89 825
CICP 110 108 782 86 89 825
IDCP 0 72 928 0 26 974
QICtr 244 264 492 272 251 477
CICtr 124 128 748 102 110 788
IDCtr 0 84 916 0 28 972

138



Table 5.4: The empirical frequencies of selecting each of the independence (IND), exchange-
able(EXCH) and AR(1) correlation structures, among 1000 replicates using the QIC, CIC and
IDC for the Study 3 of Model 1. QIC∗, QICP, QICtr, CIC∗, CICP, CICtr, IDC∗, IDCP, and
IDCtr are the same as Table 5.2. For each replicate, 5 repeated measurements were taken for
each subject. The sample size is 20 or 100. The true correlation structure is exchangeable, and
the true value of the correlation parameter is 0.1, 0.5 or 0.9. The covariate is time-dependent.

ρ = 0.1 ρ = 0.5 ρ = 0.9
IND EXCH AR(1) IND EXCH AR(1) IND EXCH AR(1)

sample size K = 20
QIC∗ 260 329 411 403 477 120 273 505 222
CIC∗ 229 311 460 297 492 211 113 569 318
IDC∗ 92 616 292 9 674 317 3 566 431
QICP 226 312 462 287 485 228 102 572 326
CICP 226 312 462 287 485 228 102 572 326
IDCP 32 702 266 0 666 334 0 589 411
QICtr 141 177 682 2 1 997 0 0 1000
CICtr 193 261 546 23 16 961 0 0 1000
IDCtr 32 701 267 0 846 154 0 955 45

sample size K = 100
QIC∗ 376 408 216 342 656 2 206 752 42
CIC∗ 329 403 268 189 798 13 0 895 105
IDC∗ 14 851 135 0 870 130 0 562 438
QICP 329 403 268 186 799 15 0 894 106
CICP 329 403 268 186 799 15 0 894 106
IDCP 0 862 138 0 877 113 0 574 426
QICtr 26 58 916 0 0 1000 0 0 1000
CICtr 249 315 436 0 0 1000 0 0 1000
IDCtr 0 859 141 0 991 9 0 1000 0
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Table 5.5: The empirical frequencies of selecting each of the independence (IND), exchange-
able(EXCH) and AR(1) correlation structures, among 1000 replicates using the QIC, CIC and
IDC for the Study 3 of Model 1. QIC∗, QICP, QICtr, CIC∗, CICP, CICtr, IDC∗, IDCP, and
IDCtr are the same as Table 5.2. For each replicate, 5 repeated measurements were taken for
each subject. The sample size is 20 or 100. The true correlation structure is AR(1), and the true
value of the correlation parameter is 0.1, 0.5 or 0.9. The covariate is time-dependent.

ρ = 0.1 ρ = 0.5 ρ = 0.9
IND EXCH AR(1) IND EXCH AR(1) IND EXCH AR(1)

sample size K = 20
QIC∗ 211 282 507 199 168 633 198 215 587
CIC∗ 191 273 536 112 129 759 130 172 698
IDC∗ 102 527 371 42 201 757 1 101 898
QICP 189 273 538 108 127 765 124 166 710
CICP 189 273 538 108 127 765 124 166 710
IDCP 50 577 373 1 150 849 0 11 989
QICtr 230 328 442 258 218 524 176 298 526
CICtr 184 265 551 123 124 753 128 220 652
IDCtr 50 577 373 1 165 834 0 23 977

sample size K = 100
QIC∗ 206 243 551 142 103 755 110 191 699
CIC∗ 170 215 615 35 29 936 17 97 886
IDC∗ 81 361 558 0 18 982 0 0 1000
QICP 170 215 615 33 29 938 17 97 886
CICP 170 215 615 33 29 938 17 97 886
IDCP 18 392 590 0 3 997 65 394 541
QICtr 271 277 452 222 277 501 32 184 784
CICtr 166 215 619 42 39 929 0 0 1000
IDCtr 18 391 591 0 8 992 0 0 1000
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Table 5.6: The empirical frequencies of selecting each of the independence (IND), exchange-
able(EXCH) and AR(1) correlation structures, among 1000 replicates using the QIC, CIC and
IDC for the Model 2. QIC, CIC and IDC represent the QIC, CIC and IDC using the true value
of σ2. For each replicate, the sample size is K = 30, and 5 repeated measurements were taken
for each subject. The true correlation structure is either exchangeable with the correlation 0.2
and 0.5, or AR(1) with the correlation 0.2, 0.5 and 0.7. The covariate is time-dependent.

True: Exchangeable
ρ = 0.2 ρ = 0.5

IND EXCH AR(1) IND EXCH AR(1)
QIC 231 487 282 212 658 130
CIC 234 539 227 184 756 60
IDC 8 863 129 0 712 288

True: AR(1)
ρ = 0.2 ρ = 0.5 ρ = 0.7

IND EXCH AR(1) IND EXCH AR(1) IND EXCH AR(1)
QIC 130 207 663 76 108 816 50 98 852
CIC 97 167 736 30 74 896 14 42 944
IDC 12 345 643 0 81 919 0 19 981
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We are interested in investigating significant covariate effects on the claim
size. The observations with nonzero claim sizes are used in the analysis, where
the response variable is the claim size, and the others are covariates. We fit the
GLMs, which include only the main effects, with the log link function

log(µi) = β0 + βvaluexi,value + βexpxi,exposure + βgenderxi,gender

+βv.age1xi,v.age1 + βv.age2xi,v.age2 + βv.age4xi,v.age4

+βage1xi,age1 + βage2xi,age2 + βage4xi,age4 + βage5xi,age5 + βage6xi,age6

+βareaAxi,areaA + βareaBxi,areaB + βareaDxi,areaD + βareaE xi,areaE

+βareaF xi,areaF + βbusxi,bus + βconvtxi,convt + βcoupexi,coupe + βhbackxi,hback

+βhdtopxi,hdtop + βmcaraxi,mcara + βmibusxi,mibus + βpanvnxi,panvn

+βrdstrxi,rdstr + βstnwgxi,stnwg + βtruckxi,truck + βutexi,ute (5.6)

under different working unit variance functions

V(µi, κ) = µκi , κ = 1.2, 1.5, 1.8, 2, 3, (5.7)

where µi = E(Yi), for i = 1, · · · , n. The models with κ = 1.2, 1.5, 1.8 correspond
to Tweedie’s distributions ( [49]), the one with κ = 2 corresponds to a gamma
regression model, and the one with κ = 3 corresponds to an inverse gaussian
regression model. The parameter estimates as well as the corresponding sand-
wich standard errors obtained from these five models were reported in Table 5.9.
This analysis found strong evidence that exposure, gender, age category of pol-
icy holder, and residence area have significant effects on the claim sizes under
all the variance functions. Specifically, larger degree of exposure is significant
in reducing the claim sizes. Compared to men, women are likely to have smaller
claim sizes. In addition, younger policy holders tend to have larger claim sizes.
Compared to the area C, the claim sizes in area F are shown to be larger. How-
ever, the point estimates, as well as the standard errors, differ remarkably under
different working variance functions. In particular, under the variance functions
V(µ) = µκ for κ = 1.8, 2, 3, the vehicle body type is shown to have a significant
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effect on the claim sizes, and specifically, compared to “sedan”, the “motorized
caravan/combi” vehicles tend to have insurance claims with significantly smaller
sizes. However, under the variance function V(µ) = µκ with κ = 1.2, 1.5, the
vehicle body type does not show as a significant factor.

For each variance function, we evaluate and compare the model selection cri-
teria: IDC, p-values from the IR test using the pooled IR statistic IRpool, AIC
and BIC. The values of these criteria are listed in Table 5.10. AIC and BIC, the
most popular model selection methods, select the variance function V(µ) = µ3,
which corresponds to an inverse gaussian regression model, as the optimal vari-
ance function. However, IDC selects V(µ) = µ2 as the most appropriate variance
function, and p-values obtained from the IR statistic IRpool select V(µ) = µ1.8.

Given the same mean structure, the penalty terms in the AIC and BIC are
the same under different variance functions. The quasi-likelihood function is
given by Q(µ, y) = µ−κ

(
µy

1−κ −
µ2

2−κ

)
for Tweedie’s distribution with the variance

function V(µ) = µκ, 1 < κ < 2, and Q(µ, y) = −y/µ − log(µ) for the gamma
regression model with the variance function V(µ) = µ2, Q(µ, y) = −y/2µ2 + 1/µ
for the inverse gaussian regression model with the variance function V(µ) = µ3.
Even though the models with different variance functions produce different point
estimates to a certain extent, the values of µ̂i are quite similar. The differences
in the magnitude of AIC and BIC mainly depend on the value of κ especially
for large values of µ and y. We found that both the AIC and BIC monotonically
decrease when κ gets larger. Therefore, neither of these two criteria is appropriate
to choose the optimal variance function because they tend to select larger values
of κ. On the other hand, the IDC and p-value obtained from the IR test did not
show any monotonic pattern associated with the value of κ. Even though different
variance functions were chosen by the model selection methods which are based
on the IDC and the p-values of the IR test (κ = 2 for the IDC and κ = 1.8
for the p-values), they lead to similar point estimates as well as standard errors,
and consequently, the same statistical conclusion. Therefore, either the variance
function V(µ) = µ1.8 or V(µ) = µ2 can be regarded as the selected best-fitting
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Table 5.7: The variables given in vehicle insurance data set.

Variables Type Range
Age category of policy holder categorical 1(youngest),2,3,4,5,6

Gender categorical male,female
Area of residence categorical A,B,C,D,E,F

Vehicle value numerical $0 - $350,000
Vehicle age categorical 1(new),2,3,4

vehicle body type categorical bus, convertible,coupe,hatchback,
hardtop,motorized caravan/combi, minibus,
panel van, roaster, sedan,station wagon
truck, utility

exposure numerical (0,1)
the number of claims categorical 1,2,3,4

claim size numerical $0 - $55922.13

variance function.

5.3.2 Madras Longitudinal Schizophrenia Study

This data set was used as an example in [23]. Schizophrenia is a psychiatric
disorder with symptoms of thought disorders. This study tracked positive and
negative psychiatric symptoms over the first year after initial hospitalization for
schizophrenia. To investigate the time pattern of the symptoms as well as age
and gender effects, we fit the GEE models. The presence of thought disorder,
which is a binary variable, is used as the response variable in the analysis. In
addition, three variables are used as the covariates:

(i) xmonth: duration since hospitalization (in months)

(ii) xage: age category of patient at the onset of symptom, defined as

xage =

{
1, if age < 20;
0, otherwise.
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Table 5.8: The covariates used in the model fitting.

covariates description
xvalue vehicle value: $0 - $350,000

xv.age1 = 1, if the vehicle age category is 1; = 0, otherwise
xv.age2 = 1, if the vehicle age category is 2; = 0, otherwise
xv.age4 = 1, if the vehicle age category is 4; = 0, otherwise

xexposure exposure: (0,1)
xgender gender: = 1, if female; = 0, otherwise

xage1 = 1, if the holder age category is 1; = 0, otherwise
xage2 = 1, if the holder age category is 2; = 0, otherwise
xage4 = 1, if the holder age category is 4; = 0, otherwise
xage5 = 1, if the holder age category is 5; = 0, otherwise
xage6 = 1, if the holder age category is 6; = 0, otherwise

xareaA = 1, if the residence area is A; = 0, otherwise
xareaB = 1, if the residence area is B; = 0, otherwise
xareaD = 1, if the residence area is D; = 0, otherwise
xareaE = 1, if the residence area is E; = 0, otherwise
xareaF = 1, if the residence area is F; = 0, otherwise

xbus = 1, if the vehicle body type is bus; = 0, otherwise
xconvt = 1, if the vehicle body type is convertible; = 0, otherwise
xcoupe = 1, if the vehicle body type is coupe; = 0, otherwise
xhback = 1, if the vehicle body type is hatchback; = 0, otherwise
xhdtop = 1, if the vehicle body type is hardtop; = 0, otherwise
xmcara = 1, if the vehicle body type is motorized caravan/combi;

= 0, otherwise
xmibus = 1, if the vehicle body type is minibus; = 0, otherwise
xpanvn = 1, if the vehicle body type is panel van; = 0, otherwise
xrdstr = 1, if the vehicle body type is roster; = 0, otherwise
xstnwg = 1, if the vehicle body type is station wagon; = 0, otherwise
xtruck = 1, if the vehicle body type is truck; = 0, otherwise

xute = 1, if the vehicle body type is utility; = 0, otherwise
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Table 5.9: Parameter estimates of regression coefficients with the sandwich standard errors (in
the parentheses) obtained from the GLMs, under different working variance functions, for the
vehicle insurance data with at least one claim. The ∗ represents rejection of the null hypothesis
H0 : β = 0 using the Wald test at the significance level 0.05.

κ = 1.2 κ = 1.5 κ = 1.8 κ = 2 κ = 3
β0 8.027(0.108) 8.011(0.109)∗ 7.996(0.110)∗ 7.986(0.110)∗ 7.942(0.113)∗

βvalue 0.037(0.032) 0.035(0.032) 0.034(0.033) 0.033(0.033) 0.032(0.033)
βexp -0.826(0.089)∗ -0.794(0.090)∗ -0.766(0.090)∗ -0.749(0.091)∗ -0.681(0.094)∗
βgender -0.173(0.050)∗ -0.162(0.050)∗ -0.152(0.050)∗ -0.147(0.050)∗ -0.127(0.050)∗
βv.age1 -0.104(0.082) -0.105(0.081) -0.106(0.081) -0.106(0.081) -0.108(0.079)
βv.age2 -0.031(0.068) -0.035(0.067) -0.038(0.067) -0.040(0.067) -0.040(0.066)
βv.age4 0.078(0.068) 0.078(0.068) 0.078(0.069) 0.078(0.069) 0.083(0.070)
βage1 0.261(0.083)∗ 0.249(0.085)∗ 0.239(0.086)∗ 0.234(0.088)∗ 0.213(0.093)∗
βage2 0.093(0.072) 0.093(0.072) 0.092(0.072) 0.092(0.072) 0.093(0.072)
βage4 0.024(0.070) 0.026(0.069) 0.029(0.069) 0.031(0.069) 0.043(0.068)
βage5 -0.078(0.086) -0.08(0.084) -0.081(0.082) -0.082(0.081) -0.093(0.076)
βage6 0.029(0.101) 0.021(0.100) 0.013(0.099) 0.008(0.098) -0.009(0.094)
βareaA -0.049(0.066) -0.048(0.066) -0.046(0.065) -0.045(0.065) -0.043(0.065)
βareaB -0.094(0.069) -0.094(0.068) -0.095(0.068) -0.097(0.067) -0.111(0.066)
βareaD -0.092(0.088) -0.097(0.087) -0.103(0.085) -0.108(0.085) -0.136(0.081)
βareaE 0.075(0.091) 0.072(0.092) 0.071(0.093) 0.070(0.094) 0.070(0.098)
βareaF 0.328(0.099)∗ 0.315(0.103)∗ 0.303(0.106)∗ 0.296(0.109)∗ 0.270(0.122)∗
βbus -0.362(0.609) -0.351(0.580) -0.343(0.555) -0.339(0.539) -0.330(0.471)
βconvt 0.136(0.900) 0.105(0.918) 0.071(0.931) 0.048(0.937) -0.077(0.917)
βcoupe 0.300(0.181) 0.290(0.188) 0.281(0.196) 0.275(0.201) 0.249(0.227)
βhback 0.125(0.065) 0.125(0.064) 0.124(0.064) 0.123(0.064) 0.119(0.063)
βhdtop 0.107(0.146) 0.095(0.148) 0.087(0.149) 0.082(0.150) 0.067(0.152)
βmcara -1.045(0.638) -1.023(0.550) -1.004(0.478)∗ -0.992(0.436)∗ -0.952(0.286)∗
βmibus 0.149(0.206) 0.139(0.208) 0.130(0.209) 0.125(0.209) 0.108(0.213)
βpanvn -0.831(1.765) -0.857(1.502) -0.884(1.275) -0.902(1.140) -1.010(0.626)
βrdstr -0.023(0.077) -0.023(0.077) -0.023(0.076) -0.023(0.076) -0.023(0.074)
βstnwg 0.245(0.144) 0.250(0.149) 0.256(0.154) 0.259(0.157) 0.283(0.178)
βtruck 0.083(0.110) 0.088(0.111) 0.092(0.112) 0.094(0.113) 0.110(0.117)
βute 0.359(0.227) 0.365(0.235) 0.375(0.245) 0.383(0.252) 0.445(0.307)
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Table 5.10: The IDC, p-values of the IR test (pIR), AIC and BIC obtained from the GLM models
with different working variance functions.

κ = 1.2 κ = 1.5 κ = 1.8 κ = 2 κ = 3
IDC 9.483 7.181 6.232 6.012∗ 7.437
pIR 0.042 0.526 0.879∗ 0.679 0.554

AIC 2.523E07 1.642E06 2.630E05 7.927E04 55.521∗
BIC 2.523E07 1.642E06 2.631E05 7.946E04 242.252∗

(iii) xgender: gender of patient, defined as

xgender =

{
1, if female;
0, if male.

Besides these three main effects, the interaction between variables xmonth and
xage, and the interaction between variables xmonth and xgender are also included in
the models.

We fit three GEE models with the same logistic link

logit(µi j) = β0 + βmonthxmonth,i j + βagexage,i j + βgenderxgender,i j

+βm.axmonth,i j ∗ xage,i j + βm.gxmonth,i j ∗ xgender,

where µi j = E(Yi j), under three different working correlation structures: inde-
pendence, exchangeable, and AR(1). The results are reported in Table 5.11. The
point estimates of the regression coefficients as well as the sandwich standard
errors vary substantially over these three working correlation structures. In ad-
dition, the model with AR(1) working correlation structure leads to the smallest
standard errors for all the coefficient estimates. Moreover, the baseline log odds
ratio of the presence of symptom is significantly larger than zero for the pa-
tients who were male and over 20 years old at the onset of symptom, under the
“independence” and “exchangeable” working correlation structures, but it is not
significantly different from 0 under the AR(1) working correlation structure.
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For each model, we calculate and compare the IDC, p-value obtained from
the IR statistic IRpool as well as the QIC and CIC, listed in Table 5.12. The results
show that the IDC, p-value of the IRpool and CIC all select AR(1) as the optimal
working correlation structure, which is consistent with the result in [43]. In ad-
dition, the QIC selects the independence working correlation structure, also the
same as their result. Note that GEE fitting is performed here using the geepack
library in R, but [43] used the yags library. Thus, the values of the QIC and CIC
here are slightly different from those in [43].

It is interesting to see that the differences in the magnitudes of the QIC and
CIC are substantially smaller than those of the IDC. In other words, the IDC
magnifies the discrepancy among different working correlation structures. In
addition, the p-values obtained from the IRpool are also sensitive to the difference
among different correlation structures.

Remark 5.4 In this data analysis, we did not check the adequacy of the mean
structure, in which other interactions (for example, three way interaction of age,
gender and month) may be also a significant factor. It may require further tests to
verify the mean structure, for example, using the QIF proposed by [68]. How-
ever, in order to compare our results with those in [43], we keep the same mean
structure used in their paper [43].

Among 186 subjects in this data set, 17 have missing observations, only par-
tial follow-up that ranges from 1 to 11 months. Regression analysis of drop-out
suggests that subjects whose current disease status is Yi j = 1 are at increased risk
to drop-out at time j+1 with odds ratio 1.76 and p-value 0.345. The potential as-
sociation between drop-out and the observed outcome data implies consideration
of an analysis that is valid if the drop-out mechanism is missing at random. See
[23]. However, GEE is valid only if the missing mechanism is missing com-
pletely at random. When missing data are missing at random, GEE is unable
to produce consistent estimates of the mean parameters because its estimating
equations are not unbiased. [71] proposed inverse probability weighted GEE

148



Table 5.11: Parameter estimates of regression coefficients with the sandwich standard errors (in
the parentheses) obtained from the GEE models under different working correlation structures,
for the Madras Longitudinal Schizophrenia data. The ∗ represents rejection of the null hypothesis
H0 : β = 0 using the Wald test at the significance level 0.05.

coefficients independence exchangeable AR(1)
β0 0.643(0.304)∗ 0.620(0.315)∗ 0.542(0.292)
βmonth -0.254(0.060)∗ -0.272(0.065)∗ -0.233(0.055)∗
βage 0.811(0.493) 1.059(0.547) 0.619(0.459)
βgender -0.388(0.449) -0.593(0.525) -0.130(0.420)
βm.a -0.137(0.094) -0.087(0.093) -0.096(0.084)
βm.g -0.113(0.096) -0.140(0.097) -0.157(0.088)

Table 5.12: The IDC, QIC, CIC and p-values of the IR test (pIR) obtained from the GEE models
under different working correlation structures.

independence exchangeable AR(1)
IDC 35.943 20.706 0.317
QIC 955.322 964.745 955.965
CIC 19.011 19.005 18.540
pIR 0.000 0.000 0.398

which yields unbiased estimating equations, and hence produce consistent pa-
rameter estimates. However, for the purpose of comparison with [43], we do not
consider the issue of missing data.
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Chapter 6

Summary and Future Work

6.1 Summary

As an important example of estimating equations, quasi-likelihood inference
is widely used to estimate parameters of interest in various statistical problems
where the investigators are uncertain about the complete probabilistic mecha-
nism by which the data are generated. Based on the assumptions on certain
aspects of the underlying probability distribution, typically on the first two mo-
ments, quasi-score equations for independent data or GEEs for correlated data
can be constructed. These estimating equations can provide consistent estima-
tors of the regression coefficients, and can obtain the same estimation efficiency
as the most efficient estimator if the mean and variance/covariance structures are
correctly specified. Thus, it is of importance to assess the adequacy of the as-
sumptions on the first two moments. Numerous tests have been suggested in the
literature to test for misspecification of the mean structure as well as to select
covariates that have significant effects on responses. But, so far in the litera-
ture there have been no systematic methods available to assess the validity of the
variance/covariance assumption.

In this thesis, we focus on the circumstances where the mean structure is cor-
rectly specified. It shows that misspecified variance/covariance structures lead
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to some discrepancy between the two forms of information matrix, the nega-
tive sensitivity matrix and the variability matrix. This discrepancy is equivalent
to that between the model-based and sandwich covariance matrix estimators.
Contrasting the two types of covariance matrix estimators, we construct the in-
formation ratio (IR) statistics that enable us to test for misspecification of vari-
ance/covariance structures, as well as to select the optimal variance/covariance
structure. Also, we propose the “information discrepancy criterion” (IDC) for
selecting the optimal variance/covariance structure, which gives a better perfor-
mance than the model selection procedure based on the IR test statistics. The
IDC essentially measures the loss in relative estimation efficiency in using a can-
didate variance/covariance structure compared to the true one.

For the IR tests, we have derived related asymptotic distributions, and car-
ried out intensive simulation experiments for a test for heteroscedasticity, a test
for overdispersion, and a test for misspecified variance functions and/or working
correlation structure in GEE. The numerical results have shown that the pro-
posed IR statistics give adequate performance under the null hypothesis. When
the statistics have poor performance due to a heavy right tail for small sample
size, a normalized χ2

ν approximation can make an improvement. The IR statis-
tics are considerably powerful to reject the null hypothesis, and more powerful
than the classic information matrix test proposed by [87]. Furthermore, the
performance of the IR tests is very consistent among different scenarios of al-
ternative hypotheses, because there is no need to model alternative hypotheses.
The pooled IR statistics usually perform the best, because their weights incorpo-
rate the overall influence from all the covariates. Moreover, in linear regression
models, the IR statistics corresponding to individual regression coefficients can
provide a powerful tool to detect responsible variables for heteroscedasticity.

We proposed two model selection procedures. One is based on a sequence of
IR tests. The simulation studies have shown that in the context of GEE, the IR
tests based criterion is more useful to select the true/optimal variance function
than to select the true/optimal correlation structure. The other selection criterion
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is an “information discrepancy criterion” (IDC), that measures the information
loss (difference) of a candidate variance/covariance structure relative to the true
one. In the two simulation studies considered, the IDC has a high detection
rate of the true variance function in compound Poisson models, and the true
correlation structure in GEE. Moreover, the IDC has better performance than the
criterion QIC proposed by [65] and the CIC proposed by [43] for selecting the
optimal correlation structure, especially for time-dependent covariates.

6.2 Future Work

Both of the IR tests and model selection approach based on the IDC have been
proposed under the assumption that the first moment of the underlying distribu-
tion is correctly specified. However, in some applications, the assumption of the
mean structure may be approximately correct, but with mild departure from the
true structure, for example, excluding an uninformative covariate, or misspeci-
fication of the link function. It is necessary to conduct further investigation on
the robustness of the IR tests and the IDC against minor misspecification of the
mean structure.

In the context of GEE, the regression coefficients are regarded as the pa-
rameter of main interest, and both the dispersion parameter and the correlation
parameters are treated as nuisance parameters. They are called GEE-1 in the
literature. [67] formalized the estimation of the parameters related to the vari-
ance/covariance structure, which leads to simultaneous inferences about the re-
gression and association parameters. See also [54]. They are referred to as
GEE-2 in [41]. In GEE-2, the asymptotic covariance matrix of the parameter es-
timators is available in an expanded form involving mean, dispersion and correla-
tion parameters. It would be straightforward to extend the proposed IR statistics
to the GEE-2 setting where we can test for any postulated variance/covariance
structures.
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Many selection information criteria describe the tradeoff between the com-
plexity and precision of the model. Among competing correlation structures in
GEE, exchangeable and AR(1) correlation structures both have only one correla-
tion parameter, but unstructured correlation matrices have (n2 − n)/2 correlation
parameters, where n is the number of repeated observations for a subject. It is
certain that an unstructured correlation structure provides a more complex and
flexible model of correlation, but on the other hand, it may cause overfitting that
affects the estimation efficiency. In the proposed criterion IDC, as well as the
CIC, no penalty on the number of correlation parameters estimated has been ac-
counted for. It is unfair to directly compare correlation structures with different
numbers of correlation parameters. A future work is to make a modification to
the IDC by penalizing the complexity of competing correlation structures.

GEE has been regarded as the most popular estimation method in the marginal
model for longitudinal data analysis. GEE may run into some difficulty occasion-
ally. For example, the estimates of the correlation parameter do not exist in some
cases of misspecification ( [18]). [68] proposed a method of quadratic inference
functions (QIF) which do not involve direct estimation of the correlation param-
eter, and that remains the optimal even if the working correlation structure is
misspecified. They suggested that the inverse of the working correlation matrix
can be represented by a linear combination of basis matrices. Moreover, this ap-
proach provides a χ2 inference function for testing nested models and a χ2 test
for the mean structure misspecification. However, like the GEE, QIF does not
provide a test for misspecified covariance structure. Tests for the second-moment
misspecification will help to improve the estimation efficiency of the QIF. Thus,
in the context of QIF, it is possible to establish procedures of testing for both
mean and covariance misspecification. In addition, the complexity of the candi-
date correlation structures can be characterized by the minimum number of the
basis matrices in the decomposition of the inverse of the working correlation ma-
trix. Then, a possible penalty term for the IDC may be related to the number of
the basis matrices. Some additional exploration is needed.
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APPENDICES

A.1. Proof of Lemma 4.1 and 4.2

In the context of GLM, since the Pearson residual vector can be approximated
by (4.4)

rP ' (In − H∗) εP,

the β j−1-specific Godambian estimator of the dispersion parameter σ2, for j =
1, · · · , p, can be approximated by

σ̃2
j−1 ' ε

T
P

(In − H∗) W( j−1)
∗ (In − H∗) εP,

following from the quadratic form (4.5) of the Godambian estimator. Here we
use the fact that ŵ( j−1)

i are consistent estimates of w( j−1)
i,∗ due to the consistency of

β̂n.

Under the null hypothesis H0 (4.1), the vector εP has mean 0 and covariance
matrix σ2In. Consider a general quadratic form Q(εP) = εT

P
AεP, where A is

an n × n symmetric matrix. By the eigen-decomposition, the matrix A can be
decomposed as

A = EΛET ,

where E is an orthogonal matrix and

Λ = diag {λ1, · · · , λn} ,
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where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the matrix A. Let ε = ETεP =

(ε1, · · · , εn)T be an n × 1 vector, which also has mean 0 and covariance matrix
σ2In, because E is an orthogonal matrix. The quadratic formQ(εP) can be written
as

Q(εP) = εTΛε =
n∑

k=1

λkε
2
k.

Then, the expectation of the quadratic form Q(εP) is given by

E
(
Q(εP)

)
= σ2

 n∑
k=1

λk

 .
Therefore, the β j−1-specific Godambian estimator (4.5) has expectation

E
(
σ̃2

j−1

)
' σ2

 n∑
k=1

λ
( j−1)
k,∗

 , j = 1, · · · , p,

where λ( j−1)
k,∗ are the eigenvalues of the matrix (In − H∗) W( j−1)

∗ (In − H∗). This
completes the proof of Lemma 4.1.

Similarly, in the context of GEE, the β j−1-specific Godambian estimator (4.12)
of the dispersion parameter σ2 can be approximated by

σ̃2
j−1 ' ε̃

T
{
(IN −H∗)W

( j−1)
∗ (IN −H∗)

}
ε̃,

from the approximation of the transformed residual vector (4.11) and the quadratic
form of the Godambian estimator (4.12). Under the null hypothesis H0 (4.2), the
vector ε̃ is multivariate distributed with mean 0 and covariance matrix σ2IN .
Then, the estimator σ̃2

j−1 has expectation as

E
(
σ̃2

j−1

)
'

 N∑
k=1

λ
( j−1)
k,∗

σ2,

where λ( j−1)
k,∗ are the eigenvalues of the matrix (IN −H∗)W

( j−1)
∗ (IN −H∗). This

completes the proof of Lemma 4.2.
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A.2. Proof of Theorem 4.1

In the context of GLM, the unbiased β j−1-specific Godambian estimator (4.6)
of σ2 can be rewritten as a quadratic form given by

σ̃2
j−1,u = rT

P
Ŵ

( j−1)
u rP.

The Pearson residual vector rP can be approximated by rP ' (In − H∗) εP given
by (4.4) for large sample size, where εP is an n-variate random vector with mean
0 and covariance matrix σ2Ω∗. Thus, for large sample size, the Godambian
estimator σ̃2

j−1,u can be approximated by a quadratic form,

σ̃2
j−1,u ' Q(εP) = εT

P

{
(In − H∗) W( j−1)

u,∗ (In − H∗)
}
εP, (6.1)

where W( j−1)
u,∗ is the matrix which substitutes the estimate β̂n in the matrix Ŵ

( j−1)
u

with the true value β∗, for j = 1, · · · , p. Note that because β̂n is a consistent
estimator, the matrix Ŵ

( j−1)
u may be approximated by W( j−1)

u,∗ for large sample
size. Let

C∗ = (In − H∗) W( j−1)
u,∗ (In − H∗) ,

which is an n × n symmetric matrix. Let λ( j−1)
k,∗ , k = 1, · · · , n, be the eigenvalues

of the matrix C∗. Note that
[
λ

( j−1)
k,∗

]h
, k = 1, · · · , n, are the eigenvalues of the

matrix Ch
∗, for h = 1, 2, · · · .

As discussed in Section 4.1.1, under the null hypothesis H0 (4.1), the matrix
Ω∗ = In, and consequently, the vector εP has mean 0 and covariance matrix σ2In.
In addition, under the null hypothesis H0, the expectation and variance of the
quadratic form Q(εP)/σ2 are

E
{
Q(εP)/σ2

}
=

n∑
k=1

λ
( j−1)
k,∗ = 1, (6.2)
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and

Var
{
Q(εP)/σ2

}
= 2

n∑
k=1

[
λ

( j−1)
k,∗

]2
. (6.3)

By the central limit theorem for quadratic forms discussed in [46], we have

Q(εP)/σ2 − E
{
Q(εP)/σ2

}
√

Var
{
Q(εP)/σ2} =

Q(εP)/σ2 − 1√
2
∑n

k=1

[
λ

( j−1)
k,∗

]2
→d N(0, 1) as n→ ∞,

under the null hypothesis H0. A necessary condition for the central limit theorem
is

max
{[
λ

( j−1)
k,∗

]2
}

∑n
k=1

[
λ

( j−1)
k,∗

]2 → 0 as n→ ∞,

because λ( j−1)
k,∗ = O(1/n), obtained from

∑n
k=1 λ

( j−1)
k,∗ = 1.

Let
Ĉ =

(
In − Ĥ

)
Ŵ

( j−1)
u

(
In − Ĥ

)
,

and let λ̂( j−1)
k , k = 1, · · · , n, be the eigenvalues of the matrix Ĉ. Note that this

matrix Ĉ can be regarded as a function of β̂n, and because the estimator β̂n is a
consistent estimator, it can be shown that

Ĉ →p C∗, as n→ ∞,

and consequently,
n∑

k=1

[̂
λ

( j−1)
k

]2
= tr

{
Ĉ2

}
→p

n∑
k=1

[
λ

( j−1)
k,∗

]2
= tr

{
C2
∗

}
, as n→ ∞,

i.e., √
2
∑n

k=1

[
λ

( j−1)
k,∗

]2√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
→p 1, as n→ ∞.
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Thus, by the Slutsky Theorem ( [8]),

Q(εP)/σ2 − 1√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
=
Q(εP)/σ2 − 1√
2
∑n

k=1

[
λ

( j−1)
k,∗

]2

√
2
∑n

k=1

[
λ

( j−1)
k,∗

]2√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
→d N(0, 1) as n→ ∞,

under the null hypothesis H0. Therefore, under the null hypothesis H0, as n→ ∞,
the standardized β j−1-specific information ratio statistic (4.21)

σ̃2
j−1,u/σ

2 − 1√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
→d N(0, 1), as n→ ∞,

for j = 1, · · · , p.

Similarly, the unbiased pooled Godambian estimator (4.15) of the dispersion
parameter can be approximated, for large sample size, by

σ̃2
pool,u ' ε

T
P

{
(In − H∗) Wpool

u,∗ (In − H∗)
}
εP, (6.4)

where Wpool
u,∗ is the matrix which substitutes the estimate β̂n in the matrix Ŵ

pool
u

with the true value β∗. Let λ̂pool
k be the eigenvalues of the matrix(
In − Ĥ

)
Ŵ

pool
u

(
In − Ĥ

)
.

Thus, the standardized pooled information ratio statistic (4.22)

σ̃2
pool,u/σ

2 − 1√
2
∑n

k=1

[̂
λ

pool
k

]2
→d N(0, 1), as n→ ∞,

under the null hypothesis H0 (4.1).

In the context of GEE, the unbiased β j−1-specific Godambian estimator of
the dispersion parameter can be written as a quadratic form in the transformed
residuals given in (4.13)

σ̃2
j−1,u = r̃T

Ŵ
( j−1)
u r̃.
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By the large-sample approximation of the transformed residuals given in (4.11)

r̃ ' (IN −H∗)̃ε,

the Godambian estimator σ̃2
j−1,u can be approximated, for large sample size, by

σ̃2
j−1,u ' ε̃

T (IN −H∗)W
( j−1)
u,∗ (IN −H∗)̃ε, (6.5)

where ε̃ is an N-variate random vector with mean 0 and covariance matrix σ2Ω∗.
Under the null hypothesis H0 (4.2), the matrix Ω∗ = IN . Let λ̂( j−1)

k be the eigen-
values of the matrix (IN − Ĥ)Ŵ( j−1)

u (IN − Ĥ). Then, the standardized β j−1-
specific information ratio statistic (4.23)

σ̃2
j−1,u/σ

2 − 1√
2
∑n

k=1

[̂
λ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞,

under the null hypothesis H0.

Similarly, the unbiased pooled Godambian estimator (4.15) of the dispersion
parameter can be approximated, for large sample size, by

σ̃2
pool,u ' ε̃

T (IN −H∗)W
pool
u,∗ (IN −H∗)̃ε. (6.6)

Let λ̂pool
k be the eigenvalues of the matrix (IN − Ĥ)Ŵpool

u (IN − Ĥ). Then, the
standardized pooled information ratio statistic (4.24)

σ̃2
pool,u/σ

2 − 1√
2
∑n

k=1

[̂
λ

pool
k

]2
d
−→

N(0, 1), as n→ ∞,

under the null hypothesis H0.

This completes the proof of Theorem 4.1.
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A.3. Proof of Theorem 4.2, 4.3 and 4.4

Let us firstly consider a general form of a ratio of two quadratic forms in
random variables. Suppose that a random vector ξ has mean 0 and covariance
matrix In. Let Q j, j = 1, 2, denote quadratic forms in random variables ξ, given
by

Q j = ξ
TA jξ, j = 1, 2.

Let µ
Q j

be the expectation of the quadratic form Q j, for j = 1, 2. Assume that Q j,
j = 1, 2 have approximately the same expectations, say

µ
Q j
' µ

Q
, j = 1, 2.

A Taylor expansion of the ratio Q1/Q2 about the point (µ
Q1
, µ
Q2

) is given by

Q1

Q2
=
µ
Q1

µ
Q2

+
µ
Q1

µ
Q2

Q1

µ
Q1

−
Q2

µ
Q2

 + op(||(Q1 − µQ1
,Q2 − µQ2

)||)

' 1 +
1
µ
Q

(Q1 − Q2) + op(||(Q1 − µQ1
,Q2 − µQ2

)||)

= 1 +
1
µ
Q

ξT (A1 −A2) ξ + op(||(Q1 − µQ1
,Q2 − µQ2

)||).

Let τk, k = 1, · · · , n be the eigenvalues of the matrix A1 − A2. By the central
limit theorem in [46], we get

Q1/Q2 − 1(√
2
∑n

k=1 τ
2
k

)
/µ

Q

→d N(0, 1), as n→ ∞.

In the context of GLM, for the β j−1-specific information ratio statistic, the
unbiased β j−1-specific Godambian estimator σ̃2

j−1,u can be approximated by a
quadratic form, for large sample size, given in (6.1)

σ̃2
j−1,u

σ2 ' Q1 =

(εP

σ

)T
C j−1

(εP

σ

)
,
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where C j−1 = (In − H∗) W( j−1)
u,∗ (In − H∗). And, the moment estimator of σ2 can

also be approximated, for large sample size, by

σ̂2
m

σ2 ' Q2 =

(εP

σ

)T
Cm

(εP

σ

)
,

where Cm =
1

n−p (In − H∗). Under the null hypothesis H0 (4.1), the vector εP/σ

has mean 0 and covariance matrix In for large sample size. Then, the expec-
tations, µ

Q1
and µ

Q2
, of these two quadratic forms Q1 and Q2 are approximately

the same, equal to 1. Let τ( j−1)
k,∗ , k = 1, · · · , n, be the eigenvalues of the matrix

C j−1 − Cm. Then, under the null hypothesis H0,

σ̃2
j−1,u/σ̂

2
m − 1√

2
∑n

k=1

[
τ

( j−1)
k,∗

]2
→d N(0, 1), as n→ ∞.

Let Ĉ j−1 =
(
In − Ĥ

)
Ŵ

( j−1)
u

(
In − Ĥ

)
and Ĉm =

1
n−p

(
In − Ĥ

)
. Let τ̂( j−1)

k be the
eigenvalues of the matrix

Ĉ j−1 − Ĉm =
(
In − Ĥ

) (
Ŵ

( j−1)
u −

1
n − p

In

) (
In − Ĥ

)
.

Note that the matrices Ĉ j−1 and Ĉm are functions of β̂n. Since β̂n is a consistent
estimator, then

Ĉ j−1 →p C j−1 and Ĉm →p Cm, as n→ ∞.

Consequently, as n→ ∞,
n∑

k=1

[̂
τ

( j−1)
k

]2
= tr

{(
Ĉ j−1 − Ĉm

)2
}
→p

n∑
k=1

[
τ

( j−1)
k,∗

]2
= tr

{(
C j−1 − Cm

)2
}
,

i.e., √
2
∑n

k=1

[
τ

( j−1)
k,∗

]2√
2
∑n

k=1

[̂
τ

( j−1)
k

]2
→p 1, as n→ ∞.
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Thus, by the Slutsky Theorem, the standardized β j−1-specific information ratio
statistic (4.25)

σ̃2
j−1,u/σ̂

2
m − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
=

σ̃2
j−1,u

σ2 /
σ̂2

m
σ2 − 1√

2
∑n

k=1

[
τ

( j−1)
k,∗

]2

√
2
∑n

k=1

[
τ

( j−1)
k,∗

]2√
2
∑n

k=1

[̂
τ

( j−1)
k

]2
→d N(0, 1), as n→ ∞,

under the null hypothesis H0.

Similarly, the unbiased pooled Godambian estimator can be approximated,
for large sample size, as given in (6.4), by

σ̃2
pool,u

σ2 ' Q1 =

(εP

σ

)T
Cpool

(εP

σ

)
,

where Cpool = (In − H∗) Wpool
u,∗ (In − H∗). Let Ĉpool =

(
In − Ĥ

)
Ŵ

pool
u

(
In − Ĥ

)
,

and let τ̂pool
k , k = 1, · · · , n, be the eigenvalues of the matrix

Ĉpool − Ĉm =
(
In − Ĥ

) (
Ŵ

pool
u −

1
n − p

In

) (
In − Ĥ

)
.

Then, the standardized pooled information ratio statistic (4.26)

σ̃2
pool,u/σ̂

2
m − 1√

2
∑n

k=1

[̂
τ

pool
k

]2
→d N(0, 1), as n→ ∞,

under the null hypothesis H0. This completes the proof of Theorem 4.2.

In the context of GEE, for j = 1, · · · , p, the unbiased β j−1-specific Godambian
estimator can be approximated, for large sample size, as given in (6.5), by

σ̃2
j−1,u

σ2 '

(
ε̃

σ

)T

C j−1

(
ε̃

σ

)
,
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where C j−1 = (IN −H∗)W
( j−1)
u,∗ (IN −H∗). The unbiased“Pearson” moment es-

timator (4.17) can also be approximated, for large sample size, by

σ̂2
m,u

σ2 '

(
ε̃

σ

)T

CP

(
ε̃

σ

)
,

where CP = (IN −H∗)
(
WP,∗/mP,∗

)
(IN −H∗), withWP,∗ and mP,∗ substituting the

estimators β̂K and ρ̂K in ŴP and mP with the limiting value β∗ and ρ∗.

Let Ĉ j−1 =
(
IN − Ĥ

)
Ŵ

( j−1)
u

(
IN − Ĥ

)
and ĈP =

(
IN − Ĥ

) (
ŴP/mP

) (
IN − Ĥ

)
.

Let τ̂( j−1)
k , k = 1, · · · , n, be the eigenvalues of the matrix

Ĉ j−1 − ĈP =
(
IN − Ĥ

) (
Ŵ

( j−1)
u − ŴP/mP

) (
IN − Ĥ

)
.

Then, under the null hypothesis H0 (4.2), the standardized β j−1-specific informa-
tion ratio statistic (4.27)

σ̃2
j−1,u/σ̂

2
m,u − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
→d N(0, 1), as n→ ∞.

The unbiased pooled Godambian estimator can be approximated, for large sam-
ple size, as given in (6.5), by

σ̃2
pool,u

σ2 '

(
ε̃

σ

)T

Cpool

(
ε̃

σ

)
,

whereCpool = (IN −H∗)W
pool
u,∗ (IN −H∗). Let Ĉpool =

(
IN − Ĥ

)
Ŵ

pool
u

(
IN − Ĥ

)
,

and let τ̂pool
k , k = 1, · · · , n, be the eigenvalues of the matrix

Ĉpool − ĈP =
(
IN − Ĥ

) (
Ŵ

pool
u − ŴP/mP

) (
IN − Ĥ

)
.

Then, under the null hypothesis H0 (4.2), the standardized pooled information
ratio statistics (4.28)

σ̃2
pool,u/σ

2 − 1√
2
∑n

k=1

[̂
τ

pool
k

]2
→d N(0, 1), as n→ ∞.
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This completes the proof of Theorem 4.3.

The “transformed” moment estimator (4.18) of the dispersion parameter can
be approximated, for large sample size, by

σ̂2
tr '

(
ε̃

σ

)T

Ctr

(
ε̃

σ

)
,

where Ctr =
1

N−p (IN −H∗). Let Ĉtr =
1

N−p

(
IN − Ĥ

)
, and let τ̂( j−1)

k , j = 1, · · · , p,
be the eigenvalues of the matrix

Ĉ j−1 − Ĉtr =
(
IN − Ĥ

) (
Ŵ

( j−1)
u −

1
N − p

IN

) (
IN − Ĥ

)
.

Under the null hypothesis H0 (4.2), the standardized β j−1-specific information
ratio statistic (4.29)

σ̃2
j−1,u/σ̂

2
tr − 1√

2
∑n

k=1

[̂
τ

( j−1)
k

]2
d
−→

N(0, 1), as n→ ∞.

Let τ̂pool
k be the eigenvalues of the matrix

Ĉpool − Ĉtr =
(
IN − Ĥ

) (
Ŵ

pool
u −

1
N − p

IN

) (
IN − Ĥ

)
.

Under the null hypothesis H0 (4.2), the standardized pooled information ratio
statistic (4.30)

σ̃2
pool,u/σ̂

2
tr − 1√

2
∑n

k=1

[̂
τ

pool
k

]2
d
−→

N(0, 1), as n→ ∞.

This completes the proof of Theorem 4.4.
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