
Sensitivity Enhancement of Near

Field Probes Using Negative

Materials

by

Muhammed Said Boybay

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Muhammed Said Boybay 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In the last decade, design and application of negative materials have been one of the

most interesting subjects in the electromagnetic research. The extraordinary properties of

double negative (DNG) and single negative (SNG) materials have been studied extensively

over this period. In this thesis, one of the unusual properties of negative materials, the

evanescent amplification, is used to improve the sensitivity of the near field probes.

The effect of placing DNG and SNG layers between the near field probes and the

targets are investigated theoretically. A sensitivity definition is introduced for evanescent

probes and it is shown using quantitative measures that the sensitivity can be increased

using DNG and SNG materials for a target in vacuum and for a buried target. The

electromagnetic loss of the negative materials and the mismatch between the material

properties of the host medium and DNG and SNG materials are studied. Using an un-

matched DNG layer or SNG layer enhances the sensitivity within an evanescent spectrum

range while a lossless and matched DNG layer improves the sensitivity of entire evanescent

spectrum.

The idea of using negative materials is implemented over conventional near field probes

by numerical experiments. Sensitivities of open-ended waveguides and open-ended coaxial

lines for a specific application are studied in the presence of negative materials. In the

case of precursor pitting detection on airplane bodies, the sensitivity of an open-ended

waveguide probe is increased by 35 times for a λ/10 sized cubic crack. It is also shown

that the negative material increases the quality of the image generated by the probe.

The sensitivity improvement is also verified for an open-ended coaxial line. A 11 times

improvement is achieved for a similar detection practice, with a λ/20 sized crack. The

effect of coaxial line size and the dielectric material on the sensitivity enhancement are

studied.

The improvement is studied theoretically and numerically for an electrically small

dipole. Theoretical studies show that when a small dipole is placed within a spherical shell

made of DNG materials, the antenna parameters of the dipole becomes more sensitive to

the position of a target placed outside the negative material shell. The field distribution

generated by a small dipole in a multilayered spherical medium is studied for this purpose.

Numerical analysis of a small dipole placed next to a planar DNG layer is presented. The

DNG layer increases the sensitivity of the dipole due to a λ/30 sized metallic target by

5.5 times.

To provide experimental verification, the sensitivity of an electrically small loop is

studied. SNG materials with a negative permeability around 1.25 GHz are designed
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using modified split ring resonators (MSRR). By using the effective parameters of the

designed structure, a sensitivity improvement of 10 times is achieved numerically. The

improvement is verified using fabricated MSRR structures. The sensitivity of the small

loop is enhanced by 9 times for a λ/12.2 sized metallic target. The sensitivity improve-

ments are achieved within the frequency band where the MSRR structures behave as a

µ-negative SNG material.
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Chapter 1

Introduction

1.1 Motivation

Noninvasive detection is a challenging research area with a wide range of applications

and solution techniques. The primary applications are material characterization, crack

detection on aluminum or steel bodies, land mine detection, defect tests in ICs, and

detection of biological anomalies. Although a good number of characterization techniques

have been proposed and are being used for these problems using electromagnetic waves,

acoustic waves, or chemical vapors, these techniques need to be improved, due to the high

false result rates (e.g. 15% in mammography) and difficulties in detecting small targets,

such as early stage tumor detection and anti personnel land mine detection [1–4].

Among the aforementioned characterization techniques, microwave near field detec-

tion has the potential of considerable improvements. The recently discovered evanescent

field amplification phenomenon [5] has the potential of altering classical understanding

of near field probes.

By sensing the electrical and magnetic properties of materials, the near field detection

technique provides information about the material composition of the sample under test

with a subwavelength resolution [6–12]. Generally an electrically small non-radiating tip

is used to generate evanescent fields with high spatial frequency [13]. When the evanescent

field experiences a change in the electrical properties of the medium, the field distribution

in the vicinity of the probe changes leading to a change in the reflection coefficient of the

probe.

Near-field probes have been implemented to detect precursor pitting on airplane bod-

ies [11], delamination in IC packages [14,15], fatigue cracks in stainless steel [16], charac-

terization of layered dielectrics [17], etc. Different probe geometries such as open-ended
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waveguides, open-ended coaxial lines, and microstrip resonator structures are used for

these applications. Spatial resolutions as low as λ/750000 have been achieved [18]. Dif-

ferent control mechanisms are proposed to increase the resolution [19–21].

In order to obtain higher resolutions, higher spatial frequencies are needed in the

evanescent spectrum generated by the probe. Since the evanescent fields with high spatial

frequencies decay fast, the near-field probe technique is limited to surface or near surface

detection schemes. In fact, the probe has to be very close to the sample (almost touching).

In Refs. [22, 23], it was shown that the evanescent field amplification property of single

negative (SNG) and double negative (DNG) metamaterials can increase the sensitivity

and the range of near field detectors. Furthermore, Ref. [23] showed that the sensitivity

does not necessarily increase monotonically with the DNG or SNG material thickness.

Methods for designing µ-negative and ε-negative metamaterials and the theory of

evanescent field amplification were presented in Refs. [5, 24, 25]. In Refs. [26, 27], ex-

perimental studies have been conducted to realize such materials, thus providing further

support of the theory. Evanescent field amplification was experimentally observed by plac-

ing SNG and DNG materials in a waveguide operating in the cutoff regime [28, 29]. In

addition, experimental studies for exploring the perfect lens phenomenon, which is a con-

sequence of evanescent field amplification, were presented using split ring resonators [30]

and transmission line structures [31–35]. The numerical simulation of the negative ma-

terials and their extraordinary properties were reported in the literature [36–40].

Although images of sources with subwavelength resolution have been studied theo-

retically and experimentally, study of the sensitivity improvement of near field probes

has not been reported. In this thesis, the effect of using double negative (DNG) and

single negative (SNG) materials on the sensitivity of the near field probes are presented.

Theoretical analysis have been conducted to establish a fundamental understanding of

using near field probes in conjunction with negative materials. Numerical and experi-

mental studies are conducted for specific probe types and specific applications to verify

the theoretical findings.

In the following sections of this chapter, a brief overview of theories and models

developed for the study of near field probes is presented. An introduction to negative

materials and the outline of the thesis are presented.
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1.2 Near Field Probe Theories

In order to present a background on the near field theories, some example studies and

discussions are presented in this section. The term near field covers both the microwave

regime and the optical regime since they are both governed by the Maxwell’s equations.

Although the theory and the underlying physics are very similar, there are some differ-

ences that are needed to be taken into account. The first difference is the change in

the material properties. The ε, µ and electromagnetic loss parameters for materials are

different in these two regimes. Therefore the operation frequency is scalable as long as

the proper material properties are used. Another difference is the homogeneity of the

medium. ε and µ of the materials are defined by assuming that the piece of material

in which the properties are studied is composed of too many atoms or molecules, and

these building blocks are much smaller than the operation wavelength. Therefore the mi-

crowave and optical theories are interchangeable as long as the medium is homogeneous.

In addition, the quantization of the energy is not considered in the electromagnetic theory.

An overview of related techniques and some recent studies are presented in the rest

of this section.

Fourier Transform

Analyzing the near field by decomposing to its fourier components first discussed in

Ref. [41]. The theory discussed in this study was developed for scanning tunneling

microscopy [42–44]. Consequently there are fundamental differences between this mi-

croscopy technique and the near field probe sensors. In Ref. [41], it is assumed that

the surface to be scanned is illuminated by an external source other than the near field

probe. Therefore this study solves the field distribution above a surface when the surface

is excited by an external source which is different than the operation principles of the

near field probes as described in Chapter 2. Although the solution presented in Ref. [41]

intends to solve a different problem, it is summarized in this section because of the use of

plane wave decomposition. In the approach presented in Chapter 2 of this thesis, plane

wave analysis is conducted. Therefore the Fourier transform study is mentioned in this

section.

As outlined in Ref. [45], the incident field (Ed(r, ω)) and the surface profile (Γ(x, y))

are represented by the Fourier transform as

Ed(r, ω) =
∫ ∫

dkxdkyFd(k, ω)eik·r (1.1)

Γ(x, y) =
∫ ∫

dkxdkyγ(kx, ky)ei(kxx+kyy). (1.2)
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By expressing the Fd(k, ω)eik·r term in Eq. 1.1 as a power series of Γ(x, y) and by assuming

that the surface profile function has a small amplitude, the fourier transform of the field

is approximated as

Fd(kx, ky, ω) = i(ε′ − ε)γ(kx − qx, ky − qy)A(kx, ky) ·E0(r, ω). (1.3)

qx and qy are the incident wave vector components and E0 is the field distribution when

Γ is zero. A is a linear transform and can be found in Ref. [45]. As a result, the field

distribution can be expressed in terms of the surface profile and the field distribution in

the case of a flat surface.

Perturbation Theory

The perturbation theory is used to calculate the frequency shift in a resonator due to

a small change in the material properties. By assuming that there is a change in the

permittivity and permeability with an unchanged geometry, the resonance frequency shift,

4fr, is calculated using [21,46,47]

4fr
fr

=

∫
v(4εE1 ·E0 +4µH1 ·H0)dv∫

v(ε0|E0|2 + µ0|H0|2)dv
(1.4)

where 4ε and 4µ are the change in the permittivity and permeability and v is the

perturbed volume. E0 and H0 are the field distributions without the perturbation and E1

and H1 are the field distributions with the perturbation. If the change in the permittivity

and permeability are small then the field distributions can be assumed unchanged and

the resonance frequency becomes [47]

4fr
fr

=

∫
v(4ε|E0|2 +4µ|H0|2)dv∫
v(ε0|E0|2 + µ0|H0|2)dv

. (1.5)

Note that this approach assumes that the permittivity and permeability of the entire

volume are perturbed by the same amount. On the other hand if the change in the

material properties is limited to a small part of the cavity, this approach can be used

only if the reflection between the perturbed region and unperturbed region is negligible.

Circuit Model

In order to quantify the data obtained from a microscope setup in terms of material prop-

erties, the interaction between the probe and the sample was studied in circuit element

terms. In Ref. [48], the near field probe was modeled by a small capacitor. The near field
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probe was assumed to be a sphere and the capacitance between a sphere and a metallic

plane was calculated as

C = 4πε0R0 sinhα
∞∑
n=2

1
sinhnα

. (1.6)

By defining R0 as the tip radius and g as the separation between the tip and the sample,

the other parameters in Eq. 1.6 were expressed as α = cosh−1(1 + a′) and a′ = g/R0.

Since the interaction between the probe and the surface is modeled by a circuit element,

the resonance frequency shift can be calculated as a function of the separation between

the tip and the sample.

In addition to the resonance frequency shift, in order to calculate the loss in the

conductive plane, the field distribution was calculated in the case of a sphere placed on

top of a conducting plane. The boundary conditions were satisfied by summing a series

of image charges. In addition, by using the image charges, the application was extended

to characterization of thin films in Ref. [49].

As a result, by using the quality factor of the resonator and the field strength on the

sample, the loss parameters can be calculated.

Small Dipole

A more accurate solution to a similar structure discussed in the previous part was pre-

sented in Ref. [50] in order to understand tip-sample interaction. The authors approx-

imated the tip as a sphere and calculated the field distribution between the probe and

the sample by assuming that there is a small dipole at the center of the sphere. The field

formulation presented in Ref. [51] for a dipole over an imperfect conductive plane was

used. The importance of this theory is the study of full electromagnetic field distribution.

On the other hand since the theoretical relation between the dipole strength and the tip

geometry was lacking in the original work, the effect of the tip size is not related to the

sensitivity of the probe.

Numerical Analysis

In addition to analytical solutions for specific structures, numerical analysis have been

widely used to analyze the probe-sample interaction. Some examples of numerical analysis

of small tips or waveguide probes can be found in [45, 52–54]. The common approach in

this technique is to obtain the field distribution by using a numerical tool and to use the

perturbation theory.
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1.3 Positive and Negative Materials

In this study, terms positive and negative materials refer to electrical and magnetic prop-

erties of the materials. Positive materials have both permittivity ε and permeability µ

larger than 0. Double negative (DNG) materials have both ε and µ negative. Finally

single negative (SNG) materials can be either ε negative or µ negative. Although some

metals behave as ε negative SNG materials at optical frequencies, there is no natural µ

negative SNG or DNG materials. µ negative SNG or DNG materials, however, can be

obtained by periodically structured artificial materials which are described as metamate-

rials.

The idea of materials having negative ε and µ simultaneously was introduced in 1968

by Vaselago, [55]. In his paper, Vaselago analyzed the behavior of propagating waves in

double negative (DNG) materials. He showed that the refractive index, n, of a DNG mate-

rial should be chosen negative, n = −√εµ, where ε and µ are the relative permittivity and

permeability of the medium. Using this negative refractive index, he demonstrated that

light bends differently at a boundary between a positive and a DNG material, compared

to the refraction at a boundary between two positive materials, as shown in Figure 1.1.

Due to the fact that DNG materials were not realizable until late 90s, scientists never

gave sufficient interest to the double negative phenomenon.

Figure 1.1: Ray refraction (a) for a positive-positive boundary and (b) for a positive-

negative boundary

In 2000, two major breakthroughs guided attentions of many scientists to the DNG
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materials. The first one was the experimental realization of the DNG materials using split

ring resonators [56], as discussed in Chapter 6. This invention was followed by Pendry’s

theoretical work showing evanescent field amplification and perfect lens [5] concepts.

Other than the different refraction characteristics and evanescent field amplification, DNG

materials exhibit some other extraordinary properties. The reversed Doppler effect and

reversed Cherenkov radiation are examples of these extraordinary properties.

Among the unusual properties of the negative materials, evanescent field amplification

is the main interest of this work. Although it has been shown that a perfect lens cannot

be manufactured using realistic DNG materials [57, 58], it was demonstrated that the

DNG materials amplify evanescent fields and superlensing effect is realizable [59–64]. An

analysis of the transmission characteristics of DNG slabs is presented in Appendix A

where the theoretical background of the evanescent field amplification is discussed.

1.4 Outline of the Thesis

This thesis consists of six chapters in addition to the Introduction. In Chapter 2, the

sensitivity of evanescent field probes is investigated theoretically in the presence of a

layer made of DNG and SNG materials. Chapters 3 and 4 present the application of

the sensitivity improvement to the open-ended waveguides and open-ended coaxial lines.

Chapter 5 presents the theoretical analysis of the sensitivity of an electrically small dipole

placed in a spherical DNG shell. The numerical analysis of small dipoles placed next

to a negative layer is also presented in this chapter. Chapter 6 presents experimental

validation of the sensitivity improvement. The sensitivity of an electrically small loop

is studied experimentally and numerically. Finally, in Chapter 7, the contributions and

possible potential research directions are summarized.
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Chapter 2

Theory of Evanescent Field

Probes with Metamaterials

2.1 Introduction

Evanescent field imaging is a powerful surface characterization technique and a promising

method for non-invasive subsurface imaging. The technique senses electrical and magnetic

properties of materials with subwavelength resolution. Resolution values as low as λ/106

[65] have been reported. The technique has been used on various materials, such as

biological samples [66], circuit boards [67] or semiconductor samples [12]. A more recent

application of the method for subsurface imaging focused on the detection of corrosion

precursor pitting [11]. However, due to the fast decay of evanescent fields, the technique

in Ref. [11] was limited to detection of targets buried under a layer of thin paint.

Since evanescent or near-field imaging has the capability to detect changes in the elec-

trical and magnetic properties of materials, it is a strong candidate to detect biological

anomalies, land mines and hidden or subsurface objects. A comparison between the pen-

etration characteristics of propagating and evanescent fields is presented in Appendix B.

In Ref. [68], it was shown that super-resolution images can be constructed in half space

problems if the evanescent field components are captured. For these diverse applications,

the common challenge is the sensitivity of the evanescent field probes.

Recent developments in the double negative (DNG) and single negative (SNG) meta-

materials offer a solution to these problems. By using the evanescent field amplification

property, DNG or SNG based superlenses can be used to improve the sensitivity and

range of the evanescent probe imaging methods.
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DNG materials have gathered the attention of many scientists and engineers since the

discovery of superlensing effect [5] and the physical realization of DNG materials [26].

Theoretical field calculations in DNG materials and transmission through a DNG lens

were reported in previous works [5, 62, 63]. In Ref. [69], the superlensing effect was

combined with the nonlinear inverse scattering algorithms and was used for achieving

subwavelength resolution images. Since DNG materials are dispersive and lossy, there

are practical limitations on the superlensing effect [58]. The nature of DNG materials

makes it impossible to have a perfect lens, whereas the superlensing effect, which refers to

the subwavelength resolution capabilities of such lenses by evanescent field amplification,

can be realized under less severe conditions.

Numerical methods using the finite difference time domain (FDTD) [70,71] and finite

element methods (FEM) [72, 73] were implemented to simulate DNG materials. The

evanescent field amplification and superlensing effect were demonstrated numerically.

Experimental verifications of these extraordinary behaviors were achieved by using two

dimensional transmission lines grids loaded with circuit elements [31] and split ring res-

onator structures [28,30] for DNG materials, and by using silver superlenses [74] for SNG

materials.

Although the theory of the evanescent field imaging using DNG materials, in the

context of superlensing, is well developed, its application to evanescent probe imaging

has not been fully explored since the previous studies focused on detecting the evanescent

spectrum emanating from an object [5,75]. An evanescent (or near-field) probe, in essence,

operates by measuring the energy change in the surroundings of the probe tip. The

objectives of this chapter are to take a different look at near field probes and to study

the following aspects:

• To develop a model for near field probes based on multilayer structures.

• To develop a measure of sensitivity for the above model.

• To introduce the DNG and SNG layers to the model and to study the effect on the

sensitivity.

• To verify the theoretical calculations with numerical simulations.

In Section 2.2, formulation of evanescent fields and comparison between propagating

and evanescent fields are presented. In Section 2.3, independent of the probe media, a

definition for sensitivity based on the electric and magnetic energy stored in the vicinity
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of the probe is introduced. In Section 2.4, theoretical calculations of the sensitivity ap-

plied to a theoretical probe acting on multi-layered media and targets are presented, and

sensitivity enhancement is shown when using DNG and SNG lenses. In Sections 2.5 and

2.6, numerical simulation results for test cases are presented. Conclusions are presented

in Section 2.7.

2.2 Formulation of Evanescent Fields

Electromagnetic fields have to satisfy Maxwell’s Equations. Maxwell’s Equations for a

non-dispersive and isotropic medium are given as

∇ ·E(t) =
ρ

ε
(2.1)

∇ ·H(t) = 0 (2.2)

∇×E(t) = −µ∂H(t)
∂t

(2.3)

∇×H(t) = J(t) + ε
∂E(t)
∂t

(2.4)

where, E is the electric field, H is the magnetic field, J is the current density, ρ is the

electric charge density, ε is the permittivity of the medium and µ is the permeability

of the medium. If ejωt is chosen as the time dependence, the phasor forms of Maxwell

Equations become

∇ ·E =
ρ

ε
(2.5)

∇ ·H = 0 (2.6)

∇×E = −jωµH (2.7)

∇×H = J + jωεE (2.8)

where ω is the angular frequency. Throughout this thesis, field and current expressions

refer to these phasor notations, unless otherwise stated. Using these equations, the vector

Helmholtz Equations in a medium without any free current source can be found as

∇2E + k2E = 0 (2.9)

∇2H + k2H = 0 (2.10)

where k is given as

k = ω
√
µε. (2.11)

Evanescent fields propagate in one direction while decaying in another. In order to

describe and analyze evanescent fields, the solutions of Eqs. 2.9 and 2.10 for E-waves and

10



for H-waves are needed. The general solution for an H-wave with ŷ polarized E-field can

be found as

E = ŷE0e
−jk·r (2.12)

H = (ẑkx − x̂kz)
E0

µω
e−jk·r (2.13)

and the solution for an E-wave with ŷ polarized H-field is

H = ŷH0e
−jk·r (2.14)

E = (x̂kz − ẑkx)
H0

εω
e−jk·r (2.15)

where E0 and H0 are the E-field and the H-field amplitudes, respectively. k and r vectors

are given as

k = x̂kx + ẑkz (2.16)

r = x̂x + ŷy + ẑz (2.17)

and the dispersion relation is

|k|2 = k2
x + k2

z = ω2µε. (2.18)

In a lossless medium, if the wave has real k components, which corresponds to having

real kx and kz for the fields described above, then the wave is called a propagating wave.

This type of waves have a constant field amplitude over a phase front. Furthermore, the

field strength does not change from one phase front to another as shown in Fig. 2.1. Now

assume that the wave has a kx component greater than |k| = ω
√
µε, then using dispersion

relation, Eq. 2.18,

k2
z = ω2µε− k2

x (2.19)

⇒ kz = ±j
√
k2
x − ω2µε (2.20)

can be found. The waves that can be expressed in an arbitrary cartesian coordinate

system with a k composed of a purely imaginary component and a purely real component

are called evanescent fields. If the phase propagation is assumed in x̂ and imaginary k

component is assumed in the ẑ direction, the E-field in Eq. 2.13 becomes

E = ŷE0e
−jkzze−jkxx (2.21)

E = ŷE0e
±
√
k2

x−ω2µεze−jkxx. (2.22)

The sign of Eq. 2.20 is chosen according to boundary conditions of the structure. If

the medium has positive permittivity and permeability, the field has a decaying amplitude
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Figure 2.1: Comparison of a propagating wave in ẑ direction and an evanescent field

decaying in ẑ direction.

as the observation point moves away from the source. Definitions of the evanescent and

propagating waves are specific for time harmonic fields and they are defined for cartesian

coordinates. On the other hand, spherical and cylindrical coordinates do not have the

classification of evanescent and propagating fields. However, fields described in spherical

and cylindrical coordinate systems can be transformed to the cartesian coordinates [76]

and they can be expressed as a summation of propagating and evanescent plane waves.

Analyzing phase fronts of propagating and evanescent fields is helpful in order to

understand the difference between these two types of fields. Fig. 2.1 shows the phase

fronts of a propagating wave with k = ẑkz and an evanescent wave as described in

Eq. 2.22. Counter to the propagating waves, the phase front of an evanescent field does

not have a constant amplitude distribution. Within a phase front, the amplitude decays

as the observation point moves away from the source. This is the major difference between

a propagating and an evanescent wave. On the other hand, all phase fronts are identical

for both evanescent and propagating waves.

Although evanescent waves have decaying amplitudes, these waves do not dissipate

energy as long as the medium is lossless. This is because the amplitude distribution does

not change from one phase front to another and the power flow is in the direction of phase

propagation. Thus, the sign selection in Eq. 2.20 is not a result of energy conservation,

but is a result of the fact that if evanescent fields do not decay, radiating systems cannot
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reach steady state.

The power flow for evanescent fields can be found using the Poynting vector, S =

E×H∗. The time averaged power density is given by

I =
1
2
Re{S}. (2.23)

For a wave described in Eq. 2.22, the power flow becomes

I = x̂
kxE

2
0

ηk
e∓2
√
k2

x−k2z, (2.24)

where the wave impedance is defined as η = µ
ε . Eq. 2.24 shows that the power flow is in

x̂ direction and the amplitude decay is in ẑ direction, so there is no power dissipation.

2.3 Quantification of Sensitivity

2.3.1 Sensitivity

Evanescent probe detectors measure the evanescent field energy stored in the surrounding

of the radiator tip. Any antenna, or any radiating system, can be modeled by a simple

lumped circuit with passive elements if the system is linear. A load connected to a

transmission line can be modeled as an impedance, Z = R + jX. The real part of the

impedance, R, corresponds to the radiated propagating power and the loss of the system.

The reactance, X, is related to the stored energy. Fig. 2.2 shows a depiction of the probe

(which is assumed here without loss of generalization as a cavity with a thin wire, or

tip, extending out of it). Also shown in Fig. 2.2 a transmission line model of the probe.

Placing a target in the proximity of the probe is analogous to altering the terminal load of

the transmission line, say from R+ jX to R′+ jX ′. A change in the terminal load would

then affect the reflection coefficient which is represented by the scattering parameter S11

(see Fig. 2.2(c)). The change in the reflection coefficient (frequency shift, magnitude shift,

or both) reflects a change in the resonant frequency of the probe due to the presence of

the target. Therefore a target can be detected easier if it leads to a higher change in the

reactance.

Since the change in reactance that the probe reacts to is in essence a distributed load,

the load is considered to be the entire volume surrounding the tip of the probe, or more

precisely, the entire volume where the field distribution is nonzero. Next, the resistance

and the reactance of the terminal load are expressed in terms of the total fields in the
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Figure 2.2: A generic probe is depicted by a cavity with a thin wire or tip coming out

of it (a). The probe is modeled as a transmission line with a certain terminal impedance

(b). A probe encountering a target is analogous to changing the terminal impedance of

the transmission line, thus leading to a shift in S11 (c).
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Figure 2.3: The three components representing a generic probe: The resonator, the

interface with the material to be interrogated (the interface is represented here as a short

transmission line) and the probe medium which is a volume containing all the electric

and magnetic energies excited by the resonator in the presence of the target medium.

vicinity of the probe. The resistance and the reactance can be expressed as [77]

R =
1
|Ii|2

[
Re
{∫

V
(J∗ ·E)dv

}
+ 2

∮
A

(S · n)da +4ωIm
{∫

V
(uh − ue)dv

}]
(2.25)

X =
1
|Ii|2

[
4ωRe

{∫
V

(uh − ue)dv
}
−Im

{∫
V

(J∗ ·E)dv
}]

(2.26)

where J is the current density, E is the electric field, and uh and ue are the energy

densities due to the magnetic and electric fields, respectively, in the volume V . S is the

Poynting vector on the surface that encloses V and n is the normal vector of the surface

pointing out of V as shown in Fig. 2.3. Ii is the current passing through the load, Z.

The first term of Eq. (2.25) and the second term of Eq. (2.26) are due to the conductive

losses and they are equal to zero for a lossless medium. The (uh − ue) difference is equal

to zero for a propagating plane wave and it is purely real for an evanescent plane wave in

a lossless medium. The second term in Eq. (2.25) is the power radiated from the surface

A and is negligible for near-field probes. For a propagating wave in a lossless medium

Eq. (2.25) reduces to the second term and Eq. (2.26) is equal to zero. For an evanescent

wave, however, the first term in Eq. (2.26) is the only parameter that contributes to the

impedance.

Therefore the sensitivity can be defined as the deviation of the ratio of difference

between total H and E field energies in the presence of the target to the total energy

without the target:

Sensitivity = 1−
(Uh − Ue)with target

(Uh − Ue)without target
, (2.27)

where

Uh,e =
∫
V
uh,edv. (2.28)
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According to the definition proposed in Eq. (2.27), the deviation from zero, which can only

take place if a target is present, is a measure of higher sensitivity. From this sensitivity

definition, it is not intuitive that the amplification of evanescent fields, as a consequence

of using a superlens, would lead to increased probe sensitivity. This sensitivity definition

(i.e., Eq. (2.27)), as will be shown below, is not intended to quantify the sensitivity for

specific targets but rather to be used as a tool or a measure to investigate the potential

of near-field probes when used in conjunction with DNG media, SNG media, or, in fact,

with any media in general.

2.3.2 Probe-Target Model using Plane Waves

Unlike earlier works where the near-field (or evanescent field) probes were modeled using

lumped elements, in this work, a novel field model for the probe-target interaction is

presented. This model is developed by using multi-layer media to represent the target and

its media. While, in theory, there is always small radiation coming out of the resonator

used in near-field imaging, the magnitude of these propagating field components are small

enough to warrant their exclusion from our model. Therefore, the energy coming from

the resonator is represented as evanescent plane waves. Since all time-harmonic fields

can be expressed as a superposition of plane waves [76], the evanescent spectrum can

be analyzed using the following formulation and the over all response of a probe is a

combination of the responses of plane waves present in its spectrum.

In general, the target to be detected is embedded inside some target medium. Usually

the target is electrically-small and is of finite size. However, for the purpose of developing

our probe-target model, a target which is a single layer, occupying the space Z3 < z < Z4,

as shown in Fig. 2.4 will be considered. Furthermore, the target can be backed by a multi-

layer medium. Therefore, in order to provide flexibility in the number of layers that

correspond to the complexity of the structure, the fields are calculated for an arbitrary

n number of boundaries. The coefficients are defined in a way that the solution can be

calculated recursively.

In most practical applications, such as the examples presented later in this disserta-

tion, the target is not an infinite layer but rather localized in space. However, irrespective

of the nature of the target, when it is interrogated with an evanescent field, a spectrum

of traveling and evanescent plane waves are generated. In either case, whether the target

is localized or not, an evanescent spectrum is generated. Therefore, it is purely for the

purpose of developing a succinct mathematical theory for sensitivity enhancement that

the infinite layer target is considered.
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Figure 2.4: The probe and target interaction is modeled by a plane wave in a multilayered

structure. The incident field is assumed to be excited at Z1, which represents the probe

location. The last region is assumed to be an infinite half space.

Assuming a time-harmonic incident field in the left-hand half space in the form of

E = ŷej(kxx+kz,1z), (2.29)

the field distribution can be found using the boundary conditions assuming that the first

and last regions are infinite half spaces [78]. On the mth boundary, the transmission

and reflection coefficients are defined as tm and rm, respectively. Evanescent plane waves

are defined using their k components parallel to the interfaces between the layers since

this component does not change from one layer to another. When there is an incident

wave with a parallel k component of kx and an E-field in ŷ direction, transmission and

reflection coefficients defined in Fig. 2.5 can be found as

tm =
2kz,mµm+1e

jkz,mzm

(kz,mµm+1 + kz,m+1µm)ejkz,m+1zm + rm+1(kz,mµm+1 − kz,m+1µm)e−jkz,m+1zm

(2.30)

rm = tm(
ejkz,m+1zm + rm+1e

−jkz,m+1zm

e−jkz,mzm
)− e2jkz,mzm (2.31)

for 1 ≤ m ≤ n− 1, and

tn=
2kz,nµn+1e

j(kz,n−kz,n+1)zn

(kz,nµn+1 + kz,n+1µn)
(2.32)

rn=tnej(kz,n+kz,n+1)zn − e2jkz,nzn (2.33)
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Figure 2.5: The general multilayer structure used for the field and energy calculations.

The first and last regions are infinite half spaces.

where the dispersion relation is given as

k2
z,m = ω2εmµm − k2

x. (2.34)

Consequently the E and H fields become

Em = ŷ
m−1∏
l=1

tl(ejkz,mz + rme
−jkz,mz) (2.35)

Hm =ẑ
kx
ωµm

m−1∏
l=1

tl(ejkz,mz + rme
−jkz,mz)−

x̂
kz,m
ωµm

m−1∏
l=1

tl(ejkz,mz − rme−jkz,mz) (2.36)

for 1 ≤ m ≤ n, and for the last half space

En+1=ŷ
n∏
l=1

tle
jkz,mz (2.37)

Hn+1=
(ẑkx − x̂kz,n)

ωµn

n∏
l=1

tle
jkz,mz (2.38)

2.3.3 Near-Field Probe Employing Double Negative Media

Double negative media (DNG) has two primary features: First, it allows for phase prop-

agation in opposite direction to that of the direction of energy propagation (k vector and

Poynting vector S are 180o out of phase). The second important feature is the amplifica-

tion of evanescent field magnitude. Both features have been used with much excitement

in the past to reproduce the image of a source [30,31,74]. The second feature, namely the

amplification of evanescent fields, is clearly relevant to the field of near-field microscopy.
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Figure 2.6: A DNG slab is inserted between the target medium and the field excitation

What remains uncertain, however, is whether evanescent field enhancement translates

into increased probe sensitivity in the sense defined in Eq. (2.27).

To this end, the field solutions developed above which are valid for propagating and

evanescent plane waves are considered. A DNG medium between the probe tip and the

target medium, as shown in Fig. 2.6 is inserted. For a DNG layer, the sign of kz,m must

be selected the opposite of the sign in the case of a positive medium (for a good discussion

on the compatibility between the mathematics and physics of DNG media, the reader is

referred to Refs. [62] and [63]).

The energy and sensitivity are calculated using field distributions. For the energy cal-

culations, the DNG layer is represented as a dispersive medium. Thus, frequency depen-

dence of permittivity of the DNG medium is assumed to be the same as the permittivity

function of a metal around its plasma frequency, which is a commonly used model for

DNG medium simulations. The frequency dependent permittivity and permeability are

given as

ε(ω) = ε0

(
1−

ω2
p

ω(ω − jΓe)

)
(2.39)

µ(ω) = µ0

(
1−

ω2
p

ω(ω − jΓm)

)
, (2.40)

where ωp is the plasma frequency and Γe and Γm represent the loss of the DNG medium

[79].

For the lossless case, energy densities of the E and H fields for a linear medium can
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be found as [77]

ue =
1
2
∂(ωε(ω))

∂ω
|E|2 (2.41)

uh =
1
2
∂(ωµ(ω))

∂ω
|H|2. (2.42)

For a lossless plasma at ω = ωp√
2

the effective relative permittivity is equal to -1. Therefore

∂(ωε(ω))
∂ω ω=

ωp√
2

= 3ε0. (2.43)

Similarly the derivative term in the H field energy density is equal to 3µ0.

If there are n number of boundaries, the total E field energy in the mth slab, defined

by zm−1 ≤ z ≤ zm, can be written as

Ue,m =
m−1∏
l=1

t2l
∂(ωε(ω))

∂ω
×[

rm(zm − zm−1) +
e2jkz,mzm − e2jkz,mzm−1

4jkz,m
+
r2
m(e−2jkz,mzm−1 − e−2jkz,mzm)

4jkz,m

]
.

(2.44)

Eq. (2.44) is valid for 1 ≤ m ≤ n. Finally for the last half space region, assuming a

positive and non dispersive medium, the energy becomes

Ue,n+1 = −
n∏
l=1

t2l
ε(n+1)e

2jkz,(n+1)zn

4jkz,(n+1)
. (2.45)

The energy due to the x̂ component of the H field is

Uhx,m =
m−1∏
l=1

t2l
∂(ωµ(ω))

∂ω

(
kz,m
ωµm

)2

×[
−rm(zm − zm−1) +

e2jkz,mzm − e2jkz,mzm−1

4jkz,m
+
r2
m(e−2jkz,mzm−1 − e−2jkz,mzm)

4jkz,m

]
(2.46)

for 1 ≤ m ≤ n and

Uhx,n+1 = −
n∏
l=1

t2l

(
kz,(n+1)

ω

)2
e2jkz,(n+1)zn

4jµ(n+1)kz,(n+1)
. (2.47)

The energy due to the ẑ component of the H field is

Uhz,m =
∂(ωµ(ω))

∂ω

(
∂(ωε(ω))

∂ω

)−1( kx
ωµm

)2

Ue,m. (2.48)
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Energy Calculation in Dispersive and Lossy Media

For a lossy, dispersive medium, Eqs. (2.41) and (2.42) are not valid [80]. By simplifying

the general solution presented in Ref. [80] for a time harmonic field in a Drude medium,

the E field energy density can be found as [81]

ue =
1
2
ε0

(
1 +

ω2
p

ω2 + Γ2
e

)
|E|2. (2.49)

Therefore replacing the ∂(ωε(ω))
∂w term in Eq. 2.44, by ε0(1 + ω2

p

ω2+Γ2
e
) yields the energy

equations that is compatible with the lossy cases. Similarly the H field energy density

can be found as

uh =
1
2
µ0

(
1 +

ω2
p

ω2 + Γ2
m

)
|H|2. (2.50)

2.4 Theoretical Results

In this section, the sensitivity as defined in Eq. (3) for different media and target config-

urations is calculated. Differences in the transmission characteristics of DNG and SNG

layers followed by the sensitivity improvement analysis are presented. The sensitivity dis-

cussion is focused on the changes in the sensitivity as a result of using lossless and lossy

matched DNG lenses, and then the effects of using SNG and unmatched DNG lenses are

discussed. The term matched refers to the case when the permittivity (ε′) and perme-

ability (µ′) of the DNG lens is equal to the negative of permittivity (ε) and permeability

(µ) of the next layer, respectively.

2.4.1 Comparison of Transmission Characteristics

Since the matched condition satisfies ε′µ′ = εµ, k′z = kz is also satisfied. As a result

the reflection coefficient reduces to 0 and the transmission coefficient reduces to ejkza.

Therefore the DNG layer amplifies the evanescent fields with an amplification constant

equal kz. As a result the DNG layer amplifies the whole evanescent spectrum with a well

defined exponential function.

In the case of an unmatched DNG layer, the condition k′z = kz is not satisfied anymore.

Therefore the transmission coefficient is not reduced to a simple exponential function.

Furthermore, the reflection and transmission coefficients have a singularity when the

condition

e−jk
′
za =

(kzε′ + k′zε)
2

(kzε′ − k′zε)2
(2.51)
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Figure 2.7: The transmission coefficient as a function of normalized parallel k compo-

nent. The layer thickness is λ/200. ε = −1 is the matched case with the exponential

amplification is observed. When the layer is not matched, a singularity is observed in the

transmission.

is satisfied. Note that this condition cannot be satisfied when the layer is a double positive

material or when the incident field is not an evanescent field.

Fig. 2.7 shows the transmission coefficient as a function of the normalized parallel k

component for different ε′ values. The thickness of the layer is λ/200. When the layer

is matched, the response is an exponential function. When the layer is not matched,

the transmission singularities are observed. As the mismatch is increased the singularity

location is shifted to lower kx values. The amplification characteristic of unmatched layers

can be analyzed in three regions. The first region is before the singularity location, where

the amplification is very close to the matched case. In the second region, around the

singularity, the amplification much higher compared to the matched case. And finally in

the third region, far from the singularity, the amplification is not as high as the matched

case. Therefore the unmatched layers do not amplify the entire evanescent spectrum.

Amplification is limited by the singularity location.

Fig. 2.8 shows the case with a λ/100 thick DNG layer. The amplification of the

matched layer is increased as expected. The singularity locations of the unmatched DNG

layers are shifted towards lower kx values. Therefore thicker unmatched DNG layers

amplifies a smaller portion of the evanescent spectrum.
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Figure 2.8: The transmission coefficient as a function of normalized parallel k component.

The layer thickness is λ/100. Compared to Fig. 2.7, where the thickness is smaller, the

amplification is increased and the singularities are shifted towards lower kx values.

Eq. (4.2) shows that in order to have a singularity, a negative permeability is not

essential for a TM wave. A TM wave incident on an SNG layer with a negative permit-

tivity can experience the singularity. Therefore SNG layers can amplify the evanescent

fields. The difference between an unmatched DNG layer and an SNG layer is that the

unmatched DNG layers can amplify both TE and TM waves. On the other hand, SNG

layers with a negative permittivity can only amplify the TM waves and SNG layers with

a negative permeability can only amplify the TE waves. Fig. 2.9 shows the transmission

through a λ/50 thick layer. An SNG layer with ε = −1 follows a very similar amplifi-

cation characteristics as a matched DNG layer up to a kx value of 65k0. Similar to the

unmatched DNG layer case, as the permittivity deviates from -1, the singularity location

shifts to lower kx values, and the amplified evanescent spectrum gets smaller.

2.4.2 Effect of Matched DNG Lens without Loss

In the first configuration to be analyzed, the target medium will be considered as vacuum.

The angular wavenumber of the material with the largest εµ product is defined as kmax.

In order for the field to have evanescent behavior in all regions, the incident wave must

have kx > kmax. Without loss of generality, a nonmagnetic target with a thickness of
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Figure 2.9: The transmission coefficient through a matched DNG layer and different SNG

layers as a function of normalized parallel k component. The layer thickness is λ/50.

t = λ0/75, where λ0 is the wavelength in free space, and a relative permittivity of 6 is

considered. The input is an evanescent plane wave with a kx = 1.5kmax.

The DNG lens is matched to the free space with relative permittivity and permeabil-

ity equal to -1 since this amplifies the whole evanescent spectrum with a well defined

exponential function. The lens is assumed to be lossless. (There is no reflection at the

boundary between a DNG lens and a positive medium if they are matched.)

Fig. 2.10 shows the sensitivity for different DNG thicknesses. The sensitivity is plotted

as a function of the lens-to-target distance, which is represented in terms of t. Throughout

this section, the lens-to-target distance is defined as the distance |Z3−Z5| (see Fig. 2.6).

Clearly seen is that the thicker the DNG lens, the higher the sensitivity; however, what

is interesting is that there is a minimum DNG thickness required to achieve a sensitivity

improvement. For example, as can be seen from Fig. 2.10, a DNG lens with a thickness

of t does not improve the sensitivity. In fact, it turns out that a DNG thickness greater

than 1.4t is needed for this particular configuration (target thickness of t = λ0/75 and

εr=6).

The reason for the minimum DNG thickness requirement can be explained as follows.

When a target interacts with the evanescent field, there are two mechanisms that affect the

E and H field energies. The first mechanism is due to the permittivity and permeability
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Figure 2.10: Sensitivity as a function of lens-to-target distance, for DNG thicknesses of

t, 2t, 3t and 4t (t = λ0/75). As the DNG thickness is increased, the sensitivity increases.

The nonmagnetic target is t thick with εr of 6.

changes of the probe medium as a consequence of the presence of the target. For an

evanescent TE wave in a dielectric medium, the difference of the E and H field energy

densities is calculated as

uh − ue =
|kz|2

ω2µ
|E|2 (2.52)

As the permittivity is increased, |kz| is reduced to maintain a constant kx. From Eq. (2.52),

the reduction in |kz| leads to a reduction in the energy difference when there is a target

with a higher permittivity compared to the surrounding medium. As a consequence, the

second term in the sensitivity definition (Eq. (2.27)) deviates further from unity. (Similar

conclusion applies when the target has a permittivity lower than the target medium.)

The second mechanism is the energy change due to the reflection from the target. This

mechanism increases the energy difference since it produces a reflected field with |uh−ue|
greater than zero. When there is no DNG layer, the reflected field energies are small

since the field is decaying and the dominant mechanism is the first mechanism. On the

other hand when there is a thick enough DNG layer, the reflected field is amplified and

the second mechanism becomes more dominant. This behavior is presented in Fig. 2.11

where (Um−Ue)with target

(Um−Ue)without target
ratio is plotted as a function of the lens-to-target distance.

Next, the sensitivity behavior as a function of kx is considered. The sensitivity be-
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Figure 2.11: The H field and E field energy differences normalized by the difference

without any target, (Um−Ue)with target

(Um−Ue)without target
, plotted as a function of the lens-to-target distance

t. When there is no DNG layer the target reduces the difference. On the other hand when

there is a DNG layer the target increases the difference.
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Figure 2.12: The sensitivity as a function of normalized kx. The inset shows that sen-

sitivities of the fields with higher kx values experience better enhancements. Sensitivity

improvement achieved by a DNG lens is defined as the sensitivity normalized by the sen-

sitivity of the corresponding case without the DNG lens. The lens-to-target distance is

3t for all cases.

havior is presented in Fig. 2.12 for different matched DNG layer thicknesses. A t thick

DNG does not improve the sensitivity as presented in Fig. 2.10, therefore excluded from

the graph. As the parallel k component is increased, the sensitivity decreases. The inset

shows the sensitivity improvement defined as sensitivity with DNG normalized by the

sensitivity without the DNG. While the high kx components have lower sensitivity, they

have a better sensitivity improvement. Therefore the sensitivity is improved for all kx
values greater than unity, thus implying that the sensitivity improvement is valid for the

entire evanescent spectrum. As a consequence, these results conclude that the sensitivity

improvement is valid for any type of near-field probes.

Fig. 2.13 shows the sensitivity behavior for thick DNG layers. Note that the expression

thick depends on the reflection coefficient from the target and the target distance (Z3 −
Z2). For thick DNG layers, higher kx components have higher sensitivities. This is

because the field is mostly amplifying rather than decaying in the region where field

energies are highly effective on the sensitivity.

For a subsurface detection scheme, a more realistic model would have a target medium

other than vacuum. Here, the relative permittivity of the target medium and the target
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Figure 2.13: The sensitivity behavior for thick DNG layers. As kx increases the sensitivity

increases.

are set to 2 and 6, respectively. The incident field is kept as before. The tip to lens and

lens to target medium distances are kept at zero. All media, except the lens, are assumed

to be nonmagnetic.

In Fig. 2.14, the sensitivity versus the lens-to-target distance is plotted for different

lens thicknesses, while keeping the thickness of the target constant at t. It is observed that,

in a manner similar to the target in vacuum case, increasing the DNG thickness increases

the sensitivity and a minimum DNG thickness is required to enhance the sensitivity. In

addition, the sensitivity is seen to be higher than the case when the target medium was

vacuum, since when the permittivity of the target medium is increased, the decay constant

is reduced. Further analysis (the graphs are not presented here for brevity) shows that

although increasing the permittivity of the target medium increases the sensitivity, as the

target medium permittivity approaches the permittivity of the target, the sensitivity is

reduced. This is because even though the field penetrates better, it does not experience

any significant change when encountering the target.

An important behavior different than the case when the target medium is vacuum

is the saturation of the sensitivity improvement as the DNG lens thickness increases.

For the configuration considered here, the sensitivity improvement is saturated when the

thickness of the DNG lens reaches 20t, despite the lossless nature of the lens.
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Figure 2.14: Sensitivity versus target depth for a buried target. The target medium has

a relative permittivity of 2 and the target has a permittivity of 6 with a thickness of t.

The sensitivity is plotted for 5 different lens thicknesses.

Similar to the previous case (target medium as vacuum), the lens enhances the sensi-

tivity for any incident evanescent field. Fields with higher kx has a higher enhancement

potential when using a DNG lens, and increasing the target thickness or target to target

medium mismatch increases the sensitivity.

2.4.3 Effect of DNG Lens with Loss

In practical applications, DNG materials are lossy. In the case of a lossy DNG lens, the

sensitivity improvement is expected to be reduced and the loss will form an upper bound

on the sensitivity enhancement whether the target medium is vacuum or not. The loss

effect is expected to be more dominant for high kx values. Since the amplification in

the DNG lens is limited by the loss of the lens, and higher kx components need more

amplification, these components suffer from loss.

Fig. 2.15 shows the sensitivity in the case of a lossy DNG lens. The DNG lens param-

eters are ωp = ω
√

2.02 and Γe = 0.1ω, corresponding to a complex relative permittivity

equal to -1+j0.2. It is observed that the sensitivity improvement is reduced compared to

the case of a lossless DNG. In addition, there is an optimum DNG thickness needed to

achieve maximum sensitivity. For instance, for the target and medium parameters con-
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Figure 2.15: The sensitivity behavior for lossy DNG case. Sensitivity is plotted as a

function of lens-to-target distance for DNG thicknesses of 10t, 15t, 16t, 17t, and 21t. The

target medium and the target has a relative permittivity of 2 and 6, respectively, and the

target thickness is t. The DNG lens has an imaginary part of complex permittivity (loss

tangent) equal to 0.2.

sidered here, the optimum thickness is around 15t. As the thickness is increased further,

the sensitivity is degraded to lower levels, even lower than the case without the DNG

lens, a consequence that is expected since a relatively thick DNG lens with loss shields

the target from the source.

2.4.4 Effect of Target Medium with Loss

In this part, the effect of having a lossy target medium is investigated. Since in most

cases, such as biomedical applications and land mine detection, the target is buried in a

lossy medium, the effect of tan δ of the target medium is an important parameter.

Fig. 2.16 shows the effect of increasing tan δ of the target medium. The permittivity

of the target medium has a real part equal to 2. Other than the tan δ values, the rest

of the parameters are equal to the case presented in Fig. 2.14. As tan δ increases the

sensitivity reduces as expected. Using a DNG layer increases the sensitivity both in the

case of lossless target medium and in the case of lossy target medium.
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Figure 2.16: The sensitivity behavior for lossy target medium case. Sensitivity is plotted

as a function of lens-to-target distance for different target medium tan δ values. The

DNG layer is lossless and the rest of the parameters are equal to the case presented in

Fig. 2.14.

2.4.5 Effect of SNG and Unmatched DNG Metamaterials

As matched DNG metamaterials, SNG metamaterials and unmatched DNG metama-

terials also amplify evanescent fields as discussed in Section 2.4.1. There are additional

fundamental limitations for the use of SNG metamaterials as compared to DNG metama-

terials since amplification characteristics of an SNG lens is different then a DNG matched

lens.

Knowing that the transmission behaviors of unmatched DNG and SNG layers have

the same characteristics, only the sensitivity behavior for SNG layers is presented. The

difference between SNG and unmatched DNG layers is that SNG can improve only TE

or only TM waves while the DNG can support sensitivity improvement for both waves.

In Fig 2.17, the sensitivity as a function of lens-to-target distance is plotted for dif-

ferent SNG lens thicknesses. The incident field is a TE wave with kx = 1.5kmax. The

SNG material has εr = 1 and µr = −1. The target medium and the target has a relative

permittivity of 2 and 6, respectively, and the target thickness is t. For this configuration,

the singularity is observed with an SNG lens of 9.22t thickness and a lens-to-target dis-

tance of 1.5t, as shown in the inset of Fig. 2.17. When the SNG lens is thinner than the
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Figure 2.17: Sensitivity versus target distance for a target medium and target having

relative permittivity of 2 and 6, respectively, and a target thickness of t. 5t The SNG lens

results a sensitivity improvement similar to the DNG slabs. 9.22t slab has a singularity

when the target is at 1.5t. 20t slab reduces the sensitivity.

singularity condition, the sensitivity improvement is similar to the DNG lens case. If the

lens is thicker, the sensitivity improvement is reduced and increasing the thickness further

eventually results in no sensitivity improvement in comparison to the case without the

SNG lens.

The SNG metamaterials have advantage over the DNG metamaterials due to fabrica-

tion considerations. The DNG metamaterials are produced by using periodic split ring

resonators, for negative permeability, and periodic conductive rods, for negative permit-

tivity, simultaneously in a dielectric matrix [26]. The SNG metamaterials, however, need

only either split ring resonators [25] or conductive rods [24] which reduces the fabrication

complexity and the metallic content of the overall material. The drawbacks of the SNG

metamaterials are the limitations over the evanescent spectrum, slab thickness and its

selectivity vis-a-vis TE and TM waves. On the other hand, the SNG metamaterial, due

to the transmission singularity, has the potential for strong substantial improvement in

the sensitivity.
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2.5 Numerical Results

In this section, numerical experiments are presented where different configurations are

considered in order to validate the theoretical findings of sensitivity enhancement dis-

cussed above. The simulations are conducted using finite difference time domain (FDTD)

and finite element (FEM) methods.

2.5.1 Finite Difference Time Domain Simulations

An FDTD code is developed that simulates a parallel plate waveguide with perfectly

conducting plates. The Yee Algorithm as described in Ref. [82] is used for the implemen-

tation. The field inside the waveguide is generated by using the current

J(x, y, t) = ẑ sin(
nπ

W
y)δ(x) sin(2πft) (2.53)

as given in Ref. [83], where W is the width of the waveguide, f is the operating frequency.

The current excites a TE0n mode in the waveguide. The field decays in x̂ direction (or

propagates in x̂ direction if it is not evanescent) and the E field is in the ẑ direction.

This structure is preferred since it provides a simple and well-defined evanescent wave

generation. The resulting field is a superposition of two plane waves. These waves have

same reflection and transmission coefficients at the target and DNG boundaries.

The resulted field has Ez, Hx, and Hy components. For DNG regions, the Drude

model is used. The differential equations to be solved for the Drude Model are given

as [62] [79]
∂

∂t
Ez(t) =

1
ε0

(
∂

∂x
Hy(t)−

∂

∂y
Hx(t)− Jz,Drude(t)) (2.54)

∂

∂t
Hx(t) = − 1

µ0
(
∂

∂y
Ez(t) +Kx,Drude(t)) (2.55)

∂

∂t
Hy(t) =

1
µ0

(
∂

∂x
Ez(t)−Ky,Drude(t)) (2.56)

∂

∂t
J(t)i,Drude + ΓeJ(t)i,Drude = ε0ω

2
pEi(t) (2.57)

∂

∂t
K(t)i,Drude + ΓmK(t)i,Drude = µ0ω

2
pHi(t) (2.58)

where Ki,Drude is the magnetic current in the i direction, Ji,Drude is the electric current

in the i direction and ωp is the resonance frequency of the Drude medium. For the other

regions, the field equations are basically same as Eqs. (2.54), (2.55) and (2.56) with the

magnetic and electric current terms are equal to zero. Note that, there is no restriction

over the sign selection of the k, which means that the behavior of the DNG medium
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Figure 2.18: The simulated structure using FDTD. The waveguide represents the free

space with target slab and DNG lens.

is not forced externally but it is a natural result of the governing differential equations.

Therefore the simulation is also an important way for verifying the wave physics in the

DNG materials.

Eqs. 2.53-2.58 are discretized for the simulation geometry shown in Fig. 2.18. A grid

of 1000 by 65 with 0.5 mm intervals has been used for the simulation. The operation

frequency is f = 400 MHz and the resonance frequency of the Drude medium is ωp =

3.52× 109 rad/s. The excitation is at the 333th grid and n in Eq. 2.53 is assumed to be

one. The DNG slab starts at the 335th grid. The courant number is c∆t/∆z = 0.6. The

simulator was run for 35000 time steps and then the current source was stabilized and

the E field peaks at every point were taken in 5000 time steps. Using these peak values,

the sensitivity is plotted as a function of target distance for different DNG thicknesses

in Fig. 2.19. The FDTD results are in agreement with the theoretical results. Increasing

DNG thickness increases the sensitivity.
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Figure 2.19: FDTD results for sensitivity versus target distance at DNG thicknesses of

0cm, 40cm and 80cm. The target is a dielectric slab with an εr = 1.2 and a thickness of

25cm inside a parallel plate waveguide. The field inside the waveguide has an attenuation

constant of 0.034874cm−1
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2.5.2 Finite Element Simulations

Finite element method (FEM) simulations are performed using HFSS, a three-dimensional

finite element analysis tool by Ansoft corporation.

In the first numerical experiment, the field change due to the presence of a DNG

lens is analyzed. A cutoff waveguide with rectangular cross section of dimensions λ0/5×
λ0/5 is considered. The field is excited from the left end of the waveguide as shown in

Fig. 2.20. The E field distributions, with and without the DNG layer, are plotted along

the waveguide for two different target locations. The generated field has a decay constant

of 2.29k0. The amplifying region is a DNG lens matched to the free space with a loss

tangent of -0.45.

Fig. 2.20-(a) shows the E field distribution without any DNG layers. The target

hardly changes the field distribution. The E field distribution with a DNG layer is shown

in Fig. 2.20-(b) where the field change in the DNG layer due to the target is visible.

Therefore, it can be observed that the main role of the DNG lens is to enlarge the active

region in which the field distribution is changed by the target. When there is no DNG

lens, the target changes the fields only in the proximity of itself. On the other hand, as

a result of the evanescent field amplification, when there is a DNG lens, the target also

changes the field distribution in the lens itself.

Next, the sensitivity behavior in a cutoff waveguide is investigated. A waveguide

with a cross section of λ0/5 × λ0/5 which generates an evanescent field with a parallel

k component, kx, equal to 2.5k0 is used. The sensitivity of a copper target with a

thickness of λ0/25 is studied in the case of different DNG lens thicknesses (Fig. 2.21).

The simulations are performed at 300 MHz. The material properties of the lens are

ε = −1 + j0.1 and µ = −1 + j0.1. The optimum DNG thickness is 0.11λ0. Increasing

the thickness of the DNG layer reduces the sensitivity if the thickness is larger than the

optimum thickness.

In order to analyze other evanescent field components, the sensitivity behavior is

studied for waveguides with different cross sections. Figs. 2.22 and 2.23 present the

sensitivity behaviors when the cross section is λ0/4×λ0/4 (kx = 2k0) and λ0/10×λ0/10

(kx = 5k0), respectively. Fig. 2.24 shows the sensitivity for a target at 0.01λ0 as a function

of DNG layer thickness for different evanescent fields. When the parallel k component

increases, the optimum DNG layer thickness reduces. As discussed in the Section 2.4.3,

when the DNG layer is lossy, fields with higher kx components suffer more.
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Figure 2.20: The effect of target on the E field distribution without (a) and with (b) a

DNG layer. The upper panels show the field distributions when the lens-to-target distance

is 4λ0/5. The lower panels show the field distributions when the lens-to-target distance

is λ0/25. The rectangular waveguide has a side length of λ0/5. The target thickness is

λ0/37.5 and the lens thickness is λ0/5.
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Figure 2.21: Sensitivity improvement for a conductive target as a function of target

distance. The parallel k component, kx, is equal to 2.5k0. The maximum sensitivity is

achieved with a 0.11λ DNG lens thickness

Figure 2.22: Sensitivity improvement for a conductive target as a function of target

distance. The parallel k component, kx, is equal to 2k0. The maximum sensitivity is

achieved with a 0.13λ DNG lens thickness
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Figure 2.23: Sensitivity improvement for a conductive target as a function of target

distance. The parallel k component, kx, is equal to 5k0. The maximum sensitivity is

achieved with a 0.05λ DNG lens thickness

Figure 2.24: The sensitivity improvement as a function of DNG thickness for a target

placed 0.01λ away from the DNG layer. Three incident fields with different parallel k

components are used. As kx is increased, the optimum DNG layer thickness is reduced.
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2.6 Waveguide Resonators

A conventional evanescent field probe produces all polarizations of the E and H fields.

Therefore the experimental verification of the theory is not easy since a low loss, three

dimensional DNG metamaterial is required. In this section a structure (Fig. 2.25) that

can be used for verification of the sensitivity enhancement using a two dimensional DNG

metamaterial is studied. Theoretical results and numerical validation using the finite

element method are presented [84].

2.6.1 Theory

An evanescent field detector is composed of a resonator and an electrically small probe

that generates evanescent fields. The impedance of the probe is a function of the emanated

field from the probe which depends on the electrical properties of the medium [77]. A

variation in the electrical properties of the medium shifts the impedance, and this shift

affects the resonance frequency of the resonator. Fig. 2.25 shows the model structure

capable of representing the resonator and the evanescent field generation. The structure

is a rectangular waveguide, partially filled with a high dielectric constant material. The

field is propagating in the resonator region and it is evanescent in the other regions. When

the TE10 mode is used, the E-field only has x̂ component and the H-field has ŷ and ẑ

components. Therefore the combination of a 2D negative µ material and a 1D negative

ε material behaves as a negative refractive index material for the TE10 mode.

When the time dependence is assumed to be ejwt, the resonance condition of a trans-

mission line resonator as shown in Fig. 2.25 is

Γ1Γ2e
−2jβl = 1 (2.59)

if Z1 and Z2 are purely imaginary. Since one side of the resonator is terminated by

a metallic wall, Γ2 is equal to -1 for the structure. When there is a target, the target

changes Γ1. Therefore for a higher sensitivity, the effect of the reflection due to the target

on Γ1 must be higher.

Assume that the field has a propagation constant βr in the resonator and β in vacuum

as shown in Fig. 2.26. Since the field is propagating in the resonator and evanescent in

the vacuum region, βr is purely real and β is purely imaginary. Evanescent fields decay

in double positive materials, therefore β can be expressed as β = −jk where k is a real

positive number, k =
√

(π/d)2 − ω2ε0µ0. In Fig. 2.26, a represents the thickness of the

DNG layer and b represents the target distance. If the target has a reflection coefficient
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Figure 2.25: The evanescent field detector model for examining the effect of using DNG

material. The dimensions of the waveguide forces the field to be propagating in the

resonator region and to be evanescent in the other regions.

of Γt, the overall reflection coefficient, Γ becomes

Γ = r +
t′tΓte2jβ(a−b)

1− r′Γte2jβ(a−b) (2.60)

where

t =
2βr

βr + β
, r =

βr − β
βr + β

(2.61)

t′ =
2β

βr + β
, r′ =

β − βr
βr + β

. (2.62)

For the derivation of these equations, a similar method presented in Ref. [5] is used.

Series of multiple reflections between z1 and z3 in Fig. 2.25 are added to achieve the total

reflection coefficient. Note that the DNG region is assumed to be matched to free space

which results no reflection from the boundary at z2. t and r are the transmission and

reflection coefficients for a wave passing from a medium with εr and µr to ε and µ. t′ and

r′ are the transmission and reflection coefficients for a wave passing from a medium with

ε and µ to εr and µr.

From Eq. (2.59), as the target distance, b, increases, the exponential term becomes

smaller and Γ converges to r, making the resonance frequency independent of Γt, the

target. The effect of increasing the DNG thickness, a, is the reverse of the effect of

increasing b. As a result, using a DNG layer compensate the effect of increasing the

target distance, hence the sensitivity and the range is increased.

The reflection coefficient for the structure shown in Fig. 2.25 is calculated using bound-

ary conditions. Using a waveguide with d = 10 cm, and a target with εt = 6, µt = 1 and
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Figure 2.26: In order to sense a target with a reflection coefficient of Γt, variations in Γt
should change Γ.

a target thickness of 1 cm, the resonance frequency is calculated as a function of target

distance for different DNG thicknesses. The resonator region has a relative permittivity

of 9, which results a cutoff frequency of 500 MHz, for the TE10 mode. The resonator

length is 20 cm. For the vacuum region and for the target the cutoff frequencies are 1500

MHz and 612.37 MHz, respectively.

Fig. 2.27 shows the frequency shift as a function of the target distance. The percentage

frequency shift is calculated using 100× (f − f0)/f0 where f0 is the resonance frequency

without the target. Increasing the DNG thickness results a higher frequency shift for the

same target distance. A 4 cm DNG slab increases the frequency shift by 12.7 times for

a target distance equal to 0. Note that for all data points, the resonance frequencies are

between 510 MHz and 600 MHz. Therefore the condition of having propagating field in

the resonator and evanescent field in the other regions is satisfied.

2.6.2 Numerical Verification

The full-wave simulation tool HFSS is used to verify the enhancement in the sensitivity.

Eigenmode solution is used to calculate the resonance frequency and the mode of the

resonance is verified by visually inspecting the field distribution. The DNG material has

ε and µ equal to -1 and σ = 0.001 S/m. Fig. 2.28 shows the frequency shift improvement

obtained by using DNG slabs. Using 4 cm DNG slab enhanced the frequency shift by

12.4 times.

2.7 Conclusion

In previous works, DNG and SNG media were found to amplify evanescent fields. The

purpose of this work is to answer the question whether these media can be used to enhance

the effectiveness of near-field probes which work by detecting the change in the energy
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Figure 2.27: Theoretical results show the improvement in the sensitivity with the use of

a DNG layer. As the DNG thickness increases the frequency shift increases

Figure 2.28: The frequency shift as a function of target distance, generated by HFSS.
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stored in the close proximity of the probe. In this chapter, for the first time a sensitivity

definition was presented which can be used to study the effectiveness of DNG and SNG

lenses in enhancing the sensitivity of near-field probes. A novel model using multi layers

for the probe-target interaction was introduced which allowed for the excitation of a single

evanescent plane wave.

It was found that by using DNG lenses, the sensitivity for buried and non-buried

objects can be increased; however, the increase in sensitivity is not a monotonic function

of the DNG lens thickness. In fact, it was found that the DNG thickness needed for

increased sensitivity has a lower and upper bounds, irrespective of losses in the lens itself.

The effectiveness of SNG lenses was also discussed. The advantage of SNG media is

its relatively easier fabrication in comparison to DNG media and the potential for sub-

stantial increase in the sensitivity. The tradeoff is additional constraints on the sensitivity

improvement.

Finally, the theoretical findings presented in this work were validated using numerical

experiments involving waveguide structures.
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Chapter 3

Application to Open-ended

Rectangular Waveguide

Structures

3.1 Introduction

In this chapter, a numerical validation of the theoretical development reported in Chap-

ter 2 [23,85] is presented. By using numerical experiments, it is shown that when a layer

of SNG medium is added to the opening of a rectangular waveguide, used as a near-field

probe, a significant enhancement of the probe sensitivity is achieved while at the same

time increasing the resolution. As a practical example, the study is focused on detecting

precursor pitting in aluminium plates using a WR-28 Ka-band waveguide probe. How-

ever, the technique presented here can be applied to all types of probes that are based

on near-field detection modalities.

3.2 Theoretical Background

A µ-negative SNG layer amplifies TE evanescent modes while an ε-negative SNG layer

amplifies TM evanescent modes [5]. Without loss of generality, in this chapter, µ-negative

media will be considered. In Chapter 2 [23, 85], using plane wave analysis, it was shown

that when an SNG slab is placed between the source of evanescent energy and a target,

the evanescent field amplification increases the sensitivity which is defined in terms of the

reactive energy stored in the target medium. Furthermore, it was also shown that when

using an SNG medium a singularity is observed in the transmission coefficient leading
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to a significant increase in the sensitivity at a specific SNG layer thickness. Assuming

that the SNG medium is infinite in the x-y plane and having a uniform thickness of a in

the z-direction, the singularity in the transmission occurs when the following condition is

satisfied:

e−jk
′
za =

(kzµ′ + k′zµ)2

(kzµ′ − k′zµ)2
, (3.1)

where kz and k′z are the ẑ components of the wave vectors outside and inside the SNG

layer respectively. µ′ and µ are the permeability of the SNG layer and the source region,

respectively.

If the SNG layer is not lossless, a singularity in the transmission coefficient is no

longer present but a transmission maximum is observed. As the loss tangent of the SNG

medium is increased, the transmission maximum and the corresponding SNG medium

thickness decrease.

3.3 Waveguide Structures with SNG Layers Placed Outside

The structure described in Ref. [11] is used here as the probe to analyze the improvement

provided by the SNG layers. An open ended waveguide is used as the detector operating

at a frequency of 30 GHz (Fig. 3.1). The target to be detected is a crack (0.1λ sided cube)

on an aluminum plate which is identical to the target described in Ref. [11]. A schematic

showing a side view of the position of the target (crack) in the aluminium plate is shown

in Fig. 3.1. The waveguide probe is positioned as shown in Fig. 3.1 and is moved laterally

in the x-y plane. An SNG layer is placed at the opening of the waveguide as shown in

Fig. 3.1. As the waveguide probe is moved, the change in the phase of the reflected field is

recorded and compared to a baseline value which is defined as that corresponding to the

case without a crack. Since the crack is electrically small, it is not a strong scatterer [11].

As a result the change in the magnitude of the reflection coefficient is expected to be

small and consequently the phase of the reflection coefficient is analyzed. The numerical

modeling is performed using the finite-element based commercial software HFSS.

An open ended rectangular waveguide system is geometrically described by three

parameters. The first one is the cross section of the waveguide. For this particular

problem, a WR-28 type waveguide is used as the probe since it has been used for crack

detection on aluminum plates [11]. The waveguide has a cross section of 7.11 mm × 3.56

mm and is operated at 30 GHz.
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Figure 3.1: Schematic showing side view of the waveguide probe positioned on top of the

aluminum plate having a crack. The SNG layer is positioned immediately at the opening

of the waveguide.

The second parameter is the thickness of the SNG layer. Since the sensitivity im-

provement has a singularity, the SNG thickness has to be chosen such that the maximum

amplification is achieved. The third parameter of the system is the standoff distance,

which is defined as the distance between the end of the probe and the aluminum plate.

Note that the SNG layer is assumed to be a part of the probe. In a conventional probe,

without any SNG layer, as the stand off distance increases, the sensitivity decreases. As a

result, as long as the standoff distance is small enough, it is not a very crucial parameter

when there is no SNG layer. On the other hand, when an SNG layer is employed, the

standoff distance plays an important role in the optimization process.

To eliminate errors in the phase that arise from numerical meshing, the phase shift

is analyzed in the case of a ghost target which is defined with same geometry as the

original one but filled with aluminum. The phase shift due to the ghost target is the

meshing error. The resultant image is recorded as the base image. This base image is

then subtracted from the image generated by the real target.

Since a µ-negative SNG layer is being used, the TE10 mode is excited in the waveguide.

The relative permittivity of the SNG layers is 1.

3.3.1 Effect of SNG Layer Thickness

In this part, the standoff distance is kept constant and it is 1 mm (0.1λ). Therefore,

other than the SNG layer, the structure is same as the case described in Ref. [11].

In order to compare the sensitivity of the probe with and without the SNG layer, the

phase shift due to the target is analyzed. Taking the baseline case as the reference for the
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Figure 3.2: The phase shift as a function of the SNG layer thickness.

phase (no target), Fig. 3.2 gives the phase shift in the presence of the target as a function

of the SNG layer thickness and for different cases of varying loss tangent. Fig. 3.2 shows

that as the SNG thickness is increased, the phase shift increases. The data in Fig. 3.2

was obtained by centering the waveguide above the crack. The phase shift due to the

target peaks at a specific SNG thickness as predicted by the theory. Furthermore, Fig. 3.2

shows that as the loss tangent is increased, the phase shift maximum occurs at smaller

SNG layer thickness than the case with smaller loss tangent.

More specifically, for the crack size considered here, when there is no SNG layer, the

phase shift is 0.7◦. Using an 0.85 mm (0.085λ) SNG layer with a loss tangent of 0.2, the

phase shift can be improved up to 3.2◦ .

Images

In order to visualize the sensitivity improvement and compare the image qualities, 2D

images are generated by moving the probe along the x̂ and ŷ axes. At each probe position,

the reflection phase is recorded and the resulted matrix is converted to a colormap. The

mapping is performed by using MATLAB where the maximum value in the matrix is

mapped to white and the minimum value in the matrix is mapped to black. The other

values are linearly mapped from black through shades of red, orange, and yellow, to white.

In Fig. 3.3, two-dimensional images generated with a 0.85 mm SNG layer (Fig. 3.3(a))
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(a) (b)

Figure 3.3: The image of the 1 mm crack generated by scanning the waveguide in the x-y

plane. (a) With an 0.85 mm SNG layer having 0.2 loss tangent. (b) Without an SNG

layer.

(a) (b) (c) (d)

Figure 3.4: Images of 1 mm (λ/10) real and ghost targets. (a) and (b) are the images

generated with the SNG layer. (c) and (d) are the images generated without the SNG

layer

and without an SNG layer (Fig. 3.3(b)) are presented. The image without the SNG layer

is in good agreement with the experimental images reported in Ref [11]. When there is no

SNG layer, side lobes are noticeable. The magnitude of the side lobes are close to the half

of the magnitude of the main lobe. On the other hand when the SNG layer is present,

the side lobes are 10 times smaller compared to the main lobe. Therefore a sharper and

a more distinct image of the crack is generated using the SNG layer, implying higher

resolution and higher focusing.

To show the numerical error due to the meshing, the 2D images are plotted using

different colormaps with the ghost target images in Fig 3.4. The ghost target images

generated with and without the SNG layer present phase fluctuations of 0.2936◦ and

0.2239◦, respectively. To quantify the meshing error, the meshing error ratio is defined as

the maximum fluctuation due to the ghost target divided by the maxima obtained by the

real target. The meshing error ratios become 0.0917 and 0.2731 for the with and without

SNG cases, respectively.
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Figure 3.5: Phase shift as a function of the target relative location with respect to the

center of the waveguide. As the thickness of the SNG layer is increased the side lobes

decrease. The best image is observed at 0.85 mm

The computational cost can be significantly reduced by generating one-dimensional

images instead of two-dimensional images. Fig. 3.5 shows the phase variation as the probe

moves along the x-axis for different SNG-layer thickness values. (The smaller dimension

of the waveguide is along the x-direction.) As the SNG thickness is increased, the image

becomes sharper until a maximum is reached beyond which the sharpness of the images

starts to decrease. The images shown in In Fig. 3.6 correspond to the cases shown

in Fig. 3.5. The same color map is used for each image to express the improvement

on the image quality and the sensitivity obtained by the SNG layers. The sensitivity

improvement of the proposed method is also tested for smaller target of 0.05λ cubic

crack. The image for the 0.05λ crack with and without an 0.85 mm (0.085λ) SNG layer

is shown in Fig. 3.7. The phase shift is observed to increase from 0.098◦ to 0.38◦.

3.3.2 Standoff Distance and SNG Thickness Optimization

Another important probe parameter is the standoff distance. In this section, the study of

changing standoff distance and the SNG layer thickness simultaneously in order to achieve

higher sensitivity is presented. First, the phase of the reflection coefficient is analyzed as

a function of the standoff distance with different SNG thicknesses. An aluminum plate
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(a) (b)

(c) (d)

Figure 3.6: One-dimensional images obtained by scanning along an axis that cuts through

a 1 mm (0.1λ) crack for different SNG-layer thickness. (a) no SNG layer (b) 0.5 mm

(0.05λ) SNG layer, (c) 0.85 mm (0.085λ) SNG layer, (d) 1.1 mm (0.11λ) SNG layer.

(a) (b)

Figure 3.7: One-dimensional images obtained by scanning along an axis that cuts through

an 0.5 mm (0.05λ) crack. (a) no SNG layer (b) 0.85 mm (0.085λ) SNG layer.

without any crack is placed as shown in Fig. 3.1. Fig. 3.8 shows the phase change as a

function of the standoff distance. When there is no SNG layer, the reflection phase is

changed with a constant slope. When an SNG layer is inserted, the plot has a high slope

region between 1 mm (0.1λ) to 1.2 mm (0.12λ) standoff distance. The highest slope is

achieved with a 0.9 mm (0.09λ) SNG thickness. From this behavior, it can be concluded

that, the reflection coefficient is very sensitive to changes on the aluminum plate when

the slope is very high.

In Fig. 3.9, the phase shift due to a 1 mm sided cubic crack is plotted as a function

of the standoff distance for different SNG thicknesses. The phase shift due to the crack

is defined as the difference in reflection phases when there is a crack at the center of the

plate and when there is a ghost target. The ghost target is defined as mentioned in the

previous section to extract the meshing error.

When there is no SNG layer, the maximum phase shift due to the target is 0.73◦. The

phase shift changes between 0.7◦ to 0.73◦ until 1.3 mm (0.13λ) standoff distance. For

standoff distances larger than 1.3 mm (0.13λ), the phase shift reduces. When there is an

SNG layer, the phase shift has a maximum value between 1 to 1.2 mm (0.12λ) standoff

distance as predicted in Fig. 3.8. A maximum phase shift of 27.56◦ is achieved with a 0.9
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Figure 3.8: The phase of the reflection coefficient as a function of standoff distance. When

the SNG thickness is increased, a region with a very high slope is encountered. The high

slope indicates that, in this region the probe is very sensitive to changes on the plate.

Figure 3.9: Phase shift due to the target as a function of the standoff distance. Sensitivity

reaches the highest value within the region where Fig. 3.8 has maximum slope.
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Figure 3.10: Phase shift as a function of the target size. The behavior of the probe

configurations are similar. The standoff distance is 1.12 mm (0.112λ) for 0.9 mm (0.09λ)

SNG thickness case and 1.1 mm (0.11λ) for the others.

mm (0.09λ) SNG thickness and a 1.12 mm (0.112λ) standoff distance.

The sensitivity improvement is also valid for smaller targets. In Fig. 3.10, phase shifts

generated as a function of target size are presented. Three probe cases are analyzed. All

cases have similar behavior as the target size increases. When the optimum SNG thickness

and standoff distance is used, a 0.3 mm (0.03λ) sided cubic crack gives the same phase

shift as a 1 mm (0.1λ) sided cubic crack when there is no SNG layer. The error bars

presented in Fig. 3.10 are generated by calculating the standard deviation of the last five

adaptive passes in the solution process.

2D Images

In order to visualize the sensitivity improvement and compare the image qualities, 2D

images are generated by moving the probe along the x̂ and ŷ axes. The minimum reflection

phase is subtracted from the other values to set the minimum reflection phase level to

zero. Fig. 3.3 shows four images generated by four different probe systems. All images are

scaled with the same colormap to show the power of using the SNG layer and optimizing

the standoff distance.

In addition to the sensitivity improvement, the image quality is also analyzed. Fig. 3.12
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(a) (b)

(c) (d)

Figure 3.11: The image of the 1 mm (0.1λ) crack generated by scanning the waveguide

in the x-y plane, (a) without SNG layer (b) with 0.8 mm (0.08λ) SNG layer (c) with 0.9

mm (0.09λ) SNG layer and (d) 1.5 mm (0.15λ) SNG layer. The standoff distance is 1.12

mm (0.112λ) for (c) and 1.1 mm (0.11λ) for the other images. The unit of the axes labels

is mm and the unit of the colormap is degree.
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(a) (b)

Figure 3.12: The image qualities (a) without (b) with a 1.5 mm (0.15λ) SNG layer. The

unit of the axes labels is mm and the unit of the colormap is degree.

shows images generated by a probe without SNG layer and a probe with 1.5 mm (0.15λ)

SNG layer. Note that each image is scaled with a different colormap to indicate the image

qualities. When there is no SNG layer, the image has side lobes with a magnitude close

to half of the center lobe. On the other hand, the SNG layer produces a clear image

without side lobes. Therefore the SNG layer improves both the sensitivity and the image

quality.

The sensitivity enhancement and the image quality improvement is related to the field

distribution generated by the probe. In Fig. 3.13, the field distributions at the surface

of the aluminum plate are shown with and without the SNG layer. The SNG layer both

amplifies the near field and concentrates the field at the opening of the waveguide. On the

other hand, without the SNG layer, the field is distributed to a larger area and the field

concentration at the center is not very high. Therefore side lobes with high amplitudes

(compared to the center lobe) are observed.

3.4 Waveguide Structures with SNG Layers Placed Inside

Another way of using waveguide probes with SNG layers is using loaded waveguides in a

similar manner described in Section 2.6. In this case the aim is to realize the amplifying

region within the waveguide which reduces the required SNG material and to have a

more compact overall probe design. In addition, since the waveguide forces the wave to

propagate with the dominant mode, 2 dimensional SNG layers can be employed in such

a structure. A µ negative SNG layer is used since the dominant mode is a TE wave.

The proposed structure is shown in Fig 3.14. The crack is a cube with a side length of
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Figure 3.13: The H field distribution on the surface of the aluminum plate, (a) without,

(b) with the SNG layer. The SNG layer produces a more confined field distribution

with a higher field amplitude at the center. Rectangles at the center of images show the

orientation and location of the waveguide.

1.5 mm and it is filled with air. The material properties and the frequency are selected to

maintain a propagating field in the dielectric region and an evanescent field in the other

regions. The waveguide is same as the previous section, i.e. WR-28. It is loaded with a

lossless dielectric material with a relative permittivity of εr = 8.8. The cutoff frequency

of a dielectric loaded waveguide is given by [47]

fc =
1
2

c0

a
√
εr
, (3.2)

where c0 is the speed of light in the free space, a is the smaller side length of the waveguide

cross section. The cutoff frequency of the WR-28 waveguide loaded with εr = 8.8 becomes

7.11 GHz. Therefore an operation frequency of 10 GHz is selected for the numerical

experiments. Note that at 10 GHz the size of the crack becomes 0.05λ where λ is given

as the free space wavelength of the operating frequency.

Similar to the Section 3.3.2, the phase of reflection coefficient is analyzed while chang-

ing the standoff distance (Fig. 3.15). A steep change in the reflection phase is observed

around a standoff distance of 0.9 mm (0.03λ). The slope is maximized by using a 1.5 mm

(0.05λ) SNG layer thickness.

Fig. 3.16 shows the sensitivity improvement achieved by different SNG layer thick-

nesses. As expected, the maximum sensitivity is achieved with a 1.5 mm (0.05λ) SNG

layer thickness and a 0.9 mm (0.03λ) standoff distance. The phase shift due to a target

at 0.9 mm (0.03λ) is increased by 43 times. Further increasing the SNG layer thickness

results the degradation of the sensitivity improvement.
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Figure 3.14: The loaded waveguide structure. The waveguide has a cross section of 7.11

mm × 3.56 mm. The crack size is 1.5 mm (0.05λ).

Figure 3.15: Reflection coefficient as a function of standoff distance. The maximum

sensitivity is expected with a 1.5 mm (0.05λ) SNG layer thickness and a standoff distance

between 0.8 mm (0.0267λ) and 1 mm (0.033λ).
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Figure 3.16: Phase shift due to the target as a function of standoff distance. The maxi-

mum improvement is achieved with a 1.5 mm (0.05λ) SNG layer thickness. The waveguide

is loaded with material with εr = 8.8.

The effect of the target size is analyzed in Fig. 3.17. The phase shift as a function

of target size is plotted for two cases. The first case has a standoff distance of 0.6 mm

(0.02λ) and does not have any SNG layer. The second case has a standoff distance of

0.9 mm (0.03λ) and an SNG layer thickness of 1.5 mm (0.05λ). For all target sizes, the

phase shift improvement is between 25 to 35 times.

3.4.1 Effect of changing εr

In addition to the probe parameters described in Section 3.3, the permittivity of the

dielectric material used in the waveguide is a new variable for the loaded waveguide

structure. In this section, the effect of changing the permittivity of the dielectric is

studied. The dimensions of the waveguide is kept constant and the operation frequency

is 10 GHz for all cases.

While choosing εr, there are two constraints. The operation frequency, 10 GHz, must

be above the cutoff frequency of the dominant mode and it must be smaller than the

cutoff frequency of the next mode. So that a single mode is excited in the waveguide.
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Figure 3.17: The sensitivity as a function of target size. A constant sensitivity improve-

ment is maintained over target sizes from λ/75 to λ/20.

The cutoff frequency of a TEmn or TMmn mode in a rectangular waveguide is given by [47]

fcmn =
1
2

c0√
µrεr

√(m
a

)2
+
(n
b

)2
, (3.3)

where c0 is the speed of light in the free space, a and b are the side lengths of the waveguide

cross section. In order the TE10 mode at 10 GHz to propagate in a WR-28 waveguide,

the waveguide must be loaded with an εr = 4.451. Similarly the cutoff condition for the

next mode, TE20 or TE01 is εr = 17.7. Therefore the sensitivity behavior with εr values

of 7, 6, and 5 are analyzed.

Figs 3.18-3.20 show the phase shifts due to a 1.5 mm (0.05λ) sided cubic target. All

relative permittivity values exhibits similar improvement behaviors. As εr gets smaller

the optimum standoff distance increases. Therefore application specific standoff distances

can be adjusted by changing the loading material.

3.5 Conclusion

In this chapter, it was demonstrated that the sensitivity of waveguide probes can be

enhanced by using SNG media. The sensitivity enhancement is a direct consequence of the

evanescent field amplification property of SNG media. The amplification becomes highly
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Figure 3.18: Phase shift due to the target as a function of standoff distance. The maxi-

mum improvement is achieved with a 1.5 mm (0.05λ) SNG layer thickness. The waveguide

is loaded with material with εr = 7

Figure 3.19: Phase shift due to the target as a function of standoff distance. The maxi-

mum improvement is achieved with a 1.5 mm (0.05λ) SNG layer thickness. The waveguide

is loaded with material with εr = 6
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Figure 3.20: Phase shift due to the target as a function of standoff distance. The max-

imum improvement is achieved with a 1.3 mm (0.0433λ) SNG layer thickness. The

waveguide is loaded with material with εr = 5. The optimum standoff distance is shifted

to 1.5 mm (0.05λ).
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pronounced when maximum transmission through the SNG medium is achieved. To

demonstrate the effectiveness of the new SNG-enhanced waveguide probe, the detection

of precursor pitting in aluminum plates is studied. It is shown that by adding an SNG

layer without changing any other probe parameter, sharper images are produced and the

phase shift due to a 1 mm (0.λ) cubic crack is enhanced by 4 to 5 times by using a

µ-negative SNG layer with a magnetic loss tangent of 0.2 in comparison to the case of

a probe without an SNG medium. The method presented here can be applied to other

types of probes based on near-field detection modalities.

Furthermore by optimizing the standoff distance, the phase shift due to the target is

improved by 35 times compared to the case without SNG layer.

Loaded rectangular waveguides are also studied. Loaded waveguides present a more

compact probe design and requires less SNG material compared to the air filled waveg-

uides.
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Chapter 4

Application to Open-ended

Coaxial Line Structures

4.1 Introduction

Open-ended coaxial line probes have been successfully implemented to near field char-

acterization schemes such as detecting delamination in IC packages [14, 15, 86], fatigue

cracks in stainless steel [16], and characterization of layered dielectrics [17,87]. Since the

coaxial line structures does not have any cutoff frequency, the frequency and cross section

size selection is more flexible compared to the open-ended waveguide structures.

In this chapter, the sensitivity improvement of coaxial line probes using an ε-negative

material is presented. Detection of an electrically small crack on an aluminum plate is

studied.

4.2 Theory and Setup

When an open-ended coaxial line is placed next to a multilayer dielectric medium backed

with a conducting sheet, the evanescent field generated by the coaxial line is dominated

by the TM modes [88,89]. Therefore the field emanated by a coaxial line can be amplified

by using an ε-negative SNG layer. An evanescent TM wave incident on an ε-negative SNG

layer experiences a transmission singularity when the condition [22]

e−jk
′
zac =

(kzε′ + k′zε)
2

(kzε′ − k′zε)2
, (4.1)

is satisfied. In equation 4.1, ε′ and ε represent permittivities of the SNG layer and the

surrounding, respectively. ac is the thickness of the SNG layer. k′z and kz are the decay
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(a) (b)

Figure 4.1: (a) Side view of the setup. An SNG layer is placed immediately at the opening

of the coaxial line. (b) The crack is moved on the xy plane to generate 2D images. This

is same as having a crack at the origin and scanning the probe.

constants inside and outside the SNG layer, respectively. In order to obtain the maximum

enhancement, the thickness of the SNG layer must be close to ac.

The setup consists of an open ended coaxial line, an ε-negative layer and an aluminum

plate with a λ/20 sided cubic crack at the center as shown in Figure 4.1(a). λ is the free

space wavelength (10 mm) of the operation frequency, 30 GHz. The dielectric of the

coaxial line is assumed to be vacuum. The inner radius and outer radius of the coaxial

line satisfy [47]
rout
rin

= e2πZ0

√
ε/µ = 2.3, (4.2)

to obtain a 50 Ω characteristic impedance. The electrical properties of the SNG material

are ε = −1, µ = 1, and tan δ = −0.2. The phase shift due to the crack is calculated by

subtracting the reflection phase when there is a crack from the reflection phase without

the crack.

4.3 Sensitivity Improvement

In Figure 4.2, the phase shift due to the target is plotted as a function of standoff distance

for different SNG layer thicknesses. rin is equal to λ/20 and the crack is placed at the

origin, facing the inner conductor of the coaxial line (see Figure 4.1(b)). The phase

shift without any SNG layer is 5.5◦ at λ/100 standoff distance. As the standoff distance

increases, the phase shift reduces. When an SNG layer is employed, the phase shift is
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Figure 4.2: The phase shift as a function of standoff distance for different SNG thick-

nesses. The coaxial line parameters are rin = λ/20 and rout = 2.3λ/20.

increased. For each SNG thickness, there is an optimum standoff distance at which the

sensitivity due to the crack is maximized. The optimum standoff distance increases as

the SNG thickness increases. Maximum sensitivity is achieved with a λ/50 SNG layer

and λ/50 standoff distance. The phase shift is improved to 62.5◦.

In Figure 4.3, a bigger coaxial line is used. rin is equal to 1.5λ/20. Since fields gener-

ated by probes with larger aperture sizes usually have smaller spatial frequencies, a bigger

probe is expected to generate evanescent fields with smaller decay constants. Therefore

the singularity condition is expected at larger thicknesses. The optimum structure is a

λ/25 SNG layer with a 3λ/50 standoff distance. A 6.1 times improvement in the phase

shift is achieved compared to the case without SNG layer and a λ/100 standoff distance.

In Figure 4.4 and Figure 4.5, 2D images generated by moving the target in the xy

plane are presented (see Figure 4.1(b)). Smaller coaxial line produces better images since

the image size is closer to the original crack size (λ/20 = 0.5 mm) compared to the bigger

probe. This is a result of having a smaller aperture size which gives a more confined near

field. When the optimum SNG thickness and standoff distance are used (Figure 4.4(b)

and Figure 4.5(b)), both the width of the center peak is reduced and the side lobes are

eliminated. As a result the image quality is improved. Note that in each image, a different

colormap is used to emphasize image qualities.
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Figure 4.3: Sensitivity improvement for a coaxial line with rin = 1.5λ/20. When the

coaxial line size is increased, the maximum sensitivity shifts to the higher standoff dis-

tances. But the maximum sensitivity value reduces.

4.4 Effect of Changing the Dielectric Insulator

In real world applications, coaxial lines have dielectric materials different than vacuum.

Therefore the effect of using materials with different permittivities on the sensitivity is

studied. In order to keep the aperture size constant the outer radius of the probe is fixed

to rout = 2.3λ/20 which is equal to the outer radius of the probe used for generating the

results shown in Figure 4.2. Therefore the inner radius of the probe is selected so that

the aperture size is constant and the characteristic impedance is 50 Ω:

rin =
2.3λe−0.833

√
εr

20
. (4.3)

Figures 4.6-4.9 show the sensitivity results for εr ranging from 2 to 5. The sensitivity

behavior of the cases without SNG layer are close to each other. Phase shifts due to a crack

with a standoff distance of 0.01λ, without the SNG layer are between 6.7◦ and 7.7◦ for all

εr values. The sensitivity improvement is valid for all dielectric materials studied here.

Increasing the permittivity of the dielectric material increases the maximum sensitivity

obtained by the optimum SNG thickness and standoff distance.
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(a) (b) (c)

Figure 4.4: 2D images generated by coaxial line with rin = λ/20 (a) without SNG layer

and λ/100 standoff distance (b) λ/50 SNG layer and λ/50 standoff distance, and (c) λ/25

SNG layer and λ/25 standoff distance

(a) (b) (c)

Figure 4.5: 2D images generated by coaxial line with rin = 1.5λ/20 (a) without SNG

layer and λ/100 standoff distance (b) λ/25 SNG layer and 3λ/50 standoff distance, and

(c) 3λ/50 SNG layer and λ/10 standoff distance

67



Figure 4.6: Sensitivity improvement for a coaxial line with rout = 2.3λ/20 and a dielectric

material with εr = 2

Figure 4.7: Sensitivity improvement for a coaxial line with rout = 2.3λ/20 and a dielectric

material with εr = 3
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Figure 4.8: Sensitivity improvement for a coaxial line with rout = 2.3λ/20 and a dielectric

material with εr = 4

Figure 4.9: Sensitivity improvement for a coaxial line with rout = 2.3λ/20 and a dielectric

material with εr = 5
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4.5 Conclusion

The sensitivity of coaxial line probes is improved using ε-negative materials. Phase shift

is improved by 11 times with the optimum SNG thickness and standoff distance com-

bination. When the coaxial line size is increased, evanescent fields with smaller decay

constants are emanated. Therefore the optimum SNG thickness is increased when the

coaxial line radius is increased. The SNG layer also increases the image quality. Smaller

probes produces better images. When the permittivity of the dielectric material used in

the coaxial line is increased, the sensitivity improvement increases.
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Chapter 5

Application to Electrically Small

Dipoles

5.1 Introduction

Electrical dipoles are well known radiators consisting of two pieces of conductive wires

or rods. When the dipole length is much smaller than the operation wavelength, the

structure is known to generate a near field distribution dominated by electric field. The

response of the small dipole is highly capacitive and as a result the structure is hardly

radiating. Therefore an electrically small dipole is a well known TM mode near field

generator.

In this Chapter, the sensitivity improvement of electrically small dipoles are presented.

A dipole placed in the center of concentric spherical shells is theoretically studied. Numer-

ical results showing the sensitivity improvement achieved by metmaterial layers inserted

between a small dipole probe and target are presented. In Chapters 3 and 4, µ-negative

and ε-negative SNG layers are used for sensitivity improvement of near field probes.

In this chapter, DNG materials are used to improve the sensitivity of electrically small

dipoles. Therefore all types of negative materials are proved to be effective for sensitivity

enhancement.
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5.2 Theory

5.2.1 Fields due to a Small Dipole

An electrically small dipole is assumed to have a length of l much smaller than λ. There-

fore a dipole oriented in ẑ direction has a constant current distribution as [90]

I(z) = ẑI0 (5.1)

for −l/2 ≤ z ≤ l/2. Therefore the vector potential, A, becomes

A = ẑ
µI0l

4πr
e−jkr (5.2)

where r is the distance from the origin, k is the wave number at the operating frequency.

By transforming the coordinate system to the spherical coordinates and using the relation

between A and H, the H field components can be found as

H =
1
µ
∇×A (5.3)

⇒ Hφ =
jkI0l sin θ

4πr

[
1 +

1
jkr

]
e−jkr, Hθ = 0, Hr = 0. (5.4)

By using ∇×H = jωεE, E field components become

Er=
ηI0l cos θ

2πr2

[
1 +

1
jkr

]
e−jkr (5.5)

Eθ=
jηI0l sin θ

4πr

[
1 +

1
jkr
− 1

(kr)2

]
e−jkr (5.6)

Eφ=0, (5.7)

where η is the wave impedance of the medium,
√
µ�ε.

5.2.2 Sensitivity Analysis of a Dipole in a Spherical Metamaterial Shell

As shown in Eqs. 5.4-5.7, a small dipole generates spherically symmetric fields. In order

to maintain the spherical symmetry, the DNG and target regions are defined as spherical

shells. Therefore the probe-target system becomes a multilayered spherical structure as

shown in Fig. 5.1.

The problem of a small dipole placed in a spherical DNG shell is studied in Ref. [91],

where the radiation properties of the dipole is analyzed. In Ref. [91], the investigated

structure consists of three regions. In this section the number of shells is increased to

introduce the target region and effects of the radius of target region on the radiation

properties are analyzed.
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Figure 5.1: Multilayer structure in spherical coordinates. Each region has associated

permittivity and permeability.

In Fig. 5.1, Region 2 and Region 4 represent the DNG and the target regions, re-

spectively. Region 1 and Region 4 are the probe-to-DNG and DNG-to-target regions,

respectively. Each region assumed to have a corresponding permittivity of εn and per-

meability of µn. The inner sphere with the radius of a is assumed to be the probe and

the field inside this sphere is not solved. It is assumed that the probe generates an inci-

dent field as given in Eq. 5.4 and fields in the other regions are formed according to the

Helmholtz equation and the boundary conditions.

In spherical coordinates, the Helmholtz Equation becomes [76]

1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0. (5.8)

By using separation of variables, the r, φ and θ dependencies of ψ can be expressed by

three separate functions. Considering the field generated by a small dipole, the fields

are not expected to change by φ. In order to satisfy the boundary conditions, the θ

dependency of the H field must be in the form of sin θ. Since the solution of Eq. 5.8 is a

function of r in the form of spherical Bessel functions the fields associated by the regions

shown in Fig. 5.1 can be written as follows:
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Region 1

Hφ =
jk1I0l sin θ

4πr

[
1 +

1
jk1r

]
e−jk1r + C1 sin θj1(k1r) (5.9)

Eθ =
jη1k1I0l sin θ

4πr

[
1 +

1
jk1r

− 1
(k1r)2

]
e−jk1r

+
C1 sin θ
jωε1r

[
k1rj

′
1(k1r) + j1(k1r)

]
(5.10)

Er =
η1I0l cos θ

2πr2

[
1 +

1
jk1r

]
e−jk1r +

2C1 cos θ
jωε1r

j1(k1r) (5.11)

Region 5

Hφ = C8 sin θh(2)
1 (k5r) (5.12)

Eθ =
(
−C8 sin θ
jωεmr

)(
k5rh

(2)′

1 (k5r) + h
(2)
1 (k5r)

)
(5.13)

Er =
2C8 cos θ
jωεmr

h
(2)
1 (k5r) (5.14)

Region m, 2 ≤ m ≤ 4

Hφ = C2m−2 sin θj1(kmr) + C2m−1 sin θn1(kmr) (5.15)

Eθ =
(
− sin θ
jωεmr

)
×
(
C2m−2

[
kmrj

′
1(kmr) + j1(kmr)

]
+ C2m−1

[
kmrn

′
1(kmr) + n1(kmr)

])
(5.16)

Er =
2 cos θ
jωεmr

[C2m−2j1(kmr) + C2m−1n1(kmr)] (5.17)

where j1 and n1 represent the first order spherical bessel functions of first and second

kind, respectively. h(2)
1 is the first order spherical hankel function of second kind. j′1, n′1

and h
(2)′

1 are the derivatives of the corresponding functions.

At the boundaries, Hφ and Eθ must be continuous. Therefore eight boundary condi-

tions can be written using four boundaries and Cn values can be calculated. A MATLAB

code written for calculating the coefficients is presented in Appendix D.

5.2.3 Theoretical Results

Verification of the Theory

In order to verify the calculations, the code and the functions used from MATLAB’s

library, the following conditions presented in Table 5.1 are studied. The variable dn is

defined as dn = rn − rn−1 for 2 ≤ n ≤ 4 and d1 = r1 − a.
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Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

ε1, µ1 1,1 1,1 1,1 1,1 1,1

ε2, µ2 1,1 1,1 -1,-1 1,1 1,1

ε3, µ3 1,1 1,1 1,1 -1,-1 1,1

ε4, µ4 1,1 1,1 1,1 1,1 -1,-1

ε5, µ5 1,1 1,1 1,1 1,1 1,1

a λ/1000 λ/500 λ/1000 λ/1000 λ/1000

d1 λ/500 λ/500 λ/300 λ/600 λ/900

d2 λ/500 λ/500 variable λ/600 λ/900

d3 λ/500 λ/500 λ/300 variable λ/900

d4 λ/500 λ/500 λ/300 λ/300 variable

Table 5.1: The five conditions used for the verification of the boundary condition solutions

and the coding.

First and second conditions correspond to a small dipole in free space with a length

of λ/500 and λ/250, respectively. The H-field strength are compared with the theo-

retical results generated by Eq. 5.4. Fig. 5.2 shows a good agreement between the two

calculations. The error between the two theoretical calculations is 0.0235%.

Structures defined by conditions 3, 4 and 5 are identical to the case studied in Ref. [91].

Fig. 2-(a) and (b) in Ref. [91] are reproduced to validate the Poynting vector and negative

material calculations. The real and reactive powers generated by the dipole can be found

by using the Poynting vector

Preal + jPreacive =
1
2

∮
S

(E×H∗) · ds. (5.18)

The effect of the DNG layer over the properties of the dipole is analyzed by two parameters

[91]. First one is the radiated power gain which is defined as the ratio of the radiated

real power (expressed by Preal in Eq. 5.18) with the DNG shell to the radiated real power

without the DNG shell. The second parameter is the ratio of the normalized reactance

with the DNG shell to the normalized reactance without the DNG shell. The normalized

reactance is defined as

Xnorm =
Preactive
Preal

. (5.19)

Fig. 5.3 shows the radiated power gain and reactance ratio plots generated by using

the parameters given for Conditions 3, 4 and 5 in Table 5.1. All conditions generates

the same plot with an average error of 0.0013%. The plot is consistent with the results

presented in Ref. [91]. Note that λ used in Ref. [91] is equal to 3 cm. Therefore the

75



Figure 5.2: The Hφ amplitude due to two small dipoles, one with a length of λ/250 and

the other with λ/500 are plotted by using the formulation presented in Eqs 5.9-5.17.

calculation procedure for the multi shell structure presented in Fig. 5.1 and the Poynting

vector analysis are verified.

Results

In order to analyze the effect of the DNG shell on the sensitivity of the dipole, Xnorm

is analyzed as a function of the inner radius of Region 4 shown in Fig. 5.1. Region 2 is

selected as the DNG layer. Region 4 is the target with material properties of εtarget = 6

and µtarget = 1. The inner radius of the DNG shell is equal to λ/300 and the length of

the dipole is equal to λ/500. The target thickness, d4, is equal to λ/50.

The change in the antenna parameters is studied as an indication of the sensitivity.

The change in Xnorm normalized by its value when d3 = 10λ is analyzed. The effect of

DNG layer thickness is analyzed in three intervals. In the first interval the DNG layer

thickness is less than λ/100. In Fig. 5.4, the change in the antenna parameter is plotted

as a function of the target distance, d3. Increasing the DNG layer thickness increases the

sensitivity since the target changes the antenna parameters more. The improvement is

more effective when the target distance is small. A 6.67 times improvement is achieved

by using a λ/100 DNG layer.

The second interval is when the DNG shell thickness is between λ/100 and λ/10. In
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Figure 5.3: The radiated power gain and reactance ratio plots presented in Ref. [91] are

generated using the formulation presented in Section 5.2.2

Figure 5.4: The effect of the DNG shell thickness on the sensitivity of a small dipole.

When the DNG shell thickness is below λ/100, increasing DNG shell thickness increases

the sensitivity. The improvement is more effective for target thicknesses smaller than

0.02λ
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Figure 5.5: When the DNG shell thickness is between λ/100 and λ/10, the sensitivity

decays slower as the target distance increases, compared to smaller DNG shell thicknesses.

Therefore although as the DNG shell thickness increases the sensitivity for a target at 0

target distance decreases, the sensitivity for target distances larger than 0.01λ increases

this region the maximum sensitivity gets smaller as the d2 increases. Nevertheless, the

overall sensitivity is still larger than the case without the DNG shell. In addition, the

improvement is still increased when d3 is larger than 0.01λ.

The third interval is when the DNG shell thickness is greater than λ/10. In this case

the sensitivity is reduced compared to the case without the DNG layer.

5.3 Numerical Results

The effect of a DNG slab placed next to a small dipole is studied numerically. Two small

dipoles, one with total lengths of 3.1 cm and 2.1 cm are used as a near field probe. The

radius of the wires used for the dipoles is 1 mm. The S11 of the two probes are shown in

Fig. 5.6. The dipoles are radiative around 4.1 GHz and 5.6 GHz. At lower frequencies,

the dipoles do not radiate and exhibit a highly capacitive input impedance, consistent

with the fact that a small dipole is a source of TM mode evanescent fields. The input

reactances at 1 GHz of the 3.1 cm (0.103λ) dipole and 2.1 cm (0.07λ) dipole are -619 Ω

(0.257 pF) and -778 Ω (0.205 pF), respectively.
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Figure 5.6: Reflection coefficients as a function of frequency. Both of the probes does not

produce any significant radiation at 1 GHz. Probes are radiating at higher frequencies

as expected.

The probes are placed next to a thin DNG slab as shown in Fig. 5.7. The DNG

layer has an area of 15 cm × 15 cm. The operation frequency is 1 GHz, where both

dipoles are capacitive and the reflection coefficients are -0.008 dB and -0.002 dB for the

3.1 cm and 2.1 cm dipoles, respectively, indicating that they are electrically small, non-

radiating evanescent field sources. The phase shift due to a metallic target is analyzed.

The target has a cubic shape with a side length of 1 cm (λ/30). The position of the target

corresponds to the excitation location of the dipoles since the field concentration at this

point is the maximum.

Fig. 5.8 shows the phase shift in the reflection coefficient of the 3.1 cm dipole as a

function of the target distance. A 1 mm (λ/300) DNG layer improves the phase shift of a

target located at 1 mm (λ/300) by 5.439 times. DNG layers thinner than 1 mm (λ/300)

gives a smaller improvement compared to the 1 mm (λ/300) layer. DNG layers thicker

than 1 mm (λ/300) gives a better sensitivity improvement for target distances larger than

2 mm (λ/150). Fig. 5.9 shows the phase shift improvement compared to the case without

the DNG layer. To evaluate the improvement, phase shift values are normalized by the

values generated by corresponding cases without the DNG layer. Thicker DNG results a

better improvement for larger target distances.

Fig. 5.10 shows the phase shift plots in the case of a 2.1 cm dipole. The behavior is
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Figure 5.7: A small dipole placed next to a DNG layer is simulated. The dipole is excited

with a lumped port. The target is an electrically small metallic cube.

Figure 5.8: Phase shift due to the target as a function of target distance for 3.1 cm

dipole, fir different DNG thicknesses. The phase shift is improved by 5.4 times compared

to the case without DNG layer.
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Figure 5.9: Sensitivity improvement for 3.1 cm dipole, obtained by DNG layers. Bigger

DNG thicknesses gives a better improvement for target distances larger than 2 mm.

similar to behavior of the 3.1 cm dipole probe. The 2.1 cm probe has slightly smaller

sensitivity compared to the 3.1 cm probe (has a 7% smaller phase shift for a 1 mm target

distance, for no DNG case). Since in the small dipoles, the current is concentrated around

the excitation location, a small change in the size of the dipole does not produce a big

sensitivity change.

5.4 Conclusion

The effect of using DNG materials on the sensitivity of electrically small dipoles is studied

theoretically and numerically. The theoretical study is extended to spherical coordinates

by solving the field distribution due to a small dipole placed at the center of concentric

spherical shells. It is theoretically shown that placing a spherical DNG shell improves the

sensitivity of electrically small dipoles.

Numerical analysis are conducted for a small dipole placed next to a DNG layer.

Phase shift in the reflection coefficient of the dipole due to an electrically small metallic

target is analyzed. By using DNG layers, the phase shift is improved more than 5 times,

compared to the case without DNG layer.
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Figure 5.10: The sensitivity improvement is also valid for the smaller dipole. The phase

shift levels and the dependencies on the target distance and DNG thickness are similar

to the behavior of the other dipole.
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Chapter 6

Experimental Verification and

Application to Electrically Small

Loops

Experimental results showing the sensitivity improvement in near field probes using neg-

ative materials are presented in this chapter. The amplifying medium is selectrd to be a

µ-negative SNG material. The sensitivity of an electrically small loop is studied experi-

mentally and numerically.

6.1 Introduction

Since the method of designing ε [24] and µ [25] negative metamaterials, and the the-

ory of evanescent field amplification [5] were published, experimental studies have been

conducted to realize such materials and support the theory. Designs based on metallic

inclusions and transmission line structures were proposed and successfully experimented

in the literature.

The realization of double negative materials using metallic inclusions can be consid-

ered in two parts. The first part is the production of engineered materials with negative

permittivity. The second part is the fabrication of magnetic materials with negative per-

meability by using split ring resonators (SRRs). Therefore ε-negative and µ-negative SNG

materials can be realized. DNG metamaterials are realized by employing the inclusions

designed for µ-negative and ε-negative SNG responses in the same medium simultane-

ously.
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Figure 6.1: Periodic split ring resonators. Note that the structure is also periodic in the

ẑ-direction. Around the resonance frequency, a magnetic field oriented along ẑ-direction

experiences the magnetic effect.

Negative permittivity was an observable phenomenon before the metamaterials. Some

metals, such as silver, have a negative permittivity at optical frequencies, but there is no

natural material that exhibits negative permittivity at lower frequencies. In 1996, Pendry

proposed a method that can support plasmon excitations at fairly low frequencies [24]. It

was shown that when very thin wires of conductors are periodically placed into a dielectric

medium, the structure results a well defined plasmonic behavior at very low frequencies.

In his example, by placing 1 µm radius aluminum wires with a period of 5 mm, a plasma

frequency of 8.2 GHz was achieved. The effective permittivity of such a structure is given

as

εeff = 1−
ω2
p

ω(ω + iε0a2ω2
p/πr

2σ)
(6.1)

where σ is the conductivity of the wires, r is the radius of the wires and a is the spacing

between the wires. Calculation of ωp, the plasma frequency, using effective mass and

electron density can be found in Ref. [24]. This structure was tested experimentally in

Ref. [92].

The second part is producing magnetically active materials in the microwave frequen-

cies. In Ref. [25], split ring resonators were proposed to achieve magnetic materials in

the microwave range. Since there is no magnetic current in the nature, it is not possible

to design an analogy of low frequency electrical plasma for the magnetic case. Instead,

a resonant structure as shown in Fig. 6.1 was used to obtain negative permeability. The

lattice constant, a, is smaller than the wavelength, and the ring radius must be in the

order of lattice constant in order to achieve the desired characteristics. The effective

permeability of such a structure is given by

µeff = 1− πr2/a2

1 + j 2lρ
ωrµ0

− 3lc20
πω2r3 ln 2c/d

, (6.2)
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where r is the inner radius of the smaller ring, l is the periodicity along ẑ-direction, ρ is the

resistance per unit length, and other parameters are defined in Fig. 6.1. In addition to the

split ring resonator structure, different geometries were proposed in order to reduce the

loss or dimensions of the inclusions [93–95]. All structures share the same fundamental

idea of creating an electrically small resonant structure that is activated by the magnetic

field.

In addition to the metallic inclusion based designs, transmission line based DNG

materials were proposed in Refs. [96, 97]. Different than the metallic inclusion based

materials, L-C loaded transmission lines does not use the resonance, instead, appropriate

phase differences are added to achieve a negative propagation. The advantage of this

method is the opportunity of producing low loss materials, since the idea behind is not

based on resonance.

Regular transmission lines are modeled by a series inductor and a parallel capacitor,

if the line is lossless. This structure provides a positive phase propagation. On the

other hand, if there were a transmission line such that there is a series capacitor and

parallel inductor, the wave solution would lead to a negative phase propagation. Since it

is not possible to change the characteristics of transmission lines, Eleftheriades and his

group proposed adding lumped series capacitors and parallel inductors periodically to the

transmission line.

Using the material design methods described above, number of experiments were

reported to explore the extraordinary properties of negative materials. Evanescent field

amplification have been experimentally observed by placing SNG and DNG materials in

a waveguide operating in the cutoff regime [28, 29]. In addition, experimental studies

for exploring the perfect lens phenomenon, which is a consequence of evanescent field

amplification, were presented using split ring resonators [30, 98] and transmission line

structures [31].

Although images of sources with subwavelength resolution have been obtained exper-

imentally, experimental study of the sensitivity improvement of near field probes has not

been reported. In this chapter experimental and numerical results showing the improve-

ment in the sensitivity of an electrically small loop are presented. A µ-negative SNG

medium is used as the amplifying medium. An artificial magnetic material composed of

split ring resonators is designed and fabricated to realize the SNG medium.
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Figure 6.2: The unit cell of a single MSRR.

6.2 SNG Material Design and Fabrication

6.2.1 Design

Modified split ring resonators (MSRRs) as proposed in Ref. [27] are designed to realize

µ-negative medium. The structure is composed of two split rings located at the two side

of the substrate as shown in Fig. 6.2. The analytical relations between the dimensions of

the unit cell and the effective medium parameters can be found in Ref. [99].

Fig. 6.3(a) shows the dimensions of the designed structure. Note that the analytical

relations given in Ref. [99] assumes that the space is filled with the same material as the

substrate material. However, in our design the space is vacuum, whereas the substrate

is a low loss dielectric material. The unit cell is 16 mm with a trace width of 1 mm. A

substrate thickness of 0.762 mm is used. The substrate material is Rogers 4350 with a

relative permittivity of 3.48 ± 0.05 and a loss tangent of tan δ = 0.0031. The fabricated

strips are shown in Fig. 6.3(b). Printed circuit board manufacturing techniques are used

for the fabrication.

6.2.2 Numerical Characterization

The effective parameters of the designed structure are extracted using Ansoft HFSS. The

unit cell is placed in an artificial parallel plate waveguide. The boundary conditions

of the waveguide are selected to achieve an incident TEM wave with a magnetic field

perpendicular to the MSRR plane. The sides parallel to the MSRR plane are assigned as

perfect electric conductor and the sides perpendicular to the MSRR plane are assigned

as perfect electric conductor. Therefore a structure that mimics a TEM wave normally

86



(a) (b)

Figure 6.3: (a) Dimensions of the designed MSRR inclusions. (b) Picture of the fabricated

MSRR structure. Each strip includes 8 MSRR pairs.

(a) (b)

Figure 6.4: (a) The simulated waveguide structures with a single unit cell at the center.

The boundaries in the xy plane are assigned as perfect magnetic conductor and boundaries

in the xz plane are perfect electric conductor. (b) The equivalent effective medium model

of the waveguide structure. The unknown material is assumed to be infinite in ŷ and ẑ

directions.

incident on an infinite metamaterial layer with a thickness equal to a single unit cell is

simulated (see Fig. 6.4(a)). By measuring the reflection and transmission coefficients, the

effective parameters are extracted using the method presented in Ref. [100].

When there is a normally incident plane wave on a dielectric layer with a thickness

of a, the measured reflection and transmission coefficients can be used to calculate the

characteristic impedance, Z, and refractive index, n [100–102]. Considering the structure

in Fig. 6.4(b)

Z = ±

√
(1 + S11)2 − S2

21

(1− S11)2 − S2
21

(6.3)

ejnk0a =
1

2S21(1− S2
11 + S2

21)
± j

√
1−

[
1

2S21(1− S2
11 + S2

21)

]2

, (6.4)

can be found, where Z =
√

µ
ε and n =

√
µε.

Fig. 6.6 shows the extracted material properties as a function of frequency. The
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Figure 6.5: The scattering parameters of the structure described in Fig. 6.4(a), computed

by HFSS.

Figure 6.6: Effective medium parameters generated by HFSS. Reflection and transmission

coefficients from an infinite layer composed of periodic MSRR structures are used to

extract the parameters.
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structure resonates at 1225 MHz. The medium behaves as a µ-negative medium from

the resonance frequency to 1360 MHz. In this frequency interval, the effective ε changes

between 3 and 2.3. Since the imaginary part of the effective µ is very high around the

resonance frequency, the sensitivity improvement is expected at higher frequencies. The

size of the MSRR loops corresponds to 0.048λ, where λ is the free space wavelength at

1.2 GHz.

6.2.3 Experimental Verification

The structure shown in Fig. 6.7 is fabricated to verify the effective parameters. The

structure is a shorted microstripline, with a substrate made of the fabricated materials.

A holder made of PVC is used to maintain a constant separation of 16 mm between the

strips. The structure is excited with an SMA connector. The same structure is simulated

using HFSS, as shown in Fig. 6.7, by employing the effective medium parameters presented

in Fig. 6.6. The amplitude and phase of the reflection coefficient as a function of frequency

are compared in Figs. 6.8 and 6.9, respectively. Experimental and numerical results give

very similar results, confirming the effective medium parameters.

(a)

(b)

Figure 6.7: (a) Photograph of the characterization setup. The fabricated strips are

placed under a shorted microstripline and the reflection coefficient is measured using a

VNA. (b) The structure simulated by using HFSS. Effective medium parameters are used

for the substrate.
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Figure 6.8: Magnitude of the reflection coefficient obtained by the experiment and the

simulation. The structure is presented in Fig. 6.7

Figure 6.9: Phase of the reflection coefficient obtained by the experiment and the simu-

lation. The structure is presented in Fig. 6.7
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6.3 Numerical Results

An electrically small loop made of copper with a radius of 15 mm and a thickness of 1

mm is simulated to study the effect of SNG material. The frequency response of the loop

is shown in Fig. 6.10. The loop is an efficient radiator around 3.4 GHz, which is close

to the resonance frequency of the loop of 3.18 GHz. Around 1.2 GHz, the frequency at

which the designed material has negative permeability, the reflection coefficient is larger

than -0.1 dB and the input impedance of the loop is highly inductive. Therefore, at the

frequency of 1.2 GHz, the loop behaves as an electrically small, non-radiating TE mode

evanescent field generator.

Figure 6.10: The reflection coefficient of the probe as a function of frequency. Around

the resonance frequency of the inclusions, the loop does not generate any significant

electromagnetic radiation. The input impedance is inductive, meaning that the near field

is dominated by the H field.

The reflection coefficient of the probe is studied for the cases shown in Fig. 6.11. The

frequency dependent material properties shown in Fig. 6.6 are used for the simulation of

the SNG medium. Simulations are conducted for target distances, d, of 1 mm (0.004λ,

where λ is the free space wavelength at 1.2 GHz), 10 mm (0.04λ) and 20 mm (0.08λ).

Fig. 6.12 shows the phase of the reflection coefficients for the structures shown in

Figs. 6.11 (a) and (b). The SNG layer thickness is 10 mm and the target size is 40 mm.

When there is no SNG layer, the phase of the S11 is monotonically decreasing. On the
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Figure 6.11: The sensitivity characteristics of three probe configuration are studied. (a)

shows the conventional use of a probe. (b) and (c) are two configurations employing the

SNG material. When the physical structure of the SNG medium is considered, i.e. the

MSRR structures, configuration in (c) can couple the electromagnetic field to the SNG

medium easier compared to the configuration in (b). The thickness of the SNG mediums

are 10 mm and 48 mm in (b) and (c), respectively. The area of the SNG layers is 128

mm × 128 mm.
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Figure 6.12: The phase of the reflection coefficient for the cases shown in Figs. 6.11 (a)

and (b). The magnetic material is active between 1.2 GHz and 1.35 GHz. Since the

material does not have any magnetic response around 1.1 GHz, the reflection phases with

and without the SNG layer are close to each other at 1.1 GHz.

other hand, with the SNG layer, the effect of the magnetic material leads to a dramatic

change in the phase from 1.2 GHz to 1.4 GHz. When the frequency is not close to the

resonance frequency, the reflection phase approaches that of the case of no SNG layer with

a target distance of 10 mm. The difference observed between the two cases at 1.1 GHz

is attributed to the fact that the effective relative permittivity of the artificial medium is

not equal to 1.

Fig. 6.13 shows the phase shift due to the target when the target is 1 mm away,

for the cases presented in Figs. 6.12 (a) and (b). The phase shift due to the target is

calculated by subtracting the reflection phase when d = 1 mm from the reflection phase

when d = 20 mm. When there is no SNG layer, the phase shift slightly increases as the

frequency increases. The phase shift changes from 1.29◦ to 1.53◦. This is expected since

the wavelength reduces as the frequency increases. As a consequence, the target and the

probe become electrically larger, resulting in a higher sensitivity.

When the metamaterial slab is introduced, the phase shift is improved in the frequency

range of 1.267 GHz - 1.328 GHz. In this interval, the real part of the relative permeability

of the slab changes between -2.5 to -0.25. As expected, at the frequencies where the

material is double positive and around the resonance frequency where the imaginary part
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Figure 6.13: The difference between the reflection coefficients when the target distance is

1 mm 0.004λ and when the target distance is 20 mm 0.08λ for the configurations shown

in Figs 6.11 (a) and (b). The phase shift is improved from 1.32◦ to 12.31◦ at 1.292 GHz

of the permeability is very high, the sensitivity is reduced. The maximum phase shift is

observed at 1.292 GHz with a relative permeability of µr = −0.91 − j0.06. The phase

shift is improved by 9.3 times compared to the case without the SNG medium.

Fig. 6.14 shows the effect of the SNG layer and the target on the H-field distribution.

The change in the position of the target does not result in a significant change in the field

distribution when the SNG layer is not used. On the other hand, when the SNG layer is

present in the structure, the target perturbs the field distribution within the SNG layer.

Although in earlier work [23] (Chapter 2), quantitative results showed the pronounced

change in energy distribution around the target due to the presence of the SNG medium,

Fig. 6.14 show qualitatively the same conclusion but for a physical real-world probe. In

Fig. 6.14, the same colormap is used for all images. Note that the field distribution

presented in Figs. 6.14(c) and 6.14(d) are generated at 1.292 GHz where maximum phase

shift is achieved.

The reflection phase plot and the phase shift due to the target plot for the case shown

in Fig. 6.11 (c) are presented in Figs. 6.15 and 6.16, respectively. Similar improvements

in the phase shift are observed in this case as well. The frequency band over which the

sensitivity is improved is narrower compared to the previous case. Within the improve-

ment band of 1.267 GHz - 1.278 GHz, the relative permeability is between -2.5 and -1.25.

94



(a) (b)

(c) (d)

Figure 6.14: Effect of the target position on the H-field distribution. Structures in (a)

and (b) does not have any SNG layer. (c) and (d) show the case with the SNG layer,

at the frequency where maximum sensitivity is achieved in Fig. 6.13, 1.292 GHz. In (b),

target changes the field distribution around it only. (d) shows that the target changes

the field distribution in the SNG layer.
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Figure 6.15: The phase of the reflection coefficient for the case shown in Figs. 6.11 (c).

Figure 6.16: The difference between the reflection coefficients when the target distance is

1 mm 0.004λ and when the target distance is 20 mm 0.08λ for the configurations shown

in Figs 6.11 (a) and (c). The phase shift is improved from 1.31◦ to 13.41◦ at 1.269 GHz
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The phase shift is improved by 10.2 times compared to the case without the SNG layer.

6.4 Experimental Results

6.4.1 Experimental Setup

The experimental setup consists of three major components. The first component is the

electrically small loop [103]. The radius of the loop is 15 mm 0.06λ, which is equal

to, same as the simulated probe. Therefore the loop behaves as a small non-radiating

evanescent TE wave generator. The probe is connected to a vector network analyzer by

an SMA connector as shown in Fig. 6.17(a).

(a) (b)

Figure 6.17: (a) The electrically small loop. (b) The metamaterial region. The separation

between the strips is 16 mm

The second component consists of the metameterial inclusions and the strip holder.

Since the effective medium parameters are sensitive to the periodicity of the structure, it

is crucial to maintain the separation between the strips as designed in Section 6.2 . As

shown in Fig. 6.17(b), the holder has 3× 7 strips.

The last component is the target. The position of the target in the ẑ-direction is

selected so that the center of the target faces the probe. Two cubic targets, one with

a side length of 20 mm (0.08λ) and the other with a side length of 40 mm (0.16λ), are

used. The targets are made of aluminum.
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The position of the target is defined by two parameters. The target distance represent

the separation between the probe and the target if there is no metamaterial layer. Other-

wise it corresponds to the separation between the metamaterial layer and the target. The

second parameter, the target location, represents the misalignment between the probe and

the target. The position in ẑ-direction is kept constant for all measurements.

All the fixtures are fabricated using polyvinyl chloride (PVC). The material is non-

magnetic with a relative permittivity of 2.38 [104].

The complete setup is presented in Fig. 6.18. The loop is placed inside the meta-

material region, touching the middle strip layer, to couple more energy to the MSRRs.

Therefore, although the total thickness of the metamaterial region is equal to 48 mm,

the thickness of the layer between the target and the probe is less than half of its total

thickness. In addition, the response of the probe is very sensitive to the relative location

of the loop with respect to the MSRR alignments. This shows that individual resonances

of MSRRs affect the response.

Figure 6.18: The position of the target is defined by two distances. The first one is the

separation between the metamaterial layer and the target. The second one is the shift

between the alignments of the loop and the target. Please note that when there is no

metamaterial the target distance is redefined as the distance between the probe and the

target.

6.5 Measurements

The sensitivity as a function of target distance is analyzed for both targets at two different

frequencies in the negative µ region. The sensitivity is defined as the variation in the

reflection phase due to the target movement. Therefore, the phase shift corresponds to

the difference between the phase of the reflection coefficient when the target is at the
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Figure 6.19: The phase shift due to a cubic target with a side length of 40 mm (' λ/6.12).

When the split ring resonators act as a µ-negative material, the sensitivity is improved.

corresponding location and the phase of the reflection coefficient when the target is at

infinity.

Fig. 6.19 shows the sensitivity improvement for the 40 mm target. The phase shift

is improved from 5◦ to 35◦ when the target distance is equal to 0. When the µ-negative

material is employed, a target 5 mm away from the probe results in the same phase

shift as a target touching to the probe without the metamaterial. Therefore the range is

increased using the SNG layer.

Fig. 6.20 shows that the sensitivity improvement is also valid for small targets. The

phase shift due to a 20 mm target at target distance equal to 0 is improved to 18◦,

compared to the classical case with 2.1◦ phase shift. For all data points presented in

Figs. 6.19 and 6.20, the target location is equal to 0.

In addition to the sensitivity measurements as a function of target distance, 1D images

are produced by varying the target location. 1D images generated for 20 mm target with

and without metamaterial are presented in Fig. 6.21. The images show that although

the metamaterial layer improves the sensitivity appreciably, the image quality is slightly

distorted. To analyze the image quality, the width of the image is defined as the width

where the phase shift is reduced to 1/
√

2 times the maximum phase shift. The image

width is 31 mm when the metamaterial is used. On the other hand, the case without the
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Figure 6.20: The phase shift due to a cubic target with a side length of 20 mm (' λ/12.2).

The sensitivity improvement is also valid for a small target. The phase shift is reduced

by a factor of 2 compared to the bigger target.

Figure 6.21: 1D images of the 20 mm target. Images are generated at 1345 MHz by

changing the target location while keeping target distance.
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metamaterial produces an image width of 19 mm.

6.6 Conclusion

The effect of using µ-negative metamaterial on a near field probe is studied numerically

and experimentally. Modified split ring resonators are designed and fabricated to obtain

an effective µ-negative material. The numerical studies show that up to 10.2 times im-

provement in the phase shift can be obtained by employing the designed metamaterial

within the frequency range where the material has a negative permeability. Experimental

validation of the design was performed using fabricated resonators and a small circular

loop made of copper. Measurements showed that the sensitivity of the small probe con-

sidered here can be increased by up to 9 times by employing a metamaterial layer in

comparison to the case without µ-negative metamaterial. The sensitivity improvement

was demonstrated for λ/6.12 and λ/12.2 sided cubic aluminum targets.
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Chapter 7

Conclusion

7.1 Contributions

7.1.1 Theoretical Analysis

In this thesis, effect of using negative materials on the near field probe sensitivity is

analyzed. A theoretical sensitivity definition is proposed based on the change in the

reactive energy stored around the probe. Plane wave analysis of adding a planar negative

material between a probe and a target showed that the sensitivity of a probe can be

enhanced considerably. The enhancement can be used to increase the range of probes or

to detect smaller objects.

Both SNG and DNG materials enhance the sensitivity. While the enhancement ob-

tained by SNG materials have additional limitations compared to DNG materials, SNG

materials are easier to realize and, if used in an appropriate configuration, they have

potential of being more effective than the DNG materials.

The spectrum analysis of lossless matched DNG layers shows that the sensitivity en-

hancement is valid for the whole evanescent spectrum. Therefore the sensitivity of any

near field probe can be increased by employing an ideal DNG layer. In practical appli-

cations, DNG materials are lossy and it is extremely challenging to realize an exactly

matched material. Having a lossy DNG layer results a degradation in the sensitivity

enhancement. The degradation is more effective in the evanescent spectrum with higher

spatial frequency. Therefore smaller probes are expected to suffer more from electromag-

netic loss of the material. When the DNG layer is not matched, the amplification process

can be only observed within a limited evanescent spectrum range.
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The SNG materials exhibit a spectrum response similar to the response of the un-

matched DNG materials. The enhancement is limited to an evanescent spectrum range.

Since the SNG materials usually have smaller electromagnetic loss, SNG materials are

advantageous for sensitivity enhancement purposes, in comparison to unmatched DNG

layers.

In addition to the plane wave analysis, the sensitivity of an electrically small dipole

placed within a spherical DNG shell is investigated. The change on the antenna param-

eters as a function of target distance is analyzed. When a DNG layer is employed, the

position of the target results a higher change in the antenna parameters.

7.1.2 Numerical Analysis

Sensitivity of the following structures are analyzed numerically using HFSS. The sensi-

tivity is defined as the change in the phase of the reflection coefficient due to the presence

of the target.

• Waveguide Structures: µ-negative SNG layers are implemented to crack detec-

tion schemes. Two cases are studied. First one is adding an SNG layer to the

opening of the waveguide, outside the waveguide. The phase shift due to a λ/10

crack on an aluminum surface is enhanced by 35 times by optimizing the standoff

distance and SNG layer thickness. The SNG layer both increases the sensitivity

of the open-ended waveguide and quality of the image simultaneously. The second

case is using a dielectric loaded waveguide with an SNG region added right before

the opening of the waveguide (SNG is inside the waveguide). Similar improvements

are obtained by changing the SNG thickness and standoff distance. Since the sec-

ond case employs the SNG layer within the waveguide, it is a more compact design

and a smaller SNG region is needed.

• Coaxial line Structures: ε-negative SNG layers are used to increase the sensi-

tivity of open-ended coaxial lines. Phase shift due to a λ/20 crack on an aluminum

surface is studied. The phase shift is improved by 11 times by using appropriate

SNG thickness and standoff distance for a coaxial line with an inner radius of λ/20.

When a bigger coaxial line is used, the phase shift due to the same target reduces.

The improvement is analyzed for coaxial lines with dielectric constants ranging

from 1 to 5. For all geometries and dielectrics, a characteristic impedance of 50 Ω

is maintained.
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• Small Dipoles: Electrically small dipole with lengths of λ/15 and λ/10 are inves-

tigated as near field probes. The phase shift due to a λ/20 sized, metallic, cubic

target is analyzed with different DNG layer thicknesses. 5.4 times improvement is

achieved by a DNG layer with λ/30 thickness.

• Small Loops: An electrically small loop is analyzed and its sensitivity is improved

by using a µ-negative SNG material. Effective permeability and permittivity of

an experimentally realizable SNG medium is used as the amplifying region. The

sensitivity is improved by 9.3 times within the frequency band where the material

exhibits negative permeability.

7.1.3 Experimental Analysis

The sensitivity of an electrically small loop is studied experimentally. A µ-negative SNG

material, composed of MSRR inclusions is designed and fabricated. The fabricated SNG

medium increased the sensitivity of the electrically small loop. The sensitivity due to two

targets, one with a size of λ/6.12 and the other with a size of λ/12.2 are analyzed. The

phase shift due to the presence of the target is increased from 2.1◦ to 18◦ for the small

target.

7.2 Future Directions

7.2.1 Theoretical Directions

The spectrum response of adding a negative layer is studied in this thesis. In achieving the

sensitivity improvement, the evanescent spectrum components present in the near field

play an extremely important role, especially in the case of SNG and unmatched DNG

layers. The relation between the probe geometry and emanated evanescent spectrum can

be studied by decomposing the field distributions generated by probes to their fourier

components. As a result probe selection or probe designs for specific negative materials

can be formulated.

Theoretical studies can be conducted for specific problems. One example can be

the formulation of an electrically small probe placed over an infinite ground plane. The

small probe can be assumed as a very small dipole, and a negative spherical shell can be

added around the dipole or a negative layer can be added to the surface of the infinite

layer. Another study can be conducted for the open-ended coaxial line structures. The

problem of a coaxial line opened to a multilayered dielectric medium can be analyzed.
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The sensitivity improvement can be analyzed theoretically by replacing one of the layers

by a negative layer.

7.2.2 Material Research

One of the most important limitations on the sensitivity improvement is the loss tangent

of the engineered artificial materials. New inclusion geometries can be designed to reduce

the electromagnetic loss of the medium or to achieve specific material properties at specific

frequencies. In this sense, optimization techniques can be applied to the design process to

obtain better material properties. In sensitivity improvements, the loss of the material is

more important than the bandwidth of the material. Therefore goals of the optimization

are not too many, making the process possible.

Another important limitation is the size of the unit cell. The unit cell of the engineered

material must be smaller than the size of the target and the size of the probe. Therefore

miniaturization of the unit cell is an important task for the improvement of the technique.

As the unit cell gets smaller, the material is expected to behave as a homogenous negative

material. As a result the effect of individual resonators can be minimized and the material

can be modeled with a homogeneous material with effective permittivity and permeability.

In addition, the required SNG layer thicknesses for the sensitivity enhancement is usually

much smaller than the wavelength. Miniaturization can make the fabrication of very thin

SNG layers possible.

7.2.3 Experimental Directions

The sensitivity improvement can be analyzed for different type of probes, and for different

type of inclusions used for the material design, such as SRRs, dielectric particles, fractal

hilbert curves, etc. An experimental setup and a convention can be developed to test

different probes and materials under exactly same conditions.

The study can be extended to the detection of targets buried in lossy mediums.

Controlled experiments for different probe types can be conducted to analyze the range

improvements of the probes. Biological tissue phantoms can be used as the lossy medium

material. In addition, by controlling the ingredients of the phantom, the loss tangent of

the medium can be changed. Therefore the effect of the medium loss on the detectability

can be analyzed.

Until this point, the artificial materials are assumed to behave as homogeneous medi-

ums and the sensitivity improvements are discussed for homogenous materials. In addi-
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tion, single electrically small resonators, meaning that one unit cell of the MSRR struc-

tures, can be used as the probe. Since resonators confine very high electromagnetic

energies, these structures can be used individually to increase the field localization and

the field strength. Therefore the resonators themselves can be used as the probe, rather

than employing them for improving a readily available probe. The study can be extended

by investigating other types of resonators. The relations between the size, shape of the

probe and the sensitivity, range of the probe can be studied.
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Appendix A

Field Calculations in DNG

Medium

The superlensing phenomenon is based on the idea of reconstructing both evanescent and

propagating waves generated by the object at the image location. Conventional lenses

focuses only the propagating waves and as a result the image generated by a conventional

lens has limitations on the maximum achievable resolution. On the other hand the lens

proposed in Ref. [5] both focuses the propagating waves and also amplifies the evanescent

fields. Therefore an image with a subwavelength resolution can be obtained.

A superlens is a slab made of DNG material. The formulation of the superlensing

phenomenon is presented in this appendix.

Helmholtz equation is solved for the boundary value problem shown in Figure A.1 for

a slab with ε2, µ2 and with a thickness of a. Note that the arrows shown in Figure A.1

represent the direction of the ẑ component of the k vector. Therefore the arrows indicate

phase propagation if the fields are propagating and indicate amplitude change if the fields

are evanescent.

The sign selection in Equation 2.20 for DNG materials is the opposite of the sign that

is selected for positive materials [62]. The sign selection must be consistent in order to

have a correct solution. For this reason, the transmission through a slab and the field

inside the slab is presented without specifying any square root sign.

Using the boundary conditions, i.e. continuity of E and H fields, for an incident

E-wave with k = x̂kx + ẑkz1, the coefficients described in Figure A.1 can be found as

t =
4µ1µ2kz1kz2

(µ2kz1 + µ1kz2)2ej(kz2−kz1)a − (µ2kz1 − µ1kz2)2e−j(kz1+kz2)a
(A.1)
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Figure A.1: Structure for the boundary condition problem solved in Equations A.1, A.2,

A.3 and A.4

r =
2µ2kz1[(µ2kz1 + µ1kz2)ej(kz2−kz1)a − (µ2kz1 − µ1kz2)e−j(kz1+kz2)a]

(µ2kz1 + µ1kz2)2ej(kz2−kz1)a − (µ2kz1 − µ1kz2)2e−j(kz1+kz2)a
− 1 (A.2)

t1 =
2µ2kz1(µ1kz2 + µ2kz1)ej(kz2−kz1)a

(µ2kz1 + µ1kz2)2ej(kz2−kz1)a − (µ2kz1 − µ1kz2)2e−j(kz1+kz2)a
(A.3)

r1
2µ2kz1(µ1kz2 − µ2kz1)e−j(kz1+kz2)a

(µ2kz1 + µ1kz2)2ej(kz2−kz1)a − (µ2kz1 − µ1kz2)2e−j(kz1+kz2)a
(A.4)

where

k2
z1 = ω2ε1µ1 − k2

x (A.5)

k2
z2 = ω2ε2µ2 − k2

x. (A.6)

This solution is valid for both evanescent and propagating waves. Sign selections in

Equations A.5 and A.6 must be selected according to the values of ε1, µ1 and ε2, µ2,

respectively. If one of the medium is DNG, the corresponding kz must be selected as

positive.

When the ε1 = −ε1 and µ2 = −µ1 are satisfied,

t=ej2kz1a (A.7)

r=0 (A.8)

can be found. As a result the field at z = a becomes

Et = ŷE0e
−jkxxejkz1a. (A.9)
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Therefore both the evanescent and propagating components at the plane z = −d are

reconstructed at z = 2a− d if 0 ≤ d ≤ a is satisfied.
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Appendix B

Transmission Through a Lossy

Slab

The penetration of electromagnetic fields to the target medium is a challenge for noninva-

sive detection applications such as land mine detections or detection of biological anoma-

lies. As a result of diffraction limit, in order to have high resolution, higher frequency is

needed. But at higher frequencies, electromagnetic waves decay faster compared to lower

frequencies, so the fields cannot penetrate to deeper regions. In this part, the transmission

of propagating and evanescent waves through a lossy slab is presented. The transmis-

sion of normally incident propagating plane waves at higher frequencies is compared to

the transmission of evanescent spectrum at lower frequencies to provide a mathematical

background for using low frequency evanescent waves instead of propagating waves [105].

When a medium has a conductivity σ, the current in the medium can be expressed

as J = σE. Then Equation 2.9 becomes

∇2E + ω2µ(ε− j σ
ω

)E = 0 (B.1)

and the complex permittivity, εc, is defined as

εc = ε− j σ
ω
. (B.2)

The wave number k becomes

k2 = ω2µεc = ω2µε− jωµσ. (B.3)

The imaginary part of k is the reason for the attenuation of electromagnetic fields in lossy

mediums. As the frequency increases, the imaginary part of k increases which results in

a higher attenuation.
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Figure B.1: In order to compare the penetration of propagating and evanescent waves into

a lossy medium, the transmission through a 10 cm slab of muscle is solved for propagating

waves and evanescent fields.

The analysis of the attenuation with a constant conductivity (as a function of fre-

quency) is not complete since the conductivities of lossy media, such as human body

[106, 107] and soil [108, 109], are functions of frequency. The conductivity increases dra-

matically in the microwave frequencies as frequency increases. For example, the conduc-

tivity of dry soil at 10 GHz is 25 times higher than the conductivity at 1 GHz or the

conductivity of muscle at 10 GHz is 10 times higher than the conductivity at 100 MHz.

As an example, the transmission of propagating waves through a 10 cm muscle, labeled

as Case 1 in Figure B.1, is studied for frequencies from 100 MHz to 10 GHz. A boundary

condition problem that consists of vacuum - muscle - vacuum regions is solved for a

normally incident plane wave. The frequency dependent complex permittivity of the

muscle is calculated using [110],

εc(ω) = ε∞ +
∑
n

∆εn
1 + (jωτn)(1−αn)

+
σi
jωε0

. (B.4)

The constants used in Equation B.4 are obtained from Ref. [110]. The incident field

has an amplitude of 1 and a phase of 0◦ at the first boundary. The amplitude and phase

of the field right after the second boundary are defined as the phase and amplitude of the

transmission.

Figure B.2 shows the transmission. Waves with frequencies higher than 3 GHz have

almost no transmission whereas lower frequencies can have around 8 % transmission.

The same problem for an incident evanescent plane wave is solved to analyze the

evanescent spectrum transmission. Since vacuum-muscle and muscle-vacuum boundaries

are in xy plane, the incident field is selected to decay in +z direction. The k vector of

incident field consists of x̂ and ẑ components as described in Equation 2.20 (see Figure

B.1), and the field has an amplitude of 1 and a phase of 0◦ at the first boundary. The

phase and magnitude of the transmitted wave are shown in Figure B.3 as a function of
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Figure B.2: Magnitude (a) and phase (b) of propagating wave transmission through a

10 cm slab of muscle as a function of frequency. The frequency changes from 100 MHz

to 10 GHz. This frequency interval corresponds to an interval of free space wavelength

between 3 cm to 3 m.

normalized parallel k component, i.e. as a function of kx normalized to the free space

wave number, k0.

Figure B.3 shows that a wide evanescent spectrum (spatial spectrum) at 100 MHz has

better transmission compared to the higher frequencies shown in Figure B.2. To put in

perspective, assume that we have a 10 cm by 10 cm rectangular waveguide and there is a

10 cm muscle layer in it. The TE10 mode at 100 MHz, which has an evanescent behavior,

has a better transmission than the TE10 mode at 2.1 GHz.

The attenuation of the evanescent field inside a lossy medium is a result of two mech-

anisms. One is the evanescence of the field, and the other is the loss of the medium.

When the incident evanescent field has a low decay constant, the attenuation of the field

inside the lossy medium is dominated by the loss. Thus, in this loss-dominant region,

using different decay constants does not change the attenuation characteristics dramat-

ically. The overall transmission depends on the attenuation of the field inside the slab,

and the transmission and reflection coefficients at the vacuum-muscle and muscle-vacuum

boundaries. Since the transmission coefficient at the boundaries increases with the de-

cay constant of the incident field, while increasing decay constant is not changing the

attenuation considerably, evanescent fields can have better transmission compared to the
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Figure B.3: Transmission of evanescent spectrum at 100 MHz through a 10 cm slab of

muscle

propagating waves even if the frequency is fixed.
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Appendix C

Spherical Bessel Functions

C.1 Bessel Functions

The solutions of such a differential

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (C.1)

are defined as the Bessel functions. Bessel function of the first kind can be expressed as

Jn(x) =
∞∑
m=0

(−1)m

m!Γ(m+ n+ 1)

(x
2

)2m+n
(C.2)

where n can have non-integer values. Bessel function of the second kind is expressed as

Yn(x) =
Jn(x) cos(nπ)− J−n(x)

sin(nπ)
. (C.3)

Note that Bessel function of the second kind has a singularity at x = 0. In addition,

Hankel functions of first and second kind are also a solution of the C.1:

H(1)
n (x) = Jn(x) + iYn(x) (C.4)

H(2)
n (x) = Jn(x)− iYn(x) (C.5)

The derivatives of all types of functions presented above can be found using

dFn
dx

=
Fn−1(x)− Fn+1(x)

2
. (C.6)

C.2 Spherical Bessel Functions

Spherical bessel functions are the solutions of the differential equations in the form of

x2 d
2y

dx2
+ 2x

dy

dx
+ [x2 − n(n+ 1)]y = 0 (C.7)
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Similar to the canonical bessel functions, the solutions of the Eq. C.7 are expressed in four

types, spherical bessel functions of the first kind, second kind and the spherical hankel

functions of first kind and second kind. These four types of equations can be expressed

in terms of the canonical bessel functions.

jn(x) =
√

π

2x
Jn+1/2(x), (C.8)

yn(x) =
√

π

2x
Yn+1/2(x) = (−1)n+1

√
π

2x
J−n−1/2(x), (C.9)

h(1)
n (x) = jn(x) + iyn(x), (C.10)

h(2)
n (x) = jn(x)− iyn(x). (C.11)

For the results presented in Chapter 5, these relations were used. The spherical bessel

functions were calculated using the MATLAB’s library for canonical bessel functions.

The spherical bessel functions can be also calculated using

jn(x) = (−x)n
(

1
x

d

dx

)n sinx
x

, (C.12)

yn(x) = −(−x)n
(

1
x

d

dx

)n cosx
x

. (C.13)

Therefore the functions used in Chapter 5 can be expressed as

j1(x) =
sinx
x2
− cosx

x
, (C.14)

y1(x) = − cosx
x2
− sinx

x
. (C.15)

115



Appendix D

MATLAB Script for Solving

Fields in Multi-Shell Structures

The boundary conditions for the equations presented in Section 5.2.2 for a multilayer

spherical structure are solved by using the following MATLAB script. The structure is

presented in Fig. 5.1. The script calculates the unknown coefficients in Eqs. 5.9-5.17 and

plots Fig. 5.3. The spherical bessel and hankel functions are calculated as described in

Appendix C.

clear all

%% Definitions

f = 300e6; %so that lambda is 1 m

w = 2*pi*f;

e0 = 8.854e-12;

m0 = pi*4e-7;

c0 = 1/sqrt(e0*m0);

lambda = c0/f; % all other dimensions are defined in terms of free space wavelength

a = lambda/1000; %radius of the smallest circle that can enclose the dipole

% regions are defined by their material properties e(relative permittivity)

% and m (relative permeability). t defines the thickness of the

% corresponding region.

%First Sphere:

e1 = 1; m1 = 1; t1 = lambda/300; k1 = w*sqrt(m1*e1)/c0; eta1 = sqrt(m1/e1)*377;

%Second Spherical Shell:

e2 = -1; m2 = -1; t2 = 0.02*lambda; k2 = -w*sqrt(m2*e2)/c0; eta2 = sqrt(m2/e2)*377;

%Third Spherical Shell:

e3 = 1; m3 = 1; t3 = 1*lambda; k3 = w*sqrt(m3*e3)/c0; eta3 = sqrt(m3/e3)*377;

%Fourth Spherical Shell:
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e4 = 1; m4 = 1; t4 = 1*lambda; k4 = w*sqrt(m4*e4)/c0; eta4 = sqrt(m4/e4)*377;

%Fifth Spherical Shell:

e5 = 1; m5 = 1; k5 = w*sqrt(m5*e5)/c0 eta5 = sqrt(m5/e5)*377;

% the equations 6.9 to 6.17 will be solved by representing the correspinding

% boundary conditions by matrices. At each boundary there are two conditions,

% one for e field and the other h field. Therefore there are 8 equations.

c_matrix = zeros(8,8); % the solution will be stored in this vector.

right_hand_side = zeros(8,1);

count = 1;

sweep = t1:t1/10:10*t1;

r1 = t1;

for r2 = sweep

r3 = r2+t3; r4 = r2+t3+t4;

%% First Boundary, r = r1

%H field

c_matrix(1,1) = spherical_bessel(1,1,k1*r1);

c_matrix(1,2) = -spherical_bessel(1,1,k2*r1);

c_matrix(1,3) = -spherical_bessel(2,1,k2*r1);

right_hand_side(1) = -j*k1*2*a / 4/pi/r1 * (1+1/j/k1/r1) * exp(-j*k1*r1);

%E field

c_matrix(2,1) = (k1*r1*spherical_bessel_derivative(1,1,k1*r1)...

+ spherical_bessel(1,1,k1*r1)) / e1;

c_matrix(2,2) = -(k2*r1*spherical_bessel_derivative(1,1,k2*r1)...

+ spherical_bessel(1,1,k2*r1)) / e2;

c_matrix(2,3) = -(k2*r1*spherical_bessel_derivative(2,1,k2*r1)...

+ spherical_bessel(2,1,k2*r1)) / e2;

right_hand_side(2) = (j*w*e0*r1)*j*eta1*k1*2*a /...

4/pi/r1 * (1 + 1/j/k1/r1 - 1/(k1*r1)^2) * exp(-j*k1*r1);

%% Second Boundary, r = r2

%H field

c_matrix(3,2) = spherical_bessel(1,1,k2*r2);

c_matrix(3,3) = spherical_bessel(2,1,k2*r2);

c_matrix(3,4) = -spherical_bessel(1,1,k3*r2);

c_matrix(3,5) = -spherical_bessel(2,1,k3*r2);

right_hand_side(3) = 0;

%E field

c_matrix(4,2) = (k2*r2*spherical_bessel_derivative(1,1,k2*r2)...

+ spherical_bessel(1,1,k2*r2)) / e2;

c_matrix(4,3) = (k2*r2*spherical_bessel_derivative(2,1,k2*r2)...

+ spherical_bessel(2,1,k2*r2)) / e2;

c_matrix(4,4) = -(k3*r2*spherical_bessel_derivative(1,1,k3*r2)...

+ spherical_bessel(1,1,k3*r2)) / e3;

c_matrix(4,5) = -(k3*r2*spherical_bessel_derivative(2,1,k3*r2)...
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+ spherical_bessel(2,1,k3*r2)) / e3;

right_hand_side(4) = 0;

%% Third Boundary, r = r3

%H field

c_matrix(5,4) = spherical_bessel(1,1,k3*r3);

c_matrix(5,5) = spherical_bessel(2,1,k3*r3);

c_matrix(5,6) = -spherical_bessel(1,1,k4*r3);

c_matrix(5,7) = -spherical_bessel(2,1,k4*r3);

right_hand_side(5) = 0;

%E field

c_matrix(6,4) = (k3*r3*spherical_bessel_derivative(1,1,k3*r3)...

+ spherical_bessel(1,1,k3*r3)) / e3;

c_matrix(6,5) = (k3*r3*spherical_bessel_derivative(2,1,k3*r3)...

+ spherical_bessel(2,1,k3*r3)) / e3;

c_matrix(6,6) = -(k4*r3*spherical_bessel_derivative(1,1,k4*r3)...

+ spherical_bessel(1,1,k4*r3)) / e4;

c_matrix(6,7) = -(k4*r3*spherical_bessel_derivative(2,1,k4*r3)...

+ spherical_bessel(2,1,k4*r3)) / e4;

right_hand_side(6) = 0;

%% Fourth Boundary, r = r4

%H field

c_matrix(7,6) = spherical_bessel(1,1,k4*r4);

c_matrix(7,7) = spherical_bessel(2,1,k4*r4);

c_matrix(7,8) = -spherical_hankel(2,1,k5*r4);

right_hand_side(7) = 0;

%E field

c_matrix(8,6) = (k4*r4*spherical_bessel_derivative(1,1,k4*r4)...

+ spherical_bessel(1,1,k4*r4)) / e4;

c_matrix(8,7) = (k4*r4*spherical_bessel_derivative(2,1,k4*r4)...

+ spherical_bessel(2,1,k4*r4)) / e4;

c_matrix(8,8) = -(k5*r4*spherical_hankel_derivative(2,1,k5*r4)...

+ spherical_hankel(2,1,k5*r4)) / e5;

right_hand_side(8) = 0;

%% Solution of The System

c_values = inv(c_matrix)*right_hand_side;

%% Poynting Vector

c1 = c_values(1);

h_phi_a = j*k1/2/pi * (1+1/j/k1/a) * exp(-j*k1*a) + c1*spherical_bessel(1,1,k1*a);

e_theta_a = j*eta1*k1/2/pi * (1 + 1/j/k1/a - 1/(k1*a)^2) * exp(-j*k1*a)...

- c1/j/w/e1/e0/a * (k1*a*spherical_bessel_derivative(1,1,k1*a)...

+ spherical_bessel(1,1,k1*a));

poyn = e_theta_a*conj(h_phi_a); % The Poynting Vector is proportional to this value

prad(count) = real(poyn); % radiated real power

x_r(count) = imag(poyn)/real(poyn); % normalized reactance (equation 6.19)
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count = count+1;

end

hold on

plot(sweep/t1,abs(x_r)/abs(x_r(1)),’r’) % plots normalized reactance ratio

plot(sweep/t1,abs(prad)/abs(prad(1)),’r’) % plots radiated real power gain
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