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Abstract 

 
 

Content-based image retrieval (CBIR) is still in its early stages, although several attempts 

have been made to solve or minimize challenges associated with it. CBIR techniques use 

such visual contents as color, texture, and shape to represent and index images. Of these, 

shapes contain richer information than color or texture. However, retrieval based on shape 

contents remains more difficult than that based on color or texture due to the diversity of 

shapes and the natural occurrence of shape transformations such as deformation, scaling 

and orientation.  

This thesis presents an approach for fusing several shape-based image retrieval 

techniques for the purpose of achieving reliable and accurate retrieval performance. An 

extensive investigation of notable existing shape descriptors is reported.  Two new shape 

descriptors have been proposed as means to overcome limitations of current shape 

descriptors. The first descriptor is based on a novel shape signature that includes corner 

information in order to enhance the performance of shape retrieval techniques that use 

Fourier descriptors. The second descriptor is based on the curvature of the shape contour. 

This invariant descriptor takes an unconventional view of the curvature-scale-space map 

of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 

2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to 

capture the detailed dynamics of the curvature of the shape and enhances the efficiency of 

the shape-matching process. 

Several experiments have been conducted in order to compare the proposed 

descriptors with several notable descriptors. The new descriptors not only speed up the 

online matching process, but also lead to improved retrieval accuracy. 
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The complexity and variety of the content of real images make it impossible for a 

particular choice of descriptor to be effective for all types of images. Therefore, a data- 

fusion formulation based on a team consensus approach is proposed as a means of 

achieving high accuracy performance. In this approach a select set of retrieval techniques 

form a team. Members of the team exchange information so as to complement each 

other’s assessment of a database image candidate as a match to query images. Several 

experiments have been conducted based on the MPEG-7 contour-shape databases; the 

results demonstrate that the performance of the proposed fusion scheme is superior to that 

achieved by any technique individually. 
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Chapter One 

Introduction 

 

Recent years have seen an enormous increase in the number of images captured by 

digital cameras. The ease and convenience of capturing digital images and transmitting 

them between digital cameras and image databases is a contributing factor to the immense 

growth of image databases. These databases cover a wide range of applications, including 

military, environmental, astronomy, transportation, aviation, medical and multimedia. 

The storage format of the image data is relatively standardized; however, the effective 

retrieval of images from such databases remains a significant challenge.  

This chapter provides an overview of research being conducted in the field of image 

retrieval; it highlights some of the outstanding issues in shape-based image retrieval and 

outlines the organization of this thesis. 

1. 1 An Overview of Image Retrieval 

Automatic image-retrieval techniques are required for handling massive amounts of 

stored and exchanged image information. As depicted in Figure 1.1, images are typically 

retrieved from a database based on either textual information or content information. 

Early retrieval techniques relied on the textual annotation of the images: images were first 

annotated with text, then searched for based on their textual tags. However, text-based 

techniques have many limitations due to their reliance on manual annotation – a tedious 

and error-prone process, especially for large data sets. Furthermore, the rich content 

typically found in images and the subjectivity of human perception make using words to 

describe images a difficult, if not impossible, task. 
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.  

Figure 1.1 Classification of image-retrieval methods. 

To overcome these difficulties, Content-Based Image Retrieval (CBIR) has been 

proposed [1]. This approach to image retrieval relies on the visual content of the images 

rather than on textual annotations and therefore has the potential to respond to more 

specific user queries. In 1992, the National Science Foundation of the United States 

organized a workshop on visual information management systems in order to identify 

new directions in image database management systems. At this conference, Kato [1] 

introduced the term Content-Based Image Retrieval (CBIR) to describe automatic 

retrieval of images from a database. He emphasized the use of color and shape as the 

criteria for the automatic image retrieval process. Since then, the term CBIR has been 

adopted to describe an image-retrieving process that is used for large collections of 

images and that is based on features that can be automatically extracted from the images 

themselves. 

Figure 1.2 depicts a typical CBIR system. The visual contents of the images are 

extracted and described by feature vectors that form a feature database. During the 

retrieval stage, the users provide the retrieval system with a sample image (query image) 

or a sketched figure. The system then changes this query into feature vectors. In the 

matching stage, the system calculates the similarities between the feature vectors of the 

query sample or sketch and those of the images in the database, and then performs the 

retrieval accordingly. Recent retrieval systems have incorporated relevance feedback 



3 

 

from the users to modify the retrieval process so that it generates more perceptually and 

semantically meaningful results.  

 

 

Figure 1.2  Typical content-based image retrieval (CBIR) system. 

 

Despite the many challenges inherent in current CBIR technology, several CBIR 

commercial systems and CBIR research prototypes are now available. One of the best- 

known commercial CBIR systems is the QBIC (Query By Image Content) developed by 

IBM [2-4]. It offers retrieval by any combination of color, texture, or shape, as well as by 

text keywords. Virage is another popular commercial CBIR system used by AltaVista [5]. 

Other experimental systems have been designed by academic institutes in order to test the 

performance of new techniques. The most prominent of these systems are Photobook [6], 

developed by the Massachusetts Institute of Technology (MIT), and VisualSEEk [7], 

developed at Columbia University. A systematic and comprehensive survey of CBIR 

systems has been conducted by Veltkamp and Tanase, who evaluated and compared 39 

CBIR systems[8]. 

CBIR techniques use visual contents such as color, texture, and shape to represent 

and index images, as shown in Figure 1.3. Color and texture have been explored more 
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thoroughly than shape. Because shape is a more intrinsic property of objects than color or 

texture, and given the considerable evidence that natural objects are recognized based 

primarily on their shape [9, 10], the increasing interest in using the shape features of 

objects for CBIR is not surprising. The focus of this research is therefore on shape-based 

image retrieval. 

 

 

Figure 1.3 Classification of content-based image retrieval. 

 

Since humans can often recognize the characteristics of objects using only their 

shapes, it is conceivable to expect shape-based techniques to be intuitive as a tool for 

retrieving images. A user survey of the cognition aspects of image retrieval also supports 

this conclusion; it indicates that users are more interested in retrieval by shape than by 

color or texture [11]. However, retrieval by shape is still considered to be a more 

intrinsically difficult task compared to retrieval based on other visual features [9]. In 

addition, the problem of shape retrieval becomes more complex when extracted objects 

are corrupted by occlusion or noise as a result of the image segmentation process. 

During the last decade, significant progress has been made in both theoretical and 

practical research on shape-based image retrieval systems [12-14]. There are two main 

types of approaches to shape representation: region-based and contour-based. The region-

based approach is a general method which can be applied to generic shapes. However, 

humans are thought to distinguish shapes mainly by their contour features [15]. 
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Moreover, in many applications, the shape’s contour is the only feature of interest, 

whereas the internal content of the shape is not as important. This research therefore 

focuses on images that can be classified based on their contours. This focus does not 

imply that region-based techniques are not employed in the investigation of the problem, 

because region-based techniques are generic and can thus be utilized in retrieving shapes 

based on their region or contour. 

1. 2 Motivation 

Although a number of studies are already being conducted with respect to shape-

based image retrieval, many challenging problems continue to attract researchers:  

• Techniques that have a robust structure for capturing local information tend to fail 

to capture global information, and vice versa.  

• Previous shape-based techniques exhibit low accuracy when they attempt to 

classify shapes within the same class that have different contour signatures. 

Samples of these images are depicted in Figure 1.4. 

• Techniques that capture local characteristics utilize complex matching processes 

that make them impractical for retrieving shapes from huge databases. 

 

Class 1 Class 2
 

Figure 1.4 Two classes, each having shapes with different contours. 
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1. 3 Research Objectives 

The following are the main objectives of this thesis: 

• To investigate and analyze various shape-based image-retrieval techniques 

and compare their performance as tools for shape-based image retrieval.  

• To improve the performance of shape-based image retrieval by devising new 

techniques that use a simple matching process to retrieve images. 

• To develop a multi-technique fusion approach that uses simple techniques to 

achieve enhanced performance compared to that of existing techniques. 

 

1. 4 Outline of the Thesis 

This thesis is composed of six chapters:  

Chapter 1 gives a brief background about image retrieval, describes the motivation and 

objectives of this research. 

Chapter 2 provides a literature review of the boundary and region shape descriptors. An 

investigation of these descriptors is presented, and their advantages and disadvantages are 

clarified.  

Chapter 3 introduces a simple yet powerful shape signature, named Farthest Point 

Distance (FPD), for Fourier Descriptor (FD). Several existing signatures are also 

reviewed and compared experimentally with the proposed signature. 

Chapter 4 describes a novel Curvature-Based Fourier Descriptor (CBFD). The proposed 

descriptor is implemented and then compared with notable existing descriptors. 

In Chapter 5, a data-fusion formulation is presented as a potential solution for addressing 

some of the drawbacks of traditional CBIR techniques.  This new formulation utilizes the 

proposed descriptors in order to achieve high accuracy in shape retrieval. 
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Chapter 6 contains conclusions derived from the research and presents suggestions for 

future work.  
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Chapter Two 

Literature Review of Region- and Boundary-Based 

Shape Descriptors 

 

 

2.1 Introduction 

Deriving shape descriptions is an important task in content-based image retrieval. In 

practice, a shape descriptor represents a 2-D shape as a vector in a fixed dimensional 

space. In other words, it is a mapping that converts the shape space into a vector space 

and satisfies the requirement that two similar shapes will also have close-to-identical 

shape descriptors. A shape-description should be unaffected by translation, rotation, and 

scaling. It is not necessary that the original shape be reconstructed using the extracted 

descriptors, but the descriptors for different shapes should also be different enough that 

they can be used to discriminate between shapes. 

During the last decade, significant progress has been made through research into both 

the theoretical and practical aspects of shape description, and the literature reports a 

variety of techniques that have the goal of describing objects based on their shapes. The 

two main approaches to deriving shape descriptors are region-based and boundary-based 

(also known as the contour-based approach). In the region-based approach, all the pixels 

within a shape’s region are adopted in order to obtain the shape descriptors. On the other 

hand, the boundary-based descriptor approach uses only the boundary of an object to 

extract its shape descriptors. 

 Each of the region and  boundary approaches can be further divided into global and 

structural techniques [15]. Global techniques use the whole shape to derive descriptors 
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while structural techniques decompose the shape into sub-regions called primitives. 

Figure 2.1 shows the classification of shape-based descriptors. 

  

Figure 2.1 Classification of shape-based descriptors. 

The effectiveness and efficiency of shape descriptors are the most challenging 

technical issues for a content-based image-retrieval system. Effectiveness has 

traditionally been the major concern with respect to shape descriptors. However, in CBIR 

applications, efficiency is equally important because of the demand for online retrieval. In 

the development of the MPEG-7 standard[16], six requirements have been set for 

measuring a shape descriptor: good retrieval accuracy, compact features, general 

application, low computational complexity, robust retrieval performance, and coarse-to-

fine hierarchical representation [17].  

This chapter gives a comprehensive review of shape-based descriptors and explains 

the ones commonly used for image retrieval. Promising descriptors for shape retrieval are 

indentified according to the six MPEG-7 requirements.  
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2.2 An Overview of Region-Based Shape Descriptors 

Global region-based techniques often use invariant moments to describe shapes [18, 

19]. The pioneering work in invariant moments was presented by Hu in 1962 [20]. He 

employed the theory of algebraic invariants to derive a set of moment invariants that are 

invariant under rotation, translation, and scaling transformations.  This work opened the 

door to further research, and a number of improvements and generalizations of invariant 

moments have since been developed. Reddi [21] defined 2-D rotational moments in polar 

coordinates. Rotational moments have the property of being invariant under image 

rotation. Another set of invariant moments based on geometrical moments, also known as 

regular moments, were derived by Bamieh and De Figueriredo [22]. Abu-Mostafa and 

Psaltis [23] introduced complex geometrical moments and used them to derive a set of 

moment invariants. Flusser [24] used complex moments and reported a simple scheme for 

the derivation of the Hu moment. These moment invariants based on geometrical 

moments have been used for the recognition of images in many applications [25-31].  

One of the drawbacks of the above invariants is that a non-orthogonal basis is used to 

derive them; hence, they suffer from a high degree of information redundancy.  

To overcome the shortcomings of geometrical moments, Teague [32] introduced the 

notion of using an orthogonal basis to derive the invariants. He used continuous 

orthogonal polynomials, such as Legendre and Zernike polynomials, to derive Legendre 

and Zernike moments (ZMs). Zernike moments have an attractive rotation property, as a 

result this type of invariant moment has been used for many applications, such as 

character recognition [33], face recognition [34], and shape retrieval [35].  

Teh and Chin [27] evaluated the performance of several moments with respect to 

issues such as representation ability, noise sensitivity, and information redundancy. In 

terms of overall performance, Teh and Chin showed that Zernike moments outperform 
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geometrical and Legendre moments. Khotanzad [36] explored the rotation invariance of 

Zernike moments and applied them in image recognition. In addition, he introduced an 

image reconstruction method using ZMs. Belkasim and et al. [33] compared different 

moment invariants and proposed a new scaling scheme for ZM invariants. Whoi and Kim 

[37] studied Zernike moments and showed that Zernike moments are very effective in 

retrieving an image from a large image database. Zhang and Lu [38] compared the 

performance of Zernike moments against the performance of several shape-retrieval 

techniques and showed that Zernike moments provide the most accurate retrieval of 

shapes from a standard database.  

The Angular Radial Transform (ART) descriptor [39] is another region-based shape 

descriptor that also belongs to the category of shape descriptors based on moments, as 

defined by the MPEG-7 working group. The ART descriptors are based on cosine 

functions. It has been reported that Zernike moments outperform angular radial transform 

descriptors in retrieving shapes that can be classified based on their contours, but that 

ART descriptors perform better in the case of complex shapes, i.e., shapes that consist of 

multiple contours, which can be classified only by region-based techniques [40]. Not only 

do angular radial transform and Zernike descriptors both possess the property of rotation 

invariance but both can also be normalized with respect to changes in the size of the 

shape using a simple and direct procedure proposed by Bin and Jia-xiong [41]. 

Recently, discrete orthogonal moments have been introduced as shape descriptors 

[42-45]. This type of moment was first introduced by Mukundan et al. [42]. They adopted 

discrete orthogonal Tchebichef polynomials to derive a set of orthogonal moments. 

Mukundan et al. [42] claimed that Tchebichef moments may overcome the shortcomings 

of continuous moments because the implementation of Tchebichef moments does not 

involve any numerical approximation, since the basis set is orthogonal in the discrete 
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domain of the image coordinate space. To derive rotation invariants from Tchebichef 

moments, Mukundan et al. [46] recently proposed radial Tchebichef moments. 

Other orthogonal-discrete moments that have been proposed are the Krawtchouk 

[43], Racah [44], and Dual Hahn [45] moments. The main drawback of these moments is 

that they are not invariant with respect to rotation, which makes them unsuitable for 

pattern-recognition and image-retrieval applications.  

Ping and et al. [47] suggested the use of the orthogonal radial Jacobi polynomials and 

the angular Fourier complex exponential factor for deriving a set of moments called 

Jacobi-Fourier moments. Moreover, they showed that almost all orthogonal moments that 

consist of a radial polynomial and the angular Fourier exponential factor can be derived 

from the Jacobi–Fourier Moments in terms of different parameter values. 

Sheng and Duvernoy [48, 49] employed the Mellin transform and the angular Fourier 

complex componential factor to drive invariant Fourier-Mellin descriptors. The problem 

associated with Fourier-Mellin descriptors is that the kernel function of the Mellin 

transform is not orthogonal; hence, these invariants suffer from a high degree of 

information redundancy. To overcome this problem, Sheng and Shen [50] applied the 

Gram-Schmidt orthogonalization process to orthogonalize the kernel function of the 

Mellin transform and used the resultant orthogonal polynomial to derive a set of 

orthogonal Fourier-Mellin moments. Their experiments demonstrated that, for small 

images, the description produced by orthogonal Fourier-Mellin moments is better than 

that produced by Zernike moments in terms of image-reconstruction errors and signal-to-

noise ratio. 

The Fourier transform is a powerful tool for shape analysis and has many 

applications [27, 51-55]. Most Fourier shape-based analysis techniques are based on 

shape contours and the 1-D Fourier transform. Recently, Zhang and Lu [56] used the 2-D 
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Fourier transform to derive a set of invariant descriptors, called generic Fourier 

descriptors (GFDs). In this method, the 2-D shape is transformed to polar coordinates, 

and the 2-D Fourier transform is then applied in order to drive the shape descriptors.   

Generic Fourier descriptors capture the spectral features of a shape in both radial and 

circular directions. The experiments conducted by Zhang and Lu showed that the GFD 

outperforms the ZM in retrieving shapes based on the content of a region. Li and Lee [57] 

proposed a technique which utilizes the magnitude of the Fourier transform as well as 

phase coefficients in order to derive a set of invariant features. 

All of the above techniques use a mathematical transformation to derive shape 

features. However, there are other techniques that do not use a mathematical 

transformation in order to capture shape features. The most notable are the shape matrix 

and grid descriptors.  In the shape matrix technique, the binary value of the shape is 

sampled at the points where circles that are concentrated at the centre of the shape 

intersect with radial lines drawn from the centre of the shape [58]. Then a matrix is 

formed so that the columns and rows correspond to the circles and radial lines, 

respectively. Taza and Suen [59] used a weighting matrix to give more weight to the 

pixels close to the boundaries of the image. The matching process using a shape matrix is 

expensive because the dimension of the feature vector is very large. 

 With grid descriptors, the given shape is overlaid by a grid space of a fixed size. A 

value of 1 is assigned to cells if they are covered by a certain percent of the shape, and a 

value of 0 is assigned to each of the other cells [60]. The rotation normalization is based 

on the major axis, which is sensitive to noise and can be unreliable even in the absence of 

noise effects. Moreover, online retrieval of the gird descriptors involves extremely 

complex computations due to the high degree of dimensionality of the feature vectors. 
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Several structural region-based representations have been proposed [61-66]. 

Generally, these techniques use the region of the shape skeleton or convex hull in order to 

derive shape descriptors. The idea behind obtaining the skeleton of the region of a shape 

is to preserve the topological information of the shape and to eliminate redundant 

information. In other words, the skeletonization extracts a region-based shape feature that 

represents the general form of an object. The shape’s skeleton can be obtained by several 

techniques such as thinning algorithms, mathematical morphologic-based algorithms, and 

distance map-based algorithms [67]. After skeletonization, the skeleton is decomposed 

into parts and represented as a graph. Matching shapes then becomes a graph-matching 

problem. The difficulty with skeleton-based techniques is that a small amount of noise or 

a variation in the boundary often generates redundant skeleton branches that may 

seriously disturb the topology of the skeleton’s graph [68]. 

Like the skeleton, the convex hull is a powerful concept that can be used for the 

analysis and description of shapes. The extraction of convex hulls can be achieved by 

finding significant convex deficiencies along the boundary of the shape. The shape can 

then be represented by a string of concavities. The resultant convex deficiencies can be 

further decomposed by obtaining the convex hulls and deficiencies of these convex 

deficiencies. This process can be recursively repeated until all of the derived convex 

deficiencies are convex. The shape is then represented as a concavity tree.  

2.3 Region-Based Shape-Retrieval Descriptors  

The following subsections further discuss the characteristics of region-based 

descriptors commonly used for shape retrieval and identify their advantages and 

disadvantages.  
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2.3.1 Simple Global Descriptors (SGDs) 

A specific region of a shape can be described using scalar measures based on its 

simple geometrical characteristics. The simple descriptors of a shape can often 

discriminate only between shapes with large dissimilarities; therefore, they are usually 

used in the retrieval process as filters to eliminate false hits or are combined with other 

techniques to differentiate shapes. The advantage of these descriptors is that they have a 

physical meaning, but they are not suitable as standalone shape descriptors. A brief 

description of commonly used simple descriptors is provided in the following sections. 

 

A. Eccentricity (E) 

Eccentricity (E) has been widely used as a shape feature [2, 69]. It illustrates the way 

in which the region points are scattered around the centre of the image region. E is 

defined as the ratio of the major axis of the region to the minor axis. It is calculated using 

central moments such that [70]: 
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where  pqµ are the central moments. 

Figure 2.2 displays various shapes and their eccentricity. 

 

 

 

Figure 2.2 Examples of object eccentricity. 
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B. Solidity (S) 

Solidity is computed as the ratio between the object area A0 and the area of the 

corresponding convex hull [71, 72]. Solidity is computed as follows: 

AreaConvex

A
S o

 
=  

(2.2) 

Figure 2.3 exhibits various objects and their solidity. 

 

Figure 2.3 Examples of object convexity and solidity. 

 

C. Extent (Rectangularity)(EX) 

Extent is a measure that reflects the rectangularity of a shape [73], in other words, 

how much of a shape fills its minimum enclosing rectangle (MER). Extent is defined as  

MER

o

A

A
EX =  (2.3) 

where  AMER is the area of the object’s MER.  

 

Figure 2.4 shows various objects and their extent. EX has a value of 1 for a rectangular 

shape. 

 

Figure 2.4 Examples of object extent. 
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D. Circularity (Compactness) 

Circularity is a measure of roundness and is defined as follows [74]: 

2)(

*4

o

o

P

A
C

π
=  (2.4) 

where  Ao  is the object area, and  Po is the object perimeter.    

It is sometimes used in the form (1-C) or in an inverse formula
o

o

A

P
C

*4

)(
2

π
=  [40, 75]. 

Figure 2.5 shows various shapes and their circularity.  

 

  

Figure 2.5 Examples of object circularity. 

 

2.3.2 Moments 

Moments can be classified as orthogonal or non-orthogonal according to the basis 

used to derive them. This section defines the commonly used moment-based descriptors 

and summarizes their properties. 

2.3.2.1 Non-Orthogonal Moments 

A. Regular Moment Descriptors (RMD) 

Regular moments are by far the most popular type of moment [27]. Two-dimensional 

(2-D) regular moments of the order (p + q) of an (N x M) digital image f(x, y) are defined 

as follows [33, 76]:  
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The first order moment is used to locate the centroid of the image, where
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Central moments are constructed by subtracting the centroid from all the coordinates. 

These moments are invariant under translation and are represented as 
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Moments can also be invariant to both translation and scale if the central moments are 

divided by the zeroth moment using the following formula [77]: 

     (2.8) 

Although normalized central moments ( pqη ) are invariant under translation and change in 

size, they are not invariant under rotation. To make pqη  rotation invariant, the shape 

angle is estimated using second-order moments [33]:  

� � 12 ���
�� 2���� � � �� � (2.9) 

The regular moments of f(x,y), after rotation by an angle α about the origin, are defined by 

[27, 33]  

����! � � ��� cos��� % �&'�������� cos��� � �&'������	
�

�
�

�
�

�
�
. ���, �� (2.10) 

 

The invariant regular moments (IRM) can be expressed in terms of the original 

normalized central moments of f(x, y) such that [33] 
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The main steps in extracting the invariant regular moment descriptors (RMD) are shown 

in Figure 2.6. 
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Figure 2.6 The basic steps in the generation of regular moment descriptors. 

 

Here, the method used to produce rotation invariance is called the principal axis. It is 

based on the observation that moments are computed relative to a unique set of principal 

axes of distribution and are therefore invariant to the orientation of the distribution. The 

main difficulty with the RMD lies in estimating the angle α. The principal axes cannot be 

uniquely defined, particularly when the image is of circular or an n-fold rotational 

symmetry. 

B. Hu Moment Descriptors (HMDs) 

Hu was the first to derive a set of seven moments that are invariant under the actions 

of translation, scaling, and rotation [20]. These are known as Hu moments and are given 

by the following equations: 
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where 1�� is obtained using Equation (2.8) 

In 2000, Flusser [24] used complex moments and reported a simple scheme for the 

derivation of the Hu moment. The complex moments of order (p+q) are defined as [24]: 
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where ' � √�1  
For digital images, each complex moment is expressed in terms of geometric moments 

pqη   as [24] 

∑ ∑
−−++

−−+
















=

= =

p q

srqpsr
srqp

i
s

q

r

p

pq
C

r s0 0
,

.) (
s-q

(-1)  η  (2.14) 

The seven Hu moments are calculated using Equation (2.14), as follows [24]: 
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Flusser also showed that the Hu moments are dependent and that  
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In recognition of 2-D objects, Flusser suggested the following moments with the use of 

second and third order, or fourth order, respectively [24]: 
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• Using the fourth order: 

•  
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The advantage of using invariant Flusser moment descriptors (FMD) and HMD is that 

they are rotation invariant and provide a very compact representation of the shape. A few 

lower-order central moments have a physical meaning, such as mean, variance, and skew. 

However, the physical meaning of the other moment invariants is not known. Moreover, 

the basis used to derive the moments is not orthogonal, so these moments suffer from a 

high degree of information redundancy. 
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2.3.2.2 Orthogonal Moments 

A. Zernike Moment Descriptors (ZMDs) 

To overcome the shortcoming of geometrical moment-based descriptors with respect 

to information redundancy, Teague [32] adopted Zernike orthogonal polynomials to 

derive a set of invariant moments, called Zernike moments (ZMs). Zernike moments are 

defined as the projections of f(x,y) on complex Zernike polynomials which form a 

complete orthogonal set over only the interior of the unit circle; that is, x y2 2 1+ ≤ . The 

function of complex Zernike moments with an order p and repetition q in polar 

coordinates is defined as 

3��� � * % 14 5 5 ��+, 6�. 7��8 �+, 6�. +9+96�
�

 :
�  (2.19) 

 

7���+, 6� is the Zernike polynomial, defined as 

7���+, 6� � ����+�. ;<�= ,     ' � √�1 (2.20) 

where p is a positive integer or zero and q is a positive integer subject to the constraints 

that * � |/| is even and / ? *  , r is the length of the vector from the origin to the (x, y) 

pixel; i.e., + � @� � �  6 is the angle between the vector r and the x axis in a 

counterclockwise direction, the symbol (*) denotes the complex conjugate, and ����+�  is 
a real-valued Zernike-radial polynomial defined as follows: 
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The ZM expression can be mapped from the polar coordinates to the xy-plane by 

changing the variables in the double integral form of Equation (2.19). Then Anl can be 

written in the xy-plane as follows: 
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Here, � +IJ&�6�,   y � +&'��6� , and the symbol (*) denotes the complex conjugate. For 

a digital image, the integrals are replaced by summations to obtain 
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The features defined by the Zernike moments are derived by adopting the rotational 

properties of these moments [32, 36]. If the rotated image through an angle � is denoted 

by �! then the relationship between the original and the rotated images in the same polar 

coordinates is given by 

 �!�+, 6� � ��+, 6 % ��  (2.24) 

Using the polar coordinates, the ZMs for the original image are 
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The ZMs of the rotated image in the same coordinates are 
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A change in the variable 6� � 6 % � produces the following: 
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Equation (2.27) demonstrates that ZMs have a simple rotational transformation 

property: each ZM requires only a phase shift under rotation. This simple property 

suggests that the magnitudes of the ZMs of a rotated image function remain identical to 

those before rotation. 

The magnitudes of the ZMs are rotation invariant but are not scale or translation 

invariant. Translation invariance is achieved by using the centralized moments to move 

the origin to the centre of the image. Scale invariance is achieved by enlarging or 

reducing each object so that its zeroth-order moment M00 is equal to a predetermined 

value β [32, 34]. The regular moments of f(x, y) after a scale change by factor a are 

defined by 

����O � 5 5 �� �� � )�O, �O,9�9�
P

P

P

P  (2.28) 

which is expressed in terms of the original moments of f(x, y) by 

����O � ���0�0 � ���� (2.29) 

Since the goal is to achieve ����O � Q, then � � √R/S�TT, and f(x,y) can be normalized 

with respect to scaling and translation by transforming f(x,y) into g(x,y), as follows:  

U��, �� � ���O0�V, �O0�V� (2.30) 

If a point �WX0�V, YX0�V� does not correspond to a grid location, then the function value 

associated with the point is interpolated from the values given by the four nearest grid 

locations [36]. Belkasim et al. [78] adopted Cartesian coordinates to explicitly make the 

Zernike moments directly invariant to scale, translation, and rotation without the need to 

use regular moments. 

The ZMDs normalized by using the previous methods do not reflect the features of 

the original shape very well because scaling a shape before the extraction of a feature 

leads to loss of information about the shape, especially when the shape is shrunk.  Bin and 
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Jia-xiong [41] proposed a normalization scheme that can be used after the extraction of 

the image feature. Normalization is achieved by dividing the ZMs of an image by the 

zeroth-order moment. The comparison study conducted by Bin and Jia-xiong  [41] 

indicated that the normalization that occurs after the extraction of the Zernike features 

yields a better invariant than normalization that occurs before feature extraction. The 

main steps in extracting Zernike Moment Descriptors are shown in Figure 2.7.  

 

 

 Figure 2.7 The basic steps in the generation of Zernike moment descriptors. 

 

Many researchers have adopted Zernike moments for character recognition [33-35]. 

Zernike moment invariants have been shown to outperform several other shape 

descriptors and to be highly effective in terms of image representation [37, 38]. Using a 

database of about 6,000 images, Whoi and Yong [37] conducted several experiments and 

showed that the Zernike moment is a very effective shape descriptor in terms of exact 

matching under various transformations and the similarity-based retrieval. 

 

B. Pseudo-Zernike Moment Descriptors (PZMDs) 

Pseudo-Zernike moments are derived based on the basis set of pseudo-Zernike 

polynomials, which are similar to Zernike polynomials but have a different real-value 

radial polynomial �Z���+� , which is defined as follows [79]: 
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�Z���+� � ���1�A . �2* % 1 � B�!B! �* � |/| � B�! �* % |/| % 1 � B�! . +�
A
�
�

A
�
 (2.31) 

 

where p ≥ 0, and q is a positive or negative integer subject to |p | ≤ q only. Pseudo- 

Zernike moments provide more features than ZMs because PZMs are not subject to the 

condition that (p-q) is even. Complex PZM descriptors of order p with repetition q for a 

continuous function image can be derived in polar coordinates as follows: 

[3��� � * % 14 5 5 ��+, 6�. �Z���+�. ;
<�=. +9+96�
�

:
�  (2.32) 

For a digital image, the integrals are replaced by summations to obtain 

[3��� � * % 14 ����+ IJ&6, +&'� 6�. �Z���+�. ;
<�=
=.

    , + ? 1 (2.33) 

The same procedure can be utilized with respect to the previous section to prove that the 

magnitudes of the complex PZM descriptors of a rotated image function remain identical 

to those in place before rotation. Scale invariance of PZMs can be achieved by 

normalizing an image by a predetermined value using geometrical moments. Chong et al.  

[79] described a mathematical framework for deriving a new set of scale invariants of 

pseudo-Zernike moments based on pseudo-Zernike polynomials. However, this approach 

is dependent on the order of the pseudo-Zernike polynomial: as the order becomes higher, 

the magnitude of the invariant moments significantly diminishes, and the dynamic range 

between invariant moments becomes very large. The large dynamic range leads to a 

feature vector dominated by the larger-magnitude invariants.  

C. Angular Radial Transform Descriptors (ARTDs) 

For region-based shape descriptions, the MPEG-7 working group has selected 

angular radial transform descriptors [39]. Angular radial transform (ART) descriptors are 

similar to ZM descriptors. The main difference is that ART descriptors are based on 
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cosine functions rather than on Zernike polynomials.  The ART basis functions are 

separable along the angular and radial directions and are defined on the unit circle as 

follows [39]: 

7����, �� � 7���+, 6� � � :  ���+�;<�= (2.34) 

 

 ���+� � \  1                               * � 0
  2 cos�*4+�                  * ^ 0       _ (2.35) 

The complex ART descriptors of order p with repetition q for a continuous function f(x,y) 

are defined in polar coordinates as  

`�a�� � 1245 5 ��+, 6�. ���+�. ;
<�= +9+96�
�

:
�  (2.36) 

For a digital image, the integrals are replaced by summations to obtain 

`�a�� � 124����+ IJ&6, +&'� 6�. ���+�. ;
<�=
=.

    , + ? 1 (2.37) 

Proving that the magnitude of the complex ART is rotation invariant is 

straightforward. Scale invariance can be achieved by dividing the magnitude of the ART 

descriptors by the magnitude of the first descriptor. 

D. Tchebichef Moment Descriptors (TMDs) 

Tchebichef moments were first introduced by Mukundan et al. [42]. They adopted 

the discrete orthogonal Tchebichef polynomials in order to derive a set of orthogonal 

moments. For a given positive integer N (the image size), the Tchebichef polynomial is 

given by the following recurrence relation [42]: 

����� � �2* � 1��������
���� � �* � 1��1 � �* � 1� b �c
 ���*  
(2.38) 

with the initial conditions 
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����� � 1 (2.39) 

 

����� � �2� % 1 � b�b , (2.40) 

where * � 0,1, …b � 1 

The Tchebichef moment of order (p+q) of an (NxM) image intensity function is defined 

as [42] 

a�� � 1e�*, b�e�/,��� � �����/���
�
�

�
�
���, ��	
�

�
�
 (2.41) 

where p, = 0, 1, . . . , N – 1 and q=0,1,…,M. The Tchebichef polynomial satisfies the 

property of orthogonality with 

e�*,b� � b )1 � 1b , D1 � 2 b E…D1 � * b E
2* % 1  

(2.42) 

The moments defined in Equation (2.41) are not rotation invariant. Mukundan et al. [46] 

recently proposed radial Tchebichef moments in order to derive rotation invariant 

features. Radial Tchebichef moments of order p and repetition q are defined as [46] 

f�� � 124e�*,g� � ����+�;
h�=��+, 6�
 :

=
�

i
�

.
�
 (2.43) 

where m denotes the number of samples in the radial direction. Since θ is a real quantity 

measured in radians, Equation (2.43) can be defined as: 

f�� � 1� e�*,g� � ����+�;
h�=��+, 6�
c
�

=
�

i
�

.
�
 (2.44) 

The magnitudes of the Spq are rotation invariant but are not scale or translation invariant. 

Translation invariance is achieved by moving the origin to the centre of the image using 

centralized moments. Scale invariance is achieved by enlarging or reducing each object 
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so that its zeroth-order moment M00 is equal to a predetermined value β [32, 34]. The 

main steps in extracting the Tchebichef moment descriptors are depicted in Figure 2.8.  

The key advantage of the radial Tchebichef moments is that they are rotation 

invariant and based on a discrete-orthogonal polynomial which is needed to ensure 

information redundancy in a moment set.  

 

 Figure 2.8 The basic steps in the generation of Tchebichef moment descriptors. 

New Scale Invariants of Radial Tchebichef Moments 

To achieve scale invariance of radial Tchebichef moments, researchers resort to 

resizing the original shape to a predetermined size. This traditional method of scaling is 

time-consuming and leads to loss of shape characteristics. Therefore, moments derived 

using the traditional normalization scheme may differ from the true moments of the 

original shape.  This section describes a simple yet powerful scheme for deriving a new 

set of scale invariants of radial Tchebichef moments.  

When the size of a binary shape is scaled, then the area (A) and the maximum radial 

distance of the shape (m) are scaled according to the scaling factor used, as shown in 

Figure 2.9. Therefore, it is reasonable to normalize radial Tchebichef moments using the 

area and the maximum radial distance of the shape. 
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Figure 2.9 An image and its scaled version with Cartesian and polar coordinates. 

 

The zero-order moment (p=q=0) of radial Tchebichef moments is obtained using 

Equation (2.44), as follows: 

f�� � 1� e�0,g� � ����+� ;
h�.= ��+, 6�
c
�

=
�

i
�

.
�
 (2.45) 

 

Using Equations (2.39) and (2.42), it is straightforward to prove that  

f�� � 1� g � �  ��+, 6�
c
�

=
�

i
�

.
�
� `� g (2.46) 

A: the area of the object. 

m: the maximum radial distance. 

n: the maximum resolution used in the angular direction, which is  equal to 360. 

From Equation (2.46), if the magnitudes of the radial Tchebichef moments are 

divided by S00, then all the moments will be scaled according to the area and the 

maximum radial distance, which are the two parameters affected by scaling a shape. 
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Therefore, the proposed scale invariants for the radial Tchebichef moments are as 

follows: 

Sk lm � nSlmnS��  (2.47) 

Table 2.1 and Table 2.2 show a binary image with different scaling factors and the 

corresponding magnitudes of the radial Tchebichef moments normalized using the 

proposed and the traditional scaling schemes, respectively. The o and � denote the 

standard deviation and mean of the normalized descriptors, respectively. The deviation of 

the normalized descriptors, indicated by the percentage of o/�  , clearly shows that the 

proposed scaling scheme outperforms the traditional one. It can be seen from Table 2.1 

and Table 2.2, that the average of the deviation for the proposed scaling scheme (12.91%) 

is less than that of the traditional scaling scheme (48.18%).  

 

 

Table 2.1 The magnitude of the normalized Tchebicef moments using the proposed 

scaling scheme. 

The 

magnitude 

of 

the 

normalized 

Tchebicef 

Moments 

 
   

 

   

α=1 α=0.1 α=0.2 α=0.3 α=2 
 fap�o�  

Mean(�� 
o�  �%� 

fk �� 0.0692 0.0673 0.0633 0.0704 0.0511 0.0078 0.0643 12.19 fk �� 0.6890 0.7029 0.7029 0.6939 0.7272 0.0147 0.7032 2.09 fk �� 0.0796 0.0779 0.0761 0.0809 0.0489 0.0134 0 .0727 18.46 fk  � 0.2289 0.2251 0.2212 0.2300 0.1787 0.0216 0.2168 9.95 fk �  0.1230 0.1262 0.1263 0.1455 0.1363 0.0093 0.1315 7.08 fk �  0.0975 0.0981 0.0953 0.0970 0.1011 0.0021 0.0978 2.17 fk � 0.0125 0.0142 0.0143 0.0072 0.0417 0.0136 0.0180 75.48 fk    0.1510 0.1502 0.1500 0.1487 0.1446 0.0025 0 .1489 1.71 

       Average 12.91 
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Table 2. 2 The magnitude of the normalized Tchebicef moments using the traditional 

scaling scheme. 

The 

magnitud

e of 

the 

normaliz

ed 

Tchebice

f 

Moments 

 
   

 

   

α=1 α=0.1 α=0.2 α=0.3 α=2 

o Mean (�) o�  �%� 

fk �� 0.4853 0.8711 0.8345 0.9008 0.4718 0.2151 0.7127 30.18 fk �� 4.8114 3.2391 3.2677 4.1768 4.8210 0.7840 4.0632 19.3 fk �� 0.5603 0.3754 0.3754 0.1558 0.5517 0.1654 0.4037 40.98 fk  � 1.5677 0.4431 0.4211 0.9856 1.5637 0.5669 0.9962 56.90 fk �  0.8606 1.2015 1.2303 0.3924 0.8659 0.3391 0.9101 37.25 fk �  0.6489 0.1436 0.1525 0.1521 0.6487 0.2736 0.3492 78.35 fk � 0.0893 0.6052 0.5768 0.8869 0.0888 0.3506 0.4494 78.01 fk    1.0588 0.4154 0.3815 0.8934 1.0603 0.3388 0.7619 44.47 

       Average 48.18 

 

2.3.3 Generic Fourier Descriptors (GFDs) 

A one-dimensional Fourier transform has been used successfully in image analysis to 

derive shape descriptors from shape contours. Recently, Zhang and Lu [56] adopted the 

2-D Fourier transform to derive a set of invariant descriptors called generic Fourier 

descriptors (GFD). In this method, the 2-D shape is transformed to the polar coordinates, 

and the 2-D Fourier transform is then applied in order to derive shape descriptors.  The 

rotation of the original shape corresponds to a shift in the normal Cartesian coordinate. 

This property makes it possible to derive rotation invariant features by applying the 2-D 

Fourier transform on the polar image and then taking the magnitude while ignoring the 

phase. The 2-D Fourier transform of a polar image is give by: 

rsp�t�, t � � � ���+, 6� ;
h�uL.i 0uG=c �c
�

=
�

i
�

.
�
 (2.48) 

The main steps in the extraction of generic Fourier descriptors are shown in Figure 2.10.  



33 

 

 

 

 Figure 2.10 The basic steps in the generation of generic Fourier descriptors. 

 

2.3.4 Fourier-Mellin Descriptors (FMDs) 

The Fourier-Mellin transform (FMT) takes advantage of the properties of the Fourier and 

Mellin transforms in order to define a new set of image invariants called Fourier-Mellin 

descriptors (FMDs).  The Fourier-Mellin transform for ��+, 6� is defined as follows [48, 

49]: 

s�-v � 1245 5+-
�. ��+, 6�. ;
hv=9+96
:


:

P

�
 (2.49) 

This transformation shows a radial-Mellin transform with parameter s and an explicit 

circular-Fourier transform with parameter l [48]. The rotation invariant can be achieved 

by taking the magnitude of the transform. Translation invariance is conventionally 

achieved by placing the origin of the coordinates at the image centroid. With a given 

radial order s and the circular-harmonic frequency l = 0, 1, . . . , N , the scale 

normalization of Fourier-Mellin descriptors is defined as [49]  

Γ-v � |�-v| ∑ |�-v| 	v
�  (2.50) 

In the case of an imaginary order, if a nonlinear mapping + � ;x  is used, then the 

Fourier-Mellin transform can be obtained using the 2-D Fourier transform, as follows: 
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s�-v � 1245 5��;x , 6�. ;
h�x-0v=�9196
:


:

P

�
 (2.51) 

In other words, the Mellin transform can be realized by logarithmically scaling the 

coordinates of the image and the 2-D Fourier transform of the resultant scaled function. 

 In Equation (2.51) , it is worth noting that the GFD is similar to the FMD but rather than 

log-polar coordinates, the GFD uses traditional polar coordinates.  

Ghorbel proposed the Analytical Fourier-Mellin Transform (AFMT) in order to 

construct a complete invariant to rotation and scaling. The AFMD computes the standard 

FMT of +y��+, 6� rather than ��+, 6�  where  o is a fixed and strictly positive real number 

[80].  The AFMT is defined as 

`s�-v � 1245 5 +y
h-
�. ��+, 6�. ;
hv=9+96
:


:

P

�
 (2.52) 

Let �!,O denote the rotation and size change of an object f through angle � with a scale 

factor � (i.e., �!,O�+, 6� � ���+, 6 % ��. The AFMT of �!,O  is given as: 

`s�-v!O � 1245 5 +y
h-
�. ���+, 6 % ��. ;
hv=9+96
:


:

∞

�
 (2.53) 

and a simple change in the variables + and 6 gives the following relations [81]: 

`s�-vOz � �y0h-. ;h!v. `s�-v  (2.54) 

Derrode and Ghorbel [81] adopted the `s��� and the  `s��� as normalization 

parameters to compensate for the term �y0h-. ;h!v . They defined the invariant AFMT 

descriptors with respect to rotation and scaling as [81]:  

(-v � �`s�����
y0h-�/y. ;
h- O.{�|}�TL�. `s�-v (2.55) 

The application of the Fourier-Mellin transform has been studied in many image-

processing and pattern-recognition applications [55, 82-84].  Raman and Desai [54] used 

neural networks to classify invariant patterns obtained by the use of FMT. Their 



35 

 

experiments were based on a small set of 50 binary image shapes and showed a high 

recognition rate obtained even for partially occluded images. Derrode  et al. [84] used 

Fourier-Mellin descriptors to retrieve gray-level images from large databases. Their 

experiments produced a high-quality numerical invariance and good retrieval results for a 

butterfly database and the well-known Columbia database. 

The disadvantage of the FMDs is that the kernel function set +y
h-
� in the radial-

Mellin transform is not orthogonal, which means that extracted FMDs suffer from a high 

degree of information redundancy. Moreover, the invariant descriptors (Equation (2.55)) 

defined by Derrode and Ghorbel are based on a phase angel which is very sensitive to 

noise. 

 

2.3.5 Grid Descriptors (GD) 

The grid-based method has attracted interest because of its simplicity with respect to 

representations [60]. In this technique, the given shape is overlaid by a grid space of a 

fixed size, as shown in Figure 2.11. A value of 1 is assigned to cells if they are at least 

15% covered , and a zero is assigned to each of the other cells [60]. Then the 1s and 0s 

are scanned from left to right and top to bottom to obtain a binary sequence for the shape. 

For the shape shown in Figure 2.11, the binary sequence is 0000111100000011111-

11000111 111111110000000111111. It is evident that the smaller the cell size, the more 

accurate the representation of the shape, but the greater the storage and computation 

requirements. It is evident that the representation is translation invariant, but it is not 

invariant to scale and rotation. Rotation and scale normalization are thus necessary when 

GDs are used to compare two shapes.  
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Figure 2.11 Example of grid representation. 

To achieve scale normalization, all shapes are scaled proportionally so that the major 

axes have the same fixed length. For rotation invariance, the given shape is rotated so that 

its major axis is in parallel with the x-axis. As a result of the 180° rotation, two 

possibilities still remain for the shape placement: one of the farthest points can be either 

on the left or on the right. Two different binary sequences are therefore needed in order to 

represent these two orientations. The main steps in extracting grid descriptors are shown 

in Figure 2.12.  

  

Figure 2.12 The basic steps in the generation of grid descriptors. 

 

The key problem associated with GDs is the problematic major axis normalization. The 

major axis is sensitive to noise and can be unreliable even in the absence of noise effects. 

Moreover, online retrieval usually involves extremely complex computations due to the 

high degree of dimensionality of the feature vectors. 

2.4 An Overview of Boundary-Based Shape Descriptors 

The previous sections have provided a review of several descriptors that are based 

on the internal content of the shape. However, in many applications, the internal content 

of the shape is not as important as its boundary. Boundary-based techniques tend to be 
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more efficient for handling shapes that are describable according to their contours [40].  

The literature has reported on a variety of techniques for describing objects based on the 

boundaries of their shape. Two main techniques are used to derive shape descriptors from 

shape boundaries: global and structural [15]. Global techniques use the entire contour 

from which to derive descriptors, while structural techniques are based on breaking down 

the contours into boundary segments, called primitives [15]. 

Global boundary techniques use the entire boundary of a shape to compute a 

feature vector. The descriptors are thus often compact, and the matching of shapes is a 

straightforward process, which can be achieved using a simple metric distance, such as 

Euclidean distance or city block distance. Many global boundary descriptors are based on 

shape signatures, which are often used to reduce a 2-D shape boundary to 1-D functions, 

a process that facilitates the derivation of invariant shape features. Several shape 

signatures have been proposed, including complex coordinates, radial distance, chord-

length distance, triangular centroid area, angular function, polar coordinates, angular 

radial coordinates, and the farthest point distance. A shape signature can be used directly 

in order to distinguish different shapes. However, to make the signatures rotation 

invariant, shift matching must be employed as the means of finding the best match 

between two signatures. Using shape signatures for matching has a high cost due to the 

complex normalization of rotation invariance [85]. Moreover, shape signatures are very 

sensitive to noise, and any small change in the boundary leads to a large error in the 

matching [85].  Therefore, the direct use of shape signatures is impractical. 

As a solution to the above problems, the Fourier transform is used to derive shape 

descriptors from a signature. Descriptors that are derived in this manner are often called 

Fourier Descriptors (FDs), which are frequently based on the application of the Fourier 

transform, to 1-D signature functions. In many applications, Fourier descriptors have been 
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proven to perform better than other boundary-based techniques [52, 86-89]. Many shape 

signatures have been used in Fourier descriptor techniques. However, the complex 

coordinate is the one most frequently described in the literature. Recent work shows that, 

in shape-based image retrieval, the radial distance signature outperforms the complex 

coordinate and other signatures [85]. To increase the ability of Fourier-based techniques 

to capture local features, Eichmann et al., [90] have used the Short Fourier Transform 

(SFT). The SFT is not suitable for image retrieval because the matching process using the 

SFT is computationally more expensive than ones that utilize traditional FDs. Invariance 

to affine transformation allows considerable robustness in the case of rotating shapes in 

all three dimensions. Arbter et al. [91, 92] used a complex mathematical analysis and 

proposed a set of normalized descriptors which are invariant under any affine 

transformation. Oirrak et al. [93] also used one-dimensional Fourier series coefficients to 

derive affine invariant descriptors. Zhang and Lu [85] have shown that although the affine 

Fourier descriptor [91] was proposed as a means of targeting affined shape distortion, it 

does not perform well on the standard affine invariance retrieval set of the MPEG-7 

database because affine Fourier descriptors are designed to work on polygonal shapes 

under affine transformation and not for non-rigid shapes [85]. Rauber and Garçao [94, 95] 

described a 2-D form descriptor based on a normalized polar transform, called a UNL 

(Universidad Nova de Lisboa) transform. The boundary of the shape is mapped to 

normalized polar coordinates, and then the 2-D Fourier transform is applied in order to 

derive the shape descriptors.  Rauber and Garçao reported that if part of an object is 

missing, the UNL transform is abruptly changed; the derived descriptors are thus 

sensitive to occlusion [95].   

  Most Fourier-based techniques utilize the magnitude of the Fourier transform and 

ignore phase information in order to achieve rotation invariance as well as to make the 
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descriptors independent from the starting point. However, Bartolini et al. [96] described a 

technique in which phase information is exploited. Recently, El-ghazal et al.[97, 98] 

described Curvature-Based Fourier Descriptors (CBFD) for shape retrieval. The invariant 

descriptors of the CBFD technique are derived from the 2-D Fourier transform of the 

curvature-scale image obtained from the contours of the image [97]. 

In general, the use of Fourier descriptors is a promising boundary-based approach 

for shape-based image retrieval because FDs are based on the well-known Fourier theory, 

making them easy to compute and simple to normalize and interpret. In addition, their 

computational efficiency and compactness are well suited for online image retrieval.  

Moment-based techniques represent a generic approach, i.e., one that can be used 

to derive shape descriptions even if the shape is represented by its boundary. Therefore, 

all moment techniques can be used to derive shape descriptors from the boundary of a 

shape. When moment-based techniques are used, the shape is represented by its 

boundary, and only the pixels that correspond to the boundary points are used to derive 

moment descriptors. This method reduces the amount of data storage space and 

computation time required [99]. 

Boundary moments can be derived from a shape signature by obtaining the central 

moments of the signature [100]. Gonzalez and Woods [67] used this principle to develop 

another method of deriving moment descriptors from a shape signature. In their method, 

the amplitude of the shape signature is treated as a random variable, and an amplitude 

histogram is formed, from which the moments are then derived. Another technique that 

uses shape signatures to derive shape descriptors is the autoregressive modeling technique 

[101-104]. The autoregressive model is applied to the shape signature function, and the 

autoregressive model coefficients are then taken as shape descriptors. Sekita and et al. 

[104] conducted several experiments with the goal of comparing techniques based on the 
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autoregressive model and Fourier-based techniques. Their experimental results clearly 

show that for shape recognition, Fourier-based techniques outperform techniques based 

on the autoregressive model. The disadvantage of the autoregressive model technique is 

its lack of a straightforward way to determine the correct model order. Moreover, in the 

case of a complex shape, a small order is not sufficient for a description [15]. 

Multi-scale representation is a powerful method of representation that allows the 

handling of boundary characteristics at different scales. Asada and Brady [105, 106] 

introduced the concept of curvature primal sketch, which is a multi-resolution description 

of a shape based on curvature. Their curvature primal sketch is acquired from both a 

Gaussian filter and second derivatives of a Gaussian filter. They extracted what they 

called primitive events, such as corners, smooth joints, cranks, ends, and bumps. 

Mokhtarian and Mackworth [107] proposed the use of the curvature scale space (CSS) 

representation for extracting shape descriptors. The representation is computed by 

convolving a path-based parametric representation of the curve with a Gaussian filter  as 

the standard deviation of the Gaussian filter varies from a small to a large value, and 

extracting the curvature zero-crossing points of the resulting curves [107]. The peaks of 

the CSS representation are used as descriptors. Recent research has focused on the 

curvature scale space (CSS) method since it has been selected for use in the contour-

based shape descriptions of MPEG-7 standards. Many researchers have modified or 

compared with the CSS method [108-114]. El Rube and et al. [114, 115] proposed the 

Multi-Triangular Area Representation (MTAR) signature, which is computed by 

calculating the area formed by three points on the boundary of the shape. Rather than 

using a Gaussian filter, El Rube et al. achieved a multi-scale representation by using a 

wavelength transform. CSS and the MTAR technique are not rotation invariant unless a 

circular shift of the peaks is used in the matching stage. Poel et al. [116] employed a 
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correlation coefficient as a measure of similarity between two different CSS 

representations. Since the whole CSS representation is used in the matching process, the 

dimension of the feature vector becomes very high and thus impractical for indexing and 

retrieval. El-ghazal et al. [97, 98] recently proposed the use of a 2-D Fourier transform to 

capture dynamic changes in the curvature of the contour of the shape and to simplify the 

matching process. 

Wavelet analysis is used as a powerful tool in several applications, including 

shape analysis and recognition [87, 117, 118]. Kunttu et al. [87] introduced multi-scale 

Fourier descriptors for shape-based image retrieval. These descriptors are presented in 

multiple scales by adopting the wavelet and the Fourier transform, which improves the 

shape-retrieval accuracy of traditional Fourier descriptors. The complicated matching 

scheme of wavelet-based shape descriptors makes them impractical for online shape 

retrieval [119]. 

Dynamic Programming (DP) is another recently adopted method of achieving a 

high accuracy rate using shape boundaries [96, 120-123]. Although DP-based techniques 

generally offer better performance than other techniques that do not use DP, they have the 

disadvantage of being computationally expensive, making them impractical for large 

databases.  

Several structure-based descriptors have been proposed for describing shape 

contours. In general structure-based descriptors are based on polygonal approximation 

and boundary decomposition [124-127]. One of the most well-known structural-boundary 

representations is the chain code, also known as the freeman code [128, 129]. The chain 

code is defined as the direction of the object’s contour from a starting point. This 

representation is typically based on 4- or 8-connectivity, and the resulting chain code is a 

sequence of numbers. To make the chain code invariant with respect to rotation, the 



42 

 

difference of the chain code is used rather than the code itself. Then the difference is 

treated as a circular sequence, and the starting point is redefined so that the resulting 

sequence of numbers forms an integer of minimum magnitude, called the shape number. 

For object recognition, Iivarinen and Visa [130] proposed a chain code histogram that 

shows the probability of each direction, which reduces the dimension of the chain code 

representation.  Bribiesca [125] proposed a new chain code, termed the vertex chain code 

(VCC).  The vertex chain code indicates the number of cell vertices that are in touch with 

the bounding contour of the shape in that element’s position. The advantage of the vertex 

chain code over a traditional chain code is that the shape number of the vertex chain code 

can be obtained directly by rotating the digits of the chain until the number is the 

minimum. Salem et al.[131] conducted several experiments in order to compare  classical 

and vertex chain codes. Their results demonstrate that the vertex chain code recognizes 

shapes better than the classical chain code.  Mehtre et  al. [132] compared  the retrieval 

ability of chain codes, Fourier descriptors, and moment-based descriptors. The worst 

performance was produced by chain codes. The disadvantages of using chain code 

representation is that it is very sensitive to boundary noise and variations and that it has a 

high dimension feature vector. 

Groskey and Mehrotra [124] proposed a technique based on polygon 

decomposition. With this technique, the shape is broken into segments by polygon 

approximation. The polygon vertices are then used as primitives, and four features are 

extracted at each primitive. The similarity between any two features is the editing 

distance of the two feature strings. Berretti et al. [126] also proposed local shape 

descriptors based on partitioning the boundary of the shape into primitives. The zero-

crossing points of the curvature from the Gaussian smoothed boundary are used to obtain 

primitives called tokens. Each token is described by two descriptors: its maximum 
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curvature and its orientation. An M-tree is used to index the tokens into the feature 

database. Two distance measures are defined which model the token similarity and shape 

similarity. The fundamental shortcoming of these descriptors is that they include curve 

orientation, which is not rotation invariant. Attalla and Siy [127] described a multi-

resolution polygonal shape descriptor that is invariant to scale, rotation, and translation. 

To derive the shape descriptors, the contour of the shape is divided into equally spaced 

segments.  An elastic comparison of the shape descriptors is then employed to measure 

the similarity of the features. 

2.5 Boundary-Based Shape-Retrieval Descriptors 

Many techniques have been proposed for describing images using the boundaries of 

the image. The following sections provide a description of commonly used boundary-

based shape-retrieval descriptors and their advantages and disadvantages. 

2.5.1 Simple Global Descriptors (SGDs) 

The boundary of a shape can be described using scalar measures that are based on its 

simple geometrical characteristics. Brief descriptions of commonly used simple boundary 

descriptors follow. 

A. Convexity (CX) 

A convex hull is the minimal covering of an object. A shape convexity can be 

defined as the ratio of perimeters of the convex hull to that of the original contour ([�). 

The convexity is represented as [133]: 

oP

miterConvex Per
CX =  (2.56) 

Examples for object convexity are provided in Figure 2.13. 
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Figure 2.13 Examples of object convexities and solidities. 

B. Bending Energy (BE) 

Bending energy is the amount of energy required to transform a given closed contour into 

a circle with the same perimeter as the original contour. 

 

~� � 1b� B��� 	
�

c
�
 (2.57) 

N is the number of points of the contour, and k is the contour curvature, which can be 

calculated using Equation (2.60). 

C. Aspect Ratio (AR) 

The aspect ratio is defined as the shape’s height divided by its width and is expressed as 

he shapeWidth of t

the shapeHeight of 
AR =  

 

(2.58) 

2.5.2 Fourier Descriptor (FD) 

The idea of a FD is to use the Fourier transformed boundary as a shape feature [52, 

86, 134]. The Fourier transform is usually applied to shape signatures. Typically, a shape 

signature z(u) is any 1-D function that represents 2-D areas or boundaries. It usually 

describes a unique shape and captures the perceptual features of that shape. 

Applying the Fourier Transform to Shape Signatures 

The discrete Fourier transform (DFT) of a signature z(u) is given as follows [67]: 
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The descriptors of a signature should be invariant for rotation, scale, and translation. 

Translation invariance can be achieved using the centroid of the shape. The rotation 

invariance of FDs is achieved by ignoring the phase information and by taking only the 

magnitude values of the FDs. For  real-value signatures the scale invariant is achieved by 

dividing the magnitude of the Fourier descriptor by the DC components [135]. 

For complex-value signatures the DC component depends only on the position of the 

shape, so it cannot be used to describe shapes. For the scale normalization, the 

magnitudes of the other descriptors are divided by the second descriptor [52]. Figure 2.14 

shows the main steps of generation of Fourier descriptors. 

 

Figure 2.14 The basic steps in the generation of Fourier descriptors. 

FDs are based on the well-known Fourier theory. The advantages of FDs compared 

to other shape descriptors is that they are easy to compute and simple to normalize [85]. 

The disadvantage of FDs is that each coefficient is calculated from each boundary point 

and therefore FDs perform poorly in the presence of occlusion.  

 

2.5.3 Curvature Scale Space Descriptors (CSSDs) 

The Curvature Scale Space (CSS) is based on the multi-scale curvature information 

of the inflection points of the contour as it evolves. In this technique, first an image 

contour is parameterized using an arc-length [107-110]. This is accomplished by 

sampling the contour at equal intervals, and recording the 2-D coordinates of each 

sampled point. The curvature is then derived from the shape boundary as follows [107]: 
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In the next step, the curvature zero-crossing points are recovered and mapped to the 

Curvature Scale Space (CSS) image. The image boundaries are then convolved by 

Gaussian function of increasing width or standard deviation, and the zero crossing points 

are recovered and mapped to the CSS map at different values of the standard deviation. 

This process continues, and new zero crossing points are recovered and mapped until no 

curvature zero-crossing points are found. The result of the mapping is usually an interval 

tree, called a CSS map that consists of inflection points. The peaks that are more than 1/6 

of the highest peak of the CSS map are extracted and used as descriptors to index the 

shape [40]. Figure 2.15 depicts an image and the peaks of its CSS representation. 

A CSS descriptor is translation invariant. Scale invariance can be achieved by 

normalizing all the shapes into a fixed number of boundary points [102]. Rotation causes 

a circular shifting on the u axis, as shown in Figure 2.15. 

A CSS descriptor is not robust in a global sense. Consequently, additional global 

descriptors such as eccentricity, aspect ratio, and circularity are used with CSS 

descriptors. CSS descriptors can fail to distinguish a shallow concavity from a deep 

concavity on the boundary of a shape. Abbasi and et al. proposed an enhanced CSS 

descriptor in order to distinguish a shallow concavity from a deep one [105]. 

 

Figure 2.15 A CSS representation and its peaks. 
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2.6 Summary 

A review of the literature related to shape-based image retrieval indicates that the 

number of types of shape descriptors for image retrieval has been rapidly increasing; 

however, each technique has a number of shortcomings. 

The main advantage of structural techniques is their ability to handle the occlusion 

problem. However, this benefit comes at the expense of many drawbacks that make them 

unsuitable for shape-based image retrieval applications. First, shape partitioning leads to a 

complex matching process, which is the most important step in shape retrieval because it 

is an online process. Second, the structural approach does not capture the global features 

of shapes. Finally, there are no clear rules for obtaining the number of primitives required 

for each shape.  

On the other hand, global techniques have many advantages which make them more 

effective and efficient for shape-retrieval applications.  Global techniques are often based 

on mathematical transformations, which simplify the extraction of invariant features. 

Moreover, an inverse transformation can be used to determine the size of the feature’s 

vector.  When a global approach is used, features are extracted directly from the object 

without the use of shape decomposition. Global techniques can therefore be used in 

general applications. The matching process used in global techniques can often be 

accomplished through a simple procedure such as the Euclidean distance, which makes 

global techniques more efficient than structural ones.  

For the above reasons and because of the disadvantages associated with structural 

techniques, global techniques are more effective and efficient than structural techniques 

for shape-retrieval applications.  
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The main drawback of Hu moments, Flusser moments, regular moments, complex 

moments, and Fourier-Mellin descriptors is that the basis used to derive them is not 

orthogonal; hence, these invariants suffer from a high degree of information redundancy.  

The main advantage of orthogonal moments is that they are based on orthogonal 

functions; hence, they have minimal information redundancy. Moreover, the selection of 

the required maximum order can be determined from the results of the image 

reconstruction. 

The key advantage of ZMDs, PZMDs, ARTDs, TMDs, and FMDs is that they do not 

have a rotation problem. The direct scale normalization of the PZMD proposed by Chong 

et al.  [79] is dependent on the order of the pseudo-Zernike polynomial: as the order 

becomes higher, the magnitude of the invariant moments is significantly diminished, and 

the dynamic range between invariant moments becomes very large. On the other hand, 

the direct scale normalization of ZMDs, ARTDs, and TMDs is not dependent on the order 

of the moments, and hence, the dynamic range between invariant moments is small. 

The key problem associated with GDs is their problematic major axis normalization. 

The major axis is sensitive to noise and can be unreliable even in the absence of noise 

effects. Moreover, online retrieval usually involves a high level of computational 

complexity due to the high degree of dimensionality of the feature vectors.  

The GFD is one of the most promising descriptors because the GFD is based on the 

well-known Fourier theory, which simplifies its implementation and the interpretation of 

the results. In addition, GFDs are well suited for online image retrieval because of their 

compactness and computational efficiency. 

In the author’s opinion, extensive experimentation should be conducted in order to 

investigate the performance of ZMDs, ARTDs, TMDs, and GFDs for shape-retrieval 

applications. 
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Fourier descriptors derived from different signatures can have significantly different 

effects on the results of the retrieval. Chapter 3 presents an investigation of a commonly 

used shape signature, which is compared with the proposed shape signature. 

The advantage of a CSS descriptor is that it is compact. However, a CSS descriptor is 

able to detect only concavity and cannot represent the convexity of a shape. It therefore 

cannot distinguish between simple shapes that consist only of convexities, such as circles, 

triangles, or squares.  Moreover, a CSS descriptor is not rotation invariant unless a circle 

shift is applied during the matching stage; hence, the online matching process with a CSS 

involves many schemes of circular shifts in order to align the peaks. Chapter 4 discusses 

CSS descriptors in greater depth and compares them with the proposed curvature-based 

Fourier descriptors.  
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Chapter Three 

Farthest Point Distance: A New Shape Signature for 

Fourier Descriptors 

 

3.1 Introduction 

Shape description is an important task in content-based image retrieval (CBIR). The 

literature describes a variety of techniques that have been developed to represent objects 

based on their shapes. As explained in Chapter 2, each of these techniques has advantages 

and disadvantages. A Fourier descriptor (FD) is one of these techniques: a simple yet 

powerful technique that offers attractive properties such as rotational, scale, and 

translational invariance. Shape signatures, which constitute an essential component of 

Fourier descriptors, reduce 2-D shapes to 1-D functions and, hence, facilitate the process 

of deriving invariant shape features using the Fourier transform. A good number of shape 

signatures have been reported in the literature. These shape signatures lack important 

shape information, such as corners, in their representations. This information plays a 

major role in distinguishing between shapes.  

This chapter presents the farthest point distance (FPD) signature, a novel shape signature 

that includes corner information in order to enhance the performance of shape-retrieval 

techniques that are based on Fourier descriptors. The signature is calculated at each point 

on the contour of a shape. This signature yields distances calculated between the different 

shape corners, and captures points within the shape on which human visual attention is 

focused in order to classify shapes. 

In order to reach a comprehensive conclusion about the merit of the proposed signature, 

the signature was compared with eight popular signatures. Furthermore, the performance 

of the proposed signature was evaluated against the standard boundary-based descriptor:  
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the Curvature Scale Space (CSS) and the commonly used region-based descriptor: the 

Zernike Moments (ZMs).   

3.2 Shape Signatures   

 A shape signature z(u) is a 1-D function that represents 2-D areas or boundaries, 

usually describing a unique shape and capturing the perceptual features of the shape. 

Shape signatures are either real or complex. Many signatures have been proposed in the 

literature [17, 85, 86]. The complex coordinates (CC), the radial distance (RD), and the 

triangular centroid area (TCA) are notable signatures available for deriving FDs. Fourier 

descriptors derived from different signatures can produce significantly different retrieval 

results [85]. Brief descriptions of the most commonly used shape signatures are presented 

in the following sections. 

3.2.1 Radial Distance (RD) 

The Radial Distance (RD) represents the distance between the boundary points 

(x(u),y(u))  and the  centroid (xc,yc) of the shape  [85, 89]:  
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The reason for using the centroid (xc, yc) is to render the signature invariant for 

translation. The centroid is computed as follows: 
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Other common names for this signature are the centroid distance and the radius vector. 

The basic concept of the radial distance signature is graphically depicted in Figure 3.1.b. 

3.2.2 Chord-Length Distance (CLD) 

The chord-length distance (CLD) is derived from a shape boundary without the use of a 

reference point. It is the distance between a and another boundary point b such that ab is 
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perpendicular to the tangent vector at a, as shown in Figure 3.1.c. In the case of two 

candidates, the one whose chord is within the shape is the one chosen [85]. 

3.2.3 Angular Function (AF) 

 The Angular Function (AF) (u)ϕ  represents changes in the direction of the 

boundary of a shape. These changes are important to the human visual system and can be 

used as a shape signature. The angular function (u)ϕ  at different points on the boundary of 

a shape is defined as [86]: 
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=  arctanϕ  

(3. 3) 

where w is a step of selected length. The basic concept of the angular function signature is 

shown graphically in Figure 3.1.d. 

 

3.2.4 Triangular Centroid Area (TCA) 

The triangular centroid area (TCA), formed by two boundary points

))(),(()),(),(( 2211 uyuxuyux  and the centre of the object, is changed along with 

changes in the points on the boundary. This area is denoted as a shape signature (Figure 

3.1.e) and can be calculated as follows  [85]: 
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(3. 4) 

3.2.5 Triangular Area Representation (TAR) 

The triangular area representation (TAR) signature is computed by calculating the area 

formed by three points on the boundary of the shape [114]. The TAR signature is 

different from the TCA signature, which calculates the area formed by two boundary 

points and the centre of the object. In the TAR signature, the area of the triangle that has 

two sides of equal length s and is formed by three points P(u-s), P(u), and P(u+s) is 

calculated as follows[114]: 
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When contours are traced in a counter-clockwise direction, convex, concave, and 

straight lines have positive, negative, and zero areas, respectively [114]. Figure 3.1.f 

depicts these three different types of area for a TAR signature. 

 

3.2.6 Complex Coordinates (CCs) 

The complex coordinate (CC)  signature is formed by treating each coordinate pair 

( (x(u) , y(u)) , u=0,1,2…..,N)  of pixels on the xy-plane of a particular shape as a complex 

number, as follows [67, 89]: 

))(())(()( cc yuyjxuxuCC −+−=  
     (3. 6) 

The complex coordinate is translation invariant because of the subtraction of the centroid 

from the boundary coordinates of the shape. This signature is also frequently called a 

position function. The basic concept of the complex coordinates signature is shown 

graphically in Figure 3.1.g. 

3.2.7 Polar Coordinates (PCs)  

The polar coordinate (PC) signature is formed by combining the radial distance 

signature RD (u) and the polar angle )(uθ  signature, as shown in Figure 3.1.h. The result 

of the combination is another complex-value signature, called the polar coordinate (PC) 

signature [17]: 

3.2.8 Angular Radial Coordinates (ARCs) 

The angular radial coordinate (ARC) signature is similar to the polar coordinate 

signature; however, the angular function (u)ϕ  is used rather than the polar angle [17]:  

)()()( ujuRDuPC θ+=  
(3. 7) 
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Figure 3.1.i depicts the basic concept behind the generation of this signature. 

 

 

 

(a)  The Original Shape 

 

(b) Radial Distance RD(u) 

 

(c) Chord Length Distance ,CLD(u) 

 

(d) Angular Function, AF(u) 

 

(e)  Triangular Centroid Area, TCA(u) 

 

(f) Triangular Area Representation, TAR(u) 

 

 

(g) Complex Coordinates, CC(u) 

 

(h) Polar Coordinates, PC(u) 

 

(i) Angular Radial Coordinates, ARC(u) 

Figure 3.1 The basic concepts of eight commonly used signatures. 
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3.3 The Farthest Point Distance (FPD) Signature 

This section presents the farthest point distance (FPD) signature, a novel technique that 

exploits the differential properties of shapes, such as corner points and transition details.  

The FPD was developed to overcome some of the drawbacks of existing techniques, 

such that they ignore the distances between corners. The value of the signature at a given 

point a is defined as the distance between a and the point farthest from it, say b. The 

signature is calculated by adding the Euclidean distance between point a and the centroid 

c to that between the centroid c and the farthest point b. Assuming that shape coordinates 

(x(u),y(u)),u=0,1,…N-1 of  the boundary have been extracted, the FPD signature at 

boundary point (x(u),y(u)) can be calculated as follows [136]: 

where (xfp(u), yfp(u)) is the farthest point from (x(u),y(u)),  and (xc, yc)   is the centroid of 

the shape. 

Figure 3.3 shows how the distance from point a to its farthest point b is calculated. 

This signature captures distances between corners. Transition points and corners are 

elements of focus to the human visual system, and corner points play a major role in most 

shape-matching techniques. Figure 3.3 provides examples of FPD signatures for three 

randomly selected classes. It can be seen that shapes within the same class have similar 

FPD signatures.  

 
Figure 3.2  The basic concept of the farthest point distance (FPD) signature 
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Figure 3.3 The FPD signatures for shapes from three randomly selected classes

3.4 Generation of Fourier Descriptors

The direct use of shape signatures in 

result of the complex normalization of 

discrete Fourier transform (DFT) is used to s

process and to reduce the noise sensitivity of the signature

(FD) is a powerful tool for shape analysis 

56 

 

 

 

The FPD signatures for shapes from three randomly selected classes

 

 

Generation of Fourier Descriptors 

The direct use of shape signatures in a spatial domain leads to a high matching cost 

of the complex normalization of the rotation invariance [96]  ]123[ . Therefore, the 

ransform (DFT) is used to simplify the matching stage in the retrieval 

reduce the noise sensitivity of the signature used. The Fourier 

(FD) is a powerful tool for shape analysis that has many applications [51]

The FPD signatures for shapes from three randomly selected classes. 

spatial domain leads to a high matching cost as a 

. Therefore, the 

implify the matching stage in the retrieval 

The Fourier descriptor 

[51] [83, 84, 92] 
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[137] [138]. The idea of the FD is to use the Fourier transformed boundary as a shape 

feature [52, 86, 134]. The discrete Fourier transform of an arbitrary signature z(u) is 

defined as follows [67]: 
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where  � � 0,1,2,…b � 1 

The coefficients an (n=0,1,..N-1) are called the Fourier descriptors (FDs) of the shape, 

and are denoted by FDn. Fourier descriptors are invariant to rotation, scale, and 

translation. Their rotation invariance can be established by taking into consideration the 

magnitude values of the descriptors and ignoring the phase information. Their scale 

invariance for real-valued signatures can be achieved by dividing the magnitude of the 

first half of the descriptors by the FD0 [135]: 
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The reason for choosing the FD0 as a factor in scale normalization is that it represents 

the average energy of the signature. Moreover, the FD0 is often the largest coefficient, 

and consequently the range of the values of the normalized descriptors should be  [0 1] 

[85].  

For complex-value signatures, the DC component depends only on the position of the 

shape, so it cannot be used to describe shapes. For scale normalization, the magnitude of 

the other descriptors are divided by the FD1 descriptor, as follows [52]: 
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The FPD signature is translation invariant because it is obtained with respect to the 

centroid of the shape. Proving that all the other signatures are translation invariant is a 
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straightforward process. A variety of signatures are systematically reviewed and their 

invariant properties are summarized in [139]. 

The measure of the similarity between two shapes indexed with M normalized Fourier 

descriptors is the Euclidean distance D between the normalized Fourier descriptors of the 

query image qF and the normalized Fourier descriptors of an image from the database dF

: 
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3.5 Comparative Study 

To obtain a comprehensive evaluation of the proposed signature, it was compared with 

eight signatures commonly used to derive Fourier descriptors. Moreover, the proposed 

signature was compared with the two notable techniques: the Curvature Scale Space 

(CSS) and the Zernike Moments (ZM). These two techniques are used in our comparison 

because in MPEG-7 standard, the curvature scale space (CSS) has been adopted as the 

contour-based shape descriptor and in recent work it has been shown that the Zernike 

moment descriptors (ZMDs) outperform many region-based descriptors [38, 40]. 

Moreover, the proposed and the Zernike moment descriptors use the same simple 

matching distance measure in order to retrieve shapes. 

3.5.1 MPEG-7 Databases 

Due to the lack of a standard database, the evaluation of shape signatures is not an easy 

task. Researchers in this field tend to develop their own databases, which are often limited 

in size or application scope or both. The MPEG-7 developers have set up a database of a 

reasonable size and generality [40]. It consists of three main sets: set A, set B, and set C. 

Set A consists of two subsets, A1 and A2, which are used to test invariance to scaling and 

rotation, respectively. Subset A1 includes 420 shapes: 70 primary shapes and 5 shapes 
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derived from each primary shape with scale factors ranging from 0.1 to 2. Subset A2 

includes 420 shapes: 70 primary shapes and 5 subset shapes generated by rotating the 

primary shape with angles ranging from 9
o 

to 150
o
. Sample shapes from set A of the 

MPEG-7 database are shown in Figure 3.4. 

Set B consists of 1400 images that are classified into 70 classes, each class having 20 

images. Set B is used to test for similarity-based retrieval performance, and to test the 

shape descriptors for robustness to various arbitrary shape distortions that include 

rotation, scaling, arbitrary skew, stretching, defection, and indentation. Samples of shapes 

from set B of the MPEG-7 database are shown in Figure 3.5. 

Set C consists of 200 affine transformed bream fish images and 1100 images of marine 

fish that are unclassified. The 200 bream fish images are frames extracted from a short 

video clip of a bream fish swimming. This set is used to test shape descriptors for 

robustness to non-rigid object distortions. The first frame of the video is usually used as a 

query, and the number of bream shapes in the top 200 retrieved shapes is counted. 

However, for the experiment conducted in the current research, the 200 beam fish were 

designated as queries in order to obtain a comprehensive comparison. Samples of the 

images from this database are shown in Figure 3.6. 

In this study, a noise database (set D) is created in order to test the performance of the 

proposed technique in the presence of noise. This set consists of 420 shapes: 70 primary 

shapes and 5 shapes derived from each primary shape by adding random Gaussian noise 

to the boundary of the primary shape. The signal-to-noise ratios for the distorted shapes 

are 40, 35, 30, 25, and 20 dB. Sample shapes from the proposed set D database are shown 

in Figure 3.7. 
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Figure 3.4 A primary shape from set A of the MPEG-7 database and its rotated and scaled 

versions. 

 

 

Figure 3.5  Samples of shapes from set B of the MPEG-7 database. 

 

 

Figure 3.6 Samples of shapes from set C of the MPEG-7 database. 
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Figure 3.7  Samples from set D: the new database of noisy shapes. 

  3.5.2 The Performance Measure 

To evaluate the performance of the techniques with respect to image retrieval, a 

performance measure is required. Precision and recall measures are the most commonly 

used and are deemed appropriate for measuring performance with respect to retrieval 

from classified datasets. If A is the number of relevant retrieved shapes, B the total 

number of retrieved shapes, and C the number of relevant shapes in the whole database 

used, then precision and recall are defined as A/B and A/C, respectively. Precision 

measures the retrieval accuracy, whereas recall measures the capability to retrieve 

relevant items from the database [85]. The precision value of a specific recall is the 

average of the precision values of all the database shapes for that recall. 

 

3.5.3 Performance of the Farthest Point Distance Signature  

3.5.3.1 Performance of the FPD Signature Compared with That of Other Signatures 

 The proposed farthest point distance signature was compared with the most popular 

and best-performing signatures [85], including the radial distance (RD), the triangular 

centroid area (TCA), the triangular area representation (TAR), the complex coordinate 

(CC), the chord-length distance (CLD) [85], the angular function (AF), the polar 

coordinate (PC) [17], and the angular radial coordinate (ARC) signatures [17]. Set B was 



62 

 

selected for evaluating the performance of the proposed signature against other signatures 

since it includes all possible situations with respect to shape distortion and variability.  

To evaluate the performance of the proposed signature, experiments were conducted 

using set B of the MPEG-7 database. All shapes in the experiments were resampled to 

have 128 points.  Selecting a small number of points will affect the retrieval performance 

for the proposed method as well as the other techniques. On the other hand, if the selected 

number of points is too large, the retrieval process will require more processing time and 

more storage space. The number of sampling points was carefully selected to be 128 

because that number is the smallest rate that can be used without introducing sampling 

distortion. For consistency and fair comparison, the number of descriptors was limited to 

63 for all methods.  

Table 3.1 shows the average precision for low and high recalls for the FPD and other 

signatures using set B. From Table 3.1, it can be seen that the performance of the 

proposed FPD signature's is the highest and that the performance of the AF signature is 

the lowest. The RD and FPD signatures show comparable results in the case of low recall; 

however, in the case of high recall, the FPD performs better than the RD. This 

improvement is due to the tendency of the FPD to capture the farthest corners. The high 

performance of the FPD enables the retrieval of both complex and simple shapes.   

The AF, PC, and ARC signatures do not perform as well as the FPD, RD, and ARC 

because (u)ϕ  and )(uθ , which are utilized by the AF, PC, and ARC signatures, are very 

sensitive to changes in shape boundaries. The CC and TAR signatures capture the local 

information about the shape boundary, while the FPD, RD, and TCA signatures capture 

both local and global information. The advantage of the TAC signature over the FPD and 

RD signatures is its robustness to affine transform; nonetheless, the FPD and RD 

signatures outperform the TAC signature. 
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Table 3.1 The average precision for low and high recall for the FPD and other signatures 

using set B 

Signature 

Low Recall High Recall 

The average precision for 

recall rates ≤  50% 

The average precision for 

recall rates > 50% 

The proposed signature (FPD) 75.82 % 42.13 % 

RD[89] 75.69 % 41.77 % 

TCA[85] 73.40 % 38.50 % 

CC[67] 64.76 % 22.59 % 

PC[17] 64.40 % 35.12 % 

ARC[17] 58.93 % 26.83 % 

TAR[114] 58.70% 23.54% 

CLD[85] 57.80 % 24.00 % 

AF[86] 57.39% 27.88% 

 

 

 

 

 

3.5.3.2 Comparison of the Performance of the FPD Signatures with That of the CSS 

and ZM Techniques 

In another set of experiments, the proposed farthest point distance signature was 

combined with four simple global descriptors (SGDs): solidity (S), circularity (C), 

eccentricity (E), and aspect ratio (AR) [40]. The simple global descriptors enhance the 

ability of the proposed signature to capture global shape information. The distance (

FPDD ), obtained by Equation (3. 13), of the Fourier descriptors obtained from the FPD 

signature is added directly to the average distance ( SGDD ) of the simple global 

descriptors. The total distance between a query image q and an image from the database d 

is expressed follows: 
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The combined signatures are then compared with the Zernike moments [36] and the 

curvature scale space. In this case, the CSS is combined with the four simple global 

descriptors in order to maintain consistency [112]. Since the proposed signature and the 

CSS and ZM techniques utilize different criteria for normalizing shapes with respect to 

scale and rotation, all sets of the MPEG-7 database were used in order to obtain a 

comprehensive comparison. 

The number of features for the CSS technique is not constant, while the number of 

features for the proposed method and the Zernike moments technique can be specified in 

advance. However, selecting a small number of features will affect retrieval performance 

for the proposed method and the Zernike moment technique. On the other hand, if the 

selected number of features is too large, the system will require more processing time and 

more storage space. Since the proposed signature is a real-value signature and all image 

contours in the database have been re-sampled to have 128 points, the maximum number 

of Fourier descriptors derived from the proposed signature is 63. 

Zhang and Lu [85] found that 10 Fourier descriptors are sufficient for describing a 

shape. Thus, in the first experiment, the performance of the first 14 features of the 
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proposed technique (10 FDs plus 4 simple global descriptors) was compared with the 

performance of the Zernike moment technique with 14 features, which corresponds to 

Zernike moments up to the sixth order. Table 3.2 shows the number of features for 

Zernike moments at each order and the accumulated number of features up to each order. 

The recall precision curves of retrieval from set B obtained by the proposed and Zernike 

moment techniques for 14 features are shown in Figure 3.8. It is obvious from Figure 3.8 

that the performance of the Zernike moment technique is much lower than that of the 

proposed technique. The performance of the Zernike moment technique can be improved 

by using a higher order of Zernike moments.  

To select a number of features that provides a good compromise between retrieval 

performance and the dimension of the features, the average retrieval rates of the first top 

20 shapes retrieved from set B of the MPEG-7 database were calculated at different 

numbers of features for the proposed and the Zernike moment techniques. Figure 3.9, 

which shows these average retrieval rates, reveals that the average retrieval rates of the 

proposed technique are higher than those of the Zernike moment technique for the same 

number of features. Moreover, it is interesting that the performance of the proposed 

technique does not significantly improve after the first 15 features, which include the four 

simple global descriptors. Figure 3.9 also reveals that no significant improvement in the 

performance of the ZM technique results after 28 features. To balance the number of 

features and the performance of the Zernike moment technique, the first 28 features, 

which correspond to the ninth order of Zernike moments, were used in the next 

experiments. 
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Figure 3.8 Precision-recall curves for the proposed and ZM techniques with 14 features. 

 

Figure 3.9  The average retrieval rates for different numbers of features for the proposed 

and the ZM techniques. 
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Table 3.2 The number of features for Zernike moments at each order and the accumulated 

number of features for each order. 

Order 

(n) 

Zernike moments of order n 

with repetition m (Anm) 

The number of 

moments in each 

order n 

The accumulated 

number of features up 

to each order 

0 A0, 0 1 

Not counted because it 

is used for scale 

invariance 

1 A1, 1 1 

Not counted because it 

is used  for translation  

invariance 

2 A2, 0,  A2, 2 2 2 

3 A3, 1,  A3, 3 2 4 

4 A4, 0,  A4, 2,  A4, 4 3 7 

5 A5, 1,  A5, 3,  A5, 5 3 10 

6 A6, 0,  A6, 2,  A6, 4,  A6, 6 4 14 

7 A7, 1,  A7, 3,  A7, 5,  A7, 7 4 18 

8 A8, 0,  A8, 2,  A8, 4,  A8, 6,  A8, 8 5 23 

9 A9, 1,  A9, 3,  A9, 5,  A9, 7,  A9, 9 5 28 

 

The recall and precision curves using the four sets from the MPEG-7 database and the 

created noisy database (set D) were plotted as shown in Figure 3.10 to 3.14, and the 

average precision rates for low and high recall are shown in Table 3.3 to 3.7. In addition, 

three different screen shots for three queries from set B of the MPEG-7 database are 

provided in Figure 3.15 in which the top left shape of each screen shot is the query shape 

and the “x” symbol is used to indicate an irrelevant shape. 

The proposed signature outperforms the CSS technique, as can be determined from 

Figure 3.10 to 3.14. Figure 3.10 shows that the ZM technique and the proposed signature 

yield comparable results in the case of low recall; however, the proposed signature 

outperforms the ZM technique in the case of high recall with only 15 features. From 

Table 3.1 and Table 3.3, it can be seen that the performance of the Fourier descriptors has 

been improved by adding only four simple global descriptors. These simple global 

descriptors enhance the ability of the proposed signature to capture global shape 

information. 
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The performance of the techniques under scale invariance was tested using the 

database from subset A1, for which the CSS technique has the lowest accuracies for both 

high and low recall, as shown in Figure 3.11, and the ZM technique has the highest 

accuracy for high recall. The FPD technique produces a result comparable to that of the 

ZM technique for low recall. The ZM technique gives the best result in the scale 

invariance test because scale normalization is implied when the image is limited to the 

unit circle.  

As shown in Figure 3.12, the combined FPD signature and ZM techniques produce 

almost perfect results in the rotation invariance test, whereas the CSS produces the worst 

results. The CSS technique has compact features; however, its matching algorithm is very 

complex and fails to distinguish between objects within the same class but with different 

rotations. 

 In the case of the database of images with non-rigid object distortions (set C), all three 

techniques have high accuracies for low recall, as shown in Figure 3.13 and Table 3.6. 

However, in the case of high recall, the CSS technique has the lowest accuracy, while the 

FPD technique shows a result similar to that of the ZM technique.  

In the case of noisy shapes (set D), it is clear that the performance of each technique 

is decreased when the signal-to-noise ratio is reduced, as shown in Figure 3.14. The 

proposed technique produces the best performance in all cases because the proposed 

technique uses a small number of Fourier descriptors (the first 11 descriptors) that 

correspond to low frequencies and ignores the higher order of Fourier descriptors that are 

more sensitive to noise. 

In Figure 3.15, it is worth noting, not only that the proposed signature has better 

accuracy, but also that all irrelevant retrieved shapes have been ranked in the last row of 

each of the three examples.  
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Figure 3.10  Precision-recall curves for the FPD+SGD, ZM, and CSS+SGD techniques 

using set B. 

 

 Table 3.3 The average precision rates of low and high recall for the proposed, ZM, and 

CSS techniques using set B 

Method 

Low Recall High Recall 

The average precision for   

recall rates ≤  50% 

The average precision 

for  recall rates > 50% 

Proposed technique 81.16 % 49.15 % 

ZM technique 80.88 % 43.94 % 

CSS technique 78.62 % 41.81 % 
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Figure 3.11  Precision-recall curves for the FPD+SGD, ZM , and CSS+SGD techniques 

using subset A1. 

 

Table 3.4 The average precision rates of low and high recall for the proposed, ZM, and 

CSS techniques using subset A1 

Method 

Low Recall High Recall 

The average precision for   

recall rates ≤  50% 

The average precision for  

recall rates > 50% 

The proposed technique 98.60 % 93.23 % 

The ZM technique 99.69% 98.18  % 

The CSS technique 96.18 % 82.52 % 
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Figure 3.12  Precision-recall curves for the FPD+SGD, ZM, and CSS+SGD techniques 

using subset A2. 

 

Table 3.5 The average precision rates of low and high recall for the proposed, ZM, and 

CSS techniques using subset A2 

Method 

Low Recall High Recall 

The average 

precision for recall 

rates ≤  50% 

The average  

precision for recall 

rates > 50% 

The proposed technique 100.00 % 99.89 % 

The ZM technique 100.00 % 100.00 % 

The CSS technique 99.25 % 95.55 % 
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Figure 3.13 Precision-recall curves for the FPD+SGD, ZM, and CSS+SGD techniques 

using set C. 

 

Table 3.6 The average precision rates of low and high recall for the proposed, ZM, and 

CSS techniques using set C. 

Method 

Low Recall High Recall 

The average 

precision for recall 

rates ≤  50% 

The average 

 precision for recall 

rates > 50% 

The proposed technique 97.96 % 92.23% 

The ZM technique 98.02 % 95.25 % 

The CSS technique 97.95 % 88.1 % 
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Figure 3.14 Precision-recall curves for the FPD+SGD, ZM, and CSS+SGD techniques 

using set D 

 

Table 3.7 The average precision rates of low and high recall for the proposed, ZM, and 

CSS techniques using set D. 

Method 

Low Recall High Recall 

The average 

precision for recall 

rates ≤  50% 

The average 

 precision for recall 

rates > 50% 

The proposed technique 99.85 % 96.08 % 

The ZM technique 99.09 % 93.91 % 

The CSS technique 96.65 % 73.77 % 

 

To compare the computational efficiency of the three techniques, the processing time in 

the matching stage for set B of the MPEG-7 database was computed using the same 

processor and software for all three techniques. Matlab (version 7.0), running on a 

Pentium IV CPU 2.6 GHZ PC with a memory of 1.5 GB, was used as a testing platform. 

Table 3. 8 shows the number of features and the average processing time (the test was 

repeated 40 times) for each query in the matching stage for the proposed, ZM, and CSS 

techniques. Data in Table 3. 8  reveal that the proposed technique has the lowest feature 
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vector size and gives the least processing time, whereas the CSS was found to have the 

highest time. Because many factors must be considered in order to align two peaks of the 

CSS features, the time required by the CSS is high compared with that used by the 

proposed and ZM techniques. 

Table 3. 8 The average time required for each query in the matching stage using set B of 

the MPEG-7 database 

Method Number of features 
Average time required 

for each query 

The Proposed technique 15 0.001404 (s) 

The ZM technique 28 0.0017645 (s) 

The CSS technique 

Depends on the number of 

shape concavities 

 (the average is 20) 

2.1640 (s) 

 

(a) (b) (c)

The Proposed Technique The ZM technique The CSS technique

Query shape

Query shape

Query shape
x x x

x

x x
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Figure 3.15 Retrieval of fork, apple, and cow shapes from set B of the MPEG-7 database: 

(a) Proposed technique (b) ZM technique (c) CSS technique 
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3.6 Summary 

This chapter has presented a new shape signature for Fourier descriptors. The proposed 

signature has been evaluated by comparing it with several commonly used shape 

signatures. The performance of the proposed signature has been examined based on 

several experiments using standard databases.  

 The experimental results demonstrate that the proposed signature and the radial 

distance (RD) signature yield comparable results; however, the proposed signature (FPD) 

performs better in the case of high recall. This improvement is due to the fact that the 

FPD signature tends to capture corner information for each object, which are the extreme 

shape points on which visual attention naturally focuses.  

Furthermore, the performance of the descriptors derived from the FPD signature was 

compared with that of two commonly used techniques: the Curvature Scale Space and the 

Zernike moment techniques. The results show that the proposed descriptors outperform 

the Curvature Scale Space technique with respect to both high and low recall for all sets 

of the MPEG-7 database. The results also show that the proposed signature performs 

better than the Zernike moment technique for low and high recall in the most challenging 

database (set B), while maintaining comparable results for both low and high recall in the 

other sets. Moreover, the feature size (15 descriptors) used by the proposed descriptors is 

almost half the size of the feature size (28 descriptors) used by the Zernike moment 

technique. This low feature size renders the proposed descriptors computationally more 

efficient for large databases.  The proposed FPD technique satisfies the six principles set 

by MPEG-7: good retrieval accuracy, compact features, general application, low level of 

computation complexity, robust retrieval performance, and hierarchical coarse-to-fine 

representation. The main advantages of the Fourier descriptors derived from the proposed 

signature are their compactness and the simplicity of their matching process. However, 
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these descriptors are not capable of capturing the local characteristics of a shape. 

Consequently, another shape descriptor that is able to capture the local shape 

characteristics is proposed in Chapter 4.  
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Chapter Four 

 

A  Curvature-Based Fourier Descriptor for Shape 

Retrieval 
 

4.1 Introduction 

Fourier descriptors are considered to be promising descriptors as they are based on a 

sound theoretical foundation and also have the advantages of computational efficiency 

and attractive invariance properties. This chapter proposes a new curvature-based Fourier 

descriptor (CBFD) for shape retrieval. The proposed descriptor takes an unconventional 

view of the curvature-scale-space representation of the contour of a shape as it treats it as 

a 2-D binary image, hence referred to as a curvature-scale image, or CSI. The invariant 

descriptor is derived from the 2-D Fourier transform of the curvature-scale image. This 

method allows the descriptor to capture the detailed dynamics of the curvature of the 

shape and to enhance the efficiency of the shape-matching process. Experiments have 

been conducted using the widely known MPEG-7 databases in conjunction with a created 

noisy database in order to compare the performance of the proposed descriptor with that 

of six commonly used shape-retrieval descriptors: curvature-scale-space descriptors 

(CSSDs), angular radial transform descriptors (ARTDs), Zernike moment descriptors 

(ZMDs), radial Tchebichef moment descriptors (RTMDs), generic Fourier descriptors 

(GFDs), and 1-D Fourier descriptors (1-FDs).  

4.2 Related work 

The curvature-space-scale (CSS) technique is based on multi-scale curvature 

information obtained from the inflection points of the contour as it evolves. To obtain the 

curvature-scale-space map, an image contour is first parameterized using an arc length 

[107]. This step is accomplished by sampling the contour at equal intervals and recording 
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the 2-D coordinates of each sampled point ))(),(( sysx ,s=0,1,..L. The curvature is then 

derived from the shape boundary as follows [40]: 
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where  ),(*)(),(  ),,(*)(),( σσσσ sgsxsXsgsxsX &&&&&& ==

),(*)(),(  ),,(*)(),( , σσσσ sgsysYsgsysY &&&&&& ==  , ”*” is the convolution operator, and 

),( σsg is a Gaussian function of standard deviationσ , while ),( σsg& and ),( σsg&& are the 

first and second derivatives of  ),( σsg , respectively. 

After each convolution, the zero-crossing points of the curvature are recovered and 

mapped to the curvature-scale space. This process continues, and new zero-crossing 

points are recovered and mapped until no curvature zero-crossing points are found. The 

result of the mapping is usually an interval tree, called a CSS map, consisting of 

inflection points. The CSS technique is based on the extraction of only peaks that are 

more than 1/6 of the highest peak of the CSS map. These peaks are used as descriptors for 

indexing the shape. Figure 4.1 depicts a shape, a sample of the contours of the shape 

during the evolution process, the resulting CSS map, and the peaks of the CSS map.  
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         (b)                                           (c) 

Figure 4.1   (a) A shape and samples of its contour during the evolution process, showing 

the zero-crossings (b) The resulting CSS map (c) The peaks of the CSS map 

 

The CSS descriptor is translation invariant. Scale invariance can be achieved by 

normalizing all the shapes into a fixed number of boundary points [110]. Rotation causes 

a circular shifting on the s axis, as shown in Figure 4.2. To achieve rotation invariance, 

the highest peak is shifted to the origin of the CSS map. The similarities of the two shapes 

A and B are then measured by summing the differences between the peak values of all the 

matched peaks (peaks within a threshold value are considered to be matched), and the 

peak values of the unmatched peaks. To increase the accuracy of the results, other 

schemes of circular shifting matching are used. For example, rather than shifting the 

primary peak of A to match the primary peak of B, the primary peak of A can be shifted 

to match the secondary peak of B, or the secondary peak of A can be shifted to match the 

primary peak of B. The mirror shape has a CSS that differs from the original one, and 
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matching must include the mirrored shape as well. The details of the implementation of 

the CSS descriptor are described in [40].  

 

 

  

Figure 4.2 A shape before and after rotation and the peaks of the CSS map before and 

after rotation. 

 

Although the CSS technique has many advantages, including its ability to capture 

local shape features and its robustness with respect to noise, it also has drawbacks. It uses 

only the peaks of the CSS map and ignores other important features, such as the dynamic 

changes in curvature during the process of extracting the zero-crossing points. This kind 

of feature might be a key factor in distinguishing between shapes. Moreover, the CSS 

descriptor is not rotation invariant unless a circular shift is applied in the matching stage, 

and hence, the online matching process of the CSS involves many schemes of circular 

shift in order to align the peaks [56, 140]. Another disadvantage of the CSS technique is 

that the number of peaks varies by shape, and these peaks are often mismatched and can 

be ordered quite differently. This fact adds to the complexity of the matching stage and 

increases the processing time required. These difficulties affect the overall performance 

of the CSS descriptors with respect to shape retrieval. The following section proposes a 

new curvature-based Fourier descriptor that will overcome the drawbacks of the CSS 

descriptors. 
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4.3 A Novel Curvature-Based Fourier Descriptor (CBFD) 

This section proposes a new Fourier descriptor based on mapping the curvature-scale 

space of the contour of a shape into the 2-D Fourier domain in order to overcome the 

disadvantages of the well-known CSS descriptors, as described in the previous section. 

     The 2-D Fourier transform can be applied to any binary image f(x,y) in the normal 

Cartesian coordinate system in order to extract Fourier descriptors, as follows:  
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The resulting descriptor, however, is not rotation invariant even though the phase of the 

Fourier transform is ignored. In other words, the 2-D Fourier transform produces different 

descriptors if a 2-D shape f(x,y) is rotated by θ  in the normal Cartesian space: 

)cossin,sincos()cossin,sincos( θθθθθθθθ vuvuFyxyxf +−+↔+−+

 

  (4. 3) 

 

Figure 4.3 shows the Fourier transform of a shape and its rotated version. According to 

Equation   (4. 3), the magnitudes of the Fourier transform for the original shape differs 

from that for its rotated version.  

It is difficult to obtain rotation invariance of the features when the images are represented 

in the normal Cartesian coordinate system [56]. On the other hand, the 2-D Fourier 

transform has many properties that make it a useful tool for image processing and 

analysis. One of these is the fact that a shift in the normal Cartesian coordinate system 

affects only the phase of the Fourier transform:  

)]vyπ(uxj[   F(u,v)   .)y,yxf(x 0000 2exp +−↔−−  (4. 4) 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4.3 The magnitude of the Fourier transform for a shape and its rotated version. 

 

Practical application of the 2-D Fourier transform requires a representation of the 

image that affects the phase of the 2-D Fourier transform when the original shape is 

rotated. To apply the 2-D Fourier transform, the procedure explained in Section 4.2 is 

used, and the contour of the original shape is represented by a binary image that has 

boundaries similar to those of the CSS map. This image will be referred to as a curvature-

scale image (CSI), which can be obtained as follows: 
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where ),( σsk is the curvature of the contour given by Equation (4.1).  

Figure 4.4.a shows the CSI of the shape presented in Figure 4.3.a. It can be seen that the 

boundaries of the CSI are exactly the same as those of the CSS map shown in Figure 

4.1.b. Figure 4.4.b shows the CSI of a rotated version of the shape from Figure 4.1.a. It 

can be seen in Figure 4.4 that the effect of the rotation in the original shape corresponds 

to that of a circular shift of the CSI image. This property makes it possible to derive 
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rotation invariant descriptors using the 2-D Fourier transform and the property given in 

Equation (4. 4). To apply the 2-D Fourier transform, the CSI (s,σ) is treated as a two-

dimensional rectangular binary image in the normal Cartesian coordinate system. 

Therefore, if the 2-D Fourier transform is applied to the CSI (s,σ), the effect of the phase 

on the resulting descriptor can be eliminated by taking only the magnitude and ignoring 

the phase of the 2-D Fourier transform of the CSI (s,σ). If the CSI (s,σ) is constructed 

from the contour of a binary image, then the 2-D Fourier transform of the CSI (s,σ) is 

defined as follows: 
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where m is the maximum number of contour points and n is the maximum number of 

iterations needed in order to construct the CSI image using different standard deviations 

σ .  

 

 
(a)  CSI before rotation 

 
(b) CSI after rotation 

 
(c) Magnitude of the 

 Fourier transform before rotation 

 
(d) Magnitude of the 

 Fourier transform after rotation 
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Figure 4.4  The CSI images for both the image shown in Figure 4.3.a and its rotated 

version, and the magnitude of the Fourier transform for each. 

  

The Fourier descriptors derived from FCSI (u,v) coefficients have to be invariant with 

respect to translation, rotation, and scaling. Given that the CSI (s,σ) image is translation 

invariant, it is obvious that the FCSI (u,v) coefficients also possess translation invariance. 

Rotation invariance of the FCSI (u,v) coefficients is achieved by ignoring the phase of the 

FCSI (u,v) coefficients. To achieve scale invariance, all FCSI (u,v) coefficients are 

divided by the magnitude of the first coefficient [56]. The reason for choosing the first 

coefficient as a factor in scale normalization is that it represents the average energy of the 

CSI image. Moreover, )0,0(FCSI  is often the largest coefficient, and consequently, the 

normalized descriptors are within [0 1] [56]. The proposed translation, scaling, and 

rotation invariance descriptors are as follows: 
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The first descriptor is ignored because it is used for scale normalization. For efficient 

retrieval, only a few descriptors are used to index the shape. The similarity measure 

between two shapes indexed with N normalized Fourier descriptors is the Euclidian 

distance DFCSI between the proposed normalized Fourier descriptors of the query image 

F
q and the normalized Fourier descriptors of an image from the database Fd, as follows:
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The proposed descriptor has many advantages over the CSS descriptor. First, the 

proposed descriptor uses all of the information from the curvature-scale image while the 

CSS technique uses only the peaks of the CSS map. Second, the number of features of the 

proposed descriptor can be determined in advance, and hence, the number of features for 
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different shapes can be equal. With the CSS technique, on the other hand, the number of 

features is not equal for different shapes. Third, the proposed descriptor possesses rotation 

invariance, so there is no need for the circular shifts used in the matching stage of the 

CSS technique, which translates into significant computational savings. With all of these 

advantages, the proposed descriptor clearly outperforms the CSS descriptor.  

4.4 Combined Curvature Scale Image 

The proposed descriptors cannot represent a convex shape because the CSI is 

constructed for a concave shape only. To overcome this drawback, the procedure for 

mapping a convex shape to a concave shape proposed in [116] is applied: 
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where 

R: the circle that encloses the shape 

) ,( cc yx : the centre of the circle  

))( , )(( sysx mm : the coordinates of the mapped shape 

The CSIs of the mapped shape and the original shape are combined into one image, 

referred to as the combined CSI image. The upper side of the combined CSI image 

represents the shape’s concavities, and the lower side represents the shape’s convexities. 

The proposed features are derived from the combined CSI image using the procedure 

explained in Section 4.3. 
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Figure 4.5 shows a convex shape (a square) and its mapped version along with the 

CSIs for both cases. It is clear that the combined CSI image makes it possible to 

distinguish between convex shapes such as a triangle and a square. Furthermore, it is 

noteworthy that for any convex shape, the upper side of the combined CSI image is 

represented by a blank image that has the same size as the lower side. The CSI for the 

shape shown in Figure 4.1.a, its CSI for the mapped version, and the combined version 

are shown in Figure 4.6. 

                                               

(a) Original shape                                          (b) Mapped shape 

 

 
 

 (c) CSI image for the 

original shape 

 

 
 

(d) CSI image for the 

mapped shape 

 
(e) Combined CSI image 

 

Figure 4.5 A square shape, its transformed version, the CSI for the square shape, the CSI 

for the mapped version, and the combined CSI image. 

 

 
 

 

(a) CSI Image for the 

shape shown in 

Figure 4.1a 

 

 

 
 

 

 

(b) CSI Image for the mapped 

version of the shape 

shown in Figure 4.1.a. 

 
 

(c) Combined CSI 

Image 

 

 Figure 4.6 CSI for the shape shown in Figure 4.1.a, CSI for the transformed shape, and 

the combined CSI image. 
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4.5 Comparative Study 

The theoretical properties of the proposed invariant descriptors are confirmed by the 

experimental results presented in this section. To obtain comprehensive results, the 

proposed descriptors were compared with six commonly used descriptors, the first two of 

which are the curvature scale space (CSS) and the radial angular transform descriptor 

(RATD) techniques. These techniques were used for the comparison because in the 

MPEG-7 standard, the curvature scale space (CSS) and radial angular transform 

descriptors have been adopted as the contour-based shape descriptor and the region-based 

shape descriptor, respectively [40]. The other comparative descriptors are the 1-D 

descriptor, Zernike moment descriptor (ZMD), radial Tchebichef moment descriptor 

(RTMD), 1-D Fourier descriptor (1-FD), and generic Fourier descriptor (GFD). These 

descriptors were adopted for the comparison because it has recently been shown that they 

are efficient and effective techniques for shape retrieval [13, 38, 56, 85, 89, 141]. 

Furthermore, both 1-FD and GFD techniques are based on a Fourier transform as are the 

newly proposed descriptors. In the case of the 1-FD, the centroid signature was utilized 

because recent work has proven that the centroid distance signature outperforms other 

signatures for shape retrieval [85].   

4.5.1 Comparison of the Proposed Descriptors and Other Descriptors 

The proposed descriptors (CBFDs) and the CSS descriptors are not robust in a global 

sense. Consequently, the proposed descriptors and the CSS descriptors were combined 

with four simple global descriptors (SGDs): eccentricity (E), aspect ratio (AR), circularity 

(C), and solidity (S) [40]. These simple global descriptors enhance the ability of the 

proposed descriptors to capture global shape information. The distance of the proposed 

descriptors( CBFDD ), obtained by Equation (4. 8) is added directly to the average distance 
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of the simple global descriptors ( SGDD ) obtained by Equation (3. 15). The total distance 

between a query shape q and a shape from the database d is expressed as follows: 

),(),(),( dqDdqDdqD SGDCBFD +=  (4. 12) 

The number of features for the CSS descriptors is not constant, while the number of 

features for the proposed descriptors can be specified in advance. However, selecting a 

small number of features negatively affects the retrieval performance of the proposed 

descriptors. On the other hand, if the selected number of features is too large, the system 

requires more processing time and more storage space. Since the proposed descriptors 

derived from the 2-D Fourier transform there are two different parameters (frequencies) 

(u, v) that should be selected. To select theses parameters the average retrieval rates of the 

first top 20 shapes retrieved from set B of the MPEG-7 database were calculated at 

different frequencies and the result is shown in Figure 4.7. The experiment revealed that 

the 52 descriptors (u=4, v=13 according to Equation (4. 6)) of the 2-D Fourier transform 

of the CSI result in a performance superior to that of other descriptors. The first descriptor 

is not included because it is used for scale normalization. Thus, the total number of 

descriptors used for the proposed technique is 55 (51 Fourier descriptors plus 4 simple 

global descriptors). For consistency and fair comparison, the number of descriptors is 

limited to 55 for all other descriptors. 
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Figure 4.7 The average retrieval rate for set B at different frequencies: u and v. 

 

The recall and precision curves using the four sets of the MPEG-7 database and the 

created noisy database are plotted in Figure 4.8 to Figure 4.12, and the average precision 

rates for low and high recall are shown in Table 4.1 to Table 4. 6. The proposed 

descriptors outperform the CSSD, as can be seen in Figure 4.8 to Figure 4.12 and they 

produce results comparable to those of the CSSD in the case of the database of images 

with non-rigid object distortion. The reason for the improvement is that the proposed 

descriptor uses all of the information from the curvature scale image (CSI) while the CSS 

descriptor uses only the peaks of the CSS map. Figure 4.8 shows that the proposed 

descriptors outperform all other descriptors with respect to both high and low recall. The 

CSSD, GFD, and RTMD yield comparable results in cases of low and high recall; 

however, their results are not as accurate as those of the ZMD and the ARTD.  The 

ARTD, ZMD, RTMD, GFD, and 1-FD techniques often misclassify shapes that are 

globally similar but have different local characteristics. The proposed descriptors, on the 

v=4, u=13 
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other hand, have a strong structure for capturing both local and global features using the 

curvature of the contour of the shape and the simple global descriptors, respectively.  

The performance of the proposed descriptors under scale invariance was tested using 

the database from subset A1, as shown in Figure 4.9. The RTMDs give the highest 

accuracy for both low and high recall. In the case of low recall, the proposed descriptors 

give results comparable to those of the ARTD, ZMD, and GFD. The GFD and the 1-FD 

give comparable results, which are considered very low in the case of high recall 

compared to the results from the other descriptors. In this test, region-based descriptors 

perform better than boundary-based descriptors because scaling a shape changes the local 

characteristics of the shape and keeps the global ones, which are the ones captured by 

region-based descriptors. 

 In the case of the rotation invariance test, as shown in Figure 4.10, all descriptors 

give perfect results except the CSSD and 1-FD. The CSS technique has compact features; 

however, its matching algorithm is very complex and fails to distinguish between objects 

within the same class but having different rotations. 

 In the case of the database of images with non-rigid object distortion (set C), as 

shown in Figure 4.11, all descriptors produce high accuracy for low recall. However, in 

the case of high recall, the results of the CBFD are not as accurate as those of the ARTD, 

ZMD, RTMD, GFD, and 1-FD because set C has many relevant shapes that are not 

visually close to the query shapes. Furthermore, it contains irrelevant shapes that are 

visually closer to the query shapes than are the relevant shapes. For example, the first 

three shapes in the last row of Figure 3.6 are more similar to the bream-0 fish than to the 

bream-118 or bream-119 fish shown in the first row in the same figure. This observation 

has also been mentioned by Latecki et al. [142]. 
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In the case of noisy shapes, it is clear that the performance of each technique 

decreases when the signal-to-noise ratio is reduced, as shown in Figure 4.12. The 

proposed descriptors produce the best performance in all cases. It is noteworthy that with 

the proposed technique the boundary noise is filtered because of the smoothing process 

during the construction of the CSI map. Moreover, the noise is filtered because the higher 

order of the Fourier descriptors that are more sensitive to noise are ignored. These two 

filtering processes are the reason the proposed descriptors outperform the others.  

 

Figure 4.8 Precision-recall curves for the CBFD, ARTD, ZMD, RTMD, GFD, 1-FD, and 

CSSD using set B. 

 

Table 4.1 The average precision rates of low and high recall for the CBFD, ARTD, ZMD, 

RTMD, GFD, 1-FD, and CSSD using set B. 

Method 

Low Recall High Recall 

The average precision 

for recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 85.15 % 54.77 % 

ARTD 82.10 % 45.69 % 

ZMD 82.11 % 45.42 % 

RTMD 78.87 % 39.23 % 

GFD 78.80 % 41.56 % 

1-FD 75.83 % 42.25 % 

CSSD 78.61 % 41.81 % 
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Figure 4.9 Precision-recall curves for the CBFD, ARTD, ZMD, RTMD, GFD, 1-FD, and 

CSSD using set A1. 

 

 

Table 4.2 The average precision rates of low and high recall for the CBFD, ARTD, ZMD, 

RTMD, GFD, 1-FD, and CSSD using A1. 

Method 

Low Recall High Recall 

The average precision for   

recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 99.74 % 96.78 % 

ARTD 99.71 % 98.62 % 

ZMD 99.71 % 98.59 % 

RTMD 99.77 % 99.38 % 

GFD 99.11 % 91.39 % 

1-FD 97.76 % 88.50 % 

CSSD 96.18 % 82.52 % 
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Figure 4.10 Precision-recall curves for the CBFD, ARTD, ZMD, RTMD, GFD, 1-FD, 

and CSSD using set A2. 

 

 

Table 4.3 The average precision rates of low and high recall for the CBFD, ARTD, ZMD, 

RTMD, GFD, 1-FD, and CSSD using set A2. 

Method 

Low Recall High Recall 

The average precision 

for recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 100.00% 100.00% 

ARTD 100.00% 100.00% 

ZMD 100.00% 100.00% 

RTMD 100.00% 100.00% 

GFD 100.00% 100.00% 

1-FD 100.00% 98.35% 

CSSD 99.25% 95.55 % 
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Figure 4.11 Precision-recall curves for the CBFD, ARTD, ZMD, RTMD, GFD, 1-FD, 

and CSSD using set C. 

 

 

Table 4.4 The average precision rates of low and high recall for the CBFD, ARTD, ZMD, 

RTMD, GFD, 1-FD, and CSSD using set C. 

Method 

Low Recall High Recall 

The average precision 

for recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 97.38 % 88.03 % 

ARTD 98.48 % 94.16 % 

ZMD 98.32 % 95.85 % 

RTMD 97.79 % 95.22 % 

GFD 97.54 % 91.98 % 

1-FD 98.15 % 93.34 % 

CSSD 97.95 % 88.10  % 
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Figure 4.12 Precision-recall curves for the CBFD, ARTD, ZMD, RTMD, GFD, 1-FD, 

and CSSD using set D. 

 

 

 

Table 4.5 The average precision rates of low and high recall for the CBFD, ARTD, ZMD, 

RTMD, GFD, 1-FD, and CSSD using set D. 

Method 

Low Recall High Recall 

The average precision 

for recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 99.96 % 97.19 % 

ARTD 99.75 % 94.75 % 

ZMD 99.24 % 94.92 % 

RTMD 98.99 % 92.83 % 

GFD  98.66 % 90.38 % 

1-FD 99.91 % 96.5 % 

CSS D 96.65 % 73.77 % 

 

4.5.2 Overall Performance Using the Mpeg-7 Database 

The overall average performance of the proposed descriptors was compared with that 

of the other descriptors based on the following weighted average: 
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The weights are calculated based on the number of query images used to obtain the 

recall-precision curve for each set. Table 4. 6 shows the overall average performance of 

the CBFD descriptors compared to that of the ARTD, ZMD, RTMD, GFD, 1-FD, and 

CSSD. Based on Table 4. 6, it is clear that, compared with other descriptors, the proposed 

descriptors provide the best performance with respect to both low and high recall. 

 

Table 4. 6 The overall average precision rates of low and high recall for the CBFD, 

ARTD, ZMD, RTMD, GFD, 1-FD, and CSSD. 

Method 

Low Recall High Recall 

The average precision 

for recall rates ≤  50% 

The average precision 

for recall rates > 50% 

The proposed descriptors (CBFD) 92.50% 76.14% 

ARTD  91.05 % 72.03 % 

ZMD 90.97 % 72.04 % 

RTMD 89.32 % 68.77 % 

GFD 89.12 % 68.16 % 

1-FD 87.70 % 68.82 % 

CSSD 88.22 % 63.61 % 

 

4.5.3 Complexity Analysis 

To compare the computational efficiency of the five descriptors, the processing time in 

the matching stage for set B of the MPEG-7 database was computed using the same 

processor and software for all descriptors. Matlab (version 7.0), running on a Pentium IV 

CPU 2.6 GHZ PC with 1.5 GB of memory was used as a testing platform. The test was 

repeated 40 times, and  

Table 4.7 shows the average processing time for each query in the matching stage for 

the proposed descriptors, as well as for the ARTD, ZMD, RTMD, GFD, 1-FD, and 

CSSD. The data displayed in  
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Table 4.7 reveal that the CSSDs require the highest time whereas the other descriptors 

have the same processing time because they all use the same matching procedure with the 

same number of features. The CSSD time is high compared to that of the proposed and 

the other descriptors because many factors must be considered in order for two peaks of 

the CSSD features to be aligned. 

 

Table 4.7 The average time required for each query in the matching stage using set B of 

the MPEG-7 database. 

Descriptor 
The average time required for 

each query 

The proposed descriptors (CBFD), ARTD, ZMD, RTMD, GFD, 

and 1-FD 
0.0559 (s) 

CSSD 2.16 (s) 

 

4.6  Summary 

This chapter has presented new curvature-based Fourier descriptors for shape retrieval. 

The proposed descriptors have been evaluated against six commonly used descriptors. 

Several experiments based on the MPEG-7 database were conducted in order to confirm 

the theoretical properties of the proposed descriptors. 

The experimental results demonstrate that the proposed descriptors (CBFDs) 

outperform the CSS and 1-D Fourier descriptors for three sets from the MPEG-7 

database, and they produce results comparable to those of the CSSD in the case of the 

database of images with non-rigid object distortion. The CBFD descriptors also 

outperform six notable descriptors in one of the most challenging databases (set B) for 

both high and low recall. The superior performance results from the ability of the 

proposed descriptors to capture both the local and global properties of an object, while the 

ARTD, ZMD, RTMD, and the GFD tend to capture only the global properties. The 
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experimental results also show that the overall average performance of the proposed 

descriptors is better than that of all the other descriptors. 

The proposed descriptors overcome several disadvantages of the well-known CSS 

descriptors. The overall performance of the proposed descriptors is 12.53% better than 

that of the CSSD for high recall. As well, the proposed descriptors use a simple matching 

procedure that makes them efficient for retrieving images from huge databases. 

The complexity and variety of the content of real images make it impossible for a 

particular choice of descriptors to be effective for all types of images. Therefore, in the 

Chapter 5 a data- fusion formulation based on a team consensus approach is proposed as a 

means of achieving high performance accuracy.  
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Chapter Five 

Consensus-Based Fusion Algorithm for Shape-Based 

Image Retrieval 

 

5.1 Introduction 

The enormous variation in the content of images makes it impossible for a particular 

choice of descriptor to be effective for all types of images. It is therefore reasonable to 

approach the problem by combining a group of descriptors. This chapter proposes a novel 

co-ranking scheme that exploits the complementary benefits obtained using several 

shape-based image retrieval techniques and integrating their assessments based on a pair-

wise co-ranking process. A consensus-based fusion algorithm is also proposed to 

integrate several shape-based image retrieval techniques so as to enhance the performance 

of the image retrieval process.  This algorithm causes several techniques to work as a 

team: they exchange their ranking information based on the pair-wise co-ranking scheme 

to reach a consensus that will improve their final ranking decisions. Since the 

effectiveness of a descriptor is image dependent, the author maintains that for this 

strategy to achieve the intended goal, the combining scheme must be dynamic as a 

function of the query context.    Consequently, a context-based fusion algorithm is 

proposed for integrating several shape-based retrieval techniques. The context of the 

query is used to determine the most appropriate technique or combination of techniques 

that will produce the best performance. 

 

5.2 Formulation of the Problem  

Consider a set of M image-retrieval agents indexed by the set IRA = {IRA1, IRA2,… 

IRAM}, cooperating to retrieve query image x from an ensemble of images denoted byΘ . 
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Each agent IRAi uses a feature extraction scheme Fi and a matching strategy iΓ  to 

determine the similarity measure Si between query image x and all images Θ∈y ; that is, 

Θ∈∀Γ= yxFyFyxS iiii )),(),((),(  (5. 1) 

Each agent IRAi establishes a ranking Θ∈∀∈ yNyFyR ii },,...2,1{))(|(  such that  

))(|())(|( zFzRyFyR jjii ≤  implies ),(),( zxSyxS ji ≥ . 

Without loss of generality, ))(|( yFyR ii  can be viewed as an index set from 1 to N, 

where index 1, for example, points to the candidate image closest to query image x, and 

index N points to the candidate image most dissimilar to query image x. In general, index 

l in this set points to the image that is preceded by l-1 candidates; these candidates are 

viewed by IRAi as better candidates for the query image x than the candidates ranked l. 

Since each agent uses a different feature extraction scheme, it is expected that the agents 

make different decisions for ranking the images of the set. Furthermore, since a CBIR 

technique is selected as an agent in this proposed approach, it must have demonstrated 

acceptable performance (i.e., not completely random). Consequently, it is reasonable to 

expect that good candidates will be clustered at the top of the ranking by all agents.   

5.3   Pair-Wise Co-Ranking Scheme 

The following describes a proposed information exchange scheme between the 

agents to make a decision about the candidate images that are closest to the query image. 

This process exploits the relative advantages and disadvantages of each agent.  

The concept of the new pair-wise co-ranking scheme is based on the hypothesis that 

agent IRAj may readjust its ranking if it is exposed to the ranking results of another agent 

IRAi. The communication process between two agents is depicted in Figure 5.1. Revised 

ranking information is referred to as conditional ranking information in order to signify 
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the influence of other agents on the ranking. On the other hand, the initial ranking is 

referred to as marginal ranking information.  

 

Figure 5.1 Two image-retrieval agents exchange information about the ranking. 

To set up the process of the exchange of information among agents, the ranking set of 

each agent IRAi is divided into two partitions: an elite candidates partition ( iECP ) and a 

potential candidates partition )( iPCP . It is expected that good matches to the query will be 

clustered in the elite partition. ECP contains the first m candidates; PCP contains the last 

N-m candidates. Thus, the ranking produced by agent IRAi based only on its feature set 

can be viewed as a concatenation of two ranking sets: },{ PCP

i

ECP

ii RRR = where ECP

iR  is 

the ranking result for mRi ≤ , and PCP

iR  is the ranking result for  mRi > . 

Figure 5.2 shows an example of the way agent IRAj computes its conditional elite 

partition ranking
ECP

jiR  , based on marginal ranking information from agent IRAi.  Image z 

is an elite image in the ranking from agent IRAi. Agent IRAj uses its feature extraction 

scheme jF  to determine the rank of image z in its conditional elite candidates partition; 

that is, 

iiij

ECP

ji ECPzmzFzRzFzR ∈≤  ),))(|(),(|(  (5. 2) 
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This formula can be read as follows: agent j re-ranks image z based on feature extraction 

scheme )(zF j
, given that image z has been ranked in the elite candidate partition by agent 

i, based on the feature extraction scheme )(zFi .  

The fact that image z is placed in the conditional elite partition of agent IRAj does not 

necessarily imply that image z is also in the marginal elite partition of IRAj. A similar 

procedure is followed for computing the conditional ranking with respect to potential 

candidates partitions, that is,  

iiij

PCP

ji PCPzmzFzRzFzR ∈>  ),))(|(),(|(  (5. 3) 

 

The conditional ranking from agent IRAj, based on information received from agent IRAi 

is viewed as a concatenation of two ranking sets; that is,   

},{ PCP

ji

ECP

jiji RRR =  (5. 4) 

 

 It should be noted that for a given agent, the revised ranking information is used to 

complement its initial ranking and not to replace it. The results of the above process are 

summarized in Table 5.1. 
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Figure 5.2 Illustration of the pair-wise co-ranking scheme. 
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Table 5.1 Marginal and Pair-Wise Conditional Rankings 
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Illustrative Example of the Pair-wise Co-ranking Scheme  

The database described in Chapter 3 consists of 70 classes, each having 20 objects. The 

goal is to have the relevant images ranked as the top 20 positions. Figure 5.3 and Figure 

5.4 display the results produced by agents IRA1 and IRA2, respectively.  
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Figure 5.3 Results retrieved by IRA1 (R1). 

 

 
 

Figure 5.4 Results retrieved by IRA2 (R2). 

 

 

` 
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Figure 5.5 Results of R1 revised based on R2 (R21). 

 

In both figures, the top left shape is the query shape (frog); the retrieved shapes are 

arranged in descending order according to the similarity of each shape to the query shape. 

Figure 5.3 shows that the first agent, IRA1, has managed to rank 9 of 20 shapes correctly 

(45%). Furthermore, most of the irrelevant shapes, indicated by the dashed frames, are 

objects that belong to the same class (bell). In Figure 5.4, it is evident that the irrelevant 

shapes from agent IRA2, indicated by the dashed frames, differ from those from agent 

IRA1. Figure 5.5 shows the conditional ranking, i.e. the revised results, from agent IRA1 

based on the ranking information it has received from the second agent, IRA2. In Figure 

5.5, the irrelevant shapes from the first agent, indicated by the dashed frames in Figure 

5.3, do not appear in top-ranked positions. The positions of the relevant shapes, encircled 

by the ellipses in Figure 5.3, produced by the first agent, IRA1, are repositioned into the 

top 20 positions in R21, resulting in an accuracy rate of 75% (15 out of 20). It is clear that 

the conditional ranking results (the revised results) R21 are much better than the marginal 

ranking results (the unrevised results) R1 and R2. 
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5.4 Consensus-Based Fusion Algorithm 

The main motivation for this research is to identify image-retrieval techniques that 

capture different characteristics of an image and combine them in a way that enhances 

retrieval performance through consensus about the rankings. These techniques can be 

considered to be a team of agents who cooperate in order to determine the image in the 

database that best matches the query image. This collaboration is accomplished through 

an exchange of information about the ranking of candidates. Each agent uses its feature 

extraction scheme to compute a ranking Rii. Double indexing is used in order to simplify 

the mathematical notations. The ranking reflects an individual technique’s preference for 

the candidate that best matches the query image (i.e., marginal ranking). Each agent is 

additionally exposed to the results of the rankings by the other agents so that a conditional 

ranking is also computed for each candidate image, as explained above. Therefore, M 

retrieval agents yield M
2 rankings: M marginal rankings plus M (M-1) conditional 

rankings. Figure 5.6 depicts the ranking set of a three-agent system. 

 

Figure 5.6 Information exchange among three image retrieval agents. 

 

For M agents, the ranking sets can be organized in a matrix format: 
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(5. 5) 

where Rij  is the conditional ranking of the ith agent, given the ranking of the jth agent, and 

Rii is the marginal ranking of the ith agent. 

Figure 5.7 portrays the exchange of ranking information that yields the pair-wise 

conditional rankings.  

 

Figure 5.7 Steps in the application of the pair-wise co-ranking. 

 

To obtain a final decision about the rankings, a pair-wise consensus algorithm is 

proposed. This algorithm first combines each set of the pair-wise conditional rankings 

that were obtained from the cooperation of each pair of techniques used, by averaging 

their rankings: 

2/)( jiijcc RRR +=  (5. 6) 

where  c=1, 2,… M (M-1)/2, and M is the number of techniques used.  

Then the pair-wise co-ranking scheme is applied to the combined conditional rankings 

ccR  to produce a new set of pair-wise conditional rankings t

ijR  (t represents the number of 
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iterations). At each iteration t, the algorithm produces another set of (M (M-1) /2) 

combined conditional rankings t

ccR . The initial rankings of the individual agents are 

represented by 0

ijR .(i=j, i=1,2,…m). 

In this manner, each technique influences the ranking information of the other 

techniques until all combined pair-wise conditional rankings t

ccR  result in consensus about 

the rankings. Figure 5.8 shows the main steps in the proposed algorithm. 

 

 

Figure 5.8 The main steps in the consensus-based algorithm. 
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5.4.1 Illustrative Example of the Consensus-Based Algorithm 

This section introduces an example using the MPEG-7 database, which illustrates the 

effectiveness of the proposed algorithm. For simplicity, numbers are used to refer to all 

images in the database. An image that has an index of 746 is considered to be a query 

image. In this example, three techniques were used to retrieve images from set B of the 

MPEG-7 database, with the goal of finding images similar to the given query image.  

The proposed algorithm was applied, and the rankings after different iterations are 

shown in Table 5.2 and Table 5.3. The first three columns of Table 5.2 show the rankings 

from the three individual techniques. Only the top 20 images retrieved by each technique 

are listed, and star signs are used to indicate the irrelevant retrieved images. The rankings 

that resulted from all the techniques reaching consensus are highlighted.  

From the first three columns of Table 5.2, it can be seen that the three individual 

techniques reached consensus about the rankings of only two images. Moreover, many 

images were irrelevant, as indicated by the star signs. After the fourth iteration, most of 

the irrelevant images (indicated by star signs) from the individual rankings no longer 

appear in the top 20 positions and have been replaced with relevant images. 
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Table 5.2 The rankings from the three individual techniques and from the proposed 

algorithm after the fourth iteration 

0

11R  0

22R  0

33R  4

11R  4

22R  4

33R  

748 748 748 748 748 748 

749 749 749 749 749 749 

746 746 759 757 741 741 

747 747 758 747 747 757 

757 756 741 741 757 747 

756 757 760 760 760 760 

745 760 753 744 744 744 

744 593* 757 746 746 758 

750 592* 431* 758 754 754 

751 741 702 754 756 746 

742 565* 742 756 758 756 

743 567* 430* 43* 43* 753 

760 754 754 745 745 43* 

741 744 720 753 753 745 

1312* 561* 752 750 759 759 

1319* 579 291* 743 750 742 

1317* 600* 717 742 743 743 

1314* 599* 743 751 752 752 

1313* 745 191* 759 742 750 

678* 576* 57* 752 751 191* 
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Table 5.3 The rankings from the proposed algorithm after the sixth and ninth iterations 

6

11R  6

22R  6

33R  9

11R  9

22R  9

33R  

748 748 748 748 748 748 

749 749 749 749 749 749 

741 741 741 741 741 741 

757 747 757 747 747 747 

747 757 747 757 757 757 

760 760 760 760 760 760 

744 744 744 744 744 744 

746 746 746 746 746 746 

758 754 758 754 754 754 

754 758 754 758 758 758 

756 756 756 756 756 756 

43* 43* 43* 43* 43* 43* 

745 745 753 745 745 745 

753 753 745 753 753 753 

743 743 742 743 743 743 

750 759 743 742 742 742 

742 750 759 750 750 750 

759 742 750 759 759 759 

751 751 752 751 751 751 

752 752 751 752 752 752 
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Figure 5. 9 (a) Retrieval results from the first technique ( 0

11R ) (b) Retrieval results from 

the second technique ( 0

22R ) (c) Retrieval results from the third technique ( 0

33R ) (d) 

Retrieval results from the proposed algorithm after the ninth iteration. 

 

Table 5.3 shows the rankings of the proposed algorithm after the sixth and ninth 

iterations. From this table, it is clear that the number of irrelevant images has been 

reduced and that consensus about the ranking has been reached for 50% of the images. 

After the ninth iteration, a 100% consensus about all the rankings has been obtained. 

Moreover, not only has consensus been reached after the ninth iteration, but an accuracy 

rate of 95% has also been achieved. 

Figure 5. 9 shows the retrieval results from the three selected techniques and from the 

proposed algorithm after the ninth iteration. In Figure 5. 9, the top left shape is the query 
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image, and the irrelevant retrieved images are marked by “x”. It is clear from the figure 

that the proposed algorithm guides the three techniques so that together they achieve 

better accuracy (95%) than any individual technique obtains on its own: 0

11R  achieved 

70% accuracy, 0

22R  achieved 55% accuracy, and 0

33R  achieved 60% accuracy.  

5.4.2 Complexity of the Consensus-Based Algorithm  

To estimate the computational complexity of the consensus-based algorithm the Big-

Oh notation is adopted. The main steps of the consensus-based algorithm and the 

complexity of each step are given as follows: 

• Ranking the database according to the marginal techniques �O(N+ N log(N)).O(N) 

to calculate the Euclidean distance and O(N log(N)) to sort the distance to compute 

a ranking. 

• Applying the co-ranking scheme to obtain the conditional ranking� O(m( N-m)). 

• Combining the conditional ranking� O(N+N log N). 

where N is the number of the images in the database and m is the number of the Elite 

candidate images. 

For the second step, the worst case scenario occurs when m=N/2 and hence the 

complexity of the co-ranking scheme is  O (N
2
). 

 

5.5 Context-Based Fusion Algorithm 

Analysis of the performance of the consensus algorithm reveals that for some queries 

the consensus algorithm forces the techniques to retrieve irrelevant shapes in order to 

reach consensus. This effect occurs because the consensus algorithm does not take into 

account the differences in the quality of either the marginal or the conditional ranking 

assessments. In some cases, the marginal or conditional rankings are better than the 

consensus ranking because the database is semantically classified. In other words, human 
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beings often classify shapes based on their global features and ignore the local features 

within the shapes. For example, Figure 5.10 shows two classes, each of which has four 

shapes. As can be seen, the four shapes that belong to the same class have completely 

different local characteristics, but they are semantically classified in the same class. 

 What is required is an algorithm that looks at the semantic features, or the context, of 

the shape and not just its low-level features. To achieve this goal, we propose what we 

called a look-ahead selector that uses the context of the query in order to influence the 

final ranking. The look-ahead selector uses the characteristics of the query image to 

determine whether the marginal, conditional, or consensus ranking is the best ranking. 

The current study employed the features of the three descriptors used along with simple 

global descriptors extracted from the query image. The next step in the algorithm is to 

train a neural network to select the best ranking from the marginal and consensus 

rankings.  

 

Class 1 

 

Class 2 

 

Figure 5.10 Two classes, each of which include shapes that have different local 

characteristics. 

To illustrate the input and output of the look-ahead selector for an example with three 

techniques, four rankings will be produced: three marginal rankings and one final 

consensus ranking. Therefore, the look-ahead selector must have n inputs representing the 
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descriptors of the selected techniques and four input channels for the marginal and 

consensus rankings. A general block diagram of the proposed algorithm for the three-

technique example is shown in Figure 5.11. 

The look-ahead selector uses a neural network that must be trained using a set of 

classified shapes so that it can select the appropriate ranking from the four rankings. The 

input of the neural network is the descriptors of the selected techniques and the output is 

four elements that select the appropriate ranking. Three of the four output elements must 

show 0 for an undesirable ranking, with only one output element showing 1 for the 

candidate ranking.  

The look-ahead selector improves the overall performance of the retrieval process 

because the quality of each ranking is considered through the preprocessing of the query 

image. It also reduces the time required to retrieve images because, in some cases, the 

look-ahead selector selects one of the marginal rankings, which saves the time required to 

obtain the other conditional or consensus rankings.  
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Figure 5.11 General block diagram of the context-based algorithm. 

 

5.6 Experimental Results 

The five databases described in Chapter 3 have been used to test the performance of 

the algorithms presented in this chapter. To implement and test the newly developed 

consensus algorithm, three shape descriptor techniques were selected.  

The first, the angular radial transform descriptor (ARTD), is a region-based 

technique that provides the global characteristics of an image.  This technique has been 

adopted by MPEG-7 as a standard region descriptor. 

The second technique, the curvature-based Fourier descriptor (CBFD) [97], is a 

boundary-based technique used to provide the local characteristics of an image for the 

proposed algorithm. This technique is designed to capture local information using the 

curvature of the shape and a Fourier transform. As shown in Chapter 4, the CBFD 
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outperforms the curvature scale space descriptor (CSSD), which has been adopted by 

MPEG-7 as a standard boundary technique. 

The third technique is the Fourier descriptor (FD) technique, based on the farthest 

point distance (FPD) signature. Chapter 3 describes how the FPD signature outperforms 

the commonly used signatures. The FD technique was selected because it is a boundary-

based technique that can capture both local and global characteristics. Low frequencies 

provide global characteristics, and high frequencies symbolize the local characteristics of 

an image [85].  

The set B images from MPEG-7 were used to investigate the effect of the number of 

elite candidates (M) and the number of iterations (t) on the consensus algorithm. Figure 

5.12 shows the average precision for different values of m and t. It can be seen that after 

the fourth iteration (t=3) there is no significant improvement. This result was expected 

because at this iteration (t=3) all marginal rankings revise one another based on the pair-

wise co-ranking scheme. The results also show that the best performance is obtained at m 

=40, which represents 2.85% of the total number of shapes in the database. 

 

Figure 5.12 The average precision for different values of m and t. 
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The ranking of the proposed consensus-based algorithm was compared with the 

marginal rankings produced by the three selected techniques, and the ranking produced 

by averaging the rankings of the three selected techniques to pool their results (pooled 

marginal ranking). Presented in Figure 5.13 to Figure 5.17 are the precision-recall curves 

for the consensus-based algorithm as well as those for the ARTD, CBFD, and FPD 

techniques and those resulting from the pooling of the three techniques. The average 

precision rates for low and high recall are shown in Table 5.4 to Table 5.8. Table 5.9 

shows the comparison of the overall average performance of the proposed descriptors 

with that of the other techniques based on the weighted average given in Equation (4. 13) 

Figure 5.13 to Figure 5.17 indicate the effectiveness of the proposed consensus-based 

algorithm, whose performance is significantly superior to that of the, CBFD, FPD, and 

ARTD techniques and better than that produced by pooling the rankings from the three 

techniques.  Based on Table 5.9, it is clear that, compared with other techniques, the 

consensus-based algorithm descriptors provide the highest performance for both low and 

high recall. 

 

Figure 5.13 Precision-recall curves for set B results from the consensus-based algorithm; 

for the results from the pooled marginal ranking of the three selected techniques; and for 

the marginal results from the CBFD, FPD, and ARTD techniques. 
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Table 5.4 The set B average precision rates of low and high recall for the consensus-based 

algorithm; the pooled marginal ranking from the three selected techniques; and the 

marginal rankings from  CBFD, FPD, and ARTD techniques 

Method 

Low Recall High Recall 

Average precision for   

recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 88.99 % 60.89 % 

Pooled marginal ranking 88.53 % 58.80 % 

CBFD (Chapter 4) 85.15 % 54.77 % 

FPD (Chapter 3) 81.16 % 49.15 % 

ARTD 82.10 % 45.69  % 

 

 

Figure 5.14 Precision-recall curves for set A1 results from the consensus-based algorithm; 

for the results from the pooled marginal ranking of the three selected techniques; and for 

the results from the CBFD, FPD, and ARTD techniques. 

 

Table 5.5 The set A1 average precision rates of low and high recall for the consensus-

based algorithm; the pooled marginal ranking from the three selected techniques; and the 

marginal rankings from the CBFD, FPD, and ARTD techniques 

Method 

Low Recall High Recall 

Average precision for   

recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 99.69 % 97.97 % 

Pooled marginal ranking 99.29 % 97.33 % 

CBFD (Chapter 4) 99.74 % 96.78 % 

FPD (Chapter 3) 98.60 % 93.23 % 

ARTD 99.71 % 98.62 % 
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Figure 5.15 Precision-recall curves for set A2 results from the consensus-based algorithm; 

for the results from the pooled marginal ranking of the three selected techniques; and for 

the marginal results from the CBFD, FPD, and ARTD techniques. 

 

 

 
 

 

 Table 5.6 The set A2 average precision rates of low and high recall for the consensus-

based algorithm; the pooled marginal ranking of the three selected techniques; and the 

marginal rankings from the CBFD, FPD, and ARTD techniques. 

Method 

Low Recall High Recall 

Average precision 

for   recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 100.00 % 100.00 % 

Pooled marginal ranking 100.00 % 100.00 % 

CBFD (Chapter 4) 100.00 % 100.00 % 

FPD (Chapter 3) 100.00 % 99.89  % 

ARTD 100.00 % 100.00 % 
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Figure 5.16 Precision-recall curves for set C results from the consensus-based algorithm; 

for the results from the pooled marginal ranking of the three selected techniques; and for 

the marginal results from the CBFD, FPD, and ARTD techniques. 

 

 

Table 5.7 The set C average precision rates of low and high recall for the consensus-based 

algorithm; the pooled marginal ranking of the three selected techniques; and the marginal 

rankings from the CBFD, FPD, and ARTD techniques. 

Method 

Low Recall High Recall 

Average precision for   

recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 98.42 % 92.61 % 

Pooled marginal ranking 98.40 % 92.97 % 

CBFD (Chapter 4) 97.38 % 88.03 % 

FPD (Chapter 3) 97.96 % 92.23 % 

ARTD 98.48 % 94.16 % 
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Figure 5.17 Precision-recall curves for set D results from the consensus-based algorithm; 

for the results from the pooled marginal ranking of the three selected techniques; and for 

the marginal results from the CBFD, FPD, and ARTD techniques. 

 

 

Table 5.8 The set D average precision rates of low and high recall for the consensus-

based algorithm; the pooled marginal ranking of the three selected techniques; and the 

marginal rankings from the CBFD, FPD, and ARTD techniques. 

Method 

Low Recall High Recall 

Average precision for   

recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 99.92 % 98.21% 

Pooled marginal ranking 99.84 % 97.74 % 

CBFD (Chapter 4) 99.96 % 97.19 % 

FPD (Chapter 3) 99.85 % 96.08 % 

ARTD 99.75 % 94.75 % 
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Table 5.9 The overall average precision rates of low and high recall for the consensus-

based algorithm; the pooled marginal ranking of the three selected techniques; and the 

marginal rankings from the CBFD, FPD, and ARTD techniques 

Method 

Low Recall High Recall 

Average precision for   

recall rates ≤  50% 

Average precision for  

recall rates > 50% 

Consensus-based ranking 94.42 % 79.78 % 

Pooled marginal ranking 94.13 % 78.62 % 

 (CBFD) (Chapter 4) 92.50 % 76.14 % 

FPD (Chapter 3) 90.41 % 72.98 % 

ARTD  91.05 % 72.03 % 

 

5.7 Analysis and Discussion 

The experimental results presented in the previous section show that the consensus-

based algorithm achieves a high degree of accuracy for all of the databases. However, it 

has been noted that for some specific classes from set B of the database, the performance 

of the marginal techniques is better than that of the consensus-based algorithm. Examples 

of these classes are shown in Figure 5.10. For these classes, the performance of the 

consensus-based algorithm was very low because these classes were classified based on 

consideration of only global characteristics, and local ones were ignored.  For each of 

these classes, Figure 5.18 shows the accuracy of the first top 40 retrieved shapes for the 

consensus-based algorithm and that of the three marginal techniques. As can be seen in 

Figure 5.18, for class 32 (indicated by arrows), the accuracy of the consensus-based 

algorithm was very low compared to the accuracy of the ARTD technique. 
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ARDT 

 

FPD 

CBFD Censuses-based algorithm 

Figure 5.18 The retrieval accuracy by class for the ARTD, FPD, and CBFD techniques 

and for the consensus-based algorithm. 

 

To overcome this problem, the context-based algorithm was used. In this algorithm, 

part of the set B database was used as a training set (the first seven shapes of each class), 

and the other shapes were used as a testing set. To test the concept of the context-based 

algorithm the Matlab neural network toolbox was used to facilitate the training and 

testing stages. For each class, Figure 5.19 shows the accuracy of the context-based 

algorithm and the three marginal techniques. As can be seen from Figure 5.19, the 

accuracy of the context-based algorithm is better than that of the consensus-based 

algorithm. For several classes, the context-based algorithm was able to solve or minimize 

the problem encountered with the consensus-based algorithm. The performance of the 

context-based algorithm is based on the number of training sets used to train the neural 

network and can be improved through the online learning of the neural network that 
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results from feedback from the users. This method will allow the retrieval system to learn 

through feedback from each user query. 

 

 

Figure 5.19 The retrieval accuracy by class for the context-based algorithm 

 

 

5.8 Summary  

This chapter has presented a new pair-wise co-ranking scheme based on a revision of 

the rankings for the retrieved shapes produced by several techniques. A consensus-based 

fusion algorithm is also proposed as a means of improving the retrieval performance of a 

group of shape-based image retrieval techniques by enabling them to achieve consensus 

with respect to their rankings. Five databases have been used to test the performance of 

the proposed algorithm, and the experimental results have been presented.  

The experiments demonstrate that the proposed algorithm yields results that are better 

than the marginal rankings produced from any of the three selected techniques. The 

performance of the proposed algorithm is also superior to that produced by pooling the 

marginal rankings from the three techniques. This improvement is the result of allowing 

the selected techniques to recursively exchange their ranking information until all of the 

techniques reach a consensus about their rankings. The experimental results also show, 

however, that the performance of the consensus-based algorithm is low for specific 
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classes. To overcome this difficulty with the consensus-based algorithm, a context-based 

algorithm has been proposed, which makes the final ranking a function of the query 

context.   Based on the results, the context-based algorithm is able to eliminate or 

minimize the problem with the consensus-based algorithm.   
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Chapter Six  

Conclusions and Future Work 

 

The main objective of this research is to investigate and improve the shape-based 

image retrieval process.  

State-of-the-art shape descriptors are reviewed, several are comprehensively studied 

and their advantages and disadvantages identified, and the shape-description techniques 

most commonly used for shape retrieval are determined.  

A new shape signature for Fourier descriptors, called the farthest point distance 

(FPD) signature, is proposed as a method of overcoming some of the disadvantages of 

previous shape signatures. The proposed signature calculates the distances between 

different corners of a shape and captures the points within the shape that humans use as a 

visual focus in order to classify shapes. To investigate the merit of the newly proposed 

signature, it is experimentally evaluated and compared to eight commonly used shape 

signatures. These signatures include the radial distance (RD), the triangular centroid area 

(TCA), the triangular area representation (TAR), the complex coordinate (CC), the chord-

length distance (CLD), the angular function (AF), the polar coordinates (PC), and the 

angular radial coordinates (ARC) signatures. The experimental results clearly show that 

the proposed signature outperforms commonly used signatures because it tends to capture 

information about the corners of each object. This information, that is, the extreme points 

of a shape, also corresponds to the natural focus of human visual attention. To improve 

the ability of the proposed descriptors to capture the global characteristics of shapes, 

simple global descriptors are used with the proposed descriptors. Experimental 

investigations are conducted with respect to the size of the feature vector of the proposed 
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descriptors that is derived using the FPD signature and simple global descriptors. The 

results show that retrieving images from standard databases based on the shape of the 

image requires only 15 Fourier descriptors. These compact features are compared with 

the most effective and compact shape descriptors in the literature. The main advantages of 

the Fourier descriptors derived from the proposed signature are their compactness and the 

simplicity of their matching process. However, these descriptors are not capable of 

capturing the local characteristics of a shape. Consequently, another shape descriptor that 

is able to capture the local shape characteristics is also proposed. This descriptor is called 

a curvature-based Fourier shape descriptor (CBFD). 

The curvature-based Fourier shape technique employs an unconventional view of the 

curvature-scale-space map of a shape contour because it treats it as a 2-D binary image. 

Invariant descriptors are derived from the 2-D Fourier transform of the curvature-scale 

image, which enables the descriptors to capture the detailed dynamics of the curvature of 

the shape contour and enhances the efficiency of the shape-matching process. The 

strength of the curvature-based shape techniques lies in the fact that it captures the local 

characteristics of a shape by means of descriptors that can facilitate a simple matching 

process. Since the curvature-based Fourier descriptors are 2-D, they have been compared 

with other (notable) 2-D descriptors that use a simple matching distance measure such as 

Euclidean distance in order to retrieve shapes. These other descriptors include angular 

radial transform descriptors, Zernike moment descriptors, radial Tchebichef moment 

descriptors, and generic Fourier descriptors. The CBFD has also been compared with 

standard contour-based shape descriptors (CSS) and 1-D Fourier descriptors.    

The results of experiments using MPEG-7 databases in conjunction with a specially 

created noisy database demonstrate the effectiveness of the proposed CBFDs. The high 

performance of the CBFD in the presence of noise is due to their construction using two 
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filtering processes: the first is a smoothing process using a Gaussian filter to obtain the 

curvature scale image, and the second ignores high-frequency components that are 

sensitive to noise.  

The rich content of images makes it impossible for one particular technique to be 

effective for all types of shapes. Consequently, a fusion algorithm has been proposed so 

that a group of techniques can be combined.  In this algorithm, several techniques 

exchange their ranking information based on a pair-wise co-ranking scheme in order to 

produce a set of pair-wise conditional rankings and improve their ranking decisions. 

Then, each set of the pair-wise conditional rankings obtained through the cooperation of 

each pair of techniques is combined by averaging their rankings. The pair-wise co-

ranking scheme is then applied recursively in order to reach a consensus about the final 

ranking decisions. Since the effectiveness of the descriptor used is image dependent, the 

combination scheme must be dynamic as a function of the query context.    Consequently, 

a context-based fusion algorithm has been proposed so that the context of the query image 

can be considered in order to integrate several shape-based retrieval techniques. To test 

the performance of the proposed fusion algorithm, several techniques have been selected 

to work together, all of which use a simple matching process. Experiments based on the 

MPEG-7 databases and the specially created noisy database have been conducted in order 

to validate the performance of the proposed fusion algorithm. The results clearly show the 

effectiveness of the algorithm in retrieving images based on their shapes. 

The main contributions of this study can be summarized as follows: 

1. The merit of the most notable shape descriptors for image shape retrieval has 

been systematically and comprehensively investigated. 

2. A shape signature has been proposed for deriving Fourier descriptors.  
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3. Curvature-based Fourier descriptors that are capable of capturing local 

characteristics have been proposed.  

4. A fusion algorithm based on a team consensus approach has been proposed as 

a method of combining several shape-retrieval techniques and enhancing the 

performance of the shape-based image retrieval process. 

6.1 Suggestions for Future Work 

Although the present research provides solutions to shape-based image retrieval 

problems, extensive opportunities exist for further research. To improve the performance 

of shape-based image retrieval, investigations of the following areas of future work are 

suggested: 

• The proposed curvature-based shape descriptors use only the magnitude and 

ignore the phase of the Fourier transform. This deficiency leads to losses in some 

of the shape characteristics, which might be ones that are a key factor in 

distinguishing between two shapes. The overall accuracy of the proposed 

descriptors will be improved if the phase information of the Fourier transform is 

also considered. An extension of the curvature-based Fourier descriptors so that 

they can handle 3-D shapes also deserves investigation because such an extension 

may make it possible to retrieve 3-D shapes.  

• The proposed fusion algorithm can be used to integrate text and image content so 

as to develop a hybrid retrieval system that can be developed to support both 

query by keyword and query by image content. Furthermore the context of the 

keywords can be used to guide a group of techniques to reach a better final 

decision. 



132 

 

• Relevance feedback [143] can be added to the shape-based image retrieval system 

in order to improve the effectiveness of the retrieval. This addition would allow 

the retrieval system to learn through feedback from each user query. Clustering 

techniques can also be used to organize image collection and improve retrieval 

efficiency.  

• Current research into the use of high-level features is still in its early stages [144]. 

A key issue in content-based image retrieval (CBIR) research is the exploration of 

ways to bridge the gap between the high-level semantics of an image and its 

lower-level properties that are derived from shape, color, and texture. The 

semantic features can be used with the low level features to improve the proposed 

fusion algorithm. 

6.2 Publications Related to This Thesis 

The following is a list of the articles published, submitted, and to be submitted   

Book Chapters  

1. A. El-Ghazal, O. Basir and S. Belkasim “Shape-Based Image Retrieval using Pair-

wise Candidate Co-ranking”, in M. Kamel and A.  Campilho (Eds), Image Analysis 

and Recognition, Springer-Verlag Berlin Heidelberg: Lecture Notes in Computer 

Science, pp. 650-661, 2007.  

Journal Papers 

2. A. El-Ghazal, O. Basir and S. Belkasim "Farthest Point Distance: A New Shape 

Signature for Fourier Descriptors" Signal Processing: Image Communication, 

Volume 24, Issue 7, pp. 572-586, 2009. 
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