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Abstract

We provide ways to test the fit of a parametric copula family for bivariate censored
data with or without covariates. The proposed copula family is tested by embedding it
in an expanded parametric family of copulas. When parameters in the proposed and the
expanded copula models are estimated by maximum likelihood, a likelihood ratio test can
be used. However, when they are estimated by two-stage pseudolikelihood estimation, the
corresponding test is a pseudolikelihood ratio test. The two-stage procedures offer less
computation, which is especially attractive when the marginal lifetime distributions are
specified nonparametrically or semiparametrically. It is shown that the likelihood ratio
test is consistent even when the expanded model is misspecified. Power comparisons of the
likelihood ratio and the pseudolikelihood ratio tests with some other goodness-of-fit tests
are performed both when the expanded family is correct and when it is misspecified. They
indicate that model expansion provides a convenient, powerful and robust approach.

We introduce a semiparametric maximum likelihood estimation method in which the
copula parameter is estimated without assumptions on the marginal distributions. This
method and the two-stage semiparametric estimation method suggested by Shih and Louis
(1995) are generalized to regression models with Cox proportional hazards margins. The
two-stage semiparametric estimator of the copula parameter is found to be about as good
as the semiparametric maximum likelihood estimator. Semiparametric likelihood ratio
and pseudolikelihood ratio tests are considered to provide goodness of fit tests for a copula
model without making parametric assumptions for the marginal distributions. Both when
the expanded family is correct and when it is misspecified, the semiparametric pseudolike-
lihood ratio test is almost as powerful as the parametric likelihood ratio and pseudolikeli-
hood ratio tests while achieving robustness to the form of the marginal distributions. The
methods are illustrated on applications in medicine and insurance.

Sequentially observed survival times are of interest in many studies but there are diffi-
culties in modeling and analyzing such data. First, when the duration of followup is limited
and the times for a given individual are not independent, the problem of induced dependent
censoring arises for the second and subsequent survival times. Non-identifiability of the
marginal survival distributions for second and later times is another issue, since they are
observable only if preceding survival times for an individual are uncensored. In addition, in
some studies, a significant proportion of individuals may never have the first event. Fully
parametric models can deal with these features, but lack of robustness is a concern, and
methods of assessing fit are lacking. We introduce an approach to address these issues.
We model the joint distribution of the successive survival times by using copula functions,
and provide semiparametric estimation procedures in which copula parameters are esti-
mated without parametric assumptions on the marginal distributions. The performance
of semiparametric estimation methods is compared with some other estimation methods
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in simulation studies and shown to be good. The methodology is applied to a motivating
example involving relapse and survival following colon cancer treatment.
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Chapter 1

Introduction

1.1 Multivariate Lifetime Distributions and Copula

Models

Multivariate lifetime data analysis is necessary in various settings (Lawless, 2003; Hougaard,
2000). Multivariate lifetime data includes parallel clustered data in which each subject has
more than one failure time which are observed in parallel or simultaneously and do not
satisfy any order restrictions; for example, times to occurrence of a disease in paired organs
within individuals as in the Diabetic Retinopathy Study data given in Section 1.1.1 or times
to disease onset or death in related individuals (Hougaard et al., 1992; Hsu and Gorfine,
2006). It also includes sequential data in which sequences of survival times, observed one
after the other. An example is the times between successive events for an individual such
as entry to the stages of a two-stage disease process as in the Colon Cancer data given in
Section 1.1.2.

The objectives of this thesis are to develop some new methods for use with bivariate
lifetime data. In particular, we will provide methods for tests of fit, for semiparametric
estimation, and for the analysis of sequentially observed data. These topics are discussed
in Section 1.6, but first we provide a review of models and methods for bivariate lifetimes.

We focus on the case of bivariate lifetimes but the approaches developed in the thesis
can also be applied to settings with three or more lifetimes. In this chapter, approaches to
model bivariate lifetime data are explained, specifically the general description of copula
models. Some important models are summarized, and a review of statistical methods for
copula models and previous work on copula model selection and goodness of fit tests is
given.
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1.1.1 Diabetic Retinopathy Study Data

The Diabetic Retinopathy Study (DRS) was begun in 1971 to study the effectiveness of
laser photocoagulation treatment in delaying the onset of blindness in patients with diabetic
retinopathy. Diabetic retinopathy occurs in diabetic persons and causes blindness. Huster
et al. (1989) gives some important details of the study. The patients were eligible for
the study if they had diabetic retinopathy and visual acuity of 20/100 or better in both
eyes. One eye of each patient was randomly selected for treatment and the other eye was
observed without treatment. The variable used to assess the treatment effect was the time
to occurrence of visual acuity less than 5/200 at two consecutively completed 4-month
follow-ups. A 50% sample of the high-risk patients as defined by DRS criteria gives a
subset of n = 197 subjects. It is important to understand whether there is an effect of the
laser photocoagulation treatment. Many authors such as Huster et al. (1989), Glidden and
Self (1999), He and Lawless (2003, 2005) and Romeo et al. (2006) analyzed this data set.

1.1.2 Colon Cancer Data

A clinical trial was conducted to assess the effectiveness of a therapy with levamisole plus
fluorouracil compared to a placebo with respect to colon cancer patients’ cancer recurrence
and survival. Moertel et al. (1990) and Lin et al. (1999) give some information about the
study. Colon cancer is a common cancer type. When the diagnosis is made at a sufficiently
early stage, all apparent diseased tissue can be surgically removed. The patients who have
regional nodal involvement that is clinically completely resected are referred to as having
Duke’s Stage C disease. Some patients have residual cancer existing in an occult and
probably in microscopic stage, which leads to recurrence of disease and death within 5
years. In this randomized clinical trial on Duke’s Stage C patients there were 315 patients
assigned to the placebo group and 304 patients assigned to the levamisole plus fluorouracil
therapy group. Maximum follow-up time was approximately 9 years. It is important to
assess whether there are effects of the therapy with levamisole plus fluorouracil on the time
from study registration to cancer recurrence, and if the cancer recurs, on the time from
recurrence to death. Some authors such as Moertel et al. (1990), Lin et al. (1999) and He
and Lawless (2003) analyzed this data set.

1.2 Bivariate Lifetime Distributions

Let T1, T2 be lifetime variables of an individual which may not be independent. The
bivariate distribution and survivor functions for t1 ≥ 0 and t2 ≥ 0 are defined as

F (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2) (1.1)

2



and
S(t1, t2) = Pr(T1 ≥ t1, T2 ≥ t2), (1.2)

respectively. For continuous lifetime variables T1, T2, the bivariate survivor function can
be expressed in terms of the distribution functions as follows:

S(t1, t2) = 1− F1(t1)− F2(t2) + F (t1, t2). (1.3)

The marginal distribution fuctions of T1 and T2 are F1(t1) = F (t1,∞) and F2(t2) =
F (∞, t2) and the marginal survivor functions are S1(t1) = S(t1, 0) and S2(t2) = S(0, t2),
respectively. The hazard rate of the conditional distribution of Ti given Tj = tj is

λij(ti|tj) = lim
∆t→0

Pr(Ti < ti + ∆t|Ti ≥ ti, Tj = tj)

∆t
=
∂2S(ti, tj)/∂ti∂tj
−∂S(ti, tj)/∂tj

(1.4)

for ti > tj, i 6= j and i, j = 1, 2. The hazard rate of the conditional distribution of Ti given
Tj ≥ tj is

λ′ij(ti|tj) = lim
∆t→0

Pr(Ti < ti + ∆t|Ti ≥ ti, Tj ≥ tj)

∆t
=
−∂S(ti, tj)/∂ti

S(ti, tj)
(1.5)

for i 6= j and i, j = 1, 2.

Suppose the parallel clustered lifetimes (T1i, T2i) of a random sample of individu-
als i = 1, ..., n have common continuous survivor function S(t1, t2) and potential right
censoring times (C1i, C2i) assumed to be independent of the lifetimes. Let (t1i, t2i) =
(min(T1i, C1i),min(T2i, C2i)) and (δ1i, δ2i) = (I[T1i = t1i], I[T2i = t2i]) be the observed data
and its censoring indicators, respectively. The likelihood function is (Lawless, 2003, Section
11.2)

L =
n∏

i=1

f(t1i, t2i)
δ1iδ2i

[
−∂S(t1i, t2i)

∂t1i

]δ1i(1−δ2i) [
−∂S(t1i, t2i)

∂t2i

](1−δ1i)δ2i

S(t1i, t2i)
(1−δ1i)(1−δ2i)

(1.6)

where f(t1, t2) = ∂2S(t1,t2)
∂t1∂t2

.

When the sequence of lifetimes (T1i, T2i), observed in order, represents the times be-
tween a sequence of events and Ci denotes the censoring time (total followup time) for
individual i, i = 1, ..., n, there may be three different types of observations: (i) T1i is not
observed, i.e. t1i = Ci; (ii) T1i = t1i is observed but T2i is not observed, i.e. t2i = Ci−t1i; (iii)
both T1i = t1i and T2i = t2i are observed. Let (t1i, t2i) = (min(T1i, Ci),min(T2i, Ci − t1i))
and (δ1i, δ2i) = (I[T1i = t1i], I[T2i = t2i]) be the observed lifetimes and their censoring
indicators, respectively. Then, the likelihood function is (Lawless, 2003, Section 11.3)

L =
n∏

i=1

f(t1i, t2i)
δ1iδ2i

[
−∂S(t1i, t2i)

∂t1i

]δ1i(1−δ2i)

S1(t1i)
1−δ1i . (1.7)
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Note that the censoring time for T1i is Ci but since T2i cannot be observed until T1i has
been observed, the censoring time for T2i is Ci − t1i if T1i = t1i. If T1i and T2i are not
independent, the censoring time for T2i is not independent of T2i.

When there are fixed covariates x present we denote lifetime distributions as F (t1, t2|x),
S(t1, t2|x), Fj(tj|x), and so on. The likelihood functions (1.6) and (1.7) still apply when
there are covariates, with S1(t1i), f(t1i, t2i) and S(t1i, t2i) replaced with S1(t1i|xi), f(t1i, t2i|
xi) and S(t1i, t2i|xi), respectively.

There are two main approaches to model parallel clustered lifetime data: marginal ap-
proach and random effect models. In the marginal approach the joint distribution of T1

and T2 is modelled directly, as with a bivariate exponential distribution, for example. In
this case the marginal distributions are usually modelled separately from the dependency
structure. Copula models (Joe, 1997; Nelsen, 2006) and log-location-scale models (Law-
less, 2003) are common models for the marginal approach. However, a bivariate random
effect model assumes conditional independence of T1 and T2, given an unobserved random
variable. It is often called a frailty model (Hougaard, 2000) if the conditional distributions
of T1 and T2 have conditional proportional hazards models. Integration with respect to
the unobserved variable gives the joint distribution for T1 and T2, but it is usually the case
that certain parameters affect both the marginal distributions and association.

Methods for sequences of lifetimes are discussed in Cook and Lawless (2007, Chapter
4), in connection with the gap times between recurrent events. There are three main ap-
proaches to model sequential lifetime data: marginal models, random effect models and
conditional models. Marginal models and random effect models are described in detail in
the following sections. In the conditional approach, F1(t1|x) and the conditional distri-
bution function for T2 given T1, denoted F2|1(t2|t1, x) are modeled for example by using
proportional hazards model or accelerated failure time models. To model the conditional
distribution function F2|1, t1 is effectively included among the covariates for T2. This ap-
proach is better when there are time-varying covariates. However, the marginal distribution
F2(t2|x) generally turns out to be in a complicated form and it is difficult to interpret the
marginal effect of fixed covariates x on T2. We focus in this thesis on fixed covariates. Ran-
dom effect marginal models also do not always provide marginal distributions in simple
form. However, for copula models or bivariate accelerated failure time models, discussed
below, the marginal distributions have easily interpretable forms because these approaches
allow us to specify them according to modeling needs.
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1.2.1 Marginal Approaches

Copula Models

Copulas are functions used to construct a joint distribution function or survival function
by combining the marginal distributions. Copula models are very well explained in Nelsen
(2006) and Joe (1997). A bivariate copula is a function C(u1, u2) where (u1, u2) ∈ [0, 1]2,
with the following properties. The margins of C are uniform: C(u1, 1) = u1, C(1, u2) = u2;
C is a grounded function: C(u1, 0) = C(0, u2) = 0 and C is 2-increasing: C(v1, v2) −
C(v1, u2) − C(u1, v2) + C(u1, u2) ≥ 0 for all (u1, u2) ∈ [0, 1]2, (v1, v2) ∈ [0, 1]2 such that
0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤ 1.

Due to Sklar’s theorem (Sklar, 1959), if F1 and F2 are continuous, then there exists a
unique copula C such that for all t1, t2 ≥ 0,

F (t1, t2) = C(F1(t1), F2(t2)) (1.8)

and if C is a copula and F1 and F2 are distribution functions, then the function F in (1.8)
is a bivariate distribution function with margins F1 and F2.

Sklar’s theorem can also be applied to bivariate survivor functions (Georges et al.,
2001). Hence if S1 and S2 are continuous, then there exists a unique copula C̄ such that
for all t1, t2 ≥ 0,

S(t1, t2) = C̄(S1(t1), S2(t2)) (1.9)

where C̄(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2).

Copulas allow us to separate the marginal distributions from the dependence structure
and it is possible to use any marginal survivor functions that are appropriate to the given
data such as accelerated failure time or proportional hazards models. If there are any
covariates x, Sj(tj|x), j = 1, 2 are modeled and S(t1, t2|x) is obtained through (1.9). It is
also possible for the copula function to depend on x, but often C(u1, u2) is assumed not to
depend on x.

Log-Location-Scale (AFT) Models

In log-location-scale models, or accelerated failure time models (AFT), we define Yj =
log Tj, j = 1, 2 in the form of

Yji = µj(x) + σjεji, i = 1, ..., n (1.10)

where −∞ < yji < ∞, −∞ < µj(xi) < ∞, x denotes covariates and σj > 0 for j = 1, 2
and i = 1, ..., n so that the bivariate survivor function of (Y1, Y2) is written as

S(y1, y2|x) = S0

(
y1 − µ1(x)

σ1

,
y2 − µ2(x)

σ2

)
(1.11)
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where the survivor function S0(ε1, ε2) for ε1, ε2 does not depend on covariates and εj =
yj−µj

σj
, j = 1, 2.

Bivariate distributions such as bivariate normal, bivariate t or extreme value distri-
butions (Kotz et al., 2000) can be used, or copula models with location-scale marginal
survivor functions can be used so that we have the bivariate survivor function

S(y1, y2|x) = C

[
S10

(
y1 − µ1(x)

σ1

)
, S20

(
y2 − µ2(x)

σ2

)]
. (1.12)

1.2.2 Random Effect Models

A bivariate random effect model assumes that T1 and T2 are independent given an unob-
served random variable W . Hence, the conditional bivariate survivor function given the
random effect is

S(t1, t2|w) = S1(t1|w)S2(t2|w) (1.13)

and if G is the distribution function of the random variable W , the bivariate survivor
function becomes

S(t1, t2) =

∫
S1(t1|w)S2(t2|w)dG(w). (1.14)

If there are any covariates x, they can be taken into account by modelling Sj(tj|x) for
j = 1, 2 and S(t1, t2|x) is obtained through (1.14). Hougaard (2000) contains many details
concerning random effects models.

Frailty models

A bivariate frailty model assumes that the conditional survivor functions of T1 and T2

given the frailties W1 and W2, respectively, are independent and they have conditional
proportional hazards model such that

Sj(tj|wj) = Pr(Tj > tj|Wj = wj) = S0j(tj)
wj (1.15)

where S0j(tj) is a continuous baseline survivor function for j = 1, 2. The bivariate survivor
function is obtained through (1.14) where G denotes the joint distribution function of
(W1,W2).

Shared frailty models

A bivariate shared frailty model assumes that T1 and T2 are conditionally independent
given the frailty W and the lifetime variables satisfy

Pr(Tj > tj|W = w) = S0j(tj)
w (1.16)
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where S0j(tj) is a continuous baseline survivor function for j = 1, 2. Hence from (1.14),
the unconditional survivor function of (T1, T2) is

S(t1, t2) =

∫
[S01(t1)S02(t2)]

wdG(w) = ϕ−1[− logS01(t1)− logS02(t2)] (1.17)

where ϕ−1(v) = E[e−vW ] is the Laplace transform of W . As explained in Section 1.3.1, a
class of copulas contain the bivariate frailty models.

Location-scale models

In location-scale models, we have Yj = log Tj, j = 1, 2 in the form of

Yji = wji + µj(xi) + σjεji (1.18)

where −∞ < yji < ∞, −∞ < µj(xi) < ∞, xi denotes covariates, σj > 0, (W1i,W2i) has
joint distribution function G that does not depend on xi and E[Wji] = 0 for j = 1, 2 and
i = 1, ..., n. The bivariate survivor function of (Y1, Y2) is obtained through

S(y1, y2|x) =

∫
S01

(
y1 − w1 − µ1(x)

σ1

)
S02

(
y2 − w2 − µ2(x)

σ2

)
dG(w1, w2). (1.19)

Note that it is possible to have wji = wi for j = 1, 2 and i = 1, ..., n in some situations.

1.2.3 Dependence Measures

It is well-known that the Pearson correlation coefficient effectively measures the linear
dependence of two random variables coming from a bivariate normal distribution. However,
it may not be a good measure for other bivariate distributions where the conditional mean
of Yi given Yj is not linear in Yj. In addition, transformation of Y1 and Y2 changes the value
of Pearson’s correlation. Hence, using a nonparametric correlation type measure which is
based on concordance is common. Note that two observations (t1i, t2i) and (t1j, t2j), i 6= j
are called concordant if (t1i − t1j)(t2i − t2j) > 0 and discordant if (t1i − t1j)(t2i − t2j) < 0.

Two frequently used measures of association based on concordance and discordance are
Kendall’s tau and Spearman’s rho, and their relationship is explained in Nelsen (2006) and
Joe (1997). These two measures are defined below, and are invariant with respect to strictly
increasing transformations of T1 and T2. They equal 1 for the bivariate Fréchet upper
bound, F (t1, t2) = min(F1(t1), F2(t2)), and −1 for the Fréchet lower bound, F (t1, t2) =
max(0, F1(t1) + F2(t2) − 1). See Joe (1997, Section 2.2) for a discussion of concordance
measures and Joe (1997, Chapter 3) for Fréchet bounds.
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Kendall’s tau

Kendall’s tau is the probability of concordance minus the probability of discordance, that
is

τ = Pr((T1i − T1j)(T2i − T2j) > 0)− Pr((T1i − T1j)(T2i − T2j) < 0) (1.20)

= 4

∫
F (t1, t2)dF (t1, t2)− 1

= 4E[F (T1, T2)]− 1.

The range of possible values for τ is [−1, 1].

Spearman’s rho

Spearman’s rho is defined as the correlation of F1(T1) and F2(T2) and it is proportional
to the probability of concordance minus the probability of discordance for the two vectors
(T1i, T2i) and (T1j, T2k), i 6= j 6= k such that the joint distribution function of (T1i, T2i) is
F (t1, t2) and the joint distribution function of (T1j, T2k) is F1(t1)F2(t2). Hence Spearman’s
rho is

ρ = 3[Pr((T1i − T1j)(T2i − T2k) > 0)− Pr((T1i − T1j)(T2i − T2k) < 0)] (1.21)

= 12

∫ ∫
F1(t1)F2(t2)dF (t1, t2)− 3

= 12

∫ ∫
S(t1, t2)dF1(t1)dF2(t2)− 3.

The range of possible values for ρ is [−1, 1].

Since τ and ρ are invariant to strictly increasing transformations, they can be used as
summary measures of dependence for bivariate copulas. The Kendall’s tau can be expressed
as

τ = 4

∫ ∫
C(u1, u2)dC(u1, u2)− 1 (1.22)

= 4E[C(U1, U2)]− 1

= 1− 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2

du1du2

and the Spearman’s rho becomes

ρ = 12

∫ ∫
C(u1, u2)du1du2 − 3 = 12

∫ ∫
C̄(u1, u2)du1du2 − 3. (1.23)
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Thus, as is expected and shown in Georges et al. (2001), the Kendall’s tau and the Spear-
man’s rho of the survival copula are equal to the Kendall’s tau and the Spearman’s rho of
the associated copula, respectively.

Positive and negative quadrant dependence

Lehmann (1966) introduced the quadrant dependence concept to compare the probability
of any quadrant T1 ≤ t1, T2 ≤ t2 under the distribution function F of (T1, T2) with the
corresponding probability in the case of independence. (T1, T2) is positive quadrant depen-
dent (PQD) if the probability that both T1 and T2 large (or small) is not smaller than the
probability if they are independent. Hence (T1, T2) is PQD if for all (t1, t2) ∈ <2

Pr(T1 ≤ t1, T2 ≤ t2) ≥ Pr(T1 ≤ t1)Pr(T2 ≤ t2) (1.24)

or equivalently,
Pr(T1 ≥ t1, T2 ≥ t2) ≥ Pr(T1 ≥ t1)Pr(T2 ≥ t2)

or
Pr(Ti ≥ ti, Tj ≤ tj) ≤ Pr(Ti ≥ ti)Pr(Tj ≤ tj)

for i 6= j and i, j = 1, 2.

(T1, T2) is negative quadrant dependent (NQD) if (1.24) is satisfied for all (t1, t2)
when the inequality is reversed. Lehmann (1966) showed that if (T1, T2) is PQD, then
Cov(T1, T2) ≥ 0 if it exists and Kendall’s tau and Spearman’s rho are nonnegative.

Total positivity of order 2 (TP2) and reverse rule of order 2 (RR2)

A bivariate probability density function f is total positivity of order 2 (TP2) (or, positively
likelihood ratio dependent) if

f(t1i, t2i)f(t1j, t2j) ≥ f(t1i, t2j)f(t1j, t2i) (1.25)

for all t1i < t1j, t2i < t2j and i, j = 1, ..., n. If f is TP2 then the distribution function F
and the survivor function S are also TP2. F or S is TP2 if (1.25) is satisfied when f is
replaced by F or S, respectively. Being F or S TP2 implies F is PQD. Hence, f, F or S
being TP2 is a positive dependence condition.

f is reverse rule of order 2 (RR2) (or, negatively likelihood ratio dependent) if the
inequality in (1.25) is reversed. This is a negative dependence condition.
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Tail dependence

Tail dependence measures the dependence between the continuous random variables T1 and
T2 with distribution functions F1 and F2, respectively, in the lower- and upper-quadrant
tail. Hence the lower- and upper-tail dependence are defined in Nelsen (2006) as in the
following:

The lower tail dependence parameter λL is the limit (if it exists) of the conditional
probability that T2 is less than or equal to the 100pth percentile of F2 given that T1 is less
than or equal to the 100pth percentile of F1 as p approaches to 0, i.e.

lim
p→0+

Pr(T2 ≤ F−1
2 (p)|T1 ≤ F−1

1 (p)) = λL

and the upper tail dependence parameter λU is the limit (if it exists) of the conditional
probability that T2 is greater than the 100pth percentile of F2 given that T1 is greater than
the 100pth percentile of F1 as p approaches to 1, i.e.

lim
p→1−

Pr(T2 > F−1
2 (p)|T1 > F−1

1 (p)) = λU .

Since copulas are invariant under strictly increasing transformations of the margins,
the tail dependences can also be formalized as in Joe (1997, Section 2.1):

If a bivariate copula C is such that

lim
p→0+

Pr(U2 ≤ p|U1 ≤ p) = lim
p→0+

C(p, p)

p
= λL

exists, then C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence if
λL = 0 and if

lim
p→1−

Pr(U2 > p|U1 > p) = lim
p→1−

1− 2p+ C(p, p)

1− p
= λU

exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence if
λU = 0.

Georges et al. (2001) showed that the lower tail dependence of the survival copula is
equal to the upper tail dependence of the associated copula and the upper tail dependence
of the survival copula is identical to the lower tail dependence of the associated copula.

Local dependence

Clayton (1978) introduced a cross-ratio function that is the ratio of the hazard rate of the
conditional distribution of T1 given T2 = t2 given in (1.4), to that of T1 given T2 ≥ t2 given
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in (1.5), that is

θ∗(t1, t2) =
λ12(t1|t2)
λ′12(t1|t2)

=
S(t1, t2)

∂2S(t1,t2)
∂t1∂t2

∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

. (1.26)

1.3 Copula Models

Copula models have some attractive properties such that (1) the marginal distributions can
come from different families; (2) the dependence structure can be investigated separately
from the marginal effects since the measures of association do not appear in the marginal
distributions; (3) copulas are invariant under strictly increasing transformations of the
margins. That is, for G1 and G2 monotonic functions, W1 = G1(T1) and W2 = G2(T2)
have the same copula as T1 and T2. In this section some important parametric families of
bivariate copulas are introduced and their properties are given.

The three most important radially symmetric copulas, i.e. C̄ = C, are the independent
copula C⊥(u1, u2) = u1u2, the upper Fréchet copula C+(u1, u2) = min(u1, u2) and the
lower Fréchet copula C−(u1, u2) = max(0, u1 + u2 − 1). Fréchet (1951) indicated that any
copula C satisfies the Fréchet-Hoeffding bounds inequality that is C−(u1, u2) ≤ C(u1, u2) ≤
C+(u1, u2).

1.3.1 One-Parameter Copula Models

Some well-known bivariate copula classes and their important properties are listed below:

Archimedean copulas

Copulas are called Archimedean when they are of the form

C(u1, u2) = ϕ−1[ϕ(u1) + ϕ(u2)] (1.27)

where ϕ is a decreasing convex function on (0,1] satisfying ϕ(1) = 0. The most impor-
tant characteristic of bivariate Archimedean copulas is that all the information about the
2-dimensional dependence structure is contained in a univariate generator, ϕ. Some fun-
damental properties of Archimedean copulas are given in Genest and MacKay (1986), Joe
(1997, Section 4.2) and Nelsen (2006, Section 4.3). Archimedean copulas contain the bivari-
ate frailty models when ϕ−1 is the Laplace transform of the underlying frailty distribution
(Oakes, 1989).

Some frequently used one-parameter Archimedean families are as follows:
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i) Clayton family (Clayton, 1978) has the form

Cφ(u1, u2) = (u−φ
1 + u−φ

2 − 1)−1/φ, φ > 0. (1.28)

Its generator function is
ϕφ(t) = t−φ − 1 (1.29)

and since ϕ−1
φ (v) = (v+1)−1/φ is the Laplace trasform of a gamma distribution with index

1/φ, bivariate gamma shared frailty model leads to the Clayton survivor copula model.

The Kendall’s tau is

τφ =
φ

φ+ 2
. (1.30)

U1 and U2 are positively associated when φ > 0 and the dependence increases as the value
of the parameter φ increases. The independent copula is obtained when φ → 0 and the
Fréchet upper bound is obtained as φ → ∞. The lower tail dependence parameter is
λL = 2−1/φ and it has no upper tail dependence.

ii) Gumbel-Hougaard family (Gumbel, 1960) has the form

Cθ(u1, u2) = exp
(
−

[
(− log u1)

θ + (− log u2)
θ
]1/θ

)
, θ > 1. (1.31)

Its generator function is
ϕθ(t) = (− log t)θ (1.32)

and since ϕ−1
θ (v) = exp(−v1/θ) is the Laplace transform of a positive stable distribution,

positive stable shared frailty model leads to the Gumbel-Hougaard survivor copula model.

The Kendall’s tau is

τθ =
θ − 1

θ
. (1.33)

The dependence increases as the value of the parameter θ increases. The independent
copula is obtained as θ → 1 and the Fréchet upper bound is obtained as θ → ∞. The
upper tail dependence parameter is λU = 2− 21/θ and it has no lower tail dependence.

Gumbel-Hougaard copulas are the only Archimedean extreme value copulas, which are
defined below (Genest and Rivest, 1989).

iii) Frank family (Frank, 1979) has the form

Cν(u1, u2) = −1

ν
log

[
1− (1− e−νu1)(1− e−νu2)

1− e−ν

]
, ν ∈ (−∞, 0) ∪ (0,∞). (1.34)

Its generator function is

ϕν(t) = − log

[
1− e−νt

1− e−ν

]
(1.35)
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and the Kendall’s tau is

τν = 1 + 4
D1(ν)− 1

ν
(1.36)

where D1 is the first Debye function, D1(ν) =
∫ ν

0
t

ν(et−1)
dt.

U1 and U2 are positively associated when ν > 0 and negatively associated when ν < 0.
The independent copula is obtained as ν → 0, the Fréchet upper bound is obtained as
ν → ∞ and the Fréchet lower bound is obtained as ν → −∞. It has no lower and upper
tail dependence.

Frank copulas are the only Archimedean copulas that satisfy radial symmetry (Frank,
1979).

Extreme-value copulas

Bivariate extreme-value copulas have the form

C(u1, u2) = exp

[
log(u1u2)A

(
log u1

log(u1u2)

)]
(1.37)

where A is a convex dependence function on [0, 1] satisfying max(t, 1 − t) ≤ A(t) ≤ 1 for
all t ∈ [0, 1].

The Kendall’s tau is (Ghoudi et al., 1998)

τA =

∫ 1

0

t(1− t)

A(t)
dA′(t). (1.38)

Some common one-parameter extreme-value copulas are given below:

i) Gumbel-Hougaard family which is an Archimedean copula.

ii) Galambos family which has the form

Cφ(u1, u2) = u1u2 exp[
(
(− log u1)

−φ + (− log u2)
−φ

)−1/φ
], φ ≥ 0. (1.39)

The dependence function is Aφ(t) = 1 − [t−φ + (1 − t)−φ]−1/φ. The dependence increases
as the value of the parameter φ increases. The independent copula is obtained as φ → 0
and the Fréchet upper bound is obtained as φ→∞.

1.3.2 Two or More-Parameter Copula Models

Two or more-parameter copula families provide flexibility for fitting data since they can
capture more than one type of dependence. When such a family includes some of the
well-known one-parameter copula families such as Clayton, Frank and Gumbel-Hougaard,
testing of those models can easily be performed. We provide a pair of examples, and
introduce some other models later.
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Archimedean copulas

A bivariate two-parameter family of the form of an Archimedean copula is

Cφ,θ(u1, u2) =

{[
(u−φ

1 − 1)θ + (u−φ
2 − 1)θ

]1/θ

+ 1

}−1/φ

, (1.40)

φ > 0 and θ ≥ 1. This family includes the Clayton in (1.28) and Gumbel-Hougaard families
in (1.31) as special cases. In particular, (1.40) reduces to the Clayton family when θ = 1
and the Gumbel-Hougaard family as φ→ 0. The generator function is

ψφ,θ(t) = (t−φ − 1)θ (1.41)

and the Kendall’s tau is

τφ,θ = 1− 2

θ(φ+ 2)
. (1.42)

The dependence increases as the parameters θ and φ increase. The independent copula
u1u2 is obtained as φ→ 0 and θ → 1 and the Fréchet upper bound min(u1, u2) is obtained
as φ → ∞ or θ → ∞. Detailed properties of this family are given in Joe (1997, Section
5.2).

Fréchet copulas

Bivariate Fréchet copulas are constructed as a mixture of the independent copula and
Fréchet-Hoeffding upper and lower bounds such that

Cφ,θ(u1, u2) = (1− θ − φ)u1u2 + θmin(u1, u2) + φmax(u1 + u2 − 1, 0), (1.43)

θ, φ ∈ [0, 1] and θ + φ ≤ 1. This is a two-parameter reflection symmetric copula family
introduced by Fréchet (1958) and a one-parameter version of Fréchet copulas is obtained
when φ = 0. Furthermore, it is clear that when θ = 0 and φ = 0, we get the independent
copula; when θ = 1 and φ = 0, the upper Fréchet copula; and when θ = 0 and φ = 1, the
lower Fréchet copula is obtained.

The Kendall’s tau is given as

τφ,θ =
(θ − φ)(θ + φ+ 2)

3
. (1.44)
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1.4 Review of Estimation Methods for Copula Models

1.4.1 Estimation with Parallel Clustered Lifetime Data

There are three approaches to specifying and estimating a copula model: fully parametric,
semiparametric and fully nonparametric approaches. Fully parametric estimation can be
based on one-stage and two-stage procedures, and we consider it first. Suppose the para-
metric marginal survival functions of T1 and T2 are S1(t1; β1) and S2(t2; β2), respectively
and the parametric bivariate survival function of (T1, T2) is S(t1, t2) = Cα(S1(t1), S2(t2)).
Sometimes the marginal distributions are constrained to be the same but for the exposition
below we assume that β1 and β2 are distinct.

To start, covariates are assumed not to be present. In one-stage estimation, when
analyzing parallel right-censored lifetime data, the maximum likelihood estimates of the
unknown parameters of the marginal distributions, β1, β2 and the copula model, α are
obtained simultaneously by maximizing the likelihood function L(β1, β2, α) in (1.6). If
`(β1, β2, α) denotes the natural logarithm of L(β1, β2, α), the score equations

Uβi
(β1, β2, α) =

∂`(β1, β2, α)

∂βi

= 0, i = 1, 2 (1.45)

and

Uα(β1, β2, α) =
∂`(β1, β2, α)

∂α
= 0 (1.46)

are solved simultaneously to get the maximum likelihood estimates θ̂ = (β̂t
1, β̂

t
2, α̂

t)t of
θ = (βt

1, β
t
2, α

t)t. Under regularity conditions and assuming that the model is correct,
(β̂1, β̂2, α̂) are consistent estimators of the true values (β1, β2, α) and

√
n

β̂1

β̂2

α̂

−

β1

β2

α

 −→d MVN(0, J−1(β1, β2, α)) (1.47)

where

J(β1, β2, α) =

Jβ1β1 Jβ1β2 Jβ1α

Jβ2β1 Jβ2β2 Jβ2α

Jαβ1 Jαβ2 Jαα

 = E

[
− 1

n

∂2`(θ)

∂θ∂θt

]
is the Fisher information matrix and it depends on censoring process, covariate distribution
and θ = (βt

1, β
t
2, α

t)t.

In the two-stage estimation procedure, in the first stage the parametric marginal sur-
vival functions are estimated assuming T1 and T2 are independent and in the second stage
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the dependence parameter of the copula model is estimated. That is, T1 and T2 are as-
sumed to be independent and β1, β2 are estimated by maximizing the pseudolikelihood
function

L∗(β1, β2) =
n∏

i=1

f1(t1i; β1)
δ1iS1(t1i; β1)

1−δ1if2(t2i; β2)
δ2iS2(t2i; β2)

1−δ2i . (1.48)

If `∗(β1, β2) denotes the natural logarithm of L∗(β1, β2), the score equations

U∗
βi

(β1, β2) =
∂`∗(β1, β2)

∂βi

= 0, i = 1, 2 (1.49)

are solved to get the pseudo-maximum likelihood estimates (β̃1, β̃2) of (β1, β2) under the
independence assumption of T1 and T2. Next, the estimate of the dependence parameter α
is found by maximizing the likelihood function L(β̃1, β̃2, α) that is the likelihood function in
(1.6) where β1, β2 are replaced by β̃1, β̃2. If the natural logarithm of L(β̃1, β̃2, α) is denoted
by `(β̃1, β̃2, α), then the pseudoscore equation

Uα(β̃1, β̃2, α) =
∂`(β̃1, β̃2, α)

∂α
= 0 (1.50)

is solved to get the estimate of α. Let α̃ be the solution.

Hence the estimating equation  U∗
β1

(β1, β2)
U∗

β2
(β1, β2)

Uα(β1, β2, α)

 = 0

is solved to get the estimates (β̃1, β̃2, α̃) of (β1, β2, α). By following the results on estimating
equations given in Appendix A, under regularity conditions and the correctness of the
model, we conclude that

√
n

β̃1

β̃2

α̃

−

β1

β2

α

 −→d MVN(0,Σ) (1.51)

where 0 is a zero vector, Σ = A(β1, β2, α)−1B(β1, β2, α)(A(β1, β2, α)−1)t, where

A(β1, β2, α) =

 J∗β1β1
(β1, β2) 0 0
0 J∗β2β2

(β1, β2) 0
Jαβ1(β1, β2, α) Jαβ2(β1, β2, α) Jαα(β1, β2, α)

 ,
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B(β1, β2, α) =

J∗β1β1
(β1, β2) J∗β1β2

(β1, β2) 0
J∗β2β1

(β1, β2) J∗β2β2
(β1, β2) 0

0 0 Jαα(β1, β2, α)

 ,

J∗(β1, β2) =

(
J∗β1β1

J∗β1β2

J∗β2β1
J∗β2β2

)
= E

[
− 1

n

∂2`∗(β)

∂β∂βt

]
which depends on censoring process, covariate distribution and β = (βt

1, β
t
2)

t.

The details of the above derivations are given in Shih and Louis (1995). Joe (2005)
showed that as the underlying copula model approaches the independent copula C⊥, the
covariance matrix for the estimators obtained through two-stage parametric estimation
approaches the covariance matrix for the maximum likelihood estimators. Except when T1

and T2 are independent, the two-stage estimators β̃1 and β̃2 are asymptotically less efficient
then the one-stage maximum likelihood estimators.

Some authors such as Clayton (1978), Oakes (1982, 1986), Clayton and Cuzick (1985),
Hougaard (1989) and Oakes (1994) have used semiparametric two-stage estimation proce-
dures. Genest et al. (1995), Shih and Louis (1995) and Wang and Ding (2000) investigated
the asymptotic distribution of the pseudo-maximum likelihood estimator α̃, defined below,
under uncensored, right-censored and current status data, respectively.

In the case with no covariates and a parametric copula function Cα(u1, u2), the marginal
survivor functions are estimated by a nonparametric method in the first stage, giving the
nonparametric estimates Ŝ1 and Ŝ2 of S1 and S2, respectively. Under no censoring, Genest
et al. (1995) estimated the marginal survivor functions by the empirical survivor functions
and under censoring, Shih and Louis (1995) used Kaplan-Meier estimators of the marginal
survivor functions. When the data may be censored, in the second stage the dependence
parameter α of the copula model is estimated by maximizing the pseudolikelihood function

Ls(α) =
n∏

i=1

cα(Ŝ1(t1i), Ŝ2(t2i))
δ1iδ2i

[
−∂Cα(Ŝ1(t1i), Ŝ2(t2i))

∂Ŝ1(t1i)

]δ1i(1−δ2i)

(1.52)

×

[
−∂Cα(Ŝ1(t1i), Ŝ2(t2i))

∂Ŝ2(t2i)

](1−δ1i)δ2i

Cα(Ŝ1(t1i), Ŝ2(t2i))
(1−δ1i)(1−δ2i)

where cα(u1, u2) = ∂2Cα(u1,u2)
∂u1∂u2

is the copula density function, so that cα(S1(t1), S2(t2)) =
∂2Cα(S1(t1),S2(t2))

∂S1(t1)∂S2(t2)
. Note that (1.52) is equivalent to (1.6) with the marginal distributions fixed

at their nonparametric estimates. Hence the semiparametric estimate α̃ of α is obtained
by solving the estimating equation

Us(α) =
∂`s(α)

∂α
= 0 (1.53)
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where `s(α) = logLs(α). Shih and Louis (1995) showed that
√
n(α̃ − α) converges in

distribution to normal with mean zero and a specified variance under some regularity
conditions.

Nonparametric copula estimation has also been considered under no censoring; Rüschen-
dorf (1976) and Deheuvels (1979) introduced the empirical copula as

Cn

(
j

n
,
k

n

)
=

1

n

n∑
i=1

I[t1i ≤ t1(j), t2i ≤ t2(k)] (1.54)

where t1(1) ≤ ... ≤ t1(n) and t2(1) ≤ ... ≤ t2(n) are ordered observations of {(T1i, T2i), i =
1, ..., n}. The empirical copula frequency is cn

(
j
n
, k

n

)
= 1

n
if (t1(j), t2(k)) ∈ {(t1i, t2i), i =

1, ..., n}, and 0 otherwise. Gijbels and Mielniczuk (1990) and Chen and Huang (2007)
proposed kernel estimators of the copula. Chen and Huang (2007) form their nonparamet-
ric copula estimator in two stages. First, kernel estimators of the marginal distribution
functions F1(t1) and F2(t2) are found. In the second stage, a kernel copula estimator is
obtained based on local linear kernels and a simple mathematical correction that removes
the boundary bias. These are not of direct use in this thesis, since we consider censored
data.

Under the assumption that the true model is in the class of Archimedean copula models,
Genest and Rivest (1993) proposed a nonparametric method for estimating the dependence
function C in (1.27) based on uncensored data and Wang and Wells (2000a) suggested a
nonparametric estimation procedure for censored data. These methods are summarized in
Section 1.5.

Nonparametric estimators of a bivariate survival function based on censored data have
been proposed by many authors. Kalbfleisch and Prentice (2002, Section 10.3) survey this
area, but see also Campbell (1981), Campbell and Földes (1982), Tsai et al. (1986), Burke
(1988), Dabrowska (1988), Pruitt (1990, 1991), Lin and Ying (1993), Prentice and Cai
(1992), van der Laan (1996), Wang and Wells (1997), Prentice et al. (2004). Note that in
this case, no use of copula models is made.

If there are covariates x, the marginal distributions can be in the form of accelerated
failure time, proportional hazards or other regression models. In this case there is no change
in fully parametric estimation other than the form of the marginal survival functions.
However, if the proportional hazard margins are specified semiparametrically as in the
Cox model, then there is so far no complete asymptotic theory for the semiparametric
estimation of copula models. He and Lawless (2003) considered instead flexible parametric
specifications, e.g. piecewise-constant or spline function specifications, of baseline hazard
functions and used one-stage maximum likelihood estimation to fit copula models.
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1.4.2 Estimation with Sequential Lifetime Data

Fully parametric estimation for bivariate copula models can be performed by one-stage
maximum likelihood estimation in which the likelihood function given in (1.7) is used.
Standard two-stage estimation is generally not valid, however, because the pseudolikelihood
method in the second stage is not valid when the censoring time for T2 is not independent
of T2.

The semiparametric estimation procedure for copula models described in Shih and Louis
(1995) similarly cannot be used for sequential data because the marginal distribution of
T2 cannot be estimated by the Kaplan-Meier method. He and Lawless (2003) handled
the problems in sequential lifetime data by fitting parametric copula models in which the
marginal distributions for each of T1 and T2 have weakly parametric spline or piecewise-
constant forms. One-stage maximum likelihood estimation with the likelihood in (1.7) was
used to fit the models.

The nonparametric estimation methods for parallel bivariate data also cannot be ap-
plied directly for sequential data because they assume censoring times for T1, T2 are in-
dependent of (T1, T2), whereas this is not true in this situation for T2. Nonparametric
estimation of marginal survivor functions for T2 were discussed by Visser (1996), Wang
and Wells (1998), Wang and Chang (1999), Lin et al. (1999), Van der Laan et al. (2002)
and Schaubel and Cai (2004a, 2004b). We describe the approaches of Lin et al. and
Schaubel and Cai.

If T1 is censored then T2 is not seen. This creates limitations on nonparametric esti-
mation. It is essential in practice to restrict attention to (t1, t2) with t1 + t2 ∈ [0, Q] where
Q < Cmax is a designated value and Cmax = max(C1, ..., Cn) is the maximum followup
time across all subjects. As far as T2 is concerned, this implies that we can only esti-
mate Pr(T2 ≤ t2|T1 ≤ t1) for similarly restricted (t1, t2) values. That is, we can estimate
Pr(T2 ≤ t2|T1 ≤ t1) for 0 ≤ t2 ≤ Cmax− t1. Lin et al. (1999) and Schaubel and Cai (2004a)
provide nonparametric estimation of Pr(T2 ≤ t2|T1 ≤ t1).

Lin et al. (1999) found an unbiased estimator of the bivariate semi-survival function
H(t1, t2) = Pr(T1 ≤ t1, T2 > t2) that is given by

H̃(t1, t2) =
1

n

n∑
i=1

I[T1i ≤ t1, T2i > t2, Ci > T1i + t2]

G(T1i + t2)
(1.55)

for values (t1, t2) satisfying t1+t2 ≤ Cmax where G(c) = Pr(Ci > c) is the survivor function
of the censoring times Ci. Since G is usually unknown, it is estimated by a Kaplan-Meier
estimator G̃ based on the data {(t1i, 1− δ1i), i = 1, ..., n} or {(min(T1i+T2i, Ci), 1−δ2i), i =
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1, ..., n}. Note that an estimator of the marginal distribution of T1 is obtained as

F̃1(t1) = H̃(t1, 0) =
1

n

n∑
i=1

δ1iI[t1i ≤ t1]

G̃(t1i)
, (1.56)

although this is not necessary because F1(t1) can be estimated directly by Kaplan-Meier.
In fact, 1− F̃1(t1) is equal to the Kaplan-Meier estimate of S1(t1) if G̃ is the Kaplan-Meier
estimator of G calculated from {(t1i, 1− δ1i), i = 1, ..., n}. If T1 has finite support (0, τ1)
with τ1 < Cmax, F2(t2) or S2(t2) is estimable for t2 satisfying Cmax > τ1 + t2. The estimate
of S2(t2) is

H̃(∞, t2) =
1

n

n∑
i=1

I[T2i > t2, Ci > T1i + t2]

G̃(t1i + t2)
(1.57)

if Pr(T1 > Cmax− t2, T2 > t2) = 0. Otherwise, (1.57) is an estimator of H(Cmax− t2, t2) =
Pr(T1 ≤ Cmax − t2, T2 > t2). In general, the conditional probability Pr(T2 > t2|T1 ≤ t1)
can be estimated as

P̃ r(T2 > t2|T1 ≤ t1) =
H̃(t1, t2)

H̃(t1, 0)
(1.58)

for (t1, t2) satisfying t1 + t2 < Cmax. Since this estimate may not be strictly monotonic in
t2 especially for small sample sizes, Lin et al. (1999) provided a monotonic estimate, that
is

P̃ r(T2 > t2|T1 ≤ t1) =
mins≤t2 H̃(t1, s)

H̃(t1, 0)
. (1.59)

They also provided asymptotic properties of these nonparametric estimates.

Schaubel and Cai (2004a) proposed an estimator of the conditional probability Pr(T2 >
t2|T1 ≤ t1) based on an adjusted version of the Nelson-Aalen cumulative hazard estimator.
Similar to Lin et al. (1999), they used the inverse weighting technique when obtaining their
estimator, which is given by

P̃ r(T2 > t2|T1 ≤ t1) = exp(−Λ̃∗21(t2|t1)) (1.60)

where

Λ̃∗21(t2|t1) =
1

n

n∑
i=1

I[t1i ≤ t1, t2i ≤ t2, δ2i = 1]/G̃(t2i + t1i)

1
n

∑n
l=1

{
I[t1l ≤ t1, t2l ≥ t2i, δ1i = 1]/G̃(t2i + t1l)

}
for (t1, t2) satisfying t1 + t2 ≤ Cmax. G, the survivor function of the censoring times Ci, is
estimated by its Kaplan-Meier estimator G̃ based on the data {(min(T1i +T2i, Ci), 1− δ2i),
i = 1, ..., n}. They provided asymptotic properties of the estimator (1.60). In addition,
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they estimate the survivor function of T1 by using the Nelson-Aalen cumulative hazard
estimator,

Λ̃1(t1) =
1

n

n∑
i=1

I[t1i ≤ t1, δ1i = 1]
1
n

∑n
l=1 I[t1l ≥ t1i]

, (1.61)

giving, S̃1(t1) = exp(−Λ̃1(t1)) for t1 ≤ Cmax. Alternatively, a Kaplan-Meier estimate could
be used.

1.5 Review of Copula Model Selection and Goodness

of Fit

In this section we consider methods for assessing the adequacy of a copula specification
Cα(u1, u2). To do this we try to avoid parametric assumptions for F1 and F2. We review
here the main methods proposed for assessing the fit of a copula in this framework. We
will see that, aside from the special case of the Clayton copula, very few methods deal with
censored bivariate lifetime data. First, we consider Archimedean copulas.

1.5.1 Archimedean Copulas

Oakes (1989) showed that for Archimedean copulas (1.27) the conditional hazard ratio
θ∗(t1, t2) in (1.26) depends on (t1, t2) only through S(t1, t2) such that

θ∗(t1, t2) = θ(S(t1, t2)) (1.62)

where θ(v) = −vϕ
′′
α(v)

ϕ′α(v)
, 0 < v < 1. For example, the Clayton family in (1.28) has θ(v) =

φ+ 1, a constant, and the Gumbel-Hougaard family in (1.31) has θ(v) = 1 + θ−1
− log v

which

is a monotone increasing function of v ∈ (0, 1).

The function ϕ−1
α (u) is uniquely determined up to a scale change in u by θ(v) since

ϕα(v) =

∫ 1

v

exp

[∫ 1−κ

z

θ(y)

y
dy

]
dz (1.63)

for some constant κ > 0 and any bivariate survival distribution satisfying (1.62) is Archime-
dean. Furthermore, Oakes (1989) showed that a conditional version of Kendall’s tau

τ(t1, t2) = Pr((T1i − T1j)(T2i − T2j) > 0|min(T1i, T1j) = t1,min(T2i, T2j) = t2) (1.64)

− Pr((T1i − T1j)(T2i − T2j) < 0|min(T1i, T1j) = t1,min(T2i, T2j) = t2)
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is a function of θ(S(t1, t2)) such that

τ(t1, t2) =
θ(S(t1, t2))− 1

θ(S(t1, t2)) + 1
(1.65)

where

θ(S(t1, t2)) =
Pr((T1i − T1j)(T2i − T2j) > 0|min(T1i, T1j) = t1,min(T2i, T2j) = t2)

Pr((T1i − T1j)(T2i − T2j) < 0|min(T1i, T1j) = t1,min(T2i, T2j) = t2)
. (1.66)

Since the bivariate survivor function is unknown, Oakes (1989) conditioned on the size
Rij of the corresponding bivariate risk set {k : T1k ≥ min(T1i, T1j), T2k ≥ min(T2i, T2j)} in
(1.66) and obtained

γ(r) =
Pr((T1i − T1j)(T2i − T2j) > 0|Rij = r)

Pr((T1i − T1j)(T2i − T2j) < 0|Rij = r)
(1.67)

for r = 2, ..., n. According to Oakes, (1.67) is close to (1.66). Hence, he proposed a
graphical Archimedean copula selection procedure by plotting −1/ log(r/n) versus γ(r)
which is obtained by inserting the estimate of the unknown parameter found based on
Kendall’s tau.

Several authors have proposed tests for the Clayton copula model. Shih (1998) proposed
a goodness of fit test procedure based on its constant conditional hazard ratio property.
The test compares unweighted and weighted concordance estimators of the association
parameter θ = φ+1 for the model in (1.28) and if (1.28) is true, these estimators converge
to the true value of φ and their difference should be close to zero. When there is no
censoring, the unweighted concordance estimator given in Oakes (1982) is

θ̂ =

∑
i<j ∆ij

(n
2 )−

∑
i<j ∆ij

(1.68)

where ∆ij is 1 if (T1i, T2i) and (T1j, T2j) are concordant and 0 if (T1i, T2i) and (T1j, T2j)

are discordant. The asymptotic variance of γ̂ = log θ̂ is V (η)/n (Oakes, 1982 and Gen-

est et al., 2006b) with η = 1
θ−1

where V (η) = 8(2η+1)4

(η+1)2
1

4η2hypergeom([1, 1, η], [2η + 1, 2η +

1], 1) − 4(2η+1)2(17η3+27η2+14η+2)
3η2(η+1)2(3η+1)

and hypergeom(.) is the generalized hypergeometric func-

tion. Oakes (1986) found the weighted concordance estimator of θ as

θ̂w =

∑
i<j ∆ij/Rij∑

i<j(1−∆ij)/Rij

. (1.69)

The weights 1/Rij assign high weights to the late failures and low weights to the early

failures. The asymptotic variance of γ̂w = log θ̂w is Vw(η)/n (Oakes, 1986) where Vw(η) =
2η2 + 6η + 5− (η + 1)4

[
ψ′

(
1
2

+ η
2

)
− ψ′

(
1 + η

2

)]
and ψ′(.) is the trigamma function.
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Shih (1998) showed that under the Clayton model (γ̂w − γ̂) →p 0 and
√
n(γ̂w − γ̂) →d

N(0,W (η)) where W (η) = V (η) + Vw(η) − 2H(η) and Genest et al. (2006b) found the

correct expression of H(η) as −8η3+19η2+15η+3
η2 +4(η+1)(2η+1)2

∑∞
k=0

k!Γ(2η)
(η+k)(2η+k+1)

. When
the alternative model’s conditional hazard ratio is monotone and the association is strong,
Shih (1998) claims that the test is powerful.

Under censoring, Shih (1998) introduced the unweighted concordance estimator as

θ̂ =

∑
i<j ∆ijZij∑

i<j(1−∆ij)Zij

(1.70)

and the weighted concordance estimator as

θ̂w =

∑
i<j ∆ijZij/R̃ij∑

i<j(1−∆ij)Zij/R̃ij

(1.71)

where Zij = I[min(T1i, T1j) ≤ C1i, C1j; min(T2i, T2j) ≤ C2i, C2j], R̃ij is the size of the
set {k : t1k ≥ min(T1i, T1j), t2k ≥ min(T2i, T2j)} and (C1i, C2i) (i = 1, ..., n) denote the
independent and identically distributed bivariate censoring variables. In this case

√
n(γ̂w−

γ̂) is asymptotically normally distributed with mean 0 and variance W̃ (n) that can be

estimated through Ŵ =
∑

i6=j 6=k ZijZikN̂ijN̂ik

[
1

R̃ij d̂
− 2(θ̂w+1)

nθ̂w d̂∗

] [
1

R̃ikd̂
− 2(θ̂w+1)

nθ̂w d̂∗

]
where N̂ij =

∆ij(1+ θ̂w)− θ̂w, d̂ is the proportion of double failures and d̂∗ =
∑

i<j Zij/ (n
2 ). We consider

this approach in simulations later in the thesis and it is observed that her asymptotic
variance formula sometimes gives negative estimates Ŵ when there is censoring.

Under the assumption that a copula is Archimedean, Genest and Rivest (1993) noted
that the problem of identifying the copula is one-dimensional. They also noted that the
generator function ϕ in

S(t1, t2) = Cα(S1(t1), S2(t2)) = ϕ−1
α (ϕα(S1(t1)) + ϕα(S2(t2))) (1.72)

is uniquely determined by the function

K(v;α) = Pr(S(T1, T2) ≤ v) = v − ϕα(v)

ϕ′α(v)
, 0 < v ≤ 1. (1.73)

Indeed ϕα is determined by solving the differential equation

λ(v;α) = v −K(v;α) =
∂v

∂ logϕα(v)
(1.74)

which yields

ϕα(v) = exp

∫ v

v0

1

λ(t;α)
dt (1.75)
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where 0 < v0 < 1 is an arbitrary constant. To get an estimate of ϕα, Genest and Rivest
first constructed a nonparametric estimator Kn of K for uncensored data based on a
decomposition of Kendall’s tau statistic. Define

Vi =
1

n− 1

n∑
j=1

I[T1i < T1j , T2i < T2j] (1.76)

for 1 ≤ i ≤ n. A nonparametric estimator of K(v;α) is then

Kn(v) =
n∑

i=1

δ(v − Vi)/n (1.77)

where δ(.) denotes the distribution function of a point mass at the origin. Then, by (1.74)
a nonparametric estimator of λ(v, α) can be found as λn(v) = v − Kn(v) for 0 < v < 1
and by using equation (1.75), ϕα(v) can be estimated. It is shown in Genest and Rivest
(1993) that Kn(v) is a consistent estimator of K(v;α) and the asymptotic variance of√
n(Kn(v)−K(v;α)) is approximated by

K(v;α)(1−K(v;α)) + k(v;α)[k(v;α)R(v)− 2v(1−K(v;α))] (1.78)

where k(v;α) = ∂K(v;α)
∂v

and R(v) = 2
∫ 1

0
(1− t)ϕ−1

α [(1 + t)ϕα(v)]dt− v2.

They proposed a graphical Archimedean copula model selection procedure by plotting
and comparing the nonparametric estimate λn(v) of λ(v;α) with λ(v, α̂) for models under
consideration, where α̂ is the value for which the theoretical value of Kendall’s tau is equal
to

τn = 4V̄ − 1 (1.79)

where V̄ = 1
n

∑n
i=1 Vi. This method of moments estimation is based on the relationship

τα = 4E[V ]− 1 = 4

∫ 1

0

λ(t;α)dt+ 1. (1.80)

For two or more-parameter copula families, it is necessary to equate as many as the first
few moments of the pseudosample V1, ..., Vn to the corresponding theoretical expressions
to find the estimates of the dependence parameters. As proved in Genest and Rivest
(1993),

√
n(τn − τ)/4S →D N(0, 1) where S2 =

∑n
i=1(Vi + Wi − 2V̄ )2/(n − 1) and Wi =

1
n−1

∑n
j=1 I[T1j < T1i , T2j < T2i]. Hence, for the one-parameter copula families, the

standard error of the estimate α̂ can be approximated by applying the delta method to the
asymptotic variance of τn.

If there is censoring, then this method is not applicable. For bivariate censored data,
Wang and Wells (2000a) introduced a method to estimate K(v;α) in (1.73) rewritten as

K(v;α) = E[I[S(T1, T2) ≤ v]] =

∫ ∞

0

∫ ∞

0

I[S(T1, T2) ≤ v]S(dt1, dt2). (1.81)
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By plugging in a nonparametric estimator Ŝ of S(t1, t2) which takes censoring into account,
we get a nonparametric estimator of K(v;α) as

K̂(v) =
n∑

i=1

n∑
j=1

I[Ŝ(t1(i), t2(j)) ≤ v]Ŝ(∆t1(i),∆t2(j)) (1.82)

where t1(1) ≤ ... ≤ t1(n) and t2(1) ≤ ... ≤ t2(n) are ordered observations of {(t1i, t2i), i =

1, ..., n} and Ŝ(∆t1(i),∆t2(j)) = Ŝ(t1(i), t2(j)) − Ŝ(t1(i−1), t2(j)) − Ŝ(t1(i), t2(j−1)) + Ŝ(t1(i−1),

t2(j−1)). Ŝ can be one of the nonparametric estimators referred to in Section 1.4.1 or 1.4.2
according to the assumption that (T1, T2) are independent of (C1, C2) or not.

Due to the fact that S(t1, t2) cannot capture mass outside the support of (t1, t2), equiv-
alently, K(v;α) = 1− Pr(S(T1, T2) > v) can be estimated as follows:

K̃(v) = 1−
n∑

i=1

n∑
j=1

I[Ŝ(t1(i), t2(j)) > v]Ŝ(∆t1(i),∆t2(j)). (1.83)

The asymptotic behavior of K̃ depends on that of Ŝ and a bootstrap method is applied
to find an asymptotic variance estimate for K̃. After smoothing K̃(v), we can estimate ϕα

by using the equation in (1.75). Since the estimate of ϕα does not have a tractable form
in general, it is more convenient to choose an Archimedean copula model which is closest
to the empirical one under a previously defined metric. Hence, Wang and Wells (2000a)
proposed a goodness of fit statistic

Sξn =

∫ 1

ξ

[K̃(v)−K(v;α)]2dv, ξ > 0 (1.84)

and select the model having the minimum Sξn compared to the other Archimedean copula
models under consideration. Here, since α inK(v;α) is unknown, it is suggested to estimate
it by using the relationship in (1.80) as described in Genest and Rivest (1993). However,
for censored data, it is not generally convenient to use the proposed estimators of τα such
as in (1.79). An alternative way proposed by Wang and Wells is estimating α by

α̃ = argminα

∫
[K̃(v)−K(v, α)]2dv. (1.85)

Now, since the asymptotic behavior of α̃ depends on that of K̃, the bootstrap method is
again applied to obtain an asymptotic variance estimate for α̃. Similarly, the asymptotic
behavior of Sξn depends on that of K̃ and the estimate of α. The bootstrap method
explained in Genest et al. (2006a, 2008) can be used to estimate the variance of Sξn for
uncensored data.
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Equivalently, the graphical model selection procedure described by Genest and Rivest
(1993) can be applied to figure out the closest fit. Hence, the plot of the nonparametric
estimate λ̃(v) with the plots of λ(v; α̃) can be compared for models under consideration.

Genest et al. (2006a) proposed two alternative simple goodness of fit statistics indepen-
dent of extraneous constant ξ in the case of uncensored data:

Sn =

∫ 1

0

n[Kn(v)−K(v; α̂)]2k(v; α̂)dv (1.86)

=
n
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and

Tn = sup
0≤v≤1

∣∣√n[Kn(v)−K(v; α̂)]
∣∣ (1.87)

=
√
n max

j=0,1;0≤i≤n−1

∣∣∣∣Kn

(
i

n

)
−K

(
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n
; α̂

)∣∣∣∣
where k(v;α) is the density of K(v;α).

The large-sample distribution of Sn and Tn can also be found for some other common
copula models than Archimedean copulas, such as bivariate extreme-value copulas given
in (1.37) and Fréchet copulas given in (1.43) where φ = 0. Ghoudi et al. (1998) showed
that bivariate extreme value copulas are such that

KA(v) = Pr(S(T1, T2) ≤ v) = v − (1− τA)v log v (1.88)

for v ∈ (0, 1] where τA is the Kendall’s tau given in (1.38). Genest and Rivest (2001)
showed that Fréchet copulas given in (1.43) for φ = 0 can be determined by

K(v; θ) = v − v log v + v log
4v

{[θ2 + 4v(1− θ)]1/2 + θ}2 (1.89)

for v ∈ (0, 1].

Large value of Sn or Tn leads to the rejection of the underlying copula model. The
bootstrap procedure described in Genest et al. (2006a, 2008) can be used to obtain an
approximate p-value for Sn and Tn since their distributions depend on the association
parameter α for all n. Note, however, that these methods do not apply with censored
data.
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Chen and Fan (2007) used the model selection procedure described in Wang and Wells
(2000a). They showed that for selection among candidate copula models that might all
be misspecified, estimators of the parametric copulas based on minimizing the selection
criterion function in (1.85) may be preferred to other estimators. Since the limiting distri-
bution of Wang and Wells’ test statistic depends on model under misspecification and the
same data are used twice in obtaining (1.84) where α = α̃ found by (1.85), Chen and Fan
proposed a test for model selection from a finite number of Archimedean copulas. They
suggested a nonparametric bootstrap procedure to approximate the null distribution of
their test statistic.

1.5.2 Non-Archimedean Copulas

Rüschendorf (1976) and Fermanian et al. (2004) found that the bivariate empirical copula
process

√
n(Cn(u1, u2)− C(u1, u2)) tends in law to the Gaussian process where Cn(u1, u2)

is given in (1.54) or in (1.90) for d = 2. However, goodness of fit tests based on empirical
copula processes are performed by using bootstrapping which is computationally intensive.
Hence, Fermanian (2005) introduced two distribution-free goodness-of-fit test statistics for
copulas. The first test uses the idea of the simple chi-square test and considers observed
and expected frequencies based on a kernel estimate of the copula density and a parametric
estimate of the copula density, respectively. In particular, suppose we have an i.i.d. sample
of d-dimentional vectors Ti = (T1i, ..., Tdi), i = 1, ..., n and assume there is no censoring.
Let Ui = (F1(T1i), ..., Fd(Tdi)) denote the vector of the true marginal cumulative distribu-
tion functions and Uni = (Fn1(T1i), ..., Fnd(Tdi)) denote the vector of empirical marginal
cumulative distribution functions. The empirical copula process is

Cn(u) =
1

n

n∑
i=1

d∏
k=1

I[Fnk(Tki) ≤ uk] (1.90)

and a kernel estimator of the copula density at point u is

cn(u) =
1

hd

∫
K

(
u− v

h

)
Cn(dv) =

1

nhd

n∑
i=1

K

(
u− Uni

h

)
where K is a d-dimensional kernel with

∫
K = 1 and h = h(n) is a bandwidth sequence

with h(n) > 0 and h(n) → 0 as n→∞. Under some fundamental assumptions related to
kernel, the bandwidth and the copula density given in Fermanian (2005),

√
nhd((cn − c)(u1), ..., (cn − c)(um)) −→d MVN(0,Σ)

for every m and every vector u1, ..., um in (0, 1)d such that c(uk) > 0 for every k, where Σ
is diagonal and its kth diagonal term is

∫
K2c2(uk). Furthermore, if cα(u) is continuously
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differentiable with respect to α in a neighborhood of α0 for every u ∈ (0, 1)d, then

S =
nhd∫
K2

m∑
k=1

(cn(uk)− cα̂(uk))
2

cα̂(uk)2

tends in law towards an m-dimensional chi-squared distribution under the null hypothesis.
The power of this test depends on the choice of the arbitrary points u1, ...., um.

The other test statistic introduced in Fermanian (2005) is based on the proximity
between the smoothed copula density and the estimated parametric density. Under the
assumptions given in Theorem 3 in Fermanian (2005),

T =
n2hd(Jn − (nhd)−1

∫
K2(t)(cα̂w)(u− ht)dtdu+ (nh)−1

∫
cα̂w

∑d
k=1

∫
K2

k)2

2
∫
c2α̂w

∫ (∫
K(u)K(u+ v)du

)2
dv

tends in law towards a chi-squared distribution where Jn =
∫

(cn −Kh ∗ cα̂)(u)w(u)du, w
is a weight function, Kh(.) = K(./h)/hd and a ∗ b is the convolution between a and b. We
note again that neither of Fermanian’s tests applies to censored data.

Andersen et al. (2005) proposed some test statistics to check whether an assumed one-
parameter shared frailty model fits parallel bivariate right censored data without covari-
ates. However, the method can also be applied to other one-parameter copula models
than Archimedean copulas. First, the proposed copula model Cα(u1, u2) is fitted by semi-
parametric estimation without covariates, as described in Section 1.4. That is, F1 and
F2 are first estimated by Kaplan-Meier, and then α is estimated at stage 2. Then, a
nonparametric estimator of the bivariate copula function is also obtained and is com-
pared to the model under consideration. To measure the difference between the semi-
parametric estimate Cα̃ and the nonparametric estimate C̃ of the copula, Andersen et
al. proposed a chi-squared type statistic

∑K
k=1(Ak − Bk)

2 obtained by partitioning the
unit square into K parts. This gives Ak = C̃(a1k, a2k) − C̃(b1k, a2k) − C̃(a1k, b2k) +
C̃(b1k, b2k) and Bk = Cα̃(a1k, a2k) − Cα̃(b1k, a2k) − Cα̃(a1k, b2k) + Cα̃(b1k, b2k) when the kth

part is a rectangle, [a1k, b1k) × [a2k, b2k). They also proposed a Kolmogorov-like statistic

sup
∣∣∣Cα̃(u1, u2)− C̃(u1, u2)

∣∣∣ and a statistic based on a weighted difference between the two

copulas sup(u1,u2)∈[0,1]×[0,1] |
∫ 1

u1

∫ 1

u2
G(z1, z2)(dCα̃(z1, z2) −dC̃(z1, z2))| for G(z1, z2) a non-

negative weight function. They used a modified bootstrap procedure to obtain the p-values
of the tests. There are many loose ends to their procedure, however. In particular, it does
not easily handle variable censoring times, the frequency properties of the approach are not
clear, their bootstrap procedure is questionable and the procedure appears to lack power,
especially when T1 and T2 are highly correlated. We consider this approach in simulations
later in the thesis.

Chen and Huang (2007) suggested a goodness of fit test statistic which is a Cramér-von
Mises type test statistic measuring the distance between the estimated copula Cα̃ when
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there is no assumption about F1 and F2 and their kernel estimator of the copula described
in Section 1.4.1 for uncensored data without covariates.

Another goodness of fit test is based on Rosenblatt’s probability integral transforma-
tion (Rosenblatt, 1952), which is a mapping of a d-variate random vector (T1, ..., Td) with
an absolutely continuous distribution function F (t1, ..., td) into uniformly and mutually
independently distributed variables on the d dimensional hypercube, given by

G(t1) = Pr(T1 ≤ t1) = F1(t1)

G(t2) = Pr(T2 ≤ t2|T1 = t1) = F2|1(t2|t1)
...

G(td) = Pr(Td ≤ td|T1 = t1, ..., Td−1 = td−1) = Fd|1,...,d−1(td|t1, ..., td−1).

Note that the random variables Yj = G(Tj) for j = 1, ..., d are uniformly and independently
distributed on [0, 1]. Breymann et al. (2003) used this transformation to perform a goodness
of fit test for any copula model, based on uncensored data. Let C(u1, ..., ud) be the joint
distribution of U1 = F1(T1), ..., Ud = Fd(Td) for (u1, ..., ud) ∈ [0, 1]d. Then, the conditional
distribution of Uj, given U1, ..., Uj−1 is

Cj(uj|u1, ..., uj−1) =
∂j−1C(u1, ..., uj, 1, ..., 1)

∂u1...∂uj−1

÷ ∂j−1C(u1, ..., uj−1, 1, ..., 1)

∂u1...∂uj−1

for j = 2, ..., d and we know that C(u1, 1, ..., 1) = u1. Thus, we define

Yji = Cj(Fj(Tji)|F1(T1i), ..., Fj−1(Tj−1i))

for j = 2, ..., d and i = 1, ..., n. Breymann et al. (2003) defined Si =
∑d

j=1[Φ
−1(Yji)]

2

for i = 1, ..., n where Φ denotes the cumulative distribution function of N(0, 1) random
variable. Here, S1, ..., Sn has a chi-squared distribution with d degrees of freedom under the
assumption that the marginal distributions are known. Breymann et al. (2003) assumed
that the chi-squared distribution will not be significantly affected by the use of empirical
distribution functions for the unknown marginal distribution functions. However, Dobrić
and Schmid (2007) showed that the distribution of the test statistic greatly differs from
chi-squared distribution when the empirical distribution functions are used.

For bivariate censored data, Klugman and Parsa (1999) performed a goodness of fit test
by using Rosenblatt’s transformation. They used a Pearson chi-squared statistic computed
from Y21, ..., Y2n with some simple modifications due to censored observations. As indicated
in Genest et al. (2009), the limiting distribution of the Pearson statistic is not chi-squared
since the marginal distribution functions are estimated parametrically. Moreover, their
method is invalid for arbitrarily censored data.
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By using the idea in Klugman and Parsa (1999), Genest et al. (2009) proposed another
goodness of fit test for uncensored data. Since the empirical distribution function

Dn(u1, ..., ud) =
1

n

n∑
i=1

I[Y1i ≤ u1, ..., Ydi ≤ ud], (u1, ..., ud) ∈ [0, 1]d

should be close to the independent copula C⊥(u1, ..., ud) = u1...ud under the null hypoth-
esis, they suggested two statistics

S(C)
n =

n∑
i=1

[
Dn(Y1i, ...Ydi)− C⊥(Y1i, ...Ydi)

]2

and

S(B)
n =

n

3d
− 1

2d−1

n∑
i=1

d∏
j=1

(1− Y 2
ji) +

1

n

n∑
i=1

n∑
j=1

d∏
k=1

(1−max(Yki, Ykj))

for testing goodness of fit. The limiting null distributions are found by a parametric
bootstrap procedure. As with the related tests above, there is no suggestion about the
order in which conditioning is done and the procedure applies only to uncensored data.

Finally, Chen and Fan (2005) proposed pseudolikelihood ratio tests for selecting semi-
parametric copula models fitted as in Genest et al. (1995) under the assumption that there
are no censored observations. They first consider selection between two copula models,
C1α1 and C2α2 . Their pseudolikelihood ratio tests allow both competing copula models to
be misspecified. For i = 1, 2, let

α̃i = argmaxαi

[
1

n

n∑
k=1

log ciαi
(F̃1(t1k), ..., F̃d(tdk))

]

where ciαi
is the density function of the copula Ciαi

and F̃j(t) is the empirical distribution
function of Tj, and let

α∗i = argmaxαi
E0[log ciαi

(U1k, ...Udk)]

where the expectation E0 is taken with respect to the true distribution C0(F10, ..., Fd0). It
was shown that the two-step estimator α̃ is a consistent estimator of α∗ and the asymptotic
distribution of

√
n(α̃− α∗) is Normal with mean 0 and a variance given in Chen and Fan

(2005). They test

H0 : E0

[
log

c2α∗2
(U1k, ..., Udk)

c1α∗1
(U1k, ..., Udk)

]
≤ 0
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and copula model 1 is selected if H0 is true. To test the null hypothesis, it is first necessary
to determine whether the two closest parametric copulas to the true copula are equal, i.e.
the two models are generalized nested, or not. Hence they suggested to test if

σ2
a = V ar0

[
log

c2α∗2
(U1k, ..., Udk)

c1α∗1
(U1k, ..., Udk)

]
= 0

which happens if and only if the two copula models are generalized nested. They used a
bootstrap to approximate the null distribution of the test statistic

nσ̂2
a =

n∑
k=1

[
log

c2α̃∗2
(U1k, ..., Udk)

c1α̃∗1
(U1k, ..., Udk)

− 1

n

n∑
l=1

log
c2α̃∗2

(U1l, ..., Udl)

c1α̃∗1
(U1l, ..., Udl)

]2

If the two models are generalized nonnested, then the pseudolikelihood ratio statistic

PLR(F̃1, ..., F̃d; α̃1, α̃2) =
n∑

i=1

log
c2α̃2(F̃1(T1i), ..., F̃d(Tdi))

c1α̃1(F̃1(T1i), ..., F̃d(Tdi))

is asymptotically distributed as Normal under the null hypothesis and if they are general-
ized nested, then 2PLR(F̃1, ..., F̃d; α̃1, α̃2) has limiting null distribution of a weighted sum
of χ2(1) random variables.

If there are more than two copula models to be compared, they tested

H0 : max
2≤i≤M

E0

[
log

ciα∗i (U1k, ..., Udk)

c1α∗1
(U1k, ..., Udk)

]
≤ 0

where C1α1(u1, ..., ud) is the benchmark model. If there is no significant evidence to reject
H0, it means that no candidate copula model is closer to the true model than the benchmark
model. The test statistic includes a trimming function to remove the effect of generalized
nested candidate models with the benchmark model. They suggested a bootstrap procedure
to approximate the asymptotic null distribution of the given test statistic.

We note that these procedures are complex and that they do not handle censoring.
Moreover, they focus on selection among competing models and not testing an individual
model.

1.5.3 Simulation Procedures to Compute the P-Value

Estimating a p-value for a test of a null hypothesis is an important task, because many
test statistics do not have useable approximations, especially in finite samples. The de-
termination of a limiting distribution of a test statistic under a null hypothesis is indeed
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difficult for many tests. It is important to note that a nonparametric bootstrap method
does not work in most cases, as the null hypothesis is not respected. Thus, we typically
must use a parametric bootstrap procedure to simulate from the null model in order to
estimate the p-value for a test.

When a goodness-of-fit test is based on bivariate right censored data, there are three
main steps in simulating pseudo data from the null model:

1. generating lifetimes (T ∗1 , T
∗
2 ) from the estimated null model,

2. generating censoring times (C∗
1 , C

∗
2) from an estimate of the distribution of censoring

times (C1, C2) and

3. computing t∗1 = min(T ∗1 , C
∗
1), t∗2 = min(T ∗2 , C

∗
2), δ∗1 = I[T ∗1 = t∗1] and δ∗2 = I[T ∗2 = t∗2].

Given a censored sample (t∗1i, t
∗
2i, δ

∗
1i, δ

∗
2i, i = 1, ..., n), estimation techniques and the

corresponding goodness of fit procedure can be applied and the test statistic W ∗ calculated.
These steps are repeated B times and the p-value can then be estimated as

p =
B∑

b=1

I[W ∗
b ≥ Wobserved]/B

where W ∗
b is the value of the test statistic from the bth simulated sample and Wobserved is

the value of the test statistic obtained from the original data.

When a full parametric model is assumed, generation of lifetimes T ∗1 and T ∗2 is straight-
forward. However, in many cases F1 and F2 are estimated nonparametrically. In addition,
the censoring time distribution is often estimated nonparametrically. Thus we are forced to
adopt a semiparametric procedure to generate the pseudo data. We provide procedures for
doing this in specific settings in subsequent chapters. Here we describe briefly procedures
that have been used with censored data.

Andersen et al. (2005) computed p-values for their tests by a simulation-based or mod-
ified bootstrap procedure; this test was described in Section 1.5.2. Since they used a
semiparametric estimation method to fit the copula model under consideration, the boot-
strap procedure is not fully parametric. They also incorporated uncertainty in the estimate
α̃ of the dependence parameter α. Thus, the above first step was performed by generating
(T ∗1 , T

∗
2 ) from the null copula model Cα with α = α∗, where α∗ was generated from the

estimated asymptotic distribution of α̃. They generate (T ∗1 , T
∗
2 ) via a shared frailty model

which corresponds to a specific Archimedean copula model. For the second step, they gen-
erated (C∗

1 , C
∗
2) from Pruitt’s estimator (Pruitt, 1990 and 1991) of the bivariate censoring

distribution.
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Chen and Huang (2007) proposed a semiparametric bootstrap procedure to estimate
p-values after conducting their goodness of fit test for uncensored data without covariates
described in Section 1.5.2. Note that their test statistic basically compares an estimated
parametric copula model Cα̃ when there is no assumption about F1 and F2 with their
nonparametric copula estimator (see Section 1.4.1). In their procedure, for generating
data (t∗1, t

∗
2) from the estimated null copula model Cα̃, first {t∗1i, i = 1, ..., n} are generated

from the empirical distribution F̂1 of {t1i, i = 1, ..., n} by sampling with replacement and
let u∗1i = F̂1(t

∗
1i) for i = 1, ..., n. Then, u∗2i are generated from the conditional distribution

function of U2 given U1 = u∗1i, given by ∂Cα̂(u1,u2)
∂u1

|u1=u∗1i
and then t∗2i = F̂−1

2 (u∗2i) where F̂2 is
the empirical distribution based on {T2i, i = 1, ..., n}. We propose another semiparametric
bootstrap procedure in Chapter 3. Our bootstrap procedure is similar to one used by
Hsieh et al. (2008) in a semicompeting risks setting. However, note that two procedures
are identical when carrying out a parametric bootstrap procedure as in Chapter 2.

For Wang and Wells’ (2000a) proposed test, they suggested a bootstrap method based
on generating a sample V ∗

1 , ..., V
∗
n from Kα̃(v) given in (1.73) where α̃ is the value for which

the theoretical value of Kendall’s tau is equal to τ̃n = 4
∑n

i=1 V
∗
i /n−1. However, Genest et

al. (2006a) showed that the algorithm is invalid and suggested another bootstrap method
based on generating a random sample from Cα̃ for uncensored data. Then, the estimation
technique described in Genest and Rivest (1993) can be used to obtain α̃∗ and the test
statistic in (1.86) or (1.87) can be evaluated based on {(T ∗1i, T

∗
2i), i = 1, ..., n}. If there is

no analytical expression for K(α) in (1.73) under the null hypothesis, a double bootstrap
method is used. Genest and Rémillard (2008) and Genest et al. (2009) explain the method
in detail.

1.6 Outline of Research

As described above, methods for fitting copula models to data are well developed, but
there has been little work on tests of fit for copulas when the lifetimes are subject to
censoring. In particular, most of the procedures that have been proposed do not deal with
censored data, and those that do suffer from limitations. Moreover, nothing has been done
for models that involve covariates. In chapters 2 and 3, we study goodness of fit tests
that are based on embedding a proposed copula within a larger parametric family. This
allows goodness of fit testing with censored data, and irrespective of whether covariates
are in the model. Novel features of our treatment include the use of pseudolikelihood as
well as likelihood ratio tests, and consideration of both parametric and semiparametric
models. When the proposed and the expanded copula models are estimated by maximum
likelihood estimation, the likelihood ratio test is used. However, when they are estimated
by two-stage pseudolikelihood estimation, the test is a pseudolikelihood ratio test. The
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two-stage procedure requires less computation, which is especially attractive when the
marginal lifetime distributions are specified nonparametrically or semiparametrically.

Goodness of fit tests for fully parametric models are considered in Chapter 2, and
methods for obtaining p-values for both likelihood ratio and pseudolikelihood ratio tests are
given. The performance of the tests is shown to be excellent in simulation studies, including
when the expanded copula model is misspecified. It is proved that the likelihood ratio test
is consistent, even when the expanded model is misspecified. In Chapter 3, we propose a
semiparametric maximum likelihood estimation method in which the copula parameter is
estimated without assumptions on the marginal distributions. The efficiency of the two-
stage semiparametric estimator (Shih and Louis, 1995) of the copula parameter is compared
with that of the semiparametric maximum likelihood estimator of it. Semiparametric
estimation procedures are also extended to models with proportional hazards margins.
Semiparametric likelihood ratio and pseudolikelihood ratio tests are considered to provide
goodness of fit tests for a copula model without making parametric assumptions for the
marginal distributions. Semiparametric bootstrap procedures are introduced to obtain p-
values for tests. In simulation studies both when the expanded copula family is correct
and when it is misspecified, it is observed that the semiparametric pseudolikelihood ratio
test is almost as powerful as the parametric likelihood ratio and pseudolikelihood ratio
tests while achieving robustness to the form of the marginal distributions. We conclude
that the approach is broadly applicable, powerful and easily implemented. We apply the
methodology to two data sets in each chapter, one involving covariates and the other
without.

There are some difficulties, noted in Section 1.4.2, in modeling and analyzing sequential
data. When the sequential survival times for a given individual are not independent, the
problem of induced dependent censoring arises for the second and subsequent survival
times. Non-identifiability of the marginal survival distributions is another issue since they
are observable only if preceding survival times for an individual are uncensored. In addition,
in some studies, a significant proportion of individuals may never have the first event.
Hence, in Chapter 4, we introduce an approach to address these features of sequential data.
We model the joint distribution of the successive survival times by using copula functions.
Moreover, we propose some new semiparametric estimation methods in which the copula
parameter is estimated without parametric assumptions on the marginal distributions. The
performance of semiparametric estimation methods is compared with some other estimation
methods in simulation studies and shown to be good. The methodology developed is
applied to a motivating example involving relapse and survival following colon cancer
treatment. Some goodness of fit tests and informal model checking procedures are also
shown and applied in the example. Finally, another approach to model sequential data is
introduced by using a copula model for the truncated joint distribution of survival times
and a possible way to estimate the copula parameter in this model is described. Properties

34



of this estimation technique will be investigated in a future work.

We summarize our results, note remaining gaps in methodology and discuss other areas
for research in Chapter 5.
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Chapter 2

Likelihood-Based Tests of Parametric
Copula Models for Parallel Lifetimes

Although methods for copula models are well developed, there has been little work on tests
of fit for copulas when the lifetimes are subject to censoring. The marginal distributions
can be modeled by various parametric and semiparametric approaches (Lawless, 2003),
and well established methods of checking such models can be applied in many settings.
However, methods of checking the joint distribution or more specifically, the copula function
specifying the association between T1 and T2, are less developed. In particular, as reviewed
in Section 1.5, most of the procedures that have been proposed do not deal with censored
data, and those that do suffer from limitations. We also want methods that apply when
covariates are present.

We carry out model checking by the well known device of embedding a proposed copula
family in an expanded family of copulas. This allows goodness of fit testing with censored
data, and irrespective of whether covariates are in the model. If the proposed and the
expanded copula families are estimated by maximum likelihood estimation, then we can
check the proposed family by using the likelihood ratio test. However, if they are esti-
mated by the two-stage estimation technique, the model checking may be performed by
a pseudolikelihood ratio test. This extends to a formal testing framework the practice of
comparing maximized log-likelihoods of competing parametric models (e.g. Genest et al.,
1998). In the following section, both large sample approximations and simulation methods
for obtaining p-values are presented. In Section 2.2 we provide simulation results that
indicate the adequacy of this approach, and compare it with methods of Shih (1998) and
Andersen et al. (2005). Section 2.3 applies the methodology to two data sets, one involving
covariates and the other without. In Section 2.4 the likelihood ratio test is shown to be
consistent, even when the expanded model is misspecified.
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2.1 Likelihood Ratio and Pseudolikelihood Ratio Statis-

tics

Suppose the parametric marginal survival functions of T1 and T2 are S1(t1; β1) and S2(t2; β2),
respectively and to start assume the model has a one-parameter copula model representa-
tion S(t1, t2) = Cα(S1(t1), S2(t2)) where α denotes a scalar dependence parameter.

When one-stage maximum likelihood estimation is used, the maximum likelihood es-
timates α̂, β̂ = (β̂t

1, β̂
t
2)

t are obtained by solving the score equations in (1.45) and (1.46)
where β = (βt

1, β
t
2)

t. When α = α0 is fixed, the maximum likelihood estimates β̂(α0) =
(β̂1(α0)

t, β̂2(α0)
t)t are obtained by solving (1.45). We know that under the null hypothesis

H0 : α = α0 and under the condition that α0 and the true values of other parameters are
not boundary points in the parameter space, the likelihood ratio statistic

Λ1(α0) = 2`(β̂, α̂)− 2`(β̂(α0), α0) (2.1)

is asymptotically distributed as χ2
(1) where `(β, α) is the natural logarithm of L(β, α) in

(1.6) or in (1.7) for parallel clustered lifetime data and sequential lifetime data, respec-
tively. When α0 is a boundary point and the true values of other parameters are not
boundary points, Λ1(α0) in (2.1) has the limiting distribution with Pr(Λ1(α0) ≤ q) =
0.5 + 0.5Pr(χ2

(1) ≤ q) (Self and Liang, 1987).

When the two-stage fully parametric estimation technique for parallel data is used,
the maximum likelihood estimate β̃ = (β̃t

1, β̃
t
2)

t is found under the working independence
assumption, i.e. by maximizing the likelihood function given in (1.48), in stage 1. Then,
α̃ is obtained through solving the score equation given in (1.50) in stage 2. Now, the
pseudolikelihood ratio statistic is defined as

Λ2(α0) = 2`(β̃, α̃)− 2`(β̃, α0) (2.2)

where `(β̃, α0) = `(β̃(α0), α0) because fixing α = α0 does not affect the stage 1 estimate of
β. Under the condition that α0 and the true values of other parameters are not boundary
points, the following theorem gives the asymptotic distribution of Λ2(α0) as a special case
in Liang and Self (1996).

Theorem 1. Under the null hypothesis H0 : α = α0, the limiting distribution of Λ2(α0)
is λχ2

(1) where λ = Jαα(β10, β20, α0)Σ33, Jαα(β10, β20, α0) is the last diagonal element of

J(β1, β2, α) defined in (1.47) evaluated at (β1, β2, α) = (β10, β20, α0) and Σ33 is defined in
the following proof.

Proof. Expanding the log-likelihood `(β1, β2, α) in a Taylor series around (β̃1, β̃2, α̃) and
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evaluating it at β1 = β10, β2 = β20, α = α0, we get

`(β̃1, β̃2, α̃) =`(β10, β20, α0)− (β10 − β̃1)
tUβ1(β̃1, β̃2, α̃)− (β20 − β̃2)

tUβ2(β̃1, β̃2, α̃)+

1

2

β10 − β̃1

β20 − β̃2

α0 − α̃

t

I(β̃1, β̃2, α̃)

β10 − β̃1

β20 − β̃2

α0 − α̃

 + op(1) (2.3)

where

I(β1, β2, α) =

Iβ1β1 Iβ1β2 Iβ1α

Iβ2β1 Iβ2β2 Iβ2α

Iαβ1 Iαβ2 Iαα

 = −∂
2`(θ)

∂θ∂θt

is the information matrix and θ = (βt
1, β

t
2, α)t.

Then, expanding the log-likelihood `(β1, β2, α) in a Taylor series around (β̃1, β̃2, α0) and
evaluating it at β1 = β10, β2 = β20, α = α0, we get

`(β̃1, β̃2, α0) =`(β10, β20, α0)− (β10 − β̃1)
tUβ1(β̃1, β̃2, α0)− (β20 − β̃2)

tUβ2(β̃1, β̃2, α0)+

1

2
(β10 − β̃1)

tIβ1β1(β̃1, β̃2, α0)(β10 − β̃1)+

1

2
(β20 − β̃2)

tIβ2β2(β̃1, β̃2, α0)(β20 − β̃2)+

(β10 − β̃1)
tIβ1β2(β̃1, β̃2, α0)(β20 − β̃2) + op(1). (2.4)

Now, also expanding the score function Uβ1(β1, β2, α) in a Taylor series around (β̃1, β̃2, α̃)
and evaluating it at β1 = β̃1, β2 = β̃2, α = α0, we get

Uβ1(β̃1, β̃2, α0)− Uβ1(β̃1, β̃2, α̃) = −Iβ1α(β̃1, β̃2, α̃)(α0 − α̃) + op(n
1/2) (2.5)

and, similarly,

Uβ2(β̃1, β̃2, α0)− Uβ2(β̃1, β̃2, α̃) = −Iβ2α(β̃1, β̃2, α̃)(α0 − α̃) + op(n
1/2). (2.6)

By using (2.3)-(2.6), the pseudolikelihood ratio statistic in (2.2) is written as

Λ2(α0) =

β10 − β̃1

β20 − β̃2

α0 − α̃

t

Dn

β10 − β̃1

β20 − β̃2

α0 − α̃

 + op(1) (2.7)

where

Dn =

Iβ1β1(β̃1, β̃2, α̃)− Iβ1β1(β̃1, β̃2, α0) Iβ1β2(β̃1, β̃2, α̃)− Iβ1β2(β̃1, β̃2, α0) 0

Iβ2β1(β̃1, β̃2, α̃)− Iβ2β1(β̃1, β̃2, α0) Iβ2β2(β̃1, β̃2, α̃)− Iβ2β2(β̃1, β̃2, α0) 0

0 0 Iαα(β̃1, β̃2, α̃)

 .
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Under regularity conditions, I(β̃1, β̃2, α̃)/n = J(β10, β20, α0) + op(1) and I(β̃1, β̃2, α0)/n =
J(β10, β20, α0) + op(1).

Now, from (1.51), it is known that

√
n

β̃1 − β10

β̃2 − β20

α̃− α0

 −→d N(0,Σ) (2.8)

where Σ = A(β10, β20, α0)
−1B(β10, β20, α0)(A(β10, β20, α0)

−1)t and the components of

Σ =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


are as follows:

Σ11 = J∗−1
β1β1

,

Σ12 = J∗−1
β1β1

J∗β1β2
J∗−1

β2β2
,

Σ13 = − 1
Jαα

(J∗−1
β1β1

Jβ1α + J∗−1
β1β1

J∗β1β2
J∗−1

β2β2
Jβ2α),

Σ21 = J∗−1
β2β2

J∗β2β1
J∗−1

β1β1
,

Σ22 = J∗−1
β2β2

,

Σ23 = − 1
Jαα

(J∗−1
β2β2

Jβ2α + J∗−1
β2β2

J∗β2β1
J∗−1

β1β1
Jβ1α),

Σ31 = − 1
Jαα

(Jαβ1J
∗−1
β1β1

+ Jαβ2J
∗−1
β2β2

J∗β2β1
J∗−1

β1β1
),

Σ32 = − 1
Jαα

(Jαβ2J
∗−1
β2β2

+ Jαβ1J
∗−1
β1β1

J∗β1β2
J∗−1

β2β2
) and

Σ33 = 1
Jαα

+ 1
J2

αα
(Jαβ1J

∗−1
β1β1

Jβ1α + Jαβ2J
∗−1
β2β2

Jβ2α + Jαβ1J
∗−1
β1β1

J∗β1β2
J∗−1

β2β2
Jβ2α+

Jαβ2J
∗−1
β2β2

J∗β2β1
J∗−1

β1β1
Jβ1α)

where J.. and J∗.. are the components of J(β1, β2, α) defined in (1.47) and B(β1, β2, α)
defined in (1.51), respectively, and they depend on censoring process and covariate distri-
bution. Note that Shih and Louis (1995) showed that under some regularity conditions,√
n(α̃− α0) −→d N(0,Σ33).

From the results (2.7) and (2.8), we can reach the conclusion that Λ2(α0) −→d λχ
2
(1)

where λ is the eigenvalue of ΣD and D = limn→∞E
[

1
n
Dn

]
.

When α0 is a boundary point and the true values of other parameters are not bound-
ary points, Λ2(α0) in (2.2) has the limiting distribution with Pr(Λ2(α0) ≤ q) = 0.5 +
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0.5Pr(λχ2
(1) ≤ q) (Liang and Self, 1996). Note that λ depends not only on unknown

parameters β but also on censoring process and covariate distribution.

If we fit an expanded copula model which has more than one parameter as in Section
1.3.2 and which includes the proposed copula model as a specified case, we can test the
proposed model by using a likelihood ratio statistic. Now, suppose the expanded copula
model has the vector of dependence parameters (α1, α2) and the null model is obtained
when α2 = α20. Then, under the null hypothesis α2 = α20, the likelihood ratio statistic

Λ1(α20) = 2`(β̂, α̂1, α̂2)− 2`(β̂(α20), α̂1(α20), α20) (2.9)

is asymptotically distributed as χ2
(r) where r is the rank of α2, provided α20 and the true

values of other parameters are not boundary points. As we discuss in Section 1.3.2, a
number of important copula families correspond to α20 being a boundary point in an
expanded family, however. Self and Liang (1987) presented the asymptotic distribution of
a likelihood ratio statistic for a parameter on the boundary of the parameter space, for
different cases. If the dimension of α2 is 1, α20 is a boundary point in the parameter space
and the true values of other parameters are not boundary points than Λ1(α20) in (2.9) has
the limiting distribution with Pr(Λ1(α20) ≤ q) = 0.5 + 0.5Pr(χ2

(1) ≤ q).

It can be shown (e.g. Cox and Hinkley, 1974, p.317) that under alternative hypotheses
where Cα1,α2 is the correct copula family but α2 = α∗2 6= α20, the power of the likelihood
ratio test approaches 1 as n→∞. When H0 is not true but the data do not come from the
expanded parametric model under consideration, we show that under regularity conditions,
the test based on (2.9) is still consistent; that is, it will reject H0 with probability 1 as
n→∞. This robustness property is proved in Section 2.4.

When the models are fitted by two-stage parametric estimation, the pseudolikelihood
ratio statistic

Λ2(α20) = 2`(β̃, α̃1, α̃2)− 2`(β̃, α̃1(α20), α20) (2.10)

can be used to test the null hypothesis, where α̃1(α20) maximizes L(β̃, α1, α20) with respect
to α1. Pseudolikelihood ratio statistics sometimes have a limiting distribution equivalent
to a linear combination of χ2

(1) random variables under the null hypothesis (Liang and Self,

1996). However, this does not hold when a parameter is on the boundary and in any case
the limiting distribution involves the unknown parameters. In view of these points, we will
use a parametric bootstrap to obtain p-values when (2.10) is used to test the hypothesis
H0 : α2 = α20. The steps in the simulation procedure must ensure that pseudodata are
generated under H0, and are as follows.

Step 1: Generate an independent bootstrap sample of size n from the estimated null cop-
ula model Cα̃1(α20),α20(S1(T1; β̃1), S2(T2; β̃2)) and estimated censoring distribution. When
censoring exists, this step is constituted by the three steps given in Section 1.5.3.
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Step 2: For the bootstrap sample, estimate β, α by two-stage estimation under both
the given null model with α2 = α20 and the expanded family where α1, α2 are unrestricted.

Step 3: Calculate the bootstrapped counterpart Λ∗2 of the pseudolikelihood ratio statis-
tic Λ2 given in (2.10).

Step 4: Steps 1 to 3 are repeated B times and the p-value is estimated as the proportion
of times that Λ∗2 ≥ Λobs

2 , where Λobs
2 is the observed value of Λ2(α20) in the original sample.

We remark that likelihood and pseudolikelihood theory (Self and Liang, 1987; Liang
and Self, 1996) suggest that when α2 is scalar, the limiting distribution for Λ2(α20) is
the same as for a λχ2

(1) variable or (when α20 is a boundary value) for a 0.5 + 0.5λχ2
(1)

variable. Simulations we have conducted suggest that c+ (1− c)λχ2
(1) approximations are

satisfactory for moderate sample sizes. This allows us to reduce substantially the number
of simulations needed to estimate p-values, as follows. Generate B bootstrap samples and
test statistics, say Λ∗2b, b = 1, ..., B. First, for w > 0, if

Pr(Λ2(α20) ≤ w) = c+ (1− c)Pr(λχ2
(1) ≤ w) (2.11)

where c = Pr(Λ2(α20) = 0) is a good approximation can be checked by doing a χ2
(1)

quantile-quantile plot of Λ∗2b’s. Let Λ∗2(i) be the ith smallest positive value among the

Λ∗2b’s. In the quantile-quantile plot, Λ∗2(i)’s are plotted against F−1
χ2

(1)

( i
B+1

−ĉ

1−ĉ

)
where ĉ =

P̂ r(Λ2(α20) = 0) = 1
B+1

∑B
i=1 I[Λ

∗
2i(α20) = 0] and F−1

χ2
(1)

represents the quantile function

for the χ2
(1) distribution. Then, if the plot indicates that Λ∗2(i) ≈ λF−1

χ2
(1)

( i
B+1

−ĉ

1−ĉ

)
is a good

approximation, a line through the origin can be fitted to the plot and the constant λ can
be estimated from it. Finally, the p-value can be estimated by plugging the estimates of λ
and c into

Pr(Λ2(α20) > Λobs
2 ) = (1− c)Pr(χ2

(1) > Λobs
2 /λ). (2.12)

Note that the λχ2
(1) limiting distributions or approximations involve the unknown pa-

rameters. Thus, λ has to be estimated. However, estimating it as above may be better
and may require less computation than estimating all of the matrices contributing to λ,
especially if derivatives of `(β, α1, α2) are messy.

We remark that in settings where the sample size is not very large, the χ2 approximation
for the distribution of the ordinary likelihood ratio statistic (2.9) may not be very accurate,
especially if α20 is a boundary point. In that case the simulation procedure just described
(with maximum likelihood estimates replacing two-stage estimates) can be used to obtain
p-values.
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2.1.1 An Illustration

To use the approaches here, we need an expanded copula family that includes the model
under consideration. Some two or three parameter copula families that include widely used
copulas are given in Joe (1997), Genest et al. (1998) and Nelsen (2006).

For testing the Clayton copula in (1.28) or the Gumbel-Hougaard copula in (1.31), one
model that we can use is the two-parameter Archimedean copula family given in (1.40). As
noted in Section 1.3.2, it reduces to the Clayton family when θ = 1 and Gumbel-Hougaard
family as φ→ 0. Hence, for testing the Clayton model (i.e., H0 : θ = 1), the likelihood ratio
statistic Λ1(1) = 2`(β̂, φ̂, θ̂) − 2`(β̂(θ = 1), φ̂(θ = 1), θ = 1) has the limiting distribution
P (Λ1(1) ≤ q) = 0.5 + 0.5P (χ2

(1) ≤ q), since θ = 1 is a boundary point, provided the

other parameters are not boundary points. For testing the Gumbel-Hougaard model (i.e.,
H0 : φ = 0), the likelihood ratio statistic Λ1(0) = 2`(β̂, φ̂, θ̂)−2`(β̂(φ = 0), φ = 0, θ̂(φ = 0))
has the same limiting distribution provided other parameters than φ are not boundary
points.

The pseudolikelihood ratio statistic Λ2 in (2.10) could also be used to test either θ = 1 or
φ = 0, with the simulation procedure described above used to obtain p-values. This statistic
has the advantage of slightly simpler estimation of parameters, but the disadvantage of
not having a useable large sample approximation to get p-values. However, the limiting
distribution for Λ1 may not be accurate for small or moderate sample sizes, so simulation
may sometimes be needed for it also. In order to examine and compare the properties of
Λ1 and Λ2, we conduct simulation studies described in the next section.

2.2 Simulation Study

A simulation study of the likelihood ratio and pseudolikelihood ratio test statistics under
null and alternative hypotheses was conducted. For the null hypothesis we consider the
Clayton model in (1.28). The two-parameter copula family (1.40) is used as an expanded
family. To assess size and power of the various test statistics, we generated 1000 random
bivariate failure time samples of size n = 100 from members of the true copula family
(1.40), with two degrees of association represented by Kendall’s tau values of 0.4 and 0.8.
The marginal distributions of the failure times are considered as Weibull with a unit scale
parameter and shape parameter 2, but for estimation the marginal distributions F1 and F2

are considered as different. We considered both uncensored and censored samples. For the
censored case, the bivariate censoring times C1i, C2i were generated independently as in
Shih (1998), and following Andersen et al. (2005), censoring times were assumed to come
from an exponential distribution. In one scenario, we generated C1, C2 from exponential
distributions so that the probability of censoring for each of T1, T2 is 50%. In a second
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scenario, Cji = mj+eji wheremj is the median of Fj(tj) and eji is exponentially distributed
for j = 1, 2, so that the probability of censoring in each coordinate is about 30%.

We compare empirical type I error and power of the likelihood ratio and the pseudo-
likelihood ratio tests with the tests developed by Shih (1998) and Andersen et al. (2005).
These tests can be applied to censored bivariate data without covariates and the goodness
of fit test by Shih (1998) is only applicable for testing the Clayton model. Andersen’s
chi-squared type test statistic was used with the unit square divided into four equal parts,
as Andersen et al. (2005) did in their simulation study. For their test statistic, we used
the bivariate survivor function estimator described in Gentleman and Vandal (2002) to
obtain the nonparametric estimate of the copula. Their nonparametric estimation method
computes the maximum likelihood estimate of S(t1, t2) for bivariate censored data, but it
should be noted that this estimate assigns mass to points, lines and rectangular regions in
the plane {(t1, t2) : t1 ≥ 0, t2 ≥ 0} in general, and so some convention is needed to imple-
ment the Andersen et al. approach. In fact this is a major drawback of this approach. To
be able to carry out the chi-squared type test statistic in Andersen et al. (2005) accurately,
in our simulation we considered the second case for generating censoring times. For the
likelihood-based and Andersen test statistics, we estimated for each scenario the 5% criti-
cal values from 10000 samples of size 100 under the null hypothesis. For the test of Shih
(1998), her asymptotic critical values were used. For the uncensored case, the corrected
version of the asymptotic variance formula given in Genest et al. (2006b) was used for
Shih’s test. The empirical power of the tests was obtained under alternatives belonging to
the family (1.40) in which φ = 0, that is, for Gumbel-Hougaard alternatives. The value of
θ was in this case chosen to give the values τ = 0.4 and 0.8 for Kendall’s tau.

The first six lines of Table 2.1 show the empirical type I error for the likelihood ratio
test (Λ1), pseudolikelihood ratio test (Λ2), Shih’s test (S) and Andersen’s test (T ). For
Λ1, Λ2 and T , these values should be close to 0.05 to be consistent with a standard error of
about 0.007, based on 1000 samples, since the critical values used for the tests are based on
10000 simulated samples. In the rest of Table 2.1, empirical powers of the tests are shown
when the alternative hypothesis is the Gumbel-Hougaard model (1.31). The goodness of
fit test introduced by Andersen et al. (2005) is inapplicable for heavy censoring, so results
are not shown for it for the case of 50% censoring. Results for Shih’s test when there is
censoring and τ = 0.8 are similarly not shown. This is because it was observed that under
censoring and strong association (larger τ) her asymptotic variance formula sometimes
gave negative estimates, so there may be an error. Genest et al. (2006b) have corrected
the formula for the case of uncensored data. It is observed that the likelihood ratio and
pseudolikelihood ratio tests have empirical type I errors close to 0.05 generally and higher
powers than the other two tests. The empirical type I error of Shih’s test differs somewhat
from 0.05, indicating that the asymptotic approximation given by Shih (1998) is not highly
accurate when n = 100. Even though it’s size appears larger than the nominal 0.05, the
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n % Censored τ True copula Λ1 Λ2 S T
100 0 0.4 θ = 1, φ = 1.333 0.043 0.042 0.034 0.063
100 0 0.8 θ = 1, φ = 8 0.048 0.046 0.069 0.051
100 30 0.4 θ = 1, φ = 1.333 0.043 0.043 0.076 0.056
100 30 0.8 θ = 1, φ = 8 0.052 0.051 NA 0.034
100 50 0.4 θ = 1, φ = 1.333 0.043 0.041 0.062 NA
100 50 0.8 θ = 1, φ = 8 0.050 0.050 NA NA
100 0 0.4 φ = 0, θ = 1.667 0.998 0.998 0.907 0.636
100 0 0.8 φ = 0, θ = 5 1 1 1 0.584
100 30 0.4 φ = 0, θ = 1.667 0.982 0.981 0.837 0.167
100 30 0.8 φ = 0, θ = 5 1 1 NA 0.031
100 50 0.4 φ = 0, θ = 1.667 0.942 0.941 0.727 NA
100 50 0.8 φ = 0, θ = 5 1 0.996 NA NA

Table 2.1: Proportion of rejections of H0 : θ = 1 (i.e., Clayton family), under models
(1.40).

power of Shih’s test is substantially lower than those for the likelihood-based tests, when
there is censoring. The power of Andersen’s test is very low compared to that of the other
tests.

The power of likelihood and pseudolikelihood ratio tests should of course be high when
the true alternative copula model is a member of the expanded copula family (1.40). To
check the performance of these tests when this is not the case, we suppose the true copula
model is a member of the 3-parameter Archimedean copula family given in Genest et
al. (1998), with generator function

ϕ(v) = log

[
1− (1− γ)θ

1− (1− γvφ)θ

]
(2.13)

(φ > 0, θ > 1, 0 < γ < 1), but not a member of the two-parameter copula family given
in (1.40). The model (2.13) includes the Clayton and Gumbel-Hougaard models as special
cases, and it reduces to the Frank copula (1.34) when φ = 1, γ = ν/θ and θ → ∞. Since
the two-parameter copula family (1.40) does not include the Frank copula, we performed
the same simulation study as above, assuming the true copula model is the Frank, with two
degrees of association represented by Kendall’s tau values of 0.4 and 0.8, which correspond
to ν = 4.16 and ν = 18.2 in (1.34), respectively.

The empirical powers of the tests are given in Table 2.2 when the true copula model
is the Frank (1.34), the null model is the Clayton (1.28) and the misspecified expanded
model is (1.40). The power values for the pseudolikelihood ratio test are generally higher
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n % Censored τ Λ1 Λ2 S T
100 0 0.4 0.795 0.816 0.855 0.715
100 0 0.8 0.947 0.997 1.00 0.826
100 30 0.4 0.504 0.513 0.519 0.152
100 30 0.8 0.653 0.752 NA 0.046
100 50 0.4 0.310 0.307 0.277 NA
100 50 0.8 0.421 0.483 NA NA

Table 2.2: Proportion of rejections of H0 : θ = 1 (i.e., Clayton family) for a test based on
(1.40) but with (1.34) the true copula.

than those of the likelihood ratio test and they are very close to those of Shih’s test, which
is specifically designed for the Clayton model. Andersen’s test again has very low power
compared to other tests. With the expanded copula misspecified, we see from Table 2.2
that the power for heavily censored samples (30% and 50%) is much reduced relative to
the powers seen in Table 2.1. This and the similarly low power of the Shih and Andersen
tests indicate there is limited power to detect departures from a bivariate copula model
with effective sample sizes of only 50-70, unless one can rely on help from parametric
assumptions.

It helps in the interpretation of power results to compare the Frank copula model when
ν = 4.16 and ν = 18.2 with the Clayton and two-parameter copula models, in order to
assess how far the Frank model is from fits based on the two-parameter family (1.40). Since
all three copulas are Archimedean, they can be determined uniquely by the univariate
function K(v) = Pr(C(T1, T2) ≤ v) in (1.73) defined on the unit interval (Genest and
Rivest, 1993). In Figure 2.1, plots of λ(v) = v − K(v) in (1.74) are given for the Frank,
Clayton and two-parameter copula models. For the Clayton family the copula represented
is (1.28) with φ equal to the average value of φ̂ over the 1000 samples generated from the
Frank model, when the Clayton model is fitted. For (1.40) the copula represented has (φ, θ)
equal to the average of (φ̂, θ̂) over the same 1000 samples, when (1.40) is fitted. These
models are estimates of the best fitting models to the Frank models within each family.
In the top plot of Figure 2.1, it is observed that the Frank copula model with ν = 4.16

(τ = 0.4) is slightly different from the two-parameter copula family (1.40) with
¯̂
θ = 1.365

and
¯̂
φ = 0.360, and both differ a good deal from the Clayton model. In the second plot,

it is seen that the Frank copula model with ν = 18.2 (τ = 0.8) is quite different than the

two-parameter copula family (1.40) with
¯̂
θ = 3.145 and

¯̂
φ = 0.808 and so there is not a

member of (1.40) that closely approximates the Frank copula. Nevertheless, the statistics
Λ1 and Λ2 based on (1.40) still have good power, because the best approximating member
of (1.40) is again quite different than the Clayton model.
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Figure 2.1: Plots of lambda functions for the Frank copula and the best fitting Clayton and
two-parameter copula families obtained by the simulation, where the data are generated
from the Frank copula with ν = 4.16 (top plot) and ν = 18.2 (bottom plot).
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2.3 Applications

2.3.1 Diabetic Retinopathy Study Data

The data described in Section 1.1.1 consists of times or censoring times (t1i, t2i) to the loss
of visual acuity in each eye, the treatment indicator x1ji = I[eye j is treated] for j = 1, 2
and type of diabetes indicator x21i = x22i = I[diabetes is adult-onset] which indicates
whether a person’s diabetes was adult-onset or juvenile-onset. In total 73% of the lifetimes
for treated eyes and 49% of the lifetimes for untreated eyes were censored. Among 197
subjects, 114 had juvenile-onset and 83 had adult-onset diabetes. The primary objective
of this study is to understand the effectiveness of the treatment. Since it is paired lifetime
data, the independence assumption may be violated.

Huster et al. (1989) considered proportional hazards model

hji(t|xji) = h0(t) exp(β1x1ji + β2x2ji + β3x1jix2ji) (2.14)

for j = 1, 2 and i = 1, ..., 197 where the baseline hazard function h0 for the two eyes of
a subject or the eyes of any two subjects is the same, and it has Weibull form as the
failure time distributions for the eyes. The Clayton copula was used to model the bivariate
survival distribution. The treatment, type of diabetes and interaction between them were
found to have significant effects on the time to loss of visual acuity. After fitting a working
independence proportional hazards model with the same baseline function, it was clear that
there is a strong positive association between failure times for the treated and untreated
eyes and the treatment effect for adults is more than for juveniles.

Glidden and Self (1999) also considered the Clayton copula with the marginal dis-
tributions modeled by a semiparametric proportional hazards regression model given in
(2.14). They estimated all the model parameters by an approximate maximum likelihood
approach. The same conclusions as in Huster et al. (1989) were reached.

He and Lawless (2003) considered proportional hazards model with the marginal haz-
ards functions in (2.14) for the failure times T1 and T2. They employed piecewise constant
and spline specifications for the baseline hazard function and the bivariate survival distri-
bution was assumed to be a Clayton copula. Similar results were obtained as in the other
papers. He and Lawless (2005) fitted bivariate location-scale models. After the form of
the marginal distributions of log-failure-times was assumed to be log-Weibull distribution,
the Clayton and Frank bivariate location-scale models were fitted by using a one-stage
estimation approach. They also used a bivariate normal model to fit log-failure-times.

Romeo et al. (2006) analyzed the DRS data by copula-based Bayesian parametric and
semiparametric estimation procedures. They fitted Clayton, Frank and Gumbel-Hougaard
models to the bivariate survival distribution and found in each case the posterior mean
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for the dependence parameter under consideration. They also performed a Bayesian semi-
parametric estimation procedure for each of the specified models above. First the marginal
survivor functions were estimated using Kaplan-Meier estimation and then similar to two-
stage parametric estimation, the three copula models were estimated by Bayesian posteriors
for α. To make the comparison of these models, they used four different approaches: a
discrete version of the cross-ratio function defined in Oakes (1989), the predictive model
selection approach given in Gelfand and Ghosh (1998), the Bayesian information criterion
(BIC) considered in Sahu and Dey (2000) and the average of the logarithm of the pseudo
marginal likelihood (ALPML) discussed in Ibrahim et al. (2001). From the comparison of
the plots of the posterior cross-ratio functions found from the three Archimedean copula
models semiparametrically and from the nonparametric estimate of the cross-ratio function,
they decided that the Clayton model (with Kaplan-Meier marginals) is a better fit. When
the three copula fits obtained from the two-stage estimation approach with Exponential,
Weibull and nonparametric fits of marginals were compared, the predictive model selection
approach suggested that the Clayton model with exponential marginals is the best fit. On
the other hand, the BIC and ALPML chose the Frank model with Kaplan-Meier marginals
as the best fit and the Frank model with Weibull marginals has a better fit than the other
models under the parametric marginal distribution assumption. However, when the fits
obtained by the one-stage estimation were compared, it was observed that the Clayton
model with exponential marginals has the best fit according to the three criteria.

We test here the adequacy of the Clayton and the Gumbel-Hougaard copula families by
embedding them in the expanded family of copulas given in (1.40) with u1 = S1(t1), u2 =
S2(t2) and the marginal survivor functions modeled by the parametric proportional hazards
model in (2.14) with the baseline hazard function of Weibull form, h0(t) = λα(λt)α−1.
This has been shown to fit the marginal distributions. In Chapter 3, we also consider
semiparametric Cox models as marginal distributions.

The parameters of the proposed and the expanded copula families were estimated by
maximum likelihood and the maximum likelihood estimates of the parameters, their stan-
dard errors and the maximized log-likelihood values of the corresponding model are given
in Table 2.3. From all three models, it is seen that there is a significant treatment effect
and the interaction between treatment and type of diabetes has also a significant effect
since the treatment is more effective for adult onset diabetics than for the juvenile onset
diabetes. A test of the hypothesis H0 : θ = 1 (i.e., of the Clayton copula) is carried out
using (2.9). We obtain the p-value as 0.5P (χ2

(1) ≥ 0.754) = 0.193, and conclude that there
is no evidence against the Clayton model. Similarly, when testing the Gumbel-Hougaard
model, H0 : φ = 0, we obtain the p-value as 0.5P (χ2

(1) ≥ 1.324) = 0.125. The Clayton
model fits a little better since it has a little larger maximum likelihood and a higher p-value,
but there is not much difference, and there is no evidence against either model.

The working independence model was also fitted to the data with the marginal dis-

48



tributions modeled by the parametric proportional hazards model given in (2.14) and the
maximum likelihood estimates of the parameters and the maximized log-likelihood value
are given in Table 2.4. To test whether there is a significant association between the treated
and untreated eyes, i.e. H0 : φ = 0 in the Clayton model, we can use the likelihood ratio
statistic Λ1(0) = 2(`(β̂(θ = 1), φ̂(θ = 1), θ = 1) − `(β̂(φ = 0, θ = 1), φ = 0, θ = 1)) which
has a limiting distribution with Pr(Λ1(0) ≤ q) = 0.5 + 0.5Pr(χ2

(1) ≤ q). It is obvious that

there is a strong positive association between the pair of eyes since Λ1(0) = 15.886.

The parameters of the proposed and the expanded copula families were also esti-
mated by two-stage estimation procedure as described in Section 1.4. The estimates of
the marginal and dependence parameters, their standard errors and the maximized log-
likelihood values are given in Table 2.4. Note that the likelihood ratio statistics are very
close to what they were for maximum likelihood estimation. We used the parametric boot-
strap method to obtain the p-values. The steps of the procedure are given in Section
2.1 and the first step is explained further for analyzing this data set. In the first step
we generate independent samples of size n = 197 from the estimated null copula model
Cη̃1(η20),η20(S̃1(T1), S̃2(T2)) (i.e. the Clayton model where η1 = φ, η20 = θ0 = 1 or the
Gumbel-Hougaard model where η1 = θ, η20 = φ0 = 0) as follows:

1. Generate independent sample (T 0∗
11 , ..., T

0∗
1n) from the estimated parametric propor-

tional hazards model h̃1(t|x1) = h̃0(t) exp(β̃1x11+β̃2x21+β̃3x11x21) where the baseline
hazard function h0(t) is of Weibull form and the covariate vector x1 is assumed to be
fixed at the observed values in the data set.

2. Generate independent sample of size n, (T 0∗
21 , ..., T

0∗
2n), from S̃2|1(T2|T1 = T 0∗

1 ) =

∂1Cη̃1(η20),η20(S̃1(T
0∗
1 ), S̃2(T2)) where ∂1C(u1, u2) = ∂

∂u1
C(u1, u2), S2(t2) = S2(t2|x2) =

[S0(t2)]
exp(β1x21+β2x22+β3x21x22), S0(t2) = exp[−H0(t2)], H0(t2) =

∫ t2
0
h0(u)du and h0(t)

is of Weibull form.

3. Generate independent sample (C∗
1 , ..., C

∗
n) from the Kaplan-Meier estimate S̃c based

on the observed censoring times Ci (i = 1, ...,m) where m is the number of observed
censoring times and Ci is observed if and only if max(T1i, T2i) > Ci for i = 1, ..., n.
Equivalently, the observed censoring times can be bootstrapped by considering the
number of C∗

i ’s equal to C(j), say N∗
j , where C(j) (j = 1, ..., k) represents the ordered

and distinct observed censoring times and k is the number of distinct censoring times.
Then, N∗ = (N∗

1 , ..., N
∗
k ) has multinomial distribution with sample size n and vector

of probabilities (p1, ..., pk) where pj = S̃c(C(j−1)) − S̃c(C(j)) (Efron, 1981 and Reid,
1981).

4. Obtain (T ∗j1, ..., T
∗
jn) and (δ∗j1, ..., δ

∗
jn) where T ∗ji = min(T 0∗

ji , C
∗
i ) and δji = I[T ∗ji = T 0∗

ji ]
for j = 1, 2 and i = 1, ..., n.
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For each such sample, the two-stage estimation procedure is applied, and produces a
value Λ∗2(α20). The number of bootstrap samples B was taken to be 1000. When testing the
Clayton model, the p-value was estimated as 0.173 and for the Gumbel-Hougaard model,
as 0.123. The same conclusion is reached as before, that there is no evidence against either
model and the Clayton model fits very slightly better. The p-values are similar to those
from the likelihood ratio test.

P-values were also estimated by taking the first B = 100 bootstrap samples and using
fitted lines to the quantile-quantile plots (see Figure 2.2) as described at the end of Section
2.1. In this case, when testing the Clayton model, the p-value in (2.12) was estimated as
0.175 where the estimates of c and λ were found to be 0.634 and 1.463, respectively. Fur-
thermore, for the Gumbel-Hougaard model, it was estimated as 0.118 where the estimates
of c and λ are 0.485 and 0.995, respectively. These estimated p-values are very close to the
ones estimated from 1000 bootstrap samples.

2.3.2 Insurance Data

The data described in Frees and Valdez (1998) consist of 1500 general liability claims
randomly chosen from claims with late settlement lags. For each claim the indemnity
payment (loss) and the allocated loss adjustment expense (ALAE) were recorded. For
1352 claims, the policy limits were also recorded and for the other claims, it is assumed
that there are no policy limits. For 34 claims, the amount of the claim is equal to the
policy limit, which means they have a censored loss variable. The aim of the study is to fit
a joint distribution of losses and expenses. Frees and Valdez (1998), Genest et al. (1998),
Klugman and Parsa (1999), Denuit et al. (2004), Chen and Fan (2005) and Genest et
al. (2006a) analyzed this data set.

Frees and Valdez (1998) fitted the marginal distributions as Pareto distributions which
had been determined by Klugman and Parsa (1995). To identify an appropriate cdf form
of the copula, Frees and Valdez used the method developed by Genest and Rivest (1993)
assuming the true model is a member of the Archimedean copula family and ignoring
the censored observations. They compared the nonparametric estimate of the distribution
function K(v) = Pr(F (X1, X2) ≤ v) where F (X1, X2) is the joint distribution function
of the loss (X1) and ALAE (X2) variables, with three parametric estimates of K(v) cor-
responding to the Clayton, Frank and Gumbel-Hougaard copulas. The quantile-quantile
plots of nonparametric estimate versus parametric estimates of K(v) showed that Gumbel-
Hougaard and Frank copula models fit better. After including the censored observations,
they fitted these two models by using the one-stage maximum likelihood estimation tech-
nique. They compared the Akaike’s information criteria (AIC) of the two models and
observed that the Gumbel-Hougaard copula model has a better fit.
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Figure 2.2: χ2
(1) quantile-quantile plots of 100 simulated values of pseudolikelihood ratio

test statistics for testing the Clayton model (top plot) and the Gumbel-Hougaard model
(bottom plot).
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Genest et al. (1998) used semiparametric estimation as described by Genest et al. (1995)
ignoring the censored observations. They used a two-stage pseudolikelihood method where
they first estimated the marginal distributions by the empirical distribution function and
then fitted four different Archimedean copula models, Clayton, Frank, Gumbel-Hougaard
and the three-parameter copula family (2.13), which includes the other three models. By
an informal comparison of the pseudolikelihoods, they decided that the Gumbel-Hougaard
model is preferred. They also found that the introduction of asymmetry in the Gumbel-
Hougaard copula does not improve the fit.

Klugman and Parsa (1999) showed that the inverse paralogistic and the inverse Burr
distributions represent the loss and ALAE variables, respectively, better than the Pareto
distributions. They fitted the Frank copula model by using the one-stage maximum likeli-
hood estimation approach.

Denuit et al. (2004) followed the procedure presented by Wang and Wells (2000a) under
the assumption that the Archimedean copula family includes the true joint distribution
of loss and ALAE. The censored observations were taken into account by using the esti-
mator of the bivariate distribution function given in Akritas (1994). They compared the
nonparametric estimate of the distribution function K(v) = Pr(F (X1, X2) ≤ v) with four
parametric estimates of K(v) corresponding to the Clayton, Frank, Gumbel-Hougaard and
Joe copulas (Joe, 1997, Section 5.1). The quantile-quantile plots of nonparametric estimate
versus parametric estimates of K(v) and the plots of nonparametric and parametric esti-
mates of λ(v) in (1.74) versus v showed that Gumbel-Hougaard and Frank copula models
fit better. However, they selected the former model since it has the minimum L2-norm
distance (1.84) among the four copula models although the latter model has a very close
distance value to the former one.

Chen and Fan (2005) used the same estimation technique as in Genest et al. (1998).
They fitted Gaussian, Student’s t, survival Clayton and a mixture of the Clayton and the
Gumbel-Hougaard copulas as well as the copula models that Denuit et al. (2004) fitted.
They used pseudolikelihood ratio tests as described in Section 1.5.2 to select the closest
model to the true model. They obtained strong evidence that none of the other copulas
performs significantly better than the Gumbel-Hougaard copula.

Genest et al. (2006a) compared Clayton, Frank and Gumbel-Hougaard copula models
based on Sn, Tn and Wang and Wells’ statistic Sξn with ξ = 0 given in equations (1.86),
(1.87) and (1.84), respectively, by ignoring the censored observations. According to all of
the three test statistics, they selected the Gumbel-Hougaard copula model.

Here, the forms of the marginal distributions are assumed to be inverse paralogistic
and inverse Burr distributions for loss and ALAE variables, respectively. Diagnostic checks
show these models to be satisfactory, and they have been used previously by Klugman and
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Parsa (1999). For convenience, the cumulative distribution functions

F1(x1) =

(
xα1

1

xα1
1 + βα1

1

)α1

for the inverse paralogistic distribution and

F2(x2) =

(
xγ

2

xγ
2 + βγ

2

)α2

for the inverse Burr distribution are used. The adequacy of the Clayton and Gumbel-
Hougaard models is tested by embedding them in (1.40) with u1 = F1(t1) and u2 = F2(t2),
since this distribution function copula form has been used by previous authors. First the
two-parameter Archimedean copula model in (1.40) and the reduced models in (1.28) and
(1.31) are fitted by full maximum likelihood; the results are given in Table 2.5. When
testing the Clayton model, H0 : θ = 1, the likelihood ratio statistic is Λ1(1) = 212.979
and there is very strong evidence against the model. However, when testing the Gumbel-
Hougaard model, H0 : φ = 0, it is observed that there is no evidence against the Gumbel-
Hougaard model since the likelihood ratio statistic Λ1(0) is approximately 0. Indeed, the
value of the statistic is surprisingly small.

To test whether there is a significant association between loss and ALAE variables, i.e.
H0 : θ = 1 in the Gumbel-Hougaard model, the working independence model is fitted (see
Table 2.6). It is seen that there is a strong association between the two variables.

Two-stage parametric estimation method and pseudolikelihood ratio test were also
applied (see Table 2.6). The values of the pseudolikelihood ratio statistics for testing
the Clayton and the Gumbel-Hougaard models are very similar to the likelihood ratio
statistics. To get the p-values of the tests, the parametric bootstrap method given in
Section 2.1 is applied. The first step is explained further for analyzing this data set. We
generate independent samples of size n = 1500 from the estimated null copula model
Cη̃1(η20),η20(F̃1(X1), F̃2(X2)) (i.e. the Clayton model where η1 = φ, η20 = θ0 = 1 or the
Gumbel-Hougaard model where η1 = θ, η20 = φ0 = 0) as follows:

1. Generate independent sample of size n, (X0∗
11 , ..., X

0∗
1n), from the estimated inverse par-

alogistic distribution F̃1(x1) = (xα̃1
1 /(x

α̃1
1 + β̃α̃1

1 ))α̃1 under the working independence
assumption.

2. Generate independent sample of size n, (X∗
21, ..., X

∗
2n), from F̃ (X2|X1 = X0∗

1 ) =
∂1Cη̃1(η20),η20(F̃1(X

0∗
1 ), F̃2(X2)) where ∂1C(u1, u2) = ∂

∂u1
C(u1, u2) and F̃2(x2) =

(xγ̃
2/(x

γ̃
2 + β̃ γ̃

2 ))α̃2 .

3. Generate independent sample of size n, (C∗
11, ..., C

∗
1n), from the Kaplan-Meier estimate

S̃c of the observed censoring times corresponding to the loss (X1) variable.
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4. Obtain (X∗
11, ..., X

∗
1n) and (δ∗11, ..., δ

∗
1n) where X∗

1i = min(X0∗
1i , C

∗
1i) and δ1i = I[X∗

1i =
X0∗

1i ] for i = 1, ..., n.

The number of bootstrap samples B mentioned in the fourth step is taken to be
1000. Since the p-values are very similar to those obtained from likelihood ratio statistics,
the same conclusion is reached as before, that there is no evidence against the Gumbel-
Hougaard model and very strong evidence against the Clayton model.

2.4 Consistency of Likelihood Ratio Test

In this section, we investigate the performance of the likelihood ratio test when the ex-
panded copula family is misspecified. Suppose the expanded copula family is the two-
parameter copula Cα1,α2 , β represents the vector of parameters in the marginal distribu-
tions and the parameter of interest is α2, that is, the null hypothesis under consideration
is H0 : α2 = α20.

First, we show the consistency of the likelihood ratio test when the expanded cop-
ula family F (t1, t2;α1, α2, β) is not misspecified. Suppose that α2 = α∗2 6= α20 and
F (t1, t2;α1, α20, β) 6= F (t1, t2;α1, α

∗
2, β). Let θ̂ = (β̂t, α̂1, α̂2)

t be the maximum likelihood
estimator of θ = (βt, α1, α2)

t and θ∗ = (β∗t, α∗1, α
∗
2)

t be the true parameter vector. Expand-
ing the log-likelihood `(θ) in a Taylor series around θ̂ and evaluating it at θ = θ∗, we get

`(θ̂) = `(θ∗) +
1

2
(θ∗ − θ̂)tI(θ̂)(θ∗ − θ̂) + op(1) (2.15)

where I(θ) = −∂2`(θ)
∂θ∂θt . Then, expanding the log-likelihood `(θ) in a Taylor series around

θ̂0 = (β̂(α20)
t, α̂1(α20), α20)

t and evaluating it at θ∗0 = (β∗0
t, α∗10, α20)

t where (β̂(α20)
t,

α̂1(α20))
t p→ (β∗0

t, α∗10)
t, we get

`(θ̂0) = `(θ∗0) +
1

2
(θ∗0 − θ̂0)

tI(θ̂0)(θ
∗
0 − θ̂0) + op(1). (2.16)

By using (2.15) and (2.16), the likelihood ratio statistic in (2.9) is written as

Λ1(α20) = 2(`(θ∗)− `(θ∗0)) + (θ̂− θ∗)tI(θ̂)(θ̂− θ∗)− (θ̂0− θ∗0)tI(θ̂0)(θ̂0− θ∗0) + op(1). (2.17)

When the true values of the parameters are not boundary points or when only α20 is a
boundary point, the second and the third terms in (2.17) are asymptotically distributed
as chi-squared with degrees of freedom p and p − 1, respectively, where p is the total
number of parameters. When only α∗1 or only α∗2 is a boundary point, the second term
is asymptotically distributed as 0.5χ2

p−1 + 0.5χ2
p. Asymptotic distributions of likelihood
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ratio statistics are given in Self and Liang (1987) under different cases for parameters
being boundary points. In any case, under mild conditions asymptotic distributions of
the second and the third terms are mixtures of chi-square distributions. The first term is
asymptotically positive and unbounded as shown in Cox and Hinkley (1974, pages 288 and
317) and, therefore, Λ1(α20) is a consistent test, i.e. for any finite value c, Pr(Λ1(α20) >
c|α2 = α∗2 6= α20) → 1 as sample size n→∞.

Theorem 2. Given the assumptions A1-A6 in White (1982), the likelihood ratio test is a
consistent test when the expanded model is misspecified.

Proof. Suppose the expanded model Cα1,α2 is misspecified and fθ represents the misspec-
ified distribution. Let g represent the true distribution. White (1982) showed that given
the assumptions A1-A3, θ̂ is a consistent estimator of θ∗, where θ∗ is the value of θ in the
parameter space minimizing the Kullback-Leibler Information Criterion

EG

[
log

(
g(T1, T2)

fθ(T1, T2)

)]
(2.18)

uniquely. Similarly, γ̂0 = (β̂(α20)
t, α̂1(α20))

t is a consistent estimator of γ∗0 = (β∗t0 , α
∗
10)

t,
where γ∗0 is the value of γ = (βt, α1)

t in the parameter space minimizing (2.18) uniquely
subject to α2 = α20.

Expanding the log-likelihood `(θ) in a Taylor series around θ̂ and evaluating it at θ = θ∗,
we get

`(θ̂) = `(θ∗) +
n

2
(θ∗ − θ̂)tAn(θ̂)(θ∗ − θ̂) + op(1) (2.19)

where An(θ) is defined in Appendix A. Then, expanding the log-likelihood `(θ) in a Taylor
series around θ̂0 and evaluating it at θ∗0, we get

`(θ̂0) = `(θ∗0) +
n

2
(θ∗0 − θ̂0)

tAn(θ̂0)(θ
∗
0 − θ̂0) + op(1). (2.20)

By using (2.19) and (2.20), the likelihood ratio statistic in (2.9) is written as

Λ1(α20) = 2(`(θ∗)−`(θ∗0))+n(θ̂−θ∗)tAn(θ̂)(θ̂−θ∗)−n(θ̂0−θ∗0)tAn(θ̂0)(θ̂0−θ∗0)+op(1). (2.21)

White (1982) showed that

√
n(θ̂ − θ∗) →d N(0, A(θ∗)−1B(θ∗)[A(θ∗)−1]t) (2.22)

as described in Appendix A and by following the notations there. Thus, the second term
in (2.21)

n(θ̂ − θ∗)tAn(θ̂)(θ̂ − θ∗) →d

p∑
i=1

µ1iχ
2
(1) (2.23)
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where µ1i’s (i = 1, ..., p) are eigenvalues of

lim
n→∞

EG[An(θ̂)]A(θ∗)−1B(θ∗)[A(θ∗)−1]t = B(θ∗)[A(θ∗)−1]t.

Furthermore, √
n(γ̂0 − γ∗0) →d N(0, [A(θ∗0)]

−1
γγ [B(θ∗0)]γγ([A(θ∗0)]

−1
γγ )t) (2.24)

where A(θ) and B(θ) are partitioned into submatrices such that

A(θ) =

(
[A(θ)]γγ [A(θ)]γα2

[A(θ)]α2γ [A(θ)]α2α2

)
, B(θ) =

(
[B(θ)]γγ [B(θ)]γα2

[B(θ)]α2γ [B(θ)]α2α2

)
,

[A(θ)]γγ and [B(θ)]γγ are (p− 1)× (p− 1) matrices. Therefore, the third term in (2.21)

n(θ̂0 − θ∗0)
tAn(θ̂0)(θ̂0 − θ∗0) = n(γ̂0 − γ∗0)

t[An(θ̂0)]γγ(γ̂0 − γ∗0) →d

p−1∑
i=1

µ0iχ
2
(1) (2.25)

where µ0i’s (i = 1, ..., p− 1) are eigenvalues of

lim
n→∞

EG[[An(θ̂0)]γγ][A(θ∗0)]
−1
γγ [B(θ∗0)]γγ([A(θ∗0)]

−1
γγ )t = [B(θ∗0)]γγ([A(θ∗0)]

−1
γγ )t.

On the other hand, the first term 2(`(θ∗) − `(θ∗0)) is unbounded since the assumption in
White (1982) that the Kullback-Leibler Information Criterion (2.18) has a unique minimum
at θ∗ in the parameter space requires (in the case with no censoring)

EG

[
log

(
g(T1, T2)

fθ∗(T1, T2)

)]
< EG

[
log

(
g(T1, T2)

fθ∗0
(T1, T2)

)]
(2.26)

if α∗2 6= α20. Then, (2.26) becomes

EG

[
log fθ∗(T1, T2)− log fθ∗0

(T1, T2)
]
> 0. (2.27)

Let EG [log fθ∗(T1, T2)] = c∗ and EG

[
log fθ∗0

(T1, T2)
]

= c∗0. By the strong law of large
numbers, 1

n
`(θ∗) → c∗ with probability 1 and 1

n
`(θ∗0) → c∗0 with probability 1. By using

(2.27), 1
n

[`(θ∗)− `(θ∗0)] → c∗ − c∗0 > 0 with probability 1 and, therefore, the first term
in (2.21) is asymptotically positive and unbounded. Hence, when the expanded model is
misspecified, for any finite value c, Pr(Λ1(α20) > c) → 1 as sample size n→∞.

Under mild conditions, this result can be extended to censored data with covariates
when fθ and g are the misspecified and true distributions of (T1, T2, C1, C2, x1, x2), respec-
tively.

When α20 is a boundary point, the results obtained in the above proof are still correct.
Furthermore, Theorem 2 is also valid when any parameter values in the vectors θ∗ or γ∗0
are on the boundary as the first term in (2.21) is unbounded in any case and the other
terms are asymptotically distributed as mixtures of chi-square distributions.
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Chapter 3

Estimation and Tests of Fit for
Semiparametric Models

An advantage of the approaches in Chapter 2 is that they can also be applied to testing
semiparametric copula models in which the marginal distributions are nonparametric or
semiparametric. We develop this approach in this chapter. In this case the proposed and
the expanded models are fitted by semiparametric estimation using either semiparametric
maximum likelihood or two-stage semiparametric estimation. In the following section, we
introduce a semiparametric maximum likelihood estimation method. The two-stage semi-
parametric estimation technique suggested by Shih and Louis (1995) for models without
covariates was summarized in Section 1.4.1. In Section 3.1.2 we generalize this method
to regression models with Cox proportional hazards margins. Likelihood and pseudolike-
lihood ratio statistics for testing a semiparametric copula model are given in Section 3.2,
and semiparametric bootstrap procedures are suggested to estimate p-values. A major
advantage of this approach is that we are not forced to adopt fully parametric assumptions
for the marginal distributions. In Section 3.3 efficiency of semiparametric maximum likeli-
hood and two-stage semiparametric estimates of a copula dependence parameter is studied
and power comparisons of the likelihood ratio and pseudolikelihood ratio tests are given.
Section 3.4 applies the methodology to the two data sets analyzed in the previous chapter.

3.1 Semiparametric Estimation of Copula Models

3.1.1 Models without Covariates

In semiparametric maximum likelihood estimation, nonparametric estimates of the marginal
survivor functions S1(t1) = Pr(T1 ≥ t1) and S2(t2) = Pr(T2 ≥ t2) and the estimate of α
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in the specified parametric copula family Cα(S1(t1), S2(t2)) = Pr(T1 ≥ t1, T2 ≥ t2) are
found simultaneously. We maximize (1.6) with respect to S1, S2 and α by assuming that
the estimates of S1 and S2 have jumps only at observed (i.e., uncensored) times t1 and t2,
respectively. This is a standard assumption in parametric and semiparametric maximum
likelihood. It is convenient to use a discrete hazard parametrization to do this, and we
define

λ∗11 = 1− S1(t
∗
1(1)), λ

∗
1l = [S1(t

∗
1(l−1))− S1(t

∗
1(l))]/S1(t

∗
1(l−1)) for l = 2, ..., k1

and

λ∗21 = 1− S2(t
∗
2(1)), λ

∗
2l = [S2(t

∗
2(l−1))− S2(t

∗
2(l))]/S2(t

∗
2(l−1)) for l = 2, ..., k2

where t∗1(1) < t∗1(2) < ... < t∗1(k1) and t∗2(1) < t∗2(2) < ... < t∗2(k2) are the distinct observed
t1i’s with δ1i = 1 and the distinct observed t2i’s with δ2i = 1, respectively, for i =
1, ..., n. The likelihood (1.6) can be reexpressed by defining C

(1)
α (u1, u2) = ∂Cα(u1, u2)/∂u1,

C
(2)
α (u1, u2) = ∂Cα(u1, u2)/∂u2 and C

(1,2)
α (u1, u2) = ∂2Cα(u1, u2)/∂u1∂u2, giving

L(λ∗1, λ
∗
2, α) =

n∏
i=1

[
λl1(t1i)S1(t1i)λl2(t2i)S2(t2i)C

(1,2)
α (S1(t1i), S2(t2i))

]δ1iδ2i
(3.1)

×
[
λl1(t1i)S1(t1i)C

(1)
α (S1(t1i), S2(t

+
2i))

]δ1i(1−δ2i)

×
[
λl2(t2i)S2(t2i)C

(2)
α (S1(t

+
1i), S2(t2i))

](1−δ1i)δ2i

×
[
Cα(S1(t

+
1i), S2(t

+
2i))

](1−δ1i)(1−δ2i)

where
S1(t1i) =

∏
l:t∗

1(l)
<t1i

(1− λ∗1l), S2(t2i) =
∏

l:t∗
2(l)

<t2i

(1− λ∗2l),

S1(t
+
1i) =

∏
l:t∗

1(l)
≤t1i

(1− λ∗1l), S2(t
+
2i) =

∏
l:t∗

2(l)
≤t2i

(1− λ∗2l),

and where for cases with δ1i = 1, λl1(t1i) is the corresponding λ∗1l where l1(t1i) = l : t1i = t∗1(l)
and for cases with δ2i = 1, λl2(t2i) is the corresponding λ∗2l where l2(t2i) = l : t2i = t∗2(l).

The estimates of S1, S2 (i.e. λ∗1, λ
∗
2) and α can be obtained by maximizing the logarithm

of (3.1) with general purpose optimizers. Software may run into problems if n is too large.
However, for example, n = 1500 (without censoring) seem to be feasible to obtain the
estimates with the R function nlm.

One can alternatively use an approximate likelihood based on differencing. In this case
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the estimates are obtained by maximizing the logarithm of

L(λ∗1, λ
∗
2, α) =

n∏
i=1

[Cα(S1(t1i), S2(t2i))− Cα(S1(t1i), S2(t
+
2i)) (3.2)

− Cα(S1(t
+
1i), S2(t2i)) + Cα(S1(t

+
1i), S2(t

+
2i))]

δ1iδ2i

×
[
Cα(S1(t1i), S2(t

+
2i))− Cα(S1(t

+
1i), S2(t

+
2i))

]δ1i(1−δ2i)

×
[
Cα(S1(t

+
1i), S2(t2i))− Cα(S1(t

+
1i), S2(t

+
2i))

](1−δ1i)δ2i

×
[
Cα(S1(t

+
1i), S2(t

+
2i))

](1−δ1i)(1−δ2i) .

Although (3.2) approximates the continuous time likelihood (3.1), in fact times are mea-
sured discretely in practice and hence, the approximate likelihood is closer to reality.

A nonparametric bootstrap procedure can be used to estimate the variances of estimates
of α, S1(t1) and S2(t2); however, its validity needs to be checked.

Li et al. (2008) developed a semiparametric maximum likelihood estimation procedure
based on a normal transformation model. In this model, hazard rate models are trans-
formed to a standard normal model and a joint normal distribution is assumed for a bi-
variate vector of transformed variates. Similar to our semiparametric maximum likelihood
estimation method, they maximize the likelihood function with respect to cumulative haz-
ard functions and correlation parameter in the bivariate normal distribution by assuming
that cumulative hazard functions have jumps only at distinct observed failure times. The
estimators of the correlation parameter and marginal survivals are shown to be consistent,
asymptotically normally distributed and semiparametric efficient under the semiparamet-
ric normal transformation model. However, the development of asymptotic theory for the
maximum likelihood estimates Ŝ1, Ŝ2 and α̂ appears difficult in general. Hence, in Section
3.3 we conduct simulation studies based on the approaches done and in the next section.

3.1.2 Models with Proportional Hazards Margins

Copula models with semiparametric Cox models for the marginal distributions have been
considered by Glidden and Self (1999), who discuss approximate generalized maximum like-
lihood estimation for the Clayton copula. Pipper and Martinussen (2003) and Martinussen
and Pipper (2005) consider related frailty models with different marginal distributions; they
develop approximations to maximum likelihood. Semiparametric maximum likelihood es-
timation as described in Section 3.1.1 can in fact also be used to fit copula models with
proportional hazards margins for data with covariate vectors {(x1i, x2i), i = 1, ..., n}. In
this case, the marginal survivor function of Tj is assumed to be of the form

Sj(tji) = S0j(tji)
exp(β′xji) (3.3)
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where the baseline survivor function S0j is arbitrary for j = 1, 2 and i = 1, ..., n. In
some applications including the Diabetic Retinopathy Study of Section 2.3.1 or 3.4.1, the
baseline survivor functions are the same (i.e., S01(t) = S02(t) = S0(t)). In any case, (1.6)
is maximized with respect to S01, S02, β and α by assuming that the estimates of S01

and S02 have jumps only at observed times t1 and t2, respectively. The estimates can be
obtained by maximizing (3.2) where Sj(tji) is as in (3.3), S0j(tji) =

∏
l:t∗

j(l)
<tji

(1 − λ∗jl),

S0j(t
+
ji) =

∏
l:t∗

j(l)
≤tji

(1− λ∗jl), λ
∗
j1 = 1− S0j(t

∗
j(1)), λ

∗
jl = [S0j(t

∗
j(l−1))− S0j(t

∗
j(l))]/S0j(t

∗
j(l−1))

for l = 2, ..., kj and j = 1, 2. We perform this here by using general optimization functions;
in particular, in the examples below we used the R function nlm.

It is easy to extend two-stage semiparametric estimation to models with proportional
hazards margins (Glidden, 2000). First, a semiparametric proportional hazards model
(3.3) is fitted to the marginal distributions with a working independence assumption, giving

Ŝ0j(tj), β̂ and, hence, Ŝj(tj) = Ŝ0j(tj)
exp(β̂′xj) for j = 1, 2. In the second stage, the vector of

dependence parameters α is estimated by maximizing the pseudolikelihood function (1.52).
Under some regularity conditions, Glidden (2000) showed that the two-stage estimator of
the dependence parameter in the Clayton model with proportional hazards margins is
consistent and asymptotically normally distributed.

Two-stage semiparametric estimation is obviously a lot simpler computationally than
semiparametric maximum likelihood estimation. Properties of the two estimation methods
are investigated in Section 3.3.2 by a simulation study.

3.2 Likelihood Ratio and Pseudolikelihood Ratio

Statistics for Goodness of Fit

3.2.1 Models without Covariates

We can use the procedures outlined in Section 3.1 to provide goodness of fit tests for a
copula model without making parametric assumptions for the marginal distributions. As
before, we use an expanded family of copulas. After fitting the expanded copula model
and the proposed copula model under H0 : α2 = α20 by maximizing L(λ∗1, λ

∗
2, α1, α2) and

L(λ∗1, λ
∗
2, α1, α20) in (3.2) and obtaining the semiparametric maximum likelihood estimates

(λ̂∗1, λ̂
∗
2, α̂1, α̂2) and (λ̂∗1(α20), λ̂

∗
2(α20), α̂1(α20)), respectively, the likelihood ratio test statistic

Λs1(α20) = 2 logL(λ̂∗1, λ̂
∗
2, α̂1, α̂2)− 2 logL(λ̂∗1(α20), λ̂

∗
2(α20), α̂1(α20), α20) (3.4)

can be used to test the null hypothesis. We discuss how to obtain p-values by simulation
below.
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We can alternatively use a two-stage procedure leading to a pseudolikelihood ratio
statistic. Suppose the proposed and the expanded families are fitted by the semiparametric
two-stage estimation as described in Section 1.4.1. In other words, in the first stage, the
marginal survivor functions are estimated by Kaplan-Meier estimates Ŝ1(t1) and Ŝ2(t2). In
the second stage, the vector of dependence parameters α = (α1, α2) for the expanded copula
family and α1(α20) for the proposed copula family under H0 : α2 = α20 are estimated by
maximizing the pseudolikelihood functions Ls(α) in (1.52) and Ls(α1, α20), respectively, as
in (1.53) where Cα is the expanded copula model. Let α̃ = (α̃1, α̃2) and α̃1(α20) be the
semiparametric estimates of α and α1(α20), respectively. For testing the null hypothesis,
the pseudolikelihood ratio statistic

Λs2(α20) = 2 logLs(α̃1, α̃2)− 2 logLs(α̃1(α20), α20) (3.5)

is used. The two-stage semiparametric estimation approach has been shown to give regular
asymptotic results for α̃ by Shih and Louis (1995), when α does not lie on a boundary.
However, in many settings the parameter value α20 lies on a boundary, and in any case the
likelihood ratio statistic has a limiting distribution that depends on parameter values.

A semiparametric bootstrap procedure is consequently used to estimate the p-value for
testing the null model when the test statistic (3.5) is used. We also apply it with (3.4),
since asymptotic theory for the semiparametric likelihood ratio statistic has not yet been
established. The steps of the procedure are as follows:

1. Generate data {(T ∗1i, T
∗
2i), i = 1, ..., n} from the estimated null model. If semiparamet-

ric maximum likelihood was used for fitting the models, we generate {(U∗
1i, U

∗
2i), i =

1, ..., n} from Cα̂1(α20),α20(u1, u2) and obtain T ∗1i = Ŝ−1
1 (U∗

1i) and T ∗2i = Ŝ−1
2 (U∗

2i)

where Ŝ1(t1) =
∏

l:t∗
1(l)

<t1
(1 − λ̂∗1l(α20)) and Ŝ2(t2) =

∏
l:t∗

2(l)
<t2

(1 − λ̂∗2l(α20)). If the

two-stage semiparametric estimation is used, generate {(U∗
1i, U

∗
2i), i = 1, ..., n} from

Cα̃1(α20),α20(u1, u2) and obtain T ∗1i = Ŝ−1
1 (U∗

1i) and T ∗2i = Ŝ−1
2 (U∗

2i) where Ŝ1 and Ŝ2

are the Kaplan-Meier estimates of the marginal survivor functions. Note that with
probability one, T ∗1i and T ∗2i are uniquely determined.

2. Generate censoring times {(C∗
1i, C

∗
2i), i = 1, ..., n} from an estimate of the distribution

of (C1, C2) according to the properties of censoring in the given data set.

3. Compute t∗1i = min(T ∗1i, C
∗
1i), t

∗
2i = min(T ∗2i, C

∗
2i), δ

∗
1i = I[T ∗1i = t∗1i] and δ∗2i = I[T ∗2i =

t∗2i] for i = 1, ..., n.

4. If (3.4) is being used to test the null hypothesis, obtain the semiparametric max-
imum likelihood estimates (λ̂∗1, λ̂

∗
2, α̂

∗
1, α̂

∗
2) and (λ̂∗1(α20), λ̂

∗
2(α20), α̂

∗
1(α20)) under the

expanded and null models, respectively, by maximizing the likelihood function (3.2)
for the bootstrap sample {(t∗1i, δ

∗
1i, t

∗
2i, δ

∗
2i), i = 1, ..., n}.
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If (3.5) is used to test the null hypothesis, for the bootstrap sample, in the first
stage obtain the Kaplan-Meier estimates Ŝ∗1 and Ŝ∗2 from {(t∗1i, δ

∗
1i), i = 1, ..., n} and

{(t∗2i, δ
∗
2i), i = 1, ..., n}, respectively. In the second stage, find the estimates α̃∗ =

(α̃∗1, α̃
∗
2) and α̃∗1(α20) for the expanded and proposed copula models by maximizing

the pseudolikelihood function (1.52), respectively.

5. Calculate the value Λ∗s of the test statistic (3.4) or (3.5) based on the bootstrap
sample.

6. Steps 1 to 5 are repeated B times and the p-value is calculated as the proportion of
times that Λ∗s ≥ Λobs

s , where Λobs
s is the observed value of Λs1(α20) or Λs2(α20).

As mentioned in Section 1.5.3, Chen and Huang (2007) used another semiparametric
bootstrap procedure. Both bootstrap procedures appear valid, though no theoretical de-
velopment for either is available. Limited simulation results for our procedure suggest that
it provides satisfactory p-values for samples of size 100 in the settings of Section 3.3.

3.2.2 Models with Proportional Hazards Margins

If the data has covariates and the expanded and proposed copula models with proportional
hazards margins are fitted by semiparametric maximum likelihood estimation, then the
likelihood ratio test statistic

Λs1(α20) = 2 logL(β̂, λ̂∗1, λ̂
∗
2, α̂1, α̂2)− 2 logL(β̂(α20), λ̂

∗
1(α20), λ̂

∗
2(α20), α̂1(α20), α20) (3.6)

can be used to test the null hypothesis H0 : α2 = α20. If the models are fitted by two-stage
semiparametric estimation as described in Section 3.1.2, the pseudolikelihood ratio statistic
is evaluated as in (3.5).

To obtain p-values we propose a semiparametric bootstrap procedure, the only change
from the one in Section 3.2.1 being when generating data from the estimated null model
in the first step. If semiparametric maximum likelihood was used for fitting the mod-
els, after generating {(U∗

1i, U
∗
2i), i = 1, ..., n} from Cα̂1(α20),α20(u1, u2), we obtain T ∗1i =

Ŝ−1
01 (U∗

1i
exp(−β̂(α20)′x1i)) and T ∗2i = Ŝ−1

02 (U∗
2i

exp(−β̂(α20)′x2i)) where Ŝ01(t1) =
∏

l:t∗
1(l)

<t1
(1 −

λ̂∗1l(α20)) and Ŝ02(t2) =
∏

l:t∗
2(l)

<t2
(1 − λ̂∗2l(α20)). If two-stage semiparametric estimation

was used, after generating {(U∗
1i, U

∗
2i), i = 1, ..., n} from Cα̃1(α20),α20(u1, u2), obtain T ∗1i =

Ŝ−1
01 (U∗

1i
exp(−β̂′x1i)) and T ∗2i = Ŝ−1

02 (U∗
2i

exp(−β̂′x2i)) where Ŝ01 and Ŝ02 are the estimates of
baseline survivor functions S01 and S02 under the working independence assumption.
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n % Censored τ True copula Proportion
100 0 0.4 θ = 1, φ = 1.333 0.031
100 0 0.8 θ = 1, φ = 8 0.050
100 30 0.4 θ = 1, φ = 1.333 0.054
100 30 0.8 θ = 1, φ = 8 0.041
100 50 0.4 θ = 1, φ = 1.333 0.045
100 50 0.8 θ = 1, φ = 8 0.038
100 0 0.4 φ = 0, θ = 1.667 0.967
100 0 0.8 φ = 0, θ = 5 1
100 30 0.4 φ = 0, θ = 1.667 0.912
100 30 0.8 φ = 0, θ = 5 0.996
100 50 0.4 φ = 0, θ = 1.667 0.782
100 50 0.8 φ = 0, θ = 5 0.943

Table 3.1: Proportion of rejections of H0 : θ = 1 (i.e., Clayton family), under models
(1.40), for the pseudolikelihood ratio statistic.

3.3 Simulation Study

3.3.1 Performance of Semiparametric Pseudolikelihood Ratio
Statistic in Testing the Clayton Copula

The full semiparametric maximum likelihood estimation requires considerable computer
time with larger sample sizes, and given the absence of large sample approximations, we
choose for now to consider only the two-stage approach for tests of fit, since we need to
get p-values by simulation. A simulation study was carried out with the same design as
in Section 2.2 (i.e., with the same 1000 random bivariate failure time samples of size 100
generated from members of the true copula family (1.40)) to assess the performance of the
semiparametric pseudolikelihood ratio test statistic Λs2 in (3.5). As earlier, critical values
for Λs2 were estimated from 10000 independent samples for each scenario. The empirical
type I errors and power values corresponding to those in Table 2.1 are given in Table 3.1.
We observe that empirical type I errors are generally close to 0.05 except for the case
where there is no censoring and Kendall’s tau is 0.4. The semiparametric pseudolikelihood
ratio test is almost as powerful as the parametric likelihood ratio and pseudolikelihood
ratio tests (based on correct marginal specifications) shown in Table 2.1 while achieving
robustness to the form of the marginal distributions.

The power of the semiparametric pseudolikelihood ratio test was also investigated when
the true copula model is not a member of the expanded copula family. We performed the
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n % Censored τ Proportion
100 0 0.4 0.764
100 0 0.8 0.987
100 30 0.4 0.458
100 30 0.8 0.664
100 50 0.4 0.288
100 50 0.8 0.362

Table 3.2: Proportion of rejections of H0 : θ = 1 (i.e., Clayton family) for a test based on
(1.40) but with (1.34) the true copula.

same simulation study as above but assuming the true copula model is the Frank, with
two degrees of association represented by Kendall’s tau values of τ = 0.4 and 0.8, which
correspond to ν = 4.16 and ν = 18.2 in (1.34), respectively. The empirical powers of the
test are given in Table 3.2 when the true copula model is the Frank (1.34), the null model
is the Clayton (1.28) and the misspecified expanded model is (1.40). When we compare
the results with those given in Table 2.2, we observe that the empirical power values of the
semiparametric pseudolikelihood ratio test are a little lower than those of the parametric
likelihood and pseudolikelihood ratio tests, but the latter rely on correct marginal specifi-
cations. The comments from Section 2.2 concerning the difficulties of detecting departures
from a bivariate copula model with heavily censored samples of size 100 naturally apply
here also.

3.3.2 Performance of Semiparametric Maximum Likelihood and
Two-Stage Semiparametric Estimators

Semiparametric maximum likelihood is less attractive for testing fit because, as noted
above, simulation is needed to obtain p-values and the procedure is computationally de-
manding. However, it is of interest to compare the efficiency of estimation of a copula
dependence parameter α with the one- and two-stage methods. The performance of the
semiparametric maximum likelihood estimator of the association parameter is compared
here with that of the two-stage semiparametric estimator of it. We did a simulation study
similar to that in Shih and Louis (1995). We consider Clayton, Gumbel-Hougaard and
Frank copulas, with two degrees of association represented by Kendall’s tau values of 0.4
and 0.7 for each. The marginal distributions of the failure times are considered as Expo-
nential with a unit scale parameter. We consider both uncensored and censored samples.
For the censored case, the bivariate censoring times C1i, C2i were generated independently
from Uniform distribution over (0, 3.2) so that the probability of censoring in each co-
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ordinate is 30%. For each case, we generated 500 simulated samples with n = 50 and
100.

In Table 3.3, empirical biases and standard deviations of the semiparametric maximum
likelihood and the two-stage semiparametric estimates of a reparametrized version of the
parameter in the Clayton (1.28), Gumbel-Hougaard (1.31) and Frank copula (1.34) models
are given. We estimated γ = log φ for the Clayton copula, γ = log(θ − 1) for the Gumbel-
Hougaard copula and γ = log ν for the Frank copula. For both uncensored and censored
cases, the size of the bias relative to the standard deviation of the semiparametric max-
imum likelihood estimator is lower than that of the two-stage semiparametric estimator
when there is moderate association (i.e., τ = 0.4) in all of the copulas. When Kendall’s tau
is 0.7, the size of the bias relative to the standard deviation of the semiparametric max-
imum likelihood estimator of the Gumbel-Hougaard copula parameter is again generally
lower, however, that of the Clayton and Frank parameters are higher. It is observed that
the two-stage semiparametric estimator of the copula parameter is about as good as the
semiparametric maximum likelihood estimator of it.

We also checked on the asymptotic normality of semiparametric maximum likelihood
and two-stage semiparametric estimators of γ by applying Anderson-Darling test statistic
to the 500 estimates γ̂ obtained for each senario. For both uncensored and censored cases,
when the true model is Frank or when it is Clayton or Gumbel-Hougaard with Kendall’s
tau 0.7, it is observed that the approximate normality is reasonable even when sample size
is 50. When the true model is Clayton or Gumbel-Hougaard with moderate association
(τ = 0.4), a sample size of 100 or more is needed for the estimators to be close to normal.
We remark, however, that we have examined the γ̂’s; if we had a variance estimate we

might find that standardized Wald statistics (γ̂ − γ)/

√
V̂ ar(γ̂) were closer to normally

distributed.

3.3.3 Asymptotic Distributions of Semiparametric Likelihood Ra-
tio and Pseudolikelihood Ratio Statistics

Work on semiparametric maximum likelihood by Murphy and van der Vaart (2000) suggests
that likelihood ratio statistics and pseudolikelihood ratio statistics about copula parameters
might have chi-squared asymptotics similar to those for fully parametric models, for cases
where the marginal distributions are non- or semi-parametrically specified. In this section,
we examine properties of semiparametric likelihood ratio and pseudolikelihood ratio statis-
tics by examining the likelihood ratio statistic values obtained from continuation of the
simulation study given in Section 3.3.2. We consider the null hypothesis H0 : γ = γ0 where
γ0 is the true parameter value of the corresponding copula model by using semiparametric
likelihood and pseudolikelihood ratio statistics Λs1(γ0) and Λs2(γ0).
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To check whether the semiparametric likelihood ratio statistic has an asymptotic chi-
squared distribution with 1 degree of freedom, we used the Kolmogorov-Simirnov test
statistic. For both uncensored and censored cases, when the true copula model is Frank
with any Kendall’s tau and Clayton with Kendall’s tau 0.4 and Gumbel-Hougaard with
Kendall’s tau 0.7, the chi-squared distribution assumption seems to be appropriate.

In addition, p×100 = 90, 95 and 99th quantiles Q(p) of a chi-squared distribution with
degree of freedom 1 and empirical values of Pr(Λs1 > Q(p)) = 1 − p and Q(p) computed
from 500 samples are given in Table 3.4. ′∗′ indicates that the corresponding empirical
value of 1− p does not fall in a 95% confidence interval for 1− p. The results in Table 3.4
generally coincide with the ones obtained from the Kolmogorov-Simirnov test.

In Figures 3.1, 3.2 and 3.3, the quantile-quantile plots of semiparametric likelihood
and pseudolikelihood ratio statistics are given when the true copula models are Clayton,
Gumbel-Hougaard and Frank, respectively, for uncensored samples with size n = 100.
They show that an adjustment for the semiparametric likelihood and pseudolikelihood
ratio statistics is generally necessary to obtain that the distribution of the statistics is
approximated by a chi-squared distribution with 1 degree of freedom. However, since it is
hard to find the correction term for each copula model seperately, especially under censor-
ing, and since correction terms may depend on the unknown parameters and a parameter
can be on the boundary as illustrated in Section 2.1.1, it is suggested to estimate p-values
by using the bootstrap procedure described in Section 3.2.

3.4 Applications

Diabetic Rethinopathy Study data and insurance data were analyzed in Section 2.3 para-
metrically, and are analyzed semiparametrically in this section. It can be seen from the
following that semiparametric estimates of the dependence parameters are very close to
their fully parametric estimates and the same conclusions are reached as before for both
of the data sets.

3.4.1 Diabetic Rethinopathy Study Data

The expanded and proposed copula models were fitted here by semiparametric maximum
likelihood estimation when the marginal distributions are modeled by a Cox semiparamet-
ric proportional hazards model (3.3) where the two eyes of an individual have the same
baseline survivor function (i.e., S01 = S02 = S0), that is by (2.14) where the baseline hazard
function is arbitrary. In Table 3.5, the semiparametric maximum likelihood estimates of
the parameters and maximized log-likelihood values are shown. For the Clayton model,
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True Clayton Gumbel-Hougaard Frank

n % Cens. τ p Q(p) 1− p̂ Q̂(p) 1− p̂ Q̂(p) 1− p̂ Q̂(p)
50 0 0.4 0.90 2.706 0.120 2.950 0.126 3.222 0.122 3.122

0.95 3.841 0.074* 4.434 0.062 4.548 0.066 4.302
0.99 6.635 0.018 6.832 0.024* 10.077 0.014 7.761

100 0 0.4 0.90 2.706 0.110 2.914 0.144* 3.342 0.124 3.014
0.95 3.841 0.064 4.251 0.074* 4.989 0.056 3.959
0.99 6.635 0.014 8.515 0.026* 9.061 0.018 7.348

50 30 0.4 0.90 2.706 0.124 3.022 0.130* 3.240 0.118 2.870
0.95 3.841 0.076* 5.182 0.076* 4.880 0.062 4.125
0.99 6.635 0.028* 7.462 0.034* 9.787 0.006 6.067

100 30 0.4 0.90 2.706 0.124 2.910 0.138* 3.441 0.122 2.984
0.95 3.841 0.062 4.313 0.080* 5.118 0.056 4.120
0.99 6.635 0.016 7.472 0.018 8.367 0.022* 7.447

50 0 0.7 0.90 2.706 0.174* 3.832 0.110 2.766 0.134* 3.252
0.95 3.841 0.100* 5.439 0.070* 4.246 0.070* 4.417
0.99 6.635 0.032* 8.745 0.020* 7.657 0.018 7.400

100 0 0.7 0.90 2.706 0.148* 3.476 0.082 2.473 0.136* 3.355
0.95 3.841 0.078* 4.777 0.044 3.561 0.078* 4.589
0.99 6.635 0.022* 8.248 0.008 6.257 0.010 6.310

50 30 0.7 0.90 2.706 0.160* 3.456 0.152* 3.604 0.150* 3.550
0.95 3.841 0.090* 6.194 0.086* 5.662 0.084* 5.146
0.99 6.635 0.050* 9.861 0.036* 8.957 0.022* 8.640

100 30 0.7 0.90 2.706 0.120 3.116 0.142* 3.335 0.128* 3.105
0.95 3.841 0.072* 4.462 0.066 4.393 0.072* 4.634
0.99 6.635 0.022* 9.538 0.028* 8.241 0.018 8.438

Table 3.4: p × 100 = 90, 95 and 99th quantiles Q(p) of a chi-squared distribution with
degrees of freedom 1 and empirical values of Pr(Λs1 > Q(p)) = 1− p and Q(p) computed
from 500 samples.
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Figure 3.1: Quantile-quantile plots of semiparametric likelihood and pseudolikelihood ratio
statistics when the true copula model is Clayton with Kendall’s tau 0.4 (top plot) and 0.7
(bottom plot), sample size is n = 100 and there is no censoring.

71



Figure 3.2: Quantile-quantile plots of semiparametric likelihood and pseudolikelihood ratio
statistics when the true copula model is Gumbel-Hougaard with Kendall’s tau 0.4 (top plot)
and 0.7 (bottom plot), sample size is n = 100 and there is no censoring.
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Figure 3.3: Quantile-quantile plots of semiparametric likelihood and pseudolikelihood ratio
statistics when the true copula model is Frank with Kendall’s tau 0.4 (top plot) and 0.7
(bottom plot), sample size is n = 100 and there is no censoring.

73



Model Log-likelihood φ̂ θ̂ β̂1 β̂2 β̂3

Two-parameter -974.387 0.934 1.031 -0.423 0.353 -0.819
Clayton -974.427 1.068 1 -0.421 0.354 -0.816
Gumbel-Hougaard -976.033 0 1.238 -0.433 0.352 -0.812

Table 3.5: Semiparametric maximum likelihood estimation results for DRS data.

Model Log-likelihood φ̃ θ̃ β̃1 β̃2 β̃3

Working independence 0 1 -0.425 0.341 -0.846
Two-parameter -101.350 0.791 1.075
Clayton -101.610 1.107 1
Gumbel-Hougaard -102.761 0 1.239

Table 3.6: Two-stage semiparametric estimation results for DRS data.

our estimates are very close to those of Glidden and Self (1999) who used an approximate
maximum likelihood approach. For testing the Clayton and the Gumbel-Hougaard cop-
ula models, likelihood ratio statistics were found as Λs1(1) = 0.080 and Λs1(0) = 3.290,
respectively. When the semiparametric bootstrap procedure described in Section 3.2.2
is applied, the p-values are estimated as 0.273 for the Clayton model and 0.049 for the
Gumbel-Hougaard model. There is some mild evidence against the Gumbel-Hougaard
model. In this case we have not been constrained by the assumption of Weibull marginal
distributions, but proportional hazards is still assumed.

We also fitted the copula families with two-stage semiparametric estimation. The two-
stage semiparametric estimates of the dependence parameters and the maximized log-
likelihood values are given in Table 3.6. Pseudolikelihood ratio statistics were found as
Λs2(1) = 0.521 and Λs2(0) = 2.822 for testing the Clayton and Gumbel-Hougaard copula
models, respectively. We carried out the semiparametric bootstrap procedure to obtain the
p-values for testing the proposed models and they are estimated as 0.18 for the Clayton
model and 0.102 for the Gumbel-Hougaard model. The same conclusion that the Clayton
model fits slightly better is reached as when parametric likelihood or pseudolikelihood ratio
tests are conducted in Section 2.3.1.

Note that to estimate the variances of estimates of the dependence parameters or to
get confidence intervals for them, a nonparametric bootstrap procedure can be used.

74



3.4.2 Insurance Data

Two-stage semiparametric estimation (see Table 3.7) yields pseudolikelihood ratio statistics
of 221.6 (Clayton model) and virtually zero (Gumbel-Hougaard model), very close to those
for the parametric case. Note that in this case, full semiparametric maximum likelihood is
computationally forbidding because of the size of n.

Model Log-likelihood φ̃ θ̃
Two-parameter 115.481 6× 10−5 1.441
Clayton 4.662 0.488 1
Gumbel-Hougaard 115.481 0 1.441

Table 3.7: Two-stage semiparametric estimation results for insurance loss data.
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Chapter 4

Estimation and Tests of Fit Based on
Sequential Lifetime Data

In many settings one encounters sequences of survival times, observed one after the other.
Difficulties in modeling and analyzing sequential lifetime data have become well known
(e.g. see Cook and Lawless, 2007, Chapter 4; Lawless and Fong, 1999; Schaubel and
Cai, 2004ab). In particular, followup studies in which a sequence of survival times may
be observed are of finite duration, with the result that survival times can be censored.
However, because the survival times for a given individual are typically not independent
and because they are observed sequentially, a form of dependent censoring is induced even
when the overall followup time C is independently determined. For example, if the study
is of a fixed length C and the first survival time is T1, then a censoring time C2 = C − T1

is induced for the second survival time, T2. If T1 and T2 are related then so are T2 and
C2. Thus independent censoring does not apply to T2 and simple methods of analysis
that focus on the marginal distribution of T2 and related covariates cannot be applied.
Moreover, there is a fundamental identifiability problem in most studies, related to the
fact that second or subsequent survival times are observable only if preceding survival
times for an individual are uncensored (Lin et al., 1999; Schaubel and Cai, 2004a; Cook
and Lawless, 2007, Section 4.4.1). In addition, in some studies, a significant proportion of
individuals do not experience the first event or survival time. For example, in the case of
cancer relapse and death in the example given in Section 1.1.2, some individuals may not
suffer a relapse and, indeed, may be cured of their disease (i.e., p = F1(∞) < 1). Thus,
modeling of the distribution of T1 and the joint distribution of T1, T2 should reflect this
feature.

As discussed in Section 1.4.2, a number of authors have studied nonparametric estima-
tion of F (t1, t2) in the case in which there are no covariates. In fact, unless T1 has finite sup-
port with Pr(T1 ≤ Cmax) = 1, where Cmax is the largest followup time in a study, the best
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that can be estimated nonparametrically are probabilities F (t1, t2), where t1 + t2 ≤ Cmax.
Correspondingly, although F1(t1) = Pr(T1 ≤ t1) is estimable for 0 ≤ t1 ≤ Cmax, for T2 all
that is estimable are conditional probabilities Pr(T2 ≤ t2|T1 ≤ t1), where t1 + t2 ≤ Cmax.
Lin et al. (1999), Schaubel and Cai (2004a) and Cook and Lawless (2007, Section 4.4.1)
provide good discussions of this issue.

There is often considerable interest in estimating the marginal distribution for T2.
One way to do this is to adopt a parametric model for the joint distribution of T1 and
T2. This approach was taken by He and Lawless (2003), who used a copula formulation
along with piecewise constant or spline hazard functions for T1 and T2, to reduce reliance
on strong parametric assumptions. However, the approach is still parametric, and can
sometimes have trouble picking up the shapes of the hazard functions. Moreover, ways
of checking these or simple parametric models for sequential survival times are currently
lacking. Our objective is to propose new semiparametric approaches, in which a copula is
used to model association between T1 and T2, but the marginal distributions of T1 and T2

are left nonparametric. Our models also incorporate the possibility that F1(t1) approaches
a value p < 1 as t1 → ∞; this allows for the feature discussed in the cancer treatment
example in Section 1.1.2, where some individuals are cured and will never experience a
relapse.

In the following section, we present our modelling approach and show how the case
where p = F1(∞) < 1 is handled. Section 4.2 develops some semiparametric estimation
procedures. Section 4.3 presents a simulation study demonstrating their properties. In
sections 4.4 and 4.5 we introduce another modelling approach and a semiparametric es-
timation technique to fit the model, respectively. Section 4.6 applies the methodology
developed to the colon cancer treatment data.

4.1 Copula Models for a Sequence of Survival Times

In some sequential bivariate data such as the colon cancer data described in Section 1.1.2,
some individuals never have the first event, which defines T1. For example, a fraction
1− p of patients might have no chance of disease recurrence. In these settings, a mixture
model is appropriate to represent the distribution of the time to first event (Lawless, 2003).
Therefore, for t1 <∞, the distribution function for the time to the first event is

F1(t1) = Pr(T1 ≤ t1) = pPr(T1 ≤ t1|T1 <∞) = pF0(t1) (4.1)

where 0 < p = Pr(T1 < ∞) ≤ 1 and F0(t1) is a conditional distribution function of T1

given T1 <∞ with F0(0) = 0 and F0(∞) = 1. Note that the case p = 1 is also included in
this type of model.
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Since the second survival time T2 can only be observed when the first has been observed,
that is if T1 <∞, the distribution function of T2 is modelled as

F2(t2) = Pr(T2 ≤ t2|T1 <∞). (4.2)

We consider two approaches to model the bivariate distribution of the successive survival
times T1 and T2 by using copula models. In the first approach, the bivariate distribution
of T1 and T2 is modelled as

F (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2) = C ′(F1(t1), F2(t2)) (4.3)

for t1 <∞ with F (∞,∞) = p. The properties of the function C ′ are given in Theorem 4
below.

Assume F1(t1) is strictly monotone increasing for t1 ≥ 0. The distribution of F1(T1)
is Uniform(0, p) as it is shown in Theorem 3. The effect of that on the properties of the
model (4.3) is presented in Theorem 4.

Theorem 3. Given U1 < p (T1 <∞), U1 = F1(T1) is distributed as Uniform(0, p).

Proof.

Pr(U1 ≤ u1|U1 < p) =
1

p
Pr(F1(T1) ≤ u1) =

1

p
Pr(T1 ≤ F−1

1 (u1)) =
1

p
F1(F

−1
1 (u1)) =

u1

p

for 0 ≤ u1 ≤ p.

Theorem 4. The function C ′(u1, u2) in (4.3) is defined on [0, p] × [0, 1] and has the fol-
lowing properties:

1. C ′(p, u2) = pu2, 0 ≤ u2 ≤ 1.

2. C ′(u1, 1) = u1, 0 ≤ u1 ≤ p.

3. C ′(0, u2) = C ′(u1, 0) = 0, 0 ≤ u1 ≤ p and 0 ≤ u2 ≤ 1.

4. C ′(v1, v2) − C ′(v1, u2) − C ′(u1, v2) + C ′(u1, u2) ≥ 0 whenever (u1, u2) ∈ [0, p] × [0, 1]
and (v1, v2) ∈ [0, p]× [0, 1] such that 0 ≤ u1 ≤ v1 ≤ p and 0 ≤ u2 ≤ v2 ≤ 1.

Proof. 1. C ′(p, u2) = Pr(F1(T1) ≤ p, F2(T2) ≤ u2) = pPr(F2(T2) ≤ u2|F1(T1) ≤ p) =
pPr(T2 ≤ F−1

2 (u2)|T1 <∞) = pF2(F
−1
2 (u2)) = pu2.

2. C ′(u1, 1) = Pr(F1(T1) ≤ u1, F2(T2) ≤ 1) = Pr(F1(T1) ≤ u1) = u1.
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3. C ′(0, u2) = Pr(F1(T1) ≤ 0, F2(T2) ≤ u2) = 0 and similarly, C ′(u1, 0) = Pr(F1(T1) ≤
u1, F2(T2) ≤ 0) = 0.

4. C ′(v1, v2) − C ′(v1, u2) − C ′(u1, v2) + C ′(u1, u2) = Pr(F1(T1) ≤ v1, F2(T2) ≤ v2) −
Pr(F1(T1) ≤ v1, F2(T2) ≤ u2) − Pr(F1(T1) ≤ u1, F2(T2) ≤ v2) + Pr(F1(T1) ≤
u1, F2(T2) ≤ u2) ≥ 0.

We now consider estimation based on data from n independent individuals. The likeli-
hood function in (1.7) is written in terms of C ′(F1(t1), F2(t2)) as follows:

L =
n∏

i=1

[
∂2C ′(F1(t1i), F2(t2i))

∂t1i∂t2i

]δ1iδ2i
[
∂F1(t1i)

∂t1i

− ∂C ′(F1(t1i), F2(t2i))

∂t1i

]δ1i(1−δ2i)

× [1− F1(t1i)]
1−δ1i . (4.4)

We discuss estimation based on this below.

It may sometimes be better to represent the bivariate distribution of the times (T1, T2)
in the semi-survival form

Pr(T1 ≤ t1, T2 > t2) = C ′(F1(t1), S2(t2)) (4.5)

for t1 < ∞, where C ′(u1, u2) is a function defined on 0 ≤ u1 ≤ p, 0 ≤ u2 ≤ 1, F1(t1) is
given in (4.1) and S2(t2) = 1 − F2(t2) is the survivor function of T2 given T1 < ∞ with
S2(0) = 1, S2(∞) = 0. The likelihood function in (1.7) and (4.4) is written in terms of
C ′(F1(t1), S2(t2)) as follows:

L =
n∏

i=1

[
−∂

2C ′(F1(t1i), S2(t2i))

∂t1i∂t2i

]δ1iδ2i
[
∂C ′(F1(t1i), S2(t2i))

∂t1i

]δ1i(1−δ2i)

[1− F1(t1i)]
1−δ1i .

(4.6)

Theorem 4 shows C ′ is not a copula, but we can re-express the models (4.3) and (4.5)
using copulas. To do this, for (4.3) we model Pr(T1 ≤ t1, T2 ≤ t2|T1 <∞) with a standard
copula function C as

Pr(T1 ≤ t1, T2 ≤ t2|T1 <∞) = C(F0(t1), F2(t2)), (4.7)

where F0(t1) is described in (4.1) and F2(t2) is given in (4.2). The likelihood function in
(1.7) is written in terms of C(F0(t1), F2(t2)) as follows:

L =
n∏

i=1

pδ1i

[
∂2C(F0(t1i), F2(t2i))

∂t1i∂t2i

]δ1iδ2i
[
∂F0(t1i)

∂t1i

− ∂C(F0(t1i), F2(t2i))

∂t1i

]δ1i(1−δ2i)

× [1− pF0(t1i)]
1−δ1i . (4.8)
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For the model (4.5) we consider

Pr(T1 ≤ t1, T2 > t2|T1 <∞) = C(F0(t1), S2(t2)), (4.9)

and then the likelihood function (4.6) is written as

L =
n∏

i=1

pδ1i

[
−∂

2C(F0(t1i), S2(t2i))

∂t1i∂t2i

]δ1iδ2i
[
∂C(F0(t1i), S2(t2i))

∂t1i

]δ1i(1−δ2i)

[1− pF0(t1i)]
1−δ1i .

(4.10)

The model in (4.3) can thus be represented in terms of a cdf copula (4.7) as

Pr(T1 ≤ t1, T2 ≤ t2, T1 <∞) = C ′(F1(t1), F2(t2)) = pC(F0(t1), F2(t2)) (4.11)

and the model in (4.5) can be represented in terms of a semi-survival copula (4.9) as

Pr(T1 ≤ t1, T2 > t2, T1 <∞) = C ′(F1(t1), S2(t2)) = pC(F0(t1), S2(t2)). (4.12)

Many well known copula models allow positive association only between U1 and U2.
When there is a positive association between T1 and T2, the model given in (4.11) is then
useful. However, the semi-survival model given in (4.12) is useful if the association between
T1 and T2 is negative.

In the following section, the most relevant way to describe the association between the
times T1 and T2 is considered when F1(∞) = p < 1, and a commonly used association
measure Kendall’s tau is investigated.

4.1.1 Dependence Measures

The most relevant association measure is based on the association between T1 and T2

given T1 < ∞ as we can only observe T2 if T1 is observed. Let (T11, T21) and (T12, T22)
be independent and identically distributed random vectors having joint distribution F
in (4.3). For this setting, the definition of Kendall’s tau given in Section 1.2.3 becomes
the difference between the conditional probabilities of concordance and discordance given
T11 <∞ and T12 <∞, that is,

τ = Pr((T11 − T12)(T21 − T22) > 0|T11 <∞, T12 <∞) (4.13)

− Pr((T11 − T12)(T21 − T22) < 0|T11 <∞, T12 <∞).

By the definition and results in Section 1.2.3, τ is expressed in terms of the copula
function C in (4.7) as follows:

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (4.14)

= 1− 4

∫ 1

0

∫ 1

0

∂C(u1, u2)

∂u1

∂C(u1, u2)

∂u2

du1du2. (4.15)
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Since C(u1, u2) = p−1C ′(pu1, u2) for 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1, from (4.14) and (4.15),
τ can also be written in terms of the function C ′ in (4.3) as

τ =
4

p2

∫ 1

0

∫ p

0

C ′(u1, u2)dC
′(u1, u2)− 1 (4.16)

= 1− 4

p2

∫ 1

0

∫ p

0

∂C ′(u1, u2)

∂u1

∂C ′(u1, u2)

∂u2

du1du2. (4.17)

Consider the semi-survival model given in (4.5) and let Pr(U1 ≤ u1, U2 > u2) =
C̆ ′(u1, 1− u2) for 0 ≤ u1 ≤ p and 0 ≤ u2 ≤ 1. Since C ′(u1, u2) = u1 − C̆ ′(u1, 1− u2), from
(4.17) we obtain

τ =
4

p2

∫ 1

0

∫ p

0

∂C̆ ′(u1, u2)

∂u1

∂C̆ ′(u1, u2)

∂u2

du1du2 − 1. (4.18)

Similarly, when we consider the model given in (4.9), we let Pr(U1 ≤ u1, U2 > u2) =
C̆(u1, 1 − u2) for 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1. Since C(u1, u2) = u1 − C̆(u1, 1 − u2), from
(4.15) we obtain

τ = 4

∫ 1

0

∫ 1

0

∂C̆(u1, u2)

∂u1

∂C̆(u1, u2)

∂u2

du1du2 − 1. (4.19)

When estimating Kendall’s tau (4.13) parametrically, we can use existing formulas of
Kendall’s tau for copula families C such as in (1.30), (1.33) or (1.36). The parametric esti-
mate of Kendall’s tau is obtained by plugging in the parametric estimate of the dependence
parameter(s).

When estimating Kendall’s tau (4.13), as we only take into account the observed T1

values, censoring may only affect the second survival time T2. If we knew that p = 1
then to estimate Kendall’s tau nonparametrically, a method presented in Wang and Wells
(2000b) could be used. A nonparametric estimate of Kendall’s tau, motivated by (4.14),
is

τ̃ = 4
k∑

i=1

k∑
j=1

F̃ (t1(i), t2(j))F̃ (∆t1(i),∆t2(j))− 1 (4.20)

where F̃ (t1, t2) is a nonparametric estimate of bivariate distribution function F (t1, t2),
t1(1) < t1(2) < ... < t1(k), t2(1) < t2(2) < ... < t2(k) are the ordered observations of t1 and

t2 for the cases where t1 is observed, k =
∑n

i=1 δ1i and F̃ (∆t1(i),∆t2(j)) = F̃ (t1(i), t2(j)) −
F̃ (t1(i), t2(j−1))− F̃ (t1(i−1), t2(j)) + F̃ (t1(i−1), t2(j−1)) with t1(0) = 0 and t2(0) = 0.

If F (t1, t2) is estimated nonparametrically by the method proposed by Lin et al. (1999),
then F̃ (t1, t2) = F̃1(t1)− H̃(t1, t2) where F̃1(t1) and H̃(t1, t2) are given in (1.56) and (1.55),
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respectively, for t1 + t2 ≤ Cmax. After estimating the Kendall’s tau by calculating (4.20),
as described in Genest and Rivest (1993) and Wang and Wells (2000a), a nonparametric
estimate of the dependence parameter α in the copula function C given in (4.7) can be
obtained by equating τ̃ to τ in (4.14) for the given copula function C if there is a one-to-one
relationship between τ and α.

However, we never know for sure whether p = 1 or p < 1 and there will almost always
be censoring in this setting. Unless all individuals have T1 observed, this nonparametric es-
timation procedure cannot be used. Hence, another approach to model bivariate sequential
data is presented in Section 4.4 in which we consider only individuals for whom T1 ≤ Q,
with some suitably chosen Q.

4.2 Semiparametric Estimation Methods

4.2.1 A Two-Stage Procedure

We consider models in which the copula functions C in (4.11) or (4.12) are specified para-
metrically as Cα(u1, u2). In this section we give a procedure for estimating F0(t1) and
F2(t2) nonparametrically, while obtaining parametric estimates of p and α. The distribu-
tion function F1(t1) is first estimated by a Kaplan-Meier estimate as in Shih and Louis
(1995). However, the nonparametric estimation of F2(t2) is performed with the assumed
copula family. The nonparametric estimate of F2(t2) and the estimate of α are found
simultaneously. The approach is as follows.

Consider the distribution function copula form (4.11). When p and F0(t1) are fixed,
the likelihood function (4.8) is proportional to the following, written in terms of Cα(F0(t1),
F2(t2)),

L =
n∏

i=1

[
∂2Cα(F0(t1i), F2(t2i))

∂F0(t1i)∂t2i

]δ1iδ2i
[
1− ∂Cα(F0(t1i), F2(t2i))

∂F0(t1i)

]δ1i(1−δ2i)

. (4.21)

Note that α and F2(t2) can only be estimated by using cases with T1 observed (i.e., uncen-
sored) since otherwise T2 is not seen. Estimates of both F0(t1) and p are needed for this
purpose, but only F1(t1) = pF0(t1) is estimable nonparametrically from observations on
T1, using Kaplan-Meier. In settings where it is felt that p < 1, we are forced to estimate
p in an ad hoc way. Note that the basis for assuming p < 1 rests with background knowl-
edge, and cannot be validated solely from the observed data. Evidence for p < 1 would be
convincing only if F̂1(t1) has levelled off beyond some value t∗1 < Cmax. In that case, we
will adopt the estimate p̂ = F̂1(t

∗
1) and then F̂0(t1) = p̂−1F̂1(t1). In cases where F̂1(t1) is

still increasing slightly up to Cmax, we could adopt a p̂ that is a little larger than F̂1(Cmax).
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In both cases we must depend on background knowledge to motivate the estimate p̂ < 1;
there is nothing in the data that can guarantee that p < 1.

Thus, F1 is estimated first by its Kaplan-Meier estimate, F̂1, and a plausible p̂ is selected
based on F̂1 and on background knowledge. When p and F0(t1i) = F1(t1i)/p are replaced
by p̂ and F̂0(t1i) = p̂−1F̂1(t1i) in (4.21), it becomes proportional to

Ls =
n∏

i=1

[
∂2Cα(F̂0(t1i), F2(t2i))

∂F̂0(t1i)∂t2i

]δ1iδ2i
[
1− ∂Cα(F̂0(t1i), F2(t2i))

∂F̂0(t1i)

]δ1i(1−δ2i)

. (4.22)

Next, (4.22) is maximized with respect to F2 and α. To do this we assume that F̂2 has jumps
only at observed (i.e., uncensored) times t2, so that the maximization problem becomes
essentially parametric. It is convenient to use a discrete hazard parametrization as in

Chapter 3, so we define λ∗1 = F2(t
∗
2(1)) and λ∗l =

(
F2(t

∗
2(l))− F2(t

∗
2(l−1))

)
/
(
1− F2(t

∗
2(l−1))

)
for l = 2, ..., k where t∗2(1) < t∗2(2) < .... < t∗2(k) are the distinct observed t2i’s with δ2i = 1, for

i = 1, ..., n. The likelihood (4.22) can be reexpressed by letting û1i = F̂0(t1i) and defining

C
(1,2)
α (u1, u2) = ∂2Cα(u1, u2)/∂u1∂u2 and C

(1)
α (u1, u2) = ∂Cα(u1, u2)/∂u1, giving

Ls(λ
∗, α) =

∏
i:δ1i=1

{
C(1,2)

α (û1i, F2(t2i))λl(t2i)[1− F2(t
−
2i)]

}δ2i
{
1− C(1)

α (û1i, F2(t2i))
}1−δ2i

,

(4.23)
where F2(t2i) = 1−

∏
l:t∗

2(l)
≤t2i

(1− λ∗l ), F2(t
−
2i) = 1−

∏
l:t∗

2(l)
<t2i

(1− λ∗l ) and where for cases

with δ2i = 1, λl(t2i) is the corresponding λ∗l where l(t2i) = l : t∗2(l) = t2i. The logarithm of

(4.23) is conveniently maximized using general purpose optimizers. We use the R function
nlm in examples below.

Similarly, when we consider the semi-survival copula form Cα(F0(t1), S2(t2)) given in
(4.12), we define the parametrization λ∗1 = 1 − S2(t

∗
2(1)) and λ∗l = 1 − S2(t

∗
2(l))/S2(t

∗
2(l−1))

for l = 2, ..., k and maximize the logarithm of the likelihood function

Ls(λ
∗, α) =

∏
i:δ1i=1

{
−C(1,2)

α (û1i, S2(t2i))λl(t2i)S2(t
−
2i)

}δ2i
{
C(1)

α (û1i, S2(t2i))
}1−δ2i

, (4.24)

where S2(t2i) =
∏

l:t∗
2(l)

≤t2i
(1− λ∗l ) and S2(t

−
2i) =

∏
l:t∗

2(l)
<t2i

(1− λ∗l ).

A nonparametric bootstrap procedure can be used to estimate the variance of the
estimates of α, F2(t2) and S2(t2), and provide confidence intervals. To reflect all of the
sampling variation present in the data, we reestimate all of the quantities p̂, α̂, F̂0 and F̂2

for each bootstrap sample.

We remark that Shih and Louis (1995) were able to show asymptotic normality and
obtain a variance estimate for α̂ for their two-stage procedure for parallel bivariate survival
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times. This was reasonably straightforward since Kaplan-Meier estimates were inserted for
both F1 and F2 at the second stage. The sequential case is much more complex, since both
α and F2 are estimated in stage 2, and no theoretical development of asymptotic results
has yet been obtained. Properties of the estimators are studied by simulation in Section
4.3.

In Section 4.6 we also consider goodness of fit tests for copulas, based on embedding a
copula family within a larger family as in Section 3.2. In particular, if Cα1,α2(u1, u2) is a two-
parameter family of copulas, we may test H0 : α2 = α20 by considering a semiparametric
pseudolikelihood ratio statistic, written in terms of p, F0, F2, α1 and α2 as

Λs2(α20) = 2 logLs(p̂, F̂0, F̂2, α̂1, α̂2)− 2 logLs(p̂, F̂0, F̂2(α20), α̂1(α20), α20),

where F̂2(α20) and α̂1(α20) are obtained by maximizing (4.22) with α2 fixed at α20. In that
case we obtain p-values by a semiparametric bootstrap procedure designed to respect the
null hypothesis. The bootstrap procedure is similar to the one in Section 3.2.1 but it must
follow the properties of sequential data.

4.2.2 Semiparametric Maximum Likelihood

In this case, nonparametric estimates of F0(t1) and F2(t2) and parametric estimates of α
are obtained simultaneously. After estimating p as in the previous section, the likelihood
function (4.8) for the copula model (4.7) is maximized with respect to F0, F2 and α by
assuming that the estimates of F0 and F2 have jumps only at observed times t1 and t2,
respectively. When we use a discrete hazard reparametrization, as in Section 4.2.1 we
define

λ∗11 = F0(t
∗
1(1)), λ

∗
1l = [F0(t

∗
1(l))− F0(t

∗
1(l−1))]/[1− F0(t

∗
1(l−1))] for l = 2, ..., k1

and

λ∗21 = F2(t
∗
2(1)), λ

∗
2l = [F2(t

∗
2(l))− F2(t

∗
2(l−1))]/[1− F2(t

∗
2(l−1))] for l = 2, ..., k2

where t∗1(1) < t∗1(2) < .... < t∗1(k1) and t∗2(1) < t∗2(2) < .... < t∗2(k2) are distinct observed t1i’s with
δ1i = 1 and the distinct observed t2i’s with δ2i = 1, respectively, for i = 1, ..., n and k2 ≤ k1.
The likelihood (4.8) can be reexpressed by defining C

(1,2)
α (u1, u2) = ∂2Cα(u1, u2)/∂u1∂u2

and C
(1)
α (u1, u2) = ∂Cα(u1, u2)/∂u1, giving

L(α, p, λ∗1, λ
∗
2) =

n∏
i=1

[
pλl1(t1i)(1− F0(t

−
1i))

]δ1i
[
λl2(t2i)(1− F2(t

−
2i))C

(1,2)
α (F0(t1i), F2(t2i))

]δ1iδ2i

[
1− C(1)

α (F0(t1i), F2(t2i))
]δ1i(1−δ2i)

[1− pF0(t1i)]
1−δ1i , (4.25)
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where F0(t1i) = 1 −
∏

t:t∗
1(l)

≤t1i
(1 − λ∗1l), F0(t

−
1i) = 1 −

∏
t:t∗

1(l)
<t1i

(1 − λ∗1l), F2(t2i) = 1 −∏
t:t∗

2(l)
≤t2i

(1−λ∗2l), F2(t
−
2i) = 1−

∏
t:t∗

2(l)
<t2i

(1−λ∗2l) and where for cases with δ1i = 1, λl1(t1i)

is the corresponding λ∗1l where l1(t1i) = l : t1i = t∗1(l), and for cases with δ2i = 1, λl2(t2i) is

the corresponding λ∗2l where l2(t2i) = l : t2i = t∗2(l). The estimates of the vectors λ∗1, λ
∗
2 and

α are obtained by maximizing the logarithm of (4.25) with general purpose optimizers,
where p is replaced by a plausible estimate p̂. Software may run into problems if n is too
large. However, when the R function nlm is used, for instance, it is observed that even
when n = 2000 and there is 25% censoring for T1 and 45% censoring for T2, it is feasible
to obtain the estimates. Once again we use the bootstrap for variance estimation.

As for the two-stage case in Section 4.2.1, there is currently no rigorous asymptotic
theory for the estimators here. However, standard asymptotic normality and consistency
seem plausible and are supported by simulation results. In the simpler case of parallel bi-
variate survival times, Chen et al. (2006) have recently shown that a sieve-based procedure
gives estimators that are asymptotically normal and semiparametric efficient and under a
specific model Li et al. (2008) have shown that the semiparametric maximum likelihood es-
timators of the association parameter and marginal survivals are consistent, asymptotically
normal and semiparametric efficient.

Tests of fit for copula models can also be carried out as described at the end of the
preceding section. In this case, the semiparametric likelihood ratio statistic is of the form

Λs1(α20) = 2 logL(p̂, F̂0, F̂2, α̂1, α̂2)− 2 logL(p̂, F̂0(α20), F̂2(α20), α̂1(α20), α20),

where F̂0(α20), F̂2(α20) and α̂1(α20) are obtained by maximizing (4.25) with α2 fixed at
α20. We obtain p-values via a bootstrap procedure similar to the one in Section 3.2.1.

4.3 Simulation Study

A simulation study was conducted to study the performance of the two-stage semiparamet-
ric estimation and semiparametric maximum likelihood estimation procedures introduced
in Section 4.2 and to compare them with a nonparametric estimation procedure (Lin et al.,
1999) described in Section 1.4.2 and flexible parametric maximum likelihood estimation
with piecewise constant specification for baseline hazard functions (He and Lawless, 2003).
We generated 500 random bivariate survival time samples for each of sizes n = 50 and
100 from the Clayton copula model for (4.7), with p = 1, with two degrees of association
represented by Kendall’s tau values of τ = 0.4 and 0.7. The marginal distributions of T1

and T2 were taken as Exponential with a unit scale parameter and Weibull with a unit
scale parameter and shape parameter 2, respectively. The censoring times Ci were inde-
pendently generated from the uniform distribution over (0,4) so that about 25% of T1 and
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45% of T2 survival times were censored. Note that when T1 is censored, T2 is censored at
0, or unobserved.

Tables 4.1 and 4.2 show the empirical means and standard deviations of the semipara-
metric (one- and two-stage) estimators and of nonparametric and piecewise constant model
maximum likelihood estimators of the conditional probability Pr(T2 > t2|T1 ≤ t1). We
show results for t2 = 0.4724, 0.7147, 0.9572, 1.2686 corresponding to marginal survival
probabilities for T2 of 0.8, 0.6, 0.4, 0.2, and t1 = 0.5108, 1.6094, corresponding to marginal
survival probabilities for T1 of 0.6, 0.2. For the piecewise constant hazards approach, the
time scales for T1 and T2 are divided into 8 pieces, with cut points 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 for both T1 and T2. Table 4.3 shows empirical means and standard deviations
of the corresponding estimates for F2(t2) and log φ. The nonparametric method does not
estimate F2(t2), hence results are given for only the semiparametric and piecewise constant
methods.

Tables 4.1 and 4.3 indicate that when the assumed copula model is correct, semipara-
metric maximum likelihood and two-stage semiparametric estimators of Pr(T2 > t2|T1 ≤
t1) and F2(t2) have little bias. For sample size n = 50, the semiparametric maximum
likelihood estimator of Pr(T2 > t2|T1 ≤ t1) has generally smaller bias than the two-stage
semiparametric one; but on the other hand, the two-stage semiparametric estimator of
F2(t2) has slightly smaller bias than the semiparametric maximum likelihood estimator.
The bias of the flexible parametric maximum likelihood estimators of Pr(T2 > t2|T1 ≤ t1)
or F2(t2) depends on the number of pieces and cut points for the time scales for T1 and
T2. The biases are fairly small in most cases, with occasional exceptions. It is known that
well chosen flexible procedures mainly have bias problems near the ends of the range for
the functions being estimated. The nonparametric estimator of Pr(T2 > t2|T1 ≤ t1) is
asymptotically unbiased but note that for T2 all that is nonparametrically estimable are
these conditional probabilies for t1 + t2 ≤ Cmax.

From Table 4.2, it is observed that semiparametric estimators of Pr(T2 > t2|T1 ≤ t1)
are more efficient than the nonparametric estimators. The efficiency of the semiparametric
estimators appear to be very similar when there is moderate association (τ = 0.4), however,
when there is strong association (τ = 0.7), semiparametric maximum likelihood estimators
seem to be slightly more efficient than two-stage estimators for small sample size. For
estimation of F2(t2) displayed in Table 4.3, the two semiparametric procedures are similar.
For the association parameter φ, the two-stage estimator shows a little more bias than the
two maximum likelihood estimators when τ = 0.4. The piecewise constant model gives an
efficient estimator of φ with little bias in the scenarios examined here.
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τ = 0.4 τ = 0.7
t2 t2

n t1 0.4724 0.7147 0.9572 1.2686 0.4724 0.7147 0.9572 1.2686
50 0.5108 (a) 0.584 0.330 0.173 0.070 0.504 0.137 0.027 0.005

(b) 0.578 0.320 0.168 0.068 0.511 0.136 0.028 0.005
(c) 0.565 0.306 0.157 0.062 0.524 0.144 0.031 0.007
(d) 0.584 0.324 0.152 0.065 0.514 0.143 0.026 0.007
(e) 0.585 0.333 0.176 0.072 0.507 0.138 0.028 0.004

1.6094 (a) 0.757 0.535 0.336 0.158 0.750 0.503 0.275 0.101
(b) 0.753 0.530 0.334 0.155 0.754 0.506 0.281 0.102
(c) 0.750 0.527 0.332 0.154 0.759 0.505 0.279 0.102
(d) 0.756 0.531 0.308 0.151 0.754 0.504 0.257 0.106
(e) 0.754 0.529 0.330 0.158 0.751 0.499 0.274 0.097

100 0.5108 (a) 0.584 0.330 0.173 0.070 0.504 0.137 0.027 0.005
(b) 0.584 0.329 0.174 0.070 0.500 0.133 0.026 0.005
(c) 0.575 0.320 0.167 0.067 0.502 0.136 0.027 0.006
(d) 0.584 0.331 0.157 0.067 0.512 0.147 0.027 0.007
(e) 0.584 0.332 0.179 0.071 0.503 0.137 0.027 0.005

1.6094 (a) 0.757 0.535 0.336 0.158 0.750 0.503 0.275 0.101
(b) 0.759 0.539 0.342 0.159 0.749 0.503 0.278 0.104
(c) 0.754 0.534 0.338 0.157 0.750 0.503 0.277 0.103
(d) 0.756 0.536 0.312 0.152 0.757 0.511 0.263 0.108
(e) 0.758 0.536 0.338 0.155 0.753 0.503 0.278 0.104

Table 4.1: (a) True values and empirical means of (b) semiparametric maximum likelihood,
(c) two-stage semiparametric, (d) flexible maximum likelihood and (e) nonparametric es-
timates of Pr(T2 > t2|T1 ≤ t1).
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τ = 0.4 τ = 0.7
t2 t2

n t1 0.4724 0.7147 0.9572 1.2686 0.4724 0.7147 0.9572 1.2686
50 0.5108 (a) 0.106 0.097 0.074 0.043 0.114 0.070 0.026 0.007

(b) 0.106 0.095 0.071 0.040 0.136 0.091 0.041 0.020
(c) 0.096 0.091 0.057 0.033 0.096 0.064 0.020 0.006
(d) 0.128 0.128 0.107 0.075 0.131 0.091 0.046 0.020

1.6094 (a) 0.073 0.089 0.092 0.074 0.073 0.088 0.088 0.068
(b) 0.073 0.089 0.092 0.074 0.082 0.095 0.090 0.067
(c) 0.068 0.086 0.071 0.055 0.063 0.078 0.065 0.046
(d) 0.091 0.104 0.106 0.087 0.092 0.109 0.103 0.077

100 0.5108 (a) 0.077 0.066 0.047 0.030 0.080 0.046 0.014 0.005
(b) 0.077 0.065 0.045 0.028 0.082 0.047 0.015 0.005
(c) 0.070 0.060 0.037 0.022 0.071 0.044 0.013 0.004
(d) 0.091 0.089 0.073 0.053 0.094 0.064 0.032 0.014

1.6094 (a) 0.050 0.056 0.056 0.052 0.048 0.057 0.055 0.045
(b) 0.050 0.056 0.056 0.051 0.048 0.058 0.057 0.045
(c) 0.046 0.052 0.044 0.037 0.043 0.055 0.047 0.032
(d) 0.064 0.070 0.069 0.061 0.063 0.068 0.068 0.057

Table 4.2: Empirical standard deviations of (a) semiparametric maximum likelihood, (b)
two-stage semiparametric, (c) flexible maximum likelihood and (d) nonparametric esti-
mates of Pr(T2 > t2|T1 ≤ t1) over 500 simulations.
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4.4 Another Approach to Model Bivariate Sequential

Data

It is of interest to estimate a copula parameter without assumptions on the marginal
distributions. Since the marginal distribution of T2 is nonparametrically inestimable and
we can only estimate certain values Pr(T1 ≤ t1, T2 ≤ t2) or Pr(T2 ≤ t2|T1 ≤ t1), it is
essential to restrict our attention to T1 ∈ [0, Q] where Q < Cmax. If Q is a given value then
we can estimate Pr(T2 ≤ t2|T1 ≤ Q) nonparametrically for 0 ≤ t2 ≤ Cmax − Q. Another
approach to model bivariate sequential data is to use a copula model for the truncated
distribution Pr(T1 ≤ t1, T2 ≤ t2|T1 ≤ Q) where Q is some selected value. Thus, consider
models of the form

FQ(t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2|T1 ≤ Q) = CQ(F1Q(t1), F2Q(t2)) (4.26)

where F1Q(t1) = Pr(T1 ≤ t1|T1 ≤ Q) and F2Q(t2) = Pr(T2 ≤ t2|T1 ≤ Q), where CQ is a
copula. Other forms such as the semi-survival form

HQ(t1, t2) = Pr(T1 ≤ t1, T2 > t2|T1 ≤ Q) = CQ(F1Q(t1), S2Q(t2)) (4.27)

where S2Q(t2) = 1− F2Q(t2) can also be considered.

Note that CQ(F1Q(t1), F2Q(t2)) can be written in terms of C ′(F1(t1), F2(t2)) and
C(F0(t1), F2(t2)) defined in (4.3) and (4.7), respectively, as follows: For 0 ≤ t1 < Q and
0 ≤ t2 <∞,

CQ(F1Q(t1), F2Q(t2)) =
1

pQ

C ′(F1(t1), F2(t2)) (4.28)

and by (4.11),

CQ(F1Q(t1), F2Q(t2)) =
p

pQ

C(F0(t1), F2(t2)) (4.29)

where pQ = Pr(T1 < Q) = F1(Q) = pF0(Q). Note also that

F1Q(t1) =
1

pQ

F1(t1) =
F0(t1)

F0(Q)
(4.30)

and

F2Q(t2) =
1

pQ

C ′(pQ, F2(t2)) =
1

F0(Q)
C(F0(Q), F2(t2)) (4.31)

Hence, it is also possible to fit the models (4.26) and (4.27). One limitation of these
models is that it is harder to interpret F2Q(t2) or S2Q(t2) than Pr(T2 ≤ t2|T1 = t1) or
Pr(T2 > t2|T1 = t1). In addition, if copula C(F0(t1), F2(t2)) has a specific parametric form
then this restricts the form of F2Q(t2) due to (4.31) and, therefore, CQ(F1Q(t1), F2Q(t2)) is
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not a regular form. Thus when using (4.26) or (4.27), we prefer to choose a familiar copula
form for CQ; then C ′ defined by (4.28) or C defined by (4.29) is not a copula. However, it
turns out that if C is of the Clayton form, so is CQ.

Note that CQ has the same copula form as C iff C is the independent or the Clayton
copula. To show this, first assume C is an Archimedean copula (1.27). Then, (4.29)
becomes

CQ(F1Q(t1), F2Q(t2)) =
p

pQ

ϕ−1[ϕ(F0(t1)) + ϕ(F2(t2))] (4.32)

and from (4.31) we obtain

F2(t2) = ϕ−1

[
ϕ

(
pQ

p
F2Q(t2)

)
− ϕ

(
pQ

p

)]
(4.33)

When F0(t1) and F2(t2) are replaced by
pQ

p
F1Q(t1) and (4.33), respectively, (4.32) is written

as

CQ(F1Q(t1), F2Q(t2)) =
p

pQ

ϕ−1

[
ϕ

(
pQ

p
F1Q(t1)

)
+ ϕ

(
pQ

p
F2Q(t2)

)
− ϕ

(
pQ

p

)]
(4.34)

Sungur (2002) showed that the general solution of the functional equation given in (4.34)
is ϕ(v) = γ log v or ϕ(v) = ρ(vγ − 1) with some constants γ, ρ and he proved that if C
is an Archimedean copula, it is truncation dependence invariant iff C is the independent
copula or the Clayton copula. Oakes (2005) strengthened this result and proved that
the independent copula and the Clayton copula are the only ones which are truncation
dependence invariant in all classes of copulas.

4.5 Two-Stage Semiparametric Estimation for Trun-

cated Models

A possible approach to estimate the vector of dependence parameters α in the copula
function CQ

α in (4.26) or (4.27) is to apply a similar method to that of Shih and Louis
(1995) which is described in Section 1.4.1. In the first stage, F1Q and F2Q are estimated
nonparametrically, and in the second stage, α is estimated. The details of the estimation
procedure is as follows.

Consider the models given in (4.26) and (4.27) and suppose F1Q and F2Q are known.
Then the likelihood function is written in terms of CQ

α (F1Q(t1), F2Q(t2)) as follows:

L =
n∏

i=1
t1i≤Q

pδ1i
Q

[
∂2CQ

α (F1Q(t1i), F2Q(t2i))

∂F1Q(t1i)∂F2Q(t2i)

]δ1iδ2i
[
1− ∂CQ

α (F1Q(t1i), F2Q(t2i))

∂F1Q(t1i)

]δ1i(1−δ2i)

× (1− pQF1Q(t1i))
1−δ1i (4.35)
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and it is written in terms of the semi-survival model C̆Q
α (F1Q(t1), S2Q(t2)) as follows:

L =
n∏

i=1
t1i≤Q

pδ1i
Q

[
∂2C̆Q

α (F1Q(t1i), S2Q(t2i))

∂F1Q(t1i)∂S2Q(t2i)

]δ1iδ2i
[
∂C̆Q

α (F1Q(t1i), S2Q(t2i))

∂F1Q(t1i)

]δ1i(1−δ2i)

× (1− pQF1Q(t1i))
1−δ1i . (4.36)

Analogous to Shih and Louis (1995), in the first stage F1Q, pQ and F2Q can be esti-
mated nonparametrically by the methods proposed by Lin et al. (1999) or Schaubel and
Cai (2004a) which are summarized in Section 1.4.2. Let F̃1Q(t1i), p̃Q and F̃2Q(t2i) be the
nonparametric estimates of F1Q(t1i), pQ and F2Q(t2i). Then, in the second stage, after
replacing F1Q(t1i), pQ and F2Q(t2i) in (4.35) with F̃1Q(t1i), p̃Q and F̃2Q(t2i), the semipara-
metric estimate of the vector of dependence parameters α is obtained by maximizing the
likelihood function

Ls =
n∏

i=1
t1i≤Q

[
∂2CQ

α (F̃1Q(t1i), F̃2Q(t2i))

∂F̃1Q(t1i)∂F̃2Q(t2i)

]δ1iδ2i
[
1− ∂CQ

α (F̃1Q(t1i), F̃2Q(t2i))

∂F̃1Q(t1i)

]δ1i(1−δ2i)

. (4.37)

Similarly, if S̃2Q(t2i) is the nonparametric estimate of S2Q(t2i) then the semiparametric
estimate of α is obtained from (4.36) by maximizing

Ls =
n∏

i=1
t1i≤Q

[
∂2C̆Q

α (F̃1Q(t1i), S̃2Q(t2i))

∂F̃1Q(t1i)∂S̃2Q(t2i)

]δ1iδ2i
[
∂C̆Q

α (F̃1Q(t1i), S̃2Q(t2i))

∂F̃1Q(t1i)

]δ1i(1−δ2i)

. (4.38)

In future work, properties of the two-stage semiparametric estimation procedure for the
truncated distribution (4.26) or (4.27) will be investigated. The nonparametric bootstrap
can presumably be used to obtain variance estimates or confidence intervals, but it may
also be feasible to combine asymptotic results in Lin et al. (1999) and Schaubel and Cai
(2004a) with ones in Shih and Louis (1995), in order to obtain an explicit variance estimate
for the semiparametric estimate of α.

4.6 Colon Cancer Data

The data described in Section 1.1.2 consist of the time t1 from study registration to cancer
recurrence or censoring and if the cancer recurrence occurred, the time t2 from cancer
recurrence to death or censoring, for both the placebo and the levamisole plus fluorouracil
therapy group. There were 315 patients in the placebo group and 304 patients in the
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therapy group. By the end of the study, 177 patients in the placebo group had cancer
recurrence, among whom 155 died, while in the therapy group 119 patients had cancer
recurrence, among whom 108 died.

The Kaplan-Meier estimates for the survivor functions of T1 in the two treatment groups
suggest that the hazard function for recurrence in each becomes small for large t. Since it
appears some subjects may be cured and never have a recurrence, a model where F1(∞) =
p < 1 is useful. Here, a fraction 1− p of patients is assumed to have no chance of disease
recurrence. Lawless (2003, page 181) used a cure-rate model with distribution function
(4.1). He showed that the log-logistic form for F0(t1) (i.e., F0(t1) = 1− [1 + (t1/α1)

β1 ]−1)
fits well for both treatment groups.

We will describe the use of the semiparametric estimation procedures of Section 4.2
for both estimation and model checking. We first fitted fully parametric models given by
(4.11) to the data. We considered a log-logistic for F0(t1) and log-logistic and Weibull
forms for F2(t2) (i.e., F2(t2) = 1 − [1 + (t2/α2)

β2 ]−1 and F2(t2) = 1 − exp[−(t2/α2)
β2 ],

respectively). We performed model checking by embedding some proposed copula families
for C in an expanded family of copulas for these two cases. We considered the two-
parameter copula family given in (1.40) where u1 = F0(t1) and u2 = F2(t2) and tested
whether the proposed model Clayton (1.28) or Gumbel-Hougaard (1.31) represents the
data adequately or not. For the control group, the maximum likelihood estimates of the
parameters of the proposed and the expanded copula families, their standard errors and
the maximized log-likelihood values of the corresponding model are given in Table 4.4 and
4.5 when the form of F2(t2) is considered as log-logistic and Weibull, respectively. For the
treatment group, the corresponding results can be seen in Table 4.6 and 4.7.

For the control and treatment groups, it is observed that the maximized log-likelihood
values when the log-logistic distribution is assumed for F2(t2) are higher than when the
Weibull distribution is assumed. Hence, log-logistic distribution provides a better fit than
the Weibull distribution. When testing whether C belongs to the Clayton family, under
H0 : θ = 1, the log-likelihood ratio statistic Λ1(1) = 2(`(β̂, φ̂, θ̂)− `(β̂(θ = 1), φ̂(θ = 1), 1))
has a limiting distribution with Pr(Λ1(1) ≤ q) = 0.5 + 0.5Pr(χ2

(1) ≤ q) where l is the

logarithm of the likelihood function L in (4.8) and β is the vector of parameters including p
and the parameters in the distribution functions F0(t1) and F2(t2). For the control group,
it is concluded that there is a strong evidence against the Clayton model with p-value
0.5Pr(χ2

(1) ≥ 15.215) ≤ 5 × 10−5 (when F2(t2) is in the log-logistic form). When testing
whether C belongs to the Gumbel-Hougaard family, under H0 : φ = 0, the log-likelihood
ratio statistic Λ1(0) = 2(`(β̂, φ̂, θ̂) − `(β̂(φ = 0), 0, θ̂(φ = 0))) has a limiting distribution
with Pr(Λ1(0) ≤ q) = 0.5 + 0.5Pr(χ2

(1) ≤ q). For the control group, it is concluded
that there is no evidence against the Gumbel-Hougaard model. For the treatment group,
there is no evidence against either model with p-values 0.5Pr(χ2

(1) ≥ 2.466) = 0.058 and

0.5Pr(χ2
(1) ≥ 1.733) = 0.094 when H0 : θ = 1 and H0 : φ = 0, respectively, are true, but
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the Gumbel-Hougaard has a slightly larger maximum likelihood and p-value.

The estimated marginal distributions for T1 and T2 as well as goodness of fit test just
performed for the copula could be sensitive to misspecification of the parametric marginal
distributions, so we now turn to semiparametric estimation. In Tables 4.8 and 4.9, the two-
stage semiparametric and semiparametric maximum likelihood estimates of the parameters
in the copula models and the maximized log-likelihood values of the corresponding model
are shown. In both control and treatment groups, p̂ is based on the Kaplan-Meier estimate
of F1, F̂1, and it is estimated as slightly larger than F̂1(Cmax). We chose p̂ = 0.599 for the
control group and p̂ = 0.405 for the treatment group.

Values of the likelihood and pseudolikelihood ratio test statistics for testing the Clayton
and Gumbel-Hougaard copula models obtained from Tables 4.4 - 4.9 are summarized in
Table 4.10. When semiparametric likelihood and pseudolikelihood ratio statistics given
in Secion 4.2 are used, we again reach the conclusion that there is no evidence against
the Gumbel-Hougaard model and there is strong evidence against the Clayton model for
the control group. For the semiparametric likelihood ratio statistic we estimated p-value
by a semiparametric bootstrap procedure with 1000 samples, designed to respect the null
hypothesis. The p-value estimated in this way for the Clayton model was 0. On the other
hand, for the treatment group, although we again conclude that there is no evidence against
either model, the Clayton model fits better according to semiparametric likelihood and
pseudolikelihood ratio tests. The Gumbel-Hougaard model is not rejected with estimated
p-value 0.065 for the semiparametric likelihood ratio statistic.

We next undertake further model checks. To assess the adequacy of the parametric
log-logistic form of F2(t2), we compare the parametric and semiparametric estimates in
Figure 4.1. For the control group, the estimates are based on the Gumbel-Hougaard
copula and for the treatment group, they are based on the Clayton copula. There is
essentially no difference between the two semiparametric estimates but the parametric
estimates depart substantially from the semiparametric ones for both groups. Therefore,
the log-logistic distribution assumption for T2 is questionable. Note that the nonparametric
estimates F̂2(t2) for the two treatment groups in Figure 4.1 indicate the survival probability
of patients who were on therapy is slightly lower at various times t2 than for patients in
the control group, suggesting that although treatment decreases the risk of recurrence,
patients who experience a recurrence tend to survive slightly less long if they received the
treatment. The same conclusion was reached by Lin et al. (1999) and He and Lawless
(2003).

Since there can also be a misspecification of the copula family, we compare the semi-
parametric estimates of Pr(T2 > t2|T1 ≤ t1) with nonparametric estimates given in Lin et
al. (1999) and Schaubel and Cai (2004a). Again, the semiparametric estimates are based
on the Gumbel-Hougaard copula for the control group and the Clayton copula for the
treatment group. In Figure 4.2, plots of the semiparametric and nonparametric estimates
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Figure 4.1: Parametric, semiparametric maximum likelihood and two-stage semiparametric
estimates of S2(t2) = 1−F2(t2) for the control (top plot) and the treatment (bottom plot)
groups.
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Control Group
Null Copula Model Log-Logistic F2 Weibull F2 2-SP SPML
Clayton 15.215 6.576 10.244 11.728
Gumbel-Hougaard 0 0 0 0

Treatment Group
Null Copula Model Log-logistic F2 Weibull F2 2-SP SPML
Clayton 2.466 0.002 0 0
Gumbel-Hougaard 1.733 5.744 8.972 3.900

Table 4.10: Values of (pseudo)likelihood ratio test statistics for testing the Clayton and
the Gumbel-Hougaard copula models when F2(t2) has the log-logistic and Weibull forms
and when it is nonparametrically estimated through the two-stage semiparametric (2-SP)
and semiparametric maximum likelihood (SPML) estimation methods.

of conditional probability Pr(T2 > t2|T1 ≤ 1000) for the control and treatment groups
are shown. There is essentially no difference between the two semiparametric estimates
and they are very close to the nonparametric estimates. Hence, we once again have no
evidence against the Gumbel-Hougaard and the Clayton copula functions for the control
and treatment groups, respectively.

Finally, we note that the copula models indicate a mild degree association between
the survival times T1 and T2 for an individual. Kendall’s tau in (4.14) can be estimated,
for example, by plugging in the two-stage semiparametric estimate of θ in the Gumbel-
Hougaard copula into (1.33) for the control group and it is obtained that τ̃control = 0.286.
A standard error based on 100 bootstrap samples was found as 0.063. By comparison, the
fully parametric model in Table 4.6 gives τ̂control = 0.296 and a standard error of 0.055.
For the treatment group Kendall’s tau can be estimated by plugging in the two-stage
semiparametric estimate of φ in the Clayton copula into (1.30) and it is obtained that
τ̃trt = 0.271 with a standard error 0.060 based on 100 bootstrap samples.
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Figure 4.2: Semiparametric maximum likelihood, two-stage semiparametric and nonpara-
metric (Lin et al., 1999; Schaubel and Cai, 2004a) estimates of Pr(T2 > t2|T1 ≤ 1000) for
the control (top plot) and the treatment (bottom plot) groups.
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Chapter 5

Summary and Further Research

5.1 Likelihood-Based Tests of Fit for Parametric Mod-

els

We examined tests for the adequacy of a copula-based bivariate survival time model, based
on embedding a model in a larger copula family. In the fully parametric setting, where the
marginal distributions have parametric specifications, both likelihood ratio test statistics
and pseudolikelihood ratio test statistics arising from two-stage estimation (Shih and Louis,
1995) have asymptotic null distributions of chi-squared type, and p-values can be obtained
via large sample approximation or by simulation. The tests have good power even when the
expanded family does not include the alternative, and are asymptotically most powerful
when it does include the alternative.

A natural question is how to select the expanded copula family. For the most commonly
used single parameter models, such as the Clayton-Oakes, Gumbel-Hougaard and Frank
copulas, there are two- or three-parameter copula families that include them (see Joe 1997,
Sections 5.2 and 5.3; Genest et al., 1998) and we recommend their use. Similarly, Gaussian
copulas can be embedded within t or skew-t families. However, an investigation of ways to
obtain expanded models for an arbitrary copula family, as done with other smooth tests
of fit (e.g. Pena, 1998) would be of interest.
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5.2 Semiparametric Estimation for Parallel Clustered

Data

We introduced semiparametric maximum likelihood estimation in which the copula pa-
rameter is estimated without assumptions on the marginal distributions by assuming the
estimates of the marginal distribution functions have jumps only at observed times. It was
shown that the semiparametric maximum likelihood estimation approach can also be used
to fit copula models with proportional hazards margins for data with covariates. Further-
more, the two-stage estimation approach introduced by Shih and Louis (1995) was also
extended to fit models with proportional hazards margins.

A simulation study was done to assess the performance of the semiparametric maximum
likelihood estimator and two-stage semiparametric estimator (Shih and Louis, 1995) of the
copula parameter. Two-stage semiparametric estimator is found to be as good as the
semiparametric maximum likelihood estimator.

5.3 Likelihood-Based Tests of Fit for Semiparametric

Models

The likelihood ratio approach can also be used with semiparametric models, as illustrated
in Chapter 3. Methods for obtaining p-values for both semiparametric likelihood ratio
and pseudolikelihood ratio tests were given. In simulation studies, it was observed that
the semiparametric pseudolikelihood ratio test is almost as powerful as the parametric
likelihood ratio and pseudolikelihood ratio tests while achieving robustness to the form of
the marginal distributions.

Work on semiparametric maximum likelihood by Murphy and van der Vaart (2000) sug-
gests that likelihood ratio tests and pseudolikelihood ratio tests about copula parameters
might have chi-squared asymptotics similar to those for fully parametric models, for cases
where the marginal distributions are non- or semi- parametrically specified. However,
semiparametric maximum likelihood has been studied only in special situations, and in
particular, has not been considered when covariates are present (see Li et al., 2008; Chen
et al., 2006 and references therein). Moreover, cases where parameter values lie on the
boundary of the parameter space have not been considered; these arise with many of our
tests. The two-stage approach has also not been throughly investigated in the semipara-
metric setting, although Shih and Louis (1995) show that, under some conditions, regular
asymptotics hold for the estimation of a copula parameter when the marginal distributions
are estimated nonparametrically from censored data by Kaplan-Meier. The development
of asymptotic theory for these settings poses challenging problems.
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Simulation studies show that an adjustment for the semiparametric likelihood and
pseudolikelihood ratio statistics is generally necessary to obtain that the distribution of
the statistics is approximated by a chi-squared distribution. However, since it is hard to
find the correction term for each copula model separately, especially under censoring, and
since correction terms may depend on the unknown parameters and a copula parameter can
be on the boundary, it is suggested to estimate p-values by using the proposed bootstrap
procedures.

Finally, we have considered in our simulations the case where the bivariate lifetimes are
observed in parallel. In some cases, lifetimes for an individual are observed in sequence
(Lin et al., 1999; Visser, 1996). The tests for fully parametric models readily handle
these other settings but semiparametric models require additional study. We remark that
a flexible alternative to semiparametric estimation is to use weakly parametric models
for the marginal distributions. He and Lawless (2003), for example, consider piecewise
constant and spline models for marginal hazard functions. In this case, tests of fit reduce
to the fully parametric case.

5.4 Bivariate Sequential Data

Sequentially ordered survival times are of interest in many studies. For example, sequences
of survival times may be the times between successive recurrent events such as bone frac-
tures in cancer patients or pulmonary infections in persons with cystic fibrosis (Cook and
Lawless, 2007, chapters 4, 6), the times between repeat admissions to a psychiatric facility
(Kessing et al., 1998) or the duration of time spent in disease-free and subsequent relapse
states for cancer patients (Lin et al., 1999; Cook et al., 2003). Problems arise with non-
parametric estimation for sequential data when the survival times are not independent.
This leads to dependent censoring and non-identifiability of the marginal distributions of
the second and subsequent survival times (Lin et al., 1999; Schaubel and Cai, 2004a; Cook
and Lawless, 2007). Another issue is the fact that in studies such as the colon cancer
example in Section 4.6, a significant proportion of subjects may never have the first event.
A similar pattern occurs in a nonrandomized clinical trial of adjuvant chemotherapy for
breast cancer conducted by the International Breast Cancer Study Group (IBCSG). This
study investigated the effectiveness of short duration (one month) versus long duration
(six or seven months) chemotherapy (The Ludwing Breast Cancer Study Group, 1988).
Cook et al. (2003) considered the times spent in remission and from relapse to death in the
two treatment groups. In both examples, some individuals do not experience relapse and,
indeed, may be cured of their disease. Thus, modeling of the distribution of the time to
first event, T1, and the joint distribution of T1 and the time between the first and second
events, T2 should reflect this feature.
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We proposed modeling and semiparametric estimation methods which overcome the
difficulties caused by sequential data. A copula function is used to model the conditional
probability Pr(T1 ≤ t1, T2 ≤ t2|T1 < ∞) due to the fact that the second event cannot
be seen if the subject never has the first event. A semiparametric estimation procedure
is used to fit the copula function where the marginal distributions are left nonparametric.
This also provides a means of checking parametric models for T2.

Another possible approach to model bivariate sequential data is using a copula model
for the truncated distribution Pr(T1 ≤ t1, T2 ≤ t2|T1 ≤ Q) where Q < Cmax is some
selected value. Hence, the model given in (4.26) was introduced and its relationship with
(4.3) and (4.7) were developed.

5.4.1 Semiparametric Estimation

We proposed a new approach to the estimation of the joint distribution of sequentially
observed survival times by considering copula models in which the marginal distributions
are treated nonparametrically. This allows estimation of the marginal distributions of
second or subsequent survival times and of the association among survival times for an
individual. The presentation here focused on the case of two times, but the extension to
K ≥ 3 times T1, , ..., TK is in principle straightforward. In this case, however, optimization
of the log-likelihood function to obtain estimates of copula parameters α and parameter
vectors λ∗k (k = 1, ..., K) for each marginal distribution may be challenging. A compromise
procedure is to use the two-stage method recursively. Once F1(t1) and F2(t2) are estimated
by the current two-stage approach (ignoring any later survival times), we can estimate
F3(t3) and α by pseudolikelihood with F1, F2 fixed and so on. Properties of this ad hoc
approach would need to be investigated. For larger K and for larger sample size n, we
recommend the use of piecewise-constant or spline-based hazard functions in copula models
(He and Lawless, 2003). They have the advantage of flexibility for marginal distributions
with a moderate number of parameters.

For the case where K = 2 the approach is readily extended to handle covariates through
the adoption of Cox models for T1, T2. Semiparametric maximum likelihood estimates
for baseline hazard functions (represented by λ∗1, λ

∗
2), regression parameters β1, β2 and

copula parameters α can be obtained either by two-stage estimation or by simultaneous
maximization of the likelihood for λ∗1, λ

∗
2, β1, β2, α.

As for the semiparametric estimators based on parallel data, it remains a difficult and
challenging problem to develop asymptotic theory for the estimators based on sequential
lifetimes.

We also introduced a two-stage semiparametric estimation approach to fit the copula
model CQ

α for the truncated distribution given in (4.26) or (4.27), that is inspired by Shih
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and Louis (1995). In the first stage, F1Q(t1) = Pr(T1 ≤ t1|T1 ≤ Q) and F2Q(t2) = Pr(T2 ≤
t2|T1 ≤ Q) are estimated nonparametrically, and in the second stage, the semiparametric
estimate of the vector of dependence parameters α is obtained. In a future work, properties
of this estimation method will be investigated.

5.4.2 Model Checking and Tests of Fit for Copula Models

Informal model checking for the copula family can be performed by comparing plots of the
semiparametric and nonparametric fits of the conditional probability Pr(T2 > t2|T1 ≤ t1)
for t1 + t2 ≤ Cmax as we did in Section 4.6.

We can also carry out a parametric likelihood ratio test after embedding the proposed
copula model in an expanded parametric family of copulas as we have done for parallel
clustered data. However, in this case, it is not as easy to check parametric specifica-
tions for the distributions of T2, so it is useful to use a semiparametric likelihood ratio or
semiparametric pseudolikelihood ratio test. When the proposed and the expanded copula
models are estimated by the semiparametric maximum likelihood estimation procedure de-
scribed in Section 4.2.2, a semiparametric likelihood ratio test statistic can be used. When
the models are estimated by two-stage semiparametric estimation procedure described in
Section 4.2.1, the corresponding test is a semiparametric pseudolikelihood ratio test.

Work on semiparametric maximum likelihood (e.g. Murphy and van der Vaart, 2000)
shows that in many settings likelihood ratio and pseudolikelihood ratio (Liang and Self,
1996) statistics for finite-dimensional parameters have chi-squared asymptotics. Simula-
tions suggest that in the present setting, profile likelihood or pseudolikelihood ratio statis-
tics for α parameters have distributions close to those of linear combinations of χ2

(1) vari-
ables when sample size is large. A practical complication is that values on the boundary
of the parameter space for α are often of interest, as illustrated in Section 4.6, where both
the Clayton and the Gumbel-Hougaard copulas correspond to boundary points in a two-
parameter copula family. In addition, even if limiting distributions correspond to linear
combinations of χ2

(1) variables, the distribution may depend on unknown parameter values
and thus have to be estimated. For practical purposes we therefore recommend bootstrap
simulation for the provision of p-values, variance estimates and confidence limits.
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Appendix A

Estimating Functions

Let θ be a p× 1 parameter vector and U(θ) =
∑n

i=1 Ui(θ) be a set of estimating functions
Uj(θ) =

∑n
i=1 Uji(θ) (j = 1, ..., p) that are functions of the observed data and θ. The aim

is to obtain an estimate θ̃ by solving the estimating equations U(θ) = 0.

Assume U(θ) is an unbiased estimating function, i.e. E[U(θ)] = 0 for all θ. Then,
under some regularity conditions

√
n(θ̂ − θ) →d MVN(0, C(θ)) (A.1)

where 0 is a zero vector,
C(θ) = A(θ)−1B(θ)(A(θ)−1)t, (A.2)

An(θ) = − 1
n

∂U(θ)
∂θt , Bn(θ) = 1

n

∑n
i=1 Ui(θ)U

t
i (θ), A(θ) = limn→∞E[An(θ)] and

B(θ) = limn→∞E[Bn(θ)] = limn→∞
1
n
V ar[U(θ)].

The covariance matrix C(θ) can be estimated consistently by

Cn(θ̃) = An(θ̃)−1Bn(θ̃)(An(θ̃)−1)t. (A.3)

White (1982) considered the asymptotic properties of θ̃ when the model on which the
estimating equations are based is misspecified. Suppose the true distribution of the i.i.d.
random variables is G. If there is a unique vector θ∗ such that EG[Ui(θ

∗)] = 0, under some
regularity conditions √

n(θ̂ − θ∗) →d MVN(0, C(θ∗)) (A.4)

where θ̃ is the solution to U(θ) = 0, C(θ∗) is obtained when θ in (A.2) is replaced by θ∗ and
A(θ∗) and B(θ∗) are obtained when the expectations are taken with respect to G. Again,
the covariance matrix C(θ∗) can be consistently estimated by Cn(θ̃) given in (A.3).
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de l’Institut de statistique de l’Université de Paris 8, 229-231.
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