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Abstract

Recently there has been a lot of interest in the potential applications of perform-
ing computations on systems whose governing physical laws are quantum, rather
than classical in nature. These quantum computers would have the ability to per-
form some calculations which would not be feasible for their classical counterparts.
To date, however, a quantum computer large enough to perform useful calculations
has yet to be built. Before this can be accomplished, a method must be developed
to control the underlying quantum systems. This is a problem which can naturally
be formulated in the language of control theory. This report outlines the basic
control-theoretic approach to time-optimally controlling quantum systems evolving
under the dynamics of the Schrédinger operator equation. It is found that under
the assumption of non-singularity, the controls which produce time-optimal trajec-
tories are bang-bang. With this in mind, a switching time algorithm is implemented
to find optimal bang-bang controls.
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List of Notation

Quantum Mechanics

Symbol Meaning
Y or ¢ States of a quantum system — the ket notation is not used
Af The conjugate transpose of A — the asterisk notation, A*, is not used
H or H(t) The quantum system Hamiltonian — subscripts denote that the Hamil-
tonian corresponds to part of the system
h Planck’s constant
J A constant giving the strength of couplings between qubits in a quan-
tum system
q The number of qubits
Control Theory
Symbol Meaning

I~
—~

The control input function

Q The set of admissible controls
X(t) An element of the state space of the control system
X The state space of a control system
H The Pontryagin Hamiltonian used in the maximum principle
A(t) The costate vector from the maximum principle
A(t) The costate matrix from the complex matrix maximum principle
m The number of controls
J A cost functional from X x  — R
Numerics
Symbol Meaning
T The switching times
13 The interval lengths between switching times
Q@ The matrix of switching times
o The stacked columns of «

X



Lie Groups and Lie Algebras

Symbol Meaning
U(N)  The set of N x N unitary matrices
SU(N)  The set of N x N special unitary matrices
X,Y  An element of U(N) or SU(N) (which it is should be clear from the
context) — this is not a contradiction with X (¢) from control theory
since the state space considered here is the set of unitary matrices
g A general Lie group
g, h An element of a general Lie group
u(N)  The set of N x N skew-Hermitian matrices
su(N)  The set of N x N traceless skew-Hermitian matrices
A, B Elements of u(N) or su(N)
{L}ra  The Lie algebra generated by the elements of the set L
L A general Lie algebra
g, 0, f Elements of a general Lie algebra
Miscellaneous
Symbol Meaning
() An inner product on a Hilbert space
1,15y  The identity operator and the N x N identity matrix, respectively
C® - The Kronecker (or tensor) product
Zz A Hilbert space
cr An n dimensional complex vector space
R™ An n dimensional real vector space
Tr{A}  The trace of the matrix A
Re{z}  The real part of z
7 The imaginary unit
vec(-) A function which turns a matrix into a vector by stacking the columns
N The dimension of a square matrix, as in N x N
Subscripts
Symbol Meaning
0 The value of the variable at the initial time
¥ The value of the variable at the final time
R The real part of a variable
I The imaginary part of a variable



Chapter 1

Introduction and Motivation

1.1 Scope and Purpose

This report discusses the time-optimal control of systems that arise in the field
of quantum computing. While observing the conventions of time-optimal control
literature, this report is also intended to be accessible to practitioners of quantum
mechanics. Additionally, this report is intended to be accessible to control theorists
who have little or no background in quantum mechanics or quantum computing.

For that reason, the most pertinent results and definitions from each field are
included for completeness; the more technical details are relegated to the appendix
for the interested reader. Standard notation from both fields is used throughout
this report except where this is confusing or contradictory. In such cases, a note
has been included to explain the choice which has been made. See the list of
symbols and conventions for complete details regarding which conventions have
been adopted.

1.2 Preliminaries

Quantum Mechanics provides the generally accepted theoretical framework to model
systems for which neither classical (Newtonian) nor relativistic classical theories of
mechanics provide adequate results. Such systems are typically either on atomic
length scales, well-isolated from their environments or both. While this theory has
been developed over the last century or so, attention has recently become focused
on the possibility of using distinctly quantum systems for computation.

The reason for this interest is that some problems which are prohibitively time
consuming on even the fastest classical computers could be solved relatively quickly
by computers based on quantum systems. The canonical example is prime factor-
ization. The best known classical algorithms for decomposing integers into their
prime factors are variants of the what is called the number field sieve [51]. These



algorithms are known to have a running time which increases faster than any poly-
nomial with the size of the number being factored. This means that the runtime of
these algorithms could be on the order of years or decades for large numbers with
hundereds of thousands of digits.

In 1994, Peter Shor presented an algorithm [60] which could solve the prime
factorization problem in random polynomial time on a computer based on quantum,
instead of classical, systems. This means that, in theory, numbers which are not
possible to factor in a reasonable amount of time on classical computers would be
relatively easy to factor on a quantum computer. The principle that allows this
speedup is called superposition. Loosely speaking, this is the ability of a quantum
system to be in more than one state at the same time.

Since the publication of Shor’s paper, a variety of other potential applications
of quantum computing have been discovered and investigated; Grover’s algorithm,
for example, provides a quadratic speedup over classical algorithms for searching
an unsorted database [25]. At the present time, however, a quantum computer with
enough power to perform meaningful computations has yet to be built. Before this
can happen, there are a number of technical and theoretical hurdles which must be
overcome.

With regards to building a useful quantum computer, Raymond Laflamme, head
of the Institute for Quantum Computing at the University of Waterloo, has said,

“The first step is to understand quantum properties; the second, to learn
to control them; the third is to use them for something interesting.” [IJ

The second step mentioned leads to questions which can be naturally posed in the
language of control theory; that is the focus of this report.

With a few low-dimensional exceptions, solutions to the types of control prob-
lems which arise from quantum computing systems tend to be complicated and
very difficult to represent analytically. As a result, quantum control problems often
lead to numerical algorithms for determining solutions.

The remainder of this report is organized as follows: Chapter [2/introduces quan-
tum mechanics and quantum computing, explains the physics behind the system we
are considering, and discusses some of the existing literature; Chapter [3|is devoted
to finding conditions which guarantee that the system is controllable; Chapter
introduces Pontryagin’s Maximum Principle, a major tool in optimal control, then
generalizes it for complex matrix systems and, finally, applies the Principle to a
general quantum system as well as the more specific one qubit system; numerical
methods for computing time-optimal quantum controls and the results from runing
this algorithm are presented in Chapters 5 and [6} and Chapter [7] summarizes the
entire thesis and provides directions for future work.



Chapter 2

System and Problem Statement

2.1 Quantum Mechanics and Computing

We now introduce the basic theory from quantum mechanics (QM) and quantum
computing (QC) required to understand the remainder of this report. The knowl-
edgeable practitioner of QM and QC may skip this section unless they wish to
familiarize themselves with the notation.

This overview of the basic results is not intended to be complete but to give
enough background to understand the system with which we will be working. As
a result, the logical flow may differ somewhat from standard texts in the field. For
a more general and complete introduction to QM and QC than the scope of this
report allows see [4§].

The Postulates of Quantum Mechanics

The mathematics of quantum mechanics are based heavily on linear algebra. Quan-
tum mechanics textbooks typically use the Dirac notation, where vectors are rep-
resented by “ket” brackets (such as [¢).) In this thesis, we stick to the standard
linear algebra notation and omit the brackets (so the previous vector is just written
as 1.)

The postulates of quantum mechanics give the theoretical framework from which
we can connect the physical quantum systems to mathematical representations. The
postulates do not tell us anything about specific quantum systems, but rather give
insight into general traits possessed by all quantum systems. The first postulate
describes the space on which a quantum system evolves.

Postulate 1. (Quantum State Space) Associated to any isolated physical system is
a complex Hilbert space which is known as the state space of the quantum system.
The system is completely describable by a unit vector in the system’s state space.



Remark 2.1. Postulate (1| does not specify which state space should be used or of
what dimension this space might be. These are properties which are determined
empirically on a case by case basis.

One important example for quantum computing is the state space of a 2-level
(or 2-dimensional) quantum system. The quantum “spin” of an electron (or of an
atom) is such a system. Any quantum state of the system can be described by the
vector

ID = Oﬂ/}up + 6¢doum

where o and 3 are complex scalars satisfying |a|> 4 |3]*> = 1 (because the quantum
state must be a unit vector.) The vectors v, and ¥4, are basis vectors of the
quantum state space respresenting the spin up and spin down states respectively.

In an analagous classical system, a state would have to be one of the basis states,
either ¥, or Ygown. In quantum mechanics, linear combinations of the basis states
are possible. This ability to be in more than one state at the same time is called
superposition. As mentioned in the introduction, this is the property which allows
for computational speedups in quantum computers. The next postulate shows how
to represent quantum systems which are composed of more than one smaller system.

Postulate 2. (Composite Systems) The state space of a composite physical system
is the kronecker (or tensor) product of the state spaces of the component physical
systems.

For example, if we have n systems with states 1);, then the joint state of the total
system s
V=91 ® - @y

Postulate[2) covers, for example, the case of a system with two or more interacting
spin systems. Before stating the third postulate, we introduce some important
definitions.

Definition 2.1. (Adjoint Operator [18, A.3.57]) Let Z be a Hilbert space with
inner product (,) and let Q be a linear operator on that Hilbert space. There exists
a unique linear operator QF such that

(Qz,y) = (z,Q"y),

for all x and y in Z. The operator QT is called the adjoint operator of Q on the
Hilbert space Z.

Theorem 2.1. Consider a finite Hilbert space Z where the elements are operators
represented by N x N matrices. The standard inner product on this space is

(X,Y) =Tr(XTY).

In this case, the adjoint of an operator is equivalent to the conjugate transpose of
that operator.



Proof. Let X and Y be elements of Z and () be on operator acting on Z.

QXY) = T(@X)'Y)

= Tr(XTQTY)

- (xQY)
By Definition [2.1] it follows that

Q' =Q".

]

We henceforth use the dagger notation () to represent conjugate transposition
in finite-dimensional matrix spaces. Note also that we are using the quantum
mechanics convention of applying the conjugate transpose to the first argument of
the inner product and not the second as is done in mathematics.

Definition 2.2. (Unitary Operator [I8, A.3.62]) A wunitary operator, X, is a
bounded linear operator acting on a Hilbert space, Z. Unitary operators satisfy

XX =Xxx"=1.
where 1 1s the identity operator.

Remark 2.2. In finite-dimensional space, unitary operators are represented by
N x N matrices and the identity operator, 1, by the N x N identity matrix. The
set of N X N unitary matrices is denoted by U(N).

In most quantum references, the standard notation for a unitary matrix or
operator is U. In pure mathematics, however, the notation for the set of all unitary
matrices of dimension N x N is U(N). To make matters even more confusing, the
letter u is typically reserved for control input functions in control theory.

To avoid confusion, this report will use the symbol X for a unitary operator
or matrix and U(N) for the set of all unitary matrices of dimension N x N. The
symbol v will be used for controls.

Definition 2.3. (Hermitian Operator [18, A.3.68]) A Hermitian operator, H, is a
bounded operator acting on a Hilbert space, Z, satisfying

(Hz,y) = (x,Hy), Va,yeZ,

where (,) is the inner product defined on the Hilbert Space. In mathematics this is
called a self-adjoint operator.



Remark 2.3. In finite-dimensional space, Hermitian operators are represented as

N x N matrices and satisfy
H' = H.

Similarly, a matrix S with the property that
St=—8,

is called skew-Hermaitian. The set of N x N skew-Hermitian matrices is denoted by
u(N), a notation which should become clear during the discussion of Lie algebras
and Lie groups.

Remark 2.4. The problems considered in this report are exclusively finite-dimensional.
As a result, all Hermitian and unitary operators can be expressed as matrices.

The final postulate we state in this thesis is the most directly useful for control
theory and tells us how quantum systems evolve.

Postulate 3. (Evolution) The evolution of a closed quantum system is described
by a unitary transformation. That is, the state v at time t1 is related to the state
Y' at time ty by a unitary operator X which depends only on the times t, and ts,

U =Xy

The dynamics of the quantum state of a closed quantum system are described by
the Schrodinger equation,
dip
h— = H 2.1

where H 1s a Hermitian operator and h is Planck’s constant.

Remark 2.5. There is a one-to-one correspondence between the unitary trans-
formation picture of quantum evolution and the Schrodinger equation view [4§].
Solutions of (2.1)) have the form 1 (t) = exp(—;Ht)t, where it is easy to show
that eXp(—%H t) is a unitary operator. Furthermore, any unitary operator can be
expressed as exp(iH ) for some Hermitian operator H.

We can also express the dynamics of the system in terms of the dynamics of the

unitary operator by
dX(t
zh% = HX(t). (2.2)
This equation is known as the Schriodinger operator equation and is very useful
for quantum computing as it closely relates to the idea of quantum logic gates,

which we discuss in Section [2.1] The following definition and theorems pertain to

solutions of (2.2)).

Definition 2.4. (Right Invariant [4]) Let S be a dynamical operator system. Let
the time-varying operator s(t) be a solution of S and let M be an arbitrary, constant
operator. The system S is called right invariant if s(t)M is also a solution of S for
any such M.



Theorem 2.2. The Schrodinger operator equation, , 1s right invariant.

Proof. Take the derivitive of X (¢)M to get

dAX(OM — dX(t)

= M
dt dt
— HX()M
= —iH(X(@)M),
which shows that X (¢)M is also a solution of (12.2)). O

The following theorem is the specialization of a more general result from [4]
§1]. The statement in [4] is presented without proof and is written in terms of Lie
groups (see Chapter [3)).

Theorem 2.3. If the initial state X (0) of system s a unitary operator, then
the solution, X (t), remains unitary for all time.

Proof. At time t = 0, XTX = 1, since X (0) is unitary. We now show that XTX
remains constant for all ¢ > 0.

AXtX dxt dx
= X+ X=
dr a T
_ (XY x4 xrdX
N dt dt

. + .
—1 —1
= (—HX ) X+X'—HX

- ‘xiHtx - %XTHX

h
i i

- X'HX - -XTHX
h h

— ()7

where we have used the properties of the conjugate transpose operation (see Ap-
pendix as well as equation (2.2)). We therefore conclude that XTX = 1 for all

time.

An identical calculation shows that X X' = 1 for all time and so X remains
unitary under the dynamics of the Schrodinger operator equation ([2.2)). O

Computing Basics

We now move on to give a brief introduction to some very basic principles of
computing theory. Please refer to [40] and [48] for a more complete account. Most
of this description can be found in those references. Since quantum computing is



analagous in many ways to classical computing, we begin the discussion with an
outline of some definitions from the field of classical computing.

Classical computers consist essentially of wires to transport information and
logic gates to manipulate that information. The wires and logic gates behave ac-
cording to the laws of classical mechanics, specifically, the laws of electricity and
magnetism.

The basic unit of information in the classical setting is a bit. A bit may only
take the values 0 or 1 and may be combined with other bits into sequences. Com-
putations are performed by operating on the bits with logic gates (such as AND,
NOT, OR, etc...). In physical computers, the value of a bit is stored as voltage
differences in an electronic circuit.

To be able to perform arbitrary computations on data, we need to be able
to perform arbitrary manipulations of the corresponding sequence of bits. As a
result, it is very useful, not to mention practical, to be able to construct arbitrary
bit manipulations with a finite (and hopefully reasonably small) set of logic gates.
Such a set of gates is called universal.

In quantum computing, information is stored and manipulated in physical sys-
tems which are modelled by the laws of quantum mechanics. In this context we
still have the analogues of wires and logic gates, though their implementation is
slightly different.

The basic unit of quantum information is the qubit (short for guantum bit).
Physically, a qubit is a 2-level quantum system. “Sequences” of qubits are in-
teracting two-level systems and, by Postulate [2, mathematically represented by a
tensor product of those component systems. The dynamics of the total system are
described by the Schrodinger equation.

There are several ways to physically implement a qubit, all of which involve
interacting 2-level systems. Often the systems are spin systems. Such spins could
come from trapped ions or even the atoms in a molecule. The latter method is
the basis for the nuclear magnetic resonance (NMR) implementations of quantum
computing.

Unlike the classical case, we see from the evolution postulate that manipulating
a quantum state is the same as acting on it with a unitary operator. These unitary
operators are therefore the analogues of the classical logic gates and are indeed
called quantum logic gates when used for this purpose. Much in the same way
as in classical computing, we want a finite set of quantum logic gates to perform
arbitrary manipulations of information or, a universal quantum gate set. The focus
of this report, however, is on producing (or synthesizing) given quantum logic gates
and not on generating a universal gate set.



2.2 Unitary Synthesis as a Control Problem

We now examine the question of how we can produce a given quantum logic gate.
This is equivalent to producing the unitary X from the quantum evolution equation

Y1 = Xy

The dynamics of X are given by the Schrodinger operator equation , so the
problem is therefore one of driving the system from the identity at time zero, to
the desired unitary, denoted X, at some final time. This is the type of problem
dealt with by the field of control theory.

Before we can really talk about control however, we need to know a little bit
more about the system itself. Specifically, we have not yet introduced any means by
which we may influence the system to exert our desired control actions. We have
also not seen how the system would evolve on its own in the absence of control
input. All of this information is encoded in the Hermitian operator H. H is called
the system Hamiltonian.

Most quantum systems that could be useful for computation possess several
common properties. The systems of interest have a Hamiltonian of the form

H = Hint + He:pt-

H;,; is called the drift Hamiltonian or the internal Hamiltonian. Physically, it
represents the interaction between the qubits in the system. As such, it describes
the internal dynamics of the quantum system and gives its behaviour in the absence
of control. H,,; is called the control Hamiltonian and represents the part of the
system Hamiltonian which can be affected in some way by a control input. This
is responsible for the system’s behaviour in response to some external stimulus, or
control. Some examples of physical stimuli which affect quantum systems are radio-
fields and lasers. The actual physical control used depends on the implementation
of the quantum computer.

Both H;,, and H., must themselves be Hermitian operators. We will only
consider the case where H;,; is time independent. The control Hamiltonian on the
other hand will not be constant and the time-dependence is introduced by a control
input function, v(t). Our overall system takes the form

dX
Zh% = [Hint + Hext(”)] X

The exact operators H;,; and H,.,; must be determined empirically. We assume
that these are known for the systems we are working with.

A common structure for the system Hamiltonian is

k=1



This has the same form as previously mentioned with H;,, = Hy and H.,; =
> Hyvg(t). We will consider only Hamiltonians of this form in this report.

The problem we address for the remainder of this report is that of driving the
system

—ihX(t) =

Hy + i vaj(t)] X(t)

j=1
from the initial state X (0) = 1 to a desired final state Xj.

A more detailed look at the physics behind a quantum computing system can
be found in section II of [63], which refers specifically to nuclear magnetic resonance
implementations of quantum computers.

2.3 Decoherence and Other Limitations

Recall that the postulates of quantum mechanics given previously are for closed (or
isolated) systems. This means that, to a good approximation, the quantum system
does not interact with its environment.

When a quantum system interacts with its environment it ceases to be specif-
ically quantum in nature since it is no longer isolated. This process is known as
decoherence. A quantum system which has experienced significant decoherence loses
the computing advantage it once had over classical systems since, for all intents and
purposes, it has turned into a system which can be descibed by classical mechan-
ics. From a computing point of view, this is highly undesirable. Every quantum
system will eventually interact with its environment and experience decoherence.
The more time over which the system evolves, the more the effects of decoherence
will become evident.

A possible way to minimize this effect is to look for time-optimal solutions to
the control problem that is, solutions to the problem which can be achieved in the
minumum possible time. This is the approach used in this report.

A practical consideration which is not addressed in this report is the problem
of crosstalk. It is assumed that every control may selectively address a particular
qubit, or set of qubits. When this assumption is not completely valid, we say
that crosstalk is occuring between the controls. Many systems will exhibit this
effect to some degree, particularly when multiple control signals are being applied
simultaneously [63].

Another problem that arises with quantum systems is that of measurement.
This is related to the concept of observability from control theory. Control systems
are often viewed in terms of input-output relations. For quantum systems, outputs
are tricky to deal with because they require measurement which could potentially
disturb the state of the system. Some quantum systems show promise for continuous
feedback controls via weak measurement. The system would be stochastic in nature

10



and it would need to take into account the back action resulting from performing
measurements. See references [10] and [41]. To avoid this issue, we consider only
open-loop control. This means that no measurements are taken while the system
is being controlled.

The lack of feedback makes the control system more susceptible to instrument
error. Since any solutions found to this control problem are only useful in as much as
that may be physically implemented on a real quantum experiment, understanding
the quirks of the particular setup would be very important. Physical systems will
never be as neat as the model equation we are using. We ignore this problem but
note that it is something that would need to be considered in the future.

2.4 Existing Literature

The field of optimal control theory has existed in earnest since the 1950’s. A major
result, the Maximum Principle of Pontryagin et al. [52], was translated to English
from Russian in 1962 and gives necessary conditions for a control to be optimal (see
Chapter . Other results such as the higher order maximum principle of Krener
[42] in 1977 also have applications to the quantum control problem presented in
the previous section.

Related geometric control theory results have existed since the 1970’s. Results
originally designed to deal with control of rigid bodies under rotation such as [12]
were extended to more general systems which could even encompass the types of
models used to describe quantum systems since, as it turns out, there are many
structural similarities between the two. This structure was used in [29] to examine
the question of controllability (discussed in Chapter [3|) and in [61] to examine what
could be said about the possible forms of optimal controls on these systems. A
standard reference in the field of geometric control is the text by Jurdjevic [28].

While these theoretical results have been around for awhile, their actual appli-
cation to quantum systems is relatively new. For example, it was only in a survey
paper from 1993 by Warren et al. [65] where it was finally declared that the dream of
coherent quantum control was alive. This paper was written before the widespread
interest in quantum computing began in 1994 (as a result of Shor’s prime factor-
ization algorithm) and, therefore, does not mention potential applications to this
field.

A reason for the delay between the existence of the theory and its application
as discussed in [65], is that it was only around this time that the physical control
systems became reliable enough to be used for the purpose. The experimental
progress in the field of active laser control demonstrated the possibily of being
able selectively break particular bonds in polyatomic molecules. The authors of
[65] briefly discusses the application of optimal control theory to designing control
strategies to achieve this objective.

11



Related to the breaking of chemical bonds is the more general idea of quantum
state control. Given a particular quantum state ¢y, we may wish to drive this to
another quantum state ¢¢. Such a problem is considered in [67] and also references
therein. In this case, the author looks for time-optimal solutions. Using what is
known as the Born approximation, the author finds that for bounded controls, the
solutions are bang-bang (Bang-bang controls are discussed in Chapter )

Another application of quantum control deals with what is called the “popula-
tion transfer” between energy levels in a n-level quantum system. This typically
involves the excitation of ions using active laser control. Boscain et al examines
this problem in a series of papers [5] [, [§].

The approach used by Boscains involves both exploiting the structure of the
space on which the problem evolves and the use of the Pontryagin’s Maximum
Principle to find energy optimal controls (these are control laws which minimize the
total energy used to synthesize the desired unitary.) In low dimensional cases (n = 2
and n = 3) some controls are found analytically. It is also shown that abnormal
extremals cannot be optimal in these cases (see Chapter for a discussion of
normal and abnormal controls).

The same problem is considered by Chang and Sepulchre in [16], but with a
time-optimal cost instead of an energy optimal one. Additionally, this paper uses
the symmetry inherent in the problem to reduce the complexity and the resulting
control laws are found to be bang-bang. The authors suggest that generalizing the
result to n-level systems would be possible.

Yet another approach to quantum control is discussed by Carlini et al in [14]
15]. These papers discuss the time-optimal evolution and time-optimal synthesis
of a unitary operator from the calculus of variations perspective. The papers find
Hamiltonians which can produce a desired quantum state or unitary operator in
the shortest time. No attempt is made to match this approach to a specific type
of physical control experiment although, in practice, the form of the Hamiltonian
would be restricted by the physical setup.

The most closely related literature to the problem we are considering is that
which deals with the optimal control of a unitary operator. Much of the work
which has been done in this area considers Nuclear Magnetic Resonance (NMR)
implementations of quantum computing since, to date, these have been the easiest
to work with physically. NMR quantum computers use ensembles of polyatomic
molecules which contain atoms with odd numbers of nucleons (protons and neutrons
and both nucleons), such as carbon-13. Such atoms are spin 1/2 particles. The spins
of the various atoms are coupled, which is to say that they interact as described
by the internal Hamiltonian. The strength of each coupling is given by a constant.
Electromagnetic fields of specific frequencies are able to, to a good approximation,
selectively induce particular rotations in the spin of a particular qubit. For a more
thorough review of NMR quantum computing, refer to [49], [54] and [63].

Since 2000, D’Alessandro and collaborators have produced several papers deal-
ing with optimal control of quantum systems, two of which are [20] and [22]. Both of
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these papers are motivated by the application of synthesizing unitary operators as
logic gates for NMR quantum computing applications. They approach the problem
by finding energy-optimal solutions while allowing for the possibility of unbounded
controls.

The second of the two papers, [20] ignores the drift term for a two qubit sys-
tem, but computes a bound on the error associated with doing so. It is found that
minimizing this error is equivalent to solving a time-optimal control problem. The
time-optimal problem is solved on the space SO(4) (a component of the decompo-
sition of SU(4)) and, as already mentioned, the drift term is ignored. This leads to
a characterization of normal and abnormal extremals for the problem.

Published around the same time, [53], finds decompositions of SU(2), which it
is suggested would be useful for computing time-optimal controls. Also around the
same time, [68] looks at the one qubit version of the time-optimal control problem.
This is essentially the same problem examined in Chapter of this report, though
the paper does not provide the proofs of the theorems stated within.

Boscain et al., previously mentioned for their work in population transfer be-
tween energy levels, turn their attention to synthesizing unitary operators in [7]
and [9]. The former paper looks at a space which is isomorphic to a one qubit sys-
tem and investigates the number of switches required to produce a desired unitary
operator. The latter paper shows that time-optimal solutions for the particular
system are bang-bang and compare the results with those of Khaneja from [33].

A series of papers by Khaneja et al, including [37], [33], [34], [35], [36], and
[69], treat a variety of problems associated with synthesizing a unitary operator.
The first of these papers [33] deals specifically with finding time-optimal control
of quantum spin systems to produce unitary operators. The results rely on the
fact that the control signals which may be generated in NMR implementation of
quantum computing are orders of magnitude larger than the magnitudes of the
couplings in the internal Hamiltonian. The authors assume the controls can be
made arbitrarily large; in effect, the controls are considered to be unbounded.

Unlike many control problems, unbounded controls do not trivialize the problem
because not every state can be reached in arbitrarily short time. A demonstration
of this is given in [29]. The results of this paper include that the fastest way to get
from one unitary operator to another reduces to a geometric problem of finding the
fastest way to get between points in the quotient space of the system. The optimal
controls are found to be of the form pulse-drift-pulse, where the pulses are control
inputs of large amplitude and the drift component corresponds to natural evolution
of the system.

Also from Khaneja and collaborators, [38] and [58] present the mathematical
framework for an algorithm as well as the algorithm itself (GRAPE) which can be
used to numerically compute controls for quantum spin systems. This algorithm
will be discussed in further detail in Chapter [f

Many of the results in the field of quantum control and optimization have been
summarized in the recent textbooks [21] and [50]. The former reference also provides
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an introduction to quantum mechanics and controllability of quantum systems.
However, the time-optimal control of a unitary operator with bounded controls,
which is the focus of this report, is not given much attention therein.

2.5 Time-Optimal Control

As in many of the references listed in the previous section, we approach the problem
by trying to find time-optimal ways to generate unitary operators. The reason for
this is that we want to minimize the effects of noise and decoherence. Recall that
decoherence is an unmodelled distortion of the quantum system whose effects tend
to build over time. Therefore, the desired unitary operators should be synthesized
as efficiently as possible to minimize these effects [6, [33]. Generating the desired
unitary operators in the shortest time should, in principle, minimize the effects of
decoherence and other noise which are always present.

In some cases, such as the NMR system considered in [33], the relative magni-
tudes of the control fields which can be applied to the system allow us to neglect
the drift effect from the internal part of the Hamiltonian. In reality, every con-
trol system will have some physical limitations when implemented. In this report,
we consider systems with limitations on the maximum control signal that can be
applied to the system. In other words, we consider systems which have bounded
control inputs. The control inputs vg(t) for our system will have the form

Vg (t) € [Uminv Uma:p] )

where v,,;, is the smallest possible control field we can produce and v,,,, is the
largest. Since the control function typically represents the amplitude of some form
of electromagnetic radiation, we choose v,,;, to be zero. We note that despite
not allowing negative controls, the controllability properties of the system remain
unchanged, as is demonstrated in Chapter

The time-optimality problem can be stated as follows. Of all the available
controls, v(t), which drive the system from the initial condition X (0) = 1
to the desired final condition X (¢;) = X4, which is the one which does so in the
minimum time, t;. This is called a time-optimal control problem. The standard
framework used for dealing with this problem is Pontryagin’s Maximum Principle
from [52], as we shall see more formally in Chapter [4]

2.6 Non-dimensionalizing the Problem

Before getting into the more technical details, we rewrite the problem rescaling the
time variable . The dynamics are given by

L dX(t)
—ZHT = H(v)X(t).
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where v;(t) € [0, Upaz)-

We can rescale the time variable by an arbitrary positive constant v by intro-
ducing t defined as

<E o t
This gives
dt h
— = —. (2.4)
at vy

By the chain rule, we see that

dX(t)  dX(t)dt

dt dt di’
The two previous equations give
dX(t) ~ydX(t)
d  h o di

Equating this to the original dynamics gives that

57 dX(1)
h————=H(v)X(t
it = — Hw)X (1),
which simplifies to
dX(t)
— = H(v)X(t
= = HWX (0
Multiplying both sides by —}/, we get
dX(t) 1
— =——H(v)X(?).
= —ZHE)X (0

We finally define X (t) = X (£) and set 5 to one, which gives us the Schrodinger
operator equation as

dX

dt
where the hats have been dropped for simplicity. This is the form of the equation
we consider for the remainder of the report unless otherwise stated. We note that
v is not useful in analysis but that it sometimes becomes important to rescale the
equation when solving it numerically (see Chapter . Additionally, we may wish
to scale out constants such as v,... When H(v) is a linear function of v (as it
will be for all examples in this thesis), both of these can be done by choosing an
appropriate value of v. For example, the latter can be done by setting v = V42
and defining a new control function by

— —iH©)X (),

5 = )
0;(t) = v

This allows us to consider bounded controls of the form

v;(t) € [0, 1].

15



Chapter 3

Controllability

In this chapter we discuss the issue of controllability. Informally, a system is con-
trollable if it is possible to drive that system to any final state from any initial
state with a valid control input. In other words, controllability means that it is
actually possible to control the system in the desired way. Controllability results
for linear systems are well known and can be stated in terms of the rank of what is
called the controllability matriz. This matrix may easily be constructed for a given
linear system (see [47, §2.2]). For nonlinear systems there is no general approach
for establishing controllability.

Despite this theoretical shortcoming, however, the structure of the quantum
systems with which we are working allows us to determine their controllability
properties. In particular, we show that these quantum systems evolve on Lie groups.
Consequently, results from the fields of Lie groups and Lie algebras are used to find
the required controllability properties. The much cited 1972 paper by Sussman and
Jurdjevic [29] gives criteria for controllability of systems evolving on Lie groups.
The results from that paper are extended in [2], Altafini’s related 2002 paper.

3.1 Basic definitions

Quantum States and Unitary Operators

Recall from Chapter [2] that there are two forms of the Schrodinger equation - the
quantum state formulation given by

() = —iH [(1)) (3.1)
and the operator forumlation given by

X(t) = —iHX(t). (3.2)
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While we may formulate a control problem for either version of the equation, the
physical interpretations of the two systems are different. Recall that a transforma-
tion from one quantum state to another is given by Postulate [3] and is a unitary
transformation of the form

Y1 = X1po
for some unitary operator, X.

In the quantum state version the time evolution of the system is carried
by the quantum state, ¢(t). By contrast, the time evolution in the operator ver-
sion, , is carried by the unitary operator X(t). In , we are interested
in transforming a particular initial quantum state into a particular final quantum
state. In (3.2)), we are not interested in the specific quantum state but only in the
transformation between initial and final quantum state.

The term quantum state control is used to refer to the control of system (3.1)),
while quantum operator control or just operator control is used to refer to the con-
trol of system (3.2). The application determines which version should be used.
In quantum computation, it is almost always important to know about the trans-
formation between arbitrary quantum states, and not about any specific quantum
state. As a result, we consider operator control exclusively for the remainder of
this thesis.

Admissible Controls and State Space

For a general control system, we define the control input v(¢). For any real ¢, v(t)
is an element of R™. We also define the set of admissible controls 2. The set
) contains all the allowable control functions. For example, we are considering
systems with bounded controls. This admissible set is defined by

Qbounded = {

Piecewise continous functions v(t) in R™ such that
Umin < U(t) < Uy wheret >0 and [ =1,...,m

In the general case, a function v(¢) that is an element of Q is called an admissible
control.

We also define the state space X. This is the space over which the control
system evolves. Elements of X will be denoted by X. Note the distinction between
a quantum state (say 1) and the state of a control system which are not the same
thing in general. For example, when we are considering operator control, the state
space is the set of unitary matrices or, in other words, the state space is the set of
transformations from one quantum state to another. In the case of quantum state
control, however, the quantum state and the state of the control system happen to
coincide. Henceforth, the term state refers to the state of the control system, while
the term quantum state refers to the state of the quantum system.
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Controllability and Reachable Sets

The definition of controllability can be formalized in several ways. We use the
following definition for this report which is stated for a nonlinear affine system in
[57]. The quantum systems we are considering are a special case of this type of
system.

Definition 3.1. (Controllability [57, §11]) A system is controllable if for any two
points Xy and Xy in X, there exists a control v in 2 and a finite, non-negative
time T' such that for X (0) = Xo we have that X (T') = X;.

Controllability is a property that we wish our control system to possess. The
remainder of this chapter is devoted to finding conditions which guarantee control-
lability and tests for determining the same. A related notion is that of reachability
which is defined in terms of the reachable set.

Definition 3.2. (Reachable Set [57, §11]) A reachable set from a given point X,
is the set

RY(X,,T) e X

of points which are attainable from X (0) = Xq in time T by applying an admissi-
ble control and such that the trajectories X (t) remain inside of U, which is some
neighbourhood of Xy. We use the notation

R(X,,T)
to denote the case where U = X and the notation
R(Xo)

to denote the case where we consider all points that are attainable for some finite
time T

Reachability from Xy means that R(Xy) = X or in words, that the reachable
set from X, is the entire state space. If the existence of an admissible control to
drive X, to X only happens in the limit as 7" tends to infinity for some X, and
Xy then we use the terms approzimately controllable, approximately reachable set
and approximate reachability from X,.

Remark 3.1. While reachability from a point and controllability are equivalent
for linear systems, the same is not true for nonlinear systems. For example, even
if it is possible to drive the system from some initial point to every point in the
state space it may still not be possible to do so from any given initial point in the
state space, which means the system would not be controllable. On the other hand,
a system which is reachable from every point in the state space is controllable by
definition.
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Universal Quantum Gate Sets

Recall that the unitary operators we are working with are to be used as logic gates
for a quantum computer. We notice that the idea of a universal gate set which was
introduced in Section bears some similarity to the idea of controllability.

Definition 3.3. (Universal Gate Set [48]) A finite set of logic gates (or unitary
operators) is called universal for quantum computation if any desired unitary oper-
ator may be approximated to arbitrarily high accuracy using a finite sequence of logic
gates from that set. A finite set of unitary operators has the universality property
if it is universal.

Intuitively, one might suspect that having a universal gate set would imply
that arbitrary unitary operators could be achieved and therefore that the system
must be controllable. This is not necessarily the case, however. Controllability
and universality are fundamentally different concepts in that controllability is a
property of the control system, while universality is a property of a set of operators
which happen to be elements of the state space.

Specifically, consider a quantum system evolving on the set unitary matrices
such as
X = —iH@w)X.
Controllability implies that starting from any given unitary matrix, we may produce
any other unitary matrix by applying some control input, v. Universality implies
that we may find a finite set of unitary matrices, My, from which it is possible to
generate to arbitrary accuracy any other unitary matrix with a product of the form

MM, ... M,
where each M; is an element of M.

One might still wonder if universality implies controllability or vice-versa. If
a system is controllable, then it is certainly possible to produce any finite set of
unitary matrices. The question of whether any such set can be universal cannot be
answered by controllability. However, it is stated in [43] that almost any individual
quantum logic gate forms a universal set. (The proof is in [66].) As such, control-
lability does happen to imply the ability to generate a universal gate set, though
not without some help.

We also note that the existence of a universal gate set does not imply con-
trollability. It is certainly possible to have a universal gate set which contains an
element which cannot be reached using an admissible control input v(t). Even if
every element of some universal gate set may be achieved by applying an admissible
control, this is not sufficient to conclude that the system is controllable because a
universal gate set need only be able to produce arbitrarily good approximations
of every unitary matrix while controllability requires that every matrix be exactly
reached in finite time. As such, the existence of a universal gate set is only enough
to imply approximate controllability. To demonstrate controllability, more theory
is required.
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3.2 Lie Groups and Lie Algebras

Differential geometry and, in particular, Lie groups and Lie algebras are very im-
portant for studying controllability in many applications. For that reason, a brief
summary of the key definitions and results in this field is presented below with
examples. For a more complete introduction to Lie theory, refer to [17], [19] or [55].

Lie Algebras

Lie algebras are vector spaces on which has been defined an additional “bracket”
operation as defined below.

Definition 3.4. (Lie Algebra [I7, §II]) A Lie algebra £ over a field F is a vector
space over F with an additional binary operation L x L — L. This operation
associates with an ordered pair of elements {g,b} in L an element [g,h] and is
required to satisfy the following properties:

1. Bilinearity:
[g+b.f=1[o.f1+b.f, o0+ =1[gb+]gf,

lag, b] = [g,ab] = ofg, h], VaeF.

2. An element bracketed with itself is zero:
g.9] = 0.

3. Jacobi identity:
(9. [0, §1] + [0, [f, 8] + [f. g, b]] = 0.
Definition 3.5. (Lie Bracket |21} §3.1], [55 §1.6]) A binary operation which satis-
fies properties (1-3) in Definition is called a Lie bracket.

Note that in some references the Lie bracket is written as {, }. A trivial example
of a Lie algebra is any vector space on which we define the Lie bracket by [g, ] = 0
for all g and b in the vector space. A less trivial example is the vector space R3
with the standard vector cross-product. The cross-product can easily be verified
to satisfy properties of a Lie bracket. For quantum mechanics, the most useful Lie
bracket is the commutator.

Theorem 3.1. For operators g and by, the commutator, defined by

[g,b] = gb — bg

satisfies properties (1-8) and is therefore a Lie bracket.
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Proof. We first demonstrate bilinearity of the commutator.

g+b,f = (g+bH)f—Flg+h)

gf +bf—fg — b
= (of —fg) + (bg — fb)
= g, ] +[b,7]

The proof for linearity of the second argument is identical. We also have that

[ag, B9] = agfb — Bbag

a(gh — bg)
aflg, b,
which proves that the commutator is bilinear. The condition that [g,g] = 0 is

trivial to show. Finally, we see that

9, [0, 7] + [0, [, gl] +[F, [8,b]] = g(bf—7fh) — (bf —fb)g
+ b(fg — gf) — (g — gf)b
+

f(gh — bg) — (gb — hg)f
0

which proves the Jacobi identity for the commutator. Therefore the commutator is
a Lie Bracket by definition. O

Theorem 3.2. The vector space of N x N skew-Hermitian matrices u(N) (intro-
duced in Remark forms a Lie algebra with the commutator as the Lie bracket.

Proof. Tt can be easily verified that the set of skew-Hermitian matrices are a vector
space. Since the commutator is a Lie bracket, it is sufficient to show that the vector
space of skew-Hermitian matrices is closed under this operation. Indeed we have
that

—[A,B]' = —(AB - BA)'
— —(BTAT _ ATBT)
= —(BA-AB)
= AB - BA
= [AB],
where we have used properties of the conjugate transpose operation which can be
found in Appendix [A] This shows that the bracket operation is closed for any skew-

Hermitian matrices A and B and therefore the skew-Hermitian matrices are a Lie
algebra under this commutator. O]

As with many algebraic objects, Lie algebras may have Lie subalgebras.
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Definition 3.6. ([50], §1.4]) A Lie subalgebra is a subspace of a Lie algebra L which
is closed under the Lie bracket.

Theorem 3.3. The subspace su(N) of u(N) defined by
su(N) ={A € u(N), where Tr(A) =0}
is a Lie subalgebra of u(N).

Proof. We need to show that this subspace is closed under the Lie bracket. This
means we must show that for any A and B in su(N), the element [A, B] has zero
trace. The trace of the element [A, B] is

Tr([A, B]) = Tr(AB — BA) = Tr(AB) — Tr(BA) =0,

by the cyclic property of trace. Therefore su(N) is closed under the Lie bracket
and forms a Lie subalgebra of u(NV) O

When determining whether or not a system is controllable, it is important to
know if a given subset of elements from the Lie algebra “generates” the remaining
elements.

Definition 3.7. We say that a (possibly infinite) set of elements L = (Ly, Lo, . ..)
from a Lie algebra L generates the Lie algebra if

(Ly, L.}, = L.

The notation {-},, denotes the set of elements which may be produced by
repeatedly taking Lie brackets of the elements inside the curly braces. This includes
any element of the form

[Ar, [Ag, [As, .. ]]],

where A, Ag, ... are all elements of the set L (the A;s need not be unique.)

Lie Groups and Lie Subgroups

The complete definition of a Lie group is technical and beyond the scope of this
thesis. A simplified version of the definition is included below for completeness, but
is not necessary for understanding the rest of the chapter. The interested reader
may consult Appendix |B| for further details.

Definition 3.8. (Lie Group [21} §3.1]) A Lie group is a group which is also an an-
alytic differentiable manifold and whose group operations gxh and g=* are analytic.

The proof of the following theorem is in Appendix [B]

Theorem 3.4. ([17]) The unitary matrices (introduced in Section form a Lie
group.
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Just as with Lie algebras, Lie groups may have Lie subgroups. Informally, a
subset H of a Lie group G is a subgroup if it is both a subgroup and a submanifold of
G. It is known that a closed subgroup of a Lie group is a Lie subgroup [I7, §V.XIV].
In quantum computing, the special unitary group, SU(N), is a very important Lie
subgroup of the unitary group.

Definition 3.9. (Special Unitary Group) The special unitary group is defined as
SU(N) ={X € U(N) where det(X) =1}

that is, the special unitary group contains the elements of the unitary group with
unit determinant.

Relation Between Lie Algebras and Lie Groups

Lie groups and Lie algebras are very closely related. In fact, there is a finite-
dimensional Lie algebra associated to each Lie group, although the converse is not
true. Simply connected and connected Lie groups are completely determined by
their associated Lie algebras, which reduces the study of these groups to the study
of their Lie algebras [64], §3].

The question then becomes how to determine which Lie algebras are associated
to which Lie groups. Answering this question involves technical details beyond the
scope of this report. For the purposes of finite quantum systems (for which we will
only be dealing with matrix groups) we state that the Lie algebra £ associated to
a Lie group G is the set of all the matrices L for which exp(tL) is an element of
G. In other words, the matrix exponential maps elements of the Lie algebra onto
elements of the Lie group.

It is known that the matrix exponential of a skew-Hermitian matrix is a unitary
matrix and also that any unitary matrix can be written as the exponential of a skew-
Hermitian matrix. Thus we may accept that the Lie algebra of skew-Hermitian
matrices have as an associated Lie group, the unitary matrices.

From [29] we have a useful way of expressing any element of a Lie group in
terms of the generators of the underlying Lie algebra.

Theorem 3.5. Let G be any connected group which has L = (Lq,...,L,) as the
generators of its associated Lie algebra. Every element of G, denoted by g, can be
expressed in the form

g = exp(tiAr) exp(t2A42) . .. exp(tmAm), (3.3)

where each A; is an element of L.
Proof. Consider a connected Lie group G. Let £ be the Lie algebra of G and let £
be generated by

L=(Ly,...,L,).
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We will consider the set G’ that is composed of all finite products of elements of
the form exp(tL;) where L; is in L and t is a real number. We intend to show that
G=g.

A space, S, is called path-connected if there exists a continuous function, f :
R — S defined on [0, 1] for which f(0) = s; and f(1) = s, for any elements s; and
Sy in S.

The set G’ is clearly path-connected since we can define the continuous function
f in terms of the exponentials exp(tL;) (it may be necessary to rescale t.) It is also
easy to show that G’ satisfies the properties of a group. We now use [29, Lemma
2.2] which states that a path-connected subgroup of a Lie group must be a Lie
subgroup.

The Lie group G’ contains the subgroups generated by the elements of L by
its definition. It must therefore hold that the elements of L are in the Lie algebra
associated to G'. It now follows that G’ = G since they have the same Lie algebra.

We have shown that any element of the Lie group G may be expressed as a
finite product of exponentials of the generators of the associated Lie algebra which
completes the proof. O

The previous result tells us that generators of a Lie algebra also generate the

associated Lie group via products of their exponentials.

We use the notation
exp(L)

to denote the set of all possible elements generated by the product (3.3). This
allows us to write the relation between a Lie group G and a Lie algebra L as

exp(£) =G. (3.4)

Finally, it is known that sub-algebras of Lie algebras have a one-to-one corre-
spondance to subgroups of their associated Lie group. We have already seen that
skew-Hermitian matrices form the Lie algebra associated with the Lie group of
unitary matrices. In the notation of , this can be written as

exp(u(N)) = U(N).

It can also be shown that the Lie algebra of skew-Hermitian matrices with zero
trace have the special unitary group as their associated Lie group, or that

exp(su(N)) = SU(N).

3.3 Structure of the Problem

The reason that Lie algebras and Lie groups are important in quantum control is
related to the way quantum systems evolve. Closed quantum systems evolve under
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unitary transformation. This means, as we have already seen, that any two states
in X can be related by the equation

1/}2 = leu

where X is a unitary operator depending only on the initial and final times. We
also recall that by Theorem [2.3] the dynamics given by

X = —iH(©)X (3.5)

preserve the unitary evolution of the system or, in other words, that X remains a
unitary operator under these dynamics for all time.

It is therefore clear that the evolution of the quantum system occurs on a state
space which is also U(N), the Lie group of N x N unitary matrices, where the
parameter N depends on the size of the system.

Furthermore, —iH (v) is always an element of the N x N skew-Hermitian ma-
trices, u(NN), which is the Lie algebra associated to the unitary group. We will see
that the Lie algebra generated by the span of —iH (v) over the admissible controls
Q) plays a major role in determining the reachable set of a point.

We note that many implementations of quantum computing consider systems
which evolve on the Lie subgroup of special unitary matrices, introduced in Defini-
tion [3.9] as opposed to the group of unitary matrices. The reason for this is that
any two quantum states ¢ and ¢ are considered equivalent if they are related by

b=

for some real 6. In this case we say that 1) and ¢ are equivalent up to the global
phase factor . This equivalence makes sense because the global phase factor
cannot be measured and so, from the observational viewpoint, does not affect the
physical properties of the system. See [48, §2] for more information.

The group of special unitary matrices can be thought of as the unitaries from
which the ambiguity of the global phase factor has been removed [13] §18]. As a
result it is not necessary for us to consider these phase factors if we only look at
systems which evolve on SU(N). It was proved in Theorem that the Schrodinger
operator equation preserves unitarity. The more general statement of this
theorem in [4] allows us to say that if the initial state is an element of SU(/N) and
the set of Hamiltonians { Hy, ... H,,} are all in su(NN), then a solution X (t) of
remains in SU(N) for all time. That is, if the Hamiltonians {H,, ... H,,} are all
in the Lie algebra associated to SU(/V) then the evolution of will be on the
subgroup SU(N) instead of on U(N).

3.4 Admissible Controls

We use many results from [29] in this report. All of these results are stated in terms
of three types of admissible control sets; the unrestricted controls, restricted controls
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(Jv;(t)] < 1) and bang-bang controls (v;(t) = £1). We wish to consider a slightly
different set of admissible controls. The purpose of this section is to demonstrate
that our quantum control system can be written in a form which makes the result
from [29] applicable.

Recall that the control inputs often correspond to the amplitude of some elec-
tromagnetic radiation. For that reason we choose an admissible control set of the

form
0- { Piecewise continous functions v(¢) in R™ such that }

0 <v(t) < Vg wheret >0and j=1,...,m (3.6)

where v,,,; is a positive real number. This is the same as the set of bounded controls
mentioned previously except with v,,;, = 0.

This choice of admissible control set is not equivalent to any of those used in
[29]. We give a simple example where the restricted controls from [29] give different
controllability results than the admissible set we wish to use.

Consider a one-dimensional system evolving on the real line with dynamics
T =0.

With controls restriced by |v| < 1, the system is clearly controllable since any
element of the state space can eventually be reached by applying the control v(t) =
—1 or v(t) = 1, regardless of what the initial state of the system may be. On
the other hand, with controls restricted by 0 < v < 1 the system is no longer
controllable because it is not possible to reach any state for which z is less than
the initial state zg.

For a quantum system of the form

X = —Z (HO —|— ZHjUj) X,

J=1

with admissible controls given by (3.6)), we can rewrite the system in terms of a
restricted control as follows. Let vy = ®=e= () + 1), where || < 1. We have that

X =i (HO + inj (W%(@jﬂ))) X.

A few lines of algebra gives that
X =—i (H;; +) H;-‘@j) X,
j=1

where Hy = Ho + 5", Hy and H} = =< [,

We note that —i¢Hj is skew-Hermitian since it is the sum of skew-Hermitian ma-
trices. The operator —iH{ therefore remains in su(N) after rewriting the problem
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in this form. This shows that we may write the quantum system as an equivalent
system, preserving the Lie group and Lie algebra structure while allowing us to use
results proven for controls of the form |v;] < 1. Furthermore, it is easy to show
that the Lie algebra generated by the sets {H;} and {H;} (for j = 0...m) are the
same. It will be seen in the next section that this is an important fact.

3.5 Controllability of Quantum Systems

We begin this section by showing that if a system is right-invariant then we need
only consider the question of reachability from the identity. That is, once reacha-
bility from the identity is established, controllability follows immediately.

We can define the reachable set from any Z in X in terms of the set reachable
from the identity. A trajectory starting from Z is given by X (t¢)Z, where X ()
is a solution of the right invariant system starting at the identity. Every element
ry in the set reachable from the identity, R(1y), has a corresponding, though not
necessarily unique element in R(Z) given by r;Z. The reachable set from Z is
therefore

R(Z)=TR(1y)Z. (3.7)

Thus, the reachable set for any Z in X is completely determined by the reachable
set from the identity.

We now show that the right-invariance of such a system has the additional
benefit that reachability from the identity automatically implies controllability of
the entire system when the state space is a Lie group.

Theorem 3.6. Let X be the state space of a right invariant control system. Let X
additionally be a Lie group with the group operation defined as X1Xo for any two
elements X1 and Xy in X (see Appendiz[B for the definition of group operation.)
If X is reachable from the identity element, 1, then the system is controllable.

Proof. Since X is reachable from the identity we have that R(1x) = X. We now
show that this implies R(Z) = & for any Z in X', and therefore that the system is
controllable. Equation states that R(Z) = R(1y)Z, so we just need to show

Define the function f(X): X — X by
f(X)=XZ,
Showing that R(1y)Z = X is equivalent to showing that f maps X onto X, as

opposed to some proper subset of X.

For any element X; in X, there exists an element X5 in X such that f(X5) = X,
given by X, = X;Z~!. The element X, is in X because both X; and Z~! are in X
(since every element of a group has an inverse in that group) and also because the
group operation is closed.
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The function f is therefore an onto mapping and it follows that R(1y)Z = X
for any Z in X and that the system is controllable. ]

We now present and prove the controllability condition for control systems on
Lie groups, which specializes to the types of quantum systems in which we are
interested.

Theorem 3.7. (Controllability of Systems on Compact Lie Groups [29, Theorem
7.1]) A right invariant control system of the form

dX (t)

— = —iH(0)X() (3.8)

evolving on a state space X which is also a compact Lie group is controllable if and
only if X is connected and the Lie algebra generated by span,co{—iH (v)} is equal
to the underlying Lie algebra, L, of the Lie group X.

Proof. The fact that it is necessary for span,cq{—iH (v)} to be equalt to L for the
system to be controllable is a well-known result. See [29] for the details.

We now prove the reverse direction . By Theorem we need only show that
the reachable set from 1 is the entire state space X'. Furthermore, [29, Lemma 6.3]
says that if the set reachable from the identity is dense in exp(£) then it is equal
to exp(L). Thus, we need only show that R(1) is dense in exp(L).

Let the set of generators of span,cq{—iH (v)} be given by L = {Ly, Lo, ..., L, }.
When the controls are constant we can solve the system to get

X(t) = exp(—iH (v)t).

Therefore, elements of the form exp(t;L;) where t; > 0 and L; € L are in the
reachable set. By the right invariance of the system we can say that finite products
of such elements are also in the reachable set.

To show that R(1) is dense in exp(L) we construct a sequence in R(1) which
converges to elements in exp(L). We show that there exists a sequence of positive

t;s for which

At —Alt]

lim e = ¢

J—o0

Consider the sequence ™. Since X is assumed to be compact, we know that this

has a convergent subsequence ™4 We may assume that n(j) < n(j+ 1) for all

k. This gives us that
e~ Al — im MU+ -DAJ]

Jj—00

So we can construct sequences in the reachable set R(1) which converge to
elements of e£. This proves that R(1) is dense in e which proves that the reachable
set is the entire state space and controllability follows. O
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Remark 3.2. The key property which allows us to show controllability is the fact
that the Lie group is compact. Without compactness, controllability could not be
guaranteed. The unitary group is known to be compact [I7, §I, Theorem 1], so this
result applies to the quantum control systems we are considering.

Remark 3.3. Theorem [3.7is commonly referred to as the Lie algebra rank condi-
tion for controllability.

We mention a few interesting properties of systems which have Hamiltonians of
the form
H(t) = Hint + Hea:t(v)'

In the case where there is no internal Hamiltonian (that is H;,; = 0), the control
system is called homogeneous. Such a system is significantly easier to work with in
practice as it has a couple of nice properties which are pointed out in [29]. First,
any point in the state space of a homogeneous system that can be reached from the
identity with an unrestricted control may also be reached with a bang-bang control.
Secondly, every point in the state space which can be reached from the identity can
be reached in arbitrarily short time if unrestricted controls are allowed.

Neither of these results hold in general for a non-homogenous control system on
a Lie group. It turns out that since SU(N) is compact, the first result still holds
for our system (Theorem 6.5 of [29]). The second result does not hold, however,
as we have seen when discussing the use of unbounded controls in [33]. From [33]
we know that the final states that can be reached in arbitrarily short time with an
unbounded control are the elements of the Lie subgroup associated with the Lie
algebra

Lo={H,Hy...,Hp}pa.

This is the Lie algebra generated by the control Hamiltonians and is called the
controllability subalgebra of the system.

Required Number of Controls

In many classical control systems, controllability can be achieved with only one
control even for complicated systems with many degrees of freedom. Is the same
true in quantum systems?

We begin with a simple case. In [44] it is shown that any two linearly indepen-
dent elements of su(2) generate S7U(2). That result, in addition to the compactness
of $U(2) is enough to conclude the system can be controllable with as few as one
control as long as its associated control Hamiltonian is linearly independent from
the drift Hamiltonian. We now consider whether or not this can be generalized to
higher dimensional spin systems.

A partial answer comes from [2]. Lemma 4 of this paper states that the set of
pairs (A, B) in su(N) which generate all of su(N) is open and dense in su(N). This
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implies that any two elements of the Lie algebra su(/V) picked at random to be the
internal and external Hamiltonians would give a controllable system. This, in turn,
means that the system can be controllable with as few as one control.

This is not the complete answer, however, because we do not have the luxury of
selecting system Hamiltonians at random. The Hamiltonians allowed are a property
of the physical systems and are determined empirically. They often do not allow us
to have a controllable system with only one control. In NMR quantum computing,
where the free Hamiltonian is often in the form of a linear chain of coupling terms
in the z axis and the control Hamiltonians selectively interact with a single qubit
in either the x or y axes, it almost always requires twice the number of controls as
there are qubits in the system to guarantee controllability. This certainly adds to
the complexity of finding control laws.

Controllability Algorithm

An algorithm may be generated to determine whether or not the system is control-
lable. From [21]:
Step 1. List vectors {A;, ..., As} which form a basis for span,q{—iH (v)}.

Step 2. Calculate the Lie brackets of the vectors from the previous step to get the
vectors for step N

Step 3. Select the vectors from this set which are linearly independent

Step 4. Return to Step 1 unless there are no new linearly independent vectors or if
the dimension of the set is N? — 1 (for special unitary systems) or N? (for
unitary systems).

The system is controllable if the final dimension of the set is N> — 1 or N2. A
Matlab implementation of this algorithm may be found in the Appendix [D]
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Chapter 4

The Maximum Principle

Having established criteria for the controllability of the quantum systems in ques-
tion, we move on to the important task of actually controlling them. As mentioned
previously, the mathematical tool we use for finding time-optimal controls is Pon-
tryagin’s Maximum Principle (PMP). PMP is also referred to as Pontryagin’s Min-
imum Principle. The different name comes from a different application; though,
the method itself is the same. This chapter discusses the principle as well as the
generalization which allows us to apply it to the quantum systems of interest.

PMP is an important and often used result in optimal control theory. It gives
necessary conditions for a control v(¢) to produce optimal trajectories. The principle
originally appeared in [52] and we will follow that version of it closely in this chapter.

4.1 Pontryagin’s Maximum Principle

Consider the vector differential equation

z(t) = f(z,v), (4.1)

where f is defined for x € X and v € Q. X and () are the state space and set of
admissible controls respectively as introduced in the previous chapter.

Given two points zp and x in X, we want to find an admissible control (v € )
which drives the system from z( at the initial time ¢y to z; at the final time t;. We
want this to be done in an optimal way. To formalize what we mean by “optimal”
we must introduce the idea of a cost.

Definition 4.1. The cost functional is
ty
7= / L(x(t), (t))dt. (4.2)
to

The integrand L(x,v) is assumed to be continuous with continuous partial deriva-
tives on all of X x ().
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In the set of all controls which drive the system from zy to zf, the optimal
control is the one which minimizes the value of 7. It is possible that there is more
than one control which produces the same minimum value of J. Mathematically,
all controls which drive the system from the initial to final state with the same
minimum value of J are considered optimal. In practice, we usually only need one
of them.

PMP is closely related to the method of Lagrange multipliers from optimization.
It can be thought of as a generalization of this method to functionals. In the
same way that the method of Lagrange multipliers introduces additional variables,
PMP introduces additional state variables in the form of what is called the costate,

denoted by A(t).

Definition 4.2. The Pontryagin Hamiltonian (not to be confused with the Hamil-
tonians of quantum systems) is a function which contains both the state and the
costate and is given by

H = Mo L(x(t),v(t)) + (A1), f(x(t), v(t))),

where (,) represents the standard dot product in R™.

The costate A(t) satisfies the auxiliary system

d\; oA
I 4.3
dt 81‘]‘ ( )
for j = 1,...,n. We can also recover the original system equations by
dl‘j 8%
— = 4.4
dt 0\’ (44)

for j=1,...,n.

With these definitions in mind we are now in a position to state the Maximum
Principle.

Theorem 4.1. (Pontryagin’s Maximum Principle [52), §2]) Let v(t), to < t < ty,
be an admissible control such that the corresponding trajectory x(t) which begins at
the point xo at the time ty passes, at some time ty, through the point xy. In order
that v(t) and x(t) minimize J it is necessary that there exist a constant, Ay < 0,
and a continous vector function \(t) = (A(t),..., \u(t)) which are not both zero,
corresponding to v(t) and x(t), such that:

e Condition 1. For every to < t < tg, the function F(\(t),z(t),v) of the
variable v € Q attains its maximum at the point v = v(t)

H(N(t), (1), v(t)) = sup H(A(t), z(t), v)

vEQN
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o Condition 2. At the terminal time, ty, the relation

Sup%()‘(tf)7x(tf)>v) =0

veEQN

is satisfied. Furthermore, if A(t), x(t) and v(t) satisfy {{-3), and condition
1, the time function sup,cq (€ (X, x,v)) is constant. Condition 2 may therefore be
verified at any time t, to <t < tj.

Proof. See [52]. O

To every control input to the system, v(t), there is an associated trajectory, x(t).
We refer to the pair (z,v) as a trajectory-control pair. The Maximum Principle
states that a trajectory-control pair (x,v) can only be optimal (in other words it
minimizes the cost, J) if it maximizes the Hamiltonian, J#, for all times. This
is why the result is called the Maximum Principle. A trajectory-control pair that
minimizes the cost J is called an extremal pair or simply, an extremal.

4.2 Complex Matrix Systems

The Maximum Principle as stated in the previous section does not directly apply to
the quantum systems in which we are interested. This is because such systems are
complex and written in terms of matrices. Since it is not hard to write a complex
matrix system as an equivalent real vector system, one can imagine that it would
be possible to generalize PMP to such systems.

In [3], a maximum principle is stated for real matrix systems without proof.
A different work by Baillieul [4] gives a maximum principle for minimizing energy
which applies to real Lie groups and relies on Krener’s higher order maximum
principle, which is found in [42]. The result can be easily extended to complex
systems as well. The textbook [28] also presents a generalization of the Maximum
Principle to control systems on manifolds, which requires some knowledge of ideas
from differential geometry. A more recent publication [24] derives a maximum
principle specifically for time-optimal quantum systems, although the result is for
quantum state control, not operator control.

All of [3], [4], [24] and [28] have useful insight and much of that is incorporated
into this section. The remainder of this section sets up the complex matrix problem
and states a version of the Maximum Principle which is appropriate for the prob-
lem we are addressing while still being general enough to be applicable to other
problems.

For a complex matrix system, the dynamics are given by

ax(t)
= F(X@®),0(0) (4.5)
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where X and F are elements of CN*N for each time t.

Even though the state variables are complex-valued, the cost functional J in
the complex matrix case may still only take on real scalar values, otherwise it would
make no sense to try to minimize it. We define the cost by

J = / " LX), o), (4.6)

where L(X (t),u(t)) is a real-valued function which must satisfy the same continuity
and differentiability requirements as the function L(z(t),u(t)) from the original
PMP.

We define the complex matrix Pontryagin Hamiltonian as

A (Mo, A(t), X (1), 0(t) = AL + Re (A1), F(X (1), v(1))) ,
where A(t) is an N x N costate matrix and where <, > is the standard matrix inner
product on CV*V
(X,Y) = Te(XTY),
as given in Section and used in [4]. This definition of the Pontryagin Hamilto-
nian is a straight-forward generalization of Definition to complex systems. The

following result generalizes PMP to complex matrix systems. The proof is in the
next section.

Theorem 4.2. (Complex Matrix Maximum Principle) Let v(t), to < t < ty, be
an admissible control such that the corresponding trajectory of X(t) which begins
at Xo at time ty passes, at some time tg, through the point Xy. In order that v(t)
and X (t) minimize J it is necessary that there exists a real constant, \g < 0, and

a continous matriz function A(t) which are not both zero corresponding to v(t) and
X(t) such that

e Condition 1. For every ty <t < ty, the function 7 (N, A(t), X(t),v) of the
variable v € Q attains its maximum at the point v = v(t)

%(A(t)vX(t)av(t)) = ilelg ‘}?(A@)’X(t)ﬂO

o Condition 2. The relation

sup 2 (A(t), X (t),v) =0

vESQ
is satisfied for all to <t <t;.

The costate matriz A(t) evolves under the dynamics

i (t) = _%
a7 0X
while the system state equations are recovered by
d oA
—X(t) = —.
dt (®) N
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The costate equations are given in terms of the derivitive with respect to a
complex matrix. We define the derivitive of a function with respect to a complex
matrix X in terms of the real and imaginary parts of X, which are Xz and X;

respectively, by
FX) _OfX) | 0FX)

dX oxX, | ox,

The derivitive of a function f : RV*Y — R with respect to a real N x N matrix
is defined component-wise in [3, Equation 15] as

(1), -4

(4.7)

The complex matrix version of PMP states that for a trajectory-control pair
(X,v) to be extremal, it must maximize the Hamiltonian . for all times, which is
the same as the result for the real vector case.

4.3 Proof of the Complex Matrix Maximum Prin-
ciple

The section is devoted to proving the Complex Matrix Maximum Principle (CMMP)
stated in the previous section. The details of the proof are not necessary for un-
derstanding the subsequent chapters and so may be skipped if desired. The proof
is in the spirit of [3], but provides the details as well as the complex generalization.
We begin with a definition and two lemmas.

Definition 4.3. The invertible vectorization mapping,
vec (Z) : CVM o VM

15 defined by

vec([zl Zg v ZMD: : ,

ZM

where each zj is an N-dimensional column vector. This is simply the function which
stacks the columns of a matriz to produce a column vector.

Lemma 4.1. Let P and Q) be complex N x N matrices such that

P = Pp+iP
Q = Qr+iQr.
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Let the corresponding real 2N?-dimensional vectors p and q be defined by

pzvec([ Pr P D

and

g=vec([ Qr Q1 ])
The following statement holds

Re <P, Q>CN><N - <p7 q>[R2N2 .

Proof. See Appendix [A] ]

Lemma 4.2. For any matriz-valued function which takes a matriz as an argu-
ment, G(X(t)), there exists a matriz-valued function, G(x(t)), which takes x(t) =
vec(X (t)) as an argument and is equal to G(X(t)) for all time.

Proof. We prove the existence of such a function by construction.

Since vec(X (t)) is invertible, we can say vec™!(z(t)) = X (t). So we have that

G(X(1)) = Glvec (x(t)))
= G(x(1)),
which completes the proof. O

Theorem 4.2, (The Complex Matrix Maximum Principle)

Proof. The proof proceeds by mapping the complex matrix system into an equiva-
lent real vector system, applying PMP and then mapping the results back onto the
complex matrix space. Throughout the proof we will omit the arguments of the
functions unless a step requires that they be shown explicitly.

The first step of the proof is to rewrite the system (4.5)) as an equivalent real
system of the form

T = f(x,v), (4.8)

We begin by breaking the system into real and imaginary parts
Xp+iX; = Fp+iFy.
This expression is equivalent to the real N x 2N matrix system given by
[ Xp X;]=[Fr Fr].

Using Lemma 2, we replace Fr(X,v) and Fr(X,v) with equivalent functions in
terms of z = vec (X)),

[XR X] ] = [ FR(ZE,U) F](ZL‘,U) }
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We vectorize both sides to get
&= f(z,v),
a real vector system where f(z,v) = vec ([ F’R(a:,v) F}(:U,U) ]) We also use
Lemma [4.2] to find an equivalent cost function for the real vector system
L(z,v) = L(X,v).

L must satisfy the the assumptions of PMP since it is equal to L which satisfies the
same assumptions. We have now written (4.5) in a form to which we may apply
PMP.

The second step of the proof is to apply PMP to this system and then to map
the results into the complex matrix form. By PMP we know that for z(t) and v(t)
to be optimal there must exist Ao and A(¢) which are not both 0 such that the
expression for JZ given by

(N, N, x,v) = NgLg(z,v) + (N, f(z,0)),
is maximized and equal to zero for all time. Using the definitions of L and f, we
rewrite 9 as
(N Ao, z,v) = ML(X,v) + </\7V6C([ FR(LE,U FI (x,v) D>
= XL(X,v) + (X vec ([ Fr(X,v) Fi(X,v) ])),
where the second line follows from Lemma, [£.2]
Finally, we define the function A(t) as A(t) = Ag(t) +iA;(t), and in turn define
Ag(t) and A;(t) in terms of A(t) by
[ Ar Ap ] = vecyon(N).
Inverting and substituting into our expression for 77,
(N, Ao, z,v) = AL+ <Vec([ Ar A D ,Vec([ Fr Fj ])>[R2N
= ML +Re(A(t), F(X,v))enxn
= ’%?(Aa )\07 X7 U)>
where the second line follows from Lemma Note that the complex matrix
Pontryagin Hamiltonian is exactly equal to the Pontryagin Hamiltonian of the
equivalent real vector system. This means that any result that holds for J# also
holds for 7. Note also that the existence of A(t) in the original maximum principle

implies the existence of A(t) in this generalization and that the constant ), is the
same for both Hamiltonians.

It remains to show how to determine the complex matrix form of the costate
dynamics. This can be done by applying the mappings we used to transform our
system into real vector equations in reverse. From PMP we know that

diy X
p)
d\ di -
dt dAgn2 oA
dt 8:1,‘2 N2
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We apply the inverse of the vec function and use the definitions of A and A; to
get

o ot
oz oz 2
B d)\ d (2N4—-N+1)
VeCN1><2N(E>:E([AR AI}):—
o o
oxr N 8:132N2

We note that although the vector has been reshaped, the equation is otherwise
unchanged. Using the component-wise definition of derivative we can rewrite this
expression more compactly as

[ W l=-laxn o ]

This can in turn be expressed as a single complex N x N matrix equation by
rewriting it as the equivalent complex system

d . o OH
E(AR-HAI) = - <—8XR +Z(‘9XI> )

which is the same as

d oA
—A(t) = ————.
dt (®) 0X
An identical calculation gives
d oA
X t) = A (4.9)
which completes the proof. O]

As a check, we note that the original system equations are indeed recovered by

(4.9) since

d O 0N
EX(t) = m—f—Z@AI
= (2 9 (AL 4 Re (A, F))
— \oAg @ ‘on, ) M e
)

0
- m(Re<A,F>)+za—AI(Re(A,F>>-

The expression Re (A, F') can be simplified by breaking F' and A into the real and
imaginary parts F' = Fg + ¢F; and A = Ag 4+ iA;. Therefore,
RG<A,F> = Re<AR+iA[,FR—|—iF]>
= Re(<AR,FR>—i(A[,FR>+’i<AR,F]>—|—<A[,F]>)
= (Ag, Fr) + (A, F}) .
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We now use Theorem m (Appendix |A)) which states that

d
X (X,A)=A
and we obtain
d 0 0
EX(t) = m <AR,FR> + Za—AI <A[,F]>
= Fr+1il7

= F

Y

which are the original system dynamics, as expected.

4.4 Specialization To Unitary Evolution

We now apply the complex matrix maximum principle to the quantum system
discussed in Chapter [2| to find necessary conditions on the control input v(t) to
drive the system to a desired unitary operator in the minumum time.

Recall that the quantum system dynamics are given by the Schrodinger operator
equation

X(t)=—i (HO + Em: v; (t)Hj> X(). (4.10)

To find time-optimal solutions, we must choose L(X(t),v(t)) = 1. The cost
functional is therefore given by

jz/tth(X(t),v(t))dt:/ttf Ldt.

From this definition we see that the cost J is equal to the total time. Minimizing
J therefore minimizes the total time, as desired. Without loss of generality, we set
to = 0 for the remainder of this report.

With the system dynamics given by (4.10), the complex matrix Pontryagin
Hamiltonian, 7, is given by

H =X+ Re (A(t), —iH(v)X(t)). (4.11)
where, for simplicity, we have written H(v) = Ho + 7", v;(t) H;.
From the CMMP, the costate equation is given by

dA(t) (aff .a;f> |

dt ox, ' 'ox,
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Theorem 4.3. The costate evolves under the same dynamics as the state, that is

dA(t)

— = —iH)A®), (4.12)

though the initial condition Ay may be different from Xj.
Proof. The proof is an algebraic excerice. Refer to Appendix [C| for the details. [

From Theorem we know that (4.10]) is a right invariant system. This allows
us to simplify the expression for the Hamiltonian. A similar result appears in [4].

Theorem 4.4. The Hamiltonian
H = X+ Re (A(t), —iH(v)X(t))
1$ equivalent to
A = XN+ Re (M, —iX(t) H(v)X(t)),

where M is a constant N x N matriz. In other words, the Hamiltonian is completely
determined by X, Ao and a constant matriz M.

Proof. Since (4.10)) is a right invariant system, any solution X (¢) of (4.10]) multiplied
on the right by an arbitrary matrix M is also a solution.

We have already shown that X (¢) and A(t) evolve under the same dynamics. If
we let M = A(0), then we have that X (0)M = A(0), since X (0) = 1.

We know that both A(t) and X (¢)M are solutions of (4.10). Since they also
have the same initial condition, by uniqueness ([29, Lemma 2.1]) it follows that

We can therefore rewrite the Hamiltonian completely in terms of X, M and )
as
H = o+ Re(X(t)M, —iH(v)X(t)) .

By the definition of the inner product, we have that
A = X+ Re {Tr((X(t)M) (—iH (v)X(t)))
= o+ Re {Tr(MIX1(t)(—iH ()X (1))}
= o +Re (M, —iX'(t)H(v)X(1)),

}

as required. O

We have that
A = Xo+ Re (M, —iX(t)' H(v)X(t)),

where Ao and M cannot simultaneously be zero (by the CMMP).
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Theorem 4.5. The matrix M from the Pontryagin Hamiltonian
A = N+ Re (M, —iX"(t)H; X (1))
is an element of su(N).

Proof. See Appendix [B] O

Theorem 4.6. The trace inner product between two elements of u(n) is always
real.

Proof. Let A and B be elements of u(n), that is A and B are skew-Hermitian
matrices. The trace inner product is given by

(A,B) = Tr(A'B)
= Tr(—AB)
= —Tr(BA)
= — (B, 4)
= (B, 4)

= (A, B).
This equality holds if and only if (A, B) is real. O

It is easy to verify that —iXT(¢)H; X (t) is a skew-Hermitian matrix for each H;.
Therefore by Theorems [£.5] and [4.6] we can write the Pontryagin Hamiltonian as

A =X+ (M, —iX(t)' H(v)X (1)),
where the matrix M is an element of su(N).

Using the definition of H(t) we can expand this as

A =N+ (M, —iX(t) HoX (1)) + i v;(t) (M, —iX ()T H; X (t)) . (4.13)

j=1
We further simplify the notation by defining
(1) = (M, —iX(8) H; X (). (4.14)

The ;s are referred to as the switching functions. This terminology will be clear
by the end of the chapter. The Hamiltonian now has the form

m

A= o+ o(t) + Y vi(t)y(t). (4.15)

j=1
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4.5 Types of Extremals

We are considering a system of the form
X(t) = —iH (o)) X(1),  X(0) =1,

where the components of v, vg(t) € [0, Vynas]. We want to drive this system to some
specified final unitary state X, in the minimum possible time. From the previous
section we see that applying the Maximum Principle to the above systems gives a
Pontryagin Hamiltonian of the form

m

Hp = Po(t) + Y Ur(t)or(t) + o,

k=1

where

Wi(t) = (M, XT(t)(—iH;)X(t)), j=0,1,...,m

for some constant, traceless skew-Hermitian matrix, M. Both M and Ay cannot be
simultaneously zero.

Normal and Abnormal Extremals

It is possible for Ay to be identically zero. Extremals for which A\g = 0 are called
abnormal. All other extremals are called normal. These two cases are usually
treated separately and could give different control laws. In many simple problems,
it can be shown that abnormal extremals cannot be optimal. In the quantum state
control problem addressed in [5], it was shown that abnormal extremals could not
exist. On the other hand, [20] characterizes both normal and abnormal extremals
for the time-optimal control of a two qubit system. The general case of the unitary
operator synthesis problem remains an open question.

Using the definitions of the switching functions in terms of inner products, we
can write the Hamiltonian as

H =X+ (M, —iXT(t)H(t)X (1)),
which must be equal to zero. If an extremal is abnormal, we have that
(M, —iXT(t)H(t)X(t)) =0

or, geometrically speaking, that M is orthogonal to —i X (t)H ()X (t) for all time.
This idea could help answer the question of whether or not abnormal extremals
may exist.
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Singular Extremals

The CMMP states that it is necessary for an extremal to maximize 7 over the
admissible controls. In this system’s Hamiltonian, we see that the controls appear
linearly. It is well known that the maximum of a linear function on a closed interval
occurs on the endpoints of the interval. As a result we get that

| Vmaw, i Y;(t) >0
W@_{Q if (1) <0 °

since v (t) is restricted to
Uk(t) € [Oavmaa:]-

Notice that the control only takes on the highest or lowest possible value allowed
and switches between the two when the switching function 1);(¢) changes from being
positive to negative. Such a control law is referred to as a bang-bang control.

However, in the case where a switching function is identically zero over an open
time interval, the above control law does not apply. Extremals which have some
open interval on which a switching function is identically zero are called singular.
All other extremals are called non-singular. In simple problems, the switching
functions can sometimes be computed explicitly. Determining whether singular
extremals are possible in such a case is a simple matter of looking at the form of
the switching functions. It is not always possible to do this in the general case.

For an optimal control problem with bang-bang controls to be completely solved
we must treat the case of singular extremals. This can be done in one of three ways.
The first way is to prove that singular extremals cannot exist. The second is to
prove that if singular extremals do exist, that they cannot be optimal and, therefore,
need not be considered. The final way is to find an optimal control law which holds
on intervals where the switching function is identically zero.

A good reference for dealing with singular extremals is [27]. In it, the authors
provide an approach to determining whether or not it is possible to have singlular
extremals in a particular problem. A Pontryagin Hamiltonian of the form

A = I(t) + F(t)u(t)

is considered, where I(t) and F(t) are functions that come out of the construction
of 7. The Hamiltonian in our problem is the multiple control generalization of this
Hamiltonian. If F'(¢) is identically zero on an open interval, then this is a singular
interval. We also know from PMP that optimal extremals require that .77 = 0 for
all times, so we have the additional conditions on singular intervals that
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If these conditions cannot be satisfied on any interval then there can be no
singular extremals. In the quantum control problem we have multiple controls. To
consider singular intervals for the j™ control, the function F(t) is given by v;(t)
and the function I(t) is given by

I(t) = ho(t) + Zwk(t)vk(t) + Ao

k#j

The function F (t) can be calculated explicitly in our problem by

dz_y) — % (M, —iXT(t) Hi X ()
= ST (M (X () HX (1)
T
= —iTr <M7%t(t)HkX(t) + MTXT(t)de);—ft))

—iTr (MY(—iHX) H, X + MTXVHy(—iHX))
Tr (M'X"(HH), — HyH)X)
(M, X"[H, Hy) X) .

So we have that
F(t) = dult) = (M, XH(2) [H(v), H) X () (4.16)
It is difficult to determine whether or not this will be identically zero on an interval.

We note that the conditions we stated for F(t), I(t) and their derivitives are
necessary conditions for singular extremals to exist. Even if they are satified singu-
lar extremals may still not occur. Section examines this question more closely
in the case of a single qubit with two controls.

4.6 One Qubit Example

The unitary evolution of a system of one qubit under the influence of an external
magnetic field is given by the time-dependent Schrodinger operator equation

X(t) = —iH®)X(t), X(0)=1,, (4.17)
where X (t) is a 2 X 2 unitary matrix and H(¢) is a Hermitian matrix given by
H(t) = HO—I—Ul(t)Hl —I—’Ug(t)Hg. (418)

The function v;(¢) is the control input corresponding to the j™ control Hamiltonian
and may represent the amplitude of radio field of a particular frequency. The
Hamiltonians are given by

H(] = 271'[2
H = 2rl, (4.19)
H2 = 27ij.



This is a one qubit NMR quantum computer setup. The internal Hamiltonian H
corresponds to the coupling of the qubit to the background magnetic field. This field
induces a rotation of the spin state around the z axis. The external Hamiltonians
H, and H, correspond to the influence of magnetic fields which induce rotation of
the spin state around the z and y axis, respectively. The amplitudes of these fields
are the control inputs to the system.

The I, matrices are the Pauli spin matrices given by

01 0 —1 1 0
A I E I E
In addition to the property that I?> = 1 for a = z, y and 2, the Pauli matrices

satisfy
L1, =1, I, =i, II,=:1l, (4.20)

where reversing the order of multiplication changes the result by a negative sign.
It is well-known that the Pauli matrices generate su(2). The system is therefore
controllable by the Lie algebra rank condition introduced in Chapter [3

The references [33] and [68] consider time-optimal control of the same system,
except where Hy = 0; that is, they consider the one control version of the same
system. We also use a different admissible control set than either of those papers.
In [33], an unbounded control is used while in [68] a control with the restriction

()] < B,

is used. This lower bound on the magnitude of this control is —B and not zero as
in the problem we are considering in this section. The authors of [68] state without
proof that time-optimal controls must either be full strength (ux(t) = £B) or zero
at each time ¢. This is almost a bang-bang control law except that the control must
be zero on a singular interval. The authors of [33] find the minimum time and show
that the control takes the form of a strong pulse, followed by an interval where the
system is allowed to drift, followed by another strong pulse.

The Pontryagin Hamiltonian for the control system defined by is
H(t) = o(t) + 1 (t)vr(t) + Ya(t)ve(t) + No-
As before, the switching functions, 1;(t) are given by
Wi(t) = (M, =i X" () H;(v) X (t))

for some constant, traceless, skew-Hermitian matrix M. As in the previous section,
the maximization of the Hamiltonian implies a bang-bang control law in the absence
of singular intervals.
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Switching Functions

We wish to determine whether or not singular intervals or abnormal extremals may
exist for this problem. To do so, we will examine the switching functions more
closely. We first note that the switching functions are not independent of each
other. Referring to equation (4.16)),

bi(t) = (M, XT(t) [H(t), Hj) X(¢)).

From the definition of H(t), and the properties of inner products and commu-
tators we obtain

bi(t) = (M, X'(t) [Ho, Hj] X (t))
+ (M, X" (t) [Hy, Hy) X () (1)
(M X () [ HX (1) va(0).

We now use the Pauli matrix relations from equation to simplify the expres-
Po(t) = Am (vo(t) (M, —iXT)H X (t)) — vi(t) (M, —iXT(t) H X (1))
Di(t) = —dm (vat) (M, =i X () HoX (1)) + (M, —iX T (t) Ha X (t)))

Uo(t) = 4 (vi(t) (M, —iXT(t)HoX (t)) — (M, —iXT(t) H X (t))) .

We can rewrite these equations completely in terms of the switching functions
to obtain the system of equations

%@0(15) = dmuy(t)ih1(t) — dmvr(t)ya(t)
1/'11(25) = —druy(t)ho(t) + dmiha(t)
olt) = Amvi(t)o(t) — 4wy ().

Defining
T

\I’(t) - [ ¢1(t> 192(75) ¢3(t> ]

and
0 V2 (t) —U1 (t)
Q = —Ug(t) 0 1
U1 (t) —1 0

we may write the system more compactly as

U(t) = 4rQU(t). (4.21)
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Singular Extremals

Let us assume that we have a singular interval for the first control v (t), that is,
Y1 (t) = 0 for for all ¢ in some interval Sy = [t1,ts]. From (4.21) we obtain

do(t) = —dmvy(t)s(t) (4.22)
0= wOdt) — al) (423)
¢2(t) = 47@1(t)¢0(t>» (4~24)

for all ¢ in S;.

By CMMP, an optimal extremal must satisfy the additional condition

0 = to(t) + 2(t)va(t) + Ao (4.25)

which is just the condition that the Pontryagin Hamiltonian must be zero for all
time, including on the interval S;.

It is possible that there are open subintervals of S; on which the second control
is singular as well. We denote the union of these intervals by Si. We therefore
have that on the intervals of S; both () and 1,(t) are identically zero. On the
the intervals of (S;\S1), 11 (¢) is identically zero and ws(t) is almost everywhere
non-zero. We consider the two cases separately.

In S, we use 1} to solve for the switching functions and obtain

Uo(t) = —Xo (4.26)
Ui(t) = 0 (4.27)
Pa(t) = 0. (4.28)
Equations , and yield
(%1 (t))\() =0.

On the other hand, when ¢ € (Sl\ﬁl) then, after some algebra we obtain the
switching functions

o
t) = 4.29
h(t) = 0 (4.30)
—"U2>\0
t) = 4.31
¢2( ) 1 +?}%7 ( 3 )
which, again, imply that
(%] (t))\o =0.

If the extremal is normal, then Ay # 0 and this implies that v;(¢) = 0 on the
singular interval S;.
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We can perform the same analysis for the second control as well. Let S5 be an
interval on which 5(t) = 0. A similar calculation yields the same result in terms
of the second switching function,

(%) (t))\o =0.
Again, in the case of a normal extremal, this implies that vy(¢) = 0.

Notice that on a singular interval all of the switching functions (4.2614.28)) and
(4.29H4.31]) are constant. Since the controls only switch when a switching function
changes sign it follows that once a control becomes singular no further switches
may occur.

Abnormal Extremals

We showed that a singular interval for the j'" control implies that
Vj (t))\o =0

for all ¢ on that interval. The remaining problem is that if Ay = 0 then we cannot
determine v;(t) = 0.

If the extremals are abnormal, then by setting A\ to zero in equations (4.26H4.31))
we obtain

¥;(t) =0

for j = 0,1 and 2 on any singular interval.

By the definition of the switching functions

wy(t) = (M, =iXT () Hy () X (8))
so M must be orthogonal to —iXT(¢)H;(t)X (t) for j = 0,1 and 2.

In the case of a one-qubit system, XT(¢)(—iH;)X () forms a basis for su(2) for
all ¢, since X (t) is unitary and since —iH; forms a basis for su(2). This means that
M is orthogonal to every element of a basis for su(2). The only element of su(2)
which is simultaneously orthogonal to every element of a basis is the zero element.
This violates the assumptions of the Maximum Principle, namely that A\q and M
cannot both simultaneously be zero so such a trajectory cannot be optimal and
need not be considered.

We have not proved that abnormal extremals do not exist for the one qubit
case, but that singular intervals in conjunction with abnormal extremals cannot be
optimal. For a normal extremal, a singular interval for a particular control implies
that the associated control must be identically zero on that interval. We therefore
have the bang-bang control law

| Vmaw, () >0
”@‘{& if (1) <0

If we did not have v,,;, = 0, then v;(t) could take the values vy, 0 OF Upay-
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Number of Switches

We have shown that on any interval between switching times the control must be
constant. This means that we can solve the system (4.21)). The solution is given by

@Z)l(t) = sin(wt + ¢1> — ﬂ/\0

K
: v
o(t) = agsin(wt + ¢g) — EQ/\O,
where
1 |K
ap = g\/jvgﬁ + K2B? + JKC? 4+ 2K (1Mo B — 12 AC) + v3)3
1 |K
ay = E\/jU%AQ + KJB? + K2C? 4+ 2K (v9AC — v1 AB) + v3 )3,
_ J 07 il 2 0
¢1 = arctan(y/ ?'yl) + { T <0
_ J Oa V2 > 0
¢ = arctan(y/ E%) —1—{ T <0
and where
. )\01]1 + BK
T LAt IC
)\0"02 + CK
T
JB — UlA

The scalars A, B and C' correspond to the initial condition

A
\IIOZ B 5
C

and the period w = 4m+/J(J + v? + v3).

Having an explicit description of the switching functions allows us to gain some
insight into what time-optimal controls will look like for this problem. Specifically,
it is clear that there cannot be an infinite number of switches in any finite interval
of time since these are just sine functions plus a constant. In a controllable system
such as this one, all final states are reachable in finite time and so there must be a
finite number of switches.

We can also see that the frequency of switches is related to the period w. If
| > [#Aol, then v;(t) will switch signs eventually. The period of the switching
function 2= is an upper bound on the time until the next switch.

w
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4.7 Systems with More Than One Qubit

It is clearly of interest to know how much of the analysis used for the single qubit
case can be carried over to the general case. Unfortunately, a straightforward
generalization of these results has not been found. Furthermore, even the prospects
for finding such a generalization are not promising. The reason for this is that
writing dynamical system equations for the switching functions becomes much more
difficult with additional qubits.

As a concrete example to illustrate the problems, consider the case of a two
qubit NMR implementation of quantum computing which is considered in [33].
The quantum Hamiltonian of the system has the form

H(t) = Ho+ Y  Hyu;(t)

j=1
where

Hy = 27J(I,® L)
H1 = 27T(Ix (%9 ﬂ)

and J is a constant term which indicates the strength of the coupling between the
two qubits.

The Pontryagin Hamiltonian for the system has the form
4
I = /\0 + wO(t> + Z Hj’l]j(t),
j=1

where the switching functions are

w;(t) = (M, —iXT(t)H; X (t)) .

The derivatives of the switching functions are
di(t) = (M, XT(t)[H, Hj) X (1)) .

The problem arises when evaluating the Lie brackets [H, H;|. In the one qubit case,
these brackets could be expressed in terms of the other H,’s, which would allow
the switching functions to be written in terms of other switching functions. We are
able to do this for a system of one qubit because the dimension of su(2) is three.
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The set {—iH;} for j = 0,1 and 2 is linearly independent and therefore forms a
basis for su(2).

In the two qubit case, the bracket [H, H;| cannot be expressed in terms of the
H;’s anymore because the dimension of su(4) is fifteen and therefore the set {—iH;}
for j = 0,...,4 cannot possibly span the entire space. For a system of ¢ qubits,
the Hamiltonians are elements of su(29), which has dimension (27)2 — 1. We will
only have at most 2¢q control Hamiltonians in addition to the drift Hamiltonian.
As a result, it is unlikely that we could write the Lie bracket [H, H,] as a linear
combination of the elements of {—iH;} except in the one qubit case. The best we
could hope for would be to take higher order derivitives of the switching functions
and to write the resulting nested Lie brackets as functions of the Hamiltonians and
the Lie brackets of the Hamiltonians.

Even if it is possible to write out a dynamical system for the switching functions
using higher order derivitives, it is not unreasonable to expect that the dynamical
system of switching functions would have the same dimension as the underlying
physical system, as it does for the one qubit system. If this is the case, then the
dimension of the system of switching functions would increase exponentially in the
number of qubits, making already tedious calculations all but intractable.

Adding to the complication is that the form of the quantum system Hamiltonian
depends on the physical implementation of the quantum computer. Any dynamical
system of switching functions would depend heavily on this and so would need to
be computed for every different system.

While there is still the promise of further analytical advance on this problem,
the approach used in the one qubit case does not seem practical for larger systems.
For that reason, in the next chapter we turn our attention to numerical solutions
of the time-optimal quantum control problem.
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Chapter 5

Computing Optimal Controls

The remainder of this thesis considers the computation of (hopefully) time-optimal
controls. Specifically, we devise an algorithm which finds bang-bang controls for the
quantum system we have discussed. Recall from Chapter that in the absence of
singular intervals the optimal control law will be bang-bang. If there are singular
intervals, then a bang-bang control may not be time-optimal but will still be able
to steer the system from the identity to the correct final state, as proved in Chapter

In the case of the one qubit system discussed in Section [4.6] the optimal control
law is bang-bang since on singular intervals the control is zero, which is the lower
bound on the control inputs. It is hoped that this is also true in higher-dimensional
cases or, at least, that the effect of singular intervals might be small so that bang-
bang controls will be very close to time-optimal.

5.1 Existing Numerical Methods

Before outlining the method, we take a closer look at existing numerical approaches
to controlling quantum systems. The first approach we discuss is not so much a
numerical method as a heuristic approach [46]. The method, called insensitive
nuclei enhanced by polarization transfer (INEPT) was introduced in 1978 and is
used to enhance the intensity of NMR signals for certain types of nuclei. The pulse
sequence that comes from INEPT can also be viewed as synthesizing logic gates
[62, §2.1]. As such, it was initially used to develop control strategies for NMR
implementations of quantum computing.

More recently, new methods have been discovered based on standard control and
optimization principles. For example, the relaxed optimized pulse element (ROPE)
algorithm introduced in [39] uses results from dynamical programming to provide
a more efficient pulse sequence than INEPT in many cases.

Subsequent work by the first author of [39] resulted in the gradient ascent pulse
engineering (GRAPE) [38, 58], which has gained much attention for the purpose
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of synthesizing unitary operators. The GRAPE algorithm fixes a final time 7" and
discretizes the evolution into time-steps of equal width, At. A gradient descent
algorithm is then used to maximize the function

O = | (Xq, Xp(T)) P,

where X is the desired final unitary operator and X;(7") is the unitary operator
actually generated at time 7. The global maximum of ® occurs when X, = X (7).
The optimization variables are the values of the controls v, on each time step.
Running the algorithm with smaller and smaller values of T until the final desired
state cannot be reached is a way to find a time-optimal control.

A
v (1)

— >
Al T t

Figure 5.1: An iteration of the gradient ascent pulse engineering method. The
arrows represent the gradient, which is calculated at each iteration to minimize ®.
The final time T is fixed.

Figure [5.1] shows graphically how GRAPE calculates optimal controls. The
small arrows represent the direction of the gradient at each time-step. This is the
direction in which to update the control on that interval to achieve a final unitary
operator which is closer to the desired one.

In practice, it is usually much more computationally efficient to use a conjugate
gradient method as opposed to the simpler gradient ascent method. Such a method
has been implemented at the University of Waterloo’s Institute for Quantum Com-
puting for computing controls for their NMR experiments [54]. For an introduction
to the conjugate gradient method, refer to [59].

5.2 Computational Framework

We wish to solve the problem of time-optimal control of the system

X = —iH@Ww)X. (5.1)
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We initially set up the framework for a control system with a single control. The
algorithm is generalized to multiple controls in Section [5.4 Since we are only
considering bang-bang controls, the solution is completely determined by the initial
control v(0) and the knowledge of when the control switches. The times when the
control switches are called switching times. In terms of the Maximum Principle,
these correspond to the times when a switching function is zero, with the exception
of y(t). Let there be k + 1 switching times denoted by 7; for j = 0,1,...k. We
define 79 to be the initial time zero, and 7 to be the final time ¢;. We write the
set of switching times as the vector

T = (To,...,Tk)T.

On any open interval (7,_1,7;), the control input is constant and denoted by
v7. Since the time dependence of H(v) enters only through the control, H(v?) is
constant on that interval as well. For simplicity, we define H? := H(v7). It is also
useful to define the vector

g: (517527 B agk)Ta

the vector of interval lengths where
§ =Tj = Tj-1.

The final state of system (/5.1)) with bang-bang controls is therefore given by the
matrix product

X(€) = exp(—iH") . . exp(—iH?E) exp(—iH'€1) Xo,

where X is the initial state.

Since we want to reach a particular final state, we introduce a measure of how
close we are to that state. The function ®(&) is defined as

1

o(€) = 3 (Xp(&) — Xa, Xf(§) — Xa)

where X is the desired final unitary operator. This function gives a measure of the
distance between the final state of our system for a given set of switching times and
the desired final state . By the properties of inner products, ®(£) > 0 for all time
with equality if and only if X(§) = X;. Minimizing ®(§) is therefore equivalent
to finding a vector of interval lengths associated to a set of switching times which
drives the system from the initial state to the desired final state.

The following result is useful for simplifying ®(¢).

Theorem 5.1. Let X be an arbitrary element of U(N). Then

(X,X)=N
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Proof.
(X, X) = Tr(X'X)
= TI'(:H.N)

Using the properties of inner products and Theorem we obtain
O(E) = 5 ((Xp(&), Xp(&)) = (X¢(€), Xa) — (Xa, X¢(€)) + (X, Xa))
(28 = (X4(6), Xa) - (X,(6), X))

— = (2N — 2Re (X/(£), X))
— N —Re (X/(6), Xa).

NN~ DN~

For the purposes of most optimization algorithms it is important to know the
gradient as well as the Hessian of ®(§). The gradient is

0§_£<q€> _ _a%me (X4(€), X))

-2 (o))
= —Re (Tr (8);}255))((1))
= —Re (Tr (8);225)TXd)>

- (2 )

From the definition of Xy, we calculate a)gé(g) to be
q

(”ggﬂ - (H exp<—mjgj>) (—iH") (H exp(—mff») Xo,

Jj=k Jj=q

where we note that the indices are decreasing. This is to reinforce that the order
of the multiplication should be taken to be in order of decreasing indices from left
to right.

We may calculate the second partial derivatives to be used in the Hessian in a
similar manner. We find that

PoE) 0 JOX(©)
OE,0¢, ‘%Re< o€, ’Xd>
2
—he <88?s(§ : Xd> |
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When p > ¢, defining E; = exp(—iH’) allows us to write the second derivatives as

82X p+1 q+1
(o[ o)
P~5q j=q

using the same decreasing index convention as before. Interchanging p and ¢ on
the right side of the equation gives the expression in the case where p < q.

5.3 Time-Optimal Switching Algorithm

The algorithm we use to compute the time-optimal bang-bang controls is based on
the time-optimal switching (TOS) algorithm developed by Kaya et al in [30], 31|
32), 45] and which is outlined in this section.

The first step of the algorithm is to compute a feasible, but not necessarily
optimal, bang-bang control which takes the system from the initial to the final
point. The aforementioned references have called the algorithm used to complete
this step the switching time control (STC) algorithm.

A
V()

max

>
T ¢

Figure 5.2: Switching time control iteration. The arrows represent the gradient,
which is used to update the switching times at each iteration. The final time T' is
not fixed, but the magnitude of the control must be either zero or v,,4,.

The STC algorithm starts with an initial guess &, for the switching times and
then minimizes the function ®(§) using a suitable optimization algorithm (such as
the conjugate gradient method, for example.) Note that if there are not enough
intervals in £, it may not be possible to find a point such that ®(§) = 0. When
this occurs it is necessary to add more intervals to the initial guess until a solution
of ®(§) = 0 can be found. Figure shows graphically how an iteration of the
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STC algorithm proceeds. The arrows indicate the gradients used to update the
switching times at each iteration.

Note the difference between this approach and the approach of GRAPE from
Figure 5.1} Specifically, while GRAPE fixes a final time, the final time in the STC
algorithm is free to vary. Instead, the STC algorithm fixes the possible values of
the control function so that the control law is bang-bang. The STC implementation
used for the results obtained in this report uses a conjugate gradient method to
find feasible solutions.

We consider the set of points £ for which X¢(§) = X, to be a surface in {-space
as follows. We define the function

S(€) = Xy(§) — Xa

The set of points where S(§) = 0 gives the desired surface. We refer to this as the
terminal surface. In words, this is the set of possible interval values ¢ which drive
the quantum system from the identity to the desired final unitary operator. Using
this terminology we say that the STC algorithm finds some point on the terminal
surface. Note that the terminal surface is also equivalent to the level set ®(£) = 0.

Having found a point on the terminal surface, &, the second step of the algo-
rithm is to move around on this surface so as to find the point which minimizes the
final time

tf(g):Z§j:[1 1 ... 1]e

This is a nonlinear programming problem where the nonlinearity enters through
the constraint that & be restricted to the terminal surface.

To solve this problem, we linearize the terminal surface S about the feasible
point &, using the standard formula for a tangent surface

51(8) = V5(&) - (€ — &) = 0.

This set of linear constraints in addition to the linear function ¢;(§) that we wish to
minimize and the restriction that the each interval length be non-negative, & > 0,
is in the standard form of a Linear Programming (LP) problem. The standard
algorithms for this problem are either the simplex method or an interior point
method. Denote the solution of the LP problem by £, p. We refer to the move from
the initial feasible point &, to £rp as a full step in the direction of &7 p.

For the implementation in this thesis, we use Matlab’s built-in 1inprog com-
mand which uses an interior point method for large-scale problems and a simplex
method variant for smaller problems. We then project from the solution of the
LP problem back onto the terminal surface since this point, which was found from
the linearization, will not satisfy the terminal constraints in general. Figure [5.3
gives a visual description of how step 2 of the method proceeds in the case of a
2-dimensional &-space.

57



(a) Start with an initial feasible point &g (b) Linearize the terminal surface about &

(c) Solve the linear programming problem (d) Project back to the terminal surface

Figure 5.3: Step 2 of time optimal switching algorithm.

Note that the projection back to the terminal surface is a non-trivial step. In
Kaya’s algorithm a quasi-Newton method is used. This implementation yielded
poorly conditioned matrices for our problem. As a result, we reuse the STC al-
gorithm for this job. An algorithm which searches in a direction orthogonal to
the linearized terminal surface might produce better results but has not yet been
implemented.

It is not always possible to project back to the terminal surface. When the
projection back to the terminal surface fails, we halve the step size by choosing the
point

~ &ep + &
Shaly = 5

We continue to halve the step size until it is possible to return to the terminal
surface.
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Once a minimum of ®(£) has been reached there are a few cases to consider.
The first possibility is that all of the intervals have a strictly positive length. In
this case it may be possible that the initial number of intervals was insufficient to
achieve the optimal result. We therefore append a zero length interval to the end
of the set of intervals and set the value of the control on this interval to zero if the
previous control is v,,,, and to v, if the previous control is zero. We also add
another interval to the start of the set in the same way. We then use this as the
initial feasible point and repeat the linearization and projection step.

The other possibility is that the lengths of some of the intervals have become
zero. We say that an interval with zero length has collapsed. These intervals have
no effect on the final state of the system and are removed. After removing collapsed
intervals, some consecutive intervals may have the same value of the control. These
intervals are merged together to form a single interval. Since intervals have col-
lapsed, adding more intervals is not likely to provide any benefit and the algorithm
terminates. To summarize, the TOS algorithm proceeds as follows.

Step 1. Calculate a feasible solution, &j, with the STC algorithm.

Step 2. (a) Linearize the terminal surface about &, and solve the LP problem.

(b) Project back to the terminal surface. If it is not possible to return to
the terminal surface or if the new point on the terminal surface does
not reduce the final time then halve the step size until a point on the
terminal surface with a smaller final time can be found. Set &, to be this
new point.

Step 3. Repeat Step 2 until the solution of the linear programming problem is &.

Step 4. If no intervals have collapsed then add a zero length interval before the the
first interval as well as an additional zero length interval after the last arc
and return to Step 2. If at least one interval has collapsed proceed to Step 5.

Step 5. Remove collapsed intervals and merge arcs which have common controls being
applied if necessary.

5.4 Multiple Controls

We now move on to consider a system with multiple controls. Control problems
with an arbitrary number of controls were not considered in [30} 31, B32] [45]. The
presence of additional control functions complicates the algorithm, though the basic
idea is the same. For the remainder of this chapter we assume that the system has
m controls.

Recall that for the single control algorithm the k-dimensional vector £ contains
the lengths of intervals between switching times. For multiple controls we define
the vector £ in the same way, that is, it is the vector of interval lengths between

59



any two consecutive switching times. Note that the consecutive switching times are
not necessarily associated to the same control. For that reason we must also keep
track of which control is switching at each switching time. We therefore define a
vector C in R¥ whose j* element is the number of the control that switches at the
j™ switching time 7;.

It is also useful to keep track of the interval times between switches of the same
control. For this purpose we define a vector of interval times for each of the m
controls, denoted «; where j is the index of the control to which the vector is
associated. We have that

Oéj,{j

where «;; is the interval length between the [™® and (I — 1)** switching times as-
sociated to the j'™ control. Since the number of intervals need not be the same
for each control we define the vector x in R™ with components (K1, ..., K,,) which
stores the number of intervals associated to each control. It follows that each «; is
a r;-dimensional vector. In practice it is easiest to implement all of the a; vectors
as columns in a single matrix, where the columns with fewer entries are filled with
placeholder zeros. We denote this matrix by « and refer to it as the interval matrix.
The interval matrix a has the form

_ * * *
a—[al ay ... am},
where
Q
i 0
0

In the single control case, the matrix o has just one column that coincides with &.
Similarly, the vector x reduces to a scalar that coincides with k.

The matrix of interval lengths associated to each control o and the vector of
overall interval lengths between any two controls £ are both useful in the multiple
control TOS (MCTOS) algorithm. As such, it is often necessary to convert between
the two viewpoints. It is possible to define an invertible linear transformation B
between the vector £ and the matrix o such that

§= B(a,C)

and

a=B"(0),

where C is the vector that contains the order of switchings as defined previously.
Knowledge of the vector C is necessary to perform the transformation. For more
information on how this is done, see Appendix [E]
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The multiple control version of the STC algorithm is nearly identical to the
single control version. An initial guess is selected and expressed in terms of £, the
vector of intervals between switching times for the overall system. We also need a
guess of which controls are being switched at each switching time so that we may
determine the value of the controls on each interval. Once these are selected, the
STC algorithm finds an initial feasible point. The order of which control switches
at each switching time is not changed in this initial step.

For the second step, which involves repeatedly linearizing and projecting back
onto the terminal surface, it is more convenient to work with the interval matrix o.
This is because we want each interval to be non-negative. Enforcing this condition
for the vector £ would lead to inequality constraints, which we choose to avoid.
Additionally, we rewrite the interval matrix by stacking its columns since standard
optimization algorithms take vectors as arguments as opposed to matrices. We
define the vector o by

aq
Qg

o777}

which conveniently excludes the placeholder zeros from the matrix a. Excluding
the placeholder zeros requires knowledge of the number of intervals associated to
each control, which is stored in the vector x (and may also be computed from
C). We allow the invertible transformation B from above to act on o as well
as « since they both contain the same elements in a different arrangement. It is
technically necessary to include this in the transformation B but we omit this detail
for simplicity. Likewise, we say that

o= B1,0).

Whether B~1(,C) gives a or o should be inferred from the context.

The optimization problem is now to minimize
K1
tilo)=> o;=[1 ... 10 ... 0]o,
j=1

subject to the constraint that
S(B(0,C)) = X;(B(0.C)) = X4 = 0

and where o; > 0. We also require that each control stops at the same time. This
gives the additional equality constraints

K1 K2 Km
E Oélj: E Oégj:"': E Oémj.
Jj=1 Jj=1 Jj=1
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We have stated the constraint in terms of a for notational simplicity and note that
it is a simple matter to rewrite this in terms of . For a system with m controls,
there will be an additional m — 1 constraints of this form.

This is almost the same nonlinear programming problem as for the single control
case with the exception of the additional constraints and the objective function
tf(o). In the single control case, the objective function can be found by simply
adding up all of the intervals. In the multiple control case we only add up the
intervals associated to one of the controls. By convention we always use the first
control for this purpose in this thesis. Note that the terminal function takes B(o,C)
as its argument, which is the same as the single control case since B(o,C) = €.

If we linearize the constraints arising from the terminal condition, we again get
a linear programming problem in standard form. This is solved exactly the same
way as for one control before projecting back to the terminal surface and repeating.
Note that after solving the LP problem, it is possible that the order of control
switches may have changed. The order of switching can also change when the step
size determined by the LP problem needs to be halved. When the order of switches
changes it is necessary to update the vector C.

Once a minimum has been found, we check to see if any of the intervals have
collapsed in the « representation. If any intervals have collapsed for a given control,
then we remove them and merge remaining intervals if neceesary. When no intervals
have collapsed for a given control, we append new zero length intervals at the start
and end for that control as in the single control case and update the vector C
accordingly. If intervals have collapsed for every control then the optimization
terminates, otherwise we repeat the linearize/project steps until this happens.

The steps of the multiple control algorithm are essentially the same as the
single control algorithm with the exceptions of the generalizations mentioned in
this section. The MCTOS algorithm is a generalization of the TOS algorithm to an
arbitrary number of controls in that the MCTOS algorithm is completely equivalent
to the TOS algorithm when applied to a system with one control.

5.5 Special Considerations for Quantum Systems

One feature of the quantum system which is not necessarily present in a
general nonlinear control problem is the periodicity of solutions. For the one qubit
case, the quantum Hamiltonians for each interval H; are 2 x 2 traceless Hermitian
matrices. This implies that iH; is a traceless skew-Hermitian matrix or, that iH; is
an element of su(2). Using the definition of su(n) from Theorem [3.3] it is easy to
show that any element A in su(2) has the form

A [ z'a‘ —b%‘—ic]’
b+ic —1ia

62



where a, b and ¢ are real numbers. The eigenvalues of A are
eig(A) ={ iva?+ b +c? —iva®+b*+c2 }.

These eigenvalues are strictly imaginary and both have the same magnitude.

This implies that the evolution of the one qubit system is periodic between
switching times, although the period, henceforth denoted p;, may be different for
each such interval. This means that, in the one qubit case, the length of any
interval &; can always be translated to lie between zero and p;. This is very useful
for simplifying the vector of interval lengths. Unfortunately, the same result doesn’t
hold in general for systems with multiple qubits.

For a multiple qubit system, the state space is SU(N) where N = 27 and ¢ is
the number of qubits in the system. The quantum Hamiltonians for each interval
iH; are elements of su(N). It is easy to show that the eigenvalues of these matrices
are purely imaginary. Despite this, we may still not have periodic solutions because
purely imaginary eigenvalues are only a necessary condition for periodic orbits. In
the single qubit case, the fact that both eigenvalues must have the same magnitude
allows the solutions to be periodic. In general, it is possible for magnitudes of the
eigenvalues to be irrational multiples of each other which would prevent periodic
solutions from occuring.

Even when the eigenvalues are rational multiples of each other, choosing the
length of the interval modulo the period is not always the best approach. With
multiple eigenvalues there is often a great deal of symmetry which may be exploited
to reduce the lengths of the intervals. Finding an algorithm to do this efficiently
remains an open problem.
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Chapter 6

Simulation Results

We now apply the optimization algorithm presented in Chapter [5| to the quantum
system '
X =—iH(v)X. (6.1)
We consider the one qubit system discussed in Chapter given by
X(t)=—iH@w)X(t), X(0)= 1,
where X () is a 2 x 2 unitary matrix and H(v) is a Hermitian matrix given by

H(t) = H[) + U1<t)H1 + ’UQ(t)HQ.

The Hamiltonian matrices are

Hy = 2nJl,
H1 = 27TI$
H2 = 27TIy.

The control functions v; and vy are piecewise constant functions bounded below
by zero and above by v,,4,. For the following simulations we use the values J =1
and v, = 1. In this case it is impossible to reasonably neglect the drift term
because the control fields cannot be made large relative to the effect of the coupling
between the qubits, represented by Hj.

6.1 Omne Qubit Hadamard Gate

We choose the final unitary operator

=Gl A
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This is the one qubit Hadamard gate which has been multiplied by a phase factor
so that it has unit determinant (and is therefore an element of SU(2).) In decimal
notation, the Hadamard gate is

0.7071¢ 0.7071:
Hadamard =14 7071, 070714 |-

Since we are using a conjugate gradient algorithm, we expect that the solution
we would get for any particular run would depend on the initial guess of the intervals
&. This algorithm also only finds local minima. For these reasons, we run the
algorithm multiple times and pick the best result from the different attempts.

Tables and [6.3] show the outputs for three different runs rounded to four
decimal places. All three attempts are very close to the Hadamard gate. By the
distance measure ®(¢) defined in Chapter [5| all three are within 1077 of the target.
By visual inspection of the final operator we can confirm that these final matrices
are indeed very close to the Hadamard gate.

Final Values:

(&) = 0.5305

Intervals:
105303 1[0 () = 3.7709 - 10

0.7070i 0.7072i
Xe€) = | o70m2i 0.70700

Table 6.1: Hadamard Gate with one Interval

Each of the three runs shown has a different number of intervals and corresponds
to a different local minumum. We know that these are local minima because the
value VO (£)TV®(€) (the squared magnitude of the gradient) is also less than 1077
and the Hessian of ®(¢) is positive definite at each of the points. The frequency of
observing each of these solutions varies with the initial guess of £&. It has been noted
that starting each control with seven intervals for each control seems to result in a
higher likelihood of getting the two interval solution from Table |6.2]

Of the three runs shown, there are two solutions with the final time 0.4655. The
units have not been included since the time has been rescaled by A as in Section
As of yet, the algorithm has not produced a solution which takes less time
than the two from Tables and [6.3] though those two solutions have reocurred
frequently. It seems likely, therefore, that these are the time-optimal solutions of
for driving the system from the identity to the one qubit Hadamard gate.

Table [0.4] shows the initial feasible solution calculated by the STC algorithm at
iteration 0, as well as the values of ¢ after each linearization and projection back
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Final Values:

Intervals: tr(§) = 0.4655
J £ U1 | V2
1101767 | 1| 1] @) = 2.6418¢-10°
2102887 1[0
X6 = —0.0001 + 0.70702 0.7072:
! 0.70722 —0.0001 — 0.7070:

Table 6.2: Hadamard Gate with two Intervals

Final Values:

Intervals:
- t = 0.4655
J § U1 | V2 f(g)
1101936 || 1 | 1 - 10-8
21017441 0 | 1 ®(§) = 3.2673-10
3100974 1] 1 X,(€) = 0.70713 0.0002 + 0.7072:
! o —0.0002 + 0.7072: —0.70714¢

Table 6.3: Hadamard Gate with three Intervals

to the terminal surface which occurs during Step 2 of the MCTOS algorithm. This
table is from the same run as Table [6.2]

In this case it took three iterations of the second step to reach the time-optimal
solution. On the third iteration, all but three of the original intervals were excluded
and set to zero. Note that the final two-interval form of the solution comes from
merging the third and fifth intervals since they have the same values of controls.

We note that the fact that there are more than one solution with the same
optimal time is interesting. It indicates, as expected, that the geometry of the
optimization space is complicated. In particular, it is easy to see that the optimiza-
tion space is non-convex. If the optimization space were convex, then the solution
set would also have to be convex. This would mean that any point on the line
connecting the two optimal solutions from Tables and would have to be an
optimal solution as well. This is not the case because we can write the two optimal
solutions as

51 52 U1 Vg
0.1767 0.1936 | 1 1
0.2887 0 1 0

0 0.1744 | 0 1

0 00974 | 1 1
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Iterations Controls
0 1 2 3
0.2377 | 0.2200 | 0.4030 0
0.1272 | 0.2227 | 0.0007 | 0.1767
0.1545 | 0.0128 | 0.1944 | 0.0407
0.1049 | 0.2041 | 0.1882 0
0.1952 | 0.1092 | 0.0779 | 0.2480
0.1164 | 0.1778 | 0.1111 0
0.1385 | 0.1055 | 0.0910 0
0.0488 | 0.0124 | 0.0150 0
0.1132 | 0.0739 | 0.0241 0

]
=
(S
[ V]

© 00 ~J O Uik W N .
— == O = O
—_ O = O

Table 6.4: Iterations of the linearize/projection step.

The midpoint of the two solutions 51'552 does not drive the system to the correct

final state and so by counter-example the optimization space is not convex.

6.2 The Limit of Unbounded Controls

If we increase the allowed magnitude of the controls, we expect the final time
required to produce a given unitary operator should decrease. In the limit as
the controls magnitudes tend to infinity, we expect the solution from the MCSTC
algorithm to approach solutions found using the assumption of unbounded controls.

Recall from Section that the infimum time required to produce a unitary
operator with unbounded controls is zero only if the unitary operator is in the
subgroup associated to the controllability subalgebra. For the one qubit, two control
example from the previous section, the controllability subalgebra is given by

EC - {271']90, 27TIy}LA.

It is trivial to show that I, and I, generate su(2). The associated subgroup is
therefore the entire state space SU(2). As a result, we expect that as the upper
bound on the controls tends towards infinity, the minimum possible time required
to produce any special unitary operator tends to zero. Figure plots the best
times found using the MCTOS algorithms against the upper bound of the control
functions. We see that the final time does decrease at every step and appears to
be approaching zero.

In the case where we use only one control, say v; or v, the controllability
subalgebra is no longer $U(2). We therefore expect that the final time will not
tend to zero in the limit of unbounded controls. Figure gives the best computed
minimum times when we use only the first control, v;. Indeed, the plot indicates
that the final time tends to a value greater than zero as expected.
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Figure 6.1: Final time vs. maximum control amplitude. The circles give the
minimum time required to compute the one qubit Hadamard gate with a given
upper bound on the control input.
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Figure 6.2: Final time vs. maximum control amplitude. The circles give the
minimum time required to compute the one qubit Hadamard gate with a given
upper bound on the control input.
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6.3 Visual Interpretation of the Optimization Sur-
face

To give a visual interpretation of the surface @, Figure [6.3] shows a plot of this
surface in the case where the first interval & has both controls set to the maximum
amplitude and where the interval & has only the first control set to the maximum
amplitude, while the second control has magnitude zero. By inspection, we see that
the level set ®(£) = 0 is given by only three disconnected points in the displayed
region. The closest one to the origin corresponds to the answer from Table [6.2]
There is another at (£;,&) = (0,0.5303), corresponding to the answer from Table
The last point of the level set in this region is further away from the origin
than either of the previous two and is equivalent to a periodic shift of the first one.

Note that the surface ®(&) is in general different than the one in Figure [6.3|and
depends on the number of intervals and the order of control switches. In particular,
this plot does not prove that the solution from Table [6.2] is the minimum time
solution, just that it is the minimum time solution for this number and order of
switches.

Figure 6.3: Two-dimensional optimization surface. The surface gives the value of
® over the time intervals & and &. The interval & gives the length of time for
which both controls take on their maximum values, while in the interval & only v,
takes on its maximum value.
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Chapter 7

Discussion

7.1 Summary

In this thesis we presented the problem of time-optimal control of the Schrodinger
operator equation

X =—iH@)X. (7.1)
We established the quantum mechanical background behind the dynamics and pre-
sented a summary of related results from the literature. The well-known Lie algebra
rank condition for the controllability from [29] was presented in Chapter |3| along
with an algorithm which can be used to determine the controllability of a particular
system.

Chapter [4] discussed the application of the Pontryagin Maximum Principle to
the problem of time-optimal unitary synthesis. In particular, this principle was
generalized to be applicable to complex matrix systems and then specialized to
quantum mechanical systems such as . The example of a one qubit system
was considered to solidify the theory in Section It was demonstrated that the
control function associated to a singular interval must be identically zero on that
interval. This implies that the control law is bang-bang, since the lower bound of
the control input we are using is zero.

In chapers [f| and [6] we presented and implemented a numerical optimization
method to compute bang-bang controls for . The algorithm was applied to find
the minimum time required to produce a one qubit Hadamard gate with bounded
controls for several possible values of the maximum control amplitude. We also
investigated whether or not the minimum time seemed to decrease to zero as the
control amplitude was increased.

7.2 Open Questions and Future Work

The results mentioned in the previous section are the preliminary investigations into
the time-optimal contol of (|7.1). There are still many avenues for future research
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on this problem which were not covered by this thesis.

On the theoretical front, many questions regarding the application of the Max-
imum Principle to the Schrodinger equation persist. In particular, the types of
extremals that are possible in the general case remains an open question as dis-
cussed in Section [£.7] Even in the one qubit case we have not shown that singular
intervals do or do not exist. We have only shown that if they do, the associated
control must be zero on that interval. A similar result for systems with arbitrary
qubits would go a long way to putting the search for bang-bang controls on a solid
mathematical footing.

Additionally, the question of the existence of abnormal extremals has not been
carefully considered in this thesis. In [4], this question is examined in a few special
cases for control systems on real Lie groups. It has not been determined whether
or not these results may be applied to system ([7.1)).

A hugely important but likely very difficult problem is to determine the constant,
traceless, skew-Hermitian matrix M which arises from the Maximum Principle and
the right-invariance of system in Section . Solving this problem would es-
sentially amount to a complete solution of the time-optimal control problem since
it would give analytic expressions for the switching functions in terms of the ex-
ponential matrix of the quantum Hamiltonian. Determining the switching times
would then become the more simple matter of finding the roots of the switching
functions.

In the absence of such a complete solution, learning more information about
the switching functions and the switching times would be extremely useful. In the
single qubit case, we could find the switching functions explicitly and were therefore
able to conclude that an infinite number of switches was not possible. We could
also set an upper bound on the length of time between switches for a given control.
Since it is unlikely that it will be possible to determine closed form solutions for the
switching functions in problems with an arbitrary number of qubits, new methods
for finding information about the switching times are required.

In the area of computation of time optimal controls there is much room for im-
provement as well. While we briefly discussed the properties of the terminal surface
in Chapter [5 a better understanding is still necessary. In particular, investigating
the periodic nature of the solutions in systems with more than one qubit would be
helpful for reducing the total time required for generating the desired operator.

It is also unclear whether or not the terminal surface is even path-connected.
That is, given any two points ¢! and €2 which satisfy ®(£) = 0 is it possible to
find a continuous function f(z) : [0,1] — R* such that f(0) = ¢! and f(1) = &>
and ®(f(x)) = 0 for all z in [0,1]. If the terminal surface is not path-connected
then it makes optimization challenging because moving around on the terminal
surface may not produce the optimal solution. Being able to reduce the period
of intervals could be a way to circumvent this problem if a good period-reducing
method could be found. This might allow one to jump between different segments
of the terminal surface, hopefully arriving at a segment which contains the optimal
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solution. Figure shows what reducing the period might look like for a periodic,
disconnected terminal surface in a two-dimensional &-space.

A

>

2 &

Figure 7.1: Period reduction. The dashed lines represent integer multiples of the
periods. The diagonal line is the terminal surface (the points which satify ®(£) = 0).
In this example this is just multiple parallel lines. The arrow shows how an ideal
period-reducing algorithm could find an equivalent point on the terminal surface
by writing the £ vector modulo the period.

Another aspect of the problem to consider is the implementation of a more
suitable algorithm for moving along the terminal surface. The current code has
been able to find local minima for one qubit, but has not yet been successful for
multiple qubit systems. This is likely because the terminal surface becomes much
more complicated for systems with more qubits. The current method of finding a
linearization and then solving the linear programming problem may not be a good
choice in regions where the terminal surface is highly nonlinear. In those cases, a
solution of the linear problem may not be useful as it could be very far from the
solution to the nonlinear problem.

One option to circumvent this problem would be to find a quadratic estimate
of the terminal surface instead of a linear one. A quadratic approximation would
preserve more of the characteristics of the terminal surface and the solution to the
quadratic optimization problem should be closer. A drawback of this would be the
extra computation required to calculate the approximation.

Alternatively, it might be possible to do better using only the linearization.
Keeping in mind that the goal is to minimize the final time, we could look for the
direction along the terminal surface in which the final time decreases the fastest. If
we didn’t care about staying on the terminal surface, the best direction to move in
to decrease the final time is given by —¢ no matter where we are in the optimization
space. This is just the vector which points from £ towards the origin. The projection
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of this vector onto the terminal surface therefore gives the best direction to move
along the terminal surface to decrease the final time. A local minimum or maximum
occurs when the projection of —¢ onto the terminal surface is the zero vector.
When the projection is not the zero vector, a decrease in the terminal time could
be guaranteed for a sufficiently small step size. When the projection is small, this
indicates that we might be close to a local minimum and that solving the linear
programming problem would be beneficial. Either of these two approaches could
potentially improve the results of the code for multiple qubit systems.

Another very important consideration is the overall efficiency of the algorithm.
Since the size of matrices in the problem grow exponentially with the number
of qubits there is no room for wasted effort. While optimizing the code is not
necessarily as exciting as optimizing the control sequence, it is necessary for the
algorithm to be useful for working with systems of multiple qubits.

Once the optimization algorithm is sufficiently robust for multiple qubit systems,
it would be interesting to compare the results with other similar programs such as
the GRAPE algorithm. This algorithm would be a viable alternative to GRAPE if
it were either more efficient or if it could find shorter control sequences to produce
unitary operators.
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Appendix A

Useful Properties and Results

CNXN

Let the capital roman letters A and B denote elements of and let o be a

complex scalar.

Theorem A.1. The dagger operation defined by

At = AT
satisfies the following properties:

1.

(AB)' = Bt Af
2.

(@A) = aAl
3.

(A+ B)f = A" + Bf

4.

dA\"  [dAt

da )\ dt
Proof. The proof of these results follow directly from the definitions of the conjugate
and transpose operations. O

Theorem A.2. The scalar-valued trace operation is defined by

N

Tr(A) =) (az),

Jj=1

where aji, is the element in the j™ row and k™ column of A. The trace operation
satisfies the following properties:
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Tr (Z OdkAk) == Z akTr (Ak) s
k=1 k=1

Tr(AB) = Tr(BA)
Proof. The first result follows from induction and the properties
Tr(A+ B) = Tr(A) 4+ Tr(B)

and
Tr(aA) = aTr(A).

The second property is the well-known cyclic property of trace. O]

Theorem A.3. The matriz inner product is defined by
(A, B) = Tr(A'B).

Let C' and X be real, N x N matrices. The derivative with respect to X of the inner
product of C' and X 1s

d d

Proof. The proof follows from the definition of the trace operation and equation

D). 0
Theorem [@.1 Let P and Q be complex N x N matrices such that

P = Py+iP
Q = Qr+1Qr.

Let the corresponding real 2N?-dimensional vectors p and q be defined by

p=vec([ P Pr])

and
g=vec([ Qr Qr])
The following statement holds

Re <P, Q>CN><N = (p, q>|R2N2 .

5



Proof. Define the 7 column of Pg by Pr;, and likewise for P;, Qr and Q7. In
terms of the vectors pr;, pr;, qr; and g,

PRy qRr,

p=vee([ P D)= | 20| g=vee([Qn @)= | .

L Pin L din

so their inner product is given by

4R,
4dr
<p7 Q>[R2N2 = |:p£1 pg}\r p£ p?N :| qIN
1
L Iy

N N
= D _phan, +)_pLa,
j=1 j=1
The real part of the inner product between P and @ is given by

Re (P, Q)envxy = Re{Tr (P'Q)}
= Re{Tr ((Pr+iP)"(Qr+1iQr))}
= Re{Tr (PEQr+ P/ Qi +i(PLQr— P/ Qr))}
= Tr(PEQr+ P/ Qi)

Pk, Pt
= Tr . [qu qRN]—|— [qh qIN}
Phy Ply
N N
= D _Phan, +)_pra,
j=1 j=1
= <p7 Q>[R2N2
which completes the proof. O
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Appendix B

Groups and Differential Geometry

This appendix contains a summary of the key definitions needed for defining Lie
groups and Lie algebras as well as a proof that the unitary matrices are a Lie group.

Definition B.1. Group (23] §2]) A group (G, *) is a set G together with the binary
operation x which satisfies the following axioms:

1. Closure: For all g and h in G, the product g x h is in G
2. Associativity: For all g, h and f in G,
g (hx f)=(gxh)*f
3. Identity element: There exists an element e in G such that for all g in G,
eg=g9ge=4g
4. Inverse element: For each g in G there exists g~' in G such that
997 =g lg=e
Remark B.1. The binary operation * is called the group operation.

A differentiable manifold is a space which, locally, resembles Euclidean space
(R™) and which has a suitable structure for applying the tools of calculus. The
following definitions formalize this concept.

Definition B.2. A topological space (Z,T) is a set Z, with a collection of subsets
T of Z which satisfy the following axioms:

1. T contains both Z and {0}

2. The union of collection of sets in T is also in T

7



3. The finite intersection of any collection of sets in T is also in T

The elements of Z are usually called points. The sets in T are called open. The
complement of an open set is closed. Sets may be open, closed, both or neither.

Definition B.3. ([28] §1]) A Hausdor[f space is a topological space which possesses
the property that any two points in the space x and y have neighbourhoods U and
V', respectively, such that UNV = {0}.

Definition B.4. ([11]) A n-dimensional topological manifold M™ is a Hausdorff
space with a countable basis for the topoplogy which is locally homeomorphic to R™,
that is, for each point p € M"™ there exists an open neighbourhood U C M™ of p
and a homeomorphism

h:U—U

onto an open set U' C R".

Definition B.5. ([11]) The homeomorphisms h from the previous definition are
called charts of M™. A collection of charts {h,|ac € A} with domains U, is called
an atlas for M™ if the union of the domains is all of M™. On subsets where chart
domains overlap, for example say on U; N Uy, we can define a chart transformation
between charts as fy, o ﬁj_l.

Definition B.6. ([I1]) An atlas of a manifold is called differentiable if all of its
chart transformations are differentiable. An atlas is called maximal if is not con-
tained in any other atlas. A maximal differentable atlas is called o differentiable
structure on the topological manifold.

Definition B.7. ([64, 11, 26, 28]) A n-dimensional differentiable manifold is a
topological manifold with a differentiable structure and is denoted (M, D) or simply
M for short.

Lie groups are defined in Definition [3.8. Note that Lie groups are n-dimensional
differentiable manifolds. This means that Lie groups are intrinsically finite-dimensional.
The following is a sketch of the proof of Theorem [3.4] .

Theorem . The set of N x N unitary matrices, U(N), are a Lie group.

Proof. We first show that the group definition is satisfied.

1. Inverse: For any unitary X, its inverse is given by X', by definition of a
unitary matrix. Furthermore,

(XNIXT = XXT =1y,
so X1 is unitary as well. Therefore every unitary matrix has a unitary inverse.

2. Identity: Clearly 1 NJLEV = 1yly = 1y, and so the standard identity matrix
of dimension N x N is a unitary matrix.
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3. Associativity: Associativity follows directly from the properties of matrices.

4. Closure: The unitary matrices must also be closed under matrix multiplica-
tion, and indeed we have that

(XY)(XY) (YIXT)(XY)
= YI(XTX)Y
= Yy

= ]]-Na

if X and Y are unitary. Thus unitarity is closed under matrix multiplication.

By definition, the set of N x N unitary matrices is a group. We also need to show
that the group operations (matrix multiplication and inversion) are analytic. This
is beyond the scope of this report and so we state it as a fact without demonstration.

To complete the proof we need to show that the unitary matrices form a dif-
ferential manifold. This proof is only sketched out since the full version is, again,
beyond the scope of this report.

We use the fact that the unitary matrices of dimension N x N are a subset of
the complex N x N general linear matrices, GL(N,C). GL(N,C) has elements in
CV*N | a space which is homeomorphic to R2V”. Therefore it is easily shown to be
a differentiable manifold.

U(N) is a closed subset of GL(N, C) and therefore a submanifold by definition.
This proves that the unitary matrices are a differential manifold. In combination
with the fact that they are a group, this proves that the unitary matrices are a Lie
group. O

Theorem B.1. The Pontryagin Hamiltonian

A = N+ Re (M, —iX"(t)H; X (1)),
where M 1s an arbitrary complex matriz is equal to

A = X+ Re (A, —iXT(t)H; X (t))
for some A in su(N).

Proof. We recall that any matrix can be written uniquely as the sum of a Hermitian
matrix and a skew-Hermitian matrix.

Let M = S + S+, where S+ is a Hermitian matrix, and S is a skew-Hermitian
matrix.

Re {{M, —iXT(t)H; X (1))}
= Re{(S*+ 5, —iX"(t)H;X(t))}
= Re{(S*, —iXT(t)H;X(t))} + Re {(S, —iX(t)H; X (t))}
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We now consider the first term, with the Hermitian matrix S+.
Re {{S*, —iX"(t)H;X(t))} = Re{Tr(( SL)T(—') T( ) X(t)}
= Re {Tr (Sl )}
= Re{Tr (—zXT )}
= Re{(iXT()H;X 75L>}
- Re{<SL,z‘XT(t)H]-X(t))}

= —Re{(ST, =X T(HX (1) }

The final equality gives us that

0 = Ref(s.x'( t)(—z'H')X(t)>+<SL XT(O(—iH,) X (1) }
=0 = Re{2Re{(S*,X'(t) ()1}
=0 = Re{(s* XT( )(_ZHJ>X( )>}

Since the Hermitian part of the matrix M does not contribute to the inner
product we have

Re {(M,—iX"(t)H;X(t))} = Re {(S, —iX (t)H;X(t))},

for some skew-Hermitian S.

The next step is to show that only the traceless part of S contributes to the
inner product. Denote the trace of S by Tr(S) = is, where s is a real, non-negative
number (it is easy to verify that the trace of a skew-Hermitian matrix is purely
imaginary). This means that the matrix A = S — %]l has trace 0. Now consider
the inner product

<s - %1,X*<t><—mj>x<t>> = (8, X0 (~iH) X (0)— = (1. XT(0)(~iH) X (1)

We now show that the second term vanishes.

S L X)X (D) = 2T

where we have used the cyclic property of trace, as well as the fact that X (¢) is
unitary.
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Finally, we note that the —iH; matrices are all elements of su(N), and therefore
have zero trace. From above this gives us that

<S — iﬁsn, —z'XT(t)HjX(t)> = (S, —iXT(t)H; X (t)).

So the traceless matrix A yields the same inner product as the matrix S. This
means the inner product only depends on the traceless part of the matrix. We can
therefore write the Pontryagin Hamiltonian as

A = N+ Re (A, —iXT(t)H; X (t)).

where A is a traceless skew-Hermitian matrix, which completes the proof. O

The previous result showed that we could replace the arbitrary matrix M with
an arbitrary special unitary matrix A. The next result shows that M must actually
be an element of su(N) in the first place.

Theorem [4.5] The matriz M from the Pontryagin Hamiltonian
A = N+ Re (M, —iX"(t)H; X (1))
is an element of su(N).

The full proof of this result is beyond the scope of this thesis, but we give an
idea as to why it holds. Similar results appears in [4, §3] and in [6§].

First, we discuss some results from geometric control theory. In particular, [28]
generalizes the Maximum Principle to systems which evolve on manifolds of which
systems evolving on Lie groups are a special case. From the geometric viewpoint,
the costate is not just the solution to the equation

At each point X on a k-dimensional manifold M we can define the tangent
space T'x M which is the space of all tangent vectors to the point X. The tangent
space is also a k-dimensional manifold. The set of tangent spaces for all points X in
M forms a vector space as well and is called the tangent bundle 7M. The tangent
bundle is composed of all pairs of the form (X,Y) € M x Tx M. The dual space
of the tangent bundle is a called the cotangent bundle and is denoted T M.

In the case where M = G, a Lie group, the tangent space is given by the Lie
algebra of G denoted L. The tangent bundle is given by pairs (X,Y) € G x L. The
cotangent bundle for systems on Lie groups can be realized as T*G = G x L*, where
L* is the dual space of the Lie algebra £ [28 §12.1.1].

For Lie groups, we can define the adjoint action on the Lie algebra by
AdQ(L) = ng_17

for all g € G and L € L. The dual of the adjoint action is called the co-adjoint
action and is denoted Adj(K). The action defines the co-adjoint orbits through the
point K € L*. The costate A can be expressed in terms of the adjoint orbit which
in turn implies M must be an element of £. For more information see [28, §12].
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Appendix C

Costate Algebra

Theorem [4.3| The costate dynamics evolve under the same equation as the state

dynamics , that is
dA(t)

dt
though the initial condition Ay may be different from Xj.

— —iH(0)A(),

Proof. By the CMMP, the costate dynamics are given by

d\(t) A (aff .a%ﬂ)

d —  dx
Recall that the Hamiltonian 77 is
J = No+ Re (A(t), —iH(t)X (1)) .

The expression Re (A, —iHX) can be simplified by breaking all the matrices into
their real and imaginary parts as

RG<A,—ZHX> = Re(AR+ZA],—Z(HR+ZH])<XR+ZX])>
= R€<AR+iA1,HRX[—iHRXR+H]XR+iH[X]>

By the definition of the inner product
Re (A, —iHX) = Re{Tr (A} —iA])(HrX; — iHgXp + H/ Xp +iH; X))}
Expanding and taking the real part of the previous expression we obtain
Re (A, —iHX) = Tr (ARH; — AT Hp)Xr) + T (ARHr + AT Hp) X)) .
Using the definition of inner product again the expression becomes

Re (A, —iHX) = ((ARH; — ATHp)", Xg) + ((ANRHr + ATH)", X7)
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This simplifies to
Re (A, —iHX) = (H] Agp — HiAr, Xg) + (HiAr + Hf Ap, X1) .
Recall that H = Hgi + ¢H; is a Hermitian matrix. This implies that
H' = H} —iHl = Hp +iH; = H,
which in turn implies that Hr = H5 and H; = —H?}. Using this we obtain

Re <A, —ZHX> = <—H]AR - HRA[,XR> + <HRAR— H[A[,X[>.

Substituting into (C.1f) we get

dA 0 0
— = ———(—H;Ap — HrA;, Xp) —i— (HrAr — H;A;, X7) .
dt 8XR< I\R RIVT, R> ZaXI( RIAR I14\7, 1>
Applying Theorem gives
dA ,
E = (H[AR -+ HRA]> +’L(—HRAR + H]A]).

We now factor the expression to obtain

dA
E = —Z(HR+ZH[)(XR—|—ZHI),
which is the same as e
% = —iH(v)A(2).
This dynamics equation is the same as the dynamics equation for X (¢) given by
(4.10). [
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Appendix D

Controllability Algorithm

function [r] = cont(Ain)
% Ain is a vector of basis nxn matrices
% r is the dimension of the Lie algebra

A = Ain; N = size(A,1);
c = size(A,3); 1last = O;
B=zeros(2xN~2,0) ; r=0;

while ¢>0 && r<(N"2-1);
c=0; oldlast = last; 1last = size(4,3);

for jj=1l:last-1
s = max(jj,oldlast);
for kk=s+1:last
Atmp = com(A(:,:,3j),A(:,:,kk));
%Calulate the previous rank of the B matrix then add the
%new element and Calculate the new rank of the B matrix
rprev = rank(B);
AR = real(Atmp); AI = imag(Atmp);
B(:,end+1) = [reshape(AR,N"2,1); reshape(AI,N"2,1)];

r = rank(B);
%If matrix does not increase span, remove it
if r == rprev
B = B(:,1:end-1);
else
c=c+1; A(:,:,end+1) = Atmp;
end
end
end
end
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Appendix E

Converting Between Numeric
Representations of Intervals

In Section [5.4]1t is stated that there exists an invertible transformation between the
interval matrix o and the vector of consecutive interval lengths £. In this appendix
we explain how to construct such a transformation. We first demonstrate with the
example given in Figure before generalizing.

C C
&1 o § &
U3 (¥31 (X39 ¥ 33
U9 (V91
U1 11 12
0 T Ty T3 T4
L—___/’_Y\\—_—J
tf

Figure E.1: Intervals for multiple controls. The horizontal “axis” denotes time
while the controls are stacked on the vertical axis.

The example in Figure has three controls and five switching times. The first
switching time 7y is the initial time and the final switching time 74 corresponds to
the final time ¢;. The vector of interval lengths £ is

&1
&2
&3
&4
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The vector C which keeps track of which control switches at each switching time
is
C=[3311].
Note that we have chosen the last switch to correspond to the first control. We
could have alternatively chosen control two or three.

The vectors a;; which correspond to the interval lengths between switches of the
same control are

o Q31
11
041—{a } 042—[0421},043— Qsz |,
12
Q33

and may be written as a single matrix a by

Q11 Qo1 (31
o = 19 O 32
0 0 33

The vector k which stores the number of intervals for each control is
k=[21 3]

for this example.

Note that there are six intervals from the matrix viewpoint but only four from
the vector viewpoint. This discrepancy would make it impossible to define an
invertible transformation between the two. To resolve this issue, we add two zero
length intervals to ¢ corresponding to controls two and three. This gives

&1
3
€= 2 and C=[3 3 11 2 3],
&s
&6

where &5 and &g are both zero. We can think of the last two intervals as being the
formal expression of the fact that all three controls stop at the same time.

Alternatively, we could have rewritten the final intervals associated to controls
two and three (g and ags, respectively) in terms of the other elements of « since
they are constrained by the fact that all of the controls must end at the same time.
To avoid inequality constraints in the LP problem, we choose to use the former idea
of adding zero length intervals to &.

We now show how to construct a from £ and C. We start by computing a;.
The first time the first control switches is at the third switching time. The length
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of aq; is therefore the sum of all the intervals of £ up to and including the third.
This gives
a =&+ &+ &3

The second and final switch associated to the first control occurs at the very next
switching time. This implies that

agp = &4.

In a similar fashion, we compute as; by summing the intervals up to and in-
cluding the fifth interval (because the first time control two switches is at the fifth
switching time). This gives

an =& +&+ 86+ 8+ 6.
Finally, we calculate the three intervals associated to the third control and get

a3;p = 51,
agy = &o,
agz = §+ &+ &+ .

We can express this in matrix form as

Qi 111000 &
12 000100 SQ
ag | |1 11110 &
an | |1 00000]|]|&
39 01 00O0O 55
| Qs | |00 1 1 1 1] [& |

The vector on the left of the equality contains the stacked columns of . In Section
5.4] we denoted this vector by o. The matrix of ones and zeros is the matrix
representation of the linear transformation between £ and o. In the terminology of
Section [5.4] this is the transformation B~'.

In general, the matrix B~! can be determined using the Matlab function getBInv,
which is implemented as follows.

function [Binv] = getBInv(switchOrder,kappa,m)

%Initialize variables
Binv = zeros([sum(kappa),sum(kappa)l);
currentRow = 1;

%For each control:

for control = 1:m
previndex = 1;
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%For each row associated to the control
for rr = 1:kappa(control)

%Find the next switch associated to this control
nextIndex = previndex;
while switchOrder (nextIndex) = control
nextIndex = nextIndex + 1;
end

%Set the appropriate entries to 1
Binv(currentRow, prevIndex:nextIndex) = 1;
previndex = nextIndex + 1;
currentRow = currentRow + 1;

end
end

Let k = Z;n:l kj. The matrix B!, denoted Binv in the code, is a & x K real
matrix for which each entry is either a zero or a one. The j* control has k; rows
associated to it. To compute the rows associated to a given control, start at the
first column of the first associated row. Set the entry of the current row and column
to one. Check if the entry of the corresponding column of C (the switching order
vector) is number of the current control. If so then move to the next row. If the next
row corresponds to a different control then restart at the first column, otherwise
more to the next column. Repeat from where the current entry is set to one until
all k& rows have been filled in. All entries that have not been set to one should be
Zeros.

Theorem E.1. The matriz B=! constructed from the previous algorithm is invert-

1ble.

Proof. The switching order vector C has the form
C = [ C1,Coy...,Cx }

For each entry ¢; in C, there is a corresponding row of B~' for which the ;™
column is one and all the entries to the right are zeros. This is because in some row
corresponding to the c}h control the preceding algorithm sets ;' column of that
row to one and then moves to the next column, leaving the rest as zeros.

If we rearranged the rows of B~! to be in the order corresponding to the switch-
ing order vector C then we would have a lower triangular matrix which is clearly
invertible. Since rearranging the columns does not affect the invertibility of a matrix
it follows that B~! is invertible. O

Theorem E.2. For a system with only one control, the matriz B=' found by the
preceding algorithm is the identity matrix.
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Proof. When there is only one control, the vector C is all ones. Starting at the first
row of B~! we set the first entry to one and then move to the next row and column
since the first element of C corresponds to the current (and only) control. Again,
we set the entry to one and move to the next row and column for the same reason.
This process sets each element of the diagonal to one. Since the remaining entries
are zero and B! is a square matrix, it is the identity matrix.

This result justifies the statement made in Section [5.4] that the matrix « reduces
to the vector £ in the one control case. O]

We can find the matrix B by inverting B~!. In practice, computing the inverse

is not necessary since we only need to know the product B¢. We can therefore use
Matlab’s “backslash” operator.
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