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Abstract

Shipment Consolidation (SCL) is a logistics strategy that combines two or more

orders or shipments so that a larger quantity can be dispatched on the same vehicle

to the same market region. This dissertation aims to emphasize the importance

and substantial cost saving opportunities that come with SCL in a logistics supply

chain, by offering new models or by improving on the current body of literature.

Our research revolves around “three main axes” in SCL: Single-Item Shipment

Consolidation (SISCL), Multi-Item Shipment Consolidation (MISCL), and Pricing

and Shipment Consolidation. We investigate those topics by employing various

Operations Research concepts or techniques such as renewal theory, dynamic opti-

mization, and simulation.

In SISCL, we focus on analytical models, when the orders arrive randomly.

First, we examine the conditions under which an SCL program enables positive

savings. Then, in addition to the current SCL policies used in practice and studied

in the literature, i.e. Quantity-Policy (Q-P), Time-Policy (T-P) and Hybrid Policy

(H-P), we introduce a new one that we call the Controlled Dispatch Policy (CD-

P). Moreover, we provide a cost-based comparison of those policies. We show that

the Q-P yields the lowest cost per order amongst the others, yet with the highest

randomness in dispatch times. On the other hand, we also show that, between the

service-level dependent policies (i.e. the CD-P, H-P and T-P), H-P provides the

lowest cost per order, while CD-P turns out to be more flexible and responsive to
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dispatch times, again with a lower cost than the T-P.

In MISCL, we construct dispatch decision rules. We employ a myopic analy-

sis, and show that it is optimal, when costs and the order-arrival processes are

dependent on the type of items. In a dynamic setting, we apply the concept of

time-varying probability to integrate the dispatching and load planning decisions.

For the most common dispatch objectives such as cost per order, cost per unit time

or cost per unit weight, we use simulation and observe that the variabilities in both

cost and the optimal consolidation cycle are smaller for the objective of cost per

unit weight.

Finally on our third axis, we study the joint optimization of pricing and time-

based SCL policy. We do this for a price- and time-sensitive logistics market, both

for common carriage (transport by a public, for-hire trucking company) and private

carriage (employing one’s own fleet of trucks). The main motivation for introducing

pricing in SCL decisions stems from the fact that transportation is a service, and

naturally demand is affected by price. Suitable pricing decisions may influence

the order-arrival rates, enabling extra savings. Those savings emanate from two

sources: Scale economies (in private carriage) or discount economies (in common

carriage) that come with SCL, and additional revenue generated by employing an

appropriate pricing scheme.

Throughout the dissertation, we offer numerical examples and as many man-

agerial insights as possible. Suggestions for future research are offered.
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Chapter 1

Introduction

This dissertation aims to emphasize the importance and substantial cost saving

opportunities that come with transportation in a logistics supply chain. “We”

(you, the reader and myself, the author) will specifically study the mechanics of

shipment or freight consolidation, and will obtain as many managerial insights as

possible.

A Logistics Supply Chain refers to the network of logistics parties in a sup-

ply chain. Logistics supply chain management is concerned with the flow of raw

materials, parts, work-in-process, and finished products needed to ensure that the

company’s customers receive finished products at the correct time, in the correct

location, and in the correct amount. A logistics supply chain may also describe a
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company that has no manufacturing activities, such as a retailer or a third-party

logistics provider (e.g. Shapiro, 2001).

Shipment Consolidation (SCL) is a logistics strategy that combines two or more

orders or shipments so that a larger quantity can be dispatched on the same vehicle

to the same market region. This may enable considerable economies of scale, greatly

reducing the transportation cost per item, per order, or per unit weight. The

challenge however is to determine a policy for shipping consolidation that still gives

good service to the customers whose orders are among the first to be placed. Now,

let us look at a simple consolidation problem at work.

Example 1.1. (Adapted from Bookbinder and Higginson, 2002) Suppose that, at

the end of each day, 6, 000 pounds of glass fibre roofing material is shipped fromWa-

terloo to Ottawa. Assuming a constant production rate, an inventory holding cost of

ten cents per hundred pounds (hundredweight) per day, and a transportation charge

of $2.95 per hundredweight (cwt), the total transportation and inventory holding

cost for this shipment is [60 cwt×$2.95/cwt]+[(60/2)cwt×$0.10/cwt]=$180/day.

Then, the total weekly cost is 5×180/day =$900. Now suppose that there is an all-

unit discount scheme with volume rate of $2.07/cwt for the weights of loads larger

than 25, 000 lbs. So, if we decide to consolidate (i.e. combine daily shipments) over

a week, the total weekly transportation and inventory holding cost would be 300
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cwt×$2.07/cwt+(300/2) cwt×($0.10/cwt)×5 days=$696/week. Therefore, consol-

idating and then shipping at the end of the week rather than shipping daily creates

a saving of $204, which is almost 23% better than with daily shipments.

In the cost calculation of Example 1.1, we assumed that the shipper outsources

the transportation service, as in common carriage (a public, for-hire trucking com-

pany). Alternatively, the shipper might have used private carriage (one’s own

truck). (A review of costing issues with respect to various carrier types can be

found in Higginson, 1993). Because the cost of operating a vehicle in a private

fleet largely depends on distance rather than on load size, the dispatch of a vehicle

each week instead of each day could reduce transportation cost by as much as 80%.

SCL is not limited to just one product or to one destination. For instance, if

several small orders, none qualifying individually for the lower freight rate, were

destined for different customers in the same geographical region, the shipper could

make one consolidated shipment under volume-freight (discount) rates to a central

facility. There, the load would be disaggregated for local delivery to individual

customers.

Moreover, suppose the manufacturer of glass fibre roofing material also sends

small loads to a customer in Kingston. By combining these shipments with those

to Ottawa, the resulting consolidated weight may be sufficiently large to qualify as
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Figure 1.1: SCL Advertised on the Web

a volume shipment, even though a portion of the load will be removed in Kingston,

with a stop-off before the vehicle reaches its final destination.

Another example of SCL is displayed in Fig. 1.1 (Source:www.bongous.com).

That advertisement of a freight-forwarding company recognizes the fact that you

can consolidate different type of items, and thus may obtain significant savings by

having them sent to you in one box. The savings implied there is almost $265. i.e.

more than 50% by the use of SCL.

Logistics planning includes three types of major consolidation methods: Vehicle,

inventory and terminal consolidation, cf. Hall (1987) Vehicle consolidation involves

the practice of aggregating two or more small shipments into a single truck. In-

ventory consolidation focuses on the number, type, and location of stocking points.

Terminal consolidation brings items from different locations into a single facility
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Shipper-Performed Consolidation Carrier-Performed Consolidation 

System 1a :

System 1b :

System 2a :

System 2b :

Facilities Load Size

Shipper  or 

Receiver (consignee) 

Make-Bulk Terminal

Break-Bulk Terminal

Consolidated load

Unconsolidated load

Figure 1.2: SCL Configurations

(a “terminal”) where they are sorted, loaded into vehicles and taken to different

destinations.

Fig. 1.2 (based upon Higginson, 1992) displays possible distribution system

configurations in which SCL can be useful. For example, a shipper can consolidate

its orders destined to a specific destination point, as in System 1a. Or in System

2b, a carrier may consolidate orders from different shippers at a make-bulk termi-

nal, line-haul a particular lane, and then break-bulk that consolidated load at the

destination terminal for the local deliveries to the end customers.

Transportation and inventory costs are greatly impacted by consolidation strate-
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Policy

Service and 

other considerations

O- Origin / Consolidation Dock D- Destination/ Warehouse

Policy

Service and 

other considerations

O- Origin / Consolidation Dock D- Destination/ Warehouse

Figure 1.3: Single Stocking-point, Single-route Consolidation

gies within various supply chain configurations. To exemplify, one of many such

consolidation configurations is displayed in Fig. 1.3

In that figure, the loads that are destined to a single point D, say a retailer,

are consolidated at a single point O, say a warehouse. As depicted, the compo-

sition of the loads may be varying in size (volume, weight) or type. The best

consolidation policy depends on various constraints such as management policies

and objectives, topology of the logistics network, customer instructions, required

transit time, product and transportation characteristics, and the cost parameters

included in the model.

Goods may be moved to their destinations by several major modes, when ap-

plicable (i.e. by air, sea, rail carrier or motor carrier). The latter, transportation

by truck, accounts for the largest share and it raises many opportunities for con-

solidating small shipments.

Small shipments, generally weighing less than 10,000 lbs, are an important part
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of most businesses’ total traffic volume. The majority of them, however, weigh

less than 1,000 lbs., for example see Tyworth et al. (1987). The trucking indus-

try is well suited to line-haul small loads and thus dominates this segment of the

transportation market.

Many trucking firms use discounts to encourage shippers to consolidate freight

into larger, but still less-than-truckload (LTL), weight groups above 5,000 lbs. That

enables more efficient operations. Therefore, building full truckload shipments

should not necessarily be the primary focus of consolidation programs, whether

applied by the shipper or the carrier.

Foremost, any consolidation program imposes some administrative costs for

program planning and management. Benefits are mainly derived from lowered

transportation costs and better transportation operations. On the other hand,

consolidation sometimes may lengthen the order cycle and thus adversely affect

customer service.

Scale economies in transport operations make it possible for carriers to haul

larger shipments at lower rates per unit. Shipment consolidation mostly favors

the carrier’s pickup, delivery and dock-handling costs. For example, a truckload

shipment requires only two stops by the carrier: one for pickup at the origin and

one at the destination. By contrast, small shipments require the LTL carrier to
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make more stops for pickup and delivery. Moreover, it may not even be economical

for the carrier to linehaul some operations in which shipments are so small, and

pickup or delivery points so scattered.

Another advantage in consolidation shows up in transportation service. Consol-

idation may allow for faster and consistent transit times, which in turn would result

in reduced inventories (safety or in-transit) without changing customer-service stan-

dards. Moreover, with faster transit times, capital is tied up in the consignment for

a shorter time, and fast deliveries may generate earlier payments and speed cash

flow, e.g. Masters (1980).

Higginson and Bookbinder (1994) generalize the types of decisions when devel-

oping a SCL program. They identify the major questions to be asked for a SCL

program as:

• What will be consolidated? Which customer orders or products need be

consolidated and which shipped alone?

• When will customer orders be released? What event(s) will trigger the dis-

patch of a vehicle containing a consolidated load?

• Where will the consolidation be done? Should consolidation take place at the

factory, on a vehicle, at a warehouse or terminal?
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• Who will consolidate? The manufacturer, shipper, customer, carrier, or a

third party?

• How will consolidation be carried out? Which specific techniques will be

employed?

Adequate answers to these questions boil down to understanding the basic trade-

offs in applying consolidation policies, which impact virtually all areas of a firm’s

logistics system.

In practice, typical SCL policies comprise the Time Policy (T-P), Quantity

Policy (Q-P), and Hybrid Policy (H-P) which is also known as the Time-and-

Quantity Policy. A T-P dispatches each order at a predetermined shipping date

(T ∗), whether or not it is consolidated. In a Q-P, all orders are held and shipped

when a minimum consolidated quantity (Q∗) is reached. Under the H-P, dispatching

occurs upon attaining the earliest of “predetermined shipping date T ∗” or “the

accumulation of a minimumweight or volumeQ∗.” Because the Q-P uses a quantity-

based dispatch policy, it requires continuous review of the accumulating load. One

needs to be cautious in implementing this policy for two reasons: the orders might

not be easily tracked, or the cost of tracking such orders might overwhelm the

benefits of consolidation; and the order cannot be given a delivery-time guarantee.

However, the T-P enables us to give a time-guarantee while not requiring the cost

of monitoring the arrivals of orders.
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time

Quantity accumulated

5 orders dispatched 

3 orders 
dispatched 

T*

Q*

Figure 1.4: Sample Paths for the Q-P and T-P

As seen in the Fig.1.4, the time it takes to build up to Q∗ orders (optimal

dispatch quantity) might be less than T ∗ (optimal time at which load should be

dispatched.) Also, we note that the quantity built up by time T ∗ might be less

than Q∗.

This dissertation evolves around “three main axes” in SCL:

1. Analysis of shipment consolidation policies under random arrivals of orders,

for a single type of freight

2. For various objectives, analysis of shipment consolidation for multiple item

types and random arrivals of orders, with a distribution of order sizes

3. Analysis of shipment consolidation when the transportation-pricing decisions

are made by the various carrier types

10



Next, we will give a survey of literature that has commonality for the rest

of the thesis, and then outline the contributions of this dissertation. (Particular

references to other studies will be given in the relevant chapters.)

The global supply chain relies on the effective and efficient use of transportation

networks, which vary substantially, depending on the region, country, or function.

Both intercontinental and regional transport become increasingly important in the

context of global business, e.g. Skjott-Larsen et al. (2007). In that trend, shipment

consolidation has again become an active research venue in logistics supply chain.

Besides general discussions in textbooks (for example Tyworth et al., 1987; Silver

et al., 1998; Ballou, 2004), we may classify the literature on shipment consolidation

as those articles usually published in the trade press (e.g. Newbourne and Barrett,

1972; Newbourne, 1976; Bookbinder, 1989) and those academic works published in

scholarly journals.

There are successful applications of SCL in industry. For example, in the heavy

petroleum industry by Mobil Oil, as reported by Bausch et al. (1995). Quinn (1997)

reports that shipment consolidation enabled Nabisco Inc. to cut transportation

costs by half, decrease inventory levels, and improve on-time delivery.

To our knowledge, a systematic approach to analyzing consolidation appears

first in Beckmann et al. (1953), in the context of the uses of railway-switching
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yards, where a train can transfer its small loads to another one, heading for the

same destination. (Also see Beckmann et al., 1956). The academic literature on

shipment consolidation may be divided into analytical models, simulation studies

and heuristic methods. The pertinent analytical models are supported by various

operations research techniques such as optimization, renewal processes, and queue-

ing theory. The heuristic approaches, on the other hand, develop decision rules

based on data analysis.

An important heuristic study is that of Schuster (1979), who presents an analysis

of the economics of shipment consolidation. Drawing upon the transportation cost

figures, he makes recommendations about how to revise rates to induce shippers

to combine small loads, and to create effective shipment-consolidation-marketing

strategies. An early simulation analysis appears in Jackson (1981), to investigate

the major variables operating in an order-consolidating system. In another paper

(Jackson, 1985), he surveys more than fifty US firms that apply freight consoli-

dation. His survey results point out “cost reduction” to be the most important

reason these firms engage in freight consolidation programs, and the biggest disad-

vantage to be the staff “effort” that is required to plan and operate these systems.

Therefore, he emphasizes that the primary objective of managers of consolidation

programs should be to increase consolidation-cost-savings per employee.
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Using a stochastic clearing model, Gupta and Bagchi (1987) find the minimum

cost-effective load which should be accumulated at a consolidation center, when the

procurements are done just-in-time. In Buffa (1987), the effects (on the decision

to consolidate particular items) of cost factors and transit times are investigated.

Akaah and Jackson (1988) report on their empirical study of fitting various the-

oretical distributions to the order weights, and emphasize that they vary from

industry to industry. Min and Cooper (1980) survey and classify the literature

after 1980. Pooley and Stenger (1992) empirically test how factors such as level

of LTL discount rate, order size, and geographic distribution of customer-demand

influence the shipment consolidation and logistics cost performance. Jaruphongsa

et al. (2007) provide a solution to an integrated dispatch problem when both LTL

and FTL operations are allowed.

Based upon industry practice, Higginson and Bookbinder (1994) study the tim-

ing issue for shipment-release using simulation. Assuming Poisson order-arrivals

and Gamma-distributed order weights, they analyze the relative cost and delay per-

formance of the three shipment-release policies (Q-P, T-P, and H-P). For various

combinations of holding time and arrival rates, those authors provide recommenda-

tions on when to use which policy, depending upon management’s objectives with

regard to customer service and cost.
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Higginson (1995) distinguishes shipment-consolidation procedures as recurrent

or non-recurrent. Assuming the choices of the optimum minimal quantity to dis-

patch and/or the optimal timing of dispatch have been decided in advance, a

non-recurrent method proceeds in the same manner in each consolidation cycle.

However, in a recurrent approach, as the arrival of each new order changes the

consolidated load, a decision is made on whether to ship or continue to consolidate,

based on that total quantity available and the length of the consolidation cycle to

that point. Especially for consolidation cycles in which orders are too few or too

small, dispatching early may ameliorate poor customer service. To investigate this

situation, he uses marginal analysis.

Higginson and Bookbinder (1995) discuss the use of Markovian decision processes

in a recurrent approach to freight consolidation programs. The dispatch rule is

again based on the aggregated weight, rather than the individual orders that com-

pose it. Optimal stationary policies are obtained, both for the private-carriage and

the common-carriage cases. For common carriage, those authors show that ship-

ment is the preferred action with very large or very small accumulated weights. On

the other hand, for private carriage, they report an optimal policy of control-limit

type. Several numerical examples are given.

Bookbinder and Higginson (2002) obtain practical decision rules for temporal
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consolidation for the case of private carriage. Using a “nomograph,” they relate

the maximum holding time and desired dispatch quantity in a probabilistic setting.

Tyan et al. (2003) evaluate different freight consolidation policies at an integrated

global logistics company, using a mathematical programming model. The stochastic

case for the Q-P and the T-P is analyzed in Çetinkaya and Bookbinder (2003). They

employ renewal theory and obtain the optimal target weight before dispatch and

the optimal length of each consolidation cycle. Those authors report that T-P is

superior to Q-P on the basis of mean time before dispatch, hence may provide a

better service.

Çetinkaya (2004) gives a review of shipment consolidation at large, in a coordi-

nated setting with inventory decisions in supply chain management. In Chen et al.

(2005), Q-P and T-P are analyzed in the context of a vendor who uses a lot-size,

reorder policy to replenish the stock. They find that the Q-P scheme outperforms

the T-P counterpart. Recently, Çetinkaya et al. (2006) investigate the cost- and

customer-waiting-time impacts of using a hybrid policy, and show that H-P is su-

perior to T-P. In sum, the preceding references illustrate that a given policy may

exhibit its positive features to a greater extent in a particular setting or for different

assumptions.

We also notice that some concepts and techniques for the consolidation problem
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may be borrowed from queueing theory. The policies used for bulk or batch service

queues (e.g. Deb and Serfozo, 1973) may prove useful in our analysis, although

they are constructed for different operating environments. Consider a manufactur-

ing setting with a single server where the arrivals follow a Poisson process, and

each arrival seizes a general service time (i.e. M/G/1 system in queueing theory

parlance). Yadin and Naor (1963), Heyman (1968), Sobel (1969), and Bell (1971)

have studied the N -policy for such a system. An N -policy activates the server when

there are N customers waiting for service, and deactivates the server when there

are no customers in the system.

Balachandran (1973) and Balachandran and Tijms (1975) considered the D-

policy, a control policy which turns the server on when the total work to be done

reaches the value D, again continuing until the system is cleared. For a special

case of service distribution, they show that the D-policy is superior to the N -policy

(cf. Artalejo, 2002). However, to employ either of those policies, the server must

continually monitor the queue for an arrival when the server is not active. For

situations where this can not happen, Heyman (1977) proposes a T -policy, where

the server scans the queue T time units after the end of the last busy period to

determine if customers are present. For the minimum-cost-rate criterion, he shows

that the optimal cost rate of the T -policy is worse than the one achieved by the

comparable optimal N -policy.

16



According to the model used, the accumulation cycle may begin immediately af-

ter the dispatch of a consolidated load or when the first order of a new cycle arrives.

If the quantity component is ignored, beginning a new cycle immediately upon load

dispatch is similar to releasing shipments at set intervals, with the possibility of can-

celling a dispatch if the accumulated weight is too small to be economical. Powell

(1985) and Powell and Humblet (1986) investigate this case through bulk-queueing

theory for passenger vehicle dispatching.

When we regard the second axis of our research, i.e. the multi-item case, the

literature is not exhaustive. References that study multiple items generally fall

into the category of deterministic or stochastic knapsack or lot-sizing problems in

inventory management (Alp et al., 2003). For example, Anily and Tzur (2005)

consider a system in which multiple items are transferred from a warehouse to a

retailer through vehicles with identical capacities. In the context of time-varying

deterministic demands for a fixed number of items, those authors propose a dynamic

programming algorithm that finds a shipment schedule which minimizes the total

cost, while satisfying demand on time. Brandimarte (2006), on the other hand,

considers the stochastic version of the classical multi-item capacitated lot-sizing

problem, where demand uncertainty is explicitly modeled by scenario trees.

Let us now give a brief review on joint pricing and consolidation decisions. The

17



interaction between the shipper and carrier has significant impacts on logistics costs

and service (Sheffi, 1986). New paradigms in costing and pricing decisions for the

carrier have evolved in recent years. One such paradigm, revenue management, is

the practice of controlling the availability and/or pricing of resources in different

demand classes, with the goal of maximizing expected revenues or profits. Pricing

decisions, given that the carrier has an incentive on them, help him induce effects

on the demand pattern of the customers.

Pricing resides at the conjunction of sales and production/inventory functions

in a business. Dating back to Whitin (1955), the interactions between the pricing

and inventory control decisions have been and still are being researched. Chan

et al. (2004) give an excellent treatise on the coordination of pricing and inven-

tory decisions. However, in logistics strategy, it is now being recognized that rev-

enue generation is as important as cost reduction (Ballou, 2006). Transportation

revenue-management, i.e. “yield management,” has been on the research stage for

the last two decades, yet there exists a large room for improvement in this field

(McGill and Van Ryzin, 1999).

Although service might be viewed as the “product” of logistics systems, the

literature on consolidation strategies with service considerations is limited and de-

serves a thorough investigation. There exist various approaches which incorporate
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a service constraint into the tactical or operational level of logistic decisions. These

depend on whether management’s objective is to minimize cost, or to maximize

profit or maximize utility of logistics service. For instance, in a physical distribu-

tion system with fixed demand and price, Bookbinder and Lynch (1997) maximize

utility of the customers. Ray and Bookbinder (2005) work on profit maximization

for the company, when customers now are price sensitive. In the context of customer

lead-time management, Ray and Jewkes (2004) study the effects of a time guarantee

on profit maximization when both demand and price are lead-time sensitive, and a

particular service level (fill rate) is required. Some other studies pertinent to pric-

ing in the transportation context and which relate to our work include Cavinato

(1982), Lee and Rosenblatt (1986), Abdelwahab and Sargious (1990), and Abad

and Aggarwal (2005).

Our contributions to the body of literature in SCL can be outlined as follows:

1. We add to the literature on single-item shipment consolidation by providing

new results on the currently-used SCL policies, and by offering a new shipment

consolidation policy, namely Controlled Dispatch Policy.

2. While proposing a new multi-item SCL model, we study the behavior of

optimal dispatch decisions under various objectives.

3. We emphasize the importance of pricing to obtain better performance of SCL,
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for an integrated logistics supply chain. In doing so, we propose various

pricing schemes that can be used by a carrier.

4. Overall, we propose new models, or new results about the already existing

SCL models, by employing various Operations Research methodologies.

In Chapter 2, we will focus on single-item shipment consolidation for SCL poli-

cies. The multiple-item shipment consolidation, and dispatch decision rules for

various objectives will be the main concern in Chapter 3. Chapters 4 and 5 look

closely at the case when the order arrival process is influenced by pricing decisions,

for the case of common-carriage and private-carriage, respectively. And finally, we

conclude with an overall view of the findings and possible research extensions.
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Chapter 2

Single-Item Shipment

Consolidation: New Results

Single-Item Shipment Consolidation (SISCL), as the name suggests, focuses on the

shipment of a particular product type. This is the basic version of SCL. For exam-

ple, various retail stores place orders with a supplier of that item. A distribution

center may combine those orders and dispatch them as a consolidated linehaul

shipment, for eventual local deliveries to the stores.

In this chapter, we first investigate the conditions under which a consolidation

programmay enable savings compared to the case of non-consolidation. When these

conditions hold, savings can be achieved both for private-carriage and common-
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carriage transport. Later, we study the commonly used SCL policies (Quantity,

Time, and Hybrid), assuming that orders of a standard (unit) size arrive according

to a Poisson process. We also introduce the “Constrained Dispatch Policy.” With

the objective of minimizing expected cost per unit quantity, we compare those four

policies based upon theoretical and numerical results.

2.1 When does SCL make sense?

Depending on the operating environment of the supply chain and the orders for

the product or products, a consolidation program may not be at all beneficial to

the shipper or carrier. This is especially true if the orders are very time sensi-

tive (e.g. express delivery), or the product is fast-perishable (e.g. blood or some

pharmaceutical or food items).

Based upon the Example 1.1, we consider a simple setting in which a consolida-

tion program might potentially be applicable. For a stationary stochastic system,

we can derive the conditions when consolidation is a viable strategy. To do so, let

us first define Λ to be the constant arrival rate of orders per unit time where an

order is charged a carrying cost of $h per unit time during the interval that it is

held before dispatch. Also, let κ be the fixed cost to dispatch a vehicle of capacity

W orders. Propositions 2.1 and 2.2 give conditions when a consolidation program
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is beneficial, respectively for private carriage and common carriage.

Proposition 2.1. Consider a sequence of shipments over an interval of η periods

(i.e. time units) by a private fleet that can supply multiple trucks as required.

Denote by a “non-consolidation” program the dispatch of a vehicle each period

(often containing a partial load). A “consolidation program” will wait, dispatching a

full vehicle one or more times during the η-period interval. (A partially-full truck will

be dispatched at the end of this interval if necessary.) Then, a sufficient condition

for savings from the consolidation program over the η periods is

(κDC−ηκDNC)+(hW 2/2Λ)[(DC−1)−η(DNC−1)]

+ (h/2Λ)[(ηΛ−(DC−1)W )2−η(Λ−(DNC−1)W )2]

+ (h/2Λ)[(ηΛ−(DC−1)W )2−η(Λ−(DNC−1)W )2] < 0

where DC = �ηΛ/W � and DNC = �Λ/W �

(2.1)

Proof. For private carriage, the fixed cost of dispatching a load is independent

of the amount shipped. However, if the accumulated load is more than a sin-

gle vehicle’s capacity, then the quantity remaining is to be shipped at the end of

the period on another vehicle, only partially loaded. The total cost per dispatch

would comprise the holding cost and the dispatch cost. The expected total number

of vehicles employed each period is DNC � �Λ/W�, where subscript NC denotes

“non-consolidation”. Without loss of generality, suppose there are DNC−1 fully

loaded, and one partially loaded vehicle. The expected time required to fill a ve-
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hicle is W/Λ. (Naturally, in a period, if enough orders are accumulated before

the end of that period, a vehicle is dispatched as soon as it is fully loaded.) For

such an order, the average wait time is W/2Λ. Thus, the holding cost for one

full truck is hW (W/2Λ). Now, in a period, the average waiting time for an order

that is shipped in a (possibly) partially loaded truck is [1−(DNC−1)W/Λ]/2 peri-

ods. Also, the total amount for the last (possibly partial) load to be dispatched

at the end of the period is Λ[1−(DNC−1)W/Λ] = Λ − (DNC−1)W . Hence, the

holding cost for a partial dispatch is h[Λ − (DNC−1)W ][1−(DNC−1)W/Λ]/2. In-

cluding the cost of fixed cost of dispatching DNC trucks in a period, the total

cost of a “non-consolidation” program over η periods is found to be, TCNC(η) �

η (κDNC + hW 2(DNC−1)/(2Λ)+h[Λ− (DNC−1)W ][1−(DNC−1)W/Λ]/2).

Let us now denote by TCC(η) the cost of a “consolidation” program over η peri-

ods. In such a program, a vehicle will be held until enough orders are received to fill

it. (If the order arrival rate is less than the vehicle capacity, a vehicle will be held

more than one period.) Define a dispatch cycle as the length of time to fully load a

vehicle. The number of cycles, therefore the number of vehicles dispatched in η peri-

ods, isDC � �ηΛ/W�. There will be for sure (DC−1) fully loaded vehicles and (pos-

sibly) one partially loaded. Similar to TCC(η), but using the concept of cycle, we

obtain TCC(η) = κDC+hW
2(DC−1)/(2Λ)+h[ηΛ−(DC−1)W ][η−(DC−1)W/Λ]/2.
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There will be savings in using SCL only if η is chosen such that TCC(η) <

TCNC(η). After some algebra, we obtain the condition (2.1). �

For the case of common carriage, i.e. when transport is conducted by a for-hire

trucking company, the shipper pays only for the quantity of freight (in our case,

the number of orders) to be sent, at a transportation rate or price per order set by

the carrier. Because each order is assumed to be a standard size and weight, the

vehicle capacity W can be measured in “orders.” We note that this capacity is an

issue not for the shipper, but for the carrier.

Let us define the “non-volume” transportation rate, in $/order, as fn. The

carrier, however, offers a freight-rate discount to the shipper so that the carrier

itself can benefit from scale economies. Denote the volume-freight rate as fv, dollars

per order transported; that rate is activated when the number of orders reaches or

exceeds a particular break-point Wb. (We consider an all-unit discount with single

break-point. Naturally, fn > fv.) As before, η = η0Υ is the time interval (and η0

is the number of periods) in which a consolidation program is applied.

Proposition 2.2. Suppose the shipper utilizes common carriage and that ΛΥ <

Wb (i.e., the expected total orders in a single period do not qualify for the volume

rate). Then, there exist positive savings over a consolidation interval of η0 periods,

25



if and only if the following conditions hold:

Wb/ΛΥ ≤ η0 ≤ 1+2(fn−fv)/hΥ (2.2)

Proof. As before, the relevant costs of the dispatch will comprise holding costs

plus transportation cost. For common carriage, we require a consolidated load of

sufficient size to qualify for the volume rate. Hence, our first condition is Λη ≥Wb,

for η0 > 1. (We note that the case ΛΥ ≥Wb is easy: The expected load available in

a single period would exceed the order-break point Wb, and hence there is no need

for a “purposeful” program of SCL.) Now, the total cost of “ship in each period”

(i.e., whatever orders are received during a period, ship them at the end of that

period) will be η(Λfn+ΛhΥ/2) = ηΛ(fn+hΥ/2), whereas that of consolidation over

the time interval η yields a total cost of η(Λfv+Ληh/2) = ηΛ(fv+ηh/2).

It is now easy to see that if the difference between the former and the latter

cost figures is strictly positive, inequalities (2.2) will hold. Conversely, if conditions

(2.2) are satisfied, a purposeful SCL program yields positive savings. �

Note that if consolidation is sensible for the common-carriage case, the percent

of savings with respect to non-consolidation can be obtained as

% savings by consolidation = [(fn−fv)+(hΥ/2)(1−η0)]/(fn+hΥ/2)

For instance, the savings in Example 1.1 can be found by this formula to be

23%, when the specific parameters are fn = $2.95/order, fv = $2.07/order, h =
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$0.10/order/day, and η = 10 days.

2.2 Policy Analysis in SISCL

In the previous section, we obtained conditions under which SCL is desirable. Now,

assuming that there are positive benefits from such a program, we wish to derive

structural results concerning the optimal consolidation policies.

As before, we model the dispatch of a consolidated load consisting of the ac-

cumulated orders of a single item. Transport is by private carriage. We analyze

a simple but non-trivial consolidation setting where the product is unit-sized, and

the arrival process is Poisson. We deliberately study unit-sized orders so that the

accumulated quantity at any time is simply the number of orders.

The problem at hand can be cast as follows: A retailer is solely supplied by

a single vendor for a specific product. The demand for that product follows a

Poisson distribution with rate λ; thus the inter-demand times follow an exponential

distribution with mean interarrival time 1/λ. Aligned with our previous notation,

let h be the holding cost per item per unit time. Let us define Q to be the random

variable representing the total quantity consolidated. Orders are accumulated and

then dispatched according to a particular release policy. Shipment of orders is done

on a first-come, first-served fashion.
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The admissible consolidation policies we analyze here include the Time Policy

(T-P), Quantity Policy (Q-P) and Hybrid Policy (H-P). In this section, we introduce

a new policy that finds the optimal quantity to dispatch, given a controlled dispatch

time. We name this policy as Controlled Dispatch Policy, CD-P in short.

The main difference between CD-P and H-P is that H-P contains only a single

dispatch time, the target holding time T ∗. That is, for a consolidation cycle in

which orders arrive somewhat infrequently, H-P will not dispatch until time T ∗

as long as Q < Q∗, the targeted quantity obtained from the optimization of Q-

P. However, for CD-P, its optimal target quantity q∗ (which is now a function of

“controlled” or scheduled dispatch times) is allowed to decrease as time goes on:

Dispatch will occur sooner in a “disappointing” consolidation cycle, rather than

delay the inevitable shipment of a load smaller than q∗ until a later dispatch time.

CD-P is intended to be near-optimal for a given range of dispatch times. CD-P

in that way furnishes a more realistic service than H-P; this is the main motivation

for CD-P.

Throughout our analysis, we assume that the delivery of each load is conducted

by one’s own truck with a constant cost κ per shipment. Hence, the consolidation

costs only involve the inventory carrying and fixed transportation cost per load.

We now focus on the aforementioned shipment-release policies, beginning with
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the Q-P. Its formulation assumes that the dispatcher ships the consolidated load

whenever Q or more units are accumulated. The expected total cost C(Q) of this

policy is C(Q) = κ+hQ(Q−1)/2λ, and the expected cost per order is thus

C̄(Q) = C(Q)/Q = κ/Q+h(Q−1)/2λ (2.3)

By treating the cost function as a smooth one, it is easy to show that C̄(Q) is

convex in Q, i.e. d2C̄(Q)
dQ2

≥ 0. Let x∧y � min{x, y}. Now, via first-order conditions,

and constraining Q by the vehicle capacity W , we find the minimizer of C̄(Q) as

Q∗ =
√

2κλ/h ∧W (2.4)

(In a manufacturing setting, Burns et al. (1985) consider the inventory holding

cost at both origin and destination, and obtain a result similar to Eq. (2.4).)

Excluding the case when Q∗ =W , the optimal expected cost of the Q-P is

C̄(Q∗) =
√

2κh/λ−h/2λ

The quantity in this model setting is integer. Proposition 2.3 offers the following

easy-to-use decision rule for finding Q∗int, the cost-minimizing integer value of Q∗,

cf. Ülkü and Bookbinder (2006).

Proposition 2.3. The optimal integral dispatch quantity for the Q-P is

Q∗int =






�Q∗
 ≡ Q∗L, if 2κλ/h ≤ Q∗LQ∗U

�Q∗� ≡ Q∗U, o.w.

Proof. Q∗int = Q∗L if C̄(Q∗L) ≤ C̄(Q∗U). Expanding this condition, and employing

29



the facts all the parameters are positive, Q∗L > 0, and Q∗U−Q∗L = 1, the desired

result is obtained. �

Example 2.1. Suppose κ = 10, h = 1, λ = 0.5. Then Q∗ =
√

2κλ/h =
√

10 and

Q∗L = 3, Q∗U = 4. By Proposition 2.3, since (3)(4) > 10, the integral solution for the

optimal dispatch quantity is Q∗int = Q∗L = 3. (Note that C̄(3) = 5.33 < C̄(
√

10) =

5.32 < C̄(4) = 5.5.) However, suppose κ is changed to 32 instead. Then, Q∗ =
√

32

and Q∗L = 5, Q∗U = 6. Again by Proposition 2.3, since (5)(6) � 32, we conclude that

now Q∗int = Q∗U = 6.

Next, we turn our attention to the formulation of the T-P, in which our devel-

opment follows that of Ülkü and Bookbinder (2006). Consider that such a policy is

applied for a cycle length of T . Define Xn to be the time between the (n− 1)st and

the nth order, with E[X] = 1/λ < ∞. Without loss of generality, assume that the

first arrival is at time 0. Then Sn =
∑i=n

i=1 Xi will represent the arrival time of the

nth order. Via renewal theory, and for Poisson arrivals with rate λ, the expected

number of renewals in the time interval [0, T ], m(T ), can be shown to equal λT .

Now, let us define A(T ) = T−Sm(T ) as the age of the last order prior to or at time

T . Using the fact that E[A(T )] = 1/λ (See for example Çınlar, 1975) we can derive
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the expected total cost of the T-P during a time interval T as

C(T ) = κ+E[hX1+2hX2+...+[m(T )−1]hXm(T )−1]+hm(T )E[A(T )]

= κ+hE[X]m(T )[m(T )−1]/2+hm(T )E[A(T )]

= κ+hλT 2/2+hT/2

Hence, the expected average cost per unit time is obtained as

C̄(T ) = C(T )/m(T ) = hT/2+h/2λ+κ/λT (2.5)

Define the maximum holding time (i.e. service level) by Tmax. Noting that C̄(T )

is convex in T , the optimal cycle length of T-P is found to be

T ∗ =
√

2κ/hλ ∧Tmax (2.6)

where the optimal cost value of the T-P is simply C̄(T ∗) =
√

2κλ/h+h/2λ, ignoring

T ∗ = Tmax.

To formulate the H-P, let us define its minimal expected cost per order by

C̄(Q∗, T ∗) = C̄(minimum time for {Q∗, T ∗}) = C̄(Z(Q∗) ∧ T ∗) (2.7)

where Z(Q∗) is Gamma-distributed with mean time 1/λ and shape Q∗. This defi-

nition makes all three policies comparable on the same measure, the expected cost

per order. Now, we are ready to prove

Proposition 2.4. The Q-P yields a lower cost per order than the T-P and H-P.

Proof. First we will show that Q-P gives lower cost per order than the T-P. Since
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h, λ > 0, C̄(Q∗) = C̄(T ∗)−h/λ < C̄(T ∗). Now, by (2.7), we can rewrite

C̄(Q∗, T ∗) =






C̄(Q∗), if Z(Q∗) ≤ T ∗

C̄(T ∗), o.w.

Let θ = Pr{Z(Q∗) ≤ T ∗}, i.e. the probability that quantity policy portion of the

H-P will be active before the T-P portion. Now, suppose the H-P gives a lower cost

than Q-P. Then,

C̄(Q∗, T ∗) = EC̄(Z(Q∗)∧T ∗) = θC̄(Q∗)+(1−θ)C̄(T ∗) = θ[C̄(Q∗)−C̄(T ∗)]+C̄(T ∗) <

C̄(Q∗) should hold. However, this inequality is satisfied only for θ > 1, which is

contrary to the very definition of a probability measure. �

Corollary 2.1. In terms of cost per order, H-P is superior to T-P.

Proof. For some θ such that 0 < θ < 1, let the cost difference between Q-P

and H-P be ∆. Thus by Proposition 2.4, ∆ = C̄(Q∗, T ∗)−C̄(Q∗) ≥ 0. Then,

the cost relations of these policies yield, C̄(T ∗) = [C̄(Q∗, T ∗)−θC̄(Q∗)]/(1−θ) =

[C̄(Q∗, T ∗)−θ(C̄(Q∗, T ∗)−∆)]/(1−θ) = C̄(Q∗, T ∗)+θ∆/(1−θ) > C̄(Q∗, T ∗). This

completes the proof. �

Corollary 2.2. H-P gives the same expected cost as Q-P if
√

2κλ/h → 0, and

gives the same expected cost as of T-P if (2κλ/h)(−1+h/λ) ≥ 3.

Proof. We investigate two extreme cases: Consider the case θ = 1, i.e. the required

time to reach optimal Q-P parameter is probabilistically always less than that of
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the T-P. This case implies that θ = Pr{Q∗ or more orders arrive before T ∗} =

1−∑Q∗−1
j=0

(λT ∗)je−(λT
∗)

j!
= 1. That condition is satisfied when λT ∗ =

√
2κλ/h →

0, which can be interpreted as, “The best policy is to ship each order whenever

received,” if the fixed dispatch cost relative to the holding cost and the arrival rate

are very small.

Now consider the case when θ = 0, i.e.
∑Q∗−1

j=0
(λT ∗)je−(λT

∗)

j!
= 1−θ = 1. An

exact and explicit expression for this term is not possible. Fortunately, we can

approximate a Poisson distribution with rate λT ∗, by a Normal distribution with

mean λT ∗, and variance λT ∗ when λT ∗ is “large” (generally when λT ∗ > 10.) Now,

from the characteristics of Normal distribution, 1−θ → 1 if Q∗ > 3
√
λT ∗+λT ∗.

Employing (2.4) and (2.6), and using the fact that
√
x ≥ (1/x) for x ≥ 1, we

obtain the condition (2κλ/h)(−1+h/λ) ≥ 3. This completes the proof. �

In passing, we note that our analytical findings in Corollary 2.2 are congruent

with those in Higginson and Bookbinder (1994). We would also like to note that

results pertaining to the comparison of Q-P, T-P and H-P have been published in

Ülkü and Bookbinder (2006).

Let us now investigate a policy when the dispatch time is set in advance. Beck-

mann et al. (1956) study, among other topics, the freight operations and the clas-

sification policy in railroad systems. In that work (pages 134-135), those authors
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Figure 2.1: Dispatching Trains in a Yard

suggest a dispatching rule for the outbound trains in a yard. They conjecture that

the relationship between required accumulation rate decreases as the dispatch time

approaches. They write, “The important point in this discussion is not why the

curve DD’ should have such a slope only that it is possible to ensure against ab-

surdly long trains (by making the schedule of departure times dependent on the

numbers of cars of the proper kinds which have accumulated), and at the same time

not completely abandon the timetable type of scheduling.”

Fig. 2.1 is based upon Beckmann et al. (1956). The DD’ line quoted in the

preceding paragraph corresponds to line D1-D3 in this figure. The y-axis shows the

number of outbound cars available to be attached to a train before its dispatch, and

x-axis shows the possible times of departure (schedule). The curve depicts a sample

path of accumulation; and suggests that the train should be dispatched before its

scheduled departure time (12 p.m.) because for an economical dispatch, a sufficient
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number of cars (i.e. 40 cars for 12 p.m.) has already been reached.

To our knowledge, there is no published research on why this is the case. Specif-

ically, why is D1-D3 linear and sloped downward? This observation motivates us to

introduce and study a new dispatch policy, what we name as “Controlled Dispatch

Policy.” The optimization of that policy forms the topic of the next section.

2.3 Controlled-Dispatch Policy

CD-P finds the optimal quantity (accumulation amount) given a controlled or

scheduled dispatch time, e.g. for the dispatch of shuttles. It is similar to H-P

in the sense that it considers the time dimension (service level) of the dispatch.

From (2.3) and (2.5), let us recall that the expected cost per order of the Q-P

and T-P are C̄(Q) and C̄(T ), respectively. Let us also recall that the H-P was a

combination of these two policies, incorporating the optimal Q and T values that

are found separately in those policies. Now, for CD-P, to distinguish its decision

variables, we call them q(τ ) and τ as opposed to Q and T in H-P. (From now on,

for brevity, we will suppress τ in q(τ), and denote it simply by q. It shall be clear

within the context.)

The CD-P dispatches the vehicle as soon as q orders are accumulated or τ time

units (which is set previously) has elapsed since the first order arrived. In other
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words, the consolidated shipments are released whenever q or τ is reached. Now,

suppose the first shipment has arrived, at a time defined to be t = 0. With respect

to our model setting, the probability p≥q that we do not have to wait τ time units

until the departure is

p≥q = Pr{q or more orders arrive in a time ≤ τ} = 1−∑q−1
j=0

(λτ)je−(λτ)

j!
. Also,

pq = Pr{ exactly q orders arrive by time = τ} = (λτ)qe−(λτ)

q!
, and

p<q = Pr{q−1 or less orders arrive by time = τ} =
∑q−1

j=0
(λτ)je−(λτ)

j!
.

We want to find the variables for a CD-P that gives minimal cost per order for

a single shipment type . Notice that q takes on nonnegative integer values, while τ

is on the nonnegative real line. Assume that there is no capacity constraint. The

expected cost per order when the CD-P is employed, C̄(q, τ ), can then be calculated

as

C̄(q, τ ) = p≥qC̄(q)+p<qC̄(τ ) = C̄(q)+p<q[C̄(τ )−C̄(q)] = C̄(τ )+p≥q[C̄(q)−C̄(τ)]

= hτ
2
+ h
2λ

+ κ
λT

+(1−∑q−1
k=0

(λτ)ke−(λτ)

k!
)[h(q−1)

2λ
+κ
q
−hτ

2
− h
2λ
− κ
λT

]

Now, the optimality conditions for the CD-P can be stated by

Theorem 2.1. For a given τ , the corresponding optimal quantity q∗ must satisfy

the following conditions:

i) p≥q∗
(
hq(q+1)−2λκ
2λq(q+1)

)
−pq(h(q

2−1)+2λκ
2λ(q+1)

−hλτ2+2κ
2λτ

) > 0, and

ii) ( q
∗

λτ
pq∗+p≥q∗)

(
hq(q−1)−2λκ
2λq(q−1)

)
− q∗

λτ
pq∗(

h(q2−2q)+2λκ
2λq

−hλτ2+2κ
2λτ

) < 0

(2.8)
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Proof. Via finite calculus, given τ , the optimal dispatch quantity q∗ with respect to

the CD-P need satisfy the condition that ∆C̄(q∗−1, τ) < 0 < ∆C̄(q∗, τ), where ∆

is the first-order difference operator, i.e. ∆f(x) = f(x+1)−f(x), x ∈ Z. After some

algebra, those conditions can be reduced to p≥q∆C̄(q)−pq[C̄(q+1)−C̄(τ )] > 0 and

p≥q−1∆C̄(q−1)−pq−1[C̄(q)−C̄(τ )] < 0. Expanding these inequalities by further

differencing C̄(q) as required, and using the substitutions pq−1 = q∗

λτ
pq∗ , p≥q−1 =

pq−1+ p≥q, and via (2.3) and (2.5), the desired conditions in (2.8) are obtained. �

Proposition 2.5. The (Q∗, T ∗) pair is not necessarily equal to (q∗, τ ∗).

Proof. (By contradiction). Assume q∗ = Q∗. Consider h = 2, κ = 200, and

λ = 2. From (2.4), Q∗ =
√

2κλ/h =
√

2(200)2/2 = 20. The expected total time to

accumulate Q∗ units is Q∗/λ = 10. Hence, when τ = 10, and q∗ = Q∗ = 20, while

condition i) is satisfied (i.e. 0.0993 > 0), condition ii) is violated (i.e. 0.0726 ≮ 0).

Moreover, it turns that q∗ = 18, contrary to what is assumed to equal Q∗ = 20.�

Theorem 2.2. On the basis of cost per order, for a controlled dispatch time τ ,

H-P is superior to CD-P, and CD-P is superior to T-P.

Proof. Let minq C̄(q, τ=T ∗) = C̄(q∗, T ∗). Since in the CD-P, the costs of unnec-

essary delays are minimized by q∗, C̄(T ∗) ≥ C̄(q∗, T ∗). However, because the

minimization of the CD-P parameters is over a tighter region than for the H-

P, C̄(q∗, T ∗) ≥ C̄(Q∗, T ∗). Now, by Proposition 2.4 and Corollary 2.1, we get
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C̄(T ∗) ≥ C̄(q∗, T ∗) ≥ C̄(Q∗, T ∗) ≥ C̄(Q∗), and hence the desired result. �

In the next section, we study a numerical example applying the CD-P. We then

look at its sensitivity to various parameters used in the model.

2.4 Sensitivity of the CD-P

To get more insights about the Controlled Dispatch Policy, we focus on the case of

private carriage and employ the base data set below:

κ = 200, h = 2, λ = 2, Tmax = 14, W = 20

First, let us note that the Q-P yields Q∗ = 20, and the T-P yields T ∗ = 10. Without

loss of generality, we will confine our analysis to q ≤ Q∗ and τ ≤ T ∗. Our optimiza-

tion uses enumeration for this example: We assume that the controlled dispatch

times are 1, 2, ..., T ∗. Then for fixed dispatch time, we find the cost minimizing q

(1 ≤ q ≤ Q∗) corresponding to that departure time. This procedure is applied to

all dispatch times at hand.

To clarify such a search process, Fig. 2.2 shows that when time to dispatch

is 5 time units, the optimal dispatch quantity is 12. We also observe that as the

accumulation amount increases, the costs of the Q-P, T-P, and CD-P converge.

Also, we note that when q ≥ 9, Q-P and CD-P give lower costs than the T-P.
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Figure 2.2: An Example of Optimization in the CD-P

Fig. 2.3 displays the complete optimal dispatch quantities for each dispatch

time. We note that these values decrease as time to dispatch increases. That

relation is not necessarily linear, unlike the linear relation conjectured in Beckmann

et al. (1956).

It is observed in Fig. 2.4 that as the arrival rate increases, the optimal dispatch

quantities for the CD-P and the H-P converge to the same value. However, for lower

values of the arrival rate λ, CD-P suggests smaller dispatch quantities, and hence

is more conservative than H-P. We also observe a similar relationship between the

CD-P and H-P when the ratio of the fixed dispatch cost to that of holding is high

enough in Fig. 2.5.

Overall, CD-P turns out to be a more conservative policy than H-P. Although,
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Figure 2.3: Optimal CD-P vs. H-P Dispatch Quantities

for fixed dispatch costs, it yields a larger cost per order for lower arrival rates, the

performance of CD-P is less variable than that of the H-P. That is a desired quality

to have streamlined operations in a logistics supply chain.

2.5 Concluding Remarks

This chapter investigated the conditions under which shipment consolidation would

enable savings, both for the private and common carriage. We studied the com-

monly used SCL policies, for a single type of item and for random order arrivals.

We introduced a new consolidation policy, CD-P. For the case of private carriage,

and on the basis of cost per order, we found the cost relationships between all those
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Figure 2.4: Sensitivities of the CD-P and H-P to Arrival Rate

policies, i.e. Theorem 2.2.

One extension to the current analysis herein would be to compare the SCL

policies for the common-carriage case. Also the study can be extended to the other

types of objectives, such as cost per unit time and cost per hundred weight, when

the orders have random weights.

Those typical objectives will be employed for the analysis of the multiple item

shipment consolidation, which is the topic of the next chapter.
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Figure 2.5: Sensitivies of the CD-P and H-P to Dispatch cost/Holding cost
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Chapter 3

Multi-Item Shipment

Consolidation

Shipment Consolidation (SCL) proves most useful in LTL transportation, in which

small loads with different characteristics are carried together. Therefore, Multi-Item

Shipment Consolidation (MISCL) is a better representation of industrial practices,

while requiring a more involved analysis. In this chapter, we introduce the Multi-

Item Shipment Consolidation Problem (MISCLP), and study (cost-minimizing)

consolidation decisions in which the small shipments, or orders, come from dif-

ferent types or classes of items. Our focus here is to model and then to analyze

decisions on shipment dispatch (“shipment release”) in the case of private carriage,
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for typical objectives such as cost per order, cost per unit volume, cost per hundred

weight and cost per unit time. We employ a myopic analysis in which the decisions

of continuing to consolidate a load (“hold”), versus shipping it now (“dispatch”),

are to be made at the arrival of each order. This would be the case where the re-

sources are available to continually measure and record the weights of each arriving

order, similar to a continuous review system in inventory management.

The literature on MISCL is scant. The work closest to ours is Higginson (1995).

He employs a similar myopic approach (referred to as “recurrent decisions” in the

paper) in the case of a single item with simpler costing mechanisms. He compares

the findings with a deterministic Economic Shipment Quantity, and proposes prac-

tical insights on when a recurrent approach might be beneficial over a non-recurrent

one.

Again for a single item, Bookbinder and Higginson (2002) obtain practical de-

cision rules for temporal freight consolidation for a private carrier by employing

results from stochastic-clearing systems. For a similar setting and including the

case of common carriage, Çetinkaya and Bookbinder (2003), using renewal theory,

propose stochastic models for the dispatch of consolidated shipments, again for one

type of item. Brandimarte (2006) considers the stochastic version of the classical

multi-item capacitated lot-sizing problem, where demand uncertainty is modeled
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by scenario trees. Also, a multi-product stochastic dispatch problem is studied by

Papadaki and Powell (2003). As opposed to myopic policy we devise for MISCLP,

they apply an “approximate” dynamic programming algorithm to minimize the

total cost, over a finite horizon of discrete periods.

On the other hand, Anily and Tzur (2005) study the deterministic version of

the problem of shipping multiple items on vehicles, using dynamic programming.

In the conclusion of their paper, they say “It is usually complex to generalize

results obtained for the single-item case to settings with multiple items of different

characteristics. For example, in capacitated shipments, if the items differ in their

volume or weight specifications, or both, it is likely that the solution method for

the problem would have to include or be combined with a bin-packing procedure.”

Our MISCLP model does bring in these issues, and in a stochastic setting. The

justification of a myopic approach is offered in Section 3.3.

Another recent work on deterministic multi-item dispatch problem is that of

Dror and Hartman (2007). Unlike our approach, those authors study the cost

allocations for multiple items that are to be consolidated and shipped together.

Using game theory, they show that if the portion of ordering cost common to all

items is not too small, then the cost allocations are “fair,” i.e. the core of the game

is not empty.
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The capacitated lot sizing problem and joint replenishment problem, a well-

studied problem in the inventory literature (see Khouja and Goyal (2008) for a

recent review), can be regarded as “close” to MISCLP. However, there are some

fundamental differences: While lot-sizing problems emphasize savings from inven-

tory costs, SCL focuses on transportation savings in the supply chain. Moreover,

the objectives for MISCLP is well dependent on the weight, volume and the variety

of the items (e.g., cost per hundred weight), whereas in lot-sizing models focus is

more on minimizing the production and inventory costs, generally over multiple

periods. Again, most of the lot-sizing models rely on periodic review systems while

MISCLP, as we defined, requires “continuous” review.

3.1 Does load make-up matter in consolidation?

By the very nature of SCL, one would like to accumulate different types of items

(in making up the smaller loads) on the same vehicle. Since now the cost structures

are item-specific, we cannot compute the cost of a consolidation policy by simply

averaging those costs over all items. For instance, depending on the type of the

first-arrived item, the maximum holding time, thereby the transportation service

level, might be affected. This observation is clarified by

Example 3.1. Item type i arrives with rate λi and incurs a holding cost of hi
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per unit time. Consider two types such that λI > λII, and hI < hII. Assume all

the arrivals of products are on the same size pallets. Suppose all that is known is

that we received one pallet of type-I item and 2 pallets of type-II item, since the

last dispatch. How can we compute the expected total holding cost and how is the

service level affected?

There are 3 pallets consolidated. The number of order-arrival patterns amounts

to 3!/2!=3 which are φ1 =(I,II,II), φ2 =(II,I,II), and φ3 =(II,II,I). Each consoli-

dation cycle starts with the arrival of the first order. It is easy to compute the

total holding costs of each pattern: HC(φ1) = hI(2λ
−1
II ) + hII(λ

−1
II ), HC(φ2) =

hI(λ
−1
II ) + hII(λ

−1
I + λ−1II ), and HC(φ3) = hII(2λ

−1
I + λ−1II ). Thus, those costs yield

different values. We should also note that the holding time for item-type I is longest

for the first pattern (φ1).

In the Example 3.1, we observed that the make-up or composition of the con-

solidated load does matter, and affects the SCL decisions. Now the problem pins

down to precisely computing the total holding cost of a consolidated load comprised

of different types of items, arriving at random times during the consolidation cycle.
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3.2 MISCL Problem

The MISCLP tries to find the optimal decision rules that yield the cost-minimizing

dispatch time or quantity. Here we try to model this problem at its generality.

Then, in the coming sections, we focus on cases where some analytical results can

be derived, or where computationally simple yet non-trivial results that may reveal

some insights are obtained. Table 3.1 contains the nomenclature that will be used

in the MISCLP.

The realized total cost of dispatching a load accumulated by time t, TCd(t), can

now be calculated as:

TCd(t) = κ+
∑N

i=1

[
κiqi(t)+IR(qi(t))

∑qi(t)

j=1
hiki(t−Aj

i)

]
(3.1)

where IR(qi(t)) =






1 if qi(t) ∈ R ={1, .., ni}

0 o.w.

Our formulation of the holding cost includes a temporal and a fixed portion

that is item-specific. A consolidated order of type i accrues a cost over time until it

is dispatched (i.e. hiki(t−Aj
i)) plus a fixed cost of handling (κi). This formulation

gives us a flexibility in our analysis; individual costs are then aggregated over the

number of item types. If there is no arrival of a specific type (which might well

be the case) through the consolidation period, then there is no cost incurred. (3.1)

reflects this particular situation by the indicator function, IR(qi(t)). As observed
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N : total number of item types
i : item type index, i=1,...,N
T : length of a consolidation period
t : current time since the last dispatch (time marker in a cycle [0,T])
L : total loading and transportation time for the consolidated shipments
Tmax : maximum holding time for the first-arriving order
Tf : forced dispatch time
T∗ : optimal dispatch time
CV : volume capacity of the vehicle
CW : weight capacity of the vehicle
κ : fixed cost of dispatching the vehicle
κi : handling cost for a type-i item
hi : holding cost per unit volume per unit time of item-type i
Yi : random variable for the interarrival times of item-type i
Xi : random variable for the weight of a unit volume of item type-i
Gi and gi : cdf and pdf of Yi
Fi and fi : cdf and pdf of Xi

λi : Poisson arrival rate for item-type i
Aj

i : arrival time of the jth item of type-i
ki : volume multiplier for type-i item, ki ∈ {1, ..., CV }
ni : max. # of items of type i that can fit the vehicle (= CV /ki)
Vi : volume of order-type-i, Vi = ki (bounded by CV )
Wi : random variable representing the weight of type-i order, Wi = kiXi

Wj
i : realized weight of the jth order of type i

qi(t) : total number of type-i orders accumulated by time t, qi ≤ ni
Q(t) : system state vector by time t, [q1(t), ..., qN(t)]
Q(t) : total number of orders accumulated by time t
Vr(t) : residual volume capacity at time t
Wr(t) : residual weight capacity at time t
pi : probability that the next order arrival is of type i
pd : probability that a new item arrives before the forced dispatch time
pVi (t) : probability at time t that a type-i item fits the residual volume
pWi(t) : probability at time t that a type-i item fits the residual weight
pf(t) : probability at time t that an arriving item conforms to constraints

Table 3.1: Nomenclature for the MISCLP
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in (3.1), we do not discount the total cost. This assumes that the dispatch time is

short enough, e.g. a week, and that the items carried are not very expensive.

The uncertainty in our model comes from three sources: the arrival times of

the orders, their weights, and their volumes. Below, we will derive the relevant

formulas needed in our decision models. We begin with the probability that the

weight of a randomly-arriving shipment will conform to the residual, or remaining,

weight capacity.

3.2.1 Deriving pWi(t)

The weight constraint is especially important for heavy shipments. There might be

plenty of room in the vehicle, yet the weight constraint might impede the loading

of an additional quantity to achieve a higher capacity utilization. This is generally

the case when the items are “dense.” For example, heavy metal products fall into

this category.

To derive the probability that an arriving shipment conforms to weight con-

straint, i.e. pWi(t), let us first calculate the residual weight capacity by time t

Wr(t) by

Wr(t) = CW−
N∑

i=1

ni∑

j=1

Wj
i (3.2)
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Recall that Wi denotes the random weight of a shipment of type i. Then,

pWi (t) = Pr{Wi ≤ Wr(t)}

We notice that our formulation of this probability value is time dependent, or in

other words system-state dependent with respect to the model. In our setting, it

is assumed that orders are weighed as they arrive. Data are recorded on the type

of the item, arrival time and weight. (Weight is a single dimension, and thus is

easier to measure than volume. Subsection 3.2.2 will expand on these differences.)

Hence, upon arrival of each order (item), we have the realized value of its weight.

The weight capacity remaining at time t is then deterministic.

We emphasize that the order (shipment) of type i itself is a multiple of the

generic, unit volume weight of that type (Xi). This is a deliberate choice of model-

ing, so as to analyze the effects of packaging variability of the shipper on the vehicle

packing efficiency of the carrier (the consolidating party). For example, the shipper

may wish to pack his products in groups of, say, 12. We prefer not to deal with

variability in terms of 12 i.i.d. random variables. That complication would divert

the main goal of the analysis in this chapter. For this reason, we model the total

weight Wi of an order of type i as the unit volume weight Xi (a random variable)

multiplied by a scalar, a positive integer ki. The shipment type can then easily be

calibrated by industrial data: A light but bulky shipment type, for example, can
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be modeled by a high value of ki and a low mean (and narrower support) of Xi.

With that justification, we can compute pWi(t) more explicitly as

pWi (t) = Pr{kiXi ≤Wr(t)} (3.3)

= Fi(Wr(t)/ki)

We now note the following

Observation 3.1. Assuming s>0, t>0, and s+t≤ T, then pWi(t) ≥ pWi(t+s).

3.2.2 Deriving pVi(t)

What is the probability that an arriving shipment (of random size) will fit on a

vehicle? This is not an easy-to-answer question, for the following reasons. First,

even if the weight constraint were not violated, the shape of the arriving shipment

is not known. The dispatcher might delay unnecessarily, attempting to include that

order to include in the consolidated load, and hence leading to extra cost. Second,

even in the case of regularly shaped or modular packages, the exercise of fitting a

shipment into the truck depends not only on the composition of the accumulated

load, but also on how the pallets would be stacked in the vehicle.

This observation leads us to another research area, what is called Vehicle Load-

ing or Load Planning, to which we digress momentarily. The vehicle loading prob-
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lem is a three-dimensional Bin-Packing Problem, and is computationally prohibitive

to solve to optimality within a reasonable amount of time (Garey and Johnson,

1979). However, there are various heuristic approaches to load a vehicle. The main

difference between these heuristics comes from the choice of an off-line or an on-line

loading policy. An on-line packing approach requires each item to be packed into

the vehicle as it arrives, whereas an off-line algorithm packs at once all the items

that have accumulated over some time. In our model, we assume that an off-line

loading mechanism is employed.

The vehicle loading problem becomes still more involved when there are loading

restrictions,or if the items or vehicles do not always have regular shapes. For

example, pallets of some items can be stacked on top of other shipments but not

underneath. Moreover, we note that the allowable loading patterns may differ for a

truck, rail car, or the various types of containers. These patterns are also affected

by questions of “unit load”, i.e. the use of pallets or boxes vs. loose freight. (By a

case study, Attanasio et al. (2007) investigates the issues in joint dispatching and

packing problem.)

Efficient packaging needs to account for loading rules and box orientations such

as fixed, horizontal turn, and all-way. Even for the consolidation and packing of only

two types of items, Fig. 3.1 shows how the packing problem affects the utilization
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of the available space. In that figure, it is shown that when a 2-way orientation is

allowed, at most 6 type-1 and 4 type-2 boxes are fit to the vehicle; thus yielding an

80% volume utilization. However, if instead 6-way stacking orientation is employed,

the vehicle can be fully packed with 9 type-1 items and 4 type-2 items.

2-Way orientation

6 Type-1 & 4 Type-2 items fitted

Volume used : 80%

6-Way orientation

9 Type-1 & 4 Type-2 items fitted

Volume used : 100%

Figure 3.1: Effect of Loading Patterns on Volume Utilization

The preceding observations show that our probability depends not only on the

system-state (i.e. composition of the load at time t), but also on how the current

load could have been fit into the truck. It is thus extremely difficult to obtain a

closed-form expression for the probability of fitting a newly-arrived item on the

vehicle, given the item’s characteristics and the loading restrictions. Hall (1989)

derives approximations for some special cases of vehicle packing, but only for on-

line algorithms. Those substantially differ from our problem setting, that of an

off-line loading environment. Hence, while our probabilities include optimization
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of the shipment load, his do not. (Lim et al. (2005) give a recent survey of three-

dimensional packing heuristics.)

Therefore, in general, we will assume that the optimal loading of a given capacity

can be done a priori, and will be tabulated for various shipment types. The state

space of the system will be bounded because the number of the shipment types is

finite, and there are only a few variations in truck capacity as well.

We will define the probability that an item of type i will fit in the remaining

(residual) space on the vehicle, conditioning on the current load make-up, as

pVi(t) = Pr{Vi ≤ Vr(t) |Q(t)}, i=1,...,N}

Naturally, this probability is defined only for qi(t) ≤ ni. Also, we devise the following

Observation 3.2. Assuming s>0, t>0, and s+t≤ T, then pVi (t) ≥ pVi (t+s).

3.2.3 Service Level Considerations

In our analysis, Tf will stand for the "forced" dispatch time. That is, the vehicle has

to be dispatched at or before Tf, regardless of the amount and the composition of

the consolidated load at hand. Tf is related to the service level of the consolidation

policy. Though it might be more economical, even optimal in the sense of cost,

to wait longer and consolidate a larger load that enables greater utilization of the
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truck, service to the first-arriving order might suffer. Hence, we apply a uniform

maximum holding time (Tmax) initiated by the arrival of the first order. We note

that Tmax is an important managerial parameter, and define the forced dispatch

time by

Tf = Tmax−L (3.4)

where L is the time it takes to load, line-haul, and unload a vehicle. Rather than

basing our formulas exclusively upon Tmax, for our modeling purposes, the form

in (3.4) enables us to separate the handling and delivery operations that lie at the

heart of logistics. In what follows, we regard L, as well as the costs associated with

it, to be deterministic.

Tmax may be shorter or longer than the optimal dispatch time T∗. For a par-

ticular consolidation period, if Tmax is larger than the optimal dispatch time, then

we guarantee a cost-minimizing and timely delivery. If it is shorter, we trade off

between the service level (delivery lead time) and the cost that could have been re-

duced by waiting longer. In our formulation, T∗ < Tf. Hence, any improvement in

loading or unloading will be reflected as a reduction in L. This in turn will increase

Tf, a less-constrained value, possibly leading to a T∗ of lower total cost.

Note that L itself may be a function of the composition of the load; certain

types of items might be less time consuming to load than others. Yet, we will

56



assume L to be a constant value, determined by the dispatch practices. Also, since

the loading operation is achieved in one shot, the arriving items are assumed to be

consolidated at a storage area close to the loading dock, and we will assume that

the cost of using this space is negligible.

3.3 Dispatch Decisions in MISCL

We have derived the realized cost of dispatching a consolidated load by time t in

(3.1). However, upon arrival of the shipment at time t, we could have decided

not to dispatch but to hold the consolidated load until another shipment arrives,

and then dispatch all together. Let us recall that the total number of shipments

that have arrived by time t is Q(t) =
∑N

i=1 qi(t), and the realized total cost of

dispatching Q(t) shipments together is TCd(t). Suppose instead that this load is

held until another shipment arrives at time s > t. Conditioning on the type of the

next-arriving shipment, the expected waiting time s̄ before a state transition can

be obtained by

s̄ =
∑N

i=1 piEYi (3.5)

where EYi represents the expected interarrival time for shipment-type i. Again,

conditioning on the type of shipment, the expected handling cost κ̄ for the next
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arriving shipment is simply

κ̄ =
∑N

i=1 piκi (3.6)

Denote by pd an upper bound for the probability that a new item arrives before

the forced dispatch time. Then,

pd = Pr{min(Y1, .., Yn) ≤ T f}

We can now obtain the probability that the arriving item will conform to the

time, volume and weight constraints (i.e. fitting probability) by time t to be pf(t).

Conditioning on the type of the item arriving, we get

pf(t) = pd
∑N

i=1 pip
Wi (t)pVi (t) (3.7)

As will be clear in the development of dispatch-decision rules, our inclusion

of pf(t) in this model possibly enables extra expected savings. For example, this

happens when the rule implies to dispatch earlier than the forced dispatch time if

the likelihood of a new item arriving within that limited time is zero.

Let us denote by ETCh(t)the expected cost of dispatching Q(s) = Q(t)+1 ship-

ments together at time s > t. This is the expected cost of “holding” the load until

the next arrival of an item. Noting that this cost figure is calculated at time t, we

obtain

ETCh(t) = TCd(t)+EC(t) where EC(t) = κ̄+s̄
∑N

i=1 hikiqi(t) (3.8)
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The structure of the decision rules will differ with respect to the objective em-

ployed. We investigate those rules for the most commonly used objectives, which

follow.

Cost per Order

Using the cost-per-order criteria for multiple items is reasonable for two reasons:

Foremost, besides order (item) dependent fixed cost (i.e. handling cost), there is a

common fixed vehicle dispatch cost shared by each order. Second, further analysis

for other cost criterion is easier to build on that objective. Hence, we begin to

derive dispatch rules first on the basis of cost per order.

To minimize the expected cost per order, one needs to solve

min
d,h
{TCO

d (t), ETCO
h (t)} where

TCO
d (t) = TCd(t)/Q(t)

ETCO
h (t) = ETCh(t)/[pf(t)Q(s)+(1−pf(t))Q(t)]

Note that the expected number of orders will depend on whether the arriving order

conforms to the feasibility conditions or not. Hence,

pf(t)Q(s)+(1−pf(t))Q(t) = pf(t)(Q(t)+1)+(1−pf(t))Q(t) = Q(t)+pf(t) (3.9)

The dispatching rule for the cost-per-order objective implies that if TCO
d (t) ≤
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ETCO
h (t), the cost is minimized. That rule can be explicitly written as

Dispatch, if Q(t) ≥ pf(t)TCd(t)/EC(t)

Hold, o.w.

(3.10)

Now, we are ready to show

Theorem 3.1. The myopic decision rule to dispatch a consolidated load based on

cost-per-order objective, given in (3.10) is optimal.

Proof. Rearranging the terms of the “dispatch” decision, i.e. TCO
d (t) ≤ ETCO

h (t)

and incorporating (3.9), one can derive the simplified decision rule in (3.10). Since

only two decisions are admissible, Hold (h) or Dispatch (d), the reverse of the

inequality yields the other decision. Let ∆C(t) denote cost difference between the

realized and expected cost per order at time t, i.e. ∆C(t) = TCO
d (t)−ETCO

h (t).

The decision d is meaningful when ∆C(t) ≤ 0. Now, by expanding this term, we

get

∆C(t) = TCd(t)[pf(t)−EC(t)]/[Q(t)(Q(t)+pf(t))]

From (3.8), we observe that EC(t) is non-decreasing in t since, κ̄ and s̄ are time-

invariant, and since qi(s) ≥ qi(t), for Tf ≥ s ≥ t > 0. Moreover, from Observations

3.1 and 3.2, and using the fact that pd is stationary, it easily seen that pf(t) is

decreasing in t. Now, due to the magnitude in increase of the value of EC(t) as t

increases and the fact that 1 ≥ pf(t) ≥ 0, the term pf(t)−EC(t) will decrease in
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t. We note that there exists some t such that EC(t) ≥ 0 and pf(t) = 0, at which

point ∆C(t) ≤ 0. Employing the facts that Q(t) is non-decreasing in t, and that

the ratio TCd(t)/[Q(t)(Q(t)+pf(t))] is decreasing in t, we conclude that ∆C(t) is

monotone decreasing and goes from positive to negative, and hence the myopic

policy is optimal. �

Similar proofs to that of Theorem 3.1 hold for each of the other dispatch objec-

tives that we consider in the remainder of this chapter. (For brevity, we directly

claim the optimality of those related decision rules.) Those objectives show con-

vexity. For instance, Fig. 3.2 exhibits such a behavior.

Figure 3.2: A Sample Path of Costs

Cost per Unit Time

To minimize the expected cost per unit time, the objective function is to be
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modified as follows:

min
d,h
{TCT

d (t), ETCT
h (t)} where

TCT
d (t) = TCd(t)/t

ETCT
h (t) = ETCh(t)/[pf(t)(t+s̄)+ t(1−pf(t)]

We obtain the corresponding dispatch rule as

Dispatch, if t ≥ s̄pf(t)TCd(t)/EC(t)

Hold, o.w.

(3.11)

We note that when the probability of conformance is 0, due to time or the

volume or weight constraint, the decision rule automatically implies to dispatch

the current load.

Cost per Unit Weight

If we wish instead to minimize the expected cost per unit weight, the objective

function and the corresponding dispatch rule are

min
d,h
{TCW

d (t), ETCW
h (t)} where

TCW
d (t) = TCd(t)/(CW−Wr(t))

ETCW
h (t) = ETCh(t)/[pf(t)(CW−Wr(t) +

∑N
i=1 pi

∫
dFi) + (1−pf(t)(CW−Wr(t))]

Dispatch, if Wr(t) ≤ CW−[
∑N

i=1 pi
∫
dFi]pf(t)TCd(t)/EC(t)

Hold, o.w.

(3.12)
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Cost per Unit Volume

Finally let us consider the minimization of expected cost per unit volume. The

corresponding objective function and the dispatch rule now become

min
d,h
{TCV

d (t), ETCV
h (t)} where

TCV
d (t) = TCd(t)/(CV−Vr(t))

ETCV
h (t) = ETCh(t)/[pf(t)(CV−Vr(t)+

∑N
i=1 piki)+(1−pf(t)(CV−Vr(t))]

Hence, we

Dispatch, if Vr(t) ≤ CV−(
∑N

i=1 piki)pf(t)TCd(t)/EC(t)

Hold, o.w.

(3.13)

We now turn our attention to a simpler case of MISCLP.

3.4 2-Item Case

In this section, our focus is on two item-types, i= I, II (see Fig. 3.3). Suppose the

arrival processes of each type of item to be Poisson, such that λI > λII. Denote

the interarrival times as the random variables YI and YII, exponentially distributed

with means βI = λ−1I and βII = λ−1II . Without loss of generality, we will assume

that the weight X1 of a unit volume of a type-I order is a random variable with
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mean µI and variance σ2I . Likewise, the weight of a unit volume of type-II order

has mean µII and variance σ2II. Let the pdf and cdf corresponding to those random

variables be f1 and F1, and f2 and F2, respectively. (The weight W1 of a type-I

order is thus a random variable with mean kIµI and variance k2I σ
2
I . The weight of

a type-II order, likewise, has (kIIµII, k
2
IIσ

2
II), as its mean and variance.

TypeTypeTypeType----I item I item I item I item (Fast-moving) TypeTypeTypeType----II itemII itemII itemII item (Slow-moving)

Arrival rate: λI Arrival rate: λII (<λI)

Holding cost: hI Holding cost: hII (>hI)

Unit volume weight ∼ (µI, σI)

Unit volume weight ∼ (µII, σII)
1

2

kII

•
•
•

1

kI

•
•
•

Figure 3.3: Characteristics of Items

In our model setting, type-I items are assumed to be fast-moving products that

might be considered as “typical” cargo. Type-II items are those that are shipped

less frequently. They are slow-moving (such as specialty electronics or a high-end

printer) but may need to be better taken care of, hence have a higher handling cost.

From the theory of Poisson processes (Çınlar, 1975), we first note that pI =

λI/(λI+λII) and that pII = 1−pI. Then, using (3.5)-(3.8), we can find the expected
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cost of holding one shipment until the arrival of another, as

EC = pIκI+pIIκII+[(λI+λII)
−1][hIkIqI(t)+hIIkIIqII(t)]

We also have, from (3.7),

pf(t) = Pr{min(Y1, .., Yn) ≤ Tf}∑N
i=1 pip

Wi (t)pVi (t)

= (1−e−Tf (λI+λI I))[ λI
λI+λI I

pVI (t)
∫Wr (t)/kI
0

dFI+
λI I

λI+λI I
pVII (t)

∫Wr (t)/kI I
0

dFII]

Recall that the exact computation of pVi(t) requires an on-line optimization

algorithm. Assuming that kII ≥ kI, one can approximate this probability. Now,

since type-II items are larger than type-I items, then pVI I (t) ≤ pVI (t). Introducing

this condition implicitly forces pf(t) to be zero. In turn, that results in an inevitable

decision of dispatch, i.e. if there is not enough space to include even the type that

has minimum volume, continuing to consolidate causes unnecessary costs.

To get more analytical insights, suppose that the weight of a unit volume of each

type is uniformly distributed, i.e. XI ∼ Uni(aI,bI) and XII ∼ Uni(aII,bII). Then,

we can explicitly write the probabilities that a type-i item fits the residual weight,

for i=I, II, as

pWi (t) = Pr{Wi ≤Wr(t)} =
∫Wr (t)/ki
0

dFi

=






0, if Wr(t) < aiki

Wr(t)−aiki
ki(bi−ai)

, if aiki ≤Wr(t) < biki

1, if Wr(t) ≥ biki

(3.14)
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CV CW Tmax L κ (κI, κII) (kI, kII) (hI, hII)

30 60 14 2 200 (2, 4) (1, 2) (1, 1)

Table 3.2: Parameter Set for the 2-item SCLP

Assuming an all-way packing orientation, we can also compute the probability

that a type-i item fits the residual volume simply by

pVi(t) = Pr{Vi ≤ Vr(t) = CV−
∑N

i=1 kiqi(t)}

=






0, if Vr(t) < ki

1, o.w.

(3.15)

3.5 A Numerical Example

In this section, a numerical example is solved and analyzed with respect to various

parameters used in the model. MATLAB is employed to simulate the data and to

obtain the optimal solution. The parameter values of our base case are exhibited

in Table 3.2. There are two types of items, type-I and type-II, whose interarrival

time distributions are exponential and for which the unit-volume weights follow a

uniform distribution. That is, YI ∼ Expo(1), YII ∼ Expo(0.5), XI ∼ Uni(1, 2), XII ∼

Uni(3, 4).

For these particular arrival rates and weight distributions, a possible sample

path of cumulative weight is displayed in Fig. 3.4. Due to the choices of the base
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Figure 3.4: Sample Path of Cumulative Weight

case parameters, the number of type-I arrivals happens to be larger than for type-II.

We also note that the increase in total weight is higher for type-II.

Figure 3.5: Cost Variability in Objective Functions

A challenge in SCL is the appropriate determination of an objective function. To

see the effects of some possible objectives, we devise Fig.3.5. To enable reasonable
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Figure 3.6: Cost-per-dispatch Variability in Objectives

comparisons, the technique of “common random numbers” is employed, e.g. Bratley

et al. (1987). We observe from that figure that the variability is within $5 for the

costs per unit weight. The corresponding range is higher, around $30, however,

in the results on costs per unit time. The first observation is logical, based on an

argument similar to that of a Central Limit Theorem. The second is also reasonable,

since type-I items arrive twice as frequently per unit time.

We look now at the variabilities on the cost-per-dispatch for each objective

considered (see Fig. 3.6). In our model, cost per dispatch for a particular objective,

say cost per unit volume, is found by multiplying the realized (optimal) cost per

unit volume by the volume accumulated in that SCL cycle. Similarly, we obtain

other total cost variabilities. Though this example is not statistically conclusive,

again we can at least observe that the total cost variability for cost-per-unit weight
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is the smallest amongst the other objectives.

Figure 3.7: Variability of Optimal Cycle Length wrt. Various Objectives

In Fig. 3.7, the length of the optimal shipment consolidation cycle is compared

for each objective. This comparison is quite important because the length of a

cycle directly affects the delivery times of the consolidated load, and thereby the

service level. The variability ranges in the length of the consolidation cycle for the

objectives of cost-per-order, cost-per-unit volume, and cost-per-unit time are within

6.25 time units, as opposed to that of 3.9 time units for the objective of cost-per-

unit weight. Again, we can observe that cost-per-weight is a more stable objective

as justified here.

We now turn attention to the behavior of the probability of fit pf (t) when the

volume ratio of type-I item to type-II item is decreased (see Fig. 3.8). In that

figure, for example, the ratio 1:3 implies that a type-II item is three times as large
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Figure 3.8: Probability of Fit for Various Ratios of Volumes

as a type-I item. Naturally, as the ratio decreases, i.e. as the volume of type-II item

gets relatively larger, the fit probability decreases and actually vanishes earlier than

for larger ratios. A simple insight can easily be derived from this graph: Larger

volume differences increase the chances of earlier dispatch.

Similar to Fig. 3.8, in Fig. 3.9 we investigate the behavior of pf (t) as the

maximum holding time Tmax is varied. We note that as Tmax is decreased, the

optimal dispatching time is decreased automatically. This is because our mod-

eling has explicitly incorporated the probability of not receiving a shipment be-

tween now and the required dispatch time, i.e. pd = Pr{min(Y1, ..,Yn) ≤Tf}.

From Fig. 3.9, one can also deduce that for a certain threshold of Tmax (for the

base-case parameters, it is 9 time units), the probability of fit is stable. That is,
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Figure 3.9: Probability of Fit for Particular Maximum Holding Times

(pf(t)|Tmax = 9) = (pf (t)|Tmax > 9), which is a useful fact that can be employed

to reduce the computational burden.

Next, our sensitivity analysis focuses on various parameters for the objective of

cost per order. The main interest is how the optimal length of SCL cycle is affected

by the changes in those parameters, ceteris paribus. (Naturally, similar analyses

could be carried out for other objectives as well.)

Fig. 3.10 exhibits the relationship between the optimal cycle length and the

vehicle dispatch cost. As observed, for quite small values of dispatching cost, the

optimal decision is to ship as items arrive, hence a consolidation program is not

needed. However, as that cost is increasing, to enable scale economies, SCL proves

useful. Hence, the optimal SCL cycle length is increasing in the dispatch cost.
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Figure 3.10: Dispatch Cost vs. Optimal Cycle Length

However, after a particular (larger) threshold value, i.e. 400 here, the optimal cycle

lengths are the same. This result may be due to a binding constraint, either to

volume, to weight or to maximum holding time constraint.

As the ratio of the arrival rates (λII/λI) increases (keeping λI = 1), i.e. as

more and more type-II items arrive, the optimal length of the SCL cycle decreases

somewhat (Fig. 3.11). Besides the increase in total arrival rate, that behavior is

due to the fact that type-II items are larger than type-I items, both in weight and

in volume.

From Figs. 3.12 and 3.13, the optimal cycle length is observed to be non-

decreasing in both volume and weight capacity. Of course, one of the capacity

constraints might be binding, as is the case here for volume. These graphs show

72



Figure 3.11: Ratio of Arrival Rates vs. Optimal Cycle Length

and justify the use of modularization in packaging. That is, if the LTL carrier knows

exactly the weights and volumes of each type, then he can arrange his vehicle type

in such a way that transportation costs are minimized, while vehicle utilization is

increased and an acceptable service level is maintained.

Finally, in Fig. 3.14, the effect of varying Tmax on the optimal cycle length

is displayed. We first observe that as the maximum holding time increases, the

optimal cycle length increases too. However, for a certain threshold of Tmax and

above, which is 10 time units for these base-case parameters, the optimal cycle

length is the same.
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Figure 3.12: Volume Capacity vs. Optimal Cycle Length

3.6 Limitations and Extensions

Myopic analysis is easy to implement in MISCLP, given the fact that any LTL trans-

port provider need only measure the weight and volume of each arriving shipment

and record it. Our formulation assumed that we knew the relative rates of arrival of

each item type, and their respective weights and volumes, at least probabilistically.

Our modeling approach enabled us to explicitly incorporate a constraint on service

(maximum holding time) in the decision rules by introducing the probability of fit

pf (t). Generally, those timing decisions would have created major drawbacks in an

alternative modeling framework.

However, in a situation where the dispatcher has no record of the weights and

volumes of the arriving items, we face pure uncertainty. Hence, a renewal theoretic
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Figure 3.13: Weight Capacity vs. Optimal Cycle Length

approach may need to be employed, as opposed to a myopic one. Such a comparison

could provide us the Expected Value of Perfect Information for MISCLP. This would

be an interesting and challenging extension to our current model.

MISCLP can also be cast as a sequential decision of accepting or rejecting

demands (loads to be dispatched) in the presence of a scarce resource (vehicle

capacity), with random demand characteristics and no recall option. The case with

recall option (i.e. having the chance to include the now-rejected order into the next

batch) is another interesting extension. This approach shows quite a resemblance

to stochastic knapsack problem. Hence, in the current setting, our model (with

slight modifications) can be applied to other real-world problems, such as those in

revenue management and scheduling. See for example Papastavrou et al. (1996),
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Figure 3.14: Maximum Holding Time vs. Optimal Cycle Length

Kleywegt and Papastavrou (2001), and Kavadias and Loch (2004).

We observed that the use and type of SCL depend not only on the cost para-

meters but also the variability in the order arrival process. In the next chapter, we

will introduce pricing as a means to influence the rate of order arrivals. That is,

along with the shipment consolidation decisions, we will now also consider pricing

decisions for a transportation service.
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Chapter 4

Pricing and Shipment

Consolidation-I

4.1 Introduction

Increased competition in business environments requires that firms provide a qual-

ity and timely service with minimal cost. Many companies quote delivery-time

guarantees as a marketing weapon to attract customers in time-sensitive markets.

Some customers are willing to pay a premium charge for fast or timely delivery, e.g.

for Federal Express’ next day delivery service e.g. see Lederer and Li (2000).

The shipper, the carrier and the consignee (buyer or receiver of the goods)
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are the three main perspectives in freight transportation. The shipper refers to

a company, e.g. a manufacturing firm, that owns or controls the freight. The

shipper is arranging for transportation of these goods because they have been sold

to the consignee. The carrier provides linkages between shippers and the respective

consignees by offering transportation in their own vehicles.

Fig. 4.1 displays a schematic explanation of the problem at hand. In that fig-

ure, X, Y, Z, among many others, represent shippers, i.e. suppliers of products

ordered by the consignee. For example, consignee could be the distribution center

of a retail chain, who would pick up the goods at the destination terminal DT.

Goods from them, destined to DT, will be accumulated (consolidated) in the car-

rier’s origin terminal, OT. To offer a quality logistics service, the carrier offers a

guaranteed delivery-time (i.e., time it takes to line-haul freight from OT to DT).

Having negotiated a unit transportation cost and such a lead time before delivery,

the carrier incorporates this information in designing the prices to be charged to

the shippers. Then, the carrier solves a joint problem for the optimal length of con-

solidation period and the prices. The customers are then informed of the scheme

for transportation pricing and of the delivery-time guarantee, i.e. the latest time

that their shipment will be at the destination terminal DT. (At that time, their

orders are ready for pickup, or de-consolidation and local delivery.)
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OT DT

X

Z

Y

Final delivery by the LTL carrier

Flow of information

Flow of goods

Figure 4.1: Flow of information and goods

The order arrival rates are endogenous to our problem formulation. A cus-

tomer’s decision on using a specific LTL carrier is affected by the price and the

delivery-time guarantee offered by that carrier. The latter must determine the

profit-maximizing consolidation time (the optimal timing for dispatch) and the

price-time pattern for customers who are sensitive to both delivery time and price.

We first seek the optimal decisions when there is a fixed cost per transit-delivery

and no capacity restriction at the carrier. Then, we extend our model to the case

of freight rates that incorporate an all-unit (all-weight) discount.

Our work improves on certain aspects in the classical joint pricing and inventory

management literature, when demand is price- and time-sensitive, e.g. Rao et al.

(2005). Foremost, here we model and study a logistics system that incorporates

shipper and carrier integration. Second, we consider differential pricing with time-
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varying guarantees as well as uniform guarantees. Finally, various easy-to-apply

pricing schemes are proposed and compared.

To the best of our knowledge, the present chapter is first to address the following

research questions: i) What is the optimal quoting for a 3PL provider in a price-

and time-sensitive logistics market? ii) How can a discount schedule be integrated

into this model?

In what follows, to alleviate the differences between pricing schemes used by

the carrier, first we will assume that the transportation cost per order is fixed.

Later, the inherent advantage of SCL, i.e. economies of scale, is integrated with

this base model. We also assume that the LTL carrier is a common carrier. There

is thus no capacity constraint from the perspective that an additional vehicle could

be available if needed.

The remainder of this chapter is organized as follows. After a literature survey,

the preliminaries and our model are presented in the next section. We examine

four pricing schemes for a carrier in Section 4.3 and illustrate a numerical example

and its sensitivity analyses in Section 4.4. Section 4.5 provides some additional

structural results. The case of all-weight discount scheme is studied in Section 4.6.

We conclude with our final thoughts and some future research directions.
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4.2 Overview of Pertinent Literature

The pertinent literature on our specific problem is not exhaustive. However, there

are relations between the existing research on some overlapping areas such as inte-

grated pricing decisions in service and manufacturing industries, quoting lead-times

or delivery times, and pure shipment consolidation.

In practice, the determination of prices for selling a product or provisioning a

service influences the demand. Keeping other dimensions constant, the setting of

low prices may trigger a higher demand. Studies in joint pricing and inventory

management date back to early 50s. For example, Chan et al. (2004) give an

excellent treatise on the coordination of pricing and inventory decisions.

With the advent of time-based competition, studies on quoting of lead times

(in a manufacturing industry) or delivery time (in a service industry) have been

increasing since the last decade. This line of research also appears under the general

topic of “due-date management,” e.g. Keskinocak and Tayur (2004). Existing

models explicitly incorporate the delivery-time guarantee as well as the price in the

demand function, and they mostly assume the delivery time to be random variable.

Yet, there has been no consensus on the functional form of the expected demand;

linear, multiplicative and exponential are such forms mostly employed (e.g. Lederer

and Li, 1994; Palaka et al., 1998; Hill et al., 2000; Boyacı and Ray, 2003; Urban,
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2009). So and Song (1998) includes the competition perspective into his models.

Pekgün and Keskinocak (2008) investigate the coordination opportunities between

production and marketing functions in a price- and lead-time-sensitive market.

The pricing strategies in delivery-time guarantees literature fall into two broad

categories: differential pricing, in which each customer is provided with a distinct

lead-time quotation, and uniform (or single) pricing, in which a single delivery-time

guarantee is made to all of the customers. For example, Rao et al. (2005) model

the impact of a uniform lead time guarantee on customer demand and produc-

tion planning in a make-to-order environment, whereas Çelik and Maglaras (2008)

consider differential pricing of multiple products in a dynamic version of such an

environment.

4.3 Model Development

Details on the flow of goods and information in our problem now follow. Consider

a single shipper who uses a time-based shipment release policy, i.e., the T-P. (We

note that a quantity-based policy, under random arrivals, is unsuitable if a delivery

time need be quoted.) That is, the shipper has some discretion on the timing of

the load dispatch.

Fig. 4.2 depicts the sequence and timing of events occurring in a single consol-
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Shipper announces the delivery 
time guarantee and the price, 
and consolidation starts

Shipper tenders the consolidated
load to the carrier 

T
t

Td

Orders delivered to 
the final destination
by the carrier

0
time

Orders reacting to 
the announcement
begin to accumulate

L

Tt

Figure 4.2: Sequence and Timing of Events

idation cycle. We consider a total planning horizon of length Td, which comprises

the consolidation period (T ) plus the transit time (L). Since T is a decision vari-

able, Td implicitly is so. At time t = 0, the shipper announces the price per unit

ordered with a guarantee of delivery by time Td, decided in advance. X, Y, Z, ...,

the customers, react to this announcement and their orders begin to build up at the

shipper’s site. Following the consolidation period, at time T , the shipper tenders

the consolidated load to the carrier; the carrier hauls the load to its final destination

within L time units, and hence Td = T+L.

To establish some initial insights, we employ the following assumptions for mod-

eling purposes: i) The orders come from a mix of a large number of potential

customers, each with varying price- and time-sensitivities. (This assumption is im-

portant for the use of exponential inter-arrival times in our model.) ii) The arrival
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rate is a decreasing function of both the price and the delivery-time guarantee. iii)

The shipper incurs the holding and delivery costs, and pays the carrier a transporta-

tion rate per unit shipped which is decreasing in the transit time L. That transit

time is guaranteed to the shipper by the carrier, and moreover, this arrangement

between the two parties is done a priori with a contractual agreement.

For a given transit time, we are to determine the optimal interval T ∗ for con-

solidation and the optimal price per unit ordered, set in advance. Since L is fixed

in our model, simply finding the optimal consolidation period will yield the time

guarantee.

Let us now consider the orders destined for the same consignee R; these ac-

cumulate at the shipper according to a non-stationary Poisson process. For ease

of analysis and to enhance clarity, let us mark the arrival time of an order to be

t, where 0 < t < T < Tmax (see Fig. 4.2). Then we can define the maximum

delivery-time guarantee for such an order to be

Tt = T+L−t (4.1)

We employ λ(pTt , Tt) as the rate of arrival of orders at time t for a given vector

of price and delivery time, (pTt , Tt). We construct λ(pTt , Tt) as a linear function of

price and delivery-time guarantee, and define the unit transport price as another

function of that guarantee. Further, linearity between price and time is widely used
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in economics and operations management, and serves well to illustrate the trade-

offs between price and delivery-time guarantees in the problem setting at hand, see

for example Palaka et al. (1998) and LaFrance (1985). Explicitly, the order-arrival

process and the price per unit are modeled as

λ(pTt , Tt) = a−sppTt−sTTt, 0 < t < T (4.2)

pTt = ρ−εTt, ρ > 0, ε > 0, p > 0 (4.3)

with parameters

a : maximum potential demand

sp : sensitivity to price, in dimensions of demand per unit price

sT : sensitivity to delivery-time guarantee (demand per unit time)

ρ : market-reservation price per unit

ε : delivery-time sensitivity of the price (dollars per unit time)

L : transit time guaranteed by the carrier

and decision variables

T : length of consolidation period

pTt : price per unit charged to an order arriving at time t, in dollars

Tmax : upper bound for delivery-time guarantee (i.e. Tt=0)

Regarding (4.3) and the definition of Tt (4.1), we note that the price is increasing

in t (i.e. later arrivals pay a higher price), and decreasing in T and in L (a customer
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is less willing to pay, the longer is the delivery-time guarantee). Besides tractability,

our linear arrival (demand) function has several desirable properties. First, we

observe that the price and time elasticities of demand are each increasing in both

price and delivery time. For example, the price elasticity of demand, obtained

as [−sppTt/(a − sppTt − sTTt)] is increasing in the price (pTt) or the delivery-time

quote (Tt) or both, i.e. the percentage change in demand is greater at higher prices

and longer delivery times. In other words, customers experience greater relative

sensitivity to long delivery times when they are paying more for the service, or vice

versa. Second, we observe that the arrival-rate function is separable in price and

time. This also is a desirable property because customers perceive time and money

as substitutes, see for example Lederer and Li (1994)

We now express the arrival rate as a single-argument function and optimize over

it. Combining (4.2) and (4.3), we obtain

λ(Tt) = α−βTt, 0 < Tt < Tmax , where

α = a−spρ, and β = sT−spε
(4.4)

in which the sign of β in (4.4) will determine the type of market. If β is negative,

the market is more “price sensitive” than “time sensitive.”

In the remainder, we assume that α is positive, since otherwise, the arrival rate

(if β > 0) would always be negative, which is not admissible. Our aim is to maximize
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the profit rate of the shipper. Let us recall that h is the carrying cost per unit time

for consolidating an order, and that c be the transportation cost per unit shipped

via the carrier. Since the shipper is the consolidating party, there is no incentive

on the contracted carrier’s part to vary the shipment charges. Therefore the cost

of the consolidation program, as seen by the shipper, comprises the total cost of

holding plus that of transportation. Having the discretion on pricing, the shipper

wants to maximize the expected total profit Π generated over a consolidation cycle

of length T , which is

Π(τ ) =
∫ T
0
(pTt−c)λ(Tt)dt−h

∫ T
0
(T−t)λ(Tt)dt (4.5)

Also let N(T ) be the total expected number of arrivals during T . Then

N(T ) =
∫ T
0
λ(Tt)dt (4.6)

In the next section, we focus on deriving the structures of optimal solutions for

various pricing schemes based on (4.5) and (4.6).

4.4 Formulation of Pricing Schemes

We propose and consider four different pricing schemes, under the category of differ-

ential and uniform pricing. Differential Pricing (DF) would occur when each order

is priced differently, with respect to its arrival time. Uniform-First Pricing (UF) is
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the scheme whereby the shipper charges all orders the same as he would charge the

first-arriving customer. Uniform-Mean-Time Pricing (UT) happens when every

customer pays the amount that a customer arriving in the middle of the consoli-

dation period would pay. And as the name suggests, Uniform-Last Pricing (UL)

means that all customers are charged the same price as the “last customer,” i.e.

one who would have arrived just at the end of the consolidation period.

In the following subsections, we derive the objective functions for each pricing

scheme, and obtain the corresponding optimal prices and consolidation lengths on

the basis of the profit rate, i.e. profit per unit time. Profit rate for a particular

pricing scheme refers to the ratio of the total expected profit generated during the

consolidation cycle to the expected length of that cycle. We use the profit rate as

our objective because it enables us to compare the pricing schemes on the same

performance measure. Moreover, this is a commonly used objective function in

the operations and marketing literature; for example see Kunreuther and Richards

(1995) and Rajan et al. (1992).
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4.4.1 Differential Pricing

The expected total profit function for DF, over a consolidation cycle of length T , is

ΠDF(T ) =
∫ T
0

[(ρ−ε(T+L−t)−c)−h(T−t)] [α−β(T+L−t)]dt

= T 3 1
3
β(ε+h)+T 2[1

2
(hL+c−ρ)−α(ε+h)+εL]+T (α−βL)(ρ−εL−c)

Let us define the profit-rate function for DF as

πDF � ΠDF(T )/T = T 2δ1DF+Tδ2DF+δ3DF where

δ1DF = 1
3
β(ε+h), δ2DF = β 1

2
(hL+c−ρ)−α(ε+h)+εL, and δ3DF = (α−βL)(ρ−εL−c)

We want to maximize πDF over T under the following constraints.

i) Consolidation length T ≥ 0.

ii) Arrival rate is to be nonnegative: α−β(T+L) ≥ 0, i.e. T ≤ −L+α/β �U1DF.

iii) Marginal revenue must be nonnegative: ρ−c−ε(T+L) ≥ 0, and hence T ≤

−L+(ρ−c)/ε �U2DF.

Depending on the sign of δ1DF, we have two optimization problems in which the

objective function is either convex or concave. Accordingly the solutions differ for

these two types of problems.

Case 1: δ1DF > 0
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Under this case, the objective function is strictly convex, thus a boundary solu-

tion is optimal. Let UDF = min{U1DF,U2DF} and define x+ = max{0, x}. Therefore,

we choose T ∗ to be (UDF)
+. We note that for T ∗ = 0, a consolidation program is

not recommended.

Case 2: δ1DF ≤ 0

This condition implies that the objective function is concave and β ≤ 0. Thus

the second constraint is automatically satisfied.

Now, combining the results of Case 1 and 2 above and applying first-order

conditions, we obtain the optimal length of consolidation and the corresponding

price to be

T ∗DF = (min{−δ2DF/2δ1DF, UDF})+ (4.7)

p∗DF(t) = ρ−ε(T ∗DF+L−t) (4.8)

We emphasize that (4.7) and (4.8) will also hold for the uniform pricing schemes.

Those cases are distinguished by setting t to a particular point within the optimal

consolidation cycle.

4.4.2 Uniform-First Pricing

Assuming the arrival of the first order takes place at the start of the consolidation

cycle, we fix t = 0 and thus pUF = ρ− ε(T + L). Incorporating the modified price
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function into that of the arrival rate, we obtain

λ(Tt) = a−spρ+spεL−sTL+T (spε−sT )+sT t = α−β(T+L)+sT t

The expected total profit function for the UF is

ΠUF(T ) =
∫ T
0

[(ρ−ε(T+L)−c)−h(T−t)] [α−β(T+L)+sT t]dt

= (1
2
hβ−1

6
hsT+βε−1

2
εsT )T

3

+(cβ−1
2
hα−1

2
csT−αε−βρ+1

2
ρsT+

1
2
hLβ+2Lβε−1

2
LεsT )T

2

+
(
αρ−cα+cLβ−Lαε−Lβρ+L2βε

)
T

Similar to the derivation in Subsection 4.4.2, we obtain the profit per unit time as

πUF(T ) = T 2δ1UF + Tδ2UF + δ3UF, where

δ1UF = β(ε+1
2
h)−1

6
sT (h+3ε),

δ2UF = β(2εL+1
2
hL−ρ+c)+1

2
sT (ρ−c−εl)−α(ε+1

2
h),

and δ3UF = (α−βL)(ρ−εL−c)

The upper bounds are T ≤ −L+α/β �U1UF and T ≤ −L+(ρ−c)/ε �U2UF.

The optimal solution T ∗UF is found as in Section 4.1, but with UDF replaced by UUF =

min{U1UF,U2UF}. Accordingly, the optimal price is derived as p∗UF = ρ−ε(T ∗UF+L),

cf. (4.7) and (4.8).
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4.4.3 Uniform-Mean-Time Pricing

Under this scheme, we set the price according to a customer that arrives in the

middle of the consolidation period. With pUT = ρ−ε(T/2+L), the arrival-rate

function is obtained as λUT(Tt) = α−β(T+L)−εspT/2+sT t. Then, the expected

total profit function is given by

ΠUT(T ) =
∫ T
0

[(ρ−ε(L+ T/2)−c)−h(T−t)] [α−β(T+L)−εspT/2+sT t]dt

Thus, we get the expected profit rate function as

πUT(T ) = T 2δ1UT+Tδ2UT+δ3UT, where

δ1UT = h(1
4
εsp+

1
2
β−1

6
sT )−1

4
ε(sT−2β−εsp),

δ2UT = [β(3Lε+hL+2c−2ρ)+ε (csp−α−sTL−ρsp) +sTρ+ε2Lsp−sT c−αh]/2,

and δ3UT = (α−βL)(ρ−εL−c)

Now, the upper bounds for the consolidation cycle length in the UT scheme are

T ≤ (α−βL)/(β+εsp/2) �U1UT and T ≤ 2[−L+(ρ−c)/ε] �U2UT. Again, the opti-

mal solution, T ∗UT is in the same form of that in Section 4.1, but with UDF replaced

by UUT = min{U1UT,U2UT} and the optimal price is p∗UT = ρ−ε(L+T ∗UT/2).
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4.4.4 Uniform-Last Pricing

With respect to the last-arriving customer, we set pUL = ρ−εL, i.e., when t = T,

yielding the arrival-rate function

λUL(Tt) = a−sp(ρ−εL)−sT (T+L−t) = α−βL−sT (T−t)

The expected total profit over a SCL cycle of length T can then be derived as

ΠUL(T ) =
∫ T
0

[(ρ−εL−c)−h(T−t)] [α−βL−sT (T−t)]dt

= T 3(1
3
hsT )−T 2 12 [h(α−βL)+sT (ρ−εL−c)] +T (α−βL)(ρ−εL−c)

Now, for the profit-rate function, we have

πUL(τ) = T 2δ1+Tδ2+δ3, where

δ1UL = hsT/3, δ2UL = [h(βL−α)+sT (c+εL−ρ)]/2, and δ3UL = (α−βL)(ρ−εL−c)

The upper bounds are T ≤ (α−βL)/sT �U1UL, and T ≤ (ρ−c)/ε �U2UL. Since

δ1UL > 0, the second derivative of πUL(T ) is positive, hence πUL is convex. Given

ρ ≥ εL, the optimal length of consolidation cycle for UL is T ∗UL = (−L+α/β)/sT ,

and the optimal price to be charged is p∗UL = ρ−εL.

4.4.5 A Recap of Optimal Solutions

The preceding solutions, i.e. the optimal consolidation length and the prices to be

charged by the shipper for each of these pricing schemes, may be interpreted in
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various ways. One way is to choose the best scheme yielding the maximum profit

per unit time for particular market parameters. On the other hand, if the shipper

decided on the type of scheme to employ, then the optimal prices and the con-

solidation length can be obtained. Moreover, if the shipper commits herself for a

predetermined delivery-time guarantee which may be induced by market competi-

tion, then we can find the corresponding optimal prices.

The following three observations need be emphasized: i) Our model is also valid

for pure time- or price-sensitive markets. There one simply can set the price- or

time-sensitivity parameter in the model to zero. ii) The optimality structures of

each pricing scheme reveal the conditions under which consolidation is not desir-

able. This occurs when the optimal consolidation cycle length is found to be zero.

For example, referring to the DF scheme, if min{−δ2DF/2δ1DF,UDF} ≤ 0, then con-

solidation is not recommended for this regime. iii) Our design of the problem allows

for a possible “surplus” of service satisfaction. Note that the customers arriving

during the consolidation period are guaranteed a uniform delivery time. Suppose

that customer A arrives at tA, 0 < tA < T , during a particular consolidation pe-

riod, and is quoted a delivery within Td time units. Then, another customer, say

B, arrives in the same consolidation cycle at time tB, 0 < tA < tB < T , and is also

promised a delivery of Td time units. Since these two orders are batched in the

same cycle, customer B’s item will be shipped at least (tB − tA) time units earlier
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than promised. This creates additional goodwill and positive impression about the

shipper’s operations.

4.5 Numerical Examples and Sensitivity Analysis

To illustrate differences between the pricing schemes used, we present a numerical

example with the parameter values:

a = 20, ε = 0.2, sp = 0.5, sT = .9, ρ = 30, c = 8, h = 2, and L = 2.

Table 4.1 presents, for each scheme, the optimal value of consolidation cycle

length T ∗, the corresponding optimal delivery-time guarantee T ∗d , and the optimal

price p∗ (or the price range for differential pricing scheme, DF). Also shown are the

expected total number of arrivals N(T ∗) during the consolidation cycle, the profit-

rate π(T ∗), total profit Π(T ∗) i.e. T ∗×π(T ∗), and profit per order [Π(T ∗)/N(T ∗)].

We observe from Table 4.1, UF qualifies as the best scheme on the basis of profit

rate and total profit per consolidation cycle; UL outperforms other schemes when

the objective is profit per order. To investigate how the optimality results may

be sensitive to changes in the parameters, these will be varied one at a time while

keeping others constant.

95



DF UF UT UL

T ∗ 4.25 4.25 5.00 4.72

T ∗d 6.25 6.25 7.00 6.72

p∗ 28.75-29.60 25.00 26.40 29.60

N(T ∗) 7.23 8.13 7.00 6.02

π(T ∗) 22.10 34.27 26.29 24.86

Π(T ∗) 93.93 145.63 131.45 117.41

Π(T ∗)/N(T ∗) 13.00 17.92 18.78 19.50

Table 4.1: Optimal Solutions for the Pricing Schemes

We begin with the sensitivity to delivery-time guarantee, for 0 ≤ sT ≤ 1. In

Fig. 4.3, we observe that for sT < 0.1, no pricing scheme yields any profit, and

thus consolidation is not an appropriate decision. We also notice that for sT < 0.5,

DF is superior to the others, but for greater values of sT , UF dominates.

Fig. 4.4 depicts the effect of changes in sT on the total profit generated over

the optimal length of consolidation cycle. The choice of best pricing scheme differs

with the magnitude of sT . For delivery-time-sensitive orders, say sT ≥ 0.6, UF

appears to generate the maximum profit over the optimal interval of consolidation.

However, we observe that the profit difference amongst several pricing schemes

becomes relatively small for a highly time-sensitive market, i.e. when sT > 0.8.

Regarding the profit per order as the objective function and its sensitivity to sT ,

the UF pricing scheme is often worst and never the best (see Fig. 4.5). However,

for particular intervals of time sensitivity, each of the other schemes can dominate
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Figure 4.3: Time Sensitivity vs. Optimal Profit Rate

on this criterion. Hence, we have shown in this context that optimal policies can

change with respect to the choice of management objectives. (An analytical proof

of this observation is presented in Section 4.6.) We can also deduce from Fig. 4.6

that for medium to highly time-sensitive markets (e.g. sT ≥ 0.4), the uniform

pricing schemes UL and UT are preferable to the DF regime, at least for these

particular parameter values.

We notice in Fig. 4.6 that, as sT increases above the value of 0.5, the optimal

consolidation times decrease. (Indeed, they are non-increasing for sT ≥ 0.3.) That

is true for all the pricing schemes at hand. This figure can also help eliminate

schemes that are infeasible with respect to service level considerations. For example,

if the shipper sets the maximum delivery time to be, say, 13 time units, then for
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Figure 4.4: Time Sensitivity vs. Total Profit

sT < 0.5, only DF is an admissible scheme.

Further insights are obtained by analyzing how the delivery lead time L, guar-

anteed by the carrier, impacts the optimal profit rate and the optimal prices. Fig.

4.7 indicates that, regardless of the pricing scheme used, all profit rates decrease

as delivery lead time increases. Moreover, no scheme will yield profit if the transit

requires 7 time units or more. Indeed, the demand vanishes when the delivery-time

guarantee Tt can be promised at no better than 12 time units.

In Fig. 4.8, we notice that the optimal prices are non-increasing in the transit

time. The gap between the maximum and minimum prices charged under DF

vanishes after some particular delivery transit time. We also observe that for UT

the optimal price decreases as L increases.

98



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

s
T

Π/N    

 

 

DF

UF

UT

UL

Figure 4.5: Time Sensitivity vs. Profit per Order

Thus, increased transit times negatively affect the demand process, and to be

able to generate arrivals, lower prices are suggested by the model.

In sum, these graphs may be used for practical purposes. The manager (here,

the shipper) can input the market parameters to the model and decide whether a

consolidation program will enable savings or not, and if so at what price. These

graphs may also be used as decision aids in choosing the admissible and then the

best pricing regime, while seeking cost-saving opportunities in transportation op-

erations. For example, the shipper can choose to work with another carrier if the

currently quoted transit time exceeds the maximum time guarantee as required by

the particular pricing scheme.
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Figure 4.6: Time Sensitivity vs. Optimal Cycle Length

4.6 Additional Results

The numerical examples in the preceding section reveal that, depending on the

range of parameters used, some pricing schemes outperform others, based on the

choice of the objective function. We now present the conditions under which a

particular pricing scheme can dominate the others.

For notational simplicity, let i, j ∈ {DF, UF, UT, UL}. The case i �= j thus

denotes two distinct pricing schemes.

Proposition 4.1. Given δ1i �= δ1j, scheme i dominates j in terms of profit rate if

one of the conditions (i)-(iv) holds:

i) δ1i > δ1j and δ2i > δ2j
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ii) δ1i < δ1j and δ2i < δ2j

iii) δ1i > δ1j, δ2i < δ2j, and T > (δ2j − δ2i)/(δ1i − δ1j)

iv) δ1i < δ1j, δ2i > δ2j, and T > (δ2j − δ2i)/(δ1i − δ1j)

Proof. We compare the quadratic profit rate functions in Section 4.4. Searching for

the real roots T that satisfy the inequality (δ1i−δ1j)T 2+(δ2i−δ2j)T+(δ3i−δ3j) > 0,

the preceding conditions are obtained. �

Proposition 4.1 implies that there exists a length of consolidation period such

that any choice of pricing scheme can be dominated by others. Those conditions

can also be used to obtain threshold values of consolidation length, above or below

which a particular pricing scheme is preferable, if the objective is to maximize the

profit per unit time. However, if the shipper wants to evaluate the schemes on the
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basis of profit per order, she can compare Πi(T )/Ni(T ) versus Πj(T )/Nj(T ), and

then the analysis follows a similar reasoning to that of Proposition 4.1.

In practice, the number of orders processed affect transportation costs. Hence,

we consider the ranking of the total number of order arrivals expected for a fixed

but arbitrary length of SCL cycle. This is also important to reveal insights when

the pricing schemes are compared under a per-order performance measure.

Proposition 4.2.For fixed T , the mean total number of arrivals for the respective

pricing schemes satisfies NUF(T ) ≥ NDF(T ) = NUT(T ) ≥ NUL(T ).

Proof. The total arrivals expected over a consolidation period is, for DF

NDF(T ) =
∫ T
0
[α−β(T+L−t)]dt

= T [α−β(T/2+L)]
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Now, we derive the expected number of order arrivals for the UF case. That is

NUF(τ ) =
∫ T
0
[α−β(T+L)+sT t]dt

= (1
2
sT−β)T 2+(α−βL)T

= NDF(T )+1
2
T 2(sT−β) = NDF(T )+1

2
T 2spε

Below is the expected total number of arrivals for UT.

NUT(T ) =
∫ T
0
λUT(Tt)dt

= αT−T 2β−βTL−1
2
εspT

2+1
2
sTT

2

= NUF(τ)−1
2
εspT

2 = NDF(T )

Finally, we find the expected number of order arrivals for the case of UL as

NUL(T ) =
∫ T
0
λUL(Tt)dt = −1

2
sTT

2+αT−βLT

= NDF(T )+1
2
T 2(β−sT )

= NUF(T )+T 2(β−sT ) = NUF(T )−T 2spε = NDF(T )−1
2
T 2spε

Given that T, sp and ε are all non-negative, and benchmarking with NDF, we obtain

the ranking in Proposition 4.2. �

Proposition 4.2 also agrees with intuition that the demand generated by UF

is necessarily at least as large as that of DF: The price in UF is fixed and is

less than that of the DF scheme. Hence, depending on the transportation market
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structure, uniform pricing may trigger greater demand and profit compared to that

of differential pricing.

To increase transport volume, however, a carrier will offer freight discounts when

the order shipped has greater weight. Hence, we now extend our model to include

a unit transportation cost that is non-increasing in the weight of load. Given the

market conditions, the discount schedule of the carrier, and a particular objective

function, what are the best pricing scheme and the optimal price and delivery

time-guarantee?

4.7 Incorporating a Freight Discount

Freight discounts are mechanisms used by the carriers to enable them to regulate

demand patterns. Various discount schemes e.g. Higginson (1993), are used in

logistics management by a public, for-hire trucking company (common carrier). It

is thus plausible for the shipper’s profit function to account for the carrier’s rate

structure, and to investigate how those freight rates affect the shipper’s decisions.

Consider a prototype all-weight freight discount function, c(w)
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c(w) =






c0 0 ≤ w < W 0

c1w, W0≤ w < W 1

c2w, W1≤ w < W 2

...
...

cKw, WK−1≤ w
where w is the accumulated weight, c1 > c2 > ... > cK stand for unit-weight freight

rates, and 0 < W0 < W1 < ... < WK−1 denote the break-points for shipping larger

quantities. We note that c0 is a fixed charge applied to any order with a weight

less than the minimum weight W0. The rate structure given by c(w) implies that

if c2W1/c1 ≤ w < W1, then c(w) ≥ c(y) for all y such that W1 ≤ y < c1W1/c2.

(For applications of various discount schemes, see for example. Burwell et al., 1997;

Tersine and Barman, 1997; Wang and Wang, 2005; Altıntaş et al., 2008)

Because it is unreasonable to pay more for transporting a smaller weight than

a larger one, shippers are allowed to over-declare their actual shipment weight.

This means that the shipper has the opportunity to decrease total common-carrier

charges by artificially inflating the actual shipping weight to the closest break point,

when that makes sense. This strategy of declaring a “phantom weight” is known

as taking advantage of the bumping clause.

The savings gained from economies of scale from such a tariff trades off with

the loss in profit and/or service level that could otherwise have been achieved by

setting higher prices and a longer consolidation period. We now demonstrate this
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for orders on pallets of a standard shape that accounts for truck capacity.

Let us denote the average weight of each pallet to be µ. Then the total expected

weight of a load accumulated during a consolidation period of length τ for a partic-

ular pricing scheme i ∈ I = {DF, UF, UT, UL} is w̄i (T ) � Ni(T )µ. For illustrative

purposes, consider a single price break, although the procedure is applicable to ad-

ditional price breaks. Let c be the non-volume rate and c′ the volume rate (c′ < c)

and W the minimum weight as stated by the carrier to obtain a volume discount.

We observe that W̃ � (W )(c′/c) is the smallest weight where it is logical to employ

the bumping clause with reduced volume rates. Hence, if the shipper’s expected

accumulated load is close to this value W̃ , it might be reasonable to lengthen the

SCL period and reduce the price, to increase the load to qualify for lower rates.

Recall that Tmax is the maximum holding time. To comply with a minimum

service level, the maximum holding plus transit time can be at most as long as the

maximum delivery-time guarantee that is acceptable to customers. For any pricing

scheme i ∈ I, the following procedure in Table 4.2 determines the optimal decision

of the shipper when faced with an all-weight freight discount scheme offered by the

common carrier.
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0) For the set of pricing schemes I0⊆I, initialize i∈ I0.
Given c and c′, find W̃ . Choose a performance measure.

1) Compute T ∗i . If T
∗
i ≤Tmax, go to step 2. O.w., set T ∗i =Tmax and calculate

the corresponding p∗i and performance measure. Go to step 3.

2) Compute mean accumulated weight w̄i(T
∗
i ). If w̄i<W̃ , go to step 2b. Else,

2a) Set c to c′ and calculate the performance measure. Go to step 3.

2b) Find T W̃i �N
−1
i (W̃ ), the expected length of consolidation required

to accumulate W̃ orders. If T W̃i >τmax, go to step 3. Otherwise,

set c to c′, T ∗ to T W̃i and calculate the performance measure.

3) Select max. performance measure amongst values found in 1, 2a, & 2b.

4) Set i to the next pricing scheme in the set I0. Go to step 1.

end) For every i∈I0, compare results in the corresponding step 3. Choose the best.

Table 4.2: Algorithm Incorporating a Freight Discount

4.8 Summary and Extensions

Transport pricing is an important component of the overall costing and pricing of

any good or service. Without lowering the desired service level, it is a challenge

to set a price acceptable to customers. In this study, we considered a shipper

whose customers are sensitive to both price and delivery-time guarantee. Four

pricing schemes were proposed: differential, uniform-first, uniform-mean-time, and

uniform-last. For each of these schemes, we studied the problem of maximizing the

shipper’s profit per unit time through the optimal choice of consolidation period. In

addition, through a numerical example, we studied the effects of using total profit

per consolidation cycle and profit per order as alternative objectives.

107



We demonstrated that the problem is very parameter-sensitive, and the best

choice of pricing scheme depends upon management’s particular objective. More-

over, we have exhibited market conditions for which shipment consolidation might

not be preferred at all. We reported on the optimality structures of the problem

when distribution operations are provided by a public, for-hire trucking company.

Contrary to intuition, charging according to an order’s time of arrival is not nec-

essarily the best pricing scheme. We reported on numerical examples with various

sensitivity analyses, and proposed an algorithm that incorporates the all-weight

freight discount schedule of the carrier.

The models developed in this chapter are applicable for any intermediary-

distribution operation. Be it a shipper, freight forwarder or a third party logistics

provider, the models can be adapted easily to the operating environment at hand,

and may offer the decision maker a better understanding of shipment operations

and pricing issues.

This stream of research can be expanded by studying cases in which the arrival

process is a more general probability distribution. We can also consider a functional

relationship between price and delivery-time quote that is not necessarily linear.

Another interesting extension would be to study a uniform pricing scheme where

the price is set with respect to the expected arrival time of the median customer
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through the consolidation cycle, i.e. when t = N−1(N(T )/2).

Next, in Chapter 5, we consider the joint problem of shipment consolidation

and pricing in the context of fleet management, i.e. for the case of private carriage.
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Chapter 5

Pricing and Shipment

Consolidation-II

In this chapter, we study the problem of maximizing profit rate for a private carrier

whose customers are sensitive both to delivery lead time and the price for that

service. Although the demand generation model is the same as in Chapter 4, there

are some major differences between the costing mechanisms of a private carrier

and a common carrier. Foremost, an operational model for a private carrier need

consider the capacity constraints and the fixed costs as opposed to the case of

common carriage.

The problem at hand is visually represented in Fig. 5.1. The sequence of events
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Figure 5.1: Flow of Goods and Information for Private Carriage

is as follows: Given the market conditions, the carrier optimizes the profit per unit

time, and announces the resulting optimal prices and delivery-time guarantees. As

a consequence of this announcement, the orders accumulate at the carrier’s site

according to a non-stationary Poisson process. At the end of the optimized consol-

idation period, the carrier transports the consolidated load to the final destination

or the break-bulk terminal.

We model the order-arrival rate as a decreasing function of both price and

the delivery time that is guaranteed. (The carrier applies a time-based shipment

consolidation program, so that he can quote delivery times that are certain.) We

propose two types of pricing mechanisms to be used: Differential Pricing (DF), in

which the customers are charged with respect to their exact arrival time within the

total consolidation period, and Discrete Pricing (DS), in which the order is charged
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according to the sub-interval in which the arrival time lies, and is an easier-to-use

mechanism.

Though there exists a vast body of scholarly research on pricing and ordering

decisions, the literature on joint SCL and pricing is scant. The analysis in this

chapter aims to shed light on this issue and to moderately fill the gap. To our

knowledge, Cavinato (1982) is the only paper that addresses pricing issues for a

private carrier, and he investigates the industry data while giving an overview

of uses, problems and advantages of employing transfer pricing. Bookbinder and

Higginson (2002) is the most recent work that gives analytical results for private

carriage in the SCL problem, yet in a different setting where demand is exogenous.

In what follows, we address the following research questions:

i) What are the optimal price and consolidation time for a private carrier sup-

plying customers that are price- and delivery-time sensitive?

ii) How are the profit, the optimal consolidation time, and the prices affected by

model parameters such as cost and capacity factors?

iii) What is the benefit of discrete pricing as opposed to that of differential?

Our optimization model considers the revenue generated, the holding (or con-

solidation penalty) cost, and the fixed dispatch cost per truck, among others. We
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assume that the carrier has an ample number of trucks to employ for these orders

destined to a single location.

Here, the main modeling distinction from Chapter 4 is that the costing structure

for a private carrier is different, plus the capacity constraint is explicitly included.

Also, the fixed cost brings in extra difficulty. One assumption here is that the carrier

works with a single capacity. However, this is not a shortcoming from the modeling

perspective if that capacity is thought of as a combination of fleet capacity. Also

from a practical point of view, once a vehicle is loaded (depending on the SCL policy

employed), there is no point in waiting for the other vehicles. (The modification to

that is straightforward.)

On the other hand, similar to the previous chapter, we employ a time-based

shipment-release policy and choose our objective as the profit per unit time. We

note that the CD-P, H-P and T-P are the only policies that a shipper may use

as a means to quote delivery time guarantees. Yet, since the order arrival pattern

follows a (nonstationary) Poisson process, as opposed to the deterministic settings,

variability in the consolidation operations, unavoidably delaying shipments and

requiring expediting, etc. are a part of this model. Our model attempts to give a

guideline for a private carrier to (possibly) improve his operational efficiency and

(perhaps) increase his profitability.
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For our modeling purposes, we use the following

Parameters

a : maximum potential demand

sp : sensitivity to price, in dimensions of demand per dollar

sT : sensitivity to delivery-time guarantee (demand per unit time)

ρ : market-reservation price per unit

ε : delivery-time sensitivity of the price (dollars per unit time)

C : vehicle capacity

κ1 : fixed order processing cost (independent of batch size)

κ2 : fixed dispatching cost per vehicle

h1 : handling cost per unit (e.g. loading, sorting, unloading)

h2 : holding cost per unit per unit time

L : line-haul time

c : line-haul cost per unit time

Tmax : upper bound for delivery-time guarantee

Decision variables

T : length of consolidation period (or, the consolidation cycle)

Tt : delivery-time guaranteed for a customer arriving at time t

pTt : price per unit charged to an order arriving at time t, in dollars

As in Chapter 4, we use the following demand relationships between the delivery
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time guarantee and price.

λ(pTt , Tt) = a−sppTt−sTTt, 0 < t < T

pTt = ρ−εTt, ρ > 0, ε > 0, p > 0

(5.1)

For simplicity in the analysis, one can rewrite the demand function as follows:

λ(Tt) = α−βTt, 0 < L < Tt < Tmax where

α = a−spρ and β = sT−spε
(5.2)

Due to our modeling assumptions, given the optimal length of consolidation T ∗,

the corresponding optimal prices for the DF case can be easily computed as

p∗DF(t) = ρ−ε(T ∗DF+L−t) (5.3)

The expected total profit per dispatch Π(.) is

Π(.) = revenue−(holding+transportation) cost (5.4)

Positive demand generation implies that α−βTt ≥ α−β(T+L) ≥ 0, hence T ≤

(α/β)−L , and also T ≤ Tmax−L. For profit generation, the condition that the

prices need be positive requires that ρ−h1−ε(T ∗+L) ≥ 0, which in turn implies T ≤

(ρ/ε)−L. Hence T ≤U, where we define U as the upper bound on the consolidation

cycle as

U = min{(α/β), (ρ−h1)/ε, Tmax}−L (5.5)

In the remainder of this chapter, as in Chapter 4, we assume that α is positive,
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since otherwise, the arrival rate (if β > 0) would always be negative, which is not

admissible.

(5.4) denotes the objective function we want to optimize over T : It is the rev-

enue generated less (holding cost + dispatch cost + line-hauling cost). Also, (5.5)

ensures that the consolidation cycle is admissible. By imposing U, we implicitly

introduce the natural requirements of this problem: There need be a positive de-

mand generation, the price need be nonnegative, and the delivery time guarantee

must be satisfied.

Model DF:

sup
T

E[πDF(T )] = E[πDF(T )]/T � 0 < T ≤ U} (5.6)

Below, the terms that frequently occur in the model are written explicitly. These

terms are the expected profit rate πDF(T ), and the expected number of consolidated

orders QDF(T ). Since once the vehicle is dispatched, a new cycle begins, we natu-

rally define πDF(T ) as the total expected cost E[Π(T )] in a cycle of length T divided

by its length. (For a unique solution to the model DF, one can easily calibrate the

data and the decision variable T such that 1 is set to be the lower bound.) After
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some algebra, we find

E [πDF(T )] = T−1
[∫ T
0
(pTt−h1)λ(Tt)dt−h2

∫ T
0
(T−t)λ(Tt)dt

−κ1−(κ2+cL)
⌈∫ T
0
λ(Tt)dt/C

⌉]

= a1T 2+b1T+c1T−1+d1−(κ2+cL) �(e1T 2+f1T )/C�T−1

where
a1 = (1/3)β(ε+h2), b1 = (1/2)[β(h1+2Lε−ρ)−h2(α−Lβ)−αε]

c1 = −κ1, d1 = (α−Lβ)(ρ−h1−Lε), e1 = −β/2, f1 = α−lβ
(5.7)

and where �x� is the smallest integer greater than or equal to x. Q(T ) is a random

variable representing the total number of orders received by time T. Λ(t) is the

intensity function, and m(t) the mean value function. Then Q(T ) has a Poisson

distribution with mean m(T ). Also let us note that the expected total number of

orders consolidated by time T can be determined as

QDF(T ) =
∫ T
0
λ(Tt)dt = −β/2T 2+(α−Lβ)T (5.8)

To ease analysis, we can rewrite π(T ) removing the ceiling function, and thus the

non-continuity in the function is removed. Call this modified (relaxed) profit rate

function πmDF(T ) which is derived to be

πmDF(T ) = am1 T
2+bm1 T+cm1 T

−1+dm1 where

am1 = a1, bm1 = b1+β (κ2+Lc) /2C

cm1 = c1, dm1 = d1−(α−Lβ) (κ2+Lc) /C

(5.9)
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5.1 The Optimality Analysis

Let us notice the obvious fact that, depending on the functional form of πDF(T ),

the optimality conditions will be different when πDF(T ) is concave, and when it is

convex We will first focus on the modified function. Based on results there, we

will extend the findings to our original objective function. To this end, we give the

following

Lemma 5.1. πmDF(T ) is concave if T 3 ≥ 3κ1/β(ε + h2), and is convex otherwise.

Moreover, if β < 0, then πmDF(T ) is convex everywhere.

Proof. Simply checking the second derivatives, we obtain those conditions above.

Also, since T, κ1 ≥ 0, and ε, h2 > 0, T 3 ≥ 3κ1/β(ε + h2) when β < 0, and thus

πmDF(T ) is convex. �

The modified profit rate function πmDF(T ) can be concave or convex in its par-

ticular ranges. Accordingly, the (unique) optimal solution of T can be an interior

or a boundary solution. This is reflected in (5.10). As noted earlier, for the case

of convexity, we can impose a minimum value of T (here it is 1) for mathematical

consistency.

T0 = argmax






πDF(Ti) � dπmDF (Ti)

dTi
= 0, 0 < Ti ≤ U, if πmDF concave

πDF(Ti) � Ti = 1, or Ti = U, if πmDF convex

(5.10)

Hence, Ti, 1 ≤ i ≤ 3, are the feasible solutions for the relaxed model, and T0
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is the one that maximizes the objective function. We note that the solution of

dπm (T )
dT

= 0 requires us to find the real roots of the cubic function

(2a)T 3+[b−(eκ2/C)]T 2−c = 0

A cubic function with real coefficients has at least one, and at most three, real

roots. Hence, the search over the candidate τ i roots need not be exhaustive. We

can now define the upper bound on the number of vehicles by

n0 = �Q(T0)/C� (5.11)

A “candidate” solution for the optimal SCL length is the one that enables full

utilization of the vehicle capacity. We can now define the feasible sets for the

candidate solutions as

Su = arg {Q(T ) = n0C, 1 ≤ T ≤ U1}

=
{
(1/2e)(−f−

√
f2+4en0C), (1/2e)(−f+

√
f2+4en0C)

} (5.12)

Sl = arg {Q(τ) = (n0−1)C, 1 ≤ T ≤ U1}

=
{
(1/2e)(−f−

√
f2+4e(n0−1)C), (1/2e)(−f+

√
f2+4e(n0−1)C)

} (5.13)

Proposition 5.1. The T ∗ that solves (5.6) is either Tl, T0 or Tu, where these quan-

tities are given by the equations below and in (5.10). Moreover, T0 is a candidate

119



optimal solution only if Tl < T0 < Tu.

Tu = argmax {π(T ), T ∈ Su}

Tl = argmax {π(T ), T ∈ Sl}

Proof. Since T0 is the optimal solution to the relaxed problem, and since πmDF(T )

is the upper-bound function for πDF(T ), πmDF(T0) ≥ πDF(T0). Employing the upper

bound on T in (5.5), one can easily show that QDF(T ) is increasing in T . Hence,

Tl ≤ T0 ≤ Tu. Also since πDF(T ) is concave over [Tl, Tu], πDF(T0) ≥ πDF(Tl) and

πDF(T0) ≥ πDF(Tu). �

5.2 A Numerical Example

In this section, we wish to get some insights about the behavior of our model.

Employing the base case data in Table 5.1, we first graph the expected total profit

function and its cost components in Fig. 5.2.

In that figure, we observe that the total profit function displays a piecewise

concave structure. When the costs are averaged over an SCL cycle, we obtain Fig.

a ρ ε sp sT κ1 κ2 h1 h2 c C L Tmax

80 20 1 0.9 0.5 30 150 3 2 15 100 4 14

Table 5.1: Base Case Data Set for Private Carriage
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5.3, in which the expected profit rate function and its upper bound, the modified

profit function are depicted. Hence, we note that the expected profit rate function

is bounded from above by the modified profit rate function, πmDF(T ).
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Figure 5.2: Expected Total Profit and Its Components
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Figure 5.3: Profit Rate and Its Upper Bound

121



5.3 Discrete Pricing

For any 3PL (e.g., the carrier) and the customers, it might be more convenient

to give a uniform price for specific intervals of the consolidation period. Here, we

analyze such a situation, which we call “discrete pricing.”

In discrete pricing (DS), prices will be computed with respect to the interval

the customers fall in. Assume [0, T ] is the consolidation period. Let us discretize

this length into N equally spaced intervals, where each subinterval i has a length

∆i = T/N, i = 1, .., N . Hence, subinterval i will cover the portion of the consoli-

dation period between [Ti−1, Ti], i = 1, .., N, and T0 = 0, TN = T . We will assume

that all customers arriving in this particular subinterval will be uniformly charged,

as if arriving in the middle of the subinterval. Therefore, we can also define N as

the number of price switches. This is similar to the “Mean-Time Pricing” scheme

employed in Chapter 5. Accordingly, the prices and the demand function are af-

fected by this modification. Setting the maximum delivery-time guarantee for an

order arriving in ithsub-interval Ti = (N − i+ 0.5)/(T/N), we find for i = 1, ..., N

λi = α−β[(T/2N)(2(N−i)+1)+L]

pi = ρ−h1−ε[(T/2N)(2(N−i)+1)+L]

We can now find the optimal expected total profit by the sum of the aggregated

subinterval revenues less the holding costs. Since the transportation cost is common
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to all orders consolidated, it will be included only in the final profit term.

The expected revenue less the holding cost, say Ri, for the orders accumulated

in the interval i, can be calculated as

Ri =
∫ Ti
Ti−1
pi(t)λi(t)dt−h2

∫ Ti
Ti−1

(T−t)λi(t)dt

=
∫ T

N

0
[ρ−h1−ε( T2N (2(N−i)+1)+L)][α−β( T

2N
(2(N−i)+1)+L)]dx

−
∫ T

N

0
(T−x)(α−β( T

2N
(2(N−i)+1)+L))dx

= (T/4N 2)
(
2TβN2+(1−2i)TβN−2α+2Lβ

)

×
(
2Nh1−2Nρ−Th2+2NLε+2NTh2+(1−2i)N 2Tε+2N 3Tε

)

The expected number of arrivals in interval i can be computed as

Qi =
∫ Ti=T/N
Ti−1=0

λi(t)dt

= − 1
2N

[NT 2β(2+ (1−2i)N−2T (α−Lβ)]

and the expected total number of arrivals is

QDS(T ) =
∑N

i=1Qi =
(
−1
2
N2β

)
T 2+(α−Lβ)T

We note that when N = 1, we obtain the same result as for DF pricing. Of

course, for different values of N and β, the expected total accumulation of orders

differs.
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The profit rate in DS pricing case now can be found as

πDS(T ) = T−1
(∑N

i=1Ri−κ1−(κ2+cL) �QDS(T )/C�
)

= a2T 2+b2T+c2T−1+d2−(κ2+cL) �(e2T 2+f2T )/C�T−1 where

a2 = (Nβ/12)[(ε(4N3−N)+3h2(2N−1)],

b2 = N2

2
[(β(h1−ρ)−ε(α−2Lβ)]− h2

2N
(α−Lβ)(2N−1),

c2 = −κ1, d2 = (α−Lβ)(ρ−h1−Lε),

e2 = −(1/2)N 2β, and f2 = α−Lβ.

Now, we have the following model for the Discrete Pricing scheme, given the

desired number of price switches.

Model DS:

max
T
E[πDS(T )] � {0 < T ≤ U , N ∈ Z+} (5.14)

The procedure used to solve Model DS is similar to DF. For fixed N , relax the

model and then follow the same procedure as above. However, it is interesting to

see how the number of price switches affects the optimality decision.

Proposition 5.2. For a fixed value of T , say τ , the number of price switches

required in Model DS that gives the same optimal profit rate in Model DF can be

found by solving for N in the following equality:

πDS(N)|T=τ = πDF(τ ), 0 < τ ≤ U,N ∈ Z+
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Proof. Since the procedures for solving both DF and DS are the same once the

initial optimum is found, if it exists, the value of N can be obtained. �

To examine the optimality gap between the upper bounds of the solutions to the

models DS and DF, we find the modified function for DF first, again by treating

the ceiling function as a continuous one as in (5.9). We obtain

πmDS(T ) = am2 T
2+bm2 T+cm2 T

−1 + dm2 where

am2 = a2, bm2 = b2+N
2β (κ2+Lc) /2C

cm2 = c2, dm2 = d2−(α−Lβ) (κ2+Lc) /C

(5.15)

We now can show the following

Proposition 5.3. For a fixed value of T , say τ , the optimality gap between the

upper bounds of the models DF and DS can be computed as πmDF(τ)− πmDS(τ ).

Proof. From (5.9) and (5.15), the optimality gap between the upper bounds of

the models DF and DS can then be computed as

πmDF(τ )− πmDS(τ ) = (am1 −am2 )T 2+(bm1 −bm2 )T+(cm1 −cm2 )T−1 + (dm1 −dm2 ). �

5.4 Sensitivity Analysis

It is of interest to investigate how the various optimal decisions are affected by the

changes in model parameters, ceteris paribus. Due to the heavy parametric nature
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of our models, it is more practical and insightful to work with graphs, rather than

comparative statics. Naturally, the data of the base case are employed to produce

these graphs. (Analysis is only for the DF case; DS gives similar results.)

The models proposed in the preceding sections are solved by an algorithm coded

in MATLAB, and run for parameters of interest in the desired ranges. As a major

difference from similar models studied in Chapter 5, we first study the sensitivity

of the optimal profit rate to vehicle capacity.

It is observed from Fig. 5.4 that the optimal profit rate shows an erratic behav-

ior, with “plunges” at certain capacity levels. These downward spikes happen when

the optimal SCL length requires a not-fully utilized vehicle. Generally, however,

the behavior is approximately concave. The choice of vehicle capacity, as expected,

affects the profitability level. One can claim that, for given parameters, there exists

a certain range of capacity levels in which the profit rate is maximized. Also, there

exists a threshold limit of capacity above which the profit rate vanishes, and hence

it is not advised that the private carrier acquire or work with such types of vehicles.

(One can easily notice that the term, capacity, needs to be calibrated with respect

to the context of the operating environment. For example, if the focus of the carrier

shifts to a smaller size of shipments compared to the current standard, his vehicle

capacity is magnified automatically.)
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Figure 5.4: Vehicle Capacity vs. Optimal Profit Rate

The relationship between the optimal consolidation cycle lengths versus the

capacity (see Fig. 5.5), reveals that as the vehicle capacity increases, it is optimal

to wait longer for a higher level of load accumulation. Also, in line with this

observation and as seen from Fig. 5.6, the optimal minimum decreases in the

vehicle capacity.
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Figure 5.5: Vehicle Capacity vs.Optimal Consolidation Cycle
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Figure 5.6: Optimal price range vs. capacity

Since customers are sensitive to lead time, it is important to include the para-

meter line-haul time L in the sensitivity analysis. Fig. 5.7 depicts the relationship

between the optimal profit rate and line-haul time. We observe that after a certain

threshold of L, the profit vanishes. Hence, at the design stage, the carrier must

be careful to find the most economical and fastest way to line-haul between the

zone of customers and the final destination. Also, consistent with intuition, and

the modeling assumptions, the profit rate is maximized when the line-haul time is

minimized, which comes with the trade-off of higher cost.

Now, we consider the impact of (common) order processing cost on the optimal

profit rate in Fig. 5.8. Approximately, the optimal profit rate decreases with the or-

der processing cost. However, that relationship is neither linear nor concave. When

κ1 is around 300, the profit rate is maximized. That behavior can be explained by
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Figure 5.7: Line-haul Time vs. Optimal Profit Rate

the highly nonlinear form of our model. Similar nonlinearities show up when we

investigate the effects of price sensitivities on the optimal profit rate, i.e. in Fig.

5.9. However, again, we can still observe that the optimal profit rate approximately

decreases as the price sensitivity of the customers gets larger.
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Figure 5.9: Price Sensitivity vs. Optimal Profit Rate
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Chapter 6

Final Thoughts and Future

Research

Shipment consolidation, apart from its substantial benefits in the logistics supply

chain, is quite a rich research topic. Here, we aimed at improving on the current

literature on SCL, and introduced new models. We used various Operations Re-

search concepts or techniques such as Renewal Theory, Dynamic Optimization, and

simulation.

The first research axis of this dissertation focused on analytical models specif-

ically for single-item shipment consolidation, when the orders arrive randomly.

Hence, in Chapter 2, we first examined the conditions under which an SCL pro-
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gram enables positive savings. Then, in addition to the current SCL policies in the

literature, we introduced a new one, i.e. Controlled Dispatch Policy. Moreover,

we provided a cost-based comparison of those policies and showed that Quantity

Policy yields the lowest cost per order amongst the other, yet with the highest

randomness in dispatch times. On the other hand, in between the service-level

dependent policies (i.e. the CD-P, H-P and T-P), while H-P provided the lowest

cost per order, CD-P turned out to be more flexible and responsive to dispatch

times, again with a lower cost than the T-P. An extension to SISCLP would be

to compare those policies on other dispatch objectives as well, and investigate the

cost variability thereof, if possible, analytically.

We offered a new problem in Chapter 3: Multi-Item Shipment Consolidation

Problem. We employed and showed the optimality of myopic analysis when costs

and the order-arrival processes were dependent on the type of items. In a dy-

namic setting, we employed a concept of time-varying probability to integrate the

dispatching and load planning decisions. That model was analyzed for the most

common objectives through simulation, and we observed that the cost and optimal

SCL cycle variability was smaller for the objective of cost-per-unit weight, a result

that justifies the industrial practices. Although our model in that chapter lay the

foundation for it, we leave aside a technically very-challenging, yet quite useful topic

of research; that is the “real-time” optimization of dispatch and loading decisions.
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As the third axis, we studied joint optimization of pricing and SCL in a price-

and time-sensitive logistics market, both for the common carriage (in Chapter 4)

and private carriage (Chapter 5). The main motivation for introducing pricing in

SCL decisions stems from the fact that transportation is a service and naturally

demand is affected by the prices. Hence, if possible, influencing the order arrival

rates by suitable pricing decisions enables the LTL carrier extra savings. Those

savings emanate from two sources; scale economies (in private carriage) or discount

economies (in common carriage) that comes with SCL, and revenue generated by

employing an appropriate pricing scheme. We could show, contrary to the current

literature, that a differential (or dynamic) pricing scheme does not necessarily yield

higher profits than a uniform (or single) one. A challenging extension to our model

for the common carriage would be to study that problem under a general price-

time functional form. On the other hand, for the case of private-carriage, explicit

incorporation of fleet management decisions into SCL remains another interesting

topic.
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