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Abstract

The results presented here are concerned with questions of decomposabil-

ity of multiplicative semigroups of matrices with nonnegative entries. Chap-

ter 1 covers some preliminary results which become useful in the remainder

of the exposition. Chapters 2 and 3 constitute an exposition of some re-

cent known results on special semigroups. Chapter 2 explores conditions

for decomposability of semigroups in terms of conditions derived from linear

functionals and in Chapter 3, we give a complete proof of an extension of

the celebrated Perron-Frobenius Theorem. No originality is claimed for the

results in Chapters 2 and 3. In Chapter 4, we present some new results on

sufficient conditions for finiteness of semigroups of matrices.
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Chapter 1

Introduction and Preliminaries

This thesis concerns itself with questions of decomposability of multiplicative

semigroups of matrices with nonnegative entries. Chapters 2 and 3 consti-

tute an exposition of some recent known results on special semigroups. In

particular, we give a complete proof of an extension of the celebrated Perron-

Frobenius Theorem. No originality is claimed for the results in Chapters 2

and 3. In Chapter 4, we present some new results on sufficient conditions for

finiteness of semigroups of matrices.

Unless otherwise stated, the underlying vector space will be Cn. We will

be mostly working with square matrices with nonnegative entries, which

we will simply call nonnegative matrices. Recall that a semigroup, S,

is a nonempty set together with an associative binary operation, which in

this exposition will be nonnegative matrices with matrix multiplication. It

can easily be checked that a collection of nonnegative matrices upon closure

under multiplication is in fact a semigroup. A collection of matrices C is

called reducible if there exists a proper invariant subspace, common to each

member in the collection. This definition is equivalent to the existence of

a fixed invertible matrix T such that TAT−1 is in block upper triangular

form for each A ∈ C. A collection is irreducible if it is not reducible. A

permutation matrix is defined to have a single 1 in each row and column and
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all other entries equal to zero. A collection of matrices, C, is decomposable

if there exists an invariant subspace which is spanned by a proper subset

of the basis vectors and is common to each member in the collection. This

definition is equivalent to the existence of a fixed permutation matrix P such

that PAP−1 is in block upper triangular form for each A ∈ C. A collection is

indecomposable if it is not decomposable. A collection of matrices is called

completely decomposable if each member can be simultaneously decomposed

into upper-triangular form.

If V is a vector space and N is a subspace of V , then the quotient space

V/N is the collection of cosets x = x+N . If A is a linear transformation on

V and N is invariant under A, then the quotient transformation Ã on V/N
is defined by Ãx = Ax for each x ∈ V . If S is a collection of linear transfor-

mations on V , and if M and N are invariant subspaces for S with N ⊂M
properly, then the quotients of S on {M,N} are the transformations, Ã, on

M/N . A property is inherited by quotients if every collection of quotients

of a collection satisfying the property also satisfies the property. Although

most results presented here will pertain to indecomposable semigroups, we

first need a few results on reducibility.

The first result presented is often implicitly used in the proofs of trian-

gularization theorems. However, it appears to have first been formalized in

Radjavi-Rosenthal [14].

Theorem 1.1. (The Triangularization Lemma) Let P be a set of prop-

erties, each of which is inherited by quotients. If every collection of transfor-

mations on a space of dimension greater than 1 that satisfies P is reducible,

then every collection of transformations satisfying P is triangularizable.

Proof. Let S be any collection satisfying P and let

{0} =M0 ⊂M1 ⊂ . . . ⊂Mm = V

be a maximal chain, C, of invariant subspaces of S. If each quotientMk+1/Mk

is one-dimensional, then C will be a triangularizing chain for S. Suppose
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there exists a k such that the dimension of Mk+1/Mk is greater than 1.

Then, since any quotient transformation of S onMk+1/Mk also satisfies P ,

the collection of quotients of S with respect to {Mk+1,Mk} would have a

proper invariant subspace N by hypothesis. Then,Mo = {x ∈Mk : x ∈ N}
would be a nontrivial invariant subspace of S and thus Mk ⊂ Mo ⊂ Mk+1

where each containment is proper, but this contradicts the maximality of the

chain. Therefore, each Mk+1/Mk is a one dimensional space and so C is a

triangularizing chain.

The next result is a famous and extremely powerful result, first established

for groups of matrices by Burnside in 1905 [2], and later extended to its

present form in Frobenius-Schur [5].

Theorem 1.2. (Burnside’s Theorem) The only irreducible algebra of

linear transformations on the finite-dimensional vector space V of dimension

greater than 1 is the algebra of all linear transformations mapping V into V.

Proof. Let A be an irreducible algebra. Every linear transformation on a

finite dimensional vector space can be expressed as a finite sum of rank 1

linear transformations. Thus, in order to prove the theorem, it will suffice to

show that A contains all rank 1 transformations. We will begin by showing

that A contains at least one rank 1 transformation. Let To ∈ A be a member

of minimal nonzero rank. We plan to show that To is rank 1 and so suppose

for a contradiction that To has rank greater than 1. Then, there exists

vectors x1 and x2 such that {Tox1, Tox2} is a linearly independent set. Note

that J = {ATox1 : A ∈ A} = V since otherwise J would be an invariant

subspace of A which would contradict its irreducibility. Thus, we can find an

Ao ∈ A such that AoTox1 = x2. Then, {Tox1, Tox2} = {Tox1, ToAoTox1} is a

linearly independent set. Consider ToAo restricted to the range of To. The

spectrum (in this case the set of eigenvalues) of ((ToAo)|ToV) is not empty,

and so we can find a scalar λ such that (ToAo − λI)|ToV is not invertible.
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Note that (ToAo − λI)To is not zero since ToAoTox1 − λTox1 6= 0 due to

the linear independence. The range of ToAoTo − λTo is contained in that

of To. We can see this by noting that for each x ∈ V , ToAoTox − λTox =

To(AoTox) − To(λx) = To(AoTox − λx). In fact, the containment is proper

since ToAo − λI restricted to the range of To is not invertible which means

that ToAo − λI has members of its kernel in the range of To. This implies

that the rank of ToAoTo−λTo is less than that of To and this contradicts the

minimality of the rank of To. Therefore, To must have rank 1.

Let yo be a nonzero vector in the range of To. Since every vector in the

range of To is a multiple of yo, we can find a linear functional φo on V such

that Tox = φo(x)yo for all x ∈ V . Note that every linear transformation of

rank 1 is of the form x 7→ φ(x)y for a vector y in V and a linear functional

φ. We want to show that A contains every rank 1 transformation. First

note that ToA ∈ A for all A ∈ A and that ToAx = To(Ax) = φo(Ax)yo

for all x ∈ V . Thus, we have all the rank 1 transformations of the form

ToA = yoφo ◦ A. We claim that Φ = {φo ◦ A : A ∈ A} consists of all linear

functionals. Suppose for a contradiction that this were not the case. Then,

there would be a nonzero xo ∈ V such that φ(xo) = 0 for all φ ∈ Φ. But

this means that φo(Axo) = 0 for all A ∈ A. Since φo is nonzero, and {Axo :

A ∈ A} = V , this is only possible if xo = 0, a contradiction and so Φ does in

fact consist of all linear functionals on V . Thus, we have the transformations

of the form Tx = φ(x)yo where φ can be any linear functional. Now, since

{Ax : A ∈ A} = V , given a y ∈ V , we can find a B ∈ A such that Byo = y.

Then, BTx = B(φ(x)yo) = φ(x)Byo = φ(x)y. Thus, we have shown that A
contains every rank one linear transformation, which completes the profor

sof.

The next result has been used ubiquitously in various proofs and as a

result it is hard to determine who discovered it first.

Lemma 1.3. Let S be a semigroup in B(V), the set of all linear transfor-
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mations mapping V to V where the dimension of V is greater than 1. If

there exists a nonzero linear functional ϕ on B(V) with ϕ|S = 0, then S is

reducible.

Proof. Since ϕ is zero on S, it is also zero on the algebra generated by S.

Thus, since the only linear functional which is zero on all of B(V) is zero, and

ϕ is nonzero, the algebra generated by S is not equal to B(V) and thus by

Burnside’s theorem, the algebra generated by S is reducible, so S is reducible

too.

The following result is one of the earliest which uses conditions on the

spectra to deduce reducibility and is found in Levitzki [7].

Theorem 1.4. (Levitzki’s Theorem) Every semigroup, S, of nilpotent

operators is triangularizable.

Proof. The trace is a linear functional that vanishes on S, so by Lemma

1.3, S is reducible. Since quotients of nilpotent operators are nilpotent, the

Triangularization Lemma yields the result.
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Chapter 2

Conditions for Decomposability

of Semigroups

In this chapter, we discuss conditions for decomposability and complete de-

composability of semigroups in terms of nonnegative linear functionals, in-

cluding those that act only on the diagonal entries of the matrices. We

explore the structure of idempotents, and special semigroups, including semi-

groups of idempotents and semigroups of nilpotents.

The first theorem presented is from Radjavi-Rosenthal [15], but is really a

special case of known results from Choi-Nordgren-Radjavi-Rosenthal-Zhong

[3].

Theorem 2.1. A semigroup S of nonnegative nilpotent matrices is com-

pletely decomposable.

Proof. By Levitzki’s Theorem, we know that S is triangularizable (i.e. there

exists a fixed invertible matrix U such that every matrix in U−1SU is in

upper-triangular form).

We claim that the product of any n members of S must be zero, where

we assume that the matrices are n × n. Assume that after a similarity,
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every member is in strictly upper-triangular form (we are no longer assuming

nonnegativity). Then the product of any n is clearly zero.

We will now show that S is decomposable. Assume that S is back in its

nonnegative form. Let k be the smallest integer such that the product of any

k members of S is zero. If k = 1, then zero is the only element in S and we

are done. Assume k > 1, so that we can find S1, S2, . . . , Sk−1 such that their

product, which we denote T , is not zero. However, ST = 0 for all S ∈ S.

Since T 6= 0, we know that it has a nonzero column. We can permute the

basis to assume that the first entry of that column, say the i-th column, is

nonzero. Every entry of ST is zero, so 0 = (ST )ji =
∑n

k=1 SjkTki ≥ Sj1T1i for

all i and j. Since T1i 6= 0, Sj1 = 0 for all j. Thus the first column of S is zero

for all S ∈ S. Therefore, S is decomposable. We thus have a permutation

P such that P−1SP is block upper triangular. Note that this implies that

every block must still be a nonnegative matrix since a permutation does not

affect nonnegativity. Also, the diagonal blocks must be nilpotent, which we

can see by considering Sn for each S ∈ S in block upper-triangular form,

under block multiplication. Therefore, we can further decompose each block

until the matrices are completely decomposed.

The next lemma, and the two ensuing corollaries, are both from [15].

Lemma 2.2. Let ϕi denote the linear functional on n×n matrices defined by

ϕi(M) = Mii, the (i, i) entry of M. If there is an i such that ϕi is submulti-

plicative on a semigroup S of nonnegative matrices, then S is decomposable.

Furthermore, after a suitable permutation of the basis, every S ∈ S has the

block form  R X Y

0 s Z

0 0 T


where s represents a 1 × 1 block and equals Sii. (If s is in the 1st or nth

position, then the corresponding decomposition will be block 2× 2)
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Proof. First note that the submultiplicativity of ϕi implies multiplicativity,

as

ϕi(A)ϕi(B) ≥ ϕi(AB) =
∑
j

AijBji ≥ AiiBii = ϕi(A)ϕi(B)

for any A, B in S, where the second inequality is due to the nonnegativity

of the entries. Assume, without loss of generality, that i = 1 in order to

simplify the notation. Then, since ϕ1(AB) = ϕ1(A)ϕ1(B), we have that

A12B21 + · · ·+ A1nBn1 = 0,

which by nonnegativity implies A1jBj1 = 0 ∀j = 2, . . . , n. If A12 = · · · =

A1n = 0 for all A ∈ S, then for k = 2, . . . , n, Aek ∈ span{ek}nk=2 where {ek}
are the standard basis vectors. Thus, we would have decomposability since

the proper subspace spanned by {ek}nk=2 would be invariant under all S ∈ S.

Assume then, that after a permutation, A1n is nonzero for some A ∈ S,

which implies that Bn1 = 0, for all B ∈ S. Let J be the maximal subset

of {2, . . . , n} such that Bi1 = 0 for all i ∈ J and B ∈ S. After a further

permutation, we may assume that J = {l + 1, . . . , n}.

Let m ∈ {1, . . . , l}. Since J is maximal, we know that there exists an

element S ∈ S such that Sm1 6= 0. Then,

0 = (BS)j1 =
n∑
i=1

BjiSi1 ≥ BjmSm1 (∗)

whenever j ≥ l + 1 and for all B ∈ S, where the inequality in (∗) is due to

the nonnegativity of the matrices. Thus, Bjm = 0 whenever j ≥ l + 1 and

1 ≤ m ≤ l. This implies that the standard basis vectors, indexed {1, . . . , l}
span an invariant subspace of S.

We now have that S is decomposable and so after a permutation of the

basis, each S ∈ S is of the form:

S =

(
A B

0 C

)
.
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The (i, i) entry occurs in either A or C. Without loss of generality assume

it occurs in A. Note that the set of all matrices A as S runs through S
forms a semigroup which we denote F , and φi|F is clearly submultiplicative.

Therefore, F is decomposable. We can repeat this procedure for whichever

decomposed block contains the (i, i) entry until that block is 1 × 1 and the

stated block form for S is obtained.

Corollary 2.3. A semigroup S of nonnegative matrices is completely decom-

posable if and only if every ϕi is submultiplicative on it.

Proof. If S is completely decomposable, then every ϕi is clearly multiplicative

and thus submultiplicative on it. If every ϕi is submultiplicative on S, then

proceeding by induction on Lemma 2.2 yields the result.

Corollary 2.4. Let A be a nonnegative matrix such that every positive power

of A has at least one diagonal entry equal to 0. Then A is decomposable and

has 0 as an eigenvalue.

Proof. If we apply the previous lemma (2.2) to the semigroup generated by A,

denoted S, then it suffices to show that φi(A
m) = 0 for some i and all positive

m, since this functional being constantly zero implies its submultiplicativity.

We will proceed by contradiction. Suppose that for each i there is an mi

such that φi(A
mi) 6= 0. Recall from the proof of Lemma 2.2 that φi(AB) ≥

φi(A)φi(B) for any nonnegative matrices. Thus, for any positive integer, r,

φi(A
rmi) ≥ (φi(A

mi)r).

Let m = m1 . . .mn so that

φi(A
m) ≥ (φi(A

mi))m/mi > 0

for all i. This contradicts the hypothesis, and so φi(A
m) = 0 for some i and

all positive m. Now using Lemma 2.2, we can decompose S into the form
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stated in the lemma which implies that A is decomposable with zero as an

eigenvalue.

An ideal, J , of a semigroup S is a subsemigroup, such that SJ and

JS are in J for all S ∈ S and J ∈ J . A nonnegative linear functional

is a linear functional which when acting on nonnegative elements (such as

nonnegative matrices), returns nonnegative real numbers. The next lemma

is from Marwaha [10], except for part (vi) which is an obvious equivalence

of (iii). This Lemma will be very useful when studying indecomposable

semigroups, as we will have the negation of each of these equivalences.

Lemma 2.5. For a semigroup S of nonnegative matrices, the following are

mutually equivalent:

(i) S is decomposable;

(ii) ASB = {0} for some nonzero nonnegative matrices A and B;

(iii) for some fixed i and j, the (i,j) entry of every member of S is zero;

(iv) every sum of members of S has a zero entry;

(v) some nonzero ideal of S is decomposable;

(vi) some nonzero, nonnegative linear functional is zero on S.

Proof. (i) ⇒ (ii): Suppose S is decomposable. Then after a permutation,

each matrix in S has simultaneous 2× 2 block upper-triangular form where

the (2, 1) block is zero. The block matrices

A =

(
0 0

0 I

)
B =

(
I 0

0 0

)

give ASB = 0 for each S ∈ S. Thus, ASB = {0}.
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(ii) ⇒ (iii): Since A and B are nonzero, Ah,i 6= 0 for some h, i and

Bj,k 6= 0 for some j, k. Since ASB = 0 for all S ∈ S and A and B are

nonnegative, a simple calculation shows that Si,j = 0 for all S ∈ S, implying

(iii).

(iii)⇒ (iv): This is immediate.

(iv)⇒ (iii): Let S be a sum of members of S such that it has a minimal

number of zero entries. We know that it must have at least one zero entry

by hypothesis, say (i, j). This means that every S ∈ S must have a zero in

the (i, j) entry since otherwise adding it into the sum would contradict the

minimality of S.

(iii) ⇒ (i): Assume Si,j = 0 for all S ∈ S. If i = j, then we are done

by Lemma 2.2, so assume i 6= j. We can assume, after a permutation, that

it is the (n, 1) entry. Let J be the maximal subset of (1, . . . , n) such that

Si,1 = 0 for all i ∈ J and that after a permutation, J = {k + 1, . . . , n}. By

the maximality of J , for each 1 ≤ j ≤ k, we can find a T ∈ S such that

Tj,1 6= 0. Then, for l ≥ k + 1, and 1 ≤ j ≤ k,

0 = (ST )l1 =
n∑
i=1

SliTi1 ≥ SljTj1

and hence Slj = 0 for all l with l ≥ k + 1 and all j with 1 ≤ j ≤ k. Thus, S
is decomposable.

(i)⇒ (v): This is immediate.

(v)⇒ (iii): Assume (v), and let J be a decomposable nonzero ideal of S.

Then, after a permutation, J has simultaneous k× k block upper-triangular

form in which the blocks under the diagonal blocks are zero, where we assume

that the constantly zero rows appear at the bottom of the matrices and that

J cannot be further decomposed. Suppose the first column of J is zero for

all J ∈ J . Then, JS ∈ J has its first column zero for all S ∈ S. We can

assume that some J ∈ J has its i-th entry in its first row is nonzero. Then

multiplying on the right by S ∈ S gives that 0 = (JS)11 ≥ J1iSi1. Since

11



J1i 6= 0, Si1 must be zero for all S ∈ S. Now suppose that the first column is

not zero. Pick J ∈ J such that the (1, 1) entry is nonzero. We can find such a

J since each block on the diagonal of J is indecomposable (since by part (iii)

of this Lemma, we know that no fixed entry of an indecomposable semigroup

can be constantly zero). Since J is an ideal, we have that SJ ∈ J for all

S ∈ S. Note that for all J ∈ J , Jn,1 = 0. Thus 0 = (SJ)n,1 = Sn,iJi,1 ≥
Sn,1J1,1 which means that Sn,1 = 0 for all S ∈ S. Thus, we have (iii).

(vi) ⇔ (iii): Assume (vi). Let φ be a nonzero nonnegative linear func-

tional that is zero on every member of S. Let S ∈ S. φ(S) =
∑

i,j aijSij

where each aij is nonnegative and at least one is nonzero. Let ars be nonzero.

Since 0 = φ(S) ≥ arsSrs, we have that Srs = 0. This must hold for all S ∈ S
and so the (r, s) entry of each S ∈ S is zero. Assume (iii) and let the (i, j)

entry be the one that is constantly zero. Then the linear functional which

returns the value of the (i, j) entry of the matrix it acts upon is a non-zero,

nonnegative linear functional which is zero on S.

The following lemma can be found in Berman-Plesmmons [1]. This

Lemma will be used throughout the remainder of the exposition.

Lemma 2.6. Let E be a nonnegative idempotent of rank r.

(i) If E has no zero rows or columns, then there exists a permutation

matrix P such that P−1EP has the block-diagonal form

E1 ⊕ · · · ⊕ Er,

where each Ei is an idempotent of rank one whose entries are all positive.

(ii) In general, there exists a permutation matrix P such that P−1EP has

the block-triangular form

E =

 0 XF XFY

0 F Y

0 0 0
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where F = E1 ⊕ · · · ⊕ Er as in (i) and where X and Y are nonnegative

matrices.

Proof. (i): If E has rank one, then E = xy∗ where x and y are nonnegative

column vectors with y∗x = 1. The last condition is simply the requirement

that the tr(E) = 1. A simple calculation shows that if x had a zero entry,

then E would have a zero row, and if y had a zero entry, then E would have

a zero column. Thus x and y must be positive vectors (more precisely, each

entry must be nonzero and the i− th entry of x must have the same sign as

the i−th entry of y), which means that the entries of E must too be positive.

We will prove the result by induction on the rank of E, which we will denote

by r.

We claim that if r ≥ 2, then there is a nonnegative vector in the range of

E with at least one zero entry. Since E is at least rank 2, we can pick two

linearly independent columns, x and y. If either x or y has a zero entry, we

are done, and so assume both are positive vectors. Let yj/xj = maxi{yi/xi}
and let z = yjx − xjy. The j-th entry of z is clearly zero and z is nonzero

since x and y are linearly independent. Note also that z is nonnegative by

the way that we picked our yj and xj. Ez = E(yjx)−E(xjy) = yjx−xjy = z

and so we have proven our claim.

Now we will show that if r ≥ 2, then E is decomposable. From above,

we know that E has a nonzero vector with a zero entry in its range. Let

z = (z1, . . . , zn) be such a column vector with a maximal number of zero

entries, and permute the basis so that z1 ≥ . . . zs > zs+1 = · · · = zn = 0.

Recall that E and z have nonnegative entries. Thus the equation Ez = z

implies that the (i, j) entry of E is zero for all i ≥ s+ 1 and all j ≤ s (if this

were not the case, then Ez would be nonzero for some entry which is zero for

z) and so the span of the first s basis vectors is an invariant subspace under

E. Therefore, E is decomposable.
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Since E is decomposable, we can assume after a permutation that

E =

(
A B

0 C

)
,

where A and C are idempotents whose rank is less than r. Since E has no

zero rows or columns (and permutations do not create or destroy zero rows

or columns), A has no zero columns and C has no zero rows. Observe that

E2 =

(
A2 AB +BC

0 C2

)
,

which implies that AB + BC = B (as well as A2 = A and C2 = C, which

proves the statement above that A and C are idempotents). Multiplying this

equation on the left by A and the right by C gives 2ABC = ABC which

implies ABC = 0. Since A has no zero columns, A(BC) = 0 implies that

BC = 0. Now, since BC = 0, and C has no zero rows, B = 0.

Since B = 0, A cannot have any zero rows, and C cannot have any zero

columns. Thus, A and C satisfy the hypothesis of (i), and so we can continue

to decompose A and C until each block is rank 1. At this point, the nonzero

blocks will be on the diagonal, and they will be positive since they are each

rank 1. Therefore, after a permutation, E is in the stated form.

(ii): We can assume that, after a permutation

E =

 0 X Z

0 F Y

0 0 0

 ,

where the first m columns are exactly the zero columns, and all the zero

rows numbered higher than m are at the end. E2 = E gives that F 2 = F ,

XF = X, Z = XY and FY = Y . Combining the last two gives Z = XFY .

If F had a zero row, then Y = FY would have the same zero row. Likewise,

if F had a zero column, then X = XF would have the same zero column.

This would mean that E would have another zero row or column, but we
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have assumed that all zero columns and the rows numbered higher than m

have been account for by the first permutation, so this is a contradiction.

Thus, the idempotent F has no zero rows or columns, and is thus, after a

permutation, the direct sum of positive rank-one idempotents as shown in

(i).

The next corollary comes from Radjavi [12].

Corollary 2.7. Let E be a nonnegative idempotent matrix of rank r. Then

there exists r columns x1, · · · , xr of E whose nonnegative linear combinations

include all columns of E. In the special case where E has no zero columns

or rows, every column of E is a positive multiple of some xi, with 1 ≤ i ≤ r.

Proof. Assume first that E has no zero rows or columns. Then, we can

decompose E as in Lemma 2.6 such that E = E1 ⊕ · · · ⊕ Er where each Ei

has rank 1. Then, define xi as the column of E which corresponds to the

first column of Ei. Since each column of Ei is a positive multiple of its first

column, the {xi} defined above span the columns of E.

Now consider the case where E has a zero row or column. From Lemma

2.6(ii), we know that

E =

 0 XF XFY

0 F FY

0 0 0


where F = E1 ⊕ · · · ⊕ Er and where X and Y are nonnegative matrices.

Consider the block decomposition of the block column

 XF

F

0

 =



X1E1 X2E2 · · · XrEr

E1 0 · · · 0

0 E2 · · · 0
... 0

. . .
...

...
... 0 Er

0 0 0 0


,
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where {X1, . . . , Xr} is the decomposition of X conforming to the decomposi-

tion, F = E1⊕ · · ·⊕Er. Recall that each column of Ei is a positive multiple

of the first column of Ei. The rows of XiEi are nonnegative linear combina-

tions of the rows of Ei and so each column is a multiple of the first column

of Ei as well. Thus, each column of the block column

XiEi

0
...

Ei

0
...

0


is a multiple of the first column of this block. Note that the columns of XFY

FY

0


are all nonnegative linear combinations of the columns of XF

F

0

 .

Each xi can therefore be chosen to be the first column of the i-th of these

block columns.

This next Lemma is important in the proof of Lemma 3.4, and is found

in Radjavi [13].

Lemma 2.8. If G is a group of invertible nonnegative matrices, then every

member of G has exactly one nonzero entry in each of its rows and columns.
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Furthermore, if G is bounded, then there is a diagonal matrix D with positive

entries such that D−1GD is a group of permutation matrices.

Proof. Since every member in G is invertible, each row and column of must

contain at least one nonzero entry. Suppose, for a contradiction, that some

G ∈ G had two nonzero entries in one row. Without loss of generality, we

can assume that it occurs in row 1, so G1i 6= 0 6= G1j. Since G is a group,

G−1 exists. Note that (G−1)ik and (G−1)jk must be zero for all k ≥ 2,

since otherwise, I = GG−1 would have nonzero entries occurring off of the

diagonal. But, then the i-th and j-th row of G−1 would be linearly dependent

and this implies that the rank of G−1 is less than n. This is a contradiction.

The proof for columns is similar and so each member of G must have exactly

one nonzero entry in each row and column.

Now for the second part of the proof, assume G is bounded. We claim

that this implies that ρ(G) = 1 for all G ∈ G (ρ(G) is the spectral radius

of G). First, suppose for a contradiction that ρ(G) > 1. Then, there is

an eigenvalue, λ, of G such that |λ| > 1. Then, λk is an eigenvalue of

Gk. Let vo be the eigenvector corresponding to the eigenvalue λ. ‖Gk‖ =

sup0 6=v∈V{‖Gk(v)‖/‖v‖} ≥ ‖Gk(vo)‖/‖vo‖ = |λk| = |λ|k. Thus, the norm of

Gk is unbounded which is a contradiction. If ρ(G) < 1, then ρ(G−1) > 1

and so the same argument can be used again to show that this is impossible.

Thus, ρ(G) = ρ(G−1) = 1 for all G ∈ G.

The only diagonal element in G is I, since otherwise if D 6= I were

diagonal, then ρ(D) or ρ(D−1) would be greater than 1. Since each member

G ∈ G has only one nonzero entry in each row and column, some power of G

must be diagonal which means that any diagonal entry of G must be 1. Thus,

for each G ∈ G, there exists a k such that Gk = I. After a permutation,

members of G thus have the form,

G = G1 ⊕ · · · ⊕Gm,

where Gi ∈ Gi and Gi is an indecomposable group. If we now prove the lemma

for an indecomposable group, we will be done, since if Di is a diagonal matrix
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such that D−1
i GiDi is a permutation group for each i, then D = D1⊕· · ·⊕Dm

is a diagonal matrix with the desired property for the group G.

Assume G is indecomposable. First, note that each (i, j) entry of G can

take only one nonzero value as G is varied over G. To show this, suppose

G1 and G2 have different nonzero values in their (i, j) entry. This means

that G−1
1 and G−1

2 will have different (j, i) entries. Then, the i-th diagonal

entry of G1G
−1
2 will be (G1)ij(G

−1
2 )ji, which is neither 0 nor 1, and this is

a contradiction. By Lemma 2.5(iii), we know that there is no entry that

is zero for all G ∈ G, and so for each i, there is a Gi ∈ G such that the

i-th coordinate, pi, in the first column is nonzero. Let D = diag(p1, . . . , pn).

Note that p1 = 1 since p1 is on the diagonal of G1 and any element on the

diagonal must be 1 as was shown above. Now, the nonzero element, in the

i-th position of the first column of D−1GD is 1/pi · pi · 1 = 1 for each G.

Therefore, the nonzero element in the first row of each D−1GD must also be

1, since otherwise, we would have an element on the diagonal that is neither

0 nor 1. Let Gij = c be nonzero for some G. Then, there exists S and T

such that S1i 6= 0 and Tj1 6= 0 and so

1 = (SGT )11 = S1iGijTj1 = 1 ·Gij · 1 = c.

This implies that every entry of D−1GD is either 0 or 1 for all G ∈ G.

The next result first appeared in Radjavi [15].

Lemma 2.9. Let A be a nonzero nonnegative matrix and assume that A

has at least one zero column or row. Let S be the semigroup of nonnegative

matrices that commute with A. Then S is decomposable.

Proof. If A has a zero row, then A∗ has a zero column and commutes with

the members in semigroup S∗ of nonnegative matrices. Thus, without loss

of generality, we can assume that A has a zero column. Now, permute the
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basis so that

A =

(
0 B

0 C

)
where the first m columns displayed above are the only zero columns of A.

Let S ∈ S, where we express S in the same block decomposition as A. The

equation AS = SA for all S ∈ S implies that

BS21 = CS21 = 0, (∗)

where S21 is the (2, 1) block of S. If S21 is zero for all S we are done, and so

assume S21 6= 0. Then, S21 has a nonzero entry, say the (r, k) entry of this

block. Then, the nonnegativity of B and C and equation (∗) imply that

0 = (BS21)ik =
∑
j=1

Bij(S21)jk ≥ Bi,r(S21)r,k,

which means that Bi,r = 0 for all i, and so the r-th column of B is zero.

Likewise, the r-th column of C is zero. However, this is a contradiction,

because it implies that A has a zero column other than those exhibited above.

Therefore, S21 = 0 for all S ∈ S, and so S is decomposable.

Definition 2.10. A band is a semigroup that consists only of idempotents.

Example 2.11. A good example of a band is the semigroup consisting of all

the matrices which have a single column of 1’s and all other entries zero.

Each element is a rank one idempotent, and the product of any two gives one

back.

This next theorem on bands is another result from Marwaha [10].

Theorem 2.12. Let S be a band of nonnegative matrices, and denote the

minimal rank of members of S by r. If r > 1, then S is decomposable. In

fact, there exists a permutation P such that P−1SP has an r×r block-upper-

triangular form.
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Proof. Suppose r > 1 and let Q be a rank-r member of S. By Lemma 2.6,

there is a permutation of the basis such that

Q =

(
Q1 X

0 Q2

)
,

where Q1 and Q2 are idempotents of positive rank less than r. Now, for any

S ∈ S, QSQ is a rank r idempotent with the same range and kernel as Q.

This implies that QSQ = Q. Consider the block form of S that corresponds

to the block form of Q given above,

S =

(
S11 S12

S21 S22

)
,

Then, QSQ = Q implies that Q2S21Q1 = 0. Then,(
0 0

0 Q2

)(
S11 S12

S21 S22

)(
Q1 0

0 0

)
= 0,

for all S ∈ S which implies that S is decomposable by Lemma 2.5.

We now want to show that under a suitable permutation, S exhibits a

simultaneous r× r block-upper-triangular form. We have shown S is decom-

posable, and so we can assume that every S ∈ S is of the form,

S =

(
S1 X

0 S2

)
,

where S2 = S tells us that S2
1 = S1 and S2

2 = S2. Let S and T be members

of S. Each has the form of S above, and since ST is also an idempotent, we

can see that S1T1 and S2T2 are idempotents. Therefore, the set of matrices

S1 for S ∈ S is a band which we will denote S1. Similarly, the set of matrices

S2 for S ∈ S is a band which we will denote S2. We will next show that

r = r1 + r2, where r1 and r2 are the minimal ranks of S1 and S2 respectively.

Once we have shown this, then by induction we can continue to decompose

whichever of the Si has rank minimal rank greater than 1, until the desired
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block decomposition is achieved. That r ≥ r1 + r2 is clear. To show the

reverse inequality, let S and T be members of S, such that the rank of S1 is

r1 and the rank of T2 is r2. S2 6= 0 6= T1, since otherwise, SQ or TQ would

have rank less than r. Note that an idempotent’s rank is equal to its trace,

and so we have

r ≤ rank(ST ) = tr(ST ) = tr(S1T1) + tr(S2T2)

= rank(S1T1) + rank(S2T2) = rank(S1) + rank(T2) = r1 + r2,

which completes the proof.
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Chapter 3

The Structure of

Indecomposable Semigroups

In this chapter, we extend the Perron-Frobenius Theorem to the general

case of indecomposable semigroups of nonnegative matrices with a certain

condition on the minimal idempotents. If the Perron-Frobenius Theorem is

viewed as a result about singly generated semigroups, it turns out that the

uniqueness of the minimal idempotent is what makes it work. The uniqueness

of the range of the minimal idempotents turns out to be sufficient for many

of the theorem’s results, which is the main result of the section. The results

in the section are an expansion of the material in Radjavi [13]. The beautiful

Perron-Frobenius Theorem was first proven in Perron [11] for matrices with

positive entries, and generalized by Frobenius [4] to nonnegative matrices.

Here is a statement of the Perron-Frobenius Theorem, which will be re-

stated and proven later. Some expressions may not be defined yet, but will

be shortly.

Corollary 3.1. The Perron-Frobenius Theorem Let A be an indecom-

posable nonnegative matrix with ρ(A) = 1. Denote by r the minimal rank of

nonzero members of R+S, where S is the semigroup generated by A. Then

the following hold:
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(i) The sequence {Arj}∞j=1 converges to an idempotent E of rank r;

(ii) if r > 1, there is a permutation matrix P such that P−1AP has the

block form 
0 0 · · · 0 Ar

A1 0 · · · 0 0

0 A2 · · · 0 0
...

...
...

...

0 0 · · · Ar−1 0


(with square diagonal blocks);

(iii) there is a positive column vector x, unique up to scalar multiple, such

that Ax = x;

(iv) the set {λ ∈ ρ(A) : |λ| = 1} consists precisely of all the r-th roots of

unity; each member of the set is a simple eigenvalue;

(v) σ(A) is invariant under the rotation about the origin by the angle 2π/r;

(vi) 1 is dominant in σ(A) if and only if some power of A has all its entries

positive. This occurs precisely when {Aj} is convergent.

We will now present a few lemmas which will be useful in the generaliza-

tions.

Lemma 3.2. Let S be a semigroup of nonnegative matrices and let E be a

nonnegative idempotent of rank r (not necessarily in S). Then

(i) relative to some basis x1, · · · , xr of EV, every operator in the collection

ESE|EV has a nonnegative matrix, and

(ii) this representation of ESE|EV is indecomposable if S is indecompos-

able.
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Proof. (i): Since E has rank r, by Corollary 2.6, there exists r linearly inde-

pendent columns, x1, . . . , xr, such that every column of E is a nonnegative

linear combination of these {xi}. This is a basis of EV , since the range of E

is equal to the column space of E. Let ETE ∈ ESE. Then ETExi = ETxi

and ETxi is a nonnegative linear combination of the columns of E. Thus

ETExi = a1x1+· · ·+arxr where aj ≥ 0. This is true for all i and so ETE|EV
is nonnegative with respect to the basis {xi}.

(ii): Since S is indecomposable, Lemma 2.5 implies that there exists

S1, . . . , Sk in S such that T = S1 + · · ·+Sk has all positive entries. Consider

ETE|EV = (ES1E+ · · ·+ESkE)|EV . ETExi = ETxi and since T is positive

and xi 6= 0, Txi = yi is a positive vector. Thus, ETExi = Eyi is a positive

linear combination of the columns of E. This is true for all i so ETE|EV
in the basis {xi} has all positive entries. (ES1E + · · · + ESkE)|EV is thus

a sum of matrices in ESE|EV that has no zero entry and so by Lemma 2.5,

ESE|EV is indecomposable.

Definition 3.3. A nonzero idempotent E in a semigroup S is called minimal

if EF = FE = F for any idempotent F ∈ S implies that either F = E or

F = 0.

Before we proceed with the next Lemma, we need one more definition.

If S is a semigroup of matrices, it will be useful to consider all positive

scalar multiples of members in S, since then we can make assumptions such

as ρ(S) = 1 for any S with a desired property. Also, it is useful to be

able to assume that our semigroup is closed, so that we may assume in

convergent sequences of powers that the limit is in our semigroup. Thus, let

R+S = {cS : c ∈ R+, S ∈ S} so that R+S is the closure of the preceding

set in the norm topology. The next Lemma is extremely useful in the rest

of this section, and also in the next chapter, where part (iv) will be used to

help prove that certain semigroups are finite.

Lemma 3.4. Let S be an indecomposable semigroup of nonnegative matrices
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such that S = R+S and let r be the minimal rank of nonzero members of S.

Then the following hold:

(i) an idempotent E ∈ S is of rank r if and only if it is minimal;

(ii) for each A of rank r in S there is a minimal idempotent F ∈ S with

FA = A;

(iii) for each i there exists a minimal idempotent in S whose i-th row is

nonzero, and the same assertion is true for columns;

(iv) if E is a minimal idempotent in S, then ESE \ {0} is a group with

identity E. The set

{ESE : S ∈ S, ρ(ESE) = 1}

is a subgroup whose restriction G to the range of E is simultaneously

similar, via a diagonal matrix, to a transitive group of permutation

matrices.

Proof. (i): Let E be an idempotent of rank r and let F be an idempotent

such that EF = FE = F . Then the range of F is contained in that of E

and the kernel of E is contained in that of F . If there were an element xo in

the kernel of F which is not in the kernel of E, then the rank of F would be

strictly less than that of E which implies that F = 0 since E has minimal

nonzero rank. Likewise, if there were an element yo in the range of E that

is not in the range of F , then the rank of E would be strictly greater than

that of F which implies F = 0. Thus, if F 6= 0, then E and F have the same

kernel and range and are thus equal. Hence, E is minimal.

Now suppose E is minimal. Let the rank of E be s ≥ r. Let Sr be the

ideal of all elements with rank r or 0. Sr is indecomposable by Lemma 2.5

and so ESrE|EV is nonnegative and indecomposable with respect to the basis

x1 . . . xr (where {xi} are the vectors as in Lemma 3.2). Now, we only need

to show that there exists a nonzero idempotent F ∈ ESrE. Then, we will
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have that EF = FE = F , which will imply that E = F since E is minimal

(and so E is rank r).

Since ESrE is indecomposable, Lemma 2.1 implies that it must contain

a non-nilpotent element, A. We can assume ρ(A) = 1 since S = R+S. Now,

since r is the minimal rank in S, we know that every element in {Ak : k ∈ N}
has rank r. The proof of the existence of this idempotent does not require

nonnegativity, and so we will assume that A is in its Jordan form, and that

A =

(
B 0

0 C

)

where σ(B) lies on the unit circle and σ(C) lies inside the unit circle. Note

that since ρ(C) < 1, limn→∞ ‖Cn‖ = 0. Now, since we have assumed that A

is in Jordan form, B = U +N where U |EV is unitary, N |EV is nilpotent and

UN = NU . Note that the rank of N must be strictly less than that of B

which can be seen easily by visualizing the Jordan form of B.

Claim: N = 0 and C acts on the zero dimensional space. To show this,

let k ∈ N such that Nk 6= 0 and Nk+1 = 0. Now for n > k, the binomial

expansion yields

(U +N)n = Un +

(
n

1

)
Un−1N + · · ·+

(
n

k

)
Un−kNk

since Nk+j = 0 for all j ≥ 1. Since U is unitary, some subsequence of Un

converges to I. Pick the subsequence nj such that Unj−k → I. If k 6= 0,

divide both sides by

(
n

k

)
to get

lim
j→∞

(U +N)nj(
nj

k

) = lim
j→∞

Unj−kNk = Nk.
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Since limn→∞ ‖Cn‖ = 0,

lim
j→∞

Anj(
nj

k

) =

(
Nk 0

0 0

)

which is a contradiction since Nk has rank strictly less than r (even if k=1).

Thus, k = 0 which implies N = 0. Thus, C must act on the zero dimensional

space, since otherwise limj→∞A
nj would have nonzero rank strictly less than

r. Thus, A|AV is in fact unitary and so there is a subsequence nk such that

Ank converges to an idempotent, F, completing the proof.

(ii): It suffices to show that given A ∈ S, there exists B ∈ S such that A

and B have the same range and B is not nilpotent. Once we have such a B,

we can assume that ρ(B) = 1 since S = R+S, and then apply the method in

part (i) to obtain an idempotent with the same range as B.

Consider the ideal SAS. We know that AS 6= {0} since otherwise S
would be decomposable by Lemma 2.5. Thus, pick T ∈ S such that AT 6= 0

and note that the same lemma implies that SAT 6= 0 and so SAS 6= {0}.
By Lemma 2.5, this ideal is indecomposable. Thus, by Lemma 2.1, every

element in SAS cannot be nilpotent and so there exists S1 and S2 in S such

that S1AS2 is not nilpotent.

Claim: σ(AS2S1) = σ(S1AS2). Suppose a nonzero λ is not an eigenvalue

of AS2S1. Then λI − AS2S1 is invertible. A simple calculation shows that
1
λ
S1(λI−AS2S1)

−1AS2 + 1
λ

is the inverse of λI−S1AS2 and so if λ 6= 0 is not

an eigenvalue of one then it is not an eigenvalue of the other. Now, S1AS2 is

invertible if and only if both S1 and AS2 are, so 0 is an eigenvalue of S1AS2

if and only if it is an eigenvalue of AS2S1 too. Thus, the claim holds.

Therefore, we have that σ(AS2S1) = σ(S1AS2) 6= {0}. Letting B =

AS2S1 and using (i) gives us an E such that EB = B, and so EA = A too.

(iii): Recall the indecomposable ideal Sr from (i). There exists an A ∈
Sr such that the i-th row is nonzero by Lemma 2.5 and there exists an
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idempotent, E, such that EA = A from (ii). The i-th row of E must be

nonzero, since otherwise the range of E would not be the same as the range

of A. Consider S∗, which is clearly an indecomposable semigroup. Define

similarly the indecomposable ideal, S∗r . Then pick B∗ ∈ S∗r such that the

i-th row is nonzero. Then, again we have an idempotent F ∗ ∈ S∗r such that

F ∗B∗ = B∗. Then, the i-th row of F ∗ must be nonzero. Note that F ∗ is an

idempotent if and only if F is. Thus, F = (F ∗)∗ ∈ Sr has its i-th column

nonzero.

(iv): E is clearly an identity on ESE. We will prove later that {ESE|EV :

S ∈ S, ρ(ESE) = 1} is a group and so for now, we will assume it. If

ETE ∈ ESE \ {0} such that 0 6= ρ(ETE) = c, then 1
c
ETE ∈ {ESE : S ∈

S, ρ(ESE) = 1} and so it has an inverse, ERE. Then,

(
1

c
ETE)(ERE) = (ETE)(

1

c
ERE) = E

and so (1
c
ERE) is the inverse of ETE. We claim that for all A and B in

ESE\{0}, AB 6= 0. Let x1, . . . , xr be the r linearly independent columns

of E obtained in Corollary 2.6. From Lemma 3.2, ESE|EV with respect to

the basis, x1, . . . , xr, is still nonnegative and indecomposable. EV is an r-

dimensional subspace and every element in ESE|EV is rank r. Thus, each

member must have r nonzero eigenvalues, and so the product of any two

will also. Therefore, the rank of AB is r for any A and B in ESE. Thus,

ρ(S) 6= 0 for all S ∈ ESE. Thus, if {ESE|EV : S ∈ S, ρ(ESE) = 1} is a

group, then so is ESE \ {0}.

We will now show that {ESE|EV : S ∈ S, ρ(ESE) = 1} is a semigroup.

Let S ∈ S with ρ(ESE) = 1. Since ESE has minimal rank and is not

nilpotent, we can apply the same argument as applied to the matrix A in the

proof of (i), to deduce that ESE|EV is in fact similar to a unitary operator.

Let A,B ∈ G which means that ρ(A) = 1 = ρ(B). Clearly, ρ(AB) ≥ 1 since

otherwise 1 > |det(AB)| = |det(A)||det(B)| = 1, a contradiction. Suppose

ρ(AB) > 1. Then, since |det(AB)| = 1, σ(AB) must contain elements which

have modulus less than 1. Using the argument applied to the matrix A in (i)
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to the operator AB/ρ(AB) will result in a nonzero element of rank strictly

less than r which is a contradiction. Thus ρ(AB) = 1 and so G is a semigroup.

We now need to show that ESE ∈ G has an inverse. Since ρ(ESE) = 1,

there is a sequence {mi} such that

E = lim
i→∞

(ESE)mi = lim
i→∞

(ESE)(ESE)mi−1 = (ESE) lim
i→∞

(ESE)mi−1.

Thus, (ESE) thus has an inverse in G which is limi→∞(ESE)mi−1, and so G
is a group.

To complete (iv), we must show that G is simultaneously similar, via

a diagonal matrix, to a transitive group of permutations matrices. As in

Lemma 2.7, let x1, . . . , xr be the r independent columns of E whose span

contains all of the columns of E. From Lemma 3.2, G is nonnegative and

indecomposable relative to this basis. We claim that G is bounded. Sup-

pose for a contradiction, that there exists a sequence, {An} in G such that

limn→∞ ‖An‖ =∞. Note that ‖(An)/‖An‖‖ = 1 for all n, and so the bounded

sequence limn→∞ ‖(An)/‖An‖‖ has a subsequence which converges to some

element, A. Since ρ(An) = 1 for all n, ρ(A) = 0 by the continuity of the

spectral radius. Thus A is nilpotent, which is a contradiction and so G is

bounded. All of the conditions of Lemma 2.8 are satisfied, and we may apply

it to complete the proof.

Definition 3.5. A right ideal of a semigroup S is a subset J such that

JS ∈ J for all J ∈ J and S ∈ S. A minimal right ideal is a nonzero right

ideal that contains no other nonzero right ideal.

Lemma 3.6. Let S = R+S be an indecomposable semigroup of nonnegative

matrices. The following hold:

(i) Every nonzero right ideal of S contains a minimal right ideal;

(ii) Every minimal right ideal is of the form ES for some minimal idem-

potent E ∈ S.
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Proof. Let J be a right ideal of S. Let r be the minimal nonzero rank of

elements in S and let Sr be the ideal of all elements of rank r or 0. Pick a

nonzero S ∈ Sr and note that J S 6= {0} by Lemma 2.5 parts (v) and (ii),

and so we can assume that there is an element, So in J of rank r. By Lemma

3.4(ii), we know there exists a minimal idempotent E such that ESo = So.

Furthermore, from part (iv) of that same lemma, ESE \ {0} is a group

and so there exists a EToE ∈ ESE such that (ESoE)(EToE) = E. Thus,

E = (ESoE)(EToE) = (ESoEToE) = (So)(EToE) ∈ J and so ES ⊂ J .

To complete the proof of (i), we need to show that if E is a minimal

idempotent, then ES is a minimal right ideal. Suppose K is a nonzero right

ideal contained in ES. From above, we know that there exists a minimal

idempotent F such that F ∈ FS ⊂ K ⊂ ES. Thus, F = EA for some A ∈ S
which means that E and F have the same range. Since these idempotents

have the same range, and each acts like the identity on the other’s range,

they satisfy FE = E (and EF = F ), and so ES = FES ⊂ FS ⊂ K ⊂ ES
and so ES = K, meaning ES is minimal. This also proves (ii) since every

minimal right ideal will contain (and thus be equal to) an ideal of the form

ES for some minimal idempotent.

Lemma 3.7. Let S be an indecomposable semigroup of nonnegative matrices

and let E denote the set of all minimal idempotents in R+S. The following

conditions are mutually equivalent:

(i) EF = F for every E and F in E (i.e., all minimal idempotents have

the same range);

(ii) all nonzero minimal-rank members of S have the same range;

(iii) SE = ESE for some E ∈ E;

(iv) SE = ESE for all E ∈ E;

(v) SE ⊂ ES for some E ∈ E;
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(vi) SE ⊂ ES for all E ∈ E;

(vii) S leaves the range of some E ∈ E invariant;

(viii) S leaves the range of every E ∈ E invariant;

(ix) some minimal right ideal is an ideal;

(x) every minimal right ideal is an ideal;

(xi) S has a unique minimal right ideal.

Proof. (i)⇔ (xi): Assume (i). Let J be a minimal right ideal. Then, from

Lemma 3.6, J = ES for some minimal idempotent E. But, FE = E for

any minimal idempotent F ∈ S and so ES = FES ⊂ FS but FS is also

a minimal right ideal and so ES = FS. Thus (i) implies (xi). Assume

(xi). Then ES = FS for all minimal idempotents E and F in S, and so

ES = EFS = FS and so EF = F . Thus, (i) and (xi) are equivalent.

(i)⇔ (ii): Assume (i). Let S and T be nonzero, minimal rank members

of S. Then, ES = S and FT = T for some minimal idempotent E and F in

S by Lemma 3.4(ii). Since EF = F by hypothesis, T = FT = EFT = ET

and so S and T have the same range. (ii) implies (i) immediately.

(ii)⇒ (iv): If E ∈ E , then since every nonzero member of SE is minimal

rank, they all have the same range as E. Thus SE = ESE.

(iv)⇒ (vi): This is immediate.

(vi)⇒ (viii): This is also immediate.

(viii)⇒ (x): Let ES be a minimal right ideal. Since S leaves the range of

E invariant, we have that SE = ESE for all S ∈ S and so SES = ESES ⊂
ES ⊂ SES. Thus SES = ES.

(x) ⇒ (xi): Let E and F be two minimal idempotents. ESF 6= 0 by

Lemma 2.5(ii) and so we can pick an A ∈ S such that EAF 6= 0. EAFS
is a right ideal and EAFS ⊂ ES. Since ES is minimal, EAFS = ES.
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By hypothesis, FS is not only a right ideal, but an ideal, so that ES =

(EA)FS ⊂ FS. Since FS is minimal, ES = FS, and so S has a unique

minimal (right) ideal.

(ix) ⇒ (v): Suppose ES is an ideal. Then, SES = ES and so SE ⊂
SES = ES.

(v)⇒ (vii): This is immediate.

(vii)⇒ (iii): This is immediate.

(iii)⇒ (ix): This is immediate.

(x)⇒ (ix): This is immediate.

(ix) ⇒ (i): Let ES be the ideal and let F ∈ E . We know there exists

a T ∈ S such that FTE 6= 0 by Lemma 2.5, and then FTE has the same

range as F since both are the same rank. Then FTE ∈ SE ⊂ SES = ES,

and so the ranges of E and F are the same.

This next result will be very useful in the proof of the main result of this

section, the generalization of the Perron-Frobenius Theorem.

Lemma 3.8. Let S = R+S be an indecomposable semigroup of nonnegative

matrices satisfying one, and thus all of the conditions in Lemma 3.7. If R
be the common range of the minimal idempotents in S, then

(i) there exists a nonnegative idempotent P with range R in the closed

convex hull of S that has no zero rows or columns and satisfies

S|R = PSP |R

;

(ii) the only nilpotent element of S is zero, and
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(iii) the spectral radius is multiplicative on S, so that

So = {S/ρ(S) : 0 6= S ∈ S}

is a sub-semigroup on which ρ is identically one.

Proof. (i): We know from Lemma 3.4 that there exists minimal idempotents

E1, . . . , En such that the i-th column of Ei is nonzero for each i. If any row

of an Ei were zero, then it would be zero for all minimal idempotents since

all minimal idempotents have the same range. But, by Lemma 3.4, we know

that for each j, there exists a minimal idempotent whose j-th row is nonzero.

Thus, no minimal idempotent has a zero row.

Consider P = (E1 + · · ·+ En)/n. Since every Ei has the same range, we

have that EiEj = Ej and so P 2 = (nE1 + · · · + nEn)/n = P . Thus P is an

idempotent with range R which satisfies PE = E and EP = P . By Lemma

3.7, SP = PSP as well as SE = ESE for all S ∈ S and every minimal

idempotent E. Since P clearly does not have any zero rows are columns and

Ex = Px = x for any x ∈ R, we have that

S|R = ESE|R = PSP |R.

(ii): Suppose 0 6= N ∈ S is nilpotent of order k and let E ∈ S be a

minimal idempotent. We claim that N |R is also nilpotent. Since the range

of P is invariant under S by Lemma 3.7, we have that NP · · ·NP = NkP = 0

and this implies Nk|R = 0. Since E has no zero rows, NE 6= 0. Now, since

ESE is a group, by Lemma 3.4(iv), we have that E = (ENE)(EME) and

since the range of E is invariant under S, we have that E = (ENE)(EME) =

NME which means that the restriction of N to the range of E is invertible,

and this is a contradiction. Therefore, N = 0.

(iii): We will now show that ρ(S) = ρ(SP ), i.e., an eigenvalue which

is largest in modulus corresponds to an eigenvector in R. We can see that

ρ(SP ) ≤ ρ(S), since σ(SP ) = σ(S|PV) ∪ {0} which is the set of those eigen-

values of S which have eigenvectors in the range of P and so this is clearly
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a subset of σ(S). Suppose, for a contradiction, that ρ(SP ) < ρ(S). We can

scale S so that ρ(S) = 1 since S = R+S. We know that {Sm} must be a

bounded sequence, since otherwise a subsequence of {Sm/‖Sm‖} would con-

verge to a nilpotent, by continuity of the spectrum, and this nilpotent would

be nonzero since ‖Sm/‖Sm‖‖ = 1 for all m. Thus, Smi → A with ρ(A) = 1

for some subsequence, {mi}. Now, AP = limi→∞ S
miP . Note that

SmiP = Smi−1SP = Smi−1PSP

since PSP = SP by Lemma 3.7 and so SmiP = (SP )mi for all i. Thus

AP = lim
i→∞

(SP )mi = 0

where the equality to zero is due to the fact that ρ(SP ) < 1. Since P has no

zero rows or columns by construction, AP = 0 implies that A = 0, which is

a contradiction.

Let T and S be in S. We have that ρ(ST ) = ρ(STP ) from the above

argument. ρ(STP ) = ρ(PSPPTP ) since the range of P is invariant under

S. Since ρ is multiplicative on S|R by Lemma 3.4(iv), it is also multiplicative

on S|R ⊕ 0 (where 0 is the appropriately sized zero matrix) and so also on

PSP meaning ρ(PSP · PTP ) = ρ(PSP )ρ(PTP ). Thus

ρ(ST ) = ρ(PSP )ρ(PTP ) = ρ(SP )ρ(TP ) = ρ(S)ρ(T ).

Here is the main result of the section.

Theorem 3.9. Let S be an indecomposable semigroup of nonnegative matri-

ces and denote the minimal positive rank in R+S by r. If R+S has a unique

minimal right ideal (or satisfies any of the other conditions of Lemma 3.7),

then the following hold:
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(i) there is a vector x with positive entries, unique up to scalar multiples,

such that

Sx = ρ(S)x

for all S ∈ S;

(ii) after a permutation of the basis, S has an r × r block partition such

that the block matrix (Sij)
r
i,j=1 of each nonzero S ∈ S has exactly one

nonzero block in each block row and in each block column;

(iii) every S ∈ S has at least r eigenvalues of modulus ρ(S), counting mul-

tiplicities; these are all of the form ρ(S)θ with θr! = 1;

(iv) if, for any S ∈ S, the block matrix (Sij) has a cyclic pattern (i.e., there

exists a permutation {i1, · · · , ir} of {1, · · · , r} such that the nonzero

blocks of S are precisely Si1,i2 , Si2,i3 , · · · , Sir,i1), then σ(S) is invariant

under the rotation about the origin by the angle 2π/r;

(v) r = 1 if and only if some member of S has at least one positive column.

Proof. Since multiplication by a constant will not effect the claims of (i)

through (iv), apart from in (v) we can assume that S = R+S.

(i): Let R again be the common range of all minimal idempotents, and P

be the positive idempotent defined in 3.8. By Lemma 2.6, after a permutation

of the basis, P is of the form

P = P1 ⊕ · · · ⊕ Pr

where each Pi is a rank one positive idempotent. Since each Pi is positive,

there is a positive vector, vi, in the range of each. Note that the span of vi

is the range of Pi. Thus, the vectors

x1 =


v1

0
...

0

0

 , · · · , xr =


0

0
...

0

vr
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form a basis for the range of P which is R. After a diagonal similarity, the

group

G = {S|R : S ∈ S, ρ(S) = 1}

is a transitive group of permutations on the {xi}. The vector x = x1+· · ·+xr
satisfies Gx = x for all G ∈ G, since Gx = G(x1 + · · ·+xr) = xτ(1) + · · ·+xτ(r)
where τ is a permutation on {1, . . . , r}. From Lemma 3.8, we have that for

S ∈ S, (PSP )|R = S|R and so x = PSPx = SPx = Sx. This means that

Sx = ρ(S)x for all S ∈ S.

We will now show that this vector x is unique up to scalar multiplies. Let

y be a vector such that Sy = ρ(S)y for all S ∈ S. Then, Py = (1/n)(E1y +

· · · + Ery) = y since each Ei ∈ S, which means y is a linear combination of

the columns of P ; i.e. y = a1x1 + · · · + arxr. G acts transitively on the xi,

and so for any i and j, we can find a G such that Gxi = xj. Since Gx = x,

this means that ai = aj for all i and j. Thus, y is a multiple of x.

(ii): Let S ∈ S and consider the block decomposition S = (Sij)
r
i,j=1 which

corresponds to the decomposition of P = P1⊕· · ·⊕Pr. Let x1, . . . , xr be the

r vectors from above which span the range of P , where for each i, xi spans

the range of Pi. Note that the nonzero blocks of these vectors are mutually

disjoint. Recall that PSP/ρ(S) in the group G is a permutation on these xi.

Also, from Lemma 3.8, PSP |R = S|R. Thus, Sxi = PSPxi = ρ(S)xj for

some j.

Sxi =



S11 . . . S1r

...
. . .

...
...

. . .
...

...
. . .

...

Sr1 . . . Srr





0
...

vi

0
...


=



S1ivi
...

S1jvj
...

Sirvr


=



0
...

vj

0
...


where vi and vj are in the i-th and j-th block row respectively. This means

that the i-th column of S must have all zero blocks except for the j-th row

block. This argument can be repeated with each xi, giving that each column
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of S has only one nonzero block. Since S is a permutation on {xi}, each row

must also have exactly one nonzero block. Clearly S must have at least one

nonzero block in each row, since S maps to each xi, and if the i-th row of S

were zero, then the i-th block of Sx would be zero for all vectors x. If S had

two nonzero blocks, then S would map distinct xi and xj to vectors with the

same nonzero block row. Since the xi have mutually disjoint block rows, this

implies that Sxi = Sxj for some i 6= j, but this is a contradiction since S is

a permutation on {xi}.

(iii): The order of a permutation on r elements is the product of the orders

of its disjoint sub-cycles. The orders of the disjoint sub-cycles must sum to r,

and thus, the order of the permutation must be less than r!. Therefore, from

(ii), Sr! is block diagonal. Also from (ii), Sr!xi = ρ(S)r!xj, but since Sr! is

block diagonal, i = j. This means that Sr!|R = ρ(S)r!P and so σ(PSP/ρ(S))

contains the set, {θi}ri=1 with θr!i = 1 for all i. In general, σ(ηS) = ησ(S) for

any scalar η and so σ(S) ⊃ σ(PSP ) = ρ(S)σ(PSP/ρ(S)) = {ρ(S)θi}ri=1.

(iv): We can assume that the nonzero blocks of S are precisely Si1,i2 , Si2,i3 ,

· · · , Sir,i1 . Let θ = e2πi/r and

D = θI1 ⊕ θ2I2 ⊕ · · · ⊕ θrIr,

where for each i, Ii is the identity matrix of the same size as Sii. A simple

calculation shows that θDS = SD. Thus,

σ(S) = σ(SDD−1) = σ(θDSD−1) = θσ(DSD−1) = θσ(S).

Multiplying each member of the spectrum by e2πi/r is equivalent to rotating

the spectrum by 2π/r and so the proof of (iv) is complete.

(v): (⇐) Suppose that S ∈ S has a positive column. Then in the decom-

position of (ii), there must be only 1 block, since every row and column has

only 1 nonzero block. Thus, r = 1.

(⇒) Suppose r = 1. Then, we know that there is a rank one idempotent

E ∈ R+S. From (i), we know that there is a positive vector x such that
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Ex = x, but this implies that x is a multiple of some column of E. Therefore,

E has a positive column and is the limit of a sequence in R+S. If no member

of S had a positive column, then there could not be such a sequence in R+S,

since every column in every S would have a zero, a property which would

thus remain in the limit.

It turns out that imposing a unique minimal idempotent on the semigroup

is a stronger condition than a unique minimal ideal. The next Lemma gives

useful equivalent conditions of a unique minimal idempotent.

Lemma 3.10. Let S = R+S be an indecomposable semigroup of nonnegative

matrices. Denote its center by Z and its subset of minimal idempotents by

E. The following are mutually equivalent:

(i) E is a singleton;

(ii) E ⊂ Z;

(iii) E ∩ Z 6= ∅;

(iv) SE = ES for some E ∈ E

(v) SE = ES for every E ∈ E

Proof. (i) ⇒ (ii): Let E be the unique minimal idempotent in S. Since

E is an idempotent in S if and only if E∗ is an idempotent in S∗, E∗ is

the unique minimal idempotent in S∗. The range of E is invariant under

S by Lemma 3.7 and so SE = ESE for all S ∈ S. Likewise, the range of

E∗ is invariant under S∗ and so S∗E∗ = E∗S∗E∗ for all S∗ ∈ S∗. Thus,

ES = (S∗E∗)∗ = (E∗S∗E∗)∗ = ESE = SE for all S ∈ S and so E ∈ Z.

(ii)⇒ (iii): This is immediate.

(iii) ⇒ (i): Let E ∈ E ∩ Z. This clearly implies that SE = ES and

condition (v) of Lemma 3.7 is satisfied. If F ∈ E , then by Lemma 3.7(i),
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EF = F and FE = E. Since E commutes with all elements of S, F = EF =

FE = E and so E is the unique minimal idempotent.

We have shown the equivalence of (i), (ii) and (iii). (iii) clearly implies

(v) and (v) clearly implies (iv). Thus, we only have to show that (iv) implies

(i), (ii) or (iii).

(iv) ⇒ (ii): Let E ∈ E such that SE = ES. This means that the range

of E is invariant under S and so SE = ESE for all S ∈ S. Suppose Ex = 0

for some vector x. Then, since SE = ES, there exists a T ∈ S such that

ESx = TEx and since Ex = 0, 0 = TEx = ESx and so the kernel of E is

also invariant under S, giving ESE = ES. Thus, SE = ESE = ES for all

S ∈ S and so E ∩ Z 6= ∅.

Corollary 3.11. Let S be an indecomposable semigroup of nonnegative ma-

trices such that R+S has a unique minimal idempotent E. Then all the

conclusions of Theorem 3.9 hold. Moreover,

(i) no nonzero member of S has a zero column or row;

(ii) the adjoint semigroup S∗ also has a common positive eigenvector y,

unique up to scalar multiples, such that S∗y = ρ(S)y for all S ∈ S,

and;

(iii) the rank of the minimal idempotent is 1 if and only if some member of

S is positive.

Proof. Lemma 3.7 is trivially met, so the conditions for Theorem 3.9 are

satisfied.

(i): First note that E has no zero rows or columns, since by Lemma

3.4(iii), there is a minimal idempotent with nonzero i-th row (column) for

all i and E is the only minimal idempotent.
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Suppose for a contradiction that S ∈ S has a zero row. After a permuta-

tion of the basis, we can assume it is the last row of S. We can also assume

that S has minimal rank, since SE is minimal rank, and still has the same

zero row. If SE = 0, then since SSE 6= {0} by Lemma 2.5, we can find an

S1 such that SS1E 6= 0 which will be rank r and have the same zero row.

Thus assume that S is nonzero and has minimal rank. We can also assume

that S is not nilpotent. Suppose it were. Then, we can find A1 and A2 such

that {0} 6= σ(A1SA2) = σ(SA2A1) where we note that SA2A1 still has the

same zero row. We can also assume that ρ(S) = 1 since S = R+S. As in the

proof of Lemma 3.4(i), we know that some subsequence of {Sk} converges

to a minimal idempotent, which must be the unique minimal idempotent E.

However, Sk has the same zero row for all k and so E must also have it which

is a contradiction.

(ii): Since S∗ ∈ S∗ is an idempotent if and only if S is, and the rank of

S∗ is equal to the rank of S, the indecomposable semigroup S∗ has a unique

minimal idempotent E∗ and thus as above, the conditions for Theorem 3.9

are satisfied.

(iii): Suppose the minimal rank, denoted by r is 1. Note that E has no

zero rows or columns, and so by Lemma 2.6, E = E1 ⊕ · · · ⊕Er, where each

E is positive and r is the rank. Thus, E = E1 is positive.

Suppose that S ∈ S is positive. Then clearly S has a positive column,

and so we can apply Theorem 3.9(v) to conclude that some member S, So

is rank 1. Then, there exists an idempotent, E, with the same range as So.

Thus E has rank 1, and since 1 is the minimal possible nonzero rank, by

Lemma 3.4(i), E is the minimal idempotent.

Corollary 3.12. Let S be an indecomposable semigroup of nonnegative ma-

trices. If S is normal (i.e. AS = SA for every A ∈ S), then all the conclu-

sions of Corollary 3.11 hold.
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Proof. In order to apply Corollary 3.11, we must show that R+S has a unique

minimal idempotent. We know that R+S has idempotents, since by Lemma

3.4(ii), for each A ∈ R+S, there exists a minimal idempotent, E ∈ R+S such

that EA = A. Since S is normal, we have that ES = SE and so condition

(iv) of Lemma 3.10 holds and so E is the unique minimal idempotent of

E ∈ R+S.

We need the following definition for the next Lemma on groups of per-

mutation matrices.

Definition 3.13. A transitive group of permutations, G, on x1, . . . , xn is one

in which given any xi and xj, we can find G ∈ G such that Gxi = xj.

Lemma 3.14. Let G be an abelian, transitive group of n × n permutation

matrices. For each G ∈ G there exists a positive integer m dividing n such

that, after a permutation of the basis, G is the direct sum of m copies of the

cyclic permutation

Go =


0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


of size n/m.

Proof. If G is cyclic, then clearly a permutation will put G in the desired

form. Thus assume G is not cyclic. Then, after a permutation of the basis,

we can assume that G is the direct sum of m cyclic matrices; i.e. G =

G1 ⊕ · · · ⊕ Gm where each Gi is of the form of Go. We want to show now

that each Gi is the same size. Fix Gj and Gk. We can permute the basis

to assume that j = 1 and k = 2, in order to simplify the notation. We will

proceed by contradiction, and assume that G2 has larger size than G1. We

41



will let Sij denote the (i, j) block according to the decomposition of G above,

for each S ∈ G.

Since G is transitive, we have that for some element S ∈ G, S12 6= 0. Since

S12 is not square, it has a nontrivial kernel, K. Let Bi be the set of basis

vectors which spans Gi. Note that S12 is an operator which maps elements

in the span of B2 to elements in the span of B1. Since SG = GS for all S

and G in S, we have that S12G2 = G1S12 and so S12G2u = G1S12u = 0 for

each u ∈ K. This implies that K is a proper invariant subspace of G2 and

this contradicts the cyclicity of G2. Thus, every block must be the same size.

Corollary 3.15. Let S be a commutative indecomposable semigroup of non-

negative matrices. Then R+S has a unique minimal idempotent P , whose

rank we denote by r, and all the conclusions of Theorem 3.9 and Corollary

3.11 hold. Furthermore, the following assertions are true:

(i) SrP = ρ(S)rP for every S ∈ S, so that the spectrum of S/ρ(S) contains

r-th roots of unity whenever S 6= 0;

(ii) for each nonzero S ∈ S, if k=k(S) denotes the least positive integer

such that SkP = ρ(S)kP , then k divides r;

(iii) the multiplicity of each k-th root of unity in the spectrum of S/ρ(S) is

at least r/k;

(iv) σ(S) is invariant under rotation about the origin by the angle 2π/k(S),

for each S ∈ S.

Proof. By Lemma 3.10(v), we have immediately that R+S has a unique

minimal idempotent, and so the conclusions of Theorem 3.9 and Corollary

3.11 hold.

Since S is a commutative, indecomposable semigroup, so is PSP |PV with

respect to the basis {x1, . . . , xr} by Lemma 3.2. By Theorem 3.8, PSP |PV =
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S|PV . Recall the group G = {S|PV : S ∈ S, ρ(S) = 1} from the proof of

Theorem 3.9(i). Note that S|PV has been represented with respect to the

basis {x1, . . . , xr}. As is shown in the proof of the theorem, G is a transitive

subgroup of permutations on {x1, . . . , xr}. Moreover, we now have that G is

an abelian permutation group, and so by Lemma 3.14, the r-th power of every

element in it must be the identity, which in G is P |PV = I|PV . Considering

G ∈ G as G = (S/ρ(S))|PV for some nonzero S ∈ S gives Sr|PV = ρ(S)rP |PV
and so SrP = ρ(S)rP .

The eigenvalues of a cyclic permutation on k elements are the k-th roots

of unity. By Lemma 3.14, every element G ∈ G is the direct sum of cyclic

permutations, G = G1 ⊕ · · · ⊕ Gm, where each Gi is the same size and so

the order of Gi divides the order of G which is r. Thus, each Gi has the

k-th roots of unity as its eigenvalues, and since k divides r, they are also

r-th roots of unity. The case for general S ∈ S follows by noting that if

G = (S/ρ(S))|PV , then σ(G) ⊂ σ(S/ρ(S)). This proves (i), (ii) and (iii).

The form given for G in Lemma 3.14 implies that after a permutation,

there is a block decomposition of each PSP , (PSP )ij, such that

PSP = T1 ⊕ · · · ⊕ Tm,

where each Ti is a k × k block matrix. Each Ti = P−1
i SiPi where Pi is

an idempotent with no zero rows or columns with P = P1 ⊕ · · · ⊕ Pm and

S1 ⊕ · · · ⊕ Sm = S for some S ∈ S. Recall from the proof of 3.9 that

the nonzero blocks of Ti = P−1
i SiPi correspond to the nonzero blocks of Si.

Thus, each of the block matrices {Si} conforms to the cyclic pattern of Go

in Lemma 3.14, but in place of each 1 is a block matrix. In the proof of

Theorem 3.9, we showed that the spectrum of a matrix of the form of Si is

invariant under rotation by 2π/k. Since this holds for each i, σ(S) is also

invariant under rotation by 2π/k.

Corollary 3.16. The Perron-Frobenius Theorem Let A be an indecom-

posable nonnegative matrix with ρ(A) = 1. Denote by r the minimal rank of
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nonzero members of R+S, where S is the semigroup generated by A. Then

the following hold:

(i) The sequence {Arj}∞j=1 converges to an idempotent E of rank r;

(ii) if r > 1, there is a permutation matrix P such that P−1AP has the

block form 
0 0 · · · 0 Ar

A1 0 · · · 0 0

0 A2 · · · 0 0
...

...
...

...

0 0 · · · Ar−1 0


(with square diagonal blocks);

(iii) there is a positive column vector x, unique up to scalar multiple, such

that Ax = x;

(iv) the set {λ ∈ σ(A) : |λ| = 1} consists precisely of all the r-th roots of

unity; each member of the set is a simple eigenvalue;

(v) σ(A) is invariant under the rotation about the origin by the angle 2π/r;

(vi) 1 is dominant in σ(A) (the only eigenvalue of modulus ρ(A)) if and only

if some power of A has all its entries positive. This occurs precisely

when {Aj} is convergent.

Proof. Since every member in R+S is a scalar multiple of a power of A, R+S
is commutative and so the conclusions of Corollary 3.15 hold. Recall from the

proof of part (iv) of that corollary, that for each S ∈ S there is a permutation

of the basis such that S = S1 ⊕ · · · ⊕ Sm where each Si is block cyclic. A is

indecomposable, so in its corresponding decomposition, m = 1, and so A has

the form claimed in (ii). Also, this form for A implies that k(A) = r (recall

k from the previous Corollary) and so part (iv) of the corollary implies that

σ(A) is invariant under rotation about the origin by the angle 2π/r, proving
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part (v) of this Theorem. Part (iii) of this Theorem is just (i) in Theorem

3.9.

By part (iii) of Corollary 3.15, we know that each r-th root of unity

is in σ(A). We know that S has a unique minimal idempotent, E, also by

Corollary 3.15, which is the limit of some subsequence of {Aj} as in the proof

of Lemma 3.4. Therefore, the rank of E is precisely the number of modulus

one eigenvalues of A. Thus σ(A) can only contain r elements of modulus

1 including multiplicities and so those are precisely the r-th roots of unity,

proving (iv).

By what we have proven above, each eigenvector of A, which corresponds

to a modulus one eigenvalue of A, lies in the range of E. Thus, all the

elements of σ(A(I − E)) lie inside the unit circle. Note that (I − E) is an

idempotent and elements of R+S commute. Thus, (A(I − E))j = Aj(I −
E)j = Aj(I − E) and so

lim
j→∞

Aj(I − E) = 0.

We also have that ArE = E from part (i) of Corollary 3.15, which gives

lim
j→∞

Arj = lim
j→∞

ArjE + lim
j→∞

Arj(I − E) = E,

proving (i).

The dominance of 1 in σ(A) means, by definition, that 1 is the only

modulus 1 eigenvalue of A. This is equivalent by (iv) to r = 1 which occurs

if and only if limj→∞A
j = E. Also, r = 1 is equivalent to the positivity of

all the entries of E which occurs if and only if a sufficiently large power of A

has all positive entries. This proves (vi).
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Chapter 4

Finiteness Conditions

In this section we impose the condition that the range of certain linear func-

tionals acting on a semigroup is a finite set and conclude, under certain

conditions, that the semigroup itself is finite. It has been proven [8] that if

the set diagonal entries of all members of an indecomposable semigroup of

nonnegative matrices consists exactly of zeros and ones, then after a simul-

taneous positive diagonal similarity, all entries are either 1 or 0. We would

like to replace the condition on the diagonal entries with the more general

requirement that the set of diagonal entries of members in the semigroup be

finite. It turns out that the diagonal entries taking finitely many values does

not ensure that the semigroup is itself finite. However, an affirmative result

is achieved if we restrict ourselves to a semigroup of constant rank. We begin

this section with several lemmas.

This lemma comes from Kaplansky [6].

Lemma 4.1. Let {a1, · · · , an} and {b1, · · · , bn} be n-tuples of elements of

any field whose characteristic is either zero or larger than n.

(i) If
∑n

i=1 a
k
i =

∑n
i=1 b

k
i for k = 1, · · · , n, then there is a permutation τ

on n letters such that bi = aτ(i) for all i.
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(ii) If
∑n

i=1 a
k
i = 0 for k = 1, · · · , n, then ai = 0 for all i.

Proof. (i): Let Tk = Tk(x1, · · · , xn) =
∑n

i=1 x
k
i be the symmetric polynomials

in n variables. For each k, let Sk denote the elementary symmetric polynomial

in x1, · · · , xn of degree k; i.e., Sk is the sum of all products of k distinct

variables:

S1 = x1 + · · ·+ xn

S2 = x1x2 + · · ·+ xn−1xn
...

Sn = x1x2 · · ·xn.

A calculation shows that

Tk − Tk−1S1 + Tk−2S2 − · · ·+ (−1)k−1T1Sk−1 + (−1)kSk = 0

for k = 1, · · · , n. This formula enables us to determine uniquely each Sk

inductively in terms of the Tj.

Now, the hypothesis that Tk(a1, · · · , an) = Tk(b1, · · · , bn) for 1 ≤ k ≤ n

implies that Sk(a1, · · · , an) = Sk(b1, · · · , bn) for k = 1, · · · , n. Consider the

following polynomial:

P = (x− a1) · · · (x− an) = xn − S1(a1, . . . , an)xn−1+

S2(a1, . . . , an)xn−2 − · · ·+ (−1)n−1Sn−1(a1, . . . , an)x+

(−1)nSn(a1, . . . , an).

This polynomial has zeros, a1, . . . , an. Since Sj(a1, . . . , an) = Sj(b1, . . . , bn)

for all j, we have that

P = xn − S1(b1, . . . , bn)xn−1 + S2(b1, . . . , bn)xn−2 − . . .

+(−1)n−1Sn−1(b1, . . . , bn)x+ (−1)nSn(b1, . . . , bn) = (x− b1) · · · (x− bn).

Thus the two n-tuples are the same except for a permutation.

(ii) follows from (i) by taking bi = 0 for all i.
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This next two results are my own and are useful when imposing the

condition that the range of the trace operator is finite on a given semigroup.

Lemma 4.2. Let {λi}ni=1 be a set of complex numbers such that the following

hold:

(i) |λi| ≤ 1 ∀i;

(ii) Each modulus-one member of the set is a root of unity;

(iii) J = {Σn
i=1λ

k
i : k ∈ N} is a finite set.

Then, elements in {λi}ni=1 which are nonzero consist precisely of roots of

unity.

Proof. We will show that there are no nonzero elements λ such that |λ| < 1.

First, remove any zero elements from the set and let

1 = |λ1| = ... = |λl−1| > |λl| ≥ ... ≥ |λn| > 0

Since {λi}l−1
i=1 are all roots of unity, ∃r such that λri = 1 ∀i ∈ {1, ..., l − 1}

and so Σl−1
i=1λ

k
i is r periodic in k. Now for J to be finite, Σn

i=lλ
k
i must too be

periodic in k. Given ε > 0, ∃N such that ∀k ≥ N

ε > Σn
i=l|λi|k ≥ |Σn

i=lλ
k
i | ≥ 0.

Thus, {|Σn
i=lλ

k
i |}∞k=1 either has a strictly decreasing subsequence, meaning it

is not a periodic sequence, or it is constantly zero. If it has strictly decreasing

subsequence, then J is infinite which cannot be, and so it must be constantly

zero. By Lemma 4.1(ii), each λi in the sum is zero. Thus, there are no

elements, λ 6= 0 such that |λ| < 1.

Lemma 4.3. Let S be a semigroup such that J = {tr (A) : A ∈ S} is a

finite set. If ρ(A) < 1 for some A ∈ S then A is nilpotent.
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Proof. The spectrum of A, σ(A) = {λ1, · · · , λn}, satisfies all the conditions

of Lemma 4.2, since the trace condition requires {
∑n

i=1 λ
k
i : k ∈ N} to be a

finite set and each λi < 1. Thus, every λi = 0.

The next lemma comes from Longstaff-Radjavi [9].

Lemma 4.4. If the sequence {tr(Am)} is bounded for a given operator A,

then ρ(A) ≤ 1.

Proof. If ρ(A) = 0, there is nothing to prove. Suppose a = ρ(A) 6= 0;

we must show that a ≤ 1. Enumerate the eigenvalues {λi} of A, counting

multiplicities, so that

a = |λ1| = · · · = |λr| > |λr+1 ≥ · · · ≥ |λn|.

There is an increasing sequence {mi} of integers such that

lim
i→∞

(
λj
a

)mi = 1

for all j ≤ r, since each λj/a is modulus-one. Since limi→∞(λj/a)mi = 0 for

j > r, this yields

lim
i→∞

tr(
A

a
)mi = lim

i→∞

n∑
j=1

(
λj
a

)mi = r.

Thus, limi→∞ tr(A
mi) =∞ if a > 1. This implies that a ≤ 1.

The remainder of the results presented here are my own.

Theorem 4.5. Let S be the semigroup generated by the indecomposable non-

negative matrix A. If J={tr (Ak)}∞k=1 is finite, then S is finite.
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Proof. Denote the minimal rank of nonzero members of R+S by r and the

eigenvalues of A by {λi}ni=1 where |λ1| ≥...≥ |λn|. Since J is finite, it is

bounded. Thus, by Lemma 4.4, ρ(A) ≤ 1 giving two cases: ρ(A) < 1 and

ρ(A) = 1.

First assume ρ(A) < 1. Then, by Lemma 4.3, A is nilpotent and so S is

finite.

Now assume ρ(A) = 1. Then

1 = |λ1| = ... = |λl−1| > |λl| ≥ ... ≥ |λn|

Since A is nonnegative and indecomposable, the set {λ ∈ σ(A) : |λ| = 1}
consists precisely of the rth roots of unity by the Perron-Frobenius Theorem,

and by Lemma 4.2, this set possibly together with zero is in fact σ(A). Now,

R+S has a unique minimal idempotent, E, which is in fact in S since ρ(S) = 1

for all S ∈ S. ArE = E by Corollary 3.15 and the minimal rank of S is the

rank of A, since all of the nonzero eigenvalues of A are modulus 1. Thus,

EAr = Ar by Lemma 3.4. This implies Ar = E since A and E commute and

so {Ak}∞k=1 is r-periodic. Therefore S is finite.

Lemma 4.6. Let S be a semigroup of nonnegative matrices such that J =

{tr (S) : S ∈ S} is a finite set. Then, the nonzero eigenvalues of each S ∈ S
are roots of unity.

Proof. Since the trace is a continuous function, we can assume without loss

of generality that S = S. Let S ∈ S. Since J is finite, it is also bounded.

Thus, by Lemma 4.4, ρ(S) ≤ 1. By Lemma 4.3, if ρ(S) < 1 then S is

nilpotent. Assume ρ(S) = 1. Then, by a permutation of the basis, S can be

put in the block form (with possibly only one block if S is indecomposable): S1 ∗ ∗
0

. . . ∗
0 0 Sm
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where each Si is an indecomposable ki×ki matrix of rank ri. By the Perron-

Frobenius Theorem, the modulus-one eigenvalues of each Si are the r-th roots

of unity and so the eigenvalues of S meet the conditions in Lemma 4.2, giving

that the nonzero elements in σ(S) consists entirely of roots of unity.

Corollary 4.7. Let S be a commutative semigroup generated by finitely many

nonnegative indecomposable matrices. Suppose J = {tr (S) : S ∈ S} is a

finite set. Then S is finite.

Proof. Let {Ai}mi=1 be the generators of S. Let So ∈ S. Then So =
∏m

i=1A
ki
i .

Let Si be the semigroup generated by Ai. By Theorem 4.5, this semigroup

is finite and Arii = Ei where Ei is the unique idempotent of Si satisfying

EiAi = Ai, and ri is the rank of Ai. Thus, elements in S are of the form∏m
i=1A

ki
i where each ki ∈ {0, 1, ..., ri} and so there are at most

∏m
i=1(ri + 1)

elements in S.

Theorem 4.8. Let S be an indecomposable semigroup of nonnegative in-

vertible matrices such that J = {tr (S) : S ∈ S} is a finite set. Then S is

finite.

Proof. Since the trace is a continuous function, J = {tr (S) : S ∈ S} is

also a finite set. Since each member in S is invertible, we can apply Lemma

4.6 and deduce that the eigenvalues of each S ∈ S are roots of unity. Also,

every S ∈ S is invertible, and so the only minimal idempotent in S is the

identity. Note that since every member in S has ρ(S) = 1 and so {S ∈ S :

ρ(S) = 1} = S. Furthermore, observe that {S ∈ R+S : ρ(S) = 1} = S.

Thus, we can apply part (iv) of Lemma 3.4, and conclude that ISI = S is

simultaneously similar via a diagonal similarity (when restricted to the range

of I) to a transitive group of permutation matrices. Then, since S ⊂ S, S is

such a finite too.

51



Corollary 4.9. Let S be an indecomposable semigroup of nonnegative ma-

trices of constant rank, r or 0 such that S = S. Suppose that R+S has a

unique minimal idempotent, E, and that J = {tr (S) : S ∈ S} is a finite set.

Then S is finite.

Proof. By Lemma 4.6, the nonzero eigenvalues of each S ∈ S are roots of

unity. By Lemma 3.8, the only nilpotent element in S is zero, so ρ(S) = 1

for all nonzero S. Observe that {S ∈ R+S : ρ(S) = 1 or S = 0} = S. Since

R+S has a unique minimal idempotent (and ρ(E) = 1, meaning E ∈ S),

ES = S for each S ∈ S by Lemma 3.4. Furthermore, E commutes with

all members in S by Lemma 3.10, so ES = S = SE and thus ESE = S.

Therefore, by Lemma 3.4, S \ {0} is simultaneously similar to a transitive

group of permutation matrices, and so S is finite.

Corollary 4.10. Let S be a finitely generated indecomposable semigroup of

nonnegative matrices of constant rank, r or 0. Suppose that the idempotents

of S have a common range R and J = {tr (S) : S ∈ S} is a finite set. Then

S is finite.

Proof. Since all of the idempotents in R+S have a common range R and

all S ∈ S have the same rank, the range of every S ∈ S is R by Lemma

3.7. Thus, ES = S for every idempotent E ∈ R+S. Since J is finite,

Lemma 4.6 implies that the nonzero eigenvalues of each S ∈ S are roots of

unity. Combined with the fact that the only nilpotent element in S is zero

by Lemma 3.8, gives that ρ(S) = 1 for all nonzero S. As a result, we have

that {S ∈ R+S : ρ(S) = 1 or S = 0} = S. Thus, we can apply Lemma 3.4

which gives that SE \ {0} is a permutation group on R, with identity E.

Let {S1, ..., Sn} be the generators of S. Then, after a simultaneous similarity

(which does not necessarily preserve nonnegativity), each nonzero Si is of the

form:

Si =

(
Pi Ai

0 0

)
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where Pi is a permutation matrix on R. Consider the product of k, not

necessarily distinct generators.

k∏
j=1

Sij =

( ∏k
j=1 Pij

∏k
j=1 PijAk

0 0

)
=

(
Po PoAk

0 0

)

Thus, since the permutation group is finite and there are finitely many Ak,

this semigroup is finite.

The next result is a corollary of Lemma 2.8.

Corollary 4.11. Let G be a group of invertible nonnegative matrices. Define

the linear functional φ : Mn(C) → C as φ(X) =
∑

i,j Xij. If φ is constant

on the group, then φ(A) = n ∀A ∈ G and G is a group of permutations on

the standard basis vectors.

Proof. Since I ∈ G and φ(I) = n, the constant must be n. From Lemma

2.8, we know that each row and column of A ∈ G has exactly one nonzero

element. Fix A and denote its nonzero entries by {ai}ni=1. Since G is a group,

A−1 ∈ G. The nonzero entries of A−1 are {a−1
i }ni=1. The constancy of the

functional φ yields the following two equations:

n∑
i=1

ai = n
n∑
i=1

a−1
i = n

We will prove that each entry is 1 by contradiction. Suppose that there are

entries not equal to 1. Without loss of generality, we can assume that every

entry is not equal to 1, since by removing the m entries that are and then

equating our new sums to n−m, we obtain an equivalent problem. Assume

only the first l are less than 1. Let ai = 1 − δi for i ≤ l and ai = 1 + εi for

i ≥ l + 1 where 1 > δi > 0 and εi > 0. The sums now become

l∑
i=1

1− δi +
n∑

i=l+1

1 + εi = n and
l∑

i=1

(1− δi)−1 +
n∑

i=l+1

(1 + εi)
−1 = n. (∗).
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The first equation implies that

l∑
i=1

δi =
n∑

i=l+1

εi.

Since 1 > 1 − δ2
i = (1 − δi)(1 + δi), we have that (1 − δi)−1 > 1 + δi (since

0 < δi < 1) and (1 + εi)
−1 > 1 − εi ∀i. Combining these with the second

equation in (*) gives

n >

l∑
i=1

1 + δi +
n∑

i=l+1

1− εi =
n∑
i=1

1 +
l∑

i=1

δi −
n∑

i=l+1

εi = n

and this is a contradiction.

Theorem 4.12. If S is a semigroup of nonnegative matrices such that the

diagonal entries take only finitely many values, then the set of idempotents

in S is finite.

Proof. We will prove this Theorem in two parts. First we will show that the

set of idempotents with no zero rows or columns is a finite set. Then, we

will use an induction argument to show that the set of idempotents with zero

rows or columns is also a finite set.

Let Λ = {1, . . . , k} be an index for the (finite) collection of all possible

ordered sets of diagonal entries of the S ∈ S. For each i ∈ Λ, let Fi ⊂ S
be the collection of idempotents with no zero rows of columns that have di-

agonal entries which correspond to the set indexed by that i; i.e. Aii = Bii

for every idempotent A and B in Fi. To prove that there are finitely many

idempotents, we must show that each collection, Fi, is finite. We can as-

sume that there is some Fi that is not empty since otherwise there are no

(i.e. finitely many) idempotents with no zero rows or columns. Fix Fi. By

Lemma 2.6, we know that given F ∈ Fi, there exists a permutation, P ,

such that P−1FP is block diagonal, where each diagonal block is a positive
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rank-one idempotent. There are finitely many permutations, and finitely

many block decompositions and thus each F ∈ F must conform to one of

each of these. Suppose that F1 and F2 have the same block decomposi-

tion by the same permutation. Then, block (F1)i and block (F2)i are the

same size and have equal diagonal entries. To prove the Theorem, it suf-

fices to show that these blocks, (F1)i and (F2)i are equal. Relabel these

blocks as E and E ′. Since they are both rank-one matrices with equal di-

agonals, there exists a positive diagonal matrix, D =diag(d1, · · · , dn) such

that E ′ = DED−1. If the size is 1, we are done, so assume the size is

larger. The rank of DED−1E ≥ 1 since E is a positive matrix and D is

diagonal meaning that DED−1E is nonzero. Also, DED−1E ≤ 1 since E

has rank 1 and in general rank(AB) ≤min{rank(A),rank(B)}. Observe that

{tr(DED−1E), 0} = σ(DED−1E). Let E = (eij).

tr(DED−1E)− 1 = tr(DED−1E)− tr(E2) =
∑
i,j

did
−1
j eijeji −

∑
i,j

eijeji

=
∑
i 6=j

(did
−1
j − 1)eijeji =

∑
i<j

(did
−1
j + d−1

i dj − 2)eijeji.

To finish the proof that there are finitely many idempotents with no zero

rows or columns, we shall show by a contradiction that di = 1 for all i,

meaning our diagonal similarity is the identity and so E = E ′. This will

mean that for A and B in Fi and P a permutation, if PAP−1 and PBP−1

are both block diagonal with corresponding equally sized diagonal blocks,

that A = B. Now, each E ∈ Fi must uniquely correspond to one of finitely

many permutations, and one of finitely many block decompositions and so

there can only be finitely many members of each Fi and thus finitely many

idempotents with no zero rows or columns. We will now proceed with the

contradiction argument.

Observe that

0 ≤ (a− 1)2 = 1− 2a+ a2 ⇒ 2 ≤ a+ a−1 (∗)
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for any positive a, where equality holds only if and only if a = 1. Assume

di 6= 1 for some fixed i. Then, did
−1
j + d−1

i dj − 2 > 0 for some j where the

inequality is achieved by inserting did
−1
j for a in (∗). Thus,∑

i<j

(did
−1
j + d−1

i dj − 2)eijeji > 0

by the positivity of the eij. But then, 1 < tr(DED−1E) ∈ σ(DED−1E) and

so ρ(DED−1E) > 1 and this is a contradiction since the hypothesis implies

that {tr(S) : S ∈ S} is a finite set, so by Lemma 4.6, ρ(S) = 1 ∀S ∈ S. Thus

we have shown that the set of idempotents with no zero rows or columns is

a finite set.

We now will show by induction that the set of idempotents with zero rows

or columns is also a finite set. If the matrices are 1× 1, then the result holds

trivially. Assume that the result holds for all k × k semigroups of matrices

with k < n. Suppose that there exists an idempotent Eo that has a zero row

or column. Then, by Lemma 2.6(ii), we have that after a permutation of the

basis Eo has the block-triangular form

Eo =

 0 XoFo XoFoYo

0 Fo FoYo

0 0 0


where Fo = E1⊕· · ·⊕Er as in Lemma 2.6(i) and Xo and Yo are nonnegative

matrices where we will assume that our permutation has been chosen such

that Xo has no zero rows and that Yo has no zero columns. Suppose that

exactly the first k < n rows of Eo are nonzero. Let Jk = {S ∈ S : rows k+ 1

through n of S are zero}. Since Eo ∈ Jk, we know that Jk is not empty. It

is easily seen that Jk is a semigroup. Also note that JkS = Jk. To show

this, take J ∈ Jk and S ∈ S. A simple calculation shows that JS will have

the same zero rows as J . Thus JS ∈ Jk for all J ∈ Jk and S ∈ S.

Now we will show that the upper left k× k block of Jk imbedded canon-

ically in the k × k matrices, which we will denote K, is a semigroup. Let Ã
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and B̃ be elements in K. Then, there exists A and B in Jk whose images

under the imbedding are Ã and B̃ respectively. A simple calculation shows

that the product of Ã and B̃ is the image of AB under the imbedding, and

so K is indeed a semigroup. Thus, by the inductive hypothesis, K is finite.

Consider now idempotents of the form of Eo (from above) imbedded in K
(where by form, we mean those that achieve the same block structure under

the same basis representation). After the imbedding, they are of the form(
0 XoFo

0 Fo

)
.

Since K is finite, that implies there are finitely many idempotents of this

form, meaning XoFo and Fo come from a finite set. A permutation on the

transpose of S allows us to deduce in a similar way that FoYo comes from

a finite set, which means that so does (XoFo)(FoYo) = XoFoYo. This means

that there are finitely many idempotents with n − k zero rows, and this is

true for each k > 0. Thus, there are finitely many idempotents with at least

one zero row.

Recall that a band is a semigroup that consists only of idempotents. In

Chapter 2, we showed that the condition of indecomposability in a band is

quite strong as it implies that the minimal nonzero rank of members must

be 1. This next result, where indecomposability is not assumed, is a simple

corollary of Theorem 4.12.

Corollary 4.13. If S is a band of nonnegative matrices such that the diag-

onal entries take only finitely many values, then S is finite.

Proof. This result follows immediately from Theorem 4.12.

This following theorem is the main theorem of the section.

Theorem 4.14. If S = S is an indecomposable semigroup of nonnegative

matrices of rank r or 0 such that the diagonal entries take only finitely many

values, then S is finite.
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Proof. The result trivially holds for n = 1 and so we will proceed by in-

duction. Suppose the Theorem holds for all k × k semigroups satisfying the

hypothesis, where k < n. By Theorem 4.12, we know that there are finitely

many idempotents in S.

We will first show that there are finitely many nilpotents. Suppose there

exists a nonzero nilpotent N . Then, N2 = 0 since otherwise N2 would be an

element with rank strictly between 0 and r. Then, after a permutation, we

can assume that

N =

(
0 A

0 0

)
.

Again we have that {S ∈ R+S : ρ(S) = 1} = S. Thus, by Lemma 3.4, we

know there exists idempotents

Ẽ =

(
E EX

0 0

)

and

F̃ =

(
0 XF

0 F

)
such that ẼN = N = NF̃ . This gives us that EA = A = AF . Pick a Z ∈ S,

Z =

(
Z1 Z2

Z3 Z4

)

such that AZ3 6= 0. We know such a Z exists since S is indecomposable and

nonnegative. Then

F̃ZẼ =

(
Y FZ3E Y FZ3EX

FZ3 FZ3EX

)

and so

ẼNF̃ · F̃ZẼ =

(
(EAF )(FZ3E) (EAF )(FZ3E)X

0 0

)
.
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Note that the columns of (EAF )(FZ3E)X are just positive linear combina-

tions of the columns of (EAF )(FZ3E) and so the rank of (EAF )(FZ3E)

must be r. By the inductive hypothesis, there are finitely many possible

(EAF )(FZ3E), as the nilpotents whose upper triangular block forms cor-

respond to a single permutation are varied. Denote the set of all possible

(EAF )(FZ3E) by {Bi}mi=1. Now, since EAF = A is rank r, FZ3E must too

be rank r. Thus, FZ3E is an operator from the range of E to the range of F .

Both of these spaces are r-dimensional, and FZ3E is rank r so FZ3E is one

to one and onto when restricted to the range of E. Thus, there is an inverse

operator R from the range of F onto the range of E and so (FZ3E)R = F .

Then, A = EAF = EAF · FZ3E · R = Bi · R for some i. Thus, there are

finitely many A and so there are finitely many nilpotents corresponding to

each permutation.

We now have that the number of idempotents and nilpotents in S is finite.

Suppose S is a nonnilpotent member of S. By Lemma 3.4(ii), there exists

an idempotent E such that ES = S. This E is constructed as a sequence of

powers of S and so E actually commutes with S and any other non-nilpotent

S ∈ S that generates it, giving, ESE = S.

There are finitely many idempotents, {E1, · · · , Em} and so for each Ei

define Si = {S ∈ S : EiSEi = S}. By definition, Si ⊂ EiSEi. Note that⋃m
i=1 Si = S except possibly for a finite set of nilpotents, since for each non-

nilpotent S ∈ S there is an Ei such that EiSEi = S. Note that by Lemma

4.6, ρ(S) = 1 for each non-nilpotent S ∈ S. Now, by Lemma 3.4(iv), for

each minimal idempotent Ei, the set {EiSEi : S ∈ S, ρ(EiSEi) = 1} is a

subsemigroup whose restriction to the range of Ei is simultaneously similar

to a (finite) group of permutation matrices and so each Si is finite. Let N
be the finite collection of nilpotents in S. Then, {

⋃m
i=1 Si}

⋃
N = S is finite.

That the semigroup is indecomposable is clearly necessary, which we can

observe by considering the infinite semigroup of all upper-triangular matrices
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which have ones on the diagonal. Adding in the constancy of the rank in the

above Theorem is necessary as is demonstrated by the following example.

Example 4.15. Let S be the semigroup of nonnegative 4× 4 matrices con-

sisting of

{

(
E 0

0 E

)
,

(
0 E

E 0

)
,

(
0 S

E 0

)
}

with

E =

(
1/2 1/2

1/2 1/2

)
, S =

(
p q

q p

)
and where p + q = 1. Note first that SE = ES = E for all S of this form

and so every element in S is of the form of one of the three elements listed

above. We can see that S is indecomposable by Lemma 2.5, since no entry is

zero for all A ∈ S and the diagonal takes only the values 0 and 1/2 but there

are infinitely many S satisfying p + q = 1 and so this semigroup is infinite.

The element with the S block has rank 3 except when p = q = 1/2 and the

other elements have rank 2.

The conditions of nonnegativity and the constancy of the rank, however,

are not required if we consider an indecomposable semigroup of 2×2 or 3×3

matrices.

Theorem 4.16. Let S be an indecomposable semigroup of 2 × 2 or 3 × 3

matrices such that the diagonal entries take only finitely many values. Then

S is finite.

Proof. We first prove the case for 2×2 matrices. Since S is indecomposable,

there exists an A ∈ S such that A12 6= 0. Define {Sij} = {Sij : S ∈ S}.
Then, {(AS)11} = {A11S11 − A12S21 : S ∈ S} is a finite set. Thus, since

{A11S11 : S ∈ S} is a finite set, {A12S21 : S ∈ S} is a finite set too. Now,

since A12 is fixed and nonzero, {S21} must be a finite set. Similarly, {S12}
can be shown to be a finite set completing the proof. Now we will prove the

case for 3× 3 matrices.
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It suffices to show that the (2, 1) entry takes finitely many values in S
since any off diagonal entry can be permuted to appear there. Let S ∈ S.

Then (S2)11, (S
2)22 and (S2)33 each make up a finite as S is varied over S by

hypothesis which implies that

{S12S21 + S13S31 : S ∈ S},

{S21S12 + S23S32 : S ∈ S}

and

{S31S13 + S32S23 : S ∈ S}

are each finite sets. Combining these gives us that {S21S12 : S ∈ S} is a

finite set which we denote {yk}pk=1.

Since S is indecomposable, ∃A ∈ S such that A12 6= 0 by Lemma 2.5.

Each of

(AS)11 = {A11S11 + A12S21 + A13S31 : S ∈ S}

(AS)22 = {A21S12 + A22S22 + A23S32 : S ∈ S}

(SA)33 = {S31A13 + S32A23 + S33A33 : S ∈ S}

is finite. Then, since {SiiAii : S ∈ S} is a finite set for i = 1, 2, 3,

{S21A12 + S31A13 : S ∈ S}

{S12A21 + S32A23 : S ∈ S}

{S31A13 + S32A23 : S ∈ S}

are finite sets too. Combining these, we get that

{(S21A12 + S31A13)− (S31A13 + S32A23) + (S12A21 + S32A23) : S ∈ S}

= {S21A12 + S12A21 : S ∈ S}

is a finite set which we will denote {xk}mk=1. Multiplying on the left by S21

on both sides gives

{S2
21A12 + S21S12A21 − S21xk = 0 : S ∈ S, k = 1, · · · ,m}
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and so we have A12(S21)
2 − xkS21 + yjA21 = 0, k = 1, · · · ,m, j = 1, · · · , p

and S ∈ S. Thus, each S21 is a solution to one of finitely many quadratic

equations, and thus there can only be finitely many values for S21.
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