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Abstract

The graph model for conflict resolution (GMCR) provides a convenient and
effective means to model and analyze a strategic conflict. Standard practice is to
carry out a stability analysis of a graph model, and then to follow up with a
post-stability analysis, two critical components of which are status quo analysis
and coalition analysis. In stability analysis, an equilibrium is a state that is
stable for all decision makers (DMs) under appropriate stability definitions or
solution concepts. Status quo analysis aims to determine whether a particular
equilibrium is reachable from a status quo (or an initial state) and, if so, how to
reach it. A coalition is any subset of a set of DMs. The coalition stability
analysis within the graph model is focused on the status quo states that are
equilibria and assesses whether states that are stable from individual viewpoints
may be unstable for coalitions. Stability analysis began within a simple
preference structure which includes a relative preference relationship and an
indifference relation.  Subsequently, preference uncertainty and strength of
preference were introduced into GMCR but not formally integrated.

In this thesis, two new preference frameworks, hybrid preference and multiple-
level preference, and an integrated algebraic approach are developed for GMCR.
Hybrid preference extends existing preference structures to combine preference
uncertainty and strength of preference into GMCR. A multiple-level preference
framework expands GMCR to handle a more general and flexible structure than
any existing system representing strength of preference. An integrated algebraic
approach reveals a link among traditional stability analysis, status quo analysis,
and coalition stability analysis by using matrix representation of the graph model
for conflict resolution.

To integrate the three existing preference structures into a hybrid system, a
new preference framework is proposed for graph models using a quadruple

relation to express strong or mild preference of one state or scenario over another,
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equal preference, and an uncertain preference. In addition, a multiple-level
preference framework is introduced into the graph model methodology to handle
multiple-level preference information, which lies between relative and cardinal
preferences in information content. The existing structure with strength of
preference takes into account that if a state is stable, it may be either strongly
stable or weakly stable in the context of three levels of strength. However, the
three-level structure is limited in its ability to depict the intensity of relative
preference. In this research, four basic solution concepts consisting of Nash
stability, general metarationality, symmetric metarationality, and sequential
stability, are defined at each level of preference for the graph model with the
extended multiple-level preference. The development of the two new preference
frameworks expands the realm of applicability of the graph model and provides
new insights into strategic conflicts so that more practical and complicated
problems can be analyzed at greater depth.

Because a graph model of a conflict consists of several interrelated graphs, it
is natural to ask whether well-known results of Algebraic Graph Theory can help
analyze a graph model. Analysis of a graph model involves searching paths in a
graph but an important restriction of a graph model is that no DM can move
twice in succession along any path. (If a DM can move consecutively, then this
DM’s graph is effectively transitive. Prohibiting consecutive moves thus allows
for graph models with intransitive graphs, which are sometimes useful in
practice.) Therefore, a graph model must be treated as an edge-weighted, colored
multidigraph in which each arc represents a legal unilateral move and distinct
colors refer to different DMs. The weight of an arc could represent some
preference attribute. Tracing the evolution of a conflict in status quo analysis is
converted to searching all colored paths from a status quo to a particular
outcome in an edge-weighted, colored multidigraph. Generally, an adjacency

matrix can determine a simple digraph and all state-by-state paths between any
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two vertices. However, if a graph model contains multiple arcs between the same
two states controlled by different DMs, the adjacency matrix would be unable to
track all aspects of conflict evolution from the status quo. To bridge the gap, a
conversion function using the matrix representation is designed to transform the
original problem of searching edge-weighted, colored paths in a colored
multidigraph to a standard problem of finding paths in a simple digraph with no
color constraints. As well, several unexpected and useful links among status quo
analysis, stability analysis, and coalition analysis are revealed using the
conversion function.

The key input of stability analysis is the reachable list of a DM, or a coalition, by
a legal move (in one step) or by a legal sequence of unilateral moves, from a status
quo in 2-DM or n-DM (n > 2) models. A weighted reachability matrix for a DM
or a coalition along weighted colored paths is designed to construct the reachable
list using the aforementioned conversion function. The weight of each edge in a
graph model is defined according to the preference structure, for example, simple
preference, preference with uncertainty, or preference with strength. Furthermore,
a graph model and the four basic graph model solution concepts are formulated
explicitly using the weighted reachability matrix for the three preference structures.
The explicit matrix representation for conflict resolution (MRCR) that facilitates
stability calculations in both 2-DM and n-DM (n > 2) models for three existing
preference structures. In addition, the weighted reachability matrix by a coalition
is used to produce matrix representation of coalition stabilities in multiple-decision-
maker conflicts for the three preference frameworks.

Previously, solution concepts in the graph model were traditionally defined
logically, in terms of the underlying graphs and preference relations. When status
quo analysis algorithms were developed, this line of thinking was retained and
pseudo-codes were developed following a similar logical structure. However, as

was noted in the development of the decision support system (DSS) GMCR II,



the nature of logical representations makes coding difficult. The DSS GMCR II,
is available for basic stability analysis and status quo analysis within simple
preference, but is difficult to modify or adapt to other preference structures.
Compared with existing graphical or logical representation, matrix representation
for conflict resolution (MRCR) is more effective and convenient for computer
implementation and for adapting to new analysis techniques. Moreover, due to
an inherent link between stability analysis and post-stability analysis presented,
the proposed algebraic approach establishes an integrated paradigm of matrix

representation for the graph model for conflict resolution.
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Chapter 1

Introduction

Strategic conflict arises in diverse contexts, including environmental management
and the economic, political, and personal relationships among individuals and
organizations. = The problem of how to solve strategic conflict has been
investigated within many disciplines including international relations, psychology,
and law, as well as from mathematical and engineering perspectives [5,16,35,59].
Among the formal methodologies that address strategic conflict, the graph model
for conflict resolution (GMCR) [41] provides a remarkable combination of
simplicity and flexibility. The graph model provides an effective means to model
and analyze stabilities and then encourage follow-up or post-stability
analysis—status quo analysis and coalition analysis. To analyze a strategic conflict
means to investigate the interaction of two or more decision makers (DMs) to

identify possible outcomes.

1.1 Research Motivation

A graph model for a strategic conflict comprises a finite set of DMs, N, a set
of feasible states, S, and, for each DM ¢ € N, a preference relation on S and a
directed graph G; = {S, A;}. In each directed graph, S is the vertex set, and each
oriented arc in A; C S x S indicates that DM i can make a legal move (in one step)
from the initial state to the terminal state of the arc. Obviously, preferences play
an important role in decision analysis. In the original graph model, only a relative
preference relation > and an indifference relation ~ are available to represent

a particular DM’s simple preference for one state over another [16]. The graph



model has recently been developed in two new directions—preference uncertainty
and preference strength. To enhance GMCR’s applicability, more integrated and
general preference structures need to be developed. Because a graph model of a
conflict consists of several interrelated graphs, it is natural to utilize results of

Algebraic Graph Theory to analyze a graph model.

1.1.1 Motivation for New Preference Structures

Preferences that involve incomplete information have been addressed in a
significant amount of research such as preference with uncertainty and strength
of preference. However, existing structures address preference uncertainty and
preference strength separately, so they cannot model complex strategic conflicts
arising in practical applications. How to expand the realm of applicability of
GMCR and provide more insights into strategic conflicts? In this thesis, a
mechanism that is more general and flexible than existing two frameworks of
preference with uncertainty and strength of preference is introduced into the
paradigm of GMCR to combine together preference uncertainty and preference
strength.

The original graph model uses “simple preference {>, ~}” to represent a DM’s
relative preference between two states. This model is called a two-level preference
structure. Furthermore, a preference framework called “strength of preference”
that includes two new binary relations, “greatly preferred >" and “mildly preferred
>" expressing a DM’s strong or mild preference for one state over another, with
the indifference relation ~, is referred to as a three-level preference structure.

As a result of the development of extensive research expressing preference
information by degree of strength, existing preference structures in the graph
model are limited in their ability to depict the intensity of relative preference.
How to handle more specific preference information which lies between relative
and cardinal preferences in terms of information content? How to gain better and
more realistic insights into strategic conflicts? A multiple-level preference ranking
structure is developed to expand earlier 2-level and 3-level structures to an
unlimited number of levels of preference. In addition, this new preference
structure is incorporated into GMCR for studying multi-objective decision

making in conflict situations more realistically.



1.1.2 Motivation for Novel Algebraic Approach

In the graph model, stability analysis (individual stability analysis) is defined
using logical structures that refer to the underlying graphs and preference
relations [16]. Subsequently, Kilgour et al. [43] developed coalition stability
analysis based on Nash stability but pseudo-code was furnished retaining a
logical structure. However, as was noted in the development of the DSS GMCR
II, the nature of logical representations makes coding difficult. The new
preference structure proposed by Li et al. [46] to represent uncertainty in DMs’
preferences included some extensions of the four stability definitions, and
algorithms were outlined but never developed. Status quo analysis for simple
preference and preference with uncertainty were developed by Li et al. [47, 48],
but only in the form of pseudo-codes following a similar logical structure, which
have never been implemented in a practical decision support system. The work
of [27, 28] integrated strength of preference information into the four basic
solution concepts consisting of Nash stability, general metarationality (GMR),
symmetric metarationality (SMR), and sequential stability (SEQ), but, again,
proved difficult to code and was never integrated into GMCR II. Table 1.1 shows
the current status of available individual stability and coalition stability analyses
and status quo analysis, as well as the development of effective algorithms and
codes to implement these stabilities and status quo analysis, which would be
essential if they are to be applied to practical problems [44].

How to develop a unique representation of conflict resolution that is easy to
code and easy to adapt to new procedures? How to design a comprehensive
decision support system for conflict analysis to include individual stability and
coalition stability analyses and status quo analysis?  These are essential
motivations to develop an integrated algebraic approach for the graph model for
conflict resolution. An important restriction of a graph model is that no decision
maker can move twice in succession along any path. Hence, a graph model can
be treated as an edge-weighted, colored multidigraph in which each arc represents
a legal unilateral move and distinct colors refer to different DMs. Moreover, arc
weights can be used to represent some preference attribute. Thus, tracing the
evolution of a conflict in status quo analysis with some preference structure is
converted to searching all colored paths assigned specific weights. Generally, the

adjacency matrix represents a simple digraph and determines all paths between



Table 1.1: Current status of the graph model for conflict resolution (extend
from [44])

Preference information|Stability and post-stability analyses|Algorithms?In GMCR 1T ?
Individual stability analysis Yes Yes
Simple preference Status quo analysis Yes Yes
Coalition stability analysis Yes Yes
Individual stability analysis No No
Preference with Status quo analysis Yes No
uncertainty Coalition stability analysis No No
Individual stability No No
Strength of Status quo analysis No No
preference Coalition stability analysis No No

any two vertices, but is not readily extendable to colored multidigraphs. How to
transform the original problem of searching edge-colored paths in a colored
multidigraph to a standard problem of finding paths in a simple digraph?

A conversion function using matrix representation can establish a relationship
between a colored multidigraph and a simple digraph with no color constraints.
Based on the conversion function, an inherent link among status quo analysis,
individual stability analysis, and coalition stability analysis is revealed. Because
edge weights in a graph model are used to represent preference attributes, a
weight matrix can be designed to represent various preference structures.
Therefore, the above analysis provides the possibility of establishing an
integrated paradigm using matrix representation for stability analysis and
post-stability analysis in a graph model. The explicit matrix representation for
conflict resolution (MRCR) is developed to ease the coding of logically-defined
individual and coalition stability definitions and status quo analysis. Another
benefit of matrix representation is that it facilitates modification and extension of

the definitions.



1.2 Objectives

This research has two key objectives: the first is to propose two new preference
frameworks to enhance the applicability of GMCR; the second is to develop an
integrated algebraic approach for stability analysis, status quo analysis, and
coalition stability analysis for three preference structures, simple preference,
preference with uncertainty, and strength of preference.

The specific goals are presented as follows:

1. To extend the graph model for conflict resolution including hybrid preference:

e Propose a new preference structure for the graph model that can represent

DMs’ preference uncertainty and strength of preference;
e Extend the four basic solution concepts to models with hybrid preference;

e Extend status quo analysis from models with simple preference and

preference with uncertainty to models with hybrid preference.

2. To extend the graph model for conflict resolution to include multiple levels of

preference:

e Propose a new preference framework for the graph model that can represent

multiple levels of preference;

e Propose appropriate results of the four basic stability definitions for graph

models with multiple levels of preference;
e Investigate the relationships among these new stability definitions;

e Employ these new stability definitions to analyze a model for presenting the

significance of multiple levels of preference.

3. To develop an algebraic approach to searching edge-weighted, colored paths in

a weighted colored multidigraph:
e Propose a procedure (the Rule of Priority) to label colored multidigraphs;

e Design a conversion function that transforms the problem of searching edge-
colored paths in a colored multidigraph to the standard problem of finding
paths in a simple digraph;



e Use the conversion function to find all colored paths between any two vertices

of a colored multidigraph;

e Develop an algorithm for searching edge-weighted, colored paths between

any two vertices in a weighted colored multidigraph;

e Construct a weighted reachability matrix of a coalition by weighted colored
paths to reveal the link among individual stability analysis, status quo

analysis, and coalition stability analysis.

4. To develop matrix representation of solution concepts (MRSC) in multiple-

decision-maker graph models:

e Construct weight matrices to represent preference information for simple
preference, preference with uncertainty, strength of preference, and hybrid

preference;

e Establish the equivalence of weighted reachability matrices for a DM or a
coalition by the weighted colored paths and reachable lists of a DM or a

coalition by various legal unilateral moves;

e Develop explicit matrix representations of the four basic solution concepts for
graph models with simple preference (MRSC), preference with uncertainty
(MRSCU), and strength of preference (MRSCS) based on their weighted

reachable matrices.

5. To propose matrix representation for status quo analysis (MRSQA) to track

the evolution of a conflict:

e Show how to input efficiently the weight matrices that represent simple

preference, preference with uncertainty, and strength of preference;

e Show that weighted edges by 0 or 1 can be used to indicate allowable

unilateral moves;

e Show that the algorithm for searching edge-weighted, colored paths can be
used to trace the evolution of a conflict under some constraints on unilateral

moves.

6. To develop matrix representation of coalition stability analysis (MRCSA):



e Extend coalition stabilities to models including preference uncertainty and

strength of preference;

e Construct coalition stability matrices for simple preference, preference with
uncertainty, and strength of preference based on the weighted reachability

matrix of the coalition;

e Develop an explicit algebraic form conflict model that facilitates coalition

stability calculations for the aforementioned three preference structures.

1.3 Outline of the Thesis

The outline of this thesis is presented in Fig. 1.1 to describe the existing research
and the main objectives in this work.

This chapter presents the motivation and objectives of this research. Chapter
2 includes some definitions from Algebraic Graph Theory and a brief overview
of the graph model for conflict resolution including stability analysis, status quo
analysis, and coalition analysis for existing preference structures. In Chapter 3,
two new preference frameworks, hybrid preference and multiple-level preference,
are proposed for a graph model. The four basic solution concepts and status quo
analysis for simple preference are extended to graph models incorporating hybrid
preference of uncertainty and strength. To illustrate this method, a model of the
conflict over proposed bulk water exports from Lake Gisborne in Newfoundland
is extended to hybrid preference. Then the possible resolutions and evolution of
this conflict are calculated using the extended stability and status quo analyses.
In Chapter 4, the graph model for conflict resolution is extended to multiple-level
preference. The redefined solution concepts are then applied to the expanded
Garrison Diversion Unit (GDU) conflict to show how the procedure works.

In Chapter 5, a new algebraic approach to constructing the reduced weighted
edge consecutive matrix is developed for finding all edge-weighted, colored paths
within a weighted colored multidigraph. Then, weight matrices are used to
represent simple preference, preference with uncertainty, strength of preference,
and hybrid preference. Finally, the reduced weighted edge consecutive matrix is
used to obtain weighted reachability matrices that are equivalent to the reachable
lists of a coalition by legal unilateral moves within the four preference

frameworks, simple preference, preference with uncertainty, strength of
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preference, and hybrid preference. Furthermore, logical stability definitions are
presented using matrix representations for three existing preference structures in
Chapter 6. Following is the proposed algebraic approach that is employed to
solve real applications for status quo analysis and coalition stability analysis in
Chapter 7. Finally, some conclusions and ideas for future work are presented in
Chapter 8.



Chapter 2

Background and Literature

Review

2.1 Definitions from Algebraic Graph Theory

A graph is a pair (V, E) of sets satisfying £ C V x V. A multidigraph [13]
G = (V, A, ) is a set of vertices (nodes) V' and a set of oriented edges (arcs) A
with i : A — V x V. If a € A satisfies ¢)(a) = (u,v), then we say that a has initial
vertex u and terminal vertex v. A multidigraph may contain a,b € A such that
a # b and 1(a) = ¢ (b), in which case a and b are said to be multiple arcs. If there
exists a € A such that 1(a) = (u,v), then u is said to be adjacent to v and (u,v) is
said to be incident from u and incident to v. Hence, (u,v) is called in-incident to v
and out-incident to u. When G is drawn, it is common to represent the direction
of an edge with an arrowhead. We generally assume loop-free graphs; i.e., for any
a€ A, if(a) = (u,v), then u # v.

It should be pointed out that a multidigraph with no multiple edges can be
called a simple digraph [13].

Definition 2.1. For a multidigraph G = (V, A,¢), edge a € A and edge b € A
are consecutive (in the order ab) iff (a) = (u,v) and ¥(b) = (v,s), where
u,v,8 € V.

Definition 2.2. For a multidigraph G = (V, A,v), the line digraph L(G) =
(A, LA) of G is a simple digraph with vertex set A and edge set LA={d = (a,b) €

A X A:a andb are consecutive (in the order ab)}.

10



Definition 2.3. For a multidigraph G = (V, A,v), a path from vertex w € V to
verter s € V' is a sequence of vertices in G starting with u and ending with s, such

that consecutive vertices are adjacent.

Note that in this thesis a path may contain the same vertex more than once [8].
The length of a path is the number of edges therein.

Important matrices associated with a digraph include the adjacency matrix and
the incidence matrix [24]. Let m = |V/| denote the number of vertices and [ = | A|

be the number of edges of the directed graph G. Then,

Definition 2.4. For a multidigraph G = (V, A, ), the adjacency matriz is the

m x m matriz J with (u,v) entry

J(u,v):{ 1 if (u,v) € A,

0 otherwise,

where u,v € V.

Definition 2.5. For a multidigraph G = (V, A, 1), the incidence matrix is the

m X | matriz B with (v,a) entry

-1 ifa=(v,x) for somex €V,
B(v,a) =14 1 if a = (x,v) for some x €V,

0 otherwise,

where v € V and a € A.

According to the signed entries, the incidence matrix can be separated into the

in-incidence matrix and the out-incidence matrix.

Definition 2.6. For a multidigraph G = (V, A, 1), the in-incidence matriz By,

and the out-incidence matrix B, are the m x | matrices with (v, a) entries

By (v.a) 1 ifa=(z,v) for somez €V,
in\U, @) =
0 otherwise,

and

Bout ('Ua CL) =

1 ifa=(v,x) for somex €V,
0 otherwise,

where v € V and a € A.

11



It is obvious that By, = (B + abs(B))/2 and B, = (abs(B) — B)/2, where
abs(B) denotes the matrix in which each entry equals the absolute value of the

corresponding entry of B. Definitions 2.2 to 2.6 are adapted from [24].

Definition 2.7. For two m x m matrices M and QQ, the Hadamard product for

the two matrices is the m x m matric H = M o Q with (s,q) entry

H(s,q) = M(s,q) - Q(s,q).

Let “V 7 denote the disjunction operator (“or”) on two matrices. Assuming
that H and G are two m X m matrices, the disjunction operation on matrices H
and G is defined by:

Definition 2.8. For two m x m matrices H and G, disjunction matrixz of H

and G is the m x m matric M = HV G with (u,v) entry

M (u,0) 1 if H(u,v) + G(u,v) # 0,
u,v) =
0 otherwise.

Definition 2.9. The sign function, sign(-), maps an m x m matriz with (u,v)

entry M(u,v) to the m X m matrix

1 M(u,v) >0,
sign[M(u,v)] = ¢ 0 M(u,v) =0,
-1 M(u,v) <0.

2.2 Graph Model for Conflict Resolution:

Literature Review

To analyze a strategic conflict means to investigate the interaction of two or more
decision makers (DMs) to identify possible outcomes. There are many models
available for strategic conflicts, and many ways to analyze a model, including the
strategic-form game [53], the option form [34], and the closely-related tabular form
[22,23]. In 1987, the graph model for conflict resolution (GMCR) was proposed
by Kilgour et al. [41] to provide a simple, flexible, structure modeling strategic
conflicts and insightful methods for analyzing the model. One advantage of the
graph model is that it incorporates a range of stability definitions (or solution
concepts) that models human behavior in strategic conflicts. See [44] for a recent
summary of work on the graph model. Compared with the other ways to represent

strategic conflicts, the graph model has several advantages, including its ability to
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handle irreversible moves,

model common moves easily,

provide a flexible framework for defining, comparing, and characterizing

solution concepts, and

adapt easily in practice.

This thesis concerns the graph model.

As Fig. 2.1 shows, the graph model provides a methodology for modeling and
analyzing strategic conflicts. The modeling stage includes identification of the
decision makers (DMs), the states, the state transitions controlled by each DM,
and each DM’s relative preferences over the states. A DM may be an individual
or a group, such as an industrial or governmental organization. Usually, a DM
is modeled as having one or more options, each of which may or may not be
selected, and a state is defined as a particular selection of options by all DMs. The
analysis stage includes the determination of whether a state is stable from each
DM'’s viewpoint for a range of solution concepts. States that are stable for all DMs
according to a given solution concept are called equilibria. The analysis stage also
includes follow-up analyses such as status quo analysis, coalition stability analysis,
and sensitivity analysis [16].

In a graph model, a stability definition (solution concept) is a procedure for
determining whether a state is stable for a DM, and represents the situation in
which the DM would have no incentive to move away from the state unilaterally.
An equilibrium of a graph model, or a possible resolution of the conflict it
represents, is a state that all DMs find stable under an appropriate stability
definition. To represent various decision styles and contexts, at least seven
solution concepts have been formulated for graph models, including Nash
stability [51,52], general metarationality (GMR) [34], symmetric metarationality
(SMR) [34], sequential stability (SEQ) [22], limited-move stability
(LS) [16, 40, 78], non-myopic stability (NM) [6, 7, 39], and Stackelberg’s
equilibrium concept [61]. In this thesis, four basic solution concepts consisting of
Nash, GMR, SMR, and SEQ are considered because these definitions can be
employed with both intransitive and transitive preferences. In 1989, Wang et
al. [63] redefined the four basic solution concepts in hypergames. Recently, Zeng

et al. [79] suggested more general solution concepts—policy stability—for the
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graph model and Li et al. [46] extended the four basic solution concepts to
models having preference uncertainty. Hamouda et al. [27, 28] proposed new
solution concepts that take strength of preference (strong or mild) into account.
This thesis focuses mainly on the analysis stage: identifying stable states based
on the four basic solution concepts and carrying out status quo analysis and

coalition stability analysis.

2.2.1 Simple Preference, Uncertain Preference, and

Strength of Preference

Obviously, preference information plays an important role in decision analysis.
Each DM has preferences among the possible states that can arise. Ordinal
preferences, ranking states from most to least preferred (ties allowed), or cardinal
preferences using the values of a real-valued preference function on the states are
required by some models. The graph model requires only relative preference
information for each DM, but can of course use cardinal information; moreover, it
can handle both intransitive and transitive preferences. In the original graph
model, simple preference [16] of DM i is coded by a pair of relations {>;,~;} on
S, where s >; ¢ indicates that DM i prefers s to ¢ and s ~; ¢ means that DM 1 is
indifferent between s and ¢ (or equally prefers s and ¢). Note that, for each i, >;
is assumed irreflexive and asymmetric, and ~; is assumed reflexive and
symmetric. Also, {>;,~;} is complete, i.e., for any s,q € S, either s >; ¢, s ~; q,
or g =; s. The conventions that s >=; ¢ is equivalent to either s >=; q or s ~; ¢, and
that s <; q is equivalent to ¢ >; s, are convenient. This completes the definition
of the graph model as used until around 2000, and represents the structures
encoded in the Decision Support System (DSS) GMCR II [18,19].

Unfortunately, it is often difficult to obtain accurate preference information in
practical cases, so models that allow preference uncertainty can be very useful.
Moreover, as pointed out by [20,21], conflicts among the attributes of alternatives
can cause preference uncertainty. To incorporate preference uncertainty into the
graph model methodology, Li et al. [46] proposed a new preference structure in
which DM 4i’s preferences are expressed by a triple of relations {>;, ~;,U;} on S,
where s >; ¢ indicates strict preference, s ~; ¢ indicates indifference, and sU;q
means DM ¢ may prefer state s to state ¢, may prefer g to s, or may be indifferent

between s and ¢. If for any relation R and any states k, s, and ¢, kRs and sRq
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imply kRq, then R is transitive. For example, strict preference > is transitive
in many graph models, though in some cases it is intransitive. In this research,
transitivity of preferences is not required, and all results hold whether preferences
are transitive or intransitive. For example, the uncertain preference relation, U, is
often intransitive.

Another triplet relation {>>;, >;, ~;} on S that expresses strength of preference
(strong or mild preference) was developed by Hamouda et al. [27,28]. For s,q € S,
s >, q denotes DM i strongly prefers s to ¢, s >; ¢ means DM ¢ mildly prefers s
to ¢, and s ~; ¢ indicates that DM i is indifferent between states s and ¢. Table

2.1 summarizes the three existing types of preferences for DM 1.

Table 2.1: Three types of preferences

Expression Properties of preference
Preference type of AsymmetricSymmetricReflexive and] Complete
preference symmetric
Simple preference {=i,~i} - ~; {~i,~i}
Preference with uncertainty|{>;, ~;, U; } - U; ~; {=i,~i, Ui}
Preference with strength [{>>;, >;, ~;} >, >; ~; {0 >0~}

Note that {>>;, >;, ~;} is complete, i.e., if s, ¢ € S, then exactly one of the following

relations holds: s >; ¢, ¢ >; s, s >;q, ¢ >; s, and s ~; q.

The state set S can be divided into a set of subsets based on preference

relative to a fixed state s € S. These subsets are essential components in stability

analysis. The descriptions of these subsets for the three types of preferences are

presented in Table 2.2.

Let s € S and « € N. Based on different structures of preferences, DM ¢ can

identify different subsets of S. The details are presented as follows:

e For simple preference, DM i can identify three subsets of S: ®;(s), ®

and @, (s) [16].

i (8),

1

e For preference with uncertainty, DM 7 can identify four subsets of S: ®;(s),

o7

(s), &7

)

(5), and ®Y(s) [46].
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Table 2.2: Subsets of S with respect to three structures of preferences
for DM i [16,27,28,46]

Subsets of S Description

Ot (s)={q:q> s} States strongly preferred to state s by DM 4

Ofm(s) ={q:q>; s} States mildly preferred to state s by DM 4

O (s)={q:q =i s} States preferred to state s by DM ¢
Q= (s) ={q:q~; s} States equally preferred to state s by DM 4
O (s)={q:s>iq} States less preferred than state s for DM

O (s) ={q:s>; q} | States mildly less preferred than state s for DM ¢

O 7 (s) ={q:s>;q} | States strongly less preferred to state s by DM ¢

]

®Y(s)={q:qU; s} | States uncertainly preferred to state s by DM i

e For preference with strength, DM ¢ can identify five subsets of S: @j+(s),
®Fm(s), @7 (s), ;™ (s), and &; ~(s) [27,28].

(2

For ease of use, some additional notation is defined by ®; 77 (s) = ®; (s) U
O, ™ (s) U @ (s), where U denotes the union operation. Note that in the graph
model with strength of preference, s »=; q iff either s >; ¢ or s >; q. Therefore,
the two preference frameworks of preference with uncertainty and preference with

strength expand simple preference.

2.2.2 Reachable Lists for Three Preference Structures
2.2.2.1 Reachable Lists of a DM

Let i € N, s € S, and let m = |S| be the number of the states in S. Notation N
denotes the intersection operation. Recall that each arc of A; C S x S indicates
that DM i can make a unilateral move (in one step) from the initial state to the
terminal state of the arc. The reachable lists of DM ¢’s from state s € S for

different preference structures are defined as follows.

e Simple preference [16]:
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(i) Ri(s) ={q € S : (s,q) € A;} denotes DM i’s reachable list from state s
by a unilateral move (UM);
(ii) R (s) ={q € S: (s,q) € A; and q =; s} denotes DM #’s reachable list

from state s by a unilateral improvement (UI);

(ili) R7(s) ={q € S:(s,q) € A; and q ~; s} denotes DM i’s reachable list

7

from state s by an equally preferred move;

(iv) Ry

(s)={q€S:(s,q) €A and s =; q} denotes DM i’s reachable list

from state s by a unilateral disimprovement.

Preference with uncertainty [46]:

(i) RV(s) = {q € S : (s,q) € A; and qU;s} denotes DM 4’s reachable list
from state s by a unilateral uncertain move (UUM);

(i) R"Y(s) = Rf(s)URY(s) = {g € S : (s,q) € Ai and q =; s or qU;s}
denotes DM i’s reachable list from state s by a unilateral improvement or

unilateral uncertain move (UITUUM).

Strength of preference [27,28]:

(i) R (s) ={q € S:(s,q) € A; and q >; s} denotes DM 4’s reachable list
from state s by a mild unilateral improvement;

(ii) R (s) ={q € S: (s,q) € A; and q >; s} denotes DM i’s reachable list
from state s by a strong unilateral improvement;

(iii) R

]

m(s)={q€ S :(s,q) € A; and s >; q} denotes DM i’s reachable list

from state s by a mild unilateral disimprovement;

(iv) Ry

“(s)={qe S:(s,q) €A and s >; q} denotes DM i’s reachable list

from state s by a strong unilateral disimprovement;
(v) RFTH(s) = R (s)UR ™ (s) = {q € S : (5,q) € Ay and q >; s or ¢ >; s}
denotes DM i’s reachable list from state s by a mild unilateral move or strong

unilateral move called a weak move (WI).

From the above definitions, these reachable lists from state s by DM i can be

summarized as presented in Table 2.3.

The reachable list from state s, R;(s), represents DM ¢'s unilateral moves

(UMs). R;(s) is partitioned according to the different preference structures as
follows [16,27,28, 46]:
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Table 2.3: Unilateral movements for DM ¢ in various preference
structures [16,27, 28, 46]

Type of movements

Description

All strong unilateral improvements from state s for DM i

All mild unilateral improvements from state s for DM 4

All unilateral improvements (Uls) from state s for DM ¢

All equally preferred states reachable from state s by DM 1

All unilateral disimprovements from state s for DM ¢

All mild unilateral disimprovements from state s for DM i

All strong unilateral disimprovements from state s for DM 4

All states reachable by DM ¢ from state s for which

DM 17’s preference relative to s is uncertain

e For simple preference, R;(s) = R (s) U R7(s) U R; (s).

e For preference with uncertainty, R;(s) = R (s) U R (s) U R; (s) U RY(s).

e For preference with strength, R;(s) = R (s) U R ™(s) U R; (s) U R;™(s) U

R, (s).

(2

2.2.2.2 Reachable Lists of a Coalition

Any subset H of DMs in the set N is called a coalition. If |H| > 0, then the

coalition H is non-empty. If |[H| > 1, then the coalition H is non-trivial. Below,

a coalition H C N is

assumed to be non-trivial. For a two-DM model, DM i’s

opponent is one DM, j, so DM j’s reachable lists from s are the states reachable

by one step moves. In

an n-DM model (n > 2), the opponents of a DM constitute

a group of two or more DMs. Therefore, the definition of a legal sequence of UMs

is given first.

A legal sequence of UMs for a coalition of DMs is a sequence of states linked

by unilateral moves by members of the coalition, in which a DM may move more
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than once, but not twice consecutively. (If a DM can move consecutively, then this
DM'’s graph is effectively transitive.)

Let the coalition H C N satisfy |H| > 2 and let the status quo state be s € S.
We now define Ry (s) C S, the reachable list of coalition H from state s (by a legal
sequence of UMs). The following definitions are taken from [16]:

Definition 2.10. A wunilateral move by H is a member of Ry(s) C S, defined
inductively by

(1) if 5 € H and sy € Rj(s), then s; € Ry(s) and j € Qpu(s,s1);

(2) if s1 € Ru(s), 7 € H and sy € Rj(s1), then, provided Qpy(s,s1) # {j},
S € Ry(s) and j € Qu(s,sq2).

Note that this definition is inductive: first, using (1), the states reachable from
s are identified and added to Rg(s); then, using (2), all states reachable from
those states are identified and added to Ry (s); then the process is repeated until
no further states are added to Rg(s) by repeating (2). Because Ry(s) C S, and
S is finite, this limit must be reached in finitely many steps.

To interpret Definition 2.10, note that if sy € Ry(s), then Qg (s,s1) C N is the
set of all last DMs in legal sequences from s to s1. (If s; & Ry(s), it is assumed
that Qg(s,s1) = 00.) Suppose that Qpy(s,s1) contains only one DM, say j € N.
Then any move from s; to a subsequent state, say s,, must be made by a member
of H other than j; otherwise DM j would have to move twice in succession. On
the other hand, if |Qg(s,s1)| > 2, any member of H who has a unilateral move
from s; to sy may exercise it. It should be pointed out that it is possible s € Ry (s)
according to Definition 2.10, but the trivial case will not be discussed in research.

A legal sequence of Uls for a coalition can be defined similarly, leading to the

list of coalitional Uls, as follows.

Definition 2.11. Let s € S, H C N, and H # 0. A unilateral improvement by
H is a member of R}, (s) C S, defined inductively by

(1) if j € H and 51 € R (s), then s, € Rfj(s) and j € Qf(s,s1);

(2) if s € Ry(s), j € H and sy € R (s1), then, provided Qy(s,s1) # {j},
sy € R};(s) and j € (s, s2).

Definition 2.11 is identical to Definition 2.10 except that all moves are required
to be Uls, i.e. each move is to a state strictly preferred by the mover to the current
state. Similarly, (s, s1) includes all last movers in a UI by coalition H from state

s to state s;.
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The reachable lists of coalition H from state s by the legal sequences of UMs
and Uls were defined above for simple preference. Li et al. [46] and Hamouda
et al. [28] extended the legal sequences of UMs and Uls and reachable lists of
coalition H to preference including possible uncertainty and strength, respectively.
To extend the definitions of the reachable lists for a coalition to take preference
uncertainty and strength of preference into account, legal sequence of coalitional
UIUUMs and legal sequence of coalitional WIs must be defined first, respectively.
A legal sequence of UITUUMs is a sequence of allowable unilateral improvements or
unilateral uncertain moves by a coalition, with the usual restriction that a member
of the coalition may move more than once, but not twice consecutively. Similarly,
a legal sequence of Wls is a sequence of allowable mild unilateral improvements or
strong unilateral improvements by a coalition, with the same restriction that any
member in the coalition may move more than once, but not twice consecutively.
The following formal definitions for reachable lists of coalition H by the legal
sequence of UITUUMs and by the legal sequence of WIs are respectively taken
from [46] and [28]:

Definition 2.12. Let s € S and H C N where |H| > 2. A unilateral improvement
or unilateral uncertain move (UIUUM) by H is a member of RE’U(S) C S, defined
inductively by

(1) ifj € H and s, € Rj’U(s), then s, € R (s) and j € QY (s,51);

(2) if sy € RiyY(s), j € H and s, € R;“U(sl), then, provided QY (s,s1) # {j},
so € RV(s) and j € QY (s, s,).

Definition 2.13. Let s € S and H C N where |H| > 2. A weak improvement
(WI) by H is a member of Riy™(s) C S, defined inductively by:

(1) ifj € H and s, € Rj’++(s), then s; € Ry (s) and j € Q57 (s, 81);
(2)ifs1 € Ry (s),j € Hands, € R;r’++(51), then, provided ;" (s, 51) # {5},

so € R (s) and j € Q7 (s, 59).

Like Definitions 2.10 and 2.11, Definitions 2.12 and 2.13 are inductive
definitions. The roles and interpretations of RE’U(S) and QJI_}’U(S,SI), as well as
R (s) and Q7 (s, 1) are likewise analogous.

Within an n-DM model (n > 2), DM ¢’s opponents, N\{i}, where \ refers to
“set subtraction”, consist of a group of one or more DMs. In order to analyze
the stability of a state for DM ¢ € N, it is necessary to take into account possible

responses by all other DMs j € N\{i}. The essential inputs of stability analysis are
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reachable lists of coalition N\{i} from state s, Ry (s) and R]J\“,\{i}(s) for simple
preference, R\ 1;3(s) and RJJ\“,’\({H}(S) for preference with uncertainty, and R ;3 (s)

and R;C{;g(s) for preference with strength.

2.2.3 Solution Concepts in the Graph Model for Simple
Preference
The four basic solution concepts, Nash stability, general metarationality (GMR),

symmetric metarationality (SMR), and sequential stability (SEQ) in the graph

model for simple preference are taken from [16]. Let i € N and s € S.
Definition 2.14. State s is Nash stable for DM i iff R} (s) = 0.

State s € S is GMR for DM ¢ iff whenever DM ¢ makes any Ul from s, then

its opponent can move to hurt ¢ or sanction ¢ in response.

Definition 2.15. State s is GMR for DM i iff for every s; € R} (s) there exists
at least one sy € Ry\(iy(s51) with s =; s,.

SMR is a more restrictive stability definition than GMR. SMR is similar to
GMR except that DM ¢ expects to have a chance to counterrespond to its

opponent’s response to i’s original move [16].

Definition 2.16. State s is SMR for DM i iff for every s, € R} (s) there exists
at least one sy € Ry\(iy(51), such that s =; sy and s =; s3 for any s3 € R;(s2).

SEQ is similar to GMR, but includes only sanctions that are “credible”. A

credible action is a unilateral improvement.

Definition 2.17. State s is SEQ for DM i iff for every s; € R} (s) there exists at

least one sy € RY\ 1y (s1) with s =; so.

When n = 2, the DM set N reduces to {i,j} in Definitions 2.14 to 2.17. For
example, the reachable list R\ g3(s1) of N\{i} from s;, reduces to reachable list
R;(s1) of j from s;.

2.2.4 Solution Concepts in the Graph Model for

Preference with Uncertainty

Based on the extended preference structure (including uncertainty), Li et al. [46]
defined Nash, GMR, SMR, and SEQ stability to capture a DM’s incentives to leave
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the status quo state and sensitivity to sanctions. Four types of stability definitions
were proposed, indexed a, b, ¢, and d, according to whether the DM would move
to a state of uncertain preference and whether the DM would be sanctioned by
a responding move to a state of uncertain preference, relative to the status quo.
This range of extensions is needed, according to [46], to address the diversity of
possible risk profiles in the face of uncertainty. A DM may be conservative or
aggressive, avoiding or accepting states of uncertain preference, depending on the
level of satisfaction with the current position.

In the definitions indexed a, DM ¢ has an incentive to move to states with
uncertain preferences relative to the status quo, but, when assessing possible
sanctions, will not consider states with uncertain preferences [46]. Let ¢ € N and

|N| = n in the following definitions taken from [46].
Definition 2.18. State s is Nash, stable for DM i iff RV (s) = 0.

Definition 2.19. State s is GM R, for DM i iff for every s; € R;_’U(S) there exists

at least one sy € Ry\(iy(51) with s =; 3.

Definition 2.20. State s is SM R, for DM i iff for every s, € R}V (s) there exists
at least one sy € Ry\(iy(51), such that s =; sy and s =; s3 for any s3 € R;(s2).

Definition 2.21. State s is SEQ, for DM i iff for every s; € R:"U(s) there ezists

at least one sy € R;’\[{{i}(sl) with s =; Sa.

For stabilities indexed b, DM ¢ would move only to preferred states from a
status quo and would be sanctioned only by less preferred or equally preferred
states relative to the status quo. Note that the definitions are different from those
discussed in Section 2.2.3 for simple preference, since the current definitions are

utilized to analyze conflict models with preference uncertainty.
Definition 2.22. State s is Nashy, for DM i iff R} (s) = 0.

Definition 2.23. State s is GM Ry, for DM i iff for every s; € R; (s) there exists

at least one sy € Ry\(iy(51) with s =; s5.

Definition 2.24. State s is SM Ry, for DM i iff for every s; € R (s) there exists
at least one sy € Ry\(iy(s1), such that s =; sy and s =; s3 for any s3 € R;(s2).

Definition 2.25. State s is SEQy, for DM i iff for every s; € R (s) there exists

at least one sy € R;\F,’\({{i}(sl) with s =; s3.
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For definitions indexed ¢, DM 7 would move to preferred states and states having
uncertain preference relative to the starting state. With respect to sanctions, DM
1 does not want to end up at states that are less preferred or equally preferred

relative to state s, and states having uncertain preference relative to state s.
Definition 2.26. State s is Nash, for DM i iff RV (s) = 0.

Definition 2.27. State s is GM R, for DM i iff for every s, € Rj’U(s) there exists

at least one sy € Ry (i (1) with s =; o or sU;s,.

Definition 2.28. State s is SM R, for DM i iff for every s; € R;“U(s) there exists
at least one sy € RN\{Z-}(sl), such that s =; so or sU;sy and s =; s3 or sU;ss for

any s3 € Ri(s2).

Definition 2.29. State s is SEQ. for DM i iff for every s; € Rj’U(s) there ezists

at least one sy € R;\F,’\({{i}(sl) with s =; sy or sU;s,.

For the last set of stabilities, indexed by d, a DM is not willing to move to
a state with uncertain preference relative to the status quo, but is deterred by

sanctions to states that have uncertain preference relative to the status quo.
Definition 2.30. State s is Nashq for DM i iff R (s) = 0.

Definition 2.31. State s is GM Ry for DM i iff for every s; € R} (s) there exists

at least one sy € RN\{,}(SI) with s =; So or sU;ss.

Definition 2.32. State s is SM Ry for DM i iff for every s, € R; (s) there exists
at least one sy € RN\{i}(sl), such that s =; so or sU;sy and s =; s3 or sU;ss for

any s3 € R;(s2).

Definition 2.33. State s is SEQq for DM i iff for every s; € R; (s) there exists

at least one sy € R;’\[{{i}(sl) with s =; s9 or sU;s,.

When n = 2, the DM set N reduces to {i, 7} in Definitions 2.18 to 2.33. For
example, the reachable list R;\F,’\({{i}(sl) of N\{i} from s; by the legal sequences of
UIUUMSs reduces to the reachable list R;L’U(Sl) of j from s; by one step UIUUMSs.

From the solution concepts indexed a,b,c, and d presented above, it can be
seen that a solution concept indexed a represents the stability for the most
aggressive DMs. Firstly, the DM is aggressive in deciding whether to move from

the status quo, being willing to accept the risk associated with moves to states of
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uncertain preference. In addition, when evaluating possible moves, the DM is
deterred only by sanctions to states that are less preferred than the status quo
and does not see states of uncertain preference (relative to the status quo) as
sanctions. For the definitions indexed b, uncertainty in preferences is not
considered by a DM. The definitions indexed ¢ incorporate a mixed attitude
toward the risk associated with states of uncertain preference. Specifically, the
DM is aggressive in deciding whether to move from the status quo, but is
conservative when evaluating possible moves, being deterred by sanctions to
states that are less preferred or have uncertain preference relative to the status
quo.  Finally, the definition indexed d represents stability for the most
conservative DMs, who would move only to preferred states from a status quo,
but would be deterred by responses that result in states of uncertain

preference [46].

2.2.5 Solution Concepts in the Graph Model with Strength

of Preference

Hamouda et al. [27] first integrated strength of preference information into the
graph model and extended the four basic solution concepts to handle strength of
preference for 2-DM graph models. Lately, they further extended the four solution
concepts to multiple-decision-maker graph models [28].

Four standard solution concepts are given below in which strength of preference
is not considered in sanctioning. However, the standard stabilities are different
from those defined in [16], though they are presented using the same notation,
because stability definitions for simple preference cannot analyze conflict models
having strength of preference. Let ¢ € N and s € S for next definitions taken
from [28].

Definition 2.34. State s is Nash stable for DM i, denoted by s € SNt iff
RF+(s) = 0.

Definition 2.35. State s is GMR for DM i, denoted by s € SCME iff for every
s1 € R (s) there exists at least one sy € Ry\piy(s1) such that sy € &7 77 (s).

Definition 2.36. State s is SMR for DM i, denoted by s € SPME iff for every
s1 € R (s) there exists at least one sy € R\ (s1), such that s, € ®; 77 (s)
and s3 € ;77 (s) for any s3 € Ri(s2).
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Definition 2.37. State s is SEQ for DM i, denoted by s € SZSEQ, ioff for every

s1 € R (s) there eists at least one sy € R;ﬂg(sl) such that so € ;77 (s).

With strength of preference introduced into the graph model, stability
definitions can be strong or weak, according to the level of sanctioning. Strong
and weak stabilities only include GMR, SMR, and SEQ because Nash stability

does not involve sanctions.

Definition 2.38. State s is strongly GMR (SGMR) for DM i, denoted by s €
SECME iff for every si € R (s) there exists at least one sy € Ry (iy(s1) such

that sy € ®;7 7 (s).

Definition 2.39. State s is strongly SMR (SSMR) for DM i, denoted by s €
SPSME iff for every s; € R (s) there ewists at least one sy € Ry (s1), such

that so € ®; 7 (s) and s3 € ;" (s) for all s3 € R;(s2).

Definition 2.40. State s is strongly SEQ (SSEQ) for DM i, denoted by s € S2°7¢,
iff for every s, € R (s) there ewists at least one sy € R;\F,’\Jf{:r}(sl) such that
So € (I);_(S)

Definitions 2.38 to 2.40 are adapted from [28] in which Nash stability is excluded
from SGMR, SSMR, and SSEQ. The definition of weak stability is presented next.

Definition 2.41. Let s € S and ¢ € N. State s is weakly stable for DM 1 iff s is

stable, but not strongly stable for some stability definition.

Based on the individual stability analysis, DMs can request additional follow
up analyses to generate valuable decision guidance. The follow-up analyses include

status quo analysis, coalition analysis, and sensitivity analyses.

2.2.6 Status Quo Analysis

When a conflict is modeled as a graph model, a point in time must be selected
first; the current (or initial) state of the conflict is then referred to as the status
quo [47]. Two fundamental steps are involved in analyzing a graph model, stability
analysis and post-stability (or follow-up) analysis. When the stability of a state
is assessed at the stability stage, it is not a concern whether this state is actually
achievable from the status quo state. As a follow-up analysis, status quo analysis

is to determine whether a particular equilibrium is reachable from the status quo
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and, if so, how to reach it. Thus, in contrast to stability analysis, which identifies
states that would be stable if attained, status quo analysis provides a dynamic and
forward-looking perspective, identifying states that are attainable, and describing
how to reach them [47,48].

Let : € N and H C N and let k£ > 1 be an integer. New notation is required,

as follows:
e S() denotes the status quo state;

e The state sets, Si(k)(s), Si(k’Jr)(s), and SZ-(k’JrU)(s), denote the states reachable

from SQ = s in legal sequences of exactly & UMs, Uls, and UIUUMs,

respectively, with last mover DM 1;

e The state sets, V;Ik)(s), Vlsk’ﬂ(s), and V;Ik’JrU)(s), denote the sets of states
reachable from S@Q = s in legal sequences of at most & UMs, Uls, and
UIUUMs by H, respectively; (if H = N, then V" (s) = V®(s), V) (s) =
VED(5), and VT (s) = VEFU(5))

e The arc sets, Agk)(s)7 Agk’ﬂ(s), and Agk’JrU)(s), denote the arcs controlled
by DM ¢ that are final arcs in legal sequences of at most & UMs, Uls, and
UIUUMs, respectively, from S@Q = s.

Recall that A; is DM #’s arc set in a graph model. Let A and AV denote i's
UI arc set and UIUUM arc set, respectively. For s € S, let A;(s), A (s), and

AY(s) denote the respective subsets of these three arc sets with initial state s.

Therefore, these arc sets are expressed by A4; = |J Ai(s), A = |J A (s), and
seS seS

AP =U AT ().

ses
The following algorithm permits all UMs for simple preference:
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Algorithm for status quo analysis in the graph model with legal UMs [47]

1. Let h =0, $(5Q) = {SQ}, VO(5Q) = {SQ} and A° (SQ) 0 (for i € N)
2. Let h =h + 1, and for each i € N, update S (SQ) and A (SQ) as:
sM(SQ) =U{Ri(s) s € U SV V(sQ)}

JEN\i
APV (5Q) if 5 (5Q) =,
M(sQ) = (h—1) (h—1)
A7TSQUA{(s, ) :se U S (SQ) and §' € Ri(s)}  otherwise.
JEN\?
vin(sQ) = (U s (sQ)Uvt1(sQ)
iEN
3.1 U AM(5Q) = U A" V(5Q), stop.

1EN 1EN

Otherwise, go to 2.

Although [47] indicates that the process must stop in a finite number of
iterations, this condition is not explained in detail. If the algorithm stops at step
k, the status quo diagram of permitted UMs in the graph model is given by
(V®(5Q), U Agk)(SQ)). Similarly, an algorithm that permits only Uls can be
found in [4%TN

The following algorithm permits only UTUUMs for preference with uncertainty.

Algorithm for status quo analysis in the graph model with legal UIUUMs [48]

1. Let h =0, ST (5Q) = {SQ}, VO+U)(SQ) = {SQ}, and A" (SQ) =0 (for i € N)
2. Let h = h+ 1, and for each i € N, update S(h +0) (SQ) h +U) (SQ) and VBHU)(5Q) as:
SM(SQ) = URI Y (9) s U S (sQ))

JEN\©

- AN sQ) it 50 (5Q) = 0,

AT = AP D 50  f(s,8) s e U SPT(SQ), s € RFV(s)) otherwise.
JEN\G
vEQ) = (U S (s@)UVEHI(sQ)
eEN
3.1 |J AT (SQ) = J A" (5Q), stop.
1EN 1EN

Otherwise, go to 2.

Similarly, (V®+9(SQ), U A§k7+U)(SQ)) presents the status quo diagram
1€EN

permitted UIUUMs in the graph model when the above algorithm stops at

iteration step k. Although the algorithms were developed for status quo analysis

for simple preference and preference with uncertainty but have never been
integrated into GMCR II.
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Using status quo diagrams, significant information about the conflict under
investigation can be obtained. Specifically, if an equilibrium is in the diagram,
the analysis provides a path from the status quo to the reachable equilibrium; if
not, the DMs have no way to control the conflict to the equilibrium. Status quo
analysis can provide guidance for DMs and analysts by identifying how to attain

reachable equilibria from a status quo state [47,48].

2.2.7 Coalition Stability Analysis

Coalition H is a subset of DMs with |H| > 2. For an equilibrium, no DM has the
incentive to move away from it, but a coalition may sometimes be able to move
away from the equilibrium to a better state for all members of the coalition. Hence,
analysts can detect equilibria that are vulnerable to coalition moves in strategic
conflicts [43].

Coalitions and coalition stability have been widely studied in the area of
conflict analysis. For example, inspired by Aumann [3], Kilgour et al. [43]
proposed coalition stability based on Nash stability within the framework of the
GMCR. Then, Inohara and Hipel [36, 37] extended the above Nash coalition
stability to GMR, SMR, and SEQ coalition stabilities. However, to make coding
easier, these extensions were based on a transitive graph that allows the same
DM to move twice in succession, which is inconsistent with the standard
restriction in the graph model. For example, in the work of [36, 37, 43], the
reachable list of a coalition, Ry(s), may include states reachable only by
consecutive moves of the same DM. Additionally, these coalition stabilities were
defined logically within a simple preference structure. The Simple preference
structure is often inadequate for modeling the complex strategic conflicts that
arise in practical applications. The following coalition stabilities based on Nash

stability are taken from [43].

Definition 2.42. For s; € Ry(s), s1 is a coalition improvement by H from state

s iff, for every v € H, satisfies s; >; S.

A coalition improvement s; by H indicates a threat, or potential threat, to the

stability of state s.

Definition 2.43. State s is unstable for coalition H iff there exists a coalition

improvement by H from s.
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Even if state s is stable for each DM ¢ € N, the instability of s for coalition H

makes s impossible to become a resolution for a conflict.

Definition 2.44. State s € S is stable for coalition H C N (| H |> 2) iff, for
every sy € Ry(s), there exists i € H with s =; sy.

Definition 2.45. State s € S is coalitionally stable iff s is stable for every coalition
HCN (| H|>2).

Note that if the reachable list Ry (s) of H from state s in the above definitions is
adapted to use the definition in Section 2.2.2, then a transitive graph is extended

to a general graph.

2.2.8 The Decision Support System GMCR 11

Although the graph model for conflict resolution has many advantages, it is
difficult to apply to real problems without computational assistance, even to
small models. For this purpose, the basic decision support system (DSS) GMCR
I was developed in [42]. However, GMCR I only includes a basic analysis engine,
so that a model must be converted to the GMCR I data format first, which is a
difficult conversion process. The DSS GMCR II [32,54], including modeling and
analysis procedures, later replaced GMCR 1. GMCR 1I, is written in Visual
C++, a computer implementation of the graph model for conflict resolution, and
is described by [16,18,19].

The DSS GMCR II offers model management and stability analysis and includes
some basic coalition analysis and status quo analysis for simple preference. At
present, GMCR II allows for status quo analysis, but does not implement it fully.
A consistent and effective set of status quo analysis definitions and algorithms was
proposed by [47,48] but has not been included in GMCR II.

Sensitivity analyses in GMCR II are carried out by varying the model input
in the following categories: options, state transitions, preferences, DMs (including
addition and deletion), and solution concepts, including changing individual
stabilities into coalition stabilities. Although sensitivity analyses are a popular
technique in solving engineering problems, in GMCR II, few papers focus on
sensitivity analyses. If a conflict analytical result is very sensitive to variations of
some parameters, the result may not provide useful guidance in real applications,

so sensitivity analysis should be an important research topic in conflict analyses.
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2.3 Degree of Preference

Obviously, preferences play an important role in decision analysis. How to obtain
individual preference information has already been ascertained by extensive
research, such as the Analytic Hierarchy Process (AHP) approach [57] and some
approaches used by modeling preference relations of consumers in
microeconomics [49]. Normally, for the graph model only a relative preference

“~ Indifferent” are needed to

relation, “> preferred”, and an equal relation,
represent a particular DM ¢’s preference for one state with respect to another to
calibrate a specific model [16]. This type of preference is called a two-level
preference in this thesis. Different definitions for strength of preference can be
found in [4,15]. Dyer and Sarin [15] indicate the relations between strength of
preference and risky behavior. In 2004, Hamouda et al. [27] proposed “strength
of preference” that includes two new binary relations, ‘> strongly preferred”,
and, “> mildly preferred”, to express DM i’s strong and mild preferences for one
state over another, respectively, as well as an equal relation. This is referred to as
a three-level preference.

However, the 3-level structure is limited in its ability to depict the intensity of
relative preference. For example, in the Analytic Hierarchy Process (AHP) [58],
strength of preference is reflected a scale from 1 to 9. Table 2.4 presents an
interpretation for strength at levels 1, 3, 5, 7, and 9 in the AHP approach and
motivates the extension of the three-level model to a multiple-level model that can
capture a range of degrees. In related, but quite different research, significant effort
has been devoted to representing preference information by degree or strength. For
example, Wang et al. [64] presented a probability method to represent preferences

with certain degrees or strength.

2.4 Summary

After reviewing the background of Graph Theory and the Graph Model for Conflict
Resolution, we know that a graph model of a conflict consists of several interrelated
graphs and preference relations, and three types of preference structures have been
developed and introduced into the graph model for conflict resolution. To enhance
the applicability of GMCR, in Chapters 3 and 4, the three preference frameworks

are extended to a hybrid system in which preference uncertainty and strength
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Table 2.4: Scale of relative preference [58]

Intensity of Definition Description

relative preference

1 Equally important ~ Two events are equally preferred.

3 Moderately important The first event is slightly
preferred to the second.

5 Quite important The first event is much more

preferred than the second.

7 Demonstrably important The first event is very strongly
preferred to the second.

9 Extremely important The first event is extremely

preferable to the second.

of preference are combined together and a system of multiple levels of preference.
Previously, individual and coalition stabilities in the graph model were traditionally
defined logically, in terms of the underlying graphs and preference relations. Status
quo analysis follows a similar logical structure. However, as was noted in the
development of the DSS GMCR II, the nature of logical representations makes
coding difficult. A new algebraic system based on Algebraic Graph Theory to
represent stability analysis and post-stability analysis is proposed in Chapter 5 to
Chapter 7.
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Chapter 3

Hybrid Preference for the Graph
Model for Conflict Resolution

3.1 Combining Preference Uncertainty and

Strength of Preference

A hybrid preference framework is proposed for strategic conflict analysis to
integrate preference strength and preference uncertainty into the paradigm of the
graph model for conflict resolution (GMCR) under multiple decision makers.
This structure offers decision makers a more flexible mechanism for preference
expression, which can include strong or mild relative relationship of one state
over another, an indifference relation, and uncertain preference between two
states.

To date, only three types of preference structures—simple preference,
preference possibly including uncertainty, and preference having strength—have
been integrated into GMCR. To integrate the three existing preference
frameworks into a hybrid system, a new preference framework {>>;, >; ~; U;} is
defined using a quadruple relation in a graph model for DM 7. The preference
structure {>;,>;, ~;,U;} is complete, i.e. if s,¢ € S, then exactly one of the
following relations holds: s >; q, ¢ >; s, s >; ¢, ¢ >; s, s ~; q, and sU;q. Note
that notation, ®/™(s), ®;™(s), RI™(s), and R;™(s), is replaced with ®; (s),
®; (s), Rf(s), and R; (s), respectively, in this chapter. For hybrid preference,
DM i can identify six subsets of S: ®fT(s), ®F(s), ®7(s), ®Y(s), ®; (s), and

®. " (s), and can control six corresponding reachable lists from state s: R} (s),

1
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Figure 3.1: Relations among subsets of S and reachable lists from s.

R (s), R (s), RV(s), R; (s), and R; ~(s), where these subsets and reachable lists
from state s are defined in Tables 2.2 and 2.3, respectively. The relationships
among the subsets of state set S and the reachable lists from state s for DM 7 are
portrayed in Fig. 3.1.

The reachable list from state s for DM ¢ in one step, R;(s), represents DM s
various unilateral moves (UMs) for hybrid preference, so R;(s) = Rt (s)UR (s)U
R7(s)URY(s)UR; (s)UR; ~(s). For ease of use, the notation with respect to UMs

and subsets of the state set S for hybrid preference is presented as follows:

° R;r’++’U(s) = Rf(s) U R *(s) U RV(s) stands for mild unilateral
improvements, strong unilateral improvements, or unilateral uncertain
moves called weak improvements or unilateral uncertain moves (WIUUMs)
from state s for DM ¢;

o & Y(s) = ®;7(s) UDY(s); and

o &7 T () = B (s) UD; (s) UDT(s) UDY(s).

(2

Note that the assumption of transitivity of preferences is not required, and thus

the results in this research hold for both transitive and intransitive preferences.
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3.2 Stability Analysis in the Graph Model for
Hybrid Preference

To analyze the stability of a state for DM ¢ € N for hybrid preference, it is
necessary to take into account possible responses by all other DMs j € N\{i}.
Therefore, the previous definitions for legal sequences of decisions in the graph
model with preference uncertainty [46] and with preference of strength [28] must
first be extended to take combining preference uncertainty and preference strength

into account.

3.2.1 Reachable Lists of Coalition H

The legal sequences of UMs, Uls, and UITUUMs are defined in Subsection 2.2.2.
For hybrid preference, a legal sequence of WIUUMs for a coalition of DMs is a
sequence of states linked by weak improvements or unilateral uncertain moves by
members of the coalition, in which a DM may move more than once, but not twice
consecutively.

Let H C N be any subset of DMs. Within hybrid preference, the definition
of the reachable list Rpy(s) for coalition H by the legal UMs starting at state s is
similar to Definition 2.10 in Subsection 2.2.2. The definition of R}, (s) in hybrid
preference is similar to Definition 2.13. Let coalition H C N satisfy |H| > 2 and
let the status quo state be s € S. We now define reachable list RE’++’U(S) for

coalition H with the explicit hybrid preference.

Definition 3.1. Let Rj**"Y(s) = Rf(s) U Rj"(s) U RY(s) for any j € H. A
weak improvement or wunilateral uncertain move by H is a member of
RE’++’U(S) C S, defined inductively by:
(1)if 7 € H and s, € Rj’JrJ“U(s), then s; € Ry 7Y (s) and j € QY (s, 51);
(2) if s, € Ry™WY(s), j € H and s, € Rj’++’U(sl), then, provided
Qi (s, 51) # {5}, s2 € Ry ™V (s) and j € Qi (s, 52).

Note that this definition is inductive: first, using (1), the states reachable by
a single DM of coalition H in one step WIUUM from s are identified and added
to Ry 7Y (s); then, using (2), all states reachable from those states are identified
and added to RE’++’U<S); then the process is repeated until no further states are
added to R};7"Y(s) by repeating (2). Because Ry ™Y (s) C S, and S is finite,

this limit must be reached in a finite number of steps.
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To interpret Definition 3.1, note that if s; € Ry Y (s), then Q7Y (s,51) C
N is the set of all last DMs in legal sequence of WIUUMs from s to s;. (If s; ¢
R 7Y(s), it is assumed that Q5 ""Y(s,s1) = 0.) Suppose that Q7Y (s, s))
contains only one DM, say j € N. Then any move from s; to a subsequent state,
say S, must be made by a member of H other than j; otherwise DM j would
have to move twice in succession. On the other hand, if |77V (s,s,)| > 2,
any member of H who has a mild unilateral improvement or strong unilateral
improvement (weak improvement) or unilateral uncertain move from s; to sy may
exercise it.

For the simple preference structure, a state s is either stable or unstable [16].
For the framework with strength of preference, if a state s is stable, then it is
either strongly stable or weakly stable based on sanctioning strength [27,28]. Li
et al. [46] proposed solution concepts with preference uncertainty that are
separately classified into four extensions, indexed a,b, c, and d, according to the
incentives to leave the status quo state and the motivation to avoid states of
uncertain preference relative to the status quo. Since possible uncertainty is
included in DMs’ preferences, a range of extensions of stability definitions is
needed to address DMs’ attitudes with distinct risk profiles in face of uncertainty.
For example, a DM will make a conservative or aggressive decision depended on
the DM’s current status “satisfied” or “unsatisfied” [46].

According to the proposed new preference structure, the hybrid versions of
solution concepts refer to stabilities, strong stabilities, and weak stabilities indexed
a,b, c, and d, respectively. In the following stabilities, strength of preference is not

considered in sanctioning.

3.2.2 Stabilities in the Graph Model for Hybrid Preference

The stability definitions in the graph model for two DM conflicts with hybrid
preference are special cases of the definitions proposed in the next subsection, the

details are not given here.

3.2.2.1 Stabilities, Indexed a, for Hybrid Preference

For stabilities indexed a, DM 7 is willing to move to states that are mildly preferred
or strongly preferred, as well as states having uncertain preference relative to the

status quo but does not wish to be sanctioned by a strongly less preferred, mildly
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less preferred, or equally preferred state relative to the status quo. The definitions

given below assume that s € S and ¢ € N.

Definition 3.2. State s is Nash, for DM i, denoted by s € SNhe iff
R;|-7++,U(S) _ @

Definition 3.3. State s is GM R, for DM 1, denoted by s € SiGMR“, iff for every

s1 € RITTY(s) there exists at least one sy € Ry (s1) with sy € @777 (s).

Definition 3.4. State s 1s SM R, for DM i, denoted by s € SZ-SMR“, iff for every
s1 € R;r’++’U(s) there exists at least one sy € Ry\giy(51), such that s, € &7 (s)
and s3 € ;77 (s) for any s3 € Ri(s2).

Definition 3.5. State s is SEQ, for DM 1, denoted by s € S;gEQ“, iff for every

s1 € R7TTU(s) there exists at least one sy € RJJ\F,’\JT{E’U(sl) with so € ®; 77 (s).

It should be pointed out that the same notation for stabilities indexed a for
preference with uncertainty presented in Subsection 2.2.4 is used for hybrid
preference. However, they have different meaning, since current definitions can
analyze conflict models including hybrid preference. The following definitions are

still presented using the same notation as those including preference uncertainty:.

3.2.2.2 Stabilities, Indexed b, for Hybrid Preference

For stabilities indexed b, DM ¢ will move only to mildly or strongly preferred states
from a status quo, but does not want to be sanctioned by a strongly less preferred,

mildly less preferred, or equally preferred state relative to the status quo.

Definition 3.6. State s is Nashy, for DM i, denoted by s € S ™™ iff R (s) =
0.

Definition 3.7. State s is GM R, for DM 1, denoted by s € SiGMR”, ioff for every
s1 € R (s) there exists at least one sy € Ry (iy(s1) with sy € &7 777 (s).

Definition 3.8. State s is SM Ry, for DM i, denoted by s € SZ.SMR”, iff for every
s1 € R (s) there exists at least one sy € Ry\giy(s1), such that sy € & 777 (s)
and s3 € ;77 (s) for any s3 € Ri(s2).

Definition 3.9. State s is SEQ, for DM i, denoted by s € SiSEQ”, iff for every

s1 € R (s) there exists at least one sy € RJJ{,’\JT{E’U(Sl) with sg € ®; 77 (s).
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The above definitions indexed b which exclude uncertainty in preference are
different from those discussed by Hamouda et al. [28], since current definitions
are utilized to analyze conflict models under combining preference uncertainty and

strength of preference.

3.2.2.3 Stabilities, Indexed ¢, for Hybrid Preference

For definitions indexed ¢, DM i can move to mildly preferred, strongly preferred
states, as well as states having uncertain preference relative to the starting state.
With respect to sanctioning, DM ¢ does not want to be ended up at states that are
mildly less preferred, strongly less preferred, or equally preferred, as well as states

having uncertain preference relative to state s.

Definition 3.10. State s is Nash, for DM i, denoted by s € SN%he iff
R (s) = 0.

Definition 3.11. State s is GM R, for DM 1, denoted by s € SiGMRC, iff for every

s1 € RV (s) there emists at least one sy € Ry giy(s1) with sy € ®; 7Y (s).

Definition 3.12. State s is SMR. for DM i, denoted by s € SfMRC, iff for

every s, € RTHY(s) there eists at least one sy € Ry\piy(s1), such that sy €

7Y (s) and s3 € ®; T T7Y(s) for any s3 € Ri(ss).
Definition 3.13. State s is SEQ. for DM i, denoted by s € SZ-SEQC, iff for every
s1 € RITTY(s) there exists at least one sy € R;’\E;’U(sl) with sy € 777V (s).

3.2.2.4 Stabilities, Indexed d, for Hybrid Preference

For the last set of stabilities, indexed d, a DM is not willing to move to a state
with uncertain preference relative to the status quo, but is deterred by sanctions

to states that have uncertain preference relative to the status quo.

Definition 3.14. State s is Nashgy for DM i, denoted by s € SlN‘whd, iff R (s) =

0.
Definition 3.15. State s is GM R, for DM 1, denoted by s € SiGMRd, iff for every
s1 € R;r’++(s) there exists at least one sy € R\ pi3(s1) with s; € @;_’_’:’U(s).

Definition 3.16. State s is SM Ry for DM i, denoted by s € SZ-SMRO‘, iff for every

R;h-l—-‘r

s € (s) there exists at least one sy € Ry\piy(51), such that sy € @ =Y (s)

and s3 € &7 77Y(s) for any s3 € Ri(sy).
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Definition 3.17. State s is SEQ, for DM i, denoted by s € SfEQd, iff for every

s1 € R (s) there eists at least one sy € RJJ\“,’\JT{ZE’U(sl) with sy € ®7 7Y (s).

When n = 2, the DM set N becomes to {i,j} in Definitions 3.2 to 3.17, and
the reachable lists for H = N \ {i} by legal sequences of UMs and WIUUMs from
s1, Ry\gy(s1) and R;’\EE’U(sl), degenerate to R;(s;) and R;r’++’U(31), DM j’s
corresponding reachable lists from s;.

If the binary relation > denotes > or > in this research, i.e., s > ¢ iff either
s > q or s > ¢, then Definitions 3.2 to 3.17 are identical with Definitions 2.18 to
2.33 in Chapter 2 proposed by Li et al. [46]. On the other hand, when each DM
does not consider including uncertain preference in stability analysis, the above
definitions reduce to the standard stability definitions from Definitions 2.34 to
2.37 in Chapter 2 developed by Hamouda et al. [28].

3.2.3 Strong Stabilities under Hybrid Preference for
Multiple Decision Makers

With the hybrid preference framework introduced into the graph model, stable
states can be classified into strongly stable or weakly stable according to strength
of the possible sanctions and indexed a, b, ¢, or d by a DM’s attitudes toward
the risk associated with uncertain preferences. Strong and weak stabilities include

only GMR, SMR, and SEQ because Nash stability does not involve sanctions.

3.2.3.1 Strong Stabilities, Index a, for Hybrid Preference with
Strength of Preference

Definition 3.18. State s is strongly GMR, (SGMR,) for DM i, denoted by
s € SPOMBe iff for every s; € RV (s) there exists at least one sy € Ry gy (1)

such that so € ®; ~(s).

Definition 3.19. State s is strongly SMR, (SSMR,) for DM i, denoted by
s € STMBa iff for every s, € RTHY(s) there exists at least one sy € Ry (s1),

such that sy € ®;7(s) and s3 € ;7 (s) for all s3 € R;(s2).

Definition 3.20. State s is strongly SEQ, (SSEQ.) for DM i, denoted by
s € SPFQ iff for every s, € RV (s) there exists at least one s, € RETHY (s1)

NA\{d}
such that sy € @, (s).
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The above definitions indexed a represent strong stabilities for the most
aggressive DMs. Firstly, DM i is aggressive in deciding whether to move from the
status quo, since the DM considers moving to mildly or strongly preferred states,
as well as states having uncertain preference relative to the status quo. This
means that DM ¢ is willing to accept the risk associated with moves from the
status quo to states of uncertain preferences. In addition, when evaluating
possible moves, DM 1 is strongly deterred by sanctions to states that are strongly

less preferred relative to status quo state s.

3.2.3.2 Strong Stabilities, Index b, for Hybrid Preference with Strength

of Preference

For the following definitions indexed b, DM ¢ would move only to mildly or
strongly preferred states and be deterred by sanctions to strongly less preferred

states relative to the status quo.

Definition 3.21. State s is strongly GMR, (SGMRy) for DM i, denoted by
s € SPCMBy i for every sy € RV (s) there exists at least one sy € R\qiy(s1)

such that sy € ®; 7 (s).

Definition 3.22. State s is strongly SMR, (SSMRy) for DM i, denoted by
s € SPMBy g for every sy € RV (s) there exists at least one sy € Ragiy(51),

such that sy € ®; " (s) and s3 € ®; " (s) for all s3 € R;(s2).

Definition 3.23. State s is strongly SEQ, (SSEQ,) for DM i, denoted by s €
SZ-SSEQ”, iff for every s, € R (s) there exists at least one sy € R+’++’U(31) such

N\{i}
that sy € ;7 (s).

3.2.3.3 Strong Stabilities, Index ¢, for Hybrid Preference with Strength

of Preference

The definitions indexed c refer to a DM’s mixed attitudes toward the risk associated
with uncertain preferences. Specifically, DM ¢ is aggressive in deciding whether
to move from the status quo, but is conservative when evaluating possible moves,
because DM 17 is deterred by sanctions to states that are strongly less preferred

and states that have uncertain preference relative to the status quo.
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Definition 3.24. State s is strongly GMR. (SGMR,.) for DM i, denoted by
s € SfGMRC, iff for every s, € R;r’++’U(s) there exists at least one sy € Ry\(iy(51)

such that s, € ®; Y (s).

Definition 3.25. State s is strongly SMR. (SSMR.) for DM i, denoted by
s € SPSMBe iff for every s, € R TV (s) there exists at least one sy € Ry iy (51),

such that s, € ®; 7Y (s) and s3 € ®; Y (s) for all s3 € Ri(s).

Definition 3.26. State s is strongly SEQ. (SSEQ.) for DM i, denoted by s €
SPEQe it for every s, € RV (s) there exists at least one s, € RETHY (s1)

N\{i}
such that s, € ®; Y (s).

3.2.3.4 Strong Stabilities, Index d, for Hybrid Preferences with
Strength of Preference

Definition 3.27. State s is strongly GM Ry (SGMRy) for DM i, denoted by
s € SPCMBa it for every s, € R (s) there exists at least one sy € R\qiy(s1)

such that s, € &7 Y (s).

Definition 3.28. State s is strongly SM Ry (SSMRy) for DM i, denoted by
s € SPMEa it for every s, € R (s) there exists at least one sy € Raiy(51),
such that s, € ®; 7Y (s) and s3 € ®; Y (s) for all s3 € Ri(s3).

Definition 3.29. State s is strongly SEQ, (SSEQqg) for DM i, denoted by
s € S7EQ it for every s, € R (s) there exists at least one sy € R]J(,’\JT{E’U(sl)

such, that s, € ®; Y (s).

The above definitions indexed d indicate that DM ¢ would move only to mildly
or strongly preferred states, but is deterred by sanctions that could move i to
strongly less preferred states and states that have uncertain preference relative to
the status quo. Therefore, definitions indexed d represent strong stabilities for the
most conservative DMs.

When n = 2 and the DM set N reduces to two DMs {i, 7}, the reachable
lists of coalition NV \ {i} by the legal sequences of UMs and WIUUMs from state
s1, Ra\qiy(s1) and R;\EE’U(Sl), reduce to the reachable lists from s; by DM j,
R;(s1) and R;r’++’U(sl). Thus, Definitions 3.2 to 3.29 reduce to the definitions
presented in [68] for two DM conflicts. Therefore, if one considers neither strength

nor uncertainty in preferences, the above definitions will reduce to Definitions 2.14
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to 2.17 proposed by Fang et al. [16] for simple preference. When DMs’ preferences
do not include uncertainty, Definitions 3.18 to 3.29 reduce to the strong stability
definitions 2.38 to 2.40 defined by Hamouda et al. [28]; when DM i’s preferences do
not include strength, they reduce to Definitions 2.18 to 2.33 for the graph model
with preference uncertainty developed by Li et al. [46].

3.2.4 Weak Stabilities, Index [, for Hybrid Preference with
Strength of Preference

Let [ denote one of the four extensions indexed a, b, ¢, and d, i.e., | = a,b, c, or d.
In the following theorems, the symbol G\S denotes a solution concept, GMR, SMR,
or SEQ. Then G refers to the GS solution concept indexed [, SGS refers to the
strong solution concept of GS, and WGS refers to the weak solution concept of
GS (defined below). The symbol s € S denotes that s € S is stable for DM
1 according to stability GS indexed [. Similarly, s € Sf 951 denotes that s € S is
strongly stable for DM ¢ according to strong stability SGS indexed [. A state is
weakly stable iff it is stable, but not strongly stable. The formal weak stability

concept is defined next.

Definition 3.30. Let s € S and i € N. State s is weakly stable WGS; for DM
1 according to stability WGS indexed [, denoted by s € SXVGSZ, iff s € SiGSl and
s ¢ 5565

3.2.5 Interrelationships among Stabilities for Hybrid

Preference

In 1993, Fang et al. [16] determined relationships among Nash, GMR, SMR, and
SEQ for the simple preference structure. Following this research direction, Li et
al. [46] and Hamouda et al. [28] established interrelationships among stability
definitions with preference uncertainty and with strength of preference,
respectively.

The following interrelationships among proposed stabilities for hybrid
preference are similar to those clarified by Fang et al. [16]. Let [ = a,b, ¢, or d.
Then, the inclusion relationships among the four stabilities indexed [ for hybrid

preference are shown in Fig. 3.2.
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GMR,

Figure 3.2: Interrelationships among stabilities indexed [ for hybrid

preference.

Under the hybrid preference, the interrelationships of stabilities, strong

stabilities, and weak stabilities are as follows:

Theorem 3.1. Let | = a,b,c, or d and © € N. The interrelationships among
stability G S, strong stability SGS, and weak stability WGS indexed | for DM i are

WGS;, _ oGS, SGS;
SWESE — G5 _ g8GS:,

This result is obvious from Definition 3.30.

Based on definitions 3.2 to 3.29, the interrelationships among the four stabilities
of Nash, GMR, SMR, and SEQ and the three strong stabilities of SGMR, SSMR,
and SSEQ), indexed [ for hybrid preference are given next.

Theorem 3.2. Letl = a,b,c, or d and v € N. The interrelationships among the

four stabilities and the three strong stabilities indexed | are

SiNCLShl g SZSSMRZ g S’;S'MRZ g SiGMRl

Y

S,LNGShl g SfSEQl g SZSEQI g SiGMRl,

and
SiNashl C SZSGMRZ C SiGMRl.

The proof of Theorem 3.2 easily follows from the above definitions. Note that

there is no necessary inclusion relationship between S°°ft and 7979

may or may not be true that SP5M" D g5 op that SPIMAL C g

, Le., 1t

Theorem 3.3. The interrelationships among Nash stabilities indexed a, b, ¢, and

d for DM i are
Nash Nash, Nashy Nashg

Y
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and

SNasha C SNashb
(2 — (2 ‘
This result is obvious from the above Nash stability definitions.

Theorem 3.4. Let i € N. The interrelationships among stabilities GS and SGS

indezed a, b, ¢, and d are
G S, GS GS, GS, GS. GS,

and
SiSGSa C Sfcsb c SiSGSd’ SiSGSa c SiSGSC C SZ"SGSd'

The interrelationships are shown in Fig. 3.3.

SGS,

GS,

Figure 3.3: Interrelationships for stability GS and strong stability SGS

for all indexes.

The inclusion relations about G'S are similar with those regarding SGS, so we

only provide the proofs about SG.S. We first prove inclusion relations Sis SMEa

GSSMRe C GSSMRq,

Proof: If state s € SP9MFa this implies that if R""Y(s) # 0 and s, €
RV (s), then there exists at least one s, € Ry (51), such that sy € ®;77(s)
and s3 € ®; ~(s) for all 53 € R;(s3). Since ®;~(s) C ®; Y(s), then s, € ; Y(s)
and s5 € ®; Y(s) for all s3 € Ri(sy). Therefore, if state s € SP5Mfe then state
s € SpSMHAe,

If state s € S”MEe this implies that if s; € R "Y(s), then there exists
at least one sy € Rnn\yi3(s1), such that s, € @;_’U(s) and s3 € @;_’U(s) for all
s3 € Ri(sy). Since R (s) € RFTTY(s), then s € S¥MEe implies that if s €
R (s), then there exists at least one sy € Ry (i3(s1), such that s, € oY (s)
and s3 € ®; Y(s) for all s3 € R;(sy). Therefore, $2MFe C gF5MHa,
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The inclusion relations S55Mfe ¢ g9FME. C gS5MHa

relations about SGM R and SSE(Q) can be proved, similarly. So

is proved. Other inclusion

5GS, SGS. SGS
S; C S, c 5777
The proof of the inclusion relations
§5GSa ¢ SZSGSb c SfGSd

can be similarly proved. 0

3.3 Computational Stability Analysis and Status
Quo Analysis

In n-DM models, Rpy(s), the reachable list of coalition H by the legal UMs
starting at s, and R};7"U(s), the reachable list of coalition H by the legal
WIUUMs starting at s, are key inputs to stability analysis in the hybrid
preference framework. Although Li et al. [46] and Hamouda et al. [28] proposed
definitions for related sets RE’U and R};"", no algorithms for them have been
developed.

As a follow-up analysis, status quo analysis traces conflict evolution from a
status quo state to any specific outcome. It usually focuses on whether possible
equilibria are reachable from the status quo, and if so, how to reach them. Thus,
status quo analysis provides useful forward-looking insights into a strategic conflict,
helping DMs and analysts to identify how to attain a reachable equilibria from a
status quo state. GMCR II [18,19] allows for status quo analysis, but does not
implement it. Subsequently, [47,48] developed status quo analysis definitions and
the corresponding pseudo codes, but did not induce strength of preference. In this
section, the algorithms for the essential inputs of stability analysis and status quo
analysis are developed for hybrid preference.

Let i € N and H C N and let £ > 1 be an integer. With the notation defined

in Section 2.2.6, some new notation for hybrid preference is as follows:
° SZ-(k’+’++’U)(s) stands for states reachable from SQ = s in exactly k legal

WIUUMs by the DMs in H with last mover DM 4;

° Vlgk’+’++’U)(s) denotes states reachable from S} = s in at most k legal

WIUUMs by H;
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. Agk’+’++’U)(s) indicates arcs with last mover DM ¢ in sequences of at most

k (k> 1) legal WIUUMs by the DMs in H from SQ = s. Let A7 U (s)
denote the sets of arcs associated with DM ¢ in one step WIUUM from state

U U
s. Therefore, A7 Y = |J AF Y (s).
seS

In the status quo analysis, if a DM moves twice in succession, the DM is deemed
to make illegal moves. The following Theorem 3.5 asserts that if there does not
exist any new appropriate arc in the graph model, then corresponding joint moves

will stop.

Theorem 3.5. For SQ) = s and H C N, the following results hold:

(1) 1f [J A (s = AM(s),

icH ieH
then Vf(lkﬂ)(s) = Vlgk)(s) and Ry (s) = Vfgk)(s);
(2) If U A£k+1,+,++)(s) _ U Agk’+7++)(5),

i€H i€H

then Vlgk+1’+’++)(s) = V;Ik’+’++)(s) and R (s) = Vlgk’+’++)(s);

(3) [f UA(k+1,+,++,U)(S) _ UA(]C,+,++,U)(S)

i€H 1€H

then V;Ik+1’+’++’U)(s) = V;Ik’+’++’U)(s) and R} (s) = Vlgk’+’++’U)(s).

Proof: The proofs of three statements (1), (2), and (3) are similar. We prove
(3) that explicitly shows the hybrid preference structure.
Assume that there exists ¢ € Vlgk+1’+’++’U)(S)\Vfgk’+’++’U)(s) but
U A§k+1,+,++,U)<S): U A;k‘,+,++,U) (S)
jeH jeH
Since VY6 = UH SEFLHFRD () U VT D(s), then, there
je
exists ¢ € H, such that ¢ € ka+1’+’++’U)(s) \ Vé]k’+’++’U)(s). Hence, there exists
sse U SJ(-k’+’++’U)(s) such that ¢ € RV (s;). Clearly, this implies that arc
jeH\{i}
s e AL AETFED) () which  contradicts with the
( 1 Q> ) J
jeH
hypothesis  that A§k+1’+’++’U)(s) = U Agk’+’++’U)(s). Thus,
i€ H ieH
V}(Ik’+l,+,++,U)<8) _ V[({k,+,++,U)(S) when Lg{ A§k+l,+,++,U) (S) _ Lg{ AZ("C,+,++,U) (S) It
1€ S
is  clear  that if V}Ik+1’+’++’m (s) = V;Ik’+’++’U) (s), then

U Sl-(k+1’+’++’U)(s) C Vf(lk’+’++’U)(5). Consequently, if there are no new arcs in
ieH
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U AR 6)  then the legal WIUUMs will stop after &k legal WIUUMs
i€H

from state s. ie., RyTHV(s) = V}Ik’+’++’U)(s). (1) and (2) can be similarly

verified. O

Fix HC N. Let| J Ail,| U AP, and | |J AF""Y| respectively denote the
icH icH icH

cardinalities of UM arcs, WI arcs, and WIUUM arcs in a directed graph associated
with the DMs in H. Then, the following lemma can be easily derived using Theorem
3.5.

Lemma 3.1. Let 61, 6o, and d3 respectively stand for the number of iteration steps

required to construct Ry(s), RiyT%(s), and R}V (s) for any s € S. Then
(1) o <| U Al
ieH
(2) 6 <| U AT"; and

i€H

(3) 65 < | U A4S
i€H

Let I, = | U Al lo=| U A", and let Is = | J A"""Y|. By Theorem 3.5
1€H i€H i€H

and Lemma 3.1, the following theorem can be proved.

Theorem 3.6. Let s € S, H C N, and H # (). Then the reachable lists of H by
the legal sequences of UMs, Wis, and WIUUMs from state s, Ry(s), Ry (s),
and R;’++’U(s), can be respectively expressed by

(1) Ru(s) = Vi (s);

(2) Ri (s) = Vi (o)

(3) RV (s) = V}IIS’+’++’U)(S).

Proof: The proofs of equations (1), (2), and (3) can be carried out similarly.
Here, we prove (3) including explicit hybrid preferences. Based on Theorem 3.5,
RETHY(s) = V1253’+’++’U)(s). It is obvious that no new arc is produced by legal
WIUUMs in the graph model after d3 iteration steps. Since 03 < l3 by using Lemma
3.1, then V53’+’++’U)(s): VIS53’+’++’U)(S). Therefore, (3) is proved.

(1) and (2) can be similarly proved. O

The following algorithm presented in Table 3.1 implements constructions of
the state set and arc set, Vlgk)(s) and Agk)(s), which include all states reachable
by coalition H in at most k legal UMs starting at state s and all arcs with last
mover DM ¢ in sequences of at most k£ legal UMs from SQ = s for k = 1,2, -
-,01. Obviously, Table 3.1 also provides the construction of the reachable list of
H from state s, Ry(s), using Theorem 3.6. The arcs, Agk)(s) for k = 1,2, -
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-, 01, sufficiently track the evolution of a conflict permitting all UMs from state
s. Similarly, the computational implementation of the state set V;Ik’+’++’U) (s) and
the arc set Agk’+’++’U)(s) can be accomplished by using the following algorithms
described in Table 3.2. Therefore, the algorithms designed in Tables 3.1 and 3.2
operationalize the key inputs of stability analysis, R (s) and R}, ™Y (s), and the
evolution paths of status quo analysis for hybrid preference.

If UMs have no strength of preference to be considered, then the state set
R 7Y (s) reduces to Ri;Y(s) defined by Li et al. [46]. If no uncertain preference
is associated with UMs, Rj; Y (s) reduces to R}, (s), introduced by Hamouda
et al. [28]. Obviously, the developed results for hybrid preference expand the
existing stability analysis [16,28,46] and status quo analysis [47,48].

3.4 Application: Gisborne Conflict with Hybrid

Preference

Lake Gisborne is located near the south coast of the Canadian Atlantic province
of Newfoundland and Labrador. In June 1995, a local division of the McCurdy
Group of Companies, Canada Wet Incorporated, proposed a project to export
bulk water from Lake Gisborne to foreign markets. On December 5, 1996, this
project was registered with the government of Newfoundland and Labrador. At
the time of registration, no policy existed on bulk water exports. However, this
proposal immediately aroused considerable opposition from a wide variety of lobby
groups. In addition to unpredictable harmful impacts on local environment and
First Nations culture, a critical issue is its potential implication of making water a
tradeable “commodity” that is thus subject to WTO (World Trade Organization)
and NAFTA (North American Free Trade Agreement). Therefore, if the Lake
Gisborne bulk water export project was successfully executed, the water policy in
Canada might have to undergo a significant shift as any firm would be able to follow
the suit. As such, the Federal Government of Canada sided with the opposing
groups by introducing a policy to forbid bulk water export from major drainage
basins in Canada. The mounting pressure eventually forced the government of
Newfoundland and Labrador to introduce a new bill to ban bulk water export
from Newfoundland and Labrador, which effectively terminated the Gisborne water

export project. (See details in [17,46]).
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Table 3.1: The pseudocode for constructing Ry (s)

Initialize  //initialize the necessary parameters
H: any subset of DMs;
h: the number of H;
m: the number of states;
s: the status quo state;
01: the max step we want to calculate;
R;(s): reachable list from state s by DM 4, ¢ =1,--- , h;
k=1
S¥(s) = Ry(s),i=1,--- ,h
-, h

Vi(s) = 5" (s)i = 1,
Agk)(s): U (87Q)a <87Q) fori:l?"' 7h
qER;

’Z:

(s)
loop 1

k=k+1
loop2 ifrom1toh //thelast mover is DM ¢
= U S V)

JEH\{i}
SM(s)= U Ri(s)
s'eS’

V() = V5 V() USH ()

2

Agk)(s) = Aﬁk_”(s) U{(s1,82) :s1€ U Sj(-k_l)(s), and sy € Ri(s1)}
JjeH\{i}
return to loop 2
Vi(s) = U V()
ieH
return to loop 1 if (J Agk)(s) "y Agk_l)(s)

1€H i€H
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Table 3.2: The pseudocode for constructing RE’JFJ“U

Initialize  //initialize the necessary parameters
H: any set of DMs;

h: the number of H;

m: the number of states;

s: status quo state;

03: the max step we want to calculate;

k=1
ST (s) = RETT(s)i =1,k

V(k,+,++,U)(8) _ Sgk,+,++,U)(S> i=1.---_h

Agk’+’++’U)(s) = U s,q) fori=1,--- h
qGR:“JrJ“U(s)
loop 1
k=k+1
loop2 ifrom1toh //thelast mover is DM ¢
(E=1,4,++,U)
= U 5 (s)
JEH\{i}
Si(k,—f—,-i--&-,U)(S) _ U R;F,++,U(S/)
s'es’

V(k,+,++,U) (3) _ V(k71,+,++,U)(8) U S-(k’+’++’U)<S)

A,Ek7+7++7U) (S) _ A[Ek:—l,—h—}——i—,U) (S) US//
S — {(51’32) s, € U S](‘kfl,+,++,U)(8)7 and s, € R;r,++,U(81)}
JEH\{i}

return to loop 2

i€H
return to loop 1 if | Agk’+’++’U)(3) £ U Al(-k_l’+’++’U)(s)

1€H i€eH

03 =k

R (s) = VP (s).

Rj’++’U(s): reachable list by a WIUUM from state s by DM 4, i =1, --

R

50




Nevertheless, several support groups remain interested in the project, and the
provincial government might restart the project at an appropriate time in the
future due to its urgent need for cash. This prospect introduces uncertainty into
the preferences of the provincial government for the Gisborne conflict model. This
conflict is modeled using three DMs: DM 1, Federal (Fe); DM 2, Provincial
(Pr); and DM 3, Support (Su); and a total of three options, as shown in Table
3.3. The following is a summary of the three DMs and their options [46]:

e Federal government of Canada (Federal): its option is to continue a

Canada-wide accord on the prohibition of bulk water export or not,

e Provincial government of Newfoundland and Labrador (Provincial): its

option is to lift the ban on bulk water export or not, and

e Support groups (Support): its option is to appeal for continuing the

Gisborne project or not.

Table 3.3: Options and feasible states for the Gisborne conflict [46]

Federal
1. Continue N Y N Y N Y N Y
Provincial
2. Lift N NY Y NN Y Y
Support

3. Appeal N NN NY Y Y Y

State number s; Ss3 S3 S4 S5 S¢ S7 Sy

In the Lake Gisborne conflict model, the three options together determine 8
possible states as listed in Table 3.3, where a “Y” indicates that an option is
selected by the DM controlling it and an “N” means that the option is not chosen.
The graph model of this conflict is depicted based on the 8 feasible states by Fig.
3.4, in which a label on an arc indicates which DM controls the moves between the
two states connected by the arc.

In this section, the extended stability definitions with hybrid preference are
applied to an extended Lake Gisborne conflict. Li et al. [46] introduced
uncertainty into the preferences of the Provincial Government for the Gisborne

conflict. = We extend the graph model to include the hybrid preference of
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Suppo Support

Provincial Q a Provincial

Federal Federal Federal Federal
Provincial Q @ Provincial a
Suppo Suppo

Figure 3.4: Graph model for the Gisborne conflict [46].

uncertainty and strength in the Gisborne dispute. The preference information for
this conflict over the feasible states is given in Table 3.4. We assume that state s;
is strongly less preferred to all other states by the Federal Government, the
Support Groups consider state sy to be strongly less preferred relative to all other
states, and the Provincial Government strongly prefers state s, to state sg. Note
that DM Provincial only knows that it mildly prefers state s3 to sy, state s4 to
sg, state s; to s, and strongly prefers state s, to sg. This DM is uncertain for
preference relations between other any two states. It is obvious that DM
Provincial’s preference information includes uncertainty and strength.
Additionally, this representation of preference information presented in Table 3.4
implies that the preferred relations, > and >, are transitive. For instance, since
s5 > s3 and s3 > sy, then s; > s;. However, in general, the preference structure
presented in this research does not require the transitivity of preference relations
and, hence, the developed results can be used to handle intransitive preferences.
The stable states and equilibria under the hybrid preference structure are
summarized in Table 3.5, in which a check mark (/) opposited a given state and
an index means that this state is stable for the indicated DM, solution concept
and associated index (a,b,c, or d), “Eq” is an equilibrium for a corresponding
solution concept, and 1, 2, and 3 denote three DMs, Federal, Provincial, and
Support, respectively. In fact, if analysts are not willing to take the risk to
switch the current strategy to another strategy having uncertain preference

relative to the initial strategy, and are conservative when considering sanctions,
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Table 3.4: Certain preferences information for the Gisborne model
(extended from [46])

DMs Certain preferences

Federal | sy > sg > 84 > Sg > 81 > S5 > S3 > S7

Provincial | s3 > s7, 54 > sg, §1 > S5, S3 > Sg, only

Support | s3 > §4 > S7 > Sg > S5 > Sg > S1 > S

then they would consider selecting equilibria with index d as resolutions for
decision making. On the other hand, if developers are very aggressive, they
would like to find the stable states under index a. Table 3.6 compares stability
results for preference with uncertainty only and hybrid preference of uncertainty
and strength. State s is a strong equilibrium for some stability if s is strongly
stable for all DMs under the stability. By Table 3.6, we select states s, and sg as

better choices for making decision, since sg is not a strong equilibrium.

The evolution of the Gisborne conflict by WIUUMs from status quo s,

DMs Status quo | Transitional states | Equilibrium
Federal N N——Y Y Y
Provincial N N N——» Y Y
Support N——»Y Y Y —» N
State number S| Ss S Sg Sy

Figure 3.5: The Gisborne conflict evolution from states s; to sy4.

The aim of stability analysis in this research is to find strong equilibria of
a graph model associated with some index according to DM’s attitudes toward
the risk associated with uncertain preferences. Status quo analysis examines the
dynamics of a conflict model and assesses whether predicted equilibria are reachable
from the status quo. Therefore, by taking a status quo analysis into account,
additional insights are revealed about the attainability of any potential resolution.
Fig. 3.5 shows the evolution of the Gisborne conflict by legal WIUUMSs from statu

quo state state sy to the desirable equilibrium s4.
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Table 3.5: Stability results of the Gisborne conflict with hybrid preference
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Table 3.6: The comparison of stability results for two types of preference

structures
Preference structure| States |Analysis method Analysis result
s4 and sg| see Chapter 2 Equilibria under extensions b and
Preference with d for Nash, GMR, SMR and SEQ
uncertainty S8 see Chapter 2 Equilibrium under extensions b
and d for GMR, SMR and SEQ
s4 and sg| see Chapter 3 | Strong equilibria under extensions b
Hybrid and d for Nash, GMR, SMR and SEQ
preference S8 see Chapter 3 Weakly stable under extensions
b and d for SMR and SEQ

3.5 Summary

A hybrid preference framework is developed in this chapter for strategic conflict
analysis to integrate preference strength and preference uncertainty into GMCR for
multiple decision makers [68,70]. The hybrid system is more general than existing
models, which consider preference strength and preference uncertainty separately.
Within the hybrid preference structure, the hybrid versions of four basic stabilities
are defined and algorithms are developed to calculate efficiently the essential inputs
of the stabilities and status quo analysis. The new stability concepts under the
hybrid preference structure can be used to model complex strategic conflicts arising

in practical applications, and can provide new insights for the conflicts.
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Chapter 4

Multiple levels of Preference in
the Graph Model for Conflict

Resolution

A multiple-level preference ranking structure is developed within the paradigm of
the Graph Model for Conflict Resolution to study multi-objective decision
making in conflict situations more realistically. In this structure, a decision
maker may have multiple levels of preference for one state or scenario over
another; for example, if state A is preferred to state B, it may be mildly preferred
at level 1, more strongly preferred at level 2, - - -, or maximally preferred at level
r, where r > 0 is a fixed parameter. The number of levels, r, is unrestricted in
this system, thereby extending earlier two-level (r = 1) and three-level (r = 2)
structures. Multilevel versions of four stability definitions, Nash stability, general
metarationality, symmetric metarationality, and sequential stability, are defined
for the graph model with this extended preference structure and the relationships
among them are investigated. A specific case study, including multiple decision
makers and multiple levels of preference, is carried out to illustrate how the new

solution concepts can be applied in practice.
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4.1 Multiple Levels of Preference

The simple preference structure {>,~} [16] and the structure with strength of
preference {>>, >, ~} [27,28] are referred to as two levels of preference and three
levels of preference, respectively. As a result of the development of a significant
amount of research expressing preference information by degree of strength [58,64],
the existing preference structures in the graph model would be unable to depict
the intensity of relative preference. Therefore, it may be worthwhile to extend the
existing two levels of preference and three levels of preference in the graph model
to an unlimited number of levels of preference, which in this thesis are referred to

as degrees of preference.

Table 4.1: Degree of relative preference

Degree of strength Description Notation
d=20 Equally preferred ~
d=1 Moderately preferred >
d=2 Strongly preferred >
d=3 Very strongly preferred >
d=r Preferred at level r > >

d
A set of new and more general binary relations > --- > for d = 1,2,---,r, as

listed in Table 4.1, are proposed in this research to represent DM i’s preference
at each level d. With the introduction of these new binary relations, the three
levels of preference in the graph model are extended from a triplet relations, to

an 7 + 1-level relations for DM 4 over the set of states, which is expressed as
I8

{r~oiy >, >0, ;1} on S, where >, denotes 7?7 i.e., DM 7 has preference by
degree r for comparing states with respect to preference. For instance, s >>; ¢
means that DM ¢ very strongly prefers state s to state ¢q. It is assumed that the
preference relations of each DM ¢ € N have the following properties:

(i) ﬁi ford=1,2,-- -, r, is asymmetric;

(ii) ~; is reflexive and symmetric; and
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(iil) {~, >0 >0, 0, ;Z} is strongly complete, i.e. if s,q € S, then exactly one
of the following relations holds: s gi q, q gi s,ford=1,2,---,r, or s~;q.
Preference information can be either transitive or intransitive. If k >di sand s >di q
imply & ﬁi q, then the preference >(§,- is transitive. Otherwise, preferences are
called intransitive. Note that the assumption of transitivity of preferences is not
required in the following definitions so that the results in this research hold for
both transitive and intransitive preferences. When all preferences for a given DM
1 are transitive, the preferences are said to be ordinal and, hence, the states in
a conflict can be ordered or ranked from most to least preferred, where ties are
allowed. Sometimes this ranking of states according to preference is referred to as
a “preference ranking”.

For the new preference structure, DM ¢ can identify 2r+1 subsets of S: (ID;HT) (s),
o (), d7(s), @7 W(s), -+ -, and ;7 (s). Here, @ Y(s) and ®;“(s) for
d=0,1,--- r are defined and described in Table 4.2. The set R;(s) denotes the
unilateral moves (UMs) of DM i from s € S, and is also called i’s reachable list from
s. It contains all states to which DM ¢ can move, unilaterally and in one step, from
state s. Similarly, the set R (s) = {q € S : ¢ € R;(s) and q gi sford=1,2,---,r}
contains DM 4’s unilateral improvements (Uls) from state s at various levels of
preference. All reachable lists from state s at each level of preference for DM

it are expressed by R;F(T)(s), Cey R;r(l)(s), R(O)(s), R;(l)(s), -+, and Ri_(r)(s).

(2

Let Ri(s) = U (R, ““(s) U RF(s)) and Rf(s) = U R (s), where RV (s)
0 d=1

)

d=
and R;(d)(s) for d = 0,1, - -,r, are described in Table 4.3. Additionally, the
relations among the subsets of .S, @j(d)(s) and (IDi_(d)(s) for d = 0,1,---,r, and
the corresponding reachable lists from state s for DM i, R} Y (s) and R; “”(s) for
d=0,1,--- r, are depicted in Fig. 4.1.

4.2 Multiple Levels of Preference in the Graph
Model for Conflict Resolution

Incorporating this extended multiple levels of preference into the graph model for

conflict resolution results in multilevel versions of the four basic solution concepts,
Nashy, GM Ry, SM Ry, and SEQy, for k =0,1,-- -, r. The stability definitions in

a 2-DM conflict model are presented next.
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Table 4.2: Subsets of S for DM ¢ with respect to multiple levels of

preference

Degree of strength Subsets of S Description
o (s)={q: ¢S > s} States preferred to state
d=r s at level » by DM 4

T

@;(7')(5) ={q:s>--->;q} | States less preferred to state s
at level r by DM 1¢

(I);_(S)(S) ={q:q>> s} States very strongly preferred

d=3 to state s by DM 1
@;(3)(3) ={q:s>>q} States very strongly less
preferred to state s by DM ¢
(I)j(z)(s) ={q:q>;s} States strongly preferred
d=2 to state s by DM ¢

(I)Z._(Q)(s) ={q:s>;q} States strongly less preferred
to state s by DM ¢
oV (s) ={q:q> s} States moderately preferred
d=1 to state s by DM ¢
@;(1)(3) ={q:s5>;q} States moderately less preferred
to state s by DM ¢

d=0 @EO)(S) =®7(s)={q:q~; s} States equally preferred
to state s by DM 1
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Table 4.3: Reachable lists by DM i at some level of preference

Type of movement Description

Rj(d)(s) = R;(s)N @;r(d>(s) All unilateral improvements of degree

d from state s for DM 1

Ri(5)"@(s) = Ri(s) N q)f(d)(s) All unilateral disimprovements of degree

d from state s for DM 1

Rgo)(s) = R7(s) = Ri(s) N ®7(s) | All equally preferred states reachable

from state s by DM i

4.2.1 Stabilities for Multiple Levels of Preference in Two
DM Conflicts

First, in the solution concepts given below, strength of preference is not considered
in sanctioning, so the following solution concepts are called general stabilities. This
idea is analogous to the concept of standard stability proposed by Hamouda et
al. [27]. For all of the definitions given in this section, assume that N = {7, j} and
seS.

4.2.1.1 General Stabilities for Multiple Levels of Preference

Definition 4.1. State s is general Nash stable (SNash) for DM i, denoted by
s € SENash iff RE(s) = ().

Definition 4.2. State s is general GMR (GGMR) for DM i, denoted by s
SECEME - yff for every s; € R (s) there exists at least one sy € R;(s1) with s
U ;)

d=0

Definition 4.3. State s is general SMR (GSMR) for DM i, denoted by s

SESMR i for every sy € R} (s) there exists at least one sy € R;(s1) with sy

U CI);(d)(s) and s3 € |J @;(d)(s) for all s3 € R;(s3).
d=0 d=0

m m

m m

Definition 4.4. State s is general SEQ (GSEQ) for DM i, denoted by s

SZ-GSEQ, iff for every sy € R;f(s) there exists at least one sy € Rj(sl) with s3

U @, “(s).
d=0

m m

60



Figure 4.1: Relations among subsets of S and reachable lists from s.

Note that, in this research, the meaning of R} (s) differs from that of Fang
et al. [16]; there, it denotes all one-level unilateral improvements from s by DM
1, whereas here, it includes all unilateral improvements, no matter how many
levels. For three levels of preference, stabilities are divided into strongly and weakly
stable according to the strength of the possible sanction, i.e., if a particular state
s is general stable, then s is either strongly stable or weakly stable [28]. Within
multiple levels of preference, the general stabilities are constituted by stabilities at

each level of preference.

4.2.1.2 Stabilities at Level k for Multiple Levels of Preference

Firstly, definitions are given in this research for different strengths of Nash stability.
Even though unilateral improvements do not exist under Nash stability, the idea
of strength of stability can still be captured using the level of preference for the
most preferred states to which the DM could unilaterally move. All these states
must be less preferred than the initial state. A special connection is required for
the case when no movements of any type exist for the DM. If DM ¢ has no any
unilateral move at all levels of preference from state s, state s is extremely stable.

We proposed the stability next.
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Definition 4.5. If R;(s) = 0, then state s is super stable for DM i at any level

of preference, denoted by s € Sf“per.

Definition 4.6. State s is Nash stable (Nashg) at level 0 for DM i, denoted by
s € SN iff R (s) =0 and R (s) # 0.

Definition 4.7. For 1 < k < r, state s is Nash stable (Nashy) at level k for
k—1

DM i, denoted by s € S) " iff R*(s) U (U Ri_(d)(s)) =0 and R;(k)(s) # 0.
d=0

The k-th level Nash stability is depicted in Fig. 4.2. The super stability is
referred to as Nash stability at the highest level.

—r— O (s)

k-1
R ()u(u R D) =2
d=0

s

i

—(k-1)- o ;D (s)
L — S]L——Sl A0 D7 (s)

— 0 < o ™

Figure 4.2: Nash stability at level &

When multiple-level preference is incorporated into the graph model, GMR,
SMR, and SEQ stabilities at different levels can be distinguished according to the
strength of the sanction. For DM i, if a Ul from state s is sanctioned in exactly
k levels below s and all other Uls from state s are sanctioned in at least k levels
below s, then the status quo s is called general metarational at level k. Its formal

definition is given below.

Definition 4.8. State s is general metarational (GMR,) at level 0 for DM 1,
denoted by s € SEME0iff either R (s) = 0 and R\ (s) # 0, or Rf (s) # 0 and for

every s; € R (s) there exists at least one sy € Rj(s1) with sy € |J @;(d)(s) and
d=0

there exists at least one s} € R} (s) and sy € Rj(s}) such that sy € @50)(5) and

Ry(5)N(U @) =0.
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Definition 4.9. For 1 < k <r — 1, state s is general metarational (GMR},)
k-1
at level k for DM i, denoted by s € SEMB iff either |J Ri_(d)(s) URf(s) =10
d=0
and R; W (s) £ 0, or RF(s) # 0 and for every s1 € R} (s) there exists at least one
so € R;(s1) with sy € |J @;(d)(s) and there exists at least one s} € R (s) and
d=k
sy € R;(s}) such that sy € @;(k)(s) and R;(s})N( U @;(d)(s)) = 0.
d=k+1

If all of DM ¢’s Uls from a state are sanctioned at the highest level r (exactly
r levels below the state), then the state is called general metarational at level r.

Its formal definition is given below.

Definition 4.10. State s is genem,l metarational (GMR,) at level v for DM
, denoted by s € SEMEr iff either U R 9 (s) U Rf(s) = 0 and Ri_(r)(s) # 0,
d=

or Rj'( ) # 0 and for every s; € R+(s) there exists at least one sy € Rj(s1) with
S9 € (IDi_(r)(s).

For DM 1, if a Ul from a state is sanctioned at level k£ below the state and all
other Uls from the particular state are sanctioned at a level of at least k£ below
the state, and these corresponding sanctions cannot be avoided by any
counterresponse, then the state is called SMR stable at level k. Its formal

definition is given below.

Definition 4.11. State s is symmetric metarational (SMRy) at level 0 for
DM i, denoted by s € ST iff either RS (s) = 0 and R\”(s) # 0, or R} (s) # 0

and for every s; € R} (s) there exists at least one sy € R;(s1) with sy € U <I>7 @ ( )
=0

and there exists at least one sy € R} (s) and s € R-( 1) such that s}, € <I>Z(O (s) and
R;(sy)N(U @;(d)(s)) =0, aswell as s3 € <I>z- 9 (s ) for any s3 € R;(s2)UR;(sh).
d=1 d=0

Symmetric metarationality at level k (0 < k < r) for DM 4 consists of SM R+
and SM Rj,- that are defined next.

Definition 4.12. For 1 < k < r — 1, state s is symmetric metarational

k1
(SMRy+) at level k for DM i, denoted by s € SiSMR”, iff either |J R;(d)(s) U
d=0

R} (s) =0 and Ri_(k)(s) £ 0, or RY(s) # 0 and for every s; € R} (s) there exists at
least one sy € R;i(s1) with s, € |J (IDi_(d)(s) and there exists at least one s, € R (s)
d=k

63



and s, € R;(s}) such that sy € CIDZ-_(k)(s) and R;(s1) N U @;(d)(s)) =0, as well
d=k+1
as s3 € U q);(d)(s) for any s3 € R;i(s2) U R;(s}).
d=k
Stability SMRy- is defined by S°V%~ = gGSME n gGMRx _ gSMf+

]

Equivalently,

Definition 4.13. For 1 < k < r — 1, state s is symmetric metarational

(SMRy-) at level k for DM i, denoted by s € SfMka, iff s € SiGMR’“ and

R} (s) # 0 and for every sy € R (s) there exists at least one sy € R;(s1) with

Sy € O @;(d)(s) and s3 € O @;(d)(s) for all s3 € R;(sq), as well as there exists
d=k d=0

T

s € RS (s) and for every sy € R;(s}) N (U @;(d)(s)), Ri(sh) N @Z(»*d)(s) # 0 for at
d=k
least one d € {0,---,(k—1)}.

Definition 4.14. State s is symmetric metarational (SMR,+) at level r for
DM i, denoted by s € S | iff either TL_Jl Ry “V(s)UR}(s) = 0 and R; " (s) # 0,
or Rf(s) # 0 and for every s; € R;r(s)dt:i?ere exists at least one sy € R;(s1) with
Sy € (I)Z»_(r)(s) and sz € @;(T)(s) for any s3 € R;(sa).

Definition 4.15. State s is symmetric metarational (SMR,-) at level r for

DM i, denoted by s € Sl-SMRT_, iff RF(s) # 0 and for every sy € R/ (s) there

exists at least one sy € Rj(sy) with sy € @;(T)(s) and s3 € |J @;(d)(s) for all
d=0

s3 € Ri(sq), as well as there exists sy € R} (s) and for every sy € Rj(sl)ﬂsz(r)(s),
Ri(sh) N @E_d)(s) # O for at least one d € {0,---, (r —1)}.

Sequential stability at level k is similar to the stability of GMR at the same
level. The only modification is that all DM ¢’s Uls are subject to credible sanctions

by DM 4’s opponent. Its formal definition is given below.

Definition 4.16. State s is sequential stable (SEQ,) at level 0 for DM i,

denoted by s € SSFXiff either R¥(s) =0 and R\"(s) # 0, or Rf (s) # 0 and for

every sy € R (s) there exists at least one sy € R} (s1) with s, € |J @;(d)(s) and
d=0

there exists at least one sy € R} (s) and sy € RS (s}) such that s € (I)EO)(S) and

RE(s) MU &7 (s)) = 0.

d=1
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Definition 4.17. For 1 < k <r — 1, state s is sequentially stable (SEQy) at
level k for DM i, denoted by s € S>P%% iff either U R, Cl)( YU RS (s) =0 and

R; () (s) # 0, or Rf(s) 7é 0 and for every s, € R+( ) there exists at least one
sy € R (s1) with sy € U o (d)(s) and there exists at least one sy € R (s) and
d=k

sy € RS (s]) such that sy € &, ) (s) and RI(s)) N U o, D (s)) = 0.

d=k+1
Definition 4.18. State s is sequentially stable (SEQ,) at level r for DM i,
denoted by s € SPF9 | iff either U R “s)URS(s) =0 and R, (s) # 0, or

Rf(s) # 0 and for every s; € R*( ) there exists at least one sy € R} (s1) with
sy € D, r )(3).

4.2.2 Stabilities for Multiple Levels of Preference in
Multiple DM Conflicts

In an n-DM model, where n > 2, the opponents of a DM can be thought of as a
coalition of one or more DMs. To calculate the stability of a state for DM ¢ € N,
it is necessary to examine possible responses by all other DMs j € N \ {i}, which
may include sequential responses. To extend the graph model stability definitions
to stability definitions in n-DM models with multiple levels of preference, the
definition of a legal sequence of decisions for three levels of preference [28] must

first be extended to take multiple levels of preference into account.

4.2.2.1 Legal Sequences of Unilateral Moves and Unilateral

Improvements

A legal sequence of UMs in a graph model with multiple levels of preference for
a coalition of DMs is a sequence of states linked by unilateral moves controlled
by members of the coalition, in which a DM may move more than once, but not
twice in succession. (If a DM can move in succession, then this DM’s graph is
effectively transitive. Prohibiting consecutive moves thus allows for graph models
with intransitive graphs, which are sometimes useful in practice.) When H = {i},
a legal sequence of UMs for the coalition H reduces to a unilateral move of DM 1.

Let the coalition H C N satisfy |H| > 2 and let the status quo state be s € S.
We now define Ry(s) C S, the reachable list of coalition H from state s by a
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legal sequence of UMs in a graph model with multiple levels of preference. The
following definitions are adapted from [16,28]:

Definition 4.19. Let s € S, H C N, and H # 0. Here, R;(s) = |J (R]-_(d)(s) U

R;r(d)(s)) for any j € H. A unilateral move by H is a member of Ry(s) C S,
defined inductively by:

(1) if j € H and s; € R;(s), then s; € Ry(s) and j € Qpu(s, s1);

(2) if s1 € Ru(s), 7 € H and sy € Rj(s1), then, provided Qpy(s,s1) # {j},
Sy € Rp(s) and j € Qpu(s, s2).

Note that Definition 4.19 is analogous to Definition 2.10, but, here, unilateral
moves include the states that are reachable from state s by multiple levels of
preference (may more than three levels) listed in Table 4.3.

In a graph model with multiple levels of preference, a legal sequence of Uls for
coalition H is a sequence of states linked by unilateral improvements including
each-level Uls controlled by members of the coalition H with the usual restriction
that a member of the coalition may move more than once, but not twice
consecutively. The formal definition is given below.

Definition 4.20. Let R (s) = 0 R;r(d)(s) for any j € H. A unilateral

d=1
improvement by H is a member of Rj;(s) C S, defined inductively by:

(1) if j € H and s; € | R;r(d)(s), then sy € R} (s) and j € QF(s)(s, s1);
d=1
(2) if ss € Ri(s), 7 € H and s € R;L(d)(sl), then, provided
d=1
U (5)(5,51) # (), 2 € Rly(s) and j € (s, 52).

Definition 4.20 is identical to Definition 4.19 except that each move is to a state
strictly preferred with some degree of preference by the mover to the current state.
Similarly, Q};(s, s1) includes all last movers in a legal sequence of Uls by coalition
H from state s to state s;. Specifically, this definition is inductive: first, using
(1), the states reachable by a single DM in H from s by one step Uls in multiple
levels of preference are identified and added to R};(s); then, using (2), all states
reachable from those states are identified and added to Rj};(s); then the process
is repeated until no further states are added to R};(s) by repeating (2). Because
R} (s) C S, and S is finite, this limit must be reached in finitely many steps.
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4.2.2.2 General Stabilities for Multiple Levels of Preference

Super stability and Nash stability definitions are identical for both the 2-DM and
the n-DM models because these stabilities do not consider the opponents’

responses. Let ¢+ € N and s € S for the following Definitions.

Definition 4.21. State s € S is GGMR for DM i, denoted by s € SCEME iff for
every sy € R (s) there exists at least one sy € Ry (i3 (s1) with sy € |J @;(d)(s).
d=0

Definition 4.22. State s € S is GSMR for DM i, denoted by s € SESME_iff for
every s1 € R (s) there exists at least one so € Ry\giy(s1) with sy € |J @;(d)(s)
d=0
and s3 € |J @;(d)(s) for all s3 € R;(s2).
d=0
Definition 4.23. State s € S is GSEQ for DM i, denoted by s € ST°F2 iff for
every s; € R (s) there exists at least one sy € R;{,\{i}(sl) with s3 € |J @;(d)(s).
d=0

4.2.2.3 Stabilities at Level k& for Multiple Levels of Preference

Similar to 2-DM conflicts, solution concepts for n-DM conflicts can be defined
as different-level stabilities, according to degrees of preference. Nash stability
definitions in multiple DM conflicts are the same as those in 2-DM cases. Therefore,
only the extended GMR, SMR, and SEQ are defined here. For DM 4, if a UI from
state s is sanctioned by the legal sequence of UMs of i’s opponents in exactly k
levels below s and all other Uls from state s are sanctioned in at least k levels below
s, then the status quo s is called general metarational at level k. The process is

portrayed in Fig. 4.3 and the formal definition is given below.

Definition 4.24. State s is GM Ry for DM i, denoted by s € SZGMRO, iff either
R (s) =0 and R"(s) £ 0, or R (s) # 0 and for every s, € R (s) there exists at

least one sy € Ry\giy(s1) with s3 € |J CIDZ-_(d)(s) and there exists at least one s} €
d=0

R (s) and s, € Ry\(iy(s}) such that sy € @go)(s) and Ry (s1) (U @;(d)(s)) =
d=1
0.
Definition 4.25. For 1 < k < r — 1, state s i1s GM Ry for DM i, denoted by
k—1
s € SZGMR’“, iff either |J R;(d)(s)URj(s) =0 and Ri_(k)(s) £0, or R (s) # 0 and
d=0

for every si € Rf(s) there exists at least one sy € R\ (s1) with so € | @;(d)(s)
d=k
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and there exists at least one s} € R (s) and sy € Ry\(iy(s}) such that sy € @;(k)(s)
and Ry (s1) N U @7 (s)) = 0.
d=k+1

—p—

>

!/
L j— S S 51,5 € R (s)

L
¢ N\i}
Vik— s 3 0)
e ’ 2 r l
1 S5 € Ry (s7)
y
—q— $; € RN\{i}(sl) e
$2
‘L -r— -(r)
D, (s)

Figure 4.3: General metarationality at level k.

If all of DM 7’s Uls from a state are sanctioned at exactly r levels below the
state, then the state is called general metarational at level r. Its formal definition

is given below.
Definition 4.26. State s is GM R, for DM i, denoted by s € SiGMRT, iff either
r—1
U B, “(s)URH(s) =0 and R; " (s) # 0, or Rf (s) # O and for every s, € R (s)
d=0
there exists at least one sy € Ry\(iy(51) with 55 € @;(T)(s).

For DM ¢, if a Ul from a state is sanctioned by the legal sequence of UMs of
1’s opponents at level £ and all other Uls from the particular state are sanctioned
at level at least k, and these corresponding sanctions cannot be avoided by any
counterresponse, then the state is called symmetric metarational at level k. The

stability of SMR at level k is portrayed in Fig. 4.4 and the formal definition is

given below.

Definition 4.27. State s is SM Ry for DM 1, denoted by s € SZ-SMRO, ioff either
Rf(s) =0 and REO)(S) £0, or Rf(s) # 0 and for every s; € R; (s) there exists at
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least one sy € Ry\(iy(s1) with sy € |J @;(d)(s) and there exists at least one s} €
d=0

R (s) and s, € Ry\(y(s}) such that sy € @go)(s) and Ry (sh) (U @;(d)(s)) =
d=1

0, as well as s3 € |J CIDi_(d)(s) for any s3 € R;(s2) U R;(s}).

d=0
L r—
S S !
1 ,
| /l s1,5] € R (s)
: |+
L / N\{i}
e S M 52 € Ry\iiy (1)
. !
Vi o) @ 0(s)
e —f— Ti i
Pl i sy e Ry (sp) | i
—-q— S 2T
i

R € Ri(s5,) U R (53) 5,4

vl . @)

Figure 4.4: Symmetric metarationality at level k.

Symmetric metarationality at level k£ (0 < k < r) for DM i consists of SM Ry+
and SM Rj,- that are defined next.

Definition 4.28. For 1 < k < r — 1, state s is SM R+ for DM i, denoted by
SMR, +

s €S, , iff either kol R;(d)(s) UR(s) =0 and Ri_(k)(s) £ 0, or BRf (s) #£ 0
d=0

and for every sy € R;(s) there exists at least one sy € Ry\(s1) with sy €

D (s) and there exists at least one s € RI(s) and s, € R (8)) such that
= i 1 i 2 \{i}

T

s5 € @;(k)(s) and Ry (s1) N U @;(d)(s)) =0, as well as s3 € | CIDi_(d)(s) for
d=k+1 d=k
any s € Ri(s2) U R;(s5).

Stability SMR, is defined by S, = GESMR n GOMEL _ gSMEL

Equivalently,
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Definition 4.29. For 1 < k < r — 1, state s is SM Ry~ for DM 1, denoted by
s € SSMR “Liff s € SCMEE and R (s) # (7) and for every s; € R+( ) there exists
at least one sy € Ry\(iy(s1) with sy € U (I> (s) and s3 € U <I> (s) for all

s3 € Ri(s2), as well as there exists s} E R+( ) and for every 32 € Ryn\giy(st) N
(U @;(d)(s)), Ri(s5) N <I>l(- 9 (s) £ () for at least one d € {0,-- -, (k—1)}.
d=k

Definition 4.30. State s s SM R+ for DM i, denoted by s € SiSMRT+, iff either
r—1
U B, “(s)URH(s) =0 and R; " (s) # 0, or Rf (s) # 0 and for every s, € R (s)
d=0
there exists at least one sy € Ry\(iy(s1) with sy € CI>Z-_( )( ) and s3 € <I> ( ) for

any ss € Ri(s2).

Definition 4.31. State s is SMR,— for DM i, denoted by s € SfMR“, iff Rf(s) #
0 and for every s; € R/ (s) there exists at least one ss € Ry\iy(s1) with so €

@;(T)(s) and s3 € | @;(d)(s) for all s3 € Ri(s2), as well as there exists sy € R} (s)
d=0

and for every sy € R\ giy(s1) N @;(T)(s), Ri(s5) N CDgfd)(s) # 0 for at least one
de{0,---,(r—1)}.

The only modification between GM Ry, and SEQ); is that all DM ¢’s Uls are

subject to credible sanctions by the legal sequence of Uls of DM 4’s opponents.
Fig. 4.5 depicts sequential stability at level k. Its formal definition is given below.

Definition 4.32. State s is sequentially stable (SEQ) at level 0 for DM 1,
denoted by s € ST iff either R (s) =0 and RO)( )£ 0, or RS (s) 7é 0 and for
every sy € R (s) there exists at least one sy € RN\{Z}(Sl) with sy € U o (@ )( )

and there exists at least one s} € R} (s) and s} € RN\{ 3y (s1) such that s, € <I>Z(~0)( )
and R}, (y(s}) m(dg1 o, D (s)) =0.

Definition 4.33. For 1 < k <r — 1, state s is sequentially stable (SEQy) at
k-1
level k for DM i, denoted by s € S>P iff either |J R;(d)(s) URS(s) =0 and
d=0
R, (s) #£ 0, or RF(s) # 0 and for every s; € R (s) there exists at least one
Sy € RE\{i}(sl) with sy € |J @;(d)(s) and there exists at least one s} € R (s) and
d=k

sh € Rl y(sh) such that sy € ©; ™ (s) and Ry, ()N U @@ (s)) = 0.

d=k+1
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Figure 4.5: Sequential stability at level k.

Definition 4.34. State s is sequentially stable (SEQ,) at level r for DM i,
denoted by s € SPF9 | iff either U R;(s)URS(s) = 0 and R (s) # 0, or

R (s) # 0 and for every s, € R+( ) there exists at least one sy € RN\{@}(Sl) with
s € @, (s).

When n = 2, the DM set N becomes to {i,j} in Definitions 4.24 to 4.34, and
the reachable lists for H = N \ {i} by legal sequences of UMs and Uls from s,
R\ (i (s1) and R;{,\{i}(sl), degenerate to R;(s1) and R} (s1), DM j’s corresponding
reachable lists from s;. Obviously, Definitions 4.8 to 4.18 are special cases of
Definition 4.24 to 4.34, so we use the same notation for two DM cases and n-DM

situations.

4.3 Interrelationships among the Solution

Concepts

In 1993, Fang et al. [16] established relationships among the four basic stabilities
of Nash, GMR, SMR, and SEQ for two levels of preference. Then, Hamouda et

al. [27,28] extended these results to a graph model with three levels of preference.
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GMR,

@\

Figure 4.6: Interrelationships among four stabilities at level k.

The inclusion relations among the multilevel versions of the four solution concepts

are presented as follows.

Theorem 4.1. The interrelationships among the four basic stabilities at level k

are

SMR SMR, _
SZNCLShk g SZ L+ g S,L'GMR]CWSZ‘ & g S,LGMRk SZNCLShk g S;S'EQJC g SiGMRk7

, and

for0 <k <.

Proof: When k = 0, the results are obvious. Assume that 0 < k£ < r. If
k—1

s € SN then J R;(d)(S)UR;F(s) = () and Ri_(k)(s) # (). This implies that state
d=0

s € §7MM yging Definitions 4.28 and 4.30. Hence, if s € S¥N®™ for 0 < k < r,
then s € SZ»SMR”, which implies SN*" C SZSMR”.
. " . SMR,y+ . . . GM Ry,
Using Definitions 4.24 to 4.30, if s € S, , it is obvious that s € S for
. . . Nashy, SMR, + GMRy,
0 < k < r. Therefore, inclusion relations S; C S, C S, now follow.
Based on Definitions 4.29 and 4.31, the relation SZ-SMR’“ C S9MEr 5 obvious.
Relations SN C §5F@k ¢ §OMPBr can be similarly verified. O
Let 0 < k < r. The inclusion relationships presented by Theorem 4.1 are

depicted in Fig. 4.6.

Theorem 4.2. Let 0 < h,q < r. When h # q, the relationships between stabilities

at h level and at q level are
SiNaShh N S;Vashq — @’ (41)
SEME  gGMEa _ ) (4.2)
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SMR SMR __
SoMInt g7 e g g M g7 e g g g

% [ i 7

GIEQ g _ ¢ (4.4)

S — g and (4.3)

Proof: We first prove equation (4.1). Assume that h > ¢. If there exists

s € SNt gNehaihen s e SNMoand s e S)™". Therefore,
h—1

Rf(s) U (U Ri_(d)(s)) = ( and Ri_(h)(s) #+ () as s is Nashy, stable. Since
d=0

h—12>gq, R;(q)(s) = (). This contradicts the hypothesis that s is Nash, stable.
Therefore, (4.1) holds.

Now, equation (4.2) is verified. If s € (SN U SN*") equation (4.2) is
obvious. Assume that h > ¢ and s ¢ (SN*" U SNCLShq). If there exists s €
SEMEN SZ-GMRQ SEMEL and s € SGMRq. Since s is GMR, stable,

R (s) # 0 and for every s; € R/ (s) there exists at least one sy € Ry\f53(s1) with

, then s €

sse | @;(d)(s) and there exists at least one s§ € R, (s) and s} € Ry\(i3(s;) such
d=q
that s, € q);(q)(s) and R\ i3 (s7) N( U <I> 9 (s)) = . This implies that for all
d=q+1
sy € R\ (sh), 85 € U <I> ( ) ie., sh & U o (@) (s) as h > q. This contradicts
with the hypothesis that s is GM Ry, stable Therefore (4.2) follows now.
The proofs of (4.3) and (4.4) can be similarly carried out. O
The interrelationships among general stabilities, super stability, and stabilities

at each level are presented in the following theorem.

Theorem 4.3. The interrelationships among general stabilities, super stability,

and stabilities at each level are

SGNash SSuper U SNashd (45)
st = (7o (U s, (4.6)
d=0
SESME — (gmwery (| (57 U §7MY) and (4.7)
d=0
SGS’EQ SSuper U SSE'Qd (48)

Proof: Equation (4.5) is obvious. Equation (4.6) is verified first. The

T
inclusion relation SEEME > (87U y (| SEMEa) is obvious. We will prove that
d=0
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the inclusion relation SEGME C  (S7*")y U (|J S“M*B4) holds. For any
d=0

s € SYEME hased on Definition 4.21, if s € (Sf“p” U SENash) " then the above
inclusion relation is true.

Let |Rf(s)| = I denote the cardinality of R (s). Assume that s & (52" U
SGNash) —Then, for any s € SCEME R¥(s) # () and for every s, € RS (s) (k =
L,-- 1), there exists at least one s, € Ry\(i(sg) with s, € O @;(d)(s). Let

d=0

Qr = {q:q € Rmy(se) N U @;(d)(s)}. It is obvious that s € Q. Hence,
d=0
Qr # 0. Let z € Q and be DM i’s least preferred in the state set (. Since
2z € Rpvy(si) N (U ®; ¥ (s)), there exists 0 < r, < r such that z € ®; "™ (s) for
d=0

T

k=1, 1. Therefore, either 7, = r or Ry\giy(sk) N ( U o, (s)) = 0. This
d:r;ﬁ-l
process is portrayed in Fig. 4.7.

——

0= § ~ o (s)

I S p—
3.
|
zl
)
=~

Ok = Ry () N (L @7 D)

(Di—(”k ) (s)

;) (s)

Figure 4.7: The legal sequence of UM from state s;.

Let rp, = min{ry : k= 1,---,1}. Then, 0 < r,, < r. It is easy to follow that if
s € SGOME and Rf(s) # 0, then s € ST 1In fact, for every s, € R; (s), there
exists at least one s), € R\ pi3(sx) with s}, € @;(T’“)(s). Since 0 < r,,, < 7}, then
s.€ U @;(d)(s), and 5], € R\ (i3 (sm) with s € @Z—_(r’”)(s). Based on the rule of

d=rm
T
selecting r,,, either r,, = r so that s € ST or Ry iy (sm)N( U @;(d)(s)) =0
d=rm+1
so that s € SZ-G MPrm  From the above discussion, equation (4.6) is proved.
Hence, equations (4.7) and (4.8) can be similarly proved. O
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Let SNash GGMR = GSME - and SfEQ denote all stable states for Nash, GMR,
SMR, and SEQ), respectively, in the graph model for simple preference [16]. When
r = 1, stabilities having multiple-level preference degenerate to the stabilities

presented in [16], including two levels of preference. Specifically,

Theorem 4.4. For the multiple levels of preference, when r = 1, $2*PT Uy gNasho

s S SMR
SZNashl _ SZNaSh, Sz uper | SiGMRo U SZGMRI — SZ-GMR, Sz uper | S%S'MRQ U Sz 1ty

SMR,— _ oSMR
S, =S:

, and SPUPT U §PFQ0 y §FFOT — gSEQ

Let SSGMR = GSSMR - and S55FC denote all strongly stable states for strongly

GMR, SMR , and SEQ), respectively, in the graph model with strength of preference
[27,28]. When r = 2, stabilities having multiple levels of preference degenerate to
the stabilities presented in [27,28]. Specifically,

Theorem 4.5. For the multiple levels of preference, when r = 2, SiGMRQ\SZ-N“S}‘2 =

SGMR oSMR,+\ oNashs _ aSSMR SEQ2\ oNashs _ oSSEQ

, and

The stabilities at level 2 in the graph model with three levels of preference
degenerate to the corresponding strong stabilities presented in [27, 28], except for
the states that are Nash stable, because Hamouda et al. [27,28] have not included
Nash stable states into strongly GMR, SMR, and SEQ.

The above two theorems can be easily proved using the corresponding

definitions.

4.4 Application: GDU Conflict

In this section, the four-level versions of stability definitions are applied to the
Garrison Diversion Unit (GDU) conflict to illustrate how the procedure works.
The history of this conflict dates back to the nineteenth century. In order to
irrigate land in the northeastern section of North Dakota, an irrigation project
was proposed by the United States Support (USS) regarding construction of
a crucial canal and holding reservoir to transfer water from the Missouri River
Basin to the Hudson Bay Basin [16]. Because the irrigation runoff finally flow
into the Canadian province of Manitoba via the Red and Souris rivers, which will
cause environmental damage, this proposal immediately aroused the Canadian
Opposition (CDO). In order to resolve this conflict, the International Joint

Commission (IJC) consisting of representatives from the governments of USA
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and Canada plays an important role for taking an unbiased attitude and making
recommendations on this project [16,28]. This irrigation project for the water
diversion is called the Garrison Diversion Unit (GDU) project. A conflict arose

among US, Canada and IJC for the GDU project (see the book [16] and the
paper [28] for more details).

Table 4.4: Feasible states for the GDU model [28]

USS

1. Proceed Y Y N Y N Y N Y N

2. Modify N NY N Y N Y N Y
CDO

3. Legal N NN Y Y NNY Y
1JC

4. Completion. N Y Y Y Y N N N N

5. Modification N N N N N Y Y Y Y
State number S S9 S3 S4 S5 Sg Sy Sg Sg

Fang et al. [16] analyzed the environmental dispute over the GDU project and
established a graph model with two levels of preference for this conflict. Recently,
Hamouda et al. [28] carried out a strategic study of this conflict using an extended
graph model which includes three levels of preference. The graph model for the
GDU conflict is comprised of three DMs: 1. USS, 2. CDO, and 3. IJC; and five
options: 1. Proceed—Proceed with the project regardless of Canada’s concerns; 2.
Modify—Modify the project to reduce impacts on Canada; 3. Legal—Legal action
based on Boundary Waters Treaty; 4. Completion—Recommend completion of
the project as originally planned; and 5. Modification—Recommend modification
of the project to reduce impacts on Canada [28]. A state is defined as a selection
of options for each DM using some principle. In the GDU conflict, five options are
combined to form 2° possible states. Usually, however, not all option combinations
are feasible or logical. After all infeasible states are eliminated, only nine states
are identified as being feasible and listed in Table 4.4 in which a “Y” indicates that
an option is selected by the DM controlling it and an “N” means that the option
is not chosen.

The graph model of the GDU conflict is shown in Fig. 4.8, in which labels on

the arcs indicate each DM who controls the move. All that is required for a graph

76



_1Jc-
S8

: S
/f- coo—---»T 8 ----CDO-----»T
1JC
/7
Sl‘ uss uss
L---CDO----J S7L----CDO----JS9

Figure 4.8: The graph model for the GDU conflict [28].

model is knowledge of each DM’s preference ranking of the feasible states. We
extend the graph model introduced in [28] to have four levels of preference in the
GDU conflict. The preference information for this conflict over the feasible states
is given in Table 4.5. We assume that state sg is very strongly less preferred to
all other states for USS, and the DM, CDO considers states s, ss, and sg to be
equally preferred and very strongly less preferred relative to all other states. Note
that this representation of preference information presented in Table 4.5 implies
that the preferred relations, >, >, and >> are transitive. For instance, since
sg > s7 and s7 > sg, then s9 >> sg. However, in general, the preference structure
presented in this research does not require the transitivity of preference relations,

and hence can handle intransitive preferences.

Table 4.5: Four levels of preferences for DMs in the GDU conflict
(extended from [28])

DM Preference

USS Sog > 84 > S3 > S5 > S; > Sg > Sg > S7 S>> Sy
CDO {s3~ s7} > {s5~ 9} > {84~ sg} >> {51 ~ 2 ~ 86}
1JC {89 ~ 83~ 84~ S5~ S~ Sy~ Sg~ Sg} > §

Formally, stability analysis determines the stability of each state for each DM
according to some solution concept. Here, four-level versions of five stability
definitions of super stability, Nash stability, Nashy, GMR,, SMR;, and
sequential stability, SEQy, for k = 0,1,2,3 are employed to analyze the GDU

conflict. An equilibrium indexed k, which represents a likely resolution to the
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conflict, is a state that is stable for every DM according to some stability
definition at level k. Note that the super stable states are treated as Nash stable
at the highest level when determining an equilibrium in the graph model with
multiple levels of preference. Here, we analyze DM 2’s SM Ry, stability at state ss
for k =0,1,2,3 as an example. Since Ry (s5) = {s3} and Ry\(23(s3) = {s2} with
S5 3> So and S5 >o sy for Ry(ss) = {s4}, state s5 is stable for SM R3- using
Definition 4.31. Other cases can be analyzed similarly. The stability results for
the GDU conflict are summarized in Table 4.6, in which “\/” for a given state
under a DM means that this state is stable at a given level for the given DM,
“\/k+” and “\/* 7 for a given state under a DM means that this state is SM R+
or SM Ry~ stable for the given DM; and “\/k” for a state under “Eq” signifies
that this state is an equilibrium for a corresponding solution concept at level k.
Note that U, C, and I displayed in Table 4.6 denote the three DMs, USS, CDO,
and [JC, respectively.

Table 4.7 provides stability results for different structures of preference. When
stabilities are analyzed using two levels of preference, states s4, sy, and sg are
equilibria [16]; if preference information is provided using three levels of preference,
then states sy and sy are equilibria [28]; there is only one equilibrium state sg
for four levels of preference. If state s, is selected as a resolution for the GDU
conflict, this means that IJC recommends completing the GDU project regardless
of Canada’s concerns, so USS proceeds with this project. It is obvious that this
resolution cannot really resolve this conflict. State s; means that the USS follows
the 1JC recommendation to modify this project, but Canada does not take legal
action based on the Boundary Waters Treaty. The strategy of state sg is the same
as that of state s; except that Canada chooses legal procedures. Compared with
states s; and sg, equilibrium sg is a more reasonable resolution for resolving this
conflict. Therefore, the multilevel versions of stability analysis provide new insights
and valuable guidance for decision analysts.

Although the example of the GDU conflict shown in Table 4.4 and Fig. 4.8
is a small model with three DMs, five options, and nine feasible states, a graph
model structure can handle any finite number of states and DMs, each of whom
can control any finite number of options [18]. As pointed out by Fang et al. [19], an
available decision support system (DSS) for stability analysis of a graph model with
two levels of preference can work well. Theorem 4.4 reveals the relation of stabilities

between two levels of preference [16] and multiple levels of preference. This theorem
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Table 4.6: Stability results of the GDU conflict for the graph model with
four levels of preference

State Super Level(k) Nash GMR SMR SEQ
U[c]1]Eq UJlc]i[Ba[uJc]1]Eq U [ ¢ [ 1 [ea[uJc]r1]Eq
0
1
s1 ViV 2
3 M M S AT Vv
0
1 N N N N
s2 V4 2
3 v N Nai v
0
1 N v N v
s3 v 2
3 v v Nai N
0
1 N N N N
s4 Vv 2
3 M V]V ST AT M
0
1
S5 V4 2
3 v V] v N V] v
0
1 N N N N
s6 v 2
3 v N NG N
0
1 v N al N
s7 Vv 2
3 v N N Na N N
0
1
ss V4 2
3 vV V] v Nallila V] v
0
1
sg V4 2
3 N v vIiviviveglA A A vIivIiv]ye

Table 4.7: The comparison of stability results for three versions of
preference

Version of preference Equilibria Analysis method
Two levels of preference S4, S7, So see [16]
Three levels of preference S4, So see [28]
Four levels of preference Sg this paper

79



indicates the possibility of developing an effective algorithm to implement the
multilevel versions of the four stabilities within a DSS, which would be essential if

the proposed stability analysis is applied to larger practical problems.

4.5 Summary

In this chapter, a multiple-level preference framework is developed for the graph
model methodology to handle multiple levels of preference, which lie between
relative and cardinal preferences in terms of information content [74]. Multilevel
versions of four solution concepts consisting of Nash, GMR, SMR, and SEQ are
defined in the graph model for multiple levels of preference. Specifically, solution
concepts at level k are defined as Nashy, GMR,, SMRy, and SEQ), for
k=1,--- r, where r is the maximum number of levels of preference between two
states. The proposed stability definitions extend existing definitions based on two
levels and three levels of preference, so that more practical and complicated
problems can be analyzed at greater depth. To date, new stability definitions are
defined by logical representation, so algorithms to implement these new
stabilities are difficult to develop. A new algebraic system to ease the coding of

logically-defined stability definitions is proposed in the following chapters.
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Chapter 5

Novel Algebraic Approach to
Searching Weighted Colored
Paths

An algebraic approach to finding all edge-weighted, colored paths within a
weighted colored multidigraph is developed in this chapter. Generally, an
adjacency matrix can determine a simple digraph and all paths between any two
vertices. However, the adjacency matrix is not readily extendable to the context
of a colored multidigraph. To bridge the gap, a conversion function is proposed
to transform the original problem of searching edge-colored paths in a colored
multidigraph to a standard problem of finding paths in a simple digraph with no
color constraints. To date, for general graph classes, searching for particular
paths, such as Hamilton paths [2,56], Euler paths, and shortest path routing
between two vertices, can be solved efficiently. Some algorithms to search colored
paths for colored simple graphs are available [1], but there exist very limited

algorithms to search colored paths for colored multidigraph classes.

5.1 Extended Definitions in a Weighted Colored
Multidigraph

A multidigraph G = (V, A, ) defined in Section 2.1 is a set of vertices (nodes) V
and a multiset of oriented edges (arcs) A with i) : A — V x V. Let m = |V| denote

the number of vertices and [ = |A] be the number of edges in a multidigraph G.
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Definition 5.1. A colored multidigraph (V,A,N,v,c) is a multidigraph
(V, A, v) and a set of colors N, and a function ¢ : A — N such that c(a) € N is
the color of a € A, provided that multiple edges of (V, A, 1) are assigned different

colors , i.e., if a # b, but ¥(a) =1(b), then c(a) # c(b).

If a € A such that ¢ (a) = (u,v) and ¢(a) =i for i € N, then a can be written
as a = d;(u,v). The line digraph of G = (V, A, N, v, ¢), L(G), is a simple digraph
and each vertex in L(G) corresponds to an edge in the multidigraph G. Hence,

coloring edges in G is equivalent to assigning colors to vertices in L(G).

Definition 5.2. For a colored multidigraph G = (V, A, N,v, ¢), the reduced line
digraph L,.(G) = (A, LA,) of G is a simple vertez-colored digraph with vertex set
A and edge set LA, ={d = (a,b) € A x A: a and b are consecutive (in the order

ab) and c(a) # c(b)}.

Definition 5.3. A weighted colored multidigraph (V, A, N,v,c,w) is a colored
multidigraph (V, A, N,1,c) together with a map w : A — R (the set of non-

negative real numbers).

Thus an arc a € A, a = d;(u,v), carries a weight w(a), representing some
attribute of the move from node u to node v along the arc a, which is assigned color
1. A network, for instance, is a multidigraph with weighted edges. Let H C N be
a subset of the color set N in the following definitions. An edge-weighted, colored

path is defined as follows:

Definition 5.4. Let H C N. For a weighted colored multidigraph (V, A, N,v, ¢, w),
an edge-weighted, colored path by H from vertex u € V to vertex v eV,
PAgV)(u,v), is a path from u to v in the multidigraph (V, A, 1) in which any two
consecutive edges have different colors and each edge a on the path carries a weight
w(a) >0 and c(a) =i € H.

Definition 5.5. For a weighted colored multidigraph (V, A, N, c,w), the
shortest colored path between two wvertices is the colored path that

manimizes the sum of the weights of its constituent edges.

Definition 5.6. Let H C N. For a weighted colored multidigraph (V, A, N,v, c,w),
the weighted arc set for H denotes Agv) ={a€A:w(a) >0andcla) =1 €
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Note that a colored multidigraph (V;A, N,¢,c) is a unit weighted colored
multidigraph if w(u,v) = 1 for any a € A such that ¥(a) = (u,v).

Let [ = |A| denote the cardinality of A in G. The weight matrix of a weighted
colored multidigraph (V, A, N,v, ¢, w) is defined as follows:

Definition 5.7. For a weighted colored multidigraph (V, A, N, v, c,w), let H C N
and wy denote the weight of arc ay, € A. The weight matrix for H is an | x|

diagonal matriz Wy with (k, k) entry

Wtk k) = { wy if clag) =1 € H,

0 otherwise.

It should be pointed out that if H = N, then Wy is expressed as W; if H = {i},
then Wy = W;. A weighted line digraph L"W)(G) = (A, LA, w) is a set of vertices
A together with a set of oriented edges LA, and a map w : A — R{. In traditional
graph coloring problems, such as vertex coloring and edge coloring, colors are
assigned to vertices or edges such that adjacent vertices or consecutive edges have
different colors, and the number of colors needed is minimized [13]. In this research,
the edge-weighted, colored graph problem is not concerned with coloring edges,
but aims at searching edge-weighted, colored paths in a given weighted colored
multidigraph.

Important matrices associated with a digraph include the adjacency matrix
J and the incidence matrix B [24]. J and B can be extended to the weighted

adjacency and incidence matrices. Let m = |V/| denote the cardinality of V in G.

Definition 5.8. Let H C N. For a weighted colored multidigraph (V, A, N, 1, ¢, w),

the weighted adjacency matrixz for H is the m X m matriz JJ(LIW) with (s,q) entry

W) _ 1 if there exists a € Agv) such that ¥ (a) = (s,q) for s,q €V,
H (‘97 Q)

0 otherwise.

Definition 5.9. For a weighted colored multidigraph (V, A, N,, c,w), w, denotes
the weight of arc a € A. The weighted incidence matrixz for H is the m x|

matric BV with (v,a) entry

—w, ifa= (v,x) for somex €V and c¢(a) =1 € H,
B (v,a) = w, if a = (x,v) for some x € V and c¢(a) =i € H,

0 otherwise,

where v € V.
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According to the signed entries, the weighted incidence matrix can be separated

into the weighted in-incidence matrix and the weighted out-incidence matrix.

Definition 5.10. For a weighted colored multidigraph (V, A, N, v, c,w), let H C N
and w, denote the weight of arc a € A. The weighted in-incidence matriz
for H and the weighted out-incidence matrixz for H are two m X | matrices

B and B with, (v,a) entries

in out

B£,‘;VH)(U,a) _ { w, if a = (z,v) for some x € V and c¢(a) =1 € H,

0 otherwise,

and

out

B () q) = w, if a = (v,x) for some x € V and c(a) =i € H,
0 otherwise,

where v € V.

It is obvious that

B = (BW#) 1 abs(BWm)) /2 and Blw™ = (abs(BWW) — BWi)) /2,

in out

where abs(B"W#)) denotes the matrix in which each entry equals the absolute value
of the corresponding entry of BW#) . Let I denote the identity matrix. If Wy = I,
then BW#) = B, B"" = B, and B"") = B,,,.

A reachability by the weighted colored paths for H matrix is called a

reachability matrix by H in this research. Its formal definition is given as follows.

Definition 5.11. Let H C N. For a weighted colored multidigraph
(V,A, N, ¢, c,w), the weighted reachability matriz by H is the m X m matriz
M [({W) with (s,q) entry

1 if q is reachable from vertex s by a weighted
MI({W)(S, q) = colored path PA(I;V)(S, q), fors,q €V,

0 otherwise.

Let ZEHW) = \Agv)\ denote the number of arcs in Agv). Since all arcs are distinct
on a path, the length of any path in PAgV) is less than ll(qW).

The following result can be obtained by Definition 2.2, on the line digraph
L(G), and Definition 2.4, on the adjacency matrix J.
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For a weighted colored multidigraph G = (V, A, N, ¢, c,w), the adjacency
matrix of the line graph of G is the [ x [ matrix L.J with (a,b) entry

1 if edges a and b are consecutive in order ab in the graph G,

LJ(a,b) = {

0 otherwise.

In this research, LJ matrix is called an edge consecutive matrix.

Definition 5.12. For a weighted colored multidigraph G = (V, A, N, ¢, c,w), let
H C N and w, and wy, denote the weights of arcs a,b € A. The weighted edge

consecutive matriz for H is the | x | matriz LJY®) with (a,b) entry

Wy - wy if edges a and b are consecutive in order ab
LW (a,b) = and c¢(a) =1 and c(b) = j fori,j € H,

0 otherwise.

Definition 5.13. For a weighted colored multidigraph G = (V, A, N,v,c,w), the
reduced weighted edge consecutive matrix for H is the | X | matriz A

with (a,b) entry

wge - wy if edges a and b are consecutive in order ab and
LIV (q,b) = c(a) =1 and c(b) = j such that i,j € H and i # 7,

0 otherwise.

Let ¢; denote the cardinality of the arc set in color ¢. I, is defined as a ¢; X ¢;
identity matrix with each diagonal entry being set to 1 for ¢ = 1,2,--- ,n. Let I;

denote an [ x [ diagonal matrix for which

0 ... 0
L=|o .- 1, 0
0 ... 0
For HC N, H # 0, and Iy = \ I, Wyg = Woly. (“o” denotes the
icH

Hadamard product.)
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5.2 The Proposed Rule of Priority to Label
Colored Arcs

An incidence matrix can represent a multidigraph if all edges are labeled. The
proposed algebraic approach for colored multidigraphs starts with a unique edge-
labeling rule.

A colored multidigraph may contain several arcs with the same initial and
terminal vertices, but each arc in this case must be assigned a different color. To
work with the set of all arcs, we must label them carefully. Assuming that all
colors and nodes are pre-numbered. Therefore, the vertex set V' and the color set
N in G = (V,A,N,¢,c) are numbered as V = {1,2,----m} and N = {1,2,-- -, n},
respectively. Let ¢; denote the cardinality of arc set assigned color i, i.e., ¢; = |A4;],
where A; = {x € A: c¢(z) =i} for each i € N.

To label the arcs in a colored multidigraph G = (V, A, N, ¢, ¢), set £g = 0 and

g = Zz: ¢; fori € N, and note that [ = ¢, = i ¢; is the cardinality of A in G. The
arcs,jgll ,Qo, ..., a;, will be labeled accordingzti the color order; within each color,
according to the sequence of initial nodes; and within each color and initial node,
according to the sequence of terminal nodes. The ordering, referred to as the Rule

of Priority, has the following properties:
1. If g;1 < k < g, then ¢(ay) = i, i.e., ax has color i;

2. For k < h, if a; and aj, both have color ¢ for some i € N, and if ¥(ax) =
(vg,vy) and ¥ (ap) = (vs, vy), then x < z and, if z = 2, then y < w.

If all arcs in a colored multidigraph have been labeled according to the Rule
of Priority, then the index of an arc uniquely determines its color. Therefore,

A; ={a., ,+1,...,a,}, where A; denotes the set of arcs with color i.

.
.

Figure 5.1: The colored multidigraph G.
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Example 1. Fig 5.1 shows a colored multidigraph G = (V, A, N, c). The labels
on the arcs of the graph indicate that the corresponding arcs are colored in red
(R), blue (B), green (G), and pink (P), respectively. Assume that the vertex set
V' = {vy,v9,v3,04,05,06}. According to the Rule of Priority, label all edges to
determine the edge-labeled graph.

Initial
Vetices U V) V) V3 V3 V4 V4
a a a a a a a
Yy % ¥ s R | Y %
Terminal
Vetices V) V3 V3 Ve Va4 Vs V2

Figure 5.2: Labeling edges for the graph G.

First number red 1, blue 2, green 3, and pink 4 so that N = {1,2,3,4}. The
cardinalities of the arc sets Ay, A, Az, and Ay are 2, 2, 2, and 1, respectively. Then,
according to the Rule of Priority, the process to label all colored edges is presented
in Fig. 5.2. Recall that ay = d;(u,v) for i € N and ¥ (ax) = (u,v). Obviously,
ay = di(vi,v2);a0 = d1(vz,v3);a3 = d2(U2,U3);a4 = do(vs,v6);a5 = d3(U3,U4)§
ag = d3(vy, vs); and a7 = dy(vg, ve). Therefore, the edge labeled graph is expressed
as (V,{A;,i € N}), where Ay = {a1,a2}, A2 = {as,as}, A3 = {as,a6}, and
Ay = {ar}.

5.3 New Algebraic Approach

5.3.1 A Conversion Function for Finding Colored Paths

Lemma 5.1. For a weighted colored multidigraph (V, A, N,1,c,w), the weighted

incidence matric BWH) for H and the incidence matriz B have the following

relation

B(WH):B.WH:B.(WOIH).

Lemma 5.1 shows a conversion function to transform an original colored
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multidigraph in the color set N to a reduced weighted colored multidigraph in
the color set H C N.

Now let W be a weight matrix and let L") (G) denote the weighted line digraph
of G. The following theorem is obtained based on Definition 5.10, on the weighted

out »

the weighted adjacency matrix LJM) of the digraph LM")(G).

in-incidence and out-incidence matrices Bl(ZV "and B") and Definition 5.12, on

Theorem 5.1. For a weighted colored multidigraph G = (V, A, N,¥,c,w), W
() W) s the

in out
weighted out-incidence matriz of the graph G. Then, the weighted edge consecutive

matriz LJW) satisfies LJW) = (B,L-(:V))T . (B(W)).

out

1 the weight matriz, B 1s the weighted in-incidence matriz, and B

Proof: Let M = (B(W))T : (B(W)). Any (k,h) entry of matrix M can be

in out

expressed as M (k,h) = el - M- ey, = [(BY)) - ex]7 - [(BIY)) - 4], where eI denotes

n out
the transpose of the k" standard basis vector of the I-dimensional Euclidean space.
T ( B(W))T

The ¢'" nonzero element of the row vector el - (B;, is equal to the weight

wy, of edge ay, = d;(s, q) for some s € V. Similarly, the ¢'* nonzero element of the
B)

out’) - €n 18 equal to the weight wy, of edge aj, = d;(q,r) for some

column vector (
r € V. Hence, M (k,h) = wy - w, # 0 iff a; and a; are consecutive from a to ay

See Fig. 5.3). Then, by Definition 5.12, B . BW) — [ jW),
m out

de 9 G
Se j—>® -—>e ]

Figure 5.3: a; and a; are consecutive in order a.ay.

O
Obviously, when W is reduced to Wy, LJWH) = (BZ.(ZVH))T : (B(WH)).

out

Let T1(BW)) = (BU)T . (BM™)) = LJ™) denote a conversion function. The
conversion function, Tl(B(W)), maps the weighted incidence matrix B™) to the
weighted edge consecutive matrix LJ™) of the graph G. It shows that this
conversion function transforms the original edge-weighted, colored multidigraph
G to a simple vertex-weighted-colored line digraph L(G). When W = 1,
LJ = (Bin)T - (Bou). This matrix captures the adjacency relation between pairs
of consecutive edges without considering the color(s) of the consecutive edges.

Another conversion function is thus presented next to transform the original
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problem of searching edge-colored paths in a colored multidigraph to the

standard problem of finding paths in a simple digraph without color constraints.
Recall that ¢; denotes the cardinality of the arc set in color ¢ and let E,., denote

a ¢; X ¢; matrix with each entry being set to 1 for ¢ = 1,2,--- ;n. Then, D is

defined as the following block diagonal matrix

E., 0 0
0 E,, 0

D=1 | . , ] (5.1)
0 0 E,.

It is obvious that this matrix D encodes the color scheme in the graph G, where

the dimension of each diagonal block E,, depends on the number of edges in color

Ji
Priority for labeling edges, for any ay € A and ¢;,_; < k < g;, the edge a; has color

1. More specifically, recall that ; = ¢; for 1 <14 < n. According to the Rule of
=1

i. Hence, for any ag,a, € A, if there exists 1 < i < n such that k,h € (g;_1, ],
then edges aj and a; have the same color 4, and D(k,h) = 1. Also, D(k, h) = 0 iff
edges ap and ay have different colors.

The conversion function can now be obtained in matrix form by the following

theorem.

Theorem 5.2. For the weighted colored multidigraph G = (V, A, N, ¥, c,w), let
E; be the | x | matrix with each entry equal to 1. Then the reduced matrix LM
satisfies LI = L™ o (E;, — D), where “o” denotes the Hadamard product.

Proof: Let LJ™)(k,h) and (E;,— D)(k, h) denote the (k, k) entries of matrices
LJW) and E; — D, respectively. Then, LI"W)(k, h) - (E; — D)(k,h) = wy, - wy, # 0
iff LJW)(k, h) = wy-wy, # 0 and D(k, h) = 0. Based on the definitions of matrices
LJW) and D, LJ(W)(k:, h) # 0 iff edges a; and a; are consecutive in order ajay.
D(k,h) = 0 iff edges ar and a; have different colors. Obviously, based on the
definition of matrix LJ\", LI = LJ™) o (E, — D). O

Obviously, when W is reduced to Wy, L") = LJWn) o (E; — D) satisfies
that

w, - wy if edges a and b are consecutive in order ab and
LI (a,b) = c(a) =i and ¢(b) = j such that i # j for i,j € H,
0 otherwise.

(5.2)
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From Theorem 5.2, Ty(LJW)) = LJW) o (E, — D) = LJ"). The conversion
function, To(LJM™)), maps the weighted adjacency matrix LJ™) of the weighted
line digraph L")(G) to its reduced matrix LJM™) . Tt reveals that this conversion
function T} converts the simple vertex-weighted, colored line digraph L")(G) to
its reduced subgraph Lﬁw)(G), called reduced weighted line digraph, which is a
simple digraph with no color constraints.

Theorems 5.1 and 5.2 together present a conversion function F(B™)) such that

F(B™) = [(BY)" - BS o (B, — D), (5.3)

out

where BS;V) = (B 4abs(B™))/2 and B\ = (abs(B™))— BW)) /2. Therefore,
F(B™)) transforms a problem of searching weighted colored paths in an edge-
weighted, colored multidigraph to a standard problem of finding paths in a simple
digraph with no color constraints. Note that the incident relations between vertices
and edges of a graph can uniquely characterize the graph. Therefore, the incidence

matrix is treated as the original graph and used for computer implementation.

Example 2. Fig. 5.1 shows a colored multidigraph G = (V, A, N, ¢c). If G is
associated with a map w : A — RS, then G = (V, A, N,v,c,w) is a weighted
colored multidigraph.  Construct conversion functions to determine the vertex
labeled weighted line digraph LW)(G) and its reduced line digraph L,EW)(G).

By Example 1, the colored multidigraph is labeled using the Rule of Priority.
It is easy to obtain incident relations between vertices and edges from the graph.

Thus, matrices BZ(ZV ) and B(%) are constructed by Definition 5.10 as follows:

0 0 0 0 0 0 0
w1 0 0 0 0 0 wr
in 0 0 0 0 Ws 0 0 ’
0 0 0 0 0 We 0
0 0 0 Wy 0 0 0
and
wy 0 0 0 0 0 O
0 W W3 0 0 0 0
BW) _ 0 0 0 wy ws 0 O
out 0 0 0 0 0 We Wy
o 0 o0 0 0 0 0
o 0 0 o0 o0 0 O

From Theorems 5.1 and 5.2, we obtain that
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0 w1W2 wWi1wWs 0 0 0 0
0 0 0 Wolly Wals 0 0
0 0 0 WaWy WaWs 0 0
Ty(B") =10 0 0 0 0 0 0
0 0 0 0 0 WsWeg WsWr
0 0 0 0 0 0 0
0 Wy Wa Wy W3 0 0 0 0
and
0 0 Wy w3 0 0 0 0
0 0 0 Wally WolWs 0 0
0 0 0 0 wW3Ws 0 0
To(LJ™)) =1 0 0 0 0 0 0 0
0 0 0 0 0 0  wswy
0 0 0 0 0 0 0
0 Wy Ws Wy W3 0 0 0 0

The weight matrix designed here is convenient, since edge-weighted (0 or 1) can
be used to flexibly control any move between any two vertices in GG. For instance, if
wy = 0, then the original graph will be reduced to a new graph with no edge a4. If
W = I, then the conversion function 77 transforms the edge-labeled multidigraph
G portrayed in Fig. 5.4 (1) to the vertex-labeled line digraph L(G) shown in Fig.
5.4 (2). Then, the reduced line digraph L,(G) presented in Fig. 5.4 (3) for finding
colored paths is obtained by using the conversion function 7. The conversion

process is illustrated in Fig. 5.4.

5.3.2 Computer Implementation

Many well-known algorithms have been developed to solve the shortest path
problems in digraphs, such as Dijkstra’s algorithm [14] and Johnson’s
algorithm [38]. Some other algorithms are available for searching for all paths in
undirected graphs, such as the algorithm presented by Migliore et al [50].
Although finding path problems in general graph classes has been extensively
investigated, searching colored paths in weighted colored multidigraphs is still a
novel topic.

Let Ag = {a € A: B (s,a) # 0} and Ap = {b € A : BZ-(:V)(q,b) # 0} for

out

s,q € V. Here, matrices W, ng;), and BS:V ) have been introduced by Definitions
5.7 and 5.10. Ag is the set of arcs starting from vertex s and Ag is the arc set ending
at vertex ¢. The matrix LM provided by Theorem 5.2 is used to search the edge-
weighted, colored paths between any two arcs in a weighted colored multidigraph.

Let PAM)(a,b) for a,b € A denote the weighted colored paths between two edges
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3)L,.(G)

Figure 5.4: Transformed graphs of G.
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a and b. The weighted colored paths between two vertices s and ¢ for s,q € V' are
expressed as PAMW)(s, q). A vertex-by-vertex path between any two vertices in the
graph G can be obtained by tracing arc-by-arc paths between two appropriate arcs
in the line graph L(G). Specifically, the paths between s and ¢ can be expressed
as PAW)(s,q) = {PA™)(a,b) :a € Ag, b Ag}.

The proposed algebraic method is convenient for computer implementation. A
pseudo code for the proposed algorithm is presented in Table 5.1.

Table 5.1: Pseudo code of the proposed algorithm for finding colored
paths

Step 0: Input the starting arc set Ag, the ending arc set Ag, and the reduced
weighted edge consecutive matrix L.

Step 1: For each arc a; € Ag and each arc a. € Ag, set a, as the starting arc
and a. as the ending arc. For each pair of a, and a,, repeat the steps from

Step 2 to Step 5.

Step 2: Put a, into Path-Recorder as the last arc a;(1) of the first path.

Step 3: In Path-Recorder, for each path 4, e.g., PAMW)(4), check its last arc a;(7).
Obtain all the new arcs starting from (i) based on matrix LI,

Case 1: If there is no arc starting from a;(i), path PAM)(7) ends.
Eliminate PAM) (i) from Path-Recorder;

Case 2: If a new arc has appeared in the path, which means that the path
forms a cycle, do not record the new path. If all the new arcs have
appeared, eliminate PAM) (i) from Path-Recorder;

Case 3: If the new arc is the end arc a,, add a, to the path PAM)(i) to form
a new path. Reserve the path into Path-Recorder and set an end-mark
at the end of the path;

Otherwise: Add each new arc to path PAMW)(4), respectively, to form
several new paths.
Reserve these paths into Path-Recorder, and eliminate the original path
PAM)(4) from Path-Recorder.
Step 4: Repeat Step 3 until all the paths in Path-Recorder have the end-mark at the end.

Step 5: Output Path-Recorder, which records all paths starting from a4 and ending at a..

Because the algebraic expressions are explicitly given, the proposed method
facilitates the development of improved algorithms to search colored paths and is

easy to adapt to new path searching problems. For instance, a transportation
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network problem of finding the shortest path with specific constraints can be
solved by using the conversion function F(BMW)) = [(B")T . B™)) o M, where
BW) denotes the original network and matrix M is designed to capture
constraint requirements, to transform the original problem to a general shortest
path searching problem without the constraints.

Note that in this research all arcs are distinct on a path but the restriction
that all nodes be distinct on a path is relaxed. The process that converts an edge-

colored multidigraph to a simple digraph with no color constraints is presented in

Fig. 5.5.

Edge-colored multidigraph

'

| Construct B;, and Boy |

Calculate vertex-colored line
digraph using T;

'

Carry out reduced line Find the shortest paths
digraph using T> by existing algorithms

'

Find all paths using the pseudo
code provided by Table 5.1

:

End

Figure 5.5: The process of finding all colored paths or the shortest colored
path

5.3.3 Constructing Weighted Reachability Matrix using
Weighted Colored Paths

Theorem 5.3. For a weighted colored multidigraph (V, A, N, 1, c,w), Bi(ZVH) and

B(%H) denote the weighted in-incidence and out-incidence matrices for H. The
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weighted adjacency matriz by H is expressed as

I = signl(BSi™) - (BT, (5.4)

out n
From algebraic graph theory [24], Theorem 5.3 can easily follow.

Lemma 5.2. For a weighted colored multidigraph G = (V, A, N, ¥, c,w), let t be
an integer, H C N, and (LJ"™Y!(a,b) be the (a,b) entry of matriz (LI,
Then, (LJﬁWH))t(a, b) denotes the number of weighted colored paths by H in the G
from edge a to edge b with length t for a,b € A. Moreover, if ¥(a) = (u,s) and
¥(b) = (q,v) foru,s,q,v € V, then, the number of the weighted colored paths by
H from vertex u to vertex v with length t + 1 is at least (LJ,EWH))t(a, b).

Proof: This Lemma is proved using induction on ¢.
When t = 1, the result is obvious.
Assume that when ¢t = k&, the result holds. Then, when t = k + 1,
W) S W) (W)
(LI (a0, b) = (LI () - LI (1, D).

h=1
By the induction hypothesis, (LJﬁWH))k(a,h) denotes the number of the
weighted colored paths by H from a to h with length £k, and LJ}WH)(h, b)
indicates the number of weighted colored paths by H from h to b with length 1.
Thus, (LJfWH))k(a, h) - LJﬁWH)(h, b) denotes the number of weighted colored
paths by H from a to b through A with length k£ + 1. Therefore,

l
S LI (a, ) - LJﬁWH)(h, b)] is the total number of weighted colored paths
h=1

by H from a to b with length k& + 1. Thus, (LJT(WH))t(a, b) denotes the number of
weighted colored paths by H in the G from edge a to edge b with length ¢ for
a,be A

Obviously, if ¥(a) = (u, s) and ¥ (b) = (¢, v) for u, s, q,v € V, then, the number
of the weighted colored paths by H from vertex u to vertex v with length ¢ + 1 is
at least (LJ\"")Y!(a,b). O

Note that, in Lemma 5.2, when calculating the length of an edge-by-edge path,
the edges in the path should be treated as vertices. i.e., edge-by-edge paths are
treated as state-by-state paths in the line graph L(G).

Theorem 5.4. Let ZEJW) denote the number of arcs in Ag”. For a weighted colored
multidigraph (V, A, N, 1, c,w), the weighted reachability matriz My by H can be

obtained by
My = signl(BG™) - (LI 4 1)l (BO)T), (5:5)

out

where I is the identity matriz.
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Proof: Let L = Z;IW) and Ct | = (Lt_l ): (L—l)‘(LZ!Q)'“(L—t) and

L—1
(LJY")0 = I. Using matrix theory, (LJ\"™ + 1)E=1 = 3 ¢t _, - (LJ"™)t,
t=0
Let Q = sign[BW) - (LJM"™) 4 NE=1 . (BWW)T) Since CL_, > 0, then

out in
L—1

Q = Sggn[z szl . B(SZH) . (L(]?gWH))t . (BZ(ZVH))T}
t=0

_ (B(WH) T (B(WH))T) V [vl(B(WH) . (LJ£WH))t . (B'(WH))T)]‘

out in out mn
t=1

Based on Theorem 5.3, Q = J](LIW) vIV (B(WH) . (LJ£WH))t : (B(WH))T)]-

out in
t=1

Then, Q(s,q) # 0 iff J[({W)(s,q) # 0or for 1 <t < L — 1, there exist
(LJﬁWH))t(a,b) # 0 such that a,b € A‘,EV), P(a) = (s,u), and ¥(b) = (v,q) for
s,q,u,v € V. J I({W)(s, q) # 0 implies that vertex ¢ is reachable from vertex s by
paths PAgV)(s,q) with length 1. By Lemma 5.2, (LJﬁWH))t(a,b) # 0 iff vertex ¢
is reachable from vertex s by the weighted colored paths PAgV)(s, q) with length
t + 1. Therefore, Q(s,q) # 0 iff vertex ¢ is reachable from vertex s by the
weighted colored paths PAgV)(s, q) with length 1 or t+ 1 for 0 <t < L — 1.

By Definition 5.11, MI({W)(S, q) # 0 iff vertex ¢ is reachable from vertex s by
the weighted colored paths PAgV)(s, q) with length & < L. Then MI({W)(S, q) #0
implies that Q(s,q) # 0. Q(s,q) # 0 implies that there exists an edge weighted
colored path PAgV)(s, q) with length 1 <t < L, then MISW)(S, q) # 0. Since Méw)
and @ are 0-1 matrices, Mé,W) = sign[(BW™)y . (L") 4 1)Lt (BZ-(:?/H))T]. O

The algebraic method to search edge-weighted, colored paths in a colored

multidigraph can have many benefits presented as follows.

5.4 Applications

5.4.1 Application 1: Transportation Network

Because of the accelerating globalization trend, a major logistic challenge is to
design a reliable, efficient, and economical system for moving merchandise within
a multi-modal transportation network. Due to diverse geography and weather
conditions, cost and time constraints, as well as other factors, chartered
companies may have to switch their transport mode when passing through a
transfer station. In order to design a competitive transportation system, one

must analyze all possible paths from any initial station to a destination to make
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the best choice. This transportation problem can be conveniently modeled as a
problem of finding colored paths and the shortest colored path in a weighted
colored multidigraph.

/
WZI{5’ 1) W13(2, 6)

1
W17(l ,5) /

\
wi(3,7)
1 wo(3,9) '
w62\ was(7:3)

’ ws(2,9)

wi4(6,9)
we(1,9)
w) W/(,M/w”'(% 9)
Vo
....... Airlines----p ———Highway=—#> == ——Sea route— =

Figure 5.6: A transportation network.

A hypothetical transportation network is shown in Fig. 5.6. The label on each
arc indicates its weight. Three different line styles, encoded in three colors, denote
three transportation modes: Color 1, Airline; Color 2, Highway; and Color 3,
Sea route, respectively. The numbers of airlines, highways, and sea routes are
c1 =4, co =12, and c3 = 8, respectively. Nine transfer stations are expressed using
vertices v; to vy as shown in the graph. According to the Rule of Priority, each
edge is labeled as shown in Fig. 5.6. Charter companies will move merchandise
from a starting station to some destinations. Assume also that this network is
consolidated in such a way that merchandise will have to be switched from one
transportation mode to another at any transfer station. In order to design a
competitive transportation system, one needs to search all possible colored paths
between any two vertices in the transportation network. Using Theorem 5.2, the
reduced weighted edge consecutive matrix LJM™) is caleulated and its nonzero
entries are listed in Table 5.2. Using the algorithm presented in Table 5.1, all

colored paths in the network can be found based on the information in Table 5.2.
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Table 5.2: The nonzero entries of matrix L.J, for the transportation

network
Status quo Nongzero entries of the reduced edge consecutive matrix L.J,
vy (a1,a7), (a1,as), (a1,a18),(as, a2) , (as,a19), (a17,as), (a17,a11), (a17,a12)
V2 (a7,a20), (a1s,a13), (a1s,a14)
v3 (a2, a10), (a2, a20), (a19,a4), (a19, a1s)
vy (a0, a16)
Vs (as,a13), (a3, a1a), (a3, a22), (a11,a4), (a11,a23), (a21,a1), (a21,as), (a1, ap)
V6 (a13,a24), (a2, ar), (azs,as)
v7 (as,a16), (aa,a24), (azs, a2), (az3,ag)
Vg (az4,a1o)

Fig. 5.7 shows that the colored multidigraph is mapped by the conversion
function F(-) designed by equation (5.3) to a simple digraph with no color
constraints. Note that the numbers labeled in circles shown in Fig. 5.7 denote
edge numbers. For the standard digraph, several well-known algorithms, such as
depth-first search algorithm [25] and Dijkstra algorithm [14], are available for
searching the shortest path on the reduced digraph.

For instance, if a firm wants to find the shortest path to move merchandise
from station v; to station vg. Fig. 5.7 shows that there exist six colored paths

between vertexes v; and vg in terms of arcs:
Q7 — ag — Q13

Q17 — a1 — G4
a5 — Q2 — Q20
a1 — Q7 — Q0
a5 — Q19 — Aaq
a1 — 18 — a13

Based on the Rule of Priority and the relation between state-by-state paths
and arc-by-arc paths, PAMW)(s,q) = {PAM™)(a,b) : a € Ag, b € Ag}, the above
arc-by-arc paths can be easily expressed in terms of nodes as follows:
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Figure 5.7: Graph transformation.

VI — U5 —> Vg — Us,
V) —= U5 —> VU7 — Us,
Vp — U3 — Vg — Us,
Vg — Vg — Uy — Ug,
Vg —> V3 — U7 — Ug,
V1 — Uy — Vg — Usg.

If the following weights are assigned, w; = 13, wy = 24, w3 = 10, wy = 17, w5 =
14, Wy = 26,1,011 = 15,11)13 = ].9,11)17 = 20,’(1)18 = 19,1,019 = 18, and Wop = 17, then
the shortest colored path between vertices v; and wvg is the path consisting of edges

ai7, a3, and aq3, or equivalently in terms of nodes, v1 — v5 — vg — vs.
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5.4.2 Application 2: Graph Model for Conflict Resolution

This proposed algebraic approach can also be conveniently applied to solve
problems of stability and status quo analyses in the graph model for conflict
resolution. If the state set S is treated as a vertex set and DM i’s oriented arcs
are coded in color 7, then a graph model of a conflict is equivalent to a colored
multidigraph with appropriate preference relations. Hence, a graph model can be
conveniently treated as an edge-weighted, colored multidigraph in which each arc
represents a legal unilateral move, distinct colors refer to different DMs, and the
weight along the arc identifies some preference attribute.

As a post-stability analysis in the graph model, status quo analysis examines
whether predicted equilibria (or potential resolutions) are reachable from a status
quo or an initial state by tracing the moves and countermoves among DMs. An
important restriction of a graph model is that no DM can move twice in succession
along any path [16]. Thus, tracing the evolution of a conflict in status quo analysis
is converted to searching all colored paths with some preference structure such
as simple preference [16], uncertain preference [46], or strength of preference [28].
The proposed algebraic approach also highlights a link between status quo analysis
and traditional stability analysis, thereby suggesting the possibility of an integrated

approach to stability and status quo analyses.

5.4.2.1 Weight Matrix for GMCR under Simple Preference

In the original information, the preference of DM ¢ is coded by a pair of relations
{>i,~;} on S. This preference structure is called simple preference.

Definition 5.7 presents a weight matrix Wy for a weighted colored multidigraph
G = (V,A N,¢,c,w). In a graph model G = (S, A), let H C N. By the proposed
Rule of Priority, the oriented arcs in the graph model are labeled according to the
DM order; within each DM, according to the sequence of initial states; and within
each DM and initial state, according to the sequence of terminal states. When an
edge a = d;(u,v) for u,v € S and i € H C N, then its weight wj, can be defined
by

P, ifvs=;uandi e H,
) E, ifu~;vandie H, 56
We=9 N, ifu>;vandie H, (5.6)

0 otherwise.

The weight matrix Wy represents preference information of each edge in the graph
model for simple preference. Recall that notation UMs and Uls denote unilateral
movers and unilateral improvements, respectively. Based on the statement (5.6),
the UM weight matrix and the UI weight matrix for H are defined as follows.
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Definition 5.14. For the graph model G = (S, A), let H C N.

e when P, = E, = N, = 1, the weight matrix Wy is called the UM weight
matriz by H, denoted by WI({UM) ;

e when P, =1 and E,, = N, = 0, the weight matrizc Wy s called the Ul
weight matriz by H, denoted by WI({UI) or Wi.

Recall that each arc of A; and A denotes that DM i can make a UM and a
Ul (in one step) from the initial state to the terminal state of the arc,

respectively. Therefore, Ay = |J A; and A}, = |J A] denote the UM and the
icH ieH
UI arcs associated with any DM in H. Based on Definition 5.6, on the weighted

arc set for H, the following result relative to the UM arc set and the UI arc set is

obvious for the graph model with simple preference.
Corollary 5.1. For the graph model G = (S, A), let H C N.
o [fWy= W}IUM), then the arc set Agv) = Ay,

o If Wy =Wj, the arc set AW = A%,

Note that when H = N, Ay and A}, are denoted by A and AT, respectively.

In a weighted colored multidigraph, the edge-weighted, colored paths by H
between two vertices u and v are described in Definition 5.4 which can represent
conflict evolution by the legal UMs and the legal Uls in a graph model for simple

preference.
Corollary 5.2. For the graph model G = (S, A), let u,v € S and H C N.

o [f Wy = WI({UM), the weighted colored paths between states u and v,
PAgV)(u7 v), give all paths from w to v where all legal UMs are allowed.
Then PAgV)(u,v) are called legal UM paths from uw to v by coalition H,
denoted by PAg(u,v);

o [fWy =W}, the weighted colored paths between states u and v, PAgV)(u, v),
gie all paths from u to v where only legal Uls are allowed. Then PAgV)(u, v)
are called legal Ul paths from u to v by coalition H, denoted by PAL(u,v).

The weighted colored paths PAgV) can be used to trace conflict evolution of status
quo analysis for simple preference. When u is selected as a status quo and v is an
equilibrium for some stability in a graph model, PAg(u,v) and PA},(u,v) trace
conflict evolution to confirm that the equilibrium is in fact reachable from the

status quo and reveal how to reach it.
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Definition 5.15. In the graph model G = (S, A), the legal UM and the legal Ul

edge consecutive matrices are two I x| matrices L™ and LJ} with (a,b) entries

1 if edges a and b are consecutive in order ab and
LJ,gUM)(a, b) = { are controlled by difference DMs for a,b € A,
0 otherwise,

1 if edges a and b are consecutive in order ab and
LJF(a,b) = are controlled by difference DMs for a,b € AT,

0 otherwise.

Let LJy, and LJ;T denote the legal UM and the legal UI edge consecutive
matrices in the graph model (S, Ay). Based on Definition 5.13, on the reduced
weighted edge consecutive matrix by H, and Definition 5.15, the following result

is obvious.

Corollary 5.3. For the graph model G = (S, A), let WM and W+ denote the
UM and the UI weight matrices, and WI({UM) and W be the UM and the UI weight

matrices for H. Then

LW = LM = L LIV = L,

r

and
(UM)

+
L) = Ly, LA™Y = LI},

As the proposed algorithm presented in Table 5.1 for searching weighted colored
paths in a weighted colored multidigraph, the legal UM and UI edge consecutive
matrices LJy, and LJ;;T are applied to find paths PAy and PA}, between any
two states for status quo analysis in a graph model. Specific applications for status
quo analysis using the algebraic approach are presented in Chapter 7.

For simple preference, the key inputs of stability analysis, Ry(s) and R} (s),
are the reachable lists by coalition H from state s € S by the legal UMs and the
legal Uls. Algorithms are complicated to implement the key inputs of stability
analysis [16]. This research provides an algebraic approach to construct Rpy(s)
and Rj;(s) using the weighted reachability matrix M I({W) shown by Definition 5.11.
The details are discussed in Chapter 6.

5.4.2.2 Weight Matrix for GMCR under Preference with Uncertainty

Preference information plays an important role in the decision analysis. To
incorporate preference uncertainty into the graph model methodology, Li et

al. [46] proposed a new preference structure in which DM 4’s preferences are
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expressed by a triple of relations {>;, ~;, U;} on S, where s >; ¢ indicates strict
preference, s ~; q indicates indifference, and sU;q means DM i may prefer state s
to state ¢, may prefer ¢ to s, or may be indifferent between s and gq.

The weight matrix Wy can be employed to represent preference with
uncertainty. When an edge ay = d;(u,v) for u,v € S and i € H C N, then its
weight wy, can be defined by

P, ifve=;uandi € H,
N, ifu=;vandie€ H,
wy =4 F, ifu~;vandie H, (5.7)
U, ifulU;vandie H,
0 otherwise.

Recall that notation UIUUMs denotes unilateral improvements or unilateral
uncertain moves. Based on the statement (5.7), the UITUUM weight matrix for H

is defined as follows.

Definition 5.16. For the graph model G = (S, A), let H C N. When P, = U, =1
and E, = N, =0, the weight matric Wy is called the UIUUM weight matriz for
H, denoted by WJEIUIUUM) or Wi,

Each arc of arc set A:“U denotes that DM ¢ can make a UITUUM from the initial

state to the terminal state of the arc. Therefore, ALY = |J AFY indicates the
iceH

UIUUM arcs associated with any DM in H. By Definition 5.6 for the weighted

arc set Agy), the UITUUM arc set is obtained for a graph model with preference
uncertainty by the following Corollary.

Corollary 5.4. For the graph model G = (S, A), let H C N. If Wy = W'Y,

then the arc set AQI/V) = A}}’U.

Note that when H = N, A;}’U is expressed by ATV,
The weighted colored paths PAgV) can be applied to trace conflict evolution
by the legal UIUUMs for the graph model with preference uncertainty.

Corollary 5.5. For the graph model G = (S, A), letu,v € S and H C N. If Wy =
W;U, the weighted colored paths between states u and v, PAgV)(u, v), give all paths
from u to v where only the legal UIUUMs are allowed. Then PAgV) (u,v) are called
the legal UIUUM paths from u to v by coalition H, denoted by PAJI}’U(U, v).

The conflict evolution by the legal UIUUMs can be tracked using the reduced
weighted edge consecutive matrix. The legal UIUUM edge consecutive matrix is
defined first.
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Definition 5.17. In the graph model G = (S, A), the legal UIUUM edge
consecutive matriz is an | x | matriv LJY with (a,b) entry
1 if edges a and b are consecutive in order ab and

LJHY(a,b) = are controlled by difference DMs for a,b € ATY,
0  otherwise.

Let LJ;;;U denote the legal UTUUM edge consecutive matrix for the graph model
(V, Ag). Based on Definitions 5.13 and 5.17, the following result is obtained.

Corollary 5.6. For the graph model G = (S, A), let WY denote the UIUUM
weight matrix and WE’U be the UITUUM weight matriz for H. Then

LJ,,(WJDU) _ LJ:-,U’

and
wi" U
L% = LJ".

The key input of stability analysis for the graph model with preference
uncertainty is the reachable list Rj;"(s) of coalition H C N from state s € S by
the legal UIUUMs. The algebraic approach to searching weighted colored paths

can also be used to construct RJ];’U(S). The details are discussed in Chapter 6.

5.4.2.3 Weight Matrix for GMCR under Strength of Preference

Another triplet relation {>>;,>;, ~;} on S that expresses strength of preference
(strong or mild preference) was developed by Hamouda et al. [27,28]. For s,q € S,
s >; q denotes DM i strongly prefers s to ¢, s >; ¢ means DM ¢ mildly prefers s to
¢, and s ~; ¢ indicates that DM i is indifferent between states s and q. The weight
matrix Wy can represent strength of preference. When an edge a, = d;(u,v) for
u,v € S and i € H C N, then its weight wy, is defined by
P, ifv>;uandie€ H,
P, ifv>;uandi€ H,
wy, =< FE, ifu~;vandie H, (5.8)
N, ifu>;voru>;vandi€ H,
0  otherwise.
Recall that notation WIs denotes strong unilateral improvements or mild
unilateral improvements called weak improvements. Based on the statement
(5.8), the WI weight matrix for H is defined as follows.

Definition 5.18. For the graph model G = (S, A), let H C N. When Py = P,, =1
and E, = N, = 0, the weight matrix Wy is called the W1 weight matrix for H,

denoted for WISWI) or Wit
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Each arc of the arc set A;""" denotes that DM i can make a W1 from the initial

state to the terminal state of the arc. Therefore, A;,™" = (J A" denotes the
icH
WI arcs associated with any DM in H. By Definition 5.6 for the weighted arc set

Agv), the WI arc set is obtained for a graph model with strength of preference by
the following Corollary.

Corollary 5.7. For the graph model G = (S, A), let H C N. If Wy = W™,

then the arc set Ag[/) = AT

Note that when H = N, A" is expressed by AT++.
The weighted colored paths PAgV) can be applied to trace conflict evolution
by the legal WIs for the graph model with strength of preference.

Corollary 5.8. For the graph model G = (S, A), let u,v € S and H C N. If
Wy = WI}“J“JF, the weighted colored paths between states u and v, PAgV)(u,U),
give all paths from u to v where only the legal Wlis are allowed. Then PAgV) (u,v)
are called the legal WI paths from u to v by coalition H, denoted by PAL ™™ (u,v).

Definition 5.19. In the graph model G = (S, A), the legal WI edge consecutive
matriz is an 1 X | matriz LJ+T with (a,b) entry
1 if edges a and b are consecutive in order ab and

LJF*"(a,b) = { are controlled by difference DMs for a,b € AT++,

0 otherwise.

Let LJE}Jer denote the legal WI edge consecutive matrix for the graph model
(V,Ag). Based on Definition 5.13, on the reduced weighted edge consecutive
matrix by H, and Definition 5.19, the following result can be easily obtained.

Corollary 5.9. For the graph model G = (S, A), let Wt denote the WI weight
matriz and W;JFJF be the WI weight matrixz for H. Then

LW = et

and

-+
LaWe ) = Ly

The key input of stability analysis in the graph model with strength of
preference is state set R} (s), the reachable list of coalition H C N from state
s € S by the legal WIs. The algebraic approach provides a new method to

construct R (s). The details are discussed in Chapter 6.

105



5.4.2.4 Weight Matrix for GMCR under Hybrid Preference

A hybrid preference framework is presented in Chapter 3 to combine preference
uncertainty and strength of preference using a quadruple relation {>>;, >;, ~;, U;}
in a graph model for DM ¢. The weight matrix Wy can also represent the combining
preference of uncertainty and strength. When an edge a, = d;(u,v) for u,v € S
and ¢ € H C N, then its weight wy, is defined by

P, ifv>;uandie€ H,
P, ifv>,uandi€ H,
) E, ifu~;vandie H, 59
Wa, =\ U, ifulUv and i € H, (5.9)
N, ifu>;voru>;vandi€ H,
0 otherwise.

Recall that notation WIUUMs denotes strong unilateral improvements, mild

unilateral improvements, or unilateral uncertain moves. By the statement (5.9),
the WIUUM weight matrix for H is defined as follows.

Definition 5.20. For the graph model G = (S, A), let H C N. When P, = P, =
Uy,=1and E, = N, = 0, the weight matrizc Wy is called the WIUUM weight

matriz for H, denoted by WISWIUUM) or Wit

Each arc of the arc set A;"""Y denotes that DM 7 can make a WIUUM from

the initial state to the terminal state of the arc. Therefore, AE’++’U =U A;r’++’U
icH
denotes the WI arcs associated with any DM in H. By Definition 5.6 for the

weighted arc set, the WIUUM arc set is obtained for a graph model with hybrid
preference by the following Corollary.

Corollary 5.10. For the graph model G = (S, A), let H C N. If Wy = W;{“J“J“U,

then the arc set Agv) = AE’++’U.

Note that when H = N, ALY is expressed by At++U.
The weighted colored paths PASL}/V) can be applied to trace conflict evolution
by the legal WIUUMs for the graph model with strength of preference.

Corollary 5.11. For the graph model G = (S, A), let u,v € S and H C N. If
Wy = W§’++’U, the weighted colored paths between states u and v, PAgV)(u,v),
gwe all paths from uw to v where only the legal WIUUMs are allowed. Then
PAgV)(u,v) are called the legal WI paths from u to v by coalition H, denoted by

PALTY (u,v).
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Definition 5.21. In the graph model G = (S, A), the legal WIUUM edge

consecutive matriz is an | x | matriz LJTHY with (a,b) entry

1 if edges a and b are consecutive in order ab and
LIV (a,b) = are controlled by difference DMs  for a,b € ATTHU
0 otherwise.

Let LJ§;++’U denote the legal WIUUM edge consecutive matrix for the graph
model (V, Ay). Based on Definition 5.13, on the reduced weighted edge consecutive

matrix for H, and Definition 5.21, the following result is obtained.

Corollary 5.12. For the graph model G = (S, A), let WU denote the WIUUM
weight matrix and WI}"J“J“U be the WIUUM weight matriz for H C N. Then

LJ£W+,++,U) _ LJ:_;H-,U’

and

LW L

The key input of stability analysis in the graph model with hybrid preference
is state set BTV (s), the reachable list of coalition H C N from state s € S
by the legal WIUUMs. A logical method is presented in Chapter 3 to construct
RIJ;’++’U(3). An algebraic approach to obtain the state set will be addressed in

future research as mentioned in Section 8.2.

5.5 Summary

From the above discussions, we find that although many approaches and algorithms
for coloring vertices and edges have been developed in graph theory and computer
science [9], the edge-weighted, colored graph research here differs from previous
work in that it is not concerned with how to color edges. Instead, the fundamental
problem is to search edge-weighted, colored paths in a given colored multidigraph.
This research is also different from the well-known network analysis problem of
finding paths between two vertices due to the additional color restriction feature
that is not present in these problems. Therefore, it is difficult to use existing
methods or algorithms directly, including genetic algorithms [12], neural networks
[65], and reinforcement learning algorithms [45], to find the shortest colored path.
In this research, an adjacency matrix of an undirected line graph is extended to
a reduced weighted edge consecutive matrix to search all weighted colored paths,

thereby providing new insights into Algebraic Graph Theory [24]. Based on the
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matrix thus designed, a conversion function is proposed to transform a colored
multidigraph to a simple digraph so that the original complex problem of searching
edge-colored paths in a colored multidigraph is converted to a standard problem of
finding paths in a simple digraph with no color constraints [72]. In Chapters 6 and
7, the capability of the developed algebraic approach will further be investigated.

108



Chapter 6

Matrix Representation for
Stability Analysis in the Graph
Model

Stability definitions in the graph model are traditionally defined logically, in terms
of the underlying graphs and preference relations. However, as was noted in the
development of the DSS GMCR II, the nature of logical representations makes
coding difficult. The new preference structures proposed by Li et al. [46] , Hamouda
et al. [28] and Xu et al. [70] to represent uncertainty, strength, and combining
uncertainty and strength in DMs’ preferences included some extensions of the four
basic stability definitions, but algorithms have not been developed for the three
structures. Table 1.1 shows the current state of development of effective algorithms
and codes to implement these solution concepts, which would be essential if they
are to be applied to practical problems [44].

In this chapter, matrix expressions are used to capture relative preferences,
reachable lists by a coalition from a status quo by legal sequences of UMs and Uls
for simple preference, legal sequence of UITUUMs for preference with uncertainty,
and legal sequence of WIs for preference with strength. An explicit algebraic form
conflict model is developed to facilitate stability calculations in two-DM and n-DM
(n > 2) models for simple preference, preference with uncertainty, and preference
with strength.

Note that if the state set S is treated as a vertex set and DM i’s oriented arcs
are coded in color ¢, then a graph model of a conflict is equivalent to a colored
multidigraph with appropriate preference relations. As shown in Chapter 5, the

weight matrix is convenient and flexible to represent preference information in
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the graph model. Therefore, the graph model is converted to a weighted colored
multidigraph. It is natural to use the results of Graph Theory to assist in analyzing
of a graph model. Hence, we will hereafter use the same notation as Chapter 5 to

represent a graph model for conflicts.

6.1 Matrix Representation of Solution Concepts

for Simple Preference

In this section, a graph model and four graph model solution concepts are
formulated explicitly using matrices. More specifically, matrix expressions are
given for relative preferences and the reachable lists of a coalition from a status
quo state by the legal sequences of UMs and Uls in a multiple-decision-maker
model. Then it is shown how to calculate stability under each of the four solution

concepts using the matrix representation.

6.1.1 Matrix Representation of Essential Components for

Stabilities for Simple Preference

Important matrices associated with a digraph include the adjacency matrix and
the incidence matrix [24]. These matrices are extended to the graph model for
conflict resolution. Let i € N and m = |S|. Recall that UMs and Uls represent

unilateral moves and unilateral improvements, respectively.

Definition 6.1. For the graph model G = (S, A), the UM adjacency matriz
J; and UI adjacency matrixz J;” for DM i are two m x m matrices with (s,q)

entries

1 Zf (87q> € Aia

| B n |1 df(s,q) € A,
JZ<S,Q) - { 0 OthGTU)iSG, and JZ (S,Q) o { 0 otherwz'se,

where s,q € S and A ={(s,q) € A : ¢ =; s}.

The reachable lists by DM i from state s defined in Section 2.2.2, R;(s) and
R (s), are expressed as R;(s) = {q: Ji(s,q) = 1} and R (s) = {q: J; (s,q) = 1}.
The following result is obtained based on Definition 5.8, on the weighted adjacency

matrix by H, J I({W), Theorem 5.3 for constructing matrix J}{W), and Definition 6.1.
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Corollary 6.1. For the graph model G = (S, A), the UM and the UI adjacency

matrices of DM © can be expressed as

y (UM) (UM)
J; = JWH) sz’gn[(B(Wi ) (w; ))T]

) out ’ in

and
+ +
T = I = sign[(BY)) - (BT,

% 7 out m

Recall that Ry (s) and R} (s) are the reachable lists of coalition H from state
s by the legal sequences of UMs and Uls. Two essential matrices for stability

analysis are defined as follows.

Definition 6.2. Let H C N. For the graph model G = (S, A), the UM reachability
matriz and the Ul reachability matrix of coalition H are two m x m matrices My
and My with (s, q) entries

1 ifge Ry(s) forqe S,

0 otherwise,

Mpy(s,q) = {

N |1 ifqe Rj(s) forqe S,
My (s,q) = { 0 otherwise.

The following result is obtained based on Definition 5.11, on the weighted
reachability matrix by H, M I(JW), Theorem 5.4 for constructing the weighted
reachability matrix and Corollary 5.3 for constructing the legal UM and UI edge

consecutive matrices L.J, and LJ, and Definition 6.2.

Corollary 6.2. For the graph model G = (S, A), the UM reachability and the UI

reachability matrices of coalition H can be expressed as

(UM) (UM)
My = MY = sign[(BU ) - (Ldy, + D)t (BY )T
and

& +
MI—{’— = M}IWJF) — SZgTL[(B(WH)) . (LJ;_L + ])lg—l . (B(WH))TL

out m

where Iy = |Ag| and I, = |A}].

Below, several m x m preference matrices, P;", P, and P~ for DM i, are

respectively defined as

P,L'+<S,CI):{1 qu>_i87 PZ_(S,Q):{l Zf$>‘7;q,

0 otherwise, 0 otherwise,
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and

P: 1 Zf S~ (q, —-= _ _
i (s:9) _{ 0 otherwise, ~t v
It follows that

i 0 otherwise.

P77 (s,q) = { 1—P(s,q) if s#q,

Based on the definitions of the UM adjacency matrix, J;, the Ul adjacency

matrix, J;7, and preference matrix, P;", for DM i, the relationship among them is

J;r = Jl ] F);r.

6.1.2 Matrix Representation of Solution Concepts for

Two-DMs under Simple Preference

Matrix representation of Nash stability, GMR, SMR, and SEQ in two-DM conflict
models for simple preference is developed in this chapter. The system, called the
MRSC method, incorporated a set of m x m matrices, MEME MSME and MiSEQ,
to capture GMR, SMR, and SEQ for DM ¢ € N, where |N| = 2 and m = |S|.
Since the following results are special cases of those developed in the next

subsection, the details are not given here. Let N = {4, j}. Then

Theorem 6.1. State s € S is Nash stable for DM i iff el - J" = 07. (T denotes
matriz transpose and el is the transpose of the s standard basis vector of the

m-dimensional Euclidean space.)

A state s € S is general metarational for DM 1 iff whenever DM ¢ makes any

UI from s, then its opponent can hurt ¢ in response. Define the m x m matrix
MGMR
K3

7

MEME = J+ - [E = sign (J; - (P70)")], for j € N\{i}.
Theorem 6.2. State s € S is GMR for DM i iff MEME(s,s) = 0.
Define the m x m matrix MPME = J . [E — sign(G)] in which
G=J;- (P 7)o (B = sign (Ji- (P)"))], for j € N\{i}.
Theorem 6.3. State s € S is SMR for DM i iff MM (s, s) = 0.
Define the mxm matrix M>5% = J*.[E—sign (JF- (BT, for j € N\{i}.
Theorem 6.4. State s € S is SEQ for DM i iff MZ-SEQ(S, s)=0.
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These theorems prove that the proposed matrix representation of solution
concepts are equivalent to the solution concepts for two DM conflicts defined by
Fang et al. [16]. The matrix representation can be extended to models including

more than two DMs, which is the objective of the next subsection.

6.1.3 Matrix Representation of Solution Concepts for n-

DMs under Simple Preference

Equivalent matrix representations of the logical definitions for Nash stability,
GMR, SMR, and SEQ can be determined directly by using the relationship that
has been established between matrix elements and the state set of a graph model,
and by using preference relation matrices among the states.

Let i € N and |N| = n for the following theorems.

Theorem 6.5. State s € S is Nash stable for DM i, denoted by s € SN iff

(es, Jre) = 0, where <, > denotes the inner product.

Theorem 6.1 and Theorem 6.5 are identical because Nash stability does not
consider opponents’ responses.

It should be pointed out that the following stability matrices for n-DMs use
the same notation as that presented in Subsection 6.1.2 for two-DMs. For general
metarationality, DM ¢ will take into account the opponents’ possible responses,
which are the legal sequence of UMs by members of N\{:}. For ¢ € N, find the
UI adjacency matrix J;" and the UM reachability matrix M g using Corollary
6.1 and Corollary 6.2, for which H = N\{i}. Define the m x m matrix MZME by

MiGMR — J;r B - 3ign<MN\{i} : (PZ_:)T)]

Theorem 6.6. State s € S is GMR for DM i, denoted by s € SEME iff
MEME (5 5) = 0.
Proof: Since the diagonal element of matrix MM~
MEME(s s) = ((JF) e, (E — sz’gn(MN_{i} . (PZ-_’:)T))68>

m

=Y I (s.s0)[L = sign (M) e (P77)es)),
s1=1
then MEME(s s) = 0 iff
T (s, 801 — sign({(Ma ) enss (P es))] = 0,51 € 5.
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This implies that MFME(s, s) = 0 iff
(€5, Mw\(iy) - (e P7)" #0,Vs1 € R (5). (6.1)

Statement (6.1) means that, for any s; € R; (s), there exists s, € 9, such that the
m-~dimensional row vector, ezl - M\ g3y, with st element 1 and the m-dimensional

column vector, (P;,"7)T - e,, with s* element 1.

Therefore, MFME(s, s) = 0 iff for any s; € R (s), there exists at least one
sy € Ry\(iy(51) with s >=; so. O
For symmetric metarationality, the n-DM model is similar to the two-DM
model. The only modification is that responses come from DM 1i’s opponents

instead of from a single DM. Let
G= (P, 7)) o[E —sign(J;- (P)1)],
then define the m x m matrix MME by

MiSMR _ J;r | E - Sign(MN\{i} - G)].

Theorem 6.7. State s € S is SMR for DM i, denoted by s € S°ME_ jff
MPME(s s) = 0.

Proof: Since the diagonal element of matrix M ME

MEVE(s,5) = (T - eq, (E = sign(Mgiy - W))es)

m

=) T (s, s1)[1 = sign(((Magiy)" - €5, G - €4))],
s1=1
then M ME(s s) =0 iff
J (s, s1)[1 = sign({(Mnvi)" - €51, G - €5))] = 0,Vs1 € S.
This means that M7ME(s, s) = 0 iff

(el - Magiy) - (G - e5) #0,Vs1 € R (s). (6.2)

Let G(sa,s) denote the (sq,s) entry of matrix G. Since

(el Mny) - (G- es) = Z Mpnn iy (1, 82) - G52, 8),

so=1
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then (6.2) holds iff for any s; € R;(s), there exists sy € Ry\f;3(s1) such that
G(sq,s) # 0.

m

Because G(s9,5) = P77 (s,89)[1 — sign( . Ji(s2,83) P (s,53))], then
G(s2,5) # 0 implies that for s, € R\ gy (s1), o
B (s,82) # 0 (6.3)
and .
> Jils2,85) P (s, 85) = 0. (6.4)

s3=1

(6.3) is equivalent to the statement that, Vs, € R} (s),3ss € Ryy(i3(s1) such that
s ¥i s3. (6.4) is the same as the statement that, Vs; € RS (s),3s2 € Ra\giy(s1)
such that P;" (s, s3) = 0 for Vs3 € R;(ss). Based on the definition of m x m matrix
P, one knows that P (s,s3) =0 < s =; s3.

Therefore, we conclude the above discussion that M M%(s, s) = 0 iff for any
s1 € R (s), there exists at least one sy € Ry\q;3(s1) with s =; s and s =; s3 for
all s3 € R;(s2). O

Sequential stability examines the credibility of the sanctions by DM 4’s
opponents. For ¢ € N, find the Ul reachability matrix M;\r,\ 0 using Corollary 6.2.

Define the m x m matrix MZ-SEQ by
MPP9 = JiF - [E = sign(My, ¢ - (P77)7)).

Theorem 6.8. State s € S is SEQ for DM i, denoted by s € SiSEQ, iff
MPP9 (s, 5) = 0.

Proof: Since the diagonal element of matrix MiS BQ

MR (s, 5) = (J) e, (B = sign(My, gy - (P 7)7))es)

m

= Z J{"(S, 51)[1 - sign(((M;\;\{i})T “Csyy (Pi_’:)T ’ 65>)],

s1=1
then M*9 - (s,5) = 0iff J;"(s,51)[1 — sign((M ;)" - esr, (P 7) - e0))] =
0,Vs; € S. This implies that ]\@SEQ(S7 s) =0 iff

(esTlMJJ\?\{i}) (el - BT)T #0,Vs1 € Rf (s). (6.5)

Statement (6.5) means that, for any s; € R; (s), there exists s, € 9, such that the

m-~dimensional row vector, eSTl -M]t_ (ip with s¥* element 1 and the m-dimensional

h

column vector, (P;7)7 - ey, with si* element 1.
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Therefore, M #?(s,s) = 0 iff for any s; € R (s), there exists at least one
S9 € R;\{i}(sl) with s >, ss. O

When n = 2, the DM set N becomes to {7,5} in Theorems 6.5 to 6.8, and
the reachable lists for H = N \ {i} by legal sequences of UMs and Uls from s,
R\ (s1) and R;{,\{i}(sl), degenerate to R;(s1) and R} (s1), DM j’s corresponding
reachable lists from s;. Thus, Theorems 6.5 to 6.8 are reduced to those Theorems
6.1 to 6.4.

So far, the matrix representation of solution concepts has been established in
multiple decision maker graph models for simple preference. As shown below, the
matrix method for calculating the individual stability and equilibria is also
attractive from a computational point of view. Many researchers are now
attempting to develop faster algorithms for matrix operations. For example, for
the multiplication of two m X m matrices, the standard method requires O(m?)
arithmetic operations, but the Strassen algorithm [62] requires only O(m?*8°7)
operations. Coppersmith and Winograd’s work [11] shows that the
computational complexity of matrix multiplication was decreased to O(m?37°).
In fact, some researchers believe that an optimal algorithm for multiplying
m x m matrices will reduce the complexity to O(m?) [10]. Therefore, the
proposed matrix method not only is propitious for theoretical analysis, but also

has the potential to deal with large and complicated conflict problems.

6.1.4 Interrelationships among the Solution Concepts

In 1993, Fang et al. [16] established general relationships among Nash stability,
GMR, SMR, and SEQ (See Fig. 6.1) in the following theorem.

Figure 6.1: Interrelationships among the four solution concepts [16].
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Theorem 6.9. Let i € N,| N |=n, and n > 2. Then interrelationships among

the four solution concepts are
SZ-NGSh g S;S'MR g SFMR (66)

and
ghash € §FFQ ¢ gEMR, (6.7)
As shown below, the interrelationships among four solution concepts formulated

explicitly using matrices are easy to verify.
Proof: If s € SNash then e - J = 07. Let

B = E — sign(Mn\f;y - G)
and let G = (P, 7)o [E—sign(J;- (P;")T)]. Since MME(s,s) = (el - J;")-(B-ey),
it follows that MSME(s s) = 0, when eT - J7 = 07. Hence, if s € SN, then
s € SPME which implies SNesh C SEME,

Because G = (P, 7)" o [E — sign(J; - (P;F)T)], it follows that for Vs € S,
el - (Magy - (P77)7) -es #0,
when el (M (i-G)-e5 # 0, this implies that el [E—sign (M 3 (P 7)T)]-es = 0,
if el - [E — sign(Mn\giy - G)] - es = 0. Therefore, if s € SPM# then
MME(s,s) = (el - 1) - [(E = sign(Magsy - G)) - e5] =0,
which implies that
MEMR(5,5) = (¢7 - JF) - [(E = sign(Mangy - (P-)))e] = 0.

Hence, SPME C SEME  Thys, relation (6.6) now follows. Relation (6.7) can be
verified, similarly.

There is no necessary inclusion relation between S and SiS EQ, i. e., it may
or may not be true that SPME D S°P? or that SPME C S7PC. However, we can
take advantage of the algebraic characterization of MRSC to establish some facts

about their interrelationship.

Theorem 6.10. Leti € N,| N |=n, and n > 2. Let G = (P, )" o [E — sign(J; -
(PA)")]. Then, when (M) - G) VM, 1y - (P 7)) = sign(Mw\giy - G),

SEME 5 G5EQ. 4nd (6.8)
when (M3 - G) \/[M;\{i} (P = sign[M;\{i} (BT,
SSME C goFQ (6.9)
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Proof: If s € SfEQ, then MZ-SEQ(S, s) = 0, which is equivalent to
(e5 - Ji") - [(E - Sig”(MzJ\r/\{i} : (Pz'_’:)T)) res] =0,
so that e] - Ji" = (e - J;) o [sign(My, 1y - (P77)") - e,]". Since
(Myvgiy - W)\ [M iy - (B70)") = sign(Mygy - G),
it follows that el - J;" = (eI - J;") o [sign(Mpw\jsy - G) - €5]", and therefore
(el - JF) - [(E = sign(Mw - G)) - es] =0,

which implies that M M%(s s) = 0. Relation (6.8) now follows. Relation (6.9) can
be proved, similarly. 0

6.1.5 Applications for Simple Preference
6.1.5.1 Superpower Nuclear Confrontation

In two-DM conflicts, a simplified model of a superpower nuclear confrontation,
including the “nuclear winter” possibility [16], is used to illustrate how stability
analysis is carried out using MRSC. This conflict is modeled using two DMs and
a total of six options. In the superpower nuclear confrontation conflict, the six
options together determine five feasible states as listed in Table 6.1, where a “Y”
indicates that an option is selected by the DM controlling it and an “N” means that
the option is not chosen. The graph model of the superpower nuclear confrontation
conflict is shown in Fig. 6.2. Note that state W is assumed to trigger a nuclear

winter. Given that the preferences are ordinal for DM 1 and DM 2 [16],
PP > CP =, CC > PC =1 W,

and
PP =9 PC =5 CC =9 CP =9 W.

In order to carry out a stability analysis for each of the five states and each of
the two DMs, the MRSC method is used for the superpower nuclear confrontation
model.

Let the five states, PP, PC, CP, CC, and W, be numbered from 1 to 5,

respectively. From the graph model, we have

00101 01001
00011 10001
Ji= 10001 ]|, b=]000T11],
01001 00101
00000 00000
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Table 6.1: Options and feasible states for the superpower nuclear

confrontation conflict [16]
DM 1
1. Peace (labeled P )
2. Conventional attack (labeled C)
3. Full nuclear attack (labeled W)
DM 2
1. Peace (labeled P )
2. Conventional attack (labeled C)
3. Full nuclear attack (labeled W)
States

Q
M 22 2z
Q

Qz~<z z~<z
S<zz <2z

"
L4 22
w
aZ<=z Zz2Z2<

©.
’
©

© @ﬁ!}@

a) Graph model for DM 1 Graph model for DM 2

Figure 6.2: The graph model of the superpower nuclear confrontation
conflict [16].

000 0O 000 O0@O0
1 0110 1 00 00
Pfr = 1 00 00 ,P;r = 11010
1 01 00 11000
11110 11110
Then
JH=Jio P fori=1,2,
and

P =E—I-P' fori=1,2,

where [ is a 5 x 5 identity matrix. Next, we can calculate the stabilities of Nash,
GMR, SMR, and SEQ, respectively, for the superpower nuclear confrontation
conflict, using MRSC for two-DM cases introduced by Theorems 6.1 to 6.4. The
stability results using MRSC are provided in Table 6.2 in which “y/” denotes that
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this state is stable for DM 1 or DM 2 under the appropriate stability definitions,
and “Eq” means an equilibrium that is stable for the two DMs. States PP, CC,

and W are equilibria for four basic solution concepts.

Table 6.2: Stability results of the superpower nuclear confrontation
State Number Nash GMR SMR SEQ

DM 1[DM 2[E¢[DM 1]DM 2[EqDM 1[DM 2/EqDM 1[DM 2[Eq
R A RAN R ARANEARANEARAY
PC VIVIVIVIVV
cP VIVIVIVIVV
S EVARANEA NN ENA AN NARAN
W I VIVIVIVIVIVIVIVIVIVIVIV

6.1.5.2 Rafferty-Alameda Dams Conflict

The Rafferty-Alameda dam, in the Souris River basin in southern Saskatchewan,
was planned for flood control, recreation and cooling the Shand generating
plant [55]. The province of Saskatchewan wanted to finish the project
promptly, seeking a license from the Environment Minister of the Federal
government. An environment group, the Canadian Wildlife Federation,
quickly petitioned against the license and argued that the provincial government
had not respected regulations. The federal court sided with the environment
group and ordered the suspension of the license, but later the license was reissued
by a new federal environment minister. The environment group petitioned again,
and this time the federal court ordered the suspension of the license and the
creation of a review panel to reevaluate the project. However, construction of
the dam continued during the review period, and the federal and provincial
governments even reached an agreement that the project would continue while
ten million dollars are set aside to alleviate a