
Dynamical Systems Methods

Applied to the

Michaelis-Menten and Lindemann Mechanisms

by

Matthew Stephen Calder

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Applied Mathematics

Waterloo, Ontario, Canada, 2009

c© Matthew Stephen Calder 2009





Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners. I understand that my thesis may be

made electronically available to the public.

Matthew Stephen Calder

iii





Abstract

In the first part of this thesis, we will explore an iterative procedure to determine the detailed

asymptotic behaviour of solutions of a certain class of nonlinear vector differential equations which

approach a nonlinear sink as time tends to infinity. This procedure is indifferent to resonance in

the eigenvalues. Some attention will be given to finding approximations to solutions which are

themselves flows. Moreover, we will address the writing of one component in terms of another in

the case of a planar system.

In the second part of this thesis, we will explore the Michaelis-Menten mechanism of a sin-

gle enzyme-substrate reaction. The focus is an analysis of the planar reduction in phase space

or, equivalently, solutions of the scalar reduction. In particular, we will prove the existence and

uniqueness of a slow manifold between the horizontal and vertical isoclines. Also, we will deter-

mine the concavity of all solutions in the first quadrant. Moreover, we will establish the asymptotic

behaviour of all solutions near the origin, which generally is not given by a Taylor series. Finally,

we will determine the asymptotic behaviour of the slow manifold at infinity. Additionally, we will

study the planar reduction. In particular, we will find non-trivial bounds on the length of the

pre-steady-state period, determine the asymptotic behaviour of solutions as time tends to infinity,

and determine bounds on the solutions valid for all time.

In the third part of this thesis, we explore the (nonlinear) Lindemann mechanism of unimolecular

decay. The analysis will be similar to that for the Michaelis-Menten mechanism with an emphasis

on the differences. In the fourth and final part of this thesis, we will present some open problems.
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Chapter 1

Introduction to the Thesis

Consider the vector ordinary differential equation

ẋ = Ax + b(x), (1.1)

where x ∈ Rn is the state vector, t is time, ˙= d
dt , the matrix A ∈ Rn×n is Hurwitz1, and the

nonlinear vector field b ∈ C2(Rn,Rn) satisfies b(0) = 0 and Db(0) = 0. All solutions with initial

condition x0 sufficiently close to the origin will approach the origin asymptotically as t→ ∞. It is

very desirable to obtain the asymptotic behaviour of the solution φt(x0) as t→ ∞ with sufficient

detail when ‖x0‖ is sufficiently small. In Part I of this thesis, we will explore an iterative procedure,

which is indifferent to resonance in the eigenvalues, to construct asymptotic expansions of φt(x0)

as t→ ∞ with any desired accuracy. This detailed asymptotic behaviour, for example, will enable

us to construct phase portraits with more detail than the linearization. Moreover, the detailed

behaviour will have implications for concavity results, parameter estimation and reduction methods

in chemical kinetics, and it will show the limitations of using traditional power series.

The famous Michaelis-Menten mechanism for an enzyme reaction is given symbolically by

S + E
k1�
k−1

C
k2→ P + E,

where S is the substrate, E is the enzyme, C is the complex, P is the product, and k−1, k1,

and k2 are the reaction-rate constants. This leads to the planar system of dimensionless ordinary

differential equations

ẋ = −x+ (1 − η + x) y, εẏ = x− (1 + x) y, (1.2)
1That is, all the eigenvalues have real parts that are strictly negative.
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1.1. Toy Problem 1

where x is a scaled substrate concentration, y is a scaled complex concentration, ˙= d
dt , ε > 0 is a

parameter (generally assumed to be small but in this thesis it can be of any size), and η ∈ (0, 1) is

another parameter. In Part II of this thesis, we will derive many new and interesting properties of

the planar system. Observe that the planar system (1.2) is indeed in the form of (1.1).

The (nonlinear) Lindemann mechanism for unimolecular decay is given symbolically by

A+A
k1�
k−1

A+B, B
k2→ P,

where A is the molecule that decays, B is the activated complex, and P is the product of the decay.

This mechanism yields the dimensionless planar system

ẋ = −x2 + εxy, ẏ = x2 − y − εxy, (1.3)

where x is a scaled concentration of A, y is a scaled concentration of B, ε > 0 is a parameter (which

can be of any size), and ˙= d
dt . In Part III of this thesis, we will derive many properties of this

planar system. Note that this system is not in the form of (1.1) since the matrix for the linear part

is not Hurwitz.

In this introductory chapter, we will explore a few “toy problems.” These problems will be

similar in spirit to some of the problems we will encounter in this thesis and thus will serve to

give the reader a taste of things to come. However, the simplicity of these problems enables us

to approach them in a manner that may be different than the approach we would take in a more

complicated example.

1.1 Toy Problem 1

Consider the initial value problem

ẋ = −x− x2, x(0) = 1, (1.4)

where ˙= d
dt . We will pretend that we cannot solve the initial value problem exactly. Our goal is

to obtain non-trivial bounds on the solution x(t) and to establish the (non-trivial) leading-order

behaviour.
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Chapter 1. Introduction to the Thesis

1.1.1 Bounds on x(t)

Observe that x = 0 is a solution of the differential equation and ẋ < 0 when x = 1. It follows that

x(t) satisfies

0 ≤ x(t) ≤ 1 for all t ≥ 0. (1.5)

We can use these simple bounds in conjunction with the differential equation to obtain better

bounds. Combining (1.4) and (1.5), we see that

−2x(t) ≤ ẋ(t) ≤ −x(t) for all t ≥ 0.

That is,

ẋ(t) + 2x(t) ≥ 0 and ẋ(t) + x(t) ≤ 0 for all t ≥ 0.

If we multiply each inequality by an appropriate exponential integrating factor, replace t by s, and

re-arrange, we get

d

ds

(
e2sx(s)

)
≥ 0 and

d

ds
(esx(s)) ≤ 0 for all s ≥ 0.

Now, integrate with respect to s from 0 to t, use the initial condition x(0) = 1, and re-arrange the

result. This yields

e−2t ≤ x(t) ≤ e−t for all t ≥ 0. (1.6)

This process can be repeated to obtain even better bounds.

1.1.2 Leading-Order Behaviour of x(t)

The initial value problem (1.4) can be written as the integral equation

x(t) = e−t − e−t

∫ t

0
esx(s)2 ds.

Importantly, we can re-write this as

x(t) = c e−t + e−t

∫ ∞

t
esx(s)2 ds,

where

c := 1 −
∫ ∞

0
esx(s)2 ds.
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1.2. Toy Problem 2

y =
(

y0

xa
0

)
xa

y

(x0, y0)

x

Figure 1.1: A phase portrait for the planar system (1.7).

Note that, by virtue of (1.6),

1
3 e−3t ≤

∫ ∞

t
esx(s)2 ds ≤ e−t for all t ≥ 0.

It follows that we can write

c e−t ≤ x(t) ≤ e−t for all t ≥ 0 and x(t) = c e−t + O
(
e−2t
)

as t→ ∞

for some c ∈
(
0, 2

3

)
. (Appealing to the bounds (1.6) and the fact that x(t) 	≡ e−2t and x(t) 	≡ e−t,

we cannot have c = 0 or c = 2
3 .) The techniques we will develop in Chapter 3 can be used to show

that c = 1
2 .

1.2 Toy Problem 2

Consider the linear system

ẋ = −x, ẏ = −ay, (1.7)

where a > 1 is a constant and ˙= d
dt . The corresponding scalar differential equation is

y′ =
ay

x
, (1.8)

where ′ = d
dx . See Figure 1.1, which gives the phase portrait. We will restrict attention to x > 0.
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1.2.1 Antifunnel

The solution y = 0 to the scalar differential equation (1.8) is an exceptional solution which appears

to attract all other scalar solutions. Define the region

Γb :=
{

(x, y) : x > 0, − x e−bx ≤ y ≤ x e−bx
}

(b > 0) , (1.9)

which is an example of an antifunnel. (See §A.3 for a discussion on antifunnels.) It can be shown

using the Antifunnel Theorem (see Theorem A.4) and other techniques that any solution to (1.7)

with x(0) > 0 will eventually enter and remain inside the so-called trapping region Γb. Moreover,

the solution y = 0 is the only solution to (1.8) contained entirely in Γb. In Parts II and III of this

thesis, we will deal with planar systems, namely (1.2) and (1.3), having trapping regions which

contain a unique attracting solution (called a slow manifold).

1.2.2 Fraser Iterative Scheme

Consider the scalar differential equation (1.8). If we choose an initial function y0(x), we can define

an iterative scheme

yn+1(x) :=
xy′n(x)
a

(n ∈ N0) ,

where N0 := {0, 1, 2, . . .}. This can be referred to as the Fraser iterative scheme, after Simon Fraser

who used the scheme to approximate the slow manifold for both the Michaelis-Menten mechanism

and the Lindemann mechanism. See, for example, [43].

Finding the Iterates using a Generating Function

Define the exponential generating function

w(x, τ) :=
∞∑

n=0

yn(x)
n!

τn,

where {yn(x)}∞n=0 are the Fraser iterates. Note that

yn(x) =
∂nw

∂τn
(x, 0) for all n ∈ N0.

See, for example, pages 60–61 of [77] and [128] for a discussion on generating functions.

Observe that

∂w

∂x
(x, τ) =

∞∑
n=0

y′n(x)
n!

τn and
∂w

∂τ
(x, τ) =

∞∑
n=0

yn+1(x)
n!

τn.
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1.2. Toy Problem 2

Since ayn+1(x) = xy′n(x), we see that w(x, τ) satisfies the partial differential equation and initial

condition

x
∂w

∂x
− a

∂w

∂τ
= 0, w(x, 0) = y0(x).

We will use the method of characteristics (see §A.12 of Appendix A) to solve this. Consider the

initial value problem(
dx

dr
,
dτ

dr
,
dw

dr

)
= (x,−a, 0) , (x(0), τ(0), w(0)) = (s, 0, y0(s)) ,

which describes a curve parameterized by r in the solution surface w(x, τ). Solving gives

x = s er, τ = −ar, w = y0(s).

Solving the first two equations for s in terms of x and τ gives s = x exp
(

τ
a

)
. Thus, the generating

function is given by

w(x, τ) = y0

(
x exp

(τ
a

))
.

Initial Iterate y0(x) = xc

Suppose that we choose y0(x) := xc, where c > 0. Then, the generating function is given by

w(x, τ) = xc exp
(cτ
a

)
.

Thus, the Fraser iterates are given by

yn(x) =
( c
a

)n
xc (n ∈ N0) .

Clearly, if c < a then the Fraser iterates converge pointwise to the solution y = 0 and if c > a then

the iterates diverge.

Initial Iterate y0(x) = ex

Suppose now that y0(x) := ex. Then, the generating function is given by

w(x, τ) = exp
(
x exp

(τ
a

))
.

Interestingly, we can write this as

w(x, τ) = ex

[ ∞∑
n=0

φn(x)
ann!

τn

]
,
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Chapter 1. Introduction to the Thesis

where {φn(x)}∞n=0 are the exponential polynomials (which are also called the Touchard polynomi-

als). See, for example, [7] or pages 63–67 of [103]. Consequently, the Fraser iterates are

yn(x) =
exφn(x)
an

(n ∈ N0) .

Observe that

yn(1) =
eBn

an
and

yn+1(1)
yn(1)

=
(

1
a

)(
Bn+1

Bn

)
(n ∈ N0) ,

where {Bn}∞n=0 are the Bell numbers. Since lim
n→∞

Bn+1

Bn
= ∞, it follows that lim

n→∞ yn(1) = ∞.

1.3 Toy Problem 3

Consider now the nonlinear planar system

ẋ = −x+ xy, ẏ = −ay − xy, (1.10)

where a > 1 is a constant and ˙= d
dt . This system could arise, for example, from applying the Law

of Mass Action (see §A.1 of Appendix A) to the chemical mechanism

X + Y
1→ 2X, X

1→ P1, Y
a→ P2,

where P1 and P2 are arbitrary products. The corresponding scalar differential equation is

y′ =
(a+ x) y
x (1 − y)

, (1.11)

where ′ = d
dx . We will consider only x > 0. See Figure 1.2.

1.3.1 Antifunnel

The solution y = 0, as with the linearized system, is an exceptional solution which attracts all other

solutions. In fact, the region Γb, which was defined in (1.9), is a trapping region for the nonlinear

system just like it is for the linear system. Again, the solution y = 0 (the slow manifold) is the only

scalar solution which is contained entirely inside Γb.
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x ’ = − x + x y  
y ’ = − a y − x y

a = 3.5
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Figure 1.2: A phase portrait for the nonlinear planar system (1.10) for a = 3.5.

1.3.2 Exact solution of the scalar differential equation

The scalar differential equation (1.11) can be solved exactly in terms of the Lambert W function

(see §A.16 of Appendix A). Write the differential equation as[
1
y(s)

− 1
]
y′(s) =

a

s
+ 1 for s > 0.

If we integrate with respect to s from x0 to x and apply the initial condition y(x0) = y0, where

x0, y0 > 0 for simplicity, we get

ln

(
y(x)
y0

)
− y(x) + y0 = a ln

(
x

x0

)
+ x− x0.

Taking the exponential of both sides and re-arranging,

−y(x) e−y(x) = −
(

y0

xa
0 ex0+y0

)
xa ex.
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Chapter 1. Introduction to the Thesis

By definition of the Lambert W function, we obtain the explicit solution

y(x) = −W
(
−
[

y0

xa
0 ex0+y0

]
xa ex

)
.

Since W (x) = x+ o(x) as x→ 0, we can say

y(x) =
[

y0

xa
0 ex0+y0

]
xa + o(xa) as x→ 0+.

Observe that if a 	∈ {2, 3, . . .} then y(x) is not representable as a Taylor series at x = 0. However,

applying the power series method to the scalar differential equation (1.11) yields the zero series.

1.4 Comments on this Thesis

1.4.1 Structure

This thesis is divided into four parts. Part I deals with iterative schemes which determine the

asymptotic behaviour of solutions of a certain class of nonlinear vector differential equations as

they approach a sink. Part II deals with properties of the Michaelis-Menten mechanism of a

single enzyme-substrate reaction. Part III deals with the Lindemann mechanism of unimolecular

decay. Part IV consists of a chapter on open problems as well as the appendix. Each part (except

Part IV) has an introductory chapter (where the problem and literature are introduced), a main

chapter (where the fundamental results are established), and additional specialized chapters.

This thesis is intended to be reader-friendly and leisurely yet rigorous. Simple examples are

included frequently where appropriate. Most chapters conclude with a brief summary of essential

material in the chapter. Moreover, Appendix A includes a review of some results and concepts

which are used in the thesis. Finally, Appendix B includes some interesting results or approaches

which have not been fully explored, have led to issues which have not been overcome, or otherwise

do not fit in anywhere else.

1.4.2 Goals and Themes

There are many goals and themes that are common in this thesis.

• Obtaining (non-trivial) leading-order behaviour as t→ ∞ for solutions x(t) of certain non-

linear differential equations ẋ = g(x).
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1.4. Comments on this Thesis

• Obtaining simple bounds on solutions x(t) of certain nonlinear differential equations ẋ = g(x)

valid for all t ≥ 0. Differential inequalities are a common tool used for this purpose.

• Obtaining asymptotic expansions for x2 in terms of x1 as x1 → 0 for solutions x(t) of certain

planar nonlinear differential equations ẋ = g(x).

• Handling resonance in the eigenvalues for certain nonlinear differential equations ẋ = g(x).

• Finding approximations to solutions of certain nonlinear differential equations ẋ = g(x) which

are also flows.

• Establishing concavity for solutions of certain scalar nonlinear differential equations y′ = f(x, y).

• Utilizing isoclines (other than the horizontal and vertical) to analyze certain scalar nonlinear

differential equations y′ = f(x, y).

• Proving the existence and uniqueness of a solution in a trapping region for certain scalar

nonlinear differential equations y′ = f(x, y). To achieve these results, we use antifunnels.

• Estimating the time for solutions x(t) to enter a trapping region for certain nonlinear differ-

ential equations ẋ = g(x).

• The Lambert W function makes many fundamental appearances.

10
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Asymptotics Near a Nonlinear Sink
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Chapter 2

Introduction

Part I of this thesis is concerned with the determination of asymptotic behaviour of solutions of

systems of ordinary differential equations as they approach a nonlinear sink.1 Many known ap-

plicable results may quickly come to mind, such as the Hartman-Grobman Theorem, Poincaré’s

Theorem, and normal form theory. However, a certain limitation of the Hartman-Grobman Theo-

rem, Poincaré’s Theorem, and normal form theory also quickly comes to mind, namely resonance.

The techniques of this part of the thesis, fortunately, are not hindered by resonance.

Remark 2.1: Part III of this thesis deals with a system that has a non-hyperbolic equilibrium.

In particular, this equilibrium point is a saddle node. Some attention is given to determining the

asymptotic behaviour of solutions as they approach this equilibrium. See §A.8 of Appendix A which

gives a brief overview of the classification of equilibrium points.

2.1 The Problem

Let n ∈ N and consider the constant matrix A ∈ Rn×n and vector field b : Rn → Rn. The system

of ordinary differential equations under consideration is

ẋ = Ax + b(x), x ∈ Rn, ˙=
d

dt
,

where A and b have certain properties which we will outline below.
1An equilibrium point is a sink if the linearization matrix at this point only has eigenvalues with strictly negative

real parts. Consequently, all nearby solutions approach the equilibrium point asymptotically. The “nonlinear” of

“nonlinear sink” merely emphasizes the fact that it results from a nonlinear differential equation.
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2.1. The Problem

2.1.1 The Matrix A

The matrix A is assumed to be Hurwitz with eigenvalues {λi}n
i=1 which have respective negative

real parts {μi}n
i=1. Moreover, we will assume a specific ordering of the eigenvalues.

Assumption 2.2: The real parts of the eigenvalues of the matrix A satisfy

μn ≤ μn−1 ≤ · · · ≤ μ1 < 0. (2.1)

A very crucial ratio is given by

κ :=
μn

μ1
, (2.2)

which quantifies the spacing of the eigenvalues. Observe that κ ≥ 1. The significance of the ratio

between eigenvalues has been noted before. See, for example, $II.3 of [16].

Remark 2.3: In this chapter, as well as other chapters in this part of the thesis, the constants

{μi}n
i=1 are understood to be the real parts of the eigenvalues of A and satisfy (2.1). Furthermore,

the constant κ is understood to be the ratio in (2.2).

2.1.2 The Vector Field b

The b(x) term in the differential equation encapsulates the nonlinear part. We will need to make

an assumption on the minimum amount of smoothness possessed by b(x). Moreover, we need to

specify the basic decay rate of b(x) and Db(x), where the notation D := ∂
∂x denotes the derivative

operator. In particular, the Jacobian of b is given by

Db =
{
∂bi
∂xj

}n

i,j=1

=

⎛⎜⎜⎜⎝
∂b1
∂x1

· · · ∂b1
∂xn

...
. . .

...
∂bn
∂x1

· · · ∂bn
∂xn

⎞⎟⎟⎟⎠ .

Note that we will be using the notation Br(p) and Br to denote, respectively, the open balls in Rn

of radius r centred at p and 0.

Assumption 2.4: Consider the vector field b.

(a) There is some neighbourhood N ⊂ Rn with 0 ∈ N and b ∈ C1(N ,Rn).

(b) There are δ, k > 0 such that Bδ ⊂ N and

‖b(x)‖ ≤ k ‖x‖α for all x ∈ Bδ, (2.3)
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Chapter 2. Introduction

where α > 1 is a fixed parameter.

(c) There are δ, k > 0 such that Bδ ⊂ N and

‖Db(x)‖ ≤ k ‖x‖β for all x ∈ Bδ, (2.4)

where β > 0 is a fixed parameter.

Observe that these assumptions imply

b(0) = 0 and Db(0) = 0

which, among other things, means that the origin is an equilibrium point of the given system. Since

A is Hurwitz, we can conclude that the origin is asymptotically stable.

Definition 2.5: Consider the matrix A and vector field b. If 1 ≤ κ < α, we will say that the

eigenvalues of A are closely-spaced relative to the vector field b. If κ ≥ α, we will say that the

eigenvalues of A are widely-spaced relative to the vector field b.

The distinction of closely-spaced and widely-spaced eigenvalues turns out to be of fundamental

importance. Moreover, note that this distinction does not make reference to resonance in the

eigenvalues.

Remarks 2.6:

(i) In this chapter, as well as other chapters in this part of the thesis, the constants α and β are

understood to be as in (2.3) and (2.4).

(ii) The constants δ, k in (2.3) are only used to establish a decay rate. We will be dealing with many

precise estimates (and combinations of estimates) which are introduced by saying something

like “there are constants δ, k > 0 such that...” The scope of where these constants retain

their meaning is usually clear from the context. The important point is that there are some

constants such that a given inequality is true.

(iii) Sometimes an optimal2 choice for α and β is clear, for example b(x) = x2, and sometimes an

optimal choice is not clear, for example b(x) = x2 ln(x) with b(0) = 0. In the former example,

2As we will see, higher values of α and β yield better approximations to the solution. Moreover, our choice of α

might be the difference of the eigenvalues being closely-spaced (the “easy” case) or widely-spaced (the “hard” case).
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we can take α = 2 and β = 1. In the latter example, however, any α ∈ (1, 2) will satisfy (2.3)

and any β ∈ (0, 1) will satisfy (2.4) with no optimal choices for the decay rates.

(iv) Suppose that b ∈ Cr(N ,Rn), where r ∈ {2, 3, . . .}, with3 Dξbi(0) = 0 for all i ∈ {1, 2, . . . , n}

and |ξ| ≤ r − 1. Then, if we wish, we can take α = r and β = r − 1. This follows from Taylor’s

Theorem. In the scalar case, n = 1, for each m ∈ {0, . . . , r − 1} we have

b(m)(x) =
r−m−1∑

i=0

b(m+i)(0)
i!

xi + O
(
xr−m

)
= O

(
xr−m

)
as x→ 0.

In particular, setting m = 0 and m = 1 gives b(x) = O(xr) and b′(x) = O
(
xr−1

)
as x→ 0.

(v) For a given α, it need not be the case that β = α− 1. After all, one cannot differenti-

ate asymptotic expressions in general. Consider b(x) := x4 sin
(

1
x

)
with it understood that

b(0) = 0. Now, for x 	= 0 we have

b′(x) = 4x3 sin
(

1
x

)
− x2 cos

(
1
x

)
and b′′(x) = 12x2 sin

(
1
x

)
− 6x cos

(
1
x

)
− sin

(
1
x

)
.

Observe that b ∈ C1 but b 	∈ C2. Moreover, |b(x)| ≤ |x|4 for all x. However,
∣∣∣ b′(x)

x3

∣∣∣ is un-

bounded in any neighbourhood of the origin. Hence we can take α = 4 (which is the natural

choice for α) but we cannot take β = 3. The optimal choices are α = 4 and β = 2.

2.1.3 The System ẋ = Ax + b(x)

Consider the initial value problem

ẋ = Ax + b(x), x(0) = x0, (2.5)

where x ∈ Rn and ˙= d
dt . The system has the origin as an equilibrium point. As is customary, we

will denote by φt(x0) the flow of (2.5). That is, φt(x0) is the solution of the initial value problem as

a function of the initial condition x0. The goal of this part of the thesis is to determine the detailed

behaviour of solutions to (2.5) near the origin. That is, we want to find asymptotic expansions of

φt(x0) as t→ ∞ when ‖x0‖ is sufficiently small.

3We are using multi-index notation to indicate all the possible derivatives of order at most r − 1.
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Chapter 2. Introduction

2.1.4 Integral Equation

Equivalently, the initial value problem (2.5) can be re-written as an integral equation. Multiply

the differential equation by the integrating factor e−tA and then replace t by s, giving

e−sA [ẋ(s) − Ax(s)] = e−sAb(x(s)).

Simplifying the left-hand side,

d

ds

(
e−sAx(s)

)
= e−sAb(x(s)).

If we integrate with respect to s from 0 to t, we get

e−tAx(t) − x0 =
∫ t

0
e−sAb(x(s)) ds.

Solving for x(t), we are left with the integral equation

x(t) = etAx0 +
∫ t

0
e(t−s)Ab(x(s)) ds. (2.6)

2.1.5 Resonance

The techniques developed in this part of the thesis will work regardless of resonance, but we still

need to be mindful of when resonance might occur. The reader may wish to consult §A.9 of

Appendix A which reviews resonance.

Proposition 2.7: Resonance in the eigenvalues of A can only occur if κ ≥ 2.

Proof: Suppose that there is resonance. By definition of resonance, there is an index j ∈ {1, . . . , n}

and set of coefficients {mi}n
i=1 ⊂ N0 such that

λj =
n∑

i=1

miλi and
n∑

i=1

mi ≥ 2.

Taking the real part of the first equation and re-writing (2.1), we have

μj =
n∑

i=1

miμi and 0 < −μ1 ≤ · · · ≤ −μn.

It follows that

−μn ≥ −μj =
n∑

i=1

mi(−μi) ≥
(

n∑
i=1

mi

)
(−μ1) ≥ 2(−μ1).

That is, μn ≤ 2μ1 which is equivalent to κ ≥ 2. �
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2.2. Functions Defined By Integrals

2.2 Functions Defined By Integrals

In this part of the thesis, we will be dealing heavily with exponential estimates and improper

integrals. Most importantly, we will be constructing approximations to solutions of (2.5) whose

definitions involve improper integrals. Two good references for this material are §14.4-14.9 of [3]

and §6.5 of [81].

We will be dealing with a certain class of functions defined by improper integrals. Let δ > 0 be

a constant and define the set

Ωδ := { (t,x) : t ≥ 0, x ∈ Rn, ‖x‖ < δ } .

Suppose that for the function F ∈ C1(Ωδ,R
n), there are k, ρ > 0 such that

‖F(t,x)‖ ≤ k e−ρt for all (t,x) ∈ Ωδ.

Hence, we consider the function

f(t,x) :=
∫ ∞

t
F(s,x) ds, (t,x) ∈ Ωδ.

Observe that, for all (t,x) ∈ Ωδ,∥∥∥∥∫ ∞

t
F(s,x) ds

∥∥∥∥ ≤ ∫ ∞

t
‖F(s,x)‖ ds ≤

∫ ∞

t

(
k e−ρs

)
ds =

(
k

ρ

)
e−ρt ≤ k

ρ
.

It follows from the Weierstrass M -Test that the integral converges uniformly on Ωδ and f is con-

tinuous on Ωδ. Furthermore, if there are �, η > 0 such that∥∥∥∥∂F∂x (t,x)
∥∥∥∥ ≤ � e−ηt for all (t,x) ∈ Ωδ,

then we can differentiate f(t,x) under the integral sign, giving

∂f
∂x

(t,x) =
∫ ∞

t

∂F
∂x

(s,x) ds, (t,x) ∈ Ωδ,

where the integral converges uniformly in Ωδ. See, for example, Theorems 14-19, 14-22, and 14-24

of [3].

There is one other possibility we should mention. Suppose that for the function F above, we

have instead x ∈ Cn and F(t,x) ∈ Cn with F complex analytic at 0. Then, f is complex analytic at

0 and derivatives of f of any order can found by differentiating under the integral sign. It follows

from this that f is real analytic in x at 0. See, for example, §6.5 of [81].
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2.3 Important Exponential Estimates

2.3.1 The Need for σ

Many of the results that follow in this part of the thesis are established by considering exponential

estimates of functions of time. In particular, these estimates are of the form

|u(t)| ≤ k e(a+σ)t for t ≥ 0,

where a is some constant inherent to the problem at hand and σ > 0 is some constant included

to accommodate the possible effects of repeated eigenvalues and resonance. Typically, σ is taken

to be as small as one desires. In the above example, if a < 0 we would assume that σ < −a so as

to preserve the decaying property of the exponential. However, any positive value of σ would not

change the truth of the statement.

Why exactly is the σ necessary? When there is resonance or there are repeated eigenvalues,

solutions of ordinary differential equations may have terms of the form tmeat. We will look at the

necessity of σ more closely.

Let u(t) := tmeat, where m ∈ N and a < 0 are constants. We will make a few observations about

the decay rate of u(t).

• There does not exist a constant k > 0 such that |u(t)| ≤ k eat for all t ≥ 0. This is because∣∣u(t) e−at
∣∣ = tm is unbounded as t→ ∞.

• For any σ > 0, there exists a constant k > 0 such that |u(t)| ≤ k e(a+σ)t for all t ≥ 0. This is

because
∣∣u(t) e−(a+σ)t

∣∣ = tme−σt is bounded for all t ≥ 0.

• There does not exist a k > 0 such that |u(t)| ≤ k e(a+σ)t for all t ≥ 0 and for all σ > 0. This

is because
∣∣u(t) e−(a+σ)t

∣∣ = tme−σt achieves the maximum value
(

m
σe

)m for a given σ > 0 and

this maximum value is unbounded as σ → 0+.

Remarks 2.8:

(i) Note the position of the σ > 0 in the second and third observations above. In this thesis,

the (arbitrary) choice of σ > 0 is made at the beginning of the calculation of exponential

estimates.
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2.3. Important Exponential Estimates

(ii) Let u(t) be an arbitrary function. Suppose that for any σ > 0 there is a k > 0 (which depends

on σ) such that

|u(t)| ≤ k e(a+σ)t for all t ≥ 0.

Then,
ln |u(t)|

t
≤ a+ σ +

ln k

t
.

Since σ > 0 is arbitrary and k is a constant (with respect to t), it follows that

lim sup
t→∞

ln |u(t)|
t

≤ a.

This is an equivalent way of indicating the exponential decay rate of u(t). It is the prevalent

way in, for example, Chapter 13 of [28]. In this thesis, however, the exponential way is of

practical benefit. Note that if u(t) = 0 for some t ≥ 0 we take ln |u(t)| = −∞ by extending

the logarithmic function.

2.3.2 Decay Rate of the Matrix Exponential

For obvious reasons, the decay rate of the matrix exponential etA will be of fundamental importance

to us. Intuitively, we would expect that, for large time, the size of the matrix exponential etA decays

at a rate determined by the slowest eigenvalue in real part. In turn, the decay rate of φt(x0) should

have this same decay rate. This is indeed the case.

Claim 2.9: Let Λ := diag (μ1, . . . , μn). Then,

eμnt ≤
∥∥etΛ

∥∥ ≤ eμ1t and e−μ1t ≤
∥∥e−tΛ

∥∥ ≤ e−μnt for all t ≥ 0.

Proof: We will only prove the bounds on
∥∥etΛ

∥∥ for t ≥ 0 since the bounds for
∥∥e−tΛ

∥∥ are similarly

proven. Now, we know

etΛ = diag
(
eμ1t, . . . , eμ2t

)
and etΛx =

(
eμ1tx1, . . . , e

μntxn

)T
.

It follows that, for t ≥ 0,

∥∥etΛ
∥∥ = max

‖x‖=1

{∥∥etΛx
∥∥} = max

‖x‖=1

⎧⎨⎩
√√√√ n∑

i=1

e2μitx2
i

⎫⎬⎭ ≤ max
‖x‖=1

⎧⎨⎩eμ1t

√√√√ n∑
i=1

x2
i

⎫⎬⎭ = eμ1t.
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Chapter 2. Introduction

Furthermore, if we choose x = (0, . . . , 0, 1)T we see that

∥∥etΛ
∥∥ = max

‖x‖=1

⎧⎨⎩
√√√√ n∑

i=1

e2μitx2
i

⎫⎬⎭ ≥ eμnt.

�

If A is not diagonal, there may be terms like tieλjt in the matrix exponential and so we need to

introduce σ in the basic decay rate of etA. What follows is a standard result for the decay rate of

etA. However, we append a condition which tells us when we can ignore the σ. As we shall see, the

presence (or absence) of σ in the decay rate of etA has a ripple effect on many calculations which

appear in the following chapters.

Lemma 2.10: Consider the matrix A and let σ > 0.

(a) There is a k > 0 such that

∥∥etA
∥∥ ≤ k e(μ1+σ)t for all t ≥ 0. (2.7)

(b) There is a k > 0 such that

∥∥e−tA
∥∥ ≤ k e(−μn+σ)t for all t ≥ 0. (2.8)

(c) If A is diagonalizable, then we may take σ = 0 in (2.7) and (2.8).

Proof:

(a) It follows from the fact that the elements of etA are linear combinations of terms of the form

tieλjt, where i ∈ {0, . . . , n− 1} and j ∈ {1, . . . , n}.

(b) Similar to the previous part.

(c) If A is diagonalizable, there exists an invertible matrix P such that A = PΛP−1, where

Λ := diag (λ1, . . . , λn). A standard result tells us that etA = PetΛP−1. By Claim 2.9,

∥∥etA
∥∥ ≤ ‖P‖

∥∥P−1
∥∥ eμ1t and

∥∥e−tA
∥∥ ≤ ‖P‖

∥∥P−1
∥∥ e−μnt for all t ≥ 0.

�
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2.3. Important Exponential Estimates

Remark 2.11: Suppose that A is not diagonalizable. Let J be the Jordan canonical form. (Jordan

forms are mentioned in §A.15 of Appendix A.) Then, there exists an invertible matrix P such that

A = PJP−1. Consequently, etA = PetJP−1. Since A is not diagonalizable, J has a Jordan block

which is not a diagonal matrix. Hence, there will be at least one term of the form tieλjt for

i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n}. See, for example, Chapter 3 of [28] and Chapter 1 of [100].

2.3.3 Decay Rate of the Flow

The matrix A is Hurwitz and hence all solutions of the linear system ẋ = Ax approach the origin

asymptotically. In particular, for any σ ∈ (0,−μ1) there is a constant k > 0 such that

∥∥etAx0

∥∥ ≤ k e(μ1+σ)t ‖x0‖ for all t ≥ 0.

This carries over to solutions of the nonlinear system, although we cannot conclude global asymp-

totic stability.

Theorem 2.12: Consider the system (2.5) with flow φt(x0). For any σ ∈ (0,−μ1), there are

constants4 δ, k > 0 such that

‖φt(x0)‖ ≤ k e(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ. (2.9)

Proof: We will assume that ‖x0‖ > 0 for if this were not the case the result would be trivial. This

proof is more or less standard but we are careful to include the initial condition in the estimate

which is not standard. See, for example, pages 314 and 315 of [28]. In [28], they used Gronwall’s

Inequality at a key step (they had a slight difference in assumptions) but we will instead use a

modification.5

From the integral equation (2.6),

‖φt(x0)‖ ≤
∥∥etA

∥∥ ‖x0‖ +
∫ t

0

∥∥∥e(t−s)A
∥∥∥ ‖b(φs(x0))‖ ds. (2.10)

Applying the estimates (2.3) and (2.7) to the inequality (2.10), there are constants δ1, k1, k2 > 0

such that

‖φt(x0)‖ ≤ k1e
(μ1+σ)t ‖x0‖ + k2

∫ t

0
e(μ1+σ)(t−s) ‖φs(x0)‖α ds, (2.11)

4The constant k is understood to be independent of x0.
5Such modifications are examples of Bihari’s Inequality. See, for example, [12] which was Bihari’s original paper.
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provided that

‖φt(x0)‖ < δ1 for all t ≥ 0. (2.12)

Later, we will show that (2.12) is satisfied for ‖x0‖ sufficiently small. Now, multiply both sides of

the inequality (2.11) by e−(μ1+σ)t to get

e−(μ1+σ)t ‖φt(x0)‖ ≤ k1 ‖x0‖ + k2

∫ t

0
e−(μ1+σ)s ‖φs(x0)‖α ds.

This can be manipulated, giving

e−(μ1+σ)t ‖φt(x0)‖ ≤ k1 ‖x0‖ + k2

∫ t

0
e(α−1)(μ1+σ)s

[
e−(μ1+σ)s ‖φs(x0)‖

]α
ds. (2.13)

Let

u(t) := e−(μ1+σ)t ‖φt(x0)‖ ≥ 0.

Then, (2.13) becomes

u(t) ≤ k1 ‖x0‖ + k2

∫ t

0
e(α−1)(μ1+σ)su(s)α ds. (2.14)

Now, define

v(t) := k1 ‖x0‖ + k2

∫ t

0
e(α−1)(μ1+σ)su(s)α ds > 0.

Note that

v̇(t) = k2e
(α−1)(μ1+σ)tu(t)α ≥ 0 (2.15)

and v(0) = k1 ‖x0‖. Then, the inequality (2.14) is equivalent to

u(t) ≤ v(t). (2.16)

It follows from (2.15) and (2.16) that v satisfies the differential inequality

v̇(t) ≤ k2e
(α−1)(μ1+σ)tv(t)α. (2.17)

Dividing both sides of (2.17) by v(t)α > 0 and replacing t by s,

v̇(s)
v(s)α

≤ k2e
(α−1)(μ1+σ)s.

Integrating with respect to s from 0 to t and recalling that α > 1 and μ1 + σ < 0,

1
1 − α

[
1

v(t)α−1
− 1
kα−1
1 ‖x0‖α−1

]
≤
[

k2

(α− 1) (μ1 + σ)

] [
e(α−1)(μ1+σ)t − 1

]
.
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Observe that [
k2

(α− 1) (μ1 + σ)

] [
e(α−1)(μ1+σ)t − 1

]
≤ − k2

(α− 1) (μ1 + σ)
.

Thus, we have
1

v(t)α−1
− 1
kα−1
1 ‖x0‖α−1 ≥ k2

μ1 + σ
.

Re-arranging,
1

v(t)α−1
≥ 1

‖x0‖α−1

(
1

kα−1
1

+
k2 ‖x0‖α−1

μ1 + σ

)
. (2.18)

Now, we want the expression in the brackets to be strictly positive, which yields the condition

‖x0‖ <
1
k1

(
−μ1 + σ

k2

) 1
α−1

.

Let

δ :=
ρ

k1

(
−μ1 + σ

k2

) 1
α−1

,

where ρ ∈ (0, 1) is arbitrary. Hence, assume that ‖x0‖ < δ and take

k :=
(

1
kα−1
1

+
k2δ

α−1

μ1 + σ

) 1
1−α

= k1

(
1 − ρα−1

) 1
1−α > 0, (2.19)

which is independent of ‖x0‖. It follows from (2.18) that

1
v(t)α−1

≥ 1
‖x0‖α−1 kα−1

.

Re-arranging and recalling that u(t) ≤ v(t),

u(t) ≤ k ‖x0‖ .

By definition of u(t), we have

‖φt(x0)‖ ≤ k e(μ1+σ)t ‖x0‖ .

All that remains is to show that (2.12) is satisfied for a particular choice of ρ. We have shown

that, for a fixed ρ ∈ (0, 1),

‖x0‖ < δ =⇒ ‖φt(x0)‖ ≤ k e(μ1+σ)t ‖x0‖ for all t ≥ 0.

This, however, is contingent on the condition ‖φt(x0)‖ < δ1 for all t ≥ 0. If kδ < δ1 then we are

finished. Using our expressions for k and δ, we see that we can choose ρ ∈ (0, 1) sufficiently close

to zero to accomplish this. �
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Remarks 2.13:

(i) If we set t = 0 in (2.9) we get ‖x0‖ ≤ k ‖x0‖. It follows that k ≥ 1.

(ii) Consider our definition (2.19) for the constant k. We chose ρ sufficiently small to satisfy

certain conditions and so we expect k ≈ k1. Recall from the proof of the theorem that k1

was used in the decay rate of the linear solution, that is,
∥∥etAx0

∥∥ ≤ k1e
(μ1+σ)t ‖x0‖. This

strengthens our belief that the nonlinear solution behaves like the linear solution. Later, we

will improve this statement.

(iii) A glance at the proof of the previous theorem shows that σ is only necessary in the basic

decay rate of φt(x0) if σ is necessary in the decay rate of etA. Indeed, if A is diagonalizable

then we can take σ = 0 in (2.9).

(iv) In [28], they assume that ‖b(x)‖ = o(‖x‖) as ‖x‖ → 0. (Technically, they used b(x, t) instead

of b(x).) The proof in [28] does not allow one to set σ = 0 in the event that the estimate for

etA does not require σ. (Note that ε in [28] corresponds to σ in this thesis and σ in [28] is

used for something related but different.)

2.3.4 Decay Rate of ∂φt(x0)
∂x0

Proposition 2.14: Consider the system (2.5) with flow φt(x0). For any σ ∈ (0,−μ1), there are

constants δ, k > 0 such that∥∥∥∥∂φt(x0)
∂x0

∥∥∥∥ ≤ k e(μ1+σ)t for all (t,x0) ∈ Ωδ. (2.20)

Proof: A standard result tells us that

d

dt

(
∂φt(x0)
∂x0

)
=
[
A +

∂b
∂x

(φt(x0))
]
∂φt(x0)
∂x0

,
∂φt(x0)
∂x0

∣∣∣∣
t=0

= I. (2.21)

See, for example, the corollary on page 83 of [100]. Consider x0 to be fixed in (2.21) and let

Φ(t) :=
∂φt(x0)
∂x0

and B(t) :=
∂b
∂x

(φt(x0)) .

The estimates (2.4) and (2.9) tell us that there are constants δ, k1 > 0 such that

‖B(t)‖ ≤ k1e
β(μ1+σ)t ‖x0‖β for all (t,x0) ∈ Ωδ. (2.22)
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Re-writing (2.21) in terms of Φ and B, we have6

Φ̇ = [A + B(t)]Φ, Φ(0) = I.

This initial value problem can be written as the integral equation

Φ(t) = etA +
∫ t

0
e(t−s)AB(s)Φ(s) ds.

Hence, for (t,x0) ∈ Ωδ we have

‖Φ(t)‖ ≤
∥∥etA

∥∥+
∫ t

0

∥∥∥e(t−s)A
∥∥∥ ‖B(s)‖ ‖Φ(s)‖ ds.

Applying the estimates (2.7) and (2.22), there is a constant k2 > 0 such that for each (t,x0) ∈ Ωδ,

‖Φ(t)‖ ≤ k2e
(μ1+σ)t + k1k2 ‖x0‖β

∫ t

0
e(μ1+σ)(t−s)eβ(μ1+σ)s ‖Φ(s)‖ ds

= e(μ1+σ)t

{
k2 + k1k2 ‖x0‖β

∫ t

0
e(β−1)(μ1+σ)s ‖Φ(s)‖ ds

}
.

Re-arranging,

e−(μ1+σ)t ‖Φ(t)‖ ≤ k2 + k1k2 ‖x0‖β
∫ t

0
eβ(μ1+σ)se−(μ1+σ)s ‖Φ(s)‖ ds.

By Gronwall’s Inequality, which is given in §A.6 of Appendix A on page 312,

e−(μ1+σ)t ‖Φ(t)‖ ≤ k2 exp

(
k1k2 ‖x0‖β

∫ t

0
eβ(μ1+σ)s ds

)
≤ k2 exp

(
−k1k2 ‖x0‖β

β [μ1 + σ]

)

≤ k2 exp

(
− k1k2δ

β

β [μ1 + σ]

)
.

Taking k := k2 exp
(
− k1k2δβ

β[μ1+σ]

)
which is independent of ‖x0‖, gives us (2.20). �

2.4 Writing One Component in terms of Another

Consider the special case n = 2. Suppose that we want to write one component of the solution

x(t) = (x(t), y(t)) in terms of the other, say y(t) in terms of x(t). For example, suppose that

x(t) = e−t + O
(
e−2t
)

and y(t) = 2 e−t + O
(
e−2t
)

as t→ ∞.

6The differential equation is an example of an almost-constant linear differential equation since lim
t→∞

‖B(t)‖ = 0.
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If we re-arrange the expression for x(t) we get

e−t = x(t)
[
1 + O

(
e−t
)]

= x(t) [1 + O(x(t))] as t→ ∞.

Since x(t) = O
(
e−t
)

as t→ ∞, it follows that e−t = x+ O
(
x2
)

as x→ 0 and

y = 2x+ O
(
x2
)

as x→ 0.

Let x(t) = (x(t), y(t)) be a solution of the planar differential equation ẋ = g(x). Now, the set

of points (x(t), y(t)) defines a curve y = y(x) in the xy-plane. Since the planar differential equation

is autonomous, we see that y′(x) = g2(x,y(x))
g1(x,y(x)) where ′ = d

dx . Thus, writing y(t) asymptotically in

terms of x(t) amounts to finding an asymptotic expression for y(x).

The classic method of finding an asymptotic expression for a solution to a scalar differen-

tial equation y′ = f(x, y) is the power series method. Here, one assumes a solution of the form

y(x) =
∑∞

i=0 ξix
i, substitutes into the differential equation, and arrives at recursive relationships

for the coefficients which are then solved. It is possible, however, that one can perform the power

series method unhindered yet the resulting power series still misses important asymptotic terms.

A remedy of this problem, at least for the special case κ 	∈ N, involves a theorem of Poincaré. This

theorem, along with related concepts such as resonance and Poincaré domain, are reviewed in §A.9

of Appendix A. First, we need a result on when resonance occurs.

2.4.1 Resonance

Proposition 2.15: Suppose that A ∈ R2×2 has real-valued eigenvalues λ1 and λ2.

(a) Suppose that λ1, λ2 	= 0 and κ := λ2
λ1
> 1. Then, there is resonance in the eigenvalues if and

only if κ ∈ {2, 3 . . .}. Moreover, the eigenvalues belong to the Poincaré domain.

(b) Suppose that λ1 = 0 and λ2 	= 0. Then, resonance in the eigenvalues always occurs.

Proof: Let

S := { (a, b) : a, b ∈ N0, a+ b ≥ 2 } .

Recall that, by definition, {λ1, λ2} is resonant if and only if there is a j ∈ {1, 2} and (a1, a2) ∈ S

such that λj = a1λ1 + a2λ2.
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(a) Case 1: κ ∈ {2, 3, . . .}. Since λ2 = κλ1, we can take j = 2, a1 = 0, and a2 = κ which yields

resonance.

Case 2: κ 	∈ {2, 3, . . .}. Assume, on the contrary, that there is resonance.

Case A. Suppose that (a1, a2) ∈ S is such that λ1 = a1λ1 + a2λ2. Then,

1 = a1 + a2κ ≥ a1 + a2 ≥ 2,

which is impossible.

Case B. Suppose that (a1, a2) ∈ S is such that λ2 = a1λ1 + a2λ2. Then,

κ = a1 + a2κ.

If a2 = 0 then a1 ∈ {2, 3, . . .} and κ = a1 ∈ {2, 3, . . .}, which is impossible. On the

other hand, if a2 ∈ N then κ > κ, which is impossible.

The eigenvalues are of the same sign and thus the convex hull is the closed interval with the

eigenvalues as endpoints which does not contain zero. Hence, the eigenvalues belong to the

Poincaré domain.

(b) Take a1 = 1 and a2 = 1. Then, (a1, a2) ∈ S and λ2 = a1λ1 + a2λ2.

�

2.4.2 A Theorem

Theorem 2.16: Consider the system of ordinary differential equations

ẋ = Ax + b(x), x(0) = x0, x = ( x
y ) ∈ R2, (2.23)

where the matrix A is Hurwitz, the vector field b is analytic, ‖b(x)‖ = O
(
‖x‖2

)
as ‖x‖ → 0, and

‖x0‖ is sufficiently small. Let the eigenvalues of A be7 λ+ and λ−, where λ− < λ+ < 0, and define

7In the two-dimensional case, when the eigenvalues are both distinct and negative it is common to refer to the

eigenvalues as λ+ and λ−. The ± refers to the taking of the positive and negative root when solving the characteristic

equation. Since λ+ corresponds to the slower decay rate eλ+t and λ− corresponds to the faster decay rate eλ−t, λ+

is referred to as the slow eigenvalue (and has associated slow eigenvector) and λ− is referred to as the fast eigenvalue

(and has associated fast eigenvector).
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the ratio κ := λ−
λ+

> 1. Suppose that κ 	∈ N (that is no resonance) and the eigenvector v+ satisfies

(v+)1 	= 0. If x(t) is a solution to (2.23) which approaches the origin in the slow direction and (for

simplicity) is strictly positive for sufficiently large t, then

y(t) =
�κ�∑
i=1

ξix(t)i + C x(t)κ + o(x(t)κ) as t→ ∞ (2.24)

for some constants {ξi}�κ�i=1 (which are independent of initial condition) and C (which depends on

the initial condition).

Proof: In order to derive the necessary asymptotic expansion for solutions y(x) to (2.23) (that is

y(t) written in terms of x(t) with t dependence dropped), we make use of the linearized problem

ż = Az, z(0) = z0. (2.25)

To avoid the trivial solutions, which have nothing to offer us, we will assume that x0, z0 	= 0. Let

x(t) and z(t) be, respectively, the unique solutions to (2.23) and (2.25), both of which tend to

the origin as time tends to infinity. We will not consider the initial conditions x0 and z0 to be

independent so that the solutions x(t) and z(t) can be related. Furthermore, we need both ‖x0‖

and ‖z0‖ to be small.

The solution to the linear problem z(t) can be written in the explicit form

z(t) = c+eλ+tv+ + c−eλ−tv−,

where c+ > 0 (since we assumed that solutions approach the origin from the right in the slow

direction). In a later chapter, we will see how to calculate the coefficients (which depend on the

initial condition z0) using right and left eigenvectors.

We know from Proposition 2.15 that there is no resonance with the eigenvalues. Moreover, the

eigenvalues are in the Poincaré domain. Applying Poincaré’s Theorem, there is a quadratic vector

field q such that x = z + q(z). Hence, we can write8

x(t) ∼
∑

(i,j)∈S

aije
(iλ−+jλ+)t =

∑
(i,j)∈S

aije
(iκ+j)λ+t as t→ ∞, (2.26a)

y(t) ∼
∑

(i,j)∈S

bije
(iλ−+jλ+)t =

∑
(i,j)∈S

bije
(iκ+j)λ+t as t→ ∞, (2.26b)

8This series is not unique if κ ∈ Q.
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where

S := { (i, j) : i, j ∈ N0, i+ j ≥ 1 } .

Let � := �κ�. Then, the first �+ 1 most dominant terms in (2.26) are, in order of decreasing

dominance,

eλ+t, e2λ+t, . . . , eλ+t, eλ−t.

To see why this is the case, we make two observations. First, the fact that the listed exponentials

are in decreasing order of dominance is obvious except maybe for the last two. Since κ = λ−
λ+

> �,

we have λ− < �λ+ < 0. Second, there cannot be any other exponentials of the form e(iλ++jλ−)t in

between those listed.

For our purposes, we need only the first �+ 1 terms of (2.26) and hence we write

x(t) =
∑

i=1

aie
iλ+t + a+1e

λ−t + o
(
eλ−t

)
as t→ ∞, (2.27a)

y(t) =
∑

i=1

bie
iλ+t + b+1e

λ−t + o
(
eλ−t

)
as t→ ∞, (2.27b)

where a1 > 0. The coefficients can be related using the differential equation. To write y(t) in terms

of x(t), we will successively eliminate the exponentials. Manipulating (2.27a) and (2.27b),

y(t) − ξ1x(t) =
∑

i=2

b
(2)
i eiλ+t + b

(2)
+1e

λ−t + o
(
eλ−t

)
as t→ ∞, (2.28)

where ξ1 := b1
a1

and b(2)i := bi − ξ1ai.

To go further, observe that we can write powers of x(t) as

x(t)j = aj
1e

jλ+t +
∑

i=j+1

cije
iλ+t + o

(
eλ−t

)
as t → ∞,

where j ∈ {2, . . . , �}. Note that there is no eλ−t term in the expansion for x(t)j . Solving for the

most dominant exponential,

ejλ+t =

(
1

aj
1

)
x(t)j −

∑
i=j+1

(
cij

aj
1

)
eiλ+t + o

(
eλ−t

)
as t → ∞. (2.29)

With Equation (2.29), we can successively eliminate the exponentials of (2.28)—each time intro-

ducing other exponential terms but none of order already eliminated—until we are left with an
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expression of the form

y(t) −
∑

i=1

ξix(t)i = b
(+1)
+1 eλ−t + o

(
eλ−t

)
as t→ ∞. (2.30)

Since x(t)κ = aκ
1eλ−t + o

(
eλ−t

)
and hence

eλ−t =
(

1
aκ

1

)
x(t)κ + o

(
eλ−t

)
as t → ∞,

we can write (2.30) as

y(t) −
∑

i=1

ξix(t)i = Cx(t)κ + o
(
eλ−t

)
as t→ ∞. (2.31)

Using Equations (2.27) and (2.30) along with the fact that there is no eλ−t term in the expansion

for x(t)i if i ∈ {2, . . . , �}, we find

C :=
b+1 − ξ1a+1

aκ
1

.

Since

eλ−t = x(t)κ
[

1
aκ

1

+ o(1)
]

= O(x(t)κ) as t→ ∞,

(2.31) gives the desired expression (2.24). �

Remarks 2.17:

(i) The coefficients {ξi}
i=1 are calculated using the power series method. That is, one assumes

that the solution to the scalar version of (2.23) is y(x) =
∑∞

i=0 ξix
i (where ξ0 = 0 by necessity).

It is easy to see why non-integral powers are missed when solving for all the coefficients {ξi}∞i=1

even when non-integral powers are present.

(ii) The constant ξ1 in (2.24) is the slope of the slow eigenvector v+.

(iii) Suppose that the elements of the sequence {iκ+ j}(i,j)∈S are written as the strictly increasing

sequence {ri}∞i=1. Then, it is easy to see (by extending the proof above) that the solution of

(2.23) can be written in the form

y(t) ∼
∞∑
i=1

ξix(t)ri as t→ ∞. (2.32)

One could (theoretically) substitute this in to the scalar differential equation and recursively

calculate the coefficients. This would be much more difficult than the regular power series

method. Note that, if 1 < κ < 2, then r1 = 1, r2 = κ, and r3 = 2.
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(iv) The reader may be wondering if there are solutions x(t) such that there are no non-integral

powers of x(t) present (that is, ξi = 0 if ri ∈ Q\N) in the asymptotic expansion (2.32). Corol-

lary 2.18 below establishes that this is indeed the case.

Corollary 2.18: There exists a solution to (2.23) such that

y(t) ∼
∞∑
i=1

ξix(t)i as t→ ∞

for some constants {ξi}∞i=1.

Proof: Choose the initial condition z0 so that it is parallel to the slow eigenvector v+. Then,

z(t) = c+eλ+tv+ and hence we can write

x(t) ∼
∞∑
i=1

aie
iλ+t and y(t) ∼

∞∑
i=1

bie
iλ+t as t→ ∞.

Any positive integer power of x(t) will be a series of the same form as x(t) and y(t). Successively

eliminating exponents, just like in the proof of the theorem, gives us our desired conclusion. �

2.4.3 First Example

Consider the system ⎛⎝ẋ
ẏ

⎞⎠ =

⎛⎝−1 0

0 −a

⎞⎠⎛⎝x
y

⎞⎠+

⎛⎝ xy

−xy

⎞⎠ ,

where a > 1 is a constant. By inspection, κ = a. Furthermore, the power series method yields the

zero series. By Theorem 2.16, if a 	∈ {2, 3, . . .} then all solutions of the corresponding scalar system

y′ =
−ay − xy

−x+ xy

satisfy

y(x) = C xa + o(xa) as x→ 0+.

2.4.4 Second Example

Consider the system ⎛⎝ẋ
ẏ

⎞⎠ =

⎛⎝−1 0

2 −3
2

⎞⎠⎛⎝x
y

⎞⎠+

⎛⎝xy
x2

⎞⎠ .
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The eigenvalues of the two-by-two matrix are λ+ = −1 and λ− = −3
2 and so κ = 3

2 . The eigenvectors

can be taken to be

v+ =

⎛⎝1

4

⎞⎠ and v− =

⎛⎝0

1

⎞⎠ .

Solutions approach the origin in the direction of the slow eigenvector and hence have slope 4. It

follows from Theorem 2.16 that

y(x) = 4x+ C x
3
2 + o

(
x

3
2

)
as x→ 0+.

2.4.5 Third Example

Here is an example of resonance for which solutions are not of the form of (2.24). Consider the

system

ẋ =

⎛⎝−1 0

0 −2

⎞⎠x +

⎛⎝ 0

x2

⎞⎠ ,
where x := (x, y)T . This has solution φt(x0) = (x(t), y(t))T given by

x(t) = x0e
−t, y(t) =

[
y0 + x2

0t
]
e−2t.

Observe that, for x0 	= 0,

e−t =
x

x0
and t = −ln

(
x

x0

)
.

Hence

y = x2

[
y0

x2
0

− ln

(
x

x0

)]
.

The power series method will not work in this case of resonance. If one substitutes the series

y(x) =
∑∞

i=0 ξix
i into the differential equation, one gets ξ0 = ξ1 = 0 but no value of ξ2 will work.

This will be the case for resonance in the Michaelis-Menten mechanism, which we will see later.

Since the differential equation for x is decoupled, we can write the differential equation for y as

ẏ = −2y + x0e
−2t.

Thus, the forcing term is a solution of the homogeneous equation. However, if we were to replace

the −2 in the original system with, say, −3 (which is still resonant), a power series would work

with ξ3 being arbitrary. In this case,

ẏ = −3y + x0e
−2t

and the forcing term is not a solution of the homogeneous equation.
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2.5 Literature Review

Some of the prominent personalities relevant to the topic of the asymptotic behaviour of solutions

of differential equations are Poincaré, Hartman and Grobman, Gronwall, Bellman, and Lyapunov.

In this section, we will overview some of the key results and references which are applicable to this

part of the thesis.

Henri Poincaré (1854–1912) was a French Mathematician and physicist. He has been called “the

last polymath” (having thorough knowledge of many subject areas) and has written many popular

books on the philosophy of science and mathematics which are readily available to this day. Poincaré

has also been referred to as a pioneer in the qualitative theory of ordinary differential equations and

the “father of dynamical systems.” There are many terms which bear his name, including Poincaré

Conjecture (which is no longer a conjecture), Poincaré-Bendixson Theorem, Poincaré map, Poincaré

sphere, and Lindstedt-Poincaré method. For a nice survey article on the development of the field

of dynamical systems, see [60].

The two main contributions of Poincaré which are relevant to this thesis are normal forms,

which originated in his Ph.D. thesis, and a result that is often referred to simply as Poincaré’s

Theorem, which he proved in 1879. The first volume (of eleven) of the collected works (or Oeuvres)

of Poincaré, [101], contains these results. Interestingly, Poincaré’s work in dynamical systems is

related to his work on the three-body problem for which he won the King Oscar II of Sweden Prize.

Poincaré’s solution contained a serious error (which he later corrected) and he used the prize money

to buy back all the copies of the paper with the error.

Normal form theory, loosely, involves the substitution of an analytic, near-identity transfor-

mation to simplify the nonlinear part of an ordinary differential equation. Consider, for exam-

ple, the system ẋ = Ax + b(x) where b is analytic in a neighbourhood of the origin and sat-

isfies ‖b (x)‖ = O
(
‖x‖2

)
as ‖x‖ → 0. It may be desired to find a transformation of the form

x = y + r (y), where r is analytic in a neighbourhood of the origin and satisfies ‖r (x)‖ = O
(
‖x‖2

)
as ‖x‖ → 0, that yields the system ẏ = Ay + c(x) where c is analytic in a neighbourhood of

the origin and satisfies ‖c (x)‖ = O
(
‖x‖3

)
as ‖x‖ → 0. It is well known, however, that so-called

resonant terms cannot be eliminated by such a near-identity transformation. See, for example,

[16, 27, 100, 127].

Consider the two systems ẋ = Ax + b(x) and ẏ = Ay, where b is analytic in a neighbourhood
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of the origin and satisfies ‖b (x)‖ = O
(
‖x‖2

)
as ‖x‖ → 0. If A has non-resonant eigenvalues and

the convex hull of the eigenvalues does not contain 0, then Poincaré’s Theorem says that there

is a near-identity, invertible transformation h with both h and h−1 analytic at the origin such

that h (φt(x0)) = etAh (x0). That is, the flows of the two systems are analytically conjugate in a

neighbourhood of the origin. This aids greatly in determining qualitative properties of solutions

of more complicated systems. Furthermore, if we write h (y) = y + r (y), then the relationship

x(t) = etAy0 + r
(
etAy0

)
can be used to extract asymptotic expansions.

The same basic principle of Poincaré’s Theorem is present in the Hartman-Grobman Theorem,

named after Philip Hartman and David Grobman. Consider again the systems ẋ = Ax + b(x) and

ẏ = Ay. The Hartman-Grobman Theorem and its variations involve the existence of an invertible

map h such that h (φt(x0)) = etAh (x0) for ‖x0‖ sufficiently small. See, for example, [16, 26, 50,

52, 53, 54]. See also [13] which provides an answer to the question “how small is sufficiently small?”

The variations of the Hartman-Grobman Theorem, as well as Poincaré’s Theorem, are distin-

guished by the specifics of the system: the smoothness of b, the smoothness of h, whether or not

the eigenvalues of A are resonant, and whether or not the origin is a hyperbolic fixed point. For

example, if b ∈ C1 and the origin is hyperbolic, then there is a homeomorphism h; this is generally

referred to as the Hartman-Grobman Theorem. If, in addition, the eigenvalues of A are not res-

onant then there exists a diffeomorphism h; this is generally referred to as Sternberg’s Theorem,

after Shlomo Sternberg (see, for example, [115, 116, 117, 118]). An alternative to this is the follow-

ing: if b ∈ C2 and the origin is hyperbolic, then there is a C1-diffeomorphism h; this is generally

referred to as Hartman’s Theorem. Sternberg showed that, in general, if b is analytic there does

not exist an h which is C2.

Thomas Gronwall (1877–1932) was a Swedish mathematician. The famous Gronwall Inequality,

which was proven around 1919 in [51], is a fundamental result used in obtaining estimates for

solutions of differential equations. A different form of Gronwall’s result was proven by Richard

Bellman around 1943 in [8]. A generalization of Bellman’s result was proven by I. Bihari around

1956 in [12]. Further generalizations are common and frequently referred to as inequalities of the

Gronwall-Bellman-Bihari type.

Norman Levinson (1912–1975) was an American mathematician. He made contributions in

differential equations, complex analysis, Fourier analysis, and number theory. Two books co-
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written by Levinson, namely [28, 81], are solid references for the subject matter of this part of the

thesis. In particular, [28] covers general theory of ordinary differential equations with Chapter 13,

“Asymptotic Behavior of Nonlinear Systems: Stability,” being especially useful.

The so-called Levinson Theorem, which Levinson proved around 1946 in [79], is a well-known

result. The theorem deals with the asymptotic behaviour of solutions of an almost-constant linear

system. This result is given much attention in many books dealing with stability and asymptotics,

for example [9, 24, 30, 36]. Actually, [36] is subtitled “Applications of the Levinson Theorem.”

Although we have not used the Levinson Theorem in this thesis, it is still a useful result and we

could have proved Proposition 2.14 using this theorem.

Richard Bellman (1920–1984) was an American applied mathematician. He received his Ph.D.

from Princeton under the supervision of another prominent American mathematician, Solomon

Lefschetz (1884–1972). His doctoral work eventually led to his book [9] which is considered a

classic in the field of stability theory and exemplifies his clear writing style. He spent much of his

career at the RAND Corporation. Throughout his career, he published around six hundred twenty

papers, forty books, and seven monographs.

There are a number of other relevant books regarding stability and asymptotics which are

frequently cited and should be mentioned here. Jack Carr’s book on centre manifolds, [23], is a

ubiquitous reference on the subject. Centre manifolds (which are associated with non-hyperbolic

fixed points), however, do not appear in this part of the thesis but they do appear in the other

parts. Books useful for asymptotics in general include [19, 38, 97].

The standard methods have well-known limitations. Many results have to exclude resonance and

those that do not are often limited in their practicality. Leading-order behaviour of solutions can

be difficult to obtain and more detailed behaviour can be more difficult still. Finally, the standard

methods often give little or no detail on the relationship between components of solutions.

2.6 Summary

In this chapter, we began our investigation of the initial value problem

ẋ = Ax + b(x), x(0) = x0,
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where A is a Hurwitz matrix and b is a nonlinear vector field. In particular, the real parts of the

eigenvalues of A satisfy

μn ≤ μn−1 ≤ · · · ≤ μ1 < 0

and b is C1 in a neighbourhood of the origin and satisfies the estimates

‖b(x)‖ = O(‖x‖α) and ‖Db(x)‖ = O
(
‖x‖β

)
as ‖x‖ → 0,

for some α > 1 and β > 0. The system is equivalent to the integral equation

x(t) = etAx0 +
∫ t

0
e(t−s)Ab(x(s)) ds.

The matrix exponential, as is commonly known, for any σ > 0 satisfies

∥∥etA
∥∥ = O

(
e(μ1+σ)t

)
and

∥∥e−tA
∥∥ = O

(
e(−μn+σ)t

)
as t→ ∞.

If A is diagonalizable, we pointed out that we can take σ = 0 in these estimates.

An important ratio we defined is

κ =
μn

μ1
≥ 1

and we showed that resonance in the eigenvalues can only occur if κ ≥ 2. The techniques we will

be developing in later chapters fall into two cases, closely-spaced eigenvalues where κ ∈ [1, α) and

widely-spaced eigenvalues where κ ≥ α.

We showed that the solution of the initial value problem satisfies the estimate

‖φt(x0)‖ = O
(
e(μ1+σ)t ‖x0‖

)
as ‖x0‖ → 0 and t→ ∞

for any σ > 0. If A is diagonalizable, then we can take σ = 0. If A is not diagonalizable, then

σ > 0 is necessary since the elements of the matrix exponential etA contains linear combinations of

terms of the form tieλjt, where i ∈ N0 and j ∈ {1, . . . , n}.

For the two-dimensional case, that is n = 2, we derived a result on writing x2(t) as a function

of x1(t) when κ 	∈ N (that is λ2 < λ1 < 0 and there is no resonance). In particular if we drop the

t-dependence,

x2 ∼
�κ�∑
i=1

ξix
i
1 + C xκ

1 as x1 → 0+

for some constants {ξi}�κ�i=1 (which are found using the power series method and are independent of

the initial condition) and C (which depends on the initial condition).
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In the coming chapters, we will explore iterative techniques which will yield expressions that

approximate, with arbitrary accuracy, the actual solution of the initial value problem as t→ ∞.
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Chapter 3

The Scalar Case

3.1 Introduction

In this chapter, we will begin our exploration of iterative techniques which produce successively

better asymptotic expansions as time tends to infinity of solutions of the initial value problem (2.5).

The simplest case, namely the scalar case n = 1, will be treated carefully in this chapter to mitigate

the harder cases in later chapters.

Consider the initial value problem

ẋ = ax+ b(x), x(0) = x0, (3.1)

where a < 0 is a constant and b is a nonlinear function which satisfies certain properties which we

now specify.

3.1.1 Assumptions

Assumption 3.1: Consider the function b.

(a) There is some open interval N ⊂ R with 0 ∈ N and b ∈ C1(N ,R).

(b) There are δ, k > 0 such that Bδ ⊂ N and

|b(x)| ≤ k |x|α for all x ∈ Bδ, (3.2)

where α > 1 is a fixed parameter.
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(c) There are δ, k > 0 such that Bδ ⊂ N and

∣∣b′(x)∣∣ ≤ k |x|β for all x ∈ Bδ, (3.3)

where β > 0 is a fixed parameter.

Observe that the assumptions (3.2) and (3.3) imply

b(0) = 0 = b′(0).

Thus, x = 0 is a fixed point of the differential equation in (3.1). Our goal is to obtain the detailed

asymptotic behaviour of solutions of (3.1) as t→ ∞ when x0 is sufficiently small.

3.1.2 Important Estimates We Already Know

Let φt(x0) be the solution to (3.1). We can specialize a few results from Chapter 2. Note that we

can take σ = 0 in the estimates since the matrix A = (a) is, very trivially, diagonalizable.

• The flow φt(x0) satisfies the integral equation

φt(x0) = eatx0 +
∫ t

0
ea(t−s)b(φs(x0)) ds. (3.4)

• There are δ, k > 0 such that

|φt(x0)| ≤ k eat |x0| for all (t, x0) ∈ Ωδ, (3.5)

where

Ωδ := { (t, x) : t ≥ 0, |x| < δ } .

• There are δ, k > 0 such that∣∣∣∣∂φt(x0)
∂x0

∣∣∣∣ ≤ k eat for all (t, x0) ∈ Ωδ. (3.6)

3.2 “Flipping the Integral” and the Initial Condition y0

Let ρ > 0 be a constant. Then, trivially, we have the integrals∫ t

0
e−ρs ds =

1
ρ

+ o(1) as t→ ∞ and
∫ ∞

t
e−ρs ds =

1
ρ

e−ρt, (3.7)
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which we will use extensively in this part of the thesis. The integrals are related to the common trick

of “flipping the integral,” which, if done in a careful way, allows us to extract asymptotic information

about the solution of (3.1). See, for example, the proof of Theorem 4.1 (Stable Manifold Theorem)

of Chapter 13 on pages 330–333 of [28] which involves the flipping of an integral in an integral

equation.

3.2.1 A Useful Integral Equation

Consider the integral equation (3.4) and write

φt(x0) = eat

[
x0 +

∫ ∞

0
e−asb(φs(x0)) ds

]
−
∫ ∞

t
ea(t−s)b(φs(x0)) ds. (3.8)

Do these improper integrals converge? The following claim establishes that they do indeed converge.

Recall, first, that α > 1.

Claim 3.2: There are δ, k > 0 such that

∣∣ e−atb(φt(x0))
∣∣ ≤ k e(α−1)at |x0|α for all (t, x0) ∈ Ωδ. (3.9)

Proof: It follows from the estimates (3.2) and (3.5). �

Looking at (3.8), it is natural to define the new “initial condition” y0, where

y0 := ψ(x0) and ψ(x0) := x0 +
∫ ∞

0
e−asb(φs(x0)) ds, x0 ∈ Bδ, (3.10)

where δ > 0 is as in (3.9). We have thus established the following.

Claim 3.3: There is a δ > 0 such that

φt(x0) = eaty0 −
∫ ∞

t
ea(t−s)b(φs(x0)) ds for all (t, x0) ∈ Ωδ, (3.11)

where y0 := ψ(x0).

Claim 3.4: There are δ, k > 0 such that

|x0 − ψ(x0)| ≤ k |x0|α for all x ∈ Bδ. (3.12)

Moreover, ψ is a near-identity transformation.

Proof: It follows from (3.7), (3.9), and (3.10) along with the fact that α > 1. �
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3.2.2 Why y0?

Why do we bother re-writing the integral equation (3.4) in the form (3.11)? The short answer is

that y0 is a more natural choice for initial condition for the linearized differential equation ẋ = ax

than x0. It is easy to show that

∣∣φt(x0) − eatx0

∣∣ = O
(
eat |x0|α

)
as t→ ∞ and |x0| → 0.

However, using y0 instead of x0 for the initial condition for the linear differential equation ẋ = ax

gives us the following.

Proposition 3.5: Let y0 := ψ(x0). Then, there are δ, k > 0 such that

∣∣φt(x0) − eaty0

∣∣ ≤ k eαat |x0|α for all (t, x0) ∈ Ωδ. (3.13)

Proof: It follows from (3.7), (3.9), and (3.11). �

3.3 Iterates of the First Type

A decent first approximation to the solution of the initial value problem (3.1) is eatx0. However, as

we have seen, a better first approximation is eaty0, where y0 := ψ(x0). We will use eaty0 and the

integral equation (3.11) to define an iterative scheme which will give successively better asymptotic

approximations (as t→ ∞) to the exact solution φt(x0).

3.3.1 Definition of the Iterates

We will denote the iterates by
{
χ(m) (t, y0)

}∞
m=1

. Since these iterates are defined in the natural

way, we refer to them as iterates of the first type. Later, we will define modified iterates which, in

certain circumstances, may be more useful.

For y0 sufficiently small (to ensure the relevant improper integrals converge), we will take the

first iterate to be

χ(1) (t, y0) := eaty0 (3.14a)

and define recursively

χ(m+1) (t, y0) := eaty0 −
∫ ∞

t
ea(t−s)b

(
χ(m) (s, y0)

)
ds (m ∈ N). (3.14b)
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Observe that

d

dt

(
χ(m+1) (t, y0)

)
= aχ(m+1) (t, y0) + b

(
χ(m) (t, y0)

)
(m ∈ N) . (3.15)

Remark 3.6: We have two choices for the specified initial condition in the notation for the iterates,

namely χ(m) (t, x0) and χ(m) (t, y0), both of which have their advantages and disadvantages. Since,

in practice, the iterates will be calculated and left in terms of y0 which will be regarded as a

parameter, we will use the χ(m) (t, y0) notation.

3.3.2 Existence and Decay Rate of the Iterates

We will be developing estimates of how close the iterates
{
χ(m) (t, y0)

}∞
m=1

are to the actual so-

lution φt(x0). First, we need the basic decay rate for the iterates. Importantly, the iterates{
χ(m) (t, y0)

}∞
m=1

satisfy the same decay rate as φt(x0) uniformly in m.

Remark 3.7: Since the underlying goal is to compute estimates of how close the iterates are to

the actual solution (which involves x0), we will express estimates involving the iterates in terms of

x0 (instead of y0).

Proposition 3.8: Consider the iterates defined by (3.14). Then, there is a δ > 0 (independent

of m) such that if |x0| < δ then χ(m) (t, y0) exists for each m ∈ N. Moreover, there is a k > 0

(independent of m) such that∣∣∣χ(m) (t, y0)
∣∣∣ ≤ k eat |x0| for all (t, x0) ∈ Ωδ, m ∈ N. (3.16)

Proof: We need to find δ, k > 0 that work for each m and thus we need to be very careful with

constants.

• Let δ1, �1 > 0 be such that if |x| < δ1 then |b(x)| ≤ �1 |x|α. See Equation (3.2). There is no

harm in taking δ1 small enough so that

0 < δ1 <

[
(1 − α) a

�1

] 1
α−1

.

• Let δ2 > 0 be such that |φt(x0)| < δ1 for all (t, x0) ∈ Ωδ2. See Equation (3.5). It follows that

if |x0| < δ2 then y0 exists.

• Let �3 > 0 be such that if |x0| < δ2 then |y0| ≤ �3 |x0|. See Equation (3.12).
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Take

k := �3

[
1 − �1δ

α−1
1

(1 − α) a

]−1

> �3 and δ ∈
(

0,min

{
δ1
k
, δ2

})
.

The upper bound we imposed on δ1 ensures that k is defined and is greater than �3. Moreover,

note that

�3 +
[
�1kδ

α−1
1

(1 − α) a

]
= k. (3.17)

The proof of the result will be by induction on m. Assume that (t, x0) ∈ Ωδ.

Consider first the base case, m = 1. We know y0 exists and hence χ(1) (t, y0) exists. Furthermore,∣∣∣χ(1) (t, y0)
∣∣∣ = eat |y0| ≤ �3e

at |x0| ≤ k eat |x0|

and thus the result is true for m = 1.

Now, assume that the result is true form ∈ N. That is, χ(m) (t, y0) exists for |x0| < δ and satisfies∣∣χ(m) (t, y0)
∣∣ ≤ k eat |x0|. Now, for |x0| < δ, we see that

∣∣χ(m) (t, y0)
∣∣ < δ1 and thus χ(m+1) (t, y0)

exists. Using (3.14b),∣∣∣χ(m+1) (t, y0)
∣∣∣ ≤ eat |y0| + eat

∫ ∞

t
e−as

∣∣∣b(χ(m) (s, y0)
)∣∣∣ ds.

By the induction hypothesis and the estimates given at the beginning of the proof,∣∣∣χ(m+1) (t, y0)
∣∣∣ ≤ �3e

at |x0| + �1k
αeat

[∫ ∞

t
e(α−1)as ds

]
|x0|α .

Simplifying, ∣∣∣χ(m+1) (t, y0)
∣∣∣ ≤ �3e

at |x0| +
[

�1k
α

(1 − α) a

]
eαat |x0|α

=
{
�3 +

[
�1k

α

(1 − α) a

]
e(α−1)at |x0|α−1

}
eat |x0| .

Since 0 < e(α−1)at ≤ 1 and |x0| < δ < δ1
k , we have∣∣∣χ(m+1) (t, y0)

∣∣∣ ≤ {�3 +
[
�1k

αδα−1

(1 − α) a

]}
eat |x0| ≤

{
�3 +

[
�1kδ

α−1
1

(1 − α) a

]}
eat |x0| .

Using (3.17), ∣∣∣χ(m+1) (t, y0)
∣∣∣ ≤ k eat |x0| .

Hence, the result is true for m+ 1. It follows from mathematical induction that the result is true

for all m ∈ N. �
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3.3.3 Closeness of the Iterates to the Actual Solution

Now, we establish how close each iterate χ(m) (t, y0) is to the actual solution φt(x0), which is the

main result of this chapter. As this theorem shows, each iteration increases the accuracy by a factor

which is O
(
eβat |x0|β

)
as t→ ∞ and x0 → 0.

Theorem 3.9: Consider the iterates defined by (3.14). There are constants1 δ > 0 and {km}∞m=1 ⊂ R+

such that

∣∣∣φt(x0) − χ(m) (t, y0)
∣∣∣ ≤ kme[α+(m−1)β]at |x0|α+(m−1)β for all (t, x0) ∈ Ωδ, m ∈ N. (3.18)

Proof: First, we need to introduce some constants and establish some estimates.

• Let δ1, �1 > 0 be such that if |x| < δ1 then |b(x)| ≤ �1 |x|α. See Equation (3.2).

• Let δ2, �2 > 0 be such that if |x| < δ2 then |b′(x)| ≤ �2 |x|β. See Equation (3.3).

• Let δ3, �3 > 0 be such that |φt(x0)| ≤ �3e
at |x0| for all (t, x0) ∈ Ωδ3 . See Equation (3.5).

• Let δ4, �4 > 0 be such that
∣∣χ(m) (t, y0)

∣∣ ≤ �4e
at |x0| for all (t, x0) ∈ Ωδ4 and m ∈ N. See Equa-

tion (3.16).

• If |x0| < min {δ3, δ4} then any number between φt(x0) and χ(m) (t, y0) is bounded in absolute

value by (�3 + �4) eat |x0| for all t ≥ 0.

The proof of the theorem will be by induction on m. Take

δ := min

{
δ1
�3
,
δ1
�4
,

δ2
�3 + �4

, δ3, δ4

}
and assume that |x0| < δ which ensures that all necessary estimates apply. The base case m = 1

has already been given in Equation (3.13). Assume that the result is true for m ∈ N. First, for any

s ≥ 0 consider the expression

∣∣∣b(φs(x0)) − b
(
χ(m) (s, y0)

)∣∣∣ ≤ �2 (�3 + �4)
β eβas

∣∣∣φs(x0) − χ(m) (s, y0)
∣∣∣ |x0|β ,

1In this thesis, R+ = {x ∈ R : x > 0}. It is also common to use R+ = {x ∈ R : x ≥ 0}.
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where we applied the Mean Value Theorem and estimates given at the beginning of the proof. By

the induction hypothesis, for any s ≥ 0 we know∣∣∣b(φs(x0)) − b
(
χ(m) (s, y0)

)∣∣∣ ≤ �2 (�3 + �4)
β eβas

{
kme[α+(m−1)β]as |x0|α+(m−1)β

}
|x0|β

= km�2 (�3 + �4)
β e(α+mβ)as |x0|α+mβ .

It follows from the integral equation (3.11) for φt(x0) and the definition (3.14b) of the iterate

χ(m+1) (t, y0) that∣∣∣φt(x0) − χ(m+1) (t, y0)
∣∣∣ = eat

∣∣∣∣∫ ∞

t
e−as

[
b (φs(x0)) − b

(
χ(m) (s, y0)

)]
ds

∣∣∣∣
≤ km�2 (�3 + �4)

β eat

[∫ ∞

t
e(α+mβ−1)as ds

]
|x0|α+mβ

=

[
−km�2 (�3 + �4)

β

(α+mβ−1) a

]
e(α+mβ)at |x0|α+mβ

= km+1e
(α+mβ)at |x0|α+mβ ,

where km+1 > 0 is defined in the obvious way. Hence the theorem is true for m+ 1. By induction,

the theorem is true for all m. �

Remark 3.10: Suppose you have calculated a particular iterate χ(m) (t, y0). Theorem 3.9 guaran-

tees that χ(m) (t, y0) correctly approximates φt(x0) up to a certain order. A glance at the proof of

the theorem indicates that we can discard the suspect terms of χ(m) (t, y0) and use the simplified

iterate in the calculation of χ(m+1) (t, y0) without sacrificing the accuracy of χ(m+1) (t, y0). This

potentially can simplify the calculation of iterates greatly.

3.3.4 A Simple Example

Consider the initial value problem

ẋ = −x+ x3, x(0) = x0.

Observe that x = 0 is a stable equilibrium point but x = 1 and x = −1 are both unstable equilibrium

points. In particular, ẋ > 0 if −1 < x < 0 and ẋ < 0 if 0 < x < 1. It follows that we need |x0| < 1.

Here, we can take a = −1, b(x) = x3, α = 3, and β = 2. Using (3.14), we can compute the first

two iterates:

χ(1) (t, y0) = e−ty0
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and

χ(2) (t, y0) = e−ty0 − e−t

∫ ∞

t
es
[
e−sy0

]3
ds = e−ty0 − 1

2 e−3ty3
0 .

It follows from Theorem 3.9 that

φt(x0) = e−ty0 − 1
2 e−3ty3

0 + O
(
e−5t |x0|5

)
as t→ ∞ and x0 → 0.

Remark 3.11: Later, we will find a formula which can be used to find y0 explicitly without actually

knowing the solution φt(x0). It turns out

y0 =
x0√

1 − x2
0

, |x0| < 1.

For this example, we can find the exact solution,

φt(x0) =
e−tx0√(

1 − x2
0

)
+ x2

0e
−2t

,

which can be used in the definition (3.10) to compute y0. Alternatively, φt(x0) can be expanded as

a power series in e−t and the coefficient of the e−t term has to be y0.

3.4 Iterates of the Second Type

The calculation of the iterates of the first type,
{
χ(m) (t, y0)

}∞
m=1

where y := ψ(x0), involves eval-

uating an integral. However, this integration may be difficult or impossible. In this section, we

explore a way of simplifying this integration provided that b ∈ C∞ in some neighbourhood of 0. In

particular, in calculating an iterate we require only a certain number of terms in the Taylor series

for b to achieve the same exponential estimate for how close the iterate is to the actual solution.

Assume that b ∈ C∞(N ,R), where N ⊂ R is some open interval with 0 ∈ N . By Taylor’s

Theorem, there is an index � ∈ {2, 3, . . .} and constants {bi}∞i= such that

b(x) ∼
∞∑
i=

bix
i as x→ 0.

Clearly, we can take α = � and β = �− 1. Now, define

b(m)(x) :=
m∑

i=

bix
i, m ∈ {�, �+ 1, . . .} .

Note that ∣∣∣b(x) − b(m)(x)
∣∣∣ = O

(
xm+1

)
as x→ 0. (3.19)
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3.4.1 Definition of the Iterates

We will denote the iterates of the second type by
{
χ̃(m) (t, y0)

}∞
m=1

. For y0 sufficiently small, we

will take the first iterate to be

χ̃(1) (t, y0) := eaty0 (3.20a)

and we will define the remaining iterates recursively by

χ̃(m+1) (t, y0) := eaty0 −
∫ ∞

t
ea(t−s)b([m+1][−1])

(
χ̃(m) (s, y0)

)
ds (m ∈ N). (3.20b)

Remark 3.12: The method in this section can easily be adapted to the case in which b is Cr,

where r ∈ {�+ 1, �+ 2, . . .}, but not Cr+1 in a neighbourhood of 0. In this case, we would obtain

a finite number of iterates. By Taylor’s Theorem,

b(x) = bx
 + · · · + br−1x

r−1 + O(xr) as x→ 0.

Then, b(m) is defined for m ∈ {�, . . . , r − 1} and χ̃(m) (t, y0) is defined for m ∈
{

1, . . . ,
⌊

r−1
−1

⌋}
.

3.4.2 Existence and Decay Rate of the Iterates

The decay rate for the iterates
{
χ̃(m) (t, y0)

}∞
m=1

is the same as for φt(x0) uniformly in m.

Proposition 3.13: Consider the iterates defined by (3.20). Then, there is a δ > 0 (independent

of m) such that if |x0| < δ then χ̃(m) (t, y0) exists for each m ∈ N. Moreover, there is a k > 0

(independent of m) such that∣∣∣χ̃(m) (t, y0)
∣∣∣ ≤ k eat |x0| for all (t, x0) ∈ Ωδ, m ∈ N. (3.21)

Proof: The proof is exactly the same as the proof of Proposition 3.8. �

3.4.3 Closeness of the Iterates to the Actual Solution

Now, we establish how close each iterate of the second type χ̃(m) (t, y0) is to the actual solution

φt(x0). Observe that the decay rate is the same as with the iterates of the first kind (with α = �

and β = �− 1) given in (3.18).

Theorem 3.14: Consider the iterates defined by (3.20). There are constants δ > 0 and {km}∞m=1 ⊂ R+

such that∣∣∣φt(x0) − χ̃(m) (t, y0)
∣∣∣ ≤ kme[m(−1)+1]at |x0|m(−1)+1 for all (t, x0) ∈ Ωδ, m ∈ N.

48



Chapter 3. The Scalar Case

Proof: Let δ > 0 be small enough so that all relevant estimates apply when |x0| < δ. Hence,

assume that |x0| < δ. The proof will be by induction on m.

Since χ̃(1) (t, y0) = χ(1) (t, y0), Theorem 3.9 establishes the base case m = 1. Assume that the

theorem is true for a given m ∈ N. We will show that the theorem is true for m+ 1. First, for any

s ≥ 0 consider∣∣∣b (φs(x0)) − b([m+1][−1])
(
χ̃(m) (s, y0)

)∣∣∣
≤
∣∣∣b (φs(x0)) − b

(
χ̃(m) (s, y0)

)∣∣∣+ ∣∣∣b(χ̃(m) (s, y0)
)
− b([m+1][−1])

(
χ̃(m) (s, y0)

)∣∣∣ ,
where we applied the Triangle Inequality. Now, using (3.3), (3.5), (3.21), the Mean Value Theorem,

and the induction hypothesis, we know that there is a k(1)
m > 0 such that∣∣∣b (φs(x0)) − b

(
χ̃(m) (s, y0)

)∣∣∣ ≤ k(1)
m e[(m+1)(−1)+1]as |x0|(m+1)(−1)+1 .

Also, we see from (3.19) and (3.21) that there is a k(2)
m > 0 such that∣∣∣b(χ̃(m) (s, y0)

)
− b([m+1][−1])

(
χ̃(m) (s, y0)

)∣∣∣ ≤ k(2)
m e[(m+1)(−1)+1]as |x0|(m+1)(−1)+1 .

Putting these last three estimates together,∣∣∣b (φs(x0)) − b([m+1][−1])
(
χ̃(m) (s, y0)

)∣∣∣ ≤ (k(1)
m + k(2)

m

)
e[(m+1)(−1)+1]as |x0|(m+1)(−1)+1 .

It follows from (3.11) and (3.20b) that∣∣∣φt(x0) − χ̃(m) (t, y0)
∣∣∣ ≤ eat

∫ ∞

t
e−as

[
b (φs(x0)) − b([m+1][−1])

(
χ̃(m) (s, y0)

)]
ds

≤ km+1e
[(m+1)(−1)+1]at |x0|(m+1)(−1)+1

for some km+1 > 0. This is what we were trying to show. Therefore, by induction the theorem is

true for all m ∈ N. �

3.4.4 A Simple Example

Consider the initial value problem

ẋ = −x+ x2 + x3, x(0) = x0.

Then, we can take

a = −1, b(x) = x2 + x3, and � = 2.
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Furthermore, take

b(2)(x) = x2 and b(m)(x) = x2 + x3 for m ∈ {3, 4, . . .} .

We will find the first three iterates of the second type. Using the definition (3.20) of the iterates,

the first iterate is

χ̃(1) (t, y0) = e−ty0,

the second iterate is

χ̃(2) (t, y0) = e−t

[
y0 −

∫ ∞

t
es
(
e−sy0

)2
ds

]
= e−ty0 − e−2ty2

0,

and the third iterate is

χ̃(3) (t, y0) = e−t

{
y0 −

∫ ∞

t
es
[(

e−sy0 − e−2sy2
0

)2 +
(
e−sy0 − e−2sy2

0

)3]
ds

}
= e−ty0 − e−2ty2

0 + 1
2 e−3ty3

0 + 2
3 e−4ty4

0 − 3
4 e−5ty5

0 + 1
5 e−6ty6

0.

It follows from Theorem 3.14 that

φt(x0) = e−ty0 − e−2ty2
0 + 1

2 e−3ty3
0 + O

(
e−4ty4

0

)
as t→ ∞ and x0 → 0.

Remark 3.15: If instead we calculated the first three iterates of the first type, we would see that

χ(2) (t, y0) has terms up to e−3ty3
0 and χ(3) (t, y0) has terms up to e−9ty9

0. Moreover, χ(3) (t, y0) and

χ̃(3) (t, y0) agree up to the e−3ty3
0 term but differ starting with the e−4ty4

0 term.

3.4.5 A Curious Example

Consider the initial value problem (3.1) with

b(x) :=

⎧⎪⎪⎨⎪⎪⎩
exp

(
− 1
x2

)
, if x 	= 0

0, if x = 0
.

Observe that b ∈ C∞(R) and b(m)(0) = 0 for all m ∈ N0. Observe also that, for any α > 1 and

β > 0, |b(x)| = O(|x|α) and |b′(x)| = O
(
|x|β
)

as x→ 0. We might say that b(x) is asymptotic to

zero beyond all orders. It follows that the iterates of the second type are χ̃(m) (t, y0) = eaty0 for

any m ∈ N. Moreover, Theorem 3.14 says that the actual solution φt(x0) is asymptotic to eaty0 as

t→ ∞ and x0 → 0 beyond all orders when y0 = ψ(x0). Finally, it follows from (3.12) that y0 is

asymptotic to x0 as x0 → 0 beyond all orders.
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3.5 The Function ψ

Let y0 := ψ(x0), where ψ was defined earlier in (3.10). Recall that y0, as opposed to x0, is a more

natural choice for initial condition for the linearized differential equation ẋ = ax. In this section,

we will explore properties of this intriguing transformation ψ.

3.5.1 Conjugacy Condition

The Hartman-Grobman Theorem (see, for example, [50, 52] and sections §IX.7, §IX.8, and §IX.9

of [55]) says that there is a homeomorphism which maps flows of the nonlinear system onto flows

of the linear system. That is,

h (φt(x0)) = eath(x0) for all t ≥ 0,

where h is continuous with continuous inverse h−1 and x0 is sufficiently small. Consequently,

φt(x0) = h−1
(
eath(x0)

)
.

Hence, having an expression for h and h−1 (or an approximation for h and h−1) is useful. Techniques

involving successive approximations have been used to calculate (or approximate) h. Hartman

used such successive approximations in his proof of what is now known as the Hartman-Grobman

Theorem.

It turns out that ψ is one such transformation which satisfies the above conjugacy condition.

Later, we will find an explicit formula for ψ(x0) not involving φt(x0).

Theorem 3.16: There is a δ > 0 such that

ψ (φt(x0)) = eatψ(x0) for all (t, x0) ∈ Ωδ. (3.22)

Proof: Let δ > 0 be small enough so that all relevant estimates apply for |x0| < δ. Assume that

|x0| < δ. First, replace x0 by φt(x0) in the definition (3.10) of ψ to get

ψ (φt(x0)) = φt(x0) +
∫ ∞

0
e−aξb (φξ(φt(x0))) dξ.

Using the integral equation (3.11) and the semi-group property of the flow,

ψ (φt(x0)) = eatψ(x0) − eat

∫ ∞

t
e−asb(φs(x0)) ds+

∫ ∞

0
e−aξb (φξ+t(x0)) dξ

= eat

[
ψ(x0) −

∫ ∞

t
e−asb(φs(x0)) ds +

∫ ∞

0
e−a(ξ+t)b (φξ+t(x0)) dξ

]
.
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Using the change of variables s = ξ + t in the second integral,

ψ (φt(x0)) = eat

[
ψ(x0) −

∫ ∞

t
e−asb(φs(x0)) ds+

∫ ∞

t
e−asb (φs(x0)) ds

]
= eatψ(x0).

�

3.5.2 An Ordinary Differential Equation which ψ Satisfies

We can use the conjugacy relation (3.22) to derive a differential equation which ψ(x0) satisfies. In

turn, we will use this differential equation to find a formula for ψ(x0) which does not involve the

solution φt(x0).

Proposition 3.17: There is a δ > 0 such that function ψ satisfies the non-autonomous initial

value problem

[ax0 + b(x0)]ψ′ − aψ = 0, ψ(0) = 0, ψ′(0) = 1 (3.23)

for x0 ∈ Bδ, where ′ = d
dx0

.

Proof: First, we derive the differential equation. Assume that δ > 0 is sufficiently small so that

if |x0| < δ then all necessary estimates apply. Now, differentiate (3.22) with respect to time and

apply the differential equation in (3.1) to obtain

ψ′ (φt(x0)) [aφt(x0) + b (φt(x0))] = a eatψ(x0).

Setting t = 0 gives the differential equation. Second, to see why ψ(0) = 0 merely set x0 = 0 in

(3.12). Finally, we show that ψ′(0) = 1. Again using (3.12), we know ψ(h) = h+ O(|h|α) as h→ 0.

Since α > 1, we have

ψ′(0) = lim
h→0

ψ(h) − ψ(0)
h

= lim
h→0

ψ(h)
h

= 1.

�

3.5.3 Finding ψ as a Quadrature Solution

It is possible to find a quadrature solution to (3.23) in a neighbourhood of 0. Let δ > 0 be small

enough so that2 ψ(x0) is defined, (3.23) applies, ψ(x) > 0 for x ∈ (0, δ), ψ(x) < 0 for x ∈ (−δ, 0),
2We know that ψ(x) = x+ o(x) and b(x) = o(x) as x→ 0. Thus, for sufficiently small x > 0 we can conclude

ψ(x) > 0 and ax+ b(x) < 0. Similarly, for sufficiently small x < 0 we have ψ(x) < 0 and ax+ b(x) > 0.
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ax+ b(x) < 0 for x ∈ (0, δ), and ax+ b(x) > 0 for x ∈ (−δ, 0). Furthermore, we need to assume

that α ≥ 2.

For simplicity, assume that 0 < ε < x < x0 < δ. Using partial fractions,

a

ax+ b(x)
=

1
x
− b(x)
x [ax+ b(x)]

. (3.24)

Re-arranging the differential equation in (3.23) and applying (3.24), we have

ψ′(x)
ψ(x)

=
1
x
− b(x)
x [ax+ b(x)]

.

Integrating with respect to x from ε to x0, we have

ln(ψ(x))|x0
x=ε = ln(x)|x0

x=ε −
∫ x0

ε

b(x)
x [ax+ b(x)]

dx.

Thus,

ln

(
ψ(x0)
x0

)
= ln

(
ψ(ε)
ε

)
−
∫ x0

ε

b(x)
x [ax+ b(x)]

dx. (3.25)

Note that we need α ≥ 2 so that the integral converges as ε→ 0+. Since

lim
ε→0+

ψ(ε)
ε

= 1,

if we let ε→ 0+ and take the exponential of both sides of (3.25), we arrive at the following.

Proposition 3.18: Suppose that α ≥ 2. There is a δ > 0 such that

ψ(x0) = x0 exp

(
−
∫ x0

0

b(x)
x [ax+ b(x)]

dx

)
for all x0 ∈ Bδ. (3.26)

3.5.4 ψ is C1 when b is C1

Proposition 3.19: There are open intervals N1 � 0 and N2 � 0 for which ψ is a C1-diffeomorphism

from N1 to N2.

Proof: First, we will show that the integrand, namely e−asb (φs(x0)), of the improper integral in

the definition (3.10) of ψ(x0) is C1 in a neighbourhood of 0. Since b is C1 in a neighbourhood

of 0, the right-hand side of the differential equation ẋ = ax+ b(x) is C1 in a neighbourhood of 0.

Thus, φt(x0) is C1 in both t and x0 for sufficiently small x0. Thus, e−asb (φs(x0)) is C1 in x0 for

sufficiently small x0.
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To ensure convergence of the relevant improper integrals we need estimates for e−asb (φs(x0))

and d
ds (e−asb (φs(x0))). We know from (3.2), (3.3), (3.5), and (3.6) that there are δ, k1, k2 > 0 such

that ∣∣e−asb (φs(x0))
∣∣ ≤ k1e

(α−1)as |x0|α for all (s, x0) ∈ Ωδ

and ∣∣∣∣e−asb′ (φs(x0))
∂φs(x0)
∂x0

∣∣∣∣ ≤ k2e
βas |x0|β for all (s, x0) ∈ Ωδ.

Thus, ψ is continuously differentiable for |x0| < δ and we can differentiate (3.10) with respect to

x0 under the integral sign:

ψ′(x0) = 1 +
∫ ∞

0
e−asb′(φs(x0))

∂φs(x0)
∂x0

ds.

Let N1 be an open interval, with 0 ∈ N1 and N1 ⊂ Bδ, such that ψ′(x0) > 0 for all x0 ∈ N1. Now,

take N2 := ψ (N1), which is an open interval containing 0, and so we can write ψ ∈ C1(N1,N2).

By the Inverse Function Theorem, ψ is invertible with inverse ψ−1 ∈ C1(N2,N1). �

3.5.5 Analyticity of ψ when b is Analytic

Proposition 3.20: If b is analytic at zero, then ψ is analytic at zero. Furthermore, ψ is invertible

and ψ−1 is analytic at zero.

Proof: First, we need to show that the integral∫ ∞

0
e−asb (φs(x0)) ds,

which is equal to ψ(x0) − x0, is an analytic function of x0 at 0. Let F (z, t) := e−atb (φt(z)) where

we consider z ∈ C and t ≥ 0. See, for example, [59] and §1.8 of [28] for a discussion of how we can

regard x and x0 as complex numbers in (3.1). We know that there is a domain Ω ⊂ C containing

z = 0 such that F (z, t) is complex analytic in z over Ω and continuous in t. Furthermore, we assume

that Ω is small enough so that

|F (z, t)| ≤ k e(α−1)at |z|α for all z ∈ Ω and t ≥ 0

for some k > 0. We know we can do this because of the estimate (3.9). Let r > 0 be large enough

so that Ω ⊂ Br. Then,

|F (z, t)| ≤ k e(α−1)atrα and
∫ ∞

0

(
k e(α−1)asrα

)
ds =

krα

(1 − α) a
<∞.
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It follows that the integral
∫∞
0 F (z, s) ds is complex analytic in z. (See §2.2 on page 18.) Hence,

ψ(z) is a complex analytic function of z in Ω. Therefore, ψ(x0) is (real) analytic in x0 at 0.

The fact that ψ is invertible with ψ−1 being analytic at zero follows from the fact that ψ′(0) = 1

and the Real Analytic Inverse Function Theorem (see, for example, page 47 of [73]). �

3.5.6 Taylor Series for ψ if b has a Taylor Series

Assume that both b and ψ can be written as Taylor series at 0,

b(x) =
∞∑
i=0

bix
i and ψ(x0) =

∞∑
i=0

σix
i
0.

Based on our knowledge of b and ψ, we can conclude

b0 = 0, b1 = 0, σ0 = 0, and σ1 = 1.

We will derive a recursive expression for the coefficients {σi}∞i=0 in terms of {bi}∞i=0.

For simplicity we will refer to x as opposed to x0. Substitute the series for b and ψ into the

differential equation (3.23) to obtain[
ax+

∞∑
i=0

bix
i

][ ∞∑
i=0

(i+ 1) σi+1x
i

]
− a

[ ∞∑
i=0

σix
i

]
= 0.

Expanding the products and adjusting the indices,

a

[ ∞∑
i=0

iσix
i

]
+

∞∑
i=0

⎡⎣ i∑
j=0

bi−j (j + 1) σj+1

⎤⎦xi − a

[ ∞∑
i=0

σix
i

]
= 0.

The reader may wish to consult §A.13 of Appendix A which covers the Cauchy product of series.

Recalling that b0 = b1 = 0, it follows that

σ0 = 0, σ1 = 1, σi =
[

1
a(1 − i)

] i−2∑
j=0

(j + 1) bi−jσj+1 (i ≥ 2).

The second and third terms are, respectively,

σ2 = −b2
a

and σ3 =
2b22 − ab3

2a2
.
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3.5.7 Optimality of the Linearized Solution eaty0

The following theorem shows that the initial condition y0 yields the linear solution eaty0 that is

closest to the actual solution φt(x0). Note that, as can be deduced from (3.13) and Remark 2.8,

lim sup
t→∞

ln
∣∣φt(x0) − eatψ(x0)

∣∣
t

≤ αa.

We claim that this inequality is not preserved if we replace ψ(x0) with z0 	= ψ(x0). In other words,∣∣φt(x0) − eatψ(x0)
∣∣ has a faster exponential decay rate than

∣∣φt(x0) − eatz0
∣∣ for any z0 	= ψ(x0).

Theorem 3.21: There are neighbourhoods N1 and N2 of zero such that for any y0 ∈ N2 there

exists a unique x0 ∈ N1 such that3

lim sup
t→∞

ln
∣∣φt(x0) − eaty0

∣∣
t

≤ αa.

Proof: Let δ > 0 be sufficiently small so that if x0 ∈ N1 := Bδ then all appropriate estimates apply

and ψ is a bijection from N1 to N2 := ψ (N1). Let y0 ∈ N2 be fixed.

To show existence, take x0 := ψ−1(y0). The estimate is satisfied by virtue of (3.13). To show

uniqueness, suppose that x̂0 ∈ N1 has φt(x̂0) also satisfying the given estimate. Let ŷ0 := ψ(x̂0).

Using the integral equation (3.11),

φt(x̂0) = eatŷ0 −
∫ ∞

t
ea(t−s)b (φs(x̂0)) ds.

Subtracting eaty0 from both sides and re-arranging,

eat (ŷ0 − y0) = φt(x̂0) − eaty0 +
∫ ∞

t
ea(t−s)b (φs(x̂0)) ds.

Taking the absolute value of both sides and applying the Triangle Inequality,

eat |ŷ0 − y0| ≤
∣∣φt(x̂0) − eaty0

∣∣+ eat

∣∣∣∣∫ ∞

t
e−asb (φs(x̂0)) ds

∣∣∣∣ .
Using the estimate (3.9) along with the estimate that φt(x̂0) is assumed to satisfy, we see that there

is a k > 0 such that

eat |ŷ0 − y0| ≤ k eαat for all t ≥ 0.

Thus,

|ŷ0 − y0| ≤ k e(α−1)at for all t ≥ 0.

Letting t → ∞, we see that ŷ0 = y0. Since ψ is a bijection from N1 to N2, x̂0 = x0. �
3If
∣∣φt(x0) − eaty0

∣∣ = 0 then we take the natural logarithm to be −∞.
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Corollary 3.22: There are neighbourhoods N1 and N2 of 0 such that if x0 ∈ N1 and y0 ∈ N2\ {ψ(x0)}

then

lim sup
t→∞

ln
∣∣φt(x0) − eaty0

∣∣
t

> αa.

3.5.8 A Simple Example

We will conclude this section with two simple examples of using (3.26) to find ψ(x0). First, consider

the initial value problem

ẋ = ax+ εxr, x(0) = x0,

where a < 0, r ≥ 2, and ε > 0. Then,

ψ(x0) = x0 exp

(
−
∫ x0

0

εxr

x [ax+ εxr]
dx

)
= x0 exp

(
ln

(
a

a+ εxr−1
0

) 1
r−1

)

= x0

(
a

a+ εxr−1
0

) 1
r−1

.

From this, we see that we should restrict x0 by requiring

|x0| <
(
−a
ε

) 1
r−1

.

3.5.9 Another Simple Example

Now consider the initial value problem

ẋ = −sin(x) , x(0) = x0,

where |x0| < π. Clearly, we can take a = −1, b(x) = x− sin(x), α = 3, and β = 2. Using (3.26),

ψ(x0) = x0 exp

(∫ x0

0

x− sin(x)
x sin(x)

dx

)
=

2 [1 − cos(x0)]
sin(x0)

.

Observe that

ψ(x0) = x0 + 1
12 x

3
0 + O

(
x5

0

)
as x0 → 0.

By Theorem 3.9, the solution φt(x0) of the initial value problem satisfies

φt(x0) =
2 [1 − cos(x0)]

sin(x0)
e−t + O

(
e−3tx3

0

)
as t→ ∞ and x0 → 0.
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3.6 Iterates of the Third Type (which are Flows)

The iterates
{
χ(m) (t, y0)

}∞
m=1

, where y0 := ψ(x0) and x0 is sufficiently small, have an undesired

feature, namely that they are not themselves flows. To see why the iterates are not flows, we need

not look any further than the example in §3.3.4 on page 46. We calculated

χ(2) (t, y0) = e−ty0 − 1
2 e−3ty3

0.

It is easy to see that

χ(2) (0, y0) 	= y0 and χ(2)
(
s, χ(2) (t, y0)

)
	= χ(2) (s+ t, y0) .

The problem is in how we set up the iterates of the first type. Fortunately, we can construct new

iterates from the old iterates which are in fact flows.

3.6.1 A Lemma

In order to construct iterates that are flows, first we need to establish an interesting property of

the iterates of the first type. This property resembles the semi-group property of flows.

Lemma 3.23: There exists a δ > 0 such that

χ(m) (s, ψ (φt(x0))) = χ(m) (s+ t, ψ (x0)) for all s, t ≥ 0, x0 ∈ Bδ, m ∈ N. (3.27)

Proof: There is a δ > 0 (independent of m) such that if |x0| < δ then all relevant improper integrals

converge and all relevant estimates apply. Hence, we will assume that |x0| < δ. The proof will be by

induction on m. Consider first the base case m = 1, which involves the iterate χ(1) (t, y0) = eaty0.

Using the conjugacy condition (3.22), we easily see that the first iterate satisfies the lemma:

χ(1) (s, ψ (φt(x0))) = easψ (φt(x0)) = easeatψ(x0) = ea(s+t)ψ(x0) = χ(1) (s+ t, ψ(x0)) .

Now, assume the lemma is true form ∈ N. Using the definition (3.14b) of the iterate χ(m+1) (t, y0),

the conjugacy condition (3.22), and the induction hypothesis, we have

χ(m+1) (s, ψ (φt(x0))) = easψ (φt(x0)) −
∫ ∞

s
ea(s−r)b

(
χ(m) (r, ψ (φt(x0)))

)
dr

= easeatψ (x0) −
∫ ∞

s
ea(s−r)b

(
χ(m) (r + t, ψ (x0))

)
dr.
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Using the change of variables ξ = r + t in the integral, we get

χ(m+1) (s, ψ (φt(x0))) = ea(s+t)ψ(x0) −
∫ ∞

s+t
ea(s+t−ξ)b

(
χ(m) (ξ, ψ (x0))

)
dξ

= χ(m+1) (s+ t, ψ (x0)) .

Hence the lemma is true for m+ 1. By induction, the lemma is true for all m ∈ N. �

Corollary 3.24: There is a δ > 0 such that

χ(m)
(
s, eatψ(x0)

)
= χ(m) (s+ t, ψ(x0)) for all s, t ≥ 0, x0 ∈ Bδ, m ∈ N. (3.28)

Proof: It follows from (3.22) and (3.27). �

3.6.2 Definition of the Iterates

Now, we are in a position to define the iterates of the third type,
{
ϕ

(m)
t (z0)

}∞
m=1

, which are indeed

flows. Generally, χ(m) (0, y0) 	= y0. The new iterates will be constructed with χ(m) (0, y0) (for a

given m) as the initial point. Hence, take

z
(m)
0 := χ(m) (0, y0) (m ∈ N) .

The estimate (3.16) implies that there are δ, k > 0 (independent of m) such that∣∣∣z(m)
0

∣∣∣ ≤ k |x0| for all x0 ∈ Bδ, m ∈ N.

Define

ϕ
(m)
t (z0) := χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)

(m ∈ N) , (3.29)

where z0 is sufficiently small. (Note that there is no problem using z0 in the definition (3.29) instead

of z(m)
0 .) That is,

ϕ
(m)
t

(
z
(m)
0

)
= χ(m) (t, y0) (m ∈ N) . (3.30)

Proposition 3.25: There is a δ > 0 such that if |z0| < δ then, for each m ∈ N, ϕ(m)
t (z0) is a flow.

Proof: There is a δ > 0 (independent of m) such that if |z0| < δ then all relevant improper

integrals converge and all relevant estimates apply. Assume that |z0| < δ. Note that χ(m) (0, ·) is

indeed invertible since it is a near-identity transformation. Now, for ϕ(m)
t (z0) to be a flow, we need

ϕ
(m)
0 (z0) = z0 and ϕ(m)

s

(
ϕ

(m)
t (z0)

)
= ϕ

(m)
s+t (z0) .
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The first condition is obtained by setting t = 0 in the definition (3.29). To obtain the second

condition, first use the definition of ϕ(m)
t (z0), which tells us

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1 (
ϕ

(m)
t (z0)

))
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1
(
χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)))

.

Using (3.28) with s = 0 and canceling inverse functions,

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1
(
χ(m)

(
0, eat

[
χ(m) (0, ·)

]−1
(z0)
)))

= χ(m)

(
s, eat

[
χ(m) (0, ·)

]−1
(z0)
)
.

Using (3.28) again,

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s+ t,

[
χ(m) (0, ·)

]−1
(z0)
)

= ϕ
(m)
s+t (z0) .

�

3.6.3 Differential Equation which the Iterates Satisfy

The solution of an autonomous differential equation defines a flow as a solution. In fact, a flow

defines an autonomous differential equation. The standard argument, for the scalar case, is as

follows. Consider ϕ(m)
t (z0), which we know is a flow, and define

g(m)(z) :=
d

dt

(
ϕ

(m)
t (z)

)∣∣∣∣
t=0

= lim
h→0

ϕ
(m)
h (z) − z

h
.

We know that ϕ(m)
0 (z0) = z0. Calculate

d

dt

(
ϕ

(m)
t (z0)

)
= lim

h→0

ϕ
(m)
t+h (z0) − ϕ

(m)
t (z0)

h
= lim

h→0

ϕ
(m)
h

(
ϕ

(m)
t (z0)

)
− ϕ

(m)
t (z0)

h
= g(m)

(
ϕ

(m)
t (z0)

)
.

Hence, ϕ(m)
t (z0) is the solution of the initial value problem

ż = g(m)(z), z(0) = z0.

Consider the sequence
{
g(m)

}∞
m=1

. We can actually write down an expression for g(m)(z).

Trivially,

g(1)(z) = az.
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To specify g(m+1)(z), we need χ(m) (0, ·) and
[
χ(m+1) (0, ·)

]−1
. Now, for a fixed m ∈ N substitute

y0 =
[
χ(m+1) (0, ·)

]−1
(z)

into (3.15) and use the definition (3.29) of the iterates of the third type to obtain

d

dt

(
ϕ

(m+1)
t (z)

)
= aϕ

(m+1)
t (z) + b

(
χ(m)

(
t,
[
χ(m+1) (0, ·)

]−1
(z)
))

.

Setting t = 0 gives

g(m+1)(z) = az + b

(
χ(m)

(
0,
[
χ(m+1) (0, ·)

]−1
(z)
))

(m ∈ N) .

We have thus shown the following.

Claim 3.26: Let z0 be sufficiently small. The iterate ϕ(m)
t (z0) is the solution of

ż = g(m)(z), z(0) = z0,

where

g(m)(z) :=

⎧⎪⎨⎪⎩
az, if m = 1

az + b
(
χ(m−1)

(
0,
[
χ(m) (0, ·)

]−1
(z)
))

, if m > 1
.

Recall that the right-hand side of the differential equation in (3.1) is ax+ b(x). How close is

g(m)(z) to az + b(z)? First, observe that if we set t = 0 in (3.18) we obtain

χ(m) (0, ψ(x0)) = x0 + O
(
|x0|α+(m−1)β

)
as x0 → 0.

For m > 1, it can be shown that4

χ(m−1)

(
0,
[
χ(m) (0, ·)

]−1
(z)
)

= z + O
(
|z|α+(m−2)β

)
as z → 0.

Using this in conjunction with the definition of g(m)(z) (given in the claim) and the Mean Value

Theorem gives us the following.

Claim 3.27: The function g(m)(z) satisfies∣∣∣az + b(z) − g(m)(z)
∣∣∣ = O

(
|z|α+(m−1)β

)
as z → 0.

4The following fact will come in handy. If f is a function which satisfies, for some r > 1,

f(u) = u+ O(|u|r) as u→ 0

then f is invertible in a neighbourhood of u = 0 with

f−1(v) = v + O(|v|r) as v → 0.
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3.6.4 A Conjugacy Condition for the Iterates

Define, for sufficiently small x0,

ψ̂(m)(x0) := χ(m) (0, ψ(x0)) (m ∈ N) . (3.31)

The initial condition z
(m)
0 above thus can be written

z
(m)
0 = ψ̂(m)(x0).

Observe that

ϕ
(m)
t

(
ψ̂(m)(x0)

)
= χ(m) (t, ψ(x0)) , (3.32)

which follows from (3.30). Observe also that ψ̂(1) = ψ.

Recall that the function ψ, which maps the initial condition x0 to the initial condition y0, satisfies

the conjugacy condition ψ (φt(x0)) = eatψ(x0). That is, ψ maps flows of the nonlinear differential

equation onto flows of the linear differential equation. It turns out that the function ψ̂(m), which

maps the initial condition x0 to z
(m)
0 , satisfies its own conjugacy condition. In particular, ψ̂(m)

maps flows of the original nonlinear differential equation onto flows of the (generally nonlinear)

differential equation which ϕ(m)
t (z0) satisfies.

Theorem 3.28: Consider the function ψ̂(m). There is a δ > 0 such that

ψ̂(m) (φt(x0)) = ϕ
(m)
t

(
ψ̂(m)(x0)

)
for all (t, x0) ∈ Ωδ, m ∈ N.

Proof: Let x0 be sufficiently small, say |x0| < δ where δ > 0. Consider

ψ̂(m) (φt(x0)) = χ(m) (0, ψ (φt(x0))) (using (3.31))

= χ(m) (t, ψ(x0)) (using (3.27) with s = 0)

= ϕ
(m)
t

(
ψ̂(m)(x0)

)
(using (3.32)).

�

Proposition 3.29: There is a δ > 0 and {km}∞m=1 ⊂ R+ such that∣∣∣ψ̂(m)(x0) − x0

∣∣∣ ≤ km |x0|α+(m−1)β for all x0 ∈ Bδ, m ∈ N.

Proof: Set t = 0 in (3.18) and apply (3.31). �
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3.6.5 A Simple Example

Consider the initial value problem

ẋ = −x+ x2, x(0) = x0.

We will find the first two iterates of the first type and the first two iterates of the third type.

We will also find the autonomous differential equation which the second iterate of the third type

satisfies. First, note that using (3.26) we can calculate

y0 =
x0

1 − x0
, |x0| < 1.

Using (3.14), we can calculate the first two iterates of the first type, which are

χ(1) (t, y0) = e−ty0 and χ(2) (t, y0) = e−ty0 − e−2ty2
0.

In order to find the first two iterates of the third type, we need to invert

z
(1)
0 = χ(1) (0, y0) = y0 and z

(2)
0 = χ(2) (0, y0) = y0 − y2

0 .

Thus, [
χ(1) (0, ·)

]−1
(z0) = z0 and

[
χ(2) (0, ·)

]−1
(z0) = 1

2

(
1 −

√
1 − 4z0

)
, |z0| < 1

4 .

(Note that in finding
[
χ(2) (0, ·)

]−1
(z0), we take the negative root so that the resulting expression

is near-identity.) Hence,

ϕ
(1)
t (z0) = χ(1) (t, z0) = e−tz0

and

ϕ
(2)
t (z0) = χ(2)

(
t, 1

2

[
1 −

√
1 − 4z0

])
= e−t

(
1
2

[
1 −

√
1 − 4z0

])
− e−2t

(
1
2

[
1 −

√
1 − 4z0

])2
.

We will use the material in §3.6.3 on page 60 to find the autonomous differential equation which

ϕ
(2)
t (z0) satisfies. Here, a = −1 and b(x) = x2. Calculate

χ(1)

(
0,
[
χ(2) (0, ·)

]−1
(z)
)

= 1
2

(
1 −

√
1 − 4z

)
.

Thus, ϕ(2)
t (z0) is the solution of

ż = −z + 1
4

(
1 −

√
1 − 4z

)2
, z(0) = z0.
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3.7 Summary

The topic of this chapter was the nonlinear initial value problem

ẋ = ax+ b(x), x(0) = x0

and an iteration procedure to find the asymptotic behaviour of the solution φt(x0) as t→ ∞. In

particular, a < 0 is a constant and the function b is C1 in a neighbourhood of 0 with

|b(x)| = O(|x|α) and
∣∣b′(x)∣∣ = O

(
|x|β
)

as x→ 0

for constants α > 1 and β > 0. The flow φt(x0) satisfies the estimate

|φt(x0)| = O
(
eat |x0|

)
as t→ ∞ and x0 → 0.

We re-wrote the standard integral equation for the flow φt(x0) as

φt(x0) = eaty0 −
∫ ∞

t
ea(t−s)b(φs(x0)) ds,

where

y0 = ψ(x0) = x0 +
∫ ∞

0
e−asb(φs(x0)) ds

is a useful, related initial condition. Note that our assumptions on a and b(x) as well as our expo-

nential estimate for the flow guarantee that the above improper integrals converge for sufficiently

small x0. Interestingly, the function ψ is near-identity and y0 is the unique point such that

lim
t→∞

ln
∣∣φt(x0) − eaty0

∣∣
t

≤ αa.

In other words, y0 is the optimal initial condition for the linearized initial value problem.

This chapter introduced iterates of the first type
{
χ(m) (t, y0)

}∞
m=1

, given by

χ(1) (t, y0) = eaty0, χ(m+1) (t, y0) = eaty0 −
∫ ∞

t
ea(t−s)b

(
χ(m) (s, y0)

)
ds (m ∈ N).

In practice, y0 is left as a parameter so that is why we regard y0 as a variable instead of x0. These

iterates satisfy the decay rate∣∣∣χ(m) (t, y0)
∣∣∣ = O

(
eat |x0|

)
as t→ ∞ and x0 → 0 uniformly in m.
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Furthermore, the iterates are successively better asymptotic approximations to the actual solution

as t→ ∞, satisfying∣∣∣φt(x0) − χ(m) (t, y0)
∣∣∣ = O

(
e[α+(m−1)β]at |x0|α+(m−1)β

)
as t→ ∞ and x0 → 0.

If we can approximate b(x) by a Taylor series, then we can construct the iterates of the second

type
{
χ̃(m) (t, y0)

}∞
m=1

similar to the iterates of the first type by truncating b(x) to a certain order.

If we only have a Taylor polynomial for b(x), we can only define a certain number of iterates.

The function ψ satisfies the conjugacy condition

ψ (φt(x0)) = eatψ(x0),

which is reminiscent of the Hartman-Grobman Theorem. Also, ψ satisfies the initial value problem

[ax0 + b(x0)]ψ′ − aψ = 0, ψ(0) = 0, ψ′(0) = 1.

If α ≥ 2, we can express ψ(x) as the quadrature solution

ψ(x0) = x0 exp

(
−
∫ x0

0

b(x)
x [ax+ b(x)]

dx

)
.

Finally, we know that if b(x) is analytic then ψ(x0) is analytic.

The iterates of the first type have a natural definition but have an aesthetically-unpleasing

feature: the iterates are not flows. Hence, we defined the iterates of the third type
{
ϕ

(m)
t (z0)

}∞
m=1

,

given by

ϕ
(m)
t (z0) = χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)

(m ∈ N)

which are indeed flows. That is,

ϕ
(m)
0 (z0) = z0 and ϕ(m)

s

(
ϕ

(m)
t (z0)

)
= ϕ

(m)
s+t (z0) .

The initial point z0 for the iterate ϕ(m)
t (z0) is z0 = χ(m) (0, y0). Furthermore, these iterates satisfy

the conjugacy condition

ψ̂(m) (φt(x0)) = ϕ
(m)
t

(
ψ̂(m)(x0)

)
, where ψ̂(m)(x0) = χ(m) (0, ψ(x0)) .

That is, ψ̂(m) (which gives z0 as a function of x0 for a given m) maps flows of the nonlinear

differential equation onto flows of the differential equation which ϕ(m)
t (z0) satisfies.
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Chapter 4

Closely-Spaced Eigenvalues (κ < α)

4.1 Introduction

In the previous chapter, we explored an iterative procedure which yielded successively better asymp-

totic approximations
{
χ(m) (t, y0)

}∞
m=1

to solutions φt(x0) of the scalar version of (2.5) as t→ ∞

when x0 is sufficiently small. Here, we will extend the results of Chapter 3 to the multi-dimensional

case where the eigenvalues of A are closely-spaced relative to the nonlinear part b(x). Consider

once again the system

ẋ = Ax + b(x), x(0) = x0. (4.1)

We will restate the important general assumptions about this system and then specify the special

assumption for this chapter.

4.1.1 Assumptions

Assumption 4.1: The real parts of the eigenvalues of the matrix A satisfy

μn ≤ μn−1 ≤ · · · ≤ μ1 < 0.

Assumption 4.2: Consider the vector field b.

(a) There is some neighbourhood N ⊂ Rn with 0 ∈ N and b ∈ C1(N ,Rn).

(b) There are δ, k > 0 such that

‖b(x)‖ ≤ k ‖x‖α for all x ∈ Bδ, (4.2)

67



4.1. Introduction

where α > 1 is a fixed parameter.

(c) There are δ, k > 0 such that

‖Db(x)‖ ≤ k ‖x‖β for all x ∈ Bδ, (4.3)

where β > 0 is a fixed parameter.

Assumption 4.3: Recall the ratio

κ =
μn

μ1

which quantifies the spacing of the eigenvalues and satisfies κ ≥ 1. In this chapter, we will consider

only the case where the eigenvalues are closely-spaced. That is, we will assume κ < α. Equivalently,

αμ1 < μn. (4.4)

Remark 4.4: Observe that the scalar case, which we covered in Chapter 3, has κ = 1 and is a

special case of closely-spaced eigenvalues. Consequently, this chapter will very much echo Chapter 3.

However, there are many complications introduced by switching to multiple dimensions.

4.1.2 Martin Wainwright

Martin Wainwright, who is the son of the cosmologist John Wainwright, once worked as a summer

undergraduate research assistant with David Siegel. The content of this part of the thesis was born

out of the work done during that summer. In particular, the exploration of (what we now call)

iterates of the first type for the case of closely-spaced eigenvalues was initiated. Moreover, the

assumptions on the vector field b were different and special cases of Theorems 2.12, 4.9, and 4.20

were proved.

4.1.3 Important Estimates We Already Know

Define, for any δ > 0, the set

Ωδ := { (t,x) : t ≥ 0, x ∈ Rn, ‖x‖ < δ } .

The basic estimates, which we saw in Chapter 2, that we will use frequently in this chapter are

restated below. Recall that if A is diagonalizable, then we may take σ = 0 in (4.5), (4.6), and (4.7)

below.
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• For any σ > 0 there is a k > 0 such that∥∥etA
∥∥ ≤ k e(μ1+σ)t for all t ≥ 0. (4.5)

• For any σ > 0 there is a k > 0 such that∥∥e−tA
∥∥ ≤ k e(−μn+σ)t for all t ≥ 0. (4.6)

• For any σ > 0 there are δ, k > 0 such that

‖φt(x0)‖ ≤ k e(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ. (4.7)

4.2 “Flipping the Integral” and the Initial Condition y0

Consider the system (4.1) and the corresponding integral equation (2.6). As in Chapter 3, we will

“flip the integral” and re-write the integral equation in a different, more useful form. First, we need

the following estimate to justify this action.

Claim 4.5: For any σ > 0 there are δ, k > 0 such that∥∥e−tAb(φt(x0))
∥∥ ≤ k e[(αμ1−μn)+σ]t ‖x0‖α for all (t,x0) ∈ Ωδ. (4.8)

Proof: It follows from (4.2), (4.6), and (4.7). Note that when applying (4.6) and (4.7), you use
σ

α+1 instead of σ. �

Using the integral equation (2.6) along with (4.4) and (4.8), for sufficiently small ‖x0‖ we know

we can write

φt(x0) = etA

[
x0 +

∫ ∞

0
e−sAb (φs(x0)) ds

]
−
∫ ∞

t
e(t−s)Ab (φs(x0)) ds. (4.9)

Now, there is a δ > 0 (the one in (4.8) will work) such that we can define the function

ψ(x0) := x0 +
∫ ∞

0
e−sAb(φs(x0)) ds, x0 ∈ Bδ. (4.10)

Using (4.9), we have thus proven the following.

Claim 4.6: There is a δ > 0 such that

φt(x0) = etAy0 −
∫ ∞

t
e(t−s)Ab(φs(x0)) ds for all (t,x0) ∈ Ωδ, (4.11)

where y0 := ψ(x0).
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Claim 4.7: There are δ, k > 0 such that

‖x0 −ψ(x0)‖ ≤ k ‖x0‖α for all x0 ∈ Bδ. (4.12)

Moreover, ψ is a near-identity transformation.

Proof: It follows from (4.8) and (4.10). �

4.3 Iterates of the First Type

Let y0 := ψ(x0). This new “initial condition” is a more appropriate initial condition for the lin-

earized system ẋ = Ax. We will now define an iterative scheme that will produce successively

better asymptotic approximations as t→ ∞ to the solution φt(x0) of the initial value problem

(4.1). These iterates are inspired by the integral equation (4.11).

4.3.1 Definition of the Iterates

Let ‖x0‖ be sufficiently small. The iterates we are about to define will be denoted by
{
χ(m) (t,y0)

}∞
m=1

.

Since these iterates are defined in the natural way using the integral equation (4.11) and other types

of iterates will appear later in this chapter, we will refer to these “natural” iterates as the iterates

of the first type. Take the best linear approximation (for large t) as the first iterate,

χ(1) (t,y0) := etAy0, (4.13a)

and define the remainder recursively via

χ(m+1) (t,y0) := etAy0 −
∫ ∞

t
e(t−s)Ab

(
χ(m) (s,y0)

)
ds (m ∈ N) . (4.13b)

Observe that

d

dt

(
χ(m+1) (t,y0)

)
= Aχ(m+1) (t,y0) + b

(
χ(m) (t,y0)

)
(m ∈ N) . (4.14)

4.3.2 Existence and Decay Rate of the Iterates

The main result of this chapter will describe how close the iterate χ(m) (t,y0) is to the actual

solution φt(x0). First, we need to establish the existence and basic decay rate of χ(m) (t,y0).
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Proposition 4.8: Consider the iterates defined by (4.13) and let σ ∈
(
0, μn−αμ1

α+1

)
. Then, there is

a δ > 0 (independent of m) such that if ‖x0‖ < δ then χ(m) (t,y0) exists for each m ∈ N. Moreover,

there is a k > 0 (independent of m) such that∥∥∥χ(m) (t,y0)
∥∥∥ ≤ k e(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ, m ∈ N. (4.15)

Proof: We need to find δ, k > 0 that work for each m and thus we need to be very careful with

constants.

• Let δ1, �1 > 0 be such that ‖b(x)‖ ≤ �1 ‖x‖α for all x ∈ Bδ1. See Equation (4.2).

• Let δ2 > 0 be such that ‖φt(x0)‖ < δ1 for all (t,x0) ∈ Ωδ2 . See Equation (4.7). It follows that

if ‖x0‖ < δ2 then y0 exists.

• Let �3 > 0 be such that ‖y0‖ ≤ �3 ‖x0‖ for all x0 ∈ Bδ2 . See Equation (4.12).

• Let �4 > 0 be such that
∥∥etA

∥∥ ≤ �4e
(μ1+σ)t for all t ≥ 0. See Equation (4.5).

• Let �5 > 0 be such that
∥∥e−tA

∥∥ ≤ �5e
(−μn+σ)t for all t ≥ 0. See Equation (4.6).

There is no harm in taking δ1 small enough so that

0 < δ1 <

[
(μn−αμ1)−(α+1) σ

�1�5

] 1
α−1

.

Note that the restriction on σ implies

μ1 < μ1 + σ < 0 and (μn − αμ1) − (α+ 1) σ > 0.

Take

k := �3�4

[
1 − �1�5δ

α−1
1

(μn−αμ1)−(α+1) σ

]−1

> �3�4 and δ ∈
(

0,min

{
δ1
k
, δ2

})
.

The upper bound we imposed on δ1 ensures that k is defined and is greater than �3�4. Observe

that

�3�4 +
[

�1�5kδ
α−1
1

(μn−αμ1)−(α+1) σ

]
= k. (4.16)

The proof of the result will be by induction on m. Assume that (t,x0) ∈ Ωδ.

Consider first the base casem = 1. We know y0 exists and hence χ(1) (t,y0) exists. Furthermore,∥∥∥χ(1) (t,y0)
∥∥∥ =

∥∥etAy0

∥∥ ≤ �4e
(μ1+σ)t ‖y0‖ ≤ �3�4e

(μ1+σ)t ‖x0‖ ≤ k e(μ1+σ)t ‖x0‖ .
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Thus, the result is true for m = 1.

Now, assume that the result is true for m ∈ N. That is, χ(m) (t,y0) exists for x0 ∈ Bδ and

satisfies
∥∥χ(m) (t,y0)

∥∥ ≤ k e(μ1+σ)t ‖x0‖. Since ‖x0‖ < δ, we see that
∥∥χ(m) (t,y0)

∥∥ < δ1 and thus

χ(m+1) (t,y0) exists. Using (4.13b),∥∥∥χ(m+1) (t,y0)
∥∥∥ ≤ ∥∥etA

∥∥ ‖y0‖ +
∫ ∞

t

∥∥∥e(t−s)A
∥∥∥ ∥∥∥b(χ(m) (s,y0)

)∥∥∥ ds.
By the induction hypothesis and the estimates given at the beginning of the proof,∥∥∥χ(m+1) (t,y0)

∥∥∥ ≤ �3�4e
(μ1+σ)t ‖x0‖ + �1�5k

αe(μn−σ)t

[∫ ∞

t
e[(αμ1−μn)+(α+1)σ]s ds

]
‖x0‖α .

Simplifying,∥∥∥χ(m+1) (t,y0)
∥∥∥ ≤ �3�4e

(μ1+σ)t ‖x0‖ +
[

�1�5k
α

(μn−αμ1)−(α+1) σ

]
eα(μ1+σ)t ‖x0‖α

=
{
�3�4 +

[
�1�5k

α

(μn−αμ1)−(α+1) σ

]
e(α−1)(μ1+σ)t ‖x0‖α−1

}
e(μ1+σ)t ‖x0‖ .

Since 0 < e(α−1)(μ1+σ)t ≤ 1 and ‖x0‖ < δ < δ1
k , we have∥∥∥χ(m+1) (t,y0)

∥∥∥ ≤ {�3�4 +
[

�1�5kδ
α−1
1

(μn−αμ1)−(α+1) σ

]}
e(μ1+σ)t ‖x0‖ .

Using (4.16), ∥∥∥χ(m+1) (t,y0)
∥∥∥ ≤ k e(μ1+σ)t ‖x0‖ .

Hence, the result is true for m+ 1. By mathematical induction, the result is true for each m ∈ N.

�

4.3.3 Closeness of the Iterates to the Actual Solution

Now, we establish how close each iterate χ(m) (t,y0) is to the actual solution φt(x0). As this

theorem shows, each iteration increases the accuracy by a factor which is, for any sufficiently small

σ > 0, O
(
eβ(μ1+σ)t ‖x0‖β

)
as t→ ∞ and ‖x0‖ → 0.

Theorem 4.9: Consider the iterates defined by (4.13) and let σ ∈
(
0, μn−αμ1

α+1

)
. There are con-

stants δ > 0 and {km}∞m=1 ⊂ R+ such that∥∥∥φt(x0) − χ(m) (t,y0)
∥∥∥ ≤ kme[α+(m−1)β][μ1+σ]t ‖x0‖α+(m−1)β for all (t,x0) ∈ Ωδ, m ∈ N.

(4.17)
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Proof: Since we want to find δ > 0 that works for each m ∈ N, we need to be very careful with

the constants.

• Let δ1, �1 > 0 be such that ‖b(x)‖ ≤ �1 ‖x‖α for all x ∈ Bδ1. See Equation (4.2).

• Let δ2, �2 > 0 be such that ‖Db(x)‖ ≤ �2 ‖x‖β for all x ∈ Bδ2 . See Equation (4.3).

• Let δ3, �3 > 0 be such that ‖φt(x0)‖ ≤ �3e
(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ3. See Equation (4.7).

• Let δ4, �4 > 0 be such that
∥∥χ(m) (t,y0)

∥∥ ≤ �4e
(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ4 and m ∈ N.

See Equation (4.15).

• Let �5 > 0 be such that
∥∥e−tA

∥∥ ≤ �5e
(−μn+σ)t for all t ≥ 0. See Equation (4.6).

• If ‖x0‖ < min {δ3, δ4} then any point between φt(x0) and χ(m) (t,y0) is bounded in norm by

(�3 + �4) e(μ1+σ)t ‖x0‖ for all t ≥ 0.

The proof of the theorem will be by induction on m. Take

δ := min

{
δ1
�3
,
δ1
�4
,

δ2
�3 + �4

, δ3, δ4

}
.

Hence assume (t,x0) ∈ Ωδ, which guarantees that all necessary estimates apply. Note that the

restriction on σ implies

μ1 < μ1 + σ < 0 and (μn − αμ1) − (α+ 1) σ > 0.

Consider first the base case, m = 1. Using (4.11) and (4.13a),∥∥∥φt(x0) − χ(1) (t,y0)
∥∥∥ =

∥∥φt(x0) − etAy0

∥∥ ≤ ∫ ∞

t

∥∥∥e(t−s)A
∥∥∥ ‖b (φs(x0))‖ ds.

Using the estimates at the beginning of the proof and simplifying,∥∥∥φt(x0) − χ(1) (t,y0)
∥∥∥ ≤ k1e

α(μ1+σ)t ‖x0‖α , where k1 :=
�1�

α
3 �5

(μn−αμ1)−(α+1) σ
.

Note that k1 is defined and strictly positive due to the restrictions we placed on σ. Thus, the

theorem is true for m = 1.

Now, assume that the theorem is true for a fixed m ∈ N. First, for any s ≥ 0 consider the

expression∥∥∥b (φs(x0)) − b
(
χ(m) (s,y0)

)∥∥∥ ≤ �2 (�3 + �4)
β eβ(μ1+σ)s

∥∥∥φs(x0) − χ(m) (s,y0)
∥∥∥ ‖x0‖β ,
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where we applied the Mean Value Theorem and estimates given at the beginning of the proof. By

the induction hypothesis, we know∥∥∥b (φs(x0)) − b
(
χ(m) (s,y0)

)∥∥∥
≤ �2 (�3 + �4)

β eβ(μ1+σ)s
[
kme[α+(m−1)β][μ1+σ]s ‖x0‖α+(m−1)β

]
‖x0‖β

= km�2 (�3 + �4)β e[α+mβ][μ1+σ]s ‖x0‖α+mβ .

It follows from the integral equation (4.11) for φt(x0) and the definition (4.13b) for χ(m+1) (s,y0)

that ∥∥∥φt(x0) − χ(m+1) (t,y0)
∥∥∥

≤
∫ ∞

t

∥∥∥e(t−s)A
∥∥∥∥∥∥b (φs(x0)) − b

(
χ(m) (s,y0)

)∥∥∥ ds
≤ km�2 (�3 + �4)

β �5

{∫ ∞

t
e(μn−σ)(t−s)e[α+mβ][μ1+σ]s ds

}
‖x0‖α+mβ

≤ km�2 (�3 + �4)
β �5e

(μn−σ)t

{∫ ∞

t
e[(αμ1−μn)+mβμ1+(α+mβ+1)σ]s ds

}
‖x0‖α+mβ

=

[
km�2 (�3 + �4)

β �5
(μn−αμ1)−mβμ1−(α+mβ+1) σ

]
e[α+mβ][μ1+σ] ‖x0‖α+mβ ,

where km+1 > 0 is defined in the obvious way. Note that km+1 > 0 is indeed defined and strictly

positive since

(μn−αμ1)−mβμ1−(α+mβ+1) σ = (μn−αμ1)−mβ (μ1+σ)−(α+1) σ

> (μn−αμ1)−(α+1) σ

> 0.

Hence, the theorem is true for m+ 1 and therefore by induction the theorem is true for all m ∈ N.

�

Remark 4.10: Theorem 4.9 guarantees that χ(m) (t,y0) correctly approximates φt(x0) up to a

certain order. However, χ(m) (t,y0) may contain higher-order terms. Fortunately, as is evident

from the proof of the theorem, we can discard the terms of χ(m) (t,y0) which are not guaranteed

to be correct by the theorem. If we use this simplified iterate in the calculation of χ(m+1) (t,y0)

we will not sacrifice accuracy. This potentially can simplify the calculation of iterates greatly.
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4.3.4 A Simple Example

Consider the system ẋ = Ax + b(x), where

A :=

⎛⎝−1 0

1 −1

⎞⎠ and b(x) :=

⎛⎝ 0

rx1x2

⎞⎠
with r ∈ R\ {0} being a constant. Then,

etA = e−t

⎛⎝1 0

t 1

⎞⎠ , μ1 = −1 = μ2, and κ = 1.

Furthermore, we can take α = 2 and β = 1. Thus, κ < α and the eigenvalues are closely-spaced.

Observe that the origin is a Jordan node. (See §A.8 of Appendix A for an overview of some different

types of equilibria.)

Denote x(t) := φt(x0) and define, as always, y0 := ψ(x0). Using (4.13), the first two iterates

are given by

χ(1) (t,y0) = e−t

⎛⎝ y01

y02 + y01t

⎞⎠ and χ(2) (t,y0) = χ(1) (t,y0) − ry01e
−2t

⎛⎝ 0

y01 + y02 + y01t

⎞⎠ .
It follows from Theorem 4.9 that, for any σ ∈ (0, 1),∥∥∥x(t) − χ(2) (t,y0)

∥∥∥ = O
(
e(−3+σ)t ‖x0‖3

)
as t→ ∞ and ‖x0‖ → 0.

Moreover, it can be easily shown that we can write x2(t) in terms of x1(t) as

x2 = −x1 ln |x1| +
(
y02

y01
+ ln |y01|

)
x1 + r x2

1 ln |x1| + O
(
x2

1

)
as x1 → 0.

Depending on the size of r, the term r x2
1 ln |x1|, which we only know about because of χ(2) (t,y0),

may make the phase portrait near the origin of the nonlinear system significantly different from

the phase portrait of the linearized system.

4.3.5 A Complicated Example

Take

A :=

⎛⎝a 0

0 a

⎞⎠ and b(x) :=

⎛⎝b111x2
1 + b112x1x2 + b122x

2
2

b211x
2
1 + b212x1x2 + b222x

2
2

⎞⎠ ,
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where a < 0 and {bijk}2
i,j,k=1 ⊂ R are constants. Assume that at least one bijk is non-zero and

consider the system ẋ = Ax + b(x). The origin, as we see, is a star node. Now,

etA = eatI, μ1 = a = μ2, and κ = 1.

Also, we can take α = 2 and β = 1. Thus, κ < α and the eigenvalues are closely-spaced.

Define y0 := ψ(x0) and x(t) := φt(x0). The first iterate, which gives us the linearization, is

χ(1) (t,y0) = eaty0.

Standard reasoning (as does Theorem 4.9) tells us that

x1(t) ∼ eaty01 and x2(t) ∼ eaty02 as t → ∞.

Provided that y01 	= 0, we have

x2(t) ∼
(
y02

y01

)
x1(t) as t→ ∞.

We will use the second iterate, χ(2) (t,y0), to obtain a more detailed relationship between x1(t)

and x2(t). Using (4.13b) and the fact that b
(
eaty0

)
= e2atb (y0), we can calculate

χ(2) (t,y0) = eaty0 +
(

1
a

)
e2atb (y0) . (4.18)

For notational simplicity, let ξ :=
(

1
a

)
b(y0).

Case 1: y01 = y02 = 0. If y0 = 0 then x0 = 0 and x(t) ≡ 0.

Case 2: y01 	= 0. It follows from (4.18) and Theorem 4.9 that

x1(t) = eaty01 + ξ1e
2at + O

(
e3at
)

as t→ ∞ (4.19a)

and

x2(t) = eaty02 + ξ2e
2at + O

(
e3at
)

as t→ ∞. (4.19b)

Using (4.19a), we see x1 = O
(
eat
)

as t→ ∞ and eat = O(x1) as x1 → 0. Also, we can solve

for eat and back substitute to obtain an asymptotic expression for eat in terms of x1 only.
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This gives

eat =
(
x1

y01

)[
1 −
(
ξ1
y01

)
eat + O

(
e2at
)]

as t→ ∞

=
(

1
y01

)
x1 −

(
ξ1
y2
01

)
eatx1 + O

(
e3at
)

as t→ ∞

=
(

1
y01

)
x1 −

(
ξ1
y3
01

)
x2

1 + O
(
e3at
)

as t→ ∞

=
(

1
y01

)
x1 −

(
ξ1
y3
01

)
x2

1 + O
(
x3

1

)
as x1 → 0.

It follows from (4.19b) that

x2 =
(
y02

y01

)
x1 +

(
ξ2
y2
01

− y02ξ1
y3
01

)
x2

1 + O
(
x3

1

)
as x1 → 0. (4.20)

Case 3: y02 	= 0. Similar to the case above, we get

x1 =
(
y01

y02

)
x2 +

(
ξ1
y2
02

− y01ξ2
y3
02

)
x2

2 + O
(
x3

2

)
as x2 → 0. (4.21)

Claim 4.11:

(a) If y01 = 0 and b122 = 0 then x1(t) ≡ 0. If y01 = 0 and b122 	= 0 then

x1 =
(
b122
a

)
x2

2 + O
(
x3

2

)
as x2 → 0.

(b) If y02 = 0 and b211 = 0 then x2(t) ≡ 0. If y02 = 0 and b211 	= 0 then

x2 =
(
b211
a

)
x2

1 + O
(
x3

1

)
as x1 → 0.

Proof:

(a) To prove the first statement, observe that if x1 = 0 and b122 = 0 then [b(x)]1 = 0. Since y01 = 0,[
χ(1) (t,y0)

]
1

= 0. A simple inductive argument shows that
[
χ(m) (t,y0)

]
1

= 0 for each m ∈ N.

It follows from Theorem 4.9 that x1(t) ≡ 0.

To prove the second statement, set y01 = 0 in (4.21). Note that ξ1 = b122y2
02

a when y01 = 0.

(b) The first statement is proven exactly the same way as the first statement in the first part of

the claim. To prove the second statement, set y02 = 0 in (4.20). Note that ξ2 = b211y2
01

a when

y02 = 0.
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(a) x2

x1

y2 = 2y1

(b) y02

y01

−

−

−

y02 = 2y01

−

+

+

Figure 4.1: (a) The phase portrait near the origin for the example system (4.22). (b) The sign of
(

y02
y01

)3

− 8

in different regions of the y01y02-plane. This tells us the sign of the coefficient in front of the

x2
1 term in the expression for x2.

�

For a more concrete example, consider the system⎛⎝ẋ1

ẋ2

⎞⎠ =

⎛⎝−1 0

0 −1

⎞⎠⎛⎝x1

x2

⎞⎠+

⎛⎝ x2
1 + 8x1x2 + x2

2

8x2
1 + x1x2 + 8x2

2

⎞⎠ . (4.22)

Using (4.20), for y01 	= 0 we know

x2 =
(
y02

y01

)
x1 +

[(
y02

y01

)3

− 8

]
x2

1 + O
(
x3

1

)
as x1 → 0.

Moreover, using (4.21), for y02 	= 0 we know

x1 =
(
y01

y02

)
x2 +

[
8
(
y01

y02

)3

− 1

]
x2

2 + O
(
x3

2

)
as x2 → 0.

Observe that we can use the sign of the coefficient
(

y02

y01

)3
− 8 in front of the x2

1 term in the expression

for x2 to deduce concavity. A phase portrait of the system (4.22) is sketched in Figure 4.1.

4.4 Iterates of the Second Type

The calculation of the iterates of the first type
{
χ(m) (t,y0)

}∞
m=1

, where y0 := ψ(x0), may be very

difficult or possibly impossible. However, if b ∈ C∞ in a neighbourhood of 0 then we can (ideally)
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simplify the integration by using the Taylor series for b(x). Moreover, for a given iterate we only

need to use a Taylor polynomial of a certain order to obtain the same precision as if we used the

full function b(x).

Assume that b ∈ C∞(N ,Rn), where N ⊂ Rn is a neighbourhood with 0 ∈ N . By Taylor’s

Theorem, we can write

b(x) ∼
∞∑
i=

bi(x) as ‖x‖ → 0

for some index � ∈ {2, 3, . . .}, where each bi(x) has components which are homogeneous polynomials

of degree i. Note that we can take α = � and β = �− 1. Define

b(m)(x) :=
m∑

i=

bi(x), m ∈ {�, �+ 1, . . .} ,

which is the Taylor polynomial of b(x) of order m. Observe that

∥∥∥b(x) − b(m)(x)
∥∥∥ = O

(
‖x‖m+1

)
as ‖x‖ → 0. (4.23)

4.4.1 Definition of the Iterates

The iterates of the second type will be denoted by
{
χ̃(m) (t,y0)

}∞
m=1

. The first iterate χ̃(1) (t,y0)

is the same as χ(1) (t,y0) and, for m ∈ N, χ̃(m+1) (t,y0) is defined exactly as χ(m+1) (t,y0) (see

Equation (4.13b)) except b inside the integral is replaced by b([m+1][−1]). We use b([m+1][−1])

because, with this choice, the iterates of the second type achieve exactly the same closeness to the

exact solution as the iterates of the first type.

Assuming ‖x0‖ is sufficiently small, hence define the first iterate as

χ̃(1) (t,y0) := etAy0 (4.24a)

and define the successive iterates recursively by

χ̃(m+1) (t,y0) := etAy0 −
∫ ∞

t
e(t−s)Ab([m+1][−1])

(
χ(m) (s,y0)

)
ds (m ∈ N) . (4.24b)

Remark 4.12: Alternatively, suppose instead that b ∈ Cr(N ,Rn) but b 	∈ Cr+1(N ,Rn) for some

r ∈ {�+ 1, �+ 2, . . .}. Then, b(m) is defined only for m ∈ {�, . . . , r − 1} and χ̃(m) (t,y0) is defined

for m ∈
{

1, . . . ,
⌊

r−1
−1

⌋}
.
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4.4.2 Existence and Decay Rate of the Iterates

The decay rate for the iterates of the second type is the same as for the iterates of the first type.

Proposition 4.13: Consider the iterates defined by (4.24) and let σ ∈
(
0, μn−αμ1

+1

)
. Then, there is

a δ > 0 (independent of m) such that if ‖x0‖ < δ then χ̃(m) (t,y0) exists for each m ∈ N. Moreover,

there is a k > 0 (independent of m) such that∥∥∥χ̃(m) (t,y0)
∥∥∥ ≤ k e(μ1+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ, m ∈ N. (4.25)

Proof: The proof is exactly the same as the proof for Proposition 4.8, which establishes the decay

rate for the iterates of the first type. �

4.4.3 Closeness of the Iterates to the Actual Solution

Now, we establish how close each iterate of the second type χ̃(m) (t,y0) is to the actual solution

φt(x0). Observe that the decay rate is the same as with the iterates of the first kind (with α = �

and β = �− 1) given in (4.17).

Theorem 4.14: Consider the iterates defined by (4.24) and let σ ∈
(
0, μn−μ1

+1

)
. There are con-

stants δ > 0 and {km}∞m=1 ⊂ R+ such that∥∥∥φt(x0) − χ̃(m) (t,y0)
∥∥∥ ≤ kme[m(−1)+1][μ1+σ]t ‖x0‖m(−1)+1 for all (t,x0) ∈ Ωδ, m ∈ N.

Proof: Let δ > 0 be small enough so that all necessary estimates apply when x0 ∈ Bδ. Hence, we

will assume that x0 ∈ Bδ. The proof will be by induction on m.

Since χ̃(1) (t,y0) = χ(1) (t,y0), the base case m = 1 was already proven in Theorem 4.9. Assume

now that the theorem is true for a fixed m ∈ N and we will proceed to show that the theorem is

true for m+ 1.

For s ≥ 0, consider first the expression∥∥∥b (φs(x0)) − b([m+1][−1])
(
χ̃(m) (s,y0)

)∥∥∥
≤
∥∥∥b (φs(x0)) − b

(
χ̃(m) (s,y0)

)∥∥∥+
∥∥∥b(χ̃(m) (s,y0)

)
− b([m+1][−1])

(
χ̃(m) (s,y0)

)∥∥∥ ,
where we applied the Triangle Inequality. Now, using (4.3), (4.7), (4.25), the Mean Value Theorem,

and the induction hypothesis, we know there is some k(1)
m > 0 such that∥∥∥b (φs(x0)) − b

(
χ̃(m) (s,y0)

)∥∥∥ ≤ k(1)
m e[(m+1)(−1)+1][μ1+σ]s ‖x0‖(m+1)(−1)+1 .
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Furthermore, using (4.25) and (4.23), we know there is some k(2)
m > 0 such that∥∥∥b(χ̃(m) (s,y0)

)
− b([m+1][−1])

(
χ̃(m) (s,y0)

)∥∥∥ ≤ k(2)
m e[(m+1)(−1)+1][μ1+σ]s ‖x0‖(m+1)(−1)+1 .

These last three estimate together imply

∥∥∥b (φs(x0))−b([m+1][−1])
(
χ̃(m) (s,y0)

)∥∥∥ ≤ (k(1)
m +k(2)

m

)
e[(m+1)(−1)+1][μ1+σ]s ‖x0‖(m+1)(−1)+1 .

(4.26)

It follows from (4.6), (4.11), (4.24b), and (4.26) that there is a km+1 > 0 such that∥∥∥φt(x0) − χ̃(m+1) (t,y0)
∥∥∥ ≤ km+1e

[(m+1)(−1)+1][μ1+σ]s ‖x0‖(m+1)(−1)+1 .

Note that the restriction on σ given in the statement of the theorem ensures that the improper

integral in the expression for φt(x0)−χ̃(m+1) (t,y0) converges and also that km+1 indeed exists and

is positive. Hence, the theorem is true for m+ 1. By induction, the theorem is true for all m ∈ N.

�

4.5 The Function ψ

Let y0 := ψ(x0), where ψ was given in (4.10). This new “initial condition,” as we have seen is in

some sense more natural than the original initial condition x0. In this section, we explore properties

of the transformation ψ.

4.5.1 Conjugacy Condition

The Hartman-Grobman Theorem asserts that there is a homeomorphism h which maps flows of

the nonlinear system ẋ = Ax + b(x) onto flows of the linear system ẋ = Ax. That is, there is a

δ > 0 such that

h (φt(x0)) = etAh(x0) for all (t,x0) ∈ Ωδ.

See Figure 4.2. As we will now show, ψ is one such homeomorphism.

Theorem 4.15: There is a δ > 0 such that

ψ (φt(x0)) = etAψ(x0) for all (t,x0) ∈ Ωδ. (4.27)
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y2

y1

h (Bδ(0))

x2

x1

Bδ(0)

x0
φt(x0)

h−1

h

h (x0)

etAh (x0)

Figure 4.2: The nonlinear flow φt(x0) is mapped onto the linear flow etAy0 by the homeomorphism h.

Proof: Let δ > 0 be small enough so that if x0 ∈ Bδ then all relevant estimates apply. Hence,

assume that x0 ∈ Bδ.

If we replace x0 in (4.10) with φt(x0), we have

ψ (φt(x0)) = φt(x0) +
∫ ∞

0
e−ξAb(φξ(φt(x0))) dξ.

Using the integral equation (4.11) and the semi-group property of flows,

ψ (φt(x0)) = etAψ(x0) − etA

∫ ∞

t
e−sAb (φs(x0)) ds+

∫ ∞

0
e−ξAb (φξ+t(x0)) dξ

= etA

[
ψ(x0) −

∫ ∞

t
e−sAb (φs(x0)) ds+

∫ ∞

0
e−(ξ+t)Ab (φξ+t(x0)) dξ

]
.

With the change of variables s = ξ + t in the second integral, we see that

ψ (φt(x0)) = etA

[
ψ(x0) −

∫ ∞

t
e−sAb (φs(x0)) ds+

∫ ∞

t
e−sAb (φs(x0)) ds

]
= etAψ(x0).

�

4.5.2 A Partial Differential Equation which ψ Satisfies

The conjugacy condition (4.27) allows us to specify a partial differential equation which ψ satisfies.

Proposition 4.16: There is a δ > 0 such that the function ψ satisfies

[Dψ(x0)] [Ax0 + b(x0)] −Aψ(x0) = 0, ψ(0) = 0, Dψ(0) = I, (4.28)

for x0 ∈ Bδ, where D denotes the operator for differentiation with respect to spatial variables.
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Proof: First, we will establish the partial differential equations. Assume δ > 0 is sufficiently small

so that all necessary estimates apply when ‖x0‖ < δ. If we differentiate the conjugacy relation

(4.27) with respect to t and apply the differential equation which φt(x0) satisfies, we obtain

[Dψ (φt(x0))] [Aφt(x0) + b (φt(x0))] = AetAψ(x0).

Setting t = 0 gives what we needed to show. Second, we show that ψ(0) = 0. This can be obtained

by setting x0 = 0 in (4.12). Finally, we show that Dψ(0) = I. Observe that

lim
‖h‖→0

‖ψ(h) −ψ(0) − Ih‖
‖h‖ = lim

‖h‖→0

‖ψ(h) − h‖
‖h‖ = 0,

where we again applied (4.12) and used the fact that α > 1. It follows that ψ is differentiable at 0

with Dψ(0) = I. �

In Chapter 3, where we explored the scalar case, we were able to derive a quadrature solution for

ψ(x0). Here, however, we cannot find such a simple expression. If one is interested in approximating

ψ(x0), a power series approximation can be obtained. See, for example, [5, 65], both of which appear

in the proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation

(ISSAC 2003).

4.5.3 ψ is C1 when b is C1 and κ < β + 1

Proposition 4.17: Consider the function ψ. If we assume that κ < β + 1, then there are neigh-

bourhoods N1 � 0 and N2 � 0 for which ψ is a C1-diffeomorphism from N1 to N2.

Proof: We know that b is C1 in a neighbourhood of the origin and thus so is the right-hand side

of the differential equation, Ax + b(x). It follows that φt(x0) is C1 in both t and x0 for sufficiently

small ‖x0‖. Thus, for sufficiently small ‖x0‖, we can conclude that the integrand of the improper

integral in the definition (4.10) of ψ(x0), namely e−sAb (φs(x0)), is C1 in x0.

Using (2.20), (4.2), (4.3), (4.6), (4.7), for any sufficiently small σ > 0 we know that there are

δ, k1, k2 > 0 such that

∥∥e−sAb (φs(x0))
∥∥ ≤ k1e

(αμ1−μn+σ)s ‖x0‖α for all (s,x0) ∈ Ωδ

and ∥∥e−sADb (φs(x0))Dφs(x0)
∥∥ ≤ k2e

[(β+1)μ1−μn+σ]s ‖x0‖β for all (s,x0) ∈ Ωδ.
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Since αμ1 − μn < 0 and (β + 1)μ1 − μn < 0, we know that both of these exponentials decay as

s→ ∞. It follows that∫ ∞

0
e−sAb (φs(x0)) ds and

∫ ∞

0
e−sADb (φs(x0))Dφs(x0) ds

are continuous in x0 for x0 ∈ Bδ. Observe that the second integral is obtained from the first by

differentiating under the integral sign. Observe also that these two integrals equal, respectively,

ψ(x0) − x0 and Dψ(x0) − I.

Since ψ is continuously differentiable in a neighbourhood of the origin and Dψ(0) = I, by virtue

of the Inverse Function Theorem we know that there is a neighbourhood N1 of the origin such that

N1 ⊂ Bδ and ψ is invertible in N1. If we take N2 := ψ (N1), which is a neighbourhood of the origin,

we can write ψ ∈ C1(N1,N2) and ψ−1 ∈ C1(N2,N1). �

Remark 4.18: It is interesting to compare, for a special case, Proposition 4.17 and Theorem 3.4

of Chapter II in [16]. Now, the vector fields ξ(x) := Ax + b(x) and η(x) := Ax are Ck-conjugate

near the origin if there exists a Ck-diffeomorphism h and a δ > 0 such that h(φt(x0)) = etAh(x0)

for all (t,x0) ∈ Ωδ. Suppose that b ∈ C1 in a neighbourhood of the origin with α = 2 and β = 1.

Assume that κ < α. With these assumptions, Proposition 4.17 can be used to conclude ξ and η are

C1-conjugate (with ψ being one such homeomorphism). On the other hand, the theorem in [16]

requires the stronger conditions ‖b(x)‖ = o
(
‖x‖2

)
and ‖Db(x)‖ = o(‖x‖) as ‖x‖ → 0 in order to

conclude that ξ and η are C1-conjugate.

4.5.4 Analyticity of ψ when b is Analytic

Proposition 4.19: If b is analytic at the origin, then ψ is analytic at the origin. Furthermore, ψ

is invertible and ψ−1 is analytic at the origin.

Proof: First, we will show that the improper integral∫ ∞

0
e−sAb (φs(x0)) ds

is analytic (in x0) at the origin. Note that this integral equals ψ(x0) − x0. Let σ > 0 be sufficiently

small. We know that there are δ, k > 0 such that

∥∥e−tAb (φt(x0))
∥∥ ≤ k e(αμ1−μn+σ)t ‖x0‖α for all (t,x0) ∈ Ωδ.
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Let

F(z, t) := e−tAb (φt(z)) for (t, z) ∈ Ωδ,

where φt(x0) and Ωδ are extended in the natural way for complex vectors. Thus,

‖F(z, t)‖ ≤ k e(αμ1−μn+σ)t ‖z‖α for all (t, z) ∈ Ωδ.

Since the right-hand side of the differential equation ẋ = Ax + b(x) is real analytic (in x) at the

origin, we know that φt(x0) is real analytic (in x0) at the origin. It follows that F(z, t) is complex

analytic in z at the origin. Hence,
∫∞
0 F(z, s) ds is complex analytic in z at the origin. Therefore,

ψ(x0) is real analytic in x0 at the origin.

The fact that ψ is invertible with ψ−1 being analytic at the origin follows from the fact that

Dψ(0) = I and the Real Analytic Inverse Function Theorem. �

4.5.5 Optimality of the Linearized Solution etAy0

We have seen that y0, where y0 := ψ(x0), gives a more natural “initial condition” for the linear

system ẋ = Ax. As we will now show, the choice of initial condition y0 is in fact optimal in the

sense that
∥∥φt(x0) − etAψ(x0)

∥∥ has a faster exponential decay rate than
∥∥φt(x0) − etAz0

∥∥ for any

z0 	= ψ(x0).

Theorem 4.20: There are neighbourhoods N1 and N2 of the origin such that for any y0 ∈ N2

there exists a unique x0 ∈ N1 such that1

lim sup
t→∞

ln
∥∥φt(x0) − etAy0

∥∥
t

≤ αμ1. (4.29)

Proof: Let δ > 0 be sufficiently small so that if x0 ∈ N1 := Bδ then all appropriate estimates apply

and ψ is a bijection from N1 to N2 := ψ (N1). Let y0 ∈ N2 be fixed.

Existence follows by taking x0 := ψ−1(y0) and using (4.17) with m = 1 and the definition

(4.13a) of χ(1) (t,y0). To show uniqueness, suppose that x̂0 ∈ N1 has φt(x̂0) satisfying the given

estimate (4.29) and let ŷ0 := ψ(x̂0). Using the integral equation (4.11) with x̂0 instead of x0,

φt(x̂0) = etAŷ0 − etA

∫ ∞

t
e−sAb (φs(x̂0)) ds.

1If
∥∥φt(x0) − etAy0

∥∥ = 0 then we take the natural logarithm to be −∞.
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Subtracting etAy0 from both sides,

φt(x̂0) − etAy0 = etA [ŷ0 − y0] − etA

∫ ∞

t
e−sAb (φs(x̂0)) ds.

Thus,

ŷ0 − y0 = e−tA
[
φt(x̂0) − etAy0

]
+
∫ ∞

t
e−sAb (φs(x̂0)) ds.

It follows that

‖ŷ0 − y0‖ ≤
∥∥e−tA

∥∥ ∥∥φt(x̂0) − etAy0

∥∥+
∫ ∞

t

∥∥e−sAb (φs(x̂0))
∥∥ ds.

Let σ > 0 be sufficiently small. Using (4.6), (4.8), and (4.29), we know there is a k > 0 such that

‖ŷ0 − y0‖ ≤ k e(αμ1−μn+σ)t for all t ≥ 0.

Letting t→ ∞, we see that ŷ0 = y0. Since ψ is a bijection from N1 to N2, we conclude x̂0 = x0.

�

Corollary 4.21: There are neighbourhoods N1 and N2 of the origin such that if x0 ∈ N1 and

y0 ∈ N2\ {ψ (x0)} then

lim sup
t→∞

ln
∥∥φt(x0) − etAy0

∥∥
t

> αμ1.

4.5.6 A Simple Example

Let

A :=

⎛⎝−1 0

0 −2

⎞⎠ and b(x) :=

⎛⎝ 0

x3
1

⎞⎠
and consider the system ẋ = Ax + b(x). We will use the partial differential equation in (4.28) to

find ψ(x). Note that the eigenvalues are closely spaced and there is resonance in the eigenvalues.

Since the differential equation for x1 is decoupled from x2, we will use the ansatz

ψ(x) :=

⎛⎝ x1

x2 + ξ(x1)

⎞⎠ ,

where ξ(0) = 0 = ξ′(0) and ′ = d
dx1

. Using the partial differential equation,⎛⎝ 1 0

ξ′(x1) 1

⎞⎠⎛⎝ −x1

−2x2 + x3
1

⎞⎠−

⎛⎝ −x1

−2x2 − 2ξ(x1)

⎞⎠ =

⎛⎝0

0

⎞⎠ .
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Chapter 4. Closely-Spaced Eigenvalues (κ < α)

The first component is already satisfied and thus we have the ordinary differential equation

ξ′(x1) = x2
1 +

2ξ(x1)
x1

.

Solving this using an integrating factor,

ξ(x1) = (x1 + C)x2
1,

where C ∈ R is an arbitrary constant. Note that ξ(0) = ξ′(0) = 0 for all choices of C. Appealing

to (4.12), we know ‖x−ψ(x)‖ = O
(
‖x‖3

)
as ‖x‖ → 0 and so it must be that C = 0. Thus,

ψ(x) =

⎛⎝ x1

x2 + x3
1

⎞⎠ .

The exact solution, which can be found easily, is given by

φt(x0) =

⎛⎝ e−tx01

e−2t
[
x02 + x3

01

]
− e−3tx3

01

⎞⎠ .

Observe that

φt(x0) = etAψ(x0) +

⎛⎝ 0

−e−3tx3
01

⎞⎠ .

Thus,

lim sup
t→∞

ln
∥∥φt(x0) − etAψ(x0)

∥∥
t

≤ −3.

(The limit is −3 if x01 	= 0 and −∞ if x01 = 0.) However, if y0 	= ψ(x0) we see

lim sup
t→∞

ln
∥∥φt(x0) − etAy0

∥∥
t

≥ −2.

(The limit is either −1 or −2.) These results are consistent with Theorem 4.20 and Corollary 4.21.

4.6 Iterates of the Third Type (which are Flows)

The iterates of the first type
{
χ(m) (t,y0)

}∞
m=1

, where y0 := ψ(x0), are defined in the natural way

using the integral equation (4.11) which the actual solution φt(x0) satisfies. However, the iterates

of the first type are, generally, not flows. We will specify adjustments to the iterates which make

them flows.
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4.6.1 A Lemma

The following lemma resembles the semi-group property of flows. We will use this to construct the

iterates of the third type.

Lemma 4.22: There exists a δ > 0 such that

χ(m) (s,ψ (φt(x0))) = χ(m) (s+ t,ψ (x0)) for all s, t ≥ 0, x0 ∈ Bδ, m ∈ N. (4.30)

Proof: Let δ > 0 be small enough so that all relevant estimates apply if ‖x0‖ < δ. Hence, let

x0 ∈ Bδ. The proof will be by induction on m.

Consider first the base case m = 1. The iterate in question is χ(1) (t,y0) = etAy0. Using the

conjugacy condition (4.27),

χ(1) (s,ψ (φt(x0))) = esAψ (φt(x0)) = esAetAψ(x0) = e(s+t)Aψ(x0) = χ(1) (s+ t,ψ (x0)) .

Thus, the lemma is true for m = 1.

Now, assume that the lemma is true for a fixed m ∈ N. Using the definition (4.13b) for the

iterate χ(m+1) (t,y0), the conjugacy condition (4.27), and the induction hypothesis, we have

χ(m+1) (s,ψ (φt(x0))) = esAψ (φt(x0)) −
∫ ∞

s
e(s−r)Ab

(
χ(m) (r,ψ (φt(x0)))

)
dr

= esAetAψ (x0) −
∫ ∞

s
e(s−r)Ab

(
χ(m) (r + t,ψ (x0))

)
dr.

Using the change of variables ξ = r + t in the integral, we get

χ(m+1) (s,ψ (φt(x0))) = e(s+t)Aψ(x0) −
∫ ∞

s+t
e(s+t−ξ)Ab

(
χ(m) (ξ,ψ (x0))

)
dξ

= χ(m+1) (s+ t,ψ (x0)) .

Hence the lemma is true for m+ 1. By induction, the lemma is true for all m ∈ N. �

Corollary 4.23: There is a δ > 0 such that

χ(m)
(
s, etAψ(x0)

)
= χ(m) (s+ t,ψ(x0)) for all s, t ≥ 0, x0 ∈ Bδ, m ∈ N. (4.31)

Proof: It follows from (4.27) and (4.30). �
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4.6.2 Definition of the Iterates

We will denote the iterates of the third type by
{
ϕ

(m)
t (z0)

}∞
m=1

. For the initial point for these

iterates, we will take

z(m)
0 := χ(m) (0,y0) (m ∈ N) .

The estimate (4.15) implies there are δ, k > 0 (independent of m) such that∥∥∥z(m)
0

∥∥∥ ≤ k ‖x0‖ for all x0 ∈ Bδ, m ∈ N.

Define

ϕ
(m)
t (z0) := χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)

(m ∈ N) , (4.32)

where ‖z0‖ is sufficiently small. (Note that there is no problem using z0 in the definition (4.32)

instead of z(m)
0 .) That is,

ϕ
(m)
t

(
z(m)
0

)
= χ(m) (t,y0) (m ∈ N) . (4.33)

Proposition 4.24: There is a δ > 0 such that if ‖z0‖ < δ then, for each m ∈ N, ϕ(m)
t (z0) is a

flow.

Proof: There is a δ > 0 (independent of m) such that if ‖z0‖ < δ then all relevant improper

integrals converge and all relevant estimates apply. Hence, we will assume that ‖z0‖ < δ. Note

that χ(m) (0, ·) is indeed invertible since it is a near-identity transformation. Now, for ϕ(m)
t (z0) to

be a flow, we need

ϕ
(m)
0 (z0) = z0 and ϕ(m)

s

(
ϕ

(m)
t (z0)

)
= ϕ

(m)
s+t (z0) .

The first condition is obtained by setting t = 0 in the definition (4.32) and canceling inverse

functions. To obtain the second condition, first use the definition of ϕ(m)
t (z0), which tells us

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1 (
ϕ

(m)
t (z0)

))
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1
(
χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)))

.

Using (4.31) with s = 0 and canceling inverse functions,

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s,
[
χ(m) (0, ·)

]−1
(
χ(m)

(
0, etA

[
χ(m) (0, ·)

]−1
(z0)
)))

= χ(m)

(
s, etA

[
χ(m) (0, ·)

]−1
(z0)
)
.
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Using (4.31) again,

ϕ(m)
s

(
ϕ

(m)
t (z0)

)
= χ(m)

(
s+ t,

[
χ(m) (0, ·)

]−1
(z0)
)

= ϕ
(m)
s+t (z0) .

�

4.6.3 Differential Equation which the Iterates Satisfy

Since the iterates of the third type,
{
ϕ

(m)
t (z0)

}∞
m=1

, are flows, we know that they must be the

solution of an autonomous ordinary differential equation. We can use the iterates of the first type

along with (4.14) to specify this differential equation. The following results can be shown in exactly

the same manner as the corresponding results in §3.6.3.

Claim 4.25:

(a) Let ‖z0‖ be sufficiently small. The iterate ϕ(m)
t (z0) is the solution of

ż = g(m)(z), z(0) = z0,

where

g(m)(z) :=

⎧⎪⎨⎪⎩
Az, if m = 1

Az + b
(
χ(m−1)

(
0,
[
χ(m) (0, ·)

]−1
(z)
))

, if m > 1
.

(b) The function g(m)(z) satisfies∥∥∥Az + b(z) − g(m)(z)
∥∥∥ = O

(
‖z‖α+(m−1)β

)
as ‖z‖ → 0.

4.6.4 A Conjugacy Condition for the Iterates

Define, for sufficiently small ‖x0‖,

ψ̂(m)(x0) := χ(m) (0,ψ(x0)) (m ∈ N) . (4.34)

The initial condition z(m)
0 above, which we use for the iterates of the third type, thus can be written

z(m)
0 = ψ̂(m)(x0).

Observe that

ϕ
(m)
t

(
ψ̂(m)(x0)

)
= χ(m) (t,ψ(x0)) , (4.35)
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which follows from (4.33). Observe also that ψ̂(1) = ψ.

Recall that the function ψ, which maps the initial condition x0 to the initial condition y0,

satisfies the conjugacy condition ψ (φt(x0)) = etAψ(x0). That is, ψ maps flows of the nonlinear

differential equation onto flows of the linear differential equation. It turns out that the function

ψ̂(m), which maps the initial condition x0 to z(m)
0 , satisfies its own conjugacy condition. In par-

ticular, ψ̂(m) maps flows of the original nonlinear differential equation onto flows of the (generally

nonlinear) differential equation which ϕ(m)
t (z0) satisfies.

Theorem 4.26: Consider the function ψ̂(m). There is a δ > 0 such that

ψ̂(m) (φt(x0)) = ϕ
(m)
t

(
ψ̂(m)(x0)

)
for all (t,x0) ∈ Ωδ, m ∈ N.

Proof: Let x0 be sufficiently small, say ‖x0‖ < δ where δ > 0. Consider

ψ̂(m) (φt(x0)) = χ(m) (0,ψ (φt(x0))) (using (4.34))

= χ(m) (t,ψ(x0)) (using (4.30) with s = 0)

= ϕ
(m)
t

(
ψ̂(m)(x0)

)
(using (4.35)).

�

Proposition 4.27: There is a δ > 0 and {km}∞m=1 ⊂ R+ such that∥∥∥ψ̂(m)(x0) − x0

∥∥∥ ≤ km ‖x0‖α+(m−1)β for all x0 ∈ Bδ, m ∈ N.

Proof: Set t = 0 in (4.17) and apply (4.34). �

4.6.5 A Simple Example

Consider the system in §4.3.4 along with the first two iterates of the first type. We will calculate

the first two iterates of the third type. Setting t = 0 in the first two iterates, we see

χ(1) (0,y0) =

⎛⎝y01

y02

⎞⎠ and χ(2) (0,y0) =

⎛⎝ y01

y02 [1 − ry01] − ry2
01

⎞⎠ .

It follows that

[
χ(1) (0, ·)

]−1
(z0) =

⎛⎝z01
z02

⎞⎠ and
[
χ(2) (0, ·)

]−1
(z0) =

⎛⎝ z01

ξ(z0)

⎞⎠ , ‖z0‖ <
1
|r| ,
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where

ξ(z) :=
z2 + rz2

1

1 − rz1
.

Therefore, we have

ϕ
(1)
t (z0) = e−t

⎛⎝ z01

z02 + z01t

⎞⎠ and ϕ
(2)
t (z0) = e−t

⎛⎝ z01

ξ(z0) + z01t

⎞⎠−rz01e−2t

⎛⎝ 0

z01 + ξ(z0) + z01t

⎞⎠ .

Furthermore, using Claim 4.25 we know that the iterate ϕ(2)
t (z0) is the solution of

ż =

⎛⎝−1 0

1 −1

⎞⎠ z +

⎛⎝ 0

rz1ξ(z)

⎞⎠ , z(0) = z0,

where ‖z0‖ < |r|−1. Note that

ξ(z) = z2 + O
(
‖z‖2

)
as ‖z‖ → 0.

4.7 Transforming Widely-Spaced to Closely-Spaced Eigenvalues

This chapter deals with the case where the eigenvalues are closely-spaced relative to the nonlinear

part of the differential equation. That is, κ < α. In Chapter 5, we will deal with the case where the

eigenvalues are widely-spaced relative to the nonlinear part of the differential equation. That is,

κ ≥ α. However, the techniques for widely-spaced eigenvalues are decidedly more complicated. For-

tunately, in practice it is sometimes possible to transform a system with widely-spaced eigenvalues

to a system with closely-spaced eigenvalues.

4.7.1 Linearization Transformation

Suppose that ζ ∈ C1(N ,Rn), where N ⊂ Rn is some neighbourhood of the origin, satisfies

Dζ(x) [Ax + b(x)] − Aζ(x) = 0, ζ(0) = 0, Dζ(0) = I. (4.36)

The matrix A and vector field b still satisfy the same assumptions as before but we no longer

assume that the eigenvalues are closely-spaced relative to b. By Taylor’s Theorem,

‖ζ(x) − x‖ = o(‖x‖) and ‖Dζ(x) − I‖ = o(1) as ‖x‖ → 0. (4.37)
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Observe that ζ is a near-identity transformation which is invertible in a neighbourhood of the

origin. The inverse of ζ satisfies∥∥ζ−1(y) − y
∥∥ = o(‖y‖) as ‖y‖ → 0. (4.38)

We know that ψ is one such transformation (when the eigenvalues are closely-spaced relative to b).

Proposition 4.28: The change of variables y := ζ(x) transforms the initial value problem

ẋ = Ax + b(x), x(0) = x0

into the initial value problem

ẏ = Ay, y(0) = ζ(x0).

Proof: Obviously, y(0) = ζ(x0). Now, calculate

ẏ = Dζ(x)ẋ = Dζ(x) [Ax + b(x)] = Aζ(x) = Ay,

�

Remark 4.29: The fact that a linearization transformation satisfies a partial differential equation

has been explored by others. See, for example, [37].

We will use the fact that ζ converts the nonlinear system into a linear one to simplify more

complicated systems. In particular, ζ will annihilate lower-order terms so that the resulting system

has closely-spaced eigenvalues.

Proposition 4.30: Suppose that b̂ ∈ C1(N ,Rn) satisfies∥∥∥b̂(x)
∥∥∥ = O

(
‖x‖α̂

)
as ‖x‖ → 0,

where α̂ > 1 is a parameter. Then, the change of variables y := ζ(x) transforms the initial value

problem

ẋ = Ax + b(x) + b̂(x), x(0) = x0

into the initial value problem

ẏ = Ay + b(y), y(0) = ζ(x0),

where

b(y) := Dζ
(
ζ−1 (y)

)
b̂
(
ζ−1 (y)

)
and

∥∥b(y)
∥∥ = O

(
‖y‖α̂

)
as ‖y‖ → 0.
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Proof: Calculate

ẏ = Dζ(x)ẋ

= Dζ(x)
[
Ax + b(x) + b̂(x)

]
(by the DE)

= Dζ(x) [Ax + b(x)] + Dζ(x)b̂(x)

= Aζ(x) + Dζ(x)b̂(x) (applying (4.36))

= Ay + Dζ
(
ζ−1 (y)

)
b̂
(
ζ−1 (y)

)
.

Moreover, the decay rate of b(y) follows from (4.37), (4.38) and the decay rate of b̂(x). �

Remark 4.31: Suppose you have a system with widely-spaced eigenvalues. Assume that the

nonlinear part has been split into the form b(x) + b̂(x). Unfortunately, it is not always possible to

solve (4.36) for ζ(x). The following example is one in which there is resonance in the eigenvalues

and ζ(x) can be found.

4.7.2 A Simple Example

Let

A :=

⎛⎝−1 0

0 −2

⎞⎠ , b(x) :=

⎛⎝ 0

x2
1

⎞⎠ , and b̂(x) :=

⎛⎝ 0

x3
1

⎞⎠ .

Hence, consider the system

ẋ = Ax + b(x) + b̂(x). (4.39)

Observe that there is resonance in the eigenvalues of A and that the eigenvalues are widely-spaced

relative to the nonlinear part. Ultimately, our goal is to find asymptotic approximations for solutions

x(t) of (4.39) as t→ ∞.

Finding ζ

We will find a near-identity transformation ζ such that the change of variables y := ζ(x) con-

verts the system ẋ = Ax + b(x) into the system ẏ = Ay. Since the differential equation for x1 is

decoupled from x2, we will use the ansatz

ζ(x) :=

⎛⎝ x1

x2 + ξ(x1)

⎞⎠ ,
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where ξ(0) = 0 = ξ′(0) and ′ = d
dx1

. Using (4.36),

⎛⎝ 1 0

ξ′(x1) 1

⎞⎠⎛⎝ −x1

−2x2 + x2
1

⎞⎠−

⎛⎝ −x1

−2x2 − 2ξ(x1)

⎞⎠ =

⎛⎝0

0

⎞⎠ .

The first component is satisfied trivially and the second component yields the ordinary differential

equation

ξ′(x1) =
2ξ(x1)
x1

+ x1.

Solving with an integrating factor,

ξ(x1) = (ln |x1| +C)x2
1,

where C ∈ R is an arbitrary constant. We will take2

ζ(x) =

⎛⎝ x1

x2 + x2
1 ln |x1|

⎞⎠ .
Note that ζ ∈ C1 but ζ 	∈ C2 with

Dζ(x) =

⎛⎝ 1 0

x1 [2 ln |x1| + 1] 1

⎞⎠ and ζ−1(y) =

⎛⎝ y1

y2 − y2
1 ln |y1|

⎞⎠ .

Finding the Transformed System

Calculate

b(y) = Dζ
(
ζ−1 (y)

)
b̂
(
ζ−1 (y)

)
=

⎛⎝ 0

y3
1

⎞⎠ .

By Proposition 4.30, under the change of variables y := ζ(x) the system (4.39) is converted to the

system

ẏ = Ay + b(y). (4.40)

Importantly, this system has eigenvalues which are closely-spaced relative to the nonlinear part.

2Sometimes, you may want to choose the arbitrary constant to be something other than zero to simplify the

resulting system.
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Finding Iterates for the Transformed System

For the transformed system (4.40), the first two iterates are

χ(1) (t, c) =

⎛⎝ e−tc1

e−2tc2

⎞⎠ and χ(2) (t, c) =

⎛⎝ e−tc1

e−2tc2 − e−3tc31

⎞⎠ ,

where c := ψ(y0) and ψ is defined with respect to the system (4.40). By Theorem 4.9,

y(t) =

⎛⎝ e−tc1 + O
(
e−5t
)

e−2tc2 − e−3tc31 + O
(
e−5t
)
⎞⎠ as t→ ∞,

where y(t) is the solution of (4.40) with y(0) = y0.

Finding Associated Iterates for the Original System

Let x(t) be the solution of the original system (4.39). Since y = ζ(x), we have

x(t) = ζ−1 (y(t))

=

⎛⎝ e−tc1 + O
(
e−5t
)

[
e−2tc2 − e−3tc31 + O

(
e−5t
)]

−
[
e−tc1 + O

(
e−5t
)]2

ln
∣∣e−tc1 + O

(
e−5t
)∣∣
⎞⎠ .

Since ln(1 + u) = O(u) as u→ 0, we can write

ln
∣∣e−tc1 + O

(
e−5t
)∣∣ = ln

∣∣e−t
∣∣ |c1| ∣∣1 + O

(
e−4t
)∣∣

= ln
∣∣e−t
∣∣+ ln |c1| + ln

∣∣1 + O
(
e−4t
)∣∣

= −t+ ln |c1| + O
(
e−4t
)

as t→ ∞.

Thus,

x(t) =

⎛⎝ e−tc1 + O
(
e−5t
)

[
e−2tc2 − e−3tc31 + O

(
e−5t
)]

−
[
e−2tc21 + O

(
e−6t
)] [

−t+ ln |c1| + O
(
e−4t
)]
⎞⎠

=

⎛⎝ e−tc1 + O
(
e−5t
)

e−2t
[
c2 − c21 ln |c1| + c21t

]
− e−3tc31 + O

(
e−5t
)
⎞⎠ .

Remark 4.32: It turns out that χ(3) (t, c) = χ(2) (t, c). Consequently, χ(m) (t, c) = χ(2) (t, c) for

any m ∈ {2, 3, . . .} and y(t) = χ(2) (t, c). Hence, we can drop the error terms in our expression for

x(t). In terms of the initial condition x(0) = x0, the actual solution is

x(t) =

⎛⎝ e−tx01

e−2t
[
x3

01 + x02 + x2
01t
]
− e−3tx3

01

⎞⎠ .
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4.7.3 Normal Forms

The concept of reducing the case of widely-spaced eigenvalues to the case of closely-spaced eigen-

values is related to the theory of normal forms. Suppose that the nonlinear vector field b is analytic

(or sufficiently smooth) at the origin and the eigenvalues of A are widely-spaced relative to b. By

means of a near-identity, analytic transformation, it is sometimes possible to convert the system to

a new system with closely-spaced eigenvalues.

Suppose that there is no resonance in the eigenvalues of A. For a given m > κ, by the Normal

Form Theorem there exists a sequence of near-identity, analytic transformations such that the dif-

ferential equation ẋ = Ax + b(x) is converted to a differential equation of the form ẏ = Ay + c(y)

where ‖c(y)‖ = O(‖y‖m) as ‖y‖ → 0. The new system, of course, has eigenvalues which are closely-

spaced relative to the nonlinear part. See §A.11 in Appendix A which covers normal forms.

Suppose now that there is resonance in the eigenvalues of A, say with lowest order m (see

§A.9). The best we can do is find a sequence of near-identity, analytic transformations to convert

ẋ = Ax + b(x) to ẏ = Ay + c(y) where ‖c(y)‖ = O(‖y‖m) as ‖y‖ → 0. Hopefully m > κ.

4.8 Summary

In this chapter, we explored the initial value problem

ẋ = Ax + b(x), x(0) = x0,

where the eigenvalues of A are closely-spaced relative to the vector field b. In particular, the real

parts {μi}n
i=1 of the eigenvalues of A and the parameters α and β are as in Chapter 2 and, in this

chapter, we assumed αμ1 − μn < 0.

We re-wrote the standard integral equation for the flow φt(x0) as

φt(x0) = etAy0 −
∫ ∞

t
e(t−s)Ab(φs(x0)) ds,

where

y0 = ψ(x0) = x0 +
∫ ∞

0
e−sAb(φs(x0)) ds

is a useful, related initial condition. Note that our assumptions on A and b(x) as well as our expo-

nential estimate for the flow guarantee that the above improper integrals converge for sufficiently
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4.8. Summary

small ‖x0‖. Interestingly, the function ψ is near-identity and y0 is the unique point such that

lim sup
t→∞

ln
∥∥φt(x0) − etAy0

∥∥
t

≤ αμ1.

In other words, y0 is the optimal initial condition for the linearized initial value problem.

This chapter introduced iterates of the first type
{
χ(m) (t,y0)

}∞
m=1

, given by

χ(1) (t,y0) = etAy0, χ(m+1) (t,y0) = etAy0 −
∫ ∞

t
e(t−s)Ab

(
χ(m) (s,y0)

)
ds (m ∈ N).

In practice, y0 is left as a parameter so that is why we regard y0 as a variable instead of x0. These

iterates satisfy, for any sufficiently small σ > 0, the decay rate∥∥∥χ(m) (t,y0)
∥∥∥ = O

(
e(μ1+σ)t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0 uniformly in m.

Furthermore, the iterates are successively better asymptotic approximations to the actual solution

as t→ ∞, satisfying∥∥∥φt(x0) − χ(m) (t,y0)
∥∥∥ = O

(
e[α+(m−1)β][μ1+σ]t ‖x0‖α+(m−1)β

)
as t→ ∞ and ‖x0‖ → 0,

where σ > 0 is sufficiently small. Note that if A is diagonalizable, we can take σ = 0 for these

estimates.

If we can approximate b(x) by a Taylor series, then we can construct the iterates of the second

type
{
χ̃(m) (t,y0)

}∞
m=1

similar to the iterates of the first type by truncating b(x) to a certain order.

If we only have a Taylor polynomial for b(x), we can only define a certain number of iterates.

The function ψ satisfies the conjugacy condition

ψ (φt(x0)) = etAψ(x0),

which is the same conjugacy condition in the Hartman-Grobman Theorem. Also, ψ satisfies the

initial value problem

[Dψ (x0)] [Ax0 + b(x0)] − Aψ (x0) = 0, ψ(0) = 0, Dψ(0) = I.

Finally, we know that if b(x) is analytic then ψ(x0) is analytic.

The iterates of the first type have a natural definition but unfortunately these iterates are not

flows. Hence, we defined the iterates of the third type
{
ϕ

(m)
t (z0)

}∞
m=1

, given by

ϕ
(m)
t (z0) = χ(m)

(
t,
[
χ(m) (0, ·)

]−1
(z0)
)

(m ∈ N)
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which are indeed flows. That is,

ϕ
(m)
0 (z0) = z0 and ϕ(m)

s

(
ϕ

(m)
t (z0)

)
= ϕ

(m)
s+t (z0) .

The initial point z0 for the iterate ϕ(m)
t (z0) is z0 = χ(m) (0,y0). Furthermore, these iterates satisfy

the conjugacy condition

ψ̂(m) (φt(x0)) = ϕ
(m)
t

(
ψ̂(m)(x0)

)
, where ψ̂(m)(x0) = χ(m) (0,ψ(x0)) .

That is, ψ̂(m) (which gives z0 as a function of x0 for a given m) maps flows of the nonlinear

differential equation onto flows of the differential equation which ϕ(m)
t (z0) satisfies.

We concluded this chapter with a brief discussion on how it is sometimes possible to convert a

system with widely-spaced eigenvalues into a system with closely-spaced eigenvalues. In the next

chapter, we explore separately the case of widely-spaced eigenvalues.
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Chapter 5

Widely-Spaced Eigenvalues (κ ≥ α)

5.1 Introduction

Recall the initial value problem (2.5). Our goal in this part of the thesis is to use an iterative scheme

to obtain asymptotic information about the solution x(t) as t→ ∞ when ‖x0‖ is sufficiently small.

In Chapter 3 we explored the scalar case and in Chapter 4 we explored the multi-dimensional case

in which the eigenvalues of the matrix A are closely-spaced relative to the nonlinear part b(x). In

this chapter, we will explore the multi-dimensional case in which the eigenvalues are widely-spaced

relative to the nonlinear part. For simplicity, we will restrict our attention to a special case (namely

the planar, diagonal case) which is most applicable to us.

5.1.1 The Problem

Consider the initial value problem

ẋ = Ax + b(x), x(0) = x0, (5.1)

where

A :=

⎛⎝a 0

0 κa

⎞⎠ and b(x) =

⎛⎝b1(x)

b2(x)

⎞⎠ .

Denote the solution of (5.1) by

φ(t,x0) =

⎛⎝φ1(t,x0)

φ2(t,x0)

⎞⎠ .
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We need to alter the notation for the flow from previous chapters since we will have to frequently

refer to the components.

Assumption 5.1: Consider the matrix A and vector field b.

(a) There is some neighbourhood N ⊂ R2 with 0 ∈ N and b ∈ C1
(
N ,R2

)
.

(b) There are δ, k > 0 such that

‖b(x)‖ ≤ k ‖x‖α for all x ∈ Bδ, (5.2)

where α > 1 is a fixed parameter.

(c) There are δ, k > 0 such that

‖Db(x)‖ ≤ k ‖x‖β for all x ∈ Bδ, (5.3)

where β > 0 is a fixed parameter.

(d) It is assumed that a < 0 and κ ≥ α. Thus,

κa ≤ αa < a < 0. (5.4)

5.1.2 Integral Equation

The initial value problem (5.1) can be written as the integral equation

φ(t,x0) = etAx0 +
∫ t

0
e(t−s)Ab (φ(s,x0)) ds. (5.5)

Due to the form of the matrix A and vector field b, we can write the integral equation (5.5) as

φ(t,x0) =

⎛⎝ eatx01 +
∫ t
0 ea(t−s)b1 (φ(s,x0)) ds

eκatx02 +
∫ t
0 eκa(t−s)b2 (φ(s,x0)) ds

⎞⎠ , (5.6)

where x0 = (x01, x02)
T .

5.1.3 Important Estimates We Already Know

Define, for any δ > 0, the set

Ωδ :=
{

(t,x) : t ≥ 0, x ∈ R2, ‖x‖ < δ
}
.

The basic estimates, which we saw in Chapter 2, that we will make extensive use of in this chapter

are restated below.
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Chapter 5. Widely-Spaced Eigenvalues (κ ≥ α)

• We know from Claim 2.9 that

eκat ≤
∥∥etA

∥∥ ≤ eat for all t ≥ 0.

• We also know from Claim 2.9 that

e−at ≤
∥∥e−tA

∥∥ ≤ e−κat for all t ≥ 0. (5.7)

• Since A is diagonal, we know from (2.9) that there are δ, k > 0 such that

‖φ(t,x0)‖ ≤ k eat ‖x0‖ for all (t,x0) ∈ Ωδ. (5.8)

5.1.4 Decay Rate of φ2(t,x0)

Consider the decay rate (5.8). We cannot improve, in general, the decay rate for the first component

φ1(t,x0) but we can improve the decay rate of the second component φ2(t,x0).

Claim 5.2: For any σ > 0 there are δ, k > 0 such that

|φ2(t,x0)| ≤ k e(αa+σ)t ‖x0‖ for all (t,x0) ∈ Ωδ. (5.9)

Proof: Using (5.6), we see that

φ2(t,x0) = eκatx02 + eκat

∫ t

0
e−κasb2 (φ(s,x0)) ds.

Applying the estimates (5.2) and (5.8), we know that there are δ, k1, k2 > 0 such that if (t,x0) ∈ Ωδ

then

|φ2(t,x0)| ≤ eκat |x02| + eκat

∫ t

0
e−κas |b2 (φ(s,x0))| ds

≤ k1e
κat ‖x0‖ + k2e

κat

[∫ t

0
e−(κ−α)as ds

]
‖x0‖α .

In order to simplify the integral, we need to account for the case where κ = α. To accomplish this,

let σ > 0. Thus,

σ − (κ− α) a > 0 and e−(κ−α)as ≤ e[σ−(κ−α)a]s for all s ≥ 0

and hence

|φ2(t,x0)| ≤ k1e
κat ‖x0‖ +

[
k2

σ − (κ− α) a

] [
e(αa+σ)t − eκat

]
‖x0‖α

≤ k1e
κat ‖x0‖ +

[
k2

σ − (κ− α) a

]
e(αa+σ)t ‖x0‖α .
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Let

k3 :=
k2

σ − (κ− α) a
and k := k1 + k3δ

α−1.

Since α > 1 and κ ≥ α, we have

|φ2(t,x0)| ≤
{
k1e

−[σ−(κ−α)a]t + k3 ‖x0‖α−1
}

e(αa+σ)t ‖x0‖

≤
[
k1 + k3δ

α−1
]
e(αa+σ)t ‖x0‖

= k e(αa+σ)t ‖x0‖ .

�

Remark 5.3: If κ > α then we can take σ = 0 in (5.9). This principle, in fact, applies throughout

this chapter.

5.1.5 Crucial Obstacle

In Chapters 3 and 4, we were able to “flip the integral” in the general integral equation (5.5) and

write

φ(t,x0) = etA

[
x0 +

∫ ∞

0
e−sAb (φ(s,x0)) ds

]
−
∫ ∞

t
e(t−s)Ab (φ(s,x0)) ds.

However, we cannot do this in this chapter. Why? The estimates (5.2), (5.7), and (5.8) tell us that

there are δ, k > 0 such that

∥∥e−sAb (φ(s,x0))
∥∥ ≤ k e(α−κ)as ‖x0‖α for all (s,x0) ∈ Ωδ.

The condition (5.4) prevents us from concluding that
∥∥e−sAb (φ(s,x0))

∥∥ decays exponentially. This

in turn means that we cannot, in general, “flip the integral” in (5.5). Hence, we cannot find the

initial condition y0 and define the iterates as easily as with the case of closely-spaced eigenvalues.

5.1.6 David Siegel

The basic idea for the iterates, which we will explore momentarily, is due to David Siegel. In

particular, the idea involves iterating in the first component and later iterating in the second

component.
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5.2 “Flipping the Integral” in the First Component

We know that we cannot “flip” both integrals in (5.6). However, we observe the following.

Claim 5.4: There are δ, k > 0 such that∣∣e−asb1 (φ(s,x0))
∣∣ ≤ k e(α−1)as ‖x0‖α for all (s,x0) ∈ Ωδ. (5.10)

Proof: It follows from (5.2) and (5.8). �

Since α > 1, we see from (5.10) that we can “flip the integral” in the first component of (5.6).

This gives us the following.

Claim 5.5: There is a δ > 0 such that

φ(t,x0) =

⎛⎝ eaty01 −
∫∞
t ea(t−s)b1 (φ(s,x0)) ds

eκatx02 +
∫ t
0 eκa(t−s)b2 (φ(s,x0)) ds

⎞⎠ for all (t,x0) ∈ Ωδ, (5.11)

where

y01 := ψ1(x0) and ψ1(x0) := x01 +
∫ ∞

0
e−asb1 (φ(s,x0)) ds. (5.12)

Claim 5.6: There are δ, k > 0 such that

|x01 − ψ1(x0)| ≤ k ‖x0‖α for all x0 ∈ Bδ. (5.13)

Proof: It follows from (5.10) and (5.12). �

Claim 5.7: There is a δ > 0 such that

ψ1 (φ(t,x0)) = eatψ1 (x0) for all (t,x0) ∈ Bδ.

Proof: The proof is essentially identical to the proof of Theorem 3.16 on page 51 and makes use

of the integral equation (5.11) for φ1(t,x0), the definition (5.12) of ψ1(x0), a change of variables,

and the semi-group property. �

5.3 First Group of Iterates

We will now introduce the iterates, which will be denoted by
{
χ(m) (t,y0)

}∞
m=1

and, in component

form,

χ(m) (t,y0) =

⎛⎝χ(m)
1 (t,y0)

χ
(m)
2 (t,y0)

⎞⎠ .
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However, we cannot specify all the iterates just yet since we must split the iterates into two groups.

Let y01 := ψ1(x0) and let ‖x0‖ be sufficiently small.

5.3.1 Definition of the Iterates

Define

p :=
⌊
κ− α

β

⌋
+ 2.

Observe that1

p ∈ {2, 3, . . .} and [α+ (p− 1) β] a < κa ≤ [α+ (p− 2) β] a. (5.14)

Take as the first iterate

χ(1) (t, y01) :=

⎛⎝eaty01

0

⎞⎠ (5.15a)

and (if p > 2) define recursively

χ(m+1) (t, y01) :=

⎛⎝eaty01 −
∫∞
t ea(t−s)b1

(
χ(m) (s, y01)

)
ds∫ t

0 eκa(t−s)b2
(
χ(m) (s, y01)

)
ds

⎞⎠ , 1 ≤ m ≤ p− 2. (5.15b)

Remarks 5.8:

(i) The purpose of the first group of iterates is to get χ(p−1) (t, y01) close enough to φ(t,x0) so

that we can perform another “trick” in the second component of the integral equation (5.11).

(ii) Since the first group of iterates does not depend on y02, we use the notation χ(m) (t, y01)

instead of χ(m) (t,y0). This is a necessary distinction since y02 := ψ2(x0) will be defined in

terms of χ(p−1) (t, y01).

(iii) The definition of the iterates
{
χ(m) (t, y01)

}p−1

m=1
follows naturally from the integral equation

(5.11) except for the absence of the term eκatx02. There are three reasons why we omit this

term. First, we do not yet have an appropriate interpretation of y02 and so we should not

include the term eκaty02. Second, we cannot use the term eκatx02 since we want the iterates to

be functions of y0 and not of x0. Finally, it turns out that the term eκatx02 is dominated by

the integral
∫ t
0 eκa(t−s)b2 (φ(s,x0)) ds and the presence of the term eκaty02 (or eκatx02) would

not factor into decay rates until the second group of iterates.
1For r ∈ R, we know �r� ≤ r < �r� + 1. With r = κ−α

β
and �r� = p− 2, we see p− 2 ≤ κ−α

β
< p− 1. Hence,

α+ (p− 2) β ≤ κ < α+ (p− 1) β.
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5.3.2 Existence and Decay Rate of the Iterates

We will now establish the decay rate of the first group of iterates. This basic exponential decay

rate is the same as for φ(t,x0) uniformly in m.

Proposition 5.9: Consider the first group of iterates defined by (5.15). Then, there is a δ > 0

(independent of m) such that if ‖x0‖ < δ then χ(m) (t, y01) exists for each m ∈ {1, . . . , p− 1}. More-

over, there is a k > 0 (independent of m) such that∥∥∥χ(m) (t, y01)
∥∥∥ ≤ k eat ‖x0‖ for all (t,x0) ∈ Ωδ, m ∈ {1, . . . , p− 1} . (5.16)

Proof: Since we are dealing with a finite number of iterates, we do not need to be careful in finding

δ > 0 and k > 0. The proof will be by induction on m.

Consider first the base case m = 1. It follows easily from (5.13) and (5.15a) that χ(m) (t, y01)

exists and ∥∥∥χ(m) (t, y01)
∥∥∥ = O

(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0.

Thus, the result is true for m = 1.

If p = 2 then we are finished. Suppose that p > 2 and that the result is true form ∈ {1, . . . , p− 2}.

It follows from (5.2), (5.13), and the induction hypothesis that∫ ∞

t
ea(t−s)b1

(
χ(m) (s, y01)

)
ds = O

(
eαat ‖x0‖α) as t → ∞ and ‖x0‖ → 0

and, for any σ > 0,∫ t

0
eκa(t−s)b2

(
χ(m) (s, y01)

)
ds = O

(
e(αa+σ)t ‖x0‖α

)
as t→ ∞ and ‖x0‖ → 0.

Since σ > 0 is arbitrary and α > 1, it follows from (5.15b) that χ(m+1) (t, y01) exists and∥∥∥χ(m+1) (t, y01)
∥∥∥ = O

(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0.

Thus, the result is true for m+ 1 and, by induction, the result is true for all m ∈ {1, . . . , p− 1}. �

It is worth emphasizing the decay rate for χ(m)
2 (t, y01) as a separate result. This decay rate was

established in the proof of Proposition 5.9.

Claim 5.10: Consider the first group of iterates defined by (5.15) and let σ > 0 be sufficiently

small. There are δ, k > 0 such that∣∣∣χ(m)
2 (t, y01)

∣∣∣ ≤ k e(αa+σ)t ‖x0‖α for all (t,x0) ∈ Ωδ, m ∈ {1, . . . , p− 1} .
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5.3.3 Closeness of the Iterates to the Actual Solution

Here, we establish how good the iterate χ(m) (t, y01), for m ∈ {1, . . . , p− 1}, is as an asymptotic

approximation to φ(t,x0). As this theorem shows, each iteration improves the accuracy by a factor

which is O
(
eβat
)

as t→ ∞.

Theorem 5.11: Consider the first group of iterates defined by (5.15) and let σ > 0 be sufficiently

small. There are constants δ > 0 and {km}p−1
m=1 ⊂ R+ such that∥∥∥φ(t,x0) − χ(m) (t, y01)

∥∥∥ ≤ kme[α+(m−1)β][a+σ]t ‖x0‖ for all (t,x0) ∈ Ωδ, m ∈ {1, . . . , p− 1} .

(5.17)

Proof: Since we are dealing with a finite number of iterates, we do not need to be careful in finding

δ > 0 and {km}p−1
m=1 ⊂ R+. The proof will be by induction on m.

Consider first the base case m = 1. Using (5.9), (5.10), (5.11) and (5.15a), we know that

φ1(t,x0) − χ
(1)
1 (t, y01) = O

(
eαat ‖x0‖α) and φ2(t,x0) − χ

(1)
2 (t, y01) = O

(
eα(a+σ)t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0. Thus,∥∥∥φ(t,x0) − χ(1) (t, y01)

∥∥∥ = O
(
eα(a+σ)t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0

and the result is true for m = 1.

If p = 2 then we are done. Assume that p > 2 and that the result is true for a fixed index

m ∈ {1, . . . , p− 2}. Using (5.3), (5.8), (5.11), (5.15b), (5.16), the Mean Value Theorem, and the

induction hypothesis, we know that

φ1(t,x0) − χ
(m+1)
1 (t, y01) = O

(
e[α+mβ][a+σ]t ‖x0‖β+1

)
and

φ2(t,x0) − χ
(m+1)
2 (t, y01) = eκatx02 + O

(
e[α+mβ][a+σ]t ‖x0‖β+1

)
as t→ ∞ and ‖x0‖ → 0. Note that (5.14) and the fact that m ∈ {1, . . . , p− 2} imply

κa ≤ [α+ (p− 2) β] a ≤ [α+mβ] a.

It follows that∥∥∥φ(t,x0) − χ(m) (t, y01)
∥∥∥ = O

(
e[α+mβ][a+σ]t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0.
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Hence, the result is true for m+ 1 and, by mathematical induction, the result is true for all

m ∈ {1, . . . , p− 2}. �

5.4 “Flipping the Integral” in the Second Component

5.4.1 Performing the “Flip”

Let y01 := ψ1(x0), where we assume ‖x0‖ is sufficiently small. Consider the integral equation (5.11)

for which the first integral has been “flipped” but the second integral has not. We will manipulate

the expression for the second component of the flow, φ2(t,x0), so that we can “flip the integral” in

some way. Write

φ2(t,x0) = eκatx02 + eκat

∫ t

0
e−κasb2 (φ(s,x0)) ds

+ eκat

[∫ t

0
e−κasb2

(
χ(p−1) (s, y01)

)
ds−

∫ t

0
e−κasb2

(
χ(p−1) (s, y01)

)
ds

]
.

Re-arranging,

φ2(t,x0) = eκatx02 + eκat

∫ t

0
e−κas

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]
ds

+ eκat

∫ t

0
e−κasb2

(
χ(p−1) (s, y01)

)
ds. (5.18)

We want to “flip the first integral” in (5.18). To do this, we need to check the exponential decay

rate of the integrand.

Claim 5.12: Let σ > 0 be sufficiently small. There are δ, k > 0 such that∣∣∣e−κas
[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]∣∣∣ ≤ k e[α+(p−1)β−κ][a+σ]s ‖x0‖β+1 (5.19)

for all (s,x0) ∈ Ωδ.

Proof: It follows from (5.3), (5.8), (5.16), and (5.17) in conjunction with the Mean Value Theorem.

�

We know that by virtue of (5.14), we have exponential decay for the integrand of the first

integral in (5.18). Furthermore, we see that (in general) we would not have exponential decay if we

replaced χ(p−1) (s, y01) by χ(p−2) (s, y01). That is, we iterated just enough times so that we could
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perform this “integral flip.” Hence, define

y02 := ψ2(x0) and ψ2(x0) := x02 +
∫ ∞

0
e−κas

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]
ds. (5.20)

Claim 5.13: There are δ, k > 0 such that

‖x02 − ψ2(x0)‖ ≤ k ‖x0‖β+1 for all x0 ∈ Bδ. (5.21)

Proof: It follows from (5.19) and (5.20). �

Using y02, we can thus write (5.18) as

φ2(t,x0) =
[
eκaty02 +

∫ t

0
eκa(t−s)b2

(
χ(p−1) (s, y01)

)
ds

]
−
∫ ∞

t
eκa(t−s)

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]
ds. (5.22)

Note that, using (5.11), the first component of the flow satisfies

φ1(t,x0) =
[
eaty01 −

∫ ∞

t
ea(t−s)b1

(
χ(p−1) (s, y01)

)
ds

]
−
∫ ∞

t
ea(t−s)

[
b1 (φ(s,x0)) − b1

(
χ(p−1) (s, y01)

)]
ds. (5.23)

5.4.2 The Function ψ

Since we now have ψ1(x0) and ψ2(x0), we can define ψ(x0):

ψ(x0) :=

⎛⎝ψ1(x0)

ψ2(x0)

⎞⎠ =

⎛⎝ x01 +
∫∞
0 e−asb1 (φ(s,x0)) ds

x02 +
∫∞
0 e−κas

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, ψ1(x0))

)]
ds

⎞⎠ . (5.24)

Note that the definition of ψ2(x0) depends on ψ1(x0).

Claim 5.14: There are δ, k > 0 such that

‖x0 −ψ(x0)‖ ≤ k ‖x0‖
min{α,β+1}

for all x0 ∈ Bδ.

Furthermore, ψ is a near-identity transformation.

Proof: The estimate follows from (5.13) and (5.21). Since α > 1 and β > 0 it follows from the

estimate that ψ is near-identity. �
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5.5 Second Group of Iterates

We are now in a position to define the remainder of the iterates,
{
χ(m) (t,y0)

}∞
m=p

. Let y0 := ψ(x0),

where ψ is defined in (5.24) and ‖x0‖ is sufficiently small.

5.5.1 Definition of the Iterates

With inspiration from (5.22) and (5.23), we will define the pth iterate by

χ(p) (t,y0) :=

⎛⎝ eaty01 −
∫∞
t ea(t−s)b1

(
χ(p−1) (s, y01)

)
ds

eκaty02 +
∫ t
0 eκa(t−s)b2

(
χ(p−1) (s, y01)

)
ds

⎞⎠ (5.25a)

and define the subsequent iterates recursively by

χ(m+1) (t,y0) := χ(p) (t,y0)−
∫ ∞

t
e(t−s)A

[
b
(
χ(m) (s,y0)

)
−b
(
χ(p−1) (s, y01)

)]
ds, m ≥ p.

(5.25b)

Observe that we can combine (5.22), (5.23), and (5.25a) to write an integral equation for φ(t,x0)

in terms of χ(p−1) (t, y01) and χ(p) (t,y0).

Claim 5.15: There is a δ > 0 such that

φ(t,x0) = χ(p) (t,y0) −
∫ ∞

t
e(t−s)A

[
b (φ(s,x0)) − b

(
χ(p−1) (s, y01)

)]
ds (5.26)

for all (t,x0) ∈ Ωδ.

Remark 5.16: We have been using the notation
{
χ(m) (t, y01)

}p−1

m=1
for the first group of iterates.

However, if we need to refer to all the iterates at once we will use, for simplicity, the notation{
χ(m) (t,y0)

}∞
m=1

. The reader should remain mindful of the fact that y02 is defined in terms of y01

and χ(p−1) (t, y01).

5.5.2 Existence and Decay Rate of the Iterates

Proposition 5.17: Consider the second group of iterates defined by (5.25). Then, there is a δ > 0

(independent of m) such that if ‖x0‖ < δ then χ(m) (t,y0) exists for each m ≥ p. Moreover, there

is a k > 0 (independent of m) such that∥∥∥χ(m) (t,y0)
∥∥∥ ≤ k eat ‖x0‖ for all (t,x0) ∈ Ωδ, m ≥ p.
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Proof: For brevity, we will omit the careful construction of the constants δ > 0 and k > 0. See the

proof of Proposition 4.8 for how one could be more careful. The proof will be by strong induction

on m.

Consider the base case m = p. Instead of using the definition (5.25a) of χ(p) (t,y0), we will

calculate the decay rate of χ(p) (t,y0) using (5.26). Now, it follows from (5.3), (5.7), (5.8), (5.16),

and (5.17) along with the Mean Value Theorem that, for any σ > 0,∥∥∥∥∫ ∞

t
e(t−s)A

[
b (φ(s,x0)) − b

(
χ(p−1) (s, y01)

)]
ds

∥∥∥∥ = O
(
e[α+(p−1)β][a+σ]t ‖x0‖β+1

)
(5.27)

as t→ ∞ and ‖x0‖ → 0. Since σ > 0 is arbitrary, p > 1, α > 1, and β > 0, using (5.8) and (5.26)

we see χ(p) (t,y0) exists with∥∥∥χ(p) (t,y0)
∥∥∥ = O

(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0

as required.

Suppose that the result is true for each � ∈ {p, . . . ,m} where m > p is fixed. Now, taking the

difference of (5.25b) and (5.26), we see that

φ(t,x0) −χ() (t,y0) = −
∫ ∞

t
e(t−s)A

[
b (φ(s,x0)) − b

(
χ(−1) (s,y0)

)]
ds

for any � ∈ {p+ 1, . . . ,m}. It follows from (5.3), (5.7), (5.8), the Mean Value Theorem, and the

induction hypothesis that∥∥∥φ(t,x0) − χ() (t,y0)
∥∥∥ = O

(
eκat

[∫ ∞

t
e(β−κ)as

∥∥∥φ(s,x0) − χ(−1) (s,y0)
∥∥∥ ds] ‖x0‖β

)
as t→ ∞ and ‖x0‖ → 0. It follows from a simple inductive argument, using (5.26) and (5.27) along

the way, that ∥∥∥φ(t,x0) − χ(m) (t,y0)
∥∥∥ = O

(
e[α+(m−1)β][a+σ]t ‖x0‖(m+1−p)β+1

)
as t→ ∞ and ‖x0‖ → 0.

By the Triangle Inequality,∥∥∥b(χ(m) (s,y0)
)
− b

(
χ(p−1) (s, y01)

)∥∥∥
≤
∥∥∥b(χ(m) (s,y0)

)
− b (φ(s,x0))

∥∥∥+
∥∥∥b (φ(s,x0)) − b

(
χ(p−1) (s, y01)

)∥∥∥ .
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Appealing to (5.3), (5.8), (5.16), the Mean Value Theorem, and the Induction Hypothesis,∥∥∥b(χ(m) (s,y0)
)
− b

(
χ(p−1) (s, y01)

)∥∥∥ = O
(
e[α+(p−1)β][a+σ]s ‖x0‖β+1

)
as s→ ∞ and ‖x0‖ → 0. Using this fact in the definition (5.25b) tells us χ(m+1) (t,y0) exists with∥∥∥χ(m+1) (t,y0) − χ(p) (t,y0)

∥∥∥ = O
(
e[α+(p−1)β][a+σ]t ‖x0‖β+1

)
and hence ∥∥∥χ(m+1) (t,y0)

∥∥∥ = O
(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0. Therefore, the proposition is true form+ 1. By induction, the proposition

is true for all m ≥ p. �

5.5.3 Closeness of the Iterates to the Actual Solution

Theorem 5.18: Consider the iterates defined by (5.15) and let σ > 0 be sufficiently small. There

are constants δ > 0 and {km}∞m=p ⊂ R+ such that∥∥∥φ(t,x0) − χ(m) (t,y0)
∥∥∥ ≤ kme[α+(m−1)β][a+σ]t ‖x0‖(m+1−p)β+1 for all (t,x0) ∈ Ωδ, m ≥ p.

Proof: Out of necessity, the theorem and Proposition 5.17 were proved concurrently. �

5.5.4 A Simple Example

Consider the system

ẋ =

⎛⎝−1 0

0 −2

⎞⎠x +

⎛⎝ 0

x2
1 + x3

1

⎞⎠ .

Take

a = −1, κ = 2, α = 2, β = 1, and p = 2.

Let y0 := ψ(x0). We will calculate the first two iterates. The reader may wish to compare with

the example in §4.7.2 which begins on page 94.

Since p = 2, we only have to find one iterate from the first group. Using (5.15a), the first iterate

is given by

χ(1) (t, y01) =

⎛⎝e−ty01

0

⎞⎠ .
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Using (5.25a), the second iterate (which is the first iterate of the second group) is given by

χ(2) (t,y0) =

⎛⎝ e−ty01

e−2t
[
y3
01 + y02 + y2

01t
]
− e−3ty3

01

⎞⎠ .

5.5.5 Another Simple Example

Consider the system

ẋ =

⎛⎝−1 0

0 −3

⎞⎠x +

⎛⎝ 0

x2
1

⎞⎠ .
Take

a = −1, κ = 3, α = 2, β = 1, and p = 3.

Let y0 := ψ (x0). We will calculate the first three iterates.

Using (5.15), the first two iterates are given by

χ(1) (t, y01) =

⎛⎝e−ty01

0

⎞⎠ and χ(2) (t, y01) =

⎛⎝ e−ty01

e−2ty2
01 − e−3ty2

01

⎞⎠ .

Using (5.25a), the third iterate is

χ(3) (t,y0) =

⎛⎝ e−ty01

e−2ty2
01 + e−3t

[
y02 − y2

01

]
⎞⎠ .

5.6 Important Special Case

The special case which we explore in this section is applicable to the Michaelis-Menten mechanism

which we will explore in Part II of this thesis. Assume that κ ∈ {2, 3, . . .}. Define

b(x) :=

⎛⎝b111x2
1 + b112x1x2 + b122x

2
2

b211x
2
1 + b212x1x2 + b222x

2
2

⎞⎠ ,

where {bijk}2
i,j,k=1 ⊂ R are constants with at least one bijk being non-zero. Take

α = 2, β = 1, and p = κ.

Observe that there is resonance in the eigenvalues. Hence, consider the initial value problem

ẋ = Ax + b(x), x(0) = x0. (5.28)
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Let y0 := ψ(x0), where ‖x0‖ is assumed to be sufficiently small with y01 > 0.2 Furthermore, let

x(t) be the solution to (5.28). Our goal is to obtain an asymptotic expression for x2 in terms of x1

as x1 → 0+ up to an order for which the initial condition distinguishes solutions.

5.6.1 Case 1: κ = 2

We will only need to calculate the first two iterates χ(1) (t, y01) and χ(2) (t,y0). Using (5.15a) and

(5.25a), the first two iterates are given by

χ(1) (t, y01) =

⎛⎝y01e
at

0

⎞⎠ and χ(2) (t,y0) =

⎛⎜⎝ y01e
at +

[
b111y

2
01

a

]
e2at

y02e
2at +

[
b211y

2
01

]
t e2at

⎞⎟⎠ .

Claim 5.19: The components x1(t) and x2(t) of the solution to (5.28) satisfy

x1(t) = (y01) eat +
(
b111y

2
01

a

)
e2at + o

(
e2at
)

as t→ ∞ (5.29a)

and

x2(t) =
(
b211y

2
01

)
t e2at + (y02) e2at + o

(
e2at
)

as t→ ∞. (5.29b)

Proof: It follows from Theorem 5.18 and our expression for the second iterate. �

Claim 5.20: We can write eat in terms of x1 as

eat =
(

1
y01

)
x1 −

(
b111
ay01

)
x2

1 + o
(
x2

1

)
as x1 → 0+ (5.30a)

and e2at in terms of x1 as

e2at =
(

1
y2
01

)
x2

1 + o
(
x2

1

)
as x1 → 0+. (5.30b)

Proof: Equation (5.30b) follows from squaring both sides of (5.30a). To obtain (5.30a), first use

(5.29a) to write

x1 = (y01) eat

[
1 +
(
b111y01

a

)
eat + o

(
eat
)]

as t→ ∞

from which it follows

eat =
(
x1

y01

)[
1 +
(
b111y01

a

)
eat + o

(
eat
)]−1

=
(
x1

y01

)[
1 −
(
b111y01

a

)
eat + o

(
eat
)]

as t→ ∞.

2We make the assumption y01 > 0 since it corresponds to solutions with x1 > 0 approaching the equilibrium point

in the slow direction. This is desirable since it corresponds to, for example, solutions that arise in chemical kinetics.
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Observe that

x1 = O
(
eat
)

as t→ ∞ and eat = O(x1) as x1 → 0+.

Back substituting eat,

eat =
(

1
y01

)
x1

{
1 −
[
b111y01

a

] [(
1
y01

)
x1 + o

(
eat
)]

+ o
(
eat
)}

as t→ ∞

=
(

1
y01

)
x1

[
1 −
(
b111
a

)
x1 + o

(
eat
)]

as t→ ∞

=
(

1
y01

)
x1 −

(
b111
ay01

)
x2

1 + o
(
x2

1

)
as x1 → 0+.

This is what we needed to show. �

Claim 5.21: We can write t in terms of x1 as

t =
(

1
a

)
ln(x1) −

ln(y01)
a

+ o(1) as x1 → 0+. (5.31)

Proof: Write (5.30a) as

eat =
[

1
y01

]
[x1] [1 + o(1)] as x1 → 0+.

Taking the natural logarithm of both sides,

at = −ln(y01) + ln(x1) + ln(1 + o(1)) as x1 → 0+.

If we make the observation ln(1 + u) = o(1) as u→ 0, we are left with what we were trying to show.

�

Proposition 5.22: Consider the initial value problem (5.28), where κ = 2, ‖x0‖ is sufficiently

small, y0 = ψ(x0), and ψ1(x0) > 0. If x(t) is the solution, then we can write x2 in terms of x1 as

x2 =
[
b211
a

]
x2

1 ln(x1) +
[
y02

y2
01

− b211ln(y01)
a

]
x2

1 + o
(
x2

1

)
as x1 → 0+.

Proof: Substitute (5.30b) and (5.31) into (5.29b) and simplify. �
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5.6.2 Case 2: κ > 2

First, we will find the first two iterates. Using (5.15),

χ(1) (t, y01) =

⎛⎝y01e
at

0

⎞⎠ and χ(2) (t, y01) =

⎛⎜⎜⎝ y01e
at +

[
b111y

2
01

a

]
e2at[

b211y
2
01

(2 − κ) a

]
e2at −

[
b211y

2
01

(2 − κ) a

]
eκat

⎞⎟⎟⎠ .
By Theorem 5.11,

x1(t) = y01e
at +

(
b111y

2
01

a

)
e2at + O

(
e3at
)

and x2(t) =
[
b211y

2
01

(2 − κ) a

]
e2at + O

(
e3at
)

as t→ ∞. By inspection,

x2 =
[

b211
(2 − κ) a

]
x2

1 + O
(
x3

1

)
as x1 → 0+.

We will take this further. First, we need the following result.

Claim 5.23: There exist constants {ξi}κ
i=1 and {ρi}κ−1

i=1 which do not depend on the initial condition

and a constant � which may depend on the initial condition such that

x1(t) =
κ∑

i=1

ξi
(
eaty01

)i + O
(
e(κ+1)at

)
as t→ ∞ (5.32)

and

x2(t) =
κ−1∑
i=1

ρi

(
eaty01

)i + �
(
eκat
)

+ O
(
e(κ+1)at

)
as t→ ∞. (5.33)

Moreover,

ξ1 = 1, ρ1 = 0, and ρ2 =
b211

(2 − κ) a
.

Proof: It follows from Theorems 5.11 and 5.18, the definition (5.15) of the first κ− 1 iterates, and

the definition (5.25a) of the κth iterate. �

Proposition 5.24: Consider the initial value problem (5.28), where κ ∈ {3, 4, . . .}, ‖x0‖ is suffi-

ciently small, y0 = ψ(x0), and ψ1(x0) > 0. If x(t) is the solution, then we can write x2 in terms

of x1 as

x2 = c2x
2
1 + · · · + cκ−1x

κ−1
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+

for some constants {ci}κ−1
i=2 (which depend only on the differential equation) and C (which depends

on the differential equation and the initial condition). Moreover,

c2 =
b211

(2 − κ) a
.
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Proof: Note that

x1 = O
(
eat
)

as t→ ∞ and eat = O(x1) as x1 → 0+,

which follows from (5.32). Now, by inverting (5.32) in a process we have done many times before,

it follows that there are constants {νi}κ
i=1 which do not depend on the initial condition such that

eaty01 =
κ∑

i=1

νix
i
1 + O

(
xκ+1

1

)
as x1 → 0+. (5.34)

Substituting (5.34) in (5.33), there must be constants {ci}κ−1
i=1 (which do not depend on the initial

condition) and C (which may depend on the initial condition) such that

x2 =
κ−1∑
i=1

cix
i
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+.

Note that

ν1 = 1, c1 = 0, and c2 =
b211

(2 − κ) a
.

�

5.6.3 A Simple Example

Consider the initial value problem

ẋ =

⎛⎝−1 0

0 −2

⎞⎠x +

⎛⎝ 0

x2
1

⎞⎠ , x(0) = x0.

This can be solved exactly and the solution is given by

x(t) =

⎛⎝ x01e
−t[

x02 + x2
01t
]
e−2t

⎞⎠ .

Since e−t =
x1

x01
and t = ln(x01) − ln(x1), we see that

x2 = −x2
1 ln(x1) +

[
x02

x2
01

+ ln(x01)
]
x2

1.

This is consistent with Proposition 5.22. Note that, here, ψ(x0) = x0.
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5.6.4 Another Simple Example

Consider now the initial value problem

ẋ =

⎛⎝−1 0

0 −3

⎞⎠x +

⎛⎝ 0

x2
1

⎞⎠ , x(0) = x0.

This can also be solved exactly:

x(t) =

⎛⎝ x01e
−t

x2
01e

−2t +
[
x02 − x2

01

]
e−3t

⎞⎠ .
Since e−t =

x1

x01
, we see that

x2 = x2
1 +
(
x02 − x2

01

x3
01

)
x3

1.

This is consistent with Proposition 5.24.

5.7 What if A is Diagonalizable but not Diagonal?

5.7.1 Introduction

Consider the initial value problem

ẋ = Ax + b (x) , x(0) = x0, (5.35)

where the matrix A and vector field b are as before except that A is only assumed to be diago-

nalizable with eigenvalues a and κa. Since A is diagonalizable, there exists an invertible matrix P

such that

A = P−1AP,

where A := diag (a, κa). Define

b(y) := P−1b (Py) and y0 := P−1x0.

Claim 5.25: If x(t) is a solution of (5.35) then y(t) := P−1x(t) is a solution of

ẏ = Ay + b (y) , y(0) = y0. (5.36)
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Proof: Clearly, y(0) = y0. To establish the differential equation, calculate

ẏ = P−1ẋ = P−1 [Ax + b (x)] = P−1 [APy + b (Py)] = Ay + P−1b (Py) .

�

Claim 5.26: Consider the vector field b.

(a) There are δ, k > 0 such that
∥∥b (y)

∥∥ ≤ k ‖y‖α for all y ∈ Bδ.

(b) There are δ, k > 0 such that
∥∥Db (y)

∥∥ ≤ k ‖y‖β for all y ∈ Bδ.

Proof:

(a) We know from (5.2) that there are δ1, k1 > 0 such that if ‖x‖ < δ1 then ‖b (x)‖ ≤ k1 ‖x‖α.

Take δ := δ1
‖P‖ and k := k1

∥∥P−1
∥∥ ‖P‖α. If ‖y‖ < δ then ‖Py‖ ≤ ‖P‖ ‖y‖ < δ1. Hence,

‖y‖ < δ =⇒
∥∥b (y)

∥∥ ≤ ∥∥P−1
∥∥ ‖b (Py)‖ ≤ k1

∥∥P−1
∥∥ ‖Py‖α ≤ k1

∥∥P−1
∥∥ ‖P‖α ‖y‖α = k ‖y‖α .

(b) First, note that Db (y) = P−1 [Db (Py)]P. We know from (5.3) that there are δ1, k1 > 0 such

that if ‖x‖ < δ1 then ‖Db (x)‖ ≤ k1 ‖x‖β. Taking δ := δ1
‖P‖ and k := k1

∥∥P−1
∥∥ ‖P‖β+1, we see

that if ‖y‖ < δ then
∥∥Db (y)

∥∥ ≤ k ‖y‖β .

�

5.7.2 Associated Iterates

The iterates
{
χ(m) (t,ψ (y0))

}∞
m=1

defined with respect to A and b allow us to construct associated

iterates for the original system. In particular, the associated iterates are
{
Pχ(m)

(
t,ψ
(
P−1x0

))}∞
m=1

.

Theorem 5.27: Let x(t) be the solution of the initial value problem (5.35). Consider the iterates{
χ(m) (t,ψ (y0))

}∞
m=1

defined with respect to A and b. For any sufficiently small σ > 0 there are

constants δ > 0 and {km}∞m=1 ⊂ R+ such that∥∥∥x(t) −Pχ(m)
(
t,ψ
(
P−1x0

))∥∥∥ ≤ kme[α+(m−1)β][a+σ]t ‖x0‖

for all (t,x0) ∈ Ωδ, m ∈ {1, . . . , p− 1}
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and ∥∥∥x(t) −Pχ(m)
(
t,ψ
(
P−1x0

))∥∥∥ ≤ kme[α+(m−1)β][a+σ]t ‖x0‖(m+1−p)β+1

for all (t,x0) ∈ Ωδ, m ≥ p.

Proof: Let δ > 0 be sufficiently small so that if ‖x0‖ < δ then the appropriate estimates apply.

Hence, assume x0 ∈ Bδ. Let y(t) := P−1x(t), which is the solution to (5.36). Observe that

‖y0‖ ≤
∥∥P−1

∥∥ ‖x0‖ and
∥∥∥x(t) − Pχ(m) (t,ψ (y0))

∥∥∥ ≤ ‖P‖
∥∥∥y(t) − χ(m) (t,ψ (y0))

∥∥∥ .
Applying Theorems 5.11 and 5.18 give the conclusion. �

5.7.3 A Simple Example

Take

A :=

⎛⎝1 −2

4 −5

⎞⎠ , b (x) :=

⎛⎝ 4x2
1 − 4x1x2 + x2

2

8x2
1 − 8x1x2 + 2x2

2

⎞⎠ , and P :=

⎛⎝1 1

1 2

⎞⎠ .

Then,

P−1 =

⎛⎝ 2 −1

−1 1

⎞⎠ , A = P−1AP =

⎛⎝−1 0

0 −3

⎞⎠ , and b (y) = P−1b (Py) =

⎛⎝ 0

y2
1

⎞⎠ .

Hence, we will consider the associated system

ẏ =

⎛⎝−1 0

0 −3

⎞⎠y +

⎛⎝ 0

y2
1

⎞⎠ ,
which just happens to be the system3 we explored in §5.5.5 on page 114.

The third iterate for the system in §5.5.5 was

χ(3) (t, z0) =

⎛⎝ e−tz01

e−2tz2
01 + e−3t

[
z02 − z2

01

]
⎞⎠ ,

where z0 := ψ (y0). So, the associated third iterate for the original system is

Pχ(3) (t, z0) =

⎛⎝ e−tz01 + e−2tz2
01 + e−3t

[
z02 − z2

01

]
e−tz01 + 2 e−2tz2

01 + 2 e−3t
[
z02 − z2

01

]
⎞⎠ .

3Since b (y) = P−1b (Py) and y = P−1x, we have b (x) = Pb
(
P−1x

)
. This enables us to choose b (x) so that it

gives us a desired b (y).
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By Theorem 5.27,∥∥∥x(t) − Pχ(3) (t, z0)
∥∥∥ = O

(
e−4t ‖x0‖2

)
as t→ ∞ and ‖x0‖ → 0.

5.7.4 Writing x2 as a Function of x1

Consider the initial value problem

ẋ = Ax + b (x) , x(0) = x0, (5.37)

where the matrix A is diagonalizable (but otherwise the same as before) and

b(x) :=

⎛⎝b111x2
1 + b112x1x2 + b122x

2
2

b211x
2
1 + b212x1x2 + b222x

2
2

⎞⎠ ,

where {bijk}2
i,j,k=1 ⊂ R are constants with at least one bijk being non-zero. We want to be able

to write x2 as a function of x1 when x(t) approaches the origin in the slow direction and there

is resonance in the eigenvalues, that is, when κ ∈ {2, 3, . . .}. Note that the case when there is no

resonance in the eigenvalues was covered in Theorem 2.16 on page 28.

Since x(t) approaches the origin in the slow direction from the right, we can take the slow

eigenvector of A to have positive first component. Since we can take the first column of P to be

the slow eigenvector, it follows we can choose the invertible matrix P so that it satisfies p11 > 0.

Note that the slope of the slow eigenvector is p21

p11
and so we expect x2 = p21

p11
x1 + o(x1) as x1 → 0+.

Recall that A = P−1AP, where A = diag (a, κa), b(y) = P−1b(Py), and y0 = P−1x0. Observe

b(y) =

⎛⎝b111y2
1 + b112y1y2 + b122y

2
2

b211y
2
1 + b212y1y2 + b222y

2
2

⎞⎠
for some constants

{
bijk
}2

i,j,k=1
. As we saw before, y(t) := P−1x(t) is the solution of

ẏ = Ay + b(y), y(0) = y0. (5.38)

Since the solution x(t) approaches the origin in the slow direction and is strictly positive for

sufficiently large t, we know that z01 > 0, where z0 := ψ(y0) with ψ being defined with respect to

the diagonalized system (5.38). Observe that we are now in the scenario we considered in §5.6.

Theorem 5.28: Consider the initial value problem (5.37). Suppose ‖x0‖ is sufficiently small and

κ ∈ {2, 3, . . .}. Let x(t) be a solution which approaches the origin in the slow direction and (for

simplicity) is strictly positive for sufficiently large t.
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(a) If κ = 2, then we can write x2 in terms of x1 as

x2 = c1x1 + c2 x
2
1 ln(x1) + C x2

1 + o
(
x2

1

)
as x1 → 0+

for some constants c1, c2 (which depend only on the differential equation) and C (which depends

on the differential equation and the initial condition). Moreover,

c1 =
p21

p11
and c2 =

b211 (p11p22 − p12p21)
p3
11a

.

(b) If κ ∈ {3, 4, . . .}, then we can write x2 in terms of x1 as

x2 = c1x1 + · · · + cκ−1x
κ−1
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+

for some constants {ci}κ−1
i=1 (which depend only on the differential equation) and C (which

depends on the differential equation and the initial condition). Moreover,

c1 =
p21

p11
.

Proof:

(a) Applying Proposition 5.22, we can write y2 in terms of y1 as

y2 =
[
b211
a

]
y2
1 ln(y1) +

[
z02
z2
01

− b211ln(z01)
a

]
y2
1 + o

(
y2
1

)
as y1 → 0+. (5.39)

Now, since x = Py we have

x1 = p11y1 + p12y2 and x2 = p21y1 + p22y2. (5.40)

If we substitute (5.39) into the first equation of (5.40) and “solve” for y1 (in a manner we used

before), we obtain (after some tedious simplification)

y1 =
[

1
p11

]
x1 −

[
p12b211
p3
11a

]
x2

1 ln(x1)

−
[
p12

p3
11

] [
z02
z2
01

− b211ln(p11z01)
a

]
x2

1 + o
(
x2

1

)
as x1 → 0+. (5.41)

Substituting (5.41) into (5.39) yields (after more tedious simplification)

y2 =
[
b211
p2
11a

]
x2

1 ln(x1) +
[

1
p2
11

] [
z02
z2
01

− b211ln(p11z01)
a

]
x2

1 + o
(
x2

1

)
as x1 → 0+. (5.42)
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Substituting (5.41) and (5.42) into the second equation of (5.40), we get

x2 =
[
p21

p11

]
x1 +

[
b211 (p11p22 − p12p21)

p3
11a

]
x2

1 ln(x1)

+
[
p11p22 − p12p21

p3
11

] [
z02
z2
01

− b211ln(p11z01)
a

]
x2

1 + o
(
x2

1

)
as x1 → 0+.

Note that det (P) ≡ p11p22 − p12p21 	= 0.

(b) Just like in Claim 5.23, there are constants
{
ξi

}κ

i=1
and {ρi}κ−1

i=1 which do not depend on the

initial condition and a constant � which may depend on the initial condition such that

y1(t) =
κ∑

i=1

ξi

(
eatz01

)i + O
(
e(κ+1)at

)
as t→ ∞

and

y2(t) =
κ−1∑
i=1

ρi

(
eatz01

)i + �
(
eκat
)

+ O
(
e(κ+1)at

)
as t→ ∞.

Note that ξ1 = 1 and ρ1 = 0. Since x(t) = Py(t), clearly there are constants {ξi}κ
i=1 and

{ρi}κ−1
i=1 which do not depend on the initial condition and a constant � which may depend on

the initial condition such that

x1(t) =
κ∑

i=1

ξi
(
eatz01

)i + O
(
e(κ+1)at

)
as t→ ∞

and

x2(t) =
κ−1∑
i=1

ρi

(
eatz01

)i + �
(
eκat
)

+ O
(
e(κ+1)at

)
as t→ ∞.

Note that ξ1 = p11 and ρ1 = p21. Proceeding exactly as we did in the proof of Proposition 5.24,

we see that there are constants {ci}κ−1
i=1 (which do not depend on the initial condition) and C

(which may depend on the initial condition) such that

x2 =
κ−1∑
i=1

cix
i
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+.

Note that c1 = p21

p11
.

�

Remarks 5.29:

(i) If b(x) is polynomial instead of purely quadratic, the expression for x2 in terms of x1 as

x1 → 0+ will generally have terms of the form xi
1 ln(x1).
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(ii) The second part of Theorem 5.28 can be extended to show that x2 can be written as a Taylor

series in x1 as x1 → 0+.

5.8 Higher Dimensions

In this section, we will briefly mention how the techniques of this chapter can potentially be gen-

eralized to the case where the eigenvalues of A are widely-spaced relative to b(x) when we are

considering the general initial value problem (2.5). Suppose that J ∈ Rn is the Jordan canoni-

cal form of A. Then, there is an invertible matrix P such that P−1AP = J. Now, let A have

� ∈ {2, . . . , n} distinct eigenvalues4 {λi}
i=1 ⊂ C with respective multiplicities {mi}

i=1 ⊂ N where∑
i=1mi = n. Then, we can write J =

⊕
i=1 Ji where {Ji}

i=1 are the Jordan blocks. (See §A.15 of

Appendix A which mentions the Jordan canonical form.)

Consider the initial value problem

ẏ = Jy + c(y), y(0) = y0,

where y := P−1x, y0 := P−1x0, and c(y) := P−1b(Py). If we have iterates to approximate y(t)

then we can form associated iterates to approximate x(t) just like in §5.7. Now, write

y = (y1, . . . ,y)
T , y0 = (y01, . . . ,y0)

T , and c(y) = (c1(y), . . . , c(y))T ,

where yi ∈ Rmi and ci : Rn → Rmi . Then, yi(t) satisfies the integral equation

yi(t) = etJiy0i +
∫ t

0
e(t−s)Jici(y(s)) ds (i = 1, . . . , �) . (5.43)

In general, we could form � groups of iterates to approximate the solution y(t). However, the

construction of the � groups of iterates would be tedious. Define the ratios

κi :=
μi+1

μ1
(i = 1, . . . , �− 1)

which satisfy 1 < κ1 < · · · < κ−1 and κ−1 ≥ α. The ith group of iterates would involve “flipping

the integral” in the ith component of (5.43). Moreover, the number of iterates in each group (except

for the last group which has infinitely many iterates) would be in terms of α, β, and the ratios

{κi}−1
i=1 . The last iterate in each group, except for the final group, would (by design) be close

enough to the actual solution so that we can “flip the integral” in the next component.5

4It must be that � > 1 since otherwise the eigenvalues would be closely-spaced relative to the nonlinear part.
5It is possible that a particular group of iterates will have zero iterates.
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5.9 Summary

In this chapter, we explored a special case of widely-spaced eigenvalues. Consider the initial value

problem

ẋ =

⎛⎝a 0

0 κa

⎞⎠
︸ ︷︷ ︸

A

x +

⎛⎝b1(x)

b2(x)

⎞⎠
︸ ︷︷ ︸

b(x)

. x(0) = x0.

In particular, a < 0 and κ > 1. Moreover, b is C1 in a neighbourhood of the origin and there are

constants α > 1 and β > 0 such that

‖b(x)‖ = O(‖x‖α) and ‖Db(x)‖ = O
(
‖x‖β

)
as ‖x‖ → 0.

Importantly, κ ≥ α which is the defining characteristic of widely-spaced eigenvalues.

We encountered a problem when attempting to “flip the integral” the way we did in Chapter 4.

To remedy this, we looked at each component of the solution φ(t,x0) separately. By defining

y01 = ψ1(x), where

ψ1(x0) = x01 +
∫ ∞

0
e−asb1 (φ(s,x0)) ds,

we wrote

φ(t,x0) =

⎛⎝ eaty01 −
∫∞
t ea(t−s)b1 (φ(s,x0)) ds

eκatx02 +
∫ t
0 eκa(t−s)b2 (φ(s,x0)) ds

⎞⎠ .

Using this form of the integral equation, we defined the first group of iterates
{
χ(m) (t, y01)

}p−1

m=1

by

χ(1) (t, y01) =

⎛⎝eaty01

0

⎞⎠ and χ(m+1) (t, y01) =

⎛⎝eaty01 −
∫∞
t ea(t−s)b1

(
χ(m) (s, y01)

)
ds∫ t

0 eκa(t−s)b2
(
χ(m) (s, y01)

)
ds

⎞⎠ ,

where

p :=
⌊
κ− α

β

⌋
+ 2.

These iterates satisfy∥∥∥χ(m) (t, y01)
∥∥∥ = O

(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0

and, for any σ > 0,∥∥∥φ(t,x0) − χ(m) (t, y01)
∥∥∥ = O

(
e[α+(m−1)β][a+σ]t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0.
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If κ > α then we can take σ = 0.

By defining y02 = ψ2(x0), where

ψ2(x0) = x02 +
∫ ∞

0
e−κas

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]
ds,

we wrote the second component of the flow as

φ2(t,x0) =
[
eκaty02 +

∫ t

0
eκa(t−s)b2

(
χ(p−1) (s, y01)

)
ds

]
−
∫ ∞

t
eκa(t−s)

[
b2 (φ(s,x0)) − b2

(
χ(p−1) (s, y01)

)]
ds.

Using this form of the integral equation, we defined the second group of iterates
{
χ(m) (t,y0)

}∞
m=p

by

χ(p) (t,y0) =

⎛⎝ eaty01 −
∫∞
t ea(t−s)b1

(
χ(p−1) (s, y01)

)
ds

eκaty02 +
∫ t
0 eκa(t−s)b2

(
χ(p−1) (s, y01)

)
ds

⎞⎠
and

χ(m+1) (t,y0) = χ(p) (t,y0)−
∫ ∞

t
e(t−s)A

[
b
(
χ(m) (s,y0)

)
−b
(
χ(p−1) (s, y01)

)]
ds.

Interestingly, we can write the integral equation for the flow as

φ(t,x0) = χ(p) (t,y0) −
∫ ∞

t
e(t−s)A

[
b (φ(s,x0)) − b

(
χ(p−1) (s, y01)

)]
ds.

These iterates satisfy∥∥∥χ(m) (t,y0)
∥∥∥ = O

(
eat ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0

and, for any σ > 0,∥∥∥φ(t,x0) − χ(m) (t,y0)
∥∥∥ = O

(
e[α+(m−1)β][a+σ]t ‖x0‖(m+1−p)β+1

)
as t→ ∞ and ‖x0‖ → 0.

As before, if κ > α then we can take σ = 0.

Consider now the special case where κ ∈ {2, 3, . . .} and

b(x) =

⎛⎝b111x2
1 + b112x1x2 + b122x

2
2

b211x
2
1 + b212x1x2 + b222x

2
2

⎞⎠ .

Suppose that ‖x0‖ is sufficiently small, y0 = ψ(x0), and ψ1(x0) > 0. If κ = 2, we were able to write

the second component of the flow in terms of the first component as

x2 =
[
b211
a

]
x2

1 ln(x1) +
[
y02

y2
01

− b211ln(y01)
a

]
x2

1 + o
(
x2

1

)
as x1 → 0+.
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On the other hand, if κ ∈ {3, 4, . . .} we can write

x2 = c2x
2
1 + · · · + cκ−1x

κ−1
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+

for some constants {ci}κ−1
i=2 (which depend only on the differential equation) and C (which depends

on the differential equation and the initial condition). Moreover,

c2 =
b211

(2 − κ) a
.

Suppose that A is merely diagonalizable and P is an invertible matrix such that A = P−1AP,

where A = diag (a, κa) and b(x) is the general vector field from before. If we define y0 = P−1x0

and b(y) = P−1b (Py), then y(t) = P−1x(t) is the solution of the initial value problem

ẏ = Ay + b (y) , y(0) = y0.

Moreover, ∥∥b(y)
∥∥ = O(‖y‖α) and

∥∥Db(y)
∥∥ = O

(
‖y‖β

)
as ‖y‖ → 0.

We can define the associated iterates
{
Pχ(m) (t, z0)

}∞
m=1

, where z0 = ψ(y0) with ψ defined with

respect to the diagonalized system. These associated iterates satisfy∥∥∥x(t) − Pχ(m) (t, z0)
∥∥∥ = O

(
e[α+(m−1)β][a+σ]t ‖x0‖

)
as t→ ∞ and ‖x0‖ → 0,

for m < p, and∥∥∥x(t) − Pχ(m) (t, z0)
∥∥∥ = O

(
e[α+(m−1)β][a+σ]t ‖x0‖(m+1−p)β+1

)
as t → ∞ and ‖x0‖ → 0,

for m ≥ p.

Consider now the special case where A is merely diagonalizable with κ ∈ {2, 3, . . .} and

b(x) =

⎛⎝b111x2
1 + b112x1x2 + b122x

2
2

b211x
2
1 + b212x1x2 + b222x

2
2

⎞⎠ .

Let P = {pij}2
i,j=1 be as before and

b(y) = P−1b (Py) =

⎛⎝b111y2
1 + b112y1y2 + b122y

2
2

b211y
2
1 + b212y1y2 + b222y

2
2

⎞⎠ .

Suppose that ‖x0‖ is sufficiently small, y0 = ψ(x0), and ψ1(x0) > 0. Assume that the solution

x(t) approaches the origin in the slow direction and is strictly positive for sufficiently large t.
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Consequently, we can assume p11 > 0. If κ = 2, then we can write the second component of the

solution in terms of the first component as

x2 = c1x1 + c2 x
2
1 ln(x1) + C x2

1 + o
(
x2

1

)
as x1 → 0+

for some constants c1, c2 (which depend only on the differential equation) and C (which depends

on the differential equation and the initial condition). Moreover,

c1 =
p21

p11
and c2 =

b211 (p11p22 − p12p21)
p3
11a

.

On the other hand, if κ ∈ {3, 4, . . .} then

x2 = c1x1 + · · · + cκ−1x
κ−1
1 + C xκ

1 + O
(
xκ+1

1

)
as x1 → 0+

for some constants {ci}κ−1
i=1 (which depend only on the differential equation) and C (which depends

on the differential equation and the initial condition). Moreover,

c1 =
p21

p11
.
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The Michaelis-Menten Mechanism
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Chapter 6

Introduction

The Michaelis-Menten mechanism, which is named after two researchers who worked on the model,

is the simplest chemical network modeling the formation of a product from a substrate with the

aide of an enzyme. There are different and more complicated networks which involve, for exam-

ple, multiple enzymes, inhibition, and cooperativity. However, even though the Michaelis-Menten

mechanism is relatively simple, there are plenty of results on the mechanism and the standard

techniques of analyzing the reaction are easily adapted to the more complicated networks. In this

part of the thesis, we will develop many new results regarding the Michaelis-Menten mechanism.

These results, as will be apparent, can also be adapted to more complicated networks.

6.1 The Michaelis-Menten Mechanism

6.1.1 History

An enzyme is an organic molecule (usually a protein) which catalyzes a chemical reaction and is not

consumed by the reaction. The reactants of such a reaction are called substrates. Enzymes often

act upon only one or very few specific substrates. The key effect of the binding of the substrate to

the active site of the enzyme is the lowering of the activation energy. It is not uncommon for this

binding to speed up the rate of reaction by a factor in the millions.

Emil Fischer (1852–1919) was a German chemist who, in 1894, proposed the “lock and key”

model for an enzyme. In this model, the enzyme and substrate have complementary “shapes,”

with a given enzyme fitting exactly into a specific substrate. See, for example, Fischer’s paper [41].
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Fischer won the Nobel Prize for Chemistry in 1902 “in recognition of the extraordinary services

he has rendered by his work on sugar and purine syntheses.” The “induced-fit” model, which was

proposed by the American biochemist Daniel Koshland (1920–2007) in 1958 and is the currently

accepted model for binding, is a modification of the “lock and key” model. See, for example,

Koshland’s paper [72].

It was known in the late eighteenth and early nineteenth centuries that there were reactions,

such as digestion, which were aided by another substance which was not consumed by the reaction.

Anselme Payen (1795–1871) and Jean-Francois Persoz (1805–1868) were French chemists who, in

1833, discovered the first enzyme, amylase, which they called diastase. See, for example, their paper

[99]. Diastase is now the generic term for an enzyme which catalyzes the breakdown of starch into

maltose.

Louis Pasteur (1822–1895) was a French chemist who studied, among other things, the fer-

mentation of sucrose into alcohol (alcoholic fermentation) by yeast. For much of the nineteenth

century, there was debate over whether or not the catalyst in alcoholic fermentation was living

or not living. Pasteur believed that the fermentation was catalyzed by a vital force in the yeast,

saying “no fermentation without life.” See, for example, [86].

Adrian Brown (1852–1920) was a British biochemist who worked at a brewing company until

1899 and later became a professor of malting and brewing at the University of Birmingham. He

investigated the fermentation of sucrose by yeast and found in 1892 that the rate of fermentation

of sucrose in the presence of yeast appeared to be independent of the amount of sucrose that was

present. Furthermore, he suggested that a substance in the yeast (later identified and referred to

as the enzyme1 invertase) was responsible for speeding up the reaction. See, for example, [75] and

Brown’s paper [17].

Eduard Buchner (1860–1917) was a German chemist. In 1897, Buchner showed that a non-

living extract of yeast (namely the invertase) catalyzed alcoholic fermentation. This demonstration

is regarded as the birth of biochemistry and death of vitalism2. For this discovery, Buchner was

awarded the 1907 Nobel Prize for Chemistry. See, for example, Buchner’s paper [21]. Brown, in

1The word “enzyme,” which is Greek for “in leaven,” was first used by Wilhelm Kühne. A “leaven” is any

substance, yeast being the most common, which causes batter or dough to rise.
2Vitalism is a belief system that asserts that processes in living organisms cannot be fully explained as physical

or chemical phenomena.
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light of Buchner’s results, in 1902 suggested that the invertase combines with the substrate to form

an enzyme-substrate complex. See, for example, Brown’s paper [18].

Victor Henri (1872–1940) was a French physical chemist. Throughout his career he published

more than five hundred papers. Interestingly, he co-wrote with Alfred Binet a book on intellectual

fatigue. Henri was critical of Brown’s model of an enzyme reaction, which asserted that the enzyme-

substrate had a fixed lifetime and was abruptly created and destroyed. In 1902, Henri originated the

accepted model of an enzyme reaction. See, for example, Henri’s paper [58]. Henri, unfortunately,

is not usually credited with formulating this model.

Leonor Michaelis (1875–1949) was a German biochemist and Maude Menten (1879–1960) was

a Canadian medical researcher and biochemist who was one of the first Canadian female medical

doctors. Michaelis and Menten, in 1913, popularized Henri’s work and advanced the experimental

techniques used in enzymology such as pH-control. See, for example, their paper [88]. Even

though Henri originated the enzyme model, the mechanism is generally referred to as the Michaelis-

Menten mechanism. Moreover, the equilibrium approximation is frequently attributed to Michaelis

and Menten rather than Henri. However, it should be noted that Michaelis and Menten clearly

indicated Henri’s contribution. Moreover, Michaelis and Menten made very important contributions

to enzyme kinetics and are regarded as the founders of enzymology.

There are many good general references on the Michaelis-Menten mechanism. For example,

[29, 32, 69, 71, 76]. The goal of this chapter is to introduce the model and make preparations for

studying the model mathematically. In Chapter 7, we will explore the properties of the planar

reduction, which we will soon introduce, in phase space. In Chapter 8, we will explore time-

dependent properties of the planar reduction. In Chapter 9, we briefly explore some alternatives

to the Michaelis-Menten mechanism.

6.1.2 The Model

In the scheme of Michaelis and Menten (and Henri), an enzyme reacts with the substrate and

reversibly forms an intermediate complex, which decays into the product and original enzyme.

Symbolically,

S + E
k1�
k−1

C
k2→ P + E, (6.1)
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where S stands for substrate, E for enzyme, C for complex, and P for product. The constants k−1,

k1, and k2 are the reaction-rate constants.

Technically, the reaction from C to P + E is reversible, but the rate constant k−2 is usually

negligible and the reverse reaction is omitted. Henri’s original model allowed for the reverse reaction.

Moreover, in a cell or laboratory the product is continually removed to be used for other purposes

which prevents the reverse reaction from occurring.

6.2 Associated Ordinary Differential Equations

6.2.1 Ordinary Differential Equations

Consider the mechanism (6.1). Let lower-case letters (as is the convention) stand for concentrations,

t for time, and ˙ = d
dt . The Law of Mass Action (see §A.1 of Appendix A) gives the set of four

ordinary differential equations

ṡ = k−1c− k1se, (6.2a)

ė = (k−1 + k2) c− k1se, (6.2b)

ċ = k1se− (k−1 + k2) c, (6.2c)

ṗ = k2c. (6.2d)

The traditional initial conditions are s(0) = s0, e(0) = e0, c(0) = 0, and p(0) = 0. However, we will

allow the initial conditions to be arbitrary.

These equations can be confirmed to be a successful model of a given enzyme reaction by

experiment. For example, observations can be made over time of the changes in certain light

absorption properties of the chemical species involved which would enable the experimenter to

estimate the respective concentrations over time.

6.2.2 Conservation Laws

There are a couple of important conservation laws that can be deduced from our system of four

differential equations. First, adding (6.2b) and (6.2c) and then integrating with respect to t, we

see that

c(t) + e(t) ≡ e0. (6.3)
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Second, adding (6.2a), (6.2b) and (6.2d), and integrating with respect to t, we get

s(t) + c(t) + p(t) ≡ s0. (6.4)

We choose s0 and e0 to denote the constants since, traditionally, the complex and product are

regarded as not being initially present. These conservation laws tell us that solutions of (6.2) are

restricted to a two-dimensional surface within the four-dimensional solution space.

6.2.3 Planar Reduction

The system (6.2) consists of four differential equations. However, we can reduce that number.

The equation for p(t), (6.2d), can be ignored for our purposes because none of the other three

concentrations depend on the value of p(t). Furthermore, we can ignore the equation for e(t),

(6.2b), due to the conservation law (6.3) which implies that the time evolution of e(t) can be

determined precisely from that of c(t).3 We can hence consider only the system of two ordinary

differential equations

ṡ = k−1c− k1s (e0 − c) , (6.5a)

ċ = k1s (e0 − c) − (k−1 + k2) c. (6.5b)

This is frequently referred to as the planar reduction of the Michaelis-Menten reaction. The tra-

ditional initial conditions are s(0) = s0 and c(0) = 0. However, we will again allow the initial

conditions to be arbitrary.

6.2.4 Scalar Reduction

One further reduction is occasionally made to the system (6.2). The system (6.5) includes the time

dependence of the concentrations. However, we will find it useful to reduce the planar reduction to

a scalar differential equation. Note that it is of practical importance to chemists to study how the

concentration of the complex C varies as a function of the concentration of the substrate S.

The set of points (s(t), c(t)) defines a curve in the sc-plane, say c = c(s). Since (6.5) is au-

tonomous, we see that

c′ =
k1s (e0 − c) − (k−1 + k2) c

k−1c− k1s (e0 − c)
, (6.6)

3It is traditional to work with s(t) and c(t) instead of, say, s(t) and e(t).
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where ′ = d
ds . We restrict attention to the non-negative quadrant, which corresponds to the

physically-real space.4 The flow of the larger system (6.2), when projected on the sc-plane, is

equivalent to the flow of (6.6).

6.3 The Equilibrium and Quasi-Steady-State Approximations

The planar system (6.5) is certainly simpler than the original four-dimensional system (6.2). How-

ever, it is still impossible to obtain an explicit solution of the planar system. There are two notable

approximations employed by biochemists which are inspired by the fact that chemical reactions

have a tendency to approach an equilibrium (where one or more chemical species is produced and

consumed at the same rate).

6.3.1 The Equilibrium Approximation (EA)

To obtain an approximate solution to (6.5), Henri applied what is called the (rapid) Equilibrium

Approximation (EA). Although Michaelis and Menten did use the EA, it was Henri who originated

the approximation. Frequently in the literature, Michaelis and Menten are given credit for inventing

the EA which Henri deserves.

In particular, Henri assumed that the substrate is in equilibrium with the complex. That is, the

substrate is produced and consumed at roughly the same rate. Mathematically, we can interpret

the equilibrium approximation as the condition ṡ(t) ≈ 0 for sufficiently large time t. From (6.5a),

k1s(t) [e0 − c(t)] ≈ k−1c(t).

Solving for c(t), we get

c(t) ≈ e0s(t)
Ks + s(t)

, where Ks :=
k−1

k1
.

In terms of the scalar reduction, this gives us the equilibrium approximation

cEA(s) :=
e0s

Ks + s
. (6.7)

4It is also common to restrict attention to s ≥ 0 and 0 ≤ c ≤ e0 since, using the conservation law (6.3), we know

that c(t) cannot exceed e0.
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6.3.2 The Quasi-Steady-State Approximation (QSSA)

John Haldane (1892–1964) was a British evolutionary biologist and geneticist. Haldane made major

contributions in many areas of science with, arguably, his most important contribution being his

development (along with Ronald Fisher and Sewall Wright) of the mathematical theory of natural

selection. Interestingly, Haldane described his service in the infantry during the First World War

as a “very enjoyable experience” and admitted that he “enjoyed the opportunity of killing people.”

Moreover, he is known to have used himself (and those around him) in experiments (involving, for

example, oxygen poisoning and decompression sickness). He also wrote a well-known humourous

poem shortly before his death about the cancer which killed him. See, for example, [1] and pages

300–303 of [20].

Haldane, along with the British botanist George Briggs (1893–1985), introduced in 1925 a

second, more common approximation for the Michaelis-Menten reaction. They suggested that after

sufficiently much time has passed, the complex is produced and consumed at roughly the same

rate. Since the complex is an intermediate of the reaction, this approximation is known as the

Quasi-Steady-State Approximation (QSSA). See, for example, their paper [15].

The reasoning for this approximation is as follows. At the beginning of the reaction, the

concentration of the complex increases rapidly as the enzyme combines with the substrate. During

the initial period of the reaction there is plenty of substrate and the speed of the reaction is limited

only by how fast the enzyme can work. However, as the complex builds up, more complex is

consumed producing substrate and product until a quasi-steady-state is reached.

The mathematical interpretation of the quasi-steady-state approximation is that, after suffi-

ciently large time, we have ċ(t) ≈ 0. From (6.5b),

k1s(t) [e0 − c(t)] ≈ (k2 + k−1) c(t).

Solving for c(t), we get

c(t) ≈ e0s(t)
Km + s(t)

, where Km :=
k−1 + k2

k1
.

In terms of the scalar reduction, the quasi-steady-state approximation is

cQSSA(s) :=
e0s

Km + s
. (6.8)

The constant Km is called the Michaelis-Menten constant (or the Michaelis constant).
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6.3.3 Lineweaver-Burk Plots

The velocity V of the reaction (6.1) is defined as the rate of formation of product, that is, V := dp
dt .

Using (6.2d) and the QSSA (6.8),

V ≈ k2e0s

Km + s
,

which is known as the Michaelis-Menten approximation. This can be re-written as

1
V

≈ 1
Vmax

+
(
Km

Vmax

)
1
s
,

where Vmax := k2e0 is the maximum velocity. Observe that V ≈ 1
2Vmax (known as half saturation)

when s = Km.

The values of s and V can be experimentally measured. If 1
V is plotted versus 1

s , the resulting

curve is approximately a straight line. The slope and intercept can be found yielding a value for

Vmax and Km. Such a graph is called a Lineweaver-Burk plot, after Hans Lineweaver and Dean

Burk who, in 1934, suggested this technique for measuring Vmax and Km. See, for example, their

paper [83]. There are other techniques for measuring some of the constants associated with the

Michaelis-Menten reaction, but this method is the most well-known.

6.4 Dimensionless Ordinary Differential Equations

It is very helpful for future analysis to re-scale the differential equations (6.5) and (6.6) into dimen-

sionless form. First, we note that the dimensions of the involved quantities are

[s, c, e0] =
Q

L3
, [ṡ, ċ] =

Q

L3T
, [k−1, k2] =

1
T
, and [k1] =

L3

QT
,

where Q stands for quantity of substance (usually measured in moles), L stands for length, and T

stands for time. To improve the presentation, we use for example [s, c, e0] in place of [s] , [c] , [e0]

since all three of the quantities have the same dimension.

6.4.1 Dimensionless Variables and Parameters

The system (6.5) can be written in dimensionless form in several ways. See, for example, [35, 84,

91, 98, 112]. Usually, a parameter ε with 0 < ε� 1 is introduced. The more traditional choice is

ε = e0
s0

. We, however, will use a different scaling which was used, for example, in [109].
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Define5

τ := k1e0t, x :=
(

k1

k−1 + k2

)
s, y :=

c

e0
, ε :=

k1e0
k−1 + k2

, and η :=
k2

k−1 + k2
,

which are all dimensionless, and note that

ε > 0 and 0 < η < 1.

Thus, τ , x, and y are, respectively, a scaled time, substrate concentration, and complex concentra-

tion.

The parameter ε measures the ratio of the time scales and a small value of ε is indicative of high

efficiency of the enzyme. Moreover, the parameter η can be regarded as the probability that the

complex C decays to product P . It is apparent from the mechanism (6.1) that the EA reduces to

the QSSA when η → 0+. Also, when η → 1− we see that the conversion of substrate S to product

proceeds with little or no resistance, which suggests that the complex cannot be near a quasi-steady

state.

Throughout this part of the thesis, it will be our philosophy that both ε > 0 and η ∈ (0, 1)

are arbitrary parameters of any permissible size. In particular, we do not need to make the usual

assumption that ε is small.

6.4.2 Planar System

It is easy to verify that the differential equation (6.5) takes on the dimensionless form

ẋ = −x+ (1 − η + x) y, ẏ = ε−1 [x− (1 + x) y] , (6.9)

where ˙= d
dt and (for simplicity) we are using t when we really are using the scaled time τ . We will

occasionally need to refer to the vector field of the planar system (6.9). Hence, define

g(x) :=

⎛⎝−x+ (1 − η + x) y

ε−1 [x− (1 + x) y]

⎞⎠ , (6.10)

where x := (x, y)T . In Chapter 7 and Chapter 8, we will explore properties of solutions of (6.9).

5Instead of using ε = e0
s0

, which is the ratio of initial enzyme concentration to initial substrate concentration, we

are using ε = e0
Km

, which is the ratio of initial enzyme concentration to half-saturation substrate concentration.
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6.4.3 Scalar Differential Equation

We can also write the scalar differential equation (6.6) in the form

y′ =
x− (1 + x) y

ε [−x+ (1 − η + x) y]
, (6.11)

where ′ = d
dx . Furthermore, define the function

f(x, y) :=
x− (1 + x) y

ε [−x+ (1 − η + x) y]
. (6.12)

In Chapter 7, we will explore the properties of solutions of (6.11).

Remark 6.1: The function f(x, y) can be written

f(x, y) =
g2(x, y)
g1(x, y)

,

where g1(x, y) and g2(x, y) are the components of the function g(x) given in (6.10). Note the use of

the row vector (x, y) in the arguments of g1 and g2 as opposed to the column vector x. To alleviate

notational headaches that arise from competing conventions involving row and column vectors,

when there will be no confusion we will use the notation appropriate for the given situation.

6.4.4 The EA and QSSA

With this new scaling, it is easy to show that Equations (6.7) and (6.8), for EA and QSSA, take

the respective forms

yEA(x) :=
x

1 − η + x
and yQSSA(x) :=

x

1 + x
. (6.13)

These can, of course, be obtained by setting ẋ = 0 and ẏ = 0 in (6.9). Alternatively, we see that

yEA(x) is the vertical isocline of the system (6.11) and yQSSA(x) is the horizontal isocline. One may

refer to y = yEA(x) as the rapid equilibrium manifold and y = yQSSA(x) as the quasi-steady-state

manifold.

6.5 Phase Portrait

The goal of this section is to develop a reasonable phase portrait for the planar system (6.9). We will

restrict our attention to the non-negative quadrant S since, physically, we are only concerned with
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non-negative concentrations.6 In Chapter 7, we will develop more precise results on the properties

of the phase portrait.

To develop the phase portrait, we will find the isoclines, establish the positive invariance of

the non-negative quadrant S, look at the linearization at the origin (which is the only equilibrium

point), and specify the slopes of solutions of (6.11) in different regions.

6.5.1 Isoclines

To find the horizontal and vertical isoclines, set, respectively, ẏ = 0 and ẋ = 0 in Equation (6.9) to

obtain

H(x) :=
x

1 + x
and V (x) :=

x

1 − η + x
. (6.14)

Comparing this with Equation (6.13), we see that the EA corresponds to the vertical isocline and

the QSSA corresponds to the horizontal isocline. Interestingly, neither the horizontal isocline nor

the vertical isocline depends on ε.

It is obvious from (6.14) that

H(0) = 0 = V (0), 0 < H(x) < V (x) for all x > 0, and lim
x→∞H(x) = 1 = lim

x→∞V (x).

The region between the isoclines,

Γ0 := { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } ,

will be of importance. To illustrate Remark 6.1, suppose that x and y are such that x > 0 and

H(x) ≤ y ≤ V (x). Then, we may write (x, y) ∈ Γ0 as well as x ∈ Γ0, where x = (x, y)T .

6.5.2 Positive Invariance of the Non-Negative Quadrant S

The origin is the only equilibrium point of the system (6.9). To see why, set ẋ = 0 and ẏ = 0 which

gives y = H(x) and y = V (x). Since the isoclines only intersect at x = 0, we obtain (x, y) = (0, 0).

If x = 0 and y > 0 then ẋ = (1 − η) y > 0. Thus, on the positive y-axis, the vector field g

points into the positive quadrant. Similarly, if x > 0 and y = 0 then ẏ = ε−1x > 0. Thus, on the

positive x-axis, the vector field g points into the positive quadrant. It follows that the non-negative

quadrant S is positively invariant.
6It is also common to limit the analysis to x ≥ 0 and 0 ≤ y ≤ 1. This additional restriction on y results from the

conservation law (6.3) and the fact that y = c
e0

.
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6.5.3 Linearization at the Origin

The Jacobian matrix for the system (6.9) at (0, 0) is

A :=

⎛⎝−1 1 − η

ε−1 −ε−1

⎞⎠ . (6.15)

We will find the eigenvalues and associated eigenvectors of this matrix. With the aid of Hartman’s

Theorem, these will tell us how the phase portrait of the system (6.9) looks near the origin.

The Eigenvalues λ± of the Matrix A

The characteristic equation of the matrix A is given by

λ2 +
(

1
ε

+ 1
)
λ+

η

ε
= 0. (6.16)

Observe that −1 and 0 cannot be roots of the characteristic equation since ε > 0 and 0 < η < 1.

The eigenvalues of A are hence given by

λ± :=
− (ε+ 1) ±

√
(ε+ 1)2 − 4εη

2ε
. (6.17)

Claim 6.2: The eigenvalues λ+ and λ− are real-valued and distinct.

Proof: Observe that the radicand of (6.17) satisfies

(ε+ 1)2 − 4εη > (ε+ 1)2 − 4ε = (ε− 1)2 ≥ 0,

where we used the facts that ε > 0 and 0 < η < 1. The claim follows. �

Claim 6.3: The eigenvalues λ+ and λ− satisfy the limits

lim
ε→0+

λ+ = −η, lim
ε→∞λ+ = 0, lim

ε→0+
λ− = −∞, and lim

ε→∞λ− = −1. (6.18)

Proof: The proof is a simple exercise in limits. �

Claim 6.4: In terms of η and either eigenvalue λ, ε can be written

ε = − λ+ η

λ (1 + λ)
. (6.19)
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Proof: Solve the characteristic equation (6.16) for ε. �

Claim 6.5: Either eigenvalue λ satisfies

∂λ

∂ε
=

λ2 (λ+ 1)2

(λ+ η)2 + η (1 − η)
. (6.20)

Proof: Differentiate (6.16) with respect to ε, solve for ∂λ
∂ε , and substitute (6.19) to get

∂λ

∂ε
= − λ (λ+ 1)

2ελ+ ε+ 1
=

λ2 (λ+ 1)2

(λ+ η)2 + η (1 − η)
.

�

Claim 6.6: The eigenvalues λ+ and λ− satisfy the inequalities

λ− < −1 < −η < λ+ < 0. (6.21)

Proof: It follows from (6.20) (and the fact that neither eigenvalue is −1 or 0) that

∂λ+

∂ε
> 0 and

∂λ−
∂ε

> 0.

This in conjunction with the limits (6.18) give the conclusion. �

Since λ− < λ+ < 0, the eigenvalue λ+ is referred to as the slow eigenvalue since it corresponds

to the slow exponential decay rate O
(
eλ+t

)
. Similarly, λ− is the fast eigenvalue since it corresponds

to the fast exponential decay rate O
(
eλ−t

)
.

Claim 6.7: There is resonance in the eigenvalues λ+ and λ− of A if and only if κ ∈ {2, 3, . . .},

where κ := λ−
λ+

.

Proof: It follows from Proposition 2.15 and the fact that κ > 1. �

The Ratio κ of the Eigenvalues

Part I of this thesis made it clear that the ratio of the eigenvalues,

κ :=
λ−
λ+

, (6.22)

will be of importance. Using the definition (6.17) of the eigenvalues λ± and the definition (6.22) of

κ, we see that κ can be written in terms of ε and η as

κ =
ε+ 1 +

√
(ε+ 1)2 − 4εη

ε+ 1 −
√

(ε+ 1)2 − 4εη
. (6.23)
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Claim 6.8: The ratio κ satisfies

κ > max
{
ε, ε−1

}
. (6.24)

Proof: For any ε > 0 and η ∈ (0, 1), we have

(ε+ 1)2 − 4εη > (ε+ 1)2 − 4ε = (ε− 1)2 .

It follows from (6.23) that

κ >
(ε+ 1) + |ε− 1|
(ε+ 1) − |ε− 1| =

⎧⎪⎨⎪⎩
ε, if ε ≥ 1

ε−1, if 0 < ε < 1
= max

{
ε, ε−1

}
.

�

Remark 6.9: It follows from (6.24) that κ satisfies

κ > 1, lim
ε→0+

κ = ∞, and lim
ε→∞κ = ∞.

Moreover, if ε is very small, which is the case traditionally considered, then κ is very large. Many

results that follow in this part of the thesis will involve κ and so it is a good idea to keep this in

mind.

Claim 6.10: In terms of ε and κ, η can be written

η =
κ (ε+ 1)2

ε(κ+ 1)2
. (6.25)

Proof: Solve (6.23) for η. �

Figure 6.1 sketches κ as a function of ε for a fixed η and Figure 6.2 sketches η as a function of

κ for a fixed value of ε. The details of these sketches are easily verified.

Remark 6.11: Equation (6.25) can tell us when the parameter κ takes any desired value. For

example, we may want to design a numerical simulation with κ = 3 and ε = 1. Then, we need to

take η = 3(1+1)2

1(3+1)2
= 3

4 . However, for a given ε > 0 and κ > 1, there may not be a corresponding

physically valid η ∈ (0, 1).
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ε

κ(ε, η)

1

1+
√

1−η
1−√

1−η

1

Figure 6.1: The graph of κ(ε, η) versus ε > 0 for an arbitrary, fixed η ∈ (0, 1). It is easy to show that
∂κ
∂η < 0 for all ε > 0 and η ∈ (0, 1).

The Eigenvectors v± of the Matrix A

Eigenvectors associated with the eigenvalues λ± are easily calculated. We will take as the eigen-

vectors

v± :=

⎛⎝ 1 − η

λ± + 1

⎞⎠ . (6.26)

Since λ− < λ+ < 0, the eigenvector v+ is referred to as the slow eigenvector since solutions ap-

proaching the origin in the direction of v+ do so at the slow exponential decay rate O
(
eλ+t

)
.

Similarly, v− is the fast eigenvector since solutions approaching the origin in the direction of v−

do so at the slow exponential decay rate O
(
eλ−t

)
.

Applying the bounds of (6.21) to the expression (6.26) for the eigenvectors, we see that v+

points into the positive quadrant while v− does not.

The Slope σ of the Slow Eigenvector v+

The slope of the slow eigenvector v+ at the origin is very important, and will be denoted by

σ :=
λ+ + 1
1 − η

. (6.27)

147



6.5. Phase Portrait

κ

η(ε, κ)

1

(ε+1)2

4ε
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2(ε+1)2
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Figure 6.2: The graph of η(ε, κ) for an arbitrary, fixed ε > 0. The physically relevant values of κ are κ > 1.

It can be shown that the maximum value satisfies (ε+1)2

4ε ≥ 1 for all ε > 0 with equality only for

ε = 1. Moreover, it is easy to show that for any κ, ∂η
∂ε > 0 for ε > 1 and ∂η

∂ε < 0 for 0 < ε < 1.

Claim 6.12: The slope σ of the slow eigenvector v+ satisfies

1 < σ <
1

1 − η
. (6.28)

Proof: It follows from the definition (6.27) of σ and the inequalities in (6.21). �

Claim 6.13: The slope σ satisfies the limits

lim
ε→0+

σ = 1 and lim
ε→∞σ =

1
1 − η

.

Proof: It follows from (6.18) and (6.27). �

Phase Portrait for the Linear System

Figure 6.3 gives a sketch of the phase portrait for the linear system ẋ = Ax. We will make a few

observations.

• If y < x
1−η then ẋ < 0. Similarly, if y > x

1−η then ẋ > 0.

• If y < x then ẏ > 0. Similarly, if y > x then ẏ < 0.
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v+v−

x

y = x
1−η

y = x

y

Figure 6.3: A phase portrait of the linearized system ẋ = Ax near the origin.

• Since λ− < λ+ < 0, we know that the origin is asymptotically stable with all solutions ap-

proaching the origin in the slow direction (except those on the fast eigenvector).

• Equation (6.28) implies that the slow eigenvector v+ is between the horizontal isocline y = x

and the vertical isocline y = x
1−η .

Since the origin is a hyperbolic equilibrium point and the vector field g, where g is defined in

(6.10), is C2 in a neighbourhood of the origin, Hartman’s Theorem tells us that the phase portrait

of the nonlinear system (6.9) looks like the phase portrait of the linear system in a neighbourhood

of the origin. In particular, the origin is a stable node. See §A.8 of Appendix A for an overview of

some different types of equilibrium points.

6.5.4 The Slopes of Solutions of the Scalar Differential Equation

Table 6.1 summarizes the slopes of solutions of the scalar differential equation (6.11). These results

can be obtained easily by manipulating the differential equation.

6.5.5 Phase Portrait

The Portraits

Five computer-generated phase portraits for (6.9) are depicted in Figures 6.4 through 6.8 for various

values of the parameters ε and η. The chosen values of the parameters are not entirely random. It
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Region Values of the Slopes of Solutions

x = 0, y = 0 undefined

x = 0, y > 0 f = −ε−1(1 − η)−1

x > 0, y = 0 f = −ε−1

x > 0, 0 < y < H(x) −ε−1 < f < 0

x > 0, y = H(x) f = 0

x > 0, H(x) < y < V (x) 0 < f <∞

x > 0, y = V (x) undefined

x > 0, V (x) < y < 1 −∞ < f < −ε−1(1 − η)−1

x > 0, y = 1 f = −ε−1(1 − η)−1

x > 0, y > 1 −ε−1(1 − η)−1 < f < −ε−1

Table 6.1: This table lists the slopes of solutions of (6.11) in different regions of the non-negative quadrant.

The function f is defined in (6.12).

is important to recognize the differences and the similarities in the phase portraits for ε less than

one and greater than one and for η near one and near zero.

The EA and QSSA

We can see from the phase portraits why the EA and QSSA have proven so useful. Both isoclines

sketch out similar curves and define a so-called “trapping region” which we have already denoted

Γ0. After solutions enter this trapping region, they follow both the isoclines. It appears that

solutions follow the horizontal isocline more closely for small ε which is consistent with the fact

that QSSA is the favoured approximation.

The phrase “pre-steady-state period” is often used to describe the period of time before the

reaction (6.1) exhibits steady-state behaviour. Similarly, the “steady-state period” is the period

when the reaction does exhibit steady-state behaviour. Consider the system (6.9) with initial

condition x(0) = x0 > 0 and y(0) = 0. We will refer to the period before the solution x(t) enters

the trapping region Γ0 as the pre-steady-state period. The time afterwards, when the solution

forever remains in Γ0, will be referred to as the steady-state period.
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x ’ = − x + (1 − eta) y + x y
y ’ = 1/epsilon (x − y − x y)

epsilon = 1.0
eta = 0.4
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Figure 6.4: A phase portrait for (6.9) for ε = 1.0 and η = 0.4 in which σ ≈ 1.3 and κ ≈ 7.9, generated by

MATLAB using the programs dfield7 and pplane7. The dashed lines are the horizontal and

vertical isoclines.

The Slow Manifold

We can see from the phase portraits that there appears to be an exceptional solution that stays

inside the trapping region and attracts all other solutions. This exceptional solution to the scalar

differential equation (6.11) will be referred to as the slow manifold and denoted by y = M(x) which

is defined for all x > 0. In Chapter 7, we will rigorously define the slow manifold and show that it

exists and is unique.

Davis and Skodje, in [33] for example, take the slow manifold to be the trajectory joining a saddle

at infinity and a stable node which approaches in a slow direction. Fraser and Roussel, for example

in [43, 104, 106, 109], take (as we do here) the slow manifold as the exceptional solution between
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x ’ = − x + (1 − eta) y + x y
y ’ = 1/epsilon (x − y − x y)

epsilon = 0.5
eta = 0.2
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Figure 6.5: A phase portrait for (6.9) for ε = 0.5 and η = 0.2 in which σ ≈ 1.1 and κ ≈ 20.5.

the isoclines. For general references on invariant manifolds, see for example [25, 49, 126, 127].

The slow manifold is an invariant manifold and is important from a dynamical systems point of

view in the same sense that a centre manifold or stable manifold is important. Solutions approach

the slow manifold exponentially fast and then follow it as time proceeds. Hence, it is of value to

study the dynamics on the slow manifold which is of lesser dimension than the original system.

The slow manifold represents a much better long-term approximation than EA and QSSA. More-

over, knowing the position of the slow manifold accurately allows, for example, all rate constants

to be determined independently from steady-state data. See, for example, [108].
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x ’ = − x + (1 − eta) y + x y
y ’ = 1/epsilon (x − y − x y)

epsilon = 5.0
eta = 0.8
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Figure 6.6: A phase portrait for (6.9) for ε = 5.0 and η = 0.8 in which σ ≈ 4.2 and κ ≈ 6.9.

6.5.6 Domain of Existence for Solutions of the Differential Equations

Any solution x(t) of the planar system (6.9) is defined for all t ≥ 0. We will only ever consider

x0 ∈ S, where x(0) = x0 is the initial condition. Recall that S is positively invariant. However, we

need to be a little more careful in specifying the domain for solutions y(x) to the scalar differential

equation (6.11). There are five possibilities.

• If (x, y) = (0, 0) or if x > 0 and y = V (x), the function f is not defined, where f is given in

(6.12). We will not consider there to be a scalar solution y through the origin or along the

vertical isocline.

• If y is the slow manifold, that is y = M, then y is defined for x > 0.
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x ’ = − x + (1 − eta) y + x y
y ’ = 1/epsilon (x − y − x y)

epsilon = 5.0
eta = 0.2
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Figure 6.7: A phase portrait for (6.9) for ε = 5.0 and η = 0.2 in which σ ≈ 1.2 and κ ≈ 34.0.

• If y lies below the slow manifold, y will intersect the x-axis for some a > 0. Thus, y is defined

for (0, a] with y(a) = 0.

• If y lies below the vertical isocline, y will intersect V for some a > 0. Thus, y is defined for

(0, a) with lim
x→a−

y(x) = V (a).

• If y lies above the vertical isocline, y will intersect V for some a > 0. Thus, y is defined for

[0, a) with lim
x→a−

y(x) = V (a).

Since g in Equation (6.10) is analytic, solutions x(t) are also analytic. Furthermore, since f in

Equation (6.12) is analytic except at (0, 0) and along the vertical isocline V , scalar solutions y(x)

are analytic except at (0, 0) and along the vertical isocline.
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x ’ = − x + (1 − eta) y + x y
y ’ = 1/epsilon (x − y − x y)

epsilon = 1.0
eta = 0.96
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Figure 6.8: A phase portrait for (6.9) for ε = 1.0 and η = 0.96 in which σ = 5 and κ = 1.5.

6.6 The Matrix Exponential

The goal of this section is to find an explicit expression for the matrix exponential etA, where A is

given in (6.15). Recall the fast v+ and slow v− eigenvectors of A, which were specified in (6.26).

Observe that the eigenvectors have respective slopes7

σ± :=
λ± + 1
1 − η

.

Define the matrix

P :=

⎛⎝ 1 1

σ+ σ−

⎞⎠
7We have already defined σ as the slope of v+, but in this section we want to refer to the slopes of both eigenvectors.
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which has inverse

P−1 =
1

σ+ − σ−

⎛⎝−σ− 1

σ+ −1

⎞⎠ .

It follows that

P−1AP = Λ,

where Λ := diag (λ+, λ−). Moreover,

A = PΛP−1, etΛ = diag
(
eλ+t, eλ−t

)
, and etA = PetΛP−1.

Thus, we can write

etA = eλ+tB+ + eλ−tB−,

where

B+ :=
1

σ+ − σ−

⎛⎝−σ− −σ−
σ+ σ+

⎞⎠ and B− :=
1

σ+ − σ−

⎛⎝ σ+ σ−

−σ+ −σ−

⎞⎠ .

Consider the initial value problem

ẋ = Ax, x(0) = x0. (6.29)

It is interesting to see how the exact solution of (6.29), which is given by etAx0, depends on the

eigenvectors v± in addition to the initial condition x0. Define the vectors and constants

w± :=

⎛⎝ ε−1

λ± + 1

⎞⎠ and c± :=
wT±x0

wT±v±
.

Note that w+ and w− are left eigenvectors of A which satisfy the orthogonality condition wT±v∓ = 0.

(See §A.14 of Appendix A for a review of left and right eigenvectors.) It can be shown that the

unique solution of (6.29)

x(t) = c+eλ+tv+ + c−eλ−tv−.

Remarks 6.14:

(i) Observe that c± = 0 if and only if x0 ‖ v∓.

(ii) Note that v+ and w+ both point into the first quadrant and v− and w− both point into the

second quadrant. This means that wT±v± > 0. Furthermore, if we assume x0 	= 0 then x0

points into the non-negative quadrant, thus wT
+x0 > 0 and c+ > 0. Moreover, c− > 0 if x0 is

to the left of v+ and c− < 0 if x0 is to the right of v+.
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6.7 Literature Review

Throughout this introductory chapter, we included historical notes on the development of the

Michaelis-Menten reaction. In this section, we will single out some other contributions to the

literature, particularly those which apply to the mathematical study of the mechanism. Where

mathematical expressions occur, we have converted them (if necessary) into the notation of this

thesis.

Traditionally, the parameter ε is considered to be small. Hence, the system (6.9) with initial

conditions x(0) = x0 > 0 and y(0) = 0 can be treated as a singular perturbation problem. See, for

example, [14, 45, 57, 67, 84]. A matched-asymptotic analysis yields the zeroth-order term of the

outer solution

x
(0)
outer(t) = W

(
x0e

x0−ηt
)

and y
(0)
outer = H

(
x

(0)
outer(t)

)
,

where W is the Lambert W function (see §A.16 of Appendix A). Observe that the QSSA is the

zeroth-order term in the outer solution. Note that originally x(0)
outer(t) was given implicitly. Later,

x
(0)
outer(t) was given explicitly in terms of W as an example in [31] (which was where the Lambert

W function was first given its name). The uniform approximation for t ≥ 0 turns out to be

xuniform(t) = W
(
x0 ex0−ηt

)
and yuniform(t) = H (xuniform(t)) −H (x0) e−ε−1(1+x0)t.

The correctness of the above analysis is proved using Tikhonov-Levinson Theory. In particular,

the solution to initial value problem converges uniformly over a time interval [0, T ] as ε→ 0+ to

the uniform approximation. See, for example, [80, 98, 120, 125]. Moreover, explicit bounds on

the approximations have been obtained for small ε. See, for example, [112]. Frank Hoppensteadt

showed that we can take the interval [0, T ] for uniform convergence to be [0,∞). See, for example,

[62, 63]. In Chapter 8, we will find estimates for the concentrations and time lengths, which are

valid for all ε and η, for both the pre-steady-state period and the steady-state period.

Lee A. Segel and Marshall Slemrod, in [112], have argued that there is an optimal scaling for

the singular perturbation approach. In particular, they choose ε = e0
s0+Km

, where e0 is the initial

enzyme concentration, s0 is the initial substrate concentration, and Km is the Michaelis-Menten

constant. Recall that the traditional scaling has ε = e0
s0

and that the scaling we are using in this

thesis is ε = e0
Km

. In a sense, the scaling we are using is an intermediate of the traditional and

Segel-Slemrod choices for ε. Segel and Slemrod also extended and simplified the estimates of the
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two time scales in the singular perturbation problem.

The matrix A given in (6.15) has two strictly negative eigenvalues and so the Centre Manifold

Theorem cannot be applied directly at the origin. However, Jack Carr in [23] on pages 8-10 used

the system (6.9) as an example of approximating a parameter-based centre manifold. Re-scale the

time by letting τ := ε−1t and denote ′ = d
dτ . Then, the system (6.9) can be written in the equivalent

form

x′ = εr(x, z), z′ = −z + x2 − xz + εr(x, z), ε′ = 0,

where

r(x, z) := −x+ (1 − η + x) (x− z) and z := x− y.

The Centre Manifold Theorem applies to this system and hence there is a centre manifold z = z(x, ε)

which is C∞ in a neighbourhood of the origin (x, z, ε) = (0, 0, 0). To leading order,

z(x, ε) = −εηx+ y2 + O
(
x3 + ε3

)
as x, ε→ 0+

and thus8

y(x, ε) = (1 + εη) x− x2 + O
(
x3 + ε3

)
as x, ε→ 0+.

In Chapter 7, we will show that the slow manifold can be constructed as a centre manifold for a

fixed point at infinity.

The phase portrait of the system (6.9) has been investigated by Simon J. Fraser, An Hoang

Nguyen, Marc R. Roussel (formerly Fraser’s Ph.D. student), and others. See, for example, [44, 92,

104]. The work for this part of the thesis is inspired by this dynamical systems approach. Two

main themes of this work has been the recognition of the EA and QSSA as the isoclines and the

approximation of the slow manifold.

Fraser and Roussel have argued informally that a unique slow manifold must indeed exist

between the horizontal and vertical isoclines and be unique. See, for example, [43, 104, 106]. These

arguments make use of the idea of antifunnels. See, for example, [64]. In Chapter 7, we will

rigorously prove that the slow manifold exists and is unique.

8The slope σ of the slow eigenvector v+, which we defined earlier, satisfies

σ = 1 + εη + O(ε2) as ε→ 0+.

158



Chapter 6. Introduction

It was argued in [92] and [104], for example, that the slow manifold can be written as a Taylor

series at the origin, M(x) =
∑∞

n=0 σnx
n. Obviously,

σ0 = 0 and σ1 = σ

and, for n > 1, it was found

σn = −
∑n−1

k=2 [(n− k)σn−k + (1 − η)(n − k + 1)σn−k+1]σk + [(n− 1)σ1 + ε−1]σn−1

ε−1 + (1 − η)(n + 1)σ1 − n
.

In Chapter 7, we will show that this is not quite correct.

It was argued by Roussel, for example in [104], that the slow manifold, for large x, can be

written M(x) ∼
∑∞

n=0 ρnx
−n as x→ ∞. The coefficients are found to be

ρ0 = 1, ρ1 = −1, ρ2 = 1, and ρn = −ρn−1 + ε

n−2∑
i=1

iρi [ρn−i−1 + (1 − η)ρn−i−2] for n > 2.

In Chapter 7, we will show that this asymptotic series is fully correct.

Fraser and Roussel have introduced and investigated an iteration procedure to approximate the

slow manifold for all x > 0. See, for example, [43, 92, 104, 106, 107, 109]. These iterates are defined

by yn+1(x) := F (x, y′n(x)), where F (x, c) is found by solving f(x, y) = c for y = F (x, c) and f is

the function defined in (6.12). A definitive proof of convergence of this scheme for all values of ε

and η has not yet been given.

Roussel and Fraser, for example in [107], have used a linearized stability analysis to argue

convergence for all x ≥ 0 if ε is small. Furthermore, Roussel noted, for example in [104, 106],

that if the initial function y0 is analytic at the origin with y′0(0) ≥ 0, then the sequence of iterates

{yn}∞n=1 converges to M at x = 0. We will extend this result in Appendix B. Finally, Roussel, in

[104] on page 57 and 58, showed inductively that if

yn(x) =
m∑

i=0

ρix
−i + O

(
x−(m+1)

)
as x→ ∞

then

yn+1(x) =
m+2∑
i=0

ρix
−i + O

(
x−(m+3)

)
as x→ ∞,

where {ρi}∞i=0 are as in the asymptotic series M(x) ∼
∑∞

n=0 ρnx
−n. Hence, two coefficients of the

asymptotic expansion of M are gained for each iteration.
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The Fraser scheme yn+1(x) := F (x, y′n(x)) is fairly reliable but does not converge in some cases.

See, for example, [104]. Roussel suggested an alteration to the Fraser scheme in an attempt to force

convergence. First, he wrote y = F (x, y′) equivalently as

y(x) + ξ(x)y(x) = F (x, y′(x)) + ξ(x)y(x),

where ξ(x) is a yet-to-be-determined weighting function, which has the same fixed points as the

original equation. New iterates are formed by writing

yn+1(x) :=
F (x, y′n(x)) + ξ(x)yn(x)

1 + ξ(x)
.

Choosing

ξ(x) :=
εηx

(1 + x)2

preserves the good behaviour near x = 0 and x = ∞ that the Fraser scheme possesses but also

suppresses any erratic behaviour in the intermediate values of x (based on a linearized stability

analysis).

A Geometric singular perturbation approximation has been obtained for the slow manifold, for

example, by Hans and Tasso Kaper, who are father and son mathematicians. See, for example,

[68]. Here, they compared the Fraser iterates with initial function y0 := H and the perturbation

series. They found that

yn(x) =
n∑

m=0

Mm(x)εm + O
(
εn+1

)
as ε→ 0+

for each n where {yn}∞n=0 are the Fraser iterates and

M(x) =
∞∑

m=0

Mm(x)εm as ε→ 0+

is the perturbation series.

The use of Intrinsic Low-Dimensional Manifolds (ILDMs) in chemical kinetics has been explored,

for example, by Hans and Tasso Kaper in [68], U. Maas and S.B. Pope in [85], and Roussel on pages

50–56 of [104]. For the system (6.9), an example of an ILDM is the slow tangent manifold. The

slow tangent manifold is not a solution of the differential equation but it does approximate the

slow manifold. Let v+(x) be a slow eigenvector for the Jacobian matrix Dg(x). The slow-tangent

manifold T is the set of points x such that v+(x) is parallel to g(x). By equating the slope of
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the slow eigenvector v+(x) to the slope of the vector field g(x), one finds that the slow-tangent

manifold x = T (y) is given by

T (y) =

y

{[
1 − ε (1 − y)2

]
+

√[
1 − ε (1 − y)2

]2
+ 4ε (1 − η) (1 − y)2

}
2 (1 − y)

.

In Chapter 7, we discuss another interpretation for the slow-tangent manifold.

6.8 Summary

We have seen the Michaelis-Menten mechanism for an enzyme reaction,

S + E
k1�
k−1

C
k2→ P + E,

where S is the substrate, E is the enzyme, C is the complex, P is the product, and k−1, k1, and k2

are the reaction-rate constants. The traditional equilibrium approximation (EA) and quasi-steady-

state approximation (QSSA) yield, respectively,

c ≈ e0s

Ks + s
and c ≈ e0s

Km + s
,

where s is the concentration of the substrate, c is the concentration of the complex, e0 is the initial

concentration of the enzyme, and Ks = k−1+k2

k1
and Km = k−1

k1
.

The Law of Mass Action, conservation laws, and a re-scaling give the dimensionless planar

system

ẋ = −x+ (1 − η + x) y, εẏ = x− (1 + x) y,

where x is a scaled substrate concentration, y is a scaled complex concentration, ˙= d
dt , ε > 0 is

a measure of the ratio of the different time scales involved, and η ∈ (0, 1) is another parameter.

Furthermore, we form the equivalent scalar system

y′ =
x− (1 + x) y

ε [−x+ (1 − η + x) y]
,

where ′ = d
dx . In this introductory chapter, we initiated our study of the solutions for the scalar

and planar systems in the (physically relevant) non-negative quadrant S.

The horizontal and vertical isoclines for the planar system are, respectively,

H(x) =
x

1 + x
and V (x) =

x

1 − η + x
.
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It turns out that the horizontal isocline is equivalent to the QSSA and the vertical isocline is

equivalent to the EA. The region between the isoclines will be of importance and is denoted by

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } .

The linearization matrix at the origin, which is the sole equilibrium point of the planar system,

is given by

A =

⎛⎝−1 1 − η

ε−1 −ε−1

⎞⎠ .
The fast and slow eigenvalues of A are

λ± =
− (ε+ 1) ±

√
(ε+ 1)2 − 4εη

2ε
,

which are both real-valued and satisfy

λ− < −1 < −η < λ+ < 0.

There is resonance in the eigenvalues if and only if κ ∈ {2, 3, . . .}, where

κ =
λ−
λ+

is the ratio of the eigenvalues which satisfies κ > 1. Moreover, the slope of the slow eigenvector v+

of the matrix A is

σ =
λ+ + 1
1 − η

,

which satisfies

1 < σ <
1

1 − η
.

As we will show in Chapter 7, all solutions to the planar system enter the region Γ0 and approach

the origin in the slow direction with slope σ.

Figures 6.4 through 6.8 give computer-generated phase portraits for the planar system. In these

phase portraits, there appears to be an exceptional solution between the horizontal and vertical

isoclines. In Chapter 7, we will prove that this exceptional solution, which is called the slow

manifold and is denoted by y = M(x), exists and is unique.
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Properties of Solutions in Phase Space

7.1 Introduction

The Michaelis-Menten mechanism, recall, is

S + E
k1�
k−1

C
k2→ P + E,

where S, E, C, and P are, respectively, the substrate, enzyme, complex, and product. The Law

of Mass Action, reduction via conservation laws, and a re-scaling give us the planar differential

equation

ẋ = g(x) (7.1)

and the corresponding scalar differential equation

y′ = f(x, y), (7.2)

where

g(x) =

⎛⎝−x+ (1 − η + x) y

ε−1 [x− (1 + x) y]

⎞⎠ and f(x, y) =
x− (1 + x) y

ε [−x+ (1 − η + x) y]
. (7.3)

Note that t is a scaled time, x is a scaled substrate concentration, y is a scaled complex concen-

tration, ε > 0 is a parameter, η ∈ (0, 1) is another parameter, ˙= d
dt , and ′ = d

dx . The physically

relevant portion of the xy-plane is the non-negative quadrant, which is denoted by S. Note also

that the Jacobian of the vector field g at the origin is

A =

⎛⎝−1 1 − η

ε−1 −ε−1

⎞⎠ ,
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which has eigenvalues

λ± =
− (ε+ 1) ±

√
(ε+ 1)2 − 4εη

2ε
. (7.4)

In this chapter, we will explore properties of solutions of the planar differential equation (7.1)

in phase space for non-negative x and y. Equivalently, we will be studying solutions of the scalar

differential equation (7.2).

7.2 Isoclines

The horizontal and vertical isoclines are usually the only two isoclines that are considered. However,

we will make tremendous use of all of the isoclines for the planar system (7.1). Recall that the

horizontal and vertical isoclines are, respectively,

H(x) =
x

1 + x
and V (x) =

x

1 − η + x
, (7.5)

with the region between the isoclines denoted by

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } .

The most important isocline will turn out to be the isocline for slope σ, where σ is the slope of the

slow eigenvector. From Chapter 6,

σ =
λ+ + 1
1 − η

, (7.6)

where the slow eigenvalue λ+ was given in (7.4).

7.2.1 Finding the Isoclines

The curve y = w(x) is an isocline for slope c ∈ R if f(x,w(x)) = c for all x > 0, where f is given

in (7.3). Solving f(x, y) = c for y gives

y =
x

K(c) + x
,

where

K(c) :=
1 + ε (1 − η) c

1 + εc
, c 	= −ε−1. (7.7)

Hence, define the function

F (x, c) :=
x

K(c) + x
, c 	= −ε−1, x 	= −K(c). (7.8)
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c

1
(σ, σ−1)

−ε−1(1 − η)−1

K(c)

c = −ε−1

K = 1 − η

Figure 7.1: Graph of the function K(c) for arbitrary ε > 0 and η ∈ (0, 1).

It follows that y = F (x, c) is the isocline for slope c. Observe that each isocline is a hyperbola

(except when K(c) = 0) with vertical asymptote at x = −K(c). Observe also that

y′(x) = f(x, y(x)) if and only if y(x) = F (x, y′(x)).

Claim 7.1: Any of the isoclines w satisfy the differential equation

w(w − 1) + xw′ = 0. (7.9)

Proof: It is easy to show that w(x) := x
r+x satisfies the given differential equation for any r. �

7.2.2 The Function K

In this subsection, we will establish some properties of the functionK. Note thatK is a transformed

hyperbola since

K(c) = 1 − η

[
c

ε−1 + c

]
.

A sketch of the graph of r = K(c) is given in Figure 7.1.

Claim 7.2: The function K satisfies

K(σ) = σ−1. (7.10)
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Proof: It can be shown by substituting (7.4) and (7.6) into (7.7) and simplifying. �

Claim 7.3: We can invert K(c) = r for r 	= 1 − η and differentiate K(c) for c 	= −ε−1 with

K−1(r) =
r − 1

ε (1 − η − r)
, r 	= 1 − η and K ′(c) = − εη

(1 + εc)2
, c 	= −ε−1. (7.11)

Proof: The proof is easy. �

Claim 7.4: The functions K and F satisfy, for all c 	= −ε−1,

F (K(c), c) = 1
2 and f

(
K(c), 1

2

)
= c.

Proof: These can be shown directly by using the definitions (7.7) and (7.8) of K and F . �

Claim 7.5: Let u(c) := cK(c). Then,

u(0) = 0, u(σ) = 1 and u′(c) ≥ 1 − η for all c ≥ 0. (7.12)

Proof: See Figure 7.2, which gives a sketch of u = cK(c). The fact that u(0) = 0 is obvious since

K(0) = 1. Furthermore, the fact that u(σ) = 1 follows from (7.10). Finally, we show that u′(c) ≥ 1.

Since u′(c) = K(c) + cK ′(c), substituting (7.7) and (7.11) yields

u′(c) =
(

1
1 + εc

)[
1 + ε (1 − η) c− εηc

1 + εc

]
≥
(

1
1 + εc

)
[1 + ε (1 − η) c− η] = 1 − η.

�

Remarks 7.6:

(i) The interior of Γ0 corresponds to 0 < c <∞ and 1 − η < K(c) < 1. Furthermore, K(0) = 1

corresponds to the horizontal isocline H and lim
c→∞K(c) = 1 − η corresponds to the vertical

isocline V .

(ii) There are two exceptional isoclines, namely w(x) = 0 and w(x) = 1. These correspond, re-

spectively, to slope c = −ε−1 and c = −ε−1 (1 − η)−1. For completeness, we will agree that

F
(
x,−ε−1

)
= 0.

(iii) The vertical isocline, V , also is somewhat of an exceptional case. Approaching it from below,

one encounters increasing c up to +∞. After passing through V , the slopes increase from −∞

to −ε−1. The reader is encouraged to compare Figure 7.3 and Table 6.1 for consistency.
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(σ, 1)

u

c

u = cK(c)

u = (1 − η) c

Figure 7.2: Graph of the function u(c) := cK(c) for arbitrary ε > 0 and η ∈ (0, 1). The function is strictly

increasing for c > 0 for every admissible ε and η. Furthermore, u′(0) = 1 and lim
c→∞u′(c) = 1 − η.

7.2.3 The Isocline Structure

Figure 7.3 sketches the isocline structure for the planar system (7.1). Occasionally, we will appeal to

the isocline structure. For example, since the slow manifold is between the horizontal and vertical

isoclines, the isocline structure shows that the slope of the slow manifold is always strictly positive.

7.3 Global Asymptotic Stability

The following result, which is formulated in terms of solutions of (7.1) which are functions of time,

is necessary for understanding solutions in the phase plane.

Theorem 7.7: Consider the planar system (7.1).

(a) The region Γ0 is positively invariant.

(b) Let x(t) be the solution to (7.1) with initial condition x(0) = x0, where x0 ∈ S\ {0}. Then,

there is a t∗ ≥ 0 such that x(t) ∈ Γ0 for all t ≥ t∗.

(c) Let x(t) be the solution to (7.1) with initial condition x(0) = x0, where x0 ∈ S. Then,

lim
t→∞x(t) = 0.

Proof:

(a) It follows from the definition (7.3) of the vector field g and Figure 7.4 that g • ν < 0 along V

and H, where ν is the outward unit normal vector. Thus, solutions cannot exit Γ0 through
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c switches from
+∞ to −∞

1

y = V (x)

increasing c

increasing c

c = −ε−1

c = −ε−1(1 − η)−1

y

x

(from −∞ to −ε−1)

(from −ε−1 to +∞)

Figure 7.3: Sketch of the isocline structure of (7.1).

the horizontal or vertical isoclines. Furthermore, solutions cannot escape from Γ0 through the

origin since solutions do not intersect. Hence, Γ0 is positively invariant.

(b) We will break the proof into cases.

Case 1: (x0, y0) ∈ Γ0. Since Γ0 is positively invariant, x(t) ∈ Γ0 for all t ≥ 0.

Case 2: x0 > 0 and y0 > V (x0). Suppose, on the contrary, that x(t) does not enter Γ0. It

follows that y(t) > V (x(t)) for all t ≥ 0. Using the differential equation (7.1), we know

ẋ(t) > 0 and ẏ(t) < 0 for all t ≥ 0. Now, we see from the definition (7.3) of the function

f and Table 6.1 that

ẏ(t)
ẋ(t)

= f(x(t), y(t)) < −ε−1 for all t ≥ 0.

Thus,

ẏ(s) < −ε−1ẋ(s) for all s ≥ 0.
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(x0, y0)

Γ0

y = V (x)

y = H(x)

normal vector

vector field

(a)

x = x0

(b)

y = V (x)

y = H(x)Γ0

x

x(t)

(x1, V (x1))

y = y0 − ε−1 (x− x0)

y

Figure 7.4: (a) The positive invariance of Γ0. (b) Suppose that x0 > 0 and y0 > V (x0). If the solution

x(t) never enters Γ0, then x(t) is bounded by the line x = x0, the vertical isocline y = V (x),

and the line y = y0 − ε−1 (x− x0).

Integrating with respect to s from 0 to t and re-arranging, we obtain

y(t) ≤ y0 − ε−1 [x(t) − x0] for all t ≥ 0.

Let (x1, V (x1)) be the point of intersection of the vertical isocline y = V (x) and the

straight line y = y0 − ε−1 (x− x0). See Figure 7.4. Obviously, x1 > x0. Since x(t) is

monotone increasing and bounded above by x1, we see that there is an x ∈ [x0, x1] such

that lim
t→∞x(t) = x. Similarly, since y(t) is monotone decreasing and bounded below by

V (x0), we see that there is a y ∈ [y0, V (x0)] such that lim
t→∞ y(t) = y. Thus, the ω-limit set

is ω(x0, y0) = {(x, y)}. Since ω(x0, y0) is invariant and (0, 0) is the only equilibrium point

of the system, x = 0 and y = 0. This is a contradiction.

Case 3: x0 > 0 and y0 < H(x0). This case is proved in a manner similar to Case 2.

Case 4: x0 = 0 and y0 > 0. It follows from the differential equation that ẋ(0) = (1 − η) y0 > 0.

So, x(t) > 0 and y(t) > V (x(t)) for sufficiently small t > 0. Thus, we can apply Case 2.

Case 5: x0 > 0 and y0 = 0. It follows from the differential equation that ẏ(0) = ε−1x0 > 0.

So, x(t) > 0 and 0 < y(t) < H(x(t)) for sufficiently small t > 0. Thus, we can apply Case 3.

(c) We can assume that (x0, y0) ∈ Γ0 (since the trivial solution obviously satisfies the given limit

and all other solutions eventually enter Γ0). It follows from the differential equation (7.1) and

169



7.4. Existence and Uniqueness of the Slow Manifold

the fact that Γ0 is positively invariant that ẋ(t) ≤ 0 and ẏ(t) ≤ 0 for all t ≥ 0. Since both x(t)

and y(t) are strictly decreasing and bounded below by zero, by the Monotone Convergence

Theorem we know that there are x and y such that lim
t→∞x(t) = x and lim

t→∞ y(t) = y. Thus, the

ω-limit set is ω(x0, y0) = {(x, y)}. Since ω(x0, y0) is invariant and (0, 0) is the only equilibrium

point of the system, x = 0 and y = 0.

�

Remark 7.8: In the preceding proof, we twice had a situation in which lim
t→∞x(t) = x, where x(t) is

a solution of (7.1). We can show that x = 0 without using the ω-limit set. Since x(t) is bounded, it

follows from the differential equation that ẍ(t) is bounded and hence ẋ(t) is uniformly continuous.

Therefore, by Barbălat’s Lemma (see §A.7 of Appendix A) g(x) = 0 and hence x = 0.

7.4 Existence and Uniqueness of the Slow Manifold

In this section, we will prove the existence and uniqueness of a solution to the scalar differential

equation (7.2) which lies entirely in the region Γ0. To accomplish this, we will use the so-called

Antifunnel Theorem. The reader may wish to consult §A.3 of Appendix A. A very good reference

for funnels and antifunnels is [64].

7.4.1 Introduction

It is tempting to refer to Γ0, the region between the horizontal and vertical isoclines, as an anti-

funnel. However, this would be incorrect. The reason is that the function f is infinite along the

vertical isocline.

There are three possible courses of action to remedy this situation. First, we could extend

the results to include the case where slopes are vertical along a fence. Second, we could develop

analogous results for solutions that are curves as functions of time. The third possibility is the

simplest and perhaps most rewarding. It turns out that there is a smaller, valid, traditional

antifunnel within Γ0. Hence, we would have better bounds on a unique solution lying within this

new antifunnel.1

1In some ways, it would be simpler to consider only Γ0. For example, we would only need to work with the

intuitive region Γ0.
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The key to the proof is considering the isocline α for slope σ, where σ is the slope of the slow

eigenvector. Equations (7.7), (7.8), and (7.10) tell us that α is given by the simple expression

α(x) =
x

σ−1 + x
. (7.13)

Claim 7.9: The isocline α satisfies

α′(0) = σ, σ = f(x, α(x)) for all x > 0, and α′′(x) < 0 for all x > 0.

Proof: The first property follows from differentiating (7.13) with respect to x and setting x = 0.

The second property follows from the fact that α is the isocline for slope σ. Finally, the third

property can be shown easily by differentiating (7.13) twice. �

Claim 7.10: The curve y = α(x) is a strong lower fence and the curve y = H(x) is a strong upper

fence for the differential equation (7.2) for x > 0.

Proof: The derivative of solutions to (7.2) along the concave-down curve y = α(x) is identically

equal to σ. Thus,

α′(x) < α′(0) = σ = f(x, α(x)) for all x > 0.

Hence, by definition, y = α(x) is a strong lower fence for x > 0. To show that y = H(x) is a strong

upper fence for x > 0, consider that

f(x,H(x)) = 0 < H ′(x) for all x > 0.

�

Remark 7.11: If c ≥ σ then the isocline w(x) := F (x, c) is a strong lower fence. To see why, first

let r := K(c). Since w is concave down for all x > 0, we know w′(x) < w′(0) = r−1 for all x > 0.

Now, by virtue of (7.12), r−1 ≤ c. Thus,

w′(x) < r−1 ≤ c = f(x,w(x)) for all x > 0.

Claim 7.12: The region

Γ1 := { (x, y) : x > 0, H(x) ≤ y ≤ α(x) }

is a narrowing antifunnel for the differential equation (7.2).
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Proof: We know already that y = α(x) and y = H(x) are strong fences for (7.2). Furthermore,

the fences satisfy α(x) > H(x) for x > 0 and

lim
x→∞ |α(x) −H(x)| = 0.

By definition, Γ1 is a narrowing antifunnel. �

7.4.2 The Existence-Uniqueness Theorem

Theorem 7.13:

(a) There exists a unique slow manifold y = M(x) in Γ1 for the scalar differential equation (7.2).

(b) The slow manifold y = M(x) is also the only solution that lies entirely in Γ0.

Proof:

(a) We know from the isocline structure that ∂f
∂y ≥ 0 in Γ1. So, all the conditions for the Antifunnel

Theorem (Theorem A.4 on page 309) have been established. Therefore, there exists a unique

solution y = M(x) to (7.2) that lies entirely in Γ1.

(b) Let y be a solution in Γ0 lying below M. Since M is the only solution contained in Γ1, y must

leave Γ1 through the horizontal isocline.

Now, let y be a solution in Γ0 lying above M. Suppose on the contrary that y never leaves

Γ0 and thus M(x) < y(x) < V (x) for all x > 0. Since M is the only solution contained in Γ1,

y must leave Γ1 through the α isocline, say at x = a for some a > 0. Since α′(x) < σ for all

x > 0 and y′(x) ≥ σ if y(x) ≥ α(x), we can conclude via a simple comparison argument that

α(x) < y(x) < V (x) for all x > a. Hence, y(x) > y(a) + σ (x− a) for all x > a. This implies

that y(x) > 1 > V (x) for sufficiently large x, which is a contradiction.

�

Remarks 7.14:

(i) Slow manifolds, like centre manifolds, are generally not unique and are defined locally. In our

case, all solutions that have slope σ at the origin are slow manifolds. However, we look at the

global phase portrait and refer to the unique solution within Γ1 as the slow manifold.
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(ii) It is easy to show

|α(x) −H(x)| ≤ σ − 1

(
√
σ + 1)2

and
σ − 1

(
√
σ + 1)2

=
(

1
4 η
)
ε+ O

(
ε2
)

as ε→ 0+.

Theorem 7.13 shows that H(x) <M(x) < α(x). It follows that, uniformly in x, we have

M(x) −H(x) = O(ε) as ε→ 0+.

(iii) If w1(x) <M(x) < w2(x) for all x > 0, where w1 and w2 are isoclines, then w1(x) ≤ H(x)

and w2(x) ≥ α(x) for all x > 0. This follows from the isocline structure and the fact (which

we will show later) that lim
x→0+

M′(x) = σ and lim
x→∞M′(x) = 0.

(iv) The isocline α gives the improved hyperbolic rate law

V ≈ k2e0s

(Kmσ−1) + s

for the velocity of the Michaelis-Menten reaction.

7.4.3 Nested Antifunnels

We can find a family of nested antifunnels using the isoclines as boundaries. These antifunnels will

not be valid for all x > 0. Note that the antifunnel Γ1, which we used to prove the existence and

uniqueness of the slow manifold, can be regarded as a limiting case.

For an isocline w(x) := F (x, c) to be a strong lower fence on an interval, we need w′(x) < f(x,w(x)).

Now, solving the equation w′(x) = f(x,w(x)), as we shall see, yields x =
√
c−1K(c) −K(c). Hence,

we define the function

ξ(c) :=
√
c−1K(c) −K(c), c ∈ (0, σ). (7.14)

We will now establish a few properties of the function ξ(c). See Figure 7.5 for a sketch of ξ(c).

Claim 7.15: The function ξ(c) satisfies

lim
c→0+

ξ(c) = +∞, lim
c→σ−

ξ(c) = 0, and ξ′(c) < 0 for all c ∈ (0, σ). (7.15)

Proof: The first limit follows from the fact that K(0) = 1 and the second limit follows from the

fact that K(σ) = σ−1. To show that ξ(c) is strictly decreasing on (0, σ), we begin by writing

ξ(c) =
[√

c−1K(c)
] [

1 −
√
cK(c)

]
.
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ξ

ξ = ξ(c)

σ
c

Figure 7.5: Graph of the function ξ(c) for arbitrary ε > 0 and η ∈ (0, 1).

Now, it follows from (7.7), (7.11), and (7.12) that, for any c ∈ (0, σ),

√
c−1K(c) > 0, 1 −

√
cK(c) > 0, K(c) − cK ′(c) > 0, and

d

dc
(cK(c)) > 0.

If we differentiate ξ(c), for any c ∈ (0, σ) we have

ξ′(c) =

[
cK ′(c) −K(c)
2c2
√
c−1K(c)

] [
1 −
√
cK(c)

]
+
[√

c−1K(c)
] [

−
(

1
2
√
cK(c)

)
d

dc
(cK(c))

]
< 0.

�

Claim 7.16: The function ξ(c) is analytic for all c ∈ (0, σ). Furthermore, ξ(c) has analytic inverse

ξ−1(x) defined for all x > 0.

Proof: It is clear from the definition (7.14) that ξ(c) is analytic for all c ∈ (0, σ). Using (7.15) in

conjunction with the Real Analytic Inverse Function Theorem, we know that ξ(c) is invertible for

all c ∈ (0, σ) and that ξ−1(x) is analytic for all x > 0. �

We are now in a position to establish on what interval a given isocline is a strong lower fence (or

a strong upper fence). Observe that no isocline between the horizontal isocline and the α isocline

is strong fence for all x > 0. That is, there are no isoclines between H and α that would give us a

thinner antifunnel valid for all x > 0 with which to prove the existence and uniqueness of the slow

manifold.
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Proposition 7.17: Let c ∈ (0, σ) be fixed and let w(x) := F (x, c) be the isocline for slope c.

(a) The isocline w satisfies

w′(x)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> f(x,w(x)), if 0 < x < ξ(c)

= f(x,w(x)), if x = ξ(c)

< f(x,w(x)), if x > ξ(c)

.

(b) The slow manifold satisfies

H(x) <M(x) < w(x) for all x > ξ(c).

Proof:

(a) We know that

f(x,w(x)) = c and w′(x) =
K(c)

[K(c) + x]2
for all x > 0.

We will show only the third case (the one that results in an antifunnel) since the first two cases

are similar. Thus,

x >
√
c−1K(c) −K(c) =⇒ K(c)

[K(c) + x]2
< c =⇒ w′(x) < f(x,w(x)).

(b) It follows from the Antifunnel Theorem.

�

7.5 Behaviour Near x = 0: Introduction

We already know that all solutions x(t) to (7.1), except the trivial solution, eventually enter Γ0.

We also know that the slow manifold M separates the solutions; solutions either lie above M and

enter Γ0 through the vertical isocline or lie below M and enter Γ0 through the horizontal isocline.

Proposition 7.18: Let y be a solution to (7.2) lying inside Γ0 for x ∈ (0, a), where a > 0. Then,

we can extend y(x) and y′(x) to say y(0) = 0 and y′(0) = σ.
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Proof: We should begin by emphasizing that solutions x(t) to (7.1) enter and forever remain in

the interior of Γ0. By hypothesis, H(x) < y(x) < V (x) for all x ∈ (0, a). The Squeeze Theorem

establishes y(0) = 0 since H(0) = V (0) = 0.

To establish y′(0) = σ, observe that the function g, as in (7.3), is C2 with g(0) = 0 and the

matrix A = Dg(0) has strictly negative eigenvalues. It follows from Hartman’s Theorem (see, for

example, page 127 of [100]), which is a stronger version of the Hartman-Grobman Theorem and

applies even in cases of resonance, that the phase portrait of (7.1) behaves like the phase portrait of

the linear system ẋ = Ax diffeomorphically in a neighbourhood of the origin. Therefore, solutions

to the nonlinear system have slope σ as they approach the origin too. �

7.6 Concavity

The goal of this section is to establish the concavity of solutions y(x) to the scalar system (7.2) in

all regions of the non-negative quadrant except for along the slow manifold. The concavity of the

slow manifold will be established separately in §7.10. To achieve these results, we find and analyze

an auxiliary function h which has the same sign as y′′.

7.6.1 Introduction

Let y be a solution to (7.2), which we will assume is not the slow manifold because we will deal

with that case later. Then, y′(x) = f(x, y(x)) where f is given in (7.3). By the Chain Rule,

y′′(x) =
∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x))f(x, y(x)).

A quick calculation shows that we can write

y′′(x) = p(x, y(x))h(x, y(x)), (7.16)

where

p(x, y) :=
η

ε [−x+ (1 − η + x) y]2
and h(x, y) := y (y − 1) + xf(x, y). (7.17)

The function p(x, y) is positive everywhere except along the vertical isocline, where it is undefined.

For a given solution y, we will overload the definitions of h and p and write

h(x) := h(x, y(x)) and p(x) := p(x, y(x)).
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Claim 7.19: For a given x ≥ 0 with y(x) 	= V (x), the sign of h(x) is the same as the sign of y′′(x).

Furthermore, the function h has derivative

h′(x) = 2y(x)y′(x) + xp(x)h(x). (7.18)

Proof: The first part follows from (7.16) and the fact that p(x) > 0. To show the second part,

write

h(x) = y(x)2 − y(x) + xy′(x).

Differentiating,

h′(x) = 2y(x)y′(x) − y′(x) + y′(x) + xy′′(x) = 2y(x)y′(x) + xp(x)h(x),

where we applied (7.16). �

Remark 7.20: The function h cannot tell us anything about the concavity of solutions at x = 0,

not even by taking a limit.

Claim 7.21: Let y(x) be a solution to (7.2) and let x0 ≥ 0 be such that y(x0) 	= V (x0). Define

w(x) := F (x, y′(x0)), which is the isocline through the point (x0, y(x0)). Then,

h(x0) = x0

[
y′(x0) − w′(x0)

]
. (7.19)

Furthermore, y′′(x0) > 0 if and only if y′(x0) > w′(x0) and y′′(x0) < 0 if and only if y′(x0) < w′(x0).

Proof: The first part follows from (7.9) and (7.17). The second part follows from the first. �

The concavity of all solutions in all regions of the non-negative quadrant can be deduced using

the auxiliary function h. Table 7.1 summarizes what we will develop in this section. They are all

suggested by the phase portraits in Figures 6.4 through 6.8 from Chapter 6.

7.6.2 Establishing the Results

A Lemma

Many of the following proofs will involve the following elementary lemma, so we single it out here.

Lemma 7.22: Let I be one of the intervals [a, b], (a, b), [a, b), and (a, b]. Suppose that φ ∈ C(I)

is a function having at least one zero in I.
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Region Concavity of Solutions

0 ≤ y <M concave down

M < y < α concave down, then inflection point, then concave up

α ≤ y < V concave up

V < y < 1 concave down

y ≥ 1 concave up, then inflection point, then concave down

Table 7.1: This table gives a summary of the concavity of solutions of (7.2) in the non-negative quadrant.

(a) If I = (a, b] or I = [a, b], then the function φ has a right-most zero in I. Likewise, if I = [a, b)

or I = [a, b], then the function φ has a left-most zero in I.

(b) If φ ∈ C1(I) and φ′(x) > 0 for every zero of φ in I, then φ has exactly one zero in I.

Proof: Let R := {x ∈ I : φ(x) = 0}.

(a) We will prove that φ has a right-most zero in the case that I = (a, b] or I = [a, b]. Let

c := sup
x∈R

{x} ∈ [a, b], which exists by the Least Upper Bound Principle. Consider the sequence

{un}∞n=1 ⊂ R satisfying c− 1
n < un ≤ c, which exists because R is non-empty and c is a least

upper bound. Letting n→ ∞, we have that un → c and, by continuity, φ(un) → φ(c). However,

φ(un) = 0 for all n which implies that φ(c) = 0 and hence c ∈ R. Therefore, c is the right-most

zero of φ.

(b) For a contradiction, assume that there are two or more zeros. Let [a′, b′] ⊂ I be such that at

least two of these zeros are in [a′, b′]. Let x2 ∈ R be the right-most zero of φ in [a′, b′]. Since

φ′(x2) > 0, there is a δ > 0 such that φ(x) < 0 over (x2−δ, x2). Let d ∈ (x2 − δ, x2) with d > a′.

Now, φ has one or more zeros in [a′, d] and hence has a right-most zero in [a′, d], say x1 < d. By

construction, φ has no zeros in (x1, x2). However, since φ′(x1) > 0, there is a c ∈ (x1, d) such

that φ(c) > 0. Because φ(d) < 0, φ has a zero in (c, d) ⊂ (x1, x2), by the Intermediate Value

Theorem. This is a contradiction.

�
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Remark 7.23: The condition that the endpoint be included for there to be a left-most or right-

most zero is essential. For example, consider the function x sin
(
x−1
)

which is extended continuously

to be 0 at x = 0. This function does not have a left-most zero over (0, 1) but does have a left-most

zero over [0, 1).

Concavity Below M

Proposition 7.24: Let y(x) be any solution to (7.2) lying below the slow manifold, say with domain

(0, a] where a > 0 and y(a) = 0. Then, y is concave down for all x ∈ (0, a].

Proof: Let h be defined as in (7.17) with respect to the solution y. There are two regions to

consider, namely where y(x) > H(x) and where y(x) ≤ H(x).

First, we show that y′′(x) < 0 when y(x) ≤ H(x). It is clear from (7.16) and (7.17) that

y′′(x) < 0 for y(x) ≤ H(x), noting that 0 ≤ y(x) < 1 and y′(x) < 0.

Second, we show that y′′(x) < 0 when H(x) < y(x) <M(x). The solution y(x) crosses the

horizontal isocline, say at x = x2 ∈ (0, a). We see from (7.17) that h(x2) < 0. By continuity,

we need only show that h has no zeros in (0, x2]. Suppose on the contrary that h has one or

more zeros in (0, x2]. Applying Lemma 7.22, let x1 ∈ (0, x2) be the right-most zero of h. Using

(7.18), h′(x1) = 2y(x1)y′(x1) > 0. Then, h is positive in a neighbourhood to the right of x1. Since

h(x2) < 0, by the Intermediate Value Theorem, h has a zero in (x1, x2) which contradicts the fact

that x1 is the right-most zero. �

Concavity Between M and α

Proposition 7.25: Let y be any solution to (7.2) lying between M and α, say with domain (0, a]

where a > 0 and y(a) = α(a). Then, there is a unique x1 ∈ (0, a) such that y′′(x1) = 0. Moreover,

y is concave down on (0, x1) and concave up on (x1, a].

Proof: We know y′(0) = σ and y′(a) = σ. Hence, by Rolle’s Theorem, y has an inflection point

x1 ∈ (0, a). To prove uniqueness of the inflection point, let h be as in (7.17) with respect to the

solution y. Now, if x is a zero of h, then h′(x) = 2y(x)y′(x) > 0. By Lemma 7.22, h has no other

inflection point in (0, a). Moreover, since h′(x1) > 0, y is concave down on (0, x1) and concave up

on (x1, a]. �
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Concavity Between α and V

Proposition 7.26: Let y be any solution to (7.2) lying between α and V , say with domain (a, b)

where 0 < a < b, lim
x→a+

y(x) = α(a), and lim
x→b−

y(x) = V (b). Then, y is concave up on (a, b).

Proof: Fix x0 ∈ (a, b). Let c := y′(x0) and r := K(c). Since c > σ, (7.12) tells us that rc > 1

which in turn implies r <
√
rc−1. Let w(x) := F (x, c) be the isocline through (x0, y(x0)). With h

defined as in (7.17) with respect to y, we have

h(x0) = x0

[
c− r

(r + x0)
2

]
= x0

[
c (r + x0)

2 − r

(r + x0)
2

]
,

where we used the expression for h in Equation (7.19). Suppose, on the contrary, that y′′(x0) ≤ 0.

Then, c (r + x0)2 − r ≤ 0 which implies x0 ≤
√
rc−1 − r < 0. This is a contradiction. �

Concavity Between V and y = 1

Proposition 7.27: Let y be a solution to (7.2) which lies above V and below 1, with domain [a, b)

where 0 ≤ a < b, y(a) < 1, and lim
x→b−

y(x) = V (b). Then, y is concave down for all x ∈ [a, b).

Proof: It is clear from the expression for h, Equation (7.17), where h is defined with respect to

the solution y, and the fact that y′ < 0 in that region. �

Concavity Above y = 1

Proposition 7.28: Let y be a solution to (7.2) which lies above 1, with domain [0, a] where a > 0

and y(a) = 1. Then, there is a unique x1 ∈ (0, a) such that y′′(x1) = 0. Moreover, y is concave up

over [0, x1) and concave down over (x1, a].

Proof: Let h be defined as in Equation (7.17) with respect to the solution y. We know that

y′(0) = −ε−1 (1 − η)−1 and y′(a) = −ε−1 (1 − η)−1. By Rolle’s Theorem, there exists x1 ∈ (0, a)

such that y′′(x1) = 0. The uniqueness of the inflection point follows from the fact that any zero x

of h in (0, a) satisfies h′(x) < 0 and an application of Lemma 7.22. Moreover, since h′(x1) < 0, y is

concave up on [0, x1) and concave down on (x1, a]. �

Remark 7.29: The above result does not cover the point (0, 1). If y is the solution to (7.2) through

the point (0, 1), then (7.17) shows us that (0, 1) is an inflection point.
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Figure 7.6: The two thick curves are curves along which solutions of (7.2) have inflection points, for

parameter values ε = 0.6 and η = 0.9. The thin curves are the horizontal, α, and vertical

isoclines.

7.6.3 Curves of Inflection Points

We now know that solutions can only have inflection points between M and α and above y = 1.

There are, in fact, curves along which solutions have zero second derivative. Using the definition

(7.3) of f and the definition (7.17) of h,

h(x, y) =
ε (1 − η + x) y3 − ε (1 − η + 2x) y2 +

[
(ε− 1) x− x2

]
y + x2

ε [−x+ (1 − η + x) y]
.

Thus, there are three curves along which solutions have zero second derivative, given implicitly by

ε (1 − η + x) y3 − ε (1 − η + 2x) y2 +
[
(ε− 1) x− x2

]
y + x2 = 0.

One curve lies below the x-axis and is discarded. The other two curves are in the positive quadrant,

one lying between M and α, the other starting at the point (0, 1) and increasing with x. See

Figure 7.6.

We know that, for a given slope c ∈ (0, σ), the isocline w(x) := F (x, c) switches from being a

strong upper fence to being a strong lower fence at x = ξ(c), where F (x, c) was defined in (7.8) and

ξ(c) was defined in (7.14). Thus, we expect the point (ξ(c), F (ξ(c), c)) to be an inflection point for

the scalar solution through this point. To put this another way, for a given x > 0 we expect the
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point
(
x, F (x, ξ−1(x)

)
to be an inflection point for the scalar solution through this point. Hence,

we define the function

Y(x) := F
(
x, ξ−1(x)

)
, x > 0. (7.20)

We claim that y = Y(x) is a curve between y = M(x) and y = α(x) along which solutions to

the scalar differential equation (7.2) have inflection points. Note that, by virtue of the isocline

structure, H(x) < F (x, c) < α(x) for all x > 0 and c ∈ (0, σ). Note also that 0 < ξ−1(x) < σ for all

x > 0. It follows from the definition of Y(x) that H(x) < Y(x) < α(x) for all x > 0.

Claim 7.30: Suppose that x0 > 0 and H(x0) < y0 < α(x0). Define the slope c := f(x0, y0) and

isocline w(x) := F (x, c). Then, the isocline w satisfies

w′(x0)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> f(x0, y0), if H(x0) < y0 < Y(x0)

= f(x0, y0), if y0 = Y(x0)

< f(x0, y0), if Y(x0) < y0 < α(x0)

.

Proof: Note that 0 < c < σ and y0 = w(x0). We will only show the third case since the other two

cases are similar. Assume that Y(x0) < y0 < α(x0). Appealing to the isocline structure, we know
∂f
∂y (x, y) > 0 if x > 0 and H(x) < y < α(x). Thus, f(x0, y0) > f(x0,Y(x0)). Since c = f(x0, y0) and

ξ−1(x0) = f(x0,Y(x0)), we have c > ξ−1(x0). Since ξ is strictly decreasing, x0 > ξ(c). By virtue of

Proposition 7.17, we can conclude w′(x0) < f(x0, y0). �

Claim 7.31: The curve y = Y(x) is analytic for all x > 0.

Proof: We know that ξ−1(x) is analytic and 0 < ξ−1(x) < σ for all x > 0. Since F (x, c) is analytic

if x > 0 and 0 < c < σ, we see from the definition (7.20) that Y(x) is analytic for all x > 0. �

Proposition 7.32: The function h, defined in (7.17), satisfies

h(x, y)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 0, if x > 0, H(x) < y < Y(x)

= 0, if x > 0, y = Y(x)

> 0, if x > 0, Y(x) < y < α(x)

.

Proof: Let x0 > 0 and H(x0) < y0 < α(x0) be fixed. Consider the slope c := f(x0, y0) and isocline

w(x) := F (x, c). We know from Claim 7.21 that

h(x0, y0) = x0

[
f(x0, y0) − w′(x0)

]
.
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The result follows from Claim 7.30. �

Proposition 7.33: The curve y = Y(x) satisfies

M(x) < Y(x) < α(x) for all x > 0.

Proof: We know already that H(x) < Y(x) < α(x) for all x > 0. From our results on concavity,

we know h(x, y) < 0 if x > 0 and H(x) < y <M(x), where h is the function defined in (7.17). By

continuity, we can conclude h(x,M(x)) ≤ 0 for all x > 0. It follows from Proposition 7.32 that

M(x) ≤ Y(x) for all x > 0.

To establish a strict inequality, let h be defined along the solution y = M(x). Assume, on the

contrary, that there is an x0 > 0 such that h(x0) = 0. Using (7.18), h′(x0) > 0. This contradicts

the fact that h(x) ≤ 0 for all x > 0. �

Claim 7.34: The slope of the curve of inflection points y = Y(x) satisfies

lim
x→0+

Y ′(x) = σ.

Proof: We know that M(x) < Y(x) < α(x) for all x > 0. We also know that

lim
x→0+

M(x) = 0, lim
x→0+

M′(x) = σ, lim
x→0+

α(x) = 0, and lim
x→0+

α′(x) = σ.

Letting x→ 0+ and applying the Squeeze Theorem, we see

lim
x→0+

Y(x) = 0.

Now,
M(x) − 0

x
<

Y(x) − 0
x

<
α(x) − 0

x
for all x > 0.

Letting x→ 0+ and applying the Squeeze Theorem again gives the conclusion. �

7.6.4 The Slow Tangent Manifold

The slow tangent manifold T is an approximation used by, for example, Marc Roussel to approxi-

mate the slow manifold. Recall that the slow tangent manifold consists of the points for which the

tangent vector for a flow points in the slow direction. Explicitly, x = T (y) is given by

T (y) =

y

{[
1 − ε (1 − y)2

]
+

√[
1 − ε (1 − y)2

]2
+ 4ε (1 − η) (1 − y)2

}
2 (1 − y)

.
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We will show that, in general, a curve of points where the second derivative of a scalar solution

is zero is actually equivalent to a tangent manifold. This result will be specialized to the planar

system (7.1) and the scalar system (7.2). Similar results have been obtained by Masami Okuda in

[94, 95, 96].

The General Systems

Consider the general planar system

ẋ = g(x), (7.21)

where˙= d
dt and g ∈ C1

(
R2,R2

)
. To make the expressions less cumbersome, we will use the notation

gij := ∂gi
∂xj

and suppress the dependence on x where there will be no confusion. Consider also the

scalar system

y′ =
g2(x, y)
g1(x, y)

, (7.22)

where ′ = d
dx .

The Jacobian of the vector field g is the matrix

A :=

⎛⎝g11 g12

g21 g22

⎞⎠ .

The characteristic equation of A is

(λ− g11) (λ− g22) − g12g21 = 0. (7.23)

Alternatively, the characteristic equation can be written

λ2 − τλ+ Δ = 0, (7.24)

where

τ := g11 + g22 and Δ := g11g22 − g12g21.

The slow tangent manifold will be constructed in terms of the eigenvalues and eigenvectors of the

Jacobian matrix.

Claim 7.35: Suppose 4Δ < τ2 and g12 	= 0. Then, A has real and distinct eigenvalues

λ± :=
τ ±

√
τ2 − 4Δ
2

. (7.25)
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Furthermore, the matrix A has distinct eigenvectors

v± :=

⎛⎝ 1

σ±

⎞⎠ , where σ± :=
λ± − g11
g12

. (7.26)

Proof: First, solving the characteristic equation (7.24) yields the eigenvalues λ±. The restriction

on τ and Δ ensures that the eigenvalues are distinct and real with λ− < λ+. Second, it is clear

that v± 	= 0 and v+ 	= v−. Finally, it is easy to confirm using the definitions of A, v±, and σ±

in conjunction with the characteristic equation (7.23) that (λ±I − A)v± = 0. Thus, v± is an

eigenvector of A with associated eigenvalue λ±. �

Proposition 7.36: Consider the planar system (7.21) and the scalar system (7.22). Suppose that

g1 	= 0, g12 	= 0, and 4Δ < τ2 at some fixed point (a, b). Let y(x) be a scalar solution through (a, b).

Then, y′′(a) = 0 if and only if g ‖ v+ or g ‖ v− at (a, b).

Proof: By the Chain Rule, if we differentiate (7.22) with respect to x we get

y′′ =
g1

[
g21 + g22

(
g2

g1

)]
−
[
g11 + g12

(
g2

g1

)]
g2

g2
1

.

It is routine (but tedious) to show, using (7.25) and (7.26), that

y′′ =
−g12

[(
g2

g1

)
− σ+

] [(
g2

g1

)
− σ−

]
g1

.

Recall that σ± is the slope of the eigenvector v±. Thus, g ‖ v± is equivalent to σ± = g2

g1
. The

conclusion follows. �

The Michaelis-Menten Mechanism

We now return to the specific planar system (7.1) and scalar system (7.2) for the Michaelis-Menten

mechanism. Here,

A =

⎛⎝y − 1 1 − η + x

1−y
ε −1+x

ε

⎞⎠ , τ = y − 1 − 1 + x

ε
, and Δ =

η (1 − y)
ε

.

To apply Proposition 7.36, we need to check the conditions. Observe that g1 	= 0 except along the

vertical isocline. Furthermore, g12 > 0 if x ≥ 0. Finally, to show that τ2 > 4Δ for x ≥ 0, observe

that

τ2 − 4Δ =
[
y − ε+ 1 − 2η + x

ε

]2
+

4η (1 − η + x)
ε2

≥ 4η (1 − η + x)
ε2

> 0.
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It follows from Proposition 7.36 that the curve of inflection points y = Y(x) is a tangent manifold.

Furthermore, the curve of inflection points above the line y = 1 (see Figure 7.6) is also a tangent

manifold.

7.7 Behaviour Near x = 0: Conclusion

We have already shown that scalar solutions y(x) inside the trapping region Γ0 satisfy y(0) = 0 and

y′(0) = σ. The goal of this section is obtain an improved asymptotic expression for y(x) as x→ 0+.

It is at this point in the chapter that we need to start worrying about the ratio of the eigenvalues

κ =
λ−
λ+

.

Recall that κ > 1. Moreover, κ ∈ {2, 3, . . .} if and only if there is resonance in the eigenvalues.

7.7.1 The Power Series Method

Recall that it was argued by Fraser and Roussel that the slow manifold can be written as a Taylor

series M(x) =
∑∞

n=0 σnx
n at the origin. Clearly,

σ0 = 0 and σ1 = σ. (7.27a)

To obtain the remaining coefficients {σn}∞n=2, the series can be substituted into the differential

equation yielding the recursive expression

σn = −
∑n−1

k=2 [(n− k)σn−k + (1 − η) (n− k + 1) σn−k+1] σk +
[
(n− 1)σ1 + ε−1

]
σn−1

ε−1 + (1 − η) (n+ 1) σ1 − n
, n ≥ 2.

(7.27b)

We need to make two observations about the Taylor series. First, suppose that ε = 1 and η = 24
25 .

Then, κ = 3
2 , σ1 = 5, and σ2 = 75. However, Propositions 7.32 and 7.33 imply that M′′(x) < 0 for

all x > 0. Therefore, for these parameter values we cannot write the slow manifold as the Taylor

series M(x) =
∑∞

n=0 σnx
n at the origin. Second, since the slow manifold is defined according to

its global behaviour, we expect that the conclusions we draw regarding coefficients {σn}∞n=0 can be

applied to all scalar solutions lying inside Γ0.

Let y(x) be a scalar solution to (7.2) lying inside the trapping region Γ0. We will show that

y(x) ∼
∑

n=0

σnx
n as x→ 0+

186



Chapter 7. Properties of Solutions in Phase Space

for some � ∈ N0 which is determined by the ratio κ of the eigenvalues. In the very least, we expect

� ≥ 1 for all values of the parameters ε and η. Traditionally, ε is taken to satisfy 0 < ε� 1 and

consequently � will be very large. First, we need to establish the source of the problem mentioned

earlier regarding the coefficient σ2 and the concavity of solutions at the origin.

Consider the coefficient σ2. Using (6.25), (7.4), (7.6), and (7.27b), we can write σ2 in terms of

κ and ε as

σ2 = − κ (κ+ 1)2

(κ− 2) (κ− ε)2
.

Moreover, we know from (6.24) that κ > max
{
ε, ε−1

}
. This gives us the following.

Claim 7.37: The coefficient σ2 satisfies

σ2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 0, if κ > 2

> 0, if 1 < κ < 2

is undefined, if κ = 2

. (7.28)

We see that if κ = 2 then σ2 is not defined. This can be generalized to say that σκ is undefined

for κ ∈ {2, 3, . . .}. Note also that (7.28) suggests that there must be a term between σ1x and σ2x
2

in the asymptotic expansion of M(x) in order to account for the concavity.

Proposition 7.38: Consider the ratio κ > 1 and the coefficients {σn}∞n=0.

(a) If κ 	∈ {2, 3, . . .}, then all of {σn}∞n=0 are defined.

(b) If κ ∈ {2, 3, . . .}, then {σn}κ−1
n=0 are all defined but σκ is not defined (and hence all subsequent

σn are not defined).

Proof: We know that the coefficients σ0 and σ1 are always defined. Consider the expression

(7.27b), which gives the recursive expressions for the remaining coefficients. Solving

ε−1 + (1 − η) (n+ 1) σ − n = 0, n ∈ {2, 3, . . .}

for η gives

η =
n (ε+ 1)2

ε(n+ 1)2
. (7.29)

Note that this requires we use the definition (7.6) for σ and the definition (7.4) for λ+. Appealing

to (6.25), we know that (7.29) is true if and only if κ = n. Hence, if κ ∈ {2, 3, . . .} then {σn}κ−1
n=0

are all defined but σκ is not defined. If κ 	∈ {2, 3, . . .}, then all the coefficients are defined. �
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7.7.2 Asymptotic Expressions

We want to find the detailed asymptotic behaviour of scalar solutions y(x) to the system (7.2) as

x→ 0+. However, as we have seen, the power series method, as we have seen, will not work in

general in this case. To remedy this problem, we will employ results from Part I of this thesis.

The planar system (7.1) along with the initial condition x(0) = x0 can be written in the form

ẋ = Ax + b(x), x(0) = x0, (7.30)

where the matrix A and vector field b are given by

A =

⎛⎝−1 1 − η

ε−1 −ε−1

⎞⎠ and b(x) := xy

⎛⎝ 1

−ε−1

⎞⎠ .

Observe that

0 ≤ (x− y)2 = x2 + y2 − 2xy = ‖x‖2 −
(

2√
1 + ε−2

)
‖b(x)‖

and

‖Db(x)‖ = max
‖u‖=1

{‖Db(x)u‖} =
(√

1 + ε−2
)

max
‖u‖=1

{|yu1 + xu2|} .

It follows that

‖b(x)‖ ≤
(

1
2

√
1 + ε−2

)
‖x‖2 and ‖Db(x)‖ ≤

(√
1 + ε−2

)
‖x‖ .

Note that, for the bound on ‖Db(x)‖, we used the Cauchy-Schwarz Inequality and the fact that

‖x‖ =
∥∥(y, x)T∥∥.

We will also need to consider the initial value problem which results from diagonalizing the

matrix A. In §6.6, we defined the matrices

P =

⎛⎝ 1 1

σ+ σ−

⎞⎠ , P−1 =
1

σ+ − σ−

⎛⎝−σ− 1

σ+ −1

⎞⎠ , and Λ =

⎛⎝λ+ 0

0 λ−

⎞⎠ ,
where

σ± =
λ± + 1
1 − η

are the slopes of the eigenvectors. Then, Λ = P−1AP. If we define

y := P−1x, y0 := P−1x0, and b(y) := P−1b (Py) ,
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then the initial value problem (7.30) is transformed into the initial value problem

ẏ = Λy + b(y), y(0) = y0.

Note that

b(y) =
σ+y

2
1 + (σ+ + σ−) y1y2 + σ−y2

2

σ+ − σ−

⎛⎝−σ− − ε−1

σ+ + ε−1

⎞⎠ ,
for which the coefficient of the y2

1 term in the second component is

b211 :=
σ+

(
σ+ + ε−1

)
σ+ − σ−

> 0.

Theorem 7.39: Let y(x) be a scalar solution to (7.2) lying inside Γ0 and consider the coefficients

{σn}∞n=1 given in (7.27).

(a) If κ 	∈ {2, 3, . . .}, then

y(x) =
�κ�∑
n=1

σnx
n + C xκ + o(xκ) as x→ 0+

for some constant C (which depends on the differential equation and the initial condition).

(b) If κ = 2, then

y(x) = σ x+ c x2 ln(x) + C x2 + o
(
x2
)

as x→ 0+

where

c :=
σ
(
σ + ε−1

)
−λ+

> 0 (7.31)

and some constant C (which depends on the differential equation and the initial condition).

(c) If κ ∈ {3, 4, . . .}, then

y(x) =
κ−1∑
n=1

σnx
n + C xκ + O

(
xκ+1

)
as x→ 0+

for some constant C (which depends on the differential equation and the initial condition).

Proof:

(a) The result follows immediately from Theorem 2.16 on page 28. Note that the coefficients of the

integer powers of xmust indeed be {σn}�κ�n=1 since they are generated uniquely by the differential

equation.
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(b) The result is an immediate consequence of Theorem 5.28 on page 122.

(c) The result is also an immediate consequence of Theorem 5.28 on page 122.

�

Proposition 7.40: If κ 	∈ {2, 3, . . .} then there exists a scalar solution y(x) to (7.2) such that

y(x) ∼
∞∑

n=1

σnx
n as x→ 0+,

where the coefficients {σn}∞n=1 are given in (7.27).

Proof: It follows immediately from Corollary 2.18 on page 32 that there is at least one solution

y(x) for which the coefficients of the non-integral powers of x are zero. Note that the coefficients

must indeed be {σn}∞n=1 since they are generated uniquely by the differential equation. �

7.8 All or Most Solutions Must Enter Γ1

Theorem 7.7 established that the trapping region Γ0 is positively invariant and that all solutions to

the planar system eventually enter this region. Now, we investigate whether or not the antifunnel

Γ1 is positively invariant and all solutions enter this region.

Theorem 7.41: Consider the planar system (7.1).

(a) The antifunnel Γ1 is positively invariant.

(b) Suppose that κ ≥ 2. Let x(t) be the solution to (7.1) with initial condition x(0) = x0, where

x0 ∈ S\ {0}. Then, there is a t∗ ≥ 0 such that x(t) ∈ Γ1 for all t ≥ t∗.

(c) Suppose that 1 < κ < 2. Then, there exists non-trivial solutions to (7.1) which do not enter Γ1.

Moreover, solutions that do not enter Γ1 must enter Γ0 through the vertical isocline V to the

left of the line y = σx.

Proof:

(a) It follows from the fact that g • ν < 0 along α and H, where ν is the outward unit normal

vector.
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(b) We know that eventually x(t) will enter Γ0. Let y be the corresponding scalar solution lying

in Γ0. If κ > 2, applying Theorem 7.39 gives

y(x) = σx+ σ2x
2 + o

(
x2
)

as x→ 0+.

A routine (but tedious) calculation shows

y′(x) = f(x, y(x)) = σ + 2σ2x+ o(x) as x→ 0+.

(Note that we have not justified that direct differentiation of the asymptotic expression for

y(x) is permissible.) We know from (7.28) that σ2 < 0 and thus there is a δ > 0 such that

0 < y′(x) < σ for all x ∈ (0, δ). By virtue of the isocline structure, x(t) must enter Γ1. If

instead κ = 2, then we know from Theorem 7.39 that

y(x) = σx+ c x2 ln(x) + O
(
x2
)

as x→ 0+

where c > 0. Another routine (and also tedious) calculation shows

y′(x) = f(x, y(x)) = σ + 2c x ln(x) + O(x) as x→ 0+.

Since c > 0, we see there is a δ > 0 with 0 < y′(x) < σ for all x ∈ (0, δ). Hence, x(t) enters Γ1.

(c) Let y(x) be the scalar solution in Proposition 7.40. It can be shown that

y′(x) = f(x, y(x)) = σ + 2σ2x+ O
(
x2
)

as x→ 0+.

Now, (7.28) assures us that σ2 > 0. Thus, there is a δ > 0 such that y′(x) > σ for all x ∈ (0, δ).

Appealing to the isocline structure, y(x) > α(x) for all x ∈ (0, δ) and so x(t) does not enter Γ1.

Suppose now that x(t) is a non-trivial solution which does not enter Γ1. Since x(t) must enter

Γ0, we can conclude that x(t) enters Γ0 through the vertical isocline. Denote by (x∗, y∗) the

point of intersection of the line y = σx and the vertical isocline y = V (x). See Figure 7.7.

Assume, for a contradiction, that x(t) enters Γ0 through the vertical isocline to the right of

(x∗, y∗). We claim that x(t) must also enter Γ1. Suppose that y(x) intersects the vertical

isocline at x = x1, where y(x) is the corresponding scalar solution. Observe that x1 ≥ x∗, by

assumption, and y(x1) ≤ σx1. By the Mean Value Theorem, there is an x0 ∈ (0, x1) such that

y′(x0) =
y(x1) − 0
x1 − 0

=
y(x1)
x1

≤ σx1

x1
= σ.

By virtue of the isocline structure, we conclude that x(t) enters Γ1. This is a contradiction.

�
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solution
entering Γ0

but not Γ1

solution that enters both

Γ0 and Γ1

x

y = α(x)

y = V (x)

y

Γ0

Γ1

(x∗, y∗)
(x1, y(x1))

y = σx

Figure 7.7: Sketch demonstrating Theorem 7.41(c).

7.9 Bounds on y(x)

Let y(x) be the solution of the scalar differential equation (7.2) with initial condition y(x0) = y0,

where x0 > 0 and y0 ≥ 0. We will consider three cases, namely y0 = 0, y0 = H(x0), and y0 = α(x).

Here, H(x) is the horizontal isocline which is given in (7.5), α(x) is the isocline for slope σ which

is given in (7.13), and σ is the slope given in (7.6). Our goal is to obtain simple bounds on y(x)

over (0, x0]. Moreover, we will use these bounds to state bounds on the slow manifold. To realize

these goals, we will use Chaplygin’s method (see §A.5 of Appendix A).

If x > 0 and 0 ≤ y < V (x) then

∂f

∂y
(x, y) =

ηx

ε [x− (1 − η + x) y]2
> 0 and

∂2f

∂y2
(x, y) =

2η (1 − η + x)x
ε [x− (1 − η + x) y]3

> 0,

where f is the function given in (7.3) and V (x) is the vertical isocline given in (7.5). Note that

f(x, 0) = −ε−1, f(x,H(x)) = 0, and f(x, α(x)) = σ for all x > 0.

Furthermore, note that

∂f

∂y
(x, 0) =

η

εx
,

∂f

∂y
(x,H(x)) =

(1 + x)2

εηx
, and

∂f

∂y
(x, α(x)) =

η (1 + σx)2

ελ2
+x

for all x > 0,

where λ+ is the slow eigenvalue.
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z

H(x)

σ

−ε−1 α(x)

z = f(x, y)

y

Figure 7.8: For a fixed x ∈ (0, x0], the curve z = f(x, y) is concave up on the interval [0, α(x)]. This allows

us to obtain bounds on f(x, y) over the interval [0, α(x)] using secants and tangents.

Consider x ∈ (0, x0] to be fixed. Then, the curve z = f(x, y) as a function of y is concave up on

the interval [0, α(x)]. See Figure 7.8. This fact enables us to state bounds on f(x, y) using secants

and tangents.

• The tangent to z = f(x, y) at y = 0 is z = T1(x, y), where

T1(x, y) := −1
ε

+
η

εx
y. (7.32a)

• The tangent to z = f(x, y) at y = H(x) is z = T2(x, y), where

T2(x, y) :=
(1 + x)2

εηx

(
y − x

1 + x

)
. (7.32b)

• The tangent to z = f(x, y) at y = α(x) is z = T3(x, y), where

T3(x, y) := σ +
η (1 + σx)2

ελ2
+x

(
y − x

σ−1 + x

)
. (7.32c)

• The secant line through
(
0,−ε−1

)
and (α(x), σ) is z = S1(x, y), where

S1(x, y) := −1
ε

+
(1 + εσ) (1 + σx)

εσx
y. (7.32d)

• The secant line through (H(x), 0) and (α(x), σ) is z = S2(x, y), where

S2(x, y) :=
σ (1 + σx) (1 + x)

(σ − 1) x

(
y − x

1 + x

)
. (7.32e)
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7.9.1 Case 1: x0 > 0 and y0 = 0

Suppose that y0 = 0. Thus, y(x) is a solution which terminates on the x-axis at x = x0. Since y(x)

is a solution lying below the slow manifold which in turn lies below the isocline α(x), we know that

0 ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .

Now, we can see from Figure 7.8 that

T3(x, y) ≤ f(x, y) ≤ S1(x, y) for all x > 0 and y ∈ [0, α(x)] ,

where T3(x, y) is as in (7.32c) and S1(x, y) is as in (7.32d). (Note that we could have used T1(x, y),

given in (7.32a), instead of T3(x, y) but T3(x, y) usually yields a better bound.)

Define, for x ∈ (0, x0], the functions

a1(x) := −ε−1, b1(x) :=
(1 + εσ) (1 + σx)

εσx
, μ1(x) := exp

(∫ x0

x
b1(z) dz

)
along with

a2(x) := σ

[
1 − η (1 + σx)

ελ2
+

]
, b2(x) :=

η (1 + σx)2

ελ2
+x

, and μ2(x) := exp

(∫ x0

x
b2(z) dz

)
.

Note that

μi(x0) = 1, μi(x) > 0, and μ′i(x) = −bi(x)μi(x) (i = 1, 2) .

Thus, we can write

a2(x) + b2(x)y(x) ≤ y′(x) ≤ a1(x) + b1(x)y(x) for all x ∈ (0, x0] .

Re-arranging and replacing x with z,

d

dz
(μ2(z)y(z)) ≥ μ2(z)a2(z) and

d

dz
(μ1(z)y(z)) ≤ μ1(z)a1(z) for all z ∈ (0, x0] .

If we integrate with respect to z from x to x0, where x ∈ (0, x0], apply the initial condition y(x0) = 0,

and re-arrange, we obtain

− 1
μ1(x)

∫ x0

x
μ1(z)a1(z) ds ≤ y(x) ≤ − 1

μ2(x)

∫ x0

x
μ2(z)a2(z) ds for all x ∈ (0, x0] . (7.33)

Figure 7.9 gives two numerical examples of the bounds given in (7.33).
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Figure 7.9: For the first picture, suppose ε = 0.1, η = 0.75, and x0 = 0.5. The two dashed curves represent

the lower and upper bounds for y(x) given in (7.33). The solid curve represents the actual

solution (found numerically) with y(x0) = 0. The dash-dot curves are the horizontal and α

isoclines. The second picture is the same as the first except with ε = 1.0, η = 0.75, and x0 = 0.5.

7.9.2 Case 2: x0 > 0 and y0 = H(x0)

Suppose now that y0 = H(x0). Then, y(x) is a solution which terminates on the horizontal isocline

at x = x0. We know that

H(x) ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .

Now, we can see from Figure 7.8 that

T3(x, y) ≤ f(x, y) ≤ S2(x, y) for all x > 0 and y ∈ [0, α(x)] ,

where T3(x, y) is as in (7.32c) and S2(x, y) is as in (7.32e). (Note that we could have used T2(x, y),

given in (7.32b), instead of T3(x, y) but T3(x, y) usually yields a better bound.)

Define, for x ∈ (0, x0], the functions

a1(x) := −σ (1 + σx)
(σ − 1)

, b1(x) :=
σ (1 + σx) (1 + x)

(σ − 1) x
, μ1(x) := exp

(∫ x0

x
b1(z) dz

)
(7.34)

along with

a2(x) := σ

[
1 − η (1 + σx)

ελ2
+

]
, b2(x) :=

η (1 + σx)2

ελ2
+x

, and μ2(x) := exp

(∫ x0

x
b2(z) dz

)
.

(7.35)
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Figure 7.10: For the first picture, suppose ε = 0.5, η = 0.75, and x0 = 0.5. The two dashed curves represent

the lower and upper bounds for y(x) given in (7.36). The solid curve represents the actual

solution (found numerically) with y(x0) = H(x0). The two dash-dot curves are the horizontal

and α isoclines. The second picture is the same as the first except with ε = 1.0, η = 0.75, and

x0 = 0.5.

Proceeding as before, we obtain

H(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ y(x) ≤
H(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] . (7.36)

Figure 7.10 gives two numerical examples of the bounds given in (7.36).

7.9.3 Case 3: x0 > 0 and y0 = α(x0)

Suppose now that y0 = α(x0). Then, y(x) is a solution which terminates on the α isocline at x = x0.

We know that

H(x) ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .

Now, we can see from Figure 7.8 that

T3(x, y) ≤ f(x, y) ≤ S2(x, y) for all x > 0 and y ∈ [0, α(x)] .

Proceeding as before, we obtain

α(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ y(x) ≤
α(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] , (7.37)
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Figure 7.11: For the first picture, suppose ε = 0.5, η = 0.75, and x0 = 0.5. The two dashed curves represent

the lower and upper bounds for y(x) given in (7.37). The solid curve represents the actual

solution (found numerically) with y(x0) = α(x0). The two dash-dot curves are the horizontal

and α isoclines. The second picture is the same as the first except with ε = 1.0, η = 0.75, and

x0 = 0.5.

where ai(x), bi(x), and μi(x) for i = 1, 2 are as in (7.34) and (7.35). Figure 7.11 gives two numerical

examples of the bounds given in (7.37).

7.9.4 Bounds on the Slow Manifold

We can use the material from the previous two subsections to state bounds on the slow manifold.

Suppose that y1(x) is the solution of (7.2) with initial condition y(x0) = H(x0). Suppose also that

y2(x) is the solution of (7.2) with initial condition y(x0) = α(x0). It follows that the slow manifold

satisfies y1(x) ≤ M(x) ≤ y2(x) for all x ∈ (0, x0]. If we combine (7.36), which gives bounds for

y1(x), and (7.37), which gives bounds for y2(x), we can conclude that

H(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ M(x) ≤
α(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] ,

where ai(x), bi(x), and μi(x) for i = 1, 2 (which all depend on x0) are as in (7.34) and (7.35). It is

worth reiterating the fact that x0 > 0 is arbitrary.
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7.10 Properties of the Slow Manifold

The focus of this chapter is the properties of all scalar solutions to the differential equation (7.2).

In this section, we single out important properties of the exceptional solution y = M(x), namely

the slow manifold.

7.10.1 Bounds on the Slow Manifold

Proposition 7.42: The slow manifold y = M(x) satisfies

0 < H(x) <M(x) < Y(x) < α(x) < 1 for all x > 0.

Furthermore,

lim
x→0+

M(x) = 0 and lim
x→∞M(x) = 1.

Proof: The first result follows from Theorem 7.13, Proposition 7.33, and the definition (7.13) of

α. To establish the limits, note that the functions H, α, and M are all continuous for x > 0. Since

lim
x→0+

H(x) = 0 = lim
x→0+

α(x) and lim
x→∞H(x) = 1 = lim

x→∞α(x),

the limits for the slow manifold follow from the Squeeze Theorem. �

7.10.2 Concavity of the Slow Manifold

Proposition 7.43: The slow manifold y = M(x) is concave down for all x > 0.

Proof: It follows from Propositions 7.32 and 7.33 that h (x,M(x)) < 0 for all x > 0, where h is the

function defined in (7.17). Since sgn(M′′(x)) = sgn(h(x,M(x))), it must be that the slow manifold

is concave down for all x > 0. �

7.10.3 The Slope of the Slow Manifold

Proposition 7.44: The slope of the slow manifold y = M(x) satisfies

0 <M′(x) < σ for all x > 0, lim
x→0+

M′(x) = σ, and lim
x→∞M′(x) = 0.

198



Chapter 7. Properties of Solutions in Phase Space

Proof: Since the slow manifold satisfies H(x) <M(x) < α(x) for all x > 0, by virtue of the isocline

structure we can conclude that 0 <M′(x) < σ for all x > 0. This establishes the first part of the

result. The second part of the result is a special case of Proposition 7.18.

To prove the third part of the result, we note that, since M is strictly increasing and concave

down, there is a c ∈ [0, σ) such that

lim
x→∞M′(x) = c.

Suppose, on the contrary, that c > 0. By the Fundamental Theorem of Calculus,

M(x) =
∫ x

0
M′(u) du >

∫ x

0
c du = cx.

However, for sufficiently large x, cx > α(x), which is a contradiction. �

7.10.4 Asymptotic Series for the Slow Manifold at the Origin

Proposition 7.45: Asymptotically, the slow manifold can be written in the form

M(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ�∑
n=1

σnx
n + C xκ + o(xκ), if κ 	∈ {2, 3, . . .}

σ x+ c x2 ln(x) + C x2 + o
(
x2
)
, if κ = 2

κ−1∑
n=1

σnx
n + C xκ + O

(
xκ+1

)
, if κ ∈ {3, 4, . . .}

as x→ 0+,

where {σn}∞n=1 are as in (7.27) and c is as in (7.31).

Proof: The asymptotic expressions follow immediately from Theorem 7.39. �

Remark 7.46: In the statement of Proposition 7.45, the constant C (in all three cases) distin-

guishes the slow manifold from other scalar solutions. Suppose that you want to approximate C

for a given choice of ε and η. We could use the following “higher-lower algorithm.”

1. Choose a small x0 > 0.

2. Define r1 := 1
2 [H(x0) + α(x0)].

3. Assuming rn is known, find numerically the solution yn(x) of y′ = f(x, y) with initial condition

y(x0) = rn. If y = yn(x) intersects y = H(x) to the right of x0 then rn <M(x0) and so take

rn+1 := 1
2 [rn + α(x0)]. Otherwise, take rn+1 := 1

2 [H(x0) + rn].
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4. The sequence of approximations {rn}∞n=1 satisfies

|M(x0) − rn| ≤
1
2n

[α(x0) −H(x0)] and lim
n→∞ rn = M(x0).

5. The constant C can be approximated by the appropriate expression in Proposition 7.45.

Corollary 7.47: The slow manifold satisfies

M(x) = α(x) + o(x) as x→ 0+.

Moreover, this statement would not be true if we replace α(x) with any other isocline F (x, c).

Proof: It follows from a comparison of the asymptotic expansions for M(x), α(x), and F (x, c). �

7.10.5 Asymptotic Series for the Slow Manifold at Infinity

Recall that it was argued by Roussel, for example in [104], that the slow manifold can be written as

the asymptotic series M(x) ∼
∑∞

n=0 ρnx
−n as x→ ∞. Substitution of the series into the differential

equation (7.2) in conjunction with known properties of the slow manifold yields

ρ0 = 1, ρ1 = −1, ρ2 = 1,

and ρn = −ρn−1 + ε
n−2∑
i=1

iρi [ρn−i−1 + (1 − η) ρn−i−2] for n > 2. (7.38)

This series, as we will show momentarily, is fully correct. To establish this, we will use the Centre

Manifold Theorem. First, we will show that M(x) ∼ 1 − x−1 as x→ ∞ using the isoclines. This

will motivate our choice of a change of variables.

Let c ∈ (0, σ). We know from Proposition 7.17 that

H(x) <M(x) < F (x, c) for all x > ξ(c),

where F and ξ are given, respectively, in (7.8) and (7.14). (Alternatively, we could obtain the in-

equality for all x > x∗ for some x∗ > 0 by using the fact that M is concave down and lim
x→∞M′(x) = 0.)

Manipulating the inequalities,

F (x, c) − 1
−x−1

<
M(x) − 1
−x−1

<
H(x) − 1
−x−1

for all x > ξ(c). (7.39)
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Now,

H(x) =
x

1 + x
= 1 − x−1 + O

(
x−2
)

as x→ ∞.

Thus, if we let x→ ∞ in (7.39) we see

lim sup
x→∞

M(x) − 1
−x−1

≤ 1.

Furthermore, since

F (x, c) =
x

K(c) + x
= 1 −K(c)x−1 + O

(
x−2
)

as x→ ∞,

if we let x→ ∞ in (7.39) we see

lim inf
x→∞

M(x) − 1
−x−1

≥ K(c).

Since c ∈ (0, σ) was arbitrary and K(c) → 1− as c→ 0+, we can deduce

1 ≤ lim inf
x→∞

M(x) − 1
−x−1

≤ lim sup
x→∞

M(x) − 1
−x−1

≤ 1.

Therefore,

lim
x→∞

M(x) − 1
−x−1

= 1 and M(x) = 1 − x−1 + o
(
x−1
)

as x→ ∞.

Unfortunately, this is as much information that we can extract using the isoclines. To obtain the

remaining terms of the asymptotic series, we will use the Centre Manifold Theorem.

Proposition 7.48: The slow manifold satisfies

M(x) ∼
∞∑

n=0

ρnx
−n as x→ ∞,

where {ρi}∞i=0 are as in (7.38).

Proof: Define the new variables

X := x−1 and Y := y −
(
1 − x−1

)
. (7.40)

Differentiating with respect to time and using the differential equation (7.1), we arrive at the system

Ẋ = −X2g1
(
X−1, 1 −X + Y

)
,

Ẏ = −X2g1
(
X−1, 1 −X + Y

)
+ g2

(
X−1, 1 −X + Y

)
, (7.41)
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7.10. Properties of the Slow Manifold

where g1 and g2 are as in (7.3). The system (7.41) is not polynomial but there is no harm, because

the resulting scalar differential equation will be the same, in considering instead the system

Ẋ = −X3g1
(
X−1, 1 −X + Y

)
,

Ẏ = −X3g1
(
X−1, 1 −X + Y

)
+Xg2

(
X−1, 1 −X + Y

)
, (7.42)

which is indeed polynomial. Expanding the key expressions, we get

X3g1
(
X−1, 1 −X + Y

)
= −X2 [ηX − Y + (1 − η)X (X − Y )] ,

Xg2
(
X−1, 1 −X + Y

)
= ε−1

(
X2 −XY − Y

)
.

The system (7.42), as we see, is a bit more messy than the original system (7.1). The eigenvalues

of the matrix for the linear part of the new system (7.42), which is diagonal by construction, are

0 and −ε−1. We know from centre manifold theory that there is a C∞ centre manifold Y = C(X)

which, we claim, must be the slow manifold.

For the scalar differential equation in the original coordinates, all other solutions except for the

slow manifold leave the antifunnel Γ1 and M(x) is the only solution which is 1 + o(1) as x→ ∞.

Thus, to establish that the slow manifold in the original coordinates is the same as the centre

manifold in the new coordinates, it is sufficient to show that the centre manifold Y = C(X) is the

only scalar solution in the new coordinates which is o(1) as X → 0+.

Observe that the Y -axis is invariant. Moreover, the fixed point (X,Y ) = (0, 0) is a saddle

node (also known as a degenerate saddle). The physically relevant portion of the phase portrait,

namely X ≥ 0 and Y ≥ −1, consists of two hyperbolic sectors, one with the positive Y -axis and

the centre manifold as boundaries and the other with the negative Y -axis and the centre manifold

as boundaries. See Figure 7.12. This can be shown using techniques in §9.21 of [2] (in particular

Theorem 65 on page 340) and §2.11 of [100]. Therefore, C(X) is the only scalar solution in the

new coordinates which is o(1) as X → 0+. It follows that the centre manifold is indeed the slow

manifold.

By the Centre Manifold Theorem, the slow manifold (in the new coordinates) can be written

M(X) ∼
∞∑
i=2

ρ̂iX
i as X → 0+,

for some coefficients {ρ̂i}∞i=2. Reverting back to the original coordinates,

M(x) ∼ 1 − x−1 +
∞∑
i=2

ρ̂ix
−i as x→ ∞.
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X ’ = X2 (eta X − Y + (1 − eta) X (X − Y))                            
Y ’ = X2 (eta X − Y + (1 − eta) X (X − Y)) + 1/epsilon (X2 − X Y − Y)

epsilon = 5.0
eta = 0.8
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Figure 7.12: A phase portrait for (7.42) for ε = 5.0 and η = 0.8.

Observing that the coefficients in (7.38) are generated uniquely from the differential equation, the

conclusion follows. �

Remark 7.49: We use the ad hoc transformation (7.40) because it is inspired by the series for M

which we wish to obtain and it also results in a system which is in the canonical form of the Centre

Manifold Theorem. Others, for example [33, 47], have used Poincaré compactification to study the

behaviour of M at infinity and found that the fixed point is a saddle node.

Corollary 7.50: The slow manifold satisfies

M(x) = H(x) + O
(

1
x2

)
as x→ ∞.

Moreover, this statement would not be true if we replace H(x) with any other isocline F (x, c).
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7.10. Properties of the Slow Manifold

Proof: It follows from a comparison of the asymptotic expansions for M(x), H(x), and F (x, c). �

7.10.6 Curvature of the Slow Manifold at the Origin

Proposition 7.51: The second derivative of the slow manifold satisfies

lim
x→0+

M′′(x) =

⎧⎪⎨⎪⎩
2σ2, if κ > 2

−∞, if κ ≤ 2
.

Proof: Suppose first that κ > 2. We know from (7.28) that σ2 < 0 and from Proposition 7.45 that

M(x) = σx+ σ2x
2 + o

(
x2
)

as x→ 0+.

It can be shown that

M′′(x) =
∂f

∂x
(x,M(x)) +

∂f

∂y
(x,M(x))f(x,M(x)) = 2σ2 + o(1) as x→ 0+.

The limit in the proposition for κ > 2 follows.

Now, suppose that κ = 2. We know from Proposition 7.45 that

M(x) = σx+ c x2 ln(x) + O
(
x2
)

as x→ 0+.

for some c > 0. It can be shown that

M′′(x) = c [2 ln(x) + 3] + o(1) as x→ 0+.

The limit in the proposition for κ = 2 follows.

Finally, suppose that 1 < κ < 2. Note that (7.28) implies σ2 > 0. If we apply Proposition 7.45

and appeal to Remark 2.17 on page 31, we know that

M(x) = σx+ C xκ + σ2x
2 + o

(
x2
)

as x→ 0+

for some constant C. Note that the coefficient of the x2 term must be σ2 since it is generated

uniquely by the differential equation. It can be shown that

M′′(x) = Cκ (κ− 1) xκ−2 + 2σ2 + o(1) as x→ 0+.

Since the slow manifold is concave down for all x > 0 and σ2 > 0, it must be that C < 0. The limit

in the proposition for 1 < κ < 2 follows. �
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7.10.7 Final Remarks on the Slow Manifold

The quasi-steady-state approximation has traditionally been used to approximate the long-term

behaviour (in time) of solutions to (7.1). Is this justified? Recall that

H(x) =
x

1 + x
, V (x) =

x

1 − η + x
, and α(x) =

x

σ−1 + x
.

It follows that the QSSA is good for large time when σ ≈ 1 and the EA is good for large time when

σ ≈ (1 − η)−1. Recall also that σ = 1 + O(ε) as ε→ 0+ and σ = (1 − η)−1 + O
(
ε−1
)

as ε→ ∞.

Hence, the QSSA is a good approximation for large time when ε is small and the EA is a good

approximation for large time when ε is large. Furthermore, since κ > max
{
ε, ε−1

}
, a large number

of Taylor coefficients are correct in the asymptotic expansion at the origin for the slow manifold if

ε is very small or very large.

7.11 Summary

The Michaelis-Menten mechanism

S + E
k1�
k−1

C
k2→ P + E

gives rise to the planar and scalar differential equations

ẋ = g(x), ˙=
d

dt
and y′ = f(x, y), ′ =

d

dx
,

where

g(x) =

⎛⎝−x+ (1 − η + x) y

ε−1 [x− (1 + x) y]

⎞⎠ and f(x, y) =
x− (1 + x) y

ε [−x+ (1 − η + x) y]
.

The main subject of this chapter was properties of scalar solutions y(x). In the next chapter, we

explore properties of solutions x(t) to the planar system that explicitly involve time t.

The Jacobian matrix A = Dg(0) has two real and distinct eigenvalues, λ− and λ+. These

eigenvalues satisfy λ− < λ+ < 0. Consequently, λ+ and v+ are referred to, respectively, as the slow

eigenvalue and slow eigenvector. Similarly, λ− and v− are the fast eigenvalue and fast eigenvector.

Two important quantities associated with the eigenvalues is the slope σ of the slow eigenvector and

the ratio κ of the eigenvalues, which are given by

σ =
λ+ + 1
1 − η

and κ =
λ−
λ+

.
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7.11. Summary

The isoclines of the scalar system are all hyperbolas of the form

w(x) =
x

r + x
.

There are three special isoclines, namely the horizontal, vertical, and α isoclines. Explicitly,

H(x) =
x

1 + x
, V (x) =

x

1 − η + x
, and α(x) =

x

σ−1 + x
.

Note that the horizontal isocline corresponds to the QSSA, the vertical isocline corresponds to the

EA, and the α isocline is the isocline for slope σ (which is the slope of the slow eigenvector at the

origin). These three isoclines allowed us to define the positively invariant regions

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } and Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) } .

All solutions of the planar system, we showed, enter the region Γ0. Provided κ ≥ 2, all solutions

enter the region Γ1 (which is a subset of Γ0). However, if 1 < κ < 2, then most (but not all)

solutions enter Γ1. Furthermore, we showed that the origin is globally asymptotically stable.

The Antifunnel Theorem applied to the region Γ1 enabled us to prove the existence and unique-

ness of a solution contained in Γ1 for all x > 0. This solution is referred to as the slow manifold

and is denoted by y = M(x). The slow manifold is so named since it, as is apparent from the phase

portrait, attracts all other solutions and approaches the origin in the slow direction.

We determined the concavity of solutions to the scalar differential equation in the non-negative

quadrant. This was accomplished by considering the auxiliary function

h(x) = y(x) [y(x) − 1] + xy′(x),

where y(x) is a solution of the scalar system, which determines the sign of the second derivative of

the solution. Table 7.1 summarizes the concavity in all the regions.

Our investigation of concavity led us to construct the curve y = Y(x), which is between y = M(x)

and y = α(x), along which scalar solutions y(x) have inflection points. Furthermore, we showed

that this curve is equivalent to the slow tangent manifold which has been explored by others.

Assuming the existence of a power series solution to the scalar differential equation, substitution

of the series in to the differential equation formally gives a recursive expression for the Taylor

coefficients {σn}∞n=0, where σ0 = 0 and σ1 = σ. We showed that if κ 	∈ {2, 3, . . .} then {σn}∞n=0 are

all defined. However, if κ ∈ {2, 3, . . .} then only {σn}κ−1
n=0 are defined. Furthermore, we showed the
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behaviour of scalar solutions y(x) inside Γ0 is in general not given by a Taylor series. In particular,

y(x) can be written in the form

y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�κ�∑
n=1

σnx
n + C xκ + o(xκ), if κ 	∈ {2, 3, . . .}

σ x+ c x2 ln(x) + C x2 + o
(
x2
)
, if κ = 2

κ−1∑
n=1

σnx
n + C xκ + O

(
xκ+1

)
, if κ ∈ {3, 4, . . .}

as x→ 0+.

For a given x0 > 0, the scalar solution y(x) with initial condition y(x0) = y0, with 0 ≤ y0 ≤ α(x0),

satisfies 0 ≤ y(x) ≤ α(x) for all x ∈ (0, x0]. Using Chaplygin’s method, we derived tighter bounds on

y(x) valid over the interval x ∈ (0, x0] for the three cases y0 = 0, y0 = H(x0), and y0 = α(x0). Fur-

thermore, we used these bounds to state bounds on the slow manifold over the interval x ∈ (0, x0].

We concluded this chapter with a summary of properties of the slow manifold y = M(x). For

example, the slow manifold is concave down, is strictly increasing, and for large x has an asymptotic

series of the form M(x) ∼
∑∞

n=0 ρnx
−n as x→ ∞. To establish the asymptotic series, we used

the isoclines to obtain leading-order behaviour and we constructed the slow manifold as a centre

manifold for a fixed point at infinity.
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Chapter 8

Time Estimates

The goal of this chapter is to briefly explore a few properties of solutions to the planar system

for the Michaelis-Menten mechanism. These properties will fundamentally involve time as opposed

to being expressible in terms of the corresponding scalar solution. In particular, we will obtain a

low-order asymptotic expression for x(t) as t→ ∞. Furthermore, we will obtain bounds on x(t)

during the steady-state period and as well as bounds on the length of the pre-steady-state period.

The Michaelis-Menten mechanism, recall, for the single enzyme-substrate reaction results in the

planar system of ordinary differential equations

ẋ = −x+ (1 − η + x) y, ẏ = ε−1 [x− (1 + x) y] , (8.1)

where ˙= d
dt , ε > 0, and η ∈ (0, 1). The horizontal and vertical isoclines, along with the α isocline

(which corresponds to the slope σ of the slow manifold at the origin), are given by

H(x) =
x

1 + x
, V (x) =

x

1 − η + x
, and α(x) =

x

σ−1 + x
. (8.2)

In Chapter 7, we showed that all non-trivial solutions eventually enter the region

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } .

Furthermore, most solutions enter the region

Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) } .

See Theorems 7.7 and 7.41 for more precise statements.
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8.1. Behaviour as t→ ∞

8.1 Behaviour as t→ ∞

Let x(t) be the solution of (8.1) with initial condition x(0) = x0, where x0 ∈ Γ0. We will use

the isocline structure and differential inequalities to obtain a leading-order estimate of the compo-

nents of the solution. We know already from Theorem 2.12 on page 22 that x(t) = O
(
eλ+t

)
and

x(t) = O
(
eλ+t

)
as t→ ∞, where λ+ is the slow eigenvalue. Note that the matrix A is diagonaliz-

able so the σ in the statement of the theorem (which has a different meaning than in this part of

the thesis) can be taken as zero.

The origin is globally asymptotically stable (see Theorem 7.7). Thus, our first estimate is

x(t) = o(1) and y(t) = o(1) as t→ ∞. (8.3)

Let δ ∈ (0, σ) be fixed and arbitrary and define c1 := σ − δ and c2 := σ + δ. Now, we know from

Equation (8.3), Proposition 7.18, and the isocline structure that there is a T ≥ 0 such that

F (x(t), c1) ≤ y(t) ≤ F (x(t), c2) for all t ≥ T, (8.4)

where F is the function given in (7.8). Using (7.8), (8.1), and (8.4), we see that x(t) must satisfy

the differential inequalities

− a1x(t)
1 + b1x(t)

≤ ẋ(t) ≤ − a2x(t)
1 + b2x(t)

for all t ≥ T, (8.5)

where

a1 :=
K(c1) − (1 − η)

K(c1)
, b1 :=

1
K(c1)

, a2 :=
K(c2) − (1 − η)

K(c2)
, and b2 :=

1
K(c2)

,

with the function K being defined in (7.7). Note that, courtesy of Figure 7.1, we can conclude

a1, a2, b1, b2 > 0. Note also that

− a1 < λ+ < −a2, lim
δ→0+

ai = −λ+, and lim
δ→0+

bi = σ, and ( i = 1, 2 ) , (8.6)

which follows from Equations (7.6) and (7.10) as well as Figure 7.1.

We can apply the Initial-Value Comparison Theorem (see Theorem A.6 in Appendix A on

page 310) to the differential inequalities (8.5). Now, Claim A.25 (which is in Appendix A on

page 323) gives us the solution of the corresponding differential equalities. Hence,

χa1,b1(t) ≤ x(t) ≤ χa2,b2(t) for all t ≥ T, (8.7)
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where

χa,b(t) :=
1
b
W
([
bx0e

bx0

]
e−at

)
for a, b > 0. (8.8)

Remark 8.1: We can obtain simpler-looking bounds for x(t) than those given in (8.7). First,

observe that the lower bound in (8.5) can be taken one step further to give ẋ(t) ≥ −a1x(t) for all

t ≥ T . Second, we use the fact that W (u) ≤ u for all u ≥ 0 in (8.7) and (8.8). Thus,

x0e
−a1t ≤ x(t) ≤ x0e

b2x0e−a2t for all t ≥ T.

A standard property of the Lambert W function is

W (x) = x+ O
(
x2
)

as x→ 0+.

It follows that

χa,b(t) =
[
x0e

bx0

]
e−at

[
1 + O

(
e−at

)]
as t→ ∞

and1

ln(χa,b(t)) = ln
(
x0e

bx0

)
− at+ O

(
e−at

)
as t→ ∞. (8.9)

We can conclude from (8.7) and (8.9) that

lim inf
t→∞

ln(x(t))
t

≥ −a1 and lim sup
t→∞

ln(x(t))
t

≤ −a2.

Since this is true for all δ ∈ (0, σ), if we let δ → 0+ and apply (8.6), we get

lim
t→∞

ln(x(t))
t

= λ+.

Furthermore, since

y(t) = σx(t) [1 + o(1)] and ln(y(t)) = ln(σ) + ln(x(t)) + o(1) as t → ∞

which we know from Theorem 7.39 in conjunction with (8.3), we also have

lim
t→∞

ln(y(t))
t

= λ+.

We have thus proven the following.

1Since ln(1 + u) = u+ O(u2
)

as u→ 0, it must be that ln(1 + O(u)) = O(u) as u→ 0.
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Proposition 8.2: Let x(t) be the solution of (8.1) with initial condition x(0) = x0, where x0 ∈ Γ0.

Then,

lim
t→∞

ln(x(t))
t

= λ+ and lim
t→∞

ln(y(t))
t

= λ+.

Remark 8.3: If

lim
t→∞

ln(z(t))
t

= μ

for some function z(t) and constant μ, it does not follow that

z(t) = O
(
eμt
)

as t→ ∞.

For a simple counter-example, consider

lim
t→∞

ln
(
t e−t

)
t

= lim
t→∞

[
ln(t)
t

− 1
]

= −1.

8.2 Bounds on Solutions while in Γ1

Let x(t) be the solution of the planar system (8.1) with initial condition x(0) = x0, where x0 ∈ Γ1.

We will use differential inequalities to obtain simple bounds on the components of the solution.

These estimates will be valid for all t ≥ 0.

Since the region Γ1 is positively invariant, which we know from Theorem 7.41, we can conclude

that

H(x(t)) ≤ y(t) ≤ α(x(t)) for all t ≥ 0. (8.10)

The period of time while a solution is inside Γ1 (or Γ0) may be referred to as the “steady-state

period” since the solution roughly obeys the QSSA. Here, we are assuming that the solution begins

in the steady-state period. Using (7.6), (8.1), (8.2), and (8.10), we see that x(t) satisfies the

differential inequalities

− ηx(t)
1 + x(t)

≤ ẋ(t) ≤ λ+x(t)
1 + σx(t)

for all t ≥ 0. (8.11)

Using the Initial-Value Comparison Theorem (Theorem A.6) and Claim A.25, we get

χη,1(t) ≤ x(t) ≤ χ−λ+,σ(t) for all t ≥ 0,

where χa,b(t) was defined in (8.8). Figure 8.1 demonstrates the bounds on x(t). Furthermore, since

both H and α are strictly increasing functions and y(t) satisfies (8.10), we have thus proven the

following.
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t
0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

t
0 10 20 30

x

0

0.1

0.2

0.3

0.4

0.5

Figure 8.1: For the first picture, suppose ε = 0.1, η = 0.75, and x0 = 0.5. The two dashed curves represent

the lower and upper bounds for x(t), given in Equation (8.12), while inside Γ1. The solid

curve represents the actual solution (found numerically) with x(0) = x0 and y(0) = H(x0).

The second picture is the same as the first except with ε = 5.0, η = 0.75, and x0 = 0.5.

Proposition 8.4: Let x(t) be the solution of (8.1) with initial condition x(0) = x0, where x0 ∈ Γ1.

Then,

χη,1(t) ≤ x(t) ≤ χ−λ+,σ(t) and H (χη,1(t)) ≤ y(t) ≤ α
(
χ−λ+,σ(t)

)
for all t ≥ 0. (8.12)

Remark 8.5: We can obtain simpler-looking (but weaker) bounds for x(t) than (8.12). First,

we take the lower bound in (8.11) one step further and observe that ẋ(t) ≥ −ηx(t) for all t ≥ 0.

Second, we use the fact that W (u) ≤ u for all u ≥ 0 in (8.8) and (8.11). Thus,

x0e
−ηt ≤ x(t) ≤ x0e

σx0eλ+t for all t ≥ 0.

8.3 Time to Enter Γ1

Suppose that x0 > 0. Let x(t) be the solution of (8.1) with x(0) = x0 and y(0) = 0. Let t > 0 be

the time it takes for the solution x(t) to enter Γ1. Moreover, let (x, y) be the point at which x(t)

enters Γ1. The goal of this section is to find easily-computable bounds for t, which equals the length

of the “pre-steady-state period.” See Figure 8.2. These bounds will be decidedly crude. Estimates
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y

x

Γ1

y = α(x)

y = H(x)

(x, y)

(x0, 0)

solution x(t)

Figure 8.2: Estimating the time it takes for a solution starting at x(0) = x0 and y(0) = 0 to enter the

antifunnel Γ1. The solution enters Γ1 through (x, y) at time t.

of the length of (one definition or another of) the pre-steady-state period have been considered

before. See, for example, [93, 112].

8.3.1 Bounds on t in terms of x

We know that y(t) satisfies

0 ≤ y(t) ≤ H(x(t)) for all t ∈
[
0, t
]
.

Using this fact in conjunction with (8.1) and (8.2), we see that x(t) satisfies

−x(t) ≤ ẋ(t) ≤ − ηx(t)
1 + x(t)

for all t ∈
[
0, t
]
.

By inspection,

x0e
−t ≤ x(t) ≤W

(
x0e

x0e−ηt
)

for all t ∈
[
0, t
]
,

where we used the expression (8.8) for χa,b(t). Setting t = t and x(t) = x and solving for t, we get2

− ln

(
x

x0

)
≤ t ≤ 1

η

[
(x0 − x) − ln

(
x

x0

)]
. (8.13)

2If u ≤W (v) then eu ≤ eW(v). Multiplying these two inequalities gives u eu ≤W (v) eW(v). By definition of the

Lambert W function, W (v) eW(v) = v. Thus, u eu ≤ v.
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y

x

Γ1

y = α(x)

y = H(x)

(x, y)

(x0, 0)

(xu, yu)

y = u(x)

Figure 8.3: The point of intersection (xu, yu) of y = u(x) and y = H(x), where u(x) is the tangent to the

scalar solution y(x) at x = x0 and H is the horizontal isocline. Obviously, xu is an upper

bound for x.

These bounds on t, unfortunately, are currently unusable since we do not have a value for x.

However, if we have upper and lower bounds on x which depend only on ε, η, and x0, then we have

usable bounds on t.

8.3.2 Upper Bound xu for x

Let y(x) be the corresponding scalar solution. We know that y(x0) = 0 and y′(x0) = −ε−1, the

latter of which follows from Table 6.1 on page 150. Thus, the tangent line to y(x) at x = x0 is

given by

u(x) := −ε−1 (x− x0) .

This line will intersect the horizontal isocline twice (once to the left and once to the right of the

y-axis). Let (xu, yu) be the point of intersection to the right of the y-axis. See Figure 8.3. Hence,

xu

1 + xu
= −ε−1 (xu − x0) and (xu)2 − (x0 − 1 − ε) xu − x0 = 0.

Solving for the positive root,

xu = 1
2 (x0 − 1 − ε) + 1

2

√
(x0 − 1 − ε)2 + 4x0. (8.14)
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8.3. Time to Enter Γ1

Observe that

xu = x0 + O(ε) and yu =
x0

1 + x0
+ O(ε) as ε→ 0+. (8.15)

We know from Table 7.1 that y(x) is concave down on [x, x0]. Thus, y(x) ≤ u(x) on [x, x0].

Furthermore, the horizontal isocline is strictly increasing. Therefore, we indeed have the bounds

x ≤ xu and y ≤ yu.

8.3.3 Lower Bound x for x

Finding a lower bound for x will not be quite as easy as for the upper bound. Let y(x) be the

corresponding scalar solution, which satisfies y(x0) = 0 and y′(x0) = −ε−1. A straight-line lower

bound for y(x) can be found, at least on some interval with right-endpoint x0, which can be used

to find a lower bound on x. However, there are some computational issues associated with using

this straight line which we want to avoid. Instead, consider the hyperbola

�r(x) :=
x0 − x

r + (x0 − x)
for r > ε.

We will use the Comparison Theorem to find an interval with right-endpoint x0 on which this

hyperbola is below the solution. Note that

�r(x0) = 0, �′r(x0) = −1
r
, and �′r(x), �

′′
r (x) < 0 for all x ≤ x0.

Note also that the restriction r > ε ensures y′(x0) < �′r(x0) < 0.

The hyperbola and horizontal isocline intersect at x = x0
1+r . Moreover, f(x, �r(x)) decreases

monotonically on
[

x0
1+r , x0

]
from 0 to −ε−1, which follows from the Chain Rule and the fact that

∂f
∂x(x, �r(x)) ≤ 0, ∂f

∂y (x, �r(x)) > 0, and �′r(x) < 0. It follows that there is a unique ar ∈
(

x0
1+r , x0

)
such that

f(ar, �r(ar)) = −1
r

and f(x, �r(x)) ≤ −1
r

for all x ∈ [ar, x0] .

Since �′r(x) ≥ −1
r for all x ≤ x0, we see f(x, �r(x)) ≤ �′r(x) for all x ∈ [ar, x0]. By the Final-Value

Comparison Theorem (see Theorem A.7 in Appendix A on page 311),

y(x) ≥ �r(x) for all x ∈ [ar, x0] .

The value of ar is easy to find: solving f(ar, �r(ar)) = −r−1 yields

ar =
[r − (1 − η) ε] x0

r (r − ε) + r − (1 − η) ε
= x0

{
1 + r

[
(r − ε)

r − (1 − η) ε

]}−1

.
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y

x

Γ1

y = α(x)

y = H(x)

(x0, 0)

(x, y)

solution

y = �r(x)

(ar, br)

(H−1(br), br)

Figure 8.4: This figure depicts a hyperbolic lower bound y = �r(x), for any r > ε, for the solution curve

y = y(x). The point (ar, br), where br = �r(ar), is found using the Comparison Theorem and

allows us to find lower bounds on x and y. In particular, y ≥ br and x ≥ H−1(br).

Since ε > 0, η ∈ (0, 1), and r > ε, it is easy to check that indeed ar ∈
(

x0
1+r , x0

)
. Let br := �(ar).

As we can see from Figure 8.4, the point (ar, br) can be to the left or to the right of (x, y). However,

it must be the case that (ar, br) is below (x, y). That is, br ≤ y. Thus, we want to maximize br with

respect to r > ε. A simple Calculus argument will verify that the optimal choice of r is
√
εη + ε.

Hence, we will take

r :=
√
εη + ε, �(x) :=

x0 − x(√
εη + ε

)
+ (x0 − x)

, and a :=

(√
εη + 1

)
x0

2
√
εη + ε+ 1

.

It is apparent from Figure 8.4 that �(a) is a lower bound for y and H−1(�(a)) is a lower bound

for x. Note that

H−1(y) =
y

1 − y
.

Therefore, we take

x :=
x0

2
√
εη + ε+ 1

and y :=
x0

2
√
εη + ε+ (1 + x0)

, (8.16)

which satisfy x ≥ x and y ≥ y. Figure 8.5 gives two examples of locating the points (x, y) and

(xu, yu) and demonstrates how the actual point of entry (x, y) is between the two points along the

horizontal isocline.
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x
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Figure 8.5: For the first picture, suppose ε = 0.1, η = 0.75, and x0 = 0.5. The actual solution (solid line)

and horizontal isocline (dashed line, the quasi-steady-state approximation) are shown. Also

shown are the hyperbola y = �(x) (left dash-dot line) and tangent line y = −ε−1(x− x0) (right

dash-dot line). The points (x�, y�) and (xu, yu) are indicated by the solid circles. The second

picture is the same as the first except with ε = 5.0, η = 0.75, and x0 = 0.5.

Observe that

x = x0 + O
(√
ε
)

and y =
x0

1 + x0
+ O

(√
ε
)

as ε→ 0+. (8.17)

Equations (8.15) and (8.17) give us the following.

Proposition 8.6: Suppose that x0 > 0. Let x(t) be the solution of (8.1) with x(0) = x0 and

y(0) = 0. If (x, y) is the point where x(t) enters Γ1, then

lim
ε→0+

x = x0 and lim
ε→0+

y =
x0

1 + x0
. (8.18)

8.3.4 Bounds on t in terms of x and xu

We are now in a position to state non-trivial bounds on the time t it takes for the solution x(t)

to enter the region Γ1 (that is, the length of the pre-steady-state period). Recall Equation (8.13),

which gives bounds on t in terms of the x-value x of the point of entry into Γ1. The expressions on

the left and right are both strictly decreasing functions of x. With the aid of (8.18), we therefore

have proven the following.
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Figure 8.6: For the first picture, suppose ε = 0.1, η = 0.75, and x0 = 0.5. With these values, we can

calculate the bounds on t (the time it takes for the solution to cross the horizontal isocline) to

be t� ≈ 0.0659 and tu ≈ 0.928 using (8.14), (8.16), and (8.20). The actual solution (solid line)

and horizontal isocline (dashed line) are shown. The thick portion of the solution corresponds

to t ∈
[
0, t�
]

and the thin portion of the solution corresponds to t ∈
[
t�, tu

]
. Indeed, t ∈

[
t�, tu

]
.

The second picture is the same as the first except with ε = 5.0, η = 0.75, and x0 = 0.5. The

lower and upper bounds for t respectively are t� ≈ 1.72 and tu ≈ 3.65.

Proposition 8.7: Suppose that x0 > 0. Let x(t) be the solution of (8.1) with x(0) = x0 and

y(0) = 0. If t is the time it takes for x(t) to enter Γ1, then

− ln

(
xu

x0

)
≤ t ≤ 1

η

[
(x0 − x) − ln

(
x

x0

)]
, (8.19)

where x is given in (8.16) and xu is given in (8.14). Furthermore,

lim
ε→0+

t = 0.

Figure 8.6 gives two examples of using (8.19) to find bounds on t. Define

t := −ln

(
xu

x0

)
and tu :=

1
η

[
(x0 − x) − ln

(
x

x0

)]
(8.20)

which are the lower and upper bounds for t. It can be shown that

t =
(

1
1 + x0

)
ε+ O

(
ε2
)

and tu =
[
2 (1 + x0)√

η

]√
ε+ O(ε) as ε→ 0+.
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Remark 8.8: There is an interesting consequence of these bounds on t. Since 0 < x ≤ xu, it

follows from (8.14) that

lim
ε→∞x = 0.

Appealing to (8.13), we can conclude

lim
ε→∞ t = ∞.

That is, when ε is large the pre-steady-state period is long. (When ε is small, the pre-steady-state

period is brief.)

8.4 Summary

The purpose of this chapter was to develop some basic time estimates for solutions x(t), with initial

condition x0, to the planar system

ẋ = −x+ (1 − η + x) y, εẏ = x− (1 + x) y,

which arises from the Michaelis-Menten mechanism.

First, we used differential inequalities and properties we have developed in this thesis to establish

the long-term asymptotic behaviour of x(t) when x0 ∈ Γ0, where

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) }

with H being the horizontal isocline and V being the vertical isocline. In particular, we showed

lim
t→∞

ln(x(t))
t

= λ+ and lim
t→∞

ln(y(t))
t

= λ+,

where λ+ is the slow eigenvalue.

Second, we obtained bounds on the solution if x0 ∈ Γ1, where

Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) }

with α being the isocline for slope σ (the slope of the slow manifold at the origin). Specifically,

χη,1(t) ≤ x(t) ≤ χ−λ+,σ(t) and H (χη,1(t)) ≤ y(t) ≤ α
(
χ−λ+,σ(t)

)
for all t ≥ 0,

where

χa,b(t) =
1
b
W
([
bx0e

bx0

]
e−at

)
for a, b > 0.
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Note that W (x) is the Lambert W function. Alternatively, we showed that

x0e
−ηt ≤ x(t) ≤ x0e

σx0eλ+t for all t ≥ 0.

Finally, we found lower and upper bounds on the time t for the solution to enter Γ1 (which it

does through the point (x, y)) when the initial condition is on the positive x-axis. In particular,

using the Comparison Theorem and other tricks we showed that

−ln

(
xu

x0

)
≤ t ≤ 1

η

[
(x0 − x) − ln

(
x

x0

)]
,

where

x =
x0

2
√
εη + ε+ 1

and xu = 1
2 (x0 − 1 − ε) + 1

2

√
(x0 − 1 − ε)2 + 4x0

are lower and upper bounds on x. Moreover, we showed that

lim
ε→0+

x = x0, lim
ε→0+

y =
x0

1 + x0
, and lim

ε→0+
t = 0.

At the other extreme, we showed

lim
ε→∞x = 0, lim

ε→∞ y = 0, and lim
ε→∞ t = ∞.
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Chapter 9

Modifications to the

Michaelis-Menten Mechanism

The Michaelis-Menten mechanism is the simplest chemical network which models the formation of

a product from a substrate with the help of a catalytic enzyme. Symbolically, this mechanism is

S + E
k1�
k−1

C
k2→ P + E,

where S is the substrate, E is the enzyme, C is the complex, P is the product, and k−1, k1, and

k2 are the reaction-rate constants. There are, of course, many more complicated enzyme reactions

and chemical networks which are studied in biochemistry and chemical kinetics. The goal of this

chapter is to make it apparent that the techniques and results we developed in Chapters 7 and 8

can be extended to other chemical networks.

9.1 Henri Mechanism

A mechanism in chemical kinetics is the complete set of elementary reactions which encompass

a reaction. However, a given reaction may have many different possible mechanisms which are

consistent with the known information. Since knowing which mechanism is correct is of fundamental

theoretical importance, much attention in chemical kinetics is devoted to the distinguishing of

mechanisms.

Victor Henri, who originated the traditional Michaelis-Menten mechanism (which involves a

productive enzyme-substrate complex), also proposed another mechanism for a simple enzyme
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9.1. Henri Mechanism

reaction (which involves a nonproductive enzyme-substrate complex). This second mechanism is

often called the Henri mechanism or the Nuisance-Complex mechanism. See, for example, [108,

111, 121].

Henri preferred what is now referred to as the Michaelis-Menten mechanism, but recognized

that both mechanisms explain the observed kinetics yet are kinetically indistinguishable using the

equilibrium approximation. Presently, the Michaelis-Menten mechanism is considered the probable

mechanism. However, more complicated mechanisms with nonproductive enzyme-substrate com-

plexes are important in many other reactions. Thus, techniques of kinetically distinguishing the

Michaelis-Menten and Henri mechanisms are of theoretical value.

9.1.1 The Model and Differential Equations

Symbolically, the Henri mechanism is

C
k−1�
k1

S + E
k2→ P + E,

where S is the substrate, E is the enzyme, C is the complex, and P is the product. The constants

k−1, k1, and k2 are the reaction-rate constants. Using the Law of Mass Action, we have the system

of ordinary differential equations

ṡ = k−1c− (k1 + k2) se,

ė = k−1c− k1se,

ċ = k1se− k−1c,

ṗ = k2se,

where ˙= d
dt . The traditional initial conditions are s(0) = s0, e(0) = e0, c(0) = 0, and p(0) = 0.

However, we will allow the initial conditions to be arbitrary.

Observe that

e(t) + c(t) ≡ e0 and s(t) + c(t) + p(t) ≡ s0,

which are the same two conservation laws, (6.3) and (6.4), which we had for the standard Michaelis-

Menten mechanism. We denoted the constants by s0 and e0 since, traditionally, the complex and

product are not considered to be initially present.
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Chapter 9. Modifications to the Michaelis-Menten Mechanism

9.1.2 Reduction and Re-scaling

Using the first conservation law and ignoring the differential equation for p (which is decoupled

from the other three differential equations), we have the planar reduction

ṡ = k−1c− (k1 + k2) s (e0 − c) , ċ = k1s (e0 − c) − k−1c. (9.1)

The dimensions of the involved quantities in (9.1) are

[s, c, e0] =
Q

L3
, [ṡ, ċ] =

Q

L3T
, [k−1] =

1
T
, and [k1, k2] =

L3

QT
.

Now, define the dimensionless quantities

τ := (k1 + k2) e0t, x :=
(
k1

k−1

)
s, y :=

c

e0
, ε :=

e0 (k1 + k2)
k−1

, and η :=
k2

k1 + k2
.

Observe ε > 0 and 0 < η < 1. With these scaled variables, (9.1) becomes

x′ = −x+ (1 − η + x) y, y′ = ε−1 [x− (1 + x) y] , (9.2)

where ′ = d
dτ .

The planar system (9.2) is exactly the same planar system as for the standard Michaelis-

Menten mechanism. This was noted by Roussel in [104]. When two different reactions give the

same system of differential equations (in this case the planar reduction), the mechanisms are said

to be homeomorphic or kinetically equivalent. Thus, everything we established in Chapters 7 and

8 for the system for the Michaelis-Menten mechanism carries forward to (9.2). Physically, the two

mechanisms can be distinguished on the basis of product formation: The velocity of the standard

mechanism is V = ṗ = k2c and the velocity of the Henri mechanism is V = ṗ = k2se. See, for

example, [108, 111].

9.2 Reversible Michaelis-Menten Mechanism

Traditionally, it is assumed for the Michaelis-Menten mechanism that the reaction from the complex

to the product is irreversible. The rational for this assumption is that the rate of the reverse reaction

is negligible compared to the rate of the forward reaction. Moreover, in practice the product is

frequently removed as it is produced1 and hence the reverse reaction cannot occur.
1For example, the product may be consumed as the reactant of another reaction in the metabolic pathway.
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9.2.1 The Model and Differential Equations

Symbolically, the Reversible Michaelis-Menten mechanism is

S + E
k1�
k−1

C
k2�
k−2

P +E,

where S is the substrate, E is the enzyme, C is the complex, and P is the product. The constants

k−1, k1, k−2, and k2 are the reaction-rate constants. By the Law of Mass Action, we have the

system of four ordinary differential equations

ṡ = k−1c− k1se,

ė = (k−1 + k2) c− k1se− k−2ep,

ċ = k1se+ k−2ep− (k−1 + k2) c,

ṗ = k2c− k−2ep.

Traditionally, the initial conditions are s(0) = s0, e(0) = e0, c(0) = 0, and p(0) = 0. However, we

will allow the initial conditions to be arbitrary.

Two conservations laws which follow from these differential equations are

e(t) + c(t) = e0 and s(t) + c(t) + p(t) = s0.

We denote the two constants by s0 and e0 since, traditionally, the complex and product are not

considered to be initially present.

9.2.2 Reduction and Re-scaling

Using the two conservation laws, we have the planar reduction

ṡ = k−1c− k1s (e0 − c) , ċ = k1s (e0 − c) + k−2 (e0 − c) (s0 − s− c) − (k−1 + k2) c. (9.3)

The dimensions of the involved quantities in (9.3) are

[s, s0, c, e0] =
Q

L3
, [ṡ, ċ] =

Q

L3T
, [k−1, k2] =

1
T
, and [k1, k−2] =

L3

QT
.

Define now the new variables

τ := k1e0t, x :=
(

k1

k−1 + k2

)
s, and y :=

c

e0
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and new parameters

ε :=
k1e0

k−1 + k2
, η :=

k2

k−1 + k2
, μ :=

s0
e0
, and θ :=

k−2

k1
.

Hence, we are left with the system

x′ = −x+ (1 − η + x) y, y′ = ε−1 [x− (1 + x) y] + θ
[
μ− ε−1x− y

]
[1 − y] , (9.4)

where ′ = d
dτ . Observe that if k−2 = 0 then θ = 0 and the system reduces to the system for the

(irreversible) Michaelis-Menten mechanism. Observe also that the origin is not an equilibrium point.

In fact, there is a positive equilibrium point. See Figures 9.1 and 9.2, which strongly suggest the

existence of a trapping region and a slow manifold. Proving the existence of a unique slow manifold

may be as simple as constructing an antifunnel bounded by the horizontal isocline and the isocline

for the slope of the slow eigenvector (associated with the Jacobian at the positive equilibrium).

9.3 Competitive Inhibition

Another simple variation of the basic Michaelis-Menten mechanism is the presence of a competitive

inhibitor. Such an inhibitor is occasionally referred to as an “imposter substrate” since the inhibitor

is similar to the substrate and binds with the enzyme at the active site. This competition between

substrate and inhibitor effectively inhibits the conversion of the true substrate into product. See,

for example, Chapter 1 of [69] and Chapter 5 of [71]. We will show that all concentrations approach

equilibrium.

9.3.1 The Model and Differential Equations

Symbolically, the Michaelis-Menten mechanism with a single competitive inhibitor H is

S + E
k1�
k−1

C
k2→ P + E, H + E

k3�
k−3

B,

where B is the inactive enzyme-inhibitor complex. Using the Law of Mass Action, we arrive at the

system of ordinary differential equations

ṡ = k−1c− k1se, ė = (k−1 + k2) c+ k−3b− k1se− k3eh,

ċ = k1se− (k−1 + k2) c, ṗ = k2c,

ḣ = k−3b− k3eh, ḃ = k3eh− k−3b. (9.5)
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x ’ = − x + (1 − eta + x) y                                           
y ’ = 1/epsilon (x − (1 + x) y) + theta (mu − 1/epsilon x − y) (1 − y)

mu = 2.0
theta = 0.3

epsilon = 0.5
eta = 0.8
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Figure 9.1: Phase portrait for the system (9.4) for ε = 0.5, η = 0.8, μ = 2.0, and θ = 0.3.

An immediate consequence of these equations are the three conservation laws

s(t) + c(t) + p(t) ≡ s0, c(t) + b(t) + e(t) ≡ e0, and h(t) + b(t) ≡ h0. (9.6)

We use s0, e0, and h0 to denote the constants since, traditionally, the two complexes and the

product are not considered to be initially present. We will assume that e0 > 0 which is physically

reasonable; if e0 = 0 then all concentrations are constant.

9.3.2 Global Asymptotic Stability

We will now show that all six concentrations tend to a constant as time tends to infinity. Conse-

quently, this proves global asymptotic stability of a unique equilibrium point. Marc Roussel, in his

thesis [104], performed a linearized analysis about this equilibrium point using the Jacobian.
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x ’ = − x + (1 − eta + x) y                                           
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Figure 9.2: The positive equilibrium point for the system (9.4) for ε = 0.5, η = 0.8, μ = 2.0, and θ = 0.3.

Proposition 9.1:

(a) The concentrations s(t), e(t), c(t), p(t), h(t), and b(t) are all non-negative.

(b) The concentrations s(t), e(t), c(t), p(t), h(t), and b(t) are all bounded.

(c) The substrate, complex, and product concentrations satisfy

lim
t→∞ s(t) = 0, lim

t→∞ c(t) = 0, and lim
t→∞ p(t) = s0.

(d) Let

r :=
− [k−3 + k3 (e0 − h0)] +

√
[k−3 + k3 (e0 − h0)]

2 + 4k−3k3h0

2k3
.
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Then, the enzyme, inhibitor, and enzyme-inhibitor complex concentrations satisfy2

lim
t→∞ e(t) = e0 + r − h0, lim

t→∞h(t) = r, and lim
t→∞ b(t) = h0 − r.

Proof:

(a) Trivial.

(b) It follows from the previous part and the conservation laws (9.6).

(c) First, we show the limit for c(t). If we add the differential equations for s(t) and c(t) in (9.5),

we obtain

ṡ(t) + ċ(t) = −k2c(t) for all t ≥ 0

and thus u(t) := s(t) + c(t) is non-increasing. Since u(t) ≥ 0 for all t ≥ 0, there is some u ≥ 0

such that lim
t→∞u(t) = u. Note that ü(t) is bounded, which follows from the differential equations

(9.5) and the boundedness of the concentrations, and thus u̇(t) is uniformly continuous for all

t ≥ 0. By Barbălat’s Lemma (see §A.7 of Appendix A), lim
t→∞ u̇(t) = 0. Since u̇(t) = −k2c(t),

we conclude lim
t→∞ c(t) = 0.

Since u(t) = s(t) + c(t), lim
t→∞u(t) = u, and lim

t→∞ c(t) = 0, it follows lim
t→∞ s(t) = u. Using the first

conservation law in (9.6), lim
t→∞ p(t) = s0 − u. Thus, we need only show that u = 0.

Suppose, on the contrary, that u > 0. If we let t→ ∞ in the differential equation for s(t) and

apply limits we know along with Barbălat’s Lemma, we see that lim
t→∞ e(t) = 0. It follows from

the second and third conservation laws in (9.6) that lim
t→∞ b(t) = e0 > 0 and lim

t→∞h(t) = h0 − e0.

By Barbălat’s Lemma, lim
t→∞ ḣ(t) = 0. Appealing to the differential equation for h(t), we see

lim
t→∞ b(t) = 0 which is a contradiction. Therefore, u = 0, lim

t→∞ s(t) = 0, and lim
t→∞ p(t) = s0.

(d) Consider the initial value problem

ẋ = a2x
2 + a1x+ a0, x(t0) = x0,

where a0 > 0 and a2 < 0. Define f(x) := a2x
2 + a1x+ a0. Since f is a parabola opening

downwards with f(0) > 0, f clearly has two distinct real roots, say r1, r2 where r1 < 0 < r2.

2Observe that lim
e0→0+

r = h0.
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Thus f(x) > 0 for x ∈ (r1, r2) and f(x) < 0 for x > r2. It is easy to verify that if x0 > r1 then

the solution x(t) satisfies lim
t→∞x(t) = r2.

We will use the above fact and the Comparison Theorem to show that lim
t→∞h(t) = r. By virtue

of the conservation laws (9.6), this will complete the proof of this part of the proposition.

Using the differential equation for h(t) in (9.5) in conjunction with the conservation laws (9.6),

we see that

ḣ(t) = −k3h(t)2 − [k−3 + k3 (e0 − h0 − c(t))]h(t) + k−3h0.

Let δ > 0 be arbitrary. Since lim
t→∞ c(t) = 0, there is a T ≥ 0 such that 0 ≤ c(t) ≤ δ for any

t ≥ T . It follows that

f0(h(t)) ≤ ḣ(t) ≤ fδ(h(t)) for all t ≥ T,

where

fγ(x) := −k3x
2 − [k−3 + k3 (e0 − h0 − γ)]x+ k−3h0.

Observe that r, which is in the statement of this part of the proposition, is the positive root

of f0(x) = 0. Now, let rδ be the positive root of fδ(x) = 0. It follows from the Comparison

Theorem and the discussion at the beginning of the proof that

lim inf
t→∞ h(t) ≥ r and lim sup

t→∞
h(t) ≤ rδ.

Since δ > 0 is arbitrary and lim
δ→0+

rδ = r, we can conclude lim
t→∞h(t) = r.

�

9.3.3 Reduction and Re-scaling

Consider the system (9.5) and conservation laws (9.6). Clearly, there are only three independent

concentrations. Following convention, (9.5) is reduced to

ṡ = k−1c− k1s (e0 − c− b) ,

ċ = k1s (e0 − c− b) − (k−1 + k2) c,

ḃ = k3 (e0 − c− b) (h0 − b) − k−3b. (9.7)

Observe that the differential equation for b does not depend on s.
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The dimensions of the quantities in (9.7) are

[s, c, b, h0, e0] =
Q

L3
,
[
ṡ, ċ, ḃ

]
=

Q

L3T
, [k−1, k2, k−3] =

1
T
, and [k1, k3] =

L3

QT
.

Now, define the new variables

τ := k1e0t, x :=
(

k1

k−1 + k2

)
s, y :=

c

e0
, and z :=

b

h0

and the new parameters

ε :=
k1e0

k−1 + k2
, η :=

k2

k−1 + k2
, μ :=

h0

e0
, θ :=

k−3

k1e0
, and ω :=

k3

k1
.

Hence, (9.7) becomes

x′ = −x+ (1 − η + x) y + μxz,

y′ = ε−1 [x− (1 + x) y − μxz] ,

z′ = −θz + ω (1 − y − μz) (1 − z) ,

where ′ = d
dτ . Observe that the origin is not an equilibrium point. Note also that the x, y, and z

isoclines, respectively, are given by y = Nx(x, z), y = Nz(x, z), and y = Nz(x, z), where

Nx(x, z) :=
(1 − μz) x
1 − η + x

, Ny(x, z) :=
(1 − μz)x

1 + x
, and Nz(x, z) := 1 − μz − θz

ω (1 − z)
.

The equilibrium approximation (EA) assumes that the substrate is in equilibrium and thus

corresponds to the isocline y = Nx(x, z) (which is a surface). The quasi-steady-state approximation

(QSSA), on the other hand, assumes that both of the complexes are in equilibrium and thus

corresponds to the intersection of the isoclines y = Ny(x, z) and y = Nz(x, z) (which is a curve).

We conjecture that we can form a three-dimensional trapping region containing a unique solution

by using the isoclines as boundaries. To prove this, we would need to formulate a higher-dimensional

version of the Antifunnel Theorem. Note that this would likely involve the characterization of the

antifunnel being narrowing in one direction (most likely the x-direction here).
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The Lindemann Mechanism
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Chapter 10

Introduction

We turn our attention to a different reaction, namely the Lindemann mechanism for unimolecular

decay, which we will study from a dynamical systems point of view. A unimolecular reaction, as

the name suggests, occurs when a single molecule undergoes a chemical change. In the scheme of

Lindemann, for a given molecule to decay (or isomerize) it must be activated by another molecule

and this activated molecule decays into the product molecule. This idea of a multi-step mechanism

for unimolecular reactions, which originated with Lindemann, is now ubiquitous.

The Lindemann mechanism will lead to a planar differential equation and corresponding scalar

differential equation which we will explore. As with the Michaelis-Menten mechanism, there will

be a trapping region in phase space containing a unique slow manifold. In this part of the thesis,

we will adapt the techniques of Part II to this mechanism.

10.1 The Lindemann Mechanism

Radioactive decay involves the emission of energy from an unstable atomic nucleus. For unimolec-

ular decay, however, a certain amount of energy must be supplied externally, namely the activation

energy. For some time, it was unknown just how the molecules became activated. Jean-Baptiste

Perrin (1870–1942), the French physicist who won the Nobel Prize for Physics in 1926, suggested

in 1919 that the activation was due to the absorption of infrared radiation. However, this idea was

quickly shown to be false.

The British physicist Frederick Lindemann (1886–1957) suggested in 1922 that unimolecular
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decay involves two steps, namely the activation/deactivation by collision step and the reaction

step. See, for example, [82] which is a “discussion on the radiation theory of chemical action” that

includes Perrin and Lindemann as its participants. The British chemist Cyril Norman Hinshelwood

(1897–1967) made further contributions to the Lindemann model in 1926 and, consequently, the

Lindemann mechanism is occasionally referred to as the Lindemann-Hinshelwood mechanism. See,

for example, Hinshelwood’s paper [61]. For general references on unimolecular reactions and the

Lindemann mechanism, see, for example, [11, 42, 48, 90].

Suppose that the reactant A is to decay into the product P . Then, according to the Lindemann

mechanism, A is activated by a collision with another molecule M , typically from a gas bath,

producing the activated complex B. This activation can also be reversed. The complex then

decays into the product. Symbolically,

A+M
k1�
k−1

B +M, B
k2→ P,

where k1, k−1, and k2 are the reaction rate constants. There are alternatives to this model which

include the presence of multiple products.

Observe that the concentration of M is constant and the resulting system of differential equa-

tions is linear. However, when the reactant A is activated by colliding with itself, the resulting

system of differential equations is nonlinear. Symbolically, this model, which is the standard Lin-

demann mechanism, is

A+A
k1�
k−1

A+B, B
k2→ P. (10.1)

This is the model which we will be using.

10.2 Associated Ordinary Differential Equations

10.2.1 Ordinary Differential Equations

Consider the Lindemann mechanism (10.1). The Law of Mass Action gives the system of ordinary

differential equations

ȧ = k−1ab− k1a
2, (10.2a)

ḃ = k1a
2 − k−1ab− k2b, (10.2b)

ṗ = k2b, (10.2c)
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where ˙= d
dt . The traditional initial conditions are a(0) = a0, b(0) = 0, and p(0) = 0. However, we

will allow the initial conditions to be arbitrary.

10.2.2 Conservation Law

By adding Equations (10.2a), (10.2b), and (10.2c), we arrive at the conservation law

a(t) + b(t) + p(t) ≡ a0. (10.3)

We choose a0 to denote the constant since, traditionally, the complex and product are not initially

present.

10.2.3 Planar Reduction

The system (10.2) consists of three ordinary differential equations. Since the differential equations

for a and b are decoupled from the differential equation for p, we need only study the planar

reduction

ȧ = k−1ab− k1a
2, (10.4a)

ḃ = k1a
2 − k−1ab− k2b. (10.4b)

The traditional initial conditions are a(0) = a0 and b(0) = 0. However, we will again allow the

initial conditions to be arbitrary.

10.2.4 Scalar Reduction

The scalar reduction is formed by eliminating t from the (autonomous) planar reduction (10.4) and

considering b as a function of a. Observe that db
da = ḃ

ȧ . Hence, consider the system

b′ =
k1a

2 − k−1ab− k2b

−k1a2 + k−1ab
, (10.5)

where ′ = d
da . We will, of course, restrict attention to the non-negative quadrant which consists of

non-negative concentrations.
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10.3 The Equilibrium and Quasi-Steady-State Approximations

The Equilibrium Approximation (EA) and the Quasi-Steady-State Approximation (QSSA), which

have proved successful for the Michaelis-Menten mechanism, have also been applied to the Linde-

mann mechanism. See, for example, §2.2 of [48] and pages 122–126 and 313–317 of [90].

10.3.1 The Equilibrium Approximation (EA)

Assume that the reversible reaction in (10.1) is in equilibrium. That is, the activation and deacti-

vation reactions are occurring at roughly the same rate. Mathematically, ȧ(t) ≈ 0 for sufficiently

large time t. Using (10.4a),

k−1a(t)b(t) ≈ k1a(t)2.

It is reasonable to assume that a(t) > 0. Thus, we have the equilibrium approximation

b(t) ≈ k1

k−1
a(t).

In terms of the scalar reduction (10.5), the EA is

bEA(a) :=
k1

k−1
a. (10.6)

10.3.2 The Quasi-Steady-State Approximation (QSSA)

Assume that the activated complex B of the mechanism (10.1) is in a quasi-steady state. Mathe-

matically, ḃ(t) ≈ 0 for sufficiently large time t. The differential equation (10.4b) gives

k1a(t)2 ≈ k−1a(t)b(t) + k2b(t).

Solving for b(t),

b(t) ≈ k1a(t)2

k2 + k−1a(t)
.

In terms of the scalar reduction (10.5), the QSSA is

bQSSA(a) :=
k1a

2

k2 + k−1a
. (10.7)
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10.4 Dimensionless Ordinary Differential Equations

We will now re-scale the variables to produce dimensionless planar and scalar systems. Note that

the dimensions of the involved quantities are

[a, b] =
Q

L3
,
[
ȧ, ḃ
]

=
Q

L3T
, [k2] =

1
T
, and [k−1, k1] =

L3

QT
.

10.4.1 Dimensionless Variables and Parameter

Define1

τ := k2t, x :=
(
k1

k2

)
a, y :=

(
k1

k2

)
b, and ε :=

k−1

k1
,

which are all dimensionless. Thus, τ , x, and y are, respectively, a scaled time, reactant con-

centration, and complex concentration. Moreover, the parameter ε > 0 measures how slow the

deactivation of the reactant is compared to the activation. Traditionally, one may want to consider

ε to be small. In our analysis, the size of ε does not matter.

10.4.2 Planar System

It is easy to verify that, with the re-scaling, the planar system (10.4) becomes

ẋ = −x2 + εxy, ẏ = x2 − (1 + εx) y, (10.8)

where ˙ = d
dt and (for simplicity) we are using t when we really are using the scaled time τ .

Observe that the system (10.8) is a regular perturbation problem, whereas the planar system for

the Michaelis-Menten mechanism is a singular perturbation problem. Occasionally, we will need to

refer to the vector field of this planar system. Hence, define

g(x) :=

⎛⎝ −x2 + εxy

x2 − (1 + εx) y

⎞⎠ , (10.9)

where x := (x, y)T . In Chapter 11 and Chapter 12, we will explore properties of solutions of (10.8).

1This is the re-scaling used, for example, by Marc Roussel in lecture notes available on his website

http://people.uleth.ca/∼roussel at the University of Lethbridge.
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10.4.3 Scalar Differential Equation

With the re-scaling, the scalar system (10.5) assumes the dimensionless form

y′ =
x2 − (1 + εx) y
−x2 + εxy

, (10.10)

where ′ = d
dx . Furthermore, we will define the function

f(x, y) :=
x2 − y − εxy

−x2 + εxy
. (10.11)

In Chapter 11, we will explore properties of solutions of (10.10).

10.4.4 The EA and QSSA

In terms of this scaling, Equations (10.6) and (10.7), for the EA and QSSA, take the respective

forms

yEA(x) :=
x

ε
and yQSSA(x) :=

x2

1 + εx
. (10.12)

Alternatively, these can be found by setting, respectively, ẋ = 0 and ẏ = 0 in (10.8). The EA can be

interpreted as the vertical isocline, just like with the Michaelis-Menten mechanism, and the QSSA

can be interpreted as the horizontal isocline.

10.5 Phase-Plane Analysis

Later in this section, we will present two computer-generated phase portraits. Our goal here is to

provide rudimentary justification for these phase portraits. In Chapter 11, we will develop more

precise results. The phase portraits, for physical reasons, will be restricted to the non-negative

quadrant S.

We will use, like in Part II, a casual notation with regard to column and row vectors. For exam-

ple, by x ∈ S we mean the (column) vector x = (x, y)T satisfies x, y ≥ 0. Similarly, by (x, y) ∈ S

we mean the point (x, y) satisfies x, y ≥ 0.

To motivate the phase portrait, we will find the isoclines, establish the positive invariance of

the non-negative quadrant S, classify the origin (which is the only equilibrium point), and specify

the slopes of solutions of (10.10) in different regions of S.
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10.5.1 Isoclines

To find the horizontal and vertical isoclines for the planar system (10.8), respectively set ẏ = 0 and

ẋ = 0 to get

H(x) :=
x2

1 + εx
and V (x) :=

x

ε
.

We pointed out earlier that the EA corresponds to the vertical isocline and the QSSA corresponds

to the horizontal isocline. See Equation (10.12). Note that the line x = 0 may also be regarded

as a vertical isocline. Note also that both of the isoclines depend on ε, whereas neither did in the

Michaelis-Menten mechanism.

Observe that the isoclines satisfy

H(0) = 0 = V (0), 0 < H(x) < V (x) for all x > 0, and lim
x→∞H(x) = ∞ = lim

x→∞V (x).

The region between the isoclines will be important and is denoted by

Γ0 := { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } .

Note that, unlike for the Michaelis-Menten mechanism, this region is not narrowing as x→ ∞ since

lim
x→∞ [V (x) −H(x)] = ε−2.

10.5.2 Positive Invariance of the Non-Negative Quadrant S

It is easy to confirm that the origin (0, 0) is the only equilibrium point of the system (10.8). Observe

that two simple solutions of (10.8) are x(t) ≡ 0 and x(t) ≡
(
0, e−ty0

)T (for any y0 > 0). Hence,

the non-negative y-axis is positively invariant. Now, if x > 0 and y = 0, then ẏ = x2 > 0. Thus, on

the positive x-axis, the vector field g points into S. It follows that the non-negative quadrant is

positively invariant.

10.5.3 Classifying the Origin

The Jacobian matrix at the origin for the planar system (10.8) is

A :=

⎛⎝0 0

0 −1

⎞⎠ .
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Region Values of the Slopes of Solutions

x = 0, y ≥ 0 undefined

x > 0, y = 0 f = −1

x > 0, 0 < y < H(x) −1 < f < 0

x > 0, y = H(x) f = 0

x > 0, H(x) < y < V (x) 0 < f <∞

x > 0, y = V (x) undefined

x > 0, y > V (x) −∞ < f < −1

Table 10.1: This table lists the slopes of solutions of (10.10) in different regions of the non-negative quad-

rant. The function f is defined in (10.11).

By inspection, A has eigenvalues and associated eigenvectors

λ+ := 0, λ− := −1, v+ := e1, and v− := e2.

We are thus confronted with the first significant difference with the Michaelis-Menten mechanism:

the origin is a non-hyperbolic fixed point. The Hartman-Grobman Theorem, unfortunately, cannot

be applied here.

Using Theorem 65 in §9.21 of [2], the origin is a saddle node (see Figure A.3 in §A.8) which

consists of two hyperbolic sectors and one parabolic sector. As we will effectively show later, S is

contained in the parabolic sector.

10.5.4 The Slopes of Solutions of the Scalar Differential Equation

Table 10.1 summarizes the slopes of solutions of the scalar differential equation (10.10) in all regions

of the non-negative quadrant. These results can easily be confirmed using the differential equation.

10.5.5 Phase Portrait

The Portraits

We now present, in Figures 10.1 and 10.2, two computer-generated phase portraits for the system

(10.8). In one figure ε is small and in the other figure ε is larger.
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x ’ = − x2 + epsilon x y  
y ’ = x2 − y − epsilon x y

epsilon = 0.5
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Figure 10.1: A phase portrait for (10.8) for parameter value ε = 0.5 along with the isoclines. Curiously,

MATLAB could not find the vertical isocline, which is a straight line, sufficiently accurately.

The EA and QSSA

The phase portraits have many similarities with the phase portraits for the Michaelis-Menten

mechanism. The isoclines again define a so-called trapping region which we have already called Γ0.

Moreover, the horizontal isocline (QSSA) appears to capture the long-term behaviour of solutions

of the planar system (10.8). The vertical isocline (EA) also appears to capture the long-term

behaviour, but decidedly less so than the horizontal isocline.

The Slow Manifold

The phase portraits suggest that there is a unique exceptional solution to (10.10) contained in the

region Γ0 between the isoclines. As with the Michaelis-Menten mechanism, we will refer to this
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x ’ = − x2 + epsilon x y  
y ’ = x2 − y − epsilon x y

epsilon = 2.0
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Figure 10.2: A phase portrait for (10.8) for parameter value ε = 2.0 along with the isoclines.

exceptional solution as the slow manifold and it will be denoted by y = M(x). In Chapter 11, we

will show that this solution indeed exists and is unique.

10.5.6 Domain of Existence for Solutions of the Differential Equations

For any initial condition x0 ∈ S, the solution x(t) to the planar system (10.8) is defined for all

t ≥ 0. However, we need to be more careful with the domain for scalar solutions y(x) to (10.10).

There are five possibilities.

• If x = 0 and y ≥ 0 or if x > 0 and y = V (x), the function f is not defined, where f is given

in (10.11). We will not consider there to be a scalar solution along the y-axis or the vertical

isocline.

244



Chapter 10. Introduction

• If y is the slow manifold, that is y = M, then y is defined for x > 0.

• If y lies below the slow manifold, y will intersect the x-axis for some a > 0. Thus, y is defined

for (0, a] with y(a) = 0.

• If y lies below the vertical isocline, y will intersect V for some a > 0. Thus, y is defined for

(0, a) with lim
x→a−

y(x) = V (a).

• If y lies above the vertical isocline, y will intersect V for some a > 0. Thus, y is defined for

(0, a) with lim
x→a−

y(x) = V (a).

Since g in Equation (10.9) is analytic, solutions x(t) are also analytic. Furthermore, since f in

Equation (10.11) is analytic except along the non-negative y-axis and along the vertical isocline V ,

scalar solutions y(x) are analytic there as well.

10.6 Literature Review

The Lindemann mechanism is a less prominent model than the Michaelis-Menten mechanism. Con-

sequently, the relevant literature for the Lindemann mechanism is much more limited than for the

Michaelis-Menten mechanism. However, when the Michaelis-Menten mechanism is studied mathe-

matically, the Lindemann mechanism is occasionally used as an alternate example (just like in this

thesis). The literature mentioned in Part II and particularly §6.7 can, broadly, be extended to this

part of the thesis.

The planar system (10.8) has been studied as a perturbation problem. See, for example, [102,

113]. Furthermore, Simon Fraser has used the Lindemann mechanism as an alternate example in his

work on the dynamical systems approach to chemical kinetics. See, for example, [43, 46]. Finally,

two of the three authors of [35] also looked at some mathematical properties of the Lindemann

mechanism in [34].

10.7 Summary

The nonlinear Lindemann mechanism for unimolecular decay is

A+A
k1�
k−1

A+B, B
k2→ P,
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where A is the molecule that decays, B is the activated complex, and P is the product of the decay.

The Law of Mass Action and a re-scaling gives the dimensionless planar system

ẋ = −x2 + εxy, ẏ = x2 − y − εxy,

where x is a scaled concentration of A, y is a scaled concentration of B, ε > 0 is a parameter,

and ˙= d
dt . Traditionally, one may assume 0 < ε� 1 but we will consider ε > 0 to be general.

Furthermore, one can form a corresponding scalar system

y′ =
x2 − y − εxy

−x2 + εxy
,

where ′ = d
dx . We will be studying the planar and scalar systems in the non-negative quadrant S.

The horizontal and vertical isoclines for the planar system are, respectively,

H(x) =
x2

1 + εx
and V (x) =

x

ε
.

Physically, the horizontal isocline corresponds to the QSSA and the vertical isocline corresponds

to the EA. The important region between the isoclines will be denoted by

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } .

The origin for the planar system is a saddle node and a non-hyperbolic equilibrium point.

This is one major difference between the Lindemann and the Michaelis-Menten mechanism. Two

computer-generated phase portraits were given in Figures 10.1 and 10.2. In Chapter 11, we will

prove that there is a unique solution (namely the slow manifold) that lies entirely in the region Γ0.
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Properties of Solutions in Phase Space

11.1 Introduction

The nonlinear Lindemann mechanism for unimolecular decay is

A+A
k1�
k−1

A+B, B
k2→ P,

where A is reactant, B is the activated complex, and P is the product of the decay. The Law of

Mass Action and a re-scaling gave us the planar system

ẋ = g(x) (11.1)

and the scalar system

y′ = f(x, y), (11.2)

where

g(x) =

⎛⎝ −x2 + εxy

x2 − (1 + εx) y

⎞⎠ and f(x, y) =
x2 − y − εxy

−x2 + εxy
. (11.3)

Note that t is a scaled time, x is a scaled reactant concentration, y is a scaled complex concentration,

ε > 0 is a parameter, ˙= d
dt , and ′ = d

dx .

In this chapter, we make precise statements about the phase portrait of the planar system

(11.1). Equivalently, we will study the scalar solutions of the differential equation (11.2). The

physically relevant portion of the xy-plane is S, the non-negative quadrant, and so we will only

work in that region.
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11.2 Isoclines

The isocline structure for the phase portrait of the Michaelis-Menten mechanism proved to be a

valuable tool and the same will be true for the Lindemann mechanism. From Chapter 10, the

horizontal and vertical isoclines are given by

H(x) =
x2

1 + εx
and V (x) =

x

ε
. (11.4)

We will show that the region between the isoclines,

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } ,

is a “trapping region.”

11.2.1 Finding the Isoclines

The curve y = w(x) is an isocline for slope c ∈ R if f(x,w(x)) = c for all x > 0, where f is the slope

function given in (11.3). Solving f(x, y) = c for y gives

y =
x2

K(c) + εx
,

where

K(c) :=
1

1 + c
, c 	= −1. (11.5)

Hence, define the function

F (x, c) :=
x2

K(c) + εx
, c 	= −1, x 	= −ε−1K(c). (11.6)

Figure 11.1 gives a sketch of K. It follows that y = F (x, c) is the isocline for slope c. Note that

each isocline, except the vertical isocline which corresponds to lim
c→∞K(c) = 0 and which is a straight

line, has a vertical asymptote at x = −ε−1K(c). Observe also that

y′(x) = f(x, y(x)) if and only if y(x) = F (x, y′(x)).

Claim 11.1: Let c ∈ R\ {−1} and let w(x) := F (x, c) be the isocline for slope c. Then, the deriva-

tive of w satisfies

lim
x→∞w′(x) = ε−1. (11.7)

Furthermore, w is concave up for all x > 0 and satisfies the differential equation

x2w′ + w(εw − 2x) = 0. (11.8)
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1

−1
c

K(c)

Figure 11.1: Graph of the function K(c).

Proof: We can write

w(x) :=
x2

r + εx
,

where r := K(c). Calculate

w′(x) =
x (2r + εx)
(r + εx)2

and w′′(x) =
2r2

(r + εx)3
.

Clearly, lim
x→∞w′(x) = ε−1 and w′′(x) > 0 for all x > 0. The differential equation is easy to verify.

�

Claim 11.2: We can invert K(c) = r for r 	= 0 and differentiate K(c) for c 	= −1 with

K−1(r) =
1 − r

r
, r 	= 0 and K ′(c) = − 1

(1 + c)2
, c 	= −1.

Proof: The proof is trivial. �

Remarks 11.3:

(i) The interior of the region Γ0 corresponds to 0 < c <∞ and 0 < K(c) < 1. Furthermore,

K(0) = 1 corresponds to the horizontal isocline H and lim
c→∞K(c) = 0 corresponds to the ver-

tical isocline V .

(ii) The vertical isocline, which is a straight line, is an exceptional isocline. Another excep-

tional isocline is w(x) = 0, which corresponds to slope −1. For completeness, we will write

F (x,−1) = 0.
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increasing c
(from −1 to +∞)

increasing c
(from −∞ to −1)

c switches from
+∞ to −∞

x
c = −1

y

y = 2x
ε

y = V (x)

Figure 11.2: Sketch of the isocline structure of (11.2). The isoclines above the vertical isocline have zero

slope along the line y = 2x
ε .

(iii) The vertical isocline satisfies the limit (11.7) and the differential equation (11.8). The isocline

w(x) = 0 (the isocline for slope −1) also satisfies the differential equation but does not satisfy

the limit.

11.2.2 The Isocline Structure

The isocline structure is sketched in Figure 11.2. As with the Michaelis-Menten mechanism, we

will often appeal to the isocline structure. For example, if a scalar solution is above the line y = 0

and below the horizontal isocline y = H(x), we know that −1 < y′(x) < 0.

11.3 Global Asymptotic Stability

We have referred to the region Γ0 as a “trapping region.” As we will now show, all solutions x(t) to

the planar system (11.1) eventually enter Γ0. Moreover, all solutions to the planar system approach

the origin in time. That is, the origin is globally (at least, in terms of the non-negative quadrant)
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asymptotically stable.

Theorem 11.4: Consider the planar system (11.1).

(a) The region Γ0 is positively invariant.

(b) Let x(t) be the solution to (11.1) with initial condition x(0) = x0, where x0 ∈ S\ {0}. Then,

there is a t∗ ≥ 0 such that x(t) ∈ Γ0 for all t ≥ t∗.

(c) Let x(t) be the solution to (11.1) with initial condition x(0) = x0, where x0 ∈ S. Then,

lim
t→∞x(t) = 0.

Proof: The proof is essentially identical to the corresponding proof in Theorem 7.7 of Chapter 8

on page 167. Note that for (b), in the case where x0 > 0 and y0 > V (x0), if x(t) is assumed to not

enter Γ0 then

f(x(t), y(t)) < −1 and y(t) ≤ y0 − [x(t) − x0] for all t ≥ 0.

�

11.4 Existence and Uniqueness of the Slow Manifold

In this section, we will prove that there is a unique solution y = M(x) to the scalar differential

equation (11.2) that lies entirely inside the trapping region Γ0. The proof will be similar to the

corresponding proof in §7.4. However, there are two notable differences. First, the isocline α which

we will use for the strong lower fence is actually the isocline for the slope of the slow manifold at

x = ∞ and not x = 0. Second, the antifunnel formed by the horizontal and α isoclines will not be

narrowing. Recall that, in order to use the Antifunnel Theorem, we needed the antifunnel to be

narrowing.

11.4.1 Introduction

Suppose that we want the isocline

w(x) :=
x2

r + εx
, 0 < r < 1
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to be a strong lower fence for the differential equation (11.2) for all x > 0. Note that the condition

on r restricts the isocline to being between the horizontal and vertical isoclines. Note also that

f(x,w(x)) = K−1(r) for all x > 0.

Since w is concave up and satisfies the limit lim
x→∞w′(x) = ε−1, we know that w′(x) < ε−1 for all

x > 0. Hence,

ε−1 ≤ K−1(r) =⇒ w′(x) < f(x,w(x)) for all x > 0.

Since we want the isocline that will give us the thinnest antifunnel, we choose

α(x) :=
x2

K (ε−1) + εx
. (11.9)

Note that

K
(
ε−1
)

=
ε

1 + ε
.

Claim 11.5: The isocline α is a strong lower fence and the horizontal isocline H is a strong upper

fence for the differential equation (11.2) for all x > 0.

Proof: We have already shown that α is a strong lower fence. To show that H is a strong upper

fence, observe

f(x,H(x)) = 0 < H ′(x) for all x > 0.

�

Claim 11.6: The region

Γ1 := { (x, y) : x > 0, H(x) ≤ y ≤ α(x) }

is an antifunnel for the differential equation (11.2).

Proof: We know y = α(x) and y = H(x) are strong fences for (11.2). Moreover, α(x) > H(x) for

all x > 0. By definition, Γ1 is an antifunnel. �

11.4.2 The Existence-Uniqueness Theorem

Now, we will prove the existence and uniqueness of the slow manifold. To this end, we will use an

alternate form of the Antifunnel Theorem which does not require the antifunnel to be narrowing.
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Theorem 11.7:

(a) There exists a unique slow manifold y = M(x) in Γ1 for the scalar differential equation (11.2).

(b) The slow manifold y = M(x) is also the only solution that lies entirely in Γ0.

Proof:

(a) Suppose that x > 0 and H(x) < y < V (x). Using (11.4),

εx2

1 + εx
< εy < x and 0 < x− εy < x− εx2

1 + εx
.

Re-arranging, we have

0 <
1 + εx

x
<

1
x− εy

and 0 <
(

1
x

+ ε

)2

<
1

(x− εy)2
.

Thus, using the definition (11.3) of f we have

∂f

∂y
(x, y) =

1
(x− εy)2

>

(
1
x

+ ε

)2

> ε2.

Hence, we can apply the Alternate Antifunnel Theorem (Theorem A.5 on page 310) with

r(x) := ε2. To see why, consider that∫ ∞

0
r(x) dx = ∞ and lim

x→∞[α(x) −H(x)] =
1

ε2 (1 + ε)

and thus

lim
x→∞

α(x) −H(x)
exp
(∫ x

0 r(s) ds
) = 0.

We can therefore conclude that there is a unique solution y = M(x) to (11.2) that lies in Γ1

for all x > 0.

(b) Let y be a solution in Γ0 lying below M. Since M is the only solution contained in Γ1, y must

leave Γ1 through the horizontal isocline.

Now, let y be a solution in Γ0 lying above M. Suppose on the contrary that y never leaves Γ0

and thus M(x) < y(x) < V (x) for all x > 0. Consider the isocline w(x) := F
(
x, 2ε−1

)
. Since

w is a strong lower fence, the proof of the first part of the theorem can be adapted to show

that M is the only solution contained in the region between the isoclines H and w. Thus,

there is an a > 0 such that y(a) = w(a). Now, w′(x) < ε−1 for all x > 0 and y′(x) ≥ 2ε−1 if
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y(x) ≥ w(x). It follows from a simple comparison argument that w(x) < y(x) < V (x) for all

x > a. So, y(x) > y(a) + 2ε−1 (x− a) for all x > a. This is a contradiction since y(x) > V (x)

for sufficiently large x.

�

Remarks 11.8:

(i) We are referring to the unique solution between the isoclines as the slow manifold. However,

all scalar solutions in Γ0 are technically slow manifolds (and, as it turns out, centre manifolds).

This is because, as functions of time, the solutions approach the origin in the slow direction.

(ii) If w1(x) <M(x) < w2(x) for all x > 0, where w1 and w2 are isoclines, then w1(x) ≤ H(x)

and w2(x) ≥ α(x) for all x > 0. This follows from the isocline structure and the fact (which

we will show later) that lim
x→0+

M′(x) = 0 and lim
x→∞M′(x) = ε−1.

11.4.3 Nested Antifunnels

We have seen that the region between the horizontal isocline and thew isocline, where w(x) := F (x, c)

for c ≥ ε−1, is an antifunnel (containing unique solution y = M(x)) for all x > 0. We can find thin-

ner antifunnels than Γ1. However, these antifunnels will not be valid for all x > 0.

For an isocline w(x) := F (x, c), where 0 < c < ε−1, to be a strong lower fence on an interval, we

need w′(x) < f(x,w(x)). Solving the equation w′(x) = f(x,w(x)), as we shall see, gives x = ξ(c),

where

ξ(c) :=
[
K(c)
ε

] [
1√

1 − εc
− 1
]
, c ∈

(
0, ε−1

)
. (11.10)

Note that 1 − εc > 0. We will quickly establish a few properties of ξ(c). See Figure 11.3 for a

sketch of the function.

Claim 11.9: The function ξ(c) satisfies

lim
c→0+

ξ(c) = 0, lim
c→(ε−1)−

ξ(c) = ∞, and ξ′(c) > 0 for all c ∈
(
0, ε−1

)
. (11.11)

Proof: The proof is routine, tedious, and omitted. �

Claim 11.10: The function ξ(c) is analytic for all c ∈
(
0, ε−1

)
. Furthermore, ξ(c) has analytic

inverse ξ−1(x) defined for all x > 0.
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ξ

c
ε−1

ξ = ξ(c)

Figure 11.3: Graph of the function ξ(c) for arbitrary ε > 0.

Proof: It is clear from the definition (11.10) that ξ(c) is analytic for all c ∈
(
0, ε−1

)
. Using (11.11)

in conjunction with the Real Analytic Inverse Function Theorem, we know that ξ(c) is invertible

for all c ∈
(
0, ε−1

)
and that ξ−1(x) is analytic for all x > 0. �

We are now in a position to establish on what interval a given isocline is a strong fence. Observe

that no isocline between the horizontal isocline and the α isocline is strong fence for all x > 0. As a

consequence, this gives us infinitely many nested antifunnels. These nested antifunnels are formed

by altering the strong upper fence (lower boundary) and leaving the strong lower fence (upper

boundary) alone. The opposite was the case for the Michaelis-Menten mechanism which required us

to alter the strong lower fence (upper boundary) and leave the strong upper fence (lower boundary)

alone.

Proposition 11.11: Let c ∈
(
0, ε−1

)
be fixed and let w(x) := F (x, c) be the isocline for slope c.

(a) The isocline w satisfies

w′(x)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< f(x,w(x)), if 0 < x < ξ(c)

= f(x,w(x)), if x = ξ(c)

> f(x,w(x)), if x > ξ(c)

.

(b) The slow manifold satisfies

w(x) <M(x) < α(x) for all x > ξ(c).
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Proof:

(a) We know that

f(x,w(x)) = c and w′(x) =
x [2K(c) + εx]
[K(c) + εx]2

for all x > 0.

First, we will solve the equation w′(x) = f(x,w(x)) for x. Set

x [2K(c) + εx]
[K(c) + εx]2

= c.

This leads to the equation

ε (1 − εc) x2 + 2K(c) (1 − εc) x− cK(c)2 = 0.

Solving,

x =
[
K(c)
ε

] [
−1 ± 1√

1 − εc

]
.

Since x > 0, the only solution is x = ξ(c). It follows that w′(x) = f(x,w(x)) when x = ξ(c). By

adapting the above calculation, it can easily be shown w′(x) < f(x,w(x)) when 0 < x < ξ(c)

and w′(x) > f(x,w(x)) when x > ξ(c).

(b) It follows from the Alternate Antifunnel Theorem.

�

11.5 Behaviour Near x = 0: Introduction

We will eventually show that each solution inside the trapping region Γ0 can be represented as a

Taylor series as x→ 0+. First, we need to establish a basic result.

Proposition 11.12: Let y be a solution to (11.2) lying inside Γ1 for x ∈ (0, a), where a > 0. Then,

we can extend y(x) and y′(x) to say y(0) = 0 and y′(0) = 0.

Proof: Observe that

lim
x→0+

α(x) = 0 and lim
x→0+

α(x)
x

= 0.

Since

0 < y(x) < α(x) for all x ∈ (0, a) ,
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the Squeeze Theorem establishes y(0) = 0. Now,

0 <
y(x) − y(0)
x− 0

<
α(x)
x

for all x ∈ (0, a) .

Thus, by the Squeeze Theorem again as well as the definition of (right) derivative, we can say

y′(0) = 0. �

11.6 Concavity

In this section, we will establish the concavity of all scalar solutions, except for the slow manifold,

in the non-negative quadrant. The concavity of the slow manifold will be established later. These

results will be obtained, like with the Michaelis-Menten mechanism, by using an auxiliary function.

11.6.1 Introduction

Let y be a solution to (11.2) and consider the function f given in (11.3). If we differentiate the

equation y′(x) = f(x, y(x)) and apply the Chain Rule, we get

y′′(x) =
∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x))f(x, y(x)).

It is easy to verify that

y′′(x) = p(x, y(x))h(x, y(x)), (11.12)

where

p(x, y) :=
1

x2 (εy − x)2
and h(x, y) := x2f(x, y) + y (εy − 2x) . (11.13)

The function p(x, y) is positive everywhere except along the vertical isocline and for x = 0,

where it is undefined. For a given solution, we can overload the functions h and p and consider

them defined with respect to y:

h(x) := h(x, y(x)) and p(x) := p(x, y(x)).

Claim 11.13: For a given x > 0 with y(x) 	= V (x), the sign of h(x) is the same as the sign of

y′′(x). Furthermore, the function h has derivative

h′(x) = x2p(x)h(x) + 2y(x)
[
εy′(x) − 1

]
. (11.14)
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Region Concavity of Solutions

0 ≤ y ≤ H concave down

H < y <M concave up, then inflection point, then concave down

M < y < V concave up

y > V concave up, then inflection point, then concave down

Table 11.1: This table gives a summary of the concavity of solutions of (11.2) in the non-negative quadrant.

Proof: The first part of the claim follows from (11.12) and the fact that p(x) > 0. To show the

second part of the claim, write

h(x) = x2y′ + εy2 − 2xy.

Differentiating with respect to x and applying (11.12),

h′(x) = 2xy′(x) + x2y′′(x) + 2εy(x)y′(x) − 2
[
y(x) + xy′(x)

]
= x2p(x)h(x) + 2y(x)

[
εy′(x) − 1

]
.

�

Remark 11.14: The function h cannot tell us anything about the concavity of solutions at x = 0,

not even by taking a limit.

Claim 11.15: Let y be a solution to (11.2) and let x0 > 0 with y(x0) 	= V (x0). Consider the

isocline through the point (x0, y(x0)), which is given by w(x) := F (x, y′(x0)). Then,

h(x0) = x0

[
y′(x0) − w′(x0)

]
.

Furthermore, y′′(x0) > 0 if and only if y′(x0) > w′(x0) and y′′(x0) < 0 if and only if y′(x0) < w′(x0).

Proof: The first part follows from (11.8) and (11.13). The second part follows from the first. �

The concavity of all solutions in all regions of the non-negative quadrant can be deduced using

the auxiliary function h and Lemma 7.22 on page 177. Table 11.1 summarizes what we will develop

in this section. They are all suggested by the phase portraits in Figures 10.1 and 10.2 from

Chapter 10.
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11.6.2 Establishing the Results

Concavity Below H

Proposition 11.16: Let y be a solution to (11.2) lying below H with domain [a, b], where a > b > 0,

y(a) = H(a), and y(b) = 0. Then, y is concave down on [a, b].

Proof: We know y′(a) = 0 and y′(b) = −1. Also, y(x) > 0 and y′(x) < 0 for all x ∈ (a, b). Note

that y < V (x) which implies εy − 2x < 0 for all x ∈ [a, b]. Let h be as in (11.13) defined with

respect to the solution y. Observe that

h(a) = H(a) [εH(a) − 2a] < 0 and h(b) = −b2 < 0.

Observe also that

h(x) = x2y′(x) + y(x) [εy(x) − 2x] < 0 for all x ∈ (a, b).

Therefore, y is concave down on [a, b]. �

Concavity Between H and M

Proposition 11.17: Let y be a solution to (11.2) lying above H and below M with domain (0, a],

where a > 0 and y(a) = H(a). Then, there is a unique x1 ∈ (0, a) such that y′′(x1) = 0. Moreover,

y is concave up on (0, x1) and concave down on (x1, a].

Proof: Let h be as in (11.13) defined with respect to the solution y. Now, we know y′(a) = 0 and, by

Proposition 11.12, we can extend y′(x) continuously and write y′(0) = 0. By Rolle’s Theorem, there

is an x1 ∈ (0, a) such that y′′(x1) = 0 and hence h(x1) = 0. To show the uniqueness of x1, suppose

that x2 ∈ (0, a) is such that h(x2) = 0. Now, since H(x2) < y(x2) < α(x2), by virtue of the isocline

structure 0 < y′(x2) < ε−1. Moreover, we see from (11.14) that h′(x2) < 0. By Lemma 7.22, we

can conclude x2 = x1. Finally, by continuity we can conclude that h(x) > 0 on (0, x1) and h(x) < 0

on (x1, a] since h(a) = y(a) [εy(a) − 2a] < 0. �

Concavity Between M and V

Proposition 11.18: Let y be a solution to (11.2) strictly between M and V with domain (0, a),

where a > 0 and lim
x→a−

y(x) = V (a). Then, y is concave up on (0, a).
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Proof: Let h be as in (11.13) defined with respect to the solution y. Define the sets

I := { x ∈ (0, a) : M(x) < y(x) < α(x) } and J := { x ∈ (0, a) : α(x) ≤ y(x) < V (x) } .

Since since lim
x→a−

y(x) = V (a), we know that J 	= ∅. We will show separately that h(x) > 0 for each

x ∈ I and for each x ∈ J .

Suppose that x ∈ J . By virtue of the isocline structure, y′(x) ≥ ε−1. However, any isocline w

satisfies w′(x) < ε−1. Appealing to Claim 11.15, h(x) > 0.

If I = ∅ then we are done. Suppose that I 	= ∅ and let x3 ∈ J be fixed. We have already shown

that h(x3) > 0. We need to show that h(x) > 0 for all x ∈ I. By continuity, it suffices to show

that h has no zeros in I. Suppose, on the contrary, that this is not the case. By Lemma 7.22, h

has a right-most zero x1 ∈ I ⊂ (0, x3]. Observe that y′(x1) < ε−1, which follows from the fact that

y(x1) < α(x1). Since h(x1) = 0 and y(x1) > 0, (11.14) informs us h′(x1) < 0. Consequently, there

is an x2 ∈ (x1, x3) such that h(x2) < 0. Since h(x3) > 0, the Intermediate Value Theorem implies

that h has a zero in (x2, x3), which is a contradiction since x1 is the right-most zero. �

Concavity Above V

Proposition 11.19: Let y be a solution to (11.2) lying above V with domain (0, a), where a > 0,

lim
x→0+

y(x) = ∞, and lim
x→a−

y(x) = V (a). Then, there is a unique x1 ∈ (0, a) such that y′′(x1) = 0.

Moreover, y is concave up on (0, x1) and concave down on (x1, a).

Proof: We know that

lim
x→0+

y′(x) = −∞ and lim
x→a−

y′(x) = −∞.

By continuity, there are b1, b2 ∈ R such that 0 < b1 < b2 < a and y′(b1) = y′(b2). Thus by Rolle’s

Theorem, there is an x1 ∈ (0, a) such that y′′(x1) = 0.

To prove uniqueness, suppose that x2 ∈ (0, a) is such that h(x2) = 0, where h is as in (11.13)

defined with respect to the solution y. Now, we know from Table 10.1 that y(x2) < ε−1. Using

(11.14), h(x2) < 0. Since x2 was an arbitrary zero of h, we can conclude using Lemma 7.22 that

x2 = x1. Furthermore, since h′(x1) < 0, we can say that y is concave up on (0, x1) and concave

down on (x1, a). �
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Figure 11.4: The two thick curves are curves along which solutions of (11.2) have inflection points, for

parameter value ε = 0.5. The thin curves are the horizontal, α, and vertical isoclines.

11.6.3 Curves of Inflection Points

We know from Table 11.1 that solutions to the scalar differential equation (11.2) can only have

inflection points between H and M or above V . Just like with the Michaelis-Menten mechanism,

we can construct a curve of inflection points which is close to the slow manifold.

It is easily verified that

h(x, y) =
ε2y3 − (3εx) y2 +

(
2x2 − εx2 − x

)
y + x3

εy − x
,

where h is as in (11.13). Thus, there are three curves along which solutions have zero second

derivative, given implicitly by

ε2y3 − (3εx) y2 +
(
2x2 − εx2 − x

)
y + x3 = 0.

One curve lies below the x-axis and is discarded. The other two curves, as expected, are in the

positive quadrant. See Figure 11.4.

Recall that, for a fixed c ∈
(
0, ε−1

)
, the isocline w(x) := F (x, c) switches from being a strong

lower fence to being a strong upper fence at x = ξ(c) and y = F (ξ(c), c), where F is defined in

(11.6) and ξ is defined in (11.10). As was the case for the Michaelis-Menten mechanism (see §7.6.3

on page 181),

Y(x) := F
(
x, ξ−1(x)

)
, x > 0 (11.15)
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will be a curve of inflection points between H and M. Note that H(x) < F (x, c) < α(x) for all

x > 0 and c ∈
(
0, ε−1

)
, which follows from the isocline structure. Moreover, 0 < ξ−1(x) < ε−1 for

all x > 0. Thus, H(x) < Y(x) < α(x) for all x > 0.

Claim 11.20: Suppose that x0 > 0 and H(x0) < y0 < α(x0). Define the slope c := f(x0, y0) and

isocline w(x) := F (x, c). Then, the isocline w satisfies

w′(x0)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> f(x0, y0), if H(x0) < y0 < Y(x0)

= f(x0, y0), if y0 = Y(x0)

< f(x0, y0), if Y(x0) < y0 < α(x0)

.

Proof: Note that 0 < c < ε−1 and y0 = w(x0). We will only show the third case since the other two

cases are similar. Assume that Y(x0) < y0 < α(x0). Appealing to the isocline structure, we know
∂f
∂y (x, y) > 0 if x > 0 and H(x) < y < α(x). Thus, f(x0, y0) > f(x0,Y(x0)). Since c = f(x0, y0) and

ξ−1(x0) = f(x0,Y(x0)), we have c > ξ−1(x0). Since ξ is strictly increasing, x0 < ξ(c). By virtue of

Proposition 11.11, we can conclude w′(x0) < f(x0, y0). �

Claim 11.21: The curve y = Y(x) is analytic for all x > 0.

Proof: We know that ξ−1(x) is analytic and 0 < ξ−1(x) < ε−1 for all x > 0. Since F (x, c) is

analytic if x > 0 and 0 < c < ε−1, we see from the definition (11.15) that Y(x) is analytic for all

x > 0. �

Proposition 11.22: The function h, defined in (11.13), satisfies

h(x, y)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 0, if x > 0, H(x) < y < Y(x)

= 0, if x > 0, y = Y(x)

> 0, if x > 0, Y(x) < y < α(x)

.

Proof: Let x0 > 0 and H(x0) < y0 < α(x0) be fixed. Consider the slope c := f(x0, y0) and isocline

w(x) := F (x, c). We know from Claim 11.15 that

h(x0, y0) = x0

[
f(x0, y0) − w′(x0)

]
.

The result follows from Claim 11.20. �
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Proposition 11.23: The curve y = Y(x) satisfies

H(x) < Y(x) <M(x) for all x > 0.

Proof: We know already that H(x) < Y(x) < α(x) for all x > 0. We know from our results on

concavity (see Table 11.1) that h(x, y) > 0 if x > 0 and M(x) < y < α(x), where h is the function

defined in (11.13). By continuity, we can conclude h(x,M(x)) ≥ 0 for all x > 0. It follows from

Proposition 11.22 that Y(x) ≤ M(x) for all x > 0.

To establish a strict inequality, let h be defined along the solution y = M(x). Assume, on the

contrary, that there is an x0 > 0 such that h(x0) = 0. Using (11.14), h′(x0) < 0. This contradicts

the fact that h(x) ≥ 0 for all x > 0. �

11.6.4 The Slow Tangent Manifold

The two curves of inflection points (the one between H and M given by y = Y(x) as well as the

one above V ) are tangent manifolds. To justify this statement, we will use the results of §7.6.4 on

page 183.

The Jacobian of the vector field g, given in (11.3), is⎛⎝−2x+ εy εx

2x− εy −εx− 1

⎞⎠ .

This matrix has trace and determinant given, respectively, by

τ := − (ε+ 2) x+ εy − 1 and Δ := 2x− εy.

To apply Proposition 7.36, we need to verify that g1 	= 0, ∂g1

∂y 	= 0, and τ2 > 4Δ in the relevant

regions. Trivially, g1 	= 0 (except along the vertical isocline) and g12 > 0 for x > 0. To show that

τ2 > 4Δ for x > 0, observe

τ2 − 4Δ = ε2
[
y − (ε+ 2) x− 1

ε

]2
+ 4εx ≥ 4εx > 0.

Remark 11.24: For the Michaelis-Menten mechanism, it is possible to write down the slow tangent

manifold explicitly in the form x = T (y) with the expression for T being simple. However, for the

Lindemann mechanism, the slow tangent manifold is given implicitly by the equation

ε2y3 − (3εx) y2 +
(
2x2 − εx2 − x

)
y + x3 = 0.
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Thus, to write down an expression for the slow tangent manifold, either in the form y = Y(x) or

x = T (y), we need to find the roots of a cubic polynomial. The resulting expressions, in both cases,

are quite messy.

11.7 Behaviour Near x = 0: Conclusion

In this section, we establish the full asymptotic behaviour of scalar solutions y(x) as x→ 0+. We

will begin by attempting to find a Taylor series solution. Consider the differential equation (11.2),

which can be re-written

εxyy′ − x2y′ − x2 + y + εxy = 0. (11.16)

Assume that y(x) is a solution in Γ0 of the form

y(x) =
∞∑

n=0

bnx
n (11.17)

for undetermined coefficients {bn}∞n=0.

Calculate

xy(x)y′(x) =
∞∑

n=1

cnx
n, xy(x) =

∞∑
n=1

bn−1x
n, and x2y′(x) =

∞∑
n=2

(n− 1) bn−1x
n, (11.18)

where

cn :=
n−1∑
m=0

(n−m) bmbn−m for n ≥ 1.

If we substitute (11.17) and (11.18) into (11.16), we get

b0 + [εc1 + b1 + εb0]x+ [εc2 + b2 + (ε− 1) b1 − 1]x2

+
∞∑

n=3

[εcn + bn + (ε+ 1 − n) bn−1]xn = 0.

We must have b0 = 0 from which it follows that c1 = 0. In turn, this means b1 = 0, c2 = 0, b2 = 1,

c3 = 0, and b3 = 2 − ε. Thus, the coefficients {bn}∞n=0 in (11.17) must be given by

b0 = 0, b1 = 0, b2 = 1, b3 = 2 − ε,

and bn = (n− 1 − ε) bn−1 − ε
n−2∑
m=2

(n−m) bmbn−m for n ≥ 4. (11.19)
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We will use centre manifold theory to show that the series (11.17) is fully correct for each so-

lution inside the trapping region Γ0. However, we must first show that each solution is a centre

manifold. That is, we must show that each solution y(x) satisfies y(0) = 0 and y′(0) = 0. Proposi-

tion 11.12 already established that this is true for y(x) inside Γ1. Note that for the Michaelis-Menten

mechanism, solutions generally were not given by a Taylor series at the origin.

Proposition 11.25: Let y be a solution to (11.2) lying inside Γ0 for x ∈ (0, a), where a > 0. Then,

we can extend y(x) and y′(x) to say y(0) = 0 and y′(0) = 0.

Proof: These limits have already been established if y is the slow manifold or if y lies below the

slow manifold M. Hence, we will assume that

M(x) < y(x) < V (x) for all x ∈ (0, a).

Let c := y′
(

a
2

)
. We know from Table 11.1 that y is concave up on

(
0, a

2

)
. Since M(x) > 0 for

x ∈
(
0, a

2

)
, we thus have

0 < y(x) < F (x, c) for all x ∈
(
0, a

2

)
,

where F is the function given in (11.6). Note that

lim
x→0+

F (x, c) = 0 and lim
x→0+

F (x, c)
x

= 0.

It follows from the Squeeze Theorem that we can take y(0) = 0. Now, observe that

0 <
y(x) − y(0)
x− 0

<
F (x, c)
x

.

Again by the Squeeze Theorem, we see that we can take y′(0) = 0. �

Theorem 11.26: Let y(x) be a scalar solution to (11.2) lying inside Γ0 and consider the coefficients

{bn}∞n=2 given in (11.19). Then,

y(x) ∼
∞∑

n=2

bnx
n as x→ 0+.

Proof: The Centre Manifold Theorem guarantees that there is a solution u(x) to (11.2) such that

u(x) ∼
∞∑

n=2

bnx
n as x→ 0+.
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Since y(x) is a centre manifold, it follows from centre manifold theory that

y(x) − u(x) = O
(
xk
)

as x→ 0+

for any k ∈ {2, 3, . . .}. See, for example, Theorem 1 on page 16, Theorem 3 on page 25, and

properties (1) and (2) on page 28 of [23]. Alternatively, see §A.10 of Appendix A. Therefore,

y(x) ∼
∞∑

n=2

bnx
n as x→ 0+.

�

Remark 11.27: For analytic systems of ordinary differential equations for which the Centre Mani-

fold Theorem applies, if the Taylor series for a centre manifold has a non-zero radius of convergence,

then the centre manifold is unique. Since all solutions y to (11.2) lying inside Γ0 are centre mani-

folds, we can conclude that the Taylor series
∑∞

n=2 bnx
n has radius of convergence zero.

11.8 All Solutions Must Enter Γ1

Earlier, in Theorem 11.4, we showed that all solutions x(t) to the planar system (11.1), except for the

trivial solution, eventually enter the trapping region Γ0. Here, we show that Γ1 is itself a trapping

region. Note that for the Michaelis-Menten mechanism, there were values of the parameters ε and

η which prevented Γ1 from being a true trapping region.

Theorem 11.28: Let x(t) be the solution to (11.1) with initial condition x(0) = x0, where x0 ∈ S\ {0}.

(a) There is a t∗ > 0 such that x(t) ∈ Γ1 for all t ≥ t∗.

(b) Define the region

Γ2 := { (x, y) : x > 0, Y(x) ≤ y ≤ α(x) } .

Then, there is a t∗ > 0 such that x(t) ∈ Γ2 for all t ≥ t∗.

Proof:

(a) We know from Theorem 11.4 that x(t) eventually enters and stays in Γ0. Let y(x) be the

corresponding scalar solution to (11.2). Then, we can say y′(0) = 0. Appealing to the isocline

structure, this means that x(t) has entered Γ1. Furthermore, since g • ν < 0 along the hori-

zontal and α isoclines which form the boundaries of the region in question, we see that Γ1 is

positively invariant.

266



Chapter 11. Properties of Solutions in Phase Space

(b) It follows from Table 11.1, Proposition 11.22, and the previous part of the theorem.

�

11.9 Bounds on y(x)

Let y(x) be the solution to the scalar differential equation (11.2) with initial condition y(x0) = y0,

where x0 > 0 and y0 ≥ 0. Our goal is to obtain simple bounds on y(x) over (0, x0] for three cases.

In particular, we will consider y0 = 0, y0 = H(x0), and y0 = α(x0), where H(x) is the horizontal

isocline which is given in (11.4) and α(x) is the isocline for slope ε−1 which is given in (11.9).

Moreover, we will use these bounds to state bounds on the slow manifold. To these ends, we will

use Chaplygin’s method (see §A.5 of Appendix A).

If x > 0 and 0 ≤ y < V (x) then

∂f

∂y
(x, y) =

1
(x− εy)2

> 0 and
∂2f

∂y2
(x, y) =

2ε
(x− εy)3

> 0,

where f is the function given in (11.3) and V (x) is the vertical isocline given in (11.4). Note also

that

f(x, 0) = −1, f(x,H(x)) = 0, and f(x, α(x)) = ε−1 for all x > 0.

Moreover, note

∂f

∂y
(x, 0) =

1
x2
,

∂f

∂y
(x,H(x)) =

(1 + εx)2

x2
, and

∂f

∂y
(x, α(x)) =

[1 + (1 + ε) x]2

x2
for all x > 0.

Consider x ∈ (0, x0] to be fixed. Then, the curve z = f(x, y) is concave up on the interval

[0, α(x)]. See Figure 11.5. This fact enables us to state bounds on f(x, y) using secants and

tangents.

• The tangent to z = f(x, y) at y = 0 is z = T1(x, y), where

T1(x, y) := −1 +
1
x2
y. (11.20a)

• The tangent to z = f(x, y) at y = H(x) is z = T2(x, y), where

T2(x, y) :=
(1 + εx)2

x2

(
y − x2

1 + εx

)
. (11.20b)
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z

H(x)−1
α(x)

z = f(x, y)

y

ε−1

Figure 11.5: For a fixed x ∈ (0, x0], the curve z = f(x, y) is concave up on the interval [0, α(x)]. This

allows us to obtain bounds on f(x, y) over the interval [0, α(x)] using secants and tangents.

• The tangent to z = f(x, y) at y = α(x) is z = T3(x, y), where

T3(x, y) :=
1
ε

+
[1 + (1 + ε) x]2

x2

{
y − (1 + ε) x2

ε [1 + (1 + ε) x]

}
. (11.20c)

• The secant line through (0,−1) and
(
α(x), ε−1

)
is z = S1(x, y), where

S1(x, y) := −1 +
1 + (1 + ε) x

x2
y. (11.20d)

• The secant line through (H(x), 0) and
(
α(x), ε−1

)
is z = S2(x, y), where

S2(x, y) :=
[1 + εx] [1 + (1 + ε) x]

x2

(
y − x2

1 + εx

)
. (11.20e)

11.9.1 Case 1: x0 > 0 and y0 = 0

Suppose that y0 = 0 and so y(x) is a solution which terminates on the x-axis at x = x0. Since y(x)

is a solution lying below the slow manifold which in turn lies below the isocline α(x), we know that

0 ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .

Now, it is apparent from Figure 11.5 that

T3(x, y) ≤ f(x, y) ≤ S1(x, y) for all x > 0 and y ∈ [0, α(x)] ,
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where T3(x, y) is as in (11.20c) and S1(x, y) is as in (11.20d).

Define, for x ∈ (0, x0], the functions

a1(x) := −1, b1(x) :=
1 + (1 + ε) x

x2
, μ1(x) := exp

(∫ x0

x
b1(z) dz

)
along with

a2(x) := −ε+ (1 + ε)2 x
ε

, b2(x) :=
[1 + (1 + ε) x]2

x2
, and μ2(x) := exp

(∫ x0

x
b2(z) dz

)
.

Note that

μi(x0) = 1, μi(x) > 0, and μ′i(x) = −bi(x)μi(x) (i = 1, 2) .

Thus, we can write

a2(x) + b2(x)y(x) ≤ y′(x) ≤ a1(x) + b1(x)y(x) for all x ∈ (0, x0] .

Re-arranging and replacing x with z,

d

dz
(μ2(z)y(z)) ≥ μ2(z)a2(z) and

d

dz
(μ1(z)y(z)) ≤ μ1(z)a1(z) for all z ∈ (0, x0] .

If we integrate with respect to z from x to x0, where x ∈ (0, x0], apply the initial condition y(x0) = 0,

and re-arrange, we obtain

− 1
μ1(x)

∫ x0

x
μ1(z)a1(z) ds ≤ y(x) ≤ − 1

μ2(x)

∫ x0

x
μ2(z)a2(z) ds for all x ∈ (0, x0] . (11.21)

Figure 11.6 gives two numerical examples of the bounds given in (11.21).

Remarks 11.29:

(i) The lower bound in (11.21) is a very good approximation to y(x) when x is close to x0.

Moreover, the upper bound in (11.21) is a very good approximation when x is close to 0.

(ii) To get a better upper bound for y(x) when x is close to x0, we should use the tangent T1(x, y)

in the calculation instead of T3(x, y). This is evident from Figure 11.6.

11.9.2 Case 2: x0 > 0 and y0 = H(x0)

Suppose now that y0 = H(x0). Thus, y(x) is the solution to (11.2) which terminates on the hori-

zontal isocline at x = x0. We know that

H(x) ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .
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Figure 11.6: For the first picture, suppose ε = 0.5 and x0 = 2.0. The two dashed curves represent the lower

and upper bounds for y(x) given in (11.21). The solid curve represents the actual solution

(found numerically) with y(x0) = 0. The dash-dot curves are the horizontal and α isoclines.

The dotted curve represents the upper bound for y(x) which results from using the tangent

T1(x, y) instead of T3(x, y). The second picture is the same as the first except with ε = 2.0

and x0 = 2.0.

Appealing to Figure 11.5,

T3(x, y) ≤ f(x, y) ≤ S2(x, y) for all x > 0 and y ∈ [0, α(x)] ,

where T3(x, y) is as in (11.20c) and S2(x, y) is as in (11.20e).

Define, for x ∈ (0, x0], the functions

a1(x) := − [1 + (1 + ε) x] , b1(x) :=
[1 + εx] [1 + (1 + ε) x]

x2
, μ1(x) := exp

(∫ x0

x
b1(z) dz

)
(11.22)

along with

a2(x) := −ε+ (1 + ε)2 x
ε

, b2(x) :=
[1 + (1 + ε) x]2

x2
, and μ2(x) := exp

(∫ x0

x
b2(z) dz

)
.

(11.23)

Proceeding as we did above, we get

H(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ y(x) ≤
H(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] . (11.24)

Figure 11.7 gives two numerical examples of the bounds given in (11.24).
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Figure 11.7: For the first picture, suppose ε = 0.5 and x0 = 2.0. The two dashed curves represent the lower

and upper bounds for y(x) given in (11.24). The solid curve represents the actual solution

(found numerically) with y(x0) = H(x0). The two dash-dot curves are the horizontal and α

isoclines. The dotted curve represents the upper bound for y(x) which results from using the

tangent T2(x, y) instead of T3(x, y). The second picture is the same as the first except with

ε = 1.0 and x0 = 2.0.

11.9.3 Case 3: x0 > 0 and y0 = α(x0)

Suppose now that y0 = α(x0). Thus, y(x) is the scalar solution which terminates on the α isocline

at x = x0. We know that

H(x) ≤ y(x) ≤ α(x) for all x ∈ (0, x0] .

Furthermore, we can see from Figure 11.5 that

T3(x, y) ≤ f(x, y) ≤ S2(x, y) for all x > 0 and y ∈ [0, α(x)] .

Proceeding as before, we obtain

α(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ y(x) ≤
α(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] , (11.25)

where ai(x), bi(x), and μi(x) for i = 1, 2 are as in (11.22) and (11.23). Figure 11.8 gives two

numerical examples of the bounds given in (11.25).
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Figure 11.8: For the first picture, suppose ε = 0.1 and x0 = 0.5. The two dashed curves represent the lower

and upper bounds for y(x) given in (11.25). The solid curve represents the actual solution

(found numerically) with y(x0) = α(x0). The two dash-dot curves are the horizontal and α

isoclines. The second picture is the same as the first except with ε = 1.0 and x0 = 0.5.

11.9.4 Bounds on the Slow Manifold

We can use the material from the previous two subsections to state bounds on the slow manifold.

Suppose that y1(x) is the solution of (11.2) with initial condition y(x0) = H(x0). Suppose also that

y2(x) is the solution of (11.2) with initial condition y(x0) = α(x0). It follows that the slow manifold

satisfies y1(x) ≤ M(x) ≤ y2(x) for all x ∈ (0, x0]. If we combine (11.24), which gives bounds for

y1(x), and (11.25), which gives bounds for y2(x), we can conclude that

H(x0) −
∫ x0

x μ1(z)a1(z) ds
μ1(x)

≤ M(x) ≤
α(x0) −

∫ x0

x μ2(z)a2(z) ds
μ2(x)

for all x ∈ (0, x0] ,

where ai(x), bi(x), and μi(x) for i = 1, 2 (which all depend on x0) are as in (11.22) and (11.23). It

is worth reiterating the fact that x0 > 0 is arbitrary.

11.10 Properties of the Slow Manifold

The purpose of this section is to single out some important properties of the slow manifold.
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11.10.1 Bounds on the Slow Manifold

Proposition 11.30: The slow manifold y = M(x) satisfies, for all x > 0,

0 < H(x) < Y(x) <M(x) < α(x).

Furthermore,

lim
x→0+

M(x) = 0.

Proof: The first part follows from Theorem 11.7 and Proposition 11.23. The second part follows

from the Squeeze Theorem. �

11.10.2 Concavity of the Slow Manifold

Proposition 11.31: The slow manifold y = M(x) is concave up for all x > 0.

Proof: It follows from Propositions 11.22 and 11.30 that h(x,M(x)) > 0 for all x > 0, where h

is the function defined in (11.13). Since sgn(M′′(x)) = sgn(h(x,M(x))), it must be that the slow

manifold is concave up for all x > 0. �

11.10.3 The Slope of the Slow Manifold

Proposition 11.32: The slope of the slow manifold y = M(x) satisfies

0 <M′(x) < ε−1 for all x > 0.

Furthermore,

lim
x→0+

M′(x) = 0 and lim
x→∞M′(x) = ε−1.

Proof: The first part is a consequence of Proposition 11.30 and the isocline structure. The first

limit is a special case of Proposition 11.25. To prove the second limit, let c ∈
(
0, ε−1

)
. It follows

from Proposition 11.11 and the isocline structure that

c <M′(x) < ε−1 for all x > ξ(c),

where ξ is the function defined in (11.10). Applying (11.11) and the Squeeze Theorem gives the

second limit. �
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Remark 11.33: The justification which Fraser provides in [43] (just before Theorem 1) that

lim
x→∞M′(x) = ε−1 is incorrect. The error is that the distance between the horizontal and vertical

isoclines does not tend to zero as x tends to infinity. Thus, the asymptotic behaviour of M′(x)

need not be the same as the asymptotic behaviour of H ′(x) and V ′(x).

11.10.4 Asymptotic Series for the Slow Manifold at the Origin

Proposition 11.34: Asymptotically, the slow manifold can be written

M(x) ∼
∞∑

n=2

bnx
n as x→ 0+,

where the coefficients {bn}∞n=2 are as in (11.19).

Proof: Since the slow manifold is contained entirely in Γ0, we can apply Theorem 11.26. �

Corollary 11.35: The slow manifold satisfies

M(x) = H(x) + O
(
x3
)

as x→ 0+.

Moreover, this statement would not be true if we replace H(x) with any other isocline F (x, c).

Proof: It follows from a comparison of the asymptotic expansions for M(x), H(x), and F (x, c). �

11.10.5 Asymptotic Series for the Slow Manifold at Infinity

Here, we will establish the full asymptotic behaviour of the slow manifold at infinity. First, we

will extract as much information as possible from the isoclines. Second, we will attempt to find a

series in integer powers of x. Third, we will prove definitely that the resulting series is indeed fully

correct.

Let c ∈
(
0, ε−1

)
. We know from Proposition 11.11 that

F (x, c) <M(x) < α(x) for all x > ξ(c),

where F is defined in (11.6) and ξ is defined in (11.10). Note that

F (x, c) =
x

ε
− K(c)

ε2
+ O

(
1
x

)
and α(x) =

x

ε
− 1
ε (1 + ε)

+ O
(

1
x

)
as x→ ∞.
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Since

F (x, c) − x

ε
<M(x) − x

ε
< α(x) − x

ε
for all x > ξ(c),

we can conclude

lim inf
x→∞

[
M(x) − x

ε

]
≥ −K(c)

ε2
and lim sup

x→∞

[
M(x) − x

ε

]
≤ − 1

ε (1 + ε)
.

Since c ∈
(
0, ε−1

)
is arbitrary and

lim
c→(ε−1)−

−K(c)
ε2

= − 1
ε (1 + ε)

,

we have

lim
x→∞

[
M(x) − x

ε

]
= − 1

ε (1 + ε)
and M(x) =

x

ε
− 1
ε (1 + ε)

+ o(1) as x→ ∞.

Assume that we can write

M(x) =
∞∑

n=−1

ρnx
−n (11.26)

for undetermined coefficients {ρn}∞n=−1. Of course, we expect ρ−1 = ε−1. Write the differential

equation (11.2) as

εxyy′ − x2y′ − x2 + y + εxy = 0. (11.27)

Substitution of (11.26) in to (11.27) yields

[εc−1 + (ε− 1) ρ−1 − 1]x2 +
∞∑

n=−1

[εcn+1 + (n+ 1 + ε) ρn+1 + ρn]x−n = 0, (11.28)

where

cn := −
n+1∑
m=0

(n−m) ρm−1ρn−m for n ≥ −1.

Observe that

c−1 = ρ2
−1, c0 = ρ−1ρ0,

and cn+1 = −nρ−1ρn+1 −
n+1∑
m=1

(n−m+ 1) ρm−1ρn−m+1 for n ≥ 0. (11.29)

In order for the coefficient of x2 in (11.28) to be 0, ρ−1 needs to be either −1 or ε−1. Since M(x) > 0

for all x > 0, we must have ρ−1 = ε−1. Furthermore, in order for the coefficient of x−n for n ≥ −1

to be 0, we need

εcn+1 + (n+ 1 + ε) ρn+1 + ρn = 0 for n ≥ −1.
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Using (11.29), we see that the coefficients {ρn}∞n=−1 are given by

ρ−1 =
1
ε
, ρ0 = − 1

ε (1 + ε)
,

and ρn = − 1
1 + ε

[
ρn−1 − ε

n∑
m=1

(n−m) ρm−1ρn−m

]
for n ≥ 1. (11.30)

Proposition 11.36: Asymptotically, the slow manifold can be written

M(x) ∼
∞∑

n=−1

ρnx
−n as x→ ∞,

where the coefficients {ρn}∞n=−1 are as in (11.30).

Proof: To prove the result, we will apply the Centre Manifold Theorem to a fixed point at infinity.

Consider the change of variables

X := x−1 and Y := y − r(x), where r(x) := ρ−1x+ ρ0 + ρ1x
−1,

with the coefficients ρ−1, ρ0, and ρ1 being given in (11.30). Differentiate the new variables with

respect to time and use the differential equation (11.1) to obtain the system

Ẋ = −X2g1
(
X−1, r

(
X−1

)
+ Y

)
,

Ẏ = −r′
(
X−1

)
g1
(
X−1, r

(
X−1

)
+ Y

)
+ g2

(
X−1, r

(
X−1

)
+ Y

)
,

where g1 and g2 are as in (11.3). This system is not polynomial but there is no harm in considering

the system

Ẋ = −X3g1
(
X−1, r

(
X−1

)
+ Y

)
,

Ẏ = X
[
−r′
(
X−1

)
g1
(
X−1, r

(
X−1

)
+ Y

)
+ g2

(
X−1, r

(
X−1

)
+ Y

)]
, (11.31)

which is polynomial. This is because the resulting scalar differential equation will be the same.

The system at hand, while messy, is in the canonical form for the Centre Manifold Theorem. Note

that the eigenvalues of the matrix for the linear part of this system are 0 and −(1 + ε). We know

from centre manifold theory that there is a C∞ centre manifold Y = C(X) which, we claim, must

be the slow manifold.

For the scalar differential equation in the original coordinates, all other solutions except for

the slow manifold leave the antifunnel Γ1. To establish that the slow manifold in the original
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x ’ = 1/2 x2 − 1/4 x3 − x2 y                   
y ’ = − 2 y − 3/8 x2 + 1/16 x3 + 1/4 x2 y − x y
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Figure 11.9: A phase portrait for (11.31) for ε = 1.0.

coordinates is the same as the centre manifold in the new coordinates, we need only show that

Y = C(X) is the only scalar solution in the new coordinates which is o(1) as X → 0+.

Observe that the Y -axis is invariant. Moreover, the fixed point (X,Y ) = (0, 0) is a saddle

node (or a degenerate saddle). The physically relevant portion of the phase portrait, namely

X ≥ 0, consists of two hyperbolic sectors, one with the positive Y -axis and the centre manifold

as boundaries and the other with the negative Y -axis and the centre manifold as boundaries. See

Figure 11.9. This can be shown using techniques in §9.21 of [2] (in particular Theorem 65 on

page 340) and §2.11 of [100]. Therefore, C(X) is the only scalar solution in the new coordinates

which is o(1) as X → 0+. It follows that the centre manifold is indeed the slow manifold.
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11.11. Summary

By the Centre Manifold Theorem, in the new coordinates the slow manifold can be written

M(X) ∼
∞∑

n=2

ρ̂nX
n as X → 0+,

for some coefficients {ρ̂n}∞n=2. Upon reverting back to original coordinates and observing that the

coefficients in (11.30) are generated uniquely from the differential equation, the conclusion follows.

�

Corollary 11.37: The slow manifold satisfies

M(x) = α(x) + O
(

1
x2

)
as x→ ∞.

Moreover, this statement would not be true if we replace α(x) with any other isocline F (x, c).

Proof: It follows from a comparison of the asymptotic expansions for M(x), α(x), and F (x, c). �

11.10.6 Final Remarks on the Slow Manifold

For the Michaelis-Menten mechanism, α is the optimal isocline near x = 0 (see Corollary 7.47).

Consequently, α is the best approximation (in terms of isoclines) to planar solutions for large

time. The horizontal isocline, on the other hand, is optimal at x = ∞ (see Corollary 7.50). For

the Lindemann mechanism, however, α is the optimal isocline at x = ∞ (see Corollary 11.37) and

H is the optimal isocline at x = 0 (see Corollary 11.35). Consequently, the QSSA is the best

approximation (in terms of isoclines) to planar solutions for large time.

11.11 Summary

Recall that the nonlinear Lindemann mechanism for unimolecular decay is

A+A
k1�
k−1

A+B, B
k2→ P,

where A is the molecule that decays, B is the activated complex, and P is the product of the decay.

In this chapter, we explored the resulting planar reduction

ẋ = −x2 + εxy, ẏ = x2 − y − εxy, ˙=
d

dt
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in phase space. Equivalently, we studied the scalar differential equation

y′ =
x2 − y − εxy

−x2 + εxy
, ′ =

d

dx
.

Note that the origin for the planar system is a non-hyperbolic fixed point. In the next chapter, we

explore properties of time-dependent solutions.

The isoclines for the planar system are all of the form

w(x) =
x2

r + εx
.

Three of these isoclines are especially important, namely the horizontal, vertical, and alpha isoclines:

H(x) =
x2

1 + εx
, V (x) =

x

ε
, and α(x) =

x2

ε
1+ε + εx

.

Note that the horizontal isocline corresponds to the QSSA, the vertical isocline corresponds to the

EA, and the α isocline corresponds to the slope of the isoclines at infinity. These three isoclines

define two important regions in the non-negative quadrant given by

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } and Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) } .

As we showed, both regions are positively invariant and all solutions eventually enter both Γ0 and

Γ1. Note that Γ1 ⊂ Γ0. Furthermore, we showed that the origin is globally asymptotically stable.

The region Γ1 is an antifunnel but it is not narrowing. Using the Alternate Antifunnel Theorem

allowed us to prove the existence and uniqueness of a solution y = M(x), called the slow manifold,

contained entirely inside Γ1.

We determined the concavity of all solutions of the scalar differential equation in all regions of

the non-negative quadrant. To achieve this, we used the auxiliary function

h(x) = x2y′(x) + y(x)
[
εy′(x) − 2x

]
,

where y is a solution of the scalar system, which has the same sign as y′′(x). Table 11.1 summarizes

the results. Furthermore, we constructed a curve y = Y(x) between H and M along which solutions

have inflection points. This curve can be considered a slow tangent manifold.

All solutions y(x) inside Γ0 can be written as a Taylor series with radius of convergence zero.

To show this, we used centre manifold theory. Furthermore, the leading-order term is quadratic

and thus all solutions are centre manifolds.
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11.11. Summary

For a given x0 > 0, the scalar solution y(x) with initial condition y(x0) = y0, with 0 ≤ y0 ≤ α(x0),

satisfies 0 ≤ y(x) ≤ α(x) for all x ∈ (0, x0]. Using Chaplygin’s method, we derived tighter bounds on

y(x) valid over the interval x ∈ (0, x0] for the three cases y0 = 0, y0 = H(x0), and y0 = α(x0). Fur-

thermore, we used these bounds to state bounds on the slow manifold over the interval x ∈ (0, x0].

The chapter was concluded with a summary of properties of the slow manifold. For example,

the slow manifold is concave up, strictly increasing, and for large x has an asymptotic series of the

form M(x) ∼
∑∞

n=−1 ρnx
−n as x→ ∞.
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Chapter 12

Time Estimates

The goal of this chapter is to briefly discuss a few properties of solutions to the planar system for

the Lindemann mechanism which fundamentally involve time. In particular, we will construct a

low-order asymptotic approximation for x(t) as t→ ∞. Furthermore, we will obtain bounds on

x(t) during the steady-state period and bounds on the length of the pre-steady-state period.

Recall that the Lindemann mechanism for unimolecular decay gives rise to the planar system

of differential equations

ẋ = −x2 + εxy, ẏ = −y + x2 − εxy, (12.1)

where ˙= d
dt and ε > 0. The horizontal and vertical isoclines, along with the α isocline (which

corresponds to the slope ε−1 of the slow manifold at infinity), are given by

H(x) =
x2

1 + εx
, V (x) =

x

ε
, and α(x) =

x2

ε
1+ε + εx

. (12.2)

We showed in Chapter 11 that all non-trivial solutions to (12.1) eventually enter both of the regions

Γ0 and Γ1, where

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) } and Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) } .

12.1 Behaviour as t→ ∞

Let x(t) be the solution of (12.1) with initial condition x(0) = x0, where x0 ∈ Γ0. Since the origin

is not a sink, the material of Part I does not apply here. However, we can extract information using

other techniques.
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12.1.1 A Method using the Integration of Asymptotic Expressions

A First Estimate

Since the origin is globally asymptotically stable (see Theorem 11.4), a first estimate for the com-

ponents of the solution is

x(t) = o(1) and y(t) = o(1) as t→ ∞. (12.3)

Note that Theorem 11.26 in conjunction with (12.3) implies

y(t) = x(t)2 + o
(
x(t)2

)
and

y(t)
x(t)

= o(1) as t→ ∞. (12.4)

To obtain further estimates, first we need a lemma.

A Lemma

Lemma 12.1: Let a ∈ R be a constant and let f, g : [a,∞) → R be non-negative, integrable func-

tions such that

f(t) = g(t) + o(g(t)) as t → ∞.

If G(t) is an antiderivative of g(t) such that lim
t→∞G(t) = ∞, then

∫ t

a
f(s) ds = G(t) + o(G(t)) as t→ ∞.

Proof: For any δ ∈ (0, 1) there exists a T ≥ a such that

(1 − δ) g(t) ≤ f(t) ≤ (1 + δ) g(t) for all t ≥ T.

Then, for t ≥ T we have

(1 − δ)
∫ t

T
g(s) ds ≤

∫ t

T
f(s) ds ≤ (1 + δ)

∫ t

T
g(s) ds.

That is,

(1 − δ) [G(t) −G(T )] ≤
∫ t

T
f(s) ds ≤ (1 + δ) [G(t) −G(T )] .

It follows that

lim inf
t→∞

∫ t
T f(s) ds
G(t)

≥ 1 − δ and lim sup
t→∞

∫ t
T f(s) ds
G(t)

≤ 1 + δ.
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Since δ ∈ (0, 1) was arbitrary,

lim
t→∞

∫ t
T f(s) ds
G(t)

= 1 and
∫ t

T
f(s) ds = G(t) + o(G(t)) as t→ ∞.

Hence, ∫ t

a
f(s) ds =

∫ T

a
f(s) ds+G(t) + o(G(t)) = G(t) + o(G(t)) as t→ ∞.

�

Remark 12.2: Suppose, for example, that f is non-negative and integrable on [0,∞) with

f(t) =
1
t

+ o

(
1
t

)
as t→ ∞.

We cannot immediately apply Lemma 12.1 since t−1 is not integrable on [0,∞). However, for any

a > 0, Lemma 12.1 says∫ t

0
f(t) dt =

∫ a

0
f(t) dt + ln(t) + o(ln(t)) = ln(t) + o(ln(t)) as t→ ∞.

A Second Estimate

With the lemma, we can improve the estimate (12.3). First, we will write the differential equation

(12.1) as

− ẋ(s)
x(s)2

= 1 − ε
y(s)
x(s)

, s ≥ 0.

If we integrate with respect to s from 0 to t, where t ≥ 0, we get

1
x(t)

− 1
x0

= t− ε

∫ t

0

y(s)
x(s)

ds. (12.5)

We know that

y(t)
x(t)

> 0 for all t ≥ 0 and
y(t)
x(t)

+ 1 = 1 + o(1) as t→ ∞.

By Lemma 12.1, ∫ t

0

[
y(s)
x(s)

+ 1
]
ds = t+ o(t) as t→ ∞.

It follows that ∫ t

0

y(s)
x(s)

ds = o(t) as t→ ∞. (12.6)

Using (12.6) in (12.5) and simplifying,

1
x(t)

= t [1 + o(1)] as t→ ∞.
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Solving for x(t) and utilizing (12.4), we have our second estimate

x(t) =
1
t

+ o

(
1
t

)
and y(t) =

1
t2

+ o

(
1
t2

)
as t→ ∞. (12.7)

A Third Estimate

We will make use of our second estimate to obtain our third estimate. Now, it follows from (12.7)

that
y(t)
x(t)

=
1
t

+ o

(
1
t

)
as t→ ∞.

By Lemma 12.1, ∫ t

0

y(s)
x(s)

ds = ln(t) + o(ln(t)) as t→ ∞.

Using this in (12.5) and re-arranging, we obtain

1
x(t)

= t

[
1 − ε

ln(t)
t

+ o

(
ln(t)
t

)]
as t→ ∞.

Solving for x(t) and utilizing (12.4), we have the following for our third estimate.

Proposition 12.3: Let x(t) be the solution to (12.1) with initial condition x(0) = x0, where

x0 ∈ Γ0. Then,

x(t) =
1
t

+ ε
ln(t)
t2

+ o

(
ln(t)
t2

)
and y(t) =

1
t2

+ 2ε
ln(t)
t3

+ o

(
ln(t)
t3

)
as t→ ∞.

Remark 12.4: We will not attempt to obtain more terms to the asymptotic expansions for x(t)

for y(t). Note that if we use the expressions in Proposition 12.3 along with Lemma 12.1 in the

differential equation for x(t), we will get no new asymptotic information for x(t). Note also that

the asymptotic expressions for x(t) and y(t) do not contain the initial conditions x(0) = x0 and

y(0) = y0.

12.1.2 A Method using the Isoclines and Differential Inequalities

Proposition 12.3 can be established using differential inequalities and the isocline structure. Let

c > 0 be fixed and arbitrary. We know from (12.3), Proposition 11.25, and the isocline structure

that there exists a T ≥ 0 such that

H(x(t)) ≤ y(t) ≤ F (x(t), c) for all t ≥ T, (12.8)

284



Chapter 12. Time Estimates

where F is given in (11.6). Using (11.6), (12.1), (12.2), and (12.8), we can see that x(t) satisfies

− x(t)2

1 + εx(t)
≤ ẋ(t) ≤ − x(t)2

1 + bx(t)
for all t ≥ T,

where b := ε
K(c) andK is the function defined in (11.5). It follows from the Initial-Value Comparison

Theorem (see Theorem A.6 in Appendix A on page 310) in conjunction with Claim A.26 (which is

in Appendix A on page 324) that

χε(t) ≤ x(t) ≤ χb(t) for all t ≥ T, (12.9)

where

χa(t) :=
1

aW
([

1
ax0

exp
(

1
ax0

)]
exp
(

1
a t
)) for a > 0. (12.10)

A standard property of the Lambert W function is

W (t) = ln(t) − ln(ln(t)) + o(ln(ln(t))) as t → ∞.

Consequently, it can be shown

W
(
et
)

= t− ln(t) + o(ln(t)) and
1

W (et)
=

1
t

+
ln(t)
t2

+ o

(
ln(t)
t2

)
as t→ ∞.

Hence,

χa(t) =
1
t

+ a
ln(t)
t2

+ o

(
ln(t)
t2

)
as t→ ∞.

It follows from (12.9) that

lim inf
t→∞

[
x(t) − 1

t

] [
t2

ln(t)

]
≥ ε and lim sup

t→∞

[
x(t) − 1

t

] [
t2

ln(t)

]
≤ b.

Since c was arbitrary with lim
c→0+

K(c) = 1 and lim
c→0+

b = ε,

lim
t→∞

[
x(t) − 1

t

] [
t2

ln(t)

]
= ε.

This, once again, gives us Proposition 12.3.

12.2 Bounds on Solutions while in Γ1

Let x(t) be the solution of (12.1) with initial condition x(0) = x0, where x0 ∈ Γ1. We will use

differential inequalities to obtain simple bounds on the components of the solution which will be

valid for all t ≥ 0.

285



12.2. Bounds on Solutions while in Γ1
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Figure 12.1: For the first picture, suppose ε = 0.1 and x0 = 2.0. The two dashed curves represent the

lower and upper bounds for x(t), given in Equation (12.13), while inside Γ1. The solid curve

represents the actual solution (found numerically) with x(0) = x0 and y(0) = H(x0). The

second picture is the same as the first except with ε = 5.0 and x0 = 2.0.

We know from Theorem 11.4 that Γ1 is positively invariant. Thus,

H(x(t)) ≤ y(t) ≤ α(x(t)) for all t ≥ 0. (12.11)

The period of time while a solution is inside Γ1 (or Γ0) may be referred to as the “steady-state

period” since the solution roughly obeys the QSSA. Using (12.1), (12.2), and (12.11), we see that

x(t) satisfies

− x(t)2

1 + εx(t)
≤ ẋ(t) ≤ − x(t)2

1 + (1 + ε) x(t)
for all t ≥ 0. (12.12)

It follows from the Initial-Value Comparison Theorem in conjunction with Claim A.26 that

χε(t) ≤ x(t) ≤ χ1+ε(t) for all t ≥ 0,

where χa(t) was defined in (12.10). Figure 12.1 demonstrates the bounds on x(t). Furthermore,

since both H and α are strictly increasing functions and y(t) satisfies (12.11), we have thus proven

the following.

Proposition 12.5: Let x(t) be the solution of (12.1) with initial condition x(0) = x0, where

x0 ∈ Γ1. Then,

χε(t) ≤ x(t) ≤ χ1+ε(t) and H (χε(t)) ≤ y(t) ≤ α (χ1+ε(t)) for all t ≥ 0. (12.13)
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y

x

y = H(x)y = α(x)

(x0, 0)

Γ1

solution x(t)

(x, y)

Figure 12.2: Estimating the time it takes for a solution starting at x(0) = x0 and y(0) = 0 to enter the

antifunnel Γ1. The solution enters Γ1 through (x, y) at time t.

Remark 12.6: Since 0 < x(t) ≤ x0 for all t ≥ 0, we can take the inequalities in (12.12) one step

further to obtain

−x(t)2 ≤ ẋ(t) ≤ − x(t)2

1 + (1 + ε) x0
for all t ≥ 0.

Solving these gives the nicer-looking (yet weaker) bounds

x0

1 + x0t
≤ x(t) ≤ x0

1 +
[

x0
1+(1+ε)x0

]
t

for all t ≥ 0.

12.3 Time to Enter Γ1

Suppose that x0 > 0. Let x(t) be the solution of (12.1) with x(0) = x0 and y(0) = 0. See Fig-

ure 12.2. Let t > 0 be the time it takes for x(t) to enter Γ1. Moreover, let (x, y) be the point

at which x(t) enters Γ1. We want to estimate t, which equals the length of the “pre-steady-state

period,” with easily computable bounds.

12.3.1 Bounds on t in terms of x

Since x(t) starts on the positive x-axis and enters Γ1 at time t, we have

0 ≤ y(t) ≤ H(x(t)) for all t ∈
[
0, t
]
.
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y

x

y = H(x)y = α(x)

(x0, 0)

(x, y)

(xu, yu)

Γ1

y = u(x)

Figure 12.3: The point of intersection (xu, yu) of y = u(x) and y = H(x), where u(x) is the tangent to the

scalar solution y(x) at x = x0 and H is the horizontal isocline. Obviously, xu is an upper

bound for x.

Using this in conjunction with (12.1) and (12.2) gives us the differential inequalities

−x(t)2 ≤ ẋ(t) ≤ − x(t)2

1 + εx(t)
for all for all t ∈

[
0, t
]
.

By inspection,
x0

1 + x0t
≤ x(t) ≤ χε(t) for all t ∈

[
0, t
]
,

where χa(t) is given in (12.10). If we set t = t and x(t) = x then solve for t, we get

1
x
− 1
x0

≤ t ≤
(

1
x
− 1
x0

)
− ε ln

(
x

x0

)
. (12.14)

Since we do not know x, we need to find bounds on x which depend only on ε and x0.

12.3.2 Upper Bound xu for x

Let y(x) be the corresponding scalar solution. We will use the tangent line at x = x0 to give us an

upper bound for x. Now, y(x0) = 0 and y′(x0) = −1, the second of which follows from Table 10.1.

So, the tangent line to y(x) at x = x0 is

u(x) := x0 − x.
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y

x

y = α(x)

(x0, 0)

(x, y)

Γ1

y = F (x, c)

(H−1(bc), bc)

y = �c(x)

(ac, bc)

y = H(x)

Figure 12.4: This figure depicts a straight-line lower bound y = �c(x), for any c ∈ (−1, 0), for the solution

curve y = y(x). The point (ac, bc), where bc = �c(ac), is found using the Comparison Theorem

and allows us to find lower bounds on x and y. In particular, y ≥ bc and x ≥ H−1(bc).

This tangent line intersects the horizontal isocline twice (once to the left of the y-axis and once to

the right). Let (xu, yu) be the point of intersection which occurs to the right of the y-axis. See

Figure 12.3. Thus,

(xu)2

1 + εxu
= x0 − xu and (1 + ε) (xu)2 + (1 − x0ε) xu − x0 = 0.

Solving for the positive root,

xu =
(x0ε− 1) +

√
(x0ε+ 1)2 + 4x0

2 (1 + ε)
. (12.15)

We know from Table 11.1 that y(x) is concave down on [x, x0]. Thus, y(x) ≤ u(x) on [x, x0].

Furthermore, the horizontal isocline is strictly increasing. Therefore, we indeed have x ≤ xu and

y ≤ yu.

12.3.3 Lower Bound x for x

Finding an easily-computable lower bound x for x will not be as easy as for the upper bound xu.

Furthermore, our explicit value of x will not be as pretty as for the Michaelis-Menten mechanism.
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Let y(x) be the corresponding scalar solution. We know that y(x0) = 0 and y′(x0) = −1. Now,

we want to find a function �(x) for which y(x) ≥ �(x) in some left neighbourhood of x0. For the

Michaelis-Menten mechanism (see §8.3.3), we used a hyperbola. Unfortunately, we will not be able

to use a hyperbola here for computational reasons in order to obtain an explicit lower bound on x.

Instead, consider the straight line

�c(x) := c (x− x0) for c ∈ (−1, 0) .

Note that �c(x0) = 0 and �′c(x) = c for all x ∈ R. We would like to find ac ∈ (0, x0) such that

f(x, �c(x)) ≤ �′c(x) on [ac, x0] which, by virtue of the Final-Value Comparison Theorem (see Theo-

rem A.7), implies that y(x) ≥ �c(x) on [ac, x0].

Consider the isocline for slope c, namely y = F (x, c). Appealing to the isocline structure,

f(x, �c(x)) ≤ c provided 0 ≤ �c(x) ≤ F (x, c). Thus, we need to solve F (x, c) = �c(x) for x. Specifi-

cally, we need to solve
x2

K(c) + εx
= c (x− x0) .

Solving for the positive root gives us

ac =
c [K(c) − εx0] +

√
c2 [K(c) + εx0]

2 − 4cK(c)x0

2 [1 − εc]
.

Let bc := �c(ac) = c (ac − x0).

As we can see from Figure 12.4, y ≥ bc and x ≥ H−1(bc) for any c ∈ (−1, 0). Note that

H−1(y) = 1
2

[
εy +

√
ε2y2 + 4y

]
.

Ideally, we would find the value of c which maximizes bc. However, we cannot find an explicit,

tangible value for c to accomplish this. Note that lim
c→−1+

bc = 0 and lim
c→0−

bc = 0 with bc > 0 for

c ∈ (−1, 0). To obtain a reasonable approximation for the optimal choice of c, consider the tangent

lines to bc at c = −1 and c = 0. These tangents are given, respectively, by y = x2
0 (c+ 1) and

y = −x0c. We will take the c-value of the point of intersection of these two tangents, which is

c := − x0

1 + x0
, (12.16)

as the value of c to define x and y. Figure 12.5 demonstrates two examples of this method. The

corresponding straight-line lower bound is given by

�(x) := −
(

x0

1 + x0

)
(x− x0) .
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c
K1.0 K0.8 K0.6 K0.4 K0.2 0

b
c

0.5

1.0

1.5

2.0

c
K1.0 K0.8 K0.6 K0.4 K0.2 0

b
c

0.5

1.0

1.5

2.0

Figure 12.5: For the first picture, suppose ε = 0.1 and x0 = 2.0. The value of bc is plotted versus c over

(−1, 0). The c-value of the intersection point of the tangent lines at c = −1 and c = 0 gives

an approximation of the location of the maximum value of bc over the interval. The second

picture is the same as the first except with ε = 5.0, and x0 = 2.0.

Take

a :=
c [K(c) − εx0] +

√
c2 [K(c) + εx0]

2 − 4cK(c)x0

2 [1 − εc]
and b := �(a), (12.17)

where c is as in (12.16). Note that, with the value of c given in (12.16), we have K(c) = 1 + x0 and

cK(c) = −x0. Therefore, with a and b as in (12.17) we will take

x := H−1(b) and y := b (12.18)

as our lower bounds, respectively, for x and y. Figure 12.6 gives two examples of locating the points

(x, y) and (xu, yu).

12.3.4 Bounds on t in terms of x and xu

The goal of this section was to obtain non-trivial bounds on the time t it takes for the solution x(t)

to enter the antifunnel Γ1. In (12.14), we stated bounds on t in terms of x, which is the x-value of

the point of entry of x(t) into Γ1. Observe that the expressions on the left and right of (12.14) are

both strictly decreasing functions of x. Since we have bounds on x, namely x ≤ x ≤ xu, we have

thus proven the following.
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x
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Figure 12.6: For the first picture, suppose ε = 0.1 and x0 = 2.0. The actual solution (solid line) and

horizontal isocline (dashed line, the quasi-steady-state approximation) are shown. Also shown

are the straight line y = �(x) (left dash-dot line) and tangent line y = x0 − x (right dash-dot

line). The points (x�, y�) and (xu, yu) are indicated by the solid circles. The second picture

is the same as the first except with ε = 5.0, and x0 = 2.0.

Proposition 12.7: Suppose that x0 > 0. Let x(t) be the solution of (12.1) with x(0) = x0 and

y(0) = 0. If t is the time it takes for x(t) to enter Γ1, then

1
xu

− 1
x0

≤ t ≤ 1
x

− 1
x0

− ε ln

(
x

x0

)
, (12.19)

where x is given in (12.18) and xu is given in (12.15).

Define

t :=
1
xu

− 1
x0

and tu :=
1
x

− 1
x0

− ε ln

(
x

x0

)
(12.20)

which are the lower and upper bounds for t. Figure 12.7 gives two examples of using (12.19) to

find bounds on t.

Remark 12.8: If we choose ε = 0 and x0 = 2.0 then (12.20) gives us t = 0.5 and tu ≈ 0.901. That

is, lim
ε→0+

t 	= 0. Recall that the limit was always zero for the Michaelis-Menten mechanism.
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x
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Figure 12.7: For the first picture, suppose ε = 0.1 and x0 = 2.0. With these values, we can calculate the

bounds on t (the time it takes for the solution to cross the horizontal isocline) to be t� ≈ 0.468

and tu ≈ 0.966 using (12.15), (12.18), and (12.20). The actual solution (solid line) and hor-

izontal isocline (dashed line) are shown. The thick portion of the solution corresponds to

t ∈
[
0, t�
]

and the thin portion of the solution corresponds to t ∈
[
t�, tu

]
. Indeed, t ∈

[
t�, tu

]
.

The second picture is the same as the first except with ε = 5.0, and x0 = 2.0. The lower and

upper bounds for t respectively are t� ≈ 0.0895 and tu ≈ 2.10.

12.4 Summary

The purpose of this chapter was to develop some basic time estimates for solutions x(t), with

initial condition x0, to the planar system which arises from the Lindemann mechanism. This

system, recall, is given by

ẋ = −x2 + εxy, ẏ = −y + x2 − εxy.

First, we used two methods (integration of asymptotic expansions and differential inequalities)

in conjunction with properties we have developed in this thesis to establish the long-term asymptotic

behaviour of x(t) when x0 ∈ Γ0, where

Γ0 = { (x, y) : x > 0, H(x) ≤ y ≤ V (x) }

with H being the horizontal isocline and V being the vertical isocline. In particular, we showed

x(t) =
1
t

+ ε
ln(t)
t2

+ o

(
ln(t)
t2

)
and y(t) =

1
t2

+ 2ε
ln(t)
t3

+ o

(
ln(t)
t3

)
as t→ ∞.
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Second, we obtained bounds on the solution if x0 ∈ Γ1, where

Γ1 = { (x, y) : x > 0, H(x) ≤ y ≤ α(x) }

with α being the isocline for slope ε−1 (the slope of the slow manifold at infinity). Specifically,

χε(t) ≤ x(t) ≤ χ1+ε(t) and H (χε(t)) ≤ y(t) ≤ α (χ1+ε(t)) for all t ≥ 0,

where

χa(t) =
1

aW
([

1
ax0

exp
(

1
ax0

)]
exp
(

1
a t
)) for a > 0.

Note that W (x) is the Lambert W function. Alternatively, we showed that

x0

1 + x0t
≤ x(t) ≤ x0

1 +
[

x0
1+(1+ε)x0

]
t

for all t ≥ 0.

Finally, we found lower and upper bounds on the time t for the solution to enter Γ1 (which it

does through the point (x, y)) when the initial condition is on the positive x-axis. In particular,

using the Comparison Theorem and other tricks we showed that

1
xu

− 1
x0

≤ t ≤ 1
x

− 1
x0

− ε ln

(
x

x0

)
are lower and upper bounds on t, where

x = H−1(b) and xu =
(x0ε− 1) +

√
(x0ε+ 1)2 + 4x0

2 (1 + ε)

and b is defined in (12.17).
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Chapter 13

Modifications to the Lindemann

Mechanism

The standard (nonlinear) Lindemann mechanism of unimolecular decay is

A+A
k1�
k−1

A+B, B
k2→ P, (13.1)

where A is the molecule that decays, B is the activated complex, and P is the product of the decay.

In this chapter, we mention some possible alterations to this basic scheme. The techniques we have

employed throughout this thesis can be adapted to these alterations.

13.1 Linear Lindemann Mechanism

13.1.1 The Model and Differential Equations

In the Linear Lindemann mechanism, the decaying molecule is activated by a collision with a

different chemical species. Symbolically,

A+M
k1�
k−1

B +M, B
k2→ P,
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where M is the other chemical species. The Law of Mass Action gives us the ordinary differential

equations

ȧ = k−1bm− k1am,

ṁ = 0,

ḃ = k1am− k−1bm− k2b,

ṗ = k2b,

where ˙= d
dt . The traditional initial conditions are a(0) = a0, m(0) = m0, b(0) = 0, and p(0) = 0.

However, we will consider the initial conditions to be arbitrary. It is apparent from the differential

equations that

m(t) ≡ m0 and a(t) + b(t) + p(t) ≡ a0,

the second of which is the conservation law (10.3) for the standard Lindemann mechanism. Note

that we use the constant a0 since, traditionally, B and P are not initially present.

13.1.2 Reduction and Re-scaling

Since m(t) is constant and p(t) does not affect a(t) and b(t), we are left with the linear planar

system

ȧ = − (k1m0) a+ (k−1m0) b, ḃ = (k1m0) a− (k−1m0 + k2) b.

The dimensions of the quantities in the planar system are

[a, b,m0] =
Q

L3
,
[
ȧ, ḃ
]

=
Q

L3T
, [k2] =

1
T
, and [k−1, k1] =

L3

QT
.

If we define

τ := k1m0t, x :=
(
k1

k2

)
a, y :=

(
k1

k2

)
b, ε :=

k−1

k1
, and η :=

k2

k1m0
,

which are all dimensionless, we obtain the system

x′ = −x+ εy, y′ = x− (ε+ η) y, (13.2)

where ′ = d
dτ . See Figure 13.1, which clearly suggests the existence of a trapping region and a slow

manifold.
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x ’ = − x + epsilon y      
y ’ = x − (epsilon + eta) y

epsilon = 2.0
eta = 0.5
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Figure 13.1: A phase portrait for (13.2) for ε = 2.0 and η = 0.5.

13.1.3 The Slow Manifold

Define the matrix

A :=

⎛⎝−1 ε

1 −ε− η

⎞⎠ .

Then, the system (13.2) can be written x′ = Ax. It is easy to show that A has eigenvalues and

associated eigenvectors given by

λ± := 1
2

[
− (ε+ η + 1) ±

√
(ε+ η + 1)2 − 4η

]
and v± :=

⎛⎝ ε

λ± + 1

⎞⎠ .

Observe that the eigenvalues are both negative and distinct. If we let

σ :=
λ+ + 1
ε
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denote the slope of the slow eigenvector v+, we see that M(x) := σx is the slow manifold. Moreover,

for initial conditions x(0) = x0 and y(0) = σx0 (that is, the initial condition is on the slow manifold),

(13.2) can be easily solved to give

x(τ) = x0e
λ+τ and y(τ) = σx0e

λ+τ .

13.2 Continuous Removal of the Decaying Molecule

13.2.1 The Model and Differential Equations

Suppose that, in (13.1), the decaying molecule is continuously removed from the reaction (perhaps

to save as much of it as possible before it all decays). Symbolically,

A+A
k1�
k−1

A+B, B
k2→ P, A

k3→ 0.

The Law of Mass Action gives us the system

ȧ = k−1ab− k1a
2 − k3a,

ḃ = k1a
2 − k−1ab− k2b,

ṗ = k2b.

13.2.2 Reduction and Re-scaling

Note that the reaction-rate constant k3 has dimensions [k3] = T−1. Note also that the third differ-

ential equation has no bearing on the first two. Define the dimensionless variables

τ := k2t, x :=
(
k1

k2

)
a, y :=

(
k1

k2

)
b, ε :=

k−1

k1
, and δ :=

k3

k2
.

All of these, except for δ, are exactly the ones we used for the standard Lindemann mechanism

(13.1). It is easy to verify that we are left with the planar system

x′ = −δx− x2 + εxy, y′ = x2 − y − εxy, (13.3)

where ′ = d
dτ . See Figure 13.2, which clearly suggests the existence of a trapping region and a slow

manifold. Observe that the vertical isocline of (13.3) does not pass through the origin.
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x ’ = − delta x − x2 + epsilon x y
y ’ = x2 − y − epsilon x y        

epsilon = 0.5
delta = 0.1
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Figure 13.2: A phase portrait for (13.3) for ε = 0.5 and δ = 0.1.

Remark 13.1: The origin is a sink for the system (13.3) and thus the material of Part I can be

applied. This model, which the author of this thesis has not seen in the literature, was proposed

merely as a potential means of proving Theorem 11.26. To be more specific, the ratio of the

eigenvalues for the system (13.3) is κ = 1
δ . Thus, as δ → 0+ we have κ→ ∞ and the system

(13.3) reduces to the standard planar system for the Lindemann mechanism. It is suggested by

Theorems 2.16 and 5.28 that, as κ→ ∞, we obtain a Taylor series for any scalar solution y(x) at

the origin for the standard Lindemann mechanism.
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Chapter 14

Open Questions

In this final chapter, we will mention some open problems. To be more specific, these open problems

include results that could be improved, areas that could be explored further, and questions that

have arisen which have not be fully answered. References to the appropriate location in the thesis,

when applicable, will be given to serve as a setup of the issue at hand.

• In Chapter 4, which dealt with the case of closely-spaced eigenvalues, we proved two smooth-

ness results for the transformation ψ (see Propositions 4.17 and 4.19). Suppose that b is Cr

in a neighbourhood of the origin. It seems plausible, with modest additional assumptions on

b, that ψ is Cr in a neighbourhood of the origin.

• In Chapter 4, which dealt with the case of closely-spaced eigenvalues, we derived a simple

conjugacy result (Theorem 4.15) for the function ψ(x0). Moreover, the iterates (of the first

type) had a nice semi-group property (Lemma 4.22) which allowed us to construct iterates

(of the third type) which were flows. Unfortunately, the iterates for the case of widely-spaced

eigenvalues, covered in Chapter 5, resisted all attempts at similar results (which are desired).

• For Chapter 5, the general case of widely-spaced eigenvalues when A ∈ Rn is Hurwitz with

Jordan canonical form J has not yet been worked out in detail. See §5.8.

• A result of Segel and Slemrod, in [112], could be improved. There, they only have bounds

on the QSSA for finite time intervals. It should be possible to extend this to include time

intervals of infinite length.
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• In his book [62], Hoppensteadt uses a so-called QSSA Theorem that gives an error bound

between a solution of the planar system for the Michaelis-Menten mechanism and the quasi-

steady-state approximation which results from a matched asymptotic expansion. This error

is O(ε) for time intervals of infinite length. It should be possible to improve this to include

errors of the form O
(
ε e−μt

)
for some μ > 0.

• The use of Padé approximants (see for example [6]) may yield a useful approximation of the

slow manifold M(x). For the Michaelis-Menten mechanism, Proposition 7.45 gives us the

asymptotic expression

M(x) =
∑

n=1

σnx
n + o

(
x
)

as x→ 0+,

where � is the largest integer strictly less than κ. We could then construct a Padé approximant

p[m/n](x), where m,n ∈ N0 and m+ n = �. It would interesting to see how well p[m/n](x)

approximates M(x) over the semi-infinite interval [0,∞) in the different regimes ε small, ε

large, and ε intermediate.

• Consider the Michaelis-Menten mechanism. For sufficiently small ε > 0, geometric singular

perturbation theory (in particular Fenichel’s Theorem) has been applied to give a slow in-

variant manifold Mε within distance O(ε) of the quasi-steady-state manifold M0 (which is

normally hyperbolic). See, for example, [40, 67, 126]. Moreover, there are perturbed local

stable and unstable manifolds of Mε which are the unions of invariant families of, respec-

tively, stable and unstable fibers. It would be nice to have similar results which are valid for

intermediate and large ε.

• In §8.3 which begins on page 213, we obtained crude but non-trivial bounds on the length t of

the pre-steady-state period for the Michaelis-Menten mechanism. We showed that lim
ε→0+

t = 0.

However, it would be nice to have the leading-order behaviour in ε of t.

• In §9.1, we noted that the Michaelis-Menten and Henri mechanisms yield the same planar

reduction. There are a number of techniques in the literature for the kinetic distinguishing

of these mechanisms. It would be nice if we could distinguish the mechanisms using a result

or technique from this thesis.
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• We concluded §9.3 with a conjecture. In particular, we claim that the three-dimensional

reduction of the Michaelis-Menten mechanism with competitive inhibition has a trapping

region, with boundaries given by the isoclines, containing a unique solution.

• In Proposition 12.3, which is in §12.1 that begins on page 281, we give asymptotic expressions

for x(t) and y(t) as t→ ∞. Here, (x(t), y(t)) is a solution of the planar system for the

Lindemann mechanism. It would be nice to add more terms to these asymptotic expressions.

More specifically, we would like to obtain the lowest-order term which depends on the initial

conditions.

• In §12.3 which begins on page 287, we obtained crude but non-trivial bounds on the length

t of the pre-steady-state period for the Lindemann mechanism. We did not, however, give a

value of lim
ε→0+

t. (The limit, if it exists, would be strictly positive and would likely be messy or

impossible to give explicitly.) Moreover, it would be nice to have the leading-order behaviour

in ε of t.

When ε = 0, the dimensionless planar system for the Lindemann mechanism is

ẋ = −x2, ẏ = −y + x2,

where ˙= d
dt . With initial conditions x(0) = x0 and y(0) = 0, this can be solved yielding

x(t) =
x0

1 + x0t
, y(t) = x2

0 e−t

∫ t

0

e−s

(1 + x0s)2
ds.

Note that y(t) can be written in terms of exponential integrals. Finding the length of the

pre-steady-state period amounts to solving y(t) = x(t)2 for t (which is unique and strictly

positive).

305





Appendix A

Review Material

This chapter consists of a review of important results and concepts that are employed throughout

this thesis. The presentation is cold and concise with the goal being to mention only what is needed.

A.1 Law of Mass Action

Suppose that a sequence of m simultaneous chemical reactions involving n chemical species is

occurring. Symbolically,
n∑

j=1

aijXj
ki→

n∑
j=1

bijXj (i ∈ I) ,

where I := {1, . . . ,m}. If we let J := {1, . . . , n}, then {Xj}j∈J are the chemical species involved in

the reactions, {ki}i∈I are the reaction-rate constants, and {aij, bij}(i,j)∈I×J are the stoichiometric

coefficients. If we denote the concentration of Xj at time t by xj(t), the Law of Mass Action says

that

ẋj =
m∑

i=1

(bij − aij) ki

n∏
=1

xai�
 (j ∈ J) ,

where ˙= d
dt . The Law of Mass Action is standard and can be found, for example, in [39] and [122].

This “law” is not generally valid at very high or very low concentrations. It is derived using

statistical methods and is based on the idea that reaction rates are determined by the probability

of collisions involving reactants.
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A.2. Asymptotics

A.2 Asymptotics

This thesis deals with many asymptotics results. For good references on general asymptotics, see

for example [10, 19, 38, 97].

Definition A.1: Let f and g be two functions defined in a neighbourhood of x = a. (If a = ∞,

then f and g are defined for sufficiently large x.)

(a) Suppose that there are δ, k > 0 such that |f(x)| ≤ k |g(x)| for all x ∈ (a− δ, a + δ). (If a = ∞,

then suppose that there are X, k > 0 such that |f(x)| ≤ k |g(x)| for all x > X.) Then, f(x) is

big-oh of g(x) as x→ a. This is written f(x) = O(g(x)) as x→ a.

(b) Suppose that lim
x→a

f(x)
g(x)

= 0. Then, f(x) is little-oh of g(x) as x→ a. This is written f(x) = o(g(x))

as x→ a.

(c) Suppose that lim
x→a

f(x)
g(x)

= 1. Then, f(x) is asymptotic to g(x) as x→ a. This is written

f(x) ∼ g(x) as x→ a. Observe that1 f(x) = g(x) + o(g(x)) as x→ a is equivalent to f(x) ∼ g(x)

as x→ a.

(d) Suppose that there are functions {ϕn}∞n=0 such that f(x) =
∑m

n=0 bnϕn(x) + o(ϕm(x)) as x→ a

for each m. Then, f(x) has asymptotic series (or asymptotic expansion)
∑∞

n=0 bnϕn(x). This

is written f(x) ∼
∑∞

n=0 bnϕn(x) as x→ a.

Remark A.2: There are many interesting and counter-intuitive facts related to asymptotics.

(i) If f(x) ∼ g(x) as x→ a it does not follow that f(x) − g(x) = o(1) as x→ a (that is the

difference tends to zero). For a counter-example, consider f(x) := ex and g(x) := ex + x as

x→ ∞.

(ii) If f(x) = o(x) as x→ 0+ it does not follow that f(x) = O(xr) as x→ 0+ for some r > 1. For

a counter-example, consider f(x) :=
x

lnx
.

(iii) Using ϕn(x) := x−n, the asymptotic series for e−x as x→ ∞ is the zero series. Note that, in

general, if f has an asymptotic series as x→ a in terms of {ϕn}∞n=0, then it is unique.

1By f(x) = g(x) + o(g(x)) as x→ a we mean f(x) − g(x) = o(g(x)) as x→ a.
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strong lower fence

strong upper fence

y = α(x)

y = β(x)

antifunnel

α′(x) < f(x, α(x))

f(x, β(x)) < β′(x)

Figure A.1: An antifunnel. The defining characteristic is that solutions have greater slope along α than α

itself and smaller slope along β than β itself.

A.3 Antifunnel Theorem

A good reference for antifunnels (as well as funnels) is Chapter 1 and 4 of [64]. The standard

Antifunnel Theorem can be found on pages 31–33 and an Alternate Antifunnel Theorem can be

found on page 196. The Ważewski method, which is covered for example in the survey article [119],

can be viewed as a generalization of the funnel/antifunnel method.

Definition A.3: Let I be an interval with end points a and b (with a < b) and consider the scalar

differential equation y′ = f(x, y) over I.

(a) The curve α ∈ C1(I) is a lower fence if α′(x) ≤ f(x, α(x)) for all x ∈ I. If there is always a

strict inequality, the fence is strong. Otherwise, the fence is weak.

(b) The curve β ∈ C1(I) is an upper fence if f(x, β(x)) ≤ β′(x) for all x ∈ I. If there is always a

strict inequality, the fence is strong. Otherwise, the fence is weak.

(c) Let α and β be, respectively, strong lower and upper fences. If β(x) < α(x) on I, then the set

Γ := { (x, y) : x ∈ I, β(x) ≤ y ≤ α(x) }

is called an antifunnel. Moreover, if lim
x→b−

|α(x) − β(x)| = 0 then Γ is narrowing.

Theorem A.4 (Antifunnel Theorem): Let Γ be an antifunnel with strong lower and upper

fences α and β, respectively, for the differential equation y′ = f(x, y) over the interval I. Then,
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there exists a solution y(x) to the differential equation such that (x, y(x)) ∈ Γ for all x ∈ I. If, in

addition, Γ is narrowing and ∂f
∂y (x, y) ≥ 0 in Γ, then the solution y(x) is unique.

Theorem A.5 (Alternate Antifunnel Theorem): Let Γ be an antifunnel with strong lower

and upper fences α and β, respectively, for the differential equation y′ = f(x, y) over the interval

I, where I = [a,∞) or I = (a,∞). Suppose that there is a function r such that

r(x) <
∂f

∂y
(x, y) for all (x, y) ∈ Γ and lim

x→∞
α(x) − β(x)

exp
(∫ x

a r(s) ds
) = 0.

Then, there exists a unique solution y(x) to the differential equation such that (x, y(x)) ∈ Γ for all

x ∈ I.

Proof: This result was presented as an exercise in [64] and so we will provide an abbreviated proof

for the case I = [a,∞). Note that if I = (a,∞) then we could consider the interval I = [c,∞),

where c > a, and let c→ a+. Existence is guaranteed by the first Antifunnel Theorem. To prove

uniqueness, suppose on the contrary that y1(x) and y2(x) are distinct solutions with y2(x) > y1(x)

for all x ∈ I. Let u(x) := y2(x) − y1(x) which, in particular, satisfies u(a) > 0. Now, for any x ∈ I

we have

u′(x) = f(x, y2(x)) − f(x, y1(x)) =
∫ y2(x)

y1(x)

∂f

∂y
(x, s) ds ≥ r(x)u(x).

Solving the differential inequality u′(x) ≥ r(x)u(x) yields

u(x) ≥ u(a) exp
(∫ x

a r(s) ds
)

for all x ∈ I.

Observe that

u(a) ≤ u(x)
exp
(∫ x

a r(s) ds
) ≤ α(x) − β(x)

exp
(∫ x

a r(s) ds
) for all x ∈ I.

Using the limit in the statement of the theorem gives us the contradiction u(a) ≤ 0. �

A.4 Comparison Theorems

The comparison method, which is covered for example in Chapter 1 of [74], Chapter II of [123], and

§II.9 of [124], has obvious similarities to the material we discussed regarding antifunnels. Certain

versions, perhaps the simplest, of standard comparison results are given below.

Theorem A.6 (Initial-Value Comparison Theorem): Let I := [a, b] be a given interval, where

b > a, and let f ∈ C1(I × R,R) be a given function. Let y ∈ C1(I,R) satisfy y′ = f(x, y) on I and

y(a) = y0.
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(a) Let � ∈ C1(I × R,R) satisfy �′(x) ≤ f (x, �(x)) on I and �(a) = y0. Then, y(x) ≥ �(x) on I.

(b) Let u ∈ C1(I × R,R) satisfy u′(x) ≥ f (x, u(x)) on I and u(a) = y0. Then, y(x) ≤ u(x) on I.

Theorem A.7 (Final-Value Comparison Theorem): Let I := [a, b] be a given interval, where

b > a, and let f ∈ C1(I × R,R) be a given function. Let y ∈ C1(I,R) satisfy y′ = f(x, y) on I and

y(b) = y0.

(a) Let � ∈ C1(I × R,R) satisfy �′(x) ≥ f (x, �(x)) on I and �(b) = y0. Then, y(x) ≥ �(x) on I.

(b) Let u ∈ C1(I × R,R) satisfy u′(x) ≤ f (x, u(x)) on I and u(b) = y0. Then, y(x) ≤ u(x) on I.

A.5 Chaplygin’s Method

Chaplygin’s method, which can be found for example in §1.3 of [89], is very useful in conjunction

with the Comparison Theorem. Let I := [a, b] be an interval and let f ∈ C2
(
R2,R

)
be a function.

Let �, u ∈ C (I,R) be two further functions that satisfy �(x) ≤ u(x) on I. Suppose that x ∈ I is

fixed and consider the curve z = f(x, y) over the interval Jx := [�(x), u(x)]. If ∂2f
∂y2 (x, y) ≥ 0 on Jx

then the curve z = f(x, y) over Jx is below the secant through the points (�(x), f(x, �(x))) and

(u(x), f(x, u(x))). Furthermore, the curve z = f(x, y) over Jx is above the tangent line at the point

(�(x), f(x, �(x))). Therefore, for any y ∈ Jx we have2

f(x, �(x)) +
∂f

∂y
(x, �(x)) [y − �(x)] ≤ f(x, y) ≤ f(x, �(x)) +

[
f(x, u(x)) − f(x, �(x))

u(x) − �(x)

]
[y − �(x)] .

Similarly, if ∂2f
∂y2 (x, y) ≤ 0 on Jx then

f(x, �(x)) +
[
f(x, u(x)) − f(x, �(x))

u(x) − �(x)

]
[y − �(x)] ≤ f(x, y) ≤ f(x, �(x)) +

∂f

∂y
(x, �(x)) [y − �(x)]

for any y ∈ Jx.

2Alternatively, we could use (u(x), f(x, u(x))) as the point of tangency and replace

f(x, �(x)) +
∂f

∂y
(x, �(x)) [y − �(x)] with f(x, u(x)) +

∂f

∂y
(x, u(x)) [y − u(x)] .
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A.6 Gronwall’s Inequality

Gronwall’s Inequality, and its generalization Bihari’s Inequality, are very important in differential

equations. See, for example, [12, 51, 100].

Lemma A.8 (Gronwall’s Inequality): Let c ≥ 0 be a constant and let f, g ∈ [a, b] → R be con-

tinuous, non-negative functions. If

f(x) ≤ c+
∫ x

a
f(s)g(s) ds for all x ∈ [a, b]

then

f(x) ≤ c exp

(∫ x

a
g(s) ds

)
for all x ∈ [a, b].

Remark A.9: Suppose instead that

f(x) ≤ c+
∫ x

a
ω (f(s)) g(s) ds for all x ∈ [a, b],

where ω is a continuous and strictly increasing function with ω(0) = 0. If Ω(u) is an antiderivative

of
1

ω(u)
, then it is easy to show that

Ω(f(x)) ≤ Ω(c) +
∫ x

a
g(s) ds for all x ∈ [a, b].

This is Bihari’s Inequality. There are tedious details to worry about regarding Ω(0) and the domain

of Ω−1.

A.7 Barbălat’s Lemma

Barbălat’s Lemma is useful in stability theory of ordinary (and delay) differential equations. See,

for example, page 323 of [70].

Lemma A.10 (Barbălat’s Lemma): Let a ∈ R be a constant.

(a) Suppose that f : [a,∞) → R is a uniformly continuous function with
∫∞
a |f(x)| dx <∞. Then,

lim
x→∞ f(x) = 0.

(b) Suppose that g : [a,∞) → R is a differentiable function such that g′ is uniformly continuous

and lim
x→∞ g(x) exists and is finite. Then, lim

x→∞ g′(x) = 0.
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A.8 Equilibrium Points

An equilibrium point (also known as a fixed point, a zero, a critical point, and a singular point) of

the differential equation ẋ = g(x) is a vector p such that g(p) = 0. In dynamical systems, it is

important to classify an equilibrium point in order to understand how solutions behave near this

point. The definitions and pictures in this section are standard. See, for example, Chapters 1 and

2 of [100].

Definition A.11: Let p be an equilibrium point of the differential equation ẋ = g(x) and define

the matrix A := Dg(p).

(a) If no eigenvalue of A has zero real part then p is hyperbolic.

(b) Suppose that p is hyperbolic. If all the eigenvalues of A have strictly negative real parts then

p is a sink. If all the eigenvalues of A have strictly positive real parts then p is a source. If p

is neither a sink nor a source then it is a saddle.

Figure A.2 depicts the phase portraits for four sinks encountered in this thesis. Figure A.3

depicts the phase portrait for a non-sink equilibrium point which is encountered in this thesis (a

saddle node) along with the phase portrait of a saddle.

A.9 Theorems of Hartman-Grobman, Hartman, and Poincaré

The Hartman-Grobman Theorem, which relates flows of a nonlinear differential equation to the flows

of the linearization, is arguably the most fundamental result in the theory of dynamical systems.

There are many variations of this result, such as Poincaré’s Theorem (which is a very special case

and pre-dates the Hartman-Grobman Theorem) and Hartman’s Theorem. For Poincaré’s Theorem

see, for example, page 190 of [4], §IV.4 of [78], and [101]. For the Hartman-Grobman Theorem

and Hartman’s Theorem, see for example [50, 52, 53, 54, 100]. For Sternberg’s Theorem, which is

another alternative, see for example [115, 116, 117, 118].

Consider the nonlinear differential equation ẋ = g(x) along with its linearization at the origin

ẋ = Ax. Here, we have ˙= d
dt , x ∈ Rn, g(x) ∈ Rn, g(0) = 0, and A := Dg(0). Let φt(x0) be the

flow of the nonlinear system.
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(d)

(b)(a)

(c)

Figure A.2: The phase portraits for four typical sinks. (a) stable node (b) star node (special type of stable

node) (c) stable spiral (d) Jordan node

Theorem A.12 (Hartman-Grobman Theorem): Suppose that the origin is a hyperbolic equi-

librium point and g ∈ C1(E), where E ⊂ Rn is a domain containing the origin. Then, there exist

domains U ⊂ E and V containing the origin and a function ψ such that ψ is a homeomorphism

from U to V and, for each x ∈ U , there is an open interval I(x) containing 0 such that

ψ (φt(x)) = etAψ(x) for all t ∈ I(x).

Theorem A.13 (Hartman’s Theorem): Suppose that the origin is either a sink or a source and

g ∈ C2(E), where E ⊂ Rn is a domain containing the origin. Then, there exist domains U ⊂ E

and V containing the origin and a function ψ such that ψ is a C1-diffeomorphism from U to V

and, for each x ∈ U , there is an open interval I(x) containing 0 such that

ψ (φt(x)) = etAψ(x) for all t ∈ I(x).

Definition A.14: Suppose that the eigenvalues of A are given by {λk}n
k=1.
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Figure A.3: The phase portraits for two non-sinks. (a) saddle (b) saddle node (half saddle, half node)

(a) The eigenvalues are said to be resonant if there exist {ak}n
k=1 ⊂ N0 and j ∈ {1, . . . , n} such

that
∑n

k=1 ak ≥ 2 and λj =
∑n

k=1 akλk. The number
∑n

k=1 ak is the order of the resonance.

(b) The convex hull of {λk}n
k=1 is the smallest convex set in the complex plane containing all the

eigenvalues. The eigenvalues are said to belong to the Poincaré domain if this convex hull does

not contain zero.

Theorem A.15 (Poincaré’s Theorem): Suppose that g is analytic at the origin. Suppose further

that the eigenvalues of A belong to the Poincaré domain and are non-resonant. Then, there are

domains U and V containing the origin such that for any x0 ∈ U there exists a unique y0 ∈ V and

interval I(x0) containing 0 such that3

φt(x0) = etAy0 + q
(
etAy0

)
for all t ∈ I(x0)

for some analytic function q which satisfies q(0) = 0 and Dq(0) = 0.

A.10 The Centre Manifold Theorem

The results in this section on the Centre Manifold Theorem can be found in Chapters 1 and 2 of

[23], which is the standard reference for centre manifold theory. In particular, see Theorem 1 on

page 16, Theorem 3 on page 25, and properties (1) and (2) on page 28. For the Centre Manifold

3Equivalently, for any y0 ∈ V there exists a unique x0 ∈ U and interval I(x0) containing 0 such that the remainder

of the statement is true.
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Theorem, the canonical system is

ẋ = Ax + f(x,y), ẏ = By + g(x,y), (A.1)

where the first equation corresponds to the centre component and the second equation corre-

sponds to the stable component.4 In particular, we have x ∈ Rm, y ∈ Rn, A ∈ Rm×m, B ∈ Rn×n,

f(x,y) ∈ Rm, g(x,y) ∈ Rn, and ˙= d
dt . Moreover, we assume that A has eigenvalues with zero real

part and B has eigenvalues with negative real part. Finally, we assume that f and g are Cr in a

neighbourhood of the origin, where r ≥ 2, with f(0) = 0, g(0) = 0, Df(0) = 0, and Dg(0) = 0.

Definition A.16: Suppose that y = h(x) is an invariant manifold for (A.1) for sufficiently small

‖x‖. If h is Cr in a neighbourhood of the origin, h(0) = 0, and Dh(0) = 0, then y = h(x) is a

(local) Cr centre manifold for the system (A.1).

Define the operator T by

T[h](x) := Dh(x) [Ax + f(x,h(x))] − [Bh(x) + g(x,h(x))] .

Observe that if T[h] = 0 then y = h(x) is an invariant manifold for the system (A.1). To see why,

just differentiate y = h(x) with respect to t and apply (A.1). It follows that if y = h(x) is a centre

manifold for (A.1) for sufficiently small ‖x‖, then T[h](x) = 0 for sufficiently small ‖x‖. Consider

also the differential equation

u̇ = Au + f(u,h(u)), (A.2)

which describes the time evolution along the centre manifold.

Theorem A.17 (Centre Manifold Theorem): Consider the system (A.1). There exists a

function h such that y = h(x) is a Cr centre manifold for sufficiently small ‖x‖.

Theorem A.18:

(a) The zero solution of (A.1) has the same stability classification as the zero solution of (A.2).

(b) Suppose that the zero solution of (A.2) is stable. Let z(t) = (x(t),y(t))T be a solution to (A.1)

with ‖z0‖ sufficiently small. Then, there exists a solution u(t) of (A.2) and a γ > 0 (which

depends only on B) such that

x(t) = u(t) + O
(
e−γt

)
and y(t) = h (u(t)) + O

(
e−γt

)
as t → ∞.

4We could also consider a system with an unstable component.
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Theorem A.19: Let h be the Cr centre manifold guaranteed to exist by the Centre Manifold

Theorem. Suppose that the function p satisfies p(0) = 0 and Dp(0) = 0. Then, as ‖x‖ → 0,

‖T[p](x)‖ = O
(
‖x‖k

)
=⇒ ‖h(x) − p(x)‖ = O

(
‖x‖k

)
.

Corollary A.20: If h1 and h2 are two Cr centre manifolds for (A.1) for sufficiently small ‖x‖

then, for any k,

‖h1(x) − h2(x)‖ = O
(
‖x‖k

)
as ‖x‖ → 0.

A.11 Normal Forms

The theory of normal forms, which originated with Poincaré, yields a method of reducing a nonlin-

ear differential equation to a “simpler” differential equation by means of a near-identity, analytic

transformation. See, for example, [16, 27, 100, 127].

Consider the nonlinear differential equation

ẋ = Ax + b(x),

where x ∈ Rn, ˙= d
dt , A ∈ Rn×n, b ∈ Cr(N ,Rn) for some r ∈ {3, 4, . . .} and neighbourhood N ⊂ Rn

with 0 ∈ N , b(0) = 0, and Db(0) = 0. Denote by Hk the set of all vectors in Rn whose components

are homogeneous polynomials of degree k ∈ {2, . . . , r − 1}. Then, by Taylor’s Theorem we can write

b(x) =
r−1∑
k=2

bk(x) + O(‖x‖r) as ‖x‖ → 0,

where bk(x) ∈ Hk for each k ∈ {2, . . . , r − 1}. Define also the set H :=
⊕r−1

k=2 Hk and the operator

L : H → H, L(h(x)) := Dh(x)Ax − Ah(x).

Observe that

L(Hk) ⊂ Hk and Hk = L(Hk) ⊕ Gk,

where Gk := Hk\L(Hk).

Theorem A.21 (Normal Form Theorem): By a sequence of near-identity, analytic transfor-

mations, the differential equation ẋ = Ax + b(x) can be transformed to ẏ = Ay + c(y), where

c(y) =
r−1∑
k=2

ck(y) + O(‖y‖r) as ‖y‖ → 0

and ck(y) ∈ Gk for each k ∈ {2, . . . , r − 1}.
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Remarks A.22:

(i) The normal form differential equation given in the theorem is not unique.

(ii) The terms {ck(y)}r−1
k=2 are called resonance terms.

(iii) If A has no resonances of order k then L(Hk) = Hk and Gk = {0}. Consequently, ck(y) = 0.

A.12 Method of Characteristics

The method of characteristics is typically the first technique a student learns to solve a partial

differential equation. See, for example, §1.4 of [66] and Chapter 1 of [87]. Consider the quasi-linear

partial differential equation

a(x, y, u)
∂u

∂x
(x, y, u) + b(x, y, u)

∂u

∂y
(x, y, u) = c(x, y, u) (A.3)

subject to the initial condition u(x, 0) = f(x), where a, b, c, f ∈ C1. Observe that (A.3) can be

written

(a, b, c) • (ux, uy,−1) = 0

and thus the vector field (a, b, c) is tangential to the solution surface z = u(x, y). It follows that

the solution of the system of ordinary differential equations

dx

dt
= a(x, y, u),

dy

dt
= b(x, y, u),

du

dt
= c(x, y, u) (A.4)

gives a curve parameterized by t lying in the solution surface z = u(x, y). Solving (A.4) subject to

the initial condition (x(0), y(0), u(0)) = (s, 0, f(s)) gives us a solution of the form (x(t, s), y(t, s), u(t, s)).

Writing (t, s) in terms of (x, y) gives us the solution u(x, y) to (A.3).

A.13 Cauchy Product of Series

For the two series ∞∑
n=0

an and
∞∑

n=0

bn,

the Cauchy product is given by

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
, where cn :=

n∑
m=0

ambn−m.
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The product series converges if one of the original two series converges absolutely. See, for example,

pages 73–74 of the classic [110]. Two other useful forms which follow from this are the following:( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

cnx
n, where cn :=

n∑
m=0

ambn−m

and ( ∞∑
n=0

an

n!
xn

)( ∞∑
n=0

bn
n!
xn

)
=

∞∑
n=0

cn
n!
xn, where cn :=

n∑
m=0

(
n

m

)
ambn−m.

A.14 Left and Right Eigenvectors

For a good reference on left and right eigenvectors, see for example Chapter 1 of [129]. Let A ∈ Rn×n

be a general matrix with (right) eigenvalues {λi}n
i=1 and associated (right) eigenvectors {vi}n

i=1.

That is,

Avi = λivi (i = 1, . . . , n) . (A.5)

The eigenvectors are always taken to be non-zero. We know that the eigenvalues of AT are also

{λi}n
i=1. Let the (right) eigenvectors of AT be {wi}n

i=1. That is,

ATwi = λiwi (i = 1, . . . , n) .

If we take the transpose of both sides of this equation, we obtain

wT
i A = λiwT

i (i = 1, . . . , n) . (A.6)

Since this equation is the same as the eigenvalue equation for A except with the vector acting on

the left of A instead of on the right, the vectors {wi}n
i=1 are called the left eigenvectors of A. Using

(A.5) and (A.6), it is easy to verify the following orthogonality condition.

Claim A.23: If the eigenvalues {λi}n
i=1 of A are all non-zero and distinct, then the left eigenvectors

{wi}n
i=1 and the right eigenvectors {vi}n

i=1 satisfy the orthogonality condition

wT
i vj = 0 (i 	= j) .

Suppose we want to find the matrix exponential etA. Assume that the eigenvalues {λi}n
i=1 are

all distinct and non-zero and the eigenvectors {vi}n
i=1 and {wi}n

i=1 are chosen so that wT
i vj = δij

for i, j = 1, . . . , n, where δij is the Kronecker delta. Define the matrices

P := (v1 · · · vn) and Λ := diag (λ1, . . . , λn) .
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Since
{
wT

i vj

}n

i,j=1
= In, we see that

P−1 = (w1 · · · wn)T and Λ = P−1AP.

Moreover,

A =
n∑

i=1

λi

(
viwT

i

)
and etA =

n∑
i=1

eλit
(
viwT

i

)
.

A.15 Jordan Canonical Form

See, for example, pages 38–39 of [30] and §1.8 of [100]. Let A ∈ Rn×n be a matrix. Suppose that

A has � ∈ {1, . . . , n} distinct eigenvalues {λi}
i=1 ⊂ C with respective multiplicities {mi}

i=1 ⊂ N

where
∑

i=1mi = n. For i ∈ {1, . . . , �}, define the Jordan block Ji ∈ Rmi×mi by5

Ji :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 · · · 0 0

0 λi 1 · · · 0 0

0 0 λi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λi 1

0 0 0 · · · 0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence define the Jordan canonical form

J :=
⊕

i=1

Ji =

⎛⎜⎜⎜⎜⎜⎜⎝
J1 0 · · · 0

0 J2 · · · 0
...

...
. . .

...

0 0 · · · J

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then, there exists an invertible matrix P such that

P−1AP = J.

Moreover,

etJ =
⊕

i=1

etJi and etA = PetJP−1.

5If mi = 1 then Ji = (λi).
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y = x

x

y

y = W (x)

y = x ex

(−1,−e−1)

(−e−1,−1)

Figure A.4: The Lambert W function and its inverse.

A.16 The Lambert W Function

Perhaps the simplest transcendental equation is

x = W eW ,

where x ∈ R and W ≥ −1. Solving for W in terms of x gives the Lambert W function.6 A good

reference for the Lambert W function along with its properties is [31], which is also where the

function was given its name.

Figure A.4 gives a sketch of W (x) as well as its inverse. We will now mention a few basic

properties of the Lambert W function.

• For any x ∈ R, W (x ex) = x.

• For x > −e−1, W (x) is differentiable with

W ′(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x = 0

W (x)
x [1 +W (x)]

, if x 	= 0
.

6The Lambert W function is also called the plog(x) function. Note that there are other branches for solutions W

of x = W eW but we need only concern ourselves with the principal branch.
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• The Taylor series for W (x) at x = 0 is

W (x) =
∞∑

n=1

(−1)n−1 nn−2

(n− 1)!
xn, |x| < e−1.

• Asymptotically, W (x) satisfies

W (x) = ln(x) − ln(ln(x)) + o(ln(ln(x))) as x→ ∞.

• The function W (x) is strictly increasing and concave down for x ≥ −e−1. Furthermore,

W (x) ≤ x for all x ≥ −e−1.

A.16.1 Solving an Important Equation

Suppose that x, y > 0 satisfy the equation

y = xaebx,

where a, b > 0 are constants. We want to find x as a function of y. Now, observe that

b

a
a
√
y =

(
b

a
x

)
exp

(
b

a
x

)
.

Using the definition of the Lambert W function and multiplying by a
b allows us to solve for x.

Therefore, we have proven the following.

Claim A.24: Let x, y, a, b > 0. Then,

y = xaebx if and only if x =
a

b
W

(
b

a
a
√
y

)
.

A.16.2 Solving an Important Initial Value Problem

Suppose that we want to solve the initial value problem

dx

dt
= − ax

1 + bx
, x(0) = x0,

where a, b, x0 > 0 are constants. Observe that x = 0 is a solution of the differential equation and

x′ < 0 for x > 0. Hence, we can conclude that

0 < x(t) ≤ x0 for all t ≥ 0.
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First, write the differential equation as[
1

x(s)
+ b

]
dx(s)
ds

= −a for all s ≥ 0.

Now, integrate with respect to s from 0 to t, where t ≥ 0, to get

[ln(x(t)) − ln(x0)] + b [x(t) − x0] = −at.

Re-arranging,

ln(x(t)) + bx(t) = ln(x0) + bx0 − at.

Taking the exponential of both sides,

x(t) ebx(t) = x0e
bx0e−at.

Using the definition of the Lambert W functions enables us to state the following.

Claim A.25: The solution of the initial value problem

dx

dt
= − ax

1 + bx
, x(0) = x0,

where a, b, x0 > 0 are constants, is

x(t) =
1
b
W
([
bx0e

bx0

]
e−at

)
.

A.16.3 Solving Another Important Initial Value Problem

Suppose now that we want to solve the initial value problem

dx

dt
= − ax2

1 + bx
, x(0) = x0,

where a, b, x0 > 0 are constants. Like before, we know that

0 < x(t) ≤ x0 for all t ≥ 0.

If we write the differential equation as[
− 1
x(s)2

− b

x(s)

]
dx(s)
ds

= a for all s ≥ 0

and integrate with respect to s from 0 to t, where t ≥ 0, we obtain[
1
x(t)

− 1
x0

]
− b [ln(x(t)) − ln(x0)] = at.
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Re-arranging,
1
x(t)

+ ln

(
1

x(t)b

)
=

1
x0

+ ln

(
1
xb

0

)
+ at.

Taking the exponential of both sides,(
1
x(t)

)b

exp

(
1
x(t)

)
=
(

1
x0

)b

exp

(
1
x0

)
exp(at) .

Appealing to Claim A.24,

1
x(t)

= bW

([
1
bx0

exp

(
1
bx0

)]
exp
(a
b
t
))

.

Therefore, we have proven the following.

Claim A.26: The solution of the initial value problem

dx

dt
= − ax2

1 + bx
, x(0) = x0,

where a, b, x0 > 0 are constants, is

x(t) =
1

bW
([

1
bx0

exp
(

1
bx0

)]
exp
(

a
b t
)) .
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Other Interesting Things

In this appendix, we will present some interesting results or approaches that were not fully realized

and do not fit in anywhere else in the thesis.

B.1 An Interesting Limit

Suppose that the sequence {cn}∞n=1 ⊂ R has limit c ∈ R. A well-known fact is

lim
n→∞

1
n

(
n∑

m=1

cm

)
= c.

That is, the sequence of averages also has limit c. We can form a similar result involving two

convergent sequences. This result will be utilized later in this chapter.

Proposition B.1: Consider two sequences {an}∞n=0 ⊂ R and {bn}∞n=0 ⊂ R having respective limits

a ∈ R and b ∈ R. Then,

lim
n→∞

1
2n

n∑
m=0

(
n

m

)
ambn−m = ab.

Proof: Let ε > 0 be arbitrary and fixed. Define

M := sup
n∈N0

{|an| , |bn|} <∞

and observe that |a| , |b| ≤M . Since lim
n→∞an = a and lim

n→∞ bn = b, we know that there is an N1 ∈ N0

such that

|an − a| < ε

6M
and |bn − b| < ε

6M
for all n > N1.
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Since
∑n

m=0

(n
m

)
= 2n,

∣∣∣∣∣ 1
2n

n∑
m=0

(
n

m

)
ambn−m − ab

∣∣∣∣∣ ≤ 1
2n

n∑
m=0

(
n

m

)
|ambn−m − ab| .

Let n > 2N1 + 1 be fixed. We will show that

1
2n

n∑
m=0

(
n

m

)
|ambn−m − ab| < ε (B.1)

which will prove the proposition.

Observe that

0 < N1 + 1 ≤ n−N1 − 1 < n and m,n−m > N1 for m ∈ {N1 + 1, . . . , n−N1 − 1} .

We will break the sum in (B.1) into three separate sums,

1
2n

n∑
m=0

(
n

m

)
|ambn−m − ab| =

1
2n

⎡⎣ N1∑
m=0

+
n−N1−1∑
m=N1+1

+
n∑

m=n−N1

⎤⎦(n
m

)
|ambn−m − ab| , (B.2)

and look at each separately.

Manipulating the middle sum of (B.2),

1
2n

n−N1−1∑
m=N1+1

(
n

m

)
|ambn−m − ab|

=
1
2n

n−N1−1∑
m=N1+1

(
n

m

)
|ambn−m − abn−m + abn−m − ab|

=
1
2n

n−N1−1∑
m=N1+1

(
n

m

)
|[am − a] bn−m + a [bn−m − b]|

≤ 1
2n

n−N1−1∑
m=N1+1

(
n

m

)[ ε

6M
M +M

ε

6M

]
<
ε

3
.

To analyze the first sum in (B.2), note that |ambn−m − ab| ≤ 2M2 for all m,n ∈ N0. So, the first
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sum thus satisfies1

1
2n

N1∑
m=0

(
n

m

)
|ambn−m − ab| ≤ 2M2

2n

N1∑
m=0

(
n

m

)
≤ 2M2 (N1 + 1)

2n

(
n

N1

)
=

2M2 (N1 + 1)n (n− 1) · · · (n−N1 + 1)
2nN1!

≤ 2M2

[
N1 + 1
N1!

] [
nN1

2n

]
.

Since lim
n→∞

nN1

2n
= 0, it follows that there is an N2 > 2N1 + 1 such that if n > N2 then

1
2n

N1∑
m=0

(
n

m

)
|ambn−m − ab| < ε

3
.

Similarly for the third sum in (B.2), there is an N3 > N2 such that if n > N3 then

1
2n

n∑
m=n−N1

(
n

m

)
|ambn−m − ab| < ε

3
.

�

B.2 The Fraser Iterative Scheme

The (dimensionless) scalar differential equation for the Michaelis-Menten mechanism is

y′ =
x− (1 + x) y

ε [−x+ (1 − η + x) y]
, (B.3)

where ′ = d
dx . By solving this equation for y, one can form the Fraser iterative scheme

yn+1(x) :=
x [1 + εy′n(x)]

1 + ε (1 − η) y′n(x) + x [1 + εy′n(x)]
(n ∈ N0) , (B.4)

where y0(x) is an appropriately chosen initial function. See, for example, [43, 92, 104, 106, 107, 109].

Assume that the iterates {yn(x)}∞n=0 can be written

yn(x) =
∞∑
i=0

σ
(n)
i xi (n ∈ N0) . (B.5)

1Since n > 2N1 + 1, it must be that
(

n
0

)
,
(

n
1

)
, . . . ,

(
n

N1

)
are in ascending order.
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It was noted by Roussel in [106] that if σ(0)
1 ≥ 0 then lim

n→∞σ
(n)
1 = σ, where σ > 1 is the slope of the

slow eigenvector. We will mention a few convergence properties of both
{
σ

(n)
1

}∞
n=0

and
{
σ

(n)
2

}∞
n=0

.

In regards to
{
σ

(n)
2

}∞
n=0

, we want to know when the sequence converges to σ2, which is given in

(7.27b). The reader may want to see Equation 7.28, which informs us of the sign and existence of

σ2 in relation to the ratio κ > 1 of the eigenvalues.

Substitution of (B.5) into (B.4) yields

yn+1(x) =

[
1 + εσ

(n)
1

1 + ε (1 − η) σ(n)
1

]
x+

⎧⎪⎨⎪⎩
2εησ(n)

2 −
[
1 + εσ

(n)
1

]2
[
1 + ε (1 − η) σ(n)

1

]2
⎫⎪⎬⎪⎭x2 + O

(
x3
)

as x→ 0+.

Hence, we have the recursive relationships

σ
(n+1)
0 = 0, σ

(n+1)
1 =

1 + εσ
(n)
1

1 + ε (1 − η) σ(n)
1

, and σ
(n+1)
2 =

2εησ(n)
2 −

[
1 + εσ

(n)
1

]2
[
1 + ε (1 − η) σ(n)

1

]2 (n ∈ N0) .

Observe that if σ(0)
1 = σ then σ

(n)
1 = σ for all n ∈ N0. Note that if we choose y0(x) := α(x) (that

is, the isocline for slope σ) then σ(0)
0 = 0 and σ(0)

1 = σ. We will now state a couple of properties of{
σ

(n)
1

}∞
n=0

and
{
σ

(n)
2

}∞
n=0

. In the interest of space, we omit the proofs.

Claim B.2: Consider the sequence
{
σ

(n)
1

}∞
n=0

. If σ(0)
1 ≥ 0 then

{
σ

(n)
1

}∞
n=0

is monotonic with

lim
n→∞σ

(n)
1 = σ.

Claim B.3: Consider the sequence
{
σ

(n)
2

}
, where we take σ(0)

1 = σ. Then,

lim
n→∞σ

(n)
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2, if κ > 2

−∞, if κ = 2

+∞, if 1 < κ < 2 and σ
(0)
2 > σ2

−∞, if 1 < κ < 2 and σ
(0)
2 < σ2

.

B.3 Alternate Fraser Iterative Scheme

Write the differential equation (B.3) as

y =
[

x

1 + x

]
+
[
εx

1 + x

]
y′ −

[
ε (1 − η + x)

1 + x

]
yy′.
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Combining this with Proposition B.1 suggests the iteration scheme

yn+1(x) :=
[

x

1 + x

]
+
[
εx

1 + x

]
y′n(x) −

[
ε (1 − η + x)

1 + x

]
1
2n

n∑
m=0

(
n

m

)
ym(x)y′n−m(x) (n ∈ N0) .

Define the (exponential) generating function

w(x, τ) :=
∞∑

n=0

yn(x)
n!

τn

and observe

yn(x) =
∂nw

∂τn
(x, 0) (n ∈ N0) .

It is easy to confirm that w(x, τ) satisfies the delay partial differential equation

∂w

∂τ
(x, τ) =

[
x

1 + x

]
eτ +

(
εx

1 + x

)
∂w

∂x
(x, τ) −

[
ε (1 − η + x)

1 + x

]
w
(
x, 1

2τ
) ∂w
∂x

(
x, 1

2τ
)
.

Solving this is much easier said than done. See, for example, [56, 130] for references on functional

differential equations. Delay differential equations have been considered in chemical kinetics. See,

for example, [105].

B.4 A Related Delay Differential Equation

Consider the initial value problem

v̇(t) = v(rt), v(0) = 1,

where r ∈ (0, 1) is a constant and ˙= d
dt . This can be written as the integral equation

v(t) = 1 +
∫ t

0
v(rs) ds.

Define the interval I := [0,∞), the weighted norm

‖f‖ := sup
t∈I

{
e−σt |f(t)|

}
,

where σ > r−1 is a constant, and the operator

T : C1(I,R) → C1(I,R) , Tu(t) := 1 +
∫ t

0
u(rs) ds.

It is easy to verify using the Contraction Mapping Theorem, which can be found for example on

pages 220–221 of [110], that T has a unique fixed point v which is the unique solution of the initial

value problem.
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Using the power series method, we can obtain a series solution for the initial value problem.

This series is given by

v(t) =
∞∑

n=0

r
1
2
n(n−1)

n!
tn.

Using the ratio test, we see that the series converges absolutely for all t ∈ R.

Consider the change of variables u(τ) := v(eτ ). With this, the given initial value problem is

converted to

u′(τ) = eτu(τ − c), lim
τ→−∞u(τ) = 1,

where c := −ln(r) and ′ = d
dτ .

Interestingly, we can solve the initial value problem

∂w

∂t
(x, t) = φ(x)w(x, rt), w(x, 0) = w0(x)

using the function v(t). In particular,

w(x, t) = w0(x)v(tφ(x)).
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ematics, volume 79, 809–824 (1957).

[117] Shlomo Sternberg. On the structure of local homeomorphisms of Euclidean n-space, II. Amer-

ican Journal of Mathematics, volume 80, 623–631 (1958).

[118] Shlomo Sternberg. The structure of local homeomorphisms, III. American Journal of Mathe-

matics, volume 81, 578–604 (1959).
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