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Abstract

The O’Nan-Scott Theorem classifies finite primitive permutation groups into one of five

isomorphism classes. This theorem is very useful for answering questions about finite

permutation groups since four out of the five isomorphism classes are well understood. The

proof of this theorem currently relies upon the classification of the finite simple groups as

it requires a consequence of this classification, the Schreier Conjecture.

After reviewing some needed group theoretic concepts, I give a detailed proof of the O’Nan-

Scott Theorem. I then examine how the techniques of this proof have been applied to an

open problem which asks whether every finite lattice can be embedded as an interval into

the subgroup lattice of a finite group.
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Introduction

Until the mid nineteenth century, the concept of a group was essentially that of a permuta-

tion group, and even though we now have a more abstract concept of a group, it is a simple

result of Cayley’s that any group can be embedded into a permutation group. Although it

is often less beneficial to study groups within this framework, permutation groups are still

quite important and not only appear in many other branches of mathematics (for example,

combinatorics) but also form an active field of research today. Primitive finite permutation

groups can be thought of as the building blocks of finite permutation groups, and questions

about finite permutation groups can often be reduced to the primitive case. Thus it would

be very useful to know the structure of these groups.

The largest achievement in finite (abstract) group theory in the last half century (and

possibly ever) is the classification of all finite simple groups. Its proof, if it can be called

that, spans thousands of pages and uses the research of hundreds of mathematicians, and

although there is a widespread belief that the proof is complete, this is not certain. Still,

the classification has been used to solve many open problems in group theory. One example

is the famous Schreier Conjecture which states that the outer automorphism group of every

finite simple group is solvable. This result turns out to be important for classifying finite

primitive permutation groups.

In 1979 (just before the classification of the finite simple groups was first announced

to be finished), O’Nan and Scott independently presented a classification of the maximal

subgroups of the full symmetric group on n letters at the Santa Cruz conference on finite

groups (see [22]). We will see that, in general, certain maximal subgroups and primitive

permutation groups are closely related, and so this result led to a characterization of all

finite primitive permutation groups. Because of the form in which the original theorem

was presented, one case was omitted in the transfer to primitive groups, as pointed out by

Aschbacher. Interestingly, it is the proof of this case that requires the Schreier Conjecture.

This second and complete form of the theorem is referred to as the O’Nan-Scott Theorem,

and it basically states that any finite primitive permutation group must be in one of five

isomorphism classes. Four out of these five classes are well understood; for example, one

of the classes consists of certain subgroups of the affine group, a group in which every

element is a product of a translation and a linear bijection on a finite dimensional vector

space. Thus this theorem is a useful tool for permutation group theorists (see [8, p. 137]

for examples of how it is used).

The heart of the proof of the O’Nan-Scott Theorem lies with the actions of the socle

of a primitive permutation group, which, in the case of a finite primitive permutation

group, consists of a direct product of isomorphic simple groups. One natural question to

ask, then, is if there are other group theoretic problems, not necessarily even permutation
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group problems, that can be reduced to a case where the socle of the group has a structure

similar to that of a finite primitive permutation group, and moreover, if the methods of the

proof of the O’Nan-Scott Theorem can be applied to this case of the problem. One such

example is an open problem dating back to the 1960s which essentially asks whether every

finite lattice can be embedded as an interval into the subgroup lattice of a finite group; I

will refer to this problem as finite representability.

This thesis is a synthesis of material relating to and including a proof of the O’Nan-Scott

Theorem, as well as a description of the evolution of the problem of finite representability

as it pertains to one specific lattice. My intent is to be as self-contained and detailed

as possible. Of course, no proof of the classification of the finite simple groups is given!

Indeed, only a brief description of the finite simple groups and an idea of how the Schreier

Conjecture is proved is provided. Besides these and a few other results whose proofs are

too far off topic, I give full proofs both of elementary and advanced results. My hope is

that anyone with a first course in group theory will be able to understand the bulk of the

material presented.

There seems to be little literature on the subject of the O’Nan-Scott Theorem, which

should not be that surprising, considering how new it is. In [14], Liebeck, Praeger and

Saxl give an outline of the five isomorphism classes and a complete, although dense, proof

of the O’Nan-Scott Theorem. I found it to be the most straightforward presentation of

the subject; as such, it served as my primary reference for the theorem. More details are

given by Dixon and Mortimer in [8], though their descriptions of the isomorphism classes

approach from a different angle than that of [14]; this book was very helpful for filling in

gaps. In my descriptions of the isomorphism classes and in my proof of O’Nan-Scott, I am

essentially following [14], providing proofs and details where they are missing; for example,

I supply proofs to all of the properties of the isomorphism classes listed in [14] (with the

exception of two claims which are not required for the proof of O’Nan-Scott). To get a

better sense of how the proof of the O’Nan-Scott Theorem functions, I have reorganized

and broken down the proof of [14] into several lemmas and propositions; two of the lemmas

also form one of the main links to the problem of finite representability.

As for the problem of finite representability, I have included full proofs of the two results

which describe the socle, filling in the details. In doing this, I also generalize one of these

theorems (3.3.2), though it is certainly not a complicated generalization. Lastly, I give a

proof of one of Lucchini’s reductions to show how he uses the methods of the O’Nan-Scott

Theorem proof. His proof is already quite detailed, but I have changed it somewhat to

provide as much detail as possible while still preserving its length.
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1 Preliminaries

In this section, I review and give notation for some standard concepts from group theory

which will be used throughout this thesis. Note that function composition will be from left

to right. Both [19] and [20] served as general references for this section. When definitions,

results or proofs come from specific sources, those sources are mentioned.

1.1 Centralizers and Normalizers

Let G be a group, and let g and h be elements of G. The commutator of g and h is

[g, h] := g−1h−1gh. If [g, h] = 1 then g and h commute. The centralizer of h in G is

CG(h) := {g ∈ G : gh = hg}; that is, the set of all elements of G that commute with h.

If H ≤ G, then the centralizer of H in G is CG(H) := {g ∈ G : gh = hg for all h ∈ H}.
Both CG(h) and CG(H) are subgroups of G. Moreover, if H ! G, then CG(H) ! G since

if g ∈ G and a ∈ CG(H), then for all h ∈ H, ghg−1 ∈ H, and thus

(g−1ag)−1h(g−1ag) = g−1a−1(ghg−1)ag = g−1(ghg−1)g = h.

Let H and K be subgroups of G. If K ≤ CG(H), we say that K centralizes H. Define

[H, K] := 〈{[h, k] : h ∈ H, k ∈ K}〉. Then H and K centralize each other if and only if

[H,K] = {1}.
Let H and G be groups. The normalizer of H in G is

NG(H) := {g ∈ G : g−1Hg = H}.

Then NG(H) is a subgroup of G, and if H ≤ G, then H is clearly a normal subgroup of

NG(H). In fact, NG(H) is the largest subgroup of G in which H is normal. H is said to

normalize K ≤ G if H ≤ NG(K), and H is said to be self-normalizing in G if NG(H) = H.

Lastly, note that CG(H) ! NG(H) for all H ≤ G.

The center of a group G, denoted by Z(G), is of course the set of all elements of G that

commute with every element of G. Z(G) is clearly a normal subgroup of G. G is abelian

if and only if G = Z(G), and so the center of a simple nonabelian group must be trivial.

Note also that if H ≤ G, then Z(H) = CG(H) ∩H.

The group of all isomorphisms of a group G onto itself is called the automorphism group

of G, and is denoted by Aut(G). Let ϕh : G → G be defined by gϕh = h−1gh. Then ϕh ∈
Aut(G) and is called an inner automorphism of G. The inner automorphism group of G,

denoted by Inn(G), is the normal subgroup of Aut(G) consisting of all inner automorphisms

of G. Note that ϕ : G → Inn(G) defined by g )→ ϕg is an onto homomorphism with kernel

Z(G). Hence, G/Z(G) * Inn(G); in particular, if T is simple and nonabelian, then

T * Inn(T ).
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Proposition 1.1.1. Let T be a nonabelian simple group. If Inn(T ) ≤ G ≤ Aut(T ), then

CG(Inn(T )) is trivial.

Proof. Let σ ∈ CG(Inn(T )). Then σ−1ϕtσ = ϕt for all t ∈ T . So for every x ∈ T ,

t−1xt = xϕt = xσ−1ϕtσ = (t−1(xσ−1)t)σ = (tσ)−1x(tσ).

Thus (tσ)t−1 ∈ Z(T ) = {1} since T is nonabelian and simple, so tσ = t for all t ∈ T . Thus

σ is the identity and CG(Inn(T )) is trivial.

I conclude this section with some useful technical results. The first lemma will be used

without reference throughout this thesis.

Lemma 1.1.2. Let G be a group with subgroups H, K and L, where L normalizes K.

Then H ∩ (KL) = (H ∩K)L if and only if L ≤ H.

Proof. If H ∩ KL = (H ∩ K)L, then L ≤ (H ∩ K)L = H ∩ (KL) ≤ H, as desired. On

the other hand, suppose that L ≤ H. Since L normalizes K, H ∩KL and (H ∩K)L are

subgroups of G. Clearly (H ∩K)L ≤ H ∩KL since L ≤ H. For the reverse inclusion, let

h = kl ∈ H ∩KL. Then hl−1 = k ∈ H ∩K since L ≤ H. Thus h = (hl−1)l ∈ (H ∩K)L

and H ∩ (KL) ≤ (H ∩K)L.

Lemma 1.1.3. Let G1 ×G2 × · · ·×Gk be a subgroup of a group G.

(i)
⋂k

i=1(CG(Gi)Gi) = (
⋂k

i=1 CG(Gi))G1 · · ·Gk.

(ii)
⋂k

i=1 CG(Gi) = CG(G1 ×G2 × · · ·×Gk).

Proof. (i) Note that for each i, Gi ≤ CG(Gj) for all j ,= i. Moreover, Gi and CG(Gi)

normalize each other for all i as they are both normal subgroups of NG(Gi) for all i; it

follows that
⋂l

i=1 CG(Gi) ! ⋂l
i=1 NG(Gi) for all l ∈ {1, . . . , k}. But Gi ! G1 · · ·Gl for all

i, l ∈ {1, . . . , k} such that i ≤ l, so G1 · · ·Gl ≤
⋂l

i=1 NG(Gi) for all l ∈ {1, . . . , k}, and thus

(
⋂l

i=1 CG(Gi))G1 · · ·Gl ≤ G for all l ∈ {1, . . . , k}.
The proof is by induction on k ≥ 1. If k = 1 the result is trivial. Suppose that it is

true for k − 1 for some k > 1. Then
⋂k

i=1(CG(Gi)Gi)

= (
⋂k−1

i=1 CG(Gi)Gi) ∩GkCG(Gk)

= [(
⋂k−1

i=1 CG(Gi))G1 · · ·Gk−1] ∩GkCG(Gk) (IH)

= (CG(Gk) ∩ [(
⋂k−1

i=1 CG(Gi))G1 · · ·Gk−1])Gk (Gk ≤
⋂k−1

i=1 CG(Gi))

= [CG(Gk) ∩ (
⋂k−1

i=1 CG(Gi))](G1 · · ·Gk−1)Gk (G1 · · ·Gk−1 ≤ CG(Gk))

= (
⋂k

i=1 CG(Gi))G1 · · ·Gk.

(ii) If g ∈ G commutes with every element of Gi for all i, then g commutes with

every element of G1 × · · · × Gk, so
⋂k

i=1 CG(Gi) ≤ CG(G1 × G2 × · · · × Gk). But Gi ≤
G1 ×G2 × · · ·×Gk implies that CG(G1 ×G2 × · · ·×Gk) ≤ CG(Gi) for all i.
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1.2 Group Actions

Let G be a group and Ω a nonempty set. Let SΩ denote the symmetric group on Ω. An

action of G on Ω is a homomorphism φ : G → SΩ, while Ω is said to be a G-space if there

exists a function mapping from Ω × G to Ω that satisfies (αg)h = αgh and α1 = α for all

α ∈ Ω and g, h ∈ G, where the image of (α, g) is denoted by αg.

If φ is an action of G on Ω, then αg := α(gφ) satisfies the two conditions of a G-space,

so that Ω is a G-space. On the other hand, if Ω is a G-space and g ∈ G, let πg : Ω → Ω

be defined by α )→ αg. Then πg ∈ SΩ for all g ∈ G, and it is easy to check that φ : g )→ πg

is then an action of G on Ω. Thus these two concepts of an action of a group on a set are

equivalent.

Here are some basic definitions about group actions. Let Ω be a G-space, and let

α, β ∈ Ω. Define a relation ∼ on Ω by α ∼ β if there exists a g ∈ G with αg = β. Then

∼ is an equivalence relation whose equivalence classes we call orbits of G. Let α be in an

orbit of G. Then the orbit can be written as {αg : g ∈ G} =: θG(α), which we call the

orbit of α. G is said to be transitive, or Ω is said to be a transitive G-space, if there is

only one orbit, namely, Ω. The stabilizer of α in G is

Gα := {g ∈ G : αg = α},

which is a subgroup of G. The setwise stabilizer of Γ ⊆ Ω in G is

GΓ := {g ∈ G : Γg = Γ},

which is also a subgroup of G, and of course when Γ = {α}, GΓ = Gα. G is said to be

semiregular if Gα = {1} for all α ∈ Ω, and G is said to be regular if it is both transitive

and semiregular.

G is a permutation group on Ω if it is a subgroup of SΩ. The image of an action φ is

called the permutation group induced on Ω by G, denoted by GΩ. An action is faithful if

ker(φ) = {1}, or, equivalently, Ω is a faithful G-space if whenever αg = αh for all α ∈ Ω,

we have that g = h. In this case, G acts as a permutation group on Ω as G * Gφ ≤ SΩ. In

light of the fact that we have two equivalent definitions of an action, the action of g ∈ SΩ

will either be written on the right as αg or in the form αg, depending on the context.

Note that if G ≤ SΩ is transitive, then clearly every subgroup of SΩ containing G is also

transitive. Similarly, if G ≤ SΩ is semiregular, then every subgroup of G is semiregular.

Next is a quick proposition about centralizers in permutation groups which illustrates

some of the above concepts and is also fundamental to the proof of the O’Nan-Scott

Theorem.

Proposition 1.2.1 ([25, p. 155]). Let G be a permutation group on Ω.

(i) If CSΩ(G) is transitive on Ω, then G is semiregular.
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(ii) If G is transitive on Ω, then CSΩ(G) is semiregular.

Proof. (i) Let α ∈ Ω and g ∈ Gα. Since CSΩ(G) is transitive on Ω, for each β ∈ Ω there

exists an h ∈ CSΩ(G) such that β = αh. Then

βg = αhg = αgh = (αg)h = αh = β.

Thus g = 1 and so Gα = {1}.
(ii) Clearly G ≤ CSΩ(CSΩ(G)), which implies that CSΩ(CSΩ(G)) is transitive as G is.

Then by part (i), CSΩ(G) is semiregular.

Now we look at some particular G-spaces. Define an action of G on G by right multi-

plication; that is, xg = xg for all g, x ∈ G. This is called the right regular representation

of G. The left regular representation of G is given by the action xg = g−1x of G on itself.

Both actions are regular. G also acts on itself by conjugation; that is, xg := g−1xg for all

g, x ∈ G. This action is very important and is used often. It is routine to verify that these

three definitions do give rise to legitimate actions.

Let H ≤ G. The right coset space of H in G, denoted by G\H, is simply the set of

right cosets of H in G. The backslash is used to avoid confusion with the quotient G/H.

It is routine to verify that G\H is a transitive G-space with action (Ha)g := Hag for all

Ha ∈ G\H and g ∈ G. Moreover, GHg = g−1Hg for all g ∈ G since h ∈ GHg ⇐⇒ Hgh =

Hg ⇐⇒ ghg−1 ∈ H ⇐⇒ h ∈ g−1Hg. In particular, GH = H. It is not hard to see that

the kernel of this action is
⋂

g∈G g−1Hg, which is called the core of H in G. Note that the

core of H in G is a normal subgroup of G contained in H. If the core of H is trivial, then

H is said to be core-free. Hence, the action of G on the coset space G\H is faithful if and

only if H is a core-free subgroup of G. In order to show that H is core-free, we typically

show that any normal subgroup of G contained in H must be trivial. The left coset space

of H in G is defined analogously.

The following proposition is a collection of basic well-known results about G-spaces

which are very useful and which will be used repeatedly and freely without reference. First,

we need one more definition: two G-spaces Ω and Γ are isomorphic if there exists a bijection

ϕ : Ω → Γ such that (αg)ϕ = (αϕ)g for all α ∈ Ω and g ∈ G. Note that Gα = Gαϕ for all

α ∈ Ω since g ∈ Gα ⇐⇒ αg = α ⇐⇒ αgϕ = αϕ ⇐⇒ (αϕ)g = αϕ ⇐⇒ g ∈ Gαϕ.

Proposition 1.2.2. Let Ω be a G-space. Let α ∈ Ω and g ∈ G be arbitrary.

(i) Gαg = g−1Gαg.

(ii) If Ω contains at least two elements, then Gα is not transitive on Ω.

(iii) The coset space G\Gα is isomorphic to the orbit θG(α). It follows that Gα is a proper

subgroup of G so long as θG(α) contains an element different from α.
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(iv) If G is transitive on Ω, then G\Gα * Ω, and if G is regular on Ω, then G * Ω, where

G acts on itself by right multiplication.

(v) If G is finite, then [G : Gα] = |θG(α)|; if G is finite and transitive on Ω, then

[G : Gα] = |Ω|; and if G is finite and regular on Ω, then |G| = |Ω|.

Proof. (i) h ∈ Gαg ⇐⇒ αgh = αg ⇐⇒ αghg−1
= (αgh)g−1

= (αg)g−1
= α ⇐⇒ ghg−1 ∈

Gα ⇐⇒ h ∈ g−1Gαg.

(ii) Suppose that Gα is transitive on Ω. Let β ∈ Ω. Then there exists a g ∈ Gα with

β = αg as Gα is transitive on Ω. But αg = α so β = α. Thus Ω = {a}.
(iii) Define ϕ : G\Gα → θG(α) by Gαg )→ αg. Then Gαg = Gαh ⇐⇒ gh−1 ∈

Gα ⇐⇒ αgh−1
= α ⇐⇒ αg = αh. Thus ϕ is well-defined and 1-1. ϕ is clearly onto and

(Gαg)hϕ = (Gαgh)ϕ = αgh = (αg)h = ((Gαg)ϕ)h, so ϕ is a G-space isomorphism.

(iv) Since G is transitive, θG(α) = Ω, so G\Gα * Ω by (iii). If G is also semiregular,

then G\{1} * Ω, and it is easy to verify that the obvious map from G to G\{1} is a

G-space isomorphism if G acts on itself by right multiplication. Hence, G * Ω.

(v) Each follows immediately from (iii) and (iv).

Now for the final definition of this section. We say that G ≤ SΩ is permutation isomor-

phic to H ≤ SΓ if there is a bijection ϕ : Ω → Γ and an isomorphism ψ : G → H such that

(αg)ϕ = (αϕ)(gψ) for all α ∈ Ω and g ∈ G. In other words, G and H only differ in the

labelling of their elements. Often, we simply say that ψ is a permutation isomorphism of G

onto H. I conclude this section with several results about permutation isomorphisms. The

first result gives us a sufficient condition for permutation isomorphism when the actions

are transitive that is very useful in practice.

Proposition 1.2.3. Suppose that G ≤ SΩ and H ≤ SΓ where both actions are transitive.

If there is an isomorphism ψ : G → H such that Gαψ = Hγ for some α ∈ Ω and γ ∈ Γ,

then G is permutation isomorphic to H.

Proof. Since G acts transitively on Ω, every element of Ω has the form αg for some g ∈ G.

Define ϕ : Ω → Γ by αg )→ γ(gψ). Then since Gαψ = Hγ,

αg = αg′ ⇐⇒ g′g−1 ∈ Gα ⇐⇒ (g′g−1)ψ ∈ Hγ ⇐⇒ γ(gψ) = γ(g′ψ),

so ϕ is well-defined and 1-1. Since H acts transitively on Γ, a typical element of Γ has the

form γh for some h ∈ H, and (αhψ−1)ϕ = γ(hψ−1)ψ = γh. Thus ϕ is onto. Lastly, let

g, g′ ∈ G. Then

((αg′)g)ϕ = (αg′g)ϕ = γ(g′gψ) = (γg′ψ)gψ = (αg′ϕ)(gψ).

Thus G is permutation isomorphic to H.
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The following is an exercise in [8, p. 18].

Proposition 1.2.4. If G and H are both permutation groups on Ω, then G and H are

permutation isomorphic if and only if G and H are conjugate in SΩ.

Proof. Suppose that G and H are permutation isomorphic. Then there exists a bijection

ϕ : Ω → Ω and an isomorphism ψ : G → H with (αg)ϕ = (αϕ)(gψ) for all α ∈ Ω and

g ∈ G. Then αg = ((αϕ)(gψ))ϕ−1 = α(ϕ(gψ)ϕ−1) for all α ∈ Ω and g ∈ G, which implies

that g = ϕ(gψ)ϕ−1 for all g ∈ G. Thus G = ϕ(Gψ)ϕ−1 = ϕHϕ−1, and we are done since

ϕ ∈ SΩ.

On the other hand, suppose that G = ϕHϕ−1 for some ϕ ∈ SΩ. Define ψ : G → H

by gψ = ϕ−1gϕ; it is routine to verify that ψ is an isomorphism. Then for all g ∈ G and

α ∈ Ω, αg = α(ϕ(ϕ−1gϕ)ϕ−1) = α(ϕ(gψ)ϕ−1), so (αg)ϕ = (αϕ)(gψ) and G is permutation

isomorphic to H.

This next result is fairly intuitive but is proved here for the sake of being thorough.

Proposition 1.2.5. Suppose that θ is a permutation isomorphism from G onto H where

G ≤ SΩ and H ≤ SΓ. Then there exists a permutation isomorphism ψ : SΩ → SΓ such

that ψ|G = θ. In particular, NSΩ(G)ψ = NSΓ(H).

Proof. Let ϕ : Ω → Γ be the bijection for which (αg)ϕ = (αϕ)(gθ) for all α ∈ Ω and

g ∈ G. Let π ∈ SΩ and γ ∈ Γ. Then γ = αϕ for some unique α ∈ Ω. Define ψπ : Γ → Γ by

γ )→ (απ)ϕ. Suppose that γψπ = γ′ψπ where γ = αϕ and γ′ = α′ϕ. Then (απ)ϕ = (α′π)ϕ

which implies that α = α′ since πϕ is 1-1. Thus γ = γ′ so ψπ is 1-1. Let γ ∈ Γ, and

define γ′ := γϕ−1π−1ϕ ∈ Γ. Then γ′ψπ = ((γϕ−1π−1)π)ϕ = γ, so ψπ is onto. Thus

ψπ ∈ SΓ for all π ∈ SΩ, so we may define ψ : SΩ → SΓ by π )→ ψπ. Let π, π′ ∈ SΩ. Then

γψπψπ′ = (απ)ϕψπ′ = ((απ)π′)ϕ = γψππ′ for all γ ∈ Γ, so ψπψπ′ = ψππ′ for all π, π′ ∈ SΩ.

Thus ψ is a homomorphism. If ψπ is the identity, then αϕ = (απ)ϕ for all α ∈ Ω, so

α = απ for all α ∈ Ω. Thus ψ is 1-1. Let π ∈ SΓ. Define π′ := ϕπϕ−1 ∈ SΩ. Then

γψπ′ = (αϕπϕ−1)ϕ = γπ for all γ ∈ Γ, so ψ is onto. Then ψ is a permutation isomorphism

since (απ)ϕ = (αϕ)ψπ = (αϕ)(πψ) for all α ∈ Ω and π ∈ SΩ.

Let g ∈ G. Then

γ(gψ) = γψg = (αg)ϕ = (αϕ)(gθ) = γ(gθ)

for all γ ∈ Γ, so gψ = gθ for all g ∈ G. Thus ψ|G = θ.

Let n ∈ NSΩ(G) and h ∈ H. Then there exists a g ∈ G with gθ = h, so (ψn)−1hψn =

ψn−1ψgψn = ψn−1gn ∈ Gψ = H, so ψn ∈ NSΓ(H). Conversely, let n ∈ NSΓ(H) and g ∈ G.

Then n = ψn′ for some n′ ∈ SΩ, and again, ψn′−1gn′ = n−1ψgn ∈ H = Gψ, so n′−1gn′ ∈ G,

which implies that n′ ∈ NSΩ(G). Thus NSΩ(G)ψ = NSΓ(H), as desired.
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This next and last proposition is referred to in [14] but is not proved. It, like Proposition

1.2.1, is fundamental to the proof of the O’Nan-Scott Theorem.

Proposition 1.2.6. If G is a regular permutation group on Ω, then G is permutation

isomorphic to CSΩ(G).

Proof. Let g ∈ G. Define ρg : G → G by x )→ xg and λg : G → G by x )→ g−1x. Then

ρg, λg ∈ SG for all g ∈ G. Let R := {ρg : g ∈ G} and L := {λg : g ∈ G}. Note that R

and L are both subgroups of SG; in fact, R is the image of the right regular representation

of G, and L is the image of the left regular representation of G. I claim first of all that

L = CSG(R). Let λg ∈ L, ρh ∈ R and x ∈ G. Then

xλgρh = (g−1x)ρh = (g−1x)h = g−1(xh) = g−1(xρh) = xρhλg,

so λg commutes with every element of R. Thus L ≤ CSG(R). Conversely, let π ∈ CSG(R).

Then πρg = ρgπ for all g ∈ G, so (xπ)g = (xg)π for all x, g ∈ G. In particular, take

g = x−1, so that for all x ∈ G, (xπ)x−1 = (xx−1)π = 1π. But then

xλ(1π)−1 = (1π)x = ((xπ)x−1)x = xπ

for all x ∈ G, so π = λ(1π)−1 ∈ L. Thus L = CSG(R).

Let α ∈ Ω. G is transitive and semiregular on Ω by assumption, so ϕ : Ω → G defined

by αg )→ g is a well-defined bijection. Define ψ : SΩ → SG by π )→ ϕ−1πϕ. It is routine to

verify that ψ is a permutation isomorphism of SΩ onto SG. Further,

x(gψ) = x(ϕ−1gϕ) = (αxg)ϕ = xg = xρg

for all x, g ∈ G, so gψ = ρg for all g ∈ G. Then Gψ = R, and it follows that CSΩ(G)ψ =

CSG(R) = L. Thus CSΩ(G) is permutation isomorphic to L. Moreover, note that if

ϕ : Ω → G were instead defined by αg )→ g−1, then the proof we just saw would carry

through, but we would get that G is permutation isomorphic to L in place of R since we

would have that

x(gψ) = x(ϕ−1gϕ) = (αx−1g)ϕ = g−1x = xλg.

Thus G is permutation isomorphic to CSΩ(G).

1.3 Sylow Subgroups

Let p be a prime. A finite group G is a p-group if the order of G is a power of p.

Proposition 1.3.1 ([20, p. 75]). If G is a nontrivial p-group, then Z(G) is not trivial.
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Proof. Let G act on itself by conjugation. Let h ∈ G. Then Gh = {g ∈ G : g−1hg = h} =

CG(h). Since we then have that G\CG(h) * θG(h), h ∈ Z(G) if and only if θG(h) = {h}.
Then Z(G) is the union of the orbits of G containing only one element. Since the orbits

of G partition G, if {θG(hi)}i∈I is a disjoint collection of all orbits of G containing at

least two elements, then |G| = |Z(G)| +
∑

i∈I |θG(hi)|. If G = Z(G), then since G is

nontrivial, Z(G) is nontrivial, so we may assume that Z(G) < G. Then I is not empty.

[G : CG(hi)] = |θG(hi)| > 1 and G is a p-group, so p | |θG(hi)| for all i ∈ I. Thus p | |Z(G)|
so Z(G) is not trivial.

The equation |G| = |Z(G)|+
∑

i∈I [G : CG(hi)], where {θG(hi)}i∈I is a disjoint collection

of all orbits of G containing at least two elements, is called the class equation of G.

Proposition 1.3.2. If G has order p2 where p is a prime, then G is abelian.

Proof. By Proposition 1.3.1, Z(G) is not trivial, so Z(G) has order p or p2. Assume for

a contradiction that Z(G) has order p. Then G/Z(G) also has order p, so is cyclic. Let

Z(G)a be a generator, and let g, h ∈ G. Then g = xam and h = yan for some positive

integers m and n and for some x, y ∈ Z(G). Then gh = xamyan = yanxam = hg since

x, y ∈ Z(G), so G is abelian, a contradiction. Thus Z(G) has order p2, so Z(G) = G and

G is abelian.

Theorem 1.3.3 (Cauchy, [20, p. 74]). If G is a finite group and p is a prime where p

divides the order of G, then G contains an element of order p.

Proof. First suppose that G is abelian. Write |G| = pn, where n ≥ 1. The proof is by

induction on n. If |G| = p, then G is cyclic and so contains an element of order p. Suppose

that the result is true for some n > 1. Let g ∈ G with order m > 1. If p | m, then gm/p has

order p, and we are done. So we may assume that p ! m. Note that G/〈g〉 is an abelian

group of order pn
m . Since p ! m and pn

m is an integer, n
m must be an integer. But n

m < n

as m > 1, so by induction, G/〈g〉 contains an element of order p, say 〈g〉h. Then if h has

order k, (〈g〉h)k = 〈g〉 so p | k. Again, G contains an element of order p, and we are done.

Suppose that now that G is any finite group with p | |G|. The proof is by induction on

|G|. If p | |Z(G)|, then since Z(G) is abelian, Z(G) contains an element of order p, and we

are done. Thus we may assume that p ! |Z(G)|. Then by the class equation, there exists

a g ∈ G for which [G : CG(g)] > 1 and p ! [G : CG(g)]. Since p | |G|, p | |CG(g)|. But

CG(g) < G, so by induction, CG(g) contains an element of order p, and we are done.

Suppose that G is a finite group such that |G| = pkm where p is a prime and p ! m. A

Sylow p-subgroup of G is a maximal p-subgroup of G. Since G must contain an element

of order p by Cauchy’s Theorem, every finite group has a Sylow p-subgroup. Clearly, if

P ≤ G and |P | = pk, then P is a Sylow p-subgroup of G.
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Lemma 1.3.4 ([20, p. 78]). Let P be a Sylow p-subgroup of a finite group G. Then

NG(P )/P contains no element of order p.

Proof. Suppose that NG(P )/P does have an element of order p, say Pg. P 〈g〉 is a subgroup

of G since g normalizes P . Moreover, P < P 〈g〉 since if g ∈ P , then Pg has order 1, a

contradiction. Since gp ∈ P , the order of g is a power of p. Then |P 〈g〉| = |P ||〈g〉|
|P∩〈g〉| is a

power of p, but this is a contradiction because P is a maximal p-subgroup of G.

Theorem 1.3.5 (Sylow, [20, p. 79]). Suppose that G is a finite group such that |G| = pkm

where p is a prime and p ! m. Then every Sylow p-subgroup has order pk, and any two

Sylow p-subgroups are conjugate in G. Further, if np is the number of Sylow p-subgroups

of G, then np ≡ 1(mod p) and np | |G|.

Proof. Let P be a Sylow p-subgroup of G. Let Ω := {g−1Pg : g ∈ G}. Note that every

member of Ω is a Sylow p-subgroup of G since g−1Pg must also be a maximal p-group.

Let Q, R ∈ Ω. Then Q acts on Ω by conjugation, and |θQ(R)| = [Q : QR]. But Q is a

p-group, so |θQ(R)| = 1 or p | |θQ(R)|. If |θQ(R)| = 1, then q−1Rq = R for all q ∈ Q, so

Q ≤ NG(R). Then RQ ≤ G and |RQ| = |R||Q|
|R∩Q| , which is a power of p, so we must have that

R = RQ = Q as R and Q are both maximal p-subgroups of G. Take Q = P . If R ,= P ,

then p | |θP (R)| by the above, and clearly θP (P ) = {P}, so θP (P ) is the only orbit of P

containing exactly one element. Thus |Ω| ≡ 1(mod p).

Suppose that there exists a Sylow p-subgroup S which is not in Ω. Again, S acts on Ω

by conjugation, and if R ∈ Ω, then p | |θS(R)| since R ,= S. But then p | |Ω|, contradicting

|Ω| ≡ 1(mod p). Thus Ω is the set of all Sylow p-subgroups of G. It follows that every

Sylow p-subgroup is conjugate in G and that np ≡ 1(mod p).

Since GP = {g ∈ G : g−1Pg = P} = NG(P ), np = |Ω| = |θG(P )| = [G : NG(P )]. Thus

np | |G|. Moreover, |G| = |P |[NG(P ) : P ][G : NG(P )], but p ! [NG(P ) : P ] (by Lemma

1.3.4 and Cauchy’s Theorem) and p ! np = [G : NG(P )], so pk | |P | as pk | |G|. But |P | is

at most pk, so |P | = pk. It follows that every Sylow p-subgroup has order pk, and we are

done.

Proposition 1.3.6. Let P be a Sylow p-subgroup of a group G. Then NG(P ) is self-

normalizing in G.

Proof. Of course NG(P ) ≤ NG(NG(P )). Let g ∈ NG(NG(P )). P is a Sylow p-subgroup

of NG(P ), so g−1Pg is a Sylow p-subgroup of g−1NG(P )g = NG(P ). Then there exists

an h ∈ NG(P ) with P = h−1(g−1Pg)h, so P = hPh−1 = g−1Pg. Thus g ∈ NG(P ) and

NG(P ) = NG(NG(P )).
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1.4 Subdirect Products

The following definitions can be found in [3]. Let G := G1 × G2 × · · · × Gk be a direct

product of groups Gi. Let ρi : G → Gi be the projection map for each i. A group H is a

subdirect product of G if there exists an embedding φ : H → G such that φρi : H → Gi is

an onto homomorphism for all i. If H is actually a subgroup of G, then of course we may

take φ to be the inclusion map, and we call the subdirect product H a subdirect subgroup

of G. If H is a subgroup of G and ρi|H is 1-1 for all i, then H is called a diagonal subgroup

of G (where H is not necessarily subdirect). Lastly, if H is a subgroup of G, then H is a

full diagonal subgroup of G if it is both a subdirect subgroup and a diagonal subgroup.

If h := (h1, h2, . . . , hk) is any element of a subgroup H of G, then

h = (h1, h2, . . . , hk) = (hρ1, hρ2, . . . , hρk).

Thus H = {(hρ1, . . . , hρk) : h ∈ H}. If H is a full diagonal subgroup of G, note that ρi|H is

then an isomorphism of H onto Gi for each i. Consequently, all of the Gi must themselves

be isomorphic to one another.

For the next result, the proof of (i) is from [4], and the proofs of (ii) and (iii) are from

[3].

Lemma 1.4.1. Let G = T1×T2× · · ·×Tk be a direct product of simple nonabelian groups

(k ≥ 1). Let H be a subgroup of G and I := {1, . . . , k}.

(i) If H is a full diagonal subgroup of G, then H is self-normalizing in G.

(ii) If H is a subdirect subgroup of G, then H is a direct product
∏

Hj, where Hj is a full

diagonal subgroup of some subproduct
∏

i∈Ij
Ti such that I is partitioned by the Ij.

(iii) If H is a nontrivial normal subgroup of G, then H =
∏

j∈J Tj where J is some

nonempty subset of I.

Proof. (i) Define γi := (ρ1|H)−1ρi for each i ∈ I. Then each γi is an isomorphism of T1

onto Ti since H is a full diagonal subgroup of G. Note that γ1 is the identity on T1. Now, if

h ∈ H then hρ1 = t for some t ∈ T1, and hρi = (t(ρ1|H)−1)ρi = tγi for each i ∈ {2, . . . , k}.
On the other hand, if t ∈ T1, then t = hρ1 for some h ∈ H, and tγi = t(ρ1|H)−1ρi = hρi

for each i ∈ {2, . . . , k}. Thus

H = {(hρ1, hρ2, . . . , hρk) : h ∈ H} = {(t, tγ2, . . . , tγk) : t ∈ T1}. (1)

Let n := (t1, t2, . . . , tk) ∈ NG(H). Fix i ∈ {2, . . . , k} and let x ∈ Ti. Then x = tγi for some

t ∈ T1 and h := (t, tγ2, . . . , tγk) ∈ H by (1). Note that since n ∈ NG(H),

(t−1
1 tt1, t

−1
2 (tγ2)t2, . . . , t

−1
k (tγk)tk) = n−1hn ∈ H.
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Again by (1) we must have that t−1
i (tγi)ti = (t−1

1 tt1)γi, and γi is a homomorphism, so

(t1γi)−1(tγi)(t1γi) = (t−1
1 tt1)γi = t−1

i (tγi)ti. Then (t1γi)t
−1
i ∈ Z(Ti) since

((t1γi)t
−1
i )x = ((t1γi)t

−1
i )(tγi) = (tγi)((t1γi)t

−1
i ) = x((t1γi)t

−1
i )

and x ∈ Ti was arbitrary. But Z(Ti) is trivial since Ti is simple and nonabelian, so ti = t1γi.

As this can be done for all i ∈ {2, . . . , k},

n = (t1, t2, . . . , tk) = (t1, t1γ2, . . . , t1γk) ∈ H.

Thus NG(H) = H, as desired.

(ii) The proof is by induction on k. If k = 1, then H = T1 := H1. Suppose that k > 1.

Choose S ⊆ I to be minimal such that D := H ∩
∏

i∈S Ti ,= {1}. H is clearly not trivial so

|S| ≥ 1.
∏

i∈S Ti is a normal subgroup of G so D is a normal subgroup of H. Then Dρi is

a normal subgroup of (H)ρi = Ti for all i ∈ S. If Dρio is trivial for some io ∈ S, then the

io-th component of every (nontrivial) element of D is 1. But then H ∩
∏

i∈(S\{io}) Ti ,= {1},
contradicting the minimality of S. Thus Dρi is nontrivial for all i ∈ S, but Ti is simple,

so Dρi = Ti for all i ∈ S. Moreover, if there exists a nontrivial d ∈ ker(ρio|D) for some

io ∈ S, then again, H ∩
∏

i∈(S\{io}) Ti ,= {1}, contradicting the minimality of S. Thus ρi|D
is 1-1 for all i ∈ S, and we conclude that D is a full diagonal subgroup of

∏
i∈S Ti. Let

H1 := D and S := I1. If S = I, then we are done, so we may assume otherwise.

Let ρS : G →
∏

i∈S Ti be the projection map. D is a normal subgroup of H, so D = DρS

is a normal subgroup of HρS. By part (i), D is self-normalizing in
∏

i∈S Ti, so D = HρS.

Let H ′ := H ∩
∏

i∈I\S Ti. Then H ′ is a normal subgroup of H and clearly D ∩ H ′ is

trivial. Let h ∈ H, and let d ∈ G be defined by

dρi :=

{
hρi if i ∈ S,

1 otherwise.

Clearly d ∈ HρS = D, so h′ := d−1h ∈ DH = H. Then h′ ∈ H ′ since for all i ∈ S,

h′ρi = (dρi)−1hρi = 1. Hence, h = dh′ ∈ DH ′, so H = DH ′. It follows that H = D ×H ′.

Let G′ :=
∏

i∈I\S Ti. Fix io ∈ I \ S, and let 1 ,= t ∈ Tio . Since Tio = Hρio , there exists

an h ∈ H with t = hρio . Let h′ be defined by

h′ρi :=

{
hρi if i ∈ I \ S,

1 otherwise.

This implies that

(h′h−1)ρi =

{
h−1ρi if i ∈ S,

1 otherwise.

Then h′h−1 ∈ HρS = D ≤ H, so h′ ∈ H. Since h′ ∈ G′, h′ ∈ H ′, and by definition,

h′ρio = hρio = t ,= 1, so H ′ρio is nontrivial. But H ′ is a normal subgroup of H, so H ′ρio is
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normal in Hρio = Tio , which is simple, so H ′ρio = Tio . io ∈ I \ S was arbitrary so H ′ is a

subdirect subgroup of G′. By induction, H ′ is a direct product
∏

Hj (j ≥ 2) where Hj is

a full diagonal subgroup of some subproduct
∏

i∈Ij
Ti such that the Ij partition I \ I1, and

we are done.

(iii) Proof is again by induction on k. If k = 1, then we’re done since T1 is simple.

Suppose that k > 1. Let J := {i ∈ I : Hρi ,= {1}}. H is not trivial so J ,= ∅. H ! G,

so Hρi ! Gρi = Ti for all i ∈ J . But Ti is simple, so Hρi = Ti for all i ∈ J . Thus H

is a subdirect subgroup of
∏

i∈J Ti. By part (ii), H is a direct product of full diagonal

subgroups of subproducts of
∏

i∈J Ti. As in the proof of part (ii), let D := H ∩
∏

i∈S Ti

where S is an appropriate minimal subset of J . H ! G so D ! ∏
i∈S Ti, but D is full

diagonal in
∏

i∈S Ti by the proof of part (ii), hence is self-normalizing in
∏

i∈S Ti, and so

D =
∏

i∈S Ti by part (i). It follows from the remainder of the proof of part (ii) and from

induction that H =
∏

i∈J Ti.

The following may appear to be quite simple but is immensely useful.

Proposition 1.4.2 ([3]). Let G be a group that normalizes N := T1 × · · ·× Tk where the

Ti are all simple and nonabelian. Then G acts by conjugation on the set {T1, . . . , Tk}.

Proof. Let g ∈ G. Ti is a normal subgroup of N , so g−1Tig is a normal subgroup of

g−1Ng = N . Thus by Lemma 1.4.1(iii), g−1Tig =
∏

j∈J Tj where J is some nonempty

subset of {1, . . . , k}. But g−1Tig is simple since Ti is, so g−1Tig = Tj for some j. Thus G

acts on {T1, . . . , Tk} by conjugation.

The next result will be used both to prove the O’Nan-Scott Theorem and to make a

reduction to the problem of finite representability. The formulation and proof of the lemma

are mine, but its existence is implied by the proof of the O’Nan-Scott Theorem in [14].

Lemma 1.4.3. Let G be a group containing subgroups A and M such that A normalizes

M and M * T k where T is a nonabelian simple group and k is a positive integer. Let K

be a subgroup of M containing M ∩ A such that K is also normalized by A. Suppose that

there exist groups X1, . . . , Xn which satisfy the following:

(i) M = X1 × · · ·×Xn;

(ii) K = X1 ∩K × · · ·×Xn ∩K;

(iii) Xl is simple for all l or Xl ∩K is a full diagonal subgroup of Xl for all l.

Then A acts by conjugation both on {X1, . . . , Xn} and {X1 ∩K, . . . , Xn ∩K}. Moreover,

if a ∈ A and a−1Xia = Xj, then a−1Xi ∩Ka = Xj ∩K, and in the case where Xl ∩K is

full diagonal for all l, if a−1Xi ∩Ka = Xj ∩K, then a−1Xia = Xj.
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Proof. Fix i ∈ {1, . . . , n} and a ∈ A. If Xl is simple for all l, then since M * T k, Xl is also

nonabelian for all l. If Xl ∩K is a full diagonal subgroup of Xl for all l, then Xl is a direct

product of isomorphic simple groups, but Xl ! M * T k, so by Lemma 1.4.1(iii), Xl * Tml

for some ml ∈ {1, . . . , k} for all l. Then Xl ∩K * T , hence is simple and nonabelian for

all l. A normalizes M and K, so by Proposition 1.4.2, when Xl is simple for all l, A acts

on {X1, . . . , Xn} by conjugation, and when Xl ∩K is a full diagonal subgroup of Xl for all

l, A acts on {X1 ∩K, . . . , Xn ∩K} by conjugation. Thus A acts by conjugation on both

sets in either case if we can prove the second claim of the lemma.

Suppose first that a−1Xia = Xj. Then a−1Xi ∩Ka = a−1Xia∩ a−1Ka = Xj ∩K since

A normalizes K.

Now suppose that a−1Xi ∩Ka = Xj ∩K and that Xl ∩K is a full diagonal subgroup

of Xl for all l. For notational ease, let X := Xi. We may write M = T1 × · · · × Tk and

X = T1× · · ·×Tm for some m ∈ {1, . . . , k} where Tl * T for all l. X ∩K is a full diagonal

subgroup of X, so for all l ∈ {2, . . . ,m}, there exist isomorphisms γl : T1 → Tl such that

X ∩ K = {(t, tγ2, . . . , tγm) : t ∈ T1} (see equation (1) in the proof of Lemma 1.4.1(i)).

Let 1 ,= x ∈ Tl where l ∈ {1, . . . ,m}. Note that a−1Tla = Ts for some s ∈ {1, . . . , k} by

Proposition 1.4.2 since A normalizes M ; in particular, a−1xa ∈ Ts. There exists an element

t ∈ T1 with tγl = x, so (t, tγ2, . . . , tγm) ∈ X∩K. Then a−1(t, tγ2, . . . , tγm)a ∈ Xj∩K ≤ Xj.

Xj is some subproduct of the simple factors of M , so a−1xa is in one of these simple factors,

but 1 ,= a−1xa is already in Ts, so this simple factor must be Ts. Thus Ts ≤ Xj. It follows

that if Ii and Ij denote the set of indices of the simple nonabelian factors of Xi and Xj

respectively, then a maps {Ts : s ∈ Ii} to {Ts : s ∈ Ij} by conjugation; in fact, this map is

a bijection as it is onto by symmetry and is clearly 1-1. Thus a−1Xia = Xj.

Here is another quick application of Lemma 1.4.1. A proper normal subgroup N of

a group G is said to be a maximal normal subgroup of G if N is the only proper normal

subgroup of G containing N . Let N ! G. Note that N is a maximal normal subgroup

of G if and only if G/N is simple since G and N are the only two normal subgroups of

G containing N if and only if G/N has exactly two normal subgroups, namely, G/N and

N/N .

Lemma 1.4.4 ([8, p. 113]). Let H be a group with distinct normal subgroups H1, . . . , Hk

satisfying
⋂k

i=1 Hi = {1} such that for each i, H/Hi * Ti where Ti is a nonabelian simple

group. Then H * T1 × · · ·× Tk.

Proof. The proof is by induction on k ≥ 1. The result is trivial if k = 1. Suppose

that k > 1. Let H0 :=
⋂k−1

i=1 Hi ! H. Then clearly H1/H0, . . . , Hk−1/H0 are distinct

normal subgroups of H/H0. Moreover, if H0g ∈
⋂k−1

i=1 Hi/H0, then g ∈
⋂k−1

i=1 Hi = H0, so⋂k−1
i=1 Hi/H0 = {H0}, and also (H/H0)/(Hi/H0) * H/Hi * Ti for all i ∈ {1, . . . , k − 1}.

Thus H/H0 * T1 × · · ·× Tk−1 by induction.
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Let N be a maximal normal subgroup of H/H0. Then by part (iii) of Lemma 1.4.1,

N is a direct product of some of the Ti. But in order for N to be maximal, N must

then have the form T1 × · · · × Ti−1 × Ti+1 × · · · × Tk−1 for some i. It follows that H/H0

has exactly k − 1 maximal normal subgroups. However, since H/Hi is simple for all

i ∈ {1, . . . , k} and the H1, . . . , Hk are all distinct, H has at least k maximal normal

subgroups (namely, the Hi). Thus H is not isomorphic to H/H0, so H0 ,= {1}. Then if

H0 ≤ Hk, H0 = H0∩Hk =
⋂k

i=1 Hi = {1}, a contradiction; it follows that Hk < HkH0 !H,

but Hk is maximal normal in H, so H = HkH0. Since Hk∩H0 = {1}, H * Hk×H0. Then

H0 * (H0 ×Hk)/Hk * H/Hk * Tk,

and

Hk * (H0 ×Hk)/H0 * H/H0 * T1 × · · ·× Tk−1.

Thus H * T1 × · · ·× Tk, as desired.

1.5 Minimal Normal Subgroups

Let G be a group. A nontrivial normal subgroup N of G is said to be a minimal normal

subgroup of G if N is the only nontrivial normal subgroup of G contained in N . If G is

finite and nontrivial, then G is guaranteed to have minimal normal subgroups.

The next few results illuminate the structure of a minimal normal subgroup.

Proposition 1.5.1. Any two distinct minimal normal subgroups of a group G must in-

tersect trivially. It follows that any two distinct minimal normal subgroups centralize each

other.

Proof. Let N1 and N2 be any two minimal normal subgroups of G. Then N1 ∩ N2 is

normal in G, but N1 ∩ N2 ≤ N1 and N1 ∩ N2 ≤ N2, so if N1 ∩ N2 is not trivial, then

N1 = N1 ∩ N2 = N2 by the minimality of N1 and N2. Thus two distinct minimal normal

subgroups intersect trivially. Moreover, if N1 and N2 are distinct minimal normal subgroups

of G, then [N1, N2] ≤ N1 ∩N2 = {1}, so N1 and N2 centralize each other.

Recall from Proposition 1.4.2 that G acts by conjugation on {T1, . . . , Tk} if the Ti are

all simple and nonabelian and if T1 × · · ·× Tk is normalized by G.

Proposition 1.5.2 ([3]). Let G be a group. Suppose that N := T1 × · · ·× Tk is a normal

subgroup of G where the Ti are all simple and nonabelian. Then G acts transitively by

conjugation on {T1, . . . , Tk} if and only if N is a minimal normal subgroup of G.

Proof. Suppose that G is transitive. Let M be a nontrivial normal subgroup of G with

M ≤ N . Then M ! N , so by Lemma 1.4.1, M =
∏

j∈J Tj where J is some nonempty
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subset of {1, . . . , k}. Let jo ∈ J . Since the action of G is transitive, given i ∈ I, there

exists a gi ∈ G such that Ti = g−1
i Tjogi. M is a normal subgroup of G, so Tjo ≤ M implies

that Ti ≤ M for all i ∈ {1, . . . , k}. Thus N = M , so N is a minimal normal subgroup of

G.

On the other hand, suppose that G is not transitive on {T1, . . . , Tk}. Relabelling the

indices as needed, let {T1, . . . , Tm} be an orbit of the action (so we must have that m < k),

and let M := T1× · · ·×Tm. Then for all g ∈ G and i ∈ {1, . . . ,m}, g−1Tig ⊆ {T1, . . . , Tm}.
Thus M is a normal subgroup of G, but {1} ,= M < N , so N is not a minimal normal

subgroup of G.

We have just seen that a minimal normal subgroup can be a direct product of isomorphic

simple groups (they are isomorphic because they are conjugate). It turns out that, at least

in a finite group, every minimal normal subgroup is a direct product of isomorphic simple

groups. This will take some work to prove.

A subgroup H of G is characterstic in G, denoted by H char G, if Hγ = H for all γ ∈
Aut(G). To show that H char G, it suffices to show that Hγ ≤ H for all γ ∈ Aut(G) (since

then Hγ−1 ≤ H, which implies that H = (Hγ−1)γ ≤ Hγ). Note that since conjugation by

an element of G is an automorphism of G, H char G implies that H is normal in G (the

converse is not necessarily true).

A nontrivial group G is characteristically simple if G has no proper nontrivial charac-

teristic subgroups.

Proposition 1.5.3. Let G be a group.

(i) If H char K and K ! G, then H ! G.

(ii) If N is a minimal normal subgroup of G, then N is characteristically simple.

Proof. (i) Let g ∈ G and let ϕg be the automorphism of G which conjugates by g. K ! G

so Kϕg = K, but then ϕg|K ∈ Aut(K). Since H char K, Hϕg|K = H; that is, g−1Hg = H

for all g ∈ G. Thus H ! G.

(ii) Suppose that H char N . N is normal in G so by part (i) we have that H ! G. But

N is minimal normal and H ≤ N , so we must have that H = N or H = {1}. Thus N is

characteristically simple.

Theorem 1.5.4 ([20, p. 106]). A finite characteristically simple group G is a direct product

of isomorphic simple groups.

Proof. Let N be a minimal normal subgroup of G with minimal order. Put N1 := N . Let

H := N1×N2× · · ·×Nk be the subgroup of G of largest possible order of this form, where

k ≥ 1, Ni * N for all i and Ni ! G for all i. Note that H ! G.
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Suppose that H char G. Since H is not trivial and G is characteristically simple, H = G.

But then N must be simple, for if {1} ,= M ! N , then M ! N1 ×N2 × · · ·×Nk = G and

by the minimality of N , M = N . Thus G is a direct product of isomorphic simple groups.

Assume now for a contradiction that H is not characteristic in G. Then for some

γ ∈ Aut(G) and for some j, Njγ " H. Nj ! G, so Njγ ! Gγ = G. Moreover, Njγ must

be minimal normal in G, for if Njγ properly contains a nontrivial normal subgroup N ′ of

G, then |N ′| < |Njγ| = |Nj| = |N |, contradicting the minimality of the order of N . Now,

Njγ ∩H is a normal subgroup of G contained in Njγ, but Njγ " H, so by the minimality

of Njγ, Njγ ∩H = {1}. Then since Njγ * Nj * N , Njγ ×H is a subgroup of G of the

same form as H with larger order, a contradiction.

Note that Theorem 1.5.4 can be generalized to infinite groups that contain at least one

minimal normal subgroup, but only the finite version of the result is needed. Next is the

result we are looking for.

Corollary 1.5.5. A minimal normal subgroup of a finite group is a direct product of

isomorphic simple groups.

Proof. Follows immediately from Proposition 1.5.3(ii) and Theorem 1.5.4.

The socle of a group G, denoted by soc(G), is defined to be the subgroup generated by

the set of all minimal normal subgroups of G, where soc(G) := {1} if G has no minimal

normal subgroups (which can only occur if G is infinite or trivial). Note that soc(G) is a

normal subgroup of G.

Every minimal normal subgroup of a finite group G is a product of isomorphic simple

groups. More often than not, we are concerned with the case when all of these simple groups

are nonabelian. The next result gives a handy condition for proving when a product of

simple nonabelian groups is actually the socle of a finite group G.

Proposition 1.5.6. Let G be a finite group with subgroup M := T1 × · · · × Tk where

k ≥ 1 and Ti is simple and nonabelian for all i. Then M is the socle of G if and only if

CG(M) = {1} and M ! G.

Proof. Suppose that M is the socle of G. Of course M ! G. Moreover, this implies that

CG(M) ! G. If CG(M) is nontrivial, then CG(M) must contain some minimal normal

subgroup of G, say N . N ! soc(G) = M , so N =
∏

j∈J Tj for some ∅ ,= J ⊆ I by Lemma

1.4.1. In particular, Tj ≤ CG(M) for any j ∈ J . But CG(M) ≤ CG(Tj), so Tj ≤ CG(Tj), a

contradiction since Tj is nonabelian. Thus CG(M) = {1}.
Conversely, suppose that CG(M) = {1} and M ! G. Let N be a minimal normal

subgroup of G. Then N ∩M ! G and N ∩M ≤ N , so either N ≤ M or N ∩M = {1}.
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But if N ∩M = {1}, then [N, M ] ≤ N ∩M = {1}, so N ≤ CG(M) = {1}, a contradiction.

Thus N ≤ M , which implies that soc(G) ≤ M . G acts on {T1, . . . , Tk} by conjugation

by Proposition 1.4.2; let O1, . . . , Om be the orbits of this action. For each j ∈ {1, . . . ,m},
let Nj :=

∏
Ti∈Oj

Ti. Then g−1Njg = Nj for all j and g ∈ G, so Nj ! G for all j. But G

acts transitively on Oj for each j, so Nj is a minimal normal subgroup of G for each j by

Proposition 1.5.2. Thus M = N1 × · · ·×Nm ≤ soc(G), and we are done.

1.6 Wreath Products

Let H and K be groups. A group action of K on H is a homomorphism ϕ : K → Aut(H).

K is then said to be an operator group on H. Equivalently, K is an operator group on H

if H is a K-space for which the action also satisfies (h1h2)k = hk
1h

k
2 for all h1, h2 ∈ H and

k ∈ K.

If K is an operator group on H, then the semidirect product H # K is the set H ×K

with multiplication defined as follows:

(h1, k1)(h2, k2) = (h1h
k−1
1

2 , k1k2) for all h1, h2 ∈ H and k1, k2 ∈ K,

(where the k−1
1 is required for associativity). Then H # K is a group with identity (1, 1),

in which (h, k)−1 = ((h−1)k, k−1). Note that H ! H # K.

A group G is an internal semidirect product of subgroups H and K if H !G, G = HK,

and H ∩K = {1}. We can define a group action of K on H by hk := k−1hk for all k ∈ K

and h ∈ H; it is straightforward to show that G * H # K with this action. On the other

hand, if G = H # K, define H∗ := {(h, 1) : h ∈ H} and K∗ := {(1, k) : k ∈ K}. Then it

is easy to see that G is the internal semidirect product of H∗ and K∗; of course, H * H∗

and K * K∗. Thus these two concepts of a semidirect product are equivalent, and I will

use either form as needed.

Suppose that G is an operator group on A, and suppose that H and B are groups with

G * H and A * B. Let φ and ψ denote the isomorphisms from G onto H and A onto

B respectively. Then it is routine to verify that H is an operator group on B with action

defined by bh := (ag)ψ where b = aψ and h = gφ. It follows that A # G * B # H.

The following definitions can be found in [8, p. 46]. Let G and A be groups, and let Ω be

a G-space. Let B := AΩ = {b : Ω → A}. Define multiplication on B by α(bb′) := (αb)(αb′)

for all b, b′ ∈ B and α ∈ Ω. The multiplication is clearly associative, B has identity 1B

where α1B := 1 for all α ∈ Ω, and b ∈ B has inverse b−1 defined by αb−1 := (αb)−1 for all

α ∈ Ω. Thus B is a group.

Define an action of G on B by αbg := (αg−1
)b for all g ∈ G, b ∈ B and α ∈ Ω. It is

routine to verify that b1 = b, bgh = (bg)h, and (bb′)g = bgb′g for all b, b′ ∈ B and g, h ∈ G,

so we do actually have an action of G on B. Then the wreath product of A and G, denoted
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by A wrΩ G, is defined to be the semidirect product B #G = AΩ #G. B is called the base

group of the wreath product.

Note that if Ω is finite, then we can take G to act on Ω = {1, . . . , |Ω|}, so that A wrΩ G *
A|Ω| # G. Then g acts on (a1, . . . , a|Ω|) by moving ai to the ig-th coordinate, which is

written as (a1, . . . , a|Ω|)g = (a1g−1 , . . . , a|Ω|g−1 ). To see how this notation works (as it is

counter-intuitive), I will quickly verify that we still have an action. Let g, h ∈ G and

(a1, . . . , a|Ω|) ∈ A|Ω|. Then aig−1 is in the i-th coordinate of (a1, . . . , a|Ω|)g, so h will move

aig−1 to the ih-th coordinate. Thus aih−1g−1 is in the i-th coordinate of ((a1, . . . , a|Ω|)g)h, so

(a1g−1 , . . . , a|Ω|g−1 )h = (a1h−1g−1 , . . . , a|Ω|h−1g−1 ) = (a1(gh)−1 , . . . , a|Ω|(gh)−1 ),

from which it follows that ((a1, . . . , a|Ω|)g)h = (a1, . . . , a|Ω|)gh.

The next result is an exercise in [8, p. 114].

Proposition 1.6.1. Let T be a nonabelian simple group, and let Ω = {1, . . . , k} where

k ≥ 1. Then Aut(T k) * Aut(T ) wrΩ Sk.

Proof. By the above, we have that Aut(T ) wrΩ Sk * (Aut(T ))k # Sk. Let

Ti := {(1, . . . , t, . . . , 1) : t ∈ T, t in i-th coordinate},

so that T k = T1 × · · · × Tk. Let (a1, . . . , ak)π ∈ (Aut(T ))k # Sk (using this notation for

simplicity). Define ψ(a1,...,ak)π : T k → T k by (t1, . . . , tk) )→ (t1π−1a1π−1 , . . . , tkπ−1akπ−1).

First, I claim that ψ(a1,...,ak)π ∈ Aut(T k). Since ai is a homomorphism for all i, clearly

ψ(a1,...,ak)π is also a homomorphism. Suppose that (t1, . . . , tk) ∈ ker(ψ(a1,...,ak)π). Then

(t1π−1a1π−1 , . . . , tkπ−1akπ−1) = (1, . . . , 1), so ti ∈ ker(ai) = {1} for all i. Thus ψ(a1,...,ak)π is

1-1. Lastly, let (t1, . . . , tk) ∈ T k and define xj := tjπa−1
j ∈ T for all j. Then

(t1, . . . , tk) = (x1π−1a1π−1 , . . . , xkπ−1akπ−1) = (x1, . . . , xk)ψ(a1,...,ak)π,

so ψ(a1,...,ak)π is onto, and we are done.

Now, we may define ψ : (Aut(T ))k # Sk → Aut(T k) by (a1, . . . , ak)π )→ ψ(a1,...,ak)π. Let

(a′1, . . . , a
′
k)π

′ ∈ (Aut(T ))k # Sk and (t1, . . . , tk) ∈ T k. Then

(t1, . . . , tk)ψ(a1,...,ak)πψ(a′1,...,a′k)π′

= (t1π−1a1π−1 , . . . , tkπ−1akπ−1)ψ(a′1,...,a′k)π′

= (t1π′−1π−1a1π′−1π−1a′1π′−1 , . . . , tkπ′−1π−1akπ′−1π−1a′kπ′−1)

= (t1(ππ′)−1a1(ππ′)−1a′1(ππ′)−1π, . . . , tk(ππ′)−1ak(ππ′)−1a′k(ππ′)−1π)

= (t1, . . . , tk)ψ(a1a′1π ,...,aka′kπ)ππ′

= (t1, . . . , tk)ψ(a1,...,ak)π(a′1,...,a′k)π′ ,

so ψ is a homomorphism.
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Suppose that ψ(a1,...,ak)π is the identity. In particular, we then have that for all t ∈ T ,

(t, . . . , t) = (t, . . . , t)ψ(a1,...,ak)π = (ta1π−1 , . . . , takπ−1),

so ai is the identity on Ti for all i. Let 1 ,= t ∈ T and fix i ∈ {1, . . . , k}. If t∗ :=

(1, . . . , t, . . . , 1) ∈ Ti, then

(1, . . . , t, . . . , 1) = t∗ = t∗ψπ = (1, . . . , t, . . . , 1) ∈ Tiπ

But t ,= 1, so iπ = i. As i was arbitrary, π = 1. Thus ψ is 1-1.

Let a ∈ Aut(T k). Since Ti ! T k, Tia ! T k, but T * Tia, so Tia is simple. Thus for

each i, Tia = Tj for some j by Lemma 1.4.1. Let π : Ω → Ω be defined by i )→ j if

Tia = Tj. Clearly π ∈ Sk. Fix i ∈ {1, . . . , k} and let t ∈ T . If (1, . . . , t, . . . , 1) ∈ Ti, then

there exists a unique (1, . . . , t′, . . . , 1) ∈ Tiπ such that (1, . . . , t, . . . , 1)a = (1, . . . , t′, . . . , 1).

Define ai : T → T by t )→ t′. Then ai ∈ Aut(T ) since a|Ti : Ti → Tiπ is an isomorphism.

Moreover,
(t1, . . . , tk)ψ(a1,...,ak)π

= (t1π−1a1π−1 , . . . , tkπ−1akπ−1)

= (t′1π−1 , . . . , t′kπ−1)

= (t′1π−1 , 1, . . . , 1) · · · (1, . . . , 1, t′kπ−1)

= (1, . . . , t1π−1 , . . . , 1)a|T1π−1 · · · (1, . . . , tkπ−1 , . . . , 1)a|Tkπ−1

= (t1, . . . , tk)a

for all (t1, . . . , tk) ∈ T k, so ψ(a1,...,ak)π = a and ψ is onto.

I now investigate one way to turn a wreath product into a permutation group. Let

G and H be groups acting on sets ∆ and Γ respectively. Let W be the wreath product

H wr∆ G = B # G where B = H∆. Let Ω := Γ∆. Define an action of W on Ω as follows:

for each (b, g) ∈ W and α ∈ Ω, let α(b,g) : ∆ → Γ be defined by

δ )→ ((δg−1
)α)(δg−1

)b.

Then for all (b, g), (b′, g′) ∈ W and δ ∈ ∆,

δα(1B ,1) = (δ1α)(δ1)1B = δα

and
δ(α(b,g))(b′,g′) = (δg′−1

α(b,g))δg′−1
b′

= (δg′−1g−1
α)(δg′−1g−1

b)(δg′−1
b′)

= (δ(gg′)−1
α)δ(gg′)−1

(bb′g
−1

)

= δα(bb′g
−1

,gg′)

= δα(b,g)(b′,g′),
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so we do have an action of W on Ω. This action is called the product action of W on Ω.

The next proposition tells us that W acts as a permutation group under the product

action exactly when both G and H act as permutation groups. This result is mentioned

in [8, p. 50].

Proposition 1.6.2. Let G and H be groups acting on sets ∆ and Γ respectively, where

|Γ| ≥ 2. Then the product action of W = H wr∆ G on Ω =Γ ∆ is faithful if and only if

the respective actions of G and H on ∆ and Γ are faithful.

Proof. Suppose that the product action of W = H wr∆ G on Ω = Γ∆ is faithful and that

δg = δg′ for all δ ∈ ∆ where g, g′ ∈ G. Then

δα(1B ,g−1) = δgα = δg′α = δα(1B ,g′−1)

for all δ ∈ ∆, so α(1,g−1) = α(1,g′−1) for all α ∈ Ω, but the action is faithful, so we must

have that (1, g−1) = (1, g′−1), hence that g = g′. Thus the action of G on ∆ is faithful.

Suppose now that γh = γh′ for all γ ∈ Γ where h, h′ ∈ H. Define bh ∈ B by δ )→ h. Define

bh′ similarly. Then for all δ ∈ ∆,

δα(bh,1) = (δα)δbh = (δα)h = (δα)h′ = (δα)δbh′ = δα(bh′ ,1),

so α(bh,1) = α(bh′ ,1) for all α ∈ Ω. It follows that h = h′, so H is faithful on Γ.

On the other hand, suppose that the respective actions of G and H on ∆ and Γ are

faithful, and suppose that α(b,g) = α(b′,g′) for all α ∈ Ω, where (b, g), (b′, g′) ∈ W . Then

(δg−1
α)δg−1

b = (δg′−1
α)δg′−1

b′

for all δ ∈ ∆ and α ∈ Ω. Let γ ∈ Γ and define αγ ∈ Ω by δ )→ γ. Then for each δ ∈ ∆,

γδg−1
b = (δg−1

αγ)
δg−1

b = (δg′−1
αγ)

δg′−1
b′ = γδg′−1

b′ .

Since γ was arbitrary and H is faithful on Γ, it follows that δg−1
b = δg′−1

b′ for all δ ∈ ∆.

But then δg−1
α = δg′−1

α for all δ ∈ ∆ and α ∈ Ω. If δg−1 ,= δg′−1
for some δ ∈ ∆,

then since |Γ| ≥ 2, there is an α ∈ Ω which will separate δg−1
and δg′−1

, contradicting

the above. Thus δg−1
= δg′−1

for all δ ∈ ∆, but G is faithful on ∆ so g = g′. Lastly,

δbg = δg−1
b = δg′−1

b′ = δb′g
′

for all δ ∈ ∆, which implies that bg = b′g
′
, but g = g′, so

b = b′.

Let us consider another type of wreath product called the twisted wreath product,

which is not quite a full generalization of a wreath product but is built from a wreath

product. The twisted wreath product was originally constructed by B.H. Neumann in [17],

but the constructions found in [24, p. 269] and [14] are my primary references.
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Let G and A be groups where G contains a subgroup H that is an operator group on

A, and let G act on itself by left multiplication (so that Ω = G). Let

HB := {b : G → A : (xh)b = (xb)h for all x ∈ G, h ∈ H}.

Then HB ⊆ B since Ω = G. In fact, HB ≤ B: clearly 1B ∈ HB, and if b, b′ ∈ HB, then for

all x ∈ G and h ∈ H,
(xh)b−1b′ = ((xh)b)−1((xh)b′)

= ((xb)h)−1(xb′)h

= ((xb)−1)h(xb′)h

= ((xb)−1(xb′))h

= (xb−1b′)h,

as desired. Moreover, note that if b ∈ HB, then for all x, g ∈ G,

xbg = xg−1
b = ((g−1)−1x)b = (gx)b,

so for all h ∈ H,

(xh)bg = (gxh)b = ((gx)b)h = (xbg)h.

Thus bg ∈ HB for all g ∈ G and b ∈ HB, so we have an action of G on HB. The twisted

wreath product of A and G, denoted by A twrH G, is defined to be the semidirect product

HB # G. HB is called the base group of the twisted wreath product. Note that when

H = {1}, HB = B and the twisted wreath product is a wreath product.

A brief aside on transversal set notation: let H ≤ G, and let L be a set of left transver-

sals of H in G. Then every element x ∈ G can be written uniquely as x = xhx for some

hx ∈ H where x ∈ L. Whenever I refer to transversal sets, this notation will be used (with

the appropriate adjustment for right transversal sets).

Proposition 1.6.3 ([24, p. 270]). The base group HB of A twrH G is isomorphic to∏
i∈I Ai where Ai = A for all i ∈ I and I has the same cardinality as the set of cosets of

H in G.

Proof. Let {gi : i ∈ I} be a set of left transversals of H in G. Let i ∈ I, and let

Ai := {gib : b ∈ HB}. Ai ≤ A since 1 = gi1B ∈ Ai and (gib)−1(gib′) = gi(b−1b′) ∈ Ai for all

b, b′ ∈ HB. On the other hand, let a ∈ A. Define ba : G → A by x )→ ahx . ba ∈ HB since if

h ∈ H, then

(xh)ba = (x(hxh))ba = ahxh = (ahx)h = (xba)
h.

But a = giba ∈ Ai, so A = Ai for all i ∈ I.

Now for each b ∈ HB, define fb : I →
⋃

i∈I Ai by i )→ gib ∈ Ai. Then fb ∈
∏

i∈I Ai

for all b ∈ HB. Define a function mapping from HB into
∏

i∈I Ai by b )→ fb. It is a

homomorphism since for all i ∈ I,

ifbb′ = gi(bb
′) = (gib)(gib

′) = ifbifb′ = ifbfb′ .
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It is 1-1 since if fb is the identity of
∏

i∈I Ai, then gib = ifb = 1 for all i ∈ I (where 1 is the

identity of Ai = A for all i ∈ I), which implies that xb = (xb)hx = 1hx = 1 = x1B for all

x ∈ G, so b = 1B. To see that it is onto, let f ∈
∏

i∈I Ai. Then if ∈ Ai for all i ∈ I, so for

each i ∈ I there exists a bi ∈ HB with if = gibi . Define bf : G → A by x )→ (xbi)hx when

x = gi. Then ifbf
= gibf = gibi = if for all i ∈ I so fbf

= f , and it is routine to verify that

bf ∈ HB (mimic the proof that ba ∈ HB above), so we are done. Thus HB *
∏

i∈I Ai.

In the notation of the above proof, let Bi := {b ∈ HB : gjb = 1 for all j ,= i} for all i ∈ I.

Then Bi is the preimage of Ai since b ∈ Bi ⇐⇒ 1 = gjb = jfb for all j ,= i ⇐⇒ fb ∈ Ai.

Thus if I = {1, . . . , k}, then HB = B1 × · · ·×Bk (internally).

1.7 Solvable Groups

Let G be a group. A solvable series of a group G is a sequence of subgroups

{1} = Gn ! Gn−1 ! · · · ! G0 = G

where Gi/Gi+1 is abelian for all i ∈ {0, . . . , n − 1}. A group G is said to be solvable if G

has a solvable series.

The derived subgroup or commutator subgroup of G is G′ := [G, G], which is a char-

acteristic subgroup of G since for any γ ∈ Aut(G), [g, h]γ = [gγ, hγ] for all g, h ∈ G. In

particular, G′ is a normal subgroup of G. The higher commutator subgroups of G, denoted

by G(i), are defined inductively by G(0) := G and G(i+1) := (G(i))′. The series

· · · ≤ G(i) ≤ · · · ≤ G(1) ≤ G(0) = G

is called the derived series of G.

The following is a collection of well-known results about solvable groups.

Proposition 1.7.1. Let G be a group.

(i) If H ! G, then G/H is abelian if and only if G′ ≤ H.

(ii) If {1} = Gn ! Gn−1 ! · · · ! G0 = G is a solvable series, then G(i) ≤ Gi for all

i ∈ {0, . . . , n}.

(iii) G is solvable if and only if G(n) = {1} for some n ≥ 0.

(iv) If G is solvable, then any subgroup or homomorphic image of G is solvable; in par-

ticular, every quotient of G is solvable.

(v) If H is a normal solvable subgroup of G and if G/H is solvable, then G is solvable.
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(vi) If H and K are solvable subgroups of a group G where H normalizes K, then HK

is solvable.

Proof. (i) G/H is abelian ⇐⇒ hHgH = gHhH for all g, h ∈ G ⇐⇒ [g, h] = g−1h−1gh ∈
H for all h, g ∈ G ⇐⇒ G′ ≤ H.

(ii) The proof is by induction on i ≥ 0. If i = 0, then the result is trivial. Suppose

that G(i) ≤ Gi for some i ≥ 0. Since Gi/Gi+1 is abelian, G′
i ≤ Gi+1 by part (i). Then

G(i+1) = (G(i))′ ≤ G′
i by induction, so G(i+1) ≤ Gi+1, as desired.

(iii) Suppose that G is solvable, and let {1} = Gn ! Gn−1 ! · · ·! G0 = G be a solvable

series for G. Then by part (ii), G(n) ≤ Gn = {1}, as desired.

Suppose that G(n) = {1} for some n ≥ 0. G(i)/G(i+1) is abelian by part (i) since

G(i+1) = (G(i))′. Thus the derived series is a solvable series for G, and G is solvable.

(iv) Let H ≤ G. If H(i) ≤ G(i), then H(i+1) = (H(i))′ ≤ (G(i))′ = G(i+1), so by induction

H(i) ≤ G(i) for all i ≥ 0. Since G is solvable, G(n) is trivial for some n, so H(n) is also

trivial. Thus H is solvable.

Let ϕ : G → H be an onto homomorphism. (Gϕ)(i) = G(i)ϕ for all i ≥ 0 since

[gϕ, hϕ] = [g, h]ϕ for all g, h ∈ G. Then H(n) = (Gϕ)(n) = G(n)ϕ = 1ϕ = 1, so H is

solvable.

(v) Let ϕ : G → G/H be the natural map. G/H is solvable so (G/H)(n) = {1} for

some n ≥ 0. Then G(n)ϕ = (Gϕ)(n) = (G/H)(n) = {1}, so G(n) ≤ ker(ϕ) = H. H is

solvable, so H(m) = {1} for some m ≥ 0. Similar to the proof of part (iv), it can be

shown by induction that for a fixed i ≥ 0, G(j+i) ≤ (G(i))(j) for all j ≥ 0. But then

G(m+n) ≤ (G(n))(m) ≤ H(m) = {1}. Thus G is solvable.

(vi) H normalizes K so HK/K is isomorphic to H/H ∩K by the second isomorphism

theorem. H is solvable so H/H ∩K is solvable by part (iv). Thus HK/K is solvable, but

K is solvable, so HK is solvable by part (v).

Let p be a prime. An elementary abelian p-group is an abelian group G in which every

nontrivial element has order p. Then G is a finite elementary abelian p-group if and only

if G * Zp × · · ·× Zp.

Proposition 1.7.2 ([20, p. 105]). If N is a finite solvable minimal normal subgroup of a

group G, then it is an elementary abelian p-group for some prime p.

Proof. N is a minimal normal subgroup of G, so it is characteristically simple by Proposi-

tion 1.5.3. Moreover, if N ′ = N , then since N is solvable, N must be trivial, a contradiction.

Thus N is abelian since N ′ char N implies that N ′ is trivial. Let P be a Sylow p-subgroup

of N . Since N is abelian, P is normal in N and hence is the only Sylow p-subgroup of

N . If γ ∈ Aut(N), then Pγ is also a Sylow p-subgroup of N , so Pγ = P . Thus P char

N , so P = N and N is a p-group. Let M := {n ∈ N : np = 1} ≤ N ; note that M is an
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elementary abelian p-group. Let n be a nontrivial element of M . Then for all γ ∈ Aut(N),

nγ has order p, hence is in M . Thus M char N , but M is not trivial as N contains an

element of order p by Cauchy’s Theorem, so M = N .

1.8 Nilpotent Groups

Let G be a group. A central series of a group G is a sequence of subgroups

{1} = G0 ! G1 ! · · · ! Gn = G

where Gi+1/Gi ≤ Z(G/Gi) for all i ∈ {0, . . . , n− 1}. A group G is said to be nilpotent if

G has a central series. Clearly a nilpotent group is solvable.

The higher centers of G, denoted by ζ i(G), are defined inductively by ζ0(G) := {1}
and ζ i+1(G) := {x ∈ G : [x, g] ∈ ζ i(G) for all g ∈ G}. ζ i(G) ≤ G for all i since for all

g ∈ G,

[xy, g] = [y, x][x, gy][y, g] and [x−1, g] = [x, gx−1]−1.

The higher central series of G is

{1} = ζ0(G) ≤ ζ1(G) ≤ · · · ≤ ζn(G) ≤ · · · .

Note that ζ i(G) ! G for all i since for all g, h ∈ G,

[h−1xh, g] = [x, h]−1[x, hg].

Moreover ζ i+1(G)/ζ i(G) = Z(G/ζ i(G)) for all i since ζ i(G)x ∈ ζ i+1(G)/ζ i(G) ⇐⇒ x ∈
ζ i+1(G) ⇐⇒ [x, g] ∈ ζ i(G) for all g ∈ G ⇐⇒ ζ i(G)xg = ζ i(G)gx for all g ∈ G ⇐⇒
ζ i(G)x ∈ Z(G/ζ i(G)). Note also that ζ1(G) = Z(G).

The lower centers of G, denoted by γi(G), are defined inductively by γ0(G) := G and

γi+1(G) := [γi(G), G]. Clearly γi(G) ! G for all i, which implies that γi+1(G) ≤ γi(G)

for all i. Note that if x ∈ γi(G), then [x, g] ∈ γi+1(G) for all g ∈ G, so γi(G)/γi+1(G) ≤
Z(G/γi+1(G)) for all i. The lower central series of G is

G = γ0(G) ≥ γ1(G) ≥ · · · ≥ γn(G) ≥ · · · .

The following is a collection of well-known results about nilpotent groups.

Proposition 1.8.1. Let G be a group.

(i) Let {1} = G0 ≤ G1 ≤ · · · ≤ Gn = G be a central series in a nilpotent group G. Then

Gi ≤ ζ i(G) and γi(G) ≤ Gn−i for all i ∈ {0, . . . , n}.

(ii) G is nilpotent if and only if G = ζn(G) for some n ≥ 0.
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(iii) G is nilpotent if and only if {1} = γn(G) for some n ≥ 0.

(iv) If G is nilpotent, then any subgroup or homomorphic image of G is nilpotent.

(v) If H is a normal subgroup of G contained in Z(G) and if G/H is nilpotent, then G

is nilpotent.

(vi) If G is a finite p-group, then G is nilpotent.

(vii) If G is nilpotent and N is a nontrivial normal subgroup of G, then N intersects

nontrivially with Z(G).

(viii) If G is nilpotent, then no proper subgroup of G is self-normalizing.

(ix) If G is a finite nilpotent group and p | |G|, then G has a unique Sylow p-subgroup P .

Proof. (i) First I show that Gi ≤ ζ i(G) for all i; the proof is by induction on i. If i = 0,

the result is trivial. Suppose that the result is true for some i ≥ 0. Let x ∈ Gi+1. Since

Gi+1/Gi ≤ Z(G/Gi), [x, g] ∈ Gi for all g ∈ G, so [x, g] ∈ ζ i(G) for all g ∈ G by induction.

Thus x ∈ ζ i+1(G).

Now, I show that γi(G) ≤ Gn−i for all i; the proof is again by induction on i ≥ 0. If

i = 0, the result is trivial; suppose that it is true for some i ≥ 0. Let x ∈ γi(G). Then

x ∈ Gn−i by induction, so [x, g] ∈ [Gn−i, G] ≤ Gn−i−1 since Gn−i/Gn−i−1 ≤ Z(G/Gn−i−1).

It follows that γi+1(G) ≤ Gn−(i+1).

(ii) If G is nilpotent, then G = ζn(G) for some n ≥ 0 by part (i), and if G = ζn(G) for

some n ≥ 0, then the higher central series of G is a central series, so G is nilpotent.

(iii) If G is nilpotent, then {1} = γn(G) for some n ≥ 0 by part (i), and if {1} = γn(G)

for some n ≥ 0, then the lower central series of G is a central series, so G is nilpotent.

(iv) Let H ≤ G. If γi(H) ≤ γi(G), then γi+1(H) = [γi(H), H] ≤ [γi(G), G] = γi+1(G).

Thus γi(H) ≤ γi(G) for all i ≥ 0 by induction. Then if G is nilpotent, H is clearly nilpotent

by part (iii).

Similarly, if ϕ : G → H is an onto homomorphism, then γi(Gϕ) ≤ γi(G)ϕ for all i ≥ 0,

so for some n ≥ 0, we have that γi(H) = γi(Gϕ) = γi(G)ϕ = {1}ϕ = {1}. Thus H is

nilpotent.

(v) G/H is nilpotent, so we have a central series

H/H = G0/H ! G1/H ! · · · ! Gn/H = G/H,

so

{1} ! H = G0 ! G1 ! · · · ! Gn = G.

If x ∈ Gi+1, then (Gi/H)(Hx) ∈ Z((G/H)/(Gi/H)), so H[x, g] ∈ Gi/H for all g ∈ G.

This implies that [x, g] ∈ Gi for all g ∈ G, so Gi+1/Gi ≤ Z(G/Gi) for all i ≥ 0. But

H ≤ Z(G), so we have a central series for G.
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(vi) By induction on |G|. If G = {1} the result is trivial. Suppose that |G| > 1. Then

Z(G) is not trivial by Proposition 1.3.1, so G/Z(G) is nilpotent by induction. By part (v),

G is nilpotent.

(vii) By part (ii), G = ζn(G) for some n ≥ 0. Then N ≤ ζn(G), but N ∩ ζ0(G) = {1},
so there exists a least positive integer i such that N ∩ ζ i(G) ,= {1}. Let g ∈ G and

1 ,= x ∈ N ∩ ζ i(G). Then [x, g] ∈ N since N ! G, but [x, g] ∈ ζ i−1(G) by definition, so

[x, g] = 1 since N ∩ ζ i−1(G) = {1}. Thus x ∈ Z(G), but x ∈ N , so N ∩ Z(G) ,= {1}.
(viii) Let H < G = γ0(G). Since G is nilpotent, γn(G) = {1} ≤ H for some n ≥ 0,

so there is a least positive integer i with γi+1(G) ≤ H but γi(G) " H. Then [γi(G), H] ≤
[γi(G), G] = γi+1(G) ≤ H, so if x ∈ γi(G), then [x, h] ∈ H for all h ∈ H. It follows that

γi(G) ≤ NG(H). Thus if H = NG(H), then γi(G) ≤ H, a contradiction, so H < NG(H).

(ix) If NG(P ) < G, then NG(P ) < NG(NG(P )) by part (vii), but this contradicts

Proposition 1.3.6, so NG(P ) = G. Thus P ! G and P is the unique Sylow p-subgroup of

G.

Let G be a finite group with |G| = pnk for some prime p where p ! k. G is said to be

p-nilpotent if there exists a normal subgroup N of G with |N | = k.

Proposition 1.8.2. If G is a finite nilpotent group, then G is p-nilpotent for all primes p

dividing the order of G.

Proof. By Proposition 1.8.1(ix), G has a unique Sylow p-subgroup for each prime p dividing

the order of G. Fix such a prime and write |G| = pnk where p ! k. Let N be the product

of all of the Sylow q-subgroups of G such that q ,= p. Then N ! G and |N | = k. Thus G

is p-nilpotent.

Let P be a finite p-group and let n be the largest order of an elementary abelian p-

subgroup of P . The Thompson subgroup of P , denoted by J(P ), is defined to be the

subgroup of P generated by all of the elementary abelian p-subgroups of P of order n.

Note that if P is nontrivial, then J(P ) is nontrivial. Moreover, J(P ) is a characteristic

subgroup of P , for if α ∈ Aut(P ) and P ′ is an elementary abelian p-subgroup of P of order

n, then so is (P ′)α ≤ J(P ).

Theorem 1.8.3 (Thompson). Let G be a finite group and let P be a Sylow p-subgroup

of G where p is odd. Then G is p-nilpotent if and only if NG(J(P )) and CG(Z(P )) are

p-nilpotent.

Proof. See [19, p. 298].
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1.9 Fixed-point-free Automorphisms

Let G be a group and let α ∈ Aut(G). α is said to have a fixed point g ∈ G if gα = g. If

the identity of G is the only fixed point of α, then α is said to be fixed-point-free.

Here are some basic properties of fixed-point-free automorphisms.

Proposition 1.9.1 ([19, p. 305]). Let α be a fixed-point-free automorphism of order n of

a finite group G.

(i) If gcd(m, n) = 1, then αm is fixed-point-free.

(ii) If β : G → G is defined by g )→ g−1(gα), then β is a permutation of G.

(iii) If g ∈ G, then g and gα are conjugate in G if and only if g = 1.

(iv) g(gα) · · · (gαn−1) = 1 for all g ∈ G.

(v) For each prime p dividing the order of G, there exists a Sylow p-subgroup P of G

such that Pα = P .

Proof. (i) There exist integers s and t with ms + nt = 1. Suppose that gαm = g. Then

gα = gαms+nt = gαms = g, so g = 1. Thus αm is fixed-point-free.

(ii) Suppose that gβ = hβ. Then g−1(gα) = h−1(hα) so hg−1 = (hg−1)α, but α is

fixed-point-free, so h = g. Thus β is 1-1, but G is finite, so β is also onto.

(iii) Suppose that gα = h−1gh for some h ∈ G. By part (ii), h = a−1(aα) for some

a ∈ G. Then

gα = h−1gh = (a−1(aα))−1g(a−1(aα)) = (aα)−1aga−1(aα),

which implies that (aga−1)α = aga−1, but α is fixed-point-free, so aga−1 = 1. Thus g = 1.

The converse is trivial.

(iv) Let x := g(gα) · · · (gαn−1). Then

xα = (g(gα) · · · (gαn−1))α = (gα) · · · (gαn−1)g = g−1xg,

so x = 1 by part (iii).

(v) Let Q be a Sylow p-subgroup of G. Then Qα is also a Sylow p-subgroup of G, so

Qα = g−1Qg for some g ∈ G. By part (ii), g = h(h−1α) for some h ∈ G. Let P := h−1Qh.

Then P is a Sylow p-subgroup and

Pα = (h−1Qh)α

= (hα)−1(Qα)(hα)

= (hα)−1(h(h−1α))−1Q(h(h−1α))hα

= h−1Qh

= P.
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Lemma 1.9.2. Let G be a finite group with a fixed-point-free automorphism α of prime

order p. If H is a proper normal subgroup of G satisfying Hα = H, then G/H has a

fixed-point-free automorphism of order p.

Proof. Define β : G/H → G/H by Hg )→ H(gα). Then Hg = Hg′ ⇐⇒ g′g−1 ∈ H ⇐⇒
(g′g−1)α ∈ H ⇐⇒ H(gα) = H(g′α), so β is well-defined and 1-1. Since α is an onto

homomorphism, so is β. Note that if Hg = H(gα) for all g ∈ G, then g(gα)−1 ∈ H for all

g ∈ G, or g−1(gα) ∈ H for all g ∈ G, but then H = G by part (ii) of Proposition 1.9.1, a

contradiction. Thus β is not the identity. Then since α has order p, Hgβp = H(gαp) = Hg

for all g ∈ G, so β has order p. Lastly, suppose that (Hg)β = (Hg) for some g ∈ G. Then

g(g−1α) ∈ H. Since Hα = H, α|H ∈ Aut(H) and is fixed-point-free, so by part (ii) of

Proposition 1.9.1, g ∈ H. Thus β is fixed-point-free.

Lemma 1.9.3 ([19, p. 306]). Suppose that H ≤ Aut(A) where A is a finite abelian group.

Suppose further that there exist σ ∈ Aut(A) and M ≤ Aut(A) such that σβ is fixed-point-

free of prime order p for all β ∈ M , gcd(|A|, |M |) = 1, and H = M # 〈σ〉. Then M = {1}.

Proof. Let a ∈ A and β ∈ M . Then a(aσβ) · · · (a(σβ)p−1) = 1 by Proposition 1.9.1. Since

A is abelian,

1 =
∏

β∈M

(
p−1∏

i=0

a(σβ)i

)
= a|M |

p−1∏

i=1

(
∏

β∈M

a(σβ)i

)
.

Fix i ∈ {1, . . . , p − 1}. If (σβ)i = (σβ′)i for some β, β′ ∈ M , then (σβ)i ∈ 〈σβ′〉, so

σβ ∈ 〈σβ′〉 since gcd(i, p) = 1 and σβ has order p. Thus for some j ∈ {1, . . . , p− 1},

σβ = (σβ′)j = σj((σj−1)−1β′σj−1) · · · ((σ2)−1β′σ2)(σ−1β′σ)β′.

The element ((σj−1)−1β′σj−1) · · · ((σ2)−1β′σ2)(σ−1β′σ)β′ ∈ M since M ! H, and σj ∈ 〈σ〉;
since M ∩ 〈σ〉 = {1}, we must have that σ = σj, but σ has order p and j ∈ {1, . . . , p− 1},
so j = 1. Thus if (σβ)i = (σβ′)i, then β = β′. Now, (σβ)i = σi(σi−1)−1β · · ·σβ = σiβ∗

where β∗ := (σi−1)−1β · · ·σβ ∈ M . Since (σβ)i is distinct for each β ∈ M , so is each β∗.

Then ∏

β∈M

a(σβ)i =
∏

β∈M

aσiβ.

It follows that

a−|M | =
p−1∏

i=1

(
∏

β∈M

aσiβ

)
.

Let γ ∈ M . Then

(a−|M |)γ =
p−1∏

i=1

(
∏

β∈M

aσiβγ

)
=

p−1∏

i=1

(
∏

β∈M

aσiβ

)
= a−|M |.
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Let n denote the order of a. Then gcd(n, |M |) = 1, so there exist integers s and t with

ns + |M |t = 1, which implies that aγ = (a|M |γ)t = a|M |t = a. Since a ∈ A was arbitrary

and γ : A → A, γ = 1. Thus M = {1}.

Theorem 1.9.4 (Thompson, [19, p. 306]). Let G be a finite group with a fixed-point-free

automorphism α of prime order p. Then G is nilpotent.

Proof. The proof is by induction on |G|. The base case is the cyclic group of order 3 (it

has a fixed-point-free automorphism of order 2), which is nilpotent.

First I show that G must be solvable. If G is any q-group, where q is a prime, then G is

solvable, so we may assume both that G is not a q-group and that there is an odd prime q

dividing |G|. By Proposition 1.9.1, there exists a Sylow q-subgroup Q such that Qα = Q.

Note that the Thompson subgroup of Q, J(Q), is solvable as it is a q-group. Moreover,

J(Q)α = J(Q) since J(Q) char Q.

If J(Q) ! G, then G/J(Q) has a fixed-point-free automorphism of order p by Lemma

1.9.2; J(Q) ,= {1} so |G/J(Q)| < |G|. Then G/J(Q) is nilpotent by induction, hence

solvable, but so is J(Q), so G is solvable by Proposition 1.7.1.

If J(Q) is not normal in G, then NG(J(Q)) < G. I claim that (NG(J(Q)))α =

NG(J(Q)). Suppose g−1J(Q)g = J(Q) where g ∈ G. Then

J(Q) = J(Q)α = (g−1J(Q)g)α = (gα)−1J(Q)(gα),

so NG(J(Q))α ≤ NG(J(Q)). As they have the same order, NG(J(Q))α = NG(J(Q)),

as desired. Since {1} ,= J(Q) ≤ NG(J(Q)), α|NG(J(Q)) is fixed-point-free of order p, so

NG(J(Q)) is nilpotent by induction.

Now, consider CG(Z(Q)). If CG(Z(Q)) = G, then Z(Q) ! G. Since Z(Q) is character-

istic in Q, G/Z(Q) has a fixed-point-free automorphism of order p by Lemma 1.9.2. Z(Q)

is not trivial since Q is a nontrivial q-group, so |G/Z(Q)| < |G|. Thus G/Z(Q) is nilpotent

by induction, hence solvable, but Z(Q) is solvable as it is a q-group, so G is solvable.

Suppose now that CG(Z(Q)) < G. Let g ∈ CG(Z(Q)) and x ∈ Z(Q). Then x = yα for

some y ∈ Z(Q) since Z(Q) is characteristic in Q. This implies that

(gα)−1x(gα) = (g−1yg)α = yα = x,

so CG(Z(Q))α ≤ CG(Z(Q)). Thus CG(Z(Q))α = CG(Z(Q)). If CG(Z(Q)) is trivial, it is

nilpotent. If not, then α|CG(Z(Q)) is fixed-point-free of order p, so CG(Z(Q)) is nilpotent by

induction.

Thus both CG(Z(Q)) and NG(J(Q)) are q-nilpotent by Proposition 1.8.2, so G is q-

nilpotent by Theorem 1.8.3. Then there exists a normal subgroup N of G with |N | = k

where |G| = qnk and q ! k. Note that G = QN since |QN | = |G|. Let n ∈ N . Then
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nα = am where a ∈ Q and m ∈ N , so a = nαm−1 ∈ Q. This implies that nαm−1 has

order ql for some l ∈ {0, . . . , n}, so

1 = (nαm−1)ql
= (nα)ql

((nα)ql−1)−1m−1 · · ·nαm−1.

The element ((nα)ql−1)−1m−1 · · ·nαm−1 ∈ N since N !G, so (nα)ql ∈ N . But gcd(ql, k) =

1, so there exist integers s and t with qls + kt = 1. Then since nkt = 1, nα = (nα)qls ∈ N ,

so Nα = N . Since N < G, N is nilpotent by induction, hence solvable. But N is nontrivial

as G is not a q-group, so |G/N | < |G|. Thus G/N is solvable by induction and Lemma

1.9.2, so G is solvable.

Thus in all cases, G is solvable. Of course, we may assume that G is not abelian, so if

Z(G) is nontrivial, then G/Z(G) is nilpotent by induction and Lemma 1.9.2, which implies

that G is nilpotent by Proposition 1.8.1. Hence, it suffices to show that Z(G) is nontrivial.

Note that if G′ = G, then G(i) = G for all i ≥ 1, but G is solvable, so G(n) = 1 for some

n ≥ 1 by Proposition 1.7.1, a contradiction. Thus G′ is a proper nontrivial characteristic

subgroup of G. Let A be a nontrivial normal subgroup of G that is minimal with respect

to Aα = A. Since G′ < G and A is minimal, A < G. Now, A′ char A, so A′ ! G and

A′α = A′. Since A is solvable, A′ < A, so by the minimality of A, A′ = {1}. Thus A is

abelian. Let q be a prime dividing |A|, and define A∗ := {a ∈ A : aq = 1} ,= {1}. Then

A∗ char A since (aβ)q = aqβ = 1 for all β ∈ Aut(A), so, by the minimality of A, A = A∗.

Thus A is an elementary abelian q-group.

If G is a q-group, then Z(G) is nontrivial, so we may assume that there exists a prime

r | |G| such that r ,= q. By Proposition 1.9.1, there exists a Sylow r-subgroup R of G

such that Rα = R. AR ≤ G since A ! G. If AR < G, then since (AR)α = AαRα = AR,

AR is nilpotent by induction. R is a Sylow r-subgroup of AR, so by Proposition 1.8.1,

R is the unique Sylow r-subgroup. Thus R ! AR. Clearly A ∩ R = {1} since q ,= r, so

[A, R] ≤ A ∩ R = {1}, which implies that R ≤ CG(A). Suppose that AR < G for each

prime r dividing the order of G such that r ,= q (where R is defined as above). Then

G/CG(A) is a q-group. Define a group action of G/CG(A) on Aut(A) by aCG(A)g := g−1ag

for all g ∈ G and a ∈ A. Then A # G/CG(A) is a q-group, hence is nilpotent, so we may

let 1 ,= a ∈ A ∩ Z(A # G/CG(A)) by part (vii) of Proposition 1.8.1. Then for all g ∈ G,

(a, CG(A)g) = (a, CG(A))(1, CG(A)g)

= (1, CG(A)g)(a, CG(A))

= (aCG(A)g−1
, CG(A)g)

= (gag−1, CG(A)g).

Then a = gag−1 for all g ∈ G, so a ∈ Z(G), and we are done.

So we may assume that there exists a prime r ,= q dividing the order of G and a Sylow

r-subgroup R with Rα = R and AR = G. Let ϕm : A → A be conjugation by m ∈ G. Let

σ := α|A and let M := {ϕm : m ∈ R} ≤ Aut(A).
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Let 1 ,= ϕm ∈ M ∩ 〈σ〉. m must have order n ,= 1 for some integer n, so aϕn
m =

(mn)−1amn = a for all a ∈ A, but ϕm ∈ 〈σ〉 implies that ϕm has order p, so p | n. Thus R

contains an element of order p, but R is an r-group, so r = p. Define ϕ : 〈α〉 → Aut(R)

by α )→ α|R. This is a group action. Then R # 〈α〉 is nilpotent since it is a p-group, so by

Proposition 1.8.1, R ∩ Z(R # 〈α〉) is nontrivial; let 1 ,= x be in this intersection. Then

(x, α−1) = (x, 1)(1, α−1) = (1, α−1)(x, 1) = (xα, α−1) = (xα, α−1),

so x = xα, which implies that x is a nontrivial fixed point of α, a contradiction. Thus

M ∩ 〈σ〉 = {1}. Now, suppose that ϕm ∈ M and σi ∈ 〈σ〉. Then

a(σ−iϕmσi) = (m−1(aσ−i)m)σi

= (m−1(aα−i)m)αi

= (mαi)−1a(mαi)

= aϕmαi

for all a ∈ A, so σ−iϕmσi = ϕmαi ∈ M since mαi ∈ R. Thus M is normalized by 〈σ〉, so

we may define H := M # 〈σ〉 ≤ Aut(A).

If M contains an element of order q, say ϕm, and the order of m is n, then q | n as we

saw before, but R is an r-group, so q = r, a contradiction. Thus gcd(|A|, |M |) = 1. Let

ϕm ∈ M . Suppose that aσϕm = a for some a ∈ A. Then aα = aσ = mam−1, so aα and

a are conjugate in G. By Proposition 1.9.1, a = 1, so σϕm is fixed-point-free on A. To

show that σϕm has order p, it suffices to show that σϕm is conjugate to σ in Aut(A). α−1

is fixed-point-free on R and mα−1 ∈ R, so there exists an s ∈ R with mα−1 = s−1(sα−1)

by Proposition 1.9.1. Then m = (s−1α)s, so

aϕ−1
s σϕs = s−1((sas−1)σ)s = s−1(sα)(aα)(s−1α)s = m−1(aσ)m = aσϕm

for all a ∈ A, so ϕ−1
s σϕs = σϕm, as desired. Thus σβ is fixed-point-free on A of order p

for all β ∈ M , so M = 1 by Lemma 1.9.3, which implies that a = m−1am for all m ∈ R

and a ∈ A. Then since A is abelian, A ≤ Z(AR) = Z(G), and we are done.

1.10 Finite Simple Groups

My main references for this section are [7], [8] and [12]. Let G be a group. A composition

series of a group G is a sequence of subgroups

{1} = Gn ! Gn−1 ! · · · ! G0 = G

where Gi+1 is a maximal normal subgroup of Gi for each i. As we saw in Section 1.4,

Gi/Gi+1 is simple for all i. The factors Gi/Gi+1 are called composition factors, and n is
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the length of the series. Moreover, it is easy to see that every finite group has a composition

series: G must contain a maximal normal subgroup G1; if G1 is trivial, we are done, and

if not, then G1 contains a maximal normal subgroup, and so on. This process must

terminate since G is finite. Note that if the factor groups all have prime order, then G

is solvable. The Jordan-Hölder Theorem (see [20, p. 100], for example) states that any

two composition series of a group G have the same length and also that there exists a 1-1

correspondence between the sets of correspondence factors such that corresponding factor

groups are isomorphic. Thus a finite group G determines a unique list of finite simple

groups, namely, the factors of any one of its composition series. It is for this reason that

finite simple groups are so important.

Here is the classification of the finite simple groups:

Theorem 1.10.1 ([12, p. 6]). A finite simple group is either cyclic of prime order, the

alternating group An when n ≥ 5, a group of Lie type, or one of 26 sporadic groups.

As I mentioned in the introduction, the original proof was based on extensive research

by numerous mathematicians; the completion of this immense result was first announced

by Gorenstein in [11]. The proof is now being rewritten in a more concise and self-contained

fashion; presently, there are six volumes of a projected twelve, of which [12] is the first.

I will very briefly outline the various types of finite simple groups. Of course, if G is

simple and abelian, then G is a cyclic group of prime order. Moroever, it is well-known that

the alternating group An is a nonabelian simple group for n ≥ 5. The simple groups of Lie

type can be characterized as groups of fixed points of endomorphisms of linear algebraic

groups over an algebraically closed field of characteristic p (see [23]), and they consist of

several infinite families of groups. Some of the groups of Lie type involve families of well-

known classical groups: linear groups, unitary groups, symplectic groups and orthogonal

groups. I give details on the first two classical groups of Lie type as they will be mentioned

in Section 3.

Consider the general linear group of n × n invertible matrices over the finite field Fq,

denoted by GLn(q). The special linear group, denoted by SLn(q), is the set of all of

matrices of determinant one, and is actually a normal subgroup of GLn(q). The projective

special linear group, denoted by PSLn(q), is simply SLn(q)/Z(SLn(q)). In fact, Z(SLn(q))

consists of the scalar matrices of SLn(q). PSLn(q) is simple if n ≥ 2 except when n = 2

and q = 2 or 3; it is called a linear group within the world of finite simple groups.

The general unitary group GUn(q) is the group of matrices M ∈ GLn(q2) such that

M−1 = (M̄)t, where M̄ is simply M with every entry raised to the q-th power. The special

unitary group SUn(q) is then the subgroup of GUn(q) consisting of those matrices with

determinant one, and the projective special unitary group PSUn(q) is SUn(q) factored out

by its scalar matrices. PSUn(q) is simple if n ≥ 2 except when q = 2 and n = 2 or 3 or

when q = 3 and n = 2; it is called a unitary group within the world of finite simple groups.
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There are also 26 sporadic groups which do not fit into any infinite family of nonabelian

simple groups. The first five of these groups were discovered by Mathieu in the 1860’s,

but most of the remaining sporadic groups were disovered through attempts to prove the

classification of the finite simple groups.

The outer automorphism group of G, denoted by Out(G), is simply the quotient group

Aut(G)/Inn(G). Consider briefly the outer automorphism group of a finite simple group:

if G is cyclic of prime order p, it is not hard to see that Out(G) * Aut(G) * Z∗
p, the

multiplicative group of units of the ring Zp, which is abelian. Suppose that n ≥ 5. Let

π ∈ Sn, and as usual, let ϕπ : Sn → Sn be conjuagtion by π. We can easily map Sn into

Aut(An) by π )→ ϕπ|An ; this is clearly an embedding since CSn(An) is trivial. Moreover,

it can be shown that if n ,= 6, then this map is onto (see [24, p. 299]). But An is

simple and nonabelian, so An * Inn(An), which gives us that |Out(An)| = [Sn : An] = 2.

Thus Out(An) * Z2 when n ,= 6. In [24, p. 300], it is proved that Aut(A6) = Aut(S6)

and [Aut(S6) : Inn(S6)] = 2. Since we also have that S6 * Inn(S6), it follows that

|Out(A6)| = 4 (in fact, Out(A6) * Z2 × Z2). Hence for n ≥ 5, Out(An) is abelian. I will

not go into details when G is of Lie type, but it turns out that Out(G) is solvable; see [7].

Lastly, if G is one of the 26 sporadic groups, then Out(G) has order at most 2, hence is

abelian.

Summarizing, if G is either cyclic of prime order, the alternating group An when n ≥ 5,

or one of the 26 sporadic groups, then Out(G) is abelian, and if G is of Lie type, then

Out(G) is solvable. The classification of the finite simple groups then implies that we

have proven the Schreier Conjecture, stated below. To date, no simpler proof is known.

Interestingly, I could not find an original reference for this conjecture.

Theorem 1.10.2 (Schreier Conjecture). The outer automorphism group of a finite simple

group is solvable.
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2 Finite Primitive Permutation Groups

First I define primitivity and look at some of the properties of finite primitive permutation

groups; specifically, I examine the highly restrictive structure of the socle of a finite prim-

itive permutation group. I then describe the five isomorphism classes of a finite primitive

permutation group as they are outlined in [14]. I finish with the proof of the O’Nan-Scott

Theorem. Except where otherwise noted, all of the results in the isomorphism class sec-

tions (2.2-2.6) are stated or implied in [14] but not proved; again, my main source for the

proof of the O’Nan-Scott Theorem is [14], though I have reorganized their proof somewhat.

Both [8] and [19] are general references for this entire section.

2.1 Primitivity

Let Ω be a G-space, and let α ∈ Ω. A block is a nonempty subset Γ of Ω such that for every

g ∈ G, either Γ = Γg or Γ ∩ Γg = ∅. Ω and {α} are called trivial blocks as they are rather

uninteresting. Any other block of Ω is called nontrivial. A transitive G-space Ω is called

primitive, or equivalently, G is said to act primitively on Ω, if Ω contains no nontrivial

block. If the action of a primitive G-space is faithful, then G is said to be a primitive

permutation group. Note that if G is primitive, then GΩ is a primitive permutation group

(irrespective of the action being faithful).

The definition is only given for transitive G-spaces since if the action of G on Ω is

nontrivial and not transitive, then G must have a proper orbit containing at least two

elements, which is a nontrivial block.

Before I look at some of the properties of primitive G-spaces, I consider briefly how any

group action can be reduced to a primitive one. Let G act on Ω. Then G is transitive on

the orbit θG(α) for all α ∈ Ω. Suppose that θG(α) contains at least two elements, and let

Γ ⊆ θG(α) be a minimal block of G containing at least two elements. Then I claim that

GΓ acts primitively on Γ. Let α, β ∈ Γ. Then there exists a g ∈ G with αg = β since G is

transitive on θG(α). Since αg = β ∈ Γg ∩Γ and Γ is a block of G, Γg = Γ. Thus g ∈ GΓ, so

GΓ is transitive on Γ. Now, let ∆ ⊆ Γ be a block of GΓ containing at least two elements.

Let g ∈ G. If g ∈ GΓ, then of course ∆g = ∆. If g /∈ GΓ, then Γg ∩ Γ = ∅, so ∆g ∩∆ = ∅.
Hence, ∆ is actually a block of G, so ∆ = Γ by the minimality of Γ. Thus GΓ has no

nontrivial blocks, so GΓ is primitive on Γ.

Suppose now that N acts on Ω and contains a subgroup G which is primitive on Ω.

Then for every proper subset Γ of Ω containing at least two elements, there exists a g ∈ G

such that Γ ,= Γg and Γ ∩ Γg ,= ∅. Then each such g ∈ N , but G is transitive, so N

is transitive, hence primitive. In particular, every subgroup of SΩ containing a primitive

group is itself primitive.

I claim that AΩ is primitive when Ω contains at least three elements (if Ω is infinite,
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then AΩ is defined to be the subgroup of SΩ generated by all of the 3-cycles). AΩ is

transitive, for if α, β ∈ Ω, then, choosing γ ∈ Ω such that γ ,= α and γ ,= β, we get

that the permutation π := (α β γ) ∈ AΩ and that απ = β. Let Γ be a proper subset

of Ω containing at least two elements. Then there exist α ∈ Ω \ Γ and β, γ ∈ Γ with

β ,= γ. Again, let π be (α β γ). Then α = γπ ∈ Γπ so Γ ,= Γπ. Similarly, γ ∈ Γπ ∩ Γ,

so Γπ ∩ Γ ,= ∅. Thus AΩ is primitive. Moreover, it follows that SΩ is primitive for all

nonempty Ω: the result is trivial when Ω contains one or two elements, and if Ω contains

at least three elements, then SΩ is primitive since AΩ is.

A G-congruence on Ω is a G-invariant equivalence relation ∼ on Ω; that is, α ∼ β ⇐⇒
αg ∼ βg for all g ∈ G. Trivial and nontrivial G-congruences are defined in the obvious

way.

This next proposition is from an exercise in [8, p. 13].

Proposition 2.1.1. Suppose that Ω is a G-space with GΩ nontrivial. Then it is primitive

if and only if the only G-congruences on Ω are trivial.

Proof. Suppose that ∼ is a nontrivial G-congruence on Ω. Let [α] be an equivalence class of

∼ which contains at least two elements (and is of course proper). Let g ∈ G and β ∈ [α]g.

Then β = γg where γ ∼ α, so βg−1
= γ ∼ α, which implies that β ∼ αg since ∼ is a

G-congruence. Thus β ∈ [αg], so [α]g ⊆ [αg]. Similarly, [αg] ⊆ [α]g, so [α]g = [αg]. Thus

[α]g is an equivalence class for all g ∈ G; it follows that [α] is a nontrivial block, so Ω

cannot be primitive.

Suppose now that Ω is not primitive but is transitive. Then there exists a nontrivial

block Γ, and every element of Ω is in Γg for some g ∈ G. Moreover, if Γg ∩ Γh ,= ∅ for

some g, h ∈ G, then Γgh−1 ∩ Γ ,= ∅, so Γgh−1
= Γ since Γ is a block, which implies that

Γg = Γh. Thus {Γg : g ∈ G} partitions Ω, which allows us to define an equivalence relation

∼ on Ω by α ∼ β if there exists a g ∈ G with α, β ∈ Γg. ∼ is G-invariant since α ∼ β

implies that α, β ∈ Γh for some h ∈ G, so αg, βg ∈ Γhg and αg ∼ βg. Thus ∼ is a nontrivial

G-congruence.

Lastly, suppose that Ω is not transitive. Define ∼ by α ∼ β if α and β are in the same

orbit. This clearly defines a G-congruence whose congruence classes are orbits. Since Ω is

not transitive and since the action is not trivial, ∼ must be nontrivial.

The proof of Proposition 2.1.1 shows that this variant must also be true:

Proposition 2.1.2. Suppose that Ω is a transitive G-space. Then it is primitive if and

only if the only G-congruences on Ω are trivial.

This next property of primitive permutation groups is quite important and will be used

without reference.
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Proposition 2.1.3 ([19, p. 199]). Let G be a primitive permutation group on Ω. If N is

a nontrivial normal subgroup of G, then N is transitive on Ω.

Proof. N is nontrivial, so N must move some element of Ω; thus there exists an N -orbit Γ

containing at least two elements. Let α ∈ Γ and g ∈ G. Then αgn = α(gng−1)g ∈ Γg for

all n ∈ N since N is normal in G, so Γgn ⊆ Γg for all n ∈ N and g ∈ G. It follows that

Γgn = Γg for all n ∈ N and g ∈ G, so Γg is an N -orbit for all g ∈ G. Then Γ is a block of

G since two orbits are either the same or have empty intersection, but G is primitive, so

Γ = Ω. Thus N is transitive.

Note that the requirement above that G be a permutation group is necessary: if G

does not act faithfully on Ω where Ω contains at least two elements, then the kernel of the

action is a nontrivial normal subgroup of G that moves no element of Ω and so cannot be

transitive.

Let H, K and L be subgroups of a group G where H ≤ K. Suppose that we have

an action of L on K. Then H is said to be an L-invariant subgroup of K if H l = H for

all l ∈ L. For the action to be conjugation, L must normalize K. If so, then H is an

L-invariant subgroup of K if and only if L ≤ NG(H). I will assume for the remainder of

this thesis that the action is conjugation whenever I refer to invariant subgroups.

In the following, the proof of part (i) comes from [19, p. 198] while part (ii) is an

exercise from [8, p. 124].

Theorem 2.1.4. Let G act on Ω, where Ω contains at least two elements.

(i) G is primitive if and only if G is transitive and Gα is a maximal subgroup of G for

all α ∈ Ω.

(ii) Let H be a transitive subgroup of G which is normalized by Gβ for some β ∈ Ω.

Then G is primitive if and only if Hα is a maximal Gα-invariant subgroup of H for

all α ∈ Ω .

Proof. (i) Suppose that G is primitive, and let α ∈ Ω. Gα is a proper subgroup of G since

Ω contains at least two elements. Let Gα ≤ H ≤ G and define Γ := {αh : h ∈ H}. Then

Γ is an H-orbit. Let g ∈ G and suppose that β ∈ Γg ∩ Γ. Then β = αh1g = αh2 for some

h1, h2 ∈ H, which implies that h1gh−1
2 ∈ Gα ≤ H, so g ∈ H. But then Γg = Γ, so Γ is a

block. G is primitive so either Γ = {α} or Γ = Ω. Suppose that Γ = {α}, and let h ∈ H.

Then αh = α as αh ∈ Γ, so h ∈ Gα. Thus Gα = H. Suppose instead that Γ = Ω, and let

g ∈ G. Then αg ∈ Ω = Γ, so αg = αh for some h ∈ H. It follows that gh−1 ∈ Gα ≤ H, so

g ∈ H and H = G. Thus Gα is a maximal subgroup of G.

Suppose now that G is not primitive but is transitive. Then there exists a nontrivial

block Γ; let α ∈ Γ. Gα ≤ GΓ since if αg = α, then Γg ∩ Γ ,= ∅, which implies that Γg = Γ.
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Suppose that Gα = GΓ, and let β ∈ Γ. By transitivity, there exists a g ∈ G such that

β = αg. Then Γg ∩ Γ ,= ∅, so it follows that g ∈ GΓ = Gα. But then β = αg = α, so

Γ = {α}, a contradiction. Suppose now that G = GΓ, and let β ∈ Ω. Again, there exists a

g ∈ G such that β = αg. Then β ∈ Γg = Γ, so Ω = Γ, a contradiction. Thus Gα < GΓ < G,

so Gα is not maximal in G.

(ii) Since H is transitive, G is transitive, and since Ω contains at least two elements,

Hα is a proper subgroup of H. Moreover, for every α ∈ Ω there exists an h ∈ H with

β = αh, so Gβ = Gαh = h−1Gαh. Then Gα normalizes H for all α ∈ Ω since Gβ normalizes

H. In particular, Hα is normal in Gα, so Hα is a proper Gα-invariant subgroup of H for

all α ∈ Ω.

Suppose that G is primitive, and let α ∈ Ω. Suppose further that there exists M ≤ G

such that Hα ≤ M ≤ H and Gα ≤ NG(M). If Gα = NG(M), then M ≤ Gα, but M ≤ H

so M ≤ Gα ∩ H = Hα. Thus M = Hα. If Gα < NG(M), then since G is primitive,

NG(M) = G by part (i). Then M is normal in G, so Gα ≤ GαM ≤ G. Moreover, if M is

trivial, then Hα = {1} = M , so we may assume that M is not trivial. Then since M ! G

and G is primitive, M is transitive. If Gα = GαM , then Gα is transitive since M is, a

contradiction of Ω containing at least two elements. Thus GαM = G, again by part (i), so

H = H ∩ (GαM) = HαM = M . Thus Hα is a maximal Gα-invariant subgroup of H.

Suppose now that G is not primitive; let Γ be a nontrivial block and α ∈ Γ. As we saw

in the proof of part (i), Gα < GΓ < G. Let M := GΓ ∩ H = HΓ. Then Gα normalizes

M since Gα ≤ GΓ and Gα normalizes H. Clearly Hα ≤ M ≤ H. If H = M = HΓ, then

since H is transitive, repeating the proof of part (i) gives us that Ω = Γ, a contradiction.

If Hα = M = HΓ, then again by the proof of (i), we get that Γ = {α}, a contradiction.

Thus Hα is not a maximal Gα-invariant subgroup of H.

Note that when G is a transitive permutation group, given any β ∈ Ω, Gβ = Gαg =

g−1Gαg for some g ∈ G. Thus every stabilizer of a transitive permutation group G is

conjugate in G. It follows that if one stabilizer of G is a maximal subgroup of G, then

every stabilizer is maximal in G. Thus to show that a transitive group G acts primitively,

it suffices to show that one stabilizer is maximal in G. Similarly for part (ii), it suffices

to show that Hα is a maximal Gα-invariant subgroup of H for some α ∈ Ω. On the other

hand, if we know that G is primitive, both conditions will be useful in classifying which

isomorphism class G belongs to. In particular, since we will see shortly that the socle of

a finite primitive permutation group has a very nice structure and since such a socle is

transitive by Proposition 2.1.3, the H in part (ii) is often taken to be the socle.

The next result is an exercise in [8, p. 52] that is required to prove Proposition 2.1.6,

the first application of Theorem 2.1.4.

Proposition 2.1.5. Let G be primitive on Ω where Ω contains at least two elements. Then

G is not regular if and only if Gα is self-normalizing in G for all α ∈ Ω.
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Proof. Let α ∈ Ω. Since G is primitive, G is transitive, so G is regular if and only if Gα is

trivial. Note that if Gα is trivial, then Gα ! G. On the other hand, if Gα ! G and Gα is

not trivial, then Gα is transitive by primitivity, but then Ω can only contain one element,

a contradiction. Thus G is regular if and only if Gα ! G, or G is not regular if and only if

NG(Gα) < G. Since G is primitive, Gα is maximal in G, but Gα ≤ NG(Gα) ≤ G, so either

Gα = NG(Gα) or NG(Gα) = G. Hence, G is not regular if and only if Gα = NG(Gα).

Proposition 2.1.6 ([8, p. 50]). Let G and H be groups acting on sets ∆ and Γ respectively,

where H is not trivial, and both ∆ and Γ contain at least two elements. Then the product

action of W := H wr∆ G on Ω := Γ∆ is primitive if and only if ∆ is finite, G is transitive

on ∆, and H is primitive but not regular on Γ.

Proof. Let B be the base group of W , B′ := {(b, 1) : b ∈ B} and G′ := {(1B, g) : g ∈ G},
so that W = B′G′. Let γ ∈ Γ and define αγ ∈ Ω by δ )→ γ. Now

αγ = α(b,g)
γ ⇐⇒ γ = δαγ = δα(b,g)

γ = (δg−1
αγ)

δg−1
b = γδg−1

b

for all δ ∈ ∆, which is true if and only if γ = γδb for all δ ∈ ∆ (as δg−1
acts as a bijection

on ∆). Thus

Wαγ = {(b, g) ∈ W : δb ∈ Hγ for all δ ∈ ∆}.

Since Γ contains at least two elements, so does Ω, so by Theorem 2.1.4, W is primitive if

and only if W is transitive and Wαγ is maximal in W . First, I prove that if one of the five

conditions in the theorem fails, then one of these two conditions on W must fail.

Suppose that H is not transitive on Γ. Let γ, γ′ ∈ Γ. If W is transitive on Ω, then for

αγ and αγ′ defined as above, there exists a (b, g) ∈ W with

α(b,g)
γ = αγ′ .

Then for each δ ∈ ∆,

γ′ = δαγ′ = δα(b,g)
γ = (δg−1

αγ)
δg−1

b = γδg−1
b,

and δg−1
b ∈ H, so H is transitive on Γ, a contradiction. Thus W is not transitive on Ω.

We may assume then that H is transitive. Since |Γ| ≥ 2, Hγ is a proper subgroup of

H. If h ∈ H, define bh ∈ B by δ )→ h. This function will be used repeatedly.

Suppose that H is not primitive. Since H is transitive, there exists a K with Hγ <

K < H. Let K ′ := {(b, g) ∈ W : δb ∈ K for all δ ∈ ∆}. Clearly Wαγ ≤ K ′ ≤ W .

Let h ∈ H \ K. Then (bh, 1) ∈ W \ K ′, so K ′ < W . Similarly, let k ∈ K \ Hγ. Then

(bk, 1) ∈ K ′ \ Wαγ , so Wαγ < K ′. Thus Wαγ is not maximal in W .

Suppose that H is regular. Then Wαγ = {(b, g) ∈ W : δb = 1 for all δ ∈ ∆} =

{(1B, g) ∈ W} = G′. Let L := {(b, 1) ∈ W : δb = δ′b for all δ, δ′ ∈ ∆}. Then L ≤ W .
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Moreover, L is normalized by G′ since if (b, 1) ∈ L then for all δ, δ′ ∈ ∆ and g ∈ G,

δbg = δg−1
b = δ′g

−1
b = δ′bg, which implies that (1B, g)−1(b, 1)(1B, g) = (bg, 1) ∈ L. Thus

Wαγ = G′ ≤ LG′ ≤ W . If G′ = LG′, then L ≤ G′, but L ≤ B′ so L must be trivial. H

is not trivial, so let 1 ,= h ∈ H. Then (1B, 1) ,= (bh, 1) ∈ L, a contradiction. If LG′ = W ,

then clearly L = B′, but ∆ contains at least two elements so we can define an element of

B which separates 1 and h ,= 1, a contradiction. Thus Wαγ < LG′ < W .

Suppose that G is not transitive on ∆. Let Σ be an orbit of G in ∆, and let M :=

{(b, 1) ∈ W : δb ∈ Hγ for all δ ∈ Σ} ≤ B. Again, M is normalized by G′ since for

(b, 1) ∈ M and g ∈ G , δbg = δg−1
b ∈ Hγ for all δ ∈ Σ (since δg−1 ∈ Σ for all δ ∈ Σ), which

implies that (bg, 1) ∈ M . Clearly we then have that Wαγ ≤ MG′ ≤ W . Let h ∈ H \ Hγ,

and define b ∈ B by

δb :=

{
1 if δ ∈ Σ,

h otherwise.

Then (b, 1) ∈ MG′ \ Wαγ . Moreover, (bh, 1) ∈ W \ MG′. Thus Wαγ < MG′ < W .

Lastly, suppose that ∆ is infinite, and let

N := {(b, 1) ∈ W : δb = 1 for all but finitely many δ ∈ ∆}.

Let (n, 1) ∈ N . Then for all (b, g) ∈ W ,

(b, g)−1(n, 1)(b, g) = ((b−1)g, g−1)(nb, g) = ((b−1)g(nb)g, 1) = ((b−1nb)g, 1).

g−1 permutes the elements of ∆ so δg−1
n = 1 almost always, and if δg−1

n = 1, then

δ(b−1nb)g = (δg−1
b)−1(δg−1

n)(δg−1
b) = 1, so δ(b−1nb)g = 1 almost always. This implies

that ((b−1nb)g, 1) ∈ N , so N is a normal subgroup of W . Then Wαγ ≤ WαγN ≤ W . Let

h ∈ H \ Hγ. Choose δ0 ∈ ∆ and define b0 ∈ B by

δb0 :=

{
h if δ = δ0,

1 otherwise.

Then clearly (b0, 1) ∈ WαγN \Wαγ . Now consider (bh, 1). If (bh, 1) ∈ WαγN , then (bh, 1) =

(b, g)(n, 1) = (bng−1
, g) for some (b, g) ∈ Wαγ and (n, 1) ∈ N . Then g = 1, so bh = bn.

δb ∈ Hγ for all δ ∈ ∆, so δb ,= h for all δ ∈ ∆. But then δn = δb−1bh = (δb)−1h ,= 1 for all

δ ∈ ∆, so (n, 1) /∈ N , a contradiction. Thus (bh, 1) ∈ W \ WαγN .

Hence, if any of the conditions that ∆ be finite, G be transitive on ∆, or H be primitive

but not regular on Γ fail, then W is not primitive.

Suppose now that ∆ is finite, G is transitive on ∆, and H is primitive but not regular

on Γ. Let α, β ∈ Ω. For each δ ∈ ∆, we may choose hδ ∈ H such that (δα)hδ = δβ since

H is transitive on Γ. Define bαβ ∈ B by δ )→ hδ. Then

δα(bαβ ,1) = (δα)δbαβ = (δα)hδ = δβ
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for all δ ∈ ∆, so α(bαβ ,1) = β. Thus W is transitive on Ω.

Let U be such that Wαγ < U ≤ W . To show that W is primitive, we must show that

U = W . W = B′G′ = B′Wαγ since G′ ≤ Wαγ . Then U = U ∩ W = U ∩ B′Wαγ =

(U ∩ B′)Wαγ . It follows that if U ∩ B′ = Wαγ ∩ B′, then U = Wαγ ∩ B′Wαγ = Wαγ , a

contradiction, so there exists a (b∗, 1) ∈ (U ∩ B′) \ (Wαγ ∩ B′). Then (b∗, 1) /∈ Wαγ , so

there exists a δ0 ∈ ∆ with δ0b∗ /∈ Hγ. H is primitive but not regular and Γ contains at

least two elements, so by Proposition 2.1.5, Hγ is self-normalizing in H. Then there exists

an h ∈ Hγ where (δ0b∗)−1h−1(δ0b∗) /∈ Hγ (or else δ0b∗ normalizes Hγ, which implies that

δ0b∗ ∈ Hγ). Define b0 ∈ B by

δb0 :=

{
h if δ = δ0,

1 otherwise.

Then clearly (b0, 1) ∈ Wαγ ≤ U , so ([b∗, b0], 1) ∈ U ∩B′. δ0[b∗, b0] = [δ0b∗, δ0b0] = [δ0b∗, h] /∈
Hγ since h ∈ Hγ and (δ0b∗)−1h−1(δ0b∗) /∈ Hγ. Thus we have that Hγ < 〈δ0[b∗, b0], Hγ〉 ≤ H,

but H is primitive, so 〈δ0[b∗, b0], Hγ〉 = H.

For each δ ∈ ∆, let Bδ := {(b, 1) ∈ W : δ′b = 1 for all δ′ ,= δ} ≤ W . More-

over, I claim that Bδ0 ≤ U . Let (b, 1) ∈ Bδ0 . δ0b ∈ H = 〈δ0[b∗, b0], Hγ〉, so δ0b =

h1(δ0[b∗, b0])n1 · · ·hk(δ0[b∗, b0])nk where for all i ∈ {1, . . . , k}, hi ∈ Hγ and ni is a nonnega-

tive integer. For each i ∈ {1, . . . , k}, define bi ∈ B by

δbi :=

{
hi if δ = δ0,

1 otherwise.

Since δ[b∗, b0] = 1 for all δ ,= δ0, b = b1[b∗, b0]n1 · · · bk[b∗, b0]nk . Then (b, 1) ∈ U since

([b∗, b0], 1) ∈ U and (bi, 1) ∈ Wαγ ≤ U for all i. Hence, Bδ0 ≤ U , as desired.

Let (b, 1) ∈ Bδ0 and (1, g) ∈ G′. Then (1, g)−1(b, 1)(1, g) = (bg, 1), and if δ ,= δg
0 , then

δg−1 ,= δ0, so δbg = δg−1
b = 1 (as (b, 1) ∈ Bδ0). Thus (1, g)−1(b, 1)(1, g) ∈ Bδg

0
. On the other

hand, suppose that (b, 1) ∈ Bδg
0
. If δ ,= δ0, then δg ,= δg

0 , so δbg−1
= δgb = 1 (as (b, 1) ∈ Bδg

0
),

and so (bg−1
, 1) ∈ Bδ0 , which implies that (b, 1) = (1, g)−1(bg−1

, 1)(1, g) ∈ (1, g)−1Bδ0(1, g).

Thus (1, g)−1Bδ0(1, g) = Bδg
0

for all g ∈ G. But G is transitive on ∆, so for each δ ∈ ∆

there exists a gδ ∈ G with δgδ
0 = δ. Hence for all δ ∈ ∆,

Bδ = Bδ
gδ
0

= (1, gδ)
−1Bδ0(1, gδ) ≤ U

since G′ ≤ U and Bδ0 ≤ U . But ∆ is finite, so B′ =
∏

δ∈∆ Bδ ≤ U , and thus W = B′Wαγ ≤
U , as desired.

The next set of propositions give a very precise description of the socle of a finite

primitive permutation group.
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Proposition 2.1.7 ([14]). Let G be a finite primitive permutation group on Ω. Then G

has at most two minimal normal subgroups.

Proof. If G is trivial, then G has no minimal normal subgroups, and we are done. Let J

be a minimal normal subgroup of G. If CG(J) = {1}, then J is the unique minimal normal

subgroup of G since if K is another minimal normal subgroup of G, then K ≤ CG(J) = {1},
a contradiction.

Suppose then that CG(J) is not trivial. Since G is primitive and CG(J) is normal in G,

CG(J) is transitive, so CSΩ(J) is transitive. Then by Proposition 1.2.1, J is semiregular.

Similarly, J is transitive, so by Proposition 1.2.1, CSΩ(J) is semiregular, which implies that

CG(J) is also semiregular. Thus both J and CG(J) are regular. Let K be a nontrivial

normal subgroup of G contained in CG(J). Since K is nontrivial and normal in G, it

is transitive, but K is contained in a semiregular group, so it is also semiregular, hence

regular. Then both K and CG(J) are isomorphic to Ω, so K = CG(J), which implies that

CG(J) is a minimal normal subgroup of G. Now, if L is any minimal normal subgroup of

G that is different from J , then L ≤ CG(J), but CG(J) is minimal normal so L = CG(J).

Thus G has minimal normal subgroups J and CG(J) (where J and CG(J) may be equal).

Hence in all cases, G has at most two minimal normal subgroups.

Proposition 2.1.8 ([8, p. 114]). If G is a finite nontrivial primitive permutation group

on Ω, then one of the following holds:

(i) G has exactly one minimal normal subgroup J where J is a regular elementary abelian

p-group for some prime p;

(ii) G has exactly one minimal normal subgroup J where CG(J) = {1};

(iii) G has exactly two minimal normal subgroups J and CG(J), which are permutation

isomorphic, nonabelian and regular.

Proof. Following the proof of Proposition 2.1.7, if CG(J) = {1}, then we are in case (ii).

If CG(J) ,= {1}, then we have regular minimal normal subgroups J and CG(J). Note that

J = CG(J) if and only if J is abelian: if J = CG(J), then clearly J is abelian; on the

other hand, if J is abelian, then J ≤ CG(J), and so J = CG(J) since CG(J) is minimal

normal. So if J = CG(J), then we are in case (i) by Proposition 1.7.2 as an abelian group is

solvable. If J ,= CG(J), then J is nonabelian. J is regular, so J is permutation isomorphic

to CSΩ(J) by Proposition 1.2.6, hence to CG(J) as CG(J) ≤ CSΩ(J) and both are regular.

Then CG(J) is also nonabelian, and we are in case (iii).

Note that in case (ii), J may or may not be regular.

Theorem 2.1.9 ([14]). The socle of a finite nontrivial primitive permutation group G on

Ω is isomorphic to T k for some simple group T and some positive integer k.
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Proof. If we are in case (i) or (ii) of Proposition 2.1.8, then the result follows from Corollary

1.5.5. Suppose that we are in case (iii). Then soc(G) = 〈J,CG(J)〉 = J ×CG(J). But J is

permutation isomorphic to CG(J), so the result follows again from Corollary 1.5.5.

I conclude this section with some useful results about primitive permutation groups.

Proposition 2.1.10. Let G be a finite primitive permutation group with a nonabelian

socle. Then CG(soc(G)) = {1}.

Proof. Let M := soc(G). M * T k for some k ≥ 1 and some nonabelian simple group T

by Theorem 2.1.9, so CG(M) = {1} by Proposition 1.5.6.

Proposition 2.1.11 ([8, p. 115]). Let G be a finite nontrivial primitive permutation group

on Ω. Then soc(G) is a minimal normal subgroup of NSΩ(soc(G)).

Proof. Let M := soc(G). Of course M is normal in N := NSΩ(M) and G ≤ N . First

suppose that M is minimal normal in G. Let K be a nontrivial normal subgroup of N

contained in M . Then K ! G, so K = M . Thus M is a minimal normal subgroup of N .

Suppose now that M is not a minimal normal subgroup of G. Then M = J × CG(J)

where J and CG(J) are the regular distinct minimal normal subgroups of G by Proposition

2.1.8. Since J is transitive and J ≤ CG(CG(J)), CG(CG(J)) is transitive. Since CG(J)

is also transitive, it follows from Proposition 1.2.1 that CG(CG(J)) is semiregular hence

regular. Then CG(CG(J)) = J since J is also regular. Moreover, we know that J is

permutation isomorphic to CG(J), so by Proposition 1.2.4, CG(J) = n−1Jn for some n ∈
SΩ. It is then routine to verify that n−1CG(J)n centralizes n−1Jn since CG(J) centralizes

J . Summarizing, we have that CG(J) = n−1Jn for some n ∈ SΩ, n−1CG(J)n ≤ CG(n−1Jn)

and CG(CG(J)) = J . Then

n−2Jn2 = n−1(n−1Jn)n = n−1CG(J)n ≤ CG(n−1Jn) = CG(CG(J)) = J,

but n−2Jn2 and J have the same order, so n−2Jn2 = J . Replacing n−1Jn with CG(J), we

have n−1CG(J)n = J , which implies that n ∈ N since

n−1Mn = n−1Jn× n−1CG(J)n = CG(J)× J = M.

Now, M * T k for some k ≥ 1 and some nonabelian simple group T by Theorem 2.1.9, so

J * T
k
2 * CG(J). By Proposition 1.5.2, G acts transitively on the k/2 factors of J and of

CG(J), so N does as well. But then N acts transitively on all k factors of M since n ∈ N .

Thus M is a minimal normal subgroup of N , again by Proposition 1.5.2.

The following is constructed primarily for the proof of the O’Nan-Scott Theorem. Like

Lemma 1.4.3, the formulation and proof of the lemma are mine, but its existence is implied

by the proof of the O’Nan-Scott Theorem in [14].
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Lemma 2.1.12. Let G be a finite primitive permutation group on Ω, and let M be the

socle of G where M is nonabelian. Let α ∈ Ω. Suppose that there exist groups X1, . . . , Xn

such that M = X1 × · · · × Xn and Mα = (X1)α × · · · × (Xn)α. Suppose that one of the

following holds:

(i) Xi is simple for all i ∈ {1, . . . , n};

(ii) (Xi)α is a full diagonal subgroup of Xi for all i ∈ {1, . . . , n}.

Then Gα acts transitively by conjugation on {X1, . . . , Xn}.

Proof. By Theorem 2.1.9, M * T k for some nonabelian simple group T and some k ≥ 1. So

we may write M = T1× · · ·×Tk where Ti * T for all i. Let N := NSΩ(M). In Proposition

2.1.11, we saw that M is a minimal normal subgroup of N , so N acts transitively by

conjugation on {T1, . . . , Tk}. Moreover, N is primitive since G ≤ N , so N = NαM . Thus

Nα acts transitively on {T1, . . . , Tk} (since Ti ! M for all i). Both Nα and Gα normalize

M and Mα, Mα = M ∩ Nα = M ∩ Gα and (Xi)α = Xi ∩Mα for all i, so the conditions

of Lemma 1.4.3 with A taken to be Nα or Gα and K taken to be Mα are satisfied. Thus

both Nα and Gα act by conjugation on {X1, . . . , Xn} and {(X1)α, . . . , (Xn)α}. Moreover,

if a ∈ Nα and a−1Xia = Xj, then a−1(Xi)αa = (Xj)α, and if (Xl)α is full diagonal for

all l and a−1(Xi)αa = (Xj)α, then a−1Xia = Xj. Lastly, note that Nα acts transitively

on {X1, . . . , Xn}, hence on {(X1)α, . . . , (Xn)α} since Nα acts transitively on {T1, . . . , Tk}.
It follows in either case that if (Xi0)α = Xi0 for some i0, then (Xi)α = Xi for all i,

hence Mα = M . However, this is a contradiction since M being a nontrivial transitive

permutation group implies that Mα < M . Thus (Xi)α < Xi for all i.

(i) Suppose first that Xi is simple for all i. To show that Gα acts transitively on

{X1, . . . , Xn}, it suffices to show that M is a minimal normal subgroup of G by Proposition

1.5.2 since G = GαM and Xi ! M for all i. Let U be a nontrivial normal subgroup of G

contained in M . Then U ! M = X1 × · · · × Xn, so, rearranging the indices as needed,

U = X1 × · · · × Xs where s ∈ {1, . . . , n}. Suppose that s < n for a contradiction. Let

V := X1 × · · ·×Xs × (Xs+1)α × · · ·× (Xn)α. Then Mα < V < M since (Xi)α < Xi for all

i. Let a ∈ Gα. Then a permutes {X1, . . . , Xs} since U !G, so a permutes {Xs+1, . . . , Xn},
hence {(Xs+1)α, . . . , (Xn)α} since Gα ≤ Nα. But then Gα ≤ NG(V ), so Mα is not a

maximal Gα-invariant subgroup of M , contradicting the primitivity of G by Theorem

2.1.4. Thus s = n, so M is a minimal normal subgroup of G.

(ii) Suppose that (Xi)α is full diagonal in Xi for all i. If Gα acts transitively by

conjugation on {(X1)α, . . . , (Xn)α}, then Gα acts transitively on {X1, . . . , Xn}, so it suffices

to show that Mα is a minimal normal subgroup of Gα since (Xi)α is simple and nonabelian

for all i. Let U be a nontrivial normal subgroup of Gα contained in Mα. Then U !
(X1)α × · · · × (Xn)α, so by Lemma 1.4.1, we have without loss of generality that U =
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(X1)α × · · · × (Xr)α where r ∈ {1, . . . , n}. Suppose for a contradiction that r < n. Let

V := (X1)α × · · ·× (Xr)α ×Xr+1 × · · ·×Xn. Then again Mα < V < M and Gα ≤ NG(V )

since for a ∈ Gα, a−1(Xi)αa = (Xj)α implies that a−1Xia = Xj. This contradicts the

primitivity of G, so we must have that r = n and U = Mα, as desired.

2.2 Affine Type

Let V be a vector space over a field F . Consider GL(V ) (the group of all automorphisms

of V ) as a permutation group on the set V . Let v ∈ V . Define v∗ ∈ SV by x )→ x+v. v∗ is

clearly a bijection and is called a translation. Considering V as an additive group, define

φ : V → SV by v )→ v∗. It is routine to verify that φ is a 1-1 group homomorphism. The

image of φ, denoted by V ∗, is called the translation group of V. Of course V ∗ ∩GL(V ) =

{1V } since only the trivial translation can be linear. Let v∗ ∈ V ∗ and T ∈ GL(V ). For all

x ∈ V ,

x(T−1v∗T ) = (xT−1 + v)T = xT−1T + vT = x + vT = x(vT )∗,

so T−1v∗T = (vT )∗ ∈ V ∗. Thus GL(V ) normalizes V ∗, so we may define the affine group

of V to be V ∗ # GL(V ) :=Aff(V ). Keep the identity T−1v∗T = (vT )∗ in mind.

Let v∗T ∈ Aff(V )0. Then 0 = 0(v∗T ) = (0 + v)T = vT , so v = 0. Thus v∗T = 0∗T =

T ∈ GL(V ). On the other hand, if T ∈ GL(V ), then of course 0T = 0, so T ∈ Aff(V )0.

Thus Aff(V )0 = GL(V ).

Note that V ∗ is transitive on V , for if x, y ∈ V , then (y−x)∗ ∈ V ∗ and x(y−x)∗ = x+

y−x = y. The additive group of V is abelian, so V ∗ is abelian. Thus V ∗ ≤ CSV (V ∗). Since

V ∗ is transitive, CSV (V ∗) is semiregular by Proposition 1.2.1, so V ∗ is also semiregular.

Moreover, CSV (V ∗) is transitive since it contains V ∗, so both V ∗ and CSV (V ∗) are regular.

Thus V ∗ = CSV (V ∗).

Let V be a k-dimensional vector space over Fp where k ≥ 1. In this case, we write

Aff(k, p) for Aff(V ); note that Aff(k, p) * Zk
p # GL(k, p). Of course, if W is a subspace

of V , then W ∗ ≤ V ∗, but it turns out that the opposite true. Let H ≤ V ∗ and define

W := {v ∈ V : v∗ ∈ H}. Clearly 0 ∈ W and if v, w ∈ W , then (v + w)∗ = v∗w∗ ∈ H so

v + w ∈ W . If n ∈ Fp, then (nv)∗ = (v + · · · + v)∗ = v∗ · · · v∗ = (v∗)n ∈ H so nv ∈ W .

Thus W is a subspace of V and H = W ∗, so every subgroup of V ∗ has the form W ∗ for

some subspace W of V when V is k-dimensional over Fp.

A group G is said to be of affine type if V ∗ ≤ G ≤Aff(k, p) and G is primitive for some

k-dimensional vector space V over Fp.

Let U ≤ GL(V ) and W be a subspace of V . W is a U-invariant subspace of V if

(W )T = W for all T ∈ GL(V ). Of course V and {0} are always U -invariant. U is an

irreducible subgroup of GL(V ) if the only U -invariant subspaces of V are V and {0}.

Proposition 2.2.1. Let V ∗ ≤ G ≤Aff(k, p) where k ≥ 1. Then G is primitive if and only

if G ∩GL(V ) is an irreducible subgroup of GL(V ).
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Proof. Since Aff(k, p)0 = GL(V ), G0 = G ∩ GL(V ). V ∗ is normal in G and transitive, so

by Theorem 2.1.4, G is primitive if and only if {1V } = V ∗
0 (read as (V ∗)0) is a maximal

G0-invariant subgroup of V ∗.

Suppose that V ∗
0 = {1V } is a maximal G0-invariant subgroup of V ∗. Let W be a

nontrivial G0-invariant subspace of V . Then W ∗ is a nontrivial subgroup of V ∗. Let T ∈ G0

and w ∈ W . Then T−1w∗T = (wT )∗ ∈ W ∗ since W is G0-invariant, so G0 ≤ NG(W ∗). It

follows that W ∗ = V ∗, so W = V . Thus G0 is an irreducible subgroup of GL(V ).

On the other hand, suppose that G0 is an irreducible subgroup of GL(V ). Let H be a

nontrivial G0-invariant subgroup of V ∗. Then H = W ∗ where W is a nontrivial subspace of

V . Let T ∈ G0 and w ∈ W . Then (wT )∗ = T−1w∗T ∈ H as w∗ ∈ H and H is G0-invariant.

Thus wT ∈ W , so W is a G0-invariant subspace of V . Since G0 is an irreducible subgroup

of GL(V ), W = V . Thus H = W ∗ = V ∗, so V ∗
0 = {1V } is a maximal G0-invariant

subgroup of V ∗.

Proposition 2.2.2. Let G be of affine type. Then V ∗ is the unique minimal normal

subgroup of G.

Proof. Let N be a minimal normal subgroup of G. If N ∩V ∗ = {1V }, then N ≤ CG(V ∗) =

V ∗, a contradiction. Thus N ∩V ∗ is not trivial, but it is a normal subgroup of G contained

in N , so N ∩ V ∗ = N , or N ≤ V ∗. Since G is primitive, N is transitive, but then N is

regular since V ∗ is; it follows that N = V ∗. Since V ∗ is then an abelian minimal normal

subgroup of G, we are done by Proposition 2.1.8.

Thus if G is of affine type, then G has regular socle V ∗ * V * Zk
p where V ∗ is the

unique minimal normal subgroup of G.

2.3 Twisted Wreath Type

Let P be a transitive permutation group on {1, . . . , k} where k ≥ 2 and Q be the stabilizer

of 1 in P . Suppose that we have a homomorphism ϕ : Q → Aut(T ) for some simple

nonabelian group T where Inn(T ) ≤ Qϕ. Then ϕ is a group action of Q on T , so we may

define G := T twrQ P = QB # P where QB denotes the base group of the twisted wreath

product. P\Q * {1, . . . , k} since P is transitive, so there are k cosets of Q in P . Let

{1 = g1, g2, . . . , gk} be a left transversal for Q in P .

Proposition 2.3.1. In the notation given above, QB * T k and is the unique minimal

normal subgroup of G.

Proof. Recall from the end of Section 1.6 that QB = T1 × · · · × Tk where Ti := {b ∈
QB : gjb = 1 for all j ,= i} * T . QB !G, so G permutes {T1, . . . , Tk}. Let i and j be given,
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and let p := gig
−1
j ∈ P . Let b ∈ Ti, and suppose that l ,= j. Note that if gig

−1
j gl ∈ giQ,

then g−1
j gl ∈ Q, so l = j. Thus gig

−1
j gl /∈ giQ, so

1 = (gig
−1
j gl)b = (pgl)b = glb

p.

Then bp ∈ Tj, and since (1, p)−1(b, 1)(1, p) = (bp, 1), we get that (1, p)−1Ti(1, p) = Tj. Thus

G acts transitively by conjugation on {T1, . . . , Tk}, so QB is a minimal normal subgroup

of G by Proposition 1.5.2.

It suffices now to show that CG(QB) is trivial. Let (b, p) ∈ CG(QB). Fix i ∈ {1, . . . , k}.
Then (b, p) ∈ CG(Ti), so if bi ∈ Ti, then

(bi, 1) = (b, p)−1(bi, 1)(b, p) = ((b−1bib)
p, 1),

which implies that if j ,= i, then

1 = gjbi = gj(b
−1bib)

p = ((pgj)b)
−1(gj)b

p
i (pgj)b.

Hence, bp
i ∈ Ti. Then (1, p)−1Ti(1, p) = T p

i ≤ Ti, so it follows that T p
i = Ti; in particular,

we may assume that there exists a bi ∈ Ti such that bp
i ,= 1B. But bp

i ∈ Ti, so

1 ,= gib
p
i = (pgi)bi = (pgibi)

qpgi .

Then 1 ,= pgibi, so pgiQ = giQ. As i was arbitrary,

p ∈
k⋂

i=1

giQg−1
i .

Since P is transitive, every point stabilizer of P has the form giQg−1
i for some i, but P is

a permutation group and k ≥ 2, so

k⋂

i=1

giQg−1
i = {1}.

Thus p = 1. Moreover, if i ∈ {1, . . . , k}, then b−1bib = bi for all bi ∈ Ti. Let t ∈ T . Define

bi ∈ Ti by gibi := t and gjbi := 1 for all j ,= i (this is sufficient to define an element of QB

since xbi = (xbi)qx for all x ∈ P ). Then (gib)−1t(gib) = t for all t ∈ T , so gib ∈ Z(T ) = {1}.
As i was arbitrary, b must also be the identity, and we are done.

Let Ω := G\P . Then G acts transitively on Ω. Define α := P ∈ Ω. Then Gα = P . Let

U be a normal subgroup of G contained in Gα. If U is not trivial, then it must contain

QB as QB is the unique minimal normal subgroup of G, but then QB ≤ Gα = P , a

contradiction. Thus Gα is a core-free subgroup of W , so the action is faithful.

G is said to be of twisted wreath type if G acts primitively on Ω. Since QBα = QB∩P =

{1}, the socle of a group of twisted wreath type is a regular unique minimal normal

subgroup. Moreover, |Ω| = [G : P ] = |T |k. Note that there are no simple conditions for G

to be primitive.
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2.4 Almost Simple Type

A finite group is almost simple if it is isomorphic to a group G for which Inn(T ) ≤ G ≤
Aut(T ) for some nonabelian simple group T .

Proposition 2.4.1. A finite group G is almost simple if and only if G has a simple

nonabelian socle.

Proof. Suppose that G is almost simple. Then Inn(T ) ≤ H ≤ Aut(T ) for some group

H isomorphic to G. Inn(T ) is simple and normal in Aut(T ), hence H, so Inn(T ) is a

minimal normal subgroup of H. Since CH(Inn(T )) = {1} by Proposition 1.1.1, Inn(T ) is

the socle of H by Proposition 1.5.6, so the socle of H is simple and nonabelian. Thus the

socle of G is also simple and nonabelian.

On the other hand, suppose that G has a simple nonabelian socle, say T . Let g ∈ G

and define ϕg ∈ Aut(T ) to be conjugation by g. Define ϕ : G → Aut(T ) by g )→ ϕg. If

g ∈ ker(ϕ), then t = g−1tg for all t ∈ T , so g ∈ CG(T ) = {1} by Proposition 1.5.6. Thus

ϕ is 1-1. Since ϕ is clearly a homomorphism and Inn(T ) = Tϕ, we are done.

A group G is said to be of almost simple type if G is a finite almost simple primitive

permutation group. This is the only isomorphism class of the finite primitive permutation

groups for which no group action will be identified.

This next result appears as part of the proof of the O’Nan-Scott Theorem in [14]. It

requires the Schreier Conjecture (Theorem 1.10.2).

Proposition 2.4.2 ([14]). If G is of almost simple type, then the socle of G is not regular.

Proof. Suppose that G is of almost simple type. Then soc(G) = T for some simple non-

abelian group T , and by the proof of Proposition 2.4.1 we have an embedding ϕ of G into

Aut(T ) where Tϕ = Inn(T ). Suppose that α ∈ Ω where G ≤ SΩ. Then Tα is normal in Gα

since T is normal in G, so we can define ψ : Gα/Tα → Out(T ) by gTα )→ gϕInn(T ). Then

for g, h ∈ Gα, gTα = hTα ⇐⇒ g−1h ∈ T ⇐⇒ (g−1h)ϕ ∈ Inn(T ) ⇐⇒ gϕInn(T ) =

hϕInn(T ), so ψ is well-defined and 1-1. It is also clearly a homomorphism. But T is

simple, so by the Schreier Conjecture, Out(T ) is solvable. Hence, Gα/Tα is solvable.

Suppose for a contradiction that Tα = {1}. Then Gα is solvable. Let N be a minimal

normal subgroup of Gα. Then by Proposition 1.7.2, N is an elementary abelian p-group

for some prime p. Tα = {1} ≤ CT (N) < T since if CT (N) = T , then tn = nt for all n ∈ N

and t ∈ T , so N ≤ CG(T ) = {1} by Proposition 1.5.6, a contradiction. Moreover, Gα

normalizes CT (N) since if a ∈ Gα, n ∈ N and c ∈ CT (N), then ana−1 ∈ N , so

(a−1ca)−1n(a−1ca) = a−1c−1(ana−1)ca = a−1(ana−1)a = n,

which implies that a−1ca ∈ CG(N) ∩ T = CT (N) (as T ! G). But G is primitive, so by

Theorem 2.1.4, CT (N) = Tα = {1}.
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N acts on T by conjugation since T ! G. Let t ∈ T . Since N is a p-group and

|N | = |θN(t)||Nt|, either |θN(t)| = 1 or p | |θN(t)|. If |θN(t)| = 1, then n−1tn = t for all

n ∈ N , so t ∈ CT (N) = {1}. Thus if t ,= 1, then |θN(t)| > 1, which implies that p | |θN(t)|
for all t ,= 1. It follows that p | (|T |−1), so p ! |T |. Suppose that q | |T | where q is a prime.

N acts by conjugation on the set of Sylow q-subgroups of T . If |θN(S)| > 1 for every Sylow

q-subgroup S, then p | |θN(S)| for every Sylow q-subgroup S, so p | nq, but nq | |T |, a

contradiction. Thus there exists a Sylow q-subgroup S of T for which n−1Sn = S for all

n ∈ N ; that is, N normalizes S.

Suppose that N also normalizes S ′, another Sylow q-subgroup of T . We know that S =

t−1S ′t for some t ∈ T . Since N is abelian, N ≤ CG(N), but CG(N) ∩ T = CT (N) = {1},
so N ∩ T = {1}. Thus |TN | = |T ||N |. Now, N ≤ TN ∩NG(S) ≤ TN and p ! |T |, so N is

a Sylow p-subgroup of TN , hence of TN ∩NG(S) = NTN(S). But t−1Nt ≤ NTN(S) since

for all n ∈ N , t−1nt ∈ TN and (t−1nt)−1S(t−1nt) = t−1n−1(tSt−1)nt = t−1(n−1S ′n)t =

t−1S ′t = S; thus t−1Nt is also a Sylow p-subgroup of NTN(S), so there exists a t′ ∈ NT (S)

with N = t′−1(t−1Nt)t′. Then since T ! G, [tt′, N ] ≤ N ∩ T = {1}, which implies that

tt′ ∈ CT (N) = {1}. Since t′ ∈ NT (S), t ∈ NT (S), but then t−1St = S = t−1S ′t, so S = S ′.

Thus S is the only Sylow q-subgroup of T that is normalized by N .

Now I claim that NG(N) ≤ NG(S). Let g ∈ NG(N). If n ∈ N , then since gng−1 ∈ N

and N normalizes S,

g−1Sg = g−1(gng−1)−1S(gng−1)g = n−1(g−1Sg)n.

Then N normalizes g−1Sg, but g−1Sg is a Sylow q-subgroup of T (as T ! G implies that

g−1Sg ≤ T ), so we must have that S = g−1Sg as S is the unique such Sylow q-subgroup.

Thus g ∈ NG(S), as desired. Since N is normal in Gα, it follows that Gα normalizes S, so

Gα ≤ GαS ≤ G.

If Gα = GαS, then S ≤ Gα, but S ≤ T , so S ≤ Tα = {1}, a contradiction. If GαS = G,

then

T = T ∩G = T ∩ (GαS) = (T ∩Gα)S = TαS = S,

so T is a q-group. This is a contradiction since Z(T ) = {1}. Thus Gα < GαS < G,

contradicting the primitivity of G, so T must be regular.

Thus if G is of almost simple type, then G has a nonregular simple nonabelian socle.

2.5 Diagonal Type

Let T be a nonabelian simple group and k ≥ 2 an integer. Let

A := {(a1, . . . , ak) ∈ (Aut(T ))k : Inn(T )ai = Inn(T )aj for all i, j ∈ {1, . . . , k}}.
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Then A ≤ (Aut(T ))k since if (a1, . . . , ak), (b1, . . . , bk) ∈ A, then it is easy to see that

Inn(T )aib
−1
i = Inn(T )ajb

−1
j for all i, j ∈ {1, . . . , k}.

Let W := A # Sk where π ∈ Sk acts on (a1, . . . , ak) ∈ A by moving ai to the iπ-th

coordinate. It is routine to verify that this defines an action on A. Notationally, we have

that (a1, . . . , ak)π = (a1π−1 , . . . , akπ−1) since aiπ−1 gets moved to the i-th coordinate. For

notational ease, denote the elements of W by (a1, . . . , ak)π instead of ((a1, . . . , ak), π).

Let M := (Inn(T ))k ≤ W . Then M ! W since Inn(T ) ! Aut(T ). Let

Ti := {(1, . . . , ai, . . . , 1) ∈ W : ai ∈ Inn(T )}.

Then Ti * T for each i ∈ {1, . . . , k}, and clearly M = T1× · · ·×Tk. Let (a1, . . . , ak)π ∈ W .

Then ((a1, . . . , ak)π)−1Ti(a1, . . . , ak)π = Tiπ for all i ∈ {1, . . . , k}:

((a1, . . . , ak)π)−1Ti(a1, . . . , ak)π

= (a−1
1π−1 , . . . , a

−1
kπ−1)(a1, . . . , Inn(T )ai, . . . ak)ππ−1π

= (1, . . . , a−1
i Inn(T )ai, . . . , 1) (in iπ-th spot)

= Tiπ.

Let i and j be given. There exists a π ∈ Sk ≤ W with iπ = j, so π−1Tiπ = Tiπ. Then W

acts transitively by conjugation on {T1, . . . , Tk}, so M is a minimal normal subgroup of W

by Proposition 1.5.2. Moreover, let g := (a1, . . . , ak)π ∈ CW (M). Then g ∈
⋂k

i=1 CW (Ti),

so, in particular, Tiπ = g−1Tig = Ti. Thus π is the identity, but then a−1
i aai = a for all

a ∈ Inn(T ), so ai ∈ CAut(T )(Inn(T )) = {1} for all i. Hence, CW (M) = {1}, so M is the

unique minimal normal subgroup of W .

Let Ω be the right coset space W\D where D := {(a, . . . , a)π ∈ W} * Aut(T ) × Sk.

Note that |Ω| ≥ 2, for if D = W , then ab−1 ∈ Inn(T ) implies that a = b, so if we

take a = 1T and any 1T ,= b ∈ Inn(T ), then we get a contradiction. Of course W acts

transitively on Ω. Let α := D ∈ Ω so that Wα = D. Since M ! W , MWα ≤ W . Let

(a1, . . . , ak)π ∈ W . Then

(a1, . . . , ak)π = (a1a
−1
1 , . . . , aka

−1
1 )(a1, . . . , a1)π ∈ MWα

since aia
−1
1 ∈ Inn(T ) for all i ∈ {1, . . . , k}. Thus W = MWα, so M is also transitive on

Ω. Note that Mα = {(a, . . . , a) ∈ W : a ∈ Inn(T )} * T , and let U be a normal subgroup

of W contained in Wα. If U is not trivial, then it must contain M as M is the unique

minimal normal subgroup of W , but then M ≤ Wα, so M = Mα, which is a contradiction

since k ≥ 2. Thus Wα is a core-free subgroup of W , so the action is faithful.

A group G is said to be of diagonal type if M ≤ G ≤ W and G is primitive. The term

diagonal is used since Mα is a full diagonal subgroup of M and Ω * M/Mα.

For G ≤ W , let PG := {π ∈ Sk : (a1, . . . , ak)π ∈ G for some (a1, . . . , ak) ∈ A} ≤ Sk.

52



Proposition 2.5.1 ([8, p. 123]). Let G be a subgroup of W containing M . G is primitive

on Ω if and only if PG is primitive on {1, . . . , k} or PG = {1} and k = 2.

Proof. Suppose that P := PG is not primitive. If P ,= {1}, then k ≥ 3 since if k = 2,

then P = S2, which is primitive, a contradiction. If we assume instead that k ≥ 3, but

P = {1}, then it is routine to verify that T1, . . . , Tk are all minimal normal subgroups

of A = G, which implies that G is not primitive as a primitive G can have at most two

minimal normal subgroups. Thus we may assume that k ≥ 3 and P ,= {1}. Recall that

M ! G and M is transitive.

Since P is not primitive and is nontrivial, there exists a nontrivial P -congruence ∼ by

Proposition 2.1.1. Let L := {(a1, . . . , ak) ∈ M : i ∼ j ⇒ ai = aj} ≤ M . Since ∼ is

nontrivial there exist i and j such that i ,= j but i ∼ j. Let a, b ∈ Inn(T ) with a ,= b, and

let ai := a and al := b for l ,= i. Then (a1, . . . , ak) ∈ M \L since i ∼ j but ai = a ,= b = aj.

Thus L < M . Again since ∼ is nontrivial, there exist i and j with i ,= j and i $ j. If

[i]∼ denotes the equivalence class of i, then [i]∼ < Ω. Let al := a if l ∈ [i]∼ and al := b if

l /∈ [i]∼. Then (a1, . . . , ak) ∈ L \ Mα. Thus Mα < L.

Let (a1, . . . , ak) ∈ L and (c, . . . , c)π ∈ Gα. Then

((c, . . . , c)π)−1(a1, . . . , ak)(c, . . . , c)π = (c−1a1π−1c, . . . , c−1akπ−1c).

Suppose that i ∼ j. Then iπ−1 ∼ jπ−1 since ∼ is a P -congruence, so aiπ−1 = ajπ−1 . Thus

(c−1a1π−1c, . . . , c−1akπ−1c) ∈ L, so Gα ≤ NG(L). But Mα < L < M , so by Theorem 2.1.4,

G is not primitive.

Suppose on the other hand that G is not primitive. Then by Theorem 2.1.4, there exists

an L ≤ G such that Mα < L < M and Gα ≤ NG(L). Let ρi be the i-th projection map

from L to Inn(T ) for each i ∈ {1, . . . , k}, and let Li := ker(ρi) for each i ∈ {1, . . . , k}.
Define ∼ on {1, . . . , k} by i ∼ j if and only if Li = Lj. Then ∼ is clearly an equivalence

relation.

Let π ∈ P . Then there exists a k-tuple (a1, . . . , ak) ∈ A with (a1, . . . , ak)π−1 ∈ G. The

element (a1a
−1
1 , . . . , aka

−1
1 ) ∈ M ≤ G and

(a1, . . . , ak)π
−1 = (a1a

−1
1 , . . . , aka

−1
1 )(a1, . . . , a1)π

−1,

so letting a := a1, we get that g := (a, . . . , a)π−1 ∈ Gα ≤ NG(L). Thus if l := (l1, . . . , lk) ∈
L, then (a−1l1πa, . . . , a−1lkπa) = g−1lg ∈ L. It follows that l ∈ Liπ ⇐⇒ liπ = 1 ⇐⇒
a−1liπa = 1 ⇐⇒ g−1lg ∈ Li. Now, if Li = Lj, then l ∈ Liπ ⇐⇒ g−1lg ∈ Li = Lj ⇐⇒
l ∈ Ljπ, so Liπ = Ljπ. Conversely, if Liπ = Ljπ, then l ∈ Li ⇐⇒ glg−1 ∈ Liπ = Ljπ ⇐⇒
l ∈ Lj, so Li = Lj. Thus Li = Lj if and only if Liπ = Ljπ. That is, i ∼ j if and only if

iπ ∼ jπ, so ∼ is a P -congruence.

If a ∈ Inn(T ), then (a, . . . , a) ∈ Mα < L and (a, . . . , a)ρi = a, so ρi is onto Inn(T )

for all i. Then L/Li * Inn(T ), so L/Li is simple for all i. Clearly
⋂k

i=1 Li = {1},
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so if the Li are all distinct, then by Lemma 1.4.4, L * (Inn(T ))k = M , contradicting

L < M . Moreover, if the Li are all the same group, then L1 =
⋂k

i=1 Li = {1}. But then

Mα * Inn(T ) * L/L1 * L, contradicting Mα < L. Thus ∼ must be nontrivial.

Hence, ∼ is a nontrivial P -congruence on {1, . . . , k}. If k = 2, then every P -congruence

is trivial, so k ≥ 3. If P is not transitive, then P is not primitive. If P is transitive, then

since we have a nontrivial P -congruence, P is not primitive by Proposition 2.1.2. Thus in

either case, k ≥ 3 and P is not primitive.

Note that since PW = Sk and Sk is primitive for all k ≥ 2, W itself is of diagonal type.

Proposition 2.5.2. Let G be a group of diagonal type. Then G has socle M . Moreover,

if PG is primitive on {1, . . . , k}, then M is the unique minimal normal subgroup of G, and

if PG = {1} and k = 2, then G has two minimal normal subgroups.

Proof. CG(M) ≤ CW (M) = {1}, so M is the socle of G. Suppose that PG is primitive on

{1, . . . , k}. Let i and j be given. Since PG is primitive, PG is transitive, so there exists a

π ∈ PG with iπ = j. Then (a1, . . . , ak)π ∈ G for some (a1, . . . , ak) ∈ A, and

((a1, . . . , ak)π)−1Ti(a1, . . . , ak)π = Tiπ = Tj.

Thus G acts transitively by conjugation on {T1, . . . , Tk}, so M = T1× · · ·×Tk is a minimal

normal subgroup of G, hence is the only one. Suppose then that PG = {1} and k = 2. In

this case, it is easy to see that T1 and T2 are both minimal normal subgroups of A = G.

Thus G has nonregular nonabelian socle Inn(T )k, which is either a minimal normal

subgroup of G or consists of two regular minimal normal subgroups T1 and T2. Also,

|Ω| = [M : Mα] = |T |k−1.

The following is not really needed but is interesting.

Proposition 2.5.3. W is an extension of M by Out(T )× Sk.

Proof. Define ψ : W → Out(T ) × Sk by (a1, . . . , ak)π )→ (Inn(T )a1, π). Then for all

(a1, . . . , ak)π, (a′1, . . . , a
′
k)π

′ ∈ W,

(a1, . . . , ak)πψ(a′1, . . . , a
′
k)π

′ψ = (Inn(T )a1a′1, ππ′)

= (Inn(T )a1a′1π, ππ′)

= (a1a′1π, . . . , aka′kπ)ππ′ψ

= ((a1, . . . , ak)π(a′1, . . . , a
′
k)π

′)ψ,

so ψ is a homomorphism. To see that ψ is onto, let (Inn(T )a, π) ∈ Out(T ) × Sk. Then

(a, . . . , a)π ∈ W and (a, . . . , a)πψ = (Inn(T )a, π). Lastly, let (a1, . . . , ak)π ∈ ker(ψ).

Then π is the identity of Sk, and a1 ∈ Inn(T ). But then ai ∈ Inn(T ) for all i ∈ {1, . . . , k},
so (a1, . . . , ak)π ∈ M . Conversely, if (a1, . . . , ak) ∈ M , then clearly (a1, . . . , ak) ∈ ker(ψ).

Thus ker(ψ) = M , so W/M * Out(T )× Sk.
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It follows that if G is of diagonal type, then G is an extension of M by a subgroup of

Out(T )× PG and Gα is isomorphic to a subgroup of Aut(T )× PG.

Last of all, I prove that we essentially cannot make W any larger. This result is taken

from [8, p. 122], but the proof is somewhat different because [8] constructs groups of

diagonal type differently (although analogously).

Proposition 2.5.4. WΩ = NSΩ(MΩ).

Proof. Identify W with WΩ for simplicity. Since M !W , W ≤ NSΩ(M) =: N . Let n ∈ N .

Define θn ∈ Aut(M) by m )→ n−1mn. Note that Mαθn = n−1Mαn = Mαn. But M is

transitive on Ω, so there exists an m ∈ M with αn = αm. Then Mαθn = m−1Mαm. Define

θ : N → Aut(M) by n )→ θn. Then N is clearly a homomorphism with kernel CSΩ(M).

Suppose that CSΩ(M) ,= {1}. CSΩ(M) ! NSΩ(M), which is primitive since it contains

W , so CSΩ(M) is transitive. Then M is semiregular by Proposition 1.2.1, a contradiction.

Thus CSΩ(M) = {1}, so N is embedded into Aut(M). Now, Inn(T )k * T k, so Aut(M) *
Aut(T k). In the proof of Proposition 1.6.1, we saw that every element of Aut(T k) has the

form ψ(a1,...,ak)π for some (a1, . . . , ak)π ∈ Aut(T )k # Sk. Let ψ(a1,...,ak)π be the image of θn

and let U := {(t, . . . , t) : t ∈ T}. Then Uψ(a1,...,ak)π = (t1, . . . , tk)−1U(t1, . . . , tk) for some

(t1, . . . , tk) ∈ T k since Mαθn = m−1Mαm.

Let t ∈ T . Since (t, . . . , t) ∈ U , there exists a k-tuple (t′, . . . , t′) ∈ U such that

(t1, . . . , tk)−1(t′, . . . , t′)(t1, . . . , tk) = (t, . . . , t)ψ(a1,...,ak)π

= (ta1π−1 , . . . , takπ−1).

Then tai = t−1
iπ t′tiπ for all i, so tiπ(tai)t

−1
iπ = t′ = tjπ(taj)t

−1
jπ for all i and j. Rewriting, we

get that tai = t−1
iπ tjπ(taj)t

−1
jπ tiπ. Since aj is an isomorphism,

taia
−1
j = ((t−1

jπ tiπ)a−1
j )−1t((t−1

jπ tiπ)a−1
j ),

but (t−1
jπ tiπ)a−1

j ∈ T and t was arbitrary, so aia
−1
j ∈ Inn(T ). Then since Aut(T k) *

Aut(T )k # Sk, we can embed N into Aut(T )k # Sk where the image of n ∈ N is some

(a1, . . . , ak)π for which aia
−1
j ∈ Inn(T ) for all i and j. That is, the image of N in Aut(T )k#

Sk is contained in W . Thus W = NSΩ(M).

2.6 Product Type

Let ∆ := {1, . . . , n} where n > 1, and let H be a primitive permutation group on Γ where

H is of almost simple type or diagonal type. Define W := H wr∆ Sn. Since W * Hn #Sn,

we may write the elements of W as (h1, . . . , hn)π where hi ∈ H for all i ∈ {1, . . . , n} and

π ∈ Sn. Then the product action of W on Ω = Γn (instead of Γ∆) becomes

(γ1, . . . , γn)(h1,...,hn)π = (γ
h1π−1

1π−1 , . . . , γ
hnπ−1

nπ−1 ).
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This action is faithful by Proposition 1.6.2 since Γ must contain at least two elements (or

else H = {1}, which cannot be) and since Sn and H are both permutation groups on ∆

and Γ respectively.

Let γ ∈ Γ, and let α := (γ, . . . , γ) ∈ Ω. Suppose that (h1, . . . , hn)π ∈ Wα. Then

(γ, . . . , γ) = (γ, . . . , γ)(h1,...,hn)π = (γh1π−1 , . . . , γhnπ−1 ),

so hi ∈ Hγ for all i; that is, (h1, . . . , hn)π ∈ Hn
γ # Sn = Hγ wr∆ Sn. It is not hard to see

then that Wα = Hγ wr∆ Sn.

Suppose that H has socle K. Let M := Kn. Then

Mα = Wα ∩Kn = (Hn
γ # Sn) ∩Kn = Hn

γ ∩Kn = Kn
γ .

Note that since H is of almost simple type or diagonal type, K is not regular (see Propo-

sition 2.4.2), so H is not regular in either case. Then since ∆ is finite, Sn is transitive

on ∆, and H is primitive but not regular on Γ, W is a primitive permutation group by

Proposition 2.1.6. Since K ! H, M ! W . Thus M is transitive on Ω.

For each i ∈ {1, . . . , n}, let Ki := {(1, . . . , k, . . . , 1) ∈ W : k ∈ K}, where each k ∈ K is

in the i-th coordinate. As we saw for groups of diagonal type, if (h1, . . . , hn)π ∈ W , then

((h1, . . . , hn)π)−1Ki(h1, . . . , hn)π = Kiπ. Thus W acts on {K1, . . . , Kn} by conjugation.

Proposition 2.6.1. If M ≤ G ≤ W , then M is the socle of G.

Proof. Let g := (h1, . . . , hn)π ∈ CG(M). Then g ∈
⋂n

i=1 CG(Ki), so Kiπ = g−1Kig = Ki

for all i ∈ {1, . . . , n}. Thus π is the identity. But then g = (h1, . . . , hn) ∈
⋂n

i=1 CG(Ki),

so for all i ∈ {1, . . . , n}, hi ∈ CH(K), which is trivial by Proposition 2.1.10 as K is the

nonabelian socle of primitive H. Then g is the identity, so CG(M) = {1}. Thus M is the

socle of G by Proposition 1.5.6.

A group G is said to be of product type if M ≤ G ≤ W and G is primitive. When H

is of almost simple type or diagonal type, G is said to be of almost simple product type or

diagonal product type respectively.

Proposition 2.6.2. If G is of product type, then G acts transitively on {K1, . . . , Kn} by

conjugation.

Proof. Suppose that G is of product type. Note that M = K1 × · · · × Kn and Mα =

Kγ × · · ·×Kγ = (Mα ∩K1)× · · ·× (Mα ∩Kn) = (K1)α× · · ·× (Kn)α. Moreover, either Ki

is simple for all i or (Ki)α is a full diagonal subgroup of Ki for all i, so by Lemma 2.1.12,

G acts transitively on {K1, . . . , Kn} by conjugation.
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According to [14, p. 391], the converse of Proposition 2.6.2 is also true for a group G

such that M ≤ G ≤ W , but I was unable to prove it. Fortunately, it has no bearing on

the proof of the O’Nan-Scott Theorem.

The next result tells us when a group of product type has one or two minimal normal

subgroups. I was unable to prove (iii), but again, this result has no bearing on the proof

of O’Nan-Scott and is included here because it is interesting. Recall that when H is of

diagonal type, either PH = {1} or PH is primitive.

Proposition 2.6.3 ([14, p. 391]). Let G be a group of product type.

(i) If H is of almost simple type, then M is the unique minimal normal subgroup of G.

(ii) If H is of diagonal type and PH = {1}, then G has two minimal normal subgroups.

(iii) If H is of diagonal type and PH is primitive, then M is the unique minimal normal

subgroup of G.

Proof. (i) Suppose that H is of almost simple type. Then K is a nonabelian simple

group. Since G acts transitively on {K1, . . . , Kn}, all of which are nonabelian and simple,

M = K1 × . . .×Kn is a minimal normal subgroup of G by Proposition 1.5.2, and we are

done.

(ii) Suppose that H is of diagonal type where PH = {1}. Then H ≤ {(a1, a2) ∈
Aut(T ) × Aut(T ) : Inn(T )a1 = Inn(T )a2} for some simple nonabelian group T , so K =

Inn(T )× Inn(T ). Let

N1 := {((a1, 1), . . . , (an, 1)) : ai ∈ Inn(T ) for all i}.

Define N2 similarly, so that M = N1×N2. It is routine to verify that N1 and N2 are normal

subgroups of G. For i ∈ {1, . . . , n} and j ∈ {1, 2}, let Ti,j be the set of all elements of Ki

of the form ((1, 1), . . . , (a1, a2), . . . , (1, 1)) where al = 1 if l ,= j. Then Ki = Ti,1 × Ti,2 and

Nj = T1,j × · · ·× Tn,j. Since G is transitive on {K1, . . . , Kn}, given i, l ∈ {1, . . . , n}, there

exists a g ∈ G with g−1Kig = Kl. But then g−1Ti,jg = Tl,j for j = 1, 2 (as PH = {1}), so G

acts transitively on the simple factors of N1 and N2; that is, N1 and N2 are both minimal

normal subgroups of G.

Thus if G is of product type, then G has a nonabelian nonregular socle Kn where K is

the socle of H. Kn is either a nonregular unique minimal normal subgroup of G or is the

direct product of two regular minimal normal subgroups of G. Also, |Ω| = |Γ|n.

2.7 The O’Nan-Scott Theorem

Note that the five types described above are all pairwise disjoint: groups of affine type are

the only ones with an abelian socle, groups of twisted wreath type are the only ones with
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a regular nonabelian unique minimal normal subgroup, and groups of almost simple type

are the only ones with a simple nonabelian socle. It remains to show that a group cannot

be of diagonal and product type.

Suppose that G is of diagonal and product type, where G has socle T k (k ≥ 2) for some

nonabelian simple group T . Then, using the notation from the diagonal and product types,

G ≤ A#Sk and G ≤ H wr∆ Sn for some n ≥ 2. Since the socle of G is also Kn, where K is

the socle of H, H has socle T
k
n . If H is of almost simple type, then K * T , so k = n. Also

H ≤ Aut(T ). Then T k has point stabilizers {(a, . . . , a) : a ∈ Inn(T )} and {(h1, . . . , hk) :

hi ∈ Inn(T )γ}, which must be permutation isomorphic in SΩ, hence conjugate in SΩ by

Proposition 1.2.4. Then there exists a σ ∈ SΩ with (σ−1aσ, . . . , σ−1aσ) = σ−1(a, . . . , a)σ =

(h1, . . . , hk) for all a ∈ Inn(T ) and hi ∈ Inn(T )γ, which is clearly not so. If H is of diagonal

type (acting on Γ), then |Γ| = |T | k
n−1. But then (|T | k

n−1)n = |Γ|n = |Ω| = |T |k−1 since G

is of diagonal type, so k − n = k − 1, or n = 1, a contradiction.

Typically, questions about finite permutation groups can be reduced via the O’Nan-

Scott Theorem to the almost simple case. It is this isomorphism class which is the most

difficult to work with. Now that the classification of the finite simple groups is complete,

it is hoped that the properties of almost simple groups will become more clear. See [1] for

details.

At last we have reached the main result of this thesis.

Theorem 2.7.1 (O’Nan, Scott). Let G be a nontrivial finite primitive permutation group

on Ω. Then G is permutation isomorphic to a group that is either of affine type, twisted

wreath type, almost simple type, diagonal type, or product type.

The proof of the O’Nan-Scott Theorem is broken down into several propositions. So

for this section, let G be a nontrivial finite primitive permutation group on Ω, and let M

be the socle of G. Then M is isomorphic to T k for some simple group T and some positive

integer k by Theorem 2.1.9. Write M = T1 × · · ·× Tk where Ti * T for all i ∈ {1, . . . , k}.
Let α ∈ Ω. Note that since G is primitive and nontrivial, Gα is a maximal subgroup of

G and Mα is a maximal Gα-invariant subgroup of M by Theorem 2.1.4. In particular,

G = MGα since the transitivity of M implies that Gα < MGα ≤ G. Also, Mα < M since

M is transitive and Ω is nontrivial.

Proposition 2.7.2 ([19, p. 200]). Suppose that T is abelian. Then G is permutation

isomorphic to a group of affine type.

Proof. Since T is abelian, G must have a unique minimal normal subgroup by Proposition

2.1.8, namely, M . Moreover, M is an elementary abelian p-group for some prime p, and

M is regular, so if |M | = pk, then |Ω| = pk. Let V be a vector space of dimension k over

the field Fp.
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Let θ : M → V be a Z-isomorphism (which must exist since M * Zk
p * V , where we

consider the additive group of V ). Note that G = M # Gα since M ∩Gα = Mα = {1}, so

every element of G can be written uniquely in the form ma where m ∈ M and a ∈ Gα.

Define φa : M → M by m )→ a−1ma. Then φa is a bijection.

Define ψ : G →Aff(k, p) = V ∗ # GL(k, p) by ma )→ (mθ)∗(θ−1φaθ). Clearly θ−1φaθ is a

bijection which maps from V onto V for all a ∈ Gα. Let x, y ∈ V . Then

(x + y)θ−1φaθ = (xθ−1yθ−1)φaθ (θ−1 homomorphism)

= (a−1xθ−1aa−1yθ−1a)θ

= (a−1xθ−1a)θ + (a−1yθ−1a)θ (θ homomorphism)

= xθ−1φaθ + yθ−1φaθ

and if n ∈ Fp, then

(nv)θ−1φaθ = (vθ−1)nφaθ

= (a−1(vθ−1)na)θ

= (a−1(vθ−1)a)nθ

= n((a−1(vθ−1)a)θ)

= n(vθ−1φaθ).

Thus θ−1φaθ ∈ GL(k, p) for all a ∈ Gα, so ψ is well-defined.

To see that ψ is a homomorphism, let ma, m′a′ ∈ G. Then,

(maψ)(m′a′ψ) = (mθ)∗(θ−1φaθ)(m′θ)∗(θ−1φa′θ)

= (mθ)∗(θ−1φaθ)(m′θ)∗(θ−1φaθ)−1(θ−1φaθ)(θ−1φa′θ)

= (mθ)∗(m′θ(θ−1φaθ)−1)∗(θ−1φaa′θ)

= (mθ)∗(m′φa−1θ)∗(θ−1φaa′θ)

= (mθ + am′a−1θ)∗(θ−1φaa′θ)

= ((mam′a−1)θ)∗(θ−1φaa′θ)

= ((mam′a−1)(aa′))ψ

= (mam′a′)ψ,

as desired.

Suppose that ma ∈ ker(ψ). Then (mθ)∗(θ−1φaθ) = 1V , so (mθ)∗ = 0∗ and θ−1φaθ = 1V .

Then mθ = 0, but θ is an isomorphism, so m = 1. We also have that φa = θ1V θ−1 = 1M ,

so a−1ma = mφa = m for all m ∈ M . Then a ∈ CG(M) = M , but a ∈ Gα, so a = 1. Thus

ma = 1 and ψ is 1-1.

Note that Mψ = V ∗ since θ maps onto V . Then V ∗ = Mψ ≤ Gψ, so Gψ is transitive.

Of course G is also transitive, so to show that G is permutation isomorphic to Gψ, it

suffices to show that Gαψ = (Gψ)0 by Proposition 1.2.3. But (Gψ)0 = Gψ∩Aff(k, p)0 =

Gψ ∩ GL(k, p), so we must show that Gαψ = Gψ ∩ GL(k, p). Clearly Gαψ ≤ Gψ ∩
GL(k, p) by the construction of ψ. On the other hand, if x ∈ Gψ ∩ GL(k, p), then x =
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(ma)ψ = (mθ)∗(θ−1φaθ) for some m ∈ M and a ∈ Gα, but (mθ)∗ = x(θ−1φaθ)−1 ∈
V ∗ ∩ GL(k, p), so (mθ)∗ = 0∗. Thus m = 1, so x = aψ ∈ Gαψ, and we are done. Hence,

G is permutation isomorphic to Gψ, which is a group of affine type since Gψ is primitive

and V ∗ ≤ Gψ ≤Aff(k, p).

Suppose that T is not abelian and that k ≥ 2, and suppose further that there exist

groups X1, . . . , Xn such that M = X1 × · · · × Xn and Mα = (X1)α × · · · × (Xn)α where

Xi is simple for all i or (Xi)α is a full diagonal subgroup of Xi for all i. I call this the

simple condition and the diagonal condition respectively. Note that in either case, the

requirements for Lemma 2.1.12 are satisfied. For the rest of this section, I will write

X := X1 and N := NG(X) whenever one of these conditions occurs.

Lemma 2.7.3. If the simple condition or the diagonal condition is satisfied, then Xα is a

maximal Nα-invariant subgroup of X. Moreover, Xα ! X or NαCG(X) < N .

Proof. By Lemma 2.1.12, Gα acts transitively on {X1, . . . , Xn}, so there must exist 1 =

g1, g2, . . . , gn ∈ Gα with g−1
i Xgi = Xi for all i. Define γi : X → Xi by x )→ g−1

i xgi for all

i ∈ {1, . . . , n}. Then each γi is an isomorphism. Recall that if g ∈ Gα and g−1Xig = Xj,

then g−1(Xi)αg = (Xj)α; in particular, if a ∈ Nα, then a−1Xαa = Xα, so Nα normalizes Xα.

Moreover, if Xα = X, then Mα = M , a contradiction. Thus Xα is a proper Nα-invariant

subgroup of X.

Suppose that L is an Nα-invariant subgroup of X properly containing Xα. Let R :=

L× Lγ2 × · · ·× Lγn. Then Mα ≤ R ≤ M . For a ∈ Gα, define πa ∈ Sn by a−1Xia = Xiπa .

Then for each i, giπ−1
a

ag−1
i ∈ Nα since

gia
−1g−1

iπ−1
a

Xgiπ−1
a

ag−1
i = gia

−1Xiπ−1
a

ag−1
i = giXiπ−1

a πa
g−1

i = X,

but Nα ≤ NG(L), so giπ−1
a

ag−1
i ∈ NG(L). Now let r := (l1, l2γ2, . . . , lnγn) ∈ R. Then

a−1ra = a−1(l1, l2γ2, . . . , lnγn)a = (a−1(l1π−1
a

γ1π−1
a

)a, . . . , a−1(lnπ−1
a

γnπ−1
a

)a),

but a−1ra ∈ X1 × · · ·×Xn = X ×Xγ2 × · · ·×Xγn, so for each i, a−1(liπ−1
a

γiπ−1
a

)a = xiγi

for some xi ∈ X. Then

xi = gia
−1(liπ−1

a
γiπ−1

a
)ag−1

i = (giπ−1
a

ag−1
i )−1liπ−1

a
(giπ−1

a
ag−1

i ) ∈ L

by the above, so a−1ra ∈ R. Thus Gα ≤ NG(R), so by the primitivity of G, R = Mα or

R = M . But if R = Mα, then L = Xα, a contradiction, so R = M , which implies that

L = X. Thus Xα is a maximal Nα-invariant subgroup of X.

Now suppose for a contradiction that Xα is not a normal subgroup of X and that

NαCG(X) = N . Let S := 〈{x−1yx : x ∈ X, y ∈ Xα}〉. Then Xα < S ≤ X since if Xα = S,

then Xα ! X. Moreover, Nα ≤ NG(S) since if a ∈ Nα, then for all x ∈ X and y ∈ Xα,
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a−1x−1yxa = (a−1xa)−1(a−1ya)(a−1xa) ∈ S because a−1xa ∈ X and a−1ya ∈ Xα. Since

Xα is a maximal Nα-invariant subgroup of X, S = X. Then

X = 〈{x−1yx : x ∈ X, y ∈ Xα}〉
≤ 〈{a−1ya : a ∈ CG(X)Nα, y ∈ Xα}〉 (since X ≤ N = NαCG(X))

= 〈{a−1ya : a ∈ Nα, y ∈ Xα} (since Xα ≤ X)

= Xα.

But then X = Xα, a contradiction.

Note that the Schreier Conjecture (Theorem 1.10.2) is required for the proof of the

following proposition.

Proposition 2.7.4. If the simple condition is satisfied and NαCG(X) = N , then G is

permutation isomorphic to a group of twisted wreath type.

Proof. We may assume without loss of generality that Xi = Ti for all i. Recall that

Gα acts transitively on {T1, . . . , Tk} by Lemma 2.1.12; in particular, there exist elements

1 = g1, g2, . . . , gk ∈ Gα such that g−1
i Tigi = T1 (note that this is opposite the usual setup).

Since NαCG(T1) = N , it follows from Lemma 2.7.3 that (T1)α is a proper normal subgroup

of T1, but T1 is simple, so (T1)α = {1}. Hence Mα = {1}, so M is regular.

Let n ∈ Nα. Define ϕn : T1 → T1 by t )→ n−1tn. Define ϕ : Nα → Aut(T1) by n )→ ϕn.

Then ϕ is a homomorphism with ker(ϕ) = CG(T1) ∩Nα = CG(T1) ∩ Gα. If γ ∈ Inn(T1),

then there exists a t1 ∈ T1 such that tγ = t−1
1 tt1 for all t ∈ T1. T1 ≤ N = NαCG(T1), so

t1 = nc for some n ∈ Nα and c ∈ CG(T1). Then for all t ∈ T1,

tϕn = n−1tn = (t1c
−1)−1t(t1c

−1) = c(tγ)c−1 = tγ,

so γ = ϕn ∈ Nαϕ. Thus Inn(T1) ≤ Nαϕ, so we may let Z ≤ Nα be the preimage of

Inn(T1) under ϕ.

Note that Z/CNα(T1) is simple and nonabelian: if z ∈ Z, then zϕ = ϕt for some t ∈ T1.

If z′ ∈ Z where z′ϕ = ϕt′ and z = z′, then ϕt = ϕt′ , so t−1xt = t′−1xt′ for all x ∈ T1.

Then t′t−1 ∈ Z(T1) = {1}, so t = t′. Thus we may define χ : Z → T1 by z )→ t where

zϕ = ϕt. χ is an onto homomorphism since T1 ≤ Z and ϕ is a homomorphism. Further,

z ∈ ker(χ) if and only if zϕ = ϕ1, which is true if and only if z−1tz = t for all t ∈ T1. Thus

ker(χ) = CNα(T1), giving the desired result.

I claim that M is the kernel of the action of G on {T1, . . . , Tk}. Let Y be this kernel.

Then y−1Tiy = Ti for all i ∈ {1, . . . , k} and y ∈ Y . Clearly M ≤ Y , so Y = Y ∩ (GαM) =

YαM . I will prove that Yα = {1}. First, embed YαM/M into Out(T1) × · · · × Out(Tk)

as follows: define θ : Y → Out(T1) × · · · × Out(Tk) by y )→ (Inn(T1)y∗1 , . . . , Inn(Tk)y∗k)

where for all i, y∗i ∈ Aut(Ti) is defined by t )→ y−1ty. θ is clearly a homomorphism. Let
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y ∈ ker(θ). Fix i ∈ {1, . . . , k}. Then y∗i ∈ Inn(Ti), so for all t ∈ Ti, y−1ty = ty∗i =

t−1
i tti for some ti ∈ Ti. Then yt−1

i ∈ CG(Ti). As i was arbitrary, y ∈
⋂k

i=1 CG(Ti)Ti =

(
⋂k

i=1 CG(Ti))T1 · · ·Tk by Lemma 1.1.3. But {1} = CG(M) =
⋂k

i=1 CG(Ti) again by Lemma

1.1.3, so y ∈ T1 · · ·Tk = M . Thus ker(θ) ≤ M . On the other hand, let m ∈ M . Write

m = (t1, . . . , tk). Then if t ∈ Ti, tm∗i = m−1tm = t−1
i tti, so m∗i ∈ Inn(Ti) for all i. Thus

M = ker(θ), so Y/M is embedded into Out(T1)× · · ·×Out(Tk), as desired. Moreover, by

the Schreier Conjecture, Out(Ti) is solvable for all i, so Out(T1) × · · · × Out(Tk) is also

solvable by Proposition 1.7.1. Since Yα ∩ M = Mα = {1}, Yα * YαM/M = Y/M , so

Yα is solvable. Then YαCNα(T1)/CNα(T1) * Yα/(Yα ∩ CNα(T1)) is also solvable, again by

Proposition 1.7.1. Now Y !G, so Yα!Nα, as is CNα(T1). Thus YαCNα(T1)!Nα. Moreover,

Z ! Nα since Inn(T ) ! Nαϕ. Let C := CNα(T1). Then

[Z/C, YαC/C] ≤ Z/C ∩ YαC/C ! Z/C.

If Z/C∩YαC/C = Z/C, then Z/C ≤ YαC/C, which is solvable, so Z/C is solvable, but Z/C

is simple and nonabelian, a contradiction. Thus since Z/C is simple, Z/C∩YαC/C = C/C,

so [Z/C, YαC/C] = C/C. It follows that [Z, YαC] = C. Let t ∈ T1 and y ∈ Yα. Then

[t, y] ∈ [Z, YαC] = C ≤ CG(T1), but [t, y] ∈ T1 since y−1T1y = T1, so [t, y] = 1. As

t ∈ T1 was arbitrary, y ∈ CG(T1). Thus Yα ≤ CG(T1). Let x ∈ Ti and y ∈ Yα. Note that

giyg−1
i ∈ Yα for all i since Yα ! Gα. Also, g−1

i xgi ∈ T1. Then

y−1xy = gi(g
−1
i ygi)

−1(g−1
i xgi)(g

−1
i ygi)g

−1
i = gi(g

−1
i xgi)g

−1
i = x,

so y ∈
⋂k

i=1 CG(Ti) = {1}. Thus Yα = {1}.
Let P := Gα. Then P acts transitively on {T1, . . . , Tk}. For convenience, write p−1Tip =

Tip (abusing the notation somewhat). This action is also faithful, for if p ∈ P is in the

kernel of the action, then p ∈ M , but P ∩M = Mα = {1}, so p = 1. Let Q := P1 = Nα.

Then ϕ is a group action of Q on T1. I will denote this action by tq := q−1tq. I claim that

G is permutation isomorphic to T1 twrQ P .

Note that {g1, . . . , gk} ⊆ P . In fact, L := {g1, . . . , gk} is a left transversal for Q in P :

suppose that giQ = gjQ. Then g−1
i gj ∈ Q = Nα, so (g−1

i gj)−1T1(g
−1
i gj) = T1. Then

Tj = gjT1g
−1
j = gj(g

−1
i gj)

−1T1(g
−1
i gj)g

−1
j = Ti,

so i = j. If p ∈ P , then pT1p−1 = Ti for some i, which implies that

(p−1gi)
−1T1p

−1gi = g−1
i Tigi = T1.

Thus p−1gi ∈ Q, so pQ = giQ and we have our left transversal. Every element p of P can

then be written uniquely in the form pqp where p ∈ L and qp ∈ Q.
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Recall that QB is the base group of the twisted wreath product T1 twrQ P . Let

m := (t1, . . . , tk) ∈ M . Define ψm : P → T1 by p )→ p−1tip when p = gi. First I show that

ψm ∈ QB. Let p ∈ P and q ∈ Q. Suppose that p = gi. Then we also have that pq = gi, so

(pψm)q = q−1(p−1tip)q = (pq)−1ti(pq) = (pq)ψm,

as desired. Note that ψmm′ = ψmψm′ for all m, m′ ∈ M . Moreover, I claim that if m ∈ M

and p ∈ P , then ψp
m = ψp−1mp. For each i, xi := g−1

ip−1pgi ∈ Q since

(g−1
ip−1pgi)

−1T1(g
−1
ip−1pgi) = g−1

i p−1(Tip−1)pgi = g−1
i Tip−1pgi = T1.

Let x ∈ P and suppose that x = gi, so that x = giqx. Then

xψp
m = (gip−1xiqx)ψm

= (xiqx)−1(gip−1ψm)(xiqx) (since xiqx ∈ Q)

= q−1
x x−1

i g−1
ip−1tip−1gip−1xiqx

= (giqx)−1(p−1tip−1p)(giqx) (subbing in for xi)

= xψp−1mp (as p−1mp = (p−1t1p−1p, . . . , p−1tkp−1p)),

as desired.

Since G = MGα = MP and M ∩P = {1}, G = M # P . Define ψ : G → T1 twrQ P by

mp )→ (ψm, p). Let mp, m′p′ ∈ G. Then

(mp)ψ(m′p′)ψ = (ψm, p)(ψm′ , p′)

= (ψmψp−1

m′ , pp′)

= (ψmψpm′p−1 , pp′)

= (ψmpm′p−1 , pp′)

= (mpm′p−1pp′)ψ

= (mpm′p′)ψ,

so ψ is a homomorphism. Let mp ∈ ker(ψ). Then ψm = 1B and p = 1, so 1 = giψm =

g−1
i tigi for all i. Thus ti = 1 for all i, so mp = 1. Hence, ψ is 1-1. Let (b, p) ∈ T1 twrQ P .

Suppose that xQ = yQ where x, y ∈ P . Then since y−1x ∈ Q,

xb = (yy−1x)b = (yb)y−1x = (y−1x)−1(yb)(y−1x),

so x(xb)x−1 = y(yb)y−1 for all x and y satisfying xQ = yQ. Thus we may define ti :=

x(xb)x−1 for all i ∈ {1, . . . , k} where we may take x to be any element with x = gi.

Moreover, x(xb)x−1 ∈ xT1x−1 = giqxT1q−1
x g−1

i = giT1g
−1
i = Ti. Thus m := (t1, . . . , tk) ∈ M

and xψm = x−1tix = x−1(x(xb)x−1)x = xb for all x ∈ P , so mpψ = (ψm, p) = (b, p) and

ψ is onto. Thus ψ is an isomorphism. Since Gαψ = Pψ = P = (T1 twrQ P )α, G is

permutation isomorphic to T1 twrQ P , a group of twisted wreath type.
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Proposition 2.7.5. Suppose that T is not abelian and that k ≥ 2. If Mα is a full diagonal

subgroup of M , then G is permutation isomorphic to a group of diagonal type.

Proof. Let W be the group of diagonal type that is an extension of Inn(T1)k by Out(T1)×
Sk. Then W has socle Inn(T1)k and acts transitively and faithfully on Ω′ := W/Wα′

where α′ := D (in the notation of a group of diagonal type). Since Mα is a full diagonal

subgroup of M , for i ∈ {2, . . . , k}, there exist isomorphisms γi : T1 → Ti such that

Mα = {(t, tγ2, . . . , tγk) : t ∈ T1} (see (1) in the proof of Lemma 1.4.1(i)). Further,

every element of M can be written uniquely as (t1, t2γ2, . . . , tkγk) for some t1, . . . , tk ∈ T1.

Define θ : M → (Inn(T1))k by (t1, t2γ2, . . . , tkγk) )→ (θt1 , . . . , θtk) where θti : T1 → T1 is

conjugation by ti. Since γi is a homomorphism for all i and θtt′ = θtθt′ for all t, t′ ∈ T1,

θ is a homomorphism. If (t1, t2γ2, . . . , tkγk) ∈ ker(θ), then t = tθti = t−1
i tti for all t ∈ T1,

so ti ∈ Z(T1) = {1} for all i. Thus θ is 1-1. θ is clearly onto, so θ is an isomorphism.

Moreover,

Mαθ = {(a, . . . , a) : a ∈ Inn(T1)} = (Inn(T1)
k)α′ .

Since both M and Inn(T1)k are transitive, M is permutation isomorphic to Inn(T1)k

by Proposition 1.2.3. Then there exists a permutation isomorphism ψ : NSΩ(M) →
NSΩ′ (Inn(T1)k) such that mψ = mθ for all m ∈ M by Proposition 1.2.5. Note that

G ≤ NSΩ(M) since M ! G. Then

Inn(T1)
k = Mψ ≤ Gψ ≤ NSΩ(M)ψ = NSΩ′ (Inn(T1)

k) = W

by Proposition 2.5.4. Gψ is primitive since G is, so G is permutation isomorphic to Gψ, a

group of diagonal type.

Proposition 2.7.6. If the simple condition is satisfied and NαCG(X) < N or if the di-

agonal condition is satisfied and n ≥ 2, then G is permutation isomorphic to a group of

almost simple product type or diagonal product type respectively.

Proof. Again there exist 1 = g1, g2, . . . , gn ∈ Gα with g−1
i Xgi = Xi for all i since Gα acts

transitively on {X1, . . . , Xn} by Lemma 2.1.12. Rearranging indices as needed, we may

write X = T1 × · · ·× Tm for some m ≥ 1 since X ! M .

Note that N = NαXCG(X): X2 × · · · × Xn clearly centralizes X, so M ≤ XCG(X).

Moreover, X is a normal subgroup of M , so M ≤ N (in fact it is a normal subgroup). Then

N = N ∩G = N ∩ (GαM) = NαM , which implies that N = NαM ≤ NαXCG(X) ≤ N as

XCG(X) ! N . Thus N = NαXCG(X).

Moreover, note that if the diagonal condition is satisfied, then since Xα is a full diagonal

subgroup of X, Xα is self-normalizing in X by Lemma 1.4.1, which implies that if Xα !X,

then Xα = X, a contradiction of Lemma 2.7.3. Thus NαCG(X) < N by Lemma 2.7.3.
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For L ≤ N , let L∗ := LCG(X)/CG(X). Let U ≤ N∗. Then U = V/CG(X) for some

CG(X) ≤ V ≤ N and

V = V ∩N = V ∩ (NαXCG(X)) = (V ∩NαX)CG(X),

so U = (V ∩NαX)∗. Thus if U ≤ N∗, we may assume that U = V ∗ for some V ≤ N .

I claim that N∗
α is a maximal subgroup of N∗. In either case, N∗

α < N∗ since NαCG(X) <

N . Now, let NαCG(X) ≤ Y ≤ N . Xα ≤ Nα ≤ Y , so Xα ≤ Y ∩ X ≤ X. Nα clearly

normalizes Y ∩X, but Xα is a maximal Nα-invariant subgroup of X by Lemma 2.7.3, so

either Xα = Y ∩X or Y ∩X = X. But Y = Y ∩ (XNαCG(X)) = (Y ∩X)NαCG(X), so

Y = XαNαCG(X) = NαCG(X) or Y = XNαCG(X) = N . It follows that N∗
α is a maximal

subgroup of N∗.

Let H := N∗, and let Γ be the right coset space H\N∗
α (note that |Γ| ≥ 2). Then H is

transitive on Γ. Let γ := N∗
α. Then Hγ = N∗

α, so Hγ is a maximal subgroup of H. Thus

H acts primitively on Γ.

Note that if ∗L : L → L∗ is defined by l )→ CG(X)l where L ≤ N , then ∗L is an onto

homomorphism. Moreover, ker(∗L) = CG(X) ∩ L, so ∗L is 1-1 if and only if CG(X) ∩ L =

{1}. Now suppose that L ≤ X, and let l ∈ CG(X)∩L. Write l = (l1, . . . , lm) where li ∈ Ti,

and let ti ∈ Ti. Then x := (t1, . . . , tm) ∈ X, so lx = xl which implies that liti = tili for all

i. Thus li ∈ Z(Ti) = {1} for all i, so CG(X) ∩ L = {1}. Hence for all L ≤ X, L * L∗. In

particular, X * X∗ and Ti * T ∗
i for all i, so T ∗

i is simple and nonabelian for all i.

Since T ∗
1 · · ·T ∗

m = X∗, T ∗
i ∩ (T ∗

1 · · ·T ∗
i−1T

∗
i+1 · · ·T ∗

m) = CG(X)/CG(X) and TiCG(X) is a

normal subgroup of XCG(X) for all i ∈ {1, . . . ,m}, X∗ = T ∗
1 × · · ·× T ∗

m. I claim that X∗

is the socle of H. Of course X∗ ! H, so it suffices to show that CH(X∗) = {CG(X)} by

Proposition 1.5.6. Let CG(X)g ∈ CH(X∗). Then for all x ∈ X, CG(X)gx = CG(X)xg, so

gxg−1x−1 ∈ CG(X). But gxg−1x−1 ∈ X and X ∩ CG(X) = {1}, so gx = xg for all x ∈ X.

Thus g ∈ CG(X), so CG(X)g = CG(X), as desired.

Suppose that Xα is a full diagonal subgroup of X. Note that m ≥ 2, or else X is

simple, which implies that Xα = X, a contradiction of Lemma 2.7.3. Of course, X∗
α ≤

T ∗
1 × · · · × T ∗

m. Fix i ∈ {1, . . . ,m}, let ρ∗i : X∗
α → T ∗

i be the i-th projection map and let

x∗ ∈ X∗
α ∩ ker(ρ∗i ). We may write x∗ = (t∗1, . . . , t

∗
k) where tj ∈ Tj for all j, so t∗i = CG(X).

Then ti ∈ CG(X) ≤ CG(Ti), so ti ∈ Z(Ti) = {1}. But (t1, . . . , tk) ∈ Xα, Xα is full diagonal

in X, and ti = 1, so tj = 1 for all j ∈ {1, . . . ,m}. Thus x∗ = 1, so ρ∗i |X∗
α

is 1-1 for all i.

Then T ∗
i * Ti * Xα * X∗

α * X∗
αρ∗i ≤ T ∗

i for all i, so X∗
α is a full diagonal subgroup of X∗.

To see that the action of H on Γ is faithful, the proof is divided into two cases, depending

on whether X is simple or Xα is a full diagonal subgroup of X.

Case 1: Suppose that X is simple. Then X∗ is simple and is the socle of H, so X∗ is

the unique minimal normal subgroup of H. Let U be a normal subgroup of H contained

in N∗
α. If U is not trivial, then X∗ ≤ U ≤ N∗

α, but this implies that N∗
α = N∗

αX∗ = N∗, a

contradiction. Thus N∗
α is core-free, so the action is faithful.
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Case 2: Suppose that Xα is a full diagonal subgroup of X. Then X∗
α is a full diagonal

subgroup of X∗. Let U ! H with U ≤ N∗
α where U is the minimal nontrivial such group.

Then U is a minimal normal subgroup of H, so U ≤ X∗, which implies that U ≤ N∗
α∩X∗ =

X∗
α. But X∗

α is simple, U!X∗
α and U is nontrivial, so U = X∗

α. Then X∗
α!X∗, but X∗

α is full

diagonal in X∗, hence is self-normalizing in X∗ by Lemma 1.4.1, so Xα * X∗
α = X∗ * X.

Then Xα = X, a contradiction by Lemma 2.7.3. Thus N∗
α is core-free, so the action of H

on Γ is faithful.

Summarizing, H is a primitive permutation group on Γ with socle X∗. If X is simple,

then the socle of H is simple and nonabelian, so H is of almost simple type. If Xα is a full

diagonal subgroup of X, then (X∗)γ = X∗
α is a full diagonal subgroup of X∗ = T ∗

1 ×· · ·×T ∗
m

with m ≥ 2, so H is of diagonal type by Proposition 2.7.5.

I claim that G is permutation isomorphic to a subgroup of H wr∆ Sn where ∆ =

{1, . . . , n} and H wr∆ Sn acts on Γn with the product action. Write the elements of

H wr∆ Sn in the form (h1, . . . , hn)π where hi ∈ H for all i and π ∈ Sn. Note that

Tm * X * Xi and Xα * (Xi)α for all i, so

|Γ|n = [X∗ : X∗
α]n = [X : Xα]n = |T |mn/|Xα|n = [M : Mα] = |Ω|.

I claim that R := {g1, . . . , gn} is a right transversal for N in G: first suppose that Ngi =

Ngj. Then gig
−1
j ∈ N , so gjg

−1
i Xgig

−1
j = X. But then

Xj = g−1
j Xgj = g−1

j gjg
−1
i Xgig

−1
j gj = Xi,

so i = j. Thus i = j if and only if Ngi = Ngj. Let g ∈ G. Then g = ma for some m ∈ M

and a ∈ Gα, so g−1Xg = a−1(m−1Xm)a = a−1Xa = Xi for some i. Then

(gig
−1)−1X(gig

−1) = gXig
−1 = X,

so gig−1 ∈ N and Ngi = Ng. Thus R is a right transversal for N in G, so every element

g of G can be written uniquely in the form ngg where ng ∈ N and g ∈ R. For all g ∈ G,

define πg ∈ Sn by g−1Xig = Xiπg . Define ψ : G → H wr∆ Sn by g )→ (n∗
g1g, . . . , n

∗
gng)πg.

Let g, h ∈ G. Note that πgπh = πgh since

Xiπgπh
= h−1Xiπgh = h−1g−1Xigh = (gh)−1Xi(gh) = Xiπgh

.

Moreover, gigg−1
iπg
∈ N for all i since

giπgg
−1g−1

i Xgigg−1
iπg

= giπgg
−1Xigg−1

iπg
= giπgXiπgg

−1
iπg

= X.
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Hence, Ngig = Ngiπg , so gig = giπg and gigh = giπgh for all i. Then

(gψ)(hψ) = (n∗
g1g, . . . , n

∗
gng)πg(n∗

g1h, . . . , n
∗
gnh)πh

= (n∗
g1gn

∗
g1πg h, . . . , n

∗
gngn

∗
gnπg h)πgπh

= ((ng1gng1πg h)∗, . . . , (ngngngnπg h)∗)πgh

= ((g1gg1g−1(g1πgh)g1πgh
−1

)∗, . . . , (gnggng−1(gnπgh)gnπgh
−1

)∗)πgh

= ((g1gg−1
1πg

g1πghg1gh
−1

)∗, . . . , (gngg−1
nπg

gnπghgngh
−1

)∗)πgh

= (n∗
g1gh, . . . , n

∗
gngh)πgh

= (gh)ψ.

Thus ψ is a homomorphism.

Let g ∈ ker(ψ). Then (n∗
g1g, . . . , n

∗
gng)πg is the identity, so (gig)gig−1 ∈ CG(X) and

g−1Xig = Xi for all i. In particular, g ∈ N , so Ngig = Ngi. Then gig = gi, so g ∈
g−1

i CG(X)gi for all i. I claim that g−1
i CG(X)gi = CG(Xi) for all i. Let a ∈ CG(X) and

b ∈ Xi. Then

(g−1
i agi)−1b(g−1

i agi) = g−1
i a−1(gibg

−1
i )agi

= g−1
i (gibg

−1
i )gi (since gibg

−1
i ∈ X)

= b,

so g−1
i CG(X)gi ≤ CG(Xi). Similarly, giCG(Xi)g

−1
i ≤ CG(X), so g−1

i CG(X)gi = CG(Xi).

Then g ∈
⋂n

i=1 CG(Xi) = CG(M) by Lemma 1.1.3, but CG(M) is trivial, so ψ is 1-1.

To show that G is permutation isomorphic to Gψ, it suffices to show by Proposition

1.2.3 that Gψ acts transitively on Γn and that Gαψ = (Gψ)α′ where α′ := (γ, . . . , γ). Let

m ∈ M . Then Ngim = Ngi, so gim = gi for all i. Then n∗
gim = CG(X)gimg−1

i ∈ M∗ for

all i since M ! G. But πm is the identity and

M∗ = MCG(X)/CG(X) ≤ XCG(X)/CG(X) = X∗,

so mψ ∈ (X∗)n. Thus Mψ ≤ (X∗)n. But |Mψ| = |M | = |X|n = |(X∗)n| since X * X∗, so

Mψ = (X∗)n. Hence, Gψ contains the socle of H wr∆ Sn, so Gψ acts transitively on Γn.

Now, let a ∈ Gα. Then ngia = (gia)gia−1 ∈ Gα ∩N = Nα for all i, so aψ ∈ (N∗
α)n # Sn =

Hγ wr∆ Sn = (H wr∆ Sn)α′ . Thus Gαψ ≤ (Gψ)α′ . Moreover,

|Γ|n = [Gψ : (Gψ)α′ ] =
|G|

|(Gψ)α′|
=

|Ω||Gα|
|(Gψ)α′|

=
|Γ|n|Gα|
|(Gψ)α′|

,

so |Gαψ| = |Gα| = |(Gψ)α′|. Thus Gαψ = (Gψ)α′ , as desired.

Note that if H is of almost simple type, then n = k ≥ 2 by assumption, and if H is

of diagonal type, then n ≥ 2 by assumption, so Gψ is a group of product type as it is a

primitive subgroup of H wr∆ Sn containing the socle of H wr∆ Sn. Thus G is permutation

isomorphic to a group of almost simple product type or diagonal product type.
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Now we are able to prove the O’Nan-Scott Theorem. Here it is:

Proof of 2.7.1. If T is abelian, then G is permutation isomorphic to a group of affine type

by Proposition 2.7.2. Thus we may assume that T is nonabelian. If k = 1, then G has a

simple nonabelian socle, so G is of almost simple type and we are done. Suppose now that

k ≥ 2. Since Ti is nonabelian and simple for all i, G acts on {T1, . . . , Tk} by conjugation.

Let ρi : M → Ti be the i-th projection map, and define Ri := Mαρi. Note that if a ∈ Gα

and a−1Tia = Tj, then

a−1Ria = a−1(Mαρi)a = (a−1Mαa)ρj = Mαρj = Rj

since Mα ! Gα. Thus Gα permutes {R1, . . . , Rk}, so Gα ≤ NG(R1 × · · ·×Rk). But Mα ≤
R1× · · ·×Rk ≤ M , so by the primitivity of G, Mα = R1× · · ·×Rk or M = R1× · · ·×Rk.

Suppose that Mα = R1 × · · ·× Rk. Then Ri = Ti ∩Mα = (Ti)α for all i, so taking Xi

to be Ti and n to be k, the simple condition is satisfied. Thus if NαCG(T1) = N , then G

is permutation isomorphic to a group of twisted wreath type by Proposition 2.7.4, and if

NαCG(T1) < N , then G is permutation isomorphic to a group of almost simple product

type by Proposition 2.7.6.

Suppose now that M = R1 × · · · × Rk. Then Ri = Ti for all i, so Mα is a subdirect

subgroup of M . By Lemma 1.4.1, Mα = D1× · · ·×Dn where for each i ∈ {1, . . . , n}, Di is

a full diagonal subgroup of Xi :=
∏

j∈Ii
Tj for some Ii ⊆ {1, . . . , k} (where the Ii partition

{1, . . . , k}). If n = 1, then Mα is a full diagonal subgroup of M , so G is permutation

isomorphic to a group of diagonal type by Proposition 2.7.5. Thus we may assume that

n ≥ 2. Note that Di = Xi ∩Mα = (Xi)α for all i. Thus the diagonal condition is satisfied,

so G is permutation isomorphic to a group of diagonal product type by Proposition 2.7.6,

completing the proof.
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3 Finitely Representing Mn

The Grätzer-Schmidt Theorem states that every algebraic lattice is isomorphic to the con-

gruence lattice of some algebra (see [10]). A finite lattice is said to be finitely representable

if it is isomorphic to the congruence lattice of some finite algebra. The question can then

be asked whether every finite lattice is finitely representable. This is an open problem

which is generally believed to have a negative answer.

Pálfy and Pudlák prove in [18] that every finite lattice is finitely representable if and

only if every finite lattice can be embedded as an interval into the subgroup lattice of a

finite group, where if L is a lattice and a, b ∈ L, then the interval of a and b is {c ∈ L :

a ≤ c ≤ b} := [a, b]. Moreover, their proof reveals that if a finite lattice satisfies three

conditions and is finitely representable, then this lattice can be embedded as an interval

into the subgroup lattice of a finite group, and conversely, if a lattice can be embedded as an

interval into the subgroup lattice of a finite group, then this lattice is finitely representable.

This restricts the problem considerably for certain classes of lattices but by no means makes

it trivial, as we shall see.

One lattice which satisfies Pálfy and Pudlák’s three conditions is Mn, the lattice of

length 2 with n atoms (when n ≥ 4). It follows that for n ≥ 4, Mn is finitely representable

if and only if there exists a finite group G containing a subgroup H such that there are

exactly n proper subgroups of G properly containing H, all of which are maximal subgroups

of G. Much work has been done on this lattice over the last thirty years, and I will take

the remainder of this thesis to describe the progress that has been made, as outlined in

the introduction.

3.1 n− 1 = pk

Here is the first most basic reduction for the problem of finitely representing Mn. It comes

from an exercise in [21, p. 10].

Proposition 3.1.1. If n = pk + 1 for some prime p and positive integer k, then Mn is

finitely representable.

Proof. Let V be a vector space of dimension 2 over F := Fpk . Any nontrivial element of V

generates a 1-dimensional subspace of V , and there are p2k − 1 such elements. Moreover,

any 1-dimensional subspace has pk − 1 nontrivial elements, all of which generate the same

subspace, so there are (p2k − 1)/(pk − 1) = pk + 1 subspaces of V . Since any proper

nontrivial subspace of V has dimension 1, V has exactly pk + 1 = n proper nontrivial

subspaces; denote these n proper nontrivial subspaces of V by V1, . . . , Vn.

For v ∈ V and 0 ,= a ∈ F , let v∗a : V → V be defined by x )→ ax + v. Let G :=

{v∗a : 0 ,= a ∈ F, v ∈ V }, Ki := {v∗a : 0 ,= a ∈ F, v ∈ Vi} and H := {0∗a : 0 ,= a ∈ F}.
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It is easily verified that G, H and K1, . . . , Kn are all groups and that H < Ki < G for

all i ∈ {1, . . . , n}. Moreover, if v∗a ∈ Ki ∩ Kj where i ,= j, then v ∈ Vi ∩ Vj = {0}, so

Ki ∩Kj = H for all i ,= j.

Let H < K < G. A typical element of K has the form v∗b for some 0 ,= b ∈ F and v ∈ V .

Then v∗ba = 0∗av
∗
b ∈ K for all a ∈ F , so v∗a ∈ K for all a ∈ F . Define W := {v ∈ V : v∗1 ∈ K}.

Clearly 0 ∈ W . Let v, w ∈ W . Then x(v + w)∗1 = x + v + w = (x + v)w∗
1 = xv∗1w

∗
1 for all

x ∈ V , so (v+w)∗1 = v∗1w
∗
1 ∈ K. Thus v+w ∈ W . Let 0 ,= a ∈ F . Then x(av)∗1 = x+av =

a(a−1x + v) + 0 = (a−1x + v)0∗a = xv∗a−10∗a for all x ∈ V , so (av)∗1 = v∗a−10∗a ∈ K. Thus W

is a subspace of V , and clearly K = {v∗a ∈ G : 0 ,= a ∈ F, v ∈ W}. But then W must be

a proper nontrivial subspace of V since H < K < G, so W = Vi for some i ∈ {1, . . . , n}.
Thus K = Ki, which implies that [H,G] * Mn, and we are done.

It was thought for some time that if Mn were finitely representable, then n−1 did have

to be a power of a prime, as the next result suggests.

Proposition 3.1.2. Let G be a finite group whose subgroup lattice is isomorphic to Mn

where n ≥ 3. Then n− 1 is a prime.

Proof. Let H be a proper nontrivial subgroup of G. Then H has only trivial subgroups.

If p | |H| and q | |H| where p and q are primes, then H contains subgroups of order p and

q, a contradiction. Thus H is a pH-group for some prime pH . If H has order pm
H for some

m ≥ 2, then H has a subgroup of order pH , a contradiction. Thus every proper nontrivial

subgroup of G is a cyclic group of prime order.

To start, suppose that G is a p-group for some prime p. Clearly |G| ,= p. Suppose that

|G| = pm for some m ≥ 3. Then G has a subgroup of order p, say H. By Proposition 1.8.1,

G is nilpotent, so H < NG(H), which implies that H ! G. Then G/H has order pm−1, so

it contains a subgroup K/H of order p. Since |G/H| is at least p2, H/H < K/H < G/H,

so H < K < G, a contradiction. Thus |G| = p2, so G is abelian by Proposition 1.3.2.

Then G * Zp2 or G * Zp × Zp. Zp2 is cyclic, so it contains exactly one subgroup of order

p, but n ≥ 3, so G is not isomorphic to Zp2 . Thus G * Zp × Zp. Since G is not cyclic,

every nontrivial element of G generates a proper nontrivial subgroup of order p. Since

each pair of nontrivial proper subgroups intersects trivially and every nontrivial element

is contained in some proper subgroup of G, the number of nontrivial elements of G must

equal the number of proper nontrivial subgroups times the number of nontrivial elements

in each subgroup. Then p2 − 1 = n(p − 1), so n = p + 1. Thus n − 1 is a prime, and we

are done.

Hence, we may assume that G is not a p-group for any prime p. Note that since

every proper nontrivial subgroup of G has prime order and is maximal in G, every proper

nontrivial subgroup of G must be a Sylow subgroup of G. It follows that G is square-free.

Suppose that G has a Sylow p-subgroup P which is normal in G. Let q ,= p be a prime
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dividing the order of G, and let Q be a Sylow q-subgroup where p ,= q. Then P < PQ ≤ G,

so PQ = G. Since P ∩ Q = {1}, |G| = pq. Then nq | p and np | q. If np = q and nq = p,

then q | (p − 1) and p | (q − 1), so q < p and p < q, a contradiction. Moreover, if nq = 1

and np = 1, then n = np + nq = 2, a contradiction. Thus n = np + nq = 1 + q or 1 + p. In

either case, n− 1 is a prime, and we are done.

Suppose now for a contradiction that no Sylow p-subgroup of G is normal in G. Let

p < q be primes dividing the order of G. Let P be a Sylow p-subgroup of G. Then

NG(P ) < G, but P ≤ NG(P ), so we must have that P = NG(P ). Since P is a proper

nontrivial subgroup of G, P is cyclic of order p, so P = 〈a〉 for some a ∈ G. Let m := [G :

P ]. Choose g1, . . . , gm to be right coset representatives of P in G. Let

SP := {g−1
i ajgi : 1 ≤ i ≤ m and 1 ≤ j ≤ p− 1}.

Suppose that g−1aig = h−1ajh for some g, h ∈ G and i, j ∈ {1, . . . , p − 1}. Then ai =

gh−1ajhg−1. Since gcd(i, p) = 1 and a has order p, there exists an integer l for which

a = ail. Then a = gh−1ajlhg−1, so P = 〈a〉 ≤ gh−1Phg−1. Thus P = gh−1Phg−1, so

hg−1 ∈ NG(P ) = P , and Pg = Ph. It follows that |Sp| = (p − 1)[G : P ]. This argument

can be repeated for a Sylow q-subgroup Q of G, so |SQ| = (q − 1)[G : Q] as well. Clearly

SQ ∩SP = ∅, so G contains at least |SP |+ |SQ|+ 1 elements. Now p ≥ 2, so p/(p− 1) ≤ 2.

Since q > p ≥ 2, q > p/(p− 1), so pq − p− q ≥ 1. Then |G|pq − |G|p− |G|q ≥ |G| > −pq,

so dividing by pq we get that |G|−| G|/q − |G|/p > −1. Thus

|SP | + |SQ| + 1 = 2|G|−| G|/p− |G|/q + 1 > |G|,

a contradiction.

3.2 Nonsolvable Case

The next proposition gives more information about the case when n− 1 is not a power of

a prime.

Theorem 3.2.1 (Pálfy and Pudlák, [18]). Let G be a finite group. Suppose that H is a

proper subgroup of G containing no nontrivial normal subgroup of G such that the interval

[H,G] in the subgroup lattice of G is isomorphic to Mn for some n ≥ 3. If G has a

nontrivial normal abelian subgroup, then n− 1 is a prime power.

Proof. Let {K1, K2, . . . , Kn} be the n atoms of [G, H]. Let A be a minimal abelian normal

subgroup of G. By assumption, A " H, so H < AH ≤ G. Suppose that AH = G, for a

contradiction. Since A is abelian, A ∩ K1 is abelian and A ∩ K1 ! A, but A ∩ K1 ! K1

since A ! G, so A ∩K1 ! AK1 = G since G = AH ≤ AK1. Moreover, if A ∩K1 is trivial,

then H = (K1 ∩ A)H = K1 ∩ (AH) = K1, a contradiction, so by the minimality of A,
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A∩K1 = A. But then G = AH = (A∩K1)H ≤ K1, a contradiction. Thus H < AH < G,

so we may assume without loss of generality that AH = K1. For j ∈ {2, . . . , n}, we have

that K1 < K1Kj = (AH)Kj = AKj ≤ G, so K1Kj = AKj = G. Then

[A : A ∩Kj] = [G : Kj] = [K1 : K1 ∩Kj] = [AH : H] = [A : A ∩H],

so A∩Kj = A∩H. A∩Kj !A and A∩Kj !Kj, so A∩Kj !AKj = G. If A∩Kj = A, then

H = H ∩ (AKj) = (H ∩A)Kj = (A∩Kj)Kj = AKj = G, a contradiction, so A∩Kj = {1}
by the minimality of A. Thus G = A # Kj for all j ∈ {2, . . . , n}.

Let x ∈ K2, and fix j ∈ {2, . . . , n}. x ∈ A#Kj, so there exist unique elements kx ∈ Kj

and ax ∈ A with x = kxax. Then x−1kx ∈ A. Define ϕj : K2 → A by x )→ x−1kx. Then

ϕj is well-defined and Kj = {x(xϕj) : x ∈ K2} since x(xϕj) = xx−1kx = kx ∈ Kj and if

k ∈ Kj, then k = xa for some x ∈ K2 and a ∈ A, so k = kx = xx−1kx = x(xϕj). Let

x, y ∈ K2. Then

kxyaxy = xy = kxaxkyay = (kxky)(k
−1
y axky)ay

and (k−1
y axky)ay ∈ A, so kxy = kxky. Then

(xy)ϕj = (xy)−1kxy = y−1x−1kxky = y−1(xϕj)yy−1ky = y−1(xϕj)y(yϕj)

for all x, y ∈ K2. Also, if h ∈ H, then h ∈ Kj, so ah = 1 and h = kh. Thus hϕj = 1 for all

h ∈ H. Clearly ϕ2, . . . ,ϕn are all different since K2, . . . , Kn are all different.

Now, suppose that we have a function ϕ : K2 → A satisfying hϕ = 1 for all h ∈ H and

(xy)ϕ = y−1(xϕ)y(yϕ) for all x, y ∈ K2, which I will refer to as (∗). Let B := {x(xϕ) : x ∈
K2}. Clearly 1 ∈ B. If x(xϕ), y(yϕ) ∈ B, then by (∗), x(xϕ)y(yϕ) = xy(xy)ϕ ∈ B. Taking

y = x−1 in (∗), we see that 1 = 1ϕ = x(xϕ)x−1(x−1ϕ), so (x(xϕ))−1 = x−1(x−1ϕ) ∈ B.

Thus B ≤ G. Of course AB ≤ G. Let xa ∈ A # K2 (where x ∈ K2 and a ∈ A). Then

xa = x(xϕ)(xϕ)−1a ∈ BA, so G = K2A ≤ BA. Thus AB = G. Suppose that B = G.

Then A ≤ B, so if a ∈ A, then a = x(xϕ) for some x ∈ K2, so x ∈ A ∩ K2 = {1},
which implies that a = 1, a contradiction. Thus B < G. Moreover, H ≤ B since if

h ∈ H, then h = h1 = h(hϕ) ∈ B. If B = H, then given x ∈ K2, x(xϕ) ∈ B = H, so

xϕ ∈ A ∩K2 = {1}, so x ∈ H, a contradiction. Thus H < B. Since H < B < G, B = Ki

for some i. Let x ∈ A ∩ B. Then x = a = y(yϕ) for some a ∈ A and y ∈ K2, which

implies that a(yϕ)−1 = y ∈ K2 ∩ A = {1}, so x = 1. Thus A ∩ B = {1}. Note that if

A∩K1 = {1}, then H = (K1 ∩A)H = K1 ∩ (AH) = K1, a contradiction, so A∩K1 is not

trivial. Then B ,= K1, so B = Kj for some j ∈ {2, . . . , n}. Let x ∈ K2. Then x(xϕj) ∈ Kj,

so x(xϕj) = y(yϕ) for some y ∈ K2. But y−1x = (yϕ)(xϕj)−1 ∈ K2 ∩ A = {1}, so x = y

and xϕj = xϕ. Thus ϕ = ϕj, so there are exactly n − 1 functions ϕ : K2 → A satisfying

hϕ = 1 for all h ∈ H and (xy)ϕ = y−1(xϕ)y(yϕ) for all x, y ∈ K2, namely, ϕ2, . . . ,ϕn.

72



Let K := {ϕj : 2 ≤ j ≤ n}. If ϕ, ψ ∈ K, let xϕψ := (xϕ)(xψ) for all x ∈ K2. Let

x, y ∈ K2. Then

xy(xy)ϕψ = (xy(xyϕ))(xyψ)

= x(xϕ)y(yϕ)(xyψ) (by (∗))
= x(xϕ)(y(xyψ))(yϕ) (since A is abelian)

= x(xϕ)((xψ)y(yψ))(yϕ) (by (∗))
= x(xϕ)(xψ)y(yψϕ)

= x(xϕψ)y(yϕψ) (since A is abelian)

and if h ∈ H, then hϕψ = hϕhψ = 1. Thus ϕψ ∈ K, so we have a binary operation on

K. Clearly xϕ2 = 1 for all x ∈ K2. It follows that ϕ2 is the identity of K. Note that A

is abelian, hence solvable, but it is minimal normal in G, so by Proposition 1.7.2, A is an

elementary abelian p-group for some prime p. Thus every element of A has order p. Then

xϕp = (xϕ)p = 1 for all x ∈ K2 and ϕ ∈ K, so if ϕ ,= ϕ2, then ϕ−1 = ϕp−1 ∈ K. Thus

K is an abelian group (since A is abelian). Moreover, every nontrivial element of K has

order p, so K is an elementary abelian p-group. But |K| = n− 1, so n− 1 is a power of a

prime, as desired.

Let G be a finite group, and suppose that the interval [H,G] in the subgroup lattice of

G is isomorphic to Mn where n−1 is not a power of a prime. Let N be the core of H in G.

Then the interval [H/N, G/N ] in the subgroup lattice of G/N is also isomorphic to Mn.

Moreover, H/N contains no nontrivial normal subgroup of G/N , so by Theorem 3.2.1,

G/N contains no nontrivial abelian subgroup, which implies that G/N is not solvable.

Thus G is not solvable. It follows that for n − 1 not a power of a prime, Mn is finitely

representable if and only if Mn can be embedded as an interval into the subgroup lattice

of a finite nonsolvable group.

3.3 Subdirectly Irreducible Case

A nontrivial group G is subdirectly irreducible if and only if G has a unique minimal

normal subgroup (see [5, p. 63] for the definition of a subdirectly irreducible algebra). The

smallest n for which n− 1 is not a power of a prime is of course 7. Köhler proved in [13]

that a finite group minimal with respect to the property of its subgroup lattice containing

an interval isomorphic to M7 must be subdirectly irreducible, hoping that this would lead

to a proof that M7 is not finitely representable. Meanwhile, Feit showed in [9] that M7 is

actually finitely representable by embedding M7 as an interval into the subgroup lattice

of the alternating group on 31 letters (a nonsolvable group, of course). Thus the set of

integers n for which n−1 is a power of a prime does not completely determine when Mn is

finitely representable. Fortunately, Köhler’s theorem generalizes quite easily, as he points

73



out in [13]. Here is the general version of Köhler’s result; it differs only slightly from his

proof of the case n = 7. We start with a lemma.

Lemma 3.3.1 (Köhler, [13]). Let N1 and N2 be distinct minimal normal subgroups of a

group G. Let H ≤ G. Then the set of subgroups U of N1N2 satisfying

(i) U ∩N1 = U ∩N2 = {1},

(ii) UN1 = UN2 = N1N2, and

(iii) H ≤ NG(U)

is in 1-1 correspondence with the set of isomorphisms ϕ : N1 → N2 satisfying (h−1xh)ϕ =

h−1(xϕ)h for all h ∈ H and x ∈ N1.

Proof. Note that N1 and N2 centralize each other by Proposition 1.5.1. Let U ≤ N1N2

for which (i), (ii) and (iii) hold. Define ϕU : N1 → N2 by n1 )→ n2 where n1n2 ∈ U . If

x = y ∈ N1, then x(xϕU) ∈ U and y(yϕU) ∈ U , so (yϕU)−1y−1x(xϕU) = (yϕU)−1(xϕU) ∈
U ∩ N2 = {1}. Thus yϕU = xϕU , so ϕU is well-defined. Let x, y ∈ N1. x(xϕU), y(yϕU)

and xy(xyϕU) ∈ U , so

(yϕU)−1y−1(xϕU)−1x−1xy(xyϕU)

= (yϕU)−1y−1(xϕU)−1y(xyϕU)

= (yϕU)−1(xϕU)−1y−1y(xyϕU)

= (yϕU)−1(xϕU)−1(xyϕU)

∈ U ∩N2

= {1}

Thus (xy)ϕU = (xϕU)(yϕU), so ϕU is a homomorphism. Suppose that x ∈ ker(ϕU). Then

xϕU = 1, so x(xϕU) = x ∈ U ∩ N1 = {1}. Thus x = 1, so ϕU is 1-1. Let n2 ∈ N2.

Then n2 ∈ N1N2 = UN1, so n2 = n−1
1 u for some n1 ∈ N1 and u ∈ U . Rearranging, we

get that n1n2 = u ∈ U , so n1ϕU = n2, which implies that ϕU is onto. Thus ϕU is an

isomorphism. Further, (h−1xh)ϕU = h−1(xϕU)h for all h ∈ H and x ∈ N1: x(xϕU) ∈ U ,

so h−1x(xϕU)h ∈ U by (iii), but (h−1xh)(h−1xhϕU) ∈ U , so

(h−1x(xϕU)h)−1(h−1xh)(h−1xhϕU) = h−1(xϕU)−1h(h−1xhϕU) ∈ U ∩N2 = {1},

giving the desired result.

On the other hand, let ϕ : N1 → N2 be an isomorphism that satisfies (h−1xh)ϕ =

h−1(xϕ)h for all h ∈ H and x ∈ N1. I claim that Uϕ := {x(xϕ) : x ∈ N1} is a subgroup

of N1N2 satisfying (i), (ii) and (iii). Clearly 1 ∈ Uϕ. Let x(xϕ), y(yϕ) ∈ Uϕ. Then

because N1 and N2 centralize each other and because ϕ is a homomorphism, x(xϕ)y(yϕ) =
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xy(xϕ)(yϕ) = xy(xyϕ) ∈ Uϕ. Moreover, (x(xϕ))−1 = (xϕ)−1x−1 = x−1(x−1ϕ) ∈ Uϕ, so

Uϕ ≤ N1N2. Now, let y = x(xϕ) ∈ N1 ∩ Uϕ. Then x−1y = xϕ ∈ N1 ∩N2 = {1}, so x = 1

since ϕ is 1-1, which implies that y = 1. Thus N1 ∩ Uϕ = {1}. Let y = x(xϕ) ∈ N2 ∩ Uϕ.

Then y(xϕ)−1 = x ∈ N2 ∩ N1 = {1}, so x = 1. Thus N2 ∩ Uϕ = {1} as well, so (i)

is satisfied. Let n1n2 ∈ N1N2. n2 = xϕ for some x ∈ N1, so xn2 = x(xϕ) ∈ Uϕ, but

n1n2 = (n1x−1)(xn2) ∈ N1Uϕ, so N1N2 ≤ N1Uϕ ≤ N1N2. Thus N1Uϕ = N1N2. Further,

N2Uϕ = N1N2 since if n1n2 ∈ N1N2, then n1n2 = (n1(n1ϕ))((n1ϕ)−1n2) ∈ UϕN2, so (ii)

is true. Let h ∈ H and x(xϕ) ∈ Uϕ. Then h−1x(xϕ)h = h−1xh(h−1xhϕ) ∈ Uϕ since

h−1xh ∈ N1, satisfying (iii).

Lastly, I show that ϕUϕ = ϕ and UϕU = U , which gives us the desired 1-1 corre-

spondence. Let x ∈ N1. x(xϕUϕ) ∈ Uϕ, so x(xϕUϕ) = y(yϕ) for some y ∈ N1. Then

y−1x = (yϕ)(xϕUϕ)−1 ∈ N1 ∩ N2 = {1}, so y = x, which implies that xϕUϕ = xϕ. Thus

ϕUϕ = ϕ. Now, let x(xϕU) ∈ UϕU . Then x(xϕU) ∈ U , so UϕU ≤ U . On the other hand,

let u ∈ U . Then u = n1n2 for some n1 ∈ N1 and n2 ∈ N2. Since n1n2 ∈ U , n1ϕU = n2, so

u = n1(n1ϕU) ∈ UϕU . Thus UϕU = U .

Theorem 3.3.2 (Köhler, [13]). Let G be a finite group. Suppose that the subgroup lattice

of G contains an interval that is isomorphic to Mn (n ≥ 3) where G is minimal with respect

to this property. If n− 1 is not a power of a prime, then G is subdirectly irreducible.

Proof. Write the interval as [H,K] where H,K ≤ G. Then by the minimality of G, K = G.

Let K1, . . . , Kn denote the n atoms. Let N be a normal subgroup of G contained in H.

Then the interval [H/N : G/N ] is isomorphic to Mn and |G/N | ≤ |G|, so by the minimality

of G, N = {1}. Thus H contains no nontrivial normal subgroup of G. Note that n ≥ 7

since n− 1 is not a power of a prime.

Suppose for a contradiction that G is not subdirectly irreducible. Then G does not

have a unique minimal normal subgroup. Let N1 and N2 be distinct minimal normal

subgroups of G. First I show that we may assume that for all i ∈ {1, 2} and j ∈ {3, . . . , n},
G = Ni # Kj, HNi = Ki and H ∩N1N2 = {1}.

If Ni ≤ Kj and Ni ≤ Kl for some j ,= l, then Ni ≤ Kj ∩Kl = H, a contradiction as

H contains no nontrivial normal subgroup of G. Thus both N1 and N2 can be contained

in at most one of the groups K1, . . . , Kn. So we may assume without loss of generality

that for i ∈ {1, 2}, Ni " Kj for all j ∈ {3, . . . , n}. Then NiKj = G for all i ∈ {1, 2} and

j ∈ {3, . . . , n} since Kj < NiKj. Fix j ∈ {3, . . . , n}. Kj ∩N1 ! Kj. Moreover, Kj ∩N1 is

normalized by N2 since N1 and N2 centralize each other. Thus Kj ∩N1 ! KjN2 = G. By

our choice of j, Kj ∩N1 < N1, so by the minimality of N1, Kj ∩N1 = {1}. By symmetry,

Kj ∩N2 = {1}. Thus G = Ni # Kj for all i ∈ {1, 2} and j ∈ {3, . . . , n}.
Of course H < HNi ≤ G for i ∈ {1, 2}. Suppose that HNi = G for some i. Then

Kj = Kj ∩G = Kj ∩ (NiH) = (Kj ∩Ni)H = H, a contradiction. Thus HNi = Kj for some
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j ∈ {1, 2} since Ni " Kj when j ∈ {3, . . . , n}, so we may assume without loss of generality

that HN1 = K1. Suppose for a contradiction that HN2 = K1. Then N1N2 ≤ K1, which

implies that

Kj ∩N1N2 = Kj ∩K1 ∩N1N2 = H ∩N1N2

for all j ∈ {2, . . . , n}. N1N2 ! G, so Kj ∩ N1N2 ! Kj. It follows that H ∩ N1N2 !
〈K2, K3〉 = G, but H ∩ N1N2 ≤ H, so we must have that H ∩ N1N2 = {1}. But then

N1 = (N1N2 ∩K3)N1 = (N1N2)∩ (K3N1) = N1N2 ∩G = N1N2, so N2 ≤ N1, which cannot

happen. Thus HN1 = K1 and HN2 = K2.

Note that H ∩N2 ≤ K3 ∩N2 = {1}. Moreover, since HN2 = K2 and N1 ≤ K1,

HN2 ∩N1 = K2 ∩N1 = K2 ∩K1 ∩N1 = H ∩N1 ≤ K3 ∩N1 = {1}.

Then

|HN1N2| = |HN2||N1| = |H||N2||N1| = |H||N1N2|

since N1 ∩N2 = {1}, so H ∩N1N2 = {1}, as desired.

Let Uj := Kj ∩N1N2 for all j ∈ {3, . . . , n}. Then Uj is a subgroup of N1N2 satisfying

(i), (ii) and (iii) of Lemma 3.3.1 for all j: fix j ∈ {3, . . . , n} and i ∈ {1, 2}. Then

Uj ∩Ni = Kj ∩ (N1N2 ∩Ni) = Kj ∩Ni = {1}; UjNi = (Kj ∩N1N2)Ni = N1N2 ∩ (KjNi) =

N1N2 ∩G = N1N2; and since N1N2 ! G and H ≤ Kj, H ≤ NG(Uj).

Moreover, if U is any subgroup of N1N2 satisfying (i), (ii) and (iii) of Lemma 3.3.1,

then I claim that U = Uj for some j ∈ {3, . . . , n}. Note that N1N2 ∩ (HU) = (N1N2 ∩
H)U = {1}U = U . It then suffices to show that HU = Uj for some j ∈ {3, . . . , n}, for

U = HU ∩ N1N2 = Uj ∩ N1N2 = Uj. Note that H ≤ HU ≤ G since H normalizes U

by (iii). If H = HU , then U ≤ H ∩ N1N2 = {1}, so N1 = UN1 = UN2 = N2 by (ii), a

contradiction. If HU = G, then N1N2 = U , which implies that N1 ≤ U , but U ∩N1 = {1}
by (i), a contradiction. Lastly, if HU = Ki for some i ∈ {1, 2}, then since HNi = Ki,

Ni ≤ Ki∩N1N2 = HU ∩N1N2 = U , contradicting U ∩Ni = {1}. Thus HU = Uj for some

j ∈ {3, . . . , n}.
We conclude that there are exactly n − 2 subgroups of N1N2 satisfying (i), (ii) and

(iii) of Lemma 3.3.1, namely, U3, . . . , Un. But then there are exactly n − 2 isomorphisms

ϕ : N1 → N2 satisfying (h−1xh)ϕ = h−1(xϕ)h for all h ∈ H and x ∈ N1 by Lemma 3.3.1.

Moreover, as defined in the proof of Lemma 3.3.1, these isomorphisms are ϕU3 , . . . ,ϕUn .

Let Y := {ϕU3 , . . . ,ϕUn} and

Z := {α ∈ Aut(N1) : (h−1xh)α = h−1(xα)h for all h ∈ H, x ∈ N1}.

Then Z ≤ Aut(N1) since if α, β ∈ Z, then (h−1(xβ−1)h)β = h−1xh, so (h−1xh)αβ−1 =

(h−1(xα)h)β−1 = h−1(xαβ−1)h. I claim that Y = {αϕ : α ∈ Z} for any ϕ ∈ Y . Let

ϕ ∈ Y be fixed, and let α ∈ Z. Then αϕ is an isomorphism from N1 onto N2 satisfying
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(h−1xh)αϕ = h−1(xαϕ)h, so αϕ ∈ Y . Let ψ ∈ Y . Then ψϕ−1 ∈ Aut(N1) satisfying

(h−1xh)ψϕ−1 = h−1(xψϕ−1)h, so ψϕ−1 ∈ Z, proving the claim. Z is not trivial since |Z| =

|Y | = n− 2 ≥ 5, so Z contains an element of prime order, say α, and α = ϕUjϕ
−1
U3

for some

j ,= 3 since Y = {αϕU3 : α ∈ Z}. Let x ∈ N1 be a fixed point of α. Then x = xϕUjϕ
−1
U3

, so

xϕU3 = xϕUj . Then x(xϕU3) = x(xϕUj) ∈ U3 ∩ Uj = K3 ∩Kj ∩N1N2 = H ∩N1N2 = {1},
so xϕU3 = x−1 ∈ N2 ∩ N1 = {1}. Thus x = 1, so α is a fixed-point-free automorphism of

prime order. Then by Thompson’s Theorem (1.9.4), N1 is nilpotent, hence solvable. But

N1 is a minimal normal subgroup of G, so N1 is abelian by Proposition 1.7.2. Then by

Theorem 3.2.1, n− 1 is a power of a prime, a contradiction.

Thus for n − 1 not a power of a prime, Mn is finitely representable if and only if Mn

can be embedded as an interval into the subgroup lattice of a finite nonsolvable group with

a unique minimal normal subgroup.

3.4 Using the Proof of the O’Nan-Scott Theorem

Suppose that n − 1 is not a power of a prime, and suppose that Mn is embedded as the

interval [H,G] into the subgroup lattice of a finite group G, where G is taken to be the

smallest such group. By Theorem 3.3.2, G has a unique minimal normal subgroup, say M ,

and M is nonabelian by Theorem 3.2.1 since the minimality of G implies that H contains

no nontrivial normal subgroup of G. Then M * T k for some finite simple nonabelian

group T and some positive integer k by Corollary 1.5.5 and is of course the socle of G.

Thus the socle of G has the same structure as the socle of a finite primitive permutation

group, which suggests, as previously discussed, that some of the methods used in the proof

of the O’Nan-Scott Theorem might be applicable to this problem; indeed, Lemma 1.4.3

and part of the proof of Lemma 2.7.3 turn out to be fundamental in the next reduction of

the problem of finitely representing Mn.

In addition to the assumptions already made, suppose that G is not almost simple,

M ∩H ,= {1} and n > 50. Lucchini then proves in [16] that we must have

n = q + 2 or n =
qt + 1

q + 1
+ 1

where q is a prime power and t is an odd prime, which is good since he also proves in [15]

that for such n, Mn is finitely representable. Note that the case n = 7 is included. Let us

examine Lucchini’s reduction in more detail.

First, make note of the following: since M is the socle of G and T is nonabelian,

CG(M) = {1} by Proposition 1.5.6. Let g ∈ G, and define ϕg ∈ Aut(M) to be conjugation

by g. Define ϕ : G → Aut(M) by g )→ ϕg. ϕ is clearly a homomorphism, and if g ∈ ker(ϕ),

then g−1mg = m for all m ∈ M , so g ∈ CG(M) = {1}, which implies that ϕ is 1-1. Thus

G is embedded in Aut(M) = Aut(T k) * (Aut(T ))k # Sk by Proposition 1.6.1.
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Lucchini’s reduction has three steps. First, he proves that there exists a proper non-

trivial subgroup R of T that is self-normalizing in T such that M ∩H = {(t, . . . , t) : t ∈ R}
and that in this case, there are exactly n − 1 H-invariant full diagonal subgroups of M

containing M ∩ H. Second, R ≤ T * Inn(T ), so R can be embedded into Aut(T ).

Then R ! NAut(T )(R) and R ≤ Inn(T ), so R ! NAut(T )(R) ∩ Inn(T ) ≤ Inn(T ), but R is

self-normalizing in Inn(T ), so R = NAut(T )(R) ∩ Inn(T ). Then

NAut(T )(R)/R = NAut(T )(R)Inn(T )/Inn(T ) ≤ Out(T ),

so if Out(T ) is abelian, then NAut(T )(R)/R is abelian. He uses the fact that any full

diagonal subgroup of M has the form

{(tγ1, tγ2, . . . , tγk) : t ∈ T, for some γi ∈ Aut(T )}

(see (1) in the proof of Lemma 1.4.1(i)) and that G ≤ (Aut(T ))k # Sk to show that if

NAut(T )(R)/R is abelian, then [H,G] * Mq+1 where q is a prime power, a contradiction.

Lucchini thus assumes that Out(T ) is not abelian so that T must be of Lie type. He finishes

the second step in his reduction by proving that if T is not PSLn(q) or PSUn(q), then we

again have that n − 1 is a power of a prime (this is where the assumption that n > 50

is required). Lastly, if T is PSLn(q) or PSUn(q), Lucchini proves that n falls into one of

the two categories stated above. I will examine the details of the first step of Lucchini’s

reduction as it is this step that shares many similarities with the proof of the O’Nan-Scott

Theorem.

Theorem 3.4.1 (Lucchini, [16]). Let G be a finite group, and suppose that G contains a

subgroup H such that the interval [H,G] is isomorphic to Mn (n ≥ 3) where G is minimal

with respect to this property. Let M be the socle of G. If n − 1 is not a power of a

prime, G is not almost simple and M ∩ H ,= {1}, then M ∩ H = {(t, . . . , t) : t ∈ R} for

some 1 < R < T such that R is self-normalizing in T . Moreover, there are exactly n − 1

H-invariant full diagonal subgroups of M containing M ∩H.

Before I begin the proof, note the following. Let Ω be the right coset space G\H, and

let α := H, so that Gα = H and Mα = M ∩ H. This is a transitive faithful action as

H containing no nontrivial normal subgroups of G implies that H is core-free in G. Of

course, it is not a primitive action since Gα is not a maximal subgroup of G, but this is of

no consequence, as we shall see. Keep this construction in mind throughout the following

proof.

Proof of 3.4.1. We have seen already that G is not solvable and that M is the nonabelian

unique minimal normal subgroup of G. Then M * T k for some simple nonabelian group

T and some integer k ≥ 2 (as G is not almost simple), so we may write M = T1× · · ·× Tk
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where Ti * T for all i. Let K1, . . . , Kn be the n atoms of [H, G]. As we saw in the proof

of Theorem 3.3.2, H contains no nontrivial normal subgroup of G since G is minimal.

Thus H < HM . If HM < G, then HM = Ki for some i, so choosing j ,= i we get

that M ∩ H = M ∩ (Ki ∩ Kj) = M ∩ Kj ! Kj. It follows that if j ,= i and l ,= i, then

M ∩H !〈Kj, Kl〉 = G, but M ∩H ≤ H, so M ∩H = {1}, a contradiction. Thus HM = G.

When dealing with primitive permutation groups G, we often focus on the Gα-invariant

subgroups of the socle containing the stabilizer of the socle instead of the entire group G.

We can do the same thing here because it turns out that the interval [H,G] is isomorphic

to the lattice of all H-invariant subgroups of M containing H ∩M , which is denoted by

[H ∩M, M ]H . To see this, let H ≤ K ≤ G. Then K ∩M is an H-invariant subgroup of M

containing H ∩M . Let L be another subgroup of G containing H. Clearly, if K ≤ L, then

K ∩M ≤ L ∩M . Conversely, if K ∩M ≤ L ∩M , then K = K ∩MH = (K ∩M)H ≤
(L∩M)H = L. Moreover, if K ∩M = L∩M , then K = L. Now, let K be an H-invariant

subgroup of M containing H ∩M . Then H ≤ HK ≤ G and HK ∩M = K(H ∩M) = K.

Hence, [H ∩M, M ]H * [H,G] * Mn.

Since G = HM and M is a minimal normal subgroup of G, H acts transitively by

conjugation on {T1, . . . , Tk}, so there exist 1 = h1, h2 . . . , hk ∈ H such that Ti = h−1
i T1hi

for all i. As usual, let ρi : M → Ti denote the i-th projection map.

Let K be an H-invariant subgroup of M . If h ∈ H and h−1Tih = Tj, then as we saw

in the proof of the O’Nan-Scott Theorem, h−1(Kρi)h = (h−1Kh)ρj = Kρj; in particular,

h−1
i (Kρ1)h = Kρi. It follows from this and from the transitivity of the action of H on

{T1, . . . , Tk} that if Kρj = Tj for some j ∈ {1, . . . , k}, then Kρi = Ti for all i ∈ {1, . . . , k}.
Hence in this case, K is a subdirect subgroup of M and we know the structure of K by

Lemma 1.4.1. On the other hand, suppose that Kρi < Ti for all i. Since H is transitive

on {T1, . . . , Tk} and h−1Tih = Tj implies that h−1Kρih = Kρj (where h ∈ H), the proof

of Lemma 2.7.3 with Xi taken to be Ti and Xα taken to be Kρi carries through; that is,

Kρ1 is normalized by NH(T1), and if Kρ1 ≤ S ≤ T1 where S is NH(T1)-invariant, then

Sh1×· · ·×Shk is an H-invariant subgroup of M containing K (since K ≤ Kρ1×· · ·×Kρk).

Moreover, suppose that H ∩M < K, and let S be a proper NH(T1)-invariant subgroup of

T1 containing Kρ1. Then since [H ∩M, M ]H * Mn and K ≤ (Kρ1)h1 × · · · × (Kρ1)hk ≤
Sh1 × · · ·× Shk < M , K = Sh1 × · · ·× Shk and S = Kρ1. Thus any maximal H-invariant

subgroup of M is either a subdirect subgroup of M or has the form Sh1× · · ·×Shk where S

is a maximal NH(T1)-invariant subgroup of T1 (namely, the projection of the H-invariant

maximal subgroup on T1).

Now, we consider the structure of H∩M . Suppose for a contradiction of the minimality

of G that H∩M is a subdirect subgroup of M . Then H∩M = D1×· · ·×Dm for some m ≥ 1

where Di is a full diagonal subgroup of some subproduct Xi :=
∏

j∈Ii
Tj such that {1, . . . , k}

is partitioned by the Ii. Without loss of generality, we may assume that xρr = xρs for all
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x ∈ Di, r, s ∈ Ii and i ∈ {1, . . . ,m}. Note that Di = (H∩M)∩Xi = H∩Xi for all i. Then

by Lemma 1.4.3 with A taken to be H, H permutes {X1, . . . , Xm} by conjugation, and

this action is transitive since H acts transitively on {T1, . . . , Tk}. We may of course define

an action of H on {1, . . . , k} by ih := j if h−1Tih = Tj. It follows that H acts transitively

on {I1, . . . , Im}. In particular, D := {I1, . . . , Im} forms a system of blocks on {1, . . . , k}
(by which I mean a partition of {1, . . . , k} made up of blocks under the action of H on

{1, . . . , k}), and if I is the block containing 1, then D = {Ih : h ∈ H}.
Let J be a block on {1, . . . , k} containing 1 that is contained in I, and note the following

two facts. If ∅ ,= J ′ ⊆ J , then HJ ′ ≤ HJ : let h ∈ HJ ′ . Then J ′h = J ′ ⊆ J , but J ′h ⊆ Jh,

so J ∩Jh ,= ∅. Thus Jh = J and h ∈ HJ , as desired. Second, J = {1h : h ∈ HJ}: 1 ∈ J , so

if h ∈ HJ , then Jh = J , which implies that 1h ∈ J . Conversely, if j ∈ J , then there exists

an h ∈ H with j = 1h ∈ Jh, so j ∈ J ∩ Jh, which implies that J = Jh; that is, h ∈ HJ .

Let K be an H-invariant subgroup of M containing H∩M . Then Ti = (H∩M)ρi ≤ Kρi,

so K is also a subdirect subgroup of M , which implies that K = E1 × · · · × El for some

l ≥ 1 where Ei is a full diagonal subgroup of some subproduct
∏

j∈Ji
Tj such that {1, . . . , k}

is partitioned by the Ji. Let πj : K → Ej be the projection map, and let πi,j := πj|Di .

Now, ker(πi,j) = Di or {1} since Di is simple. Clearly if ker(πi,j) = Di, then Ii ∩ Jj = ∅.
Suppose then that ker(πi,j) = {1}; since Di * T * Ej, πi,j must be an isomorphism.

Then if (t1, . . . , tr) ∈ Ej, there exists a (t, . . . , t) ∈ Di with (t, . . . , t)πi,j = (t1, . . . , tr), so

ti = t for all i and Jj ⊆ Ii. Hence, either Ii ∩ Jj = ∅ or Jj ⊆ Ii. Note as well that

xρr = xρs for all x ∈ Ej, r, s ∈ Jj and j ∈ {1, . . . , l}, which I will refer to as (∗). Let

Yi :=
∏

j∈Ji
Tj and E := {J1, . . . , Jl}. Since Ei = Yi∩K and K is an H-invariant subgroup

of M containing H∩M , H acts by conjugation on {E1, . . . , El} and {Y1, . . . , Yl} by Lemma

1.4.3 with A taken to be H. Thus E is a system of blocks which refines D. Let J be the

block in E containing 1. Then E = {Jh : h ∈ H} and J ∩ I ,= ∅, so J ⊆ I. It follows that

H1 ≤ HJ ≤ HI .

Let K ′ be another H-invariant subgroup of M containing H ∩ M , and let E ′ be the

system of blocks associated with K ′, so that E ′ = {J ′h : h ∈ H} where J ′ is the block in E ′

containing 1. Suppose first that K ≤ K ′. Then, by the same argument which proved that

E refines D, we have that E ′ refines E ; in particular, J ′ ⊆ J , so HJ ′ ≤ HJ . Conversely,

suppose that HJ ′ ≤ HJ . Then J ′ = {1h : h ∈ HJ ′} ≤{ 1h : h ∈ HJ} = J , so E ′ refines E ,

which implies that K ≤ K ′ by (∗). Moreover, if HJ = HJ ′ , then K = K ′. Thus we have

defined a 1-1 order-reversing map from the set of H-invariant subgroups of M containing

H ∩M to the set of subgroups of HI containing H1; now I prove that this map is onto.

Let L be a subgroup of HI containing H1. Then I claim that L = HJ where J :=

{1h : h ∈ L}. If j ∈ J and h ∈ L, then clearly jh ∈ J , so Jh ⊆ J . Note that if ih = jh

where i, j ∈ J , then h−1Tih = h−1Tjh, which implies that i = j. Since we then get that

|J | ≤| Jh|, Jh = J . Hence, L ≤ HJ . On the other hand, let h ∈ HJ . Then Jh = J , so
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1h ∈ J . This implies that 1h = 1h′ for some h′ ∈ L, but then 1h′h−1
= 1, so h′h−1 ∈ H1 ≤ L.

Hence, h ∈ L and L = HJ . Moreover, suppose that h ∈ H and Jh ∩ J ,= ∅. Then there

exist h′, h′′ ∈ L such that 1h′h = 1h′′ or 1h′hh′′−1
= 1, which implies that h′hh′′−1 ∈ H1 ≤ L,

hence that h ∈ L and Jh = J . Thus J is a block, which implies that Jh is a block for

every h ∈ H. It follows from the transitivity of H on {1, . . . , k} that E := {Jh : h ∈ H} is

a system of blocks on {1, . . . , k}. Since J ⊆ I and D = {Ih : h ∈ H}, E refines D. Write

E as {J1, . . . , Jl} where {1, . . . , k} is a disjoint union of the Ji. Let Yi :=
∏

j∈Ji
Tj and

Ei := {x ∈ M : xρr = xρs for all r, s ∈ Ji and xρr = 1 if r /∈ Ji}.

Then Ei is a full diagonal subgroup of Yi for all i. Let K := E1 × · · · × El. Then

H ∩M ≤ K ≤ M since E refines D, and K is H-invariant since H permutes {J1, . . . , Jl}.
Hence, the lattice [H ∩M, M ]H is isomorphic to the dual of the lattice [H1, HI ], but Mn is

self dual, so [H1, HI ] itself is isomorphic to Mn. This is a contradiction of the minimality

of G since HI ≤ H < G.

We may assume, therefore, that Ri := (H∩M)ρi < Ti for all i. Note that {1} < R1 < T1

(as H∩M is nontrivial). Suppose now that every proper H-invariant subgroup of M is not

a subdirect subgroup of M , again for a contradiction of the minimality of G. Let L1 and

L2 be two maximal H-invariant subgroups of M . Then for i ∈ {1, 2}, Li = Sh1
i × · · ·×Shk

i

where Si = Liρ1 is a maximal NH(T1)-invariant subgroup of T1 (see earlier in the proof).

Then R1 ≤ S1 ∩ S2, which gives us the following:

Rh1
1 × · · ·×Rhk

1 ≤ (S1 ∩ S2)h1 × · · ·× (S1 ∩ S2)hk

= L1 ∩ L2

= H ∩M

≤ Rh1
1 × · · ·×Rhk

1 .

Thus H ∩M = Rh1
1 × · · ·×Rhk

1 .

Now, let K be an H invariant subgroup of M containing H ∩M . Then K = Sh1 ×
· · · × Shk where R1 ≤ S ≤ T1 and S is NH(T1)-invariant. On the other hand, let S be

an NH(T1)-invariant subgroup of T1 containing R1. Then K := Sh1 × · · · × Shk is an

H-invariant subgroup of M containing H ∩M as we saw near the beginning of this proof

(with K taken to be H ∩M). It is then routine to verify that the lattice [H ∩M, M ]H
must be isomorphic to the lattice [R1, T1]NH(T1).

Much like in the proof of the O’Nan-Scott Theorem, define G∗ := NG(T1)/CG(T1) and

H∗ := NH(T1)CG(T1)/CG(T1). Note the following:

NG(T1) = NG(T1) ∩HM = NH(T1)M ≤ NH(T1)T1CG(T1) ≤ NG(T1),
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so NG(T1) = NH(T1)T1CG(T1). Moreover, we have the following:

NH(T1)CG(T1) ∩ T1

= [(NG(T1) ∩H)CG(T1)] ∩ T1

= NG(T1) ∩HCG(T1) ∩ T1

= HCG(T1) ∩ T1

= R1 × · · ·×RkCG(T1) ∩ T1

= R1CG(T1) ∩ T1 (R2 × · · ·×Rk ≤ CG(T1))

= R1(CG(T1) ∩ T1)

= R1{1}
= R1.

Let U/CG(T1) be a subgroup of G∗ containing H∗. Then

R1 = NH(T1)CG(T1) ∩ T1 ≤ U ∩ T1 ≤ T1,

and U ∩ T1 is NH(T1)-invariant since NH(T1) ≤ U and NH(T1) ≤ NG(T1). Let V/CG(T1)

be another subgroup of G∗ containing H∗. If U/CG(T1) ≤ V/CG(T1), then of course

U ∩ T1 ≤ V ∩ T1. Conversely, suppose that U ∩ T1 ≤ V ∩ T1. Then

U = U ∩NG(T1)

= U ∩ (T1CG(T1)NH(T1))

= (U ∩ T1)CG(T1)NH(T1)

≤ (V ∩ T1)CG(T1)NH(T1)

= V.

Moreover, if U ∩ T1 = V ∩ T1, then U = V . Now, suppose that U is an NH(T1)-invariant

subgroup of T1 containing R1. Then H∗ ≤ UNH(T1)CG(T1)/CG(T1) ≤ G∗ and

UNH(T1)CG(T1) ∩ T1 = U(NH(T1)CG(T1) ∩ T1) = UR1 = U.

Thus [H∗, G∗] * [R1, T1]NH(T1) * Mn. If T1 !G, then G is almost simple; hence, NG(T1) <

G, which implies that |G∗| < |G|, giving us our desired contradiction.

Thus there is at least one H-invariant maximal subgroup of M that is a subdirect

subgroup of M , call it C. Then C = D1 × · · · × Dm for some m ≥ 1 where Di is a full

diagonal subgroup of some subproduct Xi :=
∏

j∈Ii
Tj such that {1, . . . , k} is partitioned

by the Ii. Without loss of generality, we may assume that xρr = xρs for all x ∈ Di, r, s ∈ Ii

and i ∈ {1, . . . ,m}. Since C is H-invariant, we have again that H permutes {D1, . . . , Dm}
and {X1, . . . , Xm} by conjugation by Lemma 1.4.3. This action is transitive since H acts

transitively on {T1, . . . , Tk}. Note that since C is a maximal H-invariant subgroup of M ,

D := {I1, . . . , Im} is a system of blocks which cannot be refined to a smaller nontrivial
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system (as we saw earlier in the proof). Also, by the transitivity of the action of H, there

exist 1 = y1, y2, . . . , ym ∈ H with Di = Dyi
1 .

R1 × · · ·× Rk is a proper H-invariant subgroup of M containing H ∩M . Suppose for

a contradiction that H ∩M = R1 × · · ·×Rk. Then R1 × · · ·×Rk ≤ C, so
∏

i∈I1
Ri ≤ D1.

Since any Ri is nontrivial, it follows that I1 can only contain 1 element, but then D1 = T1,

which implies that C = M by transitivity, a contradiction. Thus R1 × · · · × Rk is a

maximal H-invariant subgroup of M . Now, let U be a maximal H-invariant subgroup of

M satisfying Uρi < Ti for all i. Then Uρ1× · · ·×Uρk is a proper H-invariant subgroup of

M containing R1 × · · ·× Rk and U , both of which are maximal H-invariant subgroups of

M , so U = R1× · · ·×Rk. Thus R1× · · ·×Rk is the unique maximal H-invariant subgroup

of M containing H ∩M that is not a subdirect subgroup of M . Moreover, it follows that

there are exactly n− 1 H-invariant subdirect subgroups of M containing H ∩M .

Fix i ∈ {1, . . . ,m}, and let s, t ∈ Ii. If x ∈ Rs, then x = yρs for some y ∈ H ∩M . But

H ∩M ≤ D1 × · · · ×Dm, so yρs = yρt, which implies that x ∈ Rt. By symmetry, we get

that Rs = Rt. Choose ri ∈ Ii. Let Ri denote the full diagonal subgroup of R|Ii|
ri . Then

H ∩M = R1 × · · ·×Rk ∩D1 × · · ·×Dm ≤ R1 × · · ·×Rm < R1 × · · ·×Rk since Ii must

contain at least two elements (or else we again get that C = M). Moreover, R1× · · ·×Rm

is H-invariant. Thus H ∩M = R1 × · · ·×Rm.

Now for our final reduction! Let X := X1. Note that R1 is an NH(X)-invariant

subgroup of X. Moreover,
∏

i∈I1
Ri is an NH(X)-invariant subgroup of X containing R1.

Let K be a proper H-invariant subgroup of M containing H ∩M such that K ,= H ∩M

and K ,= R1 × · · · × Rk. Then K is a subdirect subgroup of M , so as usual we have

that K = E1 × · · · × El for some l ≥ 1 where Ei is a full diagonal subgroup of some

subproduct
∏

j∈Ji
Tj such that {1, . . . , k} is partitioned by the Ji. Let Yi :=

∏
j∈Ji

Tj and

E := {J1, . . . , Jl}. As before, E forms a system of blocks for the action of H on {1, . . . , k}.
But R1 × · · · × Rm = H ∩M ≤ K = E1 × · · · × El, so E refines D. Thus E = D as D
cannot be refined. It follows that E1 is an NH(X)-invariant subgroup of X containing R1

and Ei = Eyi
1 . If E1 = F1 where L = F1 × · · ·× Fm is another such H-invariant subgroup

of M , then K = L since Ei = Eyi
1 = F yi

1 = Fi for all i. Let U be an NH(X)-invariant

subgroup of X containing R1. Then Uy1 × · · · × Uym is an H-invariant subgroup of M

containing H ∩M . This isomorphism is clearly order preserving, so we have proved that

the lattice [H ∩M ]H is isomorphic to the lattice [R1, X]NH(X).

Define G∗ := NG(X)/CG(X) and H∗ := NH(X)CG(X)/CG(X). Then, repeating the

proof we saw earlier with T1 replaced by X, we get that

[H∗, G∗] * [R1, X]NH(X) * Mn.

If n > 1, then I1 < {1, . . . , k}, which implies that X is not a normal subgroup of G. Then

NG(X) < G, so |G∗| < |G|, contradicting the minimality of G. Thus we may assume
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that m = 1 (in which case X = M , so NG(X) = G and CG(X) = {1}, which implies

that G∗ * G). Note here another similarity to the proof of the O’Nan-Scott Theorem:

in one case, the definition of G∗ involves one simple factor of M (namely, T1), and in the

other case, a product of at least two simple factors of M (namely, X), and both cases use

essentially the same proof to arrive at essentially the same contradiction.

Let R := Rr1 . Then 1 < R < T and M ∩ H = {(t, . . . , t) : t ∈ R}. Moreover, the

n− 1 H-invariant subdirect subgroups of M containing M ∩H must also be full diagonal

subgroups of M , and the remaining H-invariant subgroup of M containing H ∩ M is

R1 × · · · × Rk = Rk since Ri = R for all i ∈ I1 = {1, . . . , k}. It remains to show

that R is self-normalizing in T . Since 1 < R < T and T is simple, NT (R) < T . Then

Rk ≤ (NT (R))k < M . (NT (R))k is H-invariant since R is H-invariant (if h ∈ H, then

for some j, h−1Rh = Rj = R). Thus Rk = (NT (R))k, so R is self-normalizing in T , as

desired.

3.5 n ≤ 50

Thus the problem of finitely representing Mn has been reduced to the cases when G is

almost simple, H ∩M = {1} or n ≤ 50 (along with the set of assumptions made at the

beginning of Section 3.4). What about this last case? If n = 1, then Mn is isomorphic to

the subgroup lattice of Z4, and if n = 2, then Mn is isomorphic to the subgroup lattice of

Z2 ×Z3. It is easy to verify that either n− 1 or n− 2 is a power of a prime, hence finitely

representable, for all integers n between 3 and 50 with the exception of the integers 16, 22,

23, 35, 36, 40, 41, 46 and 47. Moreover,

22 =
53 + 1

5 + 1
+ 1,

so M22 is finitely representable. However, suppose, for example, that

16 =
qt + 1

q + 1
+ 1

for some q a prime power and t an odd prime. Then 14 = q(qt−1 − 15), so q | 14, which

implies that q = 2 or q = 7. Then 44 = 2t or 119 = 7t, both contradictions. Similarly, it

can be verified that, besides 22, none of the other integers listed above satisfy this equation.

Thus it is unknown whether Mn is finitely representable for n = 16, 23, 35, 36, 40, 41, 46

and 47.

3.6 Almost Simple Case and Beyond

We are left with the cases when G is almost simple or M ∩ H = {1}. When M ∩ H =

{1}, Baddeley and Lucchini have reduced the set of integers n for which Mn is finitely
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representable to a subset of the natural numbers that is associated with questions about

almost simple groups. Their proof and their results, even, are quite technical; see [2].

Hence, besides the eight cases under fifty in Section 3.5, the problem of finitely repre-

senting Mn has been completely reduced to problems that concern almost simple groups.

Baddeley and Lucchini are optimistic that the classification of the finite simple groups will

answer these questions about almost simple groups in such a way that leads to a negative

answer for finite representability. Just like with finite primitive permutation groups, we

must focus on the almost simple case. Hopefully, such a focus will not only lead to a

solution to the problem of finite representability but will also answer other open problems

in finite group theory.
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