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Abstract

Cisco’s embedded logic analyzer module (ELAM) is a debugging device used for many of Cisco’s
application specific integrated chips (ASICs). The ELAM isused to capture data of interest to the
user and stored for analysis purposes. The user enters atrigger expression containing datafields of
interestin the form of alogical equation. The datafields associated with the trigger expression are
stored in a set of Match and Mask (MM) registers. Incoming data packets are matched against these
registers, and if the user-specified data pattern is detected, the ELAM triggers and begins a
countdown sequence to stop data capture. The current ELAM implementation isrestricted in theform
of trigger expressions that are allowed and in the allocation of resources. Currently, datafieldsin the
trigger expression can only be logically ANDed together, Match and Mask registers areinefficiently
utilized, and a static state machine existsin the ELAM trigger logic. To optimize the usage of the
ELAM, atrigger expressionisfirst treated as a Boolean expression so that minimization algorithms
can berun. Next, the data stored in the Match and Mask registers is analyzed for redundancies.
Finally, adynamic state machineis programmed with adistinct set of states generated fromthe
trigger expression. This set of statesis further minimized. A feasibility study isdoneto analyzethe

validity of theresults.
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Chapter 1

Background

1.1 Introduction to ELAM

The Cisco Catalyst 6500 is a module chassis switch with arange of integrated services modules,
including multi-gigabit network security, content switching, telephony, and network analysis modul es.
Mainly targeted towards enterprises and service providers, the Cisco Catalyst 6500 is employed for deep
packet inspection, security, application awareness and manageability [1]. The main components of the
6500 include chassis, power supplies, supervisor cards, line cards, and service modules [3]. The 6500
Series, shown in Figure 1, uses acommon set of modules and OS software across all Cisco chassis. The
devices incorporate 11 application-specific integrated circuits (ASICs) [6]. Due to the wide ranging
functionality of the various ASICs, Cisco developed an embedded logic analyzer module (ELAM) that is

capable of capturing packet data and assisting devel opers with debugging faults across ASICs[2].

Figure 1. Cisco Catalyst 6500 Series[1]

Commercial logic analyzers have been crucial debug and diagnostic toolsfor years. However, as

board density increases, it isbecoming progressively more difficult to find space for logic analyzer



connectors. Further, as clock frequenciesincrease and new inter-chip protocols (such as double data rate

random access memory) are used, commercial logic analyzers are having trouble keeping pace [2].

One solution to this problem isto embed logic analysis functionsinto ASICs. The benefits of this

approach include: diagnostic hardware keeps pace with the system clock frequencies, new inter-chip

protocols can beinstrumented, no PCB real-estateis used for diagnostic hardware, internal signalscan

also beinstrumented, and configuring the diagnostic hardware isa quick and easy process — there are no

cablesto hook up [2].

The ELAM isasynthesizable Verilog module which isinstantiated at one or more placesin an

ASIC. It requiresan external slavefor CPU control. A high level overview of the ELAM isshownin

Figure 2 (shown below).
Times@amp
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ELAM = maching
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. TTamh || |  Curr- State - Trigger
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Figure 2. ELAM block diagram [2]
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Trigger
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Each of the components shown in Figure 2 will be discussed in more detail in later sections. For

ELAM operation, the user selects which signals to capture and routes them into the ELAM instance. The
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ELAM can be used for avariety of purposes and as such, the module is parameterized. The user may
customize certain aspects of the ELAM through parameters specified at each instantiation. The most

important parameters that can be configured are shown in Table 1 below.

Table 1. Important ELAM parametersto capture [4]

Number of bitsto capture per clock cycle

Number of bitsin the input data bus

Depth of the capture buffer

Width of the CPU address and data buses

Width of the timestamp counter

Number of mask-and-match registersin thetrigger logic
Number of state bitsin the trigger sequencer

1.2 ELAM Functionality

1.2.1 Trigger Logic

The ELAM captures data for future analysis by utilizing several key components. The first of
these componentsis apowerful and flexible trigger mechanism. The ELAM can detect when a series of
pre-defined conditions have been met, and if a user-specified data pattern has been seen. If so, the ELAM
will trigger and begin a countdown sequence which quantifies how much data will be captured. The
trigger logic consists of a 16-state finite state machine. Transitions between states are afunction of the
current state, a user-programmable counter, and a trigger statement consisting of one or more trigger
fieldsin product form indicating the data fields of interest to the user. For example, atypical trigger
statement entered by theuser isVLAN == 0x3ee. Inthis case, all incoming packets will have their
VLAN fieldsinspected to seeif the data value in the packet matches the user specified value. If so, the
ELAM will enter atrigger state. The user in this exampleislooking for avalid virtual local areanetwork

[4]. This particular example isacommon trigger statement.



Besides the current state and the user-programmable counter comparison result, up to 8 Match
and Mask (MM) register results drive the addressinputsto the trigger look up table. The Match and Mask
registers are used to store the various fields that compose atrigger statement for data comparison
purposes. The trigger state machine uses thislook up table to determine the next state, so next-state
equations may be arbitrarily complex. Each of these Match and Mask registers have accessto all data bits
driven into the ELAM, and isthe full width of the input bus. The Match and Mask registers are
programmed and instantiated before ELAM execution, and cannot be reprogrammed once the ELAM has
started its operations. Each bit in the Mask register determinesif the corresponding incoming data bit will
be compared against the respective bit stored in the Match register. If abit isset to 1 in the Mask register,
the corresponding data bit will be evaluated against the bit in the Match register. For each Match and
Mask register pair, the result of all individual bit comparisons are ANDed together - if all aretrue then the
output of that Mask-and-Match comparator is 1, otherwisetheresult is 0. Unused registers can be
disabled by setting all mask hitsto 0, and the output of the comparator will be forced to equal 1. The
Match and Mask registers are programmed before incoming datais received. The user specified values
are entered into the ELAM, wherethey are processed and stored in a set of virtual Match and Mask
registersin software. The ELAM then runs through a sequence of initialization code beforeprogramming
the Match and Mask registersin hardware. After the registers are programmed in hardware, the ELAM is

then ready to receive incoming data.

The ELAM trigger logic aso includes a 16-bit user-programmabl e counter. The counter is cleared
when the state machine enters a specified state. The value of the User Counter is compared with a user-
programmable 16-bit register. The result of this comparison is an input to the state machine. Thiscounter
will stick at 16" hFFFF when it reaches that value, and can be read from CPU [4]. The specifics

concerning usage of the counter are beyond the scope of thisthesis.



Thetrigger state machine next-state logic isimplemented with a synchronous random access
memory (RAM) look-up table which runs at the same frequency asthe data being captured. The memory
used must have exactly one cycle read latency. For the current implementation of the ELAM, relevant
user data only occurs across 4 cycles. The organization of datafieldsin each cycleisdistinct and the
Match and Mask registers are programmed in advance to prepare for datain acertain cycle. The inputs to
the look-up table are the user counter comparison result, the current trigger sequencer state, and the
results of the Match and Mask register comparisons. The outputs of the look-up table (LUT) are flagsto
increment the user counter and the next state. The width of the LUT is 2*n+4, where n is the number of
state bits. The depth of the LUT is 2n+m, where n is the number of state bits and mis the number of Mask

and Match comparators.

When the trigger sequencer jumpsinto the ‘trigger’ state, a certain sequence of actionsisrun.
One cycle after the trigger state occurs, an internal counter isloaded with the number of remaining
samples to capture and a countdown isinitiated. The number of remaining samplesto captureis pre-
defined by the user. After this counter has reached zero, capturing is complete and aflag bit is set to

notify the user.

To obtain a better understanding of the trigger logic, refer to Figure 3, which summarizesthe
aforementioned concepts. In Figure 3, the user islooking for adata pattern that occurs across 3 cycles.

Thefirst data packet arrivesin cycle O, the next in cycle 1 and the final data packet arrivesin cycle 2.
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Figure 3. Sample data capture using Match and Mask registers [2]

In each state of the trigger sequencer, different Match and Mask registers are programmed and
utilized in validating the incoming data. In Figure 3, the first MM register is programmed to look for a
certain pattern. Those bits highlighted in blue indicate the bits of interest, that is, those bits where the
Mask register values are set to 1. The bits of interest in theincoming dataare highlighted with green font.
When the arriving data matches the pattern stored in the Match register, a state transition will occur to
progressto state 1. In state 1, the next MM register will be used to compare against incoming dataand if
this data matches, atransition occursto state 2. In state 2, the next MM register is utilized and if incoming

datais matched, the trigger flag will be set.

1.2.2 Data Capture Logic
The width and depth of the capture buffer are specified by the user for each ELAM instance, and

the capture buffer memory isimplemented externally to the ELAM. Datais sampled synchronously and



stored into the capture buffer along with atimestamp. When the user armsthe ELAM, i.e,, the user setsa
flag indicating the ELAM is primed for data capture, data capture begins. On each clock edge, aword of
datais stored at the capture buffer location. This continues until the ELAM istriggered and the Trigger

Position counter expires. Oncethis happens, a done bit is set [4].

1.3 Limitations of Existing Functionality

Thebasic blocksinvolved in ELAM functionality are shown in Figure 4 below. The user entersa
trigger statement which is programmed into a set of Match and Mask registers. Theincoming datais sent
to be compared with these registers and comparison results are generated. These results are fed into an
incremental state machine which generates a series of states specifying when atrigger state should be

reached. When the trigger state is reached, the ELAM compl etes data capture and ends execution.

Incoming Compare Trigger Outgoing
y- y- y-
Dati . Resalt . Resu|t . Dati
MM State Capture
Register Machine Data

Compare

Figure 4. The basic blocksin ELAM
In the existing ELAM architecture, only certain trigger statements are supported. In the event
that the user wantsto trigger on multiple datafields, the user must first manually enter thetrigger values
for hisdesired datafields. Each datafield islooked up according to its cycle in a pre-defined database
table. Data values in the same cycle are grouped together and Match and Mask registers are programmed

to only store the data values for a certain cycle. For example, Match and Mask register O would be used to



process packets which come in cycle 0. Match and Mask registers are programmed to mimic the incoming
data, thus each hit positionsin aregister are the same as those in an incoming data packet. The individual
bit comparisonsin aMM register are ANDed together to produce asingle bit indicating if all data
matched or not. Given this particular method of storing fields, it is quite obvious to see that the only
logical expressions that are permissible between different trigger fields are the AND and NAND
operations. Since each Match and Mask register generates only asingle bit at its output, it islogically
impossibleto store other forms of Boolean expressions together in oneregister. Thus, in the current
implementation of the ELAM, each MM register by itself can only be used for expressions in the

followingform:
field_1ANDfield _2AND ... ANDfield _n...

Now, inthecasethatfi el d_nandfi el d_n+marein adjacent cycles, the state machineis set
up so that it first waitsfor f i el d_n to occur before transitioning to the next state. It then waits for
field_n+mandif it doesseefi el d_n+minthe next cycle, it will return to the original state and wait
forfield_1agan.

Sincethe ELAM isused primarily as a device for testing and debugging, it is necessary that more

complex trigger statements are able to be supported. However, to be able to support more complex trigger

equations, several changesarerequired.

1.4 Proposed Solution

The basic formsof the expressionsthat need to be supported can be summarized as follows:

1. field
2. 'field

3. field 1 AND field 2



4. field 1 OR field 2

Along with the four basic expressions listed above, the ELAM must be able to support variations
and combinations of these fundamental cases, thus providing support for adynamic range of possible
trigger expressions. The current ELAM implementation only supports terms which are logically ANDed
together, asmall subset of the total range of expressionsthat are possible. To better understand the

limitations of the current ELAM, consider the following example:

Let’sassume an ELAM implementation with 4 MM registers and 3 state bits. Only expressions of
type 1 from above are used. We further assume the counter is not used and the counter comparison result

isalways 0. Theinitial state of the SM isO.

The programming of the MM registers would be straight forward: each MM register holdsthe
match criteriafor the datain one clock cycle. Three MM registers are used in this example. Table 2 below

illustrates the state information for this example.

Table 2. State table for example ELAM implementation

tc S2 S1 SO wvM3 MV MML MMD | I ncCnt NS2 NS1 NSO
1 O 0O O ©O X X X 0 0 0 0 0
2 O 0O O © X X X 1 0 0 0 1
3 O 0 0 1 X X 0 X 0 0 0 0
4 O 0 0 1 X X 1 X 0 0 1 0
5 O 0 1 0O X 0 X X 0 0 0 0
6 O 0 1 0O X 1 X X 0 0 1 1
7 O 0 1 0O X X X X 0 0 1 1 Trigger!

This state machine of this exampleis represented by Figure 5, shown on the next page:



MMO
MM “ MMO

MM2
MM1

T) MM2

Figure 5. Example state machine
Hence, in this example, the state machine increments the state one by one, depending on the
results of MMO-2. The current ELAM is designed in such afashion. To better understand the restrictions

of the current ELAM, consider the following problem:

Let’s use the same ELAM parameters as the previous example and al so specify the MM width as

8 bits. In each clock cycle the following 3 fields are presented to the ELAM:

{Seq- # [7:5], Type [4:3] Cd [2:0]}

The goal isto trigger once al of the following conditions are met:

1. Cyclen:Seq-#==0&& Type ==

2. Cyclen+l: Seq-#==1&& (Type ==1|| Type ==2)

3. Cyclentm: Type ==1&& Cnd '=0

In this example, the ELAM expects more complex trigger equations across separate cycles. With
the inclusion of the OR and NEGATION operators, a separate MM cannot be allowed to each cycle. The
second and third conditions must be stored in different MM registers. Any example of how the MM
registerscould be programmed is shown in Table 3:

10



Table 3. MM registers setup for more complex example

Mask0 [1]1[1[1[1][0[0[0]| Seq-#==0&& Type ==
Match0 [0| 0|0 |0[1[0]0]0

Maskl |1]|1[1|0[0[0[0[0|Seq#==

Match1 [0|0[1[0[0[0]0]0

Mask2 |[0|0[0|1[1]0[0]|0]|Type==

Match2 [0|0[0|0[1[0]0]0

Mask3 [0]0[0[1[1][0[0]|0]|Type==

Match3 [0|0[0[1[0[0]0]0

Mask4 |0|0[0|0[0[1][1]1]Cmi==

Match4 [0 0[0|0[0[0]0]0

In this example, we can note that Cycle n uses MMO, Cycle n+1 usesMM1, MM2, MM3 and

Cycle n+2 uses MM 2, MMA4. The state machine for this example would be programmed according to

Table 4.
Table 4. State table for more complex example
tc S2 S1 SO M4 MVB MM MML MMD | IncCnt NS2 NS1 NSO
1. 0O 0O O 0 X X X X 0 0 0 0 0
2. 0O 0O O 0 X X X X 1 0 0 0 1
3. 0O 0O O 1 X X X 0 X 0 0 0 0
4, 0O 0O O 1 X 0 0 1 X 0 0 0 0
5. 0O 0O O 1 X 1 X 1 X 0 0 1 0
6. 0O 0O O 1 X X 1 1 X 0 0 1 0
7. 0O O 1 0 X X 0 X X 0 0 1 0
8. 0O O 1 0 1 X X X X 0 0 1 0
9. 0O O 1 0 0 X 1 X X 0 0 1 1
10. 0O O 1 1 X X X X X 0 0 1 1 Trigger!

Hence, the current ELAM implementation is unable to deal with this problem, given the static
nature of the state machine. In this case, adynamic state machine isrequired. In a practica sense, the

scenarios may be even more complex — expressions are not necessarily specific to asingle clock cycle.
11



There are caseswhere part of asignal isvalid in clock cycle n and the other part of the signal isvalidin
signal m (usually m= n+1). Users want to trigger based on expressions that span signalsin different bus
cycles, aswell as signals that span one or multiple bus cycles. An example of such a scenario is shown

below in Figure 6:

Figure 6. Multi-cycle example scenario

The example shows 5 different fields: a[15:13], b[12:11], ¢[10:6] and d[5:0]. The frame in this
example would span both cyclesintheform[a, b, c, d], or [MSB, LSB]. A user couldi.e. enter the

following expression (braces added for clarity):
trigger if (a ==5and ¢ == 2) OR (b =3 and d == 0x2d)

Clearly with the current implementation of the ELAM, such trigger conditions cannot be
supported. Thisexample provides further evidence that the state machine would need to become dynamic.
The ELAM must be updated to support such trigger statements and this is the main point focus of this
thesis. An algorithm is required to determine the optimal state machine based on a given trigger
expressionand a set of constraints imposed by ELAM parameters (number of states and Match and Mask

registers). The maximum amount of MM registersis 8 (in some Cisco ASICs fewer MMs are present),
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which makes them very valuable resources. Thus, it isalso vital to minimize the number of Match and
Mask registersrequired. The algorithm should a so take into account that certain datafields in the trigger

expression may comein different cycles of aframe. Asafinal consideration, note the following example:

ELAM tapsinto the data bus of an ASIC that carries Ethernet frames. The MM register format

could look asfollows:
{SOP [18:18], ECP [17:17], VLD[16:16], Dat a [15:0]}

The Ethernet Type Il frame’s format is{DA[48], SA[48], ET[16]} followed by the payload, which
could be an IPv4 packet. If the user wants to trigger on the IP address, it would require more than 8 MM
registersto look that deep into the frame, since it’s necessary to start from start of packet (SOP) equal to
1. By possibly employing the user counter, portions of the packet could be skipped without utilizing MM

registers.

1.5 Thesis Outline

Thisthesis consists of 6 chapters. Chapter 2 givesthe background information and general areas
of research related to the problems discussed in thisthesis, and will provide aliterature survey of previous
work in academics pertaining to the various problems described. The actual algorithms used to increase
the flexibility of the ELAM will be discussed from Chapter 3 to Chapter 4. Chapter 5 evaluates the results

found for this project and Chapter 6 concludes the work.

Chapter 2: Related Work. This chapter gives a brief introduction to the various areas of research
requiredtoincrease EL AM flexibility. Topics of discussion will touch upon areas of Boolean
expression minimization, NP-complete problems, register alocation algorithms, and finite state
machine minimization. Some of the limitations of the current ELAM implementation will be

discussed. The current work being done in each of the areas will be summarized.
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Chapter 3: Register Minimization. Algorithmspertaining to how to minimize the set of Match
and Mask registers used will be discussed in this section. An evaluation for several methods to
solve some of the main problems will be studied in regardsto their applicability to the ELAM
problem. Boolean minimization algorithms, including ELAM specific algorithms will be discussed.

Further ELAM limitations will be highlighted.

Chapter 4: StateMinimization. Algorithms pertaining to generating a deterministic set of states
will be discussed. How the state machine will be used to support complex trigger expressions will
be clarified. A study on finite state machine optimization and its applicability to minimizing the

deterministic and dynamic state machines will be shown.

Chapter 5: Evaluation of Results. Thesolution implementation will be analyzed and some
limitations of it will be discussed. The main algorithms utilized will be measured in terms of
efficiency, and limitations of the solution will be discussed. A usability study is conducted to

determinethe viability of the proposed solutions.

Chapter 6: Conclusion. The work will be summarized and future work on this project will be

highlighted.
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Chapter 2
Related Work

The problem of optimizing Match and Mask register usage in the ELAM and the ability to
support awide variety of trigger expressions can be broken down to severa distinct problems. Althoughit
isdifficult to explore every aspect of the different problemsin precise detail, several different methods of
solving each problem will be discussed. The first problem in this project concerns how atrigger
expression from the user can be simplified and compacted so that the least number of Match and Mask
registersarerequired to store it. The trigger expression from the user isreally a collection of fields
equating to some value. The results of different field evaluations to specified values are further evaluated
with respect to each other using a set of logic operators. Thus, the user-inputted trigger expression can be
thought of as a Boolean expression and hence, minimization techniques can be applied to simplify it.
Oncethetrigger statement is simplified, it then needs to be optimally stored in the Match and Mask
registers. Inthis case, aregister alocation problem of sorts exists. The next part of the project isto
dynamically generate aset of states based on the trigger statement. The set of states generated should be
deterministic and redundant states should be removed. It isthrough the dynamic state machine that
support for logical NOT, OR, and AND in the ELAM is achieved. Deterministicfinite state machine

optimization techniques need to be considered for this section.

It isimportant to note that certain hardware limitations exist in the ELAM, for instance, Match
and Mask registers are programmed in a certain way and generate a specific output, and for the purposes
of the project, it isimpossible to change any hardware implementations. Thus, some of the developed
algorithms are ELAM specific and are less efficient than the optimal case to account for these constraints.
These caseswill be discussed in more detail in later sections, and hardware changes to the ELAM will be

proposed in order to achieve more optimal cases.
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2.1 Boolean Expression Minimization

Normal numeric algebragenerally dealswith real numbers. In the case of Boolean algebra
however, values of true (0) and false (1) are considered. The valuesin Boolean algebraare commonly
referred to as bits or binary digits, in contrast to standard decimal digits from O to 9. Similar to elementary
algebra, Boolean algebra possesses a set of operations based upon multiplication, addition and negation.
Logical AND isusually represents multiplication, OR represents addition, and NOT represents negation.
Other Boolean operations are derivable from these fundamental cases. Bool ean algebra possessesits own
set of laws and axioms which are built from Boolean operations. The details concerning the axioms of

Boolean algebrawill be omitted asthey do not play an important role in this project [10].

A Boolean expression is an expression that resultsin a Boolean value, namely, true or false.
Boolean expressions are often expressed in the form of an equation, and thus, Boolean algebraic
manipulations can be performed on them to simplify their logic. By simplifying Boolean algebraic

expressions, the need for extensive calculations are reduced, thus saving both space and time.

2.1.1 Boolean Expression Minimization Literature Survey

L ogic minimization techniques have traditionally been used in logic synthesis but in recent years
have found applicationsin areasincluding logic synthesis [5], routing table reduction [11], and
hardware/softwareportioning [14]. To tackle the problem of logic minimization, exact algorithms are
unsuitable or practical size tables, hence approximate algorithms are utilized. Interms of minimizing
Boolean expressions, there are three classic methods. These methods are Karnaugh maps[7], the Quine-
McCluskey (QM) algorithm [8] and the Espresso heuristic logic minimizer [9]. Each of the methods has
their own distinct advantages and disadvantages. Asidesfrom the classical methods of logic reduction,

more complex but efficient methods also exist.
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When utilizing Karnaugh maps, Boolean variables from an expression or truth table are
transferred to a 2—dimensional grid. Gray code principles are applied in which only one variable changes
between the squares. The output possibilities are transcribed and like terms are grouped together and
minimized according to the laws and axioms of Boolean algebra. Karnaugh maps are generally visually
based and groups of 1sare encircled in the grid. Overlapsin logic and hence redundancy is detected in

thismanner [18].

The Quine-McCluskey algorithm (or the method of prime implicants) is another method for the
minimization of Booleanfunctions. In terms of functionality, it is the same as using Karnaugh mapping,
but the tabular nature of the algorithm makesit more efficient for use in computer algorithms. Quine-
McCluskey also givesadeterministic method of determining if the minimal form of a Boolean function

has been reached [17].

The Espresso logic minimizer isacomputer program that combines heuristics and specific
algorithmsfor logic minimization. Instead of representing the equation using minterms, the program
utilizes "cubes', whichrepresent the product termsin the ON-, DC- and OFF-covers [19]. The Espresso
logic minimizer ishighly efficient in terms of memory and resource usage. The input is afunction table
describing the desired functionality, and the output isaresult table. Espresso is atwo-level logic

minimization scheme like the Quine-McCluskey algorithm.

Asides from the classical forms of logic minimization, several more complex schemes have been
developed. The Espresso-11 logic minimizer in [22] improves upon the origina design of the Espresso
logic minimizer. A newer logic minimizer, the Riverside On-Chip Minimizer (ROCM) is described in
[27]. S. Ahmad and R. Mahapatra [5] discussed on-chip logic minimization using m-tries. The
approximate logic minimization algorithm is based on aternary trie and marks binary 0, 1 and don’t care

conditions as aleaves of atree. Logical patterns are mapped to this structure and branches are collapsed
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wherepossible. R. McCalla used a minterm-ring algorithm for smplifying Boolean expressions[24]. The
algorithm determines prime implicants and essential prime implicants by counting the number of links of

each mintermto logically adjacent minterms.

2.2 Optimizing Register Usage

A large class of computational problemsinvolves properties of graphs, digraphs, integers,
Boolean formulas and elements of other countable domains. The primary el ement of interest in these
problems concerns their computational complexity [29]. R. M. Karp [12] produced afamous list of then
known problems of thisform. These problems can be satisfactory solved when an algorithm for its
solution is found which terminates within anumber of steps bounded by a polynomial in the length of the
input. However, alarge number of unsolved problems do not possess a polynomial —bounded algorithm
and are similar in nature. These problems are found in the areas of covering, matching, packing, routing,
assignment and sequencing. The fieldsin a user-inputted trigger expression to the ELAM can be
consideredas individual blockswhich need to be stored in the set of Match and Mask registers, as shown

inFigure?.

VLAMN==0x3EE [+ |TYPE 1=0x1 |+| SRC_INDEX==0x2

Figure 7. Storing fieldsin the ELAM
The set of Match and Mask registers have finite storage capacity. Thus, the problem has
similarities to packing problems such as the Knapsack problem [20]. The set of combinatorial problems
that arerelated in such amanner are special in that, if asolution existsfor one variation of the problem,

then the same solution can be applied to all of them.
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2.2.1 NP-Complete Problems

Theamount of time required for aprogram to run to completion isvital in most programming
applications. For a program P, the running time of the program can be defined as the shortest computation
timerequired for an input x. A program P runs in time bounded by t(n) where n isthe length of input x if
for every input x, the running time of P islessthan or equal to t(|x|). A program P runsin polynomial
time if there exists apositive integer k such that P runsin time O(n). Similarly, a non-deterministic
program can be defined as programs that may have zero, one, or more than one computation with the

same input [29]. The formal definitions are asfollows [21]:

- Pistheclass of languages that are recognized by a deterministic Turing machine programs

running in polynomial time

- NPistheclass of languages that are accepted by non-deterministic turning machine programs

running in polynomial time

The class of decision problemswhere asolution can be verified efficiently but no efficient way
exists of determining the solution is defined as NP-complete problems. These types of decision problems
belong to NP but no one knowsiif they arein P [13]. There are thousands of variations of NP complete

problems, but if a solution exists for one of them, a solution exists for all of them.

2.2.2 Optimizing Register Usage Literature Survey

The problem concerning minimizing the MM registers used to store trigger expressions falls under
the category of NP-complete problemsin ageneral sense. More specificaly, it can be considered asa
variation of alogic minimization and register allocation problem. It isimportant to note here that slight
changes to NP-complete problems may change the efficiency of the problem completely. The hardware
restrictionsin the ELAM serve as an additional requirement to the classic register allocation problem and

function to simplify the problem. Regardless, logic minimization and register allocation problems are well
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researched and several algorithms have been proposed. T. Wu and Y. Lin [23] discussed register
minimization using lifetime-analysismethods. A software program called VVReg was developed which
stores certain variablesin state registers, othersin signal nets, and some in unclocked sequentia networks.
F. Pereiraand J. Palsberg [16] conceptualized register allocation as a puzzle solving problem. Program
variables are modeled as puzzle pieces and the register file is modeled as a puzzle board. In this case,
different architectures and requirementsyield different puzzle and board variations. S. Liu and W. Zhao
[30] further discussed various register alocation algorithms including graph coloring algorithms, MCNF
based register allocation algorithms, and ILP based register allocation algorithms. Further work has been
done to model register allocation including graph coloring [33], partitioned Boolean quadratic

optimization [15] and multi-commodity network flow [31].

Because of the nature of the project, certain aspects of the problems faced are not exactly
applicable to the general nature of NP-complete problems. Due to the design of the ELAM, hardware
limitations exist concerning how the Match and Mask registers can be used, and because of the
limitations, many algorithms associated with the register allocation are not entirely applicable. The way
the Match and Mask registers are designed makes it impossible for logically incompatible trigger
conditions to be grouped together and furthermore, trigger fields occurring in different clock cycles
cannot be stored in the same match and mask register. Because of this strong limitation concerning how
storage of trigger fields can occur, the storage problem faced here can be considered are no longer NP-

complete, and as shown later, can be solved in polynomial time.

2.3 State Minimization

Finite state machines (FSMs) have been utilized to for adiverse set of fields, ranging from
communication protocols to sequential logic circuits [25]. In sequential circuit analysis, reducing the

number of states of an FSM is awell-known and highly important problem. Often, the state table of an
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FSM contains redundant states that may have been invariably introduced as part of the design. Removing
these redundant states reduces the logic required to synthesize and verify hardware [32]. A deterministic

finite state machine is defined asa quintuple (S,Ss,d,F), where:

» Sisafinite, non-empty set of symbols, as known as the input alphabet.
» Sisanon-empty and finite set of states.

»  Sistheinitia state.

» disthestate-transition function: & : S x 2 — §

» Fisthefinal set of states.

For most practical cases, the Mealy model [37] is used, where the output function is afunction of
the state and input. In these cases, aMealy machine is used to represent the set of states. If the output
function is merely afunction of state, thisis known asthe Moore model [26], and a Moore machineis
used for representation. In the case that no output function exists for afinite state machine, thisis known
as a semiautomation or transition system. The synthesis of finite state machines can be stated in four

stages:
1. Representation of system behaviour using state transition tables
2. Reducing the number of states
3. Assigning acode to represent the states (usually binary)
4. Optimizethe combinatorial logic in the next-state and output functions

The FSM logic for aMealy machine is shown in Figure 8.
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Figure8. FSM Logic for Mealy Machine

In the case of the ELAM, the current implementation has a set of states that are hard-coded in and
inflexible. The new implementation of the ELAM seeks for state transition tables to be generated
dynamically for every trigger condition that the user enters. A finite-sized state transition table will be
utilized where thefull size of thetable may or may not be required. It is important to note that thereis an
upper limit in the number of states that can be generated and if atrigger condition exceeds this limit, it
will be deemed invalid. Sincefor the purposes of this project, the hardwarein the ELAM cannot be
changed, these restrictions cannot be removed in a practical sense. However, a more theoretically optimal

model will still be discussed in the event hardware changes occur in the future.

2.3.1 State Minimization Literature Survey

Minimizing the set of states required for afinite state machinethat is completely specified can be
solved in polynomial time Several classical methods exist including the Hopcroft minimization algorithm
[32]. Kohavi also minimized FSMsin polynomial time in his some of his classic work [33]. Other

techniques include using an Implication chart [36], the row matching method [28], or the M oore reduction
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procedure [40]. Additionally, cyclic FSMs can be optimized using a simple bottom up algorithm. In
addition to the classic algorithms, several additional methods have been developed my researchers, some
to tackle the case of an incompletely specified finite state machine (IEFSM). Anincompletely specified
finite state machine is one where, for some combinations of present states and inputs, there exist no
specified next-states or outputs. These kinds of machines do not have the next-states and output functions

defined over all domains.

Paul and Unger [38] devised aframework and proposed methodsfor creating maximum
compatibles and obtaining the minimal closed cover. Yang et. a [43] proposed new assignment
algorithms using look ahead. Methods including look ahead for states, look ahead for codes, and look
ahead for states and codes are used. Garnica et a. [41] proposed genetic algorithmsto optimized finite
state machines. Classical genetic algorithms, as well as ones with new types of operatorsas utilized. The
algorithms devel oped are applicable to incompletely specified state machinesaswell. Luccio [45]
proposed prime classes and utilized the binate covering problem to devise a minimization problem. Rho et
al. [42] developed a program called stamina that uses exact and heuristic modes using explicit
enumeration for the state minimization problem. Kannan and Sarma [39] devised fast heuristic algorithms
for both completely and incompletely specified finite state machines. The agorithms, NOVA and

MUSTANG [39], aremore effectivefor finding the minimal cover and the optimal closed cover.

2.4 Chapter Summary

This chapter highlighted the important fields in academicsthat pertain to the ELAM project and
the related work to the ELAM project in those fields. By treating the trigger expression asalogical
equation composed of severa variables, Boolean minimization techniques can be performed to reduce the
complexity of the trigger expression. Minimization techniques include Karnaugh maps, the Quine-

McCluskey algorithm, and Espresso minimization. Following areduction in the logical complexity of the
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trigger expression, register allocation techniques need to be considered. Several methods of register
minimization and allocation already exist, however, their applicability considering ELAM limitations
must be analyzed in greater detail. State minimization techniques are also employed for this project;
hence a brief introduction to finite state machines was presented. Several well-established finite state

machi ne opti mization techniques werediscussed.
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Chapter 3

Register Minimization

3.1 Introduction to Register Minimization

The first step in minimizing the number of Match and Mask registers used to store atrigger
expression isin simplifying the complexity of the trigger expression. Given atrigger expression F, there
aretwo main forms of simplification that can be performed on F. In thefirst block, the trigger expression
istreated asaBoolean logic expression. We can classify F asaBoolean expression because the trigger
expression will always evaluate to true (the state machine will transition to atrigger state) or false (the
state machine transitions to an intermediate state or fails). Each field is considered asadistinct variable
and to reduce storage space, it seems natural that the trigger expression first be reduced to find the
simplest equivalent logic expression. For example, if the trigger equation were “VLAN==0x 3EE
TYPE==0x1 + SRC_| NDEX = 0x3FF", the expression would be treated as a Boolean equation of the
form“AB + C’ where A, B, and C denote 3 unique variables, “+” denoteslogical OR, and multiplication
denoteslogical AND. By converting the trigger statement into a Boolean expression, well-documented
minimization schemes can be employed. It seemsintuitive that in order to reduce MM register storage

space, redundancies in the user expression are first removed.

Following the logic minimization component, the actual data bits that will be stored in each MM
register are analyzed to find any overlaps and redundancies. Where possible, the redundancies are
removed. This binary minimization algorithm is performed before the actual Match and Mask registers

are programmed in hardware.

In order to support logical AND, OR and NOT, the current static state machine in the ELAM
must be configured so that it can become dynamic. For example, trigger expression“A + B” will have 2

entriesin the state machine (2 states) that will cause the ELAM to trigger. Thus, after register

25



minimization has completed, a dynamic state machine (that is, a state machine whose states are
dynamically generated depending on the trigger statement) will be generated and optimized. Thisis

further discussed in Chapter 4. Figure 9 (below) summarizes the steps required to simplify and store F.

e . L Dynamic State
F —— Logic Minimization » Binary Minimization > Machine —> Output

Figure 9. Overall agorithm high-level overview

The output of the dynamic state machineis a set of states that are unique to every trigger
expression. The three components shown in Figure 9 are the essential componentsto increase ELAM

flexibility and optimize MM usage.

Most of the code pertaining to the ELAM is contained with asinglefile, cap_elam.c. As part of
this project, al updated code will also be stored in cap_elam.c. Pleaserefer to Appendix A for examples
of source code. Because the ELAM is aready awell-developed project, much of the work for thisthesis
had to beintegrated with existing code. Figure 10 demonstrates the various blocks of code that were

inserted and how they relate to the other blocksin ELAM.
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cap_prepare_trigger

Trg_expr_t
Trigger field values | populate *trg_expr c
. B B
Trigger walk trg_expr_t : reate
minterms
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trg_data_t *min_expr
trg_data_t *storage_fields Logic
Set MM values -t Minimization
y cap_prepare_elam_*
Set virtual
MMs - Set MMs
@
A A
/ /
Binary Dynamic State
Minimization (1) Machine (3)

Figure 10. The blocks added/modified in cap_elam.c

It should also be mentioned that the minimization schemes employ certain heuristics that may
result in alessthan optimal solution when the trigger expression becomes incredibly complex. For

example, greedy algorithms are used as part of the Quine-McCluskey algorithm. However, the current

27



implementation should sufficient enough in efficiency for nearly al practical scenarios. More in-depth

detail about each component is provided in the following sections.

3.2 Trigger Expression Minimization

3.2.1 Overview

There are severa methods to minimize the number of Match and Mask registers used to storethe

user-inputted trigger statement. These blocks are shown in Figure 11 (below).

Populate Quine-
Generate
F ——» trg_expr_t . McCluskey
minterms )
structure Algorithm
Create Parse
.. trg_expr_t *min_expr,
> m|n|m|zed > St_orage trg_%;prft_*storag_e_flioelds
trigger expr fields

Figure 11. Overview of Componentsin Logic Minimization Block

Trigger expression minimization or logic minimization is responsible for looking at atrigger
expression on afield by field basis. Each field is considered asavariable and the trigger expression is
treated as a Boolean equation. Logic Minimization attemptsto find the ssimplest logically equivalent (to
the original expression) Boolean expression by first mapping the trigger equation to aset of minterms,

reducing those minterms, and parsing the result into how different fields can be stored in MM registers.

3.2.2 Input Trigger Statement

In the current design of the ELAM, the trigger statement must be entered in acertain form or else

it cannot be processed. Currently, the ELAM only accepts trigger statements in product form; however,
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this project requires that expressionsin a sum of products form be also accepted. For example,
expressions can beasfollows: “<FI ELD_NAME>==VALUE”" or “<FI ELD_NAVME>! =VALUE”". Logical AND
isexpressed by using a space, such as“Fl ELD1==VALUE FI ELD2! =VALUE" and logical OR is expressed
with asingle plus sign, for example “FI ELD1==VALUE + FI ELD2==VALUE". Theequivalent Boolean

expression using variableswould be AB + C.

For future clarification, several definitions arerequired. A trigger ‘field’ or ‘variable’ indicatesa
singletrigger condition. Thetrigger expression ABCD + AB' Cisconsidered ashaving four fields
corresponding to the variables A, B, C, D. A trigger ‘term’ is used to indicate one or morefields joined by
logical AND in aproduct of sumsforms. For example, thetrigger expression ABCD + AB' Cis
considered as having two terms. A field may span multiple cycles, for example, in the case of source or
destination | P headers, the field data may arrivein 4 different cycles. Thisis because the high bits of the
IP address may be stored in one cycle and the low bits stored in another cycle. Concatenating these bits

together is not considered in this project as the functionality for that is already in place.

When atrigger expression is entered by the user, it will be parsed and mapped to a set of
variables. The uniqueness of afield depends on the name of the field, the data value, the mask value, and
the cyclethat thefield is stored in. For example, the trigger statement VLAN == 3EE VLAN == 3EF
contains two unique fields and theexpression VLAN == 3EE VLAN ! = 3EE containsonly 1 uniquefield
(onefield isthe complement of the other). As soon as a user entersatrigger expression, a mapping
algorithm isrun to identify unique variables and to generate amapped expression. Once a set of fieldsis

mapped to aset of variables, the next step in the algorithm can be carried out.

3.2.3 Boolean Expression Reduction Algorithm

Several different algorithms were considered to minimize the trigger expression. From a practical

perspective, only the three most popular methods of 1ogic minimization were researched in detail. This
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was due to time constraints placed on the project. There wasinsufficient time to implement some of the
newest proposed methods. There was also alack of documentation beyond that of research papers for the
newest methods. For Karnaugh maps, the Quine-McCluskey algorithm and the Espresso heuristic logic
minimizer, plentiful resourceswereavailable. For each of the algorithms, there are advantages and

disadvantagesto each method. Table 5 below summarizes the main advantages and disadvantages of each

method.
Table 5. Boolean minimization comparison
Method Advantages Disadvantages
Karnaugh maps Easy visuaization Inefficient for greater than 5

variables

Quine-McCluskey algorithm Systematic and well-suited for Inefficient for large number of

computer programs variables
Espresso Heuristic logic No restrictionsin terms of Not guaranteed to be global
minimizer variables or complexity of minimum

expressions; fast and efficient

It was decided that the Quine-McCluskey algorithm would be used for the Boolean logic
minimization component of the project. This is because, from a programming perspective, the Quine-
McCluskey algorithm is simpleto code, and its non-complex nature allows an ease of understanding for
future coworkers to continue the project. Although the Quine-McCluskey algorithm becomesinefficient
and growsin polynomial time given alarge number of variables, for the purposes of the ELAM, that limit
will never be reached. The user, for almost every practical application, will only enter an expression of
under 32 variables. Thus, the Quine-McCluskey algorithm isjust as efficient as the Espresso algorithm

and much more so than Karnaugh maps in these cases.

3.2.4 Generate Minterms
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The next step inthetrigger expression algorithm is to generate a set of minterms so they can be
minimized with QM. A mintermis essentially a binary sequence representing atermin the overall trigger
expression. Each bit in the minterm corresponds to afidd in aterm. For example, the expression ABCD +
B' C Dgenerateaset of minterms: 1111, x001. To carry out this mapping, the number of unique fieldsin
thetrigger expression is determined and stored in atwo dimensional matrix. In the matrix, each row
corresponds to a minterm and each columnisa‘bit’ in that minterm. For example, minterms 0111 and

001x are stored in this matrix as follows:

Once the minterms have been mapped and correctly set, they arein aform that can be applied to

logic minimization algorithms.

3.2.5 Quine-McCluskey Algorithm
QM takes a set of inputs in sum of products form and analyzes that set of variables to reduce the

redundancies present in thelogic of the expression. The logic reduction here can use any algorithmredlly;

however, QM is a good choice because:

1. Itisdtill relatively efficient when the number of input variablesis > 4 and not overly

long.
2. Thealgorithmis systematic, which makesit easier to implement as code.

Theagorithmis atwo-level 1ogic minimization algorithm and relies fundamentally on the

resolution rule of propositional logic, which states that:

(FVA)A(FVA) =F
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What is meansin terms of code thisthat two minterms can be combined if they areidentical except for

one‘bit’ position, and that one position isOin oneterm and 1 in the other. Figure 12 (below) illustrates

thisconcept:

0001 0011
00x1
Figure 12. Resolutionrule
From ahigh level perspective, the QM algorithm has three basic steps:

1. Combineterms where possibleto produce smaller termsuntil no more can be produced.

2. ldentify thosetermsthat cannot be combined with another term to form smaller terms.

Theseterms are called prime implicants.
3. Findthe set of prime implicantsthat imply the original equation.

Thus, the QM agorithm is composed of two main blocks, as shown in Figure 13 (below):

Find 'Prlme Find Cover Set Mlplmlzed
Implicants minterms

A

trg_expr——»

Figure 13. QM agorithm overview

3.2.5.1 Find Prime Implicants
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In the example shown in Figure 12, 00x1 isaprime implicant asit implies0001 and 0011. To
find the set of prime implicants of amore complex set of data, we require an appropriate data structure.
The data structure that will be used isa 2D array of queues. Each row in the matrix isthe number of ones
in aminterm, and each column isthe number of don’'t cares. Minterms from the original equation are

placed in thistable. For example, minterms 001, 01x, xx0, 100 and 111 will get placed in the table as

follows:
Table 6. QM reduction table example
DC \ Ones 0 1 2 3
0 001, 100 111
1 01x
2 xx0
3

Onceall the minterms generated from the original trigger expression have been placed in the
appropriate place in the table, a search occurs for any reductionsin the terms. Because of the way the
tableis structured, we only need to attempt to combine terms falling into lists that are next to each other
in the table. Although this heuristic reduces the number of comparisonsthat are required, we still haveto
try all combinations of these two lists. When a pair of termsis combined, we know where this new
combined term will be placed: it will have 1 more don’t care than the previous terms and the number of
onesin the combined term will be one less than the input term with lesser number of ones. Thus, we can

do asingle scan through the table to look for terms that can be combined.

Each time two terms are combined, the new combined term isinserted into a prime implicant list.
Thelist is also scanned to see if the two input terms are themselves in the prime implicant list (they were
combined from other terms): if they are they are removed from the list. The new combined termisalso

inserted into the appropriate position in the main table if it does not already exist.
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3.2.5.2 Find Cover Set

The next step in the QM algorithm involves finding a subset of prime implicants that imply al of
the terms of the original equation. To test if a primeimplicant implies aterm, we compare the term with
the prime implicant. If the bits of the term are the same asthe prime implicant or if the prime implicant
hasa*don’t care” in the same position asabit in aterm, then the term is being implied. An appropriate
data structureisrequired hereto check for prime implicants and essential prime implicants. Thisimplies
tableisa 2D Boolean array. The rowsindicate the prime implicants and the columns are for the minterms.
Each entry in the table is a Boolean value for whether the prime implicant implies the current term. Table

7 givesan indication of how the implies table would ook for the example shown in Figure 12.

Table 7. Figure 5 exampleimpliestable
Num pi \ numterns 0001 0011

00x1 1 1

Each time an essential prime implicant isfound, it isinserted into afinal list which storesthe
non-redundant terms. We must al so take into consideration that aterm may be not implied by any of the
primeimplicants, in which case, we directly insert into the list of final minimized terms. Likewise, if a
termisnot aprime implicant (not in prime implicant list) but implies another term that is not in the prime

implicant list we must also insert it into the list of final minimized terms.

At this point, the cover set problem is NP-hard, and certain heuristics have to be employed.
Recall that an essential prime implicant isthe only implicant that implies one of the original minterms.
Once an essentia primeimplicant isfound, we remove both the row of that essential primeimplicant and

the columns of all original termsimplied by that essential prime implicant.
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After finding the essential prime implicants, we need to cover the remaining terms using the other
primeimplicants. A heuristic selection method is used here. The prime implicants that imply the largest
number of remaining original terms are chosen first. The algorithm continues until every one of the

original mintermsiscovered. This heuristic method [44] ensures amore efficient average running time.

For basically every practical casethat the ELAM will see, this heuristic selection method will
obtain the optimum solution (simplest logical equation). However, it should be noted that if the trigger
expression becomesincredibly complex (> 256 fields and terms), there is a chance that aless than optimal

solution will be obtained.

When the cover set isfound from the Quine-McCluskey algorithm, we should obtain anew list of
minimized terms. From this information, a new minimized trigger expression is created. Thus, once
redundant terms and/or fields are removed from the original user trigger expression, the next step isto
rearrange the new minimized expression for storage in the virtual Match and Mask registers. Here, a

parsing algorithm isrequired to break up fields based on logical compatibility.

3.2.6 Parsing Stored Fields

Thefirst step in the parsing algorithm is to break up terms depending on the line/cycle they arein.
The data structure that isused hereis an array of queues. Each row in the array represents a different line,
and each node in the queue corresponds to atrigger field of that line number. For each line, fields are
parsed based on their logical compatibility and if they overlap. Overlap is determined by the start and end
bits of afield and the cyclethefield isin (for example, VLAN==0x3EE VLAN==0x3EF areconsidered
astwo different fields, however, they overlap because they are in the same cycle and have the same

start/end bits and thus must be grouped as different terms).
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The parsing algorithm consists of grouping fields which can and cannot be stored together.
Clearly, fieldsin different cycles are unable to be stored in the same MM register, thusfields are divided
into line number first. Next, fieldsin OR NOT form are grouped. For example, an equation of theform A’
+ B’ + C' can be grouped together to form the equation (ABC)’ according to DeMorgan’ s Theorem [46].
In this case, one Match and Mask register would be required as opposed to 3. Following, single ! ="
fields that are part of alarger term are extracted. For example, theterm AB’ C cannot be stored in the
same MM register. Instead, two MM registers, one to store AC, and another to store B' are required.

Finally, overlapping fields are parsed out.

When the parsing hasfinished, we now have an idea of how many MM registers are required to
storethe newly minimized expression. There may be cases where the amount of registersrequired is
greater than the number of registersrequired to store each field individually (for example, AB + BC +
CD + AD + ACrequires moreregistersasopposed to storing A, B, C, D). If thisisthe case, it ismore
efficient to store each field as opposed to each term. The state machine can then be used to create the

minimized expression.

After parsing finishes, the next step isto create alink between each field in the minimized
expression and the fields that are actually stored. This mapping is required asthe state machine may need
to reuse MM registers to form the trigger expression and generate a set of states. See Figure 14 (below)

for an example of this.
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AB+ AC+ AD+ BC + DB min_expr

\d

A, B, C, D storage_fields

Figur e 14. Example of mapping between minimized expression and MM register storage

Inthe examplein Figure 14, only the fields themselves are stored and the minimized expression
is created by reusing Match and Mask registers. To accomplish this mapping, each field in the minimized
expressioncontains a storage array that is associated with a corresponding MM register wherethat field is
stored. Note that at this point in the algorithm, the virtual MM registers have not been set up. Itis
assumed that MMO will contain the first field and MMn will contain the nth field. If this assumption
proves incorrect, the mapping will be altered at alater point. For example, in Figure 14, thefield A in the
minimized expression would have a storage array: [10000000] with the assumption that field A is stored

in MMO. Pleaserefer to Appendix A for more logic minimization examples.

3.3 Data Compression for Storage

After auser-inputted trigger statement has been ssimplified, we can often eliminate redundant
fields. The next step isto analyze the actual datathat will be stored in the Match and Mask registers.
Although the Boolean expression from the previous block may be in aminimized form, there existsthe

possibility of further compressing the stored data.

Since the Match and Mask registers are designed to mimic the structure of the incoming data

packets, it is difficult to change their implementation without modifying the ELAM hardware. It isfor
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thisreason that several well known compression algorithms will not work in the compressing the data

stored in the Match and mask registers. Such methods include the Lempel-Ziv-Welch algorithm is a

universal |ossless data compression algorithm [50]. Other compression algorithms such as Burrows-

Wheeler transform [47], Dynamic Markov compression [48], entropy coding techniques [52], and run-

length encoding techniques are all applicable given a different hardware design. Nortel Networks also

developed a binary data compression/decompression algorithm [49] that unfortunately cannot be applied

in this case as well. With these restrictionsin the Match and Mask registers and how datais stored within

them, other designswere considered. An ELAM-specific design was developed based on the

minimizations that are actually possible.

After anew minimized expression has been outputted from the logic minimization block, the next

step isto set the virtual MM registers so that the actual MM registersin hardware can be programmed.

Oncethevirtual MM registers have been set up, we can consider the Match and Mask registersasa

binary matrix. The eventual goal then isto remove any data overlaps and redundancies in this matrix

using a binary minimization algorithm. Figure 15 (below) showsthe essential blocksin binary

minimization.

Set virtual

t field
storage_fields —» MMs

y

Look for
overlaps and
redundancies

.| Map fields to

MMs

> Return

Figure 15. Essential blocksin binary minimization

The binary minimization algorithm is applied to all data stored in the Match and Mask registers.

It looks at the bits present in the MM registers and removes redundancy taking several constraint factors

into account. Thefirst constraint isthat if fields are stored in different Match and Mask registers, but in

the same cycle, their start and end bits are already predefined according to a database. The statically
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defined start and end bits make redundancy removal impossible in this case. However, if two fieldswere
in different cycles (and thus stored in different MMs), there is a chance they may have identical start/stop
bits and matching data values. In this case, the Mask and Match registers for the two fields would be
identical and it would be redundant to store both. The binary minimization algorithm attemptsto locate
such redundancies. In the description of the algorithm, the word ‘term’ refersto the data associated with a
consecutive sequence of mask bitsthat are set to ‘1'. These sequences are also referred to as * bit
sequences’. The binary minimization algorithmis ELAM specific, asit is designed taking the constraints
imposed by the Match and Mask registersinto account. Thealgorithm is summarized in the following

sections.

3.3.1 Overlap and Redundancy Detection

Todetermine if the start and end positions of bit sequences of different fieldsare identical, we
need to examine consecutive series of 1sin the Mask register. These bit sequencesindicate valid ranges
of datawhere overlap may occur. To determineif onetermis overlapping with another term, a
comparison isrun to seeif the non-masked-out bits are equal. This comparison algorithm returnsa
Boolean result concerning the existence of overlap. Overlap is determined if one term has astart bit less
than or equal to the start bit of another term and an end bit greater than or equal to the end of bit another
term. The smaller isterm is said to overlap with the larger term. Bits here are in most significant bit
(MSB) to least significant bit (LSB) form. The end bit refers to the larger bit value and the start bit refers

to the smaller bit value. For example, consider the following 2 terms:
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Inthe example above, the 0" bit, the start bit (LSB) is left aligned and the 5™ bit, the end bit
(MSB) isright aligned. In this case the start and end bitsof 1110 overlap with 101110 asthe1110
sequence has a start bit equal to 101110 and an end bit that isless. Theterm 1110 is marked asthe

smaller term, and theterm 101110 is marked asthe larger term.

If there exists overlapping terms, the overlapping bits of the two terms need to be compared to see
if they are equal. In the previous example, for the range of overlap between the smaller and larger term,
there existsidentical data, thus the smaller termis said to overlap fully with the larger term. If the smaller
term has the same bit sub-sequence as the larger term, the smaller termis stored in an array associated

with the larger term. The MM register that the bit sequence is stored in isalso stored in a separate array.

Each bit sequence is compared with every other bit sequence to determine overlaps. For agiven
term, all other overlappingterms are inserted into the array associated with the term. These additional
termsare ‘combined’ with the previous value in the array. The combination logic here merely means
extending the storage array associated with aterm every time an overlap is detected. For example, for the
term 101110 shown inthe example before, if an additional term 101, with appropriate start and end bits,
were compared against 101110, an overlap and match would be detected. In this case, the array
associated with 101110 already containstheterm 1110 so 101 and 1110 would have to be combined.

Thisis shown below:

Here, 101 representsthenew term, 1110 theoldterm, and 101110 the new combinedterm. In

this case, the ‘combined’ storage array associated with 101110 isin fact equal to thetermitself. In this
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case the sequence 101110 is marked as redundant. Let us assume that the sequence 101 is stored in
MMO, 101110 in MM3 and 1110 in MM4. Each term storesthisinformation in a separate array. In the
case of thesequence 101110, thisarray would look as follow: [10001000]. Imagine if thisbit sequence
represented the datafor afield. Previously, the data associated with the field islocated in MM 3, but now,

we can use the datain MMO and MM4, freeing up MM 3.

To clarify and summarize, the binary minimization algorithm iterates through all bit sequences
and seesif the combined array associated with each termisin fact equal to thetermitself. If itis, this
means that the term is redundant. We can look at the array which stores the location of the overlapping bit
sub-sequences that formed the redundant term to know where these terms are stored. Giventhe
constraintsimposed by the structure of the Match and Mask registers, minimizations of thisform are the

only ones that appear possible.

Now, thereisthe possibility that asingle MM may have multiple bit sequences. For example, the
following binary sequence contains 2 distinct terms. Thisisa possibility when there are multiplefields
stored in asingle MM register, and the start/end bits of the fields do not line up. In this case, we must first
expand the total number of Match and Mask registers so that each bit sequence isallocated its own MM.

For instance, consider the following MM:

In this case, the sequences 10 and 100 broken up into two separate MMs. Since we have an
unlimited number of virtual MM registersin software, this can be easily done. In the event that atermis
found to be redundant, it isremoved from the virtual MM register (by setting the mask bitsto 0 and
clearing the Match register). If al termsin aMM register are redundant, that MM register is no longer
used. If atermwas originally stored in aMM, and isallocated anew register (expanding multiple bit

41



sequencesin one MM register), and is now used to form redundant term, it cannot be recombined back to
itsorigina MM register. Of course, thisimpliesthat bit sequences that were split from another MM
register but not used to form any redundant terms can be placed back into their original MM register. The

examplesin thefollowing sections may serveto clarify these concepts.

After the set of minimization operations are complete, the next step isto check if areductionin
the number of MMs actually occurred. If some bit sequences are allocated new registers during the
expansion process and used to form new terms, the total number of MM registersrequired may be greater
than if this operation were not performed. The new number of MM registersrequired is compared to the
amount before binary minimization. If it isfound to be greater, and no reduction results, the algorithm
does not update the virtual MM registers. Otherwise, redundant MM registers are removed, and each field
before binary minimization adjustsits storage array that holds the information containing which MM

registersto use. For binary minimization examples, pleaserefer to Appendix A.

3.4 Chapter Summary

Register minimization techniques were the focus of this chapter. Comparing the methods of
Karnaugh maps, the Quine-M cCluskey algorithm, and Espresso minimization, it was decided that the
Quine-McCluskey algorithm is the most suitable algorithm for this particular problem duetoits
systematic approach to solving minimization problems. Such an approach has the advantage that it is easy
to implement using in software, and given the relatively compact data sets that trigger expressions are
limited to, it is efficient enough for the problem purposes. The logic minimization component is
composed of several steps, including deriving a set of mintermsfor input to the Quine-McCluskey
algorithm, obtaining the prime implicants, and obtaining the essential prime implicants of a given set of

minterms.
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Following Bool ean expression minimization, binary minimization is run on the actual datato be
stored within the set of MM registers. Due to the particular structure and implementation of the MM
registers, an ELAM specific algorithm was devel oped. Thisagorithm breaks user datain the MM
registersinto aseries of binary sequences. The binary sequences are examined to detect overlap. If certain
sequences are found to be redundant, they are removed from the MM registers. If the final number of
registersisfound to be less after these sequences are removed, the reduced set of MM registersis used for

further ELAM execution.
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Chapter 4

Dynamic State Machine

After binary minimization has completed, the actual MM registers in hardware will be set based
on the information contained within the virtual MM registers. It isat this point that some minor
rearrangements of MM registers must occur in order to correctly receive incoming data. The first MM
(MMO) isused to check the valid bit of an incoming data packet. Thisbit indicates if a data packet is
actually valid. The next MM (MM1) is used to check the start of packet (SOP) bit. The valid bit and the
start of packet bit occur in different cycles, and must be checked before the payload arrives.
Unfortunately, this means that two MM registers must be set aside to accommodate these conditions.
Following thisinitial setup, the other MM registers are then set based on the virtual MM register data.
After the MM registers are set, the dynamic state machine can then be programmed. The main

components of the dynamic state machine are shown in Figure 16 (below).

Create NP Map fields to
SetMMs Table ids
Expand Reduce Set State
states states Machine

Figure 16. Main blocksin the dynamic state machine

detail in the following sections.

Each of the blocksinvolved in programming the dynamic state machine will be discussed in greater




4.1 Overview

The creation of aset of statesfrom the trigger condition consists of several stepsand it may be
more worthwhileto refer to the examples section to help clarify the steps. The programming of the
dynamic state machine, or rather, generating a set of states based on a user-inputted trigger condition isan
ELAM-specific algorithm. The design of the ELAM state machine utilizes information stored in the MM
registersfor state transition and trigger conditions. The algorithm consists of generating alist of all
permutations of possible trigger statements and removing any redundanciesin thislist. In other words, the

minimized trigger expression is converted to a set of states and this set of statesis subsequently reduced.

In thefirst step of creating a set of dynamic states, a necessary permutations (NCP) tableis
created. This table contains a mapping between each field that is stored in the MM registersto a
numerical valueor ID and will be used in generating al possible state transitions depending on the trigger
expression. The NCP table will be sorted in terms of cycle and each ID of the fieldsin this table increase
numerically. We map the minimized trigger expression to each of the ID values given in the NCP table.
After mapping of the expression has occurred, we sort the numerical trigger expression for ease of

handling later on. The sort algorithm used is merge sort. The merge sort algorithm works asfollows [51]:

If thelist length==0o0r 1, it isalready sorted. Else:

» Divideunsorted list into two sub-lists of approximately half size of total list length
= Merge sort each sub-list recursively

=  Mergetwo sub-lists, forms one sorted list

Anillustrated example of the merge sort algorithm can befound in Figure 17.
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Figure 17. Merge Sort Algorithm

Following, we expand the minimized trigger expression based on the NCP table. This expansion
needs to be performed becauseif trigger fields arein different cycles, afied in thelater cycle must be
correctly reached regardless of what occurred in earlier cycles. For example, given the equation A + B
where A isincycle 1 and B isin cycle 3, if the correct information for A isseenin cycle 1, we can trigger
without having to consider cycle 3. However, if thisinformation is not seen, we need to create state
transitions that correctly take usto cycle 3. In this case, the ELAM will still receive cycle 2 data,
however, this datawill not be used. More specifically, if an expression does not contain terms of a certain
cycle, we need to create ‘dummy’ terms which serve as placeholders. When the state machine sees that it
should be expecting a dummy variablein a certain cycle, it will instead loop in that cycle and continueto

next cycle when next cycle data becomes available.

As afurther example, consider the following: If the user wants to trigger on field A AND B OR
C, andfield A occursin cycle O, field B in cycle 1, and field C in cycle 2. In this case, the state machine
must notethat even if it sees A’ incycle0 and B’ incycle 1, C may still occur in cycle 2 and thus all

variations of occurrences in thefirst 2 cycles must be taken into account.
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After we obtain an expanded equation that may aso contain dummy variables, we then try and
remove redundancy in the set of expanded states. Thisis done by pattern matching, for example if the
numerical trigger expression were12 + 123 + 1234 wherel (cycle 0),2 (cycle 1),3 (cycle
2),4 (cycle 3) arethelDsof fieldsin the expression, then we know that as soon asthe 12 condition
istriggered, the 123 and 1234 branches of thisexpression will never be reached. Such redundancies are

removed from the expanded set of terms.

Finally, the deterministic set of statesis programmed from this expanded set of terms. When the
state machine reaches atrigger condition, it will jump to the trigger state. State 999 is currently set as the
trigger state. After the trigger and transition states are created, the conditions which cause * back to state

0" (fail state transitions) are programmed.

4.2 Generating Dynamic States

The necessary permutationstable isrepresented asan array. The numerical minimized expression
isrepresented as a 2D array of integers. There are two such matrices defined, one to represent the original
minimized expression and one to represent the expanded version. Negation isrepresented by a negative
sign. For example, thetrigger expression ABC + CD + ABE ismapped to the numerical expression 12-

3 + 34 + 125 and stored as;

1 2 -3 0 0
3 4 0 0 0
1 2 5 0 0
0 0 0 0 0

Thus, each row in this matrix represents adifferent term and each column represents adifferent
field. Next, we populate the necessary permutations table.
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After the minimized expression is mapped into numerical form, we next need to look for
redundancies and sort the statement. For example, if thetrigger expression wereintheform BCA + B’ D,
and AwasincycleO (ID = 1), whereas B, C, Dwereincycle 1 (ID = 2, 3, 4 respectively), and B and C are
stored in the same MM (and thus can be considered as one term). They would be mapped to the equation

221 + 2 and stored as;

After sorting the expression and removing identical |Ds each row, we obtain:

Next, we must expand the minimized numerical expression to derive adeterministic set of states.
Thisis asomewhat complex process, but hopefully the examples make it clearer. Consider the following

example:
Trigger expression=AD + BC

Table 8. Table of Necessary Permutations for simple example

Field IC Cycl e
A 1 0
B 2 1
C 3 2
D 4 3

Numerical trigger expression=14 + 23
Expanded equation:
1234
12- 34
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1-234
1-2-34
123
-123

Looking at thefirst numerical term 14, it can be seen that in the expanded set of states, the trigger
machine will transition in state depending on different permutations of what can occur in cycle 1 and 2.
Hence, from the expanded equation, we can derive the set of trigger states. Thisis done by traversing
each term in the expanded set of terms. If we know that field ID 1isstored in MM 3 and our current state,
we transition to the next state if the MM 3 state bit istrue. Once the trigger states have been obtained, we
need to derive the set of states that send the ELAM back to state 0. These fail states can be determined
from looking at the transition and trigger states. If an entry in the table does not contain a complement
state with the same current state, we need to create fail statesfor it. For example, if the current stateis 2,
the MM values are[111xxxxx], we need to look for another value where the current state is 2, and the
MM values are [110xxxxx]. (Recall the first 2 bits are for valid and start of packet). If such avalue does
not exist, we need to create a state transition that goes from the current state back to the initial state (state

0).

4.3 State Minimization

Several state minimization techniques were examined. Almeidaet. al. [55] found that the
Hopcroft-Karp algorithm [35] achievesthe best performance in terms of state minimization. It is
important to remember that because the set of states generated by the finite state machineis deemed to be
deterministic, methods of deterministic finite state machine minimization or deterministic finite

automaton (DFA) minimization can be applied.

Deterministicfinite automata minimization isvery well researched and established areain the
Theory of Computation [54]. Recall that a DFA can be defined asa5-tuple (S S, d, s, F).
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The DFA minimization algorithm uses a table-filling algorithm to determine which states are
considereddistinct. States that are not marked as distinct are able to be merged. Two states p and g are

defined as distinct when:

1) p€ Fand g ¢ F, orviceversa, or
2) forsomea a € S, d(p, a) and d(q ,a) aredistinct

A tableis created for each pair of statesand all table cells areinitially blank. For clarity purposes,

the table will be named DISTINCT. An iterative algorithm isrun asfollows:
1) For every pair of states (p, q)
If pandisafina state and qisnot or vice versa, DISTINCT(p,q) is marked
2) Loop until table does not update
For each (p, ) and each character ain S
If DISTINCT(p, q) '=empty and DISTINCT(d(p, &), d(q ,a)) !=empty
Mark Distinct (p, Q)
3) Two states p and g are distinct if and only if DISTINCT(p ,q) isnot empty

By running this algorithm, all equivalent stateswill be found, and ultimately asimpler DFA will
result. Now, in the case of the ELAM, Swill be the set of states derived from the trigger statement and
includesthe trigger states and the fail states. The alphabet will consist of all possible inputsthat cause the
state machineto transition, which will be the bit results of the total number of match and mask registers.
The start state will be state O, which iswhen the ELAM is expecting avalid bit. The next state will be
state 1, which is when the ELAM is expecting a start of packet bit. From there on out, the state machine

will be dynamically generated depending on the trigger condition. However, for all cases that the ELAM
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will see, aslong as adeterministic set of statesis produced, the DFA minimization algorithm described

will be able to determine the simplest set of states.

Asafinal note, there needs to be some of alimit to the number of states that are generated. The
size of the state look up table in the ELAM isfinite sized, and the current restriction on the number of
generated statesis 64. This poses an interesting concern in that, given amore complex trigger statement,
thisthreshold can easily be violated. At the current time, there are changes being proposed to increase the
size of the look-up table. The original state |look-up table was designed with a static state machinein

mind. For state minimization examples, please refer to Appendix A.

4.4 Chapter Summary

This chapter primarily focused on the dynamic state machine that is created by atrigger
expression. Thealgorithm used to generate a series of states from atrigger expression isan ELAM
specific algorithm. The simplified trigger expression from Boolean minimization istraversed to generate
aset of unique states for that expression. Several default and fail states are also added. Once a series of
statesis generated for atrigger expression, it isthen minimized to reduce redundant states. In this case,
DFA minimization techniques are employed. The size of the state machine table for the ELAM islimited,
and thus, if atrigger expression is too complex and generates too many states, and an error must be

thrown.
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Chapter 5

Evaluation of Results

5.1 Logic Minimization Results

5.1.1 Quine-McCluskey Algorithm Results

After implementing the discussed solutions for the logic minimization portion of the project, a
general idea of how effective the proposed solutions are was obtained. Several different test scenarios
wererun with common trigger statements and corner cases. These results, along with the time of
execution of the Quine-McCluskey algorithm are shown in Table 9 below. The code was executed on a

Windows XP SP3 machine with Intel’s T2050 1.6 GHz processor.

Table 9. Quine-McCluskey Algorithm Running Times

Execution Time
Variables Terms Total Variables (ms)
1 1 1 0
3 6 18 15
4 11 44 15
4 15 60 32
25 6 150 78
25 25 625 125
10 64 640 78

In Table 9, the number of variables, terms, and the total variables are listed, along with the total
execution time of the QM algorithm in (ms). It isworthwhile to note that the Quine-M cCluskey algorithm
isthe limiting factor in the execution time of the logic minimization block. Thisis because the rest of the
functionality intheblock isrelatively trivial. There are no complex logic calcul ations and the mapping of
variables to functions can be run in O(n) time. The proof of this problem istrivial aswe merely need to
traverse through all the trigger fields. Each unique trigger field maps to a unique variable. Parsing through

the trigger statement to generate anew minimized trigger statement is likewise O(n). In this case, we
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traverse through the set minterms and map them back to the original trigger fields. Figure 18 below

graphically illustrates the execution time of the Quine-McCluskey algorithm for the various test cases.
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Figure 18. QM executiontime

We can note from the results of Figure 18 that the QM algorithm does not show a distinct pattern
ingrowth given arealistic set of input data. There are instances where the total number of variables
increases and the execution time decreases. Thisis because the actual minimizations that can be
performed are dependent on the trigger statement. In some of the larger test cases, random variables and
termswere generated, and in many of these cases, simplifications do not occur. It isonly when
minimizations are possible that the algorithm continues to perform itstask. The threshold level in ELAM
was set to be 64 variables and 64 terms, resulting in atotal number of 4096 total variables. Given the
results shown in the table, this seems like areasonable limit. By interpolation, the limit imposed will
result in the algorithm still running in polynomial time. In the algorithm, certain heuristics were used, thus
it is possible that the QM running time will grow without bounds if areasonable limit is not imposed.

Hence, error checks are performed in the code to limit the number of variablesto 64 and the number of
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termsto 64 aswell. Thus, we can ensure that the algorithm will run with little to no effect on the total

execution time of the ELAM.

These results have been mirrored in other sources. In [44], it was found that 64 terms and 64

variables require an execution time of 0.159 seconds. The code was executed on Sun's Java 1.5.0

under Gentoo Linux on a2.8 GHz Pentium 4 machine.

5.1.2 Binary Minimization Results

For the binary minimization component of the project, we can conduct a statistical analysisto
determinejust how oftenthe codeis run. Let usfirst examine the table of datafieldsto gain some
preliminary understanding of how often overlapswill occur. Table 10 showsthe structure of the backend

database indicating the possible trigger fields.

Table 10. Database Structure for Trigger Fields

Field Name Field Type Trigger State | Start Bit | End Bit | Value Type LineType | Cycle
SEQ _NUM DBUS SEQ NUM A _ALL 255 251 T _HEX SNGL 1
QOS DBUS QOSs A _ALL 250 248 T _DEC SNGL 0
QOS TYPE | DBUS QOS TYPE | A_ALL 247 247 T _DEC SNGL 0
TYPE DBUS CMP_TYPE | A_ALL 246 243 T_DEC SNGL 0

In Table 10 above, the start and end bits are of the most concern to us. Now, the only time that
bits can overlaps are if the user wants to trigger on fields that arein multiple cycles. Fieldsin the same
cyclealready havetheir positions pre-defined, thus the only way that two fields can overlap isif they are
in different cycles, or if one Match and Mask register contains the negation of afield stored in another
match and mask register. Recall in the case of negation that the non-negated field is stored and it isup to

the state machine to account for the correct logic.
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With the old implementation of the ELAM, only limited statistics were available on what trigger
statements users typically input. With the previous implementation of the ELAM, userstypically
triggered on only single fields as opposed to long expressions. Table 11 lists the top 5 trigger fields of

interest to ELAM users asdetermined by a survey of 27 users.

Table 11. Most popular trigger fields

Field Name Number of Start Bit End Bit Cycle
Users

VLAN 18 215 204 0

SEQ_NUM 4 255 251 1

PACKET_TYPE | 2 158 156 0

CARD_TYPE 2 115 112 0

DMAC 1 95 48 0

There are several flaws with this statistical study. First of al, it was difficult to locate individual
users who used the ELAM. Sometimes, certain individuals may useit every so often and it was difficult
to locate al these users across alarge organization like Cisco. Another problem isthat many of the users
are in the same groups at Cisco, thus the main data they require from using the ELAM are very similar.
Likewise, the current ELAM is severely restricted in what the form of the trigger expression is. With the
new changes proposed in thisthesis, it is highly plausible that new popular trigger statements will arise to

replace the current ones being used.

Thissimple study can still give us some insight into the applicability of binary minimization. We
can note from the results obtained that no two fields of the most popular fields actually overlap. In fact, 4
out of the 5 fields occur in the same cycle. Even if they were to be placed in different Match and Mask
registers, they would never overlap, unlessthe user specifiesacomplex equation involving both thefield

and its conjugate which then get placed in separate registers.
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Although such occurrences arerare, it is not impossible to imagine that they will indeed occur,
especially when more complex trigger statements are allowed. Hence, binary minimization still plays a
role in the overall process. It isimpossible at thistime to determine any accurate statistical information
how often it will actually be employed as the new ELAM implementation is not yet widespread in its

deployment.

Binary minimization run in O(n?) time [53]. Every binary sequence in the match and mask
registers must be compared with every other binary sequence to determine if overlaps occur. Hence, the
equation that hereis:

n n
k+Y i <k+Y n=k+n*=0(n?)
i=1 i=1
Therefore, although binary minimization is somewhat slow for conventional software programs,

itisstill bounded within polynomial time, and thus reasonable to use given the expected limited data set.

5.1.3 Dynamic State Machine Results

There are two main areas of efficiency measurements in the dynamic state machine. The first
constraint that could potentially affect the execution time of the dynamic state machineisin creating the
table of necessary permutations. Recall in creating the table of necessary permutations, the first step isto
assign aunique numerical id to each trigger field in the minimized expression. After an id has been
assigned to each field, anumerical trigger expression is created, sorted and then expanded. In creating a
unique id for each trigger field, the total runtime would be O(n), the proof of whichistrivial. Similarly,
O(n) time isrequired to generate the numerical trigger expression. In order to sort the numerical trigger
expression, merge sort was used. Merge sort runsin O(nlogn) time in the worst case. It should be noted

here that the sorting algorithm chosen to sort the numerical trigger expression is not of great concern, as
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the number of fields and termsisrestricted to be 64. Due to thisrelatively small number of items, sort

algorithms run almost identically.
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Figure 19. Algorithm efficiency comparisons

From the figure above, it can be seen that for avery small number of values, thereislittleto no
difference in the running time between various sorting agorithms. Thus, insertion sort could have been
picked in this case for ease of implementation. It is the next step in the algorithm that provesto be vital in

thetotal running time of the dynamic state machine algorithm.

Depending on the user trigger expression, a variable number of states can be generated. Let us
first ignore the states associated the valid bit and the start of packet bit. For example, if the user entersa
trigger expression with asingle datafield in thefirst cycle, therewill be atotal of 3 states. A trigger state,
afail state (in the event the expected dataiis not seen in thefirst cycle), and atransition state where the

data is seen the next state is set to the trigger state. Now, if there wereinstead 2 datafields in the first and
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second cycle, awhole new set of statesis created. If the two fields are stored in the same MM register, we
would have an identical caseto the previous example. However, if the two fields are stored in separate
MM registers, wewould require an additional transition state (from cycle 1, wherethefirst datafield is
seen, to cycle 2) and an additional fail state. Thus, for every new trigger field that is a part of the
expression, in the worse case, 2 additional states are required. Thus, asimple equation can be derived to

represent the maximum total number of states generated.
Maximum number of states = 2F + k
F —number of unique trigger fields in trigger expression
k — a constant representing fixed states that are part of every expression

For the new ELAM implementation, k consists of the valid bit valid state, valid bit invalid state,
start of packet invalid fail state, and trigger state. Keep in mind in that afair percentage of the cases, DFA

minimization will reduce the number of states required.

In the worst case scenario, given the constraints mentioned previously, there will be 64 fields and

64 terms, evenly distributed across 4 cycles. Thus, the total number of statesrequiredis:
Maximum number of states = 2(64) + 5= 133

This number is quite reasonable for any computation, and can be easily handled by the state
generation algorithm. The only concern hereisthe memory allocated by hardware for storage of states.
The maximum number of statesthat can be stored in ELAM hardware is currently only 128 states. Thus,
if none of the states in the worse case scenario are found to be redundant, then the particular expression

cannot be stored. In this case, an error message should be displayed to the user.
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DFA minimization occurs in O(nlogn) time. Even using parallel implementations [56], significant
gainsto thisefficiency are not obtained. Consider the figure below, which plots the runtime efficiency of

theagorithm.
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Figure 20. Runtime efficiency for DFA minimization
Looking at the first 1000 values (which issignificantly less than the maximum upper bound
found previoudly), it can be seen that the runtimeis roughly linear. Hence, the DFA algorithm is suitable
for minimizing the expanded set of states. Judging from the results generated, the runtime efficiency prior

using adefined threshold is morethan adequate for this project.
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Chapter 6

Conclusions, Recommendations and Future Work

6.1 Summary

There are several major contributionsto the ELAM that were presented in thisthesis. Aswe saw,
the original implementation of the ELAM greatly limited the ELAM’ sfunctionality and potential to only
be able to trigger on a select few trigger statements. More specifically, the trigger statement had to bein
product form. With the new changes proposed to the ELAM, the ELAM is now able to support awide
ranging series of trigger statements, allowing for logical operations AND, OR and NOT to beused in
whatever way the user desiresto form flexible trigger statements. Furthermore, the match and mask

registers, which are vital resources, are minimized as much as possible.

Several different algorithms were presented to optimize the match and mask registers and have
the ELAM support flexible trigger statements. In thefirst step, the trigger statement istreated asa
Boolean logic expression. Thisexpression isthen minimized using the Quine-McCluskey agorithm,
which is both systematic and fast. By setting an upper limit to the maximum number of trigger conditions,
the Quine-McCluskey algorithm runs without disrupting the total ELAM execution time. Because users
enter trigger conditions by hand, the upper limit of the total number of inputs for the Boolean expression
minimization component is 64 variables and 64 terms. Thisvalue, for al practical cases, isfar greater
than any user requires. The resulting minimized expression isthen used to set the match and mask
registersrequired. After the match and mask registers have been properly set, we examine if there are any
overlapping patternsin binary dataand remove redundancies where possible. Finally, we generate a
deterministic set of states from the new minimized expression. This set of statesis then reduced using the

methods of state reduction for DFAS. For each trigger expression that is entered, this entire processisrun.
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6.2 Future Work

There are several waysthat the existing design can be improved to increaseefficiency in handling
flexible ELAM trigger statements and provide additional functionality. Some of these changesrequire

hardware updates and reconfigurations.

Thefirst areafor future development for the ELAM isthe ahility to incorporate other logical
operators such as XOR, XNOR, etc. Theinclusion of this additional functionality should not betoo
difficult, as expressions containing other logic operators can aways be represented using the 3
fundamental operators. Similarly, the ELAM should be able to support brackets. If the user wishes to
enter anexpressonsuchas(A + B)Cl + D(EF + G, thisexpression should be expanded into a
sum of productsform and the current functionality can be used. Of course, to support brackets, the ELAM
would require sometype of parser. The parser would take trigger statementsin any form, with or without
brackets and convert the equation to a product of sums form. Such a parser would not be overly difficult,

and would allow for support of equationsin product of sumsform.

Currently, the ELAM isonly capable of supporting NOT conditions on variables. The ELAM
currently does not provide any functionality to allow multiple variables and sub-sections of an equation to
be negated. Thisleads usto another constraint of the ELAM design. If each trigger field istreated asa
separate variable, thereisarestraint on how flexible each trigger field expression can be. For example,
the user is unable to enter acommand where they want to trigger on atrigger field depending on the logic
of the bits of that field. The user may want to only see that bits 0-10 are true, AND/OR/ bits 15-23 are
false, etc. To be able to support these types of even more complex trigger statements, the trigger fields
themselves would need to be broken down to adifferent format. In this case, the binary minimization
algorithm may play in agreater factor in minimizing the match and mask registers used. However, given

the current hardware implementation of the ELAM, such statements are not possible.
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If the hardware on the ELAM werereconfigured, alot of additional flexibility can be introduced.
The biggest and possibly easiest change to introduce would concern the output of the match and mask
registers. If each match and mask register were to return a vector indicating which bitsin the registers
matched and which ones did not, and if the input to the state machine were instead a matrix representing
the information from all match and mask registers, the ELAM would be able to store fields regardless of
the equality operator. Thiswould greatly conserve register space. In the current design, it is possible that
entireregisters are allocated to store only onefield. Related to thisline of thought, the configuration of
the match and mask registers should be evaluated as well. Instead of modeling each register asthe
information stored in a data packet, it may be possible instead to utilize compression techniquesfor
storage. In this matter, both the data and match and mask registers would use the same compression and
decompression techniques so that comparisons can still be made. These compression techniques may

likewise conserveregister spacesignificantly.

62



Appendix A
Algorithm Examples

Logic Minimization Examples

A Simple Case
Let’s assume after mapping, the following logic expression is abtained:
F=ABCD + ABCD + ABCD+ ABCD + ABCD + ABCD + ABCD + ABCD
After logic minimization, the following statement (in sum of productsform) is produced:
F=AC+ AB + BCD

Thisexpression is parsed based on terms that can potentially be grouped together and stored in 1

MM register:

AC,A B ,B C,D

Here there are 6 terms here, but only 4 unique fields, thusit is better to store each field
individually in aregister.
Terms that cannot be grouped

Let’s assume after logic minimization, the following expression is obtained:

F = ABC + DEF + G

Parsing yields:

AB, C , DEF, G

No redundancy can be removed; there are 4 termsand 7 fields, so the terms are stored.
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Binary Minimization Examples

Example 1

Note: Only dataregisters are shown. Mask registersto have corresponding bits set to 1.

Table 12. Binary minimization Example 1 initial problem

1 0 1
1 0 0 0 1
1 0
1 0
1 0 0 0 1

Iterate and look for overlap:

101 — start/end overlap: 101110 (bits match), 101110001 (bits match)

Update combine arrays: 101110 [ 101xxxxXx]
101110001 [101xxxxX]

10001 — start/end overlap: 101110001 (bits match)

Update combine arrays: 101110001 [ 101x10001]

1110 - start/end overlap: 101110 (bits match), 101110001 (bits match)

Update combine arrays: 101110 [ 101110xx]
101110001 [101110001]

101110 — start/end overlap: 101110001 (bits match)

Update combine arrays: 101110001 [101110001]

101110001 start/end overlap: none

Find redundant terms:



101110, 101110001

Update MM register storage array for each bit sequence:
101 [10000000]

10001 [01000000]

1110 [ 00100000]

101110 [10100000]

101110001 [11100000]

Fina datato store:

Table 13. Binary minimization Example 1 final results

1 0 1

Example 2

Table 14. Binary minimization Example 2 initial problem

Iterate and look for overlap:

1011100 — start/end overlap: 10 (bits match), 101110 (bits match), 11100 (bits match)

Update combine arrays: 1011100 [ 10xXXXXXX]

1011100 [101110xx]
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1011100 [1011100x]
10 - start/end overlap: 101110 (bits match)
Update combine arrays: 101110 [ 10xxxXXX]
101110 —  start/end overlap: none
101110001 [101110001]
11100 — start/end overlap: none

Find redundant terms:

1011100

Update mm_list for each bit sequence:

1011100 [ 11100000]
10 [10000000]
101110 [ 01000000]
11100 [ 00100000]

Fina termsto store:

Table 15. Binary minimization Example 2 final results

Example 3
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Table 16. Binary minimization Example 3 initial problem

1 0 1
1 0 0 0 1
1 1 0

1 0

0 0 0 0 1
Iterate and look for overlap:
101 — start/end overlap: 100110 (bits don’t match), 101100001 (bits don’t match)
10001 — start/end overlap: 101100001 (bits don’'t match)
1110 — start/end overlap: 100110 (bits don’t match), 101100001 (bits don’t match)

100110 —  start/end overlap: 101100001 (bits don’t match)
101100001— start/end overlap: none

Find redundant terms:

None

Update mm_list for each bit sequence:

101 [10000000]
10001 [ 01000000]
1110 [ 00100000]
100110 [ 00010000]

101100001 [ 00001000]

Fina termsto store:

Table 17. Binary minimization Example 3 final results
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Example 4

Table 18. Binary minimization Example 4 initial problem

1 0 0 0 1

O R kP B O R
N = =
N = =
O o o o

In this case, we need to first expand the matrix to split up 101 and 10001. After this, we proceed

with the algorithm as usual.

Table 19. Binary minimization Example 4 intermediate results

1 0 1
1 0 0 0 1
1 0 0
1 1 1 0
1 1 1 1 0
1 1 1 0
0 1 1 0
Iterate and look for overlap:
101 — start/end overlap: 101110 (bits match), 101110001 (bits match), 100110001 (bit don’t

match)

Update combine arrays: 101110 [ 101xxxxXx]
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101110001 [101xxxxX]

10001 — start/end overlap: 101110001 (bits match)

Update combine arrays: 101110001 [ 101x10001]

100 — start/end overlap: 101110 (bits don’t match), 101110001 (bits don’t match),

100110001 (bits match)

Update combine arrays: 100110001 [ 100xxxXX]

1110 — start/end overlap: 101110 (bits match), 101110001 (bits match). 100110001 (bits don’'t

match)

Update combine arrays: 101110 [ 101110xx]

101110001 [101110001]

101110 —  start/end overlap: 101110001 (bits match), 100110001 (bits don’t match)

Update combine arrays: 101110001 [101110001]

101110001— start/end overlap: 100110001 (bits don’'t match)

100110001— start/end overlap: none

Find redundant terms:

101110, 101110001

Update mm_list for each bit sequence:
101 [ 10000000]
10001 [01000000]

100 [00100000]
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1110 [ 00010000]
101110 [10010000]
101110001 [11010000]
100110001 [ 00001000]
Thus, wefinally store:

Table 20. Binary minimization Example 4 final results

1 0 1

1 0 0 0 1
1 0
1 0 0 0 1

Inthiscase, 101 and 10001 are split into 2 different registers. Since by doing this, we eliminate 2

registers, thisisfound to be more efficient than if 101 and 10001 were stored in the same register.

State Minimization Examples

Example 1
Suppose we have trigger expression ABC  + CD + ABE,where A, BareinlineQ, Cisinlinel, D

isinline2,and Eisinline 3.
ABC + CD + ABE
Now we construct atable of Necessary Permutation as follows:

Table 21. NCP table for Example 1

Field IC MV
A 2
B 1 2
C 3
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10

The numerical minimized trigger expressionis:
(DD (-3) +(3)(6) + (1)(10)
After sorting:

(DD (-3) +(3)(6) + (1)(10)
After removal of sameids:

(D(-3) +(3)(6) + (1)(10)
Expanding the formula, we get terms:
(1) (-3)

(1) (3)(6)

(-1)(3)(6)

(1) (3)(6)(10)

(1) (3)(-6)(10)

(1) (-3)(6)(10)

(1) (-3)(-6)(10)

After reducing the terms we get:

(1 (-3)

(1) (3)(6)

(-1)(3)(6)

(1) (3)(-6)(10)
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Which leads to the following transition and trigger states (X indicatesthat fail states are required):

Table 22. State Table for Example 1

Current State Mat ch and Mask Next state
Regi sters
0 0 XXXXXXX 0
0 IXXXXXXX 1
1 LOXXXXXX 0
1 111XXXXX 2 (X
2 IXXOXXXX 99 (Trigger)
2 IXXLIXXXX 3
3 IXXXLXXX 99 (Trigger)
1 110XXXXX 4
4 IXXLIXXXX 5 (X
5 IXXXLXXX 99 (Trigger) (X
3 IXXXOXXX 6
6 IXXXXLXX 99 (Trigger) (X

State minimization will follow. Given the complexity of the algorithm, it isdifficult to writethe
entire sequence out in full. However, the once the algorithm is applied we should obtain a minimized set

of states.

Example 2

Suppose we have trigger expression ABCDEF + G H whereAisinlineQ, B, C, D, E, Gareinline
1, andFandHareinline 2.

Now we construct atable of Necessary Permutation as follows:

Table 23. NCP Table for Example 2

Field IC MV
A 1 2
B 3 3
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The numerical minimized trigger expressionis:

(D(2)(2)(2)(2)(4) + (-3)(-5)
After sorting:
(D(2)(2)(2)(2)(4) + (-3)(-5)
After removal of sameids:

(D) (4 + (-3)(-5)
Expanding the formula, we get terms:
(D (3) (4 (8)

(D3 (-4 (8)
(D3 (-4 (8)(-9)

(D) (-4(-8)(-9)
(D(-3)(-4(8)(-9)
(D(-3)(-4(-8)(-9)
(-3 (-4 (8)(-9)
(-D3)(-4(-8)(-9)
(-D(-3)(-4(8)(-9)

(-D(E-3)(-4(-8)(-9)
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After reducing the terms we get:
(D (3) (4 (8)
(D3 (-4 (8)

(D) (-4(-8)(-9)
(D(-3)(-4(8)(-9)
(D(-3)(-4(-8)(-9)
(-3 (-4 (8)(-9)
(-D3)(-4(-8)(-9)
(-D(-3)(-4(8)(-9)
(-D(E-3)-4(-8)(-9)
Which leadsto the following transition and trigger states (X indicatesthat fail states are required):

Table 24. State Table for Example 2

Current State Mat ch and Mask Next state
Regi sters
0 0 XXXXXXX 0
0 IXXXXXXX 1
1 LOXXXXXX 0
1 111XXXXX 2
2 IXX1L1XXX 3
3 IXXXXLXX 99 (Trigger) (X
2 1IXX10XXX 4 (X
4 IXXXXLXX 99 (Trigger)
4 IXXXX00X 99 (Trigger) (X
2 1XX00XXX 5
5 IXXXX10X 99 (Trigger) (X
5 IXXXX00X 99 (Trigger) (X
1 110XXXXX 6
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6 1IXX10XXX 7 (X
7 IXXXX10X 99 (Trigger) (X
7 IXXXX00X 99 (Trigger) (X
6 1XX00XXX 8 (X
8 IXXXX10X 99 (Trigger) (X
9 IXXXX00X 99 (Trigger) (X

State minimization will follow. Given the complexity of the algorithm, it isdifficult to write the
entire sequence out in full. However, the once the algorithm is applied we should obtain a minimized set

of states.

Example 3

Suppose we have trigger expression B + A, where AisinlinelandBisinline 3.
Now we construct atable of Necessary Permutation as follows:

Table 25. NCP Table for Example 3

Field IC MV
X 1 None
A 2 2

X 3 None
B 5 3

The numerical minimized trigger expressioniis:

(5 + (2
After sorting:
(5 + (2
After removal of sameids:
(5 + (2
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Expanding the formula, we get terms:
(1) (2)(3)(5)

(1 (-2)(3)(5)

(1)(2)

After reducing the terms we get:

(1 (-2)(3)(5)

(1) (2)

Which leads to the following transition and trigger states (X indicatesthat fail statesare required):

Table 26. State Table for Example 3

Current State Mat ch and Mask Next state
Regi sters
0 XXXXXXX
IXXXXXXX
LOXXXXXX
11XXXXXX
1XOXXXXX
IXXXXXXX
IXXIXXXX 99 (Trigger) (X
IXLXXXXX 99 (Trigger)

N A WO N P P O O
A W N O, O

State minimization will follow. Given the complexity of the algorithm, it is difficult to writethe
entire sequence out in full. However, the once the algorithm is applied we should obtain a minimized set

of states.
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Appendix B

Source Code

The majority of the work done for this project is contained within asinglefile cap_elam.c.
The file however, encompasses the majority of the functionality required for the ELAM. The three
functionsthat serve as the containing body of the three major discussed sections are shown. Each

function callsavariety of sub-functionsand routines.

bool ean
cap_minimze_trigger (trg_expr_t *trg_expr, trg_expr_t *m n_expr,

trg_expr_t *storage_fields, table_t *table)

char **m ntermns;

int i, nrows, ncols;

printf("\n*** Logic M ninization ***\n");

I+

* We need to first traverse the expr and set positions
* in order to obtain a set of minterns

*/

if (!cap_set_termpos(trg_expr)) {

cap_error_nessage("\n%: cap_set_termpos failed",

__FUNCTION_);
return (FALSE);
}
nrows = trg_expr->terns;
ncols = cap_get_num.uniq_ternms(trg_expr);
I+

* Allocate 2D array to store nminterns

* Menory allocated here is cleaned in cap_free_trg_expr()
*/

mnterns = (char **)malloc(nrows * sizeof(char *));

if (!mnterns) {

cap_error_nessage("\n%: Menory not allocated for nminterns",

__FUNCTION_);
return (FALSE);
}
for (i =0; i < nrows; i++) {
minterns[i] = (char *)nalloc(ncols * sizeof(char));

if (!minterns[i]) {
cap_error_nessage("\n%: Menory not allocated for minterns[%]",

__FUNCTION__, i);
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}

return (FALSE);

}
I+
* Map trigger expression to a set of minterms
*/
if (!cap_get_nminterms(minterns, trg_expr, nrows, ncols)) {
cap_error_nessage("\n%: cap_get_ninterns failed",
__FUNCTION__);
return (FALSE);
}
I+
* Mnimze mnterns using Quine-MC uskey Al gorithm
*/
if (!cap_gmmininization(mnterns, trg_expr, mn_expr, nrows,
cap_error_nessage("\n%: cap_qgm.mnininization failed",
__FUNCTION__);
return (FALSE);
}
I+
* Group into storable terns
*/
if (!cap_parse_storage_terns(m n_expr, storage_fields)) {
cap_error_nessage("\n%: cap_parse_storage_terns failed",
__FUNCTION__);

return (FALSE);

/* Check nminterns and storage_fields both valid */
if (!min_expr->terns || !storage_fields->terms) {
cap_error_nessage("\n%: expression length fault",
__FUNCTION__);

return (FALSE);

cap_free_trg_expr(trg_expr, nminterns, nrows);

return (TRUE);

bool ean

cap_bm al gorithm (el am.instance_t *elam void *data, void *nask,

trg_expr_t *storage_fields)

int ik

int index = 0, nummused = 0, count = 0;
bmdata_t bit_seq_list[ MAX_EXP_MV REGS];

uchar *d_addr, *m addr;

uchar one_bit_mask[] =
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{BITO, BITl, BIT2, BIT3, BIT4, BIT5 BIT6, BIT7};

bool ean d_bit, mbit, prev_mbit = FALSE

uchar dchar = 0, nthar = 0;
int num nmm used_mi n;
int mm bi t_width;

printf("\n\n*** Binary Mninization ***");
printf("\nregs: %, width: %\n",elam>mmregs, elam>mmreg_w dth);
mmbit_width = elam>mmreg_w dth * UCHAR Bl T_W DTH;
I+
* Initialize data structure
*/
for (i =0; i < MAX_EXP_MM REGS; i++) {
for (j =0; j <mmbit_width; j++) {
bit_seq_list[i].data[j] = FALSE;
bit_seq_list[i].msk[j] = FALSE;
bit_seq_list[i].conbined_data[j] = FALSE;
bit_seq_list[i].conbined_mask[j] = FALSE;
}
for (j =0; j < MAX_EXP_MM REGS; | ++) {
bit_seq_list[i].mnmlist[j] = FALSE;
}
bit_seq_list[i].redundant = TRUE;

I+
* Set data structure to start binary mnimzation
* We | ook for consecutive strings of enabled mask bits
* and take the corresponding data values and fill the
* data structure bmdata_t
*/
for(i = 0; i < storage_fields->terms; i++) {
prev_mbit = FALSE;
for (j =0; j <elam>mmreg wdth; j++) {
d_addr = (uchar *)data + i*elam>mmreg width + j;
maddr = (uchar *)mask + i*elam>mmreg_ wdth + j;
for (k = UCHAR BIT_WDTH - 1; k >= 0; k--) {
d_bit = (*d_addr & one_bit_mask[k]) ? TRUE : FALSE;
mbit = (*maddr & one_bit_nask[k]) ? TRUE : FALSE;

index = j*UCHAR BIT_WDTH + (UCHAR BIT WDTH - k - 1);

bit_seq_list[num nmused]. mask[index] = mbit;

if (!prev_mbit & mbit) {

bit_seq_list[num mmused].start = index;
bit_seq_list[numnmmused].line =i;

}

if (mbit) {
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bit_seq_list[numnmused].data[index] = d_bit;
}
if (!mbit & prev_mbit) {
bit_seq_list[num mmused].stop = index - 1;
num nmm used++;
} elseif (mbit & (index == mmbit_width - 1)) {
bit_seq_list[num nmused].stop = index;
num mm used++;
}

prev_mbit = mbit;

num mm used_min = num nm used;
cap_bm renove_redundancy(bit_seq_list, numnmused, mmbit_width);
for (i =0; i < numnmmused; i++) {
printf("\nRedundant: %\ n", bit_seq_list[i].redundant);
if (bit_seq_list[i].redundant) {
num mm used_min--;
}
for (j =0; j < MAX_EXP_MM REGS; j++) {
printf("o%", bit_seq_list[i].mmlist[j]);
}
printf("\n");
for (j =0; j <mmbit_wdth; j++) {
printf("%l", bit_seq_list[i].data[j]);
}
printf("\n\n");
for (j =0; j <mmbit_wdth; j++) {
printf("%", bit_seq_list[i].mask[j]);
}
printf("\n");

if (nummmused_nin >= storage_fields->terns) {
printf("\nMs required: %", storage_fields->terns);
if (storage_fields->terns > elam>mmregs - 2) {
cap_error_nessage("\n%: max nunber of Mws exceeded",
__FUNCTION__);
return (FALSE);
}
/* Update storage_fields mapping to ms */
cap_bm map_to_storage_fiel ds(storage_fields, bit_seq_list,
mm bi t _wi dth, TRUE);
return (TRUE);
}

printf("\nM required: %", numnmused_mnin);
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if (numnmused_nin > elam>mmregs - VLD AND_SOP_MV) {
cap_error_nessage("\n%: nmax nunber of Mws exceeded",
__FUNCTION__);
return (FALSE);
}
I+

* Update data and nask pointers

*/
index = 0;
for (i =0; i < numnmmused; i++) {
if (!bit_seq_list[i].redundant) {
for (j =0; j <mmbit_width; j++) {
if ((j '=0) & ((j %8) ==0)) {
d_addr = (uchar *)data +
i ndex*el am >mm reg_w dth + count;
m addr = (uchar *)nmask +
i ndex*el am >mm reg_w dth + count;
count ++;
*d_addr = dchar;
*m addr = nchar;
dchar = 0;
nchar = 0;
}
dchar = (dchar << 1) | bit_seq_list[i].data[j];
nchar = (nchar << 1) | bit_seq_list[i].mask[]];
}
if ((Mmmbit_width %8) !=0) {
for (k = count*8; k < mmbit_width; k++) {
dchar = dchar << 1;
nchar = nthar << 1;
}
d_addr = (uchar *)data + index*el am>mmregs +
count;
*d_addr = dchar;
m addr = (uchar *)nmask + index*elam >nmregs +
count;
*m_addr = nthar;
}
count = 0;
i ndex++;
}
}
I+

* Update storage fields napping
*/
cap_bm map_to_storage_fiel ds(storage_fields, bit_seq_list, mmbit_width,

FALSE) ;
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return (TRUE);
}
bool ean
cap_smal gorithm (trg_expr_t *min_expr, trg_expr_t *storage_fields,

asic_t *asic, elam.instance_t *elam mmreg_t *mm

{
np_elemt np_t abl e[ MAX_NUM TERMEB] ;
int i, j, last_id =0, ins_row = 0;
int num_m n_expr [ MAX_NUM TERVS] [ MAX_NUM TERMVS] ;
int num_nmi n_expr _exp[ MAX_NUM TERMS] [ MAX_NUM TERMS] ;

/* Initialize necessary pernutations table */
for (i =0; i < MAX_NUM TERMS; i++) {
np_table[i].id = 0;
np_table[i].is_dumy = FALSE;
np_table[i].trg_field = NULL;
}
/* Initialize nunerical mnimzed expression matrix */
for (i =0; i < MAX_NUM TERMS; i++) {
for (j =0; j < MAX_NUM TERMS; j++) {
nummn_expr[i][j] = 0;

num m n_expr_exp[i][j]= 0;

}

/* Create necessary pernutations table */

cap_smcreate_np_tabl e(storage_fields, np_table);

for (i = 0; np_table[i].trg_field; i++) {
printf("\nid: %, trg_field: %", np_table[i].id,

np_table[i].trg_field->field. name);

/* Create nunerical nminimzed trigger expression*/
cap_sm create_num expr(mn_expr, np_table, nummn_expr);
/* Sort the newy created expression */

cap_sm sort_num expr(num.n n_expr);

/* Renpve redundancies in the expression */

cap_sm renove_sane_i d( num_ni n_expr);

printf("\n");
for (i =0; i < MAX_NUMTERVS, i++) {
for (j =0; j < MAX_NUMTERVS;, j++) {
if (numnin_expr[i][j] != 0)
printf("od", numnin_expr[i][j]);
}
if (nummn_expr[i][0] != 0)

printf("\n");
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/* Expand nunerical expression to derive deterninistic set of states */
for (i = 0; nummin_expr[i][0] !'= 0; i++) {
last_id = 0;
for (j = 0; nummin_expr[i][j] !'=0; j++) {
if (abs(nummn_expr[i][j]) > last_id) {

last_id = abs(nummin_expr[i][j]);

}
cap_sm expand_expr (num_ni n_expr, num.m n_expr_exp, np_table,
i, 0, 0, &ns_row, 0, last_id);

i NS_r ow++;

printf("\n");
for (i =0; i < MAX_NUM TERMS; i++) {
for (j =0; j < MAX_NUMTERMS;, j++) {
if (nummn_expr_exp[i][j] !'= 0)
printf("%", numnmnin_expr_exp[i][j]);
}
if (num.min_expr_exp[i][0] !'= 0)

printf("\n");

/* Find overlaps in sinplified equation */

cap_sm find_overl ap(num mi n_expr_exp);

printf("\n");
for (i =0; i < MAX_NUM TERMS; i++) {
for (j =0; j < MAX_NUMTERMS;, j++) {
if (nummn_expr_exp[i][j] !'= 0)
printf("%", numnmnin_expr_exp[i][j]);
}
if (num.min_expr_exp[i][0] !'= 0)

printf("\n");

/* Generate state nmachine */
if (!cap_smprogram state_nachi ne(num nm n_expr_exp,
np_table, asic, elam mm)) {
cap_error_nessage("\n%: cap_sm program state_nmachine failed",
__FUNCTION__);

return (FALSE);

/* Clean up allocated nenory */
for (i =0; i < MAX_NUM TERMS; i++) {
if ((np_table[i].trg_field) & (np_table[i].is_dumy)) {

free(np_table[i].trg_field);
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np_table[i].trg_field = NULL;

return (TRUE);
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