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Abstract

Next generation data centres are expected to support both advance resource reser-

vation and on-demand access, but the system performance for such a computing

environment has not been well-investigated. A reservation request is characterized

by a start time, duration, and resource requirement. Discrete event simulation is

used to study the performance characteristics of reservation systems. The basic

strategy is to accept a request if resources are available and reject the request oth-

erwise. The performance metrics considered are resource utilization and blocking

probability. Results showing the impact of input parameters on these performance

metrics are presented. It is found that the resource utilization is quite low. Two

strategies that can be used to improve the performance for advance reservation

are evaluated. The first strategy allows the start time to be delayed up to some

maximum value, while the second allows the possibility of non-uniform resource

allocation over the duration of the reservation. Simulation results showing the

performance improvements of these two strategies are presented.

Resources not used by advance reservation are used to support on-demand access.

The performance metrics of interest is the mean response time. Simulation results

showing the impact of resource availability and its variation over time on the mean

response time are presented. These results provide valuable insights into the per-

formance of systems with time-varying processing capacity. They can also be used

to develop guidelines for the non-uniform resource allocation strategy for advance

reservation in case the reserved resources are used for interactive access.
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Chapter 1

Introduction

A data center typically consists of heterogeneous computing resources including

individual servers and server clusters. It hosts a diverse set of applications; these

applications may have different resource and performance requirements. Resource

management in large data centers is an important consideration, especially for

next generation data centres. Traditionally resources are allocated to applications

on demand. In some applications, however, it may be attractive to make advance

reservations for resources to be used in the future. As an example, consider an

e-commerce website where a major sale event will occur at some future date/time

and this event will draw a large number of users to the website. During this event,

the amount of computing resources required is expected to increase significantly

and it would be desirable to reserve resources in advance to ensure that the user

response time is acceptable. Another example is the Virtual Computing Lab (VCL)

at North Carolina State University. VCL allows users to access resource on-demand

or by reservation [5]. With reservation, the user is provided with pre-configured

hardware and software systems to be used at the requested time.

This thesis investigates systems that support both resource reservation and on-

demand access. In general, a reservation is characterized by a start time, the

1



duration and the amount of resources required. On the other hand, for on-demand

access, jobs are processed as soon as resources are available. Our focus is on resource

management, namely, the allocation of resources to two types of services: resource

reservation and on-demand access. As an example, one may wish to impose a limit

on the amount of resources that could be reserved. Another example is to allow

the possibility of an alternative start time when a reservation request is processed.

Of interest to our investigation are the system performance seen by reservation

requests and the impact of resource reservations on the performance of on-demand

requests.

Our approach is to use performance modeling and simulation. In our model,

the computing resources are server nodes in a cluster; these nodes are connected

by a high-speed network. Performance evaluation of resource reservation systems

has been investigated by various authors in the context of communication networks

[9, 10, 22] where the resource considered is communication bandwidth. Emphasis

is placed on the scheduling of reservation requests in order to make optimal use of

the available bandwidth. The results are applicable to applications such as video-

conferencing and information delivery. In contrast, our work is concerned a more

in-depth investigation of resource reservation with a view of maximizing resource

utilization and minimizing blocking. This includes systems that allow alternative

start time of reservation and non-uniform allocation of resources. Another impor-

tant aspect of our investigation is that the amount of resources available to on-

demand access may change over time, depending on how much resources have been

committed to reservation requests. This would have an impact on the response time

seen by on-demand access. The performance of a system with time-varying server

capacity has been investigated in the context of a wireless channel [18]. Our work

is concerned with a more complex scenario where the resources under consideration
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consist of multiple processor nodes instead of a single channel1.

In our model, there are two classes of requests: class 1 and class 2, corresponding

to resource reservation and on-demand access, respectively. These two classes share

the same pool of resources. Since the demand for resources by class 1 is not uniform

over time, the amount of resources available to class 2 is time-varying. The impact

of such variations on the response time performance of class 2 is investigated. In

addition, strategies in resource management, e.g, a limit is imposed on resources

that could be reserved and the possibility of alternative start time and non-uniform

resource allocation, will have an impact on the acceptance rate of class 1 and

the resources availability to class 2. The performance of such strategies is also

investigated.

The results from this thesis are significant because next generation data centres

are expected to support both reservation and on-demand access, but the system

performance for such a computing environment has not been well-investigated. The

results in this thesis provide a valuable insight into system performance and can be

used by data centre administrators to develop strategies for resource management.

The organization of the remainder of this thesis is as follow. Chapter 2 de-

scribes the background work in advance reservation and time-varying server capac-

ity. Chapter 3 presents the performance model used to carry out the simulation

experiments. Chapter 4 is concerned with results for the system performance seen

by reservation requests. In Chapter 5, performance results for allowing reservation

start times to be delayed and non-uniform resource allocation are presented. In

Chapter 6, the impact of resource availability on the response time of on-demand

access is discussed. Finally, Chapter 7 contains a summary of our findings and a

discussion of future work.

1In our discussions, we will use node and server node interchangeably.

3



Chapter 2

Literature Review

2.1 Resource Reservation

Investigation of advance resource reservation systems have been reported in [4, 8, 9,

11, 15, 21, 22]. In these studies, a single-link model was used in which users submit

requests to reserve a number of resource units over a fixed period of time in the

future; the start time of the reservation is also specified. Typically, a slotted time

model is used where time is organized into units called slots and the reservation

is for an integer number of slots. The resource under consideration is network

bandwidth. Mathematical modeling and/or simulations are used to evaluate the

performance of scheduling algorithms for reservation requests. These algorithms

determine whether a request can be accepted or not. If not, the request is rejected.

The impact of acknowledgement delay was investigated in [9, 11]. This is the

length of time from the submission of a request to the acknowledgement of this re-

quest (accept or reject) from the system. Delaying acknowledgements would allow

the system to batch reservation requests and thereby make more informed deci-

sions on how the resources may be used more efficiently. On the other hand, if

the acknowledgement delay is zero (referred to as immediate acknowledgement), a

4



better service is provided in the sense that the requester is informed of the results

of his request immediately. In [9, 11], the performance of scheduling algorithms

with immediate acknowledgement was compared with those that use delayed ac-

knowledgement.

The issue of how conflicting requests are handled has also been investigated

[1, 2, 9]. A straight forward approach is to schedule requests in FCFS order and

reject those requests where resources are not available. This is known as a loss

system. Another approach is to allow the requester to specify acceptable start

times. This approach is known as an alternative-start-time system. Alternative-

start-time systems have not received much attention; a study can be found in [9]. A

third approach is to accept requests that have conflicts, but allows the possibility of

cancelling a reservation by the requester or by the system after it has been accepted.

This approach, known as overbooking, has been studied in [1, 2].

In [16, 22], priority scheduling is used to schedule reservation requests. Priorities

are assigned based on duration or the size of the resource required. The assigned

priorities may be represented as cost functions that are dependent on the charac-

teristics of the requests. In [10], advance reservation systems have been compared

to on-demand systems and it was found that applications such as video distribution

are good candidate for advance reservation and that the ability to make advance

reservation allows more requests to be serviced.

2.2 Time-Varying Resource Availability

Performance of systems with time-varying server capacity has been investigated in

the context of wireless networks [17, 18, 19]. In these studies, it was found that when

such variations in server capacity are ignored, results using traditional performance

modeling methods tend to overestimate system performance. Simulation studies
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were carried out to investigate the effect of time-varying server capacity on system

performance. A performance study of a measurement-based admission control over

multiple time scales can be found in [7]. Measurement data were filtered into high-

and low- frequency components to study variations in resource utilization.
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Chapter 3

Description of the Simulation

Model

In this chapter, we describe the simulation model used in our investigation. The

base model contains a single service facility with S server nodes. There are two

classes of requests: class 1 and class 2, corresponding to resource reservation and

on-demand access, respectively. For class 1, time is organized in fixed-length units

called slots. For example, a slot may correspond to 30 seconds, 5 minutes, or 15

minutes. We also assume a reservation is always for an integer number of server

nodes. A class 1 request specifies the start time (relative to the arrival time of the

request), a duration that is a multiple of slots, and the number of nodes required.

These parameters are modeled by probability distributions. The interarrival time

of class 1 requests is assumed to be exponentially distributed with mean 1/γ.

The system keeps track of the amount of resources that have been reserved in

the future. When a class 1 request is processed, the system checks to see if there

are enough resources to accommodate the request. If the answer is yes, the request

is granted; otherwise the request is rejected. Class 1 requests are processed in

first-come first-serve (FCFS) order.
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Figure 3.1: Examples where requests are accepted and rejected

Figure 3.1 shows an example where some resources have already been committed

to accepted reservation requests. In this example S = 10. A new reservation request

for 2 nodes with a start time = t0 and duration = t1 - t0 can be accepted because 4

server nodes are unreserved during this time interval. On the other hand, a request

for 3 nodes with a start time = t1 and duration = t2 - t1 is rejected. The reason is

that only 2 nodes are available from t1 to t2.

As part of the resource management strategy, a limit is placed on the number

of server nodes that can be reserved by class 1 at any time. We use Rmax to denote

this limit. We also require that Rmax < S; this means that one or more nodes will

be always be available to the on-demand class (or class 2).

At any time instants, server nodes that are not reserved are used to process class

2 jobs. We use R to denote the number of nodes reserved for class 1 (R ≤ Rmax).

Let A be the number of nodes available to class 2. We have A = S - R. The value

of A varies with time because the number of reserved nodes is time-varying. The
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interarrival time of class 2 jobs is assumed to be exponentially distributed with

mean 1/λ. Each class 2 job requires service from one server node and the service

time is modeled by a probability distribution.

Service to class 2 jobs may start or end at any time instant; synchronization

with time slots is not required. Class 2 jobs are serviced in FCFS order; each job

requires service from one node. We assume that the system has infinite waiting

room for class 2 jobs and consequently, class 2 jobs are never rejected. When a

class 2 job is in execution, the node that is providing service may be required to

meet a commitment to class 1. When this happens, execution of the class 2 job is

suspended. Note that the number of jobs suspended may be larger than 1 depending

on the number of nodes required to meet the commitment to reservation. As an

example, consider the commitments shown in Figure 3.1. Suppose that at time t0,

R = 6 and the number of class 2 jobs in the system is much larger than 4. This

means that A = 4 at t0 and only 4 class 2 jobs are in execution; the other jobs are

in queue. At time t1, 8 nodes are required to meet the commitment to reservation.

This means that 2 class 2 jobs must relinquish their server nodes; execution of these

jobs are suspended.

Class 2 jobs that are suspended are placed at the head of the queue to preserve

the FCFS order. For the suspended jobs, execution is resumed when fewer nodes

are being reserved due to completion of a reservation request (e.g., at time t2 in

Figure 3.1) or a class 2 job has completed service. At resumption of job execution,

the service required is given by the job’s remaining service time.

In our model, we have assumed that the interarrival times of class 1 and class 2

requests are exponentially distributed. These assumptions are based on the infinite

population model representing a potentially large number of users who may submit

requests to the system at any time instant. We further assume that the usage of

the reserved resources is not considered. This means that there is no need to define
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how the class 1 requests would use the reserved resources. We also assume that for

class 2 jobs, all nodes have the same processing capacity.
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Chapter 4

Results for Reservation Class

In this chapter, we present simulation results for the performance seen by reserva-

tion requests (or class 1 requests). In our presentation, the following definition of

terms in connection with input parameters will be used:

x = distribution of start time

d = distribution of duration

q = distribution of resource requirement

For x, d, and q, two probability distributions are considered in our simulation

experiments:

uniform (y, z ) - discrete uniform distribution between y and z ; taking on

integer values

normal (µ, σ) - normal distribution with mean µ and standard deviation σ;

rounded to nearest integer and non-positive values are not used

For example x = uniform (0, 10) means that the start time is uniformly dis-

tributed between 0 and 10. For our experiments, the default values of the class 1

11



Table 4.1: Default class 1 input parameters

Input Parameter Value

γ 0.5
x uniform (0, 10)
d normal (4, 3)
q normal (2, 2)
S 30 nodes

input parameters are shown in 4.1. Another possibility to ensure positive values for

a normal distribution is to use a log-normal distribution, which is not considered

in our experiments.

We are not aware of any existing systems for which distributions can be found for

the input parameters. We have chosen these distributions based on what appears

intuitive. Start time is chosen to be uniform because we assume the start times for

different requests have no common pattern. The duration and resource requirement

are chosen to be normal because we assume there are few requests that are large

and few requests that are small. The performance metrics of interest are:

E[R] - the mean number of nodes reserved

B - blocking probability (or probability that a reservation request is rejected)

In order to get reliable steady state results, we performed 10 experiments and

determined a length of simulation run using the criteria that with 10 replications,

the width of the 99% confidence interval of E[R] is within 2.5% of the sample mean

and B is within 0.1% of the sample mean. Our results show that the above criteria

is met with a length of run of 300,000 time units.

There are several ways to determine the arrivals of events that follow Poisson-

like distributions in simulations. One way is to determine the number of Poisson

12



events is each small time step. Another way is to determine the time to the next

event from the current event. We have chosen the latter method for the arrival of

reservation requests.

4.1 Effect of S on E[R] and B

In our first set of experiments, we consider five different values of S (S = 10, 20,

30, 40, and 50) and investigate the effect of Rmax on E[R] and B. The values of

Rmax are selected to be 0.5S, 0.55S, 0.6S, ..., and 0.9S. This range corresponds to

scenarios where a maximum of 50% to 90% of the nodes can be reserved. As to the

other parameters, the default values shown in Table 4.1 are used.

The results for E[R] and B are shown in Figures 4.1 and 4.2, respectively. It

can be seen that increasing Rmax leads to an increase in E[R] and a decrease in B.

When S is increased from 10 to 50, E[R] is bounded by a value between 6.5 and 7.

This effect is caused by the acceptance of nearly all class 1 requests and the value

of E[R] is given by the mean resource requirement of class 1 requests over time.

The above remark is confirmed by the results in Figure 4.2 where B approaches

zero when S is large.

A larger arrival rate γ (γ = 1.5) is considered next and the corresponding results

for E[R] and B are shown in Figures 4.3 and 4.4, respectively. We observe that

with a larger γ, B approaches zero and E[R] approaches its maximum when S =

50. The value of this maximum is now approximately 22 instead of between 6.5 and

7. This increase is due to the higher arrival rate which results in higher resource

demand over time.

A very large arrival rate γ (γ = 2.5) is considered next and the corresponding

results for E[R] and B are shown in Figures 4.5 and 4.6, respectively. We observe
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Figure 4.1: E[R] plotted against Rmax for varying values of S for γ = 0.5
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Figure 4.2: B plotted against Rmax for varying values of S for γ=0.5
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Figure 4.3: E[R] plotted against Rmax for varying values of S for γ = 1.5
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Figure 4.4: B plotted against Rmax for varying values of S for γ = 1.5
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Figure 4.5: E[R] plotted against Rmax for varying values of S for γ = 2.5
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that as Rmax increases, B does not become zero and E[R] does not reach its max-

imum value. In fact, over 10% of the requests are rejected even when at Rmax

= 0.9S. This large value of B indicates that the system does not have sufficient

capacity to handle the load generated by reservation requests.

To provide further insight into the impact of input parameters on E[R] and B, a

summary of the results in Figures 4.1 to 4.6 are shown in Figures 4.7 and 4.8 where

E[R]/Rmax and B are plotted against Rmax. We observe that as Rmax increases,

the fraction of available resources that are reserved, given by E[R]/Rmax, increases

at first and then decreases when Rmax is large. This latter behaviour is because of

the system has sufficient capacity to handle the load. Also at large Rmax, the value

of E[R]/Rmax is affected by γ, but not sensitive to S. As to the blocking probability

B, we observe from the results in Figure 4.8 that B decreases with Rmax and the

value of B is again affected by γ and not S.
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Figure 4.6: B plotted against Rmax for varying values of S for γ = 2.5
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Figure 4.7: E[R]/Rmax plotted against Rmax for varying values of S and γ
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Figure 4.8: B plotted against Rmax for varying values of S and γ
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4.2 Effect of d, q, and x on E[R] and B

In our next set of experiments, we keep S at the default value of 30 and investigate

the impact of d, q, and x on E[R] and B. Similar to the results in Figures 4.1 to

4.4, the values of Rmax considered are 15, 16.5, ..., 27. The results for E[R] and B

for different distributions for d are shown in Figures 4.9 and 4.10, respectively. We

observe that, for a given value of Rmax, increasing the mean duration results in an

increase in both E[R] and B. A longer duration means higher resource requirement

so it is not surprising to see an increase in E[R]. A longer duration also means more

resources will be reserved over time which would lead to higher blocking probability

for new requests. Similar increase is observed when the standard deviation of the

duration is larger. A larger standard deviation means more requests with large

service requirements. This explains the increase in E[R]. The increase in E[R] also

causes more reservation requests to be rejected.
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Figure 4.9: E[R] plotted against Rmax for varying d
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Figure 4.10: B plotted against Rmax for varying d
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Figure 4.11: E[R] plotted against Rmax for varying q
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The results for E[R] and B for different distributions for q are shown in Figures

4.11 and 4.12, respectively. We observe that, for a given value of Rmax, increas-

ing the mean resource requirement leads to an increase in both E[R] and B. The

explanation is similar to that for the case when we have different distributions for

d.

The results for E[R] and B for different distributions for x are shown in Figures

4.13 and 4.14, respectively. We observe that, for a given value of Rmax, the distri-

bution of start time does not have a significant impact E[R] and B. The reason is

that the start time is not related to resource usage, so it is not surprising to see

that E[R] and B are insensitive to the start time.

The results for E[R] and B presented in this Chapter are consistent with those

reported in [9]. These results, however, provide additional insight into the im-

pact of resource availability and input parameters such as duration and resource
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Figure 4.12: B plotted against Rmax for varying q
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Figure 4.13: E[R] plotted against Rmax for varying x
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Figure 4.14: B plotted against Rmax for varying x
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requirement on performance.
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Chapter 5

Performance Improvement for

Reservation Class

We observe from the results in Chapter 4 that the blocking probability is large

for quite a few cases. We also observe that the amount of reserved resources is

small compared to Rmax, the maximum amount allowed. For example, the results

in Figures 4.9 and 4.10 show that when Rmax = 0.5S (or 15) and d is normal (6,

3), E[R] and B are approximately 7.4 and 11.8%, respectively. Of interest to our

investigation are strategies that can be used to improve the values of both B and

E[R] such that better utilization of resources is achieved. Two such strategies are

presented in this chapter: use of start period and non-uniform resource allocation.

The performance improvements resulting from these strategies are evaluated by

simulation.

5.1 Use of Start Period

For the first strategy, the start time of a reservation request can be delayed (to some

maximum value). If resources are not available when this maximum is reached, the
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request is rejected. The period during which start times are acceptable is referred

to as the start period. The rationale for using a start period is as follows. If

the start time of a reservation request can be delayed, the chance of finding a

start time that has sufficient resources could be improved. This should result in

improved performance for the reservation class. An important assumption for the

start period strategy is that the requester is willing to accept an alternative start

time if the resources at the requested start time are not available.

Our base model in Chapter 3 is extended to include start period. The length

of the start period is modeled by a probability distribution and we use b to denote

this distribution. We further assume that b is uniform (0, z ), a discrete uniform

distribution between 0 and z, taking on integer values only.

We now present simulation results to show the performance improvement result-

ing from the use of start period. In our first set of experiments, three distributions

for b are considered, namely uniform (0, 5), uniform (0, 10) and uniform (0, 20).

The means of these distributions are 2.5, 5, and 10, respectively. Two scenarios

are evaluated. For the first scenario, the input parameters are given by the de-

fault values in Table 4.1. The results for E[R] and B are shown in Figures 5.1 and

5.2, respectively. Results for the case where no start period is used, taken from

Figures 4.9 and 4.10, are also shown. We observe improvements in E[R] and B

for all values of Rmax. The amount of improvement increases with the mean of b.

This is not surprising because a larger mean should lead to a higher probability of

accommodating a new request.

For the second scenario, d is normal (6, 3) instead of the default values of normal

(4, 3). As to the other parameters, the default values in Table 4.1 are used. The

results for E[R] and B for the three distributions for b are shown in Figures 5.3

and 5.4. Again, results for the case of no start period are also shown. We observe

the same effects as for the case where the default value of d was used.
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Figure 5.1: E[R] plotted against Rmax for varying b with default d
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Figure 5.2: B plotted against Rmax for varying b with default d

 0

 1

 2

 3

 4

 5

 6

 7

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

B
 (

in
 %

)

Rmax (fraction of S)

no start period
uniform (0, 5)

uniform (0, 10)
uniform (0, 20)

25



Figure 5.3: E[R] plotted against Rmax for varying b when d is normal (6, 3)
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Figure 5.4: B plotted against Rmax for varying b when d is normal (6, 3)
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In our next set of experiments, we investigate the impact of the length of the

start period on improvements in E[R] and B. The metrics used in our evaluation

are fR and fB, the percentage improvements in E[R] and B, respectively. fR and

fB are defined as follows.

fR = (E[R] with start period−E[R] with no start period)∗100%
E[R] with no start period

fB = (B with start period−B with no start period)∗100%
B with no start period

We note from the results in Figures 5.1 to 5.4 that significant improvements in

E[R] and B are possible when Rmax = 0.5S, but smaller improvement are realized

when Rmax = 0.75S. These two values of Rmax are used in our evaluation. In Figures

5.5 and 5.6, we plot the percentage improvements fR and fB as a function of the

mean start period for two different distributions for d, namely, normal (4, 3) and

normal (6, 3). We observe that improvements in E[R] and B are larger when Rmax

is smaller. This is consistent with the results in Figures 5.1 to 5.4. We also observe

that the amount of improvement is more significant when the mean duration is

larger.

The corresponding results for two different distributions for q (normal (2, 2)

and normal (4, 2)) are shown in Figures 5.7 and 5.8. We again observe that im-

provements in E[R] and B are larger when Rmax is smaller. Similar observations

are made in Figures 5.9 and 5.10 where we show the results for fR and fB for two

different distributions for x. These start time distributions are uniform (0, 10) and

uniform (0, 16), respectively.

The results in this section confirm that the strategy of start period can lead

to improvements in E[R] and B. This improvement is gained at the expense of the

requester having to accept an alternative start time.
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Figure 5.5: fR plotted against mean start period for varying d and Rmax
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Figure 5.6: fB plotted against mean start period for varying d and Rmax
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Figure 5.7: fR plotted against mean start period for varying q and Rmax
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Figure 5.8: fB plotted against mean start period for varying q and Rmax
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Figure 5.9: fR plotted against mean start period for varying x and Rmax
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Figure 5.10: fB plotted against mean start period for varying x and Rmax
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5.2 Non-uniform Resource Allocation

In this section, we consider our second strategy to improve E[R] and B. This strategy

is based on the concept that the amount of resources allocated is not uniform over

time, but the average amount is the same as that requested. The rationale for using

such a concept is as follows. If the system has the flexibility of allocating resources

to the reservation class in a non-uniform manner, a request can be accommodated

even though the requested amount is not available at some time instants within the

duration requested. This should result in improved performance for the reservation

class.

Our base model in Chapter 3 is extended to include non-uniform resource allo-

cation to a reservation request. For such a request, let u be number of server nodes

required, t0 be the start time and t1 - t0 be the duration. Let G(t) be the number

of server nodes available at time t, t0 ≤ t ≤ t1. Our algorithm to accept or reject

request is described in Algorithm 1 below. The variables used in this algorithm are

defined as follows:

M - remaining resource requirements in (number of server node) * time

L - set of slots in (t0, t1) where server nodes are still available for allocation

N - size of L in number of slots

E - the average remaining resource requirement over the slots in L

Algorithm 1

1. If there are any time instants t within t0 and t1 where G(t) = 0, reject the

request.

2. If the total available resources from t0 to t1 is less than (t1 - t0)*u, reject the

request.
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3. Set M to (t1 - t0)*u, N to number of slots in t1-t0, and E to M /N.

4. Allocate all available server nodes in those slots where G(t) ≤ E and allocate

floor(E ) nodes in slots where G(t) > E.

5. M = M - amount of resources allocated in Step 4.

6. If M = 0, done.

7. Update G(t), L and N, and re-compute E = M/N .

8. If E ≥ 1, go to Step 4; otherwise allocate one server node for the first M slots

in L.

To illustrate this algorithm, the shaded area in Figure 5.11 represents the re-

sources available for reservation. A reservation request with u = 3 t0 = 2 and t1 = 6

is handled as follows. At step 2, the total available resources from t0 to t1 is 13

which is larger than (t1− t0)∗u = 12. Step 3 sets the variables M, L and E to their

respective initial values. E is given by 3. At step 4, 2 server nodes in slots 3 and

4 are allocated since G(t) = 2 during these slots, and 3 server nodes in slots 2 and

5 are allocated because floor(E ) = 3. This is shown as area 1 in Figure 5.12. At

steps 5, M is reduced to 2. As a results of the updates at Step 7, G(t) > 0 in slots

2 and 5 only, N = 2 and E = 1. Returning to Step 4, one server node is allocated

in slots 2 and 5. This is shown as area 2 in Figure 5.12. M then becomes zero and

the algorithm terminates.

Figure 5.13 shows another example starting with the same resources available

as shown in Figure 5.11, but the request is for 3 server nodes (u = 3) starting at

t0 = 2 and duration = 7. The algorithm works similarly as in the previous example,

where the resources allocated at each iteration are shown.

We now present results that show the performance advantage of the non-uniform

resource allocation strategy. In Figures 5.14 and 5.15, we plot the percentage

improvements fR and fB for two different distributions for d, namely, normal (4, 3)
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Figure 5.11: Scenario used for non-uniform resource allocation

Figure 5.12: First example of non-uniform resource allocation
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Figure 5.13: Second example of non-uniform resource allocation

and normal (6, 3). As to the other input parameters, the default values in Table 4.1

are used. We observe improvements in E[R] and B, and the amount of improvement

is larger when Rmax is smaller. We also observe that amount of improvement is

more significant when the mean duration is longer. The corresponding results for

two different distributions for q (normal (2, 2) and normal (4, 2)) are shown in

Figures 5.7 and 5.8. We again observe that improvements in E[R] and B and the

amount of improvement are larger when Rmax is smaller.

Finally, we show in Figures 5.18 and 5.19 the results for fR and fB for two

different distributions for x. These distributions are uniform (0, 10) and uniform

(0, 16), respectively. Contrary to the cases of varying d or q, no improvements in

E[R] and B are observed for the entire range of Rmax considered. This is consistent

with the results in 4.13 and 4.14 where the start time distribution does not have a

significant impact on the performance seen by the reservation class.

The results in this section confirm that the strategy of non-uniform resource

allocation can lead to improvements in E[R] and B. The amount of improvement

is smaller than that for the start period strategy. However, non-uniform resource

allocation does not require the use of an alternative start time. This represents a
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Figure 5.14: fR plotted against Rmax for varying d
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better service offering in terms of not making changes to the requested start time.

Additional results on the performance of the two strategies will be presented in the

next section.

5.3 Performance Evaluation

The results in Sections 5.1 and 5.2 indicate that improvements in E[R] and B

are possible if the following strategies are used: start period or non-uniform server

node allocation. In this section, we discuss, by means of examples, the performance

difference of these two strategies as well as the case where both strategies are not

used. We will refer to this case as the basic strategy, which was investigated in

Chapter 4. For the start period strategy, we assume that b is uniform (0, 10).

We start with scenarios where the blocking probability B is not larger than

35



Figure 5.15: fB plotted against Rmax for varying d
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Figure 5.16: fR plotted against Rmax for varying q
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Figure 5.17: fB plotted against Rmax for varying q
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Figure 5.18: fR plotted against Rmax for varying x
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Figure 5.19: fB plotted against Rmax for varying x
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Bmax. Bmax can be viewed as a parameter related to the quality of service provided

to the reservation class. In our first set of experiments, two values of Bmax are

used: 1% and 0.1%. We consider these values to be sufficiently small to reflect

good quality of service.

For a given Bmax, we are interested in the highest request arrival rate that

the system can support such that B ≤ Bmax. Let this highest rate be γmax. We

consider the scenarios in Chapter 4 where S = 10, 20, ..., 50 and Rmax = 0.9S. The

corresponding values of Rmax are 9, 18, 27, 36, and 45. As to the other parameters,

the default values shown in Table 4.1 are used. The results for γmax as a function

of Rmax for Bmax = 1.0% are shown in Figure 5.20. The corresponding results for

Bmax = 0.1% are shown in Figure 5.21. We observe that as Rmax is increased, γmax

increases proportionally for all three strategies. The start period strategy yields the

largest γmax for both values of Bmax, followed by non-uniform resource allocation.
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Figure 5.20: γmax plotted against Rmax for Bmax = 1.0%
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However, the improvement of the non-uniform allocation strategy over the basic

strategy is much less significant when compared to the start period strategy. This

is consistent with the results in Sections 5.1 and 5.2.

We observe that reducing Bmax from 1.0% and 0.1% leads to a significant re-

duction in γmax. For example, at Rmax = 27, the amount of reduction for the

start period strategy is close to 40% (from 1.0 to 0.62). We also observe that the

improvement (in γmax) of the non-uniform strategy over the basic strategy is more

significant for the case of Bmax = 0.1%. This shows that non-uniform resource

allocation is more effective when small values of Bmax are required.

We are also interested in the utilization of resources by the reservation class.

This performance metric, denoted by U, is defined as follows:

U =
γ ∗ E[d] ∗ E[q] ∗ (1−B)

Rmax
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Figure 5.21: γmax plotted against Rmax for Bmax = 0.1%
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where E[d ] and E[q ] are the mean duration and mean number of server nodes of a

reservation request, respectively. The results for U for Bmax = 1.0% and 0.1% are

shown in Figures 5.22 and 5.23. In both figures, the start period strategy yields the

largest value for U among the three strategies considered. However, when Bmax =

1.0%, the highest utilization reached using the start period strategy was about 32%

(at Rmax = 45) and about 24% when Bmax is reduced to 0.1%. Consistent with the

observations regarding γmax, the results for U show that reducing Bmax from 1.0%

and 0.1% comes with a significant penalty in resource utilization.

An alternative approach to compare the three strategies is to determine R∗
max,

the smallest value of Rmax such that B ≤ Bmax for a given value of γ. In Figures

5.24 and 5.25, we plot R∗
max as a function of γ for Bmax = 1.0% and 0.1%. As to

the other parameters, the default values shown in Table 4.1 are used. We observe

that as γ is increased, the system requires a higher R∗
max. This is not surprising
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Figure 5.22: U plotted against Rmax for γmax supported for Bmax = 1.0%
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Figure 5.23: U plotted against Rmax for γmax supported for Bmax = 0.1%
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Figure 5.24: R∗
max plotted against γ for Bmax = 1.0%
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because more resources are required to maintain the same level of performance. We

again observe that the start period strategy has the best performance in terms of

having the smallest R∗
max. The improvement over the basic strategy is significant.

On the other hand, the non-uniform allocation strategy is only slightly better than

the basic strategy. We also observe that when Bmax is reduced from 1.0% to 0.1%,

a larger R∗
max is required; this observation are consistent with those for γmax and

U.

We mentioned earlier that the highest observed utilization is about 32% for

Bmax = 1.0% and about 24% when Bmax = 0.1%. The low utilization is due to the

requirement of a small blocking probability. If a higher Bmax can be tolerated, then

improvements in both γmax and U can be realized. In our experiments, we evaluate

the impact of Bmax on γmax and U. For these experiments, the default values of the

input parameters shown in Table 4.1 are used.
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Figure 5.25: R∗
max plotted against γ for Bmax = 0.1%
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Figure 5.26: U plotted against γ for Bmax = 1.0%
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Figure 5.27: U plotted against γ for Bmax = 0.1%
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The results for γmax and U for different values of Bmax are shown in Figures 5.28

and 5.29, respectively. Again, the start period strategy has the best performance.

We also observe that as Bmax increases, the system is able to handle a higher γmax.

For example, when Bmax is changed from 1% to 10%, γmax for the basic strategy

is increased from 1.53 to 2.93, an increase of 92%. Similar increases are observed

for the other two strategies. As to the utilization U, the corresponding increase is

from 27% to 41%. U is above 50% for three strategies when Bmax is 25%. These

results show that we can get a higher U by tolerating higher Bmax. However, the

maximum value of U observed is still significant less than 100%. We believe this

is a consequence of the characteristics of reservation system where a high request

arrival rate will improve the chance of accommodating more requests and thereby

improving the utilization U. Such high arrival rates will also result in a high blocking

probability.
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Figure 5.28: γmax plotted against Bmax
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Figure 5.29: U plotted against Bmax for γmax
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In the last set of experiments, we investigate the relative impacts of d and q by

varying E[d ], E[q ] such that the product E[d ] * E[q ] is fixed. d and q are normal

with means E[d ] and E[q ], respectively, and with a standard deviation of 2. We

use simulation to obtain γmax and U for six combinations of E[d ] and E[q ], namely

(E[d ], E[q ]) = (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1) when Bmax = 1.0%. In the

simulation experiments, S = 50 and Rmax is set to 45. As to the other parameters,

the default values shown in Table 4.1 are used. The results for γmax and U are

shown in Figures 5.30 and 5.31, respectively. We observe that the largest γmax is

observed when E[d ] = 4 and E[q ] = 3, and generally, γmax is highest when E[d ] and

E[q ] are about the same. This observation is true for all three strategies.

We also observe that γmax and U are both lowest when E[d ] = 1 and E[q ] = 12.

Furthermore, a larger E[d ] compared to E[q ] is more favourable in terms of higher

values for γmax and U. Finally, the results in Figures 5.30 and 5.31 again confirm

that start period strategy has the best performance, followed by the non-uniform

allocation strategy. However, for the case of small resource requirements, i.e., E[q ]

= 1, the non-uniform strategy and the basic strategy have similar performance.

This is due to the high probability of encountering one or more time slots where

resources are not available at step one of Algorithm 1.
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Figure 5.30: γmax plotted against d and q
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Figure 5.31: U plotted against d and q for γmax
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Chapter 6

Results for On-Demand Class

6.1 Initial Observations

Depending on the amount of resources committed to the reservation class, the

resources available to the on-demand class at any time instant could be zero or more

server nodes. Jobs for the on-demand class are therefore served by multiple servers,

but the number of servers may change over time. For such jobs, the performance

metric of interest is the mean response time. A suitable model to determine the

mean response time is a multi-server model. The traditional model assumes a

constant number of servers. Results for a time-varying number of servers are not

available. This issue of time-varying capacity has been investigated in the context

of a wireless channel in [18]. Our system is different from a wireless channel in

the sense that we have multiple server nodes instead of a single channel. We are

interested in the impact of resource availability and its variation on response time

performance. In our investigation, we use the coefficient of variation of the number

of server nodes available (denoted by Cv[A]) as our measure of variations in resource

availability.

For the on-demand class, job arrivals are modeled by an interarrival time dis-
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tribution that is independent of the state of the system. The service time for these

jobs is modeled by a probability distribution. The following notation will be used:

α - distribution of interarrival time

β - distribution of service time

Consider first the case where α and β are both exponential and there is a constant

number of servers. This is the M/M/m model and analytic result for the mean

response time (denoted by E[T ]) is available [13]. Let λ, µ, and m be the arrival

rate, service rate, and number of servers, respectively. E[T ] is given by:

E[T ] =
1

µ
(1 +

%

m(1− ρ)
)

where % = probability of queueing = P (≥ m jobs) = (mρ)m

m!(1−p)p0, p0 = probability of

zero jobs in the system = [1 + (mρ)m

m!(1−ρ) +Σm−1
n=1

(mρ)n

n!
]−1, and ρ is the traffic intensity

given by ρ = λ
mµ

.

As a numerical example, we set µ = 1/12, and for a given m, select values of

λ such that ρ = 0.1, 0.2, ..., 0.9. In Figure 6.1, we plot E[T ] against ρ for m

= 3, 5, and 7. We observe that the mean response time increases quickly when

ρ ≥ 0.7. We also note that for the system to be stable, ρ must be less than one

and E[T ] may become unacceptable when ρ > 0.9. We feel that results for the

region of 0.7 ≤ ρ ≤ 0.9 would provide valuable insights into the impact of input

parameters on performance. Therefore, in our evaluation, emphasis is placed on

scenarios where 0.7 ≤ ρ ≤ 0.9.

6.2 Simulation Results for Mean Response Time

Consider again the base model investigated in Chapter 4. Simulation results for
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Figure 6.1: E[T ] plotted against ρ
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E[R] (the mean number of server nodes allocated to the reservation class) for a range

of values of the request arrival rate, and for a range of distributions of duration,

resource requirement and start time were presented in Figures 4.1 to 4.14. From

these results, one can determine E[A], the mean number of server nodes available

to the on-demand class. E[A] is simply given by:

E[A] = S − E[R]

During the simulation, one can also collect data for Cv[A], the coefficient of

variation of the number of server nodes available and E[T ], the mean response time

of the on-demand class. Cv[A] is given by:

Cv[A] =
E[A]

σ[A]
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We now present results that show the impact of E[A] and Cv[A] on E[T ]. In our

simulation experiments, the total number of server nodes S considered are 10, 30,

and 50. For the reservation class, the input parameters are selected as follows. γ,

q and x are given by the default values in Table 4.1. Rmax is varied from 0.5S to

0.9S and five distributions (normal (8, 3), normal (4, 7), normal (6, 3), normal (4,

5) and normal (4, 3) are used for d to achieve different values of E[A] and Cv[A].

For the on-demand class, we assume again that α is exponential with rate λ and

β is exponential with rate µ. For the case of time varying resource availability, the

traffic intensity is given by

ρ =
λ

E[A] ∗ µ

In the simulation experiments, µ is set to 1/12. For each value of S, λ is selected

such that ρ is in the range of 0.7 to 0.9 when Rmax and d are varied. The values of

λ selected for S = 10, 30, and 50 are 0.42, 1.41, and 2.56, respectively. For each of

the cases simulated, data for E[A], Cv[A], and E[T ] are collected.

In Figures 6.2, 6.3, and 6.4, we plot the results for E[T ] against E[A] and Cv[A]

for S = 10, 30, and 50, respectively. As expected, E[T ] increases as E[A] decreases

because a smaller number of server nodes should lead to a longer response time. We

also observe that when E[A] is large (or ρ is close to 0.7), the impact Cv[A] on E[T ]

is not significant. However, when E[A] becomes small (or ρ is increased to 0.9),

E[T ] tends to increase with Cv[A]. It is not clear whether such increase is caused

by the decrease in Cv[A], or the increase in Cv[A], or both, because Cv[A] appears

to be affected by E[A] also. Therefore, it is not easy to determine the relationship

between Cv[A] and E[T ] from the results in Figures 6.2, 6.3, and 6.4. A further

investigation of the impact of Cv[A] on E[T ] is required. The results of such an

investigation are presented in the next section.
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Figure 6.2: E[T ] plotted against E[A] and Cv[A] when S = 10
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Figure 6.3: E[T ] plotted against E[A] and Cv[A] when S = 30
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Figure 6.4: E[T ] plotted against E[A] and Cv[A] when S = 50
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6.3 Impact of Cv[A] on E[T ]

Our approach is to create scenarios where E[A] is the same, but the Cv[A]’s are

different and use them to evaluate the impact of Cv[A] on E[T ]. In general, it is not

practical to create such scenarios by experimenting with different values of Rmax,

γ, d, and q. Instead, we use simulation to set up time-varying resource availability

such that E[A] is the same, but the Cv[A]s are different. This is an efficient method

to come up with given values of E[A] and Cv[A]. We feel that it will not affect our

conclusion in terms of the impact of Cv[A] on E[T ].

In our simulation experiments, three different values of S, namely S = 10, 30,

and 50, are considered. The corresponding values of E[A] are 5, 15, and 25 (i.e.,

E[A] = 0.5S ). Variations in resource availability were generated such that Cv[A]

has values ranging from 0 (no variation) to 0.7. We first consider the case where
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Figure 6.5: E[T ] plotted against Cv[A] when α and β are exponential
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α and β are both exponential. The service rate µ is again set to 1/12. For each

of the three values of S, the arrival rate λ is selected such that ρ = 0.7. Based on

this criterion, the values of λ are 0.29, 0.86, and 1.44, when S = 10, 30, and 50,

respectively. The results for E[T ] as a function of Cv[A] are shown in Figure 6.5.

We observe that as Cv[A] increases, E[T ] remains practically unchanged up to a

point and then begins to increase. The point at which E[T ] begins to increase is

Cv[A] = 0.1 for S = 30 and 50 (or E[A] = 15 and 25) or Cv[A] = 0.2 for S = 10

(or E[A] = 5).

Consider next the case of non-exponential distributions for α and β. It was

mentioned in [6, 12, 14] that both interarrival time and service time tend to have

long tail distributions. We therefore consider the case where α and β are both
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Pareto which has probability density function:

f(x) =
kxkm
xk+1

where xm and k are the parameters. We denote such a distribution by Pareto (xm,

k). Let E[P ] and Cv[P ] be the mean and coefficient of variation of the Pareto

distribution. For k > 2, we have [20]:

E[P ] =
kxm
k − 1

Cv[P ] =
1√

k(k − 2)

Two Pareto distributions for α and β are used in our simulation experiments.

For the first distribution, k = 2.2 and the corresponding Cv[P ] = 1.5. β is assumed

to be Pareto (6.547, 2.2). For S = 10, 30, and 50, α is Pareto (0.376, 2.2), Pareto

(0.627, 2.2), and Pareto (1.882, 2.2), respectively. With these values for α, the

traffic intensity ρ = 0.7. The results for E[T ] as a function of Cv[A] are shown

in Figure 6.6. We again observe that as Cv[A] increases, E[T ] remains practically

unchanged up to a point and then begins to increase. This point is Cv[A] = 0.1 for

E[A] = 15 and 25 or Cv[A] = 0.2 for E[A] = 5. The same observation is made for

the second Pareto distribution where k = 2.12 (Cv[P ] = 2). The results are shown

in Figure 6.7. These results are for β equal to Pareto (6.349, 2.12). To obtain a

traffic intensity of 0.7, α is Pareto (0.365, 2.12), Pareto (0.608, 2.12), and Pareto

(1.825, 2.12), for S = 10, 30, and 50, respectively.

We conclude from the results in Figures 6.5 to 6.7 show that when Cv[A] is

above a particular value, there will be noticeable increase in E[T ]. This value is

affected by the value of E[A], namely, 0.1 when E[A] = 15 and 25 and 0.2 when

E[A] = 5, but is not sensitive to the distributions used for α and β.
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Figure 6.6: E[T ] plotted against Cv[A] when α and β are Pareto with Cv[P ] = 1.5
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Figure 6.7: E[T ] plotted against Cv[A] when α and β are Pareto with Cv[P ] = 2
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6.4 Additional Remark

The results in Figures 6.5 to 6.7 provide useful guidelines for non-uniform resource

allocation for the reservation class. Consider, for example, a reservation request

with resource requirement of 5 server nodes. In Algorithm 1, the number of server

nodes allocated varies over time, but its mean (denoted by E[N ]) is the same as

the resource requirement of the reservation request. For a given allocation, we can

also compute Cv[N ], the coefficient of variation of the number of nodes allocated.

Suppose the reserved server nodes are used to support interactive users and mean

response time is the performance metric of interest. Our results in Figures 6.5 to 6.7

show that if Cv[N ] ≤ 0.2, the mean response time is not affected by the variation

in resource availability. Non-uniform allocation is therefore an effective strategy in

terms of meeting the response time performance.

In the case where Cv[N ] > 0.2, the mean response time will be larger than that

for the case of no variation. The increase in mean response time can be viewed

as not allocating enough resources. A possible strategy is to allocate more server

nodes on average. As an example, when α and β are both exponential, one can

interpret the results in Figure 6.5 as E[T ] = 12.8 when E[N ] = 5 and there is

no variation in resource allocation. One can also interpret that E[T ] is noticeable

larger than 12.8 when Cv[N ] > 0.2. When this happens, a larger value of E[N ] can

be used to realize a mean response time of 12.8.

Consider the case of Cv[N ] = 0.3, the results in Figure 6.5 show that E[T ] is 13.5.

Using simulation, we found that if E[N ] is set to 6 instead of 5, the mean response

time becomes 12.8, which is the same as the case of E[N ] = 5 with no variation. This

represents a 20% increase in resource allocation on average. As another example,

when Cv[N ] = 0.44, E[T ] becomes 14 for E[N ] = 5. Our simulation results show

that to get E[T ] ≤ 12.8, we would require E[N ] = 7, which means a 40% increase
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in resource allocation. It seems that the additional resources required to alleviate

the increase in mean response time due to a large value of Cv[N ] may be too costly.

Nevertheless, if Cv[N ] ≤ 0.2, no additional resources are required and non-uniform

resource allocation is a very effective strategy.

58



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, we used simulation to investigate the impact of variations in workload

of reservation requests and on-demand access on performance. Performance met-

rics considered included resource utilization and blocking probability of reservation

requests, and mean response times of on-demand access.

For reservation requests, the basic strategy is to impose a limit on the number of

server nodes that could be reserved at any time instant. Our results indicated that

resource usage was low compared to the reservation limit if the blocking probabil-

ity were to be kept at an acceptable level. Two other strategies to improve system

performance for reservation requests were evaluated. The first strategy, referred to

as the start period strategy, allowed the start time of reservations to be delayed

up to some maximum value. The second strategy allowed resources to be allocated

in a non-uniform manner as long as the mean number of server nodes allocated is

the same as the amount of resources required. Simulation results show that both

strategies lead to increase in resource usage and decrease in blocking probability

when compared to the basic strategy. Between the two, the start period strat-
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egy has significantly better performance, but the requesting user may be required

to accept an alternative start time for the reservation. Despite the performance

improvement, the maximum resource utilization observed is about 32% when the

blocking probability is kept below 1.0%.

We also investigated scenarios where higher blocking probabilities can be tol-

erated. For such scenarios, we observed increase in resource utilization for a given

arrival rate, or increase in request arrival rates that can be supported. The highest

resource utilization observed was about 55% when the blocking probability can be

as high as 25%. Our conclusion was that a high request arrival rate will improve

the chance of accommodating more requests and thereby improving the utilization,

but will also result in a high blocking probability. Even with a blocking probability

of 25% which is considered to be unacceptable, the resource utilization was below

60%.

With resources committed to reservations, the number of server nodes available

for on-demand access may change over time. Initial results showed that the mean

response time of on-demand access was increased when the mean resource avail-

ability was reduced, but the impact of variations in resource availability was not

clearly shown. Additional results showed that the mean response time remained

practically unchanged up to a certain value of the coefficient of variation of the

number of server nodes, and then begins to increase. This value was 0.1 or 0.2 for

the cases considered. These results indicated that the non-uniform resource allo-

cation strategy for reservation requests may lead to degraded performance (in case

the reserved resources are used for interactive access) if the variations in resource

allocation over the duration of the reservation is too large. These results can be

used to develop guidelines for the non-uniform resource allocation strategy.
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7.2 Future Research

In our investigation, a reservation request is accepted if the requested resources are

available, and rejected otherwise. In some cases, it may be advantageous to reject

a request even though there are sufficient resources because such an action may

lead to better resource usage in the future. Of interest is an investigation of the

conditions under which such advantages can be realized.

In our investigation, no restriction was placed on the start time of a reservation

request. A possible extension is to impose a minimum start time for all requests,

known as the notice period [3]. This would allow the system to batch reservation

requests and make better use of resources based on the requirements of these re-

quests. The drawback is that the requesting user may not be informed immediately

about whether the request was accepted or not. Extension of our work to include

this feature is a topic worthy of investigation.

In some applications, the reserved resource may not be required towards the

end of the duration of the reservation request. Normally, a request is not accepted

if sufficient resources are not available. The possibility of an earlier end time allow

for accepting more requests than normal with the hope that resources are available

at the required times. Our model can be extended to estimate that probability

of meeting a requests resource requirement for different strategies for accepting

requests.

For on-demand access, we have used the mean response time as the performance

metric of interest. In the financial world, a better measure of risk is VAR, or value at

risk. Other metrics may include Prob[response time ≤ x], which is the probability

that the response time is less than or equal to a given value. An example of a

conditional VAR measure is “in the worse 1% of the cases, the average response

time is Z”, which is measured with this metric as Prob[response time ≤ Z] = 99%.
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An investigation of this metric would provide additional insight into the system

performance for on-demand access.

We have evaluated the performances of the reservation class and the effects of

the reservation class on the performance of on-demand access. A related work is to

evaluate the tradeoffs in performance between these two classes. This may include

finding parameters that allow for optimal performance to both of these classes at

the same time.
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